
Maurizio Morisio
Marco Torchiano
Andreas Jedlitschka (Eds.)

LN
CS

 1
25

62

21st International Conference, PROFES 2020
Turin, Italy, November 25–27, 2020
Proceedings

Product-Focused
Software Process Improvement

Lecture Notes in Computer Science 12562

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Maurizio Morisio • Marco Torchiano •

Andreas Jedlitschka (Eds.)

Product-Focused
Software Process Improvement
21st International Conference, PROFES 2020
Turin, Italy, November 25–27, 2020
Proceedings

123

Editors
Maurizio Morisio
Politecnico di Torino
Turin, Torino, Italy

Marco Torchiano
Polytechnic University of Turin
Turin, Torino, Italy

Andreas Jedlitschka
Fraunhofer Institute for Experimental
Software Engineering
Kaiserslautern, Rheinland-Pfalz, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-64147-4 ISBN 978-3-030-64148-1 (eBook)
https://doi.org/10.1007/978-3-030-64148-1

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7362-906X
https://orcid.org/0000-0001-5328-368X
https://orcid.org/0000-0003-3590-6331
https://doi.org/10.1007/978-3-030-64148-1

Preface

On behalf of the PROFES Organizing Committee, we are proud to present the
proceedings of the 21st International Conference on Product-Focused Software Process
Improvement (PROFES 2020). The conference, due to the COVID-19 outbreak, was
held in a fully online format, during November 25–27, 2020. Since 1999, PROFES has
established itself as one of the top recognized international process improvement
conferences. In the spirit of the PROFES conference series, the main theme of PROFES
2020 was professional software process improvement (SPI) motivated by product,
process, and service quality needs.

PROFES 2020 is a premier forum for practitioners, researchers, and educators to
present and discuss experiences, ideas, innovations, as well as concerns related to
professional software development and process improvement driven by product and
service quality needs. PROFES especially welcomes contributions emerging from
applied research to foster industry-academia collaborations of leading industries and
research institutions.

The technical program of PROFES 2020 was selected by a committee of leading
experts in software process improvement, software process modeling, and empirical
software engineering. This year, 50 full research papers were submitted. After thorough
evaluation that involved at least three independent experts per paper, 19 technical full
papers were finally selected (38% acceptance rate). In addition, we had a record
number of industry paper submissions, 10, of which we accepted 6 for the final
program.

Furthermore, we received 8 short paper submissions. Each submission was reviewed
by three members from the PROFES Program Committee. Based on the reviews and
overall assessments, 3 short papers were accepted for presentation at the conference
and for inclusion in the proceedings (37.5% acceptance ratio).

The technical program consisted of the following tracks: Agile Methodologies, Data
Science, Software Testing and Evolution, Social and Human Aspects, and Software
Development.

Continuing the open science policy adopted since PROFES 2017, we encouraged
and supported all authors of accepted submissions to make their papers and research
publicly available.

We are thankful for the opportunity to have served as chairs for this conference. The
Program Committee members and reviewers provided excellent support in reviewing
the papers. We are also grateful to all authors of submitted manuscripts, presenters,
keynote speakers, and session chairs, for their time and effort in making PROFES 2020

a success. We would also like to thank the PROFES Steering Committee members for
the guidance and support in the organization process.

October 2020 Andreas Jedlitschka
Maurizio Morisio
Marco Torchiano

vi Preface

Organization

Organizing Committee

General Chair

Maurizio Morisio Politecnico di Torino, Italy

Program Co-chairs

Andreas Jedlitschka Fraunhofer IESE, Germany
Marco Torchiano Politecnico di Torino, Italy

Short Paper Co-chairs

Luca Ardito Politecnico di Torino, Italy
Michael Kläs Fraunhofer IESE, Germany

Industry Papers Co-chairs

Liliana Guzmán DSA, Germany
Federico Tomassetti Strumenta, Italy

Proceedings Co-chairs

Anna Maria Vollmer Fraunhofer IESE, Germany
Riccardo Coppola Politecnico di Torino, Italy

Journal First Chair

Antonio Vetrò Politecnico di Torino, Italy

Local Arrangement Co-chairs

Mariachiara Mecati Politecnico di Torino, Italy
Isabeau Oliveri Politecnico di Torino, Italy

Web Co-chairs

Simone Leonardi Politecnico di Torino, Italy
Diego Monti Politecnico di Torino, Italy

PC Members, Full Research Papers, and Short Papers

Sousuke Amasaki Okayama Prefectural University, Japan
Stefan Biffl Vienna University of Technology, Austria
Andreas Birk SWPM, Germany
Luigi Buglione ETS, Canada
Danilo Caivano University of Bari Aldo Moro, Italy
Marcus Ciolkowski QAware GmbH, Germany
Maya Daneva University of Twente, The Netherlands
Bruno da Silva California Polytechnic State University, USA
Torgeir Dingsøyr Norwegian University of Science and Technology,

Norway
Michal Dolezel Prague University of Economics and Business,

Czech Republic
Anh Nguyen Duc University College of Southeast Norway, Norway
Christof Ebert Vector Consulting Services GmbH, Germany
Davide Falessi California Polytechnic State University, USA
Michael Felderer University of Innsbruck, Austria
Lina Garcés ICMC, USP, Brazil
Carmine Gravino University of Salerno, Italy
Noriko Hanakawa Hannan University, Japan
Jens Heidrich Fraunhofer IESE, Germany
Martin Höst Lund University, Sweden
Frank Houdek Daimler AG, Germany
Andrea Janes Free University of Bozen-Bolzano, Italy
Petri Kettunen University of Helsinki, Finland
Jil Klünder Leibniz Universität Hannover, Germany
Jingyue Li Norwegian University of Science and Technology,

Norway
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Stephen MacDonell University of Otago, New Zealand
Tomi Männistö University of Helsinki, Finland
Silverio

Martínez-Fernández
Universitat Politècnica de Catalunya, Spain

Kenichi Matsumoto Nara Institute of Science and Technology (NAIST),
Japan

Juergen Muench Reutlingen University, Germany
Edson Oliveirajr State University of Maringá, Brazil
Paolo Panaroni Intecs Solutions, Italy
Dietmar Pfahl University of Tartu, Estonia
Rudolf Ramler Software Competence Center, Austria
Daniel Rodriguez University of Alcalá, Spain
Bruno Rossi Masaryk University, Czech Republic
Barbara Russo Free University of Bozen-Bolzano, Italy
Gleison Santos UNIRIO, Brazil
Giuseppe Scanniello University of Basilicata, Italy

viii Organization

Kurt Schneider Leibniz Universität Hannover, Germany
Ezequiel Scott University of Tartu, Estonia
Martin Solari Universidad ORT Uruguay, Uruguay
Michael Stupperich Daimler AG, Germany
Ayse Tosun Istanbul Technical University, Turkey
Guilherme Travassos COPPE, UFRJ, Brazil
Rini Van Solingen Delft University of Technology, The Netherlands
Stefan Wagner University of Stuttgart, Germany
Hironori Washizaki Waseda University, Japan
Dietmar Winkler Vienna University of Technology, Austria

Organization ix

Contents

Agile Software Development

A Systematic Literature Review on Agile Coaching and the Role
of the Agile Coach . 3

Viktoria Stray, Bakhtawar Memon, and Lucas Paruch

Agile Leadership and Agile Management on Organizational
Level - A Systematic Literature Review . 20

Sven Theobald, Nils Prenner, Alexander Krieg, and Kurt Schneider

A Study of the Agile Coach’s Role . 37
Kadri Daljajev, Ezequiel Scott, Fredrik Milani, and Dietmar Pfahl

Impediment Management of Agile Software Development Teams 53
Pascal Guckenbiehl and Sven Theobald

How to Integrate Security Compliance Requirements with Agile Software
Engineering at Scale? . 69

Fabiola Moyón, Daniel Méndez, Kristian Beckers,
and Sebastian Klepper

A Portfolio-Driven Development Model and Its Management Method
of Agile Product Line Engineering Applied to Automotive Software
Development . 88

Kengo Hayashi and Mikio Aoyama

Lean R&D: An Agile Research and Development Approach for Digital
Transformation . 106

Marcos Kalinowski, Hélio Lopes, Alex Furtado Teixeira,
Gabriel da Silva Cardoso, André Kuramoto, Bruno Itagyba,
Solon Tarso Batista, Juliana Alves Pereira, Thuener Silva,
Jorge Alam Warrak, Marcelo da Costa, Marinho Fischer,
Cristiane Salgado, Bianca Teixeira, Jacques Chueke, Bruna Ferreira,
Rodrigo Lima, Hugo Villamizar, André Brandão, Simone Barbosa,
Marcus Poggi, Carlos Pelizaro, Deborah Lemes, Marcus Waltemberg,
Odnei Lopes, and Willer Goulart

Success and Failure Factors for Adopting a Combined Approach:
A Case Study of Two Software Development Teams. 125

Ingrid Signoretti, Maximilian Zorzetti, Larissa Salerno,
Cassiano Moralles, Eliana Pereira, Cássio Trindade, Sabrina Marczak,
and Ricardo Bastos

A Practice-Informed Conceptual Model for a Combined Approach
of Agile, User-Centered Design, and Lean Startup. 142

Maximilian Zorzetti, Ingrid Signoretti, Eliana Pereira, Larissa Salerno,
Cassiano Moralles, Cássio Trindade, Michele Machado,
Ricardo Bastos, and Sabrina Marczak

Data Science

Demystifying Data Science Projects: A Look on the People and Process
of Data Science Today. 153

Timo Aho, Outi Sievi-Korte, Terhi Kilamo, Sezin Yaman,
and Tommi Mikkonen

Data Pipeline Management in Practice: Challenges and Opportunities 168
Aiswarya Raj Munappy, Jan Bosch, and Helena Homström Olsson

From a Data Science Driven Process to a Continuous Delivery Process
for Machine Learning Systems . 185

Lucy Ellen Lwakatare, Ivica Crnkovic, Ellinor Rånge, and Jan Bosch

Data Labeling: An Empirical Investigation into Industrial Challenges
and Mitigation Strategies . 202

Teodor Fredriksson, David Issa Mattos, Jan Bosch,
and Helena Holmström Olsson

An End-to-End Framework for Productive Use of Machine Learning
in Software Analytics and Business Intelligence Solutions 217

Iris Figalist, Christoph Elsner, Jan Bosch,
and Helena Holmström Olsson

Test and Evolution

A Systematic-Oriented Process for Tool Selection: The Case of Green
and Technical Debt Tools in Architecture Reconstruction. 237

Daniel Guamán, Jennifer Pérez, Juan Garbajosa,
and Germania Rodríguez

Redefining Legacy: A Technical Debt Perspective. 254
Ben D. Monaghan and Julian M. Bass

Improving a Software Modernisation Process by Differencing
Migration Logs . 270

Céline Deknop, Johan Fabry, Kim Mens, and Vadim Zaytsev

The Effect of Class Noise on Continuous Test Case Selection:
A Controlled Experiment on Industrial Data . 287

Khaled Walid Al-Sabbagh, Regina Hebig, and Miroslaw Staron

xii Contents

On Clones and Comments in Production and Test Classes:
An Empirical Study. 304

Steve Counsell, Steve Swift, Mahir Arzoky, and Giuseppe Destefnas

Social and Human Aspects

Dimensions of Consistency in GSD: Social Factors, Structures
and Interactions . 315

Outi Sievi-Korte, Fabian Fagerholm, Kari Systä, and Tommi Mikkonen

Ethical Guidelines for Solving Ethical Issues and Developing AI Systems . . . 331
Nagadivya Balasubramaniam, Marjo Kauppinen, Sari Kujala,
and Kari Hiekkanen

Sentiment Polarity and Bug Introduction . 347
Simone Romano, Maria Caulo, Giuseppe Scanniello,
Maria Teresa Baldassarre, and Danilo Caivano

Software Development

Kuksa�: Self-adaptive Microservices in Automotive Systems 367
Ahmad Banijamali, Pasi Kuvaja, Markku Oivo, and Pooyan Jamshidi

Compliance Requirements in Large-Scale Software Development:
An Industrial Case Study . 385

Muhammad Usman, Michael Felderer, Michael Unterkalmsteiner,
Eriks Klotins, Daniel Mendez, and Emil Alégroth

Software Startup Practices – Software Development in Startups Through
the Lens of the Essence Theory of Software Engineering 402

Kai-Kristian Kemell, Ville Ravaska, Anh Nguyen-Duc,
and Pekka Abrahamsson

An Empirical Investigation into Industrial Use of Software Metrics
Programs . 419

Prabhat Ram, Pilar Rodríguez, Markku Oivo, Alessandra Bagnato,
Antonin Abherve, Michał Choraś, and Rafał Kozik

Integration of Security Standards in DevOps Pipelines: An Industry Case
Study. 434

Fabiola Moyón, Rafael Soares, Maria Pinto-Albuquerque,
Daniel Mendez, and Kristian Beckers

Contents xiii

Exploring the Microservice Development Process in Small
and Medium-Sized Organizations . 453

Jonas Sorgalla, Sabine Sachweh, and Albert Zündorf

Author Index . 461

xiv Contents

Agile Software Development

A Systematic Literature Review on Agile
Coaching and the Role of the Agile Coach

Viktoria Stray1,2(B) , Bakhtawar Memon1, and Lucas Paruch1

1 Department of Informatics, University of Oslo, Oslo, Norway
{stray,bakhtawm,lucasp}@ifi.uio.no

2 SINTEF, Trondheim, Norway

Abstract. There has been a recent increase in the use of agile coaches
in organizations. Although the use of the job title is popular, empirical
knowledge about the tasks, responsibilities and skills of an agile coach
is lacking. In this paper, we present a systematic literature review on
agile coaching and the role of the agile coach. The initial search resulted
in a total of 209 studies identified on the topic. Based on our inclusion
and exclusion criteria, a total of 67 studies were selected as primary
studies. Our findings suggest that agile coaching facilitates the adop-
tion and sustainability of agile methods and deals with agile adoption
challenges. Agile coaches help in training and developing software devel-
opment teams and all the stakeholders involved in the agile adoption pro-
cess. The primary skills of an agile coach identified herein are leadership
qualities, project management skills, technical skills, and expertise in
agile methods. Based on the findings, it can be argued that agile coaches
play a significant role in addressing challenges in an agile transformation
such as resistance to change. Coaches focus on removing barriers to team
autonomy in agile teams and making agile meetings more valuable.

Keywords: Agile coaching · Skills · Tasks · Systematic literature
review · Agile transformation · Software development practices

1 Introduction

Agile software development is a popular software development methodology, due
to its focus on quick response to change and improved interactions with cus-
tomers. However, adoption of agile methodology is not straight-forward. Agile
started out with software teams, but today, whole organizations seek to adopt
agile to be able to create, react to, embrace, and learn from change while enhanc-
ing customer value in a digital transformation [8]. Such an agile transformation
requires changes throughout the entire organization, involving changes to roles,
practices, tools and people’s behaviors, mindsets, and responsibilities [15,25,59].
The adoption is usually slow and gradual, and it can take up to several years to
complete [30]. Agile transformation is especially challenging in larger organiza-
tions, because of complex infrastructures, numerous legacy systems, mature orga-
nizational culture, and an increase in the number of inter-dependencies between
actors, tasks, and goals [35,60].
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-64148-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_1&domain=pdf
http://orcid.org/0000-0002-6032-2074
http://orcid.org/0000-0003-3726-1231
https://doi.org/10.1007/978-3-030-64148-1_1

4 V. Stray et al.

Coaching has been found to be one of the most important success factors in an
agile transformation [10,36]. To help companies adopt agile methods smoothly,
a new role has emerged; an agile coach has been introduced, and having an
agile coach to help with agile transformations is constantly gaining in popularity
[27,40,51]. An agile coach is an individual who coaches and facilitates agile
teams and managers in adopting and implementing agile practices, processes,
and values in software development [49]. It is a valuable role for organizational
change [40,51]. However, there are a number of challenges in agile adoption, the
majority of which are human-related and include resistance to change [7,31],
lack of effective communication [26], lack of customer collaboration [34] and
insufficient experience and knowledge of agile methods and practices [13,34]. The
organizational adoption challenges include cultural issues or cultural mismatch
to agile methods due to managers being unwilling to change from commanders
to team facilitators, lack of management support, and lack of capacity to change
the organizational culture [29]. Furthermore, many agile coaches are confused
about their role and responsibilities [24].

The motivation to conduct this literature review was to explore what aca-
demic literature says about what agile coaching is and how agile coaches can
help address and overcome the above mentioned challenges to help in the adop-
tion of agile methodologies in software development organizations and help agile
coaches better understand their role.

The remainder of this paper is organized as follows. Section 2 describes back-
ground on agile coaching. Section 3 details the review method and presents
the research questions and the search strategy. Section 4 presents the results.
Section 5 discusses the main ndings and our study limitations. Section 6 con-
cludes the paper and proposes future work.

2 Agile Coaching and the Role of an Agile Coach

Agile coaching is considered a sub-field of coaching [40], which focuses on helping
teams or individuals adopt and improve agile methods and rethink and change
the way they develop software. Agile coaching is used to mitigate problems dur-
ing agile adoption and it makes the transition easier and more effective [45]. Agile
coaching involves advocating agile methods and their introduction into daily rou-
tines of teams in an organization. Nowadays, many organizations considers agile
coaching as a dedicated full-time employment [51].

There are several practitioner’s guides and books available (e.g., [3,9]).
According to one of the first books on agile coaching, the role of the agile coach
is to grow a productive agile team [9]. Moreover, the tasks of the coach are to
educate, facilitate, support, notice and give feedback to the teams and one of the
main skill sets that coaches must have is listening skills [9]. In addition, there are
also certifications for agile coaches. For example, the International Consortium
for Agile, lists learning outcomes of agile coaching education as individuals who
are knowledgeable in agile practices, have fundamental skills in facilitation, and
the self-leadership to coach a team [1]. Scrum Alliance lists expectations for their

A Systematic Literature Review on Agile Coaching 5

certified coaches as individuals who have humility, are creative, resourceful, and
able to solve their own challenges [2].

The academic literature has reported some studies in which an agile coach
is hired to help companies adopt agile methods smoothly [4,19,25,57]. If the
transition is happening on a larger scale, such as an entire IT division or an
entire company, several coaches are needed for sustained agile usage [12,19,57].
These coaches can be external consultants or internal to the company. Often,
companies hire external coaches to provide initial training and kick-start agile
development. At the same time, they help train and develop internal coaches
who take over the main coaching role later on [25,45].

Agile coaches mentor projects and organizations seeking to adopt agile [62].
Agile coaches can help the teams resolve process related problems by ensur-
ing that the teams follow the process correctly [48]. According to Fraser [14],
“Coaches help team members become a cohesive unit, understand the’rules-of-
the-game’, facilitate interaction, optimize skills, and build motivation towards
common goals”. An agile coach’s job is to help introduce and guide one or more
teams in how to use agile methodologies such as Scrum and Kanban. One of
the tasks of an agile coach is to facilitate and support the organization during
their agile transformation [49,50]. The coaches work on changing the mentality
of managers [18]. Essential traits for agile coaches is being emphatic, people-
oriented, able to listen, diplomatic, and persistent [61]. An agile coach brings
numerous benefits to an organization; the benefits have been found to exceed
the financial cost of employing an agile coach [40].

3 Review Method

The following section describes the method used to conduct this systematic liter-
ature review (SLR). The review procedure is based on guidelines for performing
SLR in software engineering by Kitchenham et al. The review’s objective was to
better understand what agile coaching is, what agile coaches do, and how they
can help in the adoption of agile methodologies in software development orga-
nizations. In particular, the paper aims to do this by answering the following
research questions [28].

RQ1: What are the tasks and responsibilities of an agile coach?
RQ2: What are the skills required of an agile coach?

3.1 Search Strategy

The search query was developed iteratively (Fig. 1). We began the search process
by identifying relevant search keywords. Based on reading both academic and
practitioner literature regarding the area, the two commonly emergent keywords
were agile coach and agile coaching. We identified several more keywords and
developed an appropriate search query for the review.

6 V. Stray et al.

Fig. 1. Process of developing search query

We conducted a trial search with (“agile coach” OR “agile coaching”) in the
Scopus database, intending to skim through the first 30 relevant publications
and get an understanding of the appropriate search keywords, to continually
refine our search query. This action was repeated several times with database
Scopus, Web of Science, and Google Scholar until we felt all relevant keywords
were identified.

Table 1 shows the final search query and keywords. We decided to apply the
final query to Scopus only, as Google Scholar usually gives too many results from
non-journal sources and unpublished materials [33]. Web of Science gave us too
few, and did not display new articles that were not already found on Scopus.
Second, we used Scopus because it also subsumes results from both SpringerLink
and Wiley Inter-Science Journal. As an additional benefit, we found that Scopus
provides a user-friendly interface and advanced filters that simplified the search
process.

3.2 Study Search

The final search query was applied to Scopus in March 2020, in which 209 results
were returned. We exported metadata of each of the results, such as authors, title,
year, publication source, abstract, author, and document type into a spreadsheet.
We also performed a manual verification process to ensure that the information
was correctly entered into the Excel file. For example, we checked the publication
sources by searching for the paper. Mistakes were found regarding this aspect,
as information exported from Scopus did not correctly reflect the publication
sources of the studies. These were manually corrected.

3.3 Study Selection

Study selection was carried out by an extensive inspection of the studies’
abstracts and author keywords, and simultaneously applying the inclusion and
exclusion criteria. The inclusion and exclusion criteria that have been used in

A Systematic Literature Review on Agile Coaching 7

Table 1. Search strategy

Search keywords Agile coach, Scrum coach, XP coach, Kanban coach,
Lean coach, DevOps coach, Agility coach, Internal
coach, Agile coaching, Team coaching, Scrum coaching,
XP coaching, Kanban coaching, Lean coaching, DevOps
coaching

Final search query “agile coach” OR “agility coach” OR “Scrum coach”
OR “Lean coach” OR “Kanban coach” OR “XP coach”.
OR “DevOps coach” OR “agile coaching” OR “Scrum
coaching” OR “Lean coaching” OR “Kanban coaching”
OR “XP coaching” OR “DevOps coaching” OR
(“internal coach” AND (agile OR scrum OR Lean OR
Kanban OR XP OR DevOps)) OR (“team coaching”
AND (agile OR Scrum OR Lean OR Kanban OR XP
OR DevOps))

Target for search query Full document

Data sources Scopus

this review are listed in Table 2. Each inclusion (IC) and exclusion (EC) criterion
is given an ID, so that during study selection each study is assigned an ID based
on the criteria it matches.

Both inclusion criteria include publications in journals and conference pro-
ceedings, as well as relevant book chapters. We identified these studies by eval-
uating the abstract’s relevancy to the agile coach topic. Studies that did not
qualify for the inclusion criteria above were excluded, as well as workshop pro-
posals that were limited to one page and only had a descriptive content of the
process happened at the workshop. Other systematic reviews or mapping stud-
ies were not included as primary studies, but we treated them as a checklist
in order to compare their process against ours. We did not include studies for
which full-text were not available, and we only focused on studies utilizing agile
processes within the area of software development. Last, we excluded studies on
students learning agile methods, and non-English contributions. These criteria
were developed iteratively, while performing study selection. The spreadsheet
containing the Scopus search results, together with inclusion and exclusion deci-
sions is available online (https://doi.org/10.6084/m9.figshare.13014893.v1).

Out of 209 studies, 46 studies met the inclusion criteria IC1, three studies
met the inclusion criteria IC2 and 18 studies met IC3, see Fig. 2. The remaining
143 studies met one or more of the exclusion criteria, and were thus excluded.
Most of the excluded studies (73) did not have abstracts related to the research
topic (EC1). Many studies (27) focused on software engineering education in
undergraduate courses (EC7). Some studies (15) were workshops, tutorials, and
books (EC3). A few (EC4) related to usage of agile methods other than in the
software development domain, and were therefore also excluded.

https://doi.org/10.6084/m9.figshare.13014893.v1

8 V. Stray et al.

Table 2. Inclusion criteria (IC) and exclusion criteria (EC)

ID Criterion

IC1 Relevant publications published in conference proceedings

IC2 Book chapters relevant to the research topic

IC3 Relevant publications published in journals

EC1 Publications published in journals and in conference proceedings where abstract
and keywords revealed that the paper was not related to the topic of agile coaching

EC2 Duplicate studies were not included as primary studies

EC3 Workshop proposals, panels and tutorials were excluded

EC4 Systematic reviews or mapping studies

EC5 Study full text was not available

EC6 Studies based on the use of agile processes, practices and methods in settings other
than the software development domain (for example car or cement manufacturing
industry, military, and healthcare)

EC7 Based or focused on student learning of the agile methods such as Scrum, Kanban
in university or undergraduate courses

EC8 Articles not in English

EC9 Books were excluded

Table 3. Data collection form

Collected Information Purpose

Author General information

Title

Year Data analysis and synthesis

Venue

Research method

Tasks or responsibilities of an agile coach RQ1

Skills required for an agile coach RQ2

3.4 Data Extraction and Synthesis

During this step, a thorough reading of each of the 67 included studies was
performed to extract relevant information. A data collection form was designed
(Table 3) to record the full details of the study, from general information to
specific information. General information of studies included: author, title, year
and venue. Specific information included data from each study that could assist
in answering the research questions.

Let us exemplify a study that mentions the tasks an agile coach does: A
detailed reading was performed to note the specific tasks. The identified infor-
mation was copied as is from the study and pasted in the data collection form,
maintained in an Excel file. The parts of the study where particular information
was found were highlighted for future reference.

Once data extraction was complete, the extracted data related to the research
questions were closely analyzed to identify common themes. We used thematic

A Systematic Literature Review on Agile Coaching 9

Search result
n = 209

Excluded studies
n = 142

Abstract and keywords not
related to research topic

EC1= 73

Included studies
n = 67

Conference papers
IC1 = 46

Book chapters
IC2 = 3

Duplicate studies
EC2 = 10

Workshop proposals,
panels and tutorials

EC3 = 6

Systematic review and
mapping studies

EC4 = 9

Full-text not available
EC5 = 1

Agile or lean processes in
healthcare, military, car

manufacturing
EC6 = 5

Student learning of agile
methods
EC7 = 28

Not in english
EC8 = 1

Books
EC9 = 9

Journal articles
IC3 = 18

Fig. 2. The study selection process

analysis [6] and all authors were involved in the coding of the papers. Next, we
present the results of the data analysis and synthesis.

4 Results

Figure 3 shows the number of papers published on agile coaching and agile
coaches between 2003 and 2020. It can be argued that the publication volume
during the years 2017 to 2019 is an indicator of researchers growing interest in
agile coaching. More than half of the studies are from the last five years which
shows that agile coaching and issues surrounding it are gaining research interest
and being more actively studied. A multitude of research methods have been
reported in these studies. The most common are case study (19 studies) and
grounded theory research (14 studies). The majority of the studies included in
the review are published as conference papers. Out of the 67 studies included in
the review, 46 are conference papers, 18 are journal articles and the remaining
3 are book chapters.

Based on the papers’ findings and synthesis, we first present the eight most
common tasks and responsibilities (see Table 4) in Sect. 4.1. Then, in Sect. 4.2,
we present our findings of the skills (Table 5) required by agile coaches that
emerged from our systematic literature review.

10 V. Stray et al.

Fig. 3. Distribution of studies by publication year

4.1 Tasks and Responsibilities of an Agile Coach

Table 4. Themes in reviewed studies addressing RQ1

Theme Frequency Reporting studies

Develop and train the teams 12 [12,14,17,18,23,24,43,46,50,51,54,58]

Support stakeholders and managers to
understand and apply agile methods

8 [4,5,17,18,18,20,25,49,53]

Facilitate and monitor effective
implementation of agile

8 [20,24,25,40,49,54–56]

Understand context and metrics to
adapt agile implementation to the
organization

5 [4,21,38,47,52]

Help in creating guidelines and setting
goals and roadmaps

4 [41,42,45,56]

Build trust among team members 3 [4,11,14]

Remove bottlenecks that hinder
successful teamwork

3 [22,24,44]

Select a pilot project 2 [16,51]

Develop and Train the Teams. The primary role or duty of an agile coach, is
building teams by providing realistic support during implementation of agile pro-
cesses [50], leading the team toward self-organization [23]. Also, to help the team
explore their potential and to foster self-organization, they teach techniques such
as Open Space and Brainwriting [54]. Additional agile coaching duties include
teaching agile methods, techniques and related tools [46], and guiding by con-
ducting workshops and training on agile methods [12,18,51]. By supporting team

A Systematic Literature Review on Agile Coaching 11

members in acquisition of the entrepreneurial and agile mindset [58], coaches can
help design the steps to the targets, and support the teams in implementing the
agile practices [43]. Citing Fraser, “Coaches help team members become a cohe-
sive unit, understand the rules-of-the-game, facilitate interaction, optimize skills,
and build motivation towards common goals” [14].

Support Stakeholders and Managers to Understand and Apply Agile
Methods. The tasks of an agile coach are not limited to the team level. A
good coach communicates and collaborates with all the stakeholders involved in
the agile transition process such as top management [18], and directly coach the
people involved in the transition by teaching them what they need to know to
be familiar with their new roles and responsibilities [49]. Additional duties of
an agile coach include supporting Scrum Masters and distributed Scrum teams
[20,53], and supporting product owners [5]. Agile coaches were typically based
within a team and working with several teams within the organization while
also supporting it as a whole in collaboration with other coaches and leaders [4].
Some coaches worked on shifting the managers’ focus, from “what” the teams
were doing to “why” they were doing what they did, and training them to have
an agile mindset, for example not to dictate a date and budget without involving
the teams [18].

Facilitate and Monitor Effective Implementation of Agile. The agile
coach facilitates and monitors effective implementation of Scrum practices
[20,55], identifies and discusses issues, potential suggestions and innovations [25],
and presents solutions to teams to help them think about what to do next and
to make them take responsibility for their actions [54]. An agile coach facili-
tates the adaptation of agile methods and practices by proposing the required
adjustments and helps all the practitioners to overcome their problems during
the transition process and facilitate the change process [49]. They also teach how
to apply agile to legacy code and how to track the progress of an agile project
[40].

Understand the Context to Adapt Agile Implementation to the Orga-
nization. Successful agile adoption depends on context. An important task of
an agile coach is to understand the context of agile projects. Understanding
the context will help agile coaches to adapt development processes to fit their
project’s contexts [21]. Coaches also increase the context-sensitivity of others.
According to Ng [38], “Our experiences taught us that context evolves as agile
coaches interact with development organization and teams. The context descrip-
tion evolves and converges to the team’s desired way of working after the agile
coach leaves the scene”. Some coaches also use metrics such as cycle time, flow
efficiency and throughput to facilitate agile implementation and team improve-
ments [47].

12 V. Stray et al.

Help in Creating Guidelines and Setting Goals and Roadmaps. Agile
coaches and management work together to define common values for an orga-
nization, creating a road-map of where they want to see their organization in
coming years and how they will work to achieve those goals [45]. Furthermore,
they create agendas and instructions for software teams [41] and develop guide-
lines for full-scale agile roll-out [42].

Build Trust Among Team Members. Another important task of an agile
coach is to build trust with the team he or she is coaching and to improve
trust among individuals on the team by frequent and open communication [4].
Additionally, exposing team members’ expertise, particularly through knowledge
sharing activities, has been effective to build trust across different sites [11].

Remove Bottlenecks that Hinder Successful Teamwork. Agile coaches
focus on understanding how to help teams be productive and successful. When
they see people or other impediments that slow teams down, they do what they
can to help fix the situation. For example, they contact senior management to
remove people from teams [22] and facilitate inter-team retrospectives [44].

Collect Data on the Activities Carried Out by the Team. To perform
effective agile coaching, it is necessary to collect data in the form of metrics
on the activities carried out by the team to let it know the way it works using
different tools such as Actionable agile [47].

Select a Pilot Project for Agile Transformation. Another important task
of an agile coach is to select a pilot project during the agile transformation
process [16,51]. A pilot project plays a critical role in the agile transformation
process, as it acts as a training and evaluation project for a company that aims
to adapt to agile methods or practices. Conducting a pilot project may help to
predict future challenges, and organizations will need to critically consider the
duration, size and required resources while selecting them [16].

4.2 Skills Required by an Agile Coach

As shown in Table 5, there are four main types of skills that seem essential
for agile coaches: leadership skills, project management skills, expertise in agile
methods and technical skills.

First, the most important set of skills an agile coach must possess is leadership
qualities and skills. A coach needs to have good communication skills [45,57], an
understanding of teamwork and team dynamics [40], conflict management and
team building [18]. An agile coach needs strong social skills to facilitate learning
[54]. Furthermore, they should have a range of traits supporting these skills such
as positivity, persistence and patience [17,40].

A Systematic Literature Review on Agile Coaching 13

Table 5. Themes in reviewed studies addressing RQ2

Theme Frequency Reporting studies

Leadership skills 7 [14,17,18,40,43,54,57]

Project management skills 4 [17,37,40,51]

Expertise in agile methods and practices 4 [40,50,55,57]

Technical skills 3 [24,40,46]

Other 2 [18,24]

Second, an agile coach must have some project management skills to achieve
goals and meet success criteria at specified times such as skills in change man-
agement [40], expertise to facilitate identification and management of risks in
the system [37], knowledge management skills [51] and the ability to help teams
make more realistic estimates [17].

Third, an agile coach needs to have knowledge and expertise in agile meth-
ods and processes [40,55,57]. An agile coach has a significant influence on the
sustained use of agile methods [55]. However, it should be noted that there are
different views on whether certifications are critical [57] or not [40].

Fourth, an agile coach needs to have technical skills, including diversity in IT
skills [40], as well as software design and development skills [46]. For example,
a coach often translates between the business terms used by customer repre-
sentatives and technical language used by agile teams, and may also question
proposed technical solutions [24].

Finally, other skills are also necessary. For example, being able to understand
group psychology and behavioral software engineering aspects [18]. One study
also found that agile coaches are often confused about their role on an agile
team, and what is expected of them [24]. A coach must therefore be able to
tackle confusing and unclear requirements about what their role entails.

5 Discussion

Most of the studies reviewed used case study or grounded theory research
approaches. Both are well-established research methodologies from social sci-
ences that emphasize investigating a phenomenon in its real-world setting [32].
This highlights that researchers have acknowledged that agile methods, their
adoption in software development organizations, and agile coaching are social
processes that need to be investigated and understood within their real-life
settings.

The majority of the studies that ended up being reviewed after passing the
inclusion criteria belong to various conferences (69%) and a smaller number of
studies are journal articles (27%) and book chapters (4%). This is because a
larger number of journal articles were excluded (due to one or more exclusion
criteria) from the search query’s initial Scopus results, which consisted of ≈51%

14 V. Stray et al.

conference publications and ≈29% journal articles. However, both before and
after exclusion, the proportion of conference publications in the search results
was greater which is not surprising due to a larger number of conference venues
and publication frequency.

In general, an agile coach facilitates agile adoption or agile transformation in
software development organizations [25,49]. Agile adoption is a complex process
requiring socio-technical changes in the organization [36]. The studies reviewed
here reveal several important tasks that may fall upon the shoulders of an agile
coach. These range from teaching and mentoring to helping the teams understand
the agile methods, empowering them to ask relevant questions, discovering the
knowledge already hidden in the team, resolving conflicts, and facilitating the
overcoming human impediments in overall process improvement. Some of these
tasks are often Scrum Master activities in Scrum projects, for example process
facilitation, ceremony facilitation and impediment removal [24,39]. Many of these
tasks are also discussed in practitioner literature [1–3,9].

An agile coach needs to have numerous skills to effectively manage the agile
adoption process. The studies reviewed reveal that the skills of an agile coach
can be wide ranging, such as leadership skills to guide and motivate teams and
organizations, technical skills to help individuals and teams design and develop
software, systematically dealing with the transition or transformation of an orga-
nization’s goals, processes, or technologies, and identifying risks, knowledge man-
agement skills, and expertise in multiple agile methods and processes.

Over half of the studies are from the last five years (and 59 out of 67 studies
are from the last 10 years), which is a strong indication that the topic of agile
coaching and issues directly or implicitly related to it are being actively studied.
A study conducted by Kettunen et al. revealed that 17% of the respondents
working as agile coaches have this as their primary role in the organization [27],
which somewhats supports our claim that agile coaching and the role of agile
coach in agile adoption are currently evolving and gaining popularity in the
research community.

5.1 Limitations

Ideally, a systematic literature review should include studies from several sources
[28]. In this review, the final search query was applied only to Scopus. However,
the preliminary search queries were also applied to Google Scholar and Web of
Science, but were not included in the final result selection. Even though many
results from these two sources were also available on Scopus, there may have been
some primary studies that were not indexed by Scopus and have therefore not
been considered (for example, relevant practitioner literature). Furthermore, the
possibility of imprecision in data collection and data analysis is always prevalent
in SLRs. We acknowledge that other researchers may have formed other cluster-
ing and combinations of the raw findings. However, we have minimized our own
bias and formation of themes by continually refining the search-string (including
performing prior test-runs) as well as having all authors examine the papers and
cross-check and discuss the themes at hand.

A Systematic Literature Review on Agile Coaching 15

6 Conclusion and Future Work

This systematic literature review was conducted to understand the role of the
agile coach, as there is a lack of understanding of what agile coaching is, what
agile coaches do, and how agile coaches can help in agile transformations.

The thematic analysis of 67 papers provided insights into the tasks, respon-
sibilities, and skills required of agile coaches. Agile coaches help overcome chal-
lenges in large-scale agile adoption, such as resistance to change and difficulty in
understanding and implementing agile methods at scale. They also play a role
in removing barriers to team autonomy and help managers and stakeholders in
understanding the agile journey. The skills required by agile coaches are leader-
ship, project management, and technical skills. Additionally, they need to have
expertise in agile methods and team coaching.

Future work can involve investigating the inherent challenges of agile coaching
itself. This may include issues and problems hindering effective agile coaching,
and countermeasures that coaches enact to overcome these challenges and make
their work more effective. It would also be interesting to investigate tools and
techniques used by agile coaches to support them in their work. Additionally, as
our paper is a secondary study, other researchers may perform case studies with
interviews and observation of agile coaches, and relate their findings with ours.

Acknowledgments. This research was supported by Scrum Alliance, Comparative
Agility and the Research Council of Norway (grant 267704).

References

1. International consortium for agile, icagile learning roadmap agile coachingtrack
(2018). https://www.icagile.com/Portals/0/LO%20PDFs/Agile%20Coaching
%20Learning%20Outcomes.pdf. Accessed 28 Sept 2020

2. Scrum alliance, summary of expectations for certified enterprise coach (2020).
https://www.scrumalliance.org/Media/Coaches/CEC summary-of-expectations.
pdf. Accessed 28 Sept 2020

3. Adkins, L.: Coaching Agile Teams: A Companion for ScrumMasters, Agile Coaches,
and Project Managers in Transition. Pearson Education India (2010)

4. Bäcklander, G.: Doing complexity leadership theory: how agile coaches at spotify
practise enabling leadership. Creat. Innov. Manag. 28(1), 42–60 (2019)

5. Bass, J.M.: Agile method tailoring in distributed enterprises: product owner teams.
In: 2013 IEEE 8th International Conference on Global Software Engineering, pp.
154–163. IEEE (2013)

6. Braun, V., Clarke, V.: Thematic analysis (2012)
7. Cockburn, A., Highsmith, J.: Agile software development, the people factor. Com-

puter 34(11), 131–133 (2001)
8. Conboy, K.: Agility from first principles: reconstructing the concept of agility in

information systems development. Inf. Syst. Res. 20(3), 329–354 (2009)
9. Davies, R., Sedley, L.: Agile Coaching. Pragmatic Bookshelf, London (2009)

10. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

https://www.icagile.com/Portals/0/LO%20PDFs/Agile%20Coaching%20Learning%20Outcomes.pdf
https://www.icagile.com/Portals/0/LO%20PDFs/Agile%20Coaching%20Learning%20Outcomes.pdf
https://www.scrumalliance.org/Media/Coaches/CEC_summary-of-expectations.pdf
https://www.scrumalliance.org/Media/Coaches/CEC_summary-of-expectations.pdf

16 V. Stray et al.

11. Dorairaj, S., Noble, J.: Agile software development with distributed teams: agility,
distribution and trust. In: 2013 Agile Conference, pp. 1–10. IEEE (2013)

12. Drummond, B.S., Francis, J., et al.: Yahoo! Distributed agile: notes from the world
over. In: Agile 2008 Conference, pp. 315–321. IEEE (2008)

13. Eloranta, V.P., Koskimies, K., Mikkonen, T., Vuorinen, J.: Scrum anti-patterns-
an empirical study. In: 2013 20th Asia-Pacific Software Engineering Conference
(APSEC), vol. 1, pp. 503–510. IEEE (2013)

14. Fraser, S., Reinitz, R., Eckstein, J., Kerievsky, J., Mee, R., Poppendieck, M.:
Xtreme programming and agile coaching. In: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 265–267 (2003)

15. Gandomani, T.J., Nafchi, M.Z.: Agile transition and adoption human-related chal-
lenges and issues: a grounded theory approach. Comput. Hum. Behav. 62, 257–266
(2016)

16. Javdani Gandomani, T., Zulzalil, H., Abd Ghani, A.A., Md. Sultan, A.B., Sharif,
K.Y.: Exploring key factors of pilot projects in agile transformation process using
a grounded theory study. In: Skersys, T., Butleris, R., Butkiene, R. (eds.) ICIST
2013. CCIS, vol. 403, pp. 146–158. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41947-8 14

17. Ganesh, N., Thangasamy, S.: Lessons learned in transforming from traditional to
agile development. J. Comput. Sci. 8(3), 389–392 (2012)

18. Gren, L., Torkar, R., Feldt, R.: Group development and group maturity when
building agile teams: a qualitative and quantitative investigation at eight large
companies. J. Syst. Softw. 124, 104–119 (2017)

19. Hanly, S., Wai, L., Meadows, L., Leaton, R.: Agile coaching in British telecom:
making strawberry jam. In: AGILE 2006 (AGILE 2006), pp. 9-pp. IEEE (2006)

20. Hobbs, B., Petit, Y.: Agile methods on large projects in large organizations. Proj.
Manag. J. 48(3), 3–19 (2017)

21. Hoda, R., Kruchten, P., Noble, J., Marshall, S.: Agility in context. In: Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, pp. 74–88 (2010)

22. Hoda, R., Noble, J., Marshall, S.: Balancing acts: walking the agile tightrope. In:
Proceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects of
Software Engineering, pp. 5–12 (2010)

23. Hoda, R., Noble, J., Marshall, S.: Developing a grounded theory to explain the
practices of self-organizing agile teams. Empir. Softw. Eng. 17(6), 609–639 (2012)

24. Hoda, R., Noble, J., Marshall, S.: Self-organizing roles on agile software develop-
ment teams. IEEE Trans. Softw. Eng. 39(3), 422–444 (2012)

25. Jovanović, M., Mas, A., Mesquida, A.L., Lalić, B.: Transition of organizational
roles in agile transformation process: a grounded theory approach. J. Syst. Softw.
133, 174–194 (2017)

26. van Kelle, E., Visser, J., Plaat, A., van der Wijst, P.: An empirical study into social
success factors for agile software development. In: 2015 IEEE/ACM 8th Interna-
tional Workshop on Cooperative and Human Aspects of Software Engineering, pp.
77–80 (2015)

27. Kettunen, P., Laanti, M., Fagerholm, F., Mikkonen, T.: Agile in the era of digital-
ization: a finnish survey study. In: Franch, X., Männistö, T., Mart́ınez-Fernández,
S. (eds.) PROFES 2019. LNCS, vol. 11915, pp. 383–398. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35333-9 28

28. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering (2007)

https://doi.org/10.1007/978-3-642-41947-8_14
https://doi.org/10.1007/978-3-642-41947-8_14
https://doi.org/10.1007/978-3-030-35333-9_28

A Systematic Literature Review on Agile Coaching 17

29. Kompella, L.: Agile methods, organizational culture and agility: some insights.
In: Proceedings of the 7th International Workshop on Cooperative and Human
Aspects of Software Engineering, pp. 40–47 (2014)

30. Korhonen, K.: Evaluating the impact of an agile transformation: a longitudinal
case study in a distributed context. Softw. Qual. J. 21(4), 599–624 (2013)

31. Lalsing, V., Kishnah, S., Pudaruth, S.: People factors in agile software development
and project management. Int. J. Softw. Eng. Appl. 3(1), 117 (2012)

32. Laws, K., McLeod, R.: Case study and grounded theory: sharing some alternative
qualitative research methodologies with systems professionals. In: Proceedings of
the 22nd International Conference of the Systems Dynamics Society, vol. 78, pp.
1–25 (2004)

33. Mart́ın-Mart́ın, A., Orduna-Malea, E., Thelwall, M., López-Cózar, E.D.: Google
scholar, web of science, and scopus: a systematic comparison of citations in 252
subject categories. J. Inf. 12(4), 1160–1177 (2018)

34. Melo, C.d.O., et al.: The evolution of agile software development in brazil. J. Braz.
Comput. Soc. 19(4), 523–552 (2013)

35. Mikalsen, M., Moe, N.B., Stray, V., Nyrud, H.: Agile digital transformation: a case
study of interdependencies. In: International Conference on Information Systems
2018, ICIS 2018 (2018)

36. Misra, S.C., Kumar, V., Kumar, U.: Identifying some important success factors in
adopting agile software development practices. J. Syst. Softw. 82(11), 1869–1890
(2009)

37. Muntés-Mulero, V., et al.: Agile risk management for multi-cloud software devel-
opment. IET Softw. 13(3), 172–181 (2018)

38. Ng, P.W.: A canvas for capturing context of agile adoption. In: Emerging Innova-
tions in Agile Software Development, pp. 37–50. IGI Global (2016)

39. Noll, J., Razzak, M.A., Bass, J.M., Beecham, S.: A study of the scrum master’s
role. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro,
F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 307–323. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69926-4 22

40. O’Connor, R.V., Duchonova, N.: Assessing the value of an agile coach in agile
method adoption. In: Barafort, B., O’Connor, R.V., Poth, A., Messnarz, R. (eds.)
EuroSPI 2014. CCIS, vol. 425, pp. 135–146. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43896-1 12

41. Paasivaara, M.: Adopting safe to scale agile in a globally distributed organiza-
tion. In: 2017 IEEE 12th International Conference on Global Software Engineering
(ICGSE), pp. 36–40. IEEE (2017)

42. Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M.: Large-scale agile trans-
formation at Ericsson. Empir. Softw. Eng. 23(5), 2550–2596 (2018)

43. Paasivaara, M., Lassenius, C.: Agile coaching for global software development. J.
Softw. Evol. Process 26(4), 404–418 (2014)

44. Paasivaara, M., Lassenius, C.: Scaling scrum in a large globally distributed orga-
nization: a case study. In: 2016 IEEE 11th International Conference on Global
Software Engineering (ICGSE), pp. 74–83. IEEE (2016)

45. Paasivaara, M., Väättänen, O., Hallikainen, M., Lassenius, C.: Supporting a large-
scale lean and agile transformation by defining common values. In: Dingsøyr, T.,
Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.) XP 2014.
LNBIP, vol. 199, pp. 73–82. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-14358-3 7

https://doi.org/10.1007/978-3-319-69926-4_22
https://doi.org/10.1007/978-3-662-43896-1_12
https://doi.org/10.1007/978-3-662-43896-1_12
https://doi.org/10.1007/978-3-319-14358-3_7
https://doi.org/10.1007/978-3-319-14358-3_7

18 V. Stray et al.

46. Pacheco, M., Mesquida, A.-L., Mas, A.: Being agile while coaching teams using
their own data. In: Larrucea, X., Santamaria, I., O’Connor, R.V., Messnarz, R.
(eds.) EuroSPI 2018. CCIS, vol. 896, pp. 426–436. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-97925-0 36

47. Pacheco, M., Mesquida, A.-L., Mas, A.: Image based diagnosis for agile coach-
ing. In: Walker, A., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2019. CCIS,
vol. 1060, pp. 481–494. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28005-5 37

48. Padula, A.: Organically growing internal coaches. In: 2009 Agile Conference, pp.
237–242. IEEE (2009)

49. Parizi, R.M., Gandomani, T.J., Nafchi, M.Z.: Hidden facilitators of agile transition:
agile coaches and agile champions. In: 2014 8th Malaysian Software Engineering
Conference (MySEC), pp. 246–250. IEEE (2014)

50. Paterek, P.: Agile transformation in project organization: knowledge management
aspects and challenges. In: 18th European Conference on Knowledge Management
(ECKM 2017), Spain, Barcelona, pp. 1170–1179 (2017)

51. Pavlič, L., Heričko, M.: Agile coaching: the knowledge management perspective.
In: Uden, L., Hadzima, B., Ting, I.-H. (eds.) KMO 2018. CCIS, vol. 877, pp. 60–70.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95204-8 6

52. Qumer, A., Henderson-Sellers, B.: Empirical evaluation of the agile process lifecycle
management framework. In: 2010 Fourth International Conference on Research
Challenges in Information Science (RCIS), pp. 213–222. IEEE (2010)

53. Raith, F., Richter, I., Lindermeier, R.: How project-management-tools are used
in agile practice: benefits, drawbacks and potentials. In: Proceedings of the 21st
International Database Engineering & Applications Symposium, pp. 30–39 (2017)

54. Santos, V., Goldman, A., Roriz Filho, H.: The influence of practices adopted by
agile coaching and training to foster interaction and knowledge sharing in organiza-
tional practices. In: 2013 46th Hawaii International Conference on System Sciences,
pp. 4852–4861. IEEE (2013)

55. Senapathi, M., Srinivasan, A.: An empirical investigation of the factors affecting
agile usage. In: Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, pp. 1–10 (2014)

56. Shamshurin, I., Saltz, J.S.: Using a coach to improve team performance when the
team uses a Kanban process methodology. Gov. Gov. Proj. Perform. Role Sover.
7(2), 61–77 (2019)

57. Silva, K., Doss, C.: The growth of an agile coach community at a fortune 200
company. In: Agile 2007 (AGILE 2007), pp. 225–228. IEEE (2007)

58. Stettina, C.J., Offerman, T., De Mooij, B., Sidhu, I.: Gaming for agility: using seri-
ous games to enable agile project & portfolio management capabilities in practice.
In: 2018 IEEE International Conference on Engineering, Technology and Innova-
tion (ICE/ITMC), pp. 1–9. IEEE (2018)

59. Stray, V., Moe, N.B.: Understanding coordination in global software engineering: a
mixed-methods study on the use of meetings and slack. J. Syst. Softw. 170, 110717
(2020)

60. Stray, V., Moe, N.B., Aasheim, A.: Dependency management in large-scale agile:
a case study of DevOps teams. In: Proceedings of the 52nd Hawaii International
Conference on System Sciences (2019)

https://doi.org/10.1007/978-3-319-97925-0_36
https://doi.org/10.1007/978-3-319-97925-0_36
https://doi.org/10.1007/978-3-030-28005-5_37
https://doi.org/10.1007/978-3-030-28005-5_37
https://doi.org/10.1007/978-3-319-95204-8_6

A Systematic Literature Review on Agile Coaching 19

61. Stray, V., Tkalich, A., Moe, N.B.: The agile coach role: coaching for agile per-
formance impact. In: Proceedings of the 54th Hawaii International Conference on
System Sciences (2021, in Press)

62. Tengshe, A., Noble, S.: Establishing the agile PMO: managing variability across
projects and portfolios. In: Agile 2007 (AGILE 2007), pp. 188–193. IEEE (2007)

Agile Leadership and Agile Management
on Organizational Level - A Systematic

Literature Review

Sven Theobald1(B), Nils Prenner2, Alexander Krieg3, and Kurt Schneider2

1 Fraunhofer IESE, Kaiserslautern, Germany
sven.theobald@iese.fraunhofer.de

2 Software Engineering Group, Leibniz Universität Hannover, Hannover, Germany
{nils.prenner,kurt.schneider}@inf.uni-hannover.de

3 borisgloger Consulting GmbH, Frankfurt am Main, Germany
alexander.krieg@sidelooks.de

Abstract. Context: Organizations start understanding the need to
become an agile organization in order to fully benefit from agility and be
competitive on quickly changing markets. Leaders at every level, not just
top managers, need to buy into agility as an organizational value. Since
the mid 1990s, many software development teams have very successfully
adopted agile methods and proved that they can deal with continuous
change. However, it is not clear how agility looks like outside the software
development department on the organizational level. Objectives: The aim
of this work is to create a better understanding on what leadership and
management can look like in the context of an agile organization. We
focused our work on scientific papers to build a scientific overview as
starting point for future research. Method: We conducted a systematic
literature review to identify the existing scientific literature on leader-
ship and management approaches in the context of agile on the organi-
zational level. Results: We provide an overview of existing work on this
topic. The analysis of the identified papers focused on the definition of
and motivation for agile leadership and agile management. Conclusion:
Practitioners can use the results for improvement, while researchers can
build on the results to help companies with their agile transformation.

Keywords: Agile leadership · Agile management · Agile
organization · Motivation · Systematic literature review

1 Introduction

Leaders at every level, not just top managers, need to buy into agility as an
organizational value. Thus, a culture of change must be pervasive at every level.
The world is complex and specialized knowledge is an appropriate response [32].
A major downside of specialization is that one views the world from a specialized
lens and becomes overly focused on a narrow task area. An agile organization

c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 20–36, 2020.
https://doi.org/10.1007/978-3-030-64148-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_2

Agile Leadership and Agile Management on Organizational Level 21

unites organizational processes and people with advanced technology to meet
customer demands for customized high quality products and services within a
relatively short time frame [18]. This can only happen when agility is considered
a systemic organizational value and a strategy championed by leadership.

People drive companies as a complex and dynamic system with culture,
leadership, and applications as key factors affecting organizational success in
a rapidly changing environment. The critical factor in adapting to change is
how to design organizations to maximize the tacit knowledge base within them.
Suitable tools are necessary to identify underlying strengths and weaknesses to
allow initiating targeted discussions and provide a baseline for measurement.
Both researchers and practitioners have observed that the rate of change caused
by this explosion of technology, globalization, and complexity has been increas-
ing for decades [40]. Leaders are faced with continuously changing environments,
where fast adjustments are necessary to handle threats and opportunities.

Many organizations are unable to make the adjustments needed to quickly
adapt to changes. On the contrary, typical organizational designs are not
invented to deal with those changes, having rigid leadership hierarchies, organi-
zational structures, and information systems that are not aligned with current
needs, and corporate cultures that resist new ideas or processes [16,41,42]. Many
companies struggle with implementing successful change in terms of increased
flexibility, customer centricity, reduced bureaucracy and blocking processes [37].
Executives who recognize that speed is a critical factor to prosper in the twenty-
first century often must find a way towards agility, fighting with traditional
leadership, systems, and culture [14,16]. Centralized control and classical hier-
archical structures are not suited to operate in fast-paced environments [15].
Centralized control may yield increased efficiency in predictable and stable busi-
ness climates. However, in the complex volatile business world of the twenty-first
century, corporate responsiveness is more critical to success than efficiency. Many
researchers have concluded that organizations designed using traditional hierar-
chies with strong command and control structures are inherently anti-change
[15,41,42]. A typical problem in many organizations is that senior management
at the top of the hierarchy takes too long to make decisions [38]. Agility there-
fore relies on implicit leadership that enables knowledge sharing, seeks consen-
sus, trusts people, delegates more, and provides an environment for people to
improve inherent tacit knowledge [38]. Traditional management that operates
from outside the team and controls the team with the help of metrics is no
longer appropriate [4]. This does not mean that there is no need for managers
in the future. However, agile teams are more efficient and faster taking decisions
on their own, aligned with the goals and strategies set by management.

Haneberg [13] defined agility as the efficiency with which organizations
respond to continuous change by consistently adapting. In today’s business envi-
ronment, companies must be agile and adaptable to respond in small increments
of any kind of products and services they deliver that ultimately change the
leadership, systems, and culture allowing the firm to survive and prosper in a
different environment [33].

22 S. Theobald et al.

Companies should start their agile transformation by analyzing their prod-
ucts and services and reorganize them in value streams. Vertical organizational
structures and functional departments have to be transformed towards a focus
on the value streams and services. This transformation of the organizational
design needs to be implemented by leadership and has to involve management
on all levels of all areas [25]. The need for intense interactions to rapidly address
an increasingly fast-paced and complex business environment became more and
more apparent. This observation coincided with the fact that an increasing num-
ber of employees are hired for their knowledge and not for their physical contribu-
tions to work. The trend toward knowledge workers and knowledge economy has
been documented by many researchers and authors for decades [10,12,34]. Feed-
back by leaders from the top and middle management suggested that this chang-
ing demographic called for a different leadership style requiring more involve-
ment and engagement throughout their organizations. Creating and maintaining
an environment enabling knowledge workers to maximize unique and valuable
abilities required focus of attention and constant energy to maintain.

In summary, leadership concepts need to adapt in order to enable agility
throughout the organization. There is a lack of understanding how agile lead-
ership and agile management can look like outside of software engineering. In
order to shed light into this topic, we want to get an overview of agile man-
agement and leadership concepts on the organizational level, with the help of a
systematic literature review. Our analysis focuses on how agile leadership and
agile management are defined, and what reasons the identified sources mention
for changing to agile leadership and agile management.

The remainder of this paper is organized as follows: Sect. 2 discusses related
work and clarifies the background regarding our topic. Section 3 presents the
study design, including the research questions and the research procedure.
Section 4 provides insights into the findings concerning our research questions.
Finally, Sect. 5 provides the conclusion and suggestions for future work.

2 Related Work and Background

According to previous studies such as Status Quo Agile [20], Agile Swiss Study
[27], the ChaosReports of the Standish Group and the survey by VersionOne
[44], many agile initiatives start at the level of clearly defined projects, mostly
with a great tendency towards IT or software development projects. The studies
mentioned focus on technical areas and not on the agile development of an entire
organization [26]. For some years now, the agile trend has been moving more and
more in the direction of non-technical areas and thus increasingly leads to the
areas of agile organizational development as well as management and manage-
ment levels [31]. Basically, agile initiatives that are started within an organization
can be understood as agile change management. Krieg [24] discussed agile leader-
ship, planning, risk management, QA, budgeting, documentation and contracts.
In 2016, a “Maturity Level Model for Agile Corporate Development” [23] was
developed and published. The aim of the model is to provide orientation and an

Agile Leadership and Agile Management on Organizational Level 23

overview of what it means if a company wants to develop in a holistic, agile man-
ner. The model shows that, similar to a company balance sheet, all areas have to
be considered and evaluated. Theobald and Diebold [43] collected problems at
the interface between agile and traditional approaches and classified these prob-
lems based on a categorization into interfaces (e.g., to traditional organizational
units such as HR department or Sales) and problem areas (such as planning,
reporting or budgeting). So that agile culture is not neglected, an approach
to transformation must be chosen that takes into account both technical and
cultural agility [11]. Furthermore, 50 factors were identified that influence the
development of an agile culture [28]. Yet, there is no clear definition of manage-
ment and leadership outside of agile development teams. This knowledge would
be important to facilitate organization-wide change to support an organization’s
agile transformation.

2.1 Management vs. Leadership

The distinction between management and leadership is often blurred. Kotter
[22] coined the term leadership and explored its differences to management.
According to Kotter, management’s main task is to maintain order and stability,
whereas leadership creates change and movement in the organization.

Kotter [22] defines three core processes each for leadership and management.
The core processes for management are: planning and budget allocation; orga-
nizational tasks and human resources tasks; and controlling and resolving of
problems. Accordingly, managers are there to control the processes, review plans
and results, coordinate employees, and resolve problems of all kinds. Managers
are therefore responsible for the daily business and for friction-less processes.

The core processes for leadership are: providing goals and vision; aligning
employees with these goals; and motivating and inspiring the employees. The
need for leadership in organizations was also accompanied by the insight that
the market situation of companies often changes rapidly and that organizations
have to adapt to new situations in order to remain competitive. Therefore, it is
the task of leadership to explore new options and directions to stay ahead.

2.2 Traditional Management

Parker et al. [39] explored the characteristics of traditional management in the
context of a literature review. In traditional management, strict control proce-
dures are used to cope with change and uncertainties. Hierarchies and vertical
organizational structures are established to create order. Rigid hierarchy is seen
as a necessity for stability and planning. The assumption is that an increase
in control also increases the structure of processes and order and reduces risk.
Employees are considered as a resource and are seen as interchangeable. Work is
processed by being broken down into tasks and then allocated to an accountable
person. Managers deal with risks through extensive up-front planning.

In summary, traditional management is characterized by a command and
control structure and strict compliance with processes and plans.

24 S. Theobald et al.

2.3 Agile Organization

An agile organization unites organizational processes and people with advanced
technology to meet customer demands for customized high quality products and
services within a relatively short time frame [18]. This can only happen when
agility is considered a systemic organizational value and a strategy championed
by leadership. To implement agility as a systematic organizational value means to
implement the key values of agility, e.g., customer-centricity, continuous delivery
of products, and reacting quickly to market changes, and align those values from
the top management down to the teams level.

3 Research Design

As the concepts of agile leadership and agile management are not clearly defined,
we performed a systematic literature review to gain an overview over scientific lit-
erature, focusing on what constitutes agile leadership and why companies should
change from a traditional leadership approach to an agile one. In the following,
we will describe our research procedure, first presenting the research goal and the
research questions. Then we will describe our research method, including the selec-
tion of the search database, the definition of the search strings, as well as the defini-
tion of inclusion and exclusion criteria. Next, we will present our selection, includ-
ing the sequential steps, remaining papers, and inter rater agreement. Finally, we
will explain how the literature was analyzed and what threats to validity exist.

3.1 Research Questions

The goal of our systematic literature review was to get an overview over the
scientific literature on agile management and agile leadership on organizational
level. Therefore, we formulated the following two research questions:

RQ1: How is agile leadership and agile management on organizational
level defined in scientific literature?
With this first research question we want to understand how agile leader-
ship and agile management is defined in the scientific literature. There is
already a lot of work that deals with the management of the development
team. But it is widely recognized that companies need to embrace agility
on all organizational levels and in all departments of the company so that
the whole company is able to react to market changes. Therefore, we are
interested in agile leadership and agile management on the organizational
level of companies.

RQ2: What motivation for agile leadership and agile management on
organizational level is provided by scientific literature?
A lot of companies want to be more agile and change their way of work-
ing, but they only transform the software development department and
leave the rest of the company untouched. This means that these com-
panies are still traditionally managed on a high level. With this second

Agile Leadership and Agile Management on Organizational Level 25

research question, we want to show the need for companies to change to
an agile leadership and agile management approach on all levels in order
to completely embrace agility. We will do this by analyzing the benefits
of agile leadership and agile management, as well as the drawbacks of
traditional approaches.

3.2 Research Method

In order to answer the research questions, we conducted a Systematic Literature
Review (SLR). For the process of an SLR, it is important to systematically
choose the right databases, to accurately specify the keywords, respectively the
keyword string(s), and to clearly define the inclusion and exclusion criteria [19].
In the following, we will describe each of these aspects in more detail.

Search Database. Scopus contains 57 million articles, primarily in the fields of
engineering and computer science. For this SLR, Scopus was selected because it
covers many important software development and project management confer-
ences, such as ICSSP, ICSE, PROFES, and XP. At these conferences, a lot of
scientists and practitioners present and discuss the most important und newest
topics and results in software engineering and agility.

Definition of the Search String. After selecting the databases for our SLR,
we started to collect the keywords that best represent our research topic. Ini-
tially, we made the assumption that there is not much research yet on this
topic. For this reason, we chose keywords at a high level of abstraction. The
keywords and the search strings were tested with several pilot searches on
Scopus and were iteratively improved based on an analysis of the results.
Although all authors have a practical and research background in agile meth-
ods, practices and culture, another agile expert from the Fraunhofer Insti-
tute for Experimental Software Engineering was consulted to assess the com-
pleteness and suitability of the keywords with an independent view from out-
side the research team. This helped us ensure that the final set of keywords
was suitable to identify relevant literature. We constructed two search strings
to (1) cover management concepts in agile organizations and (2) agile lead-
ership concepts. The first search string deals with management concepts.

(agile OR agility) AND (organization OR enterprise OR company) AND
(“modern management” OR “management 3.0” OR “management 4.0” OR
“management cybernetics” OR “viable systems model”)

We were interested in publications dealing with management concepts in
agile organizations. Therefore, we added agile and organization to our search
string. In order to reach publications that do not use these terms, we added
synonyms for both term, e.g., agility and enterprise. The term management was
too generic to be used efficiently. New management concepts are often described

26 S. Theobald et al.

by using the terms management 3.0 or management 4.0. In order to get a more
focused result, we decided to use these expressions and also added synonyms.

(agile OR agility) AND (organization OR enterprise OR company) AND
leadership

We used the second search string to collect publications dealing with agile
leadership concepts. Therefore, we added the term leadership to our search
string. The other expressions were similar to our first search string.

Definition of Inclusion and Exclusion Criteria. In order to have guidelines dur-
ing the selection process of the literature review, we formulated detailed inclu-
sion and exclusion criteria. The concrete criteria are shown in Table 1. As our
focus was on analyzing the state of the art of management and leadership at the
organizational level, we excluded papers where management concepts are only
described at the level of a single team. Since our paper has a practical back-
ground, we excluded papers with a teaching background. Our focus was also on
the underlying concepts of management and leadership, so we excluded papers
where only technical solutions for these concepts are discussed.

Table 1. Inclusion and exclusion criteria

Criteria Description

In
cl
u
si
on IC1 The paper describes agile leadership and agile managment concepts, practices, etc. on the organizational level.

IC2 The paper describes agile leadership and agile management concepts for large-scale development environments.
IC3 The paper describes the benefits of agile leadership and agile management.

E
x
cl
u
si
on

EC1 The paper is not written in English or German.
EC2 The paper is not a peer-reviewed contribution to a conference or journal.
EC3 The paper describes management and leadership at the development team level, e.g., in Scrum or Kanban.
EC4 The paper describes knowledge management, e.g., teaching methods.
EC5 The paper deals with technical solutions of existing concepts, e.g., tools, algorithms, or AI.

3.3 Selection Method

The search was conducted on the 19th of June 2019. The search string for “lead-
ership” led to 329 papers, while the search string for “management” led to 12
papers. Overall, 341 papers were identified. The first selection of the papers was
done by the first and second author. In this process, the inclusion and exclu-
sion criteria were first applied to the titles of the identified publications. Five
publications were selected for the “management” search string, while 89 publi-
cations were selected for the “leadership” search string for further investigation.
The selection of the publications by title was performed together by the first
and second author. Both authors rated the titles resulting from the “manage-
ment” search string. The titles resulting from the “leadership” search string were
mainly rated by the first author. The second author also rated one third of the
papers to evaluate the filtering process. For that, we calculated Cohen’s Kappa
Statistic, which calculates the agreement between two raters [7]. We reached a
value of 0.76 which indicates substantial agreement [29].

Agile Leadership and Agile Management on Organizational Level 27

In the second step, we read the abstracts of all selected papers. The abstracts
of the publications resulting from the “management” search string were all rated
by the first and second author. In this filtering step, two papers remained. The
abstracts resulting from the “leadership” search string were mainly rated by
the second author. For the evaluation of the abstract selection process, the first
author read one third of the abstracts. We again calculated Cohen’s Kappa statis-
tic and reached a value of 0.51, which indicates moderate agreement [29]. After
this step, 38 papers remained for the “leadership” search string.

In the next step, we had to exclude some of the publications because they were
not available or were not peer-reviewed contributions to a conference or journal.
After this step, two papers remained for the “management” search string and
19 papers remained for the “leadership” search string.

In the last step, the first three authors thoroughly read the whole papers and
analyzed their content. In this process, both papers for the “management” search
string were excluded. From the “leadership” search string, 14 papers remained.
In cases of uncertainties, the inclusion and exclusion of papers was discussed
among the first three authors. Figure 1 shows the process of paper selection.

Management
Search String

12 Papers

Leadership
Search String
329 Papers

Filtered by Title

5 Papers remained 89 Papers remained

Filtered by Abstract

2 Papers remained 38 Papers remained

Filtered by Availability

2 Papers remained 19 Papers remained

Filtered by Content

0 Papers remained 14 Papers remained

∑ 14 Papers

Fig. 1. Representation of the search and filtering process

3.4 Data Analysis

For the qualitative analysis process of the identified publications we used an
extraction sheet. This was a MS Excel sheet containing the research questions
including certain concrete aspects we wanted to analyze. The extraction sheet
was used to collect text phrases from the publications that were directly assigned
to the respective research question. Finally, each of the first three authors who
extracted information from the final set of papers put the relevant information
about their respective papers from the extraction sheet into the corresponding
section of an online word processing file. Afterwards, text parts that describe
similar aspects were grouped together and discussed by the authors in multiple
video conference sessions.

28 S. Theobald et al.

3.5 Threats to Validity

Our literature review is subject to some threats to validity. According to Wohlin
et al. [45], we will discuss construct, internal, conclusion, and external validity.

Construct Validity. Construct validity concerns the creation of the search string
and the selection of the database. In order to mitigate the threat caused by the
creation of the search string, we tested different search strings before we started
our database search. In this way, we avoided choosing the wrong keywords. To
cover further publications we added synonyms for different keywords, e.g., agility
or enterprise.

Internal Validity. The literature review was performed by the first three authors
in order to decrease mono researcher bias. The decision about the inclusion and
exclusion of a publication is subjective. In order to mitigate this threat, we estab-
lished a comprehensible decision process and formulated concrete inclusion and
exclusion criteria. To evaluate our research process, we calculated Cohen’s Kappa
statistic [7]. The results show that agreement was at least moderate throughout
the whole selection process [29]. In situations where the inclusion or exclusion of
a publication was unclear, the paper was peer-evaluated by at least one of the
other authors.

Conclusion Validity. Conclusion validity depends on the papers we selected. We
mitigated this threat by using the Scopus database in order to get high-quality
publications and excluded publications that are not peer-reviewed.

External Validity. We can not guarantee that we found all relevant papers. We
wanted to get an overview of the state of the art of agile leadership and agile
management concepts. Therefore, we intentionally focused our search string on
modern organizational management methods and left the generic management
term out. This narrow focus may be a threat, but also shows that there are not
many publications on modern agile management methods.

4 Results

Table 2 shows the list of papers that were selected during the SLR. In the fol-
lowing sections, we answer both our research questions.

4.1 RQ1: Definition of Agile Leadership and Agile Management

This section discusses agile leadership and agile management, especially what
typical responsibilities and traits of agile leaders and managers are.

Agile Leadership and Agile Management on Organizational Level 29

Table 2. Selected publications

Paper Title Author Year Reference

P01 Doing complexity leadership theory: How agile
coaches at Spotify practise enabling leadership

Bäcklander 2019 [6]

P02 Business disruption is here to stay – What
should leaders do?

Lang and
Rumsey

2018 [30]

P03 Organizational Evolution - How Digital
Disruption Enforces Organizational Agility

Jesse 2018 [17]

P04 Asymmetric leadership: Supporting a CEO’s
response to turbulence

Boxer and Eigen 2018 [5]

P05 Agile Organisation und Führung 4.0:
Entscheidungshilfe für unternehmensspezifische
Weichenstellungen

Korge 2017 [21]

P06 The challenges of organizational agility: part 1 Appelbaum et al. 2017 [1]

P07 The challenges of organizational agility: part 2 Appelbaum et al. 2017 [2]

P08 The performance triangle: a model for corporate
agility

Nold and Michel 2016 [37]

P09 A model to guide organizational adaptation Cross 2015 [9]

P10 Influence of large-scale organization structures
on leadership behaviors

Moore 2009 [35]

P11 Agile principles as a leadership value system:
How agile memes survive and thrive in a
corporate IT culture

Baker and
Thomas

2007 [3]

P12 Managing a large “Agile” software engineering
organization

Beavers 2007 [4]

P13 New leadership strategies for the enterprise of
the future

Murray and
Greenes

2006 [36]

P14 The human side of organizational agility Crocitto and
Youssef

2003 [8]

From Economies of Scale to Economies of Scope. Leadership is a key
enabler for good relationships between employees and their suppliers or cus-
tomers. Agility is dependent upon leadership’s ability to define an agility vision
and mission, supported with organizational rewards for adapting to change
[8, P14]. Leaders need to promote a learning organization and acceptance of
change. Manufacturers may experience an IT challenge as we move to an e-
economy. IT allows manufacturers to develop new supply chains that are quicker
and reach further than existing chains. However, some manufacturers may be so
accustomed to existing IT or manufacturing technology that they may choose
not to change, potentially losing competitiveness. Changes in IT and other orga-
nizational subsystems have a long and wide reaching impact on organizational
processes and relationships and can only happen with the support of top man-
agement. Therefore, management must recognize the relationship between such
innovations and learning [8, P14]. Implicit in all the theories described is the
strategic role of leadership as change agents. In order for an organization to

30 S. Theobald et al.

become agile, managers need to promote a strategic paradigm shift. The role of
leadership in this process is not really delineated in the literature.

Effective leadership is defined as effective communication and interaction
with people at all levels throughout the organization [37, P08]. Nold and Michel
[37, P08] report that although studies investigated leadership behaviors and
traits, successful leadership depends on organization and context. A leadership
style that is successful in one organization in a specific situation may not nec-
essarily be effective if applied in a different organization or situation. However,
Nold and Michel [37, P08] identified the need for communication and interaction
with followers as recurring research themes. Those communication and interac-
tion skills need to be natural and unique to the leader and organization.

Leaders should seek to create meaning for persons, organization, or society
to stimulate innovation to achieve shared value [30, P02]. Lang and Rumsey
[30, P02] names four attributes that make the difference to traditional leaders:
“humble, adaptable, visionary, engaged”. Leaders are responsible to create a
vision, communicate meaning and purpose, and “kill and hide bureaucracy”.
Good leaders are curious and willing to fail fast. They are good listeners, fast
at executing, and continuous learners that accept unpredictability of change
[30, P02].

While leaders in stable environments take decisions for their teams, a new
style of leadership becomes important where leaders acknowledge that they do
not know everything in order to enable collaborative discovery and increased
productivity [5, P04].

Organizational Structures vs. Agile Leadership. Moore [35, P10] showed
that organizational structure is not as important as having leaders that live and
exemplify a set of behaviors, among them the ability to lead the team instead
of managing the team. This is done by setting directions and visions, aligning
team members as well as mentor and motivate them with the help of one-on-
one and team communication. These leaders understand the needs and goals
of individuals and consider them when setting up a team. The organizational
structures that aligned leaders with their teams (hierarchical and matrix struc-
tures with multiple sub-team leaders) tended to influence more managing versus
leading as their role was more narrowly focused on these teams and their mem-
bers. Moore [35, P10] reported that leaders used all capacity beyond fulfilling
the normal tasks like resource management or addressing team obstacles was
used for deeper engagement with the team, often leading to micro management.
Also, when being approached by team members with concerns, the tendency was
to try to solve the issue instead of facilitating and enabling the team to find a
suitable solution themselves [35, P10].

Productivity vs. Flexibility. The leader has to become a coach and enabler
for his team or employees. He has to create the optimal environment and pur-
pose to his employees, and trust them that they will take over personal initiative
and responsibility. Traditional concepts enable productivity, but limit flexibility

Agile Leadership and Agile Management on Organizational Level 31

and motivation [21, P05]. Influential leaders have to establish shared values and
mobilize their followers to adopt those values [1, P06]. Transformational lead-
ership is comfortable with experimentation, uses decentralized decision making
and is able to align people from a diverse network towards a common purpose
[2, P07]. A collaborative community is seen as the opposite of command and
control leadership. Leaders need to create opportunities for workers to be both
responsible and accountable for their processes [2, P07].

Agile Leadership vs. Agile Management. A manager achieves his or her
goals through planning and budgeting, organizing and staffing, and controlling
and problem solving. In contrast, a leader sets a direction, aligns people, and
motivates and inspires to achieve the goals [17, P03] [9, P09] [3, P11]. With
a “leader” who focuses on management instead of leadership, team empow-
erment is reduced due to external control being applied” [35, P10] [17, P03].
Bäcklander [6, P01] argues that leadership roles that do not have managerial
authority are common in agile. Managers should function as facilitator, become
creators of conditions favourable for performance, or become enablers of infor-
mal network dynamics in complex adaptive systems. Direction, alignment and
commitment are needed for self-organizing teams, and support can be provided
by a Scrum Master or agile coach as an alternative leadership role [6, P01].
They also state that leadership roles without managerial authority are common
in entrepreneurial firms that practice agile software development.

Agile management is about the empowerment of the development team to
trust their abilities. The duty of management is to provide teams with the neces-
sary requirements and prioritization and let them organize themselves [4, P12].

4.2 RQ2: Motivation for Agile Leadership and Agile Management

In this section, we present the results concerning our second research question
by discussing what motivations for agile leadership and agile management could
be found in the identified sources. We will first present arguments for why tradi-
tional leadership and management concepts do not work anymore and must be
changed. Afterwards, we will show the benefits of and reasons for agile leadership
and agile management.

Contra Traditional Leadership and Management. The literature men-
tions two reasons why traditional leadership and management concepts have to
be replaced. First, traditional top-down command and control management is
no longer appropriate. Second, new drivers change the way organizations can
operate and demand other ways of working.

Top-Down Command and Control Is No Longer Appropriate. Whereas for a
long time, productivity was the primary goal, nowadays human factors such
as employee motivation also play an important role. An increase in knowledge

32 S. Theobald et al.

work and in the complexity of the products to be developed has led to decen-
tralization, autonomy, and self-organization [21, P05]. Traditional management
operates from outside the team using metrics to control the work of the team
and putting increased pressure on the team when deviations in the plan can be
seen. However, management has to be integrated into the team in the form of
self-organization [4, P12]. Leadership can no longer be executed from a single
position at the top of the hierarchy, but has to take place at the level of con-
tact with the customer [5, P04]. Traditional managerial control is now both less
possible and less useful [6, P01] in a setting where teams organize their work
in a decentralized manner. Top-down and disciplinarian-style leadership is no
longer appropriate and prevents collaboration and innovation [2, P07]. Thus,
most traditional management approaches rather interfere with people’s ability
to perform instead of improving performance [37, P08]. Rigid command and
control structures need to be removed in order to move quickly in the future
[36, P13].

Traditional Organizations Cannot Cope with New Demands. Traditional orga-
nizations aim at increasing productivity and stability, e.g., by centralizing deci-
sions, specialization and functional silos, or by using experts to plan the work
for other workers who blindly follow instructions. These organizational and lead-
ership concepts have proven their success over the last decades [21, P05].

However, drivers like changing markets and increasing expectations on the
part of employees pose new requirements that traditional concepts can only
address to a certain degree. External influences like digitalization, globalization,
demographic change, and trends towards individualization increase complex-
ity and pose new challenges to organizations [21, P05]. Traditional leadership
approaches must change in order to be competitive in this environment [36, P13].
Therefore, it is necessary to replace slow, hierarchically-structured organizations
with a more fluid and adaptable organizational design like social networks [36,
P13]. Network structures allow for flexible use of valuable resources, capabilities
and information in order to be competitive on rapidly changing markets [1, P06].

Pro Agile Leadership and Agile Management. The literature mentions
three reasons why agile leadership and agile management concepts have to be
adopted. First, innovative and agile leadership approaches are needed to handle
new market demands. Second, enabling leadership is needed to empower teams
in order to allow for fast decision making and innovation. Finally, agile leaders
function as change agents to drive cultural change in the organization.

Agile Leadership Needed to Cope with New Demands. It has been proven
that innovative organizations and leadership address the following three future
demands [21, P05]: increase the agility of the organization; design good working
conditions that foster employee motivation and health; and master complexity.
Situational management of complex tasks and unexpected changes will replace
upfront planning due to the requirements of VUCA (volatility, uncertainty, com-
plexity and ambiguity) [21, P05]. The goals of “innovative” organizations and

Agile Leadership and Agile Management on Organizational Level 33

leadership are flexibility, adaptability, and innovation. Autonomy and decentral-
ization push responsibility to where the actual work takes place. A self-organizing
team is then enabled to take decisions. Only then can decisions be made timely
and using the expertise of the right people [21, P05]. Thus, asymmetric leader-
ship is required to react fast to customer needs [5, P04].

Enabling Leadership. Adaptive organizations need enabling leadership [6, P01].
It is up to leaders to build organizations that are dedicated to fulfilling the needs
and values of their employees, so that people can reach their full potential and
creativity [37, P08]. Interactive leadership is an important tool for creating a
work environment where people feel comfortable and satisfied with themselves
and their work [37, P08].

Agile Leaders as Change Agents. Business disruption is only possible with the
help of agile leaders [30, P02]. Management plays an important role in moving
to an agile culture [8, P14]. For a successful adoption of organizational change,
leaders have to describe the mission, vision, and values of an organization so
that people share the goal and believe in the higher purpose [37, P08].

5 Conclusion and Future Work

Leadership and management throughout the whole organization play an impor-
tant role as key enablers for an agile transformation. Many companies did already
make experiences with agility, using ideas and experiences from the area of
software engineering. However, to run the whole organization in an agile way,
some questions in the area of organizational structures, modern management
and leadership are still not answered. In volatile and unstable times, traditional
leadership and management approaches might no longer be the right choice for
economical success, as more and more markets are driven by constant changes,
and companies need flexibility and the ability for quick change. The structures
and managing models from the economies of scale appear unhelpful and even
blocking. Modern leadership has to take over to navigate teams and companies
with flat structures, empowered and self-managed teams through an unstable
industrial times with continuously unexpected changes in many branches.

However, it is not clear what leadership and management should look like in
order to support agility throughout the whole organization. We therefore inves-
tigated the body of research on agile leadership and agile management applied
at the organizational level with the help of a systematic literature review. The
14 identified sources provide an overview of the research field. In this work, we
focused on the definition of agile leadership and agile management at the organi-
zational level, and also analyzed the motivation for the usage of agile leadership
and agile management at the organizational level. This study was a first step
towards understanding agility at the organizational level. Practitioners can use
the insights to improve their agile transformation, and researchers can build
on the results to conduct further investigations into the topic of organizational
agility.

34 S. Theobald et al.

In future work, we want to extend and detail our analysis of the identified
papers from this literature review. A possible next step could be to consult
non-scientific publications on agile leadership, and to speak with agile experts
about the results of this study in order to identify the gap between research and
practice. Based on the knowledge about agile leadership and agile management
concepts, we also plan to conduct an analysis of the state of the practice with
the help of interviews and survey research. Further, a definition of the terms
agile leadership and agile management can be proposed using the study results
and experiences from practice, taking into consideration established definitions
of leadership and management.

Acknowledgments. Part of this research is funded by the German Ministry of Edu-
cation and Research (BMBF) as part of a Software Campus project (01IS17047). We
would like to thank Sonnhild Namingha for proofreading.

References

1. Appelbaum, S., Calla, R., Desautels, D., Hasan, L.: The challenges of organiza-
tional agility: Part 1. Ind. Commer. Train. 49, 6–14 (2017)

2. Appelbaum, S., Calla, R., Desautels, D., Hasan, L.: The challenges of organiza-
tional agility: Part 2. Ind. Commer. Train. 49, 69–74 (2017)

3. Baker, S.W., Thomas, J.C.: Agile principles as a leadership value system: how agile
memes survive and thrive in a corporate IT culture. In: Agile 2007 (AGILE 2007),
pp. 415–420 (2007)

4. Beavers, P.A.: Managing a large “agile” software engineering organization. In: Agile
2007 (AGILE 2007), pp. 296–303 (2007)

5. Boxer, P., Eigen, C.: Asymmetric Leadership: supporting a CEO’s response to
turbulence, January 2008

6. Bäcklander, G.: Doing complexity leadership theory: how agile coaches at Spotify
practise enabling leadership. Creat. Innov. Manag. 28(1), 42–60 (2019)

7. Cohen, J.: Weighted kappa: nominal scale agreement provision for scaled disagree-
ment or partial credit. Psychol. Bull. 70(4), 213 (1968)

8. Crocitto, M., Youssef, M.: The human side of organizational agility. Ind. Manag.
Data Syst. 103, 388–397 (2003)

9. Cross, S.E.: A model to guide organizational adaptation. In: 2013 International
Conference on Engineering, Technology and Innovation (ICE) & IEEE Interna-
tional Technology Management Conference, pp. 1–11. IEEE (2013)

10. Davenport, T.H., Prusak, L., et al.: Working Knowledge: How Organizations Man-
age What They Know. Harvard Business Press, Brighton (1998)

11. Diebold, P., Küpper, S., Zehler, T.: Nachhaltige agile transition: symbiose von
technischer und kultureller Agilität. Projektmanagement und Vorgehensmodelle
2015 (2015)

12. Drucker, P.F.: Landmarks of Tomorrow: A Report on The New. Harper & Row,
New York (1957)

13. Haneberg, L.: Training for agility: building the skills employees need to zig and
zag. Hum. Resour. Manag. Int. Dig. 20(2), 50–58 (2011)

14. Hopkins, W.E., Mallette, P., Hopkins, S.A.: Proposed factors influencing strategic
inertia/strategic renewal in organizations. Acad. Strat. Manag. J. 12(2), 77 (2013)

Agile Leadership and Agile Management on Organizational Level 35

15. Hugos, M.H.: Business Agility: Sustainable Prosperity in a Relentlessly Competi-
tive World, vol. 12. Wiley, Hoboken Hoboken (2009)

16. de Jager, P.: Who me, change? Com. L. Bull. 19, 16 (2004)
17. Jesse, N.: Organizational evolution-how digital disruption enforces organizational

agility. IFAC-PapersOnLine 51(30), 486–491 (2018)
18. Kidd, P.T.: Agile Manufacturing: Forging New Frontiers. Addison-Wesley Long-

man Publishing Co., Inc., London (1995)
19. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature

reviews in software engineering. Technical report EBSE 2007-001, Keele University
and Durham University Joint Report (2007)

20. Komus, A., Kuberg, M.: Abschlussbericht: Status quo agile 2016/2017. Studie über
Erfolg und Anwendungsformen von agilen Methoden (2017)

21. Korge, A.: Agile Organisation und Führung 4.0: Entscheidungshilfe für
unternehmensspezifische Weichenstellungen. ZWF Zeitschrift für wirtschaftlichen
Fabrikbetrieb 112, 289–292 (2017)

22. Kotter, J.P.: A Force for Change: How Leadership Differs from Management. The
Free Press, New York (1990)

23. Krieg, A.: Reifegradmodell zur Messung agiler Unternehmensentwicklung. Lecture
Notes in Informatics, Gesellschaft für Informatik, Bonn, S, pp. 162–169 (2016)

24. Krieg, A.: Agiler Projektleiter-Vermittler und Moderator im hybriden Projektum-
feld. Projektmanagement und Vorgehensmodelle 2017-Die Spannung zwischen dem
Prozess und den Mensch im Projekt (2017)

25. Krieg, A.: Agile Organisationsentwicklung und agiles Change-Management. In:
Gesellschaft für Informatik eV (GI), p. 253 (2019)

26. Krieg, A., Theobald, S., Küpper, S.: Erfolgreiche agile Projekte benötigen ein agiles
Umfeld. Projektmanagement und Vorgehensmodelle - Der Einfluss der Digital-
isierung auf Projektmanagementmethoden und Entwicklungsprozesse (2018)

27. Kropp, M., Meier, A.: Swiss agile study 2014. Agile Software-Entwicklung in der
Schweiz. Zürcher Hochschule für Angewandte Wissenschaften (2014)

28. Küpper, S., Kuhrmann, M., Wiatrok, M., Andelfinger, U., Rausch, A.: Is there a
blueprint for building an agile culture? Projektmanagement und Vorgehensmodelle
- Die Spannung zwischen dem Prozess und den Mensch im Projekt (2017)

29. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics (1977)

30. Lang, D., Rumsey, C.: Business disruption is here to stay - what should leaders
do? Qual. Access Success 19, 35–40 (2018)

31. Larman, C., Vodde, B.: Large-Scale Scrum: More with LeSS. Addison-Wesley Pro-
fessional, Boston (2016)

32. Lawrence, P.R., Lorsch, J.W.: Organization and Environment: Managing Differen-
tiation and Integration. Harvard Business School Press, Brighton (1967)

33. Michel, L.: The Performance Triangle: Diagnostic Mentoring to Manage Organi-
zations and People for Superior Performance in Turbulent Times, vol. 12. LID
Publishing, London (2013)

34. Mládková, L.: Knowledge management for knowledge workers. In: Proceedings of
the European Conference on Intellectual Capital, pp. 260–267 (2011)

35. Moore, E.: Influence of large-scale organization structures on leadership behaviors.
In: 2009 Agile Conference, pp. 309–313 (2009)

36. Murray, A., Greenes, K.: New leadership strategies for the enterprise of the future.
VINE 36, 358–370 (2006)

37. Nold, H., Michel, L.: The performance triangle: a model for corporate agility. Lead.
Organ. Dev. J. 37, 341–356 (2016)

36 S. Theobald et al.

38. Nold, H.A.: Linking knowledge processes with firm performance: organiza-
tional culture. J. Intellect. Cap. 13(1), 16–38 (2012). https://doi.org/10.1108/
14691931211196196

39. Parker, D., Holesgrove, M., Pathak, R.: Improving productivity with self-organised
teams and agile leadership. Int. J. Prod. Perform. Manag. 64, 112–128 (2015)

40. Salmador, M., Bueno, E.: Knowledge creation in strategy-making: implications for
theory and practice. Eur. J. Innov. Manag. 10, 367–390 (2007)

41. Scott, W.R.: Developments in organization theory, 1960–1980. Am. Behav. Sci.
24(3), 407–422 (1981)

42. Scott, W.R., Davis, G.F.: Organizations and Organizing: Rational, Natural and
Open Systems Perspectives. Routledge, Abingdon (2015)

43. Theobald, S., Diebold, P.: Interface problems of agile in a non-agile environment.
In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp.
123–130. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 8

44. VersionOne: The 11th Annual State of Agile Report (2017)
45. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-

mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell (2000)

https://doi.org/10.1108/14691931211196196
https://doi.org/10.1108/14691931211196196
https://doi.org/10.1007/978-3-319-91602-6_8

A Study of the Agile Coach’s Role

Kadri Daljajev, Ezequiel Scott(B) , Fredrik Milani, and Dietmar Pfahl

Institute of Computer Science, University of Tartu, Tartu, Estonia
kadri.daljajev@gmail.com, {ezequiel.scott,fredrik.milani,

dietmar.pfahl}@ut.ee

Abstract. While Agile Software Development has recently received much atten-
tion in industry, the implementation of agile methods and practices is not straight-
forward, partly because the approach focuses on people and their interactions. To
facilitate the adoption of agilemethods and the further development of agile teams,
the role of an agile coach has been introduced. However, this role has not been
sufficiently explored from the perspective of those whose perform that role. To
address this gap, we conducted a case study where we interviewed agile coaches
with experiences from multiple companies. We identified the main objectives of
agile coaches, the methods they use to achieve those objectives, the challenges
they frequently face, the skills required by the role, and the value they provide
to organizations and teams. Our findings contribute to a better understanding of
the role and the construction of a professional identity. In addition, we offer a
characterization that can be useful for professionals that are new in the role.

Keywords: Agile software development · Agile coach · Agile adoption

1 Introduction

Many organizations have either adopted agile software development methods or are
in the process of doing so. Those who have implemented an agile approach, follow a
specificmethod such as Scrum [1] or Kanban [2] while others combine differentmethods
[3]. Meanwhile, some companies are actively working to replace traditional plan-driven
methods, such as Waterfall, with agile methods.

Maintaining effective teams or transitioning to Agile is not straightforward. One
reason is that agile methods are human-centric, i.e., people and their interactions, both
within teams and with customers, take precedence over rigid processes, tools, and con-
tract negotiations [4]. Thus, building functional teams, improving team performance,
and aiding companies to implement agile methods, require adopting and developing an
agile mindset [5]. Agile coaches aid organizations and teams in such activities.

Themain role of an agile coach is to facilitate teamdiscussions in pursuit of improved
team performance [6]. In executing this role, agile coaches have the responsibilities of
facilitation, problem-solving, coaching, teaching, andmentoring [1, 6–8]. Agile coaches
also help teams to identify how they can improve theirwork to achieve better performance
[9]. Furthermore, agile coaches also aid companies who are transitioning into employing
agile methods [10]. Agile coaches, therefore, contribute with a better understanding

© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 37–52, 2020.
https://doi.org/10.1007/978-3-030-64148-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_3&domain=pdf
http://orcid.org/0000-0001-5760-8226
http://orcid.org/0000-0003-2400-501X
https://doi.org/10.1007/978-3-030-64148-1_3

38 K. Daljajev et al.

of agile methods and practices [11], enhance teamwork [12], raise productivity [13],
improve product quality and reduce cost [14], create better solutions, and contribute to
successful projects conclusions [15].

Despite the importance of agile coaches [16], little research has been conducted
about this role. Most studies focus on exploring the role of agile coaches from the
perspective of scrummasters. For instance, Adkins [6] compare the role of an agile coach
to that of scrum masters and project managers. Noll et al. [17] conducted a systematic
literature review and a case study to identify the role of scrummaster and its intersection
with other roles, such as project manager. However, agile coaches are not confined to
Scrum only. Rather, they can aid companies following other agile methods and those
transitioning from sequential plan-driven methods to agile methodologies. Furthermore,
several studies [11, 15, 18] have explored the role and function of agile coaches from a
company perspective. For instance, how agile coaching is structured at British Telecom
[11] or how agile coaching is conducted at Spotify [18]. Thus, existing work focuses on
agile coaching as a variant of scrum master or from an organizational perspective, but
not from the perspective of those who are performing the role, i.e., agile coaches. We
seek to address this gap.

This paper aims to explore different aspects of the agile coach role from the perspec-
tive of those who work as agile coaches. We explore what the objectives of agile coaches
are, the methods they use, the challenges they face, the skills required, and finally, the
value they add. In our attempt to explore these topics, we use the case study research
method where we conduct in-depth interviews with agile coaches [25]. Our study con-
tributes to the field of Agile Software Development by adding to the existing knowledge
empirical data that leads to a better understanding of the role and the construction of
a professional identity. Thus, our contribution is particularly relevant for agile coaches
and organizations considering enlisting the help of agile coaches.

The remainder of the paper is structured as follows. In the next section, we present
the background related to the agile coach role. Next, in Sect. 3, we present our research
method. Following that, in Sect. 4, we present our results. Section 5 discusses our results.
Section 6 summarizes the limitations, and Sect. 7 concludes the paper.

2 Related Work

The study of the role of the agile coach involves two fundamental concepts that must
be clarified, role and coach. A role can be understood as an institutionalized behavior
pattern, defined in terms of their rights and obligations [19]. In this regard, the IEEE
Professional & Educational Activities Board (PEAB)1 propose a model of IT profes-
sional role. This model includes the definition of the job role as a type of position in an
organization that is characterized by the responsibilities for the performance of activi-
ties assigned to a position. The board also recommends that job roles should be clearly
defined in terms of responsibilities and the competencies required.

On the other hand, the concept of coach has been originally linked to instruction
and training, where coaching referred to a process used to transport people from where

1 PEABWeb site – https://www.computer.org/volunteering/boards-and-committees/professional-
educational-activities.

https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities

A Study of the Agile Coach’s Role 39

they are to where they want to be. The development of coaching has been influenced
by many fields, such as in education, sports, leadership studies, and various subfields
of psychology [20, 21]. In the context of Agile Software Development, the concept of
coaching has been applied to agile coach.

Several authors have aimed to discuss the role of agile coaches. For example, agile
coaches have been related to well-defined roles, such as the scrum master. According
to Adkins [6], an agile coach is “a scrum master who takes teams beyond getting agile
practices up and running into their deliberate and joyful pursuit of high performance”.
Adkins understands agile coach as a role different from that of the scrum master, but the
author also remarks that some responsibilities can overlap depending on the goals.

According to the Scrum Guide [1], a scrum master is mainly responsible for helping
the scrum team in removing impediments and maximizing the value the team creates.
The responsibilities include the achievement of the goals, determining the scope, the
team’s understanding of the product domain, and finding techniques to manage the
product backlog in the most effective way. Interestingly, the scrum guide also indicates
that scrum masters should coach the team in self-organization and cross-functionality,
which points to the fact that both, scrum masters and agile coaches, have coaching
responsibilities in common [1, 6].

A practitioner playing a scrum master’s role can also play other roles at the same
time. In fact, Noll et al. [17] found that the scrum master performs several activities
in addition to the traditional ones, such as process facilitation, ceremony facilitation,
and impediment removal. Among these additional activities, project management is
commonly performed by scrum masters, which leads to a conflict of interest that can
compromise the balance between the interests of external stakeholders and the scrum
team.

To better understand the job of an agile coach, several authors have described the
responsibilities that the role involves. For example, Santos et al. [22] point out that an
agile coach has to facilitate the team to consider different alternatives on how to improve
their processes, help the team to see what to do next, and also guide them on how
to take responsibility for their doings. Similarly, Adkins [6] describe the agile coach
as a teacher, facilitator, coach-mentor, conflict navigator, collaboration conductor, and
problem solver whose main goal is to help the team to adopt and improve their use of
agile methodologies.

O’Connor andDuchonova [10] contextualized the agile coach’s role dependingon the
stage of adoption of agilemethods, that is, if the teams are in the process of adopting agile
methods or are already working with agile practices. In both cases, teams need help to
either resolve an issue or to improve efficiency, and the agile coach can introduce benefits
to companies that exceed the financial costs of using an agile coach. It is also possible
to distinguish between external agile coaches (temporarily hired as consultants) and in-
house coaches, and sometimes a combination of them [15]. Another way to differentiate
the coaches is according to whether they use a directive or non-directive approach. In
the directive approach, the coach is an expert whereas the goal of his work is to help the
team to learn and solve not just a specific problem in hands but also problems in future
[23].

40 K. Daljajev et al.

Althoff [24] describes the role of the agile coach as the composition of other roles
such as a planner, motivator, reflector, and process supervisor. The Agile Coaching
Institute2 suggests eight competencies that are needed for performing the agile coach
role: Professional Coaching, Facilitating, Domain Mastery (Transformation Mastery,
BusinessMastery, TechnicalMastery),Mentoring, Teaching andAgile-LeanPractitioner
[7]. Table 1 summarizes the roles and the activities that have been related to the role of
agile coach.

Table 1. Summary of the roles and activities performed by agile coaches.

Roles and activities Adkins [6] Scrum guide [1] Bass [8] Noll et al. [17] Althoff [24] Spayd and Adkins
[7]

Facilitator X X X X X

Problem solver X X X X

Coach X X X X

Teacher X X X

Mentor X X X

Leader X X X

Process anchor X X X

Collaboration
conductor

X X

Change management
agent

X X

Sprint planner X X

Integration anchor X X

Conflict Navigator X

Sprint reviewer X

Planner X

Motivator X

Life coach X

Agile-Lean
practitioner

X

Prioritization X

Estimation X

Travelling X

Project management X

3 Method

The case study research method employs qualitative methods to investigate a particular
reality within its real-life context [25], in particular when the boundaries distinguishing
the object of study and its context are not clear [26]. Case studies can be used for

2 Agile Coach Institute Website – https://www.agilecoachinginstitute.com.

https://www.agilecoachinginstitute.com

A Study of the Agile Coach’s Role 41

confirming a hypothesis [25, 27], evaluate a method [28], and for exploratory purposes
[25, 27]. For our research, the case study method is suitable as it enables an in-depth
exploration of the role of agile coaches in its real-life setting. Yin [26] argues for the
necessity of defining a research question when designing a case study. We use the case
study method to explore the following research questions:

RQ1 - What are the objectives of an agile coach?
RQ2 - What methods do agile coaches use to achieve their objectives?
RQ3 - What challenges do agile coaches encounter in their work?
RQ4 - What skills do agile coaches require and use?
RQ5 - What value do agile coaches perceive themselves to add?

These research questions are relevant given that the agile coach role is relatively
new, little research has been conducted so far, and, thus, there is a need to empirically
explore this role further.

3.1 Case Study Design and Execution

The design of our case study is shown in Fig. 1. It consists of three main steps, i.e.,
preparation (first step), data collection (second step), and analyzing the collected data
(third step). In the following, we describe the steps in more detail.

Preparation
•Method
•Questionnaire
design

•Finding agile
coaches

Data
Collection
• Interviews with
agile coaches

Data Analysis
•Transcription
•Coding
•Analysis
•Reporting

1 2 3

Fig. 1. The design of our case study.

The first step of the case study was preparation. As part of the preparation, we
identified the method to gather data, prepared for the data collection, and defined and
selected sources for data collection. We used interviews for data collection. According
to Merriam [29], the interview method is particularly suitable for eliciting information
about something that is difficult to observe. We employed semi-structured interviews
with open-ended questions. We used open-ended questions as they provide more in-
depth responses than closed questions. The interview questions were derived from our
research questions. The questions focused on the personal experience of the participants
as agile coaches in general rather than on the specific experience in one company. The
interview questions are available as supplementary material.

As interviewees, we sought people who actively work as agile coaches. In order
to identify candidates, we approached a network created and run by professional agile
coaches in northern Europe. Before selecting, we ensured that they had working expe-
rience as agile coaches and were willing to be interviewed. The interviewees varied in

42 K. Daljajev et al.

their working experience as agile coaches and/or scrum masters (years of experience),
experience with multiple companies (concurrent engagements), and number of teams
they concurrently work with on average (concurrent reams) as can be seen in Table 2. In
total, we selected eight interviewees. All interviewees insisted on full anonymity; thus,
we do not disclose full demographical information.

Table 2. Characteristics of the interviewees who participated in the study.

Participant Experience (years) Multiple
engagementsa

Teamsa

P1 >5 Yes 1

P2 >5 Yes 1

P3 2–5 Yes >5

P4 <2 No 2–5

P5 <2 No 2–5

P6 >5 Yes 1

P7 >5 No 2–5

P8 2–5 Yes 2–5
aConcurrent

In the second step of our case study, we collected data by conducting interviews. The
interviews were conducted face-to-face and online by the first author. The interviews
were recorded, either by using the online tool used or with a voice recorder. The aver-
age length of the interviews was about one hour. Initially, 6 interviews were planned.
Having conducted these interviews, we noted data saturations i.e., no new information is
being provided by additional interviews. We, however, sought and conducted two more
interviews to ensure we had enough interviews [30].

In the third step, we analyzed the collected data. All interviews were transcribed and
encoded. The coding process was conducted according to the guidelines proposed by
Braun and Clarke [31], i.e., familiarizing with data, generating and searching for initial
themes, reviewing themes, and finally, defining and naming themes. Therefore, we first
familiarized ourselves with the data by compiling all the transcripts into one document.
Then we carefully read them and added notes. Next, we generated a set of initial themes.
The themes corresponded to a research question. Each theme was further refined into
codes, each of which relates to a specific aspect of the theme (research question). For
instance, the theme named Objectives correspond to the first research question. Within
this theme, we identified four codes, Educating, Aiding, Creating Spaces, and Improve-
ments. Following this, the second and third authors reviewed the themes and codes
through discussion. The final set of themes and codes, together with their frequency, are
listed in Table 3.

A Study of the Agile Coach’s Role 43

Table 3. Finalized themes and sub-themes of the analysis.

Theme Codes Frequency

Objectives Educating 7

Aiding 6

Creating spaces 4

Improvements 2

Methods Coaching 10

Teaching/Mentoring 7

Observation 5

Facilitation 5

Calming down 1

Challenges Preserving authority 6

Problem understanding 6

Mindset 3

Aligning plans 1

Team changes 1

Skills Agile knowledge 15

People skills 12

Coaching 4

Teaching skills 3

Facilitation skills 3

Value Development of teams 7

Influence 6

Contextual 4

Knowhow 2

Measures 2

4 Results

In this section, we present the results of our case study following the order of our research
questions. We first present the results regarding the objectives of agile coaches (RQ 1).
Then, we examine what methods they use (RQ 2) and what challenges they encounter in
their work to achieve the objectives (RQ 3). Next, we investigate what skills are required
and used by agile coaches (RQ4) and, finally,we probewhat value agile coaches perceive
they provide (RQ 5).

44 K. Daljajev et al.

4.1 The Objectives of Agile Coaches

The first research question refers to the objectives of agile coaches. The results presented
are from the perspective of those interviewed. We noted that the role of an agile coach
is difficult to define. As one participant noted, “this is a very big role” and, as another
stated, “Agile coach is more like this umbrella term”. Thus, the practitioners found it
challenging to define their role. We, therefore, approach the role of an agile coach by
exploring the objectives of an agile coach. Objectives, in this context, refer to what
companies expect agile coaches to achieve. The objectives identified relate to training
teams, aid teams in performing better, create and maintain spaces for knowledge sharing
and discussions, identifying improvement opportunities, and helping individual team
members.

We note that the most often mentioned objective is that of educating different stake-
holders about agile methods. One participant noted that, as agile coaches, they work with
“a portfolio of trainings, which we do for the organization”. The second most common
objective relates to aiding teams. Several practitioners explained that their objective is
to help teams perform better. For instance, one interviewee noted that their objective is
partly to “help the team to be together, to be in contact with each other, … to help them
to continuously focus on the goals”. Part of this objective is to work with teams to foster
better cooperation. One practitioner noted that “…but also, more like human topics, like
cooperation and what are the agreements between team members and how things are
done”.

Several practitioners also noted that, as part of their objective, they create and main-
tain different forms of communities (forums) that enable and foster knowledge sharing
and discussions. One practitioner stated that “I have done these gatherings knowledge
exchanges for Scrum Masters and for product owners. … I will talk about their role, what
are their challenges…”. Another objective we noted is that of identifying opportunities
for improvement. Spaces dedicated to knowledge sharing and discussions can provide
input for identifying improvement opportunities. As one practitioner stated, one of the
objectives is that of trying to “…identify things that we can work together, me and that
person, to improve their way of working and for that I use this one on one Coaching”.
The scope of agile coaches is not restricted to teams only. Rather, agile coaches work
with individual team members when needed. One of the agile coaches noted that they
also work with “solving personal development related problems”.

4.2 The Methods Used by Agile Coaches

The second research question concerns what agile coaches do, i.e., how they achieve
their objectives. Agile coaches adopt a cautious approach when working with teams. To
achieve their objectives, agile coaches “try not to help people, who do not ask for our
help. …If we see that something doesn’t work, we are not the unit who will come and say
hello guys, you are wrong. This is not our approach. We are helping only those who are
willing to get our help. Because only in this case, there will be some results”. Naturally,
the method is, to some extent, dependent on the context. Practitioners might “choose an
approach according to the situation”. However, some methods were mentioned more
frequently.

A Study of the Agile Coach’s Role 45

The most frequently mentioned method was observation. Most interviewees men-
tioned that the first step is to observe. Agile coaches need to observe the team so to
understand the current situation. One practitioner stated that “…when I’m going to a
new team, it starts with observation”. Observation is used throughout the work agile
coaches do. It is important for agile coaches to observe, for instance, the daily inter-
actions and problem-solving methods of the teams they coach. Such observations are
shared with the team as basis for discussion. For instance, one agile coach expressed
that “I will discuss my observations with the teams… and see what we are gone do about
that.”.

It is worth to note that the COVID-19 pandemic developed at the timewhen the inter-
views were being conducted, and the Nordic countries went into lockdown. Therefore,
companies changed their modality to the use of remote working. This introduced new
challenges for conducting observations. The interviewees stressed the importance of
physical presence during the observation and the limitations of online tools. One partic-
ipant expressed: “… if I’m used to observe peoples’ body language, conversations, then
this is lost [now], and of course, it makes it more difficult for me …”. The coaches also
noted differences according to the experience of the teams, and particularly noticeable
for new teams: “When there is one new team, with them it’s very hard, we have to create
a vision and decide where we want to get with the team. Usually it’s like this, that we
come together with a team in one room … and will not exit before we have a concept.
Today it’s very hard to do”.

As expected, the activity of coaching was also mentioned. One participant expressed
that “… I try coaching as a discussion between me and the team”. In addition to coaching,
mentoring and teaching were mentioned as well. For instance, as one participant stated,
“…we have meetings and we discuss their situations and I talk about what’s in the book
and what other teams are doing and share the knowledge”. Likewise, agile coaches
teach the team about certain aspects of agile methodologies. For instance, shared that it
is common to do “…teaching, e.g. how to write user stories”.

Facilitation is another method used by agile coaches. As one participant stated,
“I facilitate and put together different kind of workshops that are needed in order to
improve the teamwork or the process, because for example there are teams, were roles
are quite mixed up”. Facilitation is not restricted toworkshops, but also used for different
ceremonies and “the other thing is then retrospectives…”.

Agile coaches interviewed have “one-on-one talks” with “open questions”. At times,
when emotions run high, agile coaches employ methods for calming down, such as,
“…breathe deeply and be calm…”

4.3 The Challenges that Agile Coaches Face

Agile coaches, when working with achieving their objectives, encounter challenges.
Here, we explore the third research question of what challenges agile coaches encounter
in their work. The most frequent challenge mentioned was about persevering authority.
Agile coaches do not have authority to decide and enforce decisions. Often, the agile
coach has the right experience and knowledge to know what will work and what will
not. However, they work with educating and influencing the teams. As one participant
expressed, “Coaching itself, well mentoring is easy, but those situations, where you are

46 K. Daljajev et al.

like … you are doing it wrong, I would so much like to tell you that, I have done it
for years, this will work. This is the most painful thing”. At the same time, they need
to maintain a certain degree of authority so to be taken seriously, listened to, and their
advice heeded. Thus, as one of the practitioners said, it is a challenge to “preserving
authority and being friend to the team at the same time”.

Agile coaches need to understand the real problem that is to be solved. This is
a challenge. To identify the real problem, both experience and time with the teams are
required. Junior agile coaches havenot yet accumulated enough experience to confidently
identify the real problem. Experienced agile coaches who work with several projects,
find it difficult to dedicate enough time to each engagement to identify the real problem.
As one agile coach stated, “there is a lot of running around and talking to people. … I
can say that, when working with many teams simultaneously, the Coaching quality or
teaching quality … drops, compared to the case when I would have the time to focus and
physically be near to this one team, see their problems and understand how to help”.
Meanwhile, the expectations on agile coaches to find the problem and solve it is, at times,
high or even unrealistic. As a practitioner expressed it, “sometimes these expectations to
the coach are that, he will come and fixes everything quickly and solves all the problems.
But usually the problems are somewhere very deep in the organization, inside the culture
of the organization …”.

Another challenge noted refers to working with the mindset of mangers and team
members. As one of the interviewees expressed it, “… people have previous mentality
of waterfall and they are not used to this way of working that is maybe very dynamic for
them or too dynamic in their opinion. They are used to think about the problem … every
detail of everything and then start to implement it…” This challenge is not confined
to only mangers, but also team members. In particular, when agile coaches work with
guiding and aiding organizations to adopt agile practices. Furthermore, this challenge
arises when companies implement an agile method as a plug in. For instance, one agile
coach stated that “many problems that I see, come from that, that people kind of take
the model of Scrum, implement it in their organization and then say, it didn’t work. …it
assumes, that you actually make structural changes in your company”.

The interviewees also mentioned that confirming and aligning plans with stakehold-
ers, is challenging. One participant stated that “aligning with everyone, meaning the
team, the key account manager, also POs would actually be happy and it would fit to
everyone’s plans. This is a challenge”. Another challenge mentioned was that of dealing
with changes, i.e., “in my experience … I have not had the luxury of having so stable
teams …, that I shouldn’t make any changes, or the team should not make any changes
or that there are no new members joining or leaving the team”.

4.4 The Skills of Agile Coaches

Agile coaches, as noted above, perform their role as an “umbrella” when achieving one
or several objectives. Thus, it is expected that the skills required by agile coaches varies.
Furthermore, agile coaches are different and, thereby, require different skills. One agile
coach noted that “there might be different competencies, some people know more about
products and are stronger in product management area. Every agile coach …have their
own handwriting, so quite often we are different and work differently …”. Nevertheless,

A Study of the Agile Coach’s Role 47

we noted that the main skills required are either related to abilities to interact with others
and knowledge about agile methods.

The most frequent skill mentioned related to knowledge about agile methods. Sev-
eral in interviewees stressed that it is important to have knowledge about several agile
methods and frameworks. As one participant said, “first, there has to be like a strong
knowledge of Agile Frameworks, not just Scrum, but preferably others as well …;”. It is
not sufficient to know about the method, but one has to understand the process as well.
One practitioner expressed that it is important to grasp “process management … kind
of like an engineer, but not software engineer, but process engineer … who understands
systems and how they work …”. Furthermore, another practitioner emphasized, in addi-
tion to understanding of agile methods, the importance to believe in agile values: “…he
… needs to believe in agile values … he needs to understand why agile is important and
how to implement it in a Software company …”.

Another frequently mentioned skill is “people skills” which was quite expected.
As one practitioner expressed it: “they need to be able to understand people and work
with people”. Closely related to people skills, are coaching, mentoring, facilitation, and
teaching skills. For instance, one interviewee said “Aaa, coaching, obviously…” while
another said, when discussing about skills, that “… and others are like mentoring, so
you mentor… in your teams”. Given that agile coaches work with teams and train teams,
it is also expected that they have facilitation and teaching skills.

Although this knowledge can be gained with experience, it is still necessary to have it
as an agile coach. One of the participants explained that: “… you can also start working
as a Scrum Master very young, sort to say after school and I have seen some very good
young people, who work as Scrum Masters, but let’s say, for one to be good in their job,
this is a thing, that comes with time … it is not possible to learn to job of a Scrum Master
so that I attend a course, read two books and start doing it … yes, you have to know
and understand the framework and have to have heard about the mindset, but addition
to that comes the dimension of experience”.

4.5 The Value Delivered by Agile Coaches

The fourth research question concern the value agile coaches deliver, as perceived by
themselves. The value an agile coach can contribute with is dependent on the coach.
As one practitioner said, “it depends a lot on that, … on what level you are … with
your maturity”. Furthermore, the value agile coaches contribute with, is often not easily
discernable. For instance, as one participant stated, “…it’s a lot of work behind the
scenes. So, no one will ever congratulate the Scrum Master or the Agile Coach for some
big success in the project, but they are holding the team together, holding the process
there, making sure that everyone is doing the right thing at the right time”.

Nevertheless, agile coaches add value to those being coached, such as team mem-
bers, specific roles, teams, departments, or an organization, to become better in what
they do. As one agile coach expressed it, an “… agile coach is the person who helps
organization to become their best the same way like usual coach, like life coach helps
coachee to decide what to do with their life and to get the most out of this. Agile coaches
help the organization but within some boundaries … so agile coaches know quite a lot
about … agile ways of working, having expertise in this area, while there quite a lot

48 K. Daljajev et al.

of competencies for agile coaches, this is competence why agile coaches are hired and
needed”. The value of agile coaches is not confined to making teams better in terms of
agile practices. Agile coaches also add value by addressing aspects that help teams to be
happy. One of the agile coaches interviewed expressed that an “Agile coach keeps the
mood up, by letting the people feel and understand, that they are always more important
than the processes”. In addition, agile coaches deliver value with their knowhow born
of their experience and knowledge. As explained by one of the agile coaches, “one is
relaying on his or her experience, and because of that, can actually give practical advice
on the matters of agile software development”.

The value added by agile coaches is difficult to directly measure. None of the inter-
viewed agile coaches reported their contribution having been measured quantitatively
with, for instance, a Key Performance Indicators (KPI). The work of the coach is very
dependent on the willingness and motivation of the team to work with the agile coach.
Therefore, measuring the value should be a mutual responsibility. One practitioner
expressed this idea that there has to be “mutual responsibility. Because I cannot as
an agile coach, we are not supposed to make the change, we are supposed to help the
people to make change. And if we agree on something and counterparty is not doing
this, then we cannot do anything with this.”.

However, when asked about how such value could be measured, their suggestions
considered using indicatory measures, i.e., measuring aspects that could be used as indi-
cators of value added. For instance, one participant proposed the 360 degrees feedback
method from those who the agile coach worked with. As one participant formulated it,
the “only KPI that I can say right now, is 360 feedback. In case you get positive feed-
back, it shows that you have been doing something right”. Such ameasurewould indicate
degree of satisfaction with the work of the agile coach i.e., “when we are receiving this
customer satisfaction surveys, they are positive, they mention for example our efficacy,
our value …, or how things are going in general”. These measures would indicate the
value of an agile coach as perceived by team members. However, the value can also be
considered from the perspective of the team. This could be measured, as proposed by
the practitioners, clarity of the process and its implementation in the daily work. One
participant expressed it as “…what they need to do every day is clear for them and why
do they do the things they do every day, how they translate it in to the bigger plan or the
bigger vision, see why is it important, you see people motivated at work”. The idea of
measuring the motivation, in particular, its expression in the mood of the team, was also
stated. For instance, one agile coach expressed that an indicator is when teams “… want
to do things by themselves and not waiting for someone to give them work to do, they
are proactive, if … yeah it’s basically the measurements … but the biggest indicator is
the mood in the room and how people take work”. Another way to measure the value, is
to measure the performance of the teams. For instance, one agile coach thought it would
be possible to use scrum charts, “like measuring velocity, the burndown charts”.

5 Discussion

Defining the role of an agile coach can be a challenging task even for practitioners with
several years of experience. The literature on the topic has related the role of an agile

A Study of the Agile Coach’s Role 49

coach to other well-defined roles such as to that of the scrum master [1, 6]. From the
interviews, we observed that both roles have several goals in common: to help teamswith
the implementation of agile practices, the achievement of their goals, and to facilitate
the whole software development process. However, the interviewees stressed that they
also have an educational goal (teaching) both teams and various stakeholders about
agile methods and practices. Although coaches work with the team to mainly improve
productivity, they emphasize the cooperation and communication of the team as a proxy
to achieve the improvement. This is in line with the idea that human factors determine
the performance of the team and the process [32].

Agile coaches use a variety of methods and strategies that are aligned to their objec-
tives. Organizing group meetings and workshops are common when the agile coach has
the goal of helping the team to identify improvement opportunities or solve a problem.
When the coaches aim to educate, they use different strategies ranging from just explain-
ing how to conduct specific practices (i.e., teaching/mentoring) to applying discussion-
based meetings where theory and practice are contrasted. Moreover, observation is men-
tioned as the most frequent method since it is crucial to understand how teams currently
work, the needs they have, and the problem they face. In this sense, observation in situ
becomes a complementary and important method used to understand the context. In this
line, Paasivaara and Lassenius [15] indicate that face-to-face communication is very
important during coaching.

There seems to be an agreement that there are no silver bullet methods in software
development, i.e., practices that work regardless of the context in which they are applied
to [33, 34]. This stresses the need of empirical evidence supporting the effectiveness
of agile practices in given contexts and ease the selection of agile practices [35]. We
found that agile coaches rely on their experience combined with observations to iden-
tify the current problems and decide what practices are the best suited for the team.
Understanding the problems of a team or organization is a very challenging task and fre-
quently pointed out by the interviewees. The variety of methods used, and the challenges
addressed by agile coaches affects what skills are required. An agile coach requires a
blend of people skills and a solid understanding of agile practices and methods.

There are additional challenges that agile coaches must deal with. Preserving author-
ity is important since agile coaches cannot decide or enforce decisions. They usually
try to influence the team to go in the direction they consider to be the better one. Agile
coaches also want to keep friendly relationships since they work daily with the team.
However, some interviewees expressed that being friendly can sometimes compromise
their authority. The most important challenge that agile coaches pointed out is related
to the mindset of team members or managers. Previous experience with plan-driven
projects can lead individuals to have a rigid position on how things should be done and
create conflicts with agile dynamics. Interestingly, the mindset-problem has been seen
often in organizations that embark on an agile transformation journey. In line with exist-
ing studies, this supports the fact that agile transformation requires an organization-wide
agile mindset [4, 5, 36].

Regarding the value delivered, agile coaches perceive it differently. Some agile
coaches express that their results are difficult to measure since they work with the teams
to make them better. In this sense, considering the feedback reported by the team that

50 K. Daljajev et al.

received the coaching can be a meaningful measure. On the other hand, agile coaches
understand that if the teamworks better, it should be reflected in their performance; thus,
using Key Performance Indicators could be a way to indirectly assess their contribution
to the team or organization.

6 Limitations

When using the case study methodology, there are threats to validity that should be
considered, particularly regarding external validity and reliability [25]. External validity
concerns the extent to which the findings can be applied beyond the setting of the study.
Our case study represents the perception of eight agile coaches. Thus, these findings
do not necessarily extend to cover the role of agile coaches. Although the objective of
our study was explorative, further studies are required to confirm our findings. Thus,
in line with the inherent limitation of the case study methodology, our results are lim-
ited in the extent they can be generalized. Reliability refers to the level of dependency
between the results and the researcher, i.e. would the same results be produced if another
researcher conducted the study. This threat was to some extent tackled by document-
ing the case study protocol, following a structured method for encoding, and applying
several iterations for data analysis. Another reliability threat refers to the limitation to
the coach own perspective. To address this limitation, further studies should include
other important stakeholders of this role such as the people/teams being coached, and
the sponsors/managers willing to pay for agile coaches in order to achieve a certain
effect, impact, return, or value. To facilitate the replication of this study, we provide the
interview guideline as supplementary material3.

7 Conclusion

In this study, we explored the role of the agile coach by using a case study research
method. We conducted interviews with several coaches and performed a qualitative
analysis. We answered research questions regarding what objectives agile coaches have,
what methods they use, what challenges they face, what skills are required by the role,
and what value agile coaches perceive themselves to provide.

We found that the role mainly aims to educate and aid teams and stakeholders
involved in the organization. To achieve these goals, coaches use different strategies such
as observing the behavior of the teams in situ. Among the main challenges, coaches face
issues to preserve authority and work with organizations or individuals without an agile
mindset. The agile coach role requires a blend of people skills and a solid understanding
of agile practices and methods, and their value is perceived by mainly improving team
dynamics. We believe that our findings contribute to a better understanding of the agile
coach role, the development of a professional identity, and offers a characterization that
can be useful for practitioners that are new in the role.

3 Interview guideline: https://doi.org/10.5281/zenodo.4074965.

https://doi.org/10.5281/zenodo.4074965

A Study of the Agile Coach’s Role 51

Acknowledgement. This work was supported by the Estonian Center of Excellence in ICT
research (EXCITE), ERF project TK148 IT, and by the team grant PRG 887 of the Estonian
Research Council.

References

1. Schwaber, K., Sutherland, J.: The scrum guide. In: Software in 30 Days, pp. 133–152. Wiley,
Hoboken (2015)

2. Huang, C.C., Kusiak, A.: Overview of kanban systems. Int. J. Comput. Integr. Manuf. 9,
169–189 (1996)

3. Sampietro, M.: The adoption and evolution of agile practices. PMWorld J. Adopt. Evol. Agil.
Pract. V, 1–16 (2016)

4. Conboy, K., Coyle, S., Wang, X., Pikkarainen, M.: People over process: key challenges in
agile development. IEEE Softw. 28, 48–57 (2011)

5. van Manen, H., van Vliet, H.: Organization-wide agile expansion requires an organization-
wide agile mindset. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J.,
Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 48–62. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13835-0_4

6. Adkins, L.: Coaching Agile Teams: A Companion for ScrumMaster, Agile Coaches, and
Project Managers in Transition. Pearson Education, Boston (2010)

7. Spayd, M.K., Adkins, L.: Developing great agile coaches towards a framework of agile
coaching competency (2011)

8. Bass, J.M.: Scrummaster activities: process tailoring in large enterprise projects. In: Proceed-
ings of the 2014 IEEE 9th International Conference on Global Software Engineering, ICGSE
2014, pp. 6–15 (2014)

9. Davies, R., Sedley, L.: Agile Coaching. J. Chem. Inf. Model. 53, 1–221 (2009)
10. O’Connor, R.V., Duchonova, N.: Assessing the value of an agile coach in agile method

adoption. Commun. Comput. Inf. Sci. 425, 135–146 (2014)
11. Hanly, S., Waite, L., Meadows, L., Leaton, R.: Agile coaching in British telecom: making

strawberry jam. In: Proceedings of the Agile Conference 2006, pp. 194–202 (2006)
12. Victor, B., Jacobson, N.: We didn’t quite get it. In: Proceedings of the Agile Conference 2009,

pp. 271–274 (2009)
13. Cardozo, E.S.F., Araújo Neto, J.B.F., Barza, A., França, A.C.C., da Silva, F.Q.B.: SCRUM

and productivity in software projects: a systematic literature review (2010)
14. Ebert, C., Hernandez Parro, C., Suttels, R., Kolarczyk, H.: Better validation in a world-

wide development environment. In: Proceedings Seventh International Software Metrics
Symposium, pp. 298–305 (2001)

15. Paasivaara, M., Lassenius, C.: How does an agile coaching team work? A case study. In:
Proceedings of the 2011 International Conference on Software and Systems Process, pp. 101–
109 (2011)

16. Pavlič, L., Heričko, M.: Agile coaching: the knowledge management perspective. Commun.
Comput. Inf. Sci. 877, 60–70 (2018)

17. Noll, J., Razzak, M.A., Bass, Julian M., Beecham, S.: A study of the scrum master’s role.
In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D.
(eds.) PROFES 2017. LNCS, vol. 10611, pp. 307–323. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69926-4_22

18. Bäcklander, G.: Doing complexity leadership theory: how agile coaches at Spotify practise
enabling leadership. Creat. Innov. Manag. 28, 42–60 (2019)

https://doi.org/10.1007/978-3-319-13835-0_4
https://doi.org/10.1007/978-3-319-69926-4_22

52 K. Daljajev et al.

19. Biddle, B.J.: Role Theory: Expectations, Identities, and Behaviors. Academic Press, Cam-
bridge (2013)

20. Cox, E., Bachkirova, T., Clutterbuck, D.: The Complete Handbook of Coaching. Sage
Publications, London (2018)

21. Wildflower, L.: The Hidden History of Coaching. Coaching in Practice Series. Open
University Press, Maidenhead (2013)

22. Santos, V., Goldman, A., Filho, H.R.: The influence of practices adopted by agile coaching
and training to foster interaction and knowledge sharing in organizational practices. In: Pro-
ceedings of the Annual Hawaii International Conference on System Sciences, pp. 4852–4861
(2013)

23. Kelly, A.: Changing Software Development: Learning to be Agile. Wiley, Hoboken (2008)
24. Althoff, S.: Qualitative interview-based research: an exploratory study on the role of the agile

coach and how the coach influences the development of agile teams. Bachelor’s thesis, Univ.
Twente. (2019)

25. Runeson, P., Höst,M.:Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14, 131–164 (2009)

26. Yin, R.K.: Case Study Research: Design and Methods. SAGE Publications, Thousand Oaks
(2017)

27. Flyvbjerg, B.: Five misunderstandings about case-study research. Qual. Inq. 12, 219–245
(2006)

28. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool evaluation.
IEEE Softw. 12, 52–62 (1995)

29. Merriam, S.B.:QualitativeResearch:AGuide toDesign and Implementation.Wiley,Hoboken
(2009)

30. Johnson, L., Guest, G., Bunce, A.: How many interviews are enough? Field Methods 18,
59–82 (2006)

31. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3 77–101
(2006)

32. Boehm, B., Turner, R.: People factors in software management: lessons from comparing agile
and plan-driven methods. CrossTalk J. Def. Softw. Eng. 16, 4–8 (2003)

33. Smith, P.G.: Balancing agility and discipline: a guide for the perplexed. J. Prod. Innov.Manag.
22, 216–218 (2005)

34. Clarke, P., O’Connor, R.V.: The situational factors that affect the software development
process: towards a comprehensive reference framework. Inf. Softw. Technol. 54, 433–447
(2011)

35. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50, 833–859 (2008)

36. Kilu, E., Milani, F., Scott, E., Pfahl, D.: Agile software process improvement by learning from
financial and fintech companies: LHV bank case study. In: Winkler, D., Biffl, S., Bergsmann,
J. (eds.) SWQD 2019. LNBIP, vol. 338, pp. 57–69. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-05767-1_5

https://doi.org/10.1007/978-3-030-05767-1_5

Impediment Management of Agile Software
Development Teams

Pascal Guckenbiehl and Sven Theobald(B)

Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{pascal.guckenbiehl,sven.theobald}@iese.fraunhofer.de

Abstract. Context: Many agile software development teams deal with blockers
that prevent them from working efficiently and achieving their (sprint) goals.
There is few guidance concerning impediment management, only that you have
to collect impediments and specify them in the impediments backlog. Therefore,
many teams developed individual solutions to approach impediments. Objective:
This paper should help to understand how agile teams identify, document and solve
impediments in practice. Method: Seven semi-structured qualitative interviews
were conducted with agile practitioners from German companies. Results: An
overview of different ways teams might handle their impediments is provided.
Based on the results, an initial model of the impediment management process
is proposed. Conclusion: The results of this study support practitioners when
defining or improving the way they deal with impediments.

Keywords: Agile · Impediments · Impediment management · Impediment
identification · Impediment documentation · Impediment resolution · Interview
study

1 Introduction

Within the software engineering community, agile development approaches are increas-
ingly used [1]. Agile methods, especially Scrum [2] as the most popular agile method
[1], help teams to manage complex products. An important aspect of agile approaches is
the continuous improvement of the team, guided by the principle of “inspect & adapt”.
The Agile Manifesto [3] defined the principle as follows: “At regular intervals, the team
reflects on how to become more effective, then tunes and adjusts its behaviour accord-
ingly” [3]. An important factor in this context are so-called impediments, which are
literal obstacles that hinder the team in working efficiently and restrict overall produc-
tivity, such as poor communication or technical debt. Agile methods use mechanisms
like daily synchronization meetings or regular retrospectives in order to identify these
impediments. In general, impediments may originate from within the team or can be
caused by the external environment. These external impediments usually appear when
an agile team has dependencies to other teams or organizational parts. Many different
problems can arise, especially when the agile team has to collaborate within a traditional
environment [4].

© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 53–68, 2020.
https://doi.org/10.1007/978-3-030-64148-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_4

54 P. Guckenbiehl and S. Theobald

Although impediments play a major role in everyday agile work, there is not much
guidance by agile methods on how to handle impediments systematically throughout
their lifecycle from being identified to finally being resolved. Even Scrum as the most
commonly used agile framework does not provide much insight regarding management
of impediments. It is only recommended that the Scrum Master should be responsible
for removing impediments and that the Daily Scrum helps to identify impediments.
Since Scrum is only a framework, the details on how to exactly deal with impediments
are intentionally left open. Due to this lack of guidance and the fact that Scrum imple-
mentations vary a lot [5], there are potentially many different approaches to handling
impediments. Therefore, the primary goal of this paper is the investigation of these
different approaches of impediment management in the context of agile software devel-
opment. This paper is based on an interview study conducted in the context of a master’s
thesis [6]. Seven semi-structured expert interviews were carried out with practitioners
from different companies. The knowledge gained this way is intended to encourage users
of agile approaches to experiment and thus serve as the basis for improving individual
processes and working methods with regard to impediments. They also provide a basis
for in-depth research on this topic, which is not sufficiently represented in scientific
literature yet.

The remainder of this paper is as follows: The current state of research based on
related work is analysed and the contribution of the study is explained in Sect. 2. The
study design, including research goal and questions, interview guideline and execution
as well as data analysis, is described in Sect. 3. The interview results regarding the
research questions, a proposition of an overall impediment management process and the
limitations of this study are presented in Sect. 4. Finally, a conclusion and perspectives
for future work are given in Sect. 5.

2 Related Work

For reasons of relevance, mainly recent work dealing explicitly with impediments in the
context of agile software development was considered for the current state of research.
Due to the strong thematic proximity, this might also include waste in the context of
lean software development. Work related to domains other than software development
was excluded for the time being. The focus is further on problems occurring in daily
development practice. Accordingly, work that examines obstacles to the introduction of
and transformation to agile and lean was not investigated. Sources already aggregated
by the selected authors were not explicitly delved into explicitly either. Table 1 lists the
results of the literature review chronologically.

In general, impediment management appears to be a relatively new research topic.
Most of the related work is limited to the 2010s. Wiklund et al. (ID 1, see Table 1)
used a case study to investigate which activities in the development process produce
the most impediments. Power & Conboy (2) then combined the concepts of impedi-
ments and waste in agile software development and reinterpreted them using modern
typing. In addition, Power (3) also dealt with techniques for the sensible handling of
impediments. Larusdottir, Cajander & Simader (4) examined the constant improvement
process through interviews, focusing on activities that either generate or do not gen-
erate value. Later Carroll, O’Connor & Edison (5) again aggregated essential related

Impediment Management of Agile Software Development Teams 55

Table 1. Related work

ID Year Author Title

1 2013 Wiklund et al. Impediments in Agile Software
Development – An Empirical
Investigation [7]

2 2014 Power & Conboy Impediments to Flow – Rethinking the
Lean Concept of ‘Waste’ in Modern
Software Development [8]

3 2014 Power Impediment Impact Diagrams
– Understanding the Impact of
Impediments in Agile Teams and
Organizations [9]

4 2014 Larusdottir, Cajander & Simader Continuous Improvement in Agile
Development Practice – The Case of Value
and Non- Value Adding Activities [10]

5 2018 Carroll, O’Connor & Edison The Identification and Classification of
Impediments in Software Flow [11]

6 2019 Alahyari, Gorschek & Svensson An Exploratory Study of Waste in
Software Development Organizations
Using Agile or Lean Approaches – A
Multiple Case Study at 14 Organizations
[12]

7 2019 Power Improving Flow in Large Software
Product Development Organizations – A
Sensemaking and Complex Adaptive
Systems Perspective [13]

work and thus further deepened the classification of impediments according to Power
& Conboy. Alahyari, Gorscheck & Svensson (6) dealt in detail with the adjacent topic
of waste, examining understanding, types, and handling in practice. Finally, Power (7)
describes further practical studies for the validation of the existing types of impediments
in his recently published dissertation and presents a more comprehensive framework for
impediment management.

2.1 Wiklund et al. (2013)

For the paper “Impediments in Agile Software Development - An Empirical Investiga-
tion” [7] the authors conducted a case study in an organization that was in an early phase
of agile transformation (Rational Unified Process). The aim was to find out in which
activities of the development process the largest number of impediments occur. The par-
ticipants were observed, artifacts such as task boards examined, and interviews carried
out. The results show, among other things, that most of the impediments were related
to the company’s centralized infrastructure and project management. In particular, inad-
equate communication and coordination led to problems both within the development

56 P. Guckenbiehl and S. Theobald

department and across departments overall. In addition, there was a shift in the responsi-
bilities of self-organized teams and the associated need to redefine existing activities and
processes. The training that would have been necessary to copewith this was insufficient.

2.2 Power and Conboy (2014)

In the paper “Impediments to Flow - Rethinking the Lean Concept of ‘Waste’ in Modern
SoftwareDevelopment” [8] the authors dealwith the eponymous impediments inmodern
software development. These are interdependencies that arise through the interaction of
agents involved in complex, adaptive, and self-organized human systems. Ultimately,
they hinder the optimal flow of work and thus the ultimate goal of creating value for
the customer. In principle, the previously known types of waste are reinterpreted in
the context of modern (agile) software development. The resulting categories are Extra
Features, Delays, Handovers, Failure Demand, Work in Progress, Context Switching,
Unnecessary Motion, Extra Processes, and Unmet Human Potential. These nine types
are intended to support organizations in identifying and eliminating impediments.

2.3 Power (2014)

In the paper “Impediment Impact Diagrams - Understanding the Impact of Impediments
in Agile Teams and Organizations” [9] the author presents a technique to support dealing
with impediments. In addition to the definition and categorization already described,
a possibility is shown to address such obstacles. The approach can be very helpful,
especially if impediments exist in large numbers, for example in inexperienced teams.
Basically, it makes it easier to prioritize and thus decide in which impediments to invest
the limited time available to those affected. In principle, the approach is about visualizing
previously collected impediments with regard to the two main criteria “impact” and
“influence”. The former describes the impact or the benefit that the dissolution brings.
The latter relates to the question of whether the team can eliminate the impediment
alone or whether outside help is needed. For a more detailed analysis, the individual
quadrants can be supplemented by the “Risk” and “Duration” perspectives. In addition,
the column for impediments, which can not only be solved by the team itself, can be
divided into further columns for the relevant contact persons (e.g., other company areas
and hierarchy levels). Thismakes it easier for the team to assess the existing impediments
and decide which of them to address (first). It can be clearly seen how complex the
resolution is, what benefits it brings, and which people need to be involved. In addition,
the approach supports understanding impediments and their cause and thus forms the
basis for sustainable improvements.

2.4 Larusdottir, Cajander and Simader (2014)

The paper “Continuous Improvement in Agile Development Practice - The Case of
Value and Non-Value Adding Activities” [10] treats impediments or waste as starting
points for improvements. Ten interviews were carried out with users of agile devel-
opment approaches in different roles. The goal was to research which activities bring

Impediment Management of Agile Software Development Teams 57

real added value and which do not. In addition, processes for continuous improvement
and corresponding metrics were examined. The results show that especially involving
the customer in the development process offered great added value for the respondents.
However, implementation often turned out to be difficult, especially if the customer is
not working with agile approaches himself. The majority of the respondents also stated
that they did not use a defined process for continuous improvement. The main reason
was the inability to effectively implement potential improvement approaches, which
in turn demotivated the employees. The targeted measurement of improvements only
took place very superficially, if at all. With regard to activities without any added value,
the respondents identified partially completed work, delays, and shortcomings as the
most important categories. Here, too, problems in dealing effectively with such factors
existed. The authors also describe a partial misunderstanding of these types of waste by
the respondents.

2.5 Carroll, O’Connor and Edison (2018)

Building on Power & Conboy’s “Impediments to Flow”, the authors further examined
the classification of impediments in their paper “The Identification and Classification
of Impediments in Software Flow” [11]. For this purpose, a structured literature search
on impediments and waste in software development was carried out. Based on the five
resulting papers (published from 2011 to 2017), ten additional types could be identified.
These are: Lack of Equipment, Information Overflow, Deferred Verification & Vali-
dation, Defects, Outdated Information, Work-related Stress, Lack of Staff, Ineffective
Communication, Poor Planning, and Centralized Decision-Making. In addition, both
new and old impediment types were combined into overarching categories. These pri-
marily relate to the perspectives of development process, project management, and team
dynamics. The paper also provides various insights into the possible causes and potential
effects of the impediments.

2.6 Alahyari, Gorscheck and Svensson (2019)

The article “An Exploratory Study of Waste in Software Development Organizations
Using Agile or Lean Approaches - A Multiple Case Study at 14 Organizations” [12]
addresseswaste in (agile) software development. This includes the general understanding
as well as the most important categories and how to deal with them. To this end, people
responsible for process and requirements in 14 different organizations were interviewed.
The results show that the respondents saw the issue primarily as a matter of processes.
The respondents’ own definitions of different types included, for example, processes that
are too long, incorrect requirements, or inadequate customer contact, and thus overlap
strongly with the existing literature. With regard to the identification and elimination of
waste, the respondents mainly focused on agile and lean methods and practices, such
as retrospectives or Kanban boards. However, waste was largely dealt with at the team
level and was only given limited attention at higher levels. The respondents therefore
expressed a desire to raise general awareness for the issuewithin their organization.Many
also lacked a uniform understanding of waste and the associated concept of value, which
makes it even more difficult to deal with it. Finally, possible metrics were examined.

58 P. Guckenbiehl and S. Theobald

The majority of the respondents did not measure waste. Those who did used parameters
such as defects and lead times.

2.7 Power (2019)

The author’s dissertation with the title “Improving Flow in Large Software Product
Development Organizations - A Sensemaking and Complex Adaptive Systems Perspec-
tive” [13] represents the most detailed and up-to-date work on impediments in (agile)
software development. It builds on and expands the two previous contributions of the
author described above. As part of the study, ten organizations in the field of software
development were interviewed on various aspects of the topic, which are briefly listed
below.

Categories. In the first part of the thesis, different types of impediments were iden-
tified by means of a literature review. The subsequent survey confirmed the results of
the research. Additional processes, delays, and partially completed work were most fre-
quentlymentioned by the participants. The author also notes that such categories are only
to be seen as a reminder. Ultimately, their exact titles only play a subordinate role for the
effective handling of impediments, especially since inmany cases no clear assignment to
a certain category is possible anyway. Rather, it is about recognizing and understanding
existing problems (and their causes). Furthermore, factors that favor the occurrence of
impediments were examined. The most relevant factors were found to be too much work
in progress, failure demands, and large batch sizes (for example with regard to the sprint
backlog scope). They can generally be seen as congestion within the system. Finally,
this part contains the possible effects of impediments. In particular, the impairment of
product quality and employee motivation as well as excessive expenditure of time were
mentioned.

Impediment Management Framework. In the second part of the dissertation, the
author explains various aspects of a framework for dealing with impediments. The first
step is to analyze patterns in the system that may affect the emergence of impediments.
This in turn includes the technique of value stream mapping, the use of certain metrics,
and the consideration of the organizational culture. The second step involves the concrete
identification of impediments. Here, indications for the interpretation of corresponding
patterns are given and the occurrence of several impediments is discussed. The impor-
tance of permanent monitoring of the system as a means of continuous improvement is
also addressed. The third step describes how identified impediments can be better under-
stood. The focus here is particularly on aspects such as their impact on the organization,
human influence, and the context of the occurrence. The question of the avoidability
of impediments also plays a role. In the fourth step, aspects regarding the resolution of
impediments are presented. This is more specifically about their prioritization, general
solutions, and the relevance of changes in the system. Finally, the gradual improvement
of understanding impediments in the course of the management process is described.

Impediment Management of Agile Software Development Teams 59

2.8 Conclusion and Contribution

In conclusion, it can be said that the related work is quite diverse. Publications primar-
ily deal with impediments themselves and research is done through practical studies
and literature reviews. There is an overall consensus on the similarity and relationship
between the concepts of impediments and waste. Otherwise, it is mostly about the cate-
gorizations of impediments. Here it becomes clear that these sometimes differ and can
be continuously expanded and supplemented. A completely uniform and unambiguous
designation of impediment categories seems neither possible nor expedient. Ultimately,
however, similar or overlapping problem areas are described. Thus, the various works
all make a relevant contribution to understanding the possible forms of impediments.
Favorable factors, causes, and effects of such problems also play a role. The authors
tend to deal less with the subject of impediment management though. In particular, there
still seems to exist only little research regarding a comprehensive process for handling
impediments. Basically, the study described in this paper expands the current state of
research and aims to further fill this gap. Therefore, the focus lies on impediments in the
practice of agile software development, especially the way teams may deal with them.
The investigation of the actual impediment management of various companies provides
new insights for researchers and suggestions for experimentation and improvements in
practice.

3 Study Design

This section provides insights into the design of the underlying study on impediment
management. The research goal and the corresponding research questions will be moti-
vated first. Afterwards, the interview guideline will be presented and explained. The
chapter concludes with information about the overall execution of the interviews and
the data analysis procedure.

3.1 Research Goal and Questions

The goal of this research is to make a first attempt to understand how teams manage
impediments in agile software development. The focus of this study is on teams since
we expect neither a single person nor the company as a whole to be responsible for
handling impediments. Though teams from other domains increasingly work with agile
approaches, too, the focus of this particular study was on software development teams
only. Agile approaches originated in software development, and many software devel-
opment teams already have well-established agile processes as well as a corresponding
culture. Based on the authors’ initial understanding and experiences from work as/with
Scrum Masters and Agile Coaches as well as the results of an Open Space session
about impediments held at the XPDays Germany 2019, three major aspects of a possi-
ble impediment management process were defined: identification, documentation, and
resolution of impediments. To take a closer look at these aspects, the following research
questions were defined:

60 P. Guckenbiehl and S. Theobald

RQ1: How do teams identify impediments?
RQ2: How do teams document impediments?
RQ3: How do teams track and resolve impediments?

3.2 Interview Guideline

In order to answer the research questions, a qualitative study using semi-structured
interviews was conducted. This study is based on interviews with practitioners that have
experienced and dealt with impediments in their software development process. The
interview questions were collected in an interview guideline (see Table 2) that contains
15 main questions (and several sub-questions, if needed) divided into three different
parts. In the first part, the context of the company and the team is elicited. The second
part covers each of the research questions in detail. Finally, the third part contains further
questions about the impediment management process and about impediments faced by
the participants. It should be mentioned that the questions of parts 1 & 3 were primarily
included in order to gain additional insight for future research. Therefore, only the results
of part 2, which directly answer the research questions of this paper, will be discussed
later on.

The interview guideline was iteratively improved by the authors and finally reviewed
by an independent researcher with a background in agile methods. The overall target
population of this studywere software development practitioners dealingwith some form
of impediments in their (agile) development process. Although the term “impediment”
originated from agile methods, the target population was not intentionally restricted
to practitioners of agile methods like Scrum or Kanban, since the ones following more
traditional development approachesmaydealwith impediments aswell (thoughprobably
referred to differently). For this reason, the term “impediment” was not explicitly defined
by the authors during the interviews. Nonetheless, all of the participants were working
within an (at least partly) agile environment, using agile methods or incorporating at
least some agile practices in their development process.

Part 1 – Context of Company and Team. There are a number of factors that may
affect the team, how they work, and what problems they have. The scope of the study
does not yet allow quantitative statements and reliable conclusions in this regard, but
the information might provide initial insights and ideas. It can further be useful for later
in-depth research.

Part 2 – Impediment Management. This deals with how impediments are handled
and thus represents themost important and extensive section of the interview. Information
on the identification, documentation, and resolution of impediments is gathered through
open questions, if necessary supported by more specific sub-questions. This should
provide an overview of the most important practices within the participants’ impediment
management.

Part 3 – Further Questions. Finally, benefits and challenges of the participants’
respective impediment management processes are examined. Furthermore, the nature

Impediment Management of Agile Software Development Teams 61

Table 2. Interview guideline

Part 1 – Context of Company & Team 1 In which domain does the company operate?

2 How many employees does the company have?

3 What is your role within the company/team?

4 What kind of team are you working with?

5 How many members does the team have?

6 How long has the (core) team been in existence?

7 How long has the team been working agile?

8 Which external dependencies does the team have?

Part 2 – Impediment Management 1 How are impediments identified?

a Where, when and by whom?

2 How are impediments documented?

a Is an (explicit) backlog or taskboard used?

b Are problems or measures documented?

c Are impediments estimated and planned?

d Are impediments prioritized?

3 How are impediments resolved?

a Who is responsible for tracking progress?

b Who is responsible for implementing measures?

c Where are impediments escalated to (if necessary)?

d How transparent is your impediment management?

Part 3 – Further Questions 1 Does your impediment management support the
continuous improvement of the team?

2 Which challenges do you see regarding your current
impediment management?

3 Are the causes of your impediments more of internal
or external nature?

a Possible relationship/explanation (context, …)

4 Which are your most relevant impediments?

a Frequency, impact and complexity as guidance

of the causes of the impediments encountered by the participants as well as their most
relevant impediments (or categories) is addressed. This information can again be used
later to understand possible connections to context factors.

3.3 Interview Execution

As already mentioned, expert interviews form the basis of this study. An invitation was
sent to 14 contacts from the authors’ network. The invitation contained the goal of the
study aswell as the conditions for participation, such as the time required and the number
of questions. Two of these contacts referred the invitation to a colleague they deemed
more suitable for participating in the interview. Finally, seven of the contacted experts
agreed to participate in this study, leading to a response rate of 50%. The period of

62 P. Guckenbiehl and S. Theobald

interview execution was approximately three months, from November 2019 to January
2020. The interviews were scheduled based on the availability and the suggestions of
the participants and then conducted via phone call. Each interview lasted between 30
and 60 min and was based on the open questions of the interview guideline. There were
always two interviewers (both authors) involved, one taking over the moderation and
one documenting the results and asking for missing aspects or clarification.

After a first introduction to goal and context of the study, the respondents were
advised that all information provided by them would be treated anonymously, and that
they could terminate the interview at any given time. Furthermore, they were offered
the possibility to get the results to allow them to check their answers and, if necessary,
correct or censor them.The respondentswere asked to share the experiences regarding the
impedimentmanagement process of their respective team from their own perspective and
generally provide their personal perception and opinion. The interviewer always asked
the more general main questions for each part of the guide first, only referring to the
specific sub-questions if the respondents did not go into further detail. This approachwas
chosen in order to not guide the participants towards the authors’ potentially restricted
understanding of an overall impediment management process.

The respondents had the roles of managing director, Scrum Master, agile coach,
team leader, and software developer, and were employed in medium-sized and large
companies (200–30000 employees), primarily from Germany. These companies can be
assigned to the automotive, finance & insurance, (software) product development, and
retail sectors. The referenced teams were interdisciplinary software development teams
with different specialist foci and dependencies. They comprised 5–10 employees, had
existed for between 1 and 5 years, and had worked with agile methods and practices (at
least partly) for the majority of that time.

3.4 Data Analysis

All interviews were documented in an Excel file in a predefined template correspond-
ing to the interview guideline. The minutes taken by the moderating interviewer were
merged with the more complete minutes taken by the documenting interviewer, and
potential discrepancies were discussed and resolved between the two interviewers. As
mentioned before, if the respondents requested it, the interview data was sent to them
for review and validation purposes. Finally, all information was anonymized so that no
conclusions can be drawn about individuals or companies. The data was analyzed qual-
itatively, summarizing and comparing the different ways the interview partners handled
impediments with regard to the research questions. The analysis was carried out by the
first author, who discussed the aggregated results with the second author.

4 Study Results

This section first summarizes the interviewees’ answers qualitatively according to the
research questions of this paper. Afterwards, an overview of the resulting impediment
management process proposed by the authors will be given. Both can be utilized as
suggestions for experimentation and to raise awareness on what to pay attention to when

Impediment Management of Agile Software Development Teams 63

setting up or improving one’s own impediment management process. Finally, possible
limitations and threats to validity will be discussed.

4.1 Impediment Management

This section provides an overview of the impediment management of all respondents. A
distinction is made between the three research questions (identification, documentation,
and resolution). At this point, there is also further differentiation based on the associated
sub-questions, which proved to be useful. An assessment of the approaches and practices
does not seem to make sense here, since their expression depends heavily on the specific
situation of the respective team or company. Accordingly, the following descriptions
only represent a section from the state of the practice and therefore suggestions for
experimentation.

RQ1: Identification

Impediments are primarily identified in agile meetings, such as the retrospective and
the daily stand-up, and, if necessary, in a conversation between the Scrum Master and
the team. Accordingly, impediment identification takes place in different time cycles: in
retrospectives every 2–4 weeks, in daily stand-ups daily, and in personal conversation
practically at any time. The respondents also differentiated between the number and the
scope of the respective impediments. Retrospectives primarily address large, long-term
problems and those that have grown over time, as well as opportunities for improvement.
The daily stand-ups, on the other hand, focus on small, short-term, and acute blockers.
Possible impediments can also be discussed or justified to the stakeholders in the Sprint
Planning and Review. For teams with a lot of dependencies, an additional status meeting
that takes place at greater intervals can help to make dependencies and resulting conflicts
transparent.
RQ2: Documentation

Use of Backlogs. For the most part, impediments are documented as soon as they occur,
both digitally and analogously. This can be done in a separate column on the team’s
task board, together with the product or sprint backlog items. It is also possible to use a
separate impediment backlog or just a log of the relevant meetings (e.g., retrospective).
The latter is particularly useful when minor problems can be resolved very quickly and
therefore do not require extensive documentation. This is often the casewith experienced
and well-rehearsed teams. Which method is chosen further depends on the number
and type of impediments and their handling and is probably a matter of preference.
This also revolves around the question of whether the solution of impediments and the
implementation of improvement measures contribute to overall value or not.

Problems vs. Measures. In general, both the documentation of the actual impediments
(problems) and the measures for resolving them are justified. Some of the participants
argued that only measures should be documented to promote proactive resolution and
improvement. At the same time, however, this is not always possible since one might
not be able to find a suitable solution immediately. In the sense of transparency, trace-
ability, and performance review, documentation of the original problems together with

64 P. Guckenbiehl and S. Theobald

the derived (short-, medium-, and long-term) measures appears useful. Impediments can
then be treated as epic, for example, and solution approaches as corresponding tasks or
items.

Estimation and Planning. As mentioned above, the estimation and planning of imped-
iments or measures depends on the personal perspective of those involved. Some of
the respondents estimated measures and planned them for the upcoming sprint, treating
them just like Product Backlog Items. Others did not do an estimation, and their resolu-
tion was independent of the sprint. However, since time and resources are still used, the
team’s perceived productivity can be negatively affected in this case. A hybrid approach
is also conceivable, depending on the size and complexity of the problem or solution.

Prioritization. In principle, it is possible to prioritize impediments and measures inde-
pendent of estimates and planning. This can relate to all existing issues or take place after
the ownership has been assigned to each responsible person. If impediments and product
backlog items are treated equally, the product owner might prioritize them accordingly.
However, since this might not be easy to implement, in most cases the team implicitly
prioritizes by simply resolving those impediments first that are either hindering them
the most or are rather quick to fix. Prioritization does not necessarily have to happen,
but if there are more impediments than can be resolved in the course of a sprint or in the
foreseeable future, it definitely makes sense.

RQ3: Resolution

Administration/Tracking. The management or tracking of the progress of impediments
can be seen as a complementary function to the implementation of measures. The major-
ity of the respondents stated that the Scrum Master (or a comparable role) has this
function. If such a role does not exist, a team or project manager can also take on this
task; in rare cases even the product owner or the team itself. Tracking includes progress
monitoring, for example by addressing current impediments in the daily stand-up. Fur-
thermore, the success of action points is checked at the end of the sprint, for example in
the retrospective. It is discussed whether the corresponding problem has been resolved
or the desired improvement has been achieved.

Implementation/Solution. In the sense of self-organization, the actual implementation
of the measures for resolving existing impediments is in most cases the responsibility of
the team itself. For this purpose, about 1–2 people can be appointed to take ownership of
one or more impediments. The Scrum Master only takes on an enabling function here,
which -depending on the experience and maturity of the team - can result in more or
less active participation. In addition, the responsibility for the resolution can or must be
passed on to other instances in some cases. Depending on the nature of the impediment
and the structure of the company, other business units, leadership and management,
as well as the organization itself may also be responsible. If it is not possible to find a
solution since the impediment is caused by an unalterable context, an occasional meeting
(“complaints round”) can help to at least reduce some frustration.

Escalation. As already mentioned, the escalation of impediments describes the trans-
fer of responsibility for their resolution. In general, this happens both professionally

Impediment Management of Agile Software Development Teams 65

and hierarchically. The specific form depends on the company itself or on its size and
structure. Some of the respondents escalated directly and spontaneously to the people
needed for the resolution. Depending on the maturity of the team, the ScrumMaster may
act as an intermediary. In other cases, there are detailed escalation routes and dedicated
appointments and meetings. In case of doubt, impediments can and must be escalated up
to the highest management level. For large organizations and scaling agile frameworks
(e.g. SAFe, LeSS or Nexus) [14], a cross-company instance explicitly intended for the
escalation of impediments (enterprise level instance or enterprise change backlog) is
also possible.

Transparency. The majority of those questioned stated that they strive to deal with
impediments transparently. Regardless of how it is identified, documented, and resolved,
the relevant information is openly accessible, at least among the team and the stakehold-
ers. Inmost cases, there is even company-wide insight for anyone interested. This can, for
example, accelerate problem solving, make team efforts more visible, and create general
synergies. A mutually acceptable exception are sensitive issues, particularly social and
interpersonal issues. These should remain within the team and be personally supervised
by the Scrum Master in order to create and maintain trust.

4.2 Impediment Management Process

In accordance with the second part of the interview guideline (and research questions),
the description of the participants’ impediment management is broken down into three
parts. These build on one another and in principle form a process for dealing with
impediments from their first appearance to their resolution. Figure 1 shows this process
and summarizes its parts as well as some relevant aspects for each of them. This should
foster the general understanding and awareness of how impediments can be managed
and might serve as a guideline for process improvement.

Fig. 1. Impediment management process

66 P. Guckenbiehl and S. Theobald

Identification. The first part deals with the initial occurrence of impediments and the
way in which these are subsequently raised. More specifically, this includes the question
of opportunities, e.g., meetings in which problems can be identified, time intervals for
doing so, and the people involved.

Documentation. The second part focuses on if and how identified impediments are
recorded in the long term. It differentiates between the use of an explicit impediment
backlog and the documentation of issues together with the product or sprint backlog
items. Furthermore, it matters whether the actual impediments or the measures for reso-
lution derived from them (or possibly both) are recorded. The question then arises as to
whether these are estimated and scheduled in the sprint or if the subsequent processing
takes place independently. Finally, any possible prioritization plays a role.

Resolution. In the third and final part, the focus is on resolving the impediments. First
of all, a distinction is made between who takes responsibility for their administration
(general tracking of progress) and the concrete implementation of the (resolution) mea-
sures. This further includes the ways of escalation, should the team not be able to find a
solution independently. Ultimately, this part also focuses on the question of transparency
with regard to handling impediments.

4.3 Limitations

It should bementioned that the participants’ reports and the data collected generally only
provide a snippet of reality and are in no way representative of the whole target group.
Only seven interviews were conducted, in order to draw a picture of the state of the
practice, more data would be necessary. There is also a threat regarding the selection of
participants. Most participants were using Scrum, and the ways to handle impediments
might be different in teams using other agile methods. Especially with teams using Kan-
ban, the impediment handling might be different in a setting of continuous development
instead of iterations.

Accordingly, the results of the study are only suggestions for improvements or oppor-
tunities for experimentation. However, in order to achieve a more complete picture of
the possible impediment management approaches in practice, and, if necessary, to make
quantitative statements and sound recommendations, the study needs to be deepened.
Based on the insights of this study, using an adapted questionnaire, an online survey was
already conducted in the context of the XP conference 2020.

5 Conclusion and Future Work

This paper essentially describes a study that examined how impediment management
can work in the practice of agile software development. For this purpose, seven semi-
structured expert interviews were carried out using a previously defined interview guide-
line. At the beginning, an impediment management process was defined based on three
phases. These are the identification, documentation and resolution of impediments,

Impediment Management of Agile Software Development Teams 67

whereby each part is characterized by different aspects. Based on this process, the par-
ticipants were asked about the specific characteristics of the impediment management in
their respective software development team.The various practiceswere then summarized
to draw an initial picture of how an impediments management process might look like.
The work thus expands existing research on the subject of impediments. The study offers
essential new insights, particularly for the little-researched impediment management as
a process and its possible forms.

In future work, the qualitative insights from this study have to be validated and con-
firmed by a larger number of participants. To this end, in-depth research was conducted
in the context of the onsite research track of the XP conference 2020. A surveywith users
of agile approaches was carried out with the help of a slightly adapted questionnaire. The
aim was to validate and, if necessary, supplement the 3-phase process and its specific
practices established in this work. With a sufficient number of participants, statements
on the dissemination of individual practices can possibly be made and corresponding
best practices can be derived.

Finally, the various contextual factors of corresponding teams and companies and
their impact on occurring impediments and how to deal with them should be examined
in more detail. The variety of such factors could lead to an individuality that compli-
cates clear recommendations. The investigation of this connection would therefore be
of great importance for a guide for impediment management that goes beyond the mere
mentioning of possibilities.

Acknowledgments. This research is funded by the German Ministry of Education and Research
(BMBF) as part of a Software Campus project (01IS17047).Wewould like to thank all participants
of our interview study, and Sonnhild Namingha for proofreading this paper.

References

1. VersionOne & Collabnet: 14th State of Agile Report (2020). https://explore.digital.ai/state-
of-agile/14th-annual-state-of-agile-report. Accessed 10 July 2020

2. Sutherland, J., Schwaber, K.: The Scrum Guide. The Definitive Guide to Scrum: The Rules
of the GAME. Scrum.org (2013)

3. Manifesto for Agile Software Development (2020). www.agilemanifesto.org. Accessed 10
July 2020

4. Theobald, S., Diebold, P.: Interface problems of agile in a non-agile environment. In: Garba-
josa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 123–130. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91602-6_8

5. Diebold, P., Ostberg, J.-P.,Wagner, S., Zendler, U.:What do practitioners vary in using scrum?
In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 40–51.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2_4

6. Guckenbiehl, P.: ImpedimentManagement in der Praxis agiler Softwareentwicklung. HSKL,
Zweibrücken (2020)

7. Wiklund, K., Sundmark, D., Eldh, S., Lundqvist, K.: Impediments in agile software devel-
opment: an empirical investigation. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre,
M.T. (eds.) PROFES 2013. LNCS, vol. 7983, pp. 35–49. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39259-7_6

https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
http://www.agilemanifesto.org
https://doi.org/10.1007/978-3-319-91602-6_8
https://doi.org/10.1007/978-3-319-18612-2_4
https://doi.org/10.1007/978-3-642-39259-7_6

68 P. Guckenbiehl and S. Theobald

8. Power, K., Conboy, K.: Impediments to flow: rethinking the lean concept of ‘waste’ inmodern
software development. In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179,
pp. 203–217. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06862-6_14

9. Power, K.: Impediment impact diagrams – understanding the impact of impediments in agile
teams andorganizations. In: Proceedings of theAgileConference 2014,Kissimmee, pp. 41–51
(2014)

10. Lárusdóttir, M.K., Cajander, Å., Simader, M.: Continuous improvement in agile development
practice. In: Sauer, S., Bogdan, C., Forbrig, P., Bernhaupt, R.,Winckler,M. (eds.) HCSE 2014.
LNCS, vol. 8742, pp. 57–72. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44811-3_4

11. Carroll, N., O’Connor, M., Edison, H.: The identification and classification of impediments
in software flow. In: Proceedings of the AMCIS 2018, New Orleans, pp. 1–10 (2018)

12. Alahyari, H., Gorschek, T., Svensson, R.: An exploratory study of waste in software develop-
ment organizations using agile or lean approaches – a multiple case study at 14 organizations.
Inf. Softw. Technol. 105, 78–94 (2018)

13. Power, K.: Improving Flow in Large Software Product Development Organizations – A
Sensemaking and Complex Adaptive Systems Perspective. NUI Galway, Galway (2019)

14. Theobald, S., Schmitt, A., Diebold, P.: Comparing scaling agile frameworks based on under-
lying practices. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 88–96. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2_11

https://doi.org/10.1007/978-3-319-06862-6_14
https://doi.org/10.1007/978-3-662-44811-3_4
https://doi.org/10.1007/978-3-030-30126-2_11

How to Integrate Security Compliance
Requirements with Agile Software

Engineering at Scale?

Fabiola Moyón1(B) , Daniel Méndez2,3 , Kristian Beckers4,
and Sebastian Klepper5

1 Technical University of Munich and Siemens, Munich, Germany
fabiola.moyon@tum.com

2 Blekinge Institute of Technology, Karlskrona, Sweden
daniel.mendez@bth.se

3 fortiss GmbH, Munich, Germany
4 Social Engineering Academy, Frankfurt am Main, Germany

kristian.beckers@social-engineering.academy
5 Technical University of Munich, Munich, Germany

sebastian.klepper@tum.de

Abstract. Integrating security into agile software development is an
open issue for research and practice. Especially in strongly regulated
industries, complexity increases not only when scaling agile practices
but also when aiming for compliance with security standards. To achieve
security compliance in a large-scale agile context, we developed S2C-
SAFe: An extension of the Scaled Agile Framework that is compliant to
the security standard IEC 62443-4-1 for secure product development.

In this paper, we present the framework and its evaluation by agile
and security experts within Siemens’ large-scale project ecosystem. We
discuss benefits and limitations as well as challenges from a practitioners’
perspective. Our results indicate that S2C-SAFe contributes to success-
fully integrating security compliance with lean and agile development in
regulated environments. We also hope to raise awareness for the impor-
tance and challenges of integrating security in the scope of Continuous
Software Engineering.

Keywords: Secure software engineering · Scaled Agile Framework ·
Security standards

1 Introduction

Security compliance is a major concern for several industries [8,18]. Typically,
security practitioners (and regulators) hold a holistic view on security affecting
people, processes, and technology [8,19,20]. The perspective of practitioners,
however, is rather dispersed and security is commonly treated as just another
non-functional requirement [17]. Security engineering activities are further too
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 69–87, 2020.
https://doi.org/10.1007/978-3-030-64148-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_5&domain=pdf
http://orcid.org/0000-0003-0535-1371
http://orcid.org/0000-0003-0619-6027
https://doi.org/10.1007/978-3-030-64148-1_5

70 F. Moyón et al.

often applied in an ad-hoc manner to a limited set of security problems, e.g.,
vulnerability testing or static code analysis [8]. Security concerns are often mixed
with software functionality and limited to specific implementations like authen-
tication or encryption [34].

Integrating security into lean and agile processes further intensifies these
issues and constitutes a well-known research problem [1,17,35]. This is espe-
cially true for large software development projects. One challenge here is to
fulfil requirements rigorously to comply with regulations while not limiting the
speed and flexibility agile development methodologies promise. However secu-
rity standards often require a series of processes to define, analyse, and mitigate
security vulnerabilities [23] whereas lean and agile methodologies aim at avoid-
ing rigid linear processes. While the agile manifesto states “to value individuals
and interactions over processes”, “collaboration over contract negotiation”, and
“responding to change over following a plan” [6], standards explicitly demand
documented evidence of responsibilities, agreements, and established develop-
ment procedures.

Our research shall provide a perspective for resolving this conflict through
Continuous Security Compliance. In particular, we aim at implementing security
standard requirements along with agile development methodologies. To this end,
we analysed the issue in a large industrial setting and its currently applied norms:
the Scaled Agile Framework (SAFe) as well as the IEC 62443-4-1 standard, later
we propose a revised framework dubbed S2C-SAFe . We chose the IEC 62443-4-
1 standard for secure product development, released in 2018 based on previous
secure product development standards such as BSIMM [25], ISO27034 [22], or
Security by Design with CMMI [33]. Our framework shall maintain SAFe’s per-
spective on development procedures and principles while capturing the essential
requirements of security standards. In this paper, we contribute:

1. The proposal of our S2C-SAFe framework, a security-standard compliant vari-
ant of the Scaled Agile Framework.

2. An evaluation of the S2C-SAFe framework in large-scale software development
environments. Given that the introduction of SAFe may take up to 8 years in
the chosen organisational context, we conduct our evaluation in a preliminary
manner focusing particularly on expert interviews.

We conclude our evaluation with the practitioners’ perception of the chal-
lenges to achieve security compliance in a continuous manner. By sharing these
insights, we particularly hope to raise awareness for the importance, but also
challenges of integrating security in large-scale software development organisa-
tions following lean and agile principles.

2 Fundamentals and Related Work

Continuous Software Engineering (CSE) utilises lean and agile principles for
a rapid and continuous “flow” of activities across business, development, and
operations [16].

How to Integrate Security Compliance Requirements 71

In their “Continuous *” model of CSE, Fitzgerald et al. [17] describe Contin-
uous Security and Continuous Compliance as related but separate concerns and
activities. Continuous Compliance (CC) seeks to satisfy regulatory compliance
standards on a continuous basis rather than a “big-bang” approach to ensure
compliance at release time [18,26]. Continuous Security (CS) elevates security
from non-functional requirement to key concern by efficiently identifying and
addressing security issues throughout all processes [16].

Related work discusses the suitability of agile methods for regulated environ-
ments [18] or the extensibility of their use [10]. With regard to security, authors
focus on solving security aspects in agile environments, without considering reg-
ulations as focus [4,5,9,31]; or deriving security activities from a regulations
perspective but lacking attention to lean and agile environments as well as cor-
porate operating procedures, e.g., product life cycle [7,10]. Practical concerns
of CS are: adapting the development process to security, better eliciting and
tracking security requirements, and incorporating assurance into iterations [5].

Separating CS and CC is illustrated by Fitzgerald et al. [18], concluding that
agile methods are suitable for security-critical environments, but not yet adopted
in regulated environments.

We aim for Continuous Security Compliance (CSC): combining CC and CS
through the holistic view of standardisation that spans across people, processes,
and technology [20]. Regulatory requirements are utilised to derive security
activities and therefore integrating security into a process while also making
it standards-compliant [28]. Further work concentrates on security governance
best practices [12]. This is complementary to prior work focused on the technol-
ogy side, integrating security engineering into agile processes [1,3,8,11,13], or
on the process side, integrating desirable but not standards-compliant security
activities [1,2,32].

S2C-SAFe is the result of applying this holistic principle to both a security-
critical and a regulated domain: industrial and automation control systems. The
result is an in-depth analysis of a security standard (IEC 62443-4-1) followed
by the integration with lean and agile development practices represented by the
Scaled Agile Framework (SAFe).

IEC 62443 constitutes a series of standards for network and system security
published by the International Electrotechnical Commission (IEC). The stan-
dard focuses on requirements for component providers for industrial automation
and control systems (IACS), part 4-1 describes process requirements for secure
product development [21]. We reference this part of the standard as “4-1” or “4-1
standard”. SAFe is a widely used process framework that scales lean and agile
development to large organisations with multiple levels. It furthermore defines
the corresponding roles, responsibilities, activities, and artefacts [24].

For such IACS environments our contribution aims to bridge the gap between
lean and agile development, practical security, and compliance [34].

72 F. Moyón et al.

3 S2C-SAFe Framework in a Nutshell

The overall aim of our work is to improve product development life-cycle by
integrating requirements of IEC 62443-4-1 into SAFe, resulting in the “Security
Standard Compliant Scaled Agile Framework” (S2C-SAFe). Figure 1 shows how
this is achieved by using visual modelling and by merging techniques as pre-
sented in our previous work [28]. Essential elements of SAFe and 4-1, such as
roles, activities, and artefacts, were captured using Business Process Model and
Notation (BPMN), a visual modelling language capable of expressing all of these
aspects at once. After refining these models separately with expert practition-
ers, the process framework model is extended with elements from the security
standard model, yielding the S2C-SAFe framework. Previously we found that a
visual approach allows for more focused reviews than textual representation.

S2C-SAFe describes how requirements of 4-1 can be implemented within
SAFe by showing when to involve roles, execute activities, or generate artefacts.
It focuses on SAFe’s Continuous Delivery Pipeline (CDP), where the actual
product development occurs, and makes it compliant with security requirements
(SR), secure implementation (SI), and security verification and validation test-
ing (SVV). These scopes address concerns we captured from practitioners such
as frequent vulnerability testing, security requirements traceability, or coding
standards review. In addition to a CDP model integrated with SR, SI, and
SVV, S2C-SAFe contains detailed models for each practice. Figure 2 shows an
overview of the S2C-SAFe CDP. The full framework is available in the online
material associated with this paper1.

3.1 Security Requirements (SR)

SAFe does not specify where and how to elicit security requirements even though
(security) requirements elicitation constitutes a major challenge both in prac-
tice and research [14], especially when developing a product threat model and
deriving requirements to counter threats [5,15]. S2C-SAFe therefore explicitly
considers security requirements at program and team level and makes them part
of the Backlog, equal to all other requirements in prioritisation and traceability.
Security Experts facilitate analysis but are not primarily responsible. Instead,
Product Management, Business Owners, and Systems Architects are in charge so
they become aware of threats. Similarly, the Product Owner requires adequate
training to be able to prioritise and approve security requirements.

1 https://dx.doi.org/10.6084/m9.figshare.7149179.

https://dx.doi.org/10.6084/m9.figshare.7149179

How to Integrate Security Compliance Requirements 73

Fig. 1. Creation of S2C-SAFe by generating and merging visual models of 4-1 and SAFe.
Black document symbols designate our contribution. In previous work, we described the
integration method [28]. The present contribution presents the S2C-SAFe framework
and its evaluation.

3.2 Secure Implementation (SI)

SI involves following secure coding standards to avoid vulnerabilities. S2C-
SAFe follows a process based on coding analysis as introduced in [2–4]. It defines
coding standards early at program level during the PI Planning Event. Security
Experts provide guidance so they suit domain and solution. To ensure that cod-
ing standards are followed, they are made part of the Definition of Done and
agile teams as well as the product owner are trained accordingly.

3.3 Security Verification and Validation Testing (SVV)

SVV focuses on detecting and resolving vulnerabilities. One major concern is
independence of testers which is enforced through independence rules during
formation of agile teams. S2C-SAFe also defines how further activities such as
security functionality testing, vulnerability testing, or penetration testing apply
to features, user stories, or both. It also defines criteria to keep resource allocation
efficient and ensure continuous security testing, placing security functionality
testing at team level and conducting all testing activities on program level before
every System Demo. S2C-SAFe contains models that shows a 4-1 compliant SAFe
System Demo (see System Demo box in Fig. 2). Figure 3 is a more granular

74 F. Moyón et al.

Fig. 2. Excerpt of S2C-SAFe Continuous Delivery Pipeline (CDP). This overview
model describes the processes involved to execute and inspect a program increment
as described in SAFe plus the artefacts required by the 4-1 standard in the practices
of SR, SI, and SVV.

refinement showing testing tasks and artefacts, as referred by the 4-1 practice
SVV, and their mapping to SAFe roles. Further models are available in the online
material.

4 Study Design

We evaluated S2C-SAFe via expert interviews involving 16 practitioners working
at Siemens in security compliance or (agile) software engineering. Among these
experts are IEC committee members for 4-1 as well as SAFe core contributors.

How to Integrate Security Compliance Requirements 75

Fig. 3. S2C-SAFe System Demo refinement model. Process diagram that depicts a new
activity for SAFe System Demo to perform security verification and validation testing.
A Security expert participates for certain types of testing while SAFe Program level
actors are also responsible of security testing. Color coding is consistent with Fig. 2.

Our overall goal is to explore the meaningfulness of our approach to the
needs in a practical context characterised by security-critical and large-scale
agile development of software or software-intensive systems. Our evaluation is
guided by the following two research questions:

RQ 1. From the perspective of practitioners, how applicable is S2C-SAFe in this
type of environment?

RQ 2. Which challenges do practitioners see when pursuing security compliance
in this type of environment?

Our intention is to explore potential benefits and limitations of the here
proposed framework. This shall lay the foundation for a roll-out that is minimally
disruptive to the organisation and maximally intuitive for practitioners.

76 F. Moyón et al.

4.1 Subject Selection

In the industrial environment, where S2C-SAFe is meant to be applied, projects
are characterised by large-scale agile practices involving security experts on
demand. Since industrial systems are part of critical infrastructure, such projects
must comply with formal security standards, like the 4-1 standard when referring
to product development. Such projects involve various agile teams with six peo-
ple each. In those settings projects require direct cooperation between security
experts and development teams.

We consciously selected from both groups: development teams working in
these settings and security experts joining those projects on-demand, e.g., in
conjunction with internal audits.

As these are all experienced professionals, we defined profiles to distinguish
their level of expertise according to their key role. Table 1 shows each role’s back-
ground and share of our 16 interviews. We distinguish top experienced subjects
who contribute to the 4-1 standard (Contributor IEC) or to the SAFe frame-
work and its dissemination within the company (Contributor SAFe). We further
distinguish Principle Experts, having vast knowledge and leading teams, Senior
Experts, having deep knowledge and guiding colleagues, and finally Experts who
are responsible for setting up specific topics into practice.

Table 1. Mapping of interviews to subject profile and background.

Profile Sample
size

Interview
numbers

Background

Contributor IEC 1 13 IACS software life cycle standardisation

Contributor SAFe 1 12 IACS agile development

Principal Expert 3 4, 5, 8 IACS security standards and
processes, security life-cycle,
security architecture

Senior Expert 4 1, 2, 6, 9 Cloud security, methods and
tools for secure solutions, cyber
security coaching, security
processes improvement, IT
security assessments

Expert 7 3, 7, 10, 11,
14, 15, 16

IACS agile development, quality
compliance, development of
access control systems, data
privacy on smart cities, security
design management, DevOps,
security tools development,
automated security testing, IT
security in critical infrastructure

How to Integrate Security Compliance Requirements 77

4.2 Survey Instrument

Since our goal is to explore practitioners’ opinions about S2C-SAFe , we identified
semi-structured interviews as the most suitable technique [30]. Each interview
lasted 1.5 to 2 h and took place in an isolated environment with one interviewee
and two interviewers. One interviewer actively followed the questionnaire and
the other one documented the answers and controlled attachment to interview
protocol, available at our online material.

Each interview was dedicated to one S2C-SAFe element according to the sub-
ject’s background: SR, SI, or SVV (c.f. Sect. 3). Subjects were also introduced to
the S2C-SAFe CDP to have an overview of the processes involved the framework
as shown in Fig. 4.

Fig. 4. S2C-SAFe Suggestions distribution into profile groups. Right side: number of
interviewees per suggestion. Left side: percentage of interviewees per expertise area.

Interviewers first briefed individual subjects about the interview flow and
the purpose of S2C-SAFe models as well as their hierarchy (overview model
and individual practice models) but did not provide any instruction or training
on the actual models. Then they showed a textual excerpt from 4-1 and SAFe,
followed by the corresponding individual models and finally merged models from
S2C-SAFe . Subjects rated the perceived usefulness and practical applicability of
each representation. Notes from throughout the interview were discussed before
the interview’s end to complete the picture.

5 Study Results

Evaluation is based on summarising the answers to closed questions and clus-
tering comments and concerns according to commonalities. We further analysed

78 F. Moyón et al.

the emphasis of answers to differentiate acceptance vs. conviction, rejection vs.
repulsion, and neutrality vs. doubt. Hence, we tabulated answers according to
a 9-point Likert scale. In the following, we summarise and interpret our results
according to our research questions.

5.1 Subject Knowledge

In total we selected 16 subjects with different levels of knowledge about 4-1 and
SAFe. Figure 5 shows that now all of them know 4-1 but all except one are aware
of other security and safety standards such as ISO/IEC 27001 or other standards
of the IEC 62443 family. Similarly, not all know SAFe but all are familiar with
other agile process frameworks such as Scrum.

Fig. 5. Subject knowledge of IEC 62443-4-1 and SAFe or comparable process frame-
works.

5.2 Applicability of S2C-SAFe (RQ 1)

We consider two aspects: applicability itself and potential implementation prob-
lems. Overall, while all interviewees strongly agree on the potential of using the
integrated model as a means to foster discussions with their counterparts, they
see potential problems in the integration of security aspects.

Applicability
S2C-SAFe demonstrates that SAFe can be compliant with the 4-1 standard. All
interviewees deem it usable in their environments and expressed their desire to
use it for discussion with other practitioners (see Fig. 6). They particularly stated
that it would provide a common language between security and development

How to Integrate Security Compliance Requirements 79

Fig. 6. Summary of opinions about S2C-SAFe applicability based on suggestions
regarding 4-1 practices.

80 F. Moyón et al.

fields; some even saw it as the only such tool they are aware of (see Table 2). The
following paragraphs give detailed results for each of the 4-1 practices introduced
in Sect. 3.

SR: Subjects strongly agree that this suggestion is feasible. A principal expert
(#8) did not give a positive answer, but instead argued about the complexity
of having security experts within teams in general. Almost all envision problems
during implementation, most relate to the lack of security practitioners, team
security awareness, or split security requirements. Contributor SAFe thinks that
proposed security activities overload PI planning while contributor IEC sees no
problems if models are shown only to people that design processes and not to
agile team. However, all subjects plan to use the suggestions as a discussion tool
with their respective counterparts.

SI: Subjects strongly agree that this suggestion is feasible. One DevOps expert
(#7) argues that educating the product owner on security is complex. Instead
they propose a “security product owner” who would be capable of extending the
definition of done (DoD) with security aspects. In contrast, an expert product
owner (#14) remarks the adapted DoD as a key to apply. An expert security
consultant (#11) is confident that problems would exist although they cannot
refer to any specific one.

SVV: Although overall positive, opinions on feasibility of this suggestion are not
as decided as previously. Two respondents (#11 expert scrum master and #1
solutions security senior expert) find the suggestion feasible and well integrated.
Another security senior expert (#6) is concerned about automation support for
testing non-functional security aspects and about effort for security practition-
ers. A security assurance expert (#3) argues about the role and interactions of
security practitioners throughout the process. Hence, all of them envision prob-
lems related to the integration of automatic testing, workload, and expertise of
security practitioners.

Additionally, as interviewers we experienced that S2C-SAFe improves
communication among practitioners with different profiles and back-
grounds. We actively discussed interviewees’ issues on security and agile
development. All explanations were based on the models we provided. Subjects
with the highest level of knowledge (Contributor IEC and Contributor SAFe)
challenged us with management or operational questions, e.g., how to imple-
ment or even potentially bypass certain aspects. We succeeded in explaining our
perspective purely by pointing out specific model aspects. Conversations were
dynamic, indicating a common understanding between interviewer and intervie-
wee. Table 2 summarises key opinions on S2C-SAFe while Table 3 lists notewor-
thy remarks.

Potential Implementation Problems
Our interviewees raised concerns regarding implementation of S2C-SAFe in their
project settings. They are particularly interesting to us as they help steering
future adaptations and because some concerns are rather general challenges on

How to Integrate Security Compliance Requirements 81

Table 2. Summary of key opinions on S2C-SAFe.

Opinion Interviews

Facilitates common language to discuss between security experts
and agile team

2, 5, 14, 16

Solution is a comprehensible, clear guide 4, 5, 7, 8

Increment effort and workload 5, 6, 9, 12

Concern about roles expertise to accomplish tasks: Product
Owner, Product Management

3, 4, 6, 10

Need to increase security awareness 1, 3, 7, 8

Concerns on expertise and profile of security experts 1, 4, 10

To have security practitioners within agile teams is challenging 8, 10

Need to have a deep understanding of own process to implement
suggestion

1, 16

It is the only tool available 7, 11

Concerns about fit activities into short cycles 8, 12

Find color-coding is useful 7, 13

Table 3. Interviewees’ statements on S2C-SAFe.

Quote Interviews Profile Background

Big advantage, we could speak same

language as SAFe experts. This would

dramatically reduce problems to adapt

SAFe. Yes, I would love to use it as a

discussion tool

2 Senior Expert Security

compliance

It makes sense what you did. If it is

not possible SAFe is broke

4 Principal Expert Security research

Sure is feasible, how to measure
success I wonder

5 Principal Expert Head security
group

It is a very nice way to reduce
complexity to discuss

7 Expert DevOps

Visibility of security into agile
development environment.
Transparency of what is being
achieved

9 Senior Expert Security
assessments

Sure, there is nothing else. I don’t
think there is anything

11 Expert Security
consultant/Scrum
practitioner

We need to involve a pilot
implementation

12 Contributor SAFe Head development
group

I will use it as a basis to
communication

14 Expert Product Owner

I like it. It makes dedicated to think

about security

15 Expert Systems Architect

82 F. Moyón et al.

the integration of security, let alone continuous security engineering. These con-
cerns can be summarised as follows:

Models Should Guide Instead of Comprehending Compulsory Processes
One senior expert argued that if a model is too strict, people will not adapt it
and bypass compliance efforts (#1). The suggestions seem difficult to implement
in iterations or in specific program increments. This seems particularly true for
security testing (vulnerability/penetration) prior to or during a System Demo.
This highlights the need for an incremental prototypical implementation of indi-
vidual suggestions to shed light on potential adaptation barriers which might
differ in dependency to the practices and the roles.

Achievement of Security Expertise and Awareness
During the design phase, we emphasised that S2C-SAFe cannot compensate for a
Product Owner with knowledge of 4-1. Our interviewees confirm that this holds
not only for general SAFe roles but also for security practitioners in general.
Both security and agile development experts agree that security expertise for
each part of the solution requires specialisation. Such specificity on profiles would
aggravate the deficit of security professionals. Exemplary statements are “During
verification of compliance, people tend to deviate from the standard” (#7) or
“Lack of experience on security compliance leads to failed projects” (#3, security
expert).

Difference Between Agile and Express Development Delivery
Security is generally perceived to be something that slows down agile develop-
ment processes. Some exploratory questions revealed that agile time constraints
are not followed in our settings, e.g., daily meetings last more that 15 min. Our
concept of agile therefore seems to relate more to iterative and incremental devel-
opment than to express delivery and integrating security-related activities will
surely expand this gap further. While we understand the need for a trade-off
between effort and cost for adapting security (or any other quality facet) this
aspect seems particularly hard to achieve and constitutes an open issue.

5.3 Continuous Security Compliance Challenges (RQ 2)

The interviewees were asked to mention priorities among the security activities
described in the 4-1 development life cycle. Security requirements (SR) seems
to be the most challenging practice for our interviewees. Other priorities differ
per profile, as shown in the examples for security management and security
verification and validation testing.

The top priority issue is raising awareness for security to achieve continu-
ous security compliance. Second place is taken by an adequate prioritisation of
security aspects and common perspectives among management and teams. Chal-
lenges for security integration into continuous software engineering seem similar
to those with linear development models. Subsequently we summarise our key
findings on the challenges raised.

How to Integrate Security Compliance Requirements 83

Security Requirements Elicitation: Challenges go beyond elicitation, from pri-
oritisation over allocating them to increments and tracking adequate testing.
Respondents extend the concern to overall 4-1 activities into cycles, e.g., threat
analysis, testing, or issue management. Some related quotes include “What does
the standard says about iterations and when the required process should occur
again?”(#15, software architect) or “Problem is to identify what is the most
important and which things can be done in parallel” (#12).

Security More Than a Non-Functional Requirement: 4-1 contains an overview
of security as described by compliance. Our interviewees state that security
is normally addressed via functional requirements while other aspects, such as
management-related ones, are too often left behind.

Software Architecture Impact: Software architectures are built incrementally in
continuous development. One interviewee argued in particular: “How to have
security design or requirements of something we don’t know yet, something we
create on the go” (#12, Contributor SAFe). We argue that security analysis
can be done while thinking about the goal and later iteratively extend it to
the solution-specific components. However, this needs a certain continuity just
like other non-functional properties, which project participants seem to see as
difficult to achieve.

Improvement Demand for Security Expertise and Awareness: In development
teams the lack of expertise for security seems to be a common theme [5]. Partic-
ularly, our group of interviewees seems to have a sound level or security aware-
ness: “I see the need of security” (#15, product owner). They comprehend that
challenges also depend on the role and therefore some interviewees even sug-
gest to define new (agile) security-related profiles such as a “secure product
owner” or a “secure system architect”. Furthermore, respondents argue that
security expertise should generally be improved to achieve compliance. This is
exemplified in the following quote: “A new secure product owner could do it”
(#7). Interestingly, these observations corroborate the need to raise a common
awareness for security in the overall agile team: “implementations deviate from
standard [and often] lead to fake implementations” (#2, security compliance
senior expert); “There are guidelines to bypass compliance rules” (#8, security
principal expert).

Security Compliance as a Common Agreement: Related to our previous observa-
tion is that subjects perceive compliance as a complex endeavour. They noticed
that management, teams, and even compliance practitioners have different per-
spectives on compliance. Some see security compliance as a burnout journey,
others as a luxury and others again as a worthwhile goal. A common agreement
on the need to achieve common security standards is therefore a prerequisite for
the success of our undertaking.

84 F. Moyón et al.

Misunderstandings of Agile Engineering Terms: In our interviews we noticed
that terms are used often in a cumbersome manner. For instance, subjects with
agile development knowledge (e.g., #1, #2, #3) often referred to Scrum only
implicitly by mentioning specific elements such sprint, iteration, and product
owner; “definition of done” was often used when referring to acceptance criteria;
other interviewees had difficulties in capturing the notion of artefacts in context
of process models: “the word artefact is not easy” (#10, expert). As a matter
of fact, such key concepts are still subject to current debates and need further
attention in future work generally dealing with software processes [27].

6 Conclusion

In this paper we reported on our work towards integration of security require-
ments derived from IEC 62443-4-1 into large-scale agile development based on
SAFe in order to facilitate CSC. We presented the S2C-SAFe framework and
evaluated it based on interviews with 16 industry experts. Evaluation results
strengthen confidence that this approach and the resulting models provide a
feasibly way for security compliance in large-scale organisations practising lean
and agile development.

6.1 Impact and Implications

Results show S2C-SAFe models have a clear impact for practitioners. They show
precisely how software engineering and security practitioners have to interact to
achieve the goal of security compliance. Furthermore, the models can be under-
stood in a time-effective manner and challenge popular belief that agile processes
are a gateway to chaos and therefore not reconcilable with security and com-
pliance concerns. The unanimous response to our work was the exact opposite:
Introducing large-scale agile processes demands a culture and mindset change.
Even though not our intention, the models helped to convey to sceptical practi-
tioners that both secure and agile development is feasible at scale with reasonable
effort.

Our research strongly indicates that models are an excellent way to medi-
ate between agile practitioners and security experts. Particularly visual models
allowed them to engage the challenge of continuous security compliance together.
Moreover, these models pave the way for analysing various further challenges of
the research field: Do models increase the speed of adapting large organisations
to secure agile processes at scale? Are models a better way of getting security
norms accepted in daily software engineering activities? Can models provide
guided and precise support for secure agile security governance? We are con-
fident that our contribution supports researchers to further investigate these
questions.

How to Integrate Security Compliance Requirements 85

6.2 Relation to Existing Evidence

Our study is in tune with existing trends of empirical studies on secure software
engineering [29], but extends the study population in number and profile. To the
best of our knowledge, preceding studies involved up to 11 practitioners with
mixed background or students as subjects and focused on valuated, yet isolated
topics. An integrated view on a security standard compliant agile framework
was not in their scope. Our contribution is aimed at this gap and involves 16
experienced professionals, partially with contributing roles to the standards or
decision-making roles in the organisation. We focused on the highest ranking
experts available. As explained, a SAFe integration may last up to 8 years and
the interviewees are high-ranked professionals. Their opinion is the closest to
certainty in a timely evaluation.

6.3 Limitations and Threats to Validity

Qualitative studies inherently carry limitations and interview research in partic-
ular has threats to validity that need discussion, the most important of which
shall be discussed here.

The individual expertise of each participant might influence their attention
and interpretation of security requirements as well as agile practices captured
in the models. We tried to mitigate this with discussion-intensive preparation
procedures, but also by letting subjects interpret the models as they are without
any further instruction. We were interested in potential bias towards the subject
of security compliance as that reflects on the projects where those models shall
be applied.

Similarly, involving experts from each respective field carries the risk of self-
selection and confirmation bias. To mitigate this we selected subjects according
to typical roles in the target organisation environment instead of their partic-
ular interest in the topic. The same is true for which part of S2C-SAFe they
reviewed (requirements, implementation, or testing). We also designed interview
plan and questionnaire accordingly and allocated interviewees to models based
on previously defined profiles.

Overall, our study already strengthens our confidence in the capability of
S2C-SAFe to integrate security and compliance concerns with lean and agile
development. We cordially invite researchers and practitioners to join our
endeavour towards facilitating continuous security compliance in large organ-
isations and regulated environments.

Acknowledgements. To the practitioners that evaluate this work and to M. Voggen-
reiter and F. Angermeir for their accurate review.

References

1. Ahola, J., et al.: Handbook of the Secure Agile Software Development Life Cycle.
University of Oulu, Finland (2014)

86 F. Moyón et al.

2. Baca, D., Boldt, M., Carlsson, B., Jacobsson, A.: A novel security-enhanced agile
software development process applied in an industrial setting. In: Proceedings of
the ARES (2015)

3. Baca, D., Carlsson, B.: Agile development with security engineering activities. In:
Proceedings of the ICSSP, pp. 149–158. ACM (2011)

4. Baca, D.: Developing Secure Software -in an Agile Process - Doctoral Dissertation.
Blekinge Institute of Technology (2012)

5. Bartsch, S.: Practitioners’ perspectives on security in agile development. In: ARES
(2011)

6. Beck, K., et al.: Manifesto for agile software development (2001)
7. Beckers, K.: Pattern and Security Requirements - Engineering-Based Establish-

ment of Security Standards. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-16664-3

8. Bell, L., Brunton-Spall, M., Smith, R., Bird, J.: Agile Application Security.
Enabling Security in a Continuous Delivery Pipeline. O’Reilly, Sebastopol (2017)

9. Beznosov, K., Kruchten, P.: Towards agile security assurance. In: Proceedings of
the NSPW. ACM (2004)

10. Cawley, O., Wang, X., Richardson, I.: Lean/Agile software development method-
ologies in regulated environments – state of the art. In: Abrahamsson, P., Oza, N.
(eds.) LESS 2010. LNBIP, vol. 65, pp. 31–36. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16416-3 4

11. Chóliz, J., Vilas, J., Moreira, J.: Independent security testing on agile software
development: a case study in a software company. In: Proceedings of the ARES
(2015)

12. Daennart, S., Moyon, F., Beckers, K.: An assessment model for continuous security
compliance in large scale agile environments - exploratory paper. In: CAiSE (2019)

13. Felderer, M., Pekaric, I.: Research challenges in empowering agile teams with secu-
rity knowledge based on public and private information sources. In: Proceedings
of the SecSe (2017)

14. Fernández, D.M., Wagner, S.: Naming the pain in requirements engineering: design
of a global family of surveys and first results from Germany. In: Proceedings of
the 17th International Conference on Evaluation and Assessment in Software Engi-
neering. ACM (2013)

15. Fernandez, E.B.: Threat modeling in cyber-physical systems. In: Proceedings of the
14th International Conference on Dependable, Autonomic and Secure Computing
(2016)

16. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 1–14 (2015)

17. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

18. Fitzgerald, B., Stol, K.J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to
regulated environments: an industry case study. In: Proceedings of the ICSE. IEEE
(2013)

19. Humphreys, E.: How to measure the effectiveness of information security (2017).
https://www.iso.org/news/2016/12/Ref2151.html

20. IEC: 62443-1-1 Security for Industrial and Automation Control Systems Part 1–
1 Models and Concepts. International Electrotechnical Commission, USA, 2014
(2014)

21. IEC: 62443-4-1 security for industrial automation and control systems Part 4–1
product security development life-cycle requirements (2017)

https://doi.org/10.1007/978-3-319-16664-3
https://doi.org/10.1007/978-3-319-16664-3
https://doi.org/10.1007/978-3-642-16416-3_4
https://doi.org/10.1007/978-3-642-16416-3_4
https://www.iso.org/news/2016/12/Ref2151.html

How to Integrate Security Compliance Requirements 87

22. ISO/IEC: 27034 Information technology - Security techniques - Application secu-
rity (2011)

23. ISO/IEC: 27001 IT - Security techniques - Information security management sys-
tems (2013)

24. Leffingwell, D., Yakyma, A., Knaster, R., Jemilo, D., Oren, I.: SAFe Reference
Guide. Pearson, London (2017)

25. McGraw, G., Migues, S., Chess, B.: Building security in maturity model. https://
www.bsimm.com/about.html

26. McHugh, M., McCaffery, F., Fitzgerald, B., Stol, K.-J., Casey, V., Coady, G.:
Balancing agility and discipline in a medical device software organisation. In:
Woronowicz, T., Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2013. CCIS,
vol. 349, pp. 199–210. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38833-0 18

27. Méndez Fernández, D., et al.: Artefacts in software engineering: what are they after
all? ArXiv e-prints (2018)

28. Moyón, F., Beckers, K., Klepper, S., Lachberger, P., Bruegge, B.: Towards contin-
uous security compliance in agile software development at scale. In: Proceedings
of the RCoSE. ACM (2018)

29. Othmane, L., Jaatun, M., Weippl, E.: Empirical Research for Software Security:
Foundations and Experience. CRC (2017)

30. Shull, F., Singer, J., Sjøberg, D.I.: Guide to Advanced Empirical Software Engi-
neering. Springer, London (2007). https://doi.org/10.1007/978-1-84800-044-5

31. Siponen, M., Baskerville, R., Kuivalainen, T.: Integrating security into agile devel-
opment methods. In: Proceedings of the HICSS (2005)

32. Stephanow, P., Khajehmoogahi, K.: Towards continuous security certification of
software-as-a-service applications using web application testing techniques. In: Pro-
ceedings of the CAINA (2017)

33. Technology, S.A.C.: Security by Design with CMMI for Development Version 1.3.
CMMI Institute (2013)

34. Tøndel, I.A., Jaatun, M.G., Cruzes, D.S., Moe, N.B.: Risk centric activities in
secure software development in public organisations. IJSSE 8(4), 1–30 (2017)

35. Turpe, S., Poller, A.: Managing security work in scrum: tensions and challenges.
In: Proceedings of the SecSE (2017)

https://www.bsimm.com/about.html
https://www.bsimm.com/about.html
https://doi.org/10.1007/978-3-642-38833-0_18
https://doi.org/10.1007/978-3-642-38833-0_18
https://doi.org/10.1007/978-1-84800-044-5

A Portfolio-Driven Development Model and Its
Management Method of Agile Product Line
Engineering Applied to Automotive Software

Development

Kengo Hayashi1(B) and Mikio Aoyama2

1 DENSO Corporation, Kariya, Japan
kengo.hayashi.j4d@jp.denso.com

2 Nanzan University, Nagoya, Japan
mikio.aoyama@nifty.com

Abstract. In recent automotive systems development, realizing both variabil-
ity and agility is the key competitiveness to meet the diverse requirements in
global markets and rapidly increasing intelligent functions. This article proposes
a portfolio-driven development method and its management method of APLE
(Agile Product Line Engineering). The proposed method is intended to manage
agile evolution of multiple product lines while increasing variability of products.
To establish a portfolio management of development resources, it is necessary for
an organization to manage multiple product lines on APLE in an entire devel-
opment. We propose a portfolio-driven development method of three layers on
APLE and its management method based on a concept of portfolio management
life cycle.We applied the proposedmanagementmodel andmethod to themultiple
product lines of automotive software systems, and demonstrated an improvement
of manageability with better predictability of both productivity and development
size. This article contributes to provide an entire developmentmanagementmethod
for APLE, and its practical experience in the automotive multiple product lines.

Keywords: Software product line · Agile software development · Agile product
line engineering · Portfolio management · Automotive software development

1 Introduction

The agility and rapid evolution of products is an urgent issue in developing software
systems including automotive software systems. ASD (Agile Software Development)
has been proposed and practiced for accommodating both agility and rapid evolution of
products. ASD enables to evolve products incrementally in a short cycle time.

As an advanced development model of ASD, APLE (Agile Product Line Engineer-
ing), which integrates ASD and SPLE (Software Product Line Engineering), has been
practiced for accommodating both agility and variability [4, 8, 13]. However, today’s
automotive software is demanded to even more agile and rapid evolution in the global

© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 88–105, 2020.
https://doi.org/10.1007/978-3-030-64148-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_6

A Portfolio-Driven Development Model and Its Management Method 89

market and intelligent functions including autonomous driving [5]. For the competitive
advantage, it is necessary to establish amethod of optimizing a trade-off triangle consist-
ing of the requirements of the business, the product roadmap realizing its requirements,
and the resources of organization [2].

In application engineering of SPLE, the development size of individual software
product is relatively small [15].However,when the delivery dates of a number of products
derived from a product line close together, the demanded resources for the product
development could pile up within a short development period.

To optimize a trade-off triangle in APLE, conventional management of a single prod-
uct line is insufficient. It is necessary to extend the trade-off triangle into multiple SPLs,
and establish a development model and its management method for agile development
of multiple SPLs in an entire development.

Portfolio management has been practiced for decision making in investment and
management under limited resources of an organization [14].Aportfolio is a collection of
projects, programs and the other operations for achieving the business goals. The authors
introduce the concept of portfolio management illustrated in Fig. 1, to manage multiple
SPLsdevelopment under the constraint of resources in an entire development.The authors
introduce the concept of portfolio management illustrated in Fig. 1, to manage multiple
SPLs development under the constraint of resources in an entire development.

Sample Portfolio

Program A

Shared Resources and Stakeholders

Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7 Project 8 Project 9 Operations

Program B Portfolio A

Organization Strategy

Program CProgram B1

Fig. 1. View of portfolio [14]

In this article, we aim to optimize the trade-off triangle in an entire development over
the multiple SPLs. We set a hypothesis that a resource constraint is the most stringent
constraint on the development of multiple SPLs. Based on the hypothesis, we set the
following research questions:

RQ1: Is it possible to apply portfolio management to a development model, as a mean
of managing multiple SPLs in an entire development?

RQ2: What is amanagementmethod of agile development ofmultiple SPLs in an entire
development based on the proposed development model?

RQ3: Is the proposed method effective in an actual development of APLE?

2 Related Work

(1) APLE (Agile Product Line Engineering)

APLE is an integration of ASD and SPLE for meeting both agility and variability [8,
13]. The theme has been explored for more than a decade [4]. Since the two disciplines

90 K. Hayashi and M. Aoyama

deal with significant different aspects of software development, approaches to integrate
the two disciplines vary. The two disciplines may have conflicts. Therefore, it is still
unclear how to integrate the two disciplines [8]. It is also mentioned that the adoption of
ASD into automotive software development is considered difficult due to the stringent
quality requirements and long-term practice on the rigid process [5].

In the previous work [6, 7], the authors proposed APLE, an integration of ASD and
SPLE for automotive software development. The idea is to allocate fine grain develop-
ment tasks of variant of SPL based on the delivery date and work load. However, the
derivation and allocation of the variants of multiple products were not clearly modeled.

(2) Portfolio Management of SPLE

Theportfoliomanagement of SPLE is to govern the entire SPLbasedonPPA(Product
Portfolio Analysis) [15]. By dividing a market segment into four areas with two axes of
a market share and growth rate of a product, PPA estimates ROI (Return On Investment)
of an SPL for the business strategy [1]. A concrete method of making a product strategy
has been proposed. However, there are few works on the management of the portfolio
after introducing an SPL [16]. Researches on the models and management in an entire
development for individual application engineering are few so far.

(3) Agile Portfolio Management

To govern the agile development, a portfolio management needs to properly coor-
dinate asset and investment management. Krebs defined portfolio as a combination of
projects, resources, and assets, and proposed a management method for ASD [9].

To measure, monitor, and control a portfolio, ASD framework, such as Scrum, is
applied [3, 11, 12]. The development plan is refined stepwise with statistical estimation
using performance statistics for two to three months.

Leffingwell proposed a value-driven approach with a trade-off triangle [11]. The
value-driven approach selects requirements with an estimate of the fixed resources and
specified delivery date, as illustrated in Fig. 2. Based on the value-driven approach,
Leffingwell proposed SAFe (Scaled Agile Framework) as a framework for a large-scale
development, which consists of a development model and its management method to
operate development resources with three layers of portfolio, program, and team [12].

Fig. 2. Trade-off triangle for value-driven

Laanti proposed a management framework for ASD to develop a single product with
multiple teams [10]. Turek proposed a management method of multiple projects [17].
However, an effective method is not established yet for products interdependent in an

A Portfolio-Driven Development Model and Its Management Method 91

SPL. A value-driven management framework is difficult to apply when the constraint of
resources increases due to the dependency among products. In this article, we extend the
method and applicability of this framework by analyzing and controlling the constraint
of resources.

3 Approach

(1) Approaches to Research Questions

In this article, we propose the following approaches to the research questions.

RQ1: We propose a development model based on a portfolio-driven approach. We
focused on the conflict between shared resources in portfolio management, and
its resolution as a mean to manage multiple SPLs.

RQ2: We propose a method to manage multiple SPLs in an entire development with
three layers of portfolio, program, and sprint, based on the development model.

RQ3: We apply the proposed method to the development of APLE of automotive soft-
ware for ultrasonic sensor systems, and demonstrate the effectiveness of the
proposed method

In the followings, we explain our portfolio-driven approach based on the discussions
on the problems with plan-driven approach and value-driven approach in ASD.

(2) Approach to Problems in the Plan-Driven/Value-Driven Approach in SPLE

It is necessary to allocate the three variables of requirements, delivery date, and
resources on a trade-off triangle for elaborating the strategy of developmentmanagement
[2]. As illustrated in Fig. 2, the plan-driven approach and value-driven approach are
distinguished by the allocation of variables on a trade-off triangle [11].

In the SPLE, it is common that the products generated from an SPL are interde-
pendent as illustrated in Fig. 3. However, when developing two products concurrently,
the products may share and compete for the development resources, even if those are
not derived from a single SPL. The dependency between the requirements of multiple
products in an SPL may occur due to shared core asset. The core asset developed in a
prior product development affects the subsequent product development. For example,
if a variation point is generated in a prior product development, it may be necessary to
select a new variant of the variation point in the subsequent product, and the requirements
of the subsequent products may increase [7].

a) Problems in the plan-driven approach: The dependency between requirements
causes problems in the plan-driven approach. If requirements are fixed in the plan-
driven approach, the prior product development causes to change, usually increase,
the requirements of the subsequent products, and increases the demand for develop-
ment resources. Thus, it lowers the manageability of development. With the value-
driven approach, themanageability can bemaintained by trimming the requirements
to keep the development resource within the allowable limitation.

92 K. Hayashi and M. Aoyama

b) Problems in the value-driven approach: The dependency between resources causes
problems in the value-driven approach. If single product development, fixed release
date can be maintained by adjusting the requirements. However, in the concurrent
development of multiple products, each product may be set to different release date
to different customers, and the development organization alone cannot set the release
date. A new approach is necessary to the value-driven approach, which should
resolve constraints with variables corresponding to the customer requirements.

Fig. 3. Interdependence of trade-off triangle for
SPL

Fig. 4. Concept of portfolio approach:
interdependence of trade-off triangle for
SPL

(3) A Portfolio-Driven Approach

Figure 4 illustrates the concept of our portfolio-driven approach proposed in this
article. In this approach, the resources are fixed, and the requirements are variable,
and are selected based on the estimation. After that, the delivery date of the product is
determined.

The concept of the proposed method is similar to that of the value-driven approach.
However, the delivery date can be coordinated with the customer requirements. There-
fore, the delivery date is not decided on the estimated date, but coordinated with the
requirements under the constraints of the resources. As illustrated in Fig. 4, the delivery
date is located to a middle point between fixed and estimated by inclining the trade-off
triangle.

Changing the development resources is not easy due to the needed skills of the
development domain. Therefore, we set the highest priority to the development resources
of an organization. We call this approach as the portfolio-driven approach by resolving
the constraints in an entire development on the requirements and delivery date over
multiple products under the constraint of fixed development resources.

4 Portfolio-Driven Development Model

4.1 Overview of the Development Model

Figure 5 illustrates our portfolio-driven development model based on the portfolio-
driven approach. Figure 6 illustrates the metamodel of the artifacts and the roles in an
organization.

The portfolio-driven development model consists of three layers of management,
that is the portfolio level, product, and sprint. By coordinating each layer, the trade-off
triangle of requirements, delivery, and resources are optimized in an entire development
over the multiple SPLs. We explain the details of each management level below.

A Portfolio-Driven Development Model and Its Management Method 93

Requirement
Management

Resource
Management

Schedule
Management

Portfolio Level
(Program
Management)

Product Level
(Project
Management)

Sprint Level
(Team
Management)

Requirement
Define

Requirement
Optimization

Requirements Implementation
(Time-box Development)

Resource
Procurement

Delivery
Optimization

Delivery
Coordinate

Legend Management
Item Flow

Information
Flow Activity

amount

Productivity

Info.

Fig. 5. Overview of portfolio-driven
development model

Sprint
Backlog

Portfolio
Manager

Product

Team

11

0..*

0..*

organized bymanaged by

Product
Backlog

1

1

realized by

0,1

Portfolio
Backlog

1

extracted by

1Implemented by

Release
Plan

1

1

allocated by

1

0..*
optimized by

0,1

constrained by

planned by1

constrained bydefined by

1

0..*

0..* 0..* 1

1 0..*

Portfolio Level Product Level Team LevelLegend

Fig. 6. Metamodel of artifacts and roles in the
portfolio-driven development model

In the portfolio-driven development model, a product to be delivered is a component
of the portfolio. Each product, is measured by the size of the requirement.

Shared resources for the development are measured by the value gained per unit
time for realizing the requirement. We employ story point as the size metric of both
requirement and resource to realize the requirement, similar to ASD. Multiple products
can be managed in an entire development by unifying the size metric, i.e. story point,
for the components and shared resources.

4.2 Portfolio Level (Program Management)

At the portfolio level, it is necessary to oversees the entire development for the products
of multiple SPLs. Therefore, it is considered as a program management [14].

(1) Structure of Portfolio

Each product is prioritized based on the trade-off triangle for the portfolio as illus-
trated in Fig. 4, that is, productivity of the shared resources, requirements for the prod-
ucts, required delivery dates of the products. Since dependency of requirements among
products is unavoidable, it is necessary to analyze the dependency, and optimize the
requirements and delivery dates based on the analysis.

Each product is registered to the portfolio backlog by the portfolio manager at the
time of approval of its plan. The portfolio manager is a role taken by a project manager
or PMO (Project Management Office). The role is necessary to make decisions over
multiple SPLs.

(2) Portfolio Management Model

At portfolio management, the portfolio manager is responsible to manage resource
procurement, requirements optimization, and delivery optimization. We explain the
activities in this section, and the details of the management method in the next chapter.

a) Resource procurement: For resource procurement, the portfolio manager plans and
acquires human resources, and organizes teams based on the business plan of SPL

94 K. Hayashi and M. Aoyama

for long term of one to three years. The portfolio manager manages the change of
resources needed for the development, and reorganization of the teams in order to
meet the estimated resource needed to the development size of the products in the
SPL.

b) Requirements optimization: For requirements optimization, the portfolio manager
reviews the product backlogs elaborated at the product level, and prioritizes the
requirements of the backlog with respect to productivities of the teams and deliv-
ery dates of the products as well as the impact to the other products in the same
SPL. Requirement optimization aims to minimize the requirements for realizing all
the components in the portfolio, and to maximize the requirements fitting in the
coordinated delivery dates of each product.

c) Delivery optimization: For delivery optimization, the portfolio manager aims to
stabilize resources by reviewing and coordinating the productivities of the teams
and size of all the products of the multiple SPLs. The portfolio manager makes
release plans of each product, and allocates products to a sprint of each team.

4.3 Product Level (Project Management)

At the product level, the project manager or product owner is responsible to product
management.

(1) Structure of Product

Here, a product is a basic component of the portfolio. We measure the size of a
product with the story point, a size metric, of requirements.

(2) Project/Product Management Model

At this level, project manager adjusts the project for meeting the requirements
and delivery date coordinated at the portfolio level. Therefore, the project manager
is responsible to define the requirements and coordinate the delivery date.

For requirement definition, the product owner or project manager defines the prod-
uct backlog as development items of the product [3, 11, 12]. The product backlog is
optimized by a release plan determined at the portfolio level. For delivery coordination,
the delivery date of the product is coordinated with the stakeholders by considering
the optimized requirements, resources required by the other products, and delivery date
of the other products. Therefore, the project manager needs to work with the portfolio
manager at the portfolio level.

4.4 Sprint Level (Team Management)

At the sprint level, team manager is responsible to manage the time-box development
based on the ASD framework [3, 12]. Each team manager works with the product
manager.

(1) Structure of Sprint

A Portfolio-Driven Development Model and Its Management Method 95

A sprint is a unit of the time-box iterated with a fixed cycle-time of one to four weeks.
A sprint backlog is a collection of development items for a sprint. A sprint backlog is
extracted from multiple product backlogs under the constraint of release plan [6, 17]. To
measure the productivity of a team, we employ the size of shared resources.

(2) Team Management Model

The goal of team management at the sprint level is to stabilize the productivity. We
introduced some techniques toAPLE. For example, in SPLE, an iteration of development
process is centered on the variability. Therefore, we employ the process assets concept
[6], and structure the incremental development by analyzing the variability [7].

5 Portfolio-Driven Management Method

5.1 Management Life Cycle

Figure 7 illustrates the life cyclemodel of themanagementmethodbased on the portfolio-
driven development model explained in Sect. 4.

The life cycle model consists of the following six phases:
(1) Establish, (2) Evaluate, (3) Prioritize, (4) Select, (5) Manage, and (6) Feedback.
Five phases from (1) to (5) are based on the life cycle model of project portfolio

management proposed byWysocki [18]. We extended the life cycle model to accommo-
date multiple SPLs. To accommodate the dependencies between products, each phase is
extended to coordinate and control the dependencies inmultiple SPLs under the portfolio
management.

5.2 Establish

The Establish phase is conducted at the portfolio level. Under the portfolio strategy of
an organization, the portfolio manager plans a resource acquisition plan for one to three
years based on the estimated size of products of multiple SPLs.

An initial plan of resource procurement includes an estimated number of develop-
ers for the teams and estimated resources. In the subsequent phases, the activities are
conducted under the resource constraint planned in this phase. However, the plan can be
refined at every specific period, e.g. three months, with the actual performance statistics
of the productivity and size of delivering products obtained from the Feedback phase.

5.3 Evaluate

The Evaluate phase is conducted with a collaboration between the portfolio level and
the product level. At first, the product requirements are estimated at the product level.
Next, the estimation is refined by the optimization of the requirements of products of
multiple SPLs at the portfolio level.

The Evaluate phase consists of three activities of:

(1) Optimization of the product requirements,

96 K. Hayashi and M. Aoyama

(2) Dealing with core asset evolution, and,
(3) Estimation of the product development size.

Optimization of the Product Requirements. The product requirements are optimized
with respect to:

(1) Selection of an SPL for the development, and
(2) Impact caused by the dependency between the products in the SPL.

Product
Requirements

(2) Evaluate
Estimation requirements

for a product and SPL

(1) Establish
Resource

procurement plan

(3) Prioritize
Product and hold
pending funding

(4) Select
Release plan

allocation using the
prioritized products

(5) Manage
Active projects

On plan
Off plan

In trouble

Postponed
Canceled
Reported

Changed

Completed

(6) Feedback
reflect on release plan

with teamʼs productivity
and product

development size

No-Revise and submit

Yes

No-Reject

Fig. 7. Portfolio-driven management life cycle

When an organization develops multiple SPLs, the cost of realizing the requirements
depends on the selection of an SPL from multiple SPLs. It is desirable to select an SPL,
which can realize the highest priority requirements with the minimum cost. Suppose
there are two SPLs on different platforms, and some functions are needed to develop on
them. If the resources needed for adapting the functions to the platforms exceed that for
developing new function after eliminating the difference of the functions between the
SPLs, an SPL, which does not need the platform adaptation, should be selected.

If there is a product to be developed in the selected SPL, the product may have
dependency to other products through the core asset, as explained in 3 (2). If it needs
to change the commonality of the products and/or to add new variation points to the
product, the cost to develop the product may increase significantly. Therefore, it is
necessary to re-evaluate the development cost of the products. Suppose there is a product
A developed already, and a product B to be developed. Since A is developed prior to B,
if the requirements needed to B are already implemented in A, the development size of
B can be reduced accordingly. If the development of A added new variation points, the
development of B needs to configure the variation points. Therefore, the development
size of B increases accordingly.

From the selection of an SPL, the requirements are prioritized. If there are require-
ments of low priority, those requirements are eliminated by the optimization of the prod-
uct requirements, and optimization of product requirements completes. At this point, the
development resource and release date can be set temporarily according to the estimated
size of developing the SPL. If the development cost of all requirements included fits into
the planned cost, the requirements are not eliminated any more. If the cost of develop-
ing all requirements exceeds the planned cost, it is necessary to further eliminate some
requirements. The optimization activity helps to avoid resource shortage and contributes
to increase ROI of an organization.

A Portfolio-Driven Development Model and Its Management Method 97

Dealing with Core Asset Evolution. If the core asset is required to change signifi-
cantly, it is unlikely to develop products concurrently. Therefore, products are eliminated
frommanagement items. In this case, the development cost of the core asset of an SPL is
considered as an investment, and development management is same as to conventional
product management.

Estimation of the Product Development Size. Fromour experience,we found that the
development size of the products has smaller difference within an SPL [6]. When the
statistics of the actual development size of products in an SPL are collected in the
Feedback phase, the development size can be estimatedwith a high accuracy by referring
the statistics of developed products.

5.4 Prioritize

The Prioritize phase is conducted at the portfolio level. It determines the order of devel-
opment of products based on the priority of the products. Each product has its own
delivery plan. The priority is decided for improving the ROI of each delivery while
keeping the delivery dates.

5.5 Select

The Select phase is conducted with a collaboration between the portfolio level and the
product level. This phase optimizes a delivery plan through the following two activities:

(1) Allocation of the product to the release plan, and,
(2) Coordination of the delivery date.

Allocation of the Product to the Release Plan. A product is allocated to the release
plan over the multiple SPLs based on the estimated product development size in the
Evaluate phase, and the development priority determined in the Prioritize phase. To
allocate the products, we employ the statistics of the productivities of the teams if
available. Otherwise, we employ the estimated value.

A release plan is specified with a number of sprints of the fixed period. The story
point of the product development of each sprint is allocated backward starting from the
product delivery date.

Coordination of the Delivery Dates. The product delivery date needs to be coordi-
nated if there is a sprint has an excess story point for the team when the allocation of the
product for the release plan is completed. There are two resolution methods as explained
below.

(1) Coordination of Delivery Dates of Individual Product

98 K. Hayashi and M. Aoyama

The delivery date of individual product is coordinated by reallocating the product to
either prior or later sprint in order to fit the development size in the resources of each
sprint.

(2) Coordination of Incremental Release Plan

The delivery dates of multiple products as the incremental release plan are coordi-
nated through either consolidation of multiple deliveries of the products, or decreasing
the development size of the delivery by dividing the delivery into multiple smaller
deliveries.

Both coordinationmethods abovementioned require decisionmaking at the portfolio
level because the coordination involves trade-off at the portfolio level. It may cause a
delay of value creation by fitting the development size within fixed resources by opti-
mizing the delivery date, or cost overhead by additional releases. Therefore, this process
aims to keep the product delivery within the contracted period, even resource shortage
and resource conflict occurs. This is essential to sustainability in the organizational SPL
development.

5.6 Manage

The Manage phase is conducted at the product level and the sprint level. According to
the discipline of the ASD, we conduct time-box development at the sprint level, and
project management at the product level.

The Mange phase deals with the products in the development, and the products to
be developed. It manages to keep delivery date and scope of requirements. Therefore,
if an event arises to detect change of the delivery date and/or scope of requirements,
the Manage process transits to another phase. There are following five events triggering
phase transition at the portfolio level:

(1) Postponed:When the product development is postponed, theManage phase transits
to the Prioritize phase and the product is set as not yet started.

(2) Changed:When the scope of the product requirements is changed, theMange phase
transits to the Evaluate phase to redo the requirements optimization.

(3) Reported: The Manage phase transits to the Feedback phase temporarily to report
the completion of a sprint.

(4) Canceled: When the product development is canceled, the product life-cycle is
closed.

(5) Completed: When the product development is completed, the Feedback phase is
conducted and the product life-cycle is closed.

5.7 Feedback

The Feedback phase is conducted at the portfolio level. The input to the Feedback phase
includes the size statistics of the product development reported from the product level
and the productivity statistics of the teams reported from the sprint level. This phase
aims to improve the manageability over the multiple SPLs by refining the release plan.

A Portfolio-Driven Development Model and Its Management Method 99

The size statistics of product are used in the estimation of the product development
size in the Establish and Evaluate phases. The statistics also used for coordinating the
delivery by dividing and consolidating the delivery of products in the Select phase. The
statistics are categorized with respect to each SPL, each purpose of releases, and each
release phase, which can be determined by domain and organization.

The productivity statistics of teams are used for allocation in the Establish and Select
phases. In the case of agile development, the productivity is defined as themoving average
of every seven sprints [3, 6]. The productivities of the team changes when developing
a product of a new SPL of little knowledge, and when the team members are changed.
Therefore, we define a set of nominal productivity.

6 Application to APLE of Automotive Software

6.1 Context of Application

We applied the portfolio-driven development model and its management method to
DENSO’s automotive system development using ultrasonic sensors. Figure 8 illustrates
the development overview of the multiple SPLs of the automotive system on APLE.

Two organizations are involved in the development of the APLE. A core product
development team, the core team hereafter, develops core assets for each SPL, and
develops several products as the core products. A derivative product development team,
the derivative team hereafter, develops derivative products from the core assets. One of
the authors participated in the development as the portfoliomanager. The effectiveness of
the proposed method was evaluated with performance statistics collected from multiple
product development projects.

6.2 Application Period and Operation of Teams and SPL

We applied the proposed method for 15 months from October 2016 to February 2018.
Each sprint took 2 weeks. The number of SPL was four within the period. We delivered
12 products within the period, and collected the performance statistics.

Two teams, A and B, were organized as the development resources. Team A worked
for 52 sprints. The number of developers of Team A changed from 2 to 5 and then to 3.
Team B worked for 35 sprints. The number of developers of Team B changed from 2,
to 3, to 5 and then to 7.

There was only one portfolio manager at the portfolio level. There were three project
managers at the product level.

Product
Line 1

Evo

APD B
C D

EEvo

Product
Line 2Evo

FPD
G H

Evo

Evo

Product
Line 3Evo

J L

Evo

K

Product
Line mEvo

M N POEvo
QEvo

Time

Legend: PD: Product Derivation Evo: Product Line Evolution : Versions of Core Assets : Core Product : Derivative Product

- Add Security Functions
- Change of Automotive Platform

- Improvement of Functionality
- Software Architecture Refinement

PD

PD
PD

PD

PD
PD

PD

PD

PD

- Change of
Major Functions

I

PD

Fig. 8. Development of multiple SPLs of automotive systems on APLE

100 K. Hayashi and M. Aoyama

7 Evaluation

7.1 Evaluation Method

We evaluated the effectiveness of the proposed method with the following criteria:

(1) Predictability of productivity of resources,
(2) Predictability of development size of products, and,
(3) Controllability of a trade-off triangle.

By (1) and (2),we evaluated the accuracy of the control parameters for an entire devel-
opment management of the portfolio-driven development model. By (3), we evaluated
the validity of the management method.

7.2 Predictability of Productivity of Resources

In the portfolio-driven development model, a resource procurement plan and release
plan are elaborated based on the productivity of each team. To apply the portfolio-driven
development method with a high manageability, it is necessary that productivity is stable
and predictable.

We introduce themetric of productivity volatility to evaluate predictability of produc-
tivity [6]. A productivity of a team is measured by the size of development of each sprint
as used in the conventional ASD [3]. In this article, the productivity and productivity
volatility are respectively defined by Eq. (2) and (3).

A sprint = 2weeks (1)

Productivity(k) =
∑k

n=k−6

(an amount of development of sprint n)

7
(k > 6) (2)

Productivity volatility(k) = |productivity(k) − productivity(k − 1)|
productivity(k − 1)

× 100(k > 7)

(3)

Figure 9 illustrates the change of the size of development, productivity, and
productivity volatility of two teams over the development period.

As noted in Sect. 6.2, the number of developers of each team changed during the
evaluation period. The color of the bar chart representing the development size changed
at the time of the number of developers changed.

Table 1 summarizes the distribution of productivity volatility of two teams.
The number of sprints that the volatility is less than 10% is 63, which accounts 85.1%

of all the sprints. Focusing the time when team members changed, we infer that a high
volatility of sprints over 10% is caused by the productivity change triggered by the change
of members. As a conclusion, the productivity volatility was low, and productivity kept
stable, and predictability of productivity was high for the periods when resources kept
stable.

A Portfolio-Driven Development Model and Its Management Method 101

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53

Pr
od

uc
tiv

ity
 V

ol
at

ili
ty

(%
)

D
ev

el
op

m
en

t V
ol

um
e

/
Pr

od
uc

tiv
ity

(S
to

ry
 P

oi
nt

s)

Sprint / Team A

Development Volume
Productivity
Productivity Volatility

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33

Pr
od

uc
tiv

ity
 V

ol
at

ili
ty

(%
)

D
ev

el
op

m
en

t V
ol

um
e

/
Pr

od
uc

tiv
ity

(S
to

ry
 P

oi
nt

s)

Sprint / Team B

Fig. 9. Productivity and productivity volatility of each sprint

Table 1. Distribution of productivity volatility

Productivity volatility <10% <15% <20% ≥20% Sum

Number of sprint 63 9 1 1 74

Distribution (%) 85.1 12.2 1.4 1.4 100.0

7.3 Predictability of Development Size of Products

A development size of a product is used for a resource plan in the portfolio-driven devel-
opment model. The development size is also used for the coordination of delivery date
and fitting development volume within allowable resources. Predictability of develop-
ment size of products is an important measure of project/program management. It is
especially important to ensure the manageability of the portfolio-driven management
method.

Table 2 illustrates the ratio of actual to estimate of development size of the products.
The total number of releases is 48. At each release, the number of products varies, and
they may be driven from different SPL. To evaluate the effect of the Feedback phase
to predictability in the Evaluate phase, we classify the releases into the following three
categories:

(1) No-Feedback: No statistics are used for estimation.
(2) One-Feedback: Statistics are used for estimation only once from the Feedback

process.
(3) Multi-Feedback: Statistics are used for estimation twice or more in an iterative way

from the Feedback process.

The average of the ratios is lower for one-feedback and multi-feedback than that for
no-feedback. This result indicates that the Feedback process contributes higher accuracy
of estimation. The standard deviation is also lower, and the volatility is improved by the
Feedback process. Feedbacks improved the accuracy and volatility. As the conclusion,
the Feedback process contributes to improve the predictability of the development size
of the products.

102 K. Hayashi and M. Aoyama

Table 2. Ratio of the actual and estimate of development size

No-feedback One-feedback Multiple-feedback

Number of samples 15 11 22

Average (%) 124.3 118.4 112.7

Standard deviation (%) 53.5 31.5 24.2

7.4 Controllability of a Trade-off Triangle

We evaluated controllability of the three entities of a trade-off triangle: requirements,
delivery date, and resources. For the evaluation, we employed CoV (Coefficient of Vari-
ation), which is a ratio of the standard deviation from the average. The base metrics used
for the evaluation of requirements, delivery dates, and resources are as follows:

(1) Requirements: Development size of 48 product releases.
(2) Time to delivery: Time to delivery by the coordination of delivery date under the

condition that the period of one sprint is fixed to 14 days. If no coordination, the
time to delivery is 14 days. If it is coordinated to postpone by seven days, it is 21
days. If it is advanced by seven days, it is seven days.

(3) Resources: The variation coefficient of resources within a sprint is zero in principle
since the number of developers for each sprint is unchanged. Therefore, for further
evaluation, we compare the capability of resources. Here, the capability is defined
as the total size of developed products in a sprint while the number of the developers
is the same. To evaluate the capability over multiple sprints, we use the average of
coefficients of variation of all the sprints.

Table 3 summarizes the CoV of the three entities of the trade-off triangle.

Table 3. Coefficients of variation of the trade-off triangle

Object Requirements Delivery dates Resources Capability of resources

CoV 0.70 0.38 0.00 0.25

For the reference, we also include the capability of resources. The coefficients of
variation are decreasing from requirements, delivery date, capability of resources, and
to resources. With the proposed management method, we fix resources and reduce vari-
ations of capability of resources, and then optimize the trade-off triangle by changing
requirements and delivery date. The statistics proved the validity of the management
method in the application.

A Portfolio-Driven Development Model and Its Management Method 103

8 Discussions

8.1 RQ1: A Development Model to Manage Multiple SPLs in an Entire
Development

(1) Predictability of Productivity of Resources

As discussed in Sect. 7.2, the proposed development model demonstrated superior
stability and predictability of productivity of resources. The statistics proved that the
proposed development method for APLE contributed to improve the stability of produc-
tivity. We conclude that combining the effects of reusing assets of SPLE and iterative
learning disciplined in ASD contributed a high predictability.

(2) Predictability of Development Size of Products

As discussed in Sect. 7.3, the proposed development model demonstrated a high
predictability of the size of developed products. Reusability is high in the development
on SPLE. The statistics proved that the feedback structure in the management method
improved the predictability.

Adopting the story point to measure the development size contributed to improve
the predictability since the story point is a robust metric and reduces the variations of
the actual size to the estimate [3].

We conclude that combining feedback process with the metric of story points
contributes a high predictability and a low variation.

(3) Commonalities and Differences with SAFe

The proposed development model has some commonalities with SAFe, such as the
management model consists of three layers based on the disciplines of ASD [12].

SAFe is value-driven, and the release cycles of products is fixed. SAFe is said to be
effective in the case that the products evolve independently and linearly.

The proposed development model is portfolio-driven, and coordinates the release
timing of products. This model is effective in the case that products have multiple vari-
ations which share some commonalities, and the delivery date of the products cannot be
determined independently.

8.2 RQ2: A Management Method to Manage Multiple SPLs in an Entire
Development

(1) Controllability of a Trade-off Triangle

As discussed in Sect. 7.4, the proposed management method controls the trade-off
triangle by changing requirements and delivery dates. As the result, the method enabled
to deliver 48 products for 15 months over four SPLs concurrently.

The requirements and delivery dates were optimized by not only coordination with
the customers, but also sharing the release plan with the customers. We believe that the

104 K. Hayashi and M. Aoyama

proposed management model helps customers to understand the development status and
to foster the collaboration by sharing the state of resources, and the state of optimization
of the requirements and delivery dates coordinated with other products.

(2) Conditions for Applying the Proposed Management Method

The proposed management method assumes that the requirements and delivery
dates are changeable. In the development of automotive software, the requirements
were adjusted due to the incremental development, and the manufacturing period of the
hardware of the system was used as buffers for delivery dates, which is a unique con-
dition of developing embedded software. If the requirements and delivery dates of the
development are not allowed to change, the proposed method might not work properly.

We assume that multiple SPLs have dependencies, and that a development organi-
zation is not able to control the requirements and delivery date of the products inde-
pendently. This is a common condition in the product development of multiple SPLs.
However, if products have no dependencies, a simple management method is applicable.
For example, the conventional value-driven approach, including SAFe, works properly if
an organization can control the requirements and delivery date independently. However,
product development of the multiple SPLs is not the case.

We also assume that the developed software has an architecture of a high reusability.
On the reusable architecture, variation points are well defined, and development for the
variation points is iterated in a similar way. If this is not the case, productivities and
development size may not be stable even if the proposed development model is applied.

If the conditions above mentioned are satisfied, the proposed management method
can be applied to the development over both SPLE and MPLE.

8.3 RQ3: Effectiveness in APLE

(1) Effectiveness of the Proposed Method in APLE

As discussed in 8.2(1), the proposed development model and management method
are proven to be effective in the actual development ofAPLE. From the delivery statistics,
we found that proposed method helps a high commitment to delivery. With the high
predictability of the productivity and development size, the proposed method helps to
ensure the delivery dates committed to customers even in the complicated development
of products over multiple SPLs. Meeting the committed delivery dates helps to build a
trust with the customers.

(2) Scalability

In the development, we assumed two teams and up to 10 developers in a team. We
believe that the number of teams can be increased as similar to SAFe due to the same
structure of management. However, if the number of SPL increases, possible conflicts on
the same core assets may increase. If the number of releases increases, the coordination
to optimize delivery date becomes complicated. An integrated management tools can
relax the burden of management and support for scalability.

A Portfolio-Driven Development Model and Its Management Method 105

9 Conclusions

We proposed a portfolio-driven development method of three layers on APLE and its
management method based on a management life-cycle process model. We applied
the proposed management model and method to multiple SPLs of automotive software
systems, and demonstrated an improvement of manageability with a high predictability
of both productivity and development size. And we succeeded to optimize a trade-
off triangle by controlling requirements and delivery dates. The proposed model and
method are continuously used in the automotive development, and produced more than
100 products.

For future work, we plan to extend the development model to manage domain
engineering in an entire development.

References

1. Bekkers,W., van deWeerd, I., Spruit,M., Brinkkemper, S.: A framework for process improve-
ment in software productmanagement. In: Riel, A.,O’Connor, R., Tichkiewitch, S.,Messnarz,
R. (eds.) EuroSPI 2010. CCIS, vol. 99, pp. 1–12. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15666-3_1

2. Blackman, B., et al.: Managing Agile Open-Source Software Projects with Microsoft Visual
Studio Online. Microsoft Press, Redmond (2015)

3. Cohn, M.: Agile Estimating and Planning. Prentice Hall, Upper Saddle River (2005)
4. Díaz, J., et al.: Agile product line engineering-a systematic literature review. Softw. Pract.

Exp. 41(8), 921–941 (2011)
5. Ebert, C., et al.: Automotive software. IEEE Softw. 34(3), 33–39 (2017)
6. Hayashi, K., et al.: Agile tames product line variability. In: Proceedings of SPLC 2017,

September 2017, pp. 180–189. ACM (2017)
7. Hayashi, K., et al.: Amultiple product line development method based on variability structure

analysis. In: Proceedings of SPLC 2018, September 2018, pp. 160–169. ACM (2018)
8. Hohl, P., et al.: Combining agile development and software product lines in automotive. In:

Proceedings of ICE/ITMC 2018, June 2018, pp. 1–9. IEEE (2018)
9. Krebs, J.: Agile Portfolio Management. Microsoft Press, Redmond (2008)
10. Laanti, M.: Is agile portfolio management following the principles of large-scale agile?. In:

Proceedings of IEEE Agile 2015, August 2015, pp. 92–96. IEEE (2015)
11. Leffingwell, D.: Agile Software Requirements. Addison-Wesley, Boston (2011)
12. Leffingwell, D.: SAFe® 4.5 Reference Guide. Scaled Agile Inc., Boulder (2018)
13. Mohan, K., et al.: Integrating software product line engineering and agile development. IEEE

Softw. 27(3), 48–55 (2010)
14. PMI: The Standard for Portfolio Management, 4th edn. PMI (2017)
15. Pohl, K., et al.: Software Product Line Engineering. Springer, Heidelberg (2005). https://doi.

org/10.1007/3-540-28901-1
16. Savolainen, J., Kuusela, J., Mannion, M., Vehkomäki, T.: Combining different product line

models to balance needs of product differentiation and reuse. In: Mei, H. (ed.) ICSR 2008.
LNCS, vol. 5030, pp. 116–129. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68073-4_11

17. Turek,M.,Werewka, J.:Multi-project Scrummethodology for projects using software product
lines. In: Świątek, J., Borzemski, L., Grzech, A., Wilimowska, Z. (eds.) Information Systems
Architecture and Technology: Proceedings of 36th International Conference on Information
Systems Architecture and Technology – ISAT 2015 – Part III. AISC, vol. 431, pp. 189–199.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28564-1_16

18. Wysocki, R.K.: Effective Project Management, 7th edn. Wiley, Hoboken (2013)

https://doi.org/10.1007/978-3-642-15666-3_1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-540-68073-4_11
https://doi.org/10.1007/978-3-319-28564-1_16

Lean R&D: An Agile Research and Development
Approach for Digital Transformation

Marcos Kalinowski1(B), Hélio Lopes1, Alex Furtado Teixeira2,
Gabriel da Silva Cardoso2, André Kuramoto2, Bruno Itagyba2, Solon Tarso Batista1,
Juliana Alves Pereira1, Thuener Silva1, Jorge Alam Warrak2, Marcelo da Costa2,

Marinho Fischer2, Cristiane Salgado2, Bianca Teixeira1, Jacques Chueke1,
Bruna Ferreira1, Rodrigo Lima1, Hugo Villamizar1, André Brandão1,
Simone Barbosa1, Marcus Poggi1, Carlos Pelizaro2, Deborah Lemes2,

Marcus Waltemberg2, Odnei Lopes2, and Willer Goulart2

1 Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
{kalinowski,lopes,tarso,juliana,thuener,bianca,jacques,bruna,

rodrigolima,hvillamizar,andre,simone,
poggi}@exacta.inf.puc-rio.br
2 Petrobras, Rio de Janeiro, RJ, Brazil

{alex.teixeira,gscardoso,kuramoto,itagyba,jawk,mceloscosta,

marinhof,cristiance.salgado,carlos.pelizaro,delemes,

marcuswaltemberg,odnei,willer}@petrobras.com.br

Abstract. Petrobras is a large publicly-held company that operates in the oil,
gas and energy industry. Recently, they conducted internal dynamics to identify
several Digital Transformation (DT) opportunities to leverage their operational
excellence. Addressing such opportunities typically requires Research and Devel-
opment (R&D) uncertainties that could lead traditional R&D cooperation terms
to be negotiated in years. However, there are time-to-market constraints for fast-
paced deliveries to experiment solution options. With this in mind, they partnered
up with PUC-Rio to establish a new DT initiative. The goal of this paper is to
present the Lean R&D approach, tailored within this new initiative, and results of
two case studies regarding its application in practice.We designed LeanR&D inte-
grating the following building blocks: (i) Lean Inceptions, to allow stakeholders to
jointly outline aMinimal Viable Product (MVP); (ii) early parallel technical feasi-
bility assessment and conception phases, allowing to ‘fail fast’; (iii) scrum-based
development management; and (iv) strategically aligned continuous experimen-
tation to test business hypotheses. In the two reported case studies, Lean R&D
enabled addressing research-related uncertainties early and to efficiently deliver
valuable MVPs within four months, showing itself suitable for supporting the DT
initiative. Key success factors were the business strategy alignment, the defined
roles and co-creation philosophy with strong integration between Petrobras and
PUC-Rio’s teams, and continuous support of a highly qualified research team.
Main opportunities for improvement, based on our lessons learned, rely on bet-
ter adapting Lean Inceptions to the DT context and on scaling the approach to a
project portfolio level of abstraction.

© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 106–124, 2020.
https://doi.org/10.1007/978-3-030-64148-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_7

Lean R&D: An Agile Research and Development Approach 107

Keywords: Digital transformation · Agile methods · Lean · Research and
development · Continuous experimentation

1 Introduction

Digital transformation can be seen as a process in which organizations investigate the use
of digital technologies to innovate their way of operating, aiming to solve business prob-
lems and to achieve strategic goals. The resolution of such problems frequently involves
transformations of key business operations thatmay affect organizational structures, pro-
cesses, and products [1]. Organizations of almost all industries are conducting digital
transformation initiatives to explore digital technologies and exploit their benefits [1].

Petrobras is a large publicly-held Brazilian company operating on an integrated basis
and specializing in the oil, natural gas, and energy industry. Internal efforts, including the
establishment of a newdigital transformation board and initiativeswithin theirmain busi-
ness areas, enabled them to identify several opportunities in which digital transformation
could potentially help them to leverage their operational excellence.

Digital transformation and innovating business processes by using digital technolo-
gies typically involveResearch andDevelopment (R&D) efforts. CENPES is the research
center of Petrobras, responsible for coordinating and conducting research initiatives.
Such R&D initiatives commonly involve cooperation terms with research institutes and
universities. These terms were usually designed in a plan-driven manner, with deliv-
eries that, given research uncertainties, could take up to years. However, in the digital
transformation context, there are time-to-market constraints and a need for fast-paced
deliveries to experiment solution options.

To address these digital transformation needs, they partnered up with PUC-Rio to
establish the ExACTa (Experimentation-based Agile Co-creation initiative for digital
Transformation) initiative. With a different mindset from the previously established
R&D cooperation terms, ExACTa was created to work with an open scope philosophy,
following agile practices forR&D to enable focused and fast deliveries ofMinimalViable
Products (MVPs) that can be used to test digital transformation business hypotheses. The
ExACTa initiative was launched in September 2019, and the first step involved designing
an R&D approach that would allow fast MVP deliveries. The resulting approach was
called Lean R&D.

The Lean R&D approach relies on agile and continuous software engineering prin-
ciples, including establishing a strong link between business and software development
(BizDev) and continuous experimentation practices [2]. Based on these principles, we
designed Lean R&D integrating the following building blocks: (i) Lean Inceptions [3], to
allow stakeholders to jointly outline the vision of Minimal Viable Products (MVPs) that
can be used to test business hypotheses; (ii) parallel technical feasibility assessment and
conception phases, allowing solution options to ‘fail fast’; (iii) scrum-based develop-
ment management; and (iv) continuous experimentation, to test the business hypotheses
in practice, allowing a build-measure-learn feedback cycle [4]. Moreover, the initiative
counts on a dedicated research team, specialized in data science and machine learning,
to support the development team with parallel investigation activities.

108 M. Kalinowski et al.

In previous work, reported in a short paper [5], we provided an overview of the first
conceptualization of Lean R&D and initial (then, incomplete) experiences. The goal of
this full industrial paper is to present Lean R&D in further detail and to report on detailed
outcomes of two complete industrial case studies, including closing the feedback cycle
with continuous experimentation. Hence, besides providing a more detailed description,
we investigate Lean R&D’s building blocks inmuchmore detail, discussing the practical
experience of applying it, highlighting observed industrial effects.

The herein detailed case studies concern applying Lean R&D in practice to build
digital transformation enabling MVPs for two different business areas of Petrobras:
industrial and logistics. In both cases, following the approach, valuable MVPs were
delivered to stakeholders within a four-month timeframe. Continuous experimentation
allowed to test business hypotheses in practice, supporting strategically aligned product
increment planning. Throughout these case studies, Lean R&D showed itself suitable
for supporting the digital transformation initiative. The business strategy alignment,
the defined roles and co-creation philosophy with strong integration between Petrobras
and PUC-Rio’s teams, and the continuous support of a highly qualified research team,
were observed as key success factors. Main opportunities for improvement, based on
our lessons learned, rely on better adapting Lean Inceptions to the DT context and on
scaling the approach to a project portfolio level of abstraction.

2 Background

Before designing Lean R&D, we tried to find a suitable agile approach that was, simulta-
neously: (i) digital transformation enabling (e.g., including strategies such as ‘fail fast,’
focusing on added business value and testing business hypotheses); and (ii) considering
joint research and development activities to allow handling complex R&D projects (e.g.,
investigating and conceiving simulation models). Lean principles have been reported to
offer the potential to improve the cost, quality, and speed of the R&D process [6]. How-
ever, we found no Lean R&D approach that was tailored for software product based,
digital transformation enabling solutions. Lean Startup [7], for instance, inspired us
with its business focus but does not consider our specific need to integrate R&D activi-
ties within agile methods to allow handling complex and research demanding software
projects.

The following two subsections provide the background on continuous software engi-
neering [2] and Lean Inceptions [3]. We used the expected dynamics of the first one
to pursue our goal of narrowing the gap between business strategy, development, and
experimenting solution options. Lean Inceptions, on the other hand, were used to help to
align stakeholders to define digital transformation enabling and business strategy aligned
MVPs.

2.1 Continuous Software Engineering

Fitzgerald and Stol [2], in their paper providing a roadmap and research agenda for con-
tinuous software engineering, argue that business, development, and operations should

Lean R&D: An Agile Research and Development Approach 109

Fig. 1. Relations between business strategy, development, and operation. Adapted from [2].

continuously be aligned with each other. Figure 1 provides an adapted and simplified
representation of such alignment.

The authors coin the term BizDev as the need to align the business strategy with the
development of software [2]. DevOps represents the need to align the development of
software with the deployment of that software into operation [8]. Finally, continuous
experimentation focuses on conducting experiments with stakeholders consisting of
repeated Build-Measure-Learn cycles [4, 9].

Reflecting on the implications of these alignments in the context of engineering dig-
ital transformation enabling software products, BizDev and continuous experimentation
play a key role in achieving digital transformation goals. After all, digital transformation
commonly involves changes in key business operations that affect business processes
and enabling products [1]. A focus on BizDev and continuous experimentation helps to
enable assuring the development of a business strategy aligned product and to assess the
added business value objectively. The importance of continuous experimentation within
digital transformation contexts is also highlighted by Fagerholm et al. [4]. DevOps, on
the other hand, represents a technical competitive advantage to speed up the development
process.

2.2 Lean Inception

Lean Inception is defined by its creator as the “combination of Design Thinking and
Lean Startup to decide the Minimum Viable Product (MVP)” [3]. It is a collaborative
workshop that is intended to help stakeholders to jointly outline the vision of a valuable,
feasible, and user-friendly MVP that can be used to test business hypotheses.

The steps involved in a Lean Inception are: defining the product vision; character-
izing and scoping the product vision; describing personas; describing user journeys;
conducting features brainstorming; conducting a business, technical, and UX review;
sequencing of features; and finalizing the MVP canvas.

The final result of a Lean Inception is an MVP canvas, as shown in Fig. 2. Based
on such canvas, the business hypotheses to be validated can be stated as “We believe
that (MVP name) will be able to (outcome statement), we will know that this happened
based on (metrics for business hypotheses validation)” [3].

110 M. Kalinowski et al.

Fig. 2. Lean Inception MVP canvas. Adapted from [3].

3 The Lean R&D Approach

Our goal was to design an R&D approach for digital transformation, based on agile
and continuous software engineering principles. CENPES and PUC-Rio’s teams jointly
brainstormed the following requirements as input for designing our approach.

R1: Maximize business ‘value while minimizing ‘waste’. A fundamental focus of the
lean philosophy is to shorten the time between a customer order and the delivery of that
order, in such a way that any activities that do not add ‘value’ are considered ‘waste’
and removed [10]. To achieve this goal, there should be a focus on the business strategy
and its alignment with development (BizDev) [2]. We address this main requirement in
our approach by: (i) using Lean Inceptions involving representative stakeholders aiming
at precisely defining the MVP that best fits the business strategy and focusing on the
essential features to deliver business value; (ii) defining the business hypotheses since
the beginning and applying continuous experimentation to validate them; (iii) having
dedicated business owner representatives at each customer to help co-creating solutions
that maximize business value; and (iii) going for agile and only essential documentation
(e.g., agile requirements [11]).

R2: Allow to ‘fail fast’. This involves employing the Lean Startup ‘fail fast’ concept
[7], which enables handling opportunities and risks involved in experimenting with
digital transformation solution options. The sooner you realize that an idea will not
work, the faster you can update it or even replace it with a new idea. This requirement
is addressed in our approach mainly by: (i) including ‘fail fast’ checkpoints; and (ii)
including a technical feasibility assessment at the beginning of the process to cope with
research-related uncertainties as soon as possible.

R3: Enable addressing complex problems. Digital transformation commonly
involves applying cutting-edge digital technology to solve business problems in domains
in which they were never applied before. Therefore, our approach considers the co-
creation of solutions with domain experts from the customer side and continuous sup-
port from a qualified research team with a dedicated research team lead and experts
in technologies that are commonly used within digital transformation contexts, such as
data science and machine learning techniques.

Lean R&D: An Agile Research and Development Approach 111

3.1 Approach Overview

Based on the aforementioned requirements, we decided to design the approach
using as building blocks Lean Inception, parallel (early) technical feasibility assess-
ment and conception phases, scrum-based development management, and continuous
experimentation. An overview of the designed approach is shown in Fig. 3.

Fig. 3. Lean R&D approach. The timeline is illustrative and specific to our instantiation.

It is possible to observe four checkpoints, a set of activities, and support of a dedicated
research team to technical solution related activities. Hereafter we describe the involved
roles and activities.

Lean R&D Roles. The following roles are involved in the approach. To ease under-
standing, we provide examples of how these roles were distributed in the context of the
ExACTa initiative.

Steering Committee. The main role of the steering committee is to assess the projects
at the depicted checkpoints. This assessment aims at: (i) allowing the ‘fail fast’ of ideas
that would not deliver the expected business value; and (ii) assuring that the approach is
being used to address relevant innovation and digital transformation challenges. In our
specific case, the steering committee for each project is composed by the coordinators of
PUC-Rio’s ExACTa initiative andmanagerial representatives ofCENPES andPetrobras’
target business area.

Project Manager (Scrum Master). Facilitates theLean Inceptions andmanages the agile
research and development teams, assuring that the overall Lean R&D approach is being
appropriately followed. In our specific case, we have one manager for four projects in
parallel.

Product Owners (POs) and Business Owners (BOs). As in traditional Scrum, POs are
responsible for maximizing the business value of the product resulting from the work
of the development team. These POs are assisted by additional customer representatives
BOs that work with the team to focus on the co-creation of solutions that maximize
business value. In our specific setting, we have two POs handling two projects each and
at least one BO per project.

112 M. Kalinowski et al.

Developers. The development teams. Currently, we have twelve full-time developers
working in four projects (three per project).

Research Team. The role of the research team is to support the development team in an
early technical feasibility assessment and in complex tasks during development (e.g.,
investigating machine learning techniques to be used, elaborating prediction models).
Currently, this team has one research lead supported by four researchers, serving four
projects.

UX/UI Design Team. Responsible for designing user interaction mock-ups and high-
fidelity prototypes to subsidize the front-enddevelopment.Currently,wehaveoneUX/UI
team lead and one UX/UI analyst, serving the four projects.

DevOps and Infrastructure Analyst. Responsible for providing the DevOps infrastruc-
ture to the development teams. Currently, we have one DevOps analyst serving four
projects.

Lean R&D Activities. The approach starts with a Lean Inception to allow stakeholders
to jointly outline the vision of an MVP that can be used to test business hypotheses. It
is important to involve representatives of all relevant stakeholders during this phase.
Thereafter, the defined MVP has to be approved by the steering committee (refer to the
first checkpoint in Fig. 3). If it gets rejected, a new Lean Inception should be conducted,
potentially focusing on a different problem. Referring to the suggestive timeline, the
typical duration of a Lean Inception is of five business days [3]. However, in our specific
case, we have managed to conduct them within three business days.

In the Technical Feasibility phase, the development team, assisted by the research
team and the DevOps analyst, starts investigating the technical feasibility of implement-
ing the features identified during the Lean Inception. Following the tracer bullet strategy
[12], this phase typically serves as proof that the architecture is compatible and feasible
and that there is a way to solve the problem with reasonable effectiveness, as well as
providing a working, demo-able skeleton with some initial implementations.

The Conception involves the PO detailing the MVP features identified during the
Lean Inception by applying product backlog building dynamics with the customer rep-
resentatives, followed by other typical requirements elicitation techniques (e.g., inter-
views), to specify user stories. Additionally, aware of severe negative impacts of under-
specified agile requirements [13], we complement user stories by specifying Behavior-
Driven Development (BDD) scenarios that can later be used as objective acceptance
criteria [14]. During the conception phase, the UX/UI team participates by creating
low-fidelity prototypes (e.g., mock-ups) for requirements validation and high-fidelity
UI prototypes for usability testing.

At the end of the conception, the agile requirements specification (containing user
stories, BDD scenarios, and mock-ups) is reviewed and validated with the customer,
and usability tests are conducted on the high-fidelity prototypes. It is noteworthy that
careful requirements reviews (e.g., inspections) are among software engineering’s best
practices [15], capturing about 60% of the defects early, when they are cheaper to fix,
significantly reducing rework, overall development effort, and delivery schedules [16].

Lean R&D: An Agile Research and Development Approach 113

Additionally, defects in requirements have other severe consequences, including cus-
tomer dissatisfaction and overall project failure [17]. Thus, this phase, concerning the
specification of what should be implemented, deserves special attention.

The second checkpoint involves the steering committee analyzing the require-
ments specification, together with the results of the technical feasibility assessment,
requirements review, and usability tests, to decidewhether theMVPshould be developed.

Thereafter, the Agile Development phase involves the development team, with the
support of the research team, implementing the MVP. The support of the research team
is typically welcome for more complex specific parts (e.g., building machine learning
models). Basically, this phase follows standard Scrum-based development with sprint
planning, daily meetings, and sprint review cycles. For quality improvement purposes,
we recommend using modern code reviews, which enable identifying faults, improving
solutions, and sharing knowledge and code ownership [18]. While the sprint duration
could be adjusted, in our specific case, we use sprints of two weeks and a custom
dashboard that allows monitoring the overall team progress (cf. Sect. 5).

Once the MVP is developed, the next checkpoint involves the PO presenting the
MVP to the steering committee, so that they can decide upon its transition into pro-
duction. While this major checkpoint happens at the end of development, the customer
representatives (BOs) are also involved in the sprint planning and sprint review activ-
ities during the development period, where they can always provide feedback to help
co-creating the product that best fits their business needs.

Finally, the Transition phase involves the development and infrastructure team
preparing the MVP for beta testing in its final environment and assessing the busi-
ness hypotheses. The last checkpoint concerns analyzing continuous experimentation
results, to investigate whether the business hypotheses were achieved and whether it
is worth investing in another Lean R&D cycle to further improve the product (in this
case the Lean Inception could be replaced by a simplified product increment planning
ceremony). The research team is supposed to design the experiment plan, which should
outline how to instrument the product to allow gathering the measurements required to
test the business hypotheses, and eventually building other assessment instruments (e.g.,
questionnaires to measure user satisfaction). It is noteworthy that we intend to contin-
uously improve the approach based on causal analysis process improvement practices
[19].

4 Case Study Design

The description of our case study design is based on the guidelines for conducting case
study research in software engineering by Runeson et al. [20].

4.1 Context

Petrobras is the largest company in Brazil and is active in the oil, natural gas, and energy
industry. In 2019 they established a new board focusing on digital transformation and
identified and prioritized several digital transformation opportunities within different
business areas.

114 M. Kalinowski et al.

Aiming at coping with their digital transformation needs, CENPES partnered up
with PUC-Rio’s informatics department to establish the ExACTa initiative. Differently
from previous experiences, this one should function with an open scope, following agile
practices for Research and Development (R&D) to enable focused and fast deliveries of
Minimal Viable Products (MVPs) that can be used to test digital transformation business
hypotheses. Of course, such a cooperation term relies on strong customer involvement
and a previously established relationship of trust between the two parties. The ExACTa
initiative was launched in September 2019, and the first step involved designing Lean
R&D.

The first two projects started in December 2019, and their first MVPs were delivered
within a four-month timeframe. Currently, the ExACTa initiative runs four such projects
in parallel. To cope with these demands, the initiative counts on four professors of the
informatics department (active in the areas of data science, software engineering, opti-
mization, and human-computer interaction), and hired 21 additional full-time employees
(1 scrum master, 1 research team lead, 1 UX/UI team lead, 12 developers, 4 research
team members, 1 UX/UI analyst, and 1 DevOps and infrastructure analyst). The case
study concerns the first two projects. More details on the case and subject selection are
provided in Sect. 4.3.

4.2 Goal and Research Questions

The goal of the case studies can be defined, following theGQM template [21], as follows:
“Analyze the Lean R&D approach with the purpose of characterization with respect
to its overall outcomes and stakeholder perceptions, and the acceptance of its main
building blocks from the point of view of the stakeholders and researchers in the context
of the projects undertaken within the ExACTa co-creation initiative.” From this goal,
we derived the research questions.

RQ1: What have been the overall outcomes of the Lean R&D approach? To answer
this question, we access the data from the agile management system (Microsoft DevOps)
and discuss deliverables that have been accepted by the customer.

RQ2: What are the perceptions of the main stakeholders on the Lean R&D approach
so far? To answer this question, we asked the main Lean R&D stakeholders from the
involved business areas for feedback and analyzed this feedback qualitatively.

RQ3: What is the acceptance of applying Lean R&D’s Lean Inceptions to define
MVPs?To answer this question,we applied a survey based on theTechnology Acceptance
Model (TAM) [22], which has been commonly used to measure acceptance [23], to all
Lean Inception participants.

RQ4: Does Lean R&D’s early technical feasibility assessment phase help to address
research-related uncertainties? To answer this question, we analyze the tasks and com-
ments within the agile management system and the meeting minutes, to retroactively
reflect on each case.

RQ5: Does Lean R&D’s agile scrum-based and research-supported development fit
well into the digital transformation initiative? To answer this question, we reflect on
the dynamics of scrum plannings, reviews, and daily meetings, and data from the agile
management system.

Lean R&D: An Agile Research and Development Approach 115

RQ6: Does continuous experimentation help to test business hypotheses and provide
feedback? To answer this question, we reflect on data regarding the usage of the solu-
tions and on additional evaluation instruments (questionnaire) used to assess the MVP’s
business hypotheses

4.3 Case and Subject Selection

We selected the first two projects by convenience. Details on each case follow.
Case 1: Intelligent monitoring of gas emissions by oil refineries. This case addresses

a need of the industrial business area within Petrobras, and concerns building artificial
intelligence models to predict refinery gas emissions, based on operation controls and
environmental sensor data. This system should help to improve the capability of envi-
ronmental monitoring and help to reduce environmental complaints by the community
(e.g., regarding bad smells). Besides the ExACTa team, this case had three employees of
Petrobras (BOs) working co-located within the ExACTa initiative space at PUC-Rio1.
All these team members participated in the Lean Inception, as well as the sponsor at
CENPES, the sponsor at Petrobras’ industrial area, and representatives of employees of
the target refineries.

Case 2: Intelligent logistics control of service providing ships, helping to identify
and handle off -hire situations. This case addresses a need of the Logistics business area
within Petrobras, and concerns building intelligent controls, integrating information
from several systems to identify and handle off-hire situations (i.e., situations in which a
chartered ship is not available), which should be deducted from payments to the service
providers (as well as the fuel used during off-hire periods). Besides the ExACTa team,
this case had four employees of Petrobras (BOs) directly involved in co-creating the
solutions. While they did not work full time, they participated in all Scrum plannings
and reviews and were always available remotely and willing to contribute. All these
team members participated in the Lean Inception, as well as the sponsor at CENPES,
the sponsor at Petrobras’ logistics area, and employees involved in operating ships and
administering ship charter contracts.

4.4 Data Collection and Analysis Procedures

The author team includesmembers of both cases (they participated in discussions regard-
ing the approach and helped to adjust it until reaching the herein described format) and
has direct access to all other team members at PUC-Rio and Petrobras. The authors also
had representatives in both Lean Inceptions, in the sprint plannings, reviews, and daily
meetings, allowing them to precisely observe the approach in its real context. Moreover,
they had complete access to the agile management system (Microsoft DevOps) and all
project-related artifacts, including meeting minutes.

Additionally, as the Lean Inceptions involved several stakeholders, we conducted a
survey based on the TAM questionnaire and open questions, which were analyzed quali-
tatively and anonymously. Also, for continuous experimentation purposes, we measured

1 Since March 23rd activities moved to home-office due to COVID-19. Following the recom-
mendations in [24] as much as possible and using proper remote tool support (Microsoft Azure
DevOps and Teams) allowed us to keep the Lean R&D approach running remotely.

116 M. Kalinowski et al.

usage data of the provided solutions and applied additional questionnaires.Moreover, we
asked the sponsors at Petrobras’ involved business areas for additional feedback on their
perceptions. This feedback was also qualitatively analyzed to help us further understand
the overall acceptance from a managerial perspective.

4.5 Validity Procedures

All the quantitative datawas collected from the agilemanagement systemand real project
artifacts. The agile management system is directly integrated with changes in the source
code and any other project artifact. The status of tasks within this system is verified on
a daily basis during the daily meetings. Anonymity was employed in all questionnaires,
allowing stakeholders to freely express their opinions.

5 Results and Discussion

Hereafterwedescribe the results of the case studies.Wedecided to describe them together
in a joint analysis and discussion, focusing on answering each research question based
on observations from both cases.

RQ1: What have been the overall outcomes of the Lean R&D approach?Regard-
ing the outcomes, both cases recently had their first MVP accepted by the customer and
delivered to the end-user within a four-month timeframe. Case 1 delivered anMVPwith
6 features (detailed in 28 user stories), while Case 2 delivered an MVP with 5 features
(detailed in 53 user stories). Figure 4 shows screenshots of functionalities developed for
Case 1 and Case 2. MVPs are now available to the end-users for beta testing, evaluating
the associated business hypotheses and identifying opportunities for further improve-
ment (e.g., in the format of new MVP versions). The MVP for Case 1 uses a decision
tree model to predict the probability of gas emissions above a certain level and potential
causes and enables to register and correlate complaints from the community. The MVP
for Case 2 uses intelligent data crossings to enable effectively detecting and handling
off-hire events within ship charter contracts.

Regarding the process outcomes, based on data from the agile management system,
it is observable that the development team adjusted to the process and produced the
Lean R&D artifacts (process outcomes) as expected. All Lean Inception artifacts were
organized in the agile management system’s wiki. During the conception phase, features
identified in the Lean Inceptions were detailed into user stories with BDD scenarios,
mock-ups were built and high-fidelity prototypes designed and validated.

With respect to the technical feasibility and research and development artifacts, in
Case 1, due to access to confidential data, the team had to use an external Petrobras
repository for committing their artifacts (e.g., code, models, and configuration files).
Therefore, commits were not directly linked to the tasks in the management system.
In Case 2, the agile management system’s integrated Git repository was used, creating
a branch for each task and using modern code reviews to assure code quality during
pull-requests.

Regarding the sprint plannings and reviews, meeting minutes were registered for
each event (every two weeks) in the agile management system. For Case 1, we also

Lean R&D: An Agile Research and Development Approach 117

Fig. 4. Screens of developed functionalities for Case 1 (a) and Case 2 (b). Both had their first
MVPs delivered within a four-month timeframe. Figures included for illustrative purposes, the
focus of this paper is on the approach, not on the implemented solutions.

conducted weekly managerial status report meetings and registered meeting minutes
for them, as critical stakeholders could not promptly adjust their activities to attend our
sprint planning and review schedules.

RQ2: What are the perceptions of the main stakeholders on the Lean R&D
approach so far? We asked the main stakeholders at Petrobras’ industrial (Case 1) and
logistics (Case 2) areas for feedback and analyzed this feedback qualitatively. Therefore,
we reached out to them, asking them towrite a short open text on their overall perceptions
so far. The feedback was extremely positive.

The manager responsible for the industrial business area emphasized the co-creation
process, effectiveness in adding business value, speed, and the evolutionary MVP app-
roach: “The integration of the technical process engineering and IT teams of Petrobras
with the development teams at PUC-Rio is a main advantage for achieving effective
results, adding business value in a fast, collaborative and evolutionary way.” It is note-
worthy that this area had three Petrobras employees working most of the time collocated
(after the pandemic virtually) with the team, offering tremendous help towards achieving
the goals and co-creating the solutions.

The representative of the logistics area was in-line with these arguments and empha-
sized co-creation, agility, and efficiency: “The co-creation partnership with ExACTa
has reflected the goals pursued by the logistics area: alignment between planning and
accomplishments, agility and efficiency.” He also wrote that “The initial impact of the
different working method proposal, given the results, soon gave way to confidence. The
team demonstrates control over the development, with continuous communication and
predictability over the terms and scope of agreed deliveries”. This statement highlights
the adaptation and acceptance of the newagilemethod, after a completely understandable
initial skepticism, observed from stakeholders of both cases, at the beginning.

RQ3: What is the acceptance of applying Lean R&D’s Lean Inceptions to define
MVPs? The Lean Inceptions were conducted involving the identified key stakeholders
for each case. Figure 5 shows part of both Lean Inception teams in action. It illustrates
the dynamics of co-creating a joint vision of an MVP that should add business value,
be technically feasible, and user-friendly (Lean Inception includes a specific business,
technical, and UX review activity before sequencing identified features into MVPs).

118 M. Kalinowski et al.

Fig. 5. Kicking off the Lean Inception of Case 1 (a) and discussing the final feature sequencing
with some Lean Inception participants of Case 2 (b).

To investigate the acceptance, we applied a questionnaire, designed based on the
TAM questionnaire [22] adding an open text question asking for suggestions. The ques-
tionnaire was applied to all Lean Inception participants, but answering was not manda-
tory (eleven participants answered in both cases). An excerpt from the results of the
TAMquestionnaire, regarding the stakeholder perceptions that best help answering RQ3
(speed and precision when defining the MVP, usefulness, ease of use, and intention to
adopt) is shown in Table 1 for Case 1 and Table 2 for Case 2. While participants were
asked to identify whether they were from Petrobras or PUC, answers were anonymously
collected.

To facilitate an overview of the results, we highlighted the cells with the highest
value within each line. Based on these highlights, it is possible to observe an overall
acceptance of using Lean Inceptions to define the joined vision of the MVP, with mainly
neutral to positive perceptions in Case 1 and mainly positive perceptions in Case 2.
It may be possible to explain the differences between the cases based on the fact that
the Lean Inception conducted in Case 1 was the overall first one conducted within the
ExACTa initiative. Also, based on the feedback collected from the open questions in
Case 1, we held a contextualization meeting at the customer side before starting the
inception of Case 2. We also identified some improvement suggestions regarding details
of the Lean Inception method within the provided answers.

Based on these results and our overall perception, we believe that the Lean Inceptions
helped to understand the overall context, enabling to outline an MVP and a prioritized
set of features, which subsidize the next Lean R&D activities (e.g., the conception where
features are detailed into user stories and the technical feasibilities, where the tracer-
bullet strategy is applied to check if it is possible to implement the identified features).
Moreover, it also helped to understand the continuous experimentation needs, by iden-
tifying the business hypotheses. Among the open text answers the main opportunities
for adjustment to the R&D context concern improving the business, technical, and UX
review step, as some participants highlighted that this step should not be conducted
with the entire group, but properly separating main stakeholders into specific groups
for a more precise assessment. I.e., it was observed that developers are typically not
able to appropriately judge the business value of features, while business stakeholders
have similar difficulties with the technical review on feasibility and effort. Moreover,
UX related stakeholders typically found the information gathered during the Lean Incep-
tions insufficient for subsidizing UX feature assessments. Indeed, in our experiences, the

Lean R&D: An Agile Research and Development Approach 119

Table 1. Lean Inception TAM Questionnaire for Case 1.

Statement Comp. #Answers SD D N A SA

High speed Petro. 5 0% 0% 20% 80% 0%

PUC 6 0% 17% 17% 33% 33%

High precision Petro 5 0% 0% 80% 20% 0%

PUC 6 0% 0% 50% 50% 0%

High usefulness Petro 5 0% 0% 40% 40% 20%

PUC 6 0% 0% 17% 33% 50%

Easy to use Petro. 4 0% 0% 75% 0% 25%

PUC 6 0% 17% 33% 33% 17%

Intention to adopt Petro 5 0% 0% 40% 40% 20%

PUC 6 0% 17% 17% 33% 33%

SD: Strongly Disagree, D: Disagree, N: Neutral, A: Agree, SA: Strongly
Agree.

Table 2. Lean Inception TAM Questionnaire for Case 2.

Statement Comp. #Answers SD D N A SA

High speed Petro. 4 0% 0% 0% 75% 25%

PUC 7 0% 14% 0% 29% 57%

High precision Petro 4 0% 0% 25% 75% 0%

PUC 7 0% 0% 29% 29% 43%

High usefulness Petro 4 0% 0% 25% 50% 25%

PUC 7 0% 0% 0% 43% 57%

Easy to use Petro. 4 0% 0% 0% 75% 25%

PUC 7 0% 0% 14% 57% 29%

Intention to adopt Petro 4 0% 0% 0% 50% 50%

PUC 7 0% 0% 0% 14% 86%

SD: Strongly Disagree, D: Disagree, N: Neutral, A: Agree, SA: Strongly
Agree.

assessments had to be reviewed after the product backlog dynamics conducted during
the conception phase.

RQ4: Does Lean R&D’s early technical feasibility assessment phase help to
address research-related uncertainties? We analyzed the tasks and comments within
the agile management system, meeting minutes, and the observed experience within the
projects. Analyzing the tasks indicated that in both cases, this phase was needed before

120 M. Kalinowski et al.

starting the development sprints, enabling to address research-related uncertainties and
infrastructural issues, alsowith the support fromPetrobras’ IT teams, as soon as possible.

For Case 1, the tasks accomplished within this phase mainly concerned: (a) investi-
gating alternatives for building a prediction model with reasonable accuracy, (b) testing
integrations and access to required data, and (c) solving infrastructure-related problems.
For Case 2, the tasks accomplished within this phase mainly concerned experimenting
some architectural solution options and aligning them with Petrobras’ standards and
investigating the integration and compatibility with Petrobras’ legacy systems.

At this point, it is important to highlight the support from the parallel research
team and the infrastructure analyst. Of course, this support is also important during
development, but in this early technical feasibility assessment phase, it is enabling and
crucial. After the delivery of the MVP of Case 1, one of the developers mentioned
within the team communication channel that “it would not have been possible to properly
address this problem within the expected timeframe without the early investigations and
support of the research team.”

RQ5: Does Lean R&Ds agile scrum-based and research-supported development
fit well into the digital transformation initiative? Here we reflect on the dynamics of
scrum plannings, reviews, and daily meetings and the transparency provided by the
agile management system. Our overall conclusion is that yes, it fits well when using
Lean R&D adaptations (e.g., a strong focus on precise, agile specifications, addressing
architecture and research uncertainties at the very beginning, and proving continuous
research support to the development team).

Sprint planning, review, and daily meetings played a key role in facilitating man-
agement and communication and establishing a co-creation team spirit. Transparent and
continuous access to all sprint planning and review meeting minutes by all stakeholders
helped to provide transparency and building trust. Transparency was also provided by
properly configuring tool support for monitoring development progress. We designed a
customized dashboard, used within all projects, to show the overall project progress in
real-time (i.e., as soon as a developer concludes a task, the dashboard is automatically
updated). The dashboards of Case 1 and Case 2 can be seen in Fig. 6. We keep these
dashboards projected and continuously visible to the whole project team (also always
remotely accessible through theMicrosoft AzureDevOps system). Nevertheless, consid-
ering the initiative as a whole, even organizing information on the different projects with
similar dashboards, we noticed shortcomings for managing information at a portfolio
level of abstraction.

Initially, we faced some resistance from customers of both cases in following the
agile co-working philosophy. As the results started to be delivered, this resistance was
replacedby confidence, and a joyful co-creation environmentwas established.Webelieve
that complete progress transparency also helped in this direction.

RQ6: Does continuous experimentation help to test business hypotheses and
provide feedback? The Lean Inceptions helped to identify target business hypotheses
for continuous experimentation. We will focus the discussion of this research question
on MVP of Case 1, mainly due to space constraints and because this one started being
used by the end-users earlier (at the beginning of June, while MVP of Case 2 started
being used at the beginning of July). The information we have so far for Case 2, is that,

Lean R&D: An Agile Research and Development Approach 121

Fig. 6. Standardized and interactive project monitoring dashboards for Case 1 (a) and Case 2 (b),
showing the progress of the product, the current sprint, and of minor tasks.

according to the representative of the logistics area, “employees involved in operating
ships and administrating ship charter contracts [i.e., end users] are satisfied with the
delivered MVP and were able to start using it after a very short training period.” Indeed,
after some days of initial usage, they identified and started handling 16 off-hire events
through the system. Nevertheless, this information does not allow us to test the business
hypotheses yet (which involve comparing off-hire deductions and handling time).

MVP of Case 1 was deployed in the cloud, and we could collect usage data directly
from the Microsoft Azure cloud platform. We measured the distribution of usage time
(proxied by the amount of exchanged data) and the number of users (proxied by the
number of active sessions) over time. Figure 7 shows these measures for the period of
June 10th to July 10th. It is possible to observe an increase in the usage time and also
in the number of users (active sessions). Two refinery operators at Petrobras started
using the solution for monitoring gas emissions at least once a week (eventually, there
were more than two simultaneous users). It is possible to see that they started spending
more time in the system as they were becoming more familiar with it, which provides a
preliminary indication of its perceived usefulness.

Fig. 7. Microsoft Azure metrics used as proxies for usage time and number of users.

Regarding the evaluation of the business hypotheses, there were two business
hypotheses for Case 1. Hypothesis 1: “We believe that the MVP for Case 1 will be
able to reduce the number of complaints by the society regarding bad smells related to
refinery gas emissions, we will know that this happened based on the average number
of complaints”; and Hypothesis 2: “We believe that the MVP for Case 1 will be able
to allow faster diagnosis of the causes, we will know that this happened based on the

122 M. Kalinowski et al.

average time spent on the diagnosis.” In the case of the diagnosis, it was supported by
showing the decision tree path that led to the inference of high gas emission, and also
letting users consult the whole decision tree.

Unfortunately, while we provided means to monitor the related metrics, the time of
deployment would not be sufficient to observe changes in the averages yet. Therefore,
we used an additional instrument to preliminarily assess our hypotheses; a questionnaire
answered directly by the end-users in the refinery. Both main users answered that they
completely agreed that the solution would help to lower the number of complaints and
also the cause identification time. Moreover, they provided valuable feedback, with new
features to be included in the next product increment (e.g., automatic notification alerts)
and also showing to be satisfied with the provided solution. E.g., one of them mentioned
that “the interface is well organized and information is properly presented, allowing
interactions to filter the period and to understand the decision tree inferences.”

6 Concluding Remarks

In this paper, we presented the Lean R&D approach, tailored to meet digital transforma-
tion related needs, including the ability to fail fast and agile and fast-paced deliveries of
complex solutions. The development of such products commonly involves R&D efforts.
However, we found no digital transformation focused approach available that appropri-
ately considers integratingR&Defforts into an agile development philosophy.LeanR&D
was designedwith this focus, based on the following building blocks: (i) Lean Inceptions,
to allow stakeholders to jointly outline a Minimal Viable Product (MVP); (ii) parallel
technical feasibility assessment and conception phases; (iii) scrum-based research and
development management; and (iv) strategically aligned continuous experimentation to
test business hypotheses.

We appliedLeanR&D in two case studies. LeanR&Denabled defining a joinedMVP
vision, addressing research-related uncertainties early, and to efficiently deliver valuable
MVPswhichwere accepted by the end-users.Basedonour experience, precisely defining
business hypotheses and the focus on continuous experimentation strengthen the BizDev
integration, helping to guide the overall development efforts since the beginning and
avoiding to lose the focus on the main business goals. This business strategy alignment,
the defined roles and co-creation philosophy with strong integration between Petrobras
and PUC-Rio’s teams, and the continuous support of a highly qualified research team,
exploring synergieswith the university’s research program,were observed as key success
factors.Main opportunities for improvement, based on our lessons learned, rely on better
adapting Lean Inceptions to the DT context and on scaling the approach to a project
portfolio level of abstraction.

While we are aware that these case studies were conducted in a specific context,
we believe that sharing the approach and our evaluation experiences could help other
organizations involved in digital transformation initiatives.

Acknowledgments. The authors would like to thank all ExACTa PUC-Rio and Petrobras
employees involved in the projects for their trust and dedication to the new initiative.

Lean R&D: An Agile Research and Development Approach 123

References

1. Matt, C., Hess, T., Benlian, A.: Digital transformation strategies. Bus. Inf. Syst. Eng. 57(5),
339–343 (2015)

2. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

3. Caroli, P.: Lean Inception: how to align people and build the right product. Editora Caroli
(2018)

4. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The RIGHT model for continuous
experimentation. J. Syst. Softw. 123, 292–305 (2017)

5. Kalinowski, M., Batista, S.T., Lopes, H. et al.: Towards lean R&D: an agile research and
development approach for digital transformation. In: Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Portoroz, Slovenia, 5 p. (2020, in press)

6. Reinertsen, D., Shaeffer, L.: Making R&d lean. Res. Technol. Manage. 48(4), 51–57 (2015)
7. Ries, E.: The Lean Startup: HowToday’s Entrepreneurs Use Continuous Innovation ToCreate

Radically Successful Businesses. Crown Business, New York (2011)
8. Debois, P.: Devops: a software revolution in the making. J. Inf. Technol. Manage. 24(8), 3–39

(2011)
9. Bosch, J.: Building products as innovation experiment systems. In: Cusumano, M.A., Iyer,

B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30746-1_3

10. Ohno, T.: Toyota Production System: Beyond Large-Scale Production. CRC Press, Boca
Raton (1988)

11. Wagner, S., Mendez, D., Felderer, M., et al.: Status quo in requirements engineering: a theory
and a global family of surveys. ACM Trans. Softw. Eng. Methodol. (TOSEM) 28(2), 1–48
(2019)

12. Thomas, D., Hunt, A.: The Pragmatic Programmer: Your Journey to Mastery, 2nd edn.
Addison-Wesley Professional, Boston (2019)

13. Mendes, T.S., de Freitas Farias, M.A., Mendonçam M., et al.: Impacts of agile requirements
documentation debt on software projects: a retrospective study. In: Proceedings of the ACM
Symposium on Applied Computing (SAC), Pisa, Italy, pp. 1290–1295 (2016)

14. Smart, J.F.: BDD inAction: Behavior-DrivenDevelopment for theWhole Software Lifecycle.
Manning, Shelter Island (2015)

15. Aurum, A., Petersson, H., Wohlin, C.: State-of-the-art: software inspections after 25 years.
Softw. Test. Verif. Reliab. 12(3), 133–154 (2002)

16. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. IEEE Comput. 34(1), 135–137
(2001)

17. Mendez, D., Wagner, S., Kalinowski, M., et al.: Naming the pain in requirements engineering
– contemporary problems, causes, and effects in practice. Empirical Softw. Eng. 22(5), 2298–
2338 (2017)

18. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code review. In:
International Conference on Software Engineering, San Francisco, USA, pp. 712–721 (2013)

19. Kalinowski, M., Mendes, E., Card, D. N., Travassos, G. H.: Applying DPPI: a defect causal
analysis approach using bayesian networks. In: International Conference on Product Focused
Software Process Improvement (PROFES), Oulu, Finland, pp. 92–106 (2010)

20. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering:
Guidelines and Examples. Wiley, Hoboken (2012)

21. Basili, V.R., Rombach, H.D.: The TAME project: towards improvement-oriented software
environments. IEEE Trans. Software Eng. 14(6), 758–773 (1998)

https://doi.org/10.1007/978-3-642-30746-1_3

124 M. Kalinowski et al.

22. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q. 13(3), 319–340 (1989)

23. Turner, M., Kitchenham, B., Brereton, P., Charters, S., Budgen, D.: Does the technology
acceptance model predict actual use? A systematic literature review. Inf. Softw. Technol.
52(5), 463–479 (2010)

24. Ralph, P., Baltes, S., Adisaputri, G., et al.: Pandemic programming: how COVID-19 affects
software developers and how their organizations can help. Empirical Softw. Eng. 34 p. (2020,
in press)

Success and Failure Factors for Adopting
a Combined Approach: A Case Study of

Two Software Development Teams

Ingrid Signoretti1, Maximilian Zorzetti1(B), Larissa Salerno1,
Cassiano Moralles1, Eliana Pereira2, Cássio Trindade1, Sabrina Marczak1,

and Ricardo Bastos1

1 MunDDoS Research Group, School of Technology, PUCRS,
Porto Alegre, RS, Brazil

{ingrid.manfrim,maximilian.zorzetti,larissa.salerno,
cassiano.moralles}@acad.pucrs.br

{cassio.trindade,sabrina.marczak,ricardo.bastos}@pucrs.br
2 Instituto Federal do Rio Grande do Sul (IFRS), Porto Alegre, RS, Brazil

eliana.pereira@restinga.ifrs.edu.br

Abstract. The combination of Agile, User-Centered Design and Lean
Startup has emerged as a solution for teams that are struggling with lack
of user involvement and delivering products that fulfill stakeholder needs.
Adopting such a development approach involves several factors, some of
which can assist or hinder the adoption process. Currently, the literature
reports on studies on such factors, but only for agile-only methods. Moti-
vated by this knowledge gap, our goal is to map the success and failure
factors of a combined approach adoption. We conduct a case study with
two software development teams from a large organization transition-
ing to the combined approach. We used semi-structured interviews and
focus group sessions to collect data. Our findings show five success fac-
tors categories (e.g., team engagement, technical aspects) and one failure
factor category (team autonomy at risk), along with several argumenta-
tion points suggested by the teams to argue against a company policy
perceived to be a very impactful failure factor. This study contributes to
academic literature by reporting on success and failure factors of a com-
bined approach transformation, and could be used as a starting point in
defining tools (e.g., maturity models) to aid organizations in transition-
ing to the combined approach.

Keywords: Agile · User-centered design · Lean startup · Success
factors · Failure factors · Agile transformation

1 Introduction

Combining Agile Software Development with User-Centered Design (UCD) and
Lean Startup into a novel development approach is a topic that is being widely
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 125–141, 2020.
https://doi.org/10.1007/978-3-030-64148-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_8

126 I. Signoretti et al.

explored in literature [7,9,23]. This triad approach helps teams in facing develop-
ment gaps that agile by itself does not handle (such as stakeholders engagement
in the development process) and in exploring and understanding user needs so
as to build an assertive product [4]. Due to its many reported benefits in the
literature, the combined approach has been the subject of interest in organiza-
tions ranging from startups [9] to multinational companies [21]. However, the
transformation process to the combined approach implies the same challenges of
a transformation to an agile-only approach, possibly even more.

Current literature reports a variety of success and challenge factors faced
in an agile-only transformation [17], such as quality, continuous improvement,
and waste elimination for success factors [18] and hierarchical issues, cultural
aspects, and change resistance for challenge factors [13,17]. As mentioned, these
factors were established for agile-only transformations, and therefore might not
fully apply to a transformation to the combined approach.

Motivated by this gap in the literature, we conducted a case study with two
software development teams that are undergoing a transformation to the com-
bined approach. We observed both teams closely and gathered data to determine
the success and challenge factors of the teams’ transformation to the combined
approach. Our study provides a starting point for teams to improve their con-
tinued use of the combined approach; and suggests the need of mechanisms to
support and/or accelerate the transformation process, such as maturity models.

The remainder of the paper is organized as follows. Section 2 discourses on the
combined approach and transformation processes. Section 3 presents our research
method and details the case setting. Section 4 reports the success and failure
factors of the teams’ transformation. Section 5 discusses our findings. Section 6
wraps up the paper, discusses limitations, and proposes future work.

2 Background

2.1 Combined Approach

The combined use of Agile Software Development, User-Centered Design (UCD),
and Lean Startup has been argued as a manner to tackle the limitations of agile,
such as lack of customer involvement [1] and proper addressment of stakeholders
needs [8]. While its UCD [16] character centers the development on the user,
promoting creativity and empathy and helping developers to approach problems
using a user-centric view [9], its Lean Startup [19] approach focuses on adding
value to business stakeholders by looking for the best solution through experi-
mentation, in which business hypotheses are constantly validated with real data,
bringing about the constant pivoting of solutions until a fit resolution is achieved.

Several studies have been made on the combined approach. Fashion retailer
Nordstrom report on the very successful case of their innovation team [9], in
which they iteratively supplemented their development approach, eventually
reaching a combination of Agile, Lean Startup, and Design Thinking. Other stud-
ies [4,7,23] propose a process model for the combined approach, while Signoretti
et al. discuss the activity and mindset changes that the approach entails [22]

Success and Failure Factors for Adopting a Combined Approach 127

and highlight general benefits that the approach brings about [21], along with
reporting on the upcoming challenges that teams new to the approach think
they will face as the transformation goes on [21].

2.2 Transformation Process

Facing an agile transformation process is an infrastructural project that requires
an elaborated and detailed plan from organizations. In such a plan, attention
must be paid to the ensuing management, structural, and technical changes while
also addressing mindset and cultural issues [17]. Most transformations take place
to better align future product development with corporate strategies, so as to
better respond to market changes. From a development team perspective, how-
ever, motivations to change include a team’s lack of engagement or dissatisfaction
with the current development method and/or work culture [3].

Julian et al. [11] reports on two transitioning strategies: a “gradual” app-
roach, in which practices are gradually integrated into the organization; or a
“big bang” approach, in which all practices are adopted by-the-book. In any
case, a transformation has a set of success and failure factors, which are decisive
points for organizations to evaluate and scale their transformation strategy. In
agile-only transformations, success factors include the use of a pilot transfor-
mation team, endorsement of mindset change towards agile values, and promo-
tion of social events [17]; while failure factors include change resistance, intra-
organization coordination and communication, and issues with hierarchical and
organizational boundaries [3]. As previously stated, however, current literature
only encompasses agile-only transformations, and while we assume that a trans-
formation to the combined approach is similar (if not more complicated, given
its three-pronged method), there is currently no evidence supporting this.

3 Research Method

In our previous case study [21], we reported on the early benefits (e.g., increased
shared knowledge) brought by the combined approach and the current and
upcoming challenges (e.g., changing work habits) that the transformation incurs,
as perceived by two software development teams that had recently adopted the
combined approach. Six months later, we call upon both teams again (now even
more entrenched in the combined approach) seeking to understand what pushes
the transformation to the combined approach towards success or failure.

3.1 Case Setting

We conducted a case study [20] with two software development teams from
ORG (name omitted for confidentiality reasons), a multinational IT company.
ORG has software product development sites in the USA (headquarters), India,
and Brazil. With over 7,000 employees and responsible for about 1,200 software
products. The company started an agile transformation in 2015, but in late 2017

128 I. Signoretti et al.

the transformation strategy changed as the CEO understood that the company
should improve their user experience by focusing on products. The organization
then switched from a project road-map to focus on a product-oriented mindset.
This change demanded of teams more in-depth knowledge of their users and
business needs. For this reason, the company decided to invest in a combined
approach of Agile, UCD, and Lean Startup. The adopted approach was inspired
by the Pivotal Labs1 methodology, which proposes principles and ceremonies
based on the three aforementioned approaches. It also suggests the adoption of
a cross-functional team composed of three main roles: Product Designer, Prod-
uct Manager, and Software Engineer. Pivotal Labs’ main goal is to help teams
to build software products that deliver meaningful value for users and their busi-
ness. It offers a framework and starting point for any team to discuss its needs
and define its own way towards software development. As part of a big bang
transformation approach [11], two teams were selected to train daily with con-
sultants from Pivotal Labs. The teams were formed with highly skilled employees
that could lead the transformation.

We observed in-loco those two teams from the financial area located in Brazil,
and both teams develop services for company internal use. The teams are com-
posed of 2 Product Managers, 1 Product Designer, and 4 Software Engineers
each. Team A is responsible for a software product that manages, calculates,
and generates data about company projects related to equipment (e.g, peripher-
als and computers for personal or server use) and service delivery (e.g., machine
installation, support, and replacement). The product manages general project
information, such as personnel assignment and time spent on tasks, and also
calculates the associated costs of services offered by the products sold by ORG.
Team A is tasked with integrating all existing operations of the product into
a single application that fulfills user needs and business expectations. Team B
is responsible for a software product that consumes data from multiple ORG
applications (including Team A’s) to calculate the average cost of equipment
developed in Brazil. The application generates reports for internal accounting,
such as inventory reports for tax purposes. Team B had to conduct research to
understand current product processes and automate them into the application.

3.2 Data Collection and Methods

To confirm and deepen our previous findings [21], we applied a set of data col-
lection methods that will be explored next. Also, Table 1 shows the profile of
the study’s participants.

Individual Semi-structured Interviews. We sought to confirm and expand
upon our previous findings [21] in regards to the transformation process through
individual semi-structured follow-up interviews. We asked the participants to
confirm factors collected previously, such as the impact of the combined approach
on team engagement, the relationship between team and stakeholders, technical
1 https://pivotal.io/Labs.

https://pivotal.io/Labs

Success and Failure Factors for Adopting a Combined Approach 129

Table 1. Participants’ profile

ID Team Role IT Exp. (yr.) ORG Exp. (yr.)

P1 B Software Engineer 10 4

P2 B Product Manager 19 0.5

P3 A Software Engineer 6 1

P4 B Software Engineer 15 11

P5 A Product Designer 27 10

P6 A Software Engineer 21 8

P7 B Software Engineer 7 7

P8 A Product Manager 21 6

P9 B Product Designer 5 4

P10 A Product Manager 16 7.5

P11 B Product Manager 23 10.5

P12 A Software Engineer 5.5 4

P13 A Software Engineer 20 11

P14 B Software Engineer 5 5

aspects, team autonomy, and project-centered budget allocation. This led us to
new factors such as team and stakeholders trust and communication, and team
autonomy at risk. As these interviews unearthed several new impacting factors
on the transformation, we decided to conduct a focus group session to discuss
them in depth. The interviews were voice recorded and transcribed for analysis,
lasting 30 min on average.

Focus Group Session. We conducted a focus group session to discuss the
success and failure factors we had mapped from the individual semi-structure
interviews. The session was conducted in two time slots of 1.5 h each. First, in
two separate rooms, each team freely discussed each of the factors we mapped. To
guide their discussion, we organized these factors in the form of a questionnaire
in which the team had to indicate its level of agreement to each of the factors.
The factors were grouped by the emerged categories. We used a 5-points Likert
scale. Table 2 lists these factors by category. We observed their discussions and
took note of them. Afterwards, during the 30 min break that we offered to the
participants, we briefly analyzed their answers and came up with talking points
pertaining to the discrepancies between each team’s answers and our notes as
a means to prioritize the factors to be first discussed during the second time
slot. In the second 1.5 h, we had both teams meet in the same room to discuss
their answers. All factors were debated by the teams. The session was also voice
recorded and transcribed for analysis.

130 I. Signoretti et al.

3.3 Data Analysis

We conducted Krippendorff’s [14] content analysis procedure using a qualitative
approach to the ethnographic content analysis, where we focused on the nar-
rative description of the situations, settings, and the perspective of the actors

Table 2. Questionnaire

Question Factors

Q1. How relevant are the
following factors to having a
team engaged?

Shared knowledge, mutual feedback,
co-responsibility for team activities and deliveries,
team ownership, shared product vision

Q2. How relevant are the
following factors to
promoting trust between
teams and stakeholders?

Frequent contact with the stakeholders, team
empathy, code delivery in production
environment, experiments to understand the
problem and solution, mutual feedback,
stakeholders and teams working together, mutual
transparency, stakeholders see teams as problem
solvers

Q3. How relevant are the
following factors to
promoting communication
between teams and
stakeholders?

Frequent communication, Face-to-face meetings,
team empathy, team and stakeholder working
together, team understanding about the problem,
development considering UCD activities,
stakeholders involvement in the whole process,
mutual transparency, team proactivity, constant
feedback

Q4. How relevant are the
following factors regarding
the technical aspects?

Behavior-driven development, pair programming,
CI/CD pipeline, test-driven development, unit
testing, concise stories writing, frequent deliveries

Q5. How relevant are the
following factors to
promoting team autonomy?

Middle management trust, solution ownership,
middle management support, team
decision-making autonomy, team autonomy to
conduct small releases in production, autonomy to
make decisions about the team scope

Q6. How much can the
following factors influence
and put the team autonomy
at risk?

Budget definition, team resistance to change,
stakeholders not understanding teams’ work,
deploys barriers, lack of middle management
support, inter-team interlocks, lack of stakeholder
support, team being physically close to the
organization, excessive control, defined project
schedule

Q7. How relevant are the
following factors to the
investment in the combined
approach adoption for the
whole organization?

Story cycle time, middle management satisfaction,
application downtime, effectiveness in solving
problems, return of investment, business
satisfaction, user satisfaction, delivery frequency,
problem life cycle, Number of defects

Success and Failure Factors for Adopting a Combined Approach 131

involved in the phenomena of our case study. As we use recording/coding units,
we organized the analysis into the following steps: organization and pre-analysis,
reading and categorization, and recording the results2. We first read the dataset,
extracted text excerpts, and marked them as codes. These codes were revisited
and grouped into larger codes, forming categories. We constantly reviewed our
coding scheme with two seniors researchers (the last authors of this paper) aim-
ing to mitigate any limitations or bias in our analysis. Both senior researchers
also reviewed the questionnaire and interview scripts.

4 Results

Our results present the success and failure factors for adopting the combined
approach, as perceived by both development teams.

4.1 Success Factors

The teams presented a set of success factors. We organized the factors into five
major categories that emerged during our analysis: team engagement, team and
stakeholder trust, team and stakeholder communication, technical aspects, and
team autonomy. Table 3 consolidates all success factors identified per category.

Team Engagement. The teams emphasized the importance of team engage-
ment aspects, such as a shared product vision, shared responsibilities, shared
knowledge, team ownership, and feedback between team members.

One of the participants mentioned that a shared product vision promotes
greater value for the team, since everyone gets to know the product—“Everybody
has the understanding about the product, not just the Product Designer or the
Product Manager. So everybody knows the reason for working on a product
and the importance of it.” (P5) Another participant stated the following on
shared responsibilities—“The whole team makes the decisions. Problems are dis-
cussed, as well as solutions. The difference is that before the combined approach
we had one person deciding things, and now the whole team has this responsi-
bility.” (P10) They also highlight the importance of having shared knowledge—
“When I miss the Daily Stand-up meeting, I start my day feeling out of the
loop.” (P5).

Feedback between team members was stated to be an essential factor to pro-
mote team engagement—“We must be free to give and receive feedback. Some-
times we notice that a colleague is distracted and losing track during meetings.
We must give them this kind of feedback, seeking to improve team engage-
ment.” (P4) Another factor was team ownership, especially for the Software
Engineers—“Even as the Product Manager and Product Designer are closer to
the users and business due to the nature of their work, the software engineers
can not lose their sense of ownership. It is essential that they participate in cere-
monies with the stakeholders, as a way to promote the feeling of ownership.” (P2)
2 We used the Atlas.TI2 digital tool, available at https://atlasti.com/.

https://atlasti.com/

132 I. Signoretti et al.

Team and Stakeholder Trust. They state that working in a problem-
oriented perspective is great for stakeholder trust—“The stakeholders see us as
problem solvers and not only as requirement developers. They see that we are
worried about their real needs and looking to deliver the best solution.” (P2) and
that this is made possible due to experiments—“We produce small things through
experiments, and this makes our team more assertive on the understanding of
the problem and the possible solution.” (P11) even though they might not be as
important to the stakeholders themselves—“The stakeholders do not know how
we get to the product, they only see the final result. They do not understand that
what we are doing is an experiment.” (P9)

A Product Designer mentioned that having frequent contact with stake-
holders enhances their feelings of trust—“We gain their trust when we talk with
the users and understand their needs.” (P5) As such, the participants identify
the importance of having team empathy with the users—“A user saw that we
were engaged to solving his problem, that we worry about his difficulties and
are working to improve that. From that moment onward we knew that the user
trusted us.” (P5) Mutual feedback was also mentioned as a way to increase stake-
holder trust—“We must consider the users’ feedback constantly. Both sides feel
more confident when what the stakeholders need is aligned with what the team
is producing.” (P9) As a consequence, the team and stakeholders work together
closely to guarantee that the product being developed is the right one.

A Product Manager mentioned the fact that code delivery in a production
environment is of greater value to the stakeholders, which can then understand
the effort and the concerns of the team with their needs—“The stakeholders
observe our efforts to deliver with added value. They are informed about every-
thing.” (P11) Mutual transparency between stakeholders and team was also
stated as a contributing success factor—“We just need to develop this relation-
ship, showing to the stakeholders what we are doing and the results. Always
being transparent about delivery dates and the issues that we face during prod-
uct development” (P2) although members from team B mention that mutual
transparency is more important to user stakeholders, as business stakeholders
are more interested in general outcomes than the inner workings of the team.

Team and Stakeholder Communication. Frequent communication was
reported as a success factor—“Meetings are important, promoting stakeholder
and team communication, but must be used only when necessary. Decision-
making must not happen only in meetings: we communicate with the stakeholders
as soon as a decision must be made” (P2) as well as face-to-face meetings—
“Both team and stakeholders benefit from face-to-face meetings, creating inti-
macy and improving communication.” (P9) To foster communication, having the
stakeholders involved since the product’s conception seems to be the way to
go—“The team creates an empathetic view since the beginning, and not
just when the delivery is made.” (P5) As a consequence, stakeholders and
team work together—“It is important to share decisions about problem prior-
itization, about what is the best solution... Have the stakeholder work with us.”

Success and Failure Factors for Adopting a Combined Approach 133

(P5) Given their accounts, the team having a proper problem understanding is
of utmost importance.

Team empathy with users was also mentioned as an important aspect in com-
municating with stakeholders—“The techniques used to gather user informa-
tion, such as interviews, help us see the needs of the user and put us at their
side, consequently getting us closer to them.” (P2) Team proactivity was men-
tioned as well—“We must go and understand the problems that the user has on
their application, and not just wait for them to say what we have to do.” (P12)
although this might be negatively perceived by other teams—“We act proac-
tively but other teams do not like our attitude, as they get the idea that we
are doing their jobs. We get misunderstood for being proactive.” (P13) Thus,
considering UCD activities during development to actively engage users, mostly
by the Product Designer, is a great practice—“The Product Designer helps us
on approaching the user. The way that the Product Designer communicates with
stakeholders is different and brings benefits to us all.” (P9)

Finally, they mentioned mutual transparency as an important factor related
to communication—“Being clear and transparent with the stakeholders results
in a lot of pluses to communication and consequently to our relationship.” (P11)
However, this comes with a caveat: team B’s current relationship with business
people is not ideal—“If we had the same kind of relationship that team A has
with their business people it would be great. However, today we do not have
that, and having transparency now would reflect negatively on us.” (P9)

Technical Aspects. A CI/CD pipeline brings about several benefits—“A
CI/CD pipeline is crucial. It promotes fast feedback and helps us validate stories
in the production environment.” (P2) A Software Engineer says that delivering
code in such an environment made the software engineers more satisfied with
their work—“If the software engineers see the deliverable going to production,
they feel more accomplished, leading to more code quality later” (P14) even if
the pipeline itself does not add value—“CI/CD helps a lot in improving quality
aspects. However, it is not a key aspect in adding value to deliverables.” (P9)
Frequent deliveries also helps the developers themselves—“Having frequent deliv-
eries allows us to be more effective” (P8) and “Continuous deliveries are essen-
tial for us to confirm if we are delivering the right thing” (P9).

Regarding code quality (which is a factor in and of itself), the participants
mentioned techniques that contribute to it, behavior-driven development (BDD),
pair programming, unit testing and test-driven development (TDD)—“Pair pro-
gramming, BDD, unit testing, and TDD. Mainly TDD, which made the teams
more confident about code quality” (P6) Concise stories were also mentioned as
a success factor—“We quickly identified the added value to a story when it is
written in a concise manner.” (P6)

134 I. Signoretti et al.

Team Autonomy. For the teams, having the middle managers’ trust and
support is essential to their autonomy—“We must build a relationship of trust

Table 3. Success factors

Category Success factor

Team engagement Shared knowledge

Shared product vision

Shared responsibilities

Feedback between team members

Team ownership

Team and stakeholder trust Frequent contact with stakeholders

Code delivery in production environment

Mutual transparency

Working in a problem-Oriented mindset

Experiments

Mutual feedback

Team and stakeholders working together

Team and stakeholder communication Frequent communication

Face-to-face meetings

Team empathy with users

Team and stakeholders working together

Team understanding of the problem

Development considering UCD activities

Stakeholder involvement since product
conception

Mutual transparency

Team proactivity

Technical aspects Pair programming

Unit testing

Concise stories

Test-driven development (TDD)

CI/CD pipeline

Behavior-driven development (BDD)

Frequent deliveries

Team autonomy Solution ownership

High management support

Middle management trust and support

Team decision-making autonomy

Small releases in production environment

Success and Failure Factors for Adopting a Combined Approach 135

with middle managers, because we need to have them on our side” (P9) and
“They must help us deliver our best. Their support is really important.” (P13)
Higher management support is important as well—“Higher management sup-
port helps middle management understand how they must work with the teams
now.” (P6)

Small deliveries in production was considered a factor as it adds value to the
product—“There is a considerable effort on the process of having code delivered
to production. However, it is important for autonomy, since only when deliv-
erables are in production that we show the added value to the product. Small
deliveries allows us to not break the current deployment, and we need this free-
dom.” (P5) This implies in having autonomy to make decisions—“We must have
this free pass to make our own decisions. Deciding the solution, what is the best
for the user... within reason, of course. The point is that the team is the product
owner and this decision is ours.” (P5)

Another aspect that was considered important to team autonomy was hav-
ing solution ownership—“The teams must have product ownership, especially the
solution itself. It is not just about developing requirements.” (P6)

4.2 Failure Factors

The principal threats to the transformation are barriers to the use of the com-
bined approach itself, or rather any kind of factor that interferes with the teams’
autonomy. Table 4 consolidates the identified failure factors.

Team Autonomy at Risk. Teams resented the lack of middle management
support—“The managers are learning how to work with autonomous teams that
do not depend much on their job” (P7) and exemplified that it could cause
barriers to the production environment—“We had our code ready to be in pro-
duction, but the managers told us to wait for two months because the deployment
environment was not stable and had a lot of issues. So we faced these barriers
and were not allowed to go to production.” (P2)

The team members are also concerned with the previous modus operandi
of the organization, especially the practice of project schedules—“Now we work
looking to solve problems, not just ‘work on a project’. But the stakeholders
do not understand this way of working yet. They still ask for documents and a
defined schedule” (P5) and “We are worried about this need of a defined schedule
because it directly affects our decision-making power.” (P10) Excessive control
is also part of old policy—“We have the challenge of dealing with excessive
control on ORG. They have a process to all things, security-level, program-
level... and this generates bureaucracy, which impacts our autonomy.” (P9)
Budget al.location policy being centered around projects and not for develop-
ment capacity can put autonomy at risk as well—“The budget al.location policy
is project-based, while we are working in solving problems. The managers are
worried about that because they do not know who will give financial support to
us.” (P6) Another participant says—“We highly depend on the business, which

136 I. Signoretti et al.

provides money to the products. We are worried that they will act as the product
owners and will want to control everything, taking away our autonomy.” (P7)

Table 4. Failure factors

Category Failure factor

Team autonomy at risk Lack of middle management support

Code deployment barriers

Project schedules

Excessive control

Project-centered budget al.location

Lack of stakeholder support

Stakeholders not understanding the teams’ work

“Interlocks” with other teams

Resistance to change

Team physically close to the organization

Regarding their daily work, they were concerned with lack of stakeholder
support and that stakeholders do not understand how the team works—“The
stakeholders have a habit to give finished requirements. Now, they are concerned
that we are ‘taking’ their jobs. We are helping them understand how they must
act now.” (P5) Dependencies with other ORG teams, or interlocks as they call
them, were mentioned as well—“ORG has a lot of teams, and as such there
are interlocks. We try to remain focused on the problem, but sometimes we can
be looking to accomplish the needs of other teams, stopping the delivery of added
value to our products.” (P12) Another daily factor is resistance to change—“The
team members must get used to this new way of work. There are some people that
do not accept the change and are resisting it. This takes away some of the team’s
autonomy” (P9) and “If we have resistance from our manager or someone on
the team, we are sure that it will cause issues to our autonomy.” (P9) It was
also stated that the team not being in an environment cut off from the orga-
nization, or rather the team being physically close to the organization, could be
risky—“I am concerned in how the team will behave when we return to our real
offices. The distance to that site is helping us stay autonomous. We will probably
be pressured to work the old way again.” (P12)

The participants were especially particular about how ORG has their funding
policy set up to be project-based instead of based on pure development capacity,
or on a smaller product-based basis; a practice that causes extreme concerns
to both teams, as the combined approach moves them away from big projects
and into constant problem solving. Unprompted, both teams started to discuss
possible indicators that could be used to argue against this policy, and in favor of
a combined approach-friendly one. Table 5 presents their argumentative points.

Success and Failure Factors for Adopting a Combined Approach 137

Table 5. Points for arguing against the project-centered budget allocation policy.

Failure factor Argumentative point

Project-centered budget allocation User satisfaction

Business satisfaction

Frequent product deliveries

Middle management satisfaction

Product necessity understanding

Problem understanding

Solution effectiveness

Cycle time

Application downtime

Number of defects

The teams discussed how to convince the business people that funding the
combined approach is worthwhile—“We have to work to make the business people
happy. If we give the business feedback of what and how the team is doing, it could
be and an indicator for this funding thing, to justify their investments.” (P12)
Factors such as user satisfaction and business satisfaction were considered as
good indicators—“These are related to better communication with stakeholders.
If we prove that we are working to solve their problems, they will see us a return of
their investment. Consequently, both users and business will be convinced.” (P14)

Having frequent product deliveries was mentioned as well—“We deliver
products with added value. If we deliver sooner, we make the users more
happy and engaged. And this could be a factor to change how the busi-
ness allocates their money.” (P5) A Product Designer also considered
middle management satisfaction—“We must show to our managers that we are
adding value to the product, and to the organization as a consequence. Once we
have their support, they could tell the same story to higher levels of manage-
ment.” (P9)

They stated that they can use their increased product necessity under-
standing to convince the adoption of a product-focused mindset, and that their
increased problem understanding is great for arguing for product investments—
“Understanding the problem allows us to discuss it with the stakeholders and
explain exactly why we need money to improve our product.” (P5) Overall
solution effectiveness was reported as an argument as well—“We focus on iden-
tifying problems and not only on developing pre-defined requirements. This helps
our effectiveness, and the users seem to be more confident with this way of work-
ing on their needs.” (P7) Story cycle time was also pointed out by a Product
Designer—“One of the things that we can show is the time that a story takes
between arriving and going to production. The time spent prioritizing and work-
ing on a problem, and making it available to users can be a good indicator.” (P5)

138 I. Signoretti et al.

Lastly, they mentioned simple metrics, application downtime and number of
defects—“There are metrics that are easy to prove. These are indicators that
help not so technical people understand the gains of using this approach.” (P7)

5 Discussion

The success and failure factors of the transformation are especially useful as
they were gathered from a team-level perspective, which is essential to consider
when conducting an agile adoption process, since its main focus is on team-level
development activities [12].

The success factors promote the encouragement for teams to continue believ-
ing in the transition to the combined approach, creating an engaging feeling of
teamwork through shared knowledge, shared product vision, shared responsibil-
ities, and team ownership. These factors were all reported as extremely impor-
tant aspects of the adoption, and that obtaining them requires a strong sense of
responsibility and belonging, along with mutual feedback and trust, as corrobo-
rated by Mchugh, Conboy, and Lang [15] in their study.

The combined approach also demanded stakeholders to adopt a new perspec-
tive and to be more engaged with product development. Having the stakeholders’
trust and respect is crucial for agile teams [15], and having them involved with
development is also relevant to the combined approach due to its heavy emphasis
on UCD and Lean Startup activities [21], which paints an ill omen for team B
when analyzing their struggling relationship with the business.

Hoda, Noble, and Marshall [10] state that the lack of customer involvement
is a tremendous challenge for agile teams. Without stakeholder engagement and
support, teams have a hard time delivering the right product and fulfilling stake-
holder needs. Dorairaj and Noble [5] mention that a benefit of having good
communication between team and stakeholders is that it forms a strong bond—
making both parties very effective when collaborating.

Diebold and Mayer [2] report that the most adopted agile practices originate
from XP, even when the adopted agile method is not specifically XP, as is the case
with the combined approach. Agile practices such as pair programming, BDD,
TDD, and concise user stories were reported as great achievements for the teams.
Diebold and Mayer [2] also emphasize that using agile practices reduces project
risk and increases team productivity and motivation.

As for team autonomy, the support of higher and middle management were
extremely important factors on the transformation in the teams’ perspective,
seeing as their autonomy is directly impacted by decisions such as project fund-
ing. These views are shared by Dikert et al. [3], who state that management
support must be ensured during agile adoptions.

Regarding the failure factors, both teams reported that the lack of mid-
dle management and stakeholder support is a great challenge for the successful
transformation of ORG, corroborating with the work of Dikert et al. [3], which
mentions that resistance to change and skepticism towards a new way of working
are challenges for transformations.

Success and Failure Factors for Adopting a Combined Approach 139

The project-centered budgeting policy was one of the most interesting factors
reported by the teams. Upon reflecting on the transformation by our study’s
prompt, they seemed enthusiastic to look for solutions to this particular problem,
as their way of working seems to be most impacted by it. The current hierarchical
structure of ORG (and its decision-making ramifications) is not optimized for
the combined approach, but the teams brought up a series of indicators (e.g.,
story cycle time, business satisfaction, and user satisfaction) that could be used
to convince higher staff that the approach is worth investing in.

The study results also highlighted that most of the success and also failure
factors are related to human aspects.

As a final consideration, we emphasize how the success and failure factors
of the combined approach adoption range from technical-level to hierarchical-
level concerns, implying that the development team alone is not the only party
that needs adaptation—higher-level staff also need to get involved, which can
be difficult due to their lack of knowledge on the workings and needs of the
development front. We note how most of the factors are related to human aspects.
This is not surprising, given that Agile, UCD, and Lean Startup are people-
oriented methodologies. However, it is a surprise that even with several studies on
this issue, companies are still struggling with it. Human aspects are crucial issues
in an agile-only transformation [6], and just as much in a combined approach one.
The difference is in the teams’ maturity in understanding that and being able
to suggest and make modifications that could decrease these transformational
barriers. These issues highlights the need of a tool (e.g., a maturity model) to
guide the transformation process—a tool capable of conducting the adoption in
a way that facilitates the involvement of teams, stakeholders and higher-level
staff, by presenting indicators that such staff could understand, for instance.

6 Conclusions, Limitations, and Future Work

We reported the success and challenge factors of adopting a combined approach
of Agile Software Development, UCD and Lean Startup through a case study
with two software development teams from a multinational company. Ours find-
ings revealed five major categories of success factors (team engagement, team
and stakeholder trust, team and stakeholder communication, technical aspects,
and team autonomy), and the ultimate challenge factor type being of risks to
team autonomy. We also report possible solutions for the distinct challenge fac-
tor of “product-focus instead of project-focus”, as teams thought it to be most
of utmost importance for the transformation.

The findings contribute to the literature by reporting on success and challenge
factors for the transformation to the combined approach, as current literature
only comprehends similar studies regarding agile-only methods. Industry practi-
tioners can make use of our findings to understand what types of scenarios they
could face when dealing with a similar transformation in large organizations.

As inherent to any empirical study, our study has limitations. To mitigate
construct validity concerns, we used multiple data sources to triangulate findings

140 I. Signoretti et al.

and had senior researchers accompany each step of the study. We also observed
teams working in a real setting that were composed of members playing distinct
roles, each with unique IT experiences. These actions aimed to mitigate such
concerns. In regards to generalization, we can not claim that our results apply
to distinct scenarios, since the teams’ maturity, organizational vision, and their
instance of the combined approach are factors that need to be well-considered
during a large-scale adoption.

As future work, we suggest the replication of the study in other organizations
of similar configuration, so as to compare findings. The findings could be used
as a starting point to building a tool that helps organizations in conducting and
scaling up the transformation to the combined approach.

Acknowledgments. We thank the study participants and acknowledge that this
research is sponsored by Dell Brazil using incentives of the Brazilian Informatics Law
(Law no. 8.2.48, year 1991).

References

1. Bastarrica, M., Espinoza, G., Sánchez, J.: Implementing agile practices: the expe-
rience of TSol. In: International Symposium on Empirical Software Engineering
and Measurement, pp. 1–10. Oulu, Finland, October 2018

2. Diebold, P., Mayer, U.: On the usage and benefits of agile methods & practices.
In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp.
243–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6 16

3. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

4. Dobrigkeit, F., de Paula, D., et al.: The best of three worlds-the creation of InnoDev
a software development approach that integrates design thinking, scrum and lean
startup. In: Proceedings of the International Conference on Engineering Design,
Vancouver, Canada, pp. 319–328 (2017)

5. Dorairaj, S., Noble, J.: Agile software development with distributed teams: agility,
distribution and trust. In: Agile Conference, pp. 1–10 (2013)

6. Gandomani, T.J., Zulzalil, H., Ghani, A., Sultan, A.B.M., Sharif, K.Y.: How human
aspects impress agile software development transition and adoption. Int. J. Softw.
Eng. Appl. 8(1), 129–148 (2014)

7. Gothelf, J.: Lean UX: Applying Lean Principles to Improve User Experience.
O’Reilly, Newton (2013)

8. Gregory, P., Barroca, L., Sharp, H., Deshpande, A., Taylor, K.: The challenges
that challenge: engaging with agile practitioners’ concerns. Inf. Sotw. Technol. 77,
92–104 (2016)

9. Grossman-Kahn, B., Rosensweig, R.: Skip the silver bullet: driving innovation
through small bets and diverse practices. Lead. Through Des. 14, 815–830 (2012)

10. Hoda, R., Noble, J., Marshall, S.: The impact of inadequate customer collaboration
on self-organizing agile teams. Inf. Softw. Technol. 53(5), 521–534 (2011)

11. Julian, B., Noble, J., Anslow, C.: Agile practices in practice: towards a theory of
agile adoption and process evolution. In: International Conference on Agile Soft-
ware Development, Montreal, CA, Montreal, CA, pp. 3–18, May 2019

https://doi.org/10.1007/978-3-319-57633-6_16

Success and Failure Factors for Adopting a Combined Approach 141

12. Karvonen, T., Rodriguez, P., Kuvaja, P., Mikkonen, K., Oivo, M.: Adapting
the lean enterprise self-assessment tool for the software development domain. In:
Euromicro Conference on Software Engineering and Advanced Applications, pp.
266–273. IEEE (2012)

13. Karvonen, T., Sharp, H., Barroca, L.: Enterprise agility: why is transformation so
hard? In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp.
131–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 9

14. Krippendorff, K.: Content Analysis: An Introduction to Its Methodology. SAGE,
Thousand Oaks (2018)

15. McHugh, O., Conboy, K., Lang, M.: Agile practices: the impact on trust in software
project teams. IEEE Softw. 29(3), 71–76 (2012)

16. Norman, D., Draper, S.: User Centered System Design: New Perspectives on
Human-Computer Interaction. CRC Press, Boca Raton (1986)

17. Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M.: Large-scale agile trans-
formation at Ericsson: a case study. Empirical Softw. Eng. 23, 2550–2596 (2018)

18. Putta, A., Paasivaara, M., Lassenius, C.: Benefits and challenges of adopting the
scaled agile framework (SAFe): preliminary results from a multivocal literature
review. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp.
334–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03673-7 24

19. Ries, E.: The lean startup: how today’s entrepreneurs use continuous innovation
to create radically successful businesses. Currency (2011)

20. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131 (2008)

21. Signoretti, I., et al.: Boosting agile by using user-centered design and lean startup:
a case study of the adoption of the combined approach in software development.
In: Proceedings of the Int’l Symposium on Empirical Software Engineering and
Measurement, pp. 1–6. IEEE (2019)

22. Signoretti, I., Salerno, L., Marczak, S., Bastos, R.: Combining user-centered design
and lean startup with agile software development: a case study of two agile teams.
In: Stray, V., Hoda, R., Paasivaara, M., Kruchten, P. (eds.) XP 2020. LNBIP, vol.
383, pp. 39–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49392-
9 3

23. Ximenes, B.H., Alves, I.N., Araújo, C.C.: Software project management combining
agile, lean startup and design thinking. In: Marcus, A. (ed.) DUXU 2015. LNCS,
vol. 9186, pp. 356–367. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20886-2 34

https://doi.org/10.1007/978-3-319-91602-6_9
https://doi.org/10.1007/978-3-030-03673-7_24
https://doi.org/10.1007/978-3-030-49392-9_3
https://doi.org/10.1007/978-3-030-49392-9_3
https://doi.org/10.1007/978-3-319-20886-2_34
https://doi.org/10.1007/978-3-319-20886-2_34

A Practice-Informed Conceptual Model
for a Combined Approach of Agile,

User-Centered Design, and Lean Startup

Maximilian Zorzetti1(B), Ingrid Signoretti1, Eliana Pereira2, Larissa Salerno1,
Cassiano Moralles1, Cássio Trindade2, Michele Machado1, Ricardo Bastos1,

and Sabrina Marczak1

1 Pontif́ıcia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
{maximilian.zorzetti,ingrid.manfrim,larissa.salerno,

cassiano.mora}@acad.pucrs.br, michele.machado@edu.pucrs.br,

{bastos,sabrina.marczak}@pucrs.br
2 Instituto Federal do Rio Grande do Sul, Porto Alegre, Brazil

cassio.trindade@pucrs.br, eliana.pereira@restinga.ifrs.edu.br

Abstract. Organizations worldwide have been adopting software devel-
opment approaches that deviate from common agile methods in order to
overcome some of their shortcomings. It has been reported that combin-
ing agile methods with Lean Startup and User-Centered Design results
in a very powerful development approach, and academic research has
developed some high-level process models for it. However, this combined
approach is not well-documented, making it hard for inexperienced pro-
fessionals to start using it. A grounded conceptual model of the com-
bined approach enables the development of further instruments to help
in adopting the approach, but such a model does not currently exist yet.
We aim to showcase an initial conceptual model based on the empirical
study of two software development teams that use the combined app-
roach. We performed a case study where we investigated their day-to-
day work using daily observations, semi-structured interviews, and focus
group sessions; and built a conceptual model of the activities, techniques,
and work products that both teams use daily. We reflect on how the con-
ceptual model was conceived and the next steps in refining it, namely
having it augmented with concepts sourced from literature.

Keywords: Agile · Lean Startup · User-Centered Design · Case
study · Conceptual model · Software engineering

1 Introduction

There is a rise in the number of organizations that choose to adopt mixed devel-
opment methods instead of a pure Agile approach, which is not a surprise as it
has been suggested that some of its limitations (e.g., lack of user involvement [8])
can be overcome by combining it with other methods [12]. A noteworthy “method
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 142–150, 2020.
https://doi.org/10.1007/978-3-030-64148-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_9

A Practice-Informed Concept Model 143

combo” is to add Lean Startup and User-Centered Design (UCD) into the Agile
mix, as the former enables software developers to see that user needs are met
and the latter introduces experiment-driven development, mitigating risk and
guiding the generation of value to business stakeholders [11]. This combined
approach (hereinafter referred to as such) has been the subject of research for
some time now and its improvements upon regular agile methods have been
reported multiple times [3,9] along with studies that propose a workflow for
it [1,3].

Motivated by the perceived effectiveness of this development approach, our
research group is working on an acceleration model to help organizations who
wish to transition to such an approach. To develop this acceleration model, we
need a sound basis for what an integration of the aforementioned “pillars” should
look like. However, such a foundation is not immediately evident, as the pillars
themselves do not have a single, widely accepted theoretical basis, which makes
integration efforts difficult. Moreover, the difficulty in conceptualizing such an
integration is exacerbated by obstacles such as pillars handling the same issues
differently or even untangling a pillar from one another, which is the case for
Agile and Lean Startup, as both have their roots in Lean manufacturing.

To fill in this knowledge gap, this paper reports on the ongoing develop-
ment of a conceptual model through design and creation science [10] to better
understand the combined approach. We developed an initial conceptual model
using the data of a case study of two software development teams that received
training on the approach from a consulting firm and highlight concepts used in
their development workflow. Our study reveals the activities, roles, techniques,
and work products used by the teams in the combined approach, establishing
a groundwork to support further interpretations on how the pillars overlap and
supplement one another on the subsequent iterations of the modeling effort.

2 Background

2.1 Agile, Lean Startup, and User-Centered Design

As Agile was extensively used in the past two decades, its shortcomings became
more apparent [8], such as it not providing much assurance that the right soft-
ware is being developed, business-wise. Combining it with other approaches to
development has been suggested as a way to fix these issues [12], and combining
it specifically with Lean Startup and UCD has shown great promise [9].

Tackling business-related issues is Lean Startup, an entrepreneurship
methodology that focuses on developing a business plan iteratively through
the use of a “build-measure-learn” loop, where business hypotheses are evalu-
ated through experiments [6]. Although not specifically a software development
methodology, studies have reported it as a great driving force when developing
software [2]. To ensure that the software not only meets business demands but
also the users’, the use of UCD enables developers to understand the users’ real
needs and create improved software with better usability and user satisfaction [7].

144 M. Zorzetti et al.

One successful example of the combined approach is fashion retailer Nord-
strom’s Discovery by Design [3]. The creation of this development methodology
was undertaken in an iterative and “organic” fashion by a dedicated innovation
team by combining Agile with Lean Manufacturing, Lean Startup, and Design
Thinking. Its process model, however, is described in high-level brush strokes as
to emphasize that the most valuable part of their approach is their mindset. In
a much more detailed fashion, Dobrigkeit, de Paula, and Uflacker [1] describe
InnoDev, a similar development approach that has Scrum tying it all together.

3 Research Method

We conducted our modeling effort following the five phases of the design science
research process model defined by Vaishnavi, Kuechler, and Petter [10]:

1. Awareness: recognize and articulate concepts1;
2. Suggestion: derive concepts into an organized structure;
3. Development: describe the organized structure using a modeling language;
4. Evaluation: evaluate the modeled artifacts in a real-life context; and
5. Conclusion: consolidate findings and discuss possible loose ends.

Do note that these five phases are not rigidly followed in order, but instead
in a fluid and iterative fashion. In this particular iteration of the model that
we are reporting on, the awareness phase was fueled by case study data and an
evaluation procedure was not yet performed.

3.1 Case Study

We conducted a case study with two software development teams from a multi-
national company named ORG (name omitted for confidentiality reasons). ORG
has development sites in the USA (headquarters), India, and Brazil. With over
7,000 employees and responsible for about 1,200 internal software products, it
moved to the combined use of Agile, Lean Startup, and UCD principles in late
2017. Before adopting the combined approach, ORG had a well defined roadmap
for software product improvements based on an annual budget negotiated among
business departments and organized into software projects. High-level business
features were prioritized and decided upon by business personnel to later be
turned into requirements by IT project teams with strict project deadlines.

With the introduction of an agile transformation in 2015, project teams used
Scrum as the guiding development framework—although some participants of
this study reported that the strict quarterly deadlines made it waterfall-like.
In 2017 they decide to hire Pivotal Software Inc. consulting to support their
transformation to a Pivotal Labs-like approach. Pivotal Labs proposes a “team
rhythm” composed of principles and ceremonies based on the three aforemen-
tioned pillars. Pivotal Labs’ main goal is to help teams to build software products
1 Vaishnavi et al. originally define this phase as recognizing the problem statement,

but also as intimately linked to the Suggestion phase, so we adapted it as seen here.

A Practice-Informed Concept Model 145

that deliver meaningful value for users and their business. It offers a framework
and a starting point for any team to discuss its needs and define its own way
towards software development, including roles, practices, work products, etc.

The Teams. We observed in loco two software development teams from ORG’s
financial department located in Brazil. Both teams were built as a catalyst to
prove the worth and spread the use of Pivotal Labs throughout the company and
have been rated as high-performance and proficient in its use. To achieve this,
some members underwent an immersive Pivotal Labs hands-on training at the
company headquarters over the supervision of Pivotal Software Inc. consulting
personnel before coming back to Brazil to teach the others.

Team A is responsible for a software product that manages, calculates, and
generates data about company projects related to equipment and service deliv-
ery. The product manages general project information, such as personnel assign-
ment and time spent on tasks. The application also generates profit data for each
project, which is consumed (along with the rest of the data) by the account-
ing department. Team B is responsible for a product that consumes and auto-
matically validates data from other ORG applications to calculate the cost of
equipment developed in Brazil. The application generates reports for internal
accounting, such as inventory reports.

These teams worked for 6 months in a dedicated lab that follows Pivotal
Labs’ collaborative work environment recommendations (e.g., single large table
for pair-wise work, large screen TV for reports and news, large whiteboards for
idea development and information sharing, and a meeting room that turns into
an entertainment space for leisure time). The lab is located on PUCRS’s campus
grounds and was specifically built for ORG teams as a learning environment.

3.2 Data Collection

We observed both teams for a 6-months period, executing several data collection
procedures throughout it. Initial perceptions of the teams were collected using
typical case study instruments. A questionnaire was used to identify the partici-
pants profile, while observation sessions were used to shadow team members and
attend team ceremonies to learn about their approach to software development
and the responsibilities of each of their roles. Several rounds of semi-structured
interviews were conducted, and two of them were used specifically to gather
the team members’ perceptions on the combined approach, on role changes, on
interactions between roles, and on the impact of changes on their work routine.
Sporadic unstructured interviews were used to follow up on unclear aspects of
their day-to-day work unveiled in the observation sessions. All interviews were
voice recorded and transcribed for analysis. We used focus group sessions to con-
firm our understandings and to further discuss some topics. Six of these sessions
were used to discuss the activities, techniques, roles, and work products of the
pillars of the combined approach as perceived by the teams. We conducted two
sessions for each pillar that lasted 1.5 h on average.

146 M. Zorzetti et al.

3.3 Data Analysis

We analyzed data following the content analysis procedure by Krippendorff [5],
organized into the following steps: organization and pre-analysis, reading and
categorization, and recording the results. Using Atlas. TI2, we first read the
dataset, extracted text excerpts and marked them as codes. These codes were
revisited and grouped into larger codes, forming categories—concepts to be
included in our modeling efforts.

<<activity>>
Pivot

<<Phase>> Problem

<<activity>>
Observation

<<activity>>
Problem

understanding

<<activity>>
Assumption
Identification

<<activity>>
Prototyping

<<activity>>
Observation

<<activity>>
Problem

understanding

<<activity>>
Assumption
Identification

<<activity>>
Prototyping

<<activity>>
Problem

Prioritization

<<activity>>
Metric

Identification

<<activity>>
Problem

Identification

<<activity>>
Ideation

<<activity>>
Share Vision

<<work product>>
Product Vision

<<activity>>
Testing

<<activity>>
Experiment
execution

<<Phase>> Solution

<<activity>>
Pipeline

Implementation

<<activity>>
Build

<<activity>>
Experiment
Execution

<<activity>>
Solution

Definition

<<activity>>
Solution
Research

<<activity>>
Story Acceptance

Criteria

<<activity>>
Story

Writing

<<activity>>
Story

Prioritization

<<activity>>
Story

Estimation

<<activity>>
Story

Development

<<Work Product>>
Product backlog Icebox

<<work product>>
User Story Chore

<<activity>>
Measure

<<activity>>
Learn

<<activity>>
Solution

Validation

<<activity>>
Metric

Validation

Role
Product

Designer

Product
Manager

Software
engineer

Anchor

Meeting

Office
Standup

Community
of Practices

Team Standup

Retro-
spective

Weekly Stakeholder
Meeting

Tech Talks

Pre-iteration
Planning Meeting

Iteration Planning
Meeting

Fig. 1. Conceptual model of the case study, sans toolboxes

We used all acquired data to develop the conceptual model, following
Gutzwiller’s common elements of method descriptions [4] as our study focused
particularly on the teams’ workflow. We chose UML as our metamodel as it is a
language we are familiar with and is flexible enough for our modeling needs.

4 Empirically-Grounded Conceptual Model

We categorized the concepts into seven packages (see Fig. 1 and Fig. 2): Prob-
lem, for concepts related to exploring the problem space the teams were assigned

2 atlasti.com.

http://www.atlasti.com

A Practice-Informed Concept Model 147

XP Toolbox

Unit Test
Test-driven

Development

Small
Releases

Code
Review

Pair
Programming

Planning
Poker

Spike

Behavior-
driven Dev.

Refactoring

Continuous
Integration

L.S. Toolbox

Continuous
Delivery

Customer
Archetype

Lean
Canvas

MVP

Leap of
Faith

UCD Toolbox

Two by Two
Matrix

Hope and
Fears

Affinity
Map

Wireframe

How Might
We

Design
Studio

Dirty Map
Journey

Map
Ethnographic

Research

User Flow Brainstorm

Discovery &
Framing

Interview

Service
Blueprint

Prototype

Persona Mockup

Fig. 2. Techniques used in the combined approach.

to; Solution, for concepts related to exploring possible solutions and developing
them; Meetings, for gatherings in general; Roles, for the positions assigned to
each team member; and three “toolbox” packages, one for each pillar, that con-
tain the work techniques used by the teams. The Problem and Solution packages
arose from our understanding of their work process at the time: teams would
explore stakeholder demands and context in order to fully grasp the problem
at hand (Problem) and then develop the best solution they came up with as
determined by experiment data (Solution). The toolboxes (see Fig. 2) origi-
nated separately from the Problem and Solution packages as techniques were
not mutually exclusive to each phase. Concepts were categorized according to
their affinity to each package. Of note is the Pivot activity, which was purposely
left out of any package as teams reported it could happen at any given moment.

The teams reported on 3 roles: Product Designer, a facilitator that enables
the team in communicating with the user, typically by conducting interviews and
promoting the use of techniques to understand and foster empathy towards the
user; Product Manager, provides the business vision of things, helping the team
in addressing business needs and establishing assumptions to experiment on; and
Software Engineer, responsible for implementing solutions and the environment
in which they are developed, in addition to participating in decision making and
other activities, such as user interviews. A specialization of it, the Anchor, is an
engineer that resolves technical and non-technical issues by serving as a bridge
from the engineers to the user and the business side of things.

4.1 Discussion

The teams’ development approach pushes for a “problem solving” perspective
instead of a software development one, hence the lack of typical concepts in
software development processes (e.g., “source code” and “coding”) and the use of
more abstract substitutes instead (e.g., “user story” and “story development”).
This “view” can really just be an excuse to break free from any established
process and rules in place in order to get to the root cause of a given problem,
but still highlights a crucial change in the mindset of software development

148 M. Zorzetti et al.

teams when using the combined approach: they no longer look at software as
the de facto solution for everything. Their work process provides the necessary
tools to find the solution to an existing problem by virtue of the heavy focus on
experimentation—the build-measure-learn cycle—whether that solution involves
writing code or not: a request for a faster spreadsheet generator was once solved
by installing new computer parts to improve the host machine’s performance
instead of developing a new system.

Typically in agile, product validity is achieved when the customer says so. The
constant use of the build-measure-learn cycle shifts this responsibility away from
the customer and into experiment data itself, as developers set target metrics
that their solution must adhere to, which, to be fair, might be decided together
with or involve the customer. Nevertheless, the resulting solution is developed
with confidence as it is backed by data. This is in line with previous studies that
use the combined approach: InnoDev’s authors state that “each [of its] phase[s]
can be seen and implemented as a build-measure-learn cycle” [1], corroborating
with having Lean Startup as a driving force to development in the case of Dis-
covery by Design [3]. This works wonders to convince upper management of the
decisions made by the development teams, which to them hopefully results in
increased trust and more freedom to work the way they think is best.

As structured as the process is, both teams previously highlighted how it feels
“organic” and how their mindset of problem solving is crucial to the combined
approach. This suggests that their process is not as structured as it seems, but
they might view it as such given their old work process was waterfall-based.
Guiding principles or values are not as evident when discussing such things
(none were directly addressed by the teams), even though their influences are
most definitely important to the teams’ development process.

5 Conclusion

As seen in ORG’s case, top-level staff are impressed with the combined approach
as they specifically requested it to be spread throughout the organization. Under-
standing what makes the combined approach tick, however, is not a straightfor-
ward task, and adoption efforts are specially difficult for an organization as large
as ORG: the steps taken for a team to adopt the combined approach might not
work for another. The conceptual model as described in this paper is a first step
towards a grounded theoretical basis that will enable the development of other
tools to support the combined approach.

Regarding any empirical study, our study has limitations. To mitigate con-
struction validity concerns, we used multiple data sources to triangulate findings
and had senior researchers accompany each step of the study. For our model-
ing efforts, we used automated digital tools to validate their syntactic quality,
while semantic quality was strengthened by the supervision and revisions by the
aforementioned senior researchers.

Given how the development of the conceptual model was based on the day-
to-day activities of the ORG teams, as it stands it is too “low-level” and does

A Practice-Informed Concept Model 149

not describe more abstract concepts such as guiding principles. We will continue
with this “bottom-up” approach to modeling, focusing the next modeling cycles
on literature-defined lower level concepts while making our way up to higher
level ones. To do so, we will choose (or create) a new metamodel that supports
the inclusion of more abstract elements adequately. In sum, the next steps in
our research include: identify literature-defined concepts; merge aforementioned
concepts into the current conceptual model; select or develop an adequate meta-
model to represent the model in; and evaluate the model using our established
relationship with ORG.

Acknowledgments. We thank the study participants and acknowledge that this
research is sponsored by Dell Brazil using incentives of the Brazilian Informatics Law
(Law no. 8.2.48, year 1991).

References

1. Dobrigkeit, F., de Paula, D., Uflacker, M.: InnoDev: a software development
methodology integrating design thinking, scrum and lean startup. In: Meinel,
C., Leifer, L. (eds.) Design Thinking Research. UI, pp. 199–227. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-97082-0 11

2. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The RIGHT model for
continuous experimentation. J. Syst. Softw. 123, 292–305 (2017)

3. Grossman-Kahn, B., Rosensweig, R.: Skip the silver bullet: driving innovation
through small bets and diverse practices. Leading Through Design, p. 815 (2012)

4. Gutzwiller, T.A.: Das CC RIM-Referenzmodell für den Entwurf von betrieblichen,
transaktionsorientierten Informationssystemen. Springer, Heidelberg (1994).
https://doi.org/10.1007/978-3-642-52405-9

5. Krippendorff, K.: Content Analysis - An Introduction to Its Methodology, 3rd edn.
SAGE Publications Inc., Thousand Oaks (2013)

6. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, New York (2011)

7. Salah, D., Paige, R., Cairns, P.: Patterns for integrating agile development pro-
cesses and user centred design. In: European Conference on Pattern Languages of
Programs, Kaufbeuren, Germany, p. 19. ACM (2015)

8. Schön, E.-M., Winter, D., Escalona, M.J., Thomaschewski, J.: Key challenges in
agile requirements engineering. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.)
XP 2017. LNBIP, vol. 283, pp. 37–51. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57633-6 3

9. Signoretti, I., Marczak, S., Salerno, L., de Lara, A., Bastos, R.: Boosting agile
by using user-centered design and lean startup: a case study of the adoption of
the combined approach in software development. In: International Symposium on
Empirical Software Engineering and Measurement, Porto de Galinhas, Brazil, pp.
1–6 (2019)

10. Vaishnavi, V.K., Kuechler, W.L.: Design Science Research in Information Systems.
AIS, pp. 1–45 (2004)

https://doi.org/10.1007/978-3-319-97082-0_11
https://doi.org/10.1007/978-3-642-52405-9
https://doi.org/10.1007/978-3-319-57633-6_3
https://doi.org/10.1007/978-3-319-57633-6_3

150 M. Zorzetti et al.

11. Vargas, B.P., Signoretti, I., Zorzetti, M., Marczak, S., Bastos, R.: On the under-
standing of experimentation usage in light of lean startup in software development
context. In: International Conference on Evaluation and Assessment in Software
Engineering, Trondheim, Norway, pp. 330–335. ACM (2020)

12. Vilkki, K.: When agile is not enough. In: Abrahamsson, P., Oza, N. (eds.) LESS
2010. LNBIP, vol. 65, pp. 44–47. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16416-3 6

https://doi.org/10.1007/978-3-642-16416-3_6
https://doi.org/10.1007/978-3-642-16416-3_6

Data Science

Demystifying Data Science Projects: A
Look on the People and Process of Data

Science Today

Timo Aho1(B), Outi Sievi-Korte2, Terhi Kilamo2, Sezin Yaman3,
and Tommi Mikkonen4

1 TietoEVRY, Tampere, Finland
timo.aho@iki.fi

2 Tampere University, Tampere, Finland
{outi.sievi-korte,terhi.kilamo}@tuni.fi

3 KPMG Finland, Helsinki, Finland
sezin.yaman@kpmg.fi

4 University of Helsinki, Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract. Processes and practices used in data science projects have
been reshaping especially over the last decade. These are different from
their software engineering counterparts. However, to a large extent, data
science relies on software, and, once taken to use, the results of a data
science project are often embedded in software context. Hence, seek-
ing synergy between software engineering and data science might open
promising avenues. However, while there are various studies on data
science workflows and data science project teams, there have been no
attempts to combine these two very interlinked aspects. Furthermore,
existing studies usually focus on practices within one company. Our study
will fill these gaps with a multi-company case study, concentrating both
on the roles found in data science project teams as well as the process.
In this paper, we have studied a number of practicing data scientists to
understand a typical process flow for a data science project. In addition,
we studied the involved roles and the teamwork that would take place
in the data context. Our analysis revealed three main elements of data
science projects: Experimentation, Development Approach, and Multi-
disciplinary team(work). These key concepts are further broken down to
13 different sub-themes in total. The found themes pinpoint critical ele-
ments and challenges found in data science projects, which are still often
done in an ad-hoc fashion. Finally, we compare the results with modern
software development to analyse how good a match there is.

Keywords: Data science · Data engineering · Software process ·
Prototyping · Case study

c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 153–167, 2020.
https://doi.org/10.1007/978-3-030-64148-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_10

154 T. Aho et al.

1 Introduction

The layman’s view to a data science project is glorified, to the brink of data scien-
tists being modern-day fortune tellers, seemingly effortlessly creating predictions
based on existing data. The reality, however, is somewhat different. While the
final outcomes of a data science project can appear miraculous, the actual data
science – as well as related activities such as data engineering and data mining
– build on well-established ground rules on what the data says and what it does
not say.

The terminology in the field of data science is somewhat mixed, with over-
lapping terms like data analytics, machine learning, data mining and big data.
In this study, we use the term data science for extracting knowledge from data
sets, which might be large, using multidisciplinary techniques such as statistics
and machine learning, in order to understand and analyze the data and to gain
insights. However, here we exclude traditional business intelligence and data
warehousing from the scope of data science.

Today’s data science projects exhibit some problems that could be tackled
with more mature project management methodologies [8,9]. These include min-
imal focus on identifying result quality and problems in estimating budget and
scheduling in advance [18]. In addition, since many of the data science results
are applied in the context of software systems, seeking synergy between software
development approaches and data science seems to open promising avenues. For
instance, Sculley et al. [23] state that for a mature machine learning system,
it could be that only at most 5% of the overall code base can be regarded as
machine learning, a subset of data science. Rest of the code is about, e.g., data
collection and preparation, configuration and management, and serving layer.
This raises the question, whether following readily available approaches in soft-
ware development could help in data science projects [1,22].

In this paper, our goal is to understand a typical process flow for a data
science project, as well as to learn about the role of a data scientist and teamwork
that would take place in the context of data-centric projects. Our precise research
questions are:

1. What is the typical process flow of a data science project?
2. What kind of people are part of a data science project?

The research was executed as a multiple case study with a series of interviews
with experienced data scientists working in the field of data science consultancy.

Our results indicate that data science is experimentation-centric and multi-
disciplinary team work. The role of a data scientist is identified as distinctively
separate from that of a data engineer. Development is mainly iterative in nature.
As the work relies heavily on experimentation on data, models, algorithms and
technical approaches utilized, knowledge gained during the project can change
goals or requirements of the work. However, in the context of larger projects,
practices sharing characteristics with modern software development are common,
in particular when the team size increases.

Demystifying Data Science Projects 155

The rest of this paper is structured as follows. Sect. 2 gives the background for
the paper and presents related work. Section 3 introduces the research approach
we have followed, and Sect. 4 presents the results of the study. Section 5 provides
an extended discussion regarding the results, including also threats to validity.
Finally, Sect. 6 concludes the paper with some final remarks.

2 Background and Related Work

Typically, data science related research concentrates on the technological solu-
tions and their use cases as presented in the survey by Safhi et al. [16]. At the
same time, literature on data science project roles and project methodologies is
scarce, while there has been some growth in the field [21].

So far, data science projects have been following their own processes and prac-
tices, which have been different from those that have been typically used in the
context of software development [13,19]. Data science specific project method-
ologies include KDD [4], CRISP-DM [26] and SEMMA1. Of these, CRISP-DM
seems to be the one most referred to. It describes an iterative process with six
stages: a) business understanding, b) data understanding, c) data preparation,
d) modeling, e) evaluation, and f) deployment. The stages follow one other lin-
early, but the process allows both moving back and forth between the stages.
For a comparison of the frameworks, we refer to the work of Shafique and Qaier
[24], and Azevedo and Santos [3]. There are also extensions (e.g. [2,7]) on these
methodologies that aim at tackling some of the problems the practitioners have
identified.

In an older 2015 Internet poll [13], CRISP-DM was shown to be the most
popular process methodology in data science. However, according to a more
recent 2018 survey by Salz et al. [19], 82% of data science teams did not follow
any explicit project management process or practices, even though 85% thought
such would be beneficial. According to the survey, teams either were not sure of
the used process methodology, or used an ad hoc approach. Moreover, 15% of
teams reported the use of some agile methodology and 3% a CRISP-DM based
methodology.

Grady et al. [8] note the similarity of data science projects with software
development before the adoption of agile methodologies. Such similarities can
also be seen in a study revealing difficulties related to processes in data science
projects [18]. Issues were found particularly with estimating the budget, sched-
ules and the successfulness of the project in advance. Also quality assurance of
results is often insufficient. Moreover, data science projects still rely quite heavily
on individual effort instead of team work.

However, it is important to note that there are differing categories of data
science projects. For example, in an ethnographic study [20] the authors found
two kinds of data science projects: routine data transformation projects and
exploratory projects. Especially the latter ones were one-off and did not have
1 Available at https://documentation.sas.com/?docsetId=emref&docsetTarget=n061

bzurmej4j3n1jnj8bbjjm1a2.htm&docsetVersion=15.1.

https://documentation.sas.com/?docsetId=emref&docsetTarget=n061bzurmej4j3n1jnj8bbjjm1a2.htm&docsetVersion=15.1
https://documentation.sas.com/?docsetId=emref&docsetTarget=n061bzurmej4j3n1jnj8bbjjm1a2.htm&docsetVersion=15.1

156 T. Aho et al.

standard process methodologies in use; for example, the projects lacked mile-
stones and schedules. Moreover, the time used for different stages varied a lot
and included a lot of manual work on, e.g., data transformations.

In a further study, Saltz et al. [17] could label data science projects with two
dimensions (infrastructure and discovery), based on which they could identify
four different types of data science projects depending on where projects could
be placed on the axes. The project types were: Hard to Justify, Exploratory,
Well-Defined and Small data.

Similarly, Amershi et al. [1] discuss how data science teams at Microsoft have
merged their data science workflows into pre-existing agile processes. While data
scientists have learned to adapt to the agile workflow, the authors recognize
several issues related to data, model creation and handling AI components, that
clearly distinguish data science projects from software projects. The authors
note, though, that the problems faced by data scientist change significantly based
on the maturity of the team, and have created a maturity measure to help identify
issues.

The nature of data science teams and member backgrounds have also been
studied. Kim et al. [11,12] identify that data scientists could have very different
kinds of roles in teams and projects, partially due to their interest, skills and
background, and partially due to company principles on how work is divided.
Data scientist profiles vary from “Polymath” who has a strong mathematical
background and can handle technical implementation, to “Insight actor” whose
main job is to act based on findings from the data.

In general, most of the studies concentrate on a single company or are struc-
tured surveys with large target groups. There are only few (e.g. [10,17]) data
science interview studies over multiple companies. Kandel et al. [10] concentrate
on individual analyst skill set and workflow mentioning within team collabora-
tion briefly. Moreover, Saltz et al. [17] give a data science project framework
mentioning management and organization as a social context.

To summarize, prior work on data science projects investigates software
development approaches and highlights the parallels and differences. However,
to the best of our knowledge, no current research across multiple data science
companies exists. Further, there are studies on different workflows and types of
data science projects, and also studies on what kind of teams are used within
data science projects. Nevertheless, to the best of our knowledge, no study yet
exists that would combine these to angles together. Our paper attempts to fill
this gap.

3 Research Methodology

The goal of this work is to understand a typical process flow for a data sci-
ence project, and to learn about the role of teamwork that would take place in
the context of data science projects, and what is the role of the data scientist
there. The study was conducted as a multiple-case study of six companies with a

Demystifying Data Science Projects 157

business area in data science consultancy (interview protocol is online2). Case
study research [15,27] as an approach is suitable when the aim is to gain knowl-
edge on a topic tied to and not clearly separable from its practical context. This
is true for industrial data science projects where practitioners can provide a good
view on how everyday data science work is done today.

The interview questions were iteratively designed by the authors, taking into
consideration existing related work and some baseline assumptions. We identi-
fied five assumptions based on prior research and our own observations from
industrial experience – authors 1 and 4 are currently working as data scientists
where as author 5 has extensive experience in industrial software development.
The assumptions driving the focus of the work were the following:

– Data scientists are lone warriors or miracle workers, who come in to do a data
science element and then leave after a short time, never seeing the project
complete and never being truly part of the development team.

– Broken data presents challenges to data science work.
– Insufficient data presents challenges: clients’ needs can not be met because

there is no available data to answer the clients’ targets.
– Data science projects are vaguely specified and customers do not exactly know

what they want in the beginning of the project.
– Data engineering and data science are clearly separated tasks.

Note that the assumptions are not hypotheses, but are included for the sake of
openness and validity.

Six data science consultancy companies were selected into the study based
on availability and the nature of data science projects they work with. Three of
the companies were general ICT consultancy companies with roughly 500–1000
personnel. The other three focus specifically on AI, data analysis and concept
design. Two in the latter group were independent companies with less than 50
employees. One was a data science unit of a similar size within a large, global
business consultancy company.

Table 1. Data science experience of the interviewees in years.

Experience type Experience in years

Data science consultancy 2 4 4 7 7 12

Overall data science NA 9 NA 13 21 12

An experienced data scientist was interviewed from each company (see
Table 1). The interviews concentrated on overall experience of the data sci-
entists over their whole career. Thus, interview questions did not address, e.g.,
the related project details. The interviews were conducted from November to
2 The interview protocol https://drive.google.com/file/d/1rKvt 10oeINv0hXvQU

QHgIgtFyEj9sAf/view?usp=sharing.

https://drive.google.com/file/d/1rKvt_10oeINv0hXvQUQHgIgtFyEj9sAf/view?usp=sharing
https://drive.google.com/file/d/1rKvt_10oeINv0hXvQUQHgIgtFyEj9sAf/view?usp=sharing

158 T. Aho et al.

December 2019 as a semi-structured interview lasting approximately half an
hour. The interview protocol was designed based on the assumptions, and the
first interview acted as a pilot interview for the interview protocol. As no changes
were needed after the pilot, the pilot interview is included in the analysis. Five
of the interviews were done on the companies’ premises and one on a univer-
sity campus. All interviews were done in the native language of the interviewees.
Two researchers were present in each of the interviews, one of them taking notes.
Each interview was recorded and transcribed.

The used definition of a data science project was given in the beginning of
each interview but further specifics were left to each interviewee. In the scope
of the study, a data science project must apply programming and not just use
graphical tools in the analysis. Furthermore, the project has to include artificial
intelligence or data science development, for instance predictive or exploratory
analytics. It was also emphasized that traditional business intelligence or data
warehousing were not within the scope of the study.

The results were thematically analyzed [5] based on the notes and the tran-
scriptions. One researcher made the thematic analysis based on the notes and
the transcripts, arriving at three higher level themes which comprised of 13
lower-level themes in total. Once an initial thematic analysis was made, another
researcher validated the analysis by placing 20 quotes (chosen randomly but in
such a way that all themes were represented) under themes identified. Once the
themes were agreed upon by two researchers, their analysis was further validated
by a third researcher in the same way. The coding essentially remained the same
after validation, and no changes were made to the lower-level themes. However,
two higher-level themes were named more appropriately, and some re-arranging
was done in how lower-level themes were grouped under the higher-level themes.
The themes are described in the following section.

4 Interviews

Based on our thematic analysis, we created a conceptual model of key ele-
ments encountered in a data science project (Fig. 1). The three main concepts
are Experimentation, Development Approach, and Multidisciplinary Team(work),
which we will present in more detail in the following.

4.1 Experimentation

Data science projects revolve around experimentation and dealing with the
uncertainty of unpredictable outcomes. Data scientists need to experiment with
data, models, algorithms, and technical approaches to find the most satisfying
way of meeting their goals. Knowledge gained during the experimentation phase
may lead to changes in goals or requirements, to more accurate models, and
eventually to a Proof-of-Concept implementation.

Data—Based on our own experiences, we approached the interviews with an
assumption that incomplete or broken data would present significant challenges

Demystifying Data Science Projects 159

in data science projects. All our interviewees agreed that data is never perfect:
it is often flawed and incomplete, and has far less information value than what
customers usually believe. It is accepted as status quo that you simply need
to invest the necessary time to fix and clean the data. However, contrary to
our assumptions, this was not considered to be a particular challenge, as it is
something that data scientists come against in virtually every project.

Data science project

Experimentation

Development
approach

Multi-disciplinary
team(work)

Data

Changes in goals or
requirements

Managing
expectations and

uncertainty

Model creation and
performance

Proof-of-Concept

Role of data scientist

Comparability with
software

development

Setting goals,
communicating with

the client

Definition of done

Iterative
development

Variety of team
members

Data engineer

Data scientist's
background

Fig. 1. Conceptual model of data science projects

Changes in Goals or Requirements—Due to the experimental nature of data
science projects, goals or requirements often change over time. One reason is
the aforementioned incompleteness of data: once the data scientist has done a
first look through and created an understanding of the data, it may become
apparent that the original goals simply are not feasible with the existing data.
Our interviewees had a consensus that on a larger scale the goals and require-
ments for a data science project stay the same, but on a smaller scale the details

160 T. Aho et al.

may change based on the knowledge gathered through experimentation. Another
setup is that new goals are created to complement the original ones. “It’s data
science – you don’t know in advance what can be achieved, chances may be
improved with experience. It’s common that goals slightly change.”

Managing Expectations and Uncertainty—The strongest message conveyed by
our interviewees was that in data science one never really knows the outcome.
This unfolds as significant challenges when communicating with the client and
specifying the project. Our interviewees report that the present hype around AI
is making things even more difficult. Various companies are reacting to the hype
and on stories how data science projects have created value for others. However,
the level of maturity for data collection and understanding the boundaries of data
science varies significantly. Data scientists feel pressed in keeping expectations
realistic and clearly communicating that one simply cannot know what, e.g.,
a machine learning algorithm will actually learn from the given data: “Results
aren’t certain. If you promise too much, you are facing a difficult project. You
have to be honest.”

Model Creation and Performance—The core of data science is creating mod-
els and utilizing algorithms to generate information value from the data. Our
interviewees discussed various ways of conducting data science: doing reinforce-
ment learning, “simple” machine learning, data exploration, predictive model-
ing, and natural language processing. However, they also raised some issues: 1)
exploratory approaches may be problematic, if data is separated from the con-
text, 2) having a model that somehow works with the data is only 5% of the
project done, and 3) models are a product of iterative improvement and their
performance could be honed forever.

Proof-of-Concept—As described, data science projects have a high level of uncer-
tainty, an experimental and iterative nature of developing models for data, and
an increased need to have something tangible to discuss goals with the client.
Hence, it appears natural that the projects are heavily reliant on creating Proof-
of-Concept (PoC) implementations. Our interviewees unanimously discussed sit-
uations where the feasibility of creating a model for the given data and making
some sensible results from it were tested by creating a PoC. During the PoC
development there may only be one or two data scientists involved and no other
team members. The whole PoC would be developed in only a few week’s of time.
“We test a little and do PoC versions of what we are planning on developing.
We get some certainty that our approach makes sense.”

4.2 Development Approach

The development approach in data science projects seems to incorporate data
scientists into larger development teams. The work is also clearly iterative in
its nature, as iterative development approach was applied according to five out
of the six interviews. Furthermore, a parallel with software development was
drawn in four of the six cases. However, there can be significant differences in
goal setting based on the maturity of the client.

Demystifying Data Science Projects 161

Role of Data Scientist—Our assumption prior to the interviews was that data
scientists’ role is solo work, where they only come in to complete the data sci-
ence element never seeing the project complete and never truly working as a
part of a development team. This turned out not to be true. While some data
scientists worked on data with a clear cut focus on data science work, there was
strong commitment to the overall project. The work effort varied from sharing
commitment between jobs to full commitment to one project. This depends on
the stage of the project and the need for data scientist in the project. Some data
scientists also work on data engineering, but the role of the data engineer is over-
all recognized separately (see Sect. 4.3). One interviewee also raised the topic
of client contact. Data scientists need understanding of the client organization’s
needs to be able to provide data science solutions to meet those needs.

Comparability with Software Development—A lot of parallels were seen between
data science work and general software development. There was a drive to get
data science work to follow the process approaches commonplace in software
development. Also the data science component was mentioned as just a small
piece in a far larger project. One interviewee: “It comes probably as a surprise to
many what I mentioned earlier that you have 5% of machine learning and 95%
of something else”. The ending of the project was seen different from software
development in that in data science the project was mentioned to never finish.
Instead, only time or budget constraints determined the end of the data science
project.

Setting Goals, Communicating with the Client—We assumed that data science
projects are vaguely specified and customers do not have a clear goal in mind
when the project starts. According to the interviews, the data science experience
of the client was seen as a key factor in setting the project’s goals. Business goals
were mentioned as being at the heart of project goal setting. While having clear
goals at the start of the project was considered valuable compared to starting
with “what can you find out from the data”, how well such goals are defined were
seen to depend on the maturity level of the customer. However, the quality of
goals set was considered to have begun to go down as data science has become
more widely utilized. Communication with the client requires, in addition to
having understanding of the clients business, the ability to set the expectations
to a suitable level in order to meet the goals set.

Definition of Done—Definition of done in data science projects was twofold.
Firstly, the maintenance phase can act as a clear ending to the project. Once
the data science component is validated and in production, the work is done.
Secondly, there are projects that go on indefinitely. There is always room for
improvement, such as model calibration, and the project either goes on with
new improvements as long as it is funded or spawns new projects to continue
the work in.

Iterative Development—Based on the interviews, there is a clear link between
the iterative nature of development and experimentation. Still, when viewed as
a theme of its own, the role of the iterative development approach is clearly

162 T. Aho et al.

seen. Data and algorithm selection require iteration to find the most suitable
solutions. Also having unclear goals requires iterations to make it possible to see
what can be achieved. In some cases a specific approach for development was
utilized: Scrum was mentioned as well as the use of sprints. When specified, the
length of a sprint was one to two weeks.

4.3 Multi-disciplinary Team(work)

While data science projects can be executed as small PoC efforts, where only
one or two data scientists use a week’s effort in testing an idea, teamwork is
required when the data science modules are used in production. If a PoC is
successful in demonstrating the feasibility of an idea, it can be utilized in a
larger concept – a software product, automation, or another domain. In this
setting a larger team with varied expertise and roles is required with different
roles in, e.g., sales, marketing, and software development, to complement the
data science and engineering skills.

Variety of Team Members—As the interviews revealed, data science can be
a small part of a larger development project. When the data science compo-
nent needs to be integrated with other components, a variety of team members
are required for the project to succeed. Our interviewees stressed the role of
software developers, to quote: “A software developer is really important, and a
good developer will save you from the trouble you didn’t know you’d get into.”
Developers’ expertise varies similarly as in any regular software development
project. Additionally, the interviewees stressed the importance of having some-
one who can understand the business side of things and fluently communicate
with the customer. As noted, managing expectations, dealing with uncertainty
and setting goals requires some special effort in data science projects, and, thus,
team members with communication skills and business understanding are highly
valued.

Data Engineer—As discussed, data is far from perfect in terms of being usable
for data scientists. Also our initial assumption was that engineering the data is
a clearly separated task, preceding the actual data science. Before a data sci-
entist can begin, a working technical pipeline is required to actually access and
gather data. Data may need to be fetched from several big databases, it can be
in different formats or encrypted, and it can be as big as millions of rows, which
requires partitioning. Performing such tasks requires an understanding of the
client’s data warehouse, as well as strong skills in database design and program-
ming. After required data is gathered from the clients and put in a system where
data science tasks will be performed, the data still requires polishing and fixing
before it can be used with a model. Our interviews revealed that engineering the
data is definitely considered to be distinctively separate from data science, and
the role of data engineer was unanimously recognized in the interviews. How-
ever, who adopts the role of data engineer varies a great deal. In some cases the
data scientists do data engineering as well, in some cases a software developer
takes on the role of data engineer, and finally there may be people distinctively

Demystifying Data Science Projects 163

assigned the role of data engineer. Assignment of the role depends on multiple
aspects: the scope and nature of the project and the data, the policies and prac-
tices of the company, and the backgrounds and profiles of data scientists. While
having developers do the work of data engineer is quite in line with our initial
assumptions, cases where a data scientist does data engineering as well is clearly
contradictory, and we would need to probe further into defining the scope of
data engineering that a data scientist actually does.

Data Scientist’s Background—While our interviewees agree that data scientists
can come from various backgrounds, they further agree on a common denomina-
tor: the ability to understand mathematics, understand, design and implement
algorithms, and quickly learn new methods. Data scientists have a variety of
educational backgrounds, such as economics, mathematics and physics. In addi-
tion, there are a large number with a technical background and even a tailored
doctoral degree in machine learning. Finally, there may be so-called “Full stack
data scientists”, who are able to engineer the data, create the model, imple-
ment the algorithms, and also develop the software surrounding the data science
module. While various backgrounds give sufficient skills in working as a data
scientist, naturally the background affects how the data scientist approaches a
problem. To quote one of our interviewees: “a mathematician looks at the world
completely differently from a statistician”.

5 Discussion

Next, we present our analysis of key findings and list some key lessons learned.
Then, we address validity concerns of our study.

5.1 Process and Collaboration in Data Science

The main concepts that define the process and roles of data science projects are
Experimentation, relying on an iterative Development Approach and especially
larger projects having Multidisciplinary Team(work) at their core.

The exploratory nature of many data science projects is evidenced by the
proposed models and methods which have built-in learning mechanisms. Fur-
thermore, some characteristics of prototyping [6] can be considered compatible
in the context of data science. Proof-of-Concepts done by one or two data scien-
tists appear to be a common mechanism to test the feasibility of a solution, do
some initial testing of a model, and get familiar with the data. However, they
are rarely sufficient as such.

Our results also reveal that there is a need for larger data science projects
where numerous team members participate in different roles. These larger
projects can also involve a considerable amount of software development, where
data related features are embedded. This is also reflected in team composition.
The interviewees state that “In many cases there are 1–2 data scientists, then a
varying number of people in software development”. Here data scientists are also
involved throughout the project, all the way to the maintenance phase.

164 T. Aho et al.

Based on our results, the development approach of data science projects
appears to rely at the heart of iterative work – a process familiar in the context
of software development. Five out of six of our interviewees commented on the
iterative role of the development, and the final interviewee referred to parallels
of software development in general. Nevertheless, even in software development,
there are multitude of ways of iterating for different purposes [25]. Thus, this
shows that there are similarities between data science projects and software
development, but this does not necessarily mean that the two could be aligned
easily. Data science projects come with an exceptionally high level of uncer-
tainty on the outcome, as was revealed both by our study and in related work
[19]. Within data science, that uncertainty is acknowledged and accepted to a
point – data scientists are well aware that one cannot know what can be derived
from the data before experimentation. However, that uncertainty stretches from
the start of the project (vague specifications) to the end (very varied conceptions
of what is the “definition of done”), and may be very difficult to accept when
moving to a software development context.

Drawing our findings together indicates that data science projects can ben-
efit from development processes of software development, especially in larger
projects. Based on the experimentative nature of data science work one can
argue that what is commonly called a Proof-of-Concept implementation in data
science could probably be regarded as a prototype in software terminology. Team
work is at heart of data science work – both between several data scientists as
well as between the data scientist and other, often software, professionals. These
elements of working up iteratively from Proof-of-Concepts and prototypes and
forming multidisciplinary teams for development are commonplace in agile and
lean software development practices.

5.2 Threats to Validity

Several threats to validity [15,27] are recognized. Mitigation factors are also
taken into account. For the study, we especially address construct validity, exter-
nal validity and the reliability of the work.

Construct Validity—Construct validity considers how well research investigates
what it means to investigate. In this study, construct validity is threatened by
how representative the interviewed cases were of data science and how the inter-
view data was analyzed. Also the case selection was partly based on a convenience
sample. To mitigate the threat, what was meant by a data science project was
defined in the beginning of each interview. However, the definition given left
room for further specifics by each interviewee. Furthermore, the interviewees
were selected based on their prior experience in data science projects specific to
the scope of the study. All researchers participated in the planning and develop-
ment of the interview protocol, which was also piloted in a pilot interview.

External Validity—External validity refers to how well the study results can be
generalized beyond the scope of the study. This study has been planned as a
preliminary to a larger survey study, that is currently being designed. While the

Demystifying Data Science Projects 165

sample size of this study is limited, the interviewees were selected to represent
a range of experience and from two fields of data science industry (general ICT
and artificial intelligence specific external consultancy companies) with small to
medium company sizes. Our findings may not be applicable to in-house teams,
nor to larger enterprises or smaller companies considering the sample size. How-
ever, we believe that the study results give important insights toward under-
standing data science projects and developing a theory. As future work, we aim
at validating these results.

Reliability—The main threats to the reliability of the results is in the thematic
analysis. To mitigate the threat, three researchers took part in the interviews and
all five participated in the analysis of the results. The main thematic analysis
was done by one researcher and was validated by two researchers separately. The
conflicts that occurred during the validation were resolved in a separate analysis
sessions with the rest of the researchers’ participation. This way, researcher bias
was also minimized, as three of the authors had prior experience with regard to
data science and software engineering in practise. To enable to replication of the
study, the interview protocol is available online.

6 Conclusions

In this multiple case study, we interviewed six data scientists with different levels
of experience from six small to medium-sized consultancy companies. Our aim
was to understand a typical process flow for a data science project, as well as to
learn about the role of teamwork and data scientists there.

Three main concepts describing data science project methodology and roles
were found. Experimentation is a core nature of data science projects. The data
science projects commonly have an iterative Development Approach that incor-
porates them into larger teams. In addition, successful Proof-of-Concepts (PoCs)
often end up in larger projects having Multidisciplinary Team(work).

Our first research question was: 1. What is the typical process flow of a data
science project? From the project perspective we found that process elements in
data science projects were, to some extent, the same as in software development.
However, what sets the data science projects clearly apart from software develop-
ment is the inherent uncertainty of data science work. It must be acknowledged
and clearly communicated that there is no guarantee of specific results or achiev-
ing the initial goals. At the same time, requirements in software development are
also fuzzy even at best. Nevertheless, software development has processes and
tools to handle the uncertainty whereas data science, in turn, has to live with
the data being inherently broken. Furthermore, the uncertainty cuts through the
entire data science project life cycle – from vague specifications to differences in
the definition of done. Data science projects are at core about experimentation
and exploration, making them somewhat similar to the Lean Startup [14] cycle
of Build – Measure – Learn.

To answer our second research question, 2. What kind of people are part of
a data science project?, the assumption of data scientists as lone soldiers was

166 T. Aho et al.

debunked. Firstly, data science is often only a small part of a larger development
project. As the projects can be long ranging, there is commitment to the project
throughout its life cycle. Especially, when a PoC demonstrates a feasible idea, a
larger team with varied expertise and roles is called for.

All in all, data science is emerging into the mainstream software development
projects. However, data science entails only a small portion of overall work and
the role of a data scientist is often clearly identifiable in the development team.
Nevertheless, it is likely that the processes of data science will continue to draw
practices from software development. There is a level of uncertainty that is an
inherent trait of data science. Hence all processes suitable in the context of
software development do not necessarily apply to data science work. Instead the
processes themselves should evolve to be able to take data science components
with built-in uncertainty into account as part of the process.

There is clearly need for further research on the nature of data science project
methodology. First of all, the results found in this paper should be validated with
larger source material. In addition, it would be interesting to further test different
project methodology approaches in a data science environment. These results
already indicate that data science is increasingly using development processes to
guide the work and rely on experimentation and multidisciplinary team work.

Acknowledgments. The authors wish to thank the professionals who provided their
time and experience for our interviews. This study would not have been possible with-
out them.

References

1. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
IEEE/ACM International Conference on Software Engineering: Software Engineer-
ing in Practice (2019)

2. Angée, S., Lozano-Argel, S.I., Montoya-Munera, E.N., Ospina-Arango, J.D.,
Tabares-Betancur, M.S.: Towards an improved ASUM-DM process methodology
for cross-disciplinary multi-organization big data & analytics projects. In: Interna-
tional Conference on Knowledge Management in Organizations (2018)

3. Azevedo, A., Santos, M.F.: KDD, SEMMA and CRISP-DM: a parallel overview.
In: IADIS European Conference on Data Mining (2008)

4. Brachman, R.J., Anand, T.: The process of knowledge discovery in databases: a
first sketch. In: AAAI Workshop on Knowledge Discovery in Databases (1994)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

6. Budde, R., Kautz, K., Kuhlenkamp, K., Züllighoven, H.: What is prototyping?
Prototyping, pp. 6–9. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-
642-76820-0 2

7. Grady, N.W.: KDD meets big data. In: IEEE International Conference on Big Data
(2016)

8. Grady, N.W., Payne, J.A., Parker, H.: Agile big data analytics: AnalyticsOps for
data science. In: IEEE International Conference on Big Data (2017)

https://doi.org/10.1007/978-3-642-76820-0_2
https://doi.org/10.1007/978-3-642-76820-0_2

Demystifying Data Science Projects 167

9. Hill, C., Bellamy, R., Erickson, T., Burnett, M.: Trials and tribulations of develop-
ers of intelligent systems: a field study. In: IEEE Symposium on Visual Languages
and Human-Centric Computing (2016)

10. Kandel, S., Paepcke, A., Hellerstein, J.M., Heer, J.: Enterprise data analysis and
visualization: an interview study. IEEE Trans. Visual Comput. Graphics 18(12),
2917–2926 (2012)

11. Kim, M., Zimmermann, T., DeLine, R., Begel, A.: The emerging role of data
scientists on software development teams. In: IEEE/ACM International Conference
on Software Engineering (2016)

12. Kim, M., Zimmermann, T., DeLine, R., Begel, A.: Data scientists in software teams:
state of the art and challenges. IEEE Trans. Software Eng. 44, 1024–1038 (2018)

13. Piatetsky, G.: CRISP-DM, still the top methodology for analytics, data mining,
or data science projects. KDnuggets (2014). https://www.kdnuggets.com/2014/
10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html.
Accessed June 2020

14. Ries, E.: The lean startup: how today’s entrepreneurs use continuous innovation
to create radically successful businesses. Currency (2011)

15. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131 (2008)

16. Safhi, H.M., Frikh, B., Hirchoua, B., Ouhbi, B., Khalil, I.: Data intelligence in the
context of big data: a survey. J. Mobile Multimedia 13(1&2) (2017)

17. Saltz, J., Shamshurin, I., Connors, C.: Predicting data science sociotechnical exe-
cution challenges by categorizing data science projects. J. Assoc. Inf. Sci. Technol.
68, 2720–2728 (2017)

18. Saltz, J.S.: The need for new processes, methodologies and tools to support big
data teams and improve big data project effectiveness. In: IEEE International
Conference on Big Data (2015)

19. Saltz, J., Hotz, N., Wild, D., Stirling, K.: Exploring project management method-
ologies used within data science teams. In: Americas Conference on Information
Systems (2018)

20. Saltz, J.S., Shamshurin, I.: Exploring the process of doing data science via an
ethnographic study of a media advertising company. In: IEEE International Con-
ference on Big Data (2015)

21. Saltz, J.S., Shamshurin, I.: Big data team process methodologies: A literature
review and the identification of key factors for a project’s success. In: IEEE Inter-
national Conference on Big Data (2016)

22. Schmidt, C., Sun, W.N.: Synthesizing agile and knowledge discovery: case study
results. J. Comput. Inf. Syst. 58(2), 142–150 (2018)

23. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances
in Neural Information Processing Systems (2015)

24. Shafique, U., Qaiser, H.: A comparative study of data mining process models
(KDD, CRISP-DM and SEMMA). Int. J. Innov. Sci. Res. 12, 217–222 (2014)

25. Terho, H., Suonsyrjä, S., Systä, K., Mikkonen, T.: Understanding the relations
between iterative cycles in software engineering. In: Hawaii International Confer-
ence on System Sciences (2017)

26. Wirth, R., Hipp, J.: CRISP-DM: Towards a standard process model for data min-
ing. In: International Conference on the Practical Applications of Knowledge Dis-
covery and Data Mining (2000)

27. Yin, R.K.: Case Study Research: Design and Methods, 5th edn. SAGE Publica-
tions, Thousand Oaks (2013)

https://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html
https://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html

Data Pipeline Management in Practice:
Challenges and Opportunities

Aiswarya Raj Munappy1(B), Jan Bosch1, and Helena Homström Olsson2

1 Department of Computer Science and Engineering, Chalmers University
of Technology, Hörselg̊angen 11, 412 96 Gothenburg, Sweden

{aiswarya,jan.bosch}@chalmers.se
2 Department of Computer Science and Media Technology, Malmö University,

Nordenskiöldsgatan, 211 19 Malmö, Sweden
helena.holmstrom.olsson@mau.se

Abstract. Data pipelines involve a complex chain of interconnected
activities that starts with a data source and ends in a data sink.
Data pipelines are important for data-driven organizations since a data
pipeline can process data in multiple formats from distributed data
sources with minimal human intervention, accelerate data life cycle activ-
ities, and enhance productivity in data-driven enterprises. However, there
are challenges and opportunities in implementing data pipelines but prac-
tical industry experiences are seldom reported. The findings of this study
are derived by conducting a qualitative multiple-case study and inter-
views with the representatives of three companies. The challenges include
data quality issues, infrastructure maintenance problems, and organiza-
tional barriers. On the other hand, data pipelines are implemented to
enable traceability, fault-tolerance, and reduce human errors through
maximizing automation thereby producing high-quality data. Based on
multiple-case study research with five use cases from three case compa-
nies, this paper identifies the key challenges and benefits associated with
the implementation and use of data pipelines.

Keywords: Data pipelines · Challenges · Opportunities ·
Organizational · Infrastructure · Data quality · Issues

1 Introduction

Data is being increasingly used by industries for decision making, training
machine learning (ML)/deep learning (DL) models, creating reports, and gener-
ating insights. Most of the organizations have already realized that big data is an
essential factor for success and consequently, they use big data for business deci-
sions [9,13]. However, high-quality data is critical for excellent data products [3].
Companies relying on data for making decisions should be able to collect, store,
and process high-quality data. Collecting data from multiple assorted sources
to producing useful insights is challenging [1]. Moreover, big data is difficult to
configure, deploy, and manage due to its volume, velocity, and variety [12].
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 168–184, 2020.
https://doi.org/10.1007/978-3-030-64148-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_11

Data Pipeline Management in Practice: Challenges and Opportunities 169

The complex chain of interconnected activities or processes from data gen-
eration through data reception constitutes a data pipeline. In other words, data
pipelines are the connected chain of processes where the output of one or more
processes becomes an input for another [19]. It is a piece of software that removes
many manual steps from the workflow and permits a streamlined, automated
flow of data from one node to another. Moreover, it automates the operations
involved in the selection, extraction, transformation, aggregation, validation, and
loading of data for further analysis and visualization [11]. It offers end to end
speed by removing errors and resisting bottlenecks or delay. Data pipelines can
process multiple streams of data simultaneously [14].

Data pipelines can handle batch data and intermittent data as streaming
data [14]. Therefore, any data source will be compatible with the data pipeline.
Furthermore, there is no strict restriction on the data destination. It does not
require data storage like a data warehouse or data lake to be the end destination.
It can route data through a different application like visualization or machine
learning or deep learning model.

Data pipelines in production should run iteratively for a longer duration
due to which it has to manage process and performance monitoring, validation,
fault detection, and mitigation. Data flow can be precarious, because there are
several things that can go wrong during the transportation of data from one node
to another: data can become corrupted, it can cause latency, or data sources
may overlap and/or generate duplicates [5]. These problems increase in scale
and impact as the number of data sources multiplies and complexity of the
requirements grows.

Therefore, data pipeline creation, management, and maintenance is a com-
plicated task which demands a considerable amount of time and effort. Most of
the companies do this maintenance manually by appointing a dedicated person
to guard the data flow through the pipeline. This study aims to investigate the
opportunities and challenges practitioners experience after the implementation
of the data pipeline at their organization.

The contribution of this paper is three-fold. First, it identifies the key chal-
lenges associated with data pipeline management. Second, it describes the oppor-
tunities of having a dedicated data pipeline. These challenges and opportuni-
ties are validated through a multi-case study with three leading companies in
telecommunication and automobile domains. Furthermore, the paper provides a
taxonomy of data pipeline challenges including infrastructural, organizational,
and technical ones.

The remainder of this paper is organized as follows. In the next section, we
present the background of the study. Section 3 discusses the research method-
ology adopted for conducting the study. Section 4 introduces the use cases and
Section 5 describes the opportunities created by the pipelines. Section 6 details
the challenges faced by practitioners while managing data pipelines. Section
7 outlines the threats to validity. Section 8 summarizes our study and the
conclusions.

170 A. R. Munappy et al.

2 Background

Several recent studies have recognized the importance of data pipelines. Raman
et al. [19] describes Big Data Pipelines as a mechanism to decompose complex
analyses of large data sets into a series of simpler tasks, with independently tuned
components for each task. Moreover, large scale companies like Google, Amazon,
LinkedIn, and Facebook have recognized the importance of pipelines for their
daily activities. Data errors and their impact on machine learning models are
described in [6] by Caveness et al. They also propose a data validation framework
that validates the data flowing through the machine learning pipeline.

Chen et al. describes the real-time data processing pipeline at Facebook [8]
that handles hundreds of Gigabytes per second across hundreds of data pipelines.
The authors also identify five important design decisions that affect their
ease of use, performance, fault tolerance, scalability, and correctness and also
demonstrate how these design decisions satisfy multiple use cases on Facebook.
LinkedIn also has a similar real-time data processing pipeline described by Good-
hope et al. in [10]. Data management challenges of deep learning is discussed by
Munappy et al. through a multiple case study conducted with five different com-
panies and classifies the challenges according to the data pipeline phases [16].
Lambda architecture proposed by N. Marz et al. and Kappa architecture [18]
solves the challenge of handling real-time data streams [14]. Kappa architecture
that considers both online and offline data as online is a simplified version of
lambda.

Most of these studies illustrate the significance of data pipelines and the
opportunities it can bring to the organizations. However, the challenges encoun-
tered in the industrial level during the development and maintenance of the data
pipelines in production is still not completely solved.

3 Research Methodology

The objective of this study is to understand the existing data pipeline as well
as the challenges experienced at the three case companies and to explore the
opportunities of implementing a data pipeline. Specifically, this study aims to
answer the following research question:
RQ: What are the practical opportunities and challenges associated with the
implementation and maintenance of Data Pipelines at the industry level?

3.1 Exploratory Case Study

A qualitative approach was chosen for the case study as it allows the researchers
to explore, study, and understand the real-world cases in its context in more
depth [23]. Since the concept of data pipelines is a less explored topic in research,
we have adopted a case study approach [21]. Moreover, the case study approach
can investigate contemporary real-life situations and can provide a foundation
for the application of ideas and extension of methods. Each case in the study
pertains to a use case that makes use of data. Table 1 details the selected five
use cases from three companies.

Data Pipeline Management in Practice: Challenges and Opportunities 171

Table 1. Outline of use cases and roles of the interviewees

Company Use cases Interviewed experts

ID Role

A Data collection pipeline R1 Senior data scientist

A Data governance pipeline R2 Data scientist

R3 Analytics system architect

R4 Software developer

A Data pipeline for machine learning

applications

R5 Data scientist

R6 Senior data scientist

R7 Software developer

R8 Senior data scientist

B Data collection pipeline R9 Senior data engineer

R10 Data engineer

R11 Data engineer

R12 Data analyst and superuser

C Data quality monitoring pipeline R13 Director of data analytics team

R14 ETL developer

R15 Software developer

R16 Product owner for data analytics team

3.2 Data Collection

Qualitative data was collected by means of interviews and meetings [22]. Based
on the objectives of the research, to explore and study the applications con-
suming data in the companies, an interview guide with 43 questions categorized
into nine sections was formulated. The first and second sections focused on the
background of the interviewee. The third and fourth sections focused on the
data collection and processing in various use-cases and the last section inquired
about data testing and monitoring practices and the impediments encountered
during the implementation and maintenance of data pipelines. All interviews
were conducted virtually via videoconferencing due to the COVID-19 pandemic.
Each interview lasted 40 to 60 min. The interviews were recorded with the per-
mission of respondents and were transcribed later for analysis. The first author
is an action researcher for the past one year/six months at company A and B
respectively who attend weekly meetings with data scientists and data analysts.
The data collected through these means are also incorporated.

3.3 Data Analysis

The contact points at the companies helped with analyzing the parts of the
pipeline as well as the infrastructure used for building that pipeline. These notes
together with the codes from transcripts were further analyzed to obtain an end-
to-end view of different use cases. The audio transcripts were investigated for
relations, similarities, and dissimilarities. The interview transcripts and meeting
notes were open coded following the guidelines by P. Burnard [2]. After careful

172 A. R. Munappy et al.

analysis of collected data and based on the inputs from the other two authors,
the first author who is an action researcher at two of the companies developed
the findings of the study which were then validated with the interviewees from
the companies by conducting a follow-up meeting. For further validation and to
collect feedback from a different team, the findings were also presented before
another panel including super users, managers, software developers, data engi-
neers, and data scientists at all three companies who were not involved in the
interviews. The results were updated according to the comments at each stage
of the validation which in turn helped to reduce the researcher bias.

4 Use Cases

In this multi-case study, we explore data pipelines in real-world settings at large-
scale software intensive organizations. Company A is within the telecommu-
nication industry with nearly 100,000 employees who distributes easy to use,
adoptable, and scalable services that enables connectivity. Further, we investi-
gate Company B from automobile domain with 80,000 employees manufacturing
its own cars responsible for collecting data from multiple manufacturing units
as well as repair centers. Company C with 2,000 employees focus on automo-
tive engineering and depends on Company B and does modular development,
advanced virtual engineering and software development for them. In this section,
we present five use cases of data pipelines studied from these three case compa-
nies A, B and C.

Case A1: Data Collection Pipeline
The company collects network performance data(every 15 min) as well as con-
figuration management data(every 24 h) in the form of data logs from multiple
sources distributed across the globe which is a challenging activity. Data collec-
tion from devices located in another country or customer network requires com-
pliance with legal agreement. The collected data can have sensitive information
like use details which needs responsible attention. Furthermore, data generated
by sources can be of different formats and frequencies. For instance, data gen-
eration can be continuous, intermittent or as batches. Consequently, the data
collection pipeline should be adaptable with different intensities of data flow.

When data collection pipeline is implemented, these challenges should be
carefully addressed. Figure 1 shows the automatic data collection pipeline that
collects data from distributed devices. In this scenario, the device is placed inside
a piece of equipment owned by customers. However, the device data is extracted
by filtering the customer’s sensitive information. Base stations have data gener-
ation devices called nodes as well as a device for monitoring and managing the
nodes. Data collection agents at the customer premise can interact either with
nodes directly. However, access service is used for authentication. The data thus
collected is transmitted through a secure tunnel to the data collection toolkit
located at the company premise which also has access service for authentication.
Data collection toolkit received the data and store it in the central data storage
from where the teams can access the data using their data user credentials.

Data Pipeline Management in Practice: Challenges and Opportunities 173

Fig. 1. Data collection pipeline

Case A2: Data Governance Pipeline
Figure 2 illustrates the data pipeline that serves a subset of teams in the com-
pany who are working with data whenever they need it (With the term ‘data’,
we mean the link from which the original data can be downloaded). This data
pipeline gets two types of data dumps: internal and external which is the per-
formance management data collected in every 15 min from the devices deployed
in the network. The internal data dump is the data that is ingested by the
teams inside the company and external data dump is the data collected directly
from the devices in the fields. The data ingestion method varies according to
the data source and the ingested data is stored in the data storage for further
use. The data can be encrypted form which needs decryption before storing it.
Data archiver module sends encrypted data dump to the third-party services for
decryption. Decoded links from the third party are transferred to data storage.
Therefore, data from distributed sources are made available in a central loca-
tion. Teams can request data from any stage of the pipeline. The monitoring
mechanism in the pipeline is manually carried out by the ‘flow guardian’ who is
responsible for fixing the issues in the pipeline.

Fig. 2. Data governance pipeline

Case A3: Data Pipeline for Machine Learning Applications
Data for this pipeline is obtained from the devices that are sent to the repair
center. Data pipelines for machine learning applications has four main steps
namely ingest, store, transform and aggregate. Data generated by the source is

174 A. R. Munappy et al.

gathered at a special zone in the field. The data ingestion module connected
to those zones in the field collects data and ingest into the pipeline as batches.
When new compressed files are found in the periodic checks, the transaction
is logged and downloads it. These new files are then loaded into the archive
directory of the data cluster. The data stored in the cluster cannot be used
directly by the machine learning applications. Moreover, the data logs collected
from different devices will be of different formats. Data transformation checks
for the new files in the archive directory of the data cluster and when found, it
is fetched, uncompressed and processed to convert it to an appropriate format.
The converted data is then given as input to the data aggregation module where
the data is aggregated and summarized to form structured data which is further
given as input to the machine learning applications. Figure 3 illustrates the data
pipeline for machine learning applications.

Fig. 3. Data pipeline for machine learning applications

Case B1: Data Collection Pipeline
The Company B collects and stores three types of data and distributes it for
teams as well as co-working organizations distributed around the globe. Plant
data, delivery data, warranty data and repair data are the different types of
data that are collected from sources such as manufacturing plants, service cen-
ters, delivery centers and warranty offices. The company B collects product data
from distributed manufacturing plants every 24 h. These manufacturing units
will generate data for each product built there. However, not all the data gen-
erated by the plants are collected by the data collection agent of company B.
Group Quality IT platform in the company demands the data that needs to be
collected from the plants. Also, the data requested by the delivery centers are
also collected and stored in the company’s data warehouse. Figure 4 illustrates
the data collection pipeline working in company B. The data collected from
different sources are in different formats and volume. Therefore, data transfer
mechanism as well as data storage is different for all data sources. The data is
ingested from the primary storage and then transformed into a uniform format
and stored in a data warehouse which then acts as a supplier for teams as well
as other organizations who demand for data. For instance, the delivery centers
needs data about the products that are manufactured in the plants.

Data Pipeline Management in Practice: Challenges and Opportunities 175

Fig. 4. Data collection pipeline

Case C1: Data Quality Analysis Pipeline
The company C receives data collected and stored by company B and creates
data quality reports which is used by data scientists team for analysing the
product quality. For instance, the report can be used to understand the model
that is sent to repair centers frequently. When the data quality is not satisfactory,
investigation is initiated and actions are taken to fix the data quality issues.
Company B sends data through private network to company C, and they store
it in a data storage from where data scientists access it for creating reports and
training machine learning models. Figure 5 shows the data pipeline for data
quality analysis at Company C.

Fig. 5. Data quality analysis pipeline

5 Challenges to Data Pipeline Management

Based on our research, we see that organizations benefit from developing and
maintaining data pipelines because of the automation it provides. On the other
hand, there are certain challenges faced by practitioners while developing and
managing data pipelines. This section describes the challenges of data pipelines
derived through the interpretation of interviews based on the use cases described
in Sect. 4. After careful analysis of the challenges obtained from the interviews,
we formulated a taxonomy for the classification of challenges namely Infrastruc-
ture Challenges, Organizational Challenges and Data Quality Challenges which
are described in detail below.

5.1 Infrastructure Challenges

Data pipelines are developed to solve complex data infrastructure challenges.
However, data pipeline management has to deal with some infrastructural chal-
lenges listed below.

176 A. R. Munappy et al.

Integrating New Data Sources: Data pipelines collect data from multiple
distributed devices and make it available in a single access point thus solving
data accessibility problem. However, the data sources increase rapidly in most of
the business scenarios. Therefore, data pipelines should be able to integrate the
new data source and also accommodate the data from that new source which
is often difficult due to many reasons. Based on the empirical findings from the
case study, three common reasons are listed below.

– The data source can be entirely different from the existing sources.
– Format of the data produced by the source might not be compatible with the

data pipeline standards.
– Addition of the new source may introduce overhead on the data handling

capability of the pipeline.

All the use cases except case C1 described in Sect. 4 experience the challenge of
integrating new data sources.

Data Pipeline Scalability: The ability of a data pipeline to scale with the
increased amount of ingested data, while keeping the cost low is a real challenge
experienced by the data pipeline developers. When the data produced by the
source increases, the data pipeline loses the ability to transfer the data from one
node to another leading to the data pipeline breakage and loss of data.

Increased Number of Nodes and Connectors in Upstream: Data
pipelines are a chain of nodes performing activities connected through connectors
that enable data transportation between the two nodes. Essentially, the nodes
can have more than one capability. However, for the easy detection of faults,
each of the nodes should be preferably assigned a single capability. Thus, the
number of nodes and connectors increases in the upstream in relation to the data
product yielded from the pipeline. This in turn increases the complexity of the
data pipeline and decreases ease of implementation. The fragility and complex-
ity of the data pipeline lead to inevitable delays in adding new types of activity
data, which resulted in sticking new activities into inappropriate existing types
to avoid human effort, or worse, not capturing activities at all. Practitioners R9,
R10, R11 and R14 working on case B1 and C1 raised this challenge.

“With the increased number of components in the data pipeline which
in turn makes it difficult to understand and maintain. It is difficult to
attain the right balance between robustness and complexity” - Senior Data
Scientist (R6)

Trade-off Between Data Pipeline Complexity and Robustness: To build
a robust data pipeline, we should have two essential components called fault
detection and mitigation strategies. Fault detection identifies faults at each of
the data pipeline stages and mitigation strategies help to reduce the impact
of the fault. Including these two components increases the complexity of data
pipelines. Moreover, it requires the data pipeline developers to anticipate the
faults that can occur at each stage and define mitigation actions such that the

Data Pipeline Management in Practice: Challenges and Opportunities 177

data flow through the pipeline is not hampered. Some of the common faults can
be anticipated and mitigated. However, it is not possible to identify all possible
faults and define mitigation actions for those. Senior data scientists working on
Case B1 and C1 and data scientist, R5 working on case A3 pointed out this as
an important challenge.

Repeated Alarms: Sending alarms are the most common and simple mitiga-
tion actions automatically taken by the data pipelines. Some faults take time
to get fixed and during this time, the person or the team responsible for fixing
the issues will get repeated alarms for the same issue. In the worst scenario,
this can even lead to new alarms left unnoticed. Sending alarms is a mechanism
adopted by all five data pipelines described in Sect. 4. However, data engineers
and software developers who participated in the study want to have an alter-
nate mitigation strategy to replace the repeated automatic alarms in the data
pipeline such as sending the notification only once and then waiting for a fix for
some time.

“Sending notifications is less appreciated by the teams as we get totally
submerged in alarms during some days and some notifications are repeat-
edly sent and it is hard to identify new ones from the huge pile” - Senior
Data Engineer (R9)

5.2 Organizational Challenges

This section gives a brief overview of the organization level challenges to data
pipeline management.

Dependency on Other Organizations: Data pipelines can be spread between
more than one company like case IV and V. Therefore, co-operation and collab-
oration are required from all the participating companies to maintain a healthy
data pipeline. In most cases, external companies will have very minimal knowl-
edge of what is happening in the other part of the pipeline. For instance, to
deliver high-quality data product, company C requires support from company B
as they are the suppliers of data.

Lack of Communication Between Teams: Data pipelines are meant to share
data between various teams in the organization. However, each team builds
pipelines for their use case and thus at least some initial activities are repeated
in several data pipelines leading to redundant storage of data. Moreover, if any of
the steps fails, the responsible person gets a notification from different teams at
the same time for the same issue. Cases A1, A2, and A3 are collecting the same
data and storing it in their databases. Data pipeline in case A3 can fetch data
stored by data pipeline A2 instead of collecting raw data from the data sources.
However, practitioners working on these use cases were completely unaware of
these repeated activities in their pipelines.

Increased Responsibilities of Data Pipeline Owner: All faults in the data
pipeline cannot be fixed automatically. Some faults demand either partial or

178 A. R. Munappy et al.

complete human intervention. Therefore, a flow guardian or data pipeline owner
is assigned for each of the pipelines who pays attention to data pipeline activities
and takes care of the faults requiring a manual fix. Further, it is hard to assess
what code might break due to any given change in data. With the increased use
of data pipelines, the responsibilities of the flow guardian or data pipeline owner
also increase. Practitioner R11 is assigned responsibilities of a flow guardian,
and he has to manually monitor the data pipelines and initiate an investigation
and fix whenever a problem is encountered. As Company C is also dependent on
Company B, responsibilities are shared between R10 and R11. R10 takes care
of request from Company C and R11 attends to the problems with company B.

“Nobody wants to take up the responsibility of flow guardian. We feel that
it consumes a lot of time and effort” - Director of Data Analytics Team
(R13)

DataOps-DevOps Collaboration: When seeking to obtain better results from
machine learning models require better, more focused data, better labeling, and
the use of different attributes. It also means that data scientists and data engi-
neers need to be part of the software development process. DataOps is concerned
with a set of practices for the development of software and management of data
respectively. Both concepts emphasize communication and collaboration between
various teams of the same organization. DataOps combines DevOps with data
scientists and data engineers to support development. The challenge of manag-
ing and delivering massive volumes of discordant data to those who can use it to
generate value is proving extremely hard. Moreover, people working with data
are less interested in learning new technologies and tools while it is not a hassle
for DevOps users.

5.3 Data Quality Challenges

This section gives a detailed list of the data quality challenges due to improper
data pipeline management.

Missing Data Files: Data files can be lost completely or partially during the
transmission from one node to another. Fault detection mechanism can identify
the exact point of disappearance. However, obtaining the missing files once again
is a complicated task. Missing data files are only detected at the end of the data
pipeline and in some cases, this results in poor quality data products. All the
use cases experience the challenge of missing data files at different stages of data
pipelines and one of the practitioners, R4 identified that 38,732 files had gone
missing at a particular stage of the data pipeline over five months.

“Data quality is a challenge that is being discussed over years. But, at
industry level we still struggle to achieve desired level of data quality” -
Senior Data Scientist (R1)

Data Pipeline Management in Practice: Challenges and Opportunities 179

Operational Errors: Data pipelines encounter operational errors which ham-
pers the overall functioning. Operational errors are very common in non-
automated data pipelines. Some parts of the data pipelines cannot be completely
automated. Human errors at these steps are the reasons for operational errors.
For instance, data labeling in a data pipeline cannot be automated completely
due to the unavailability of automated annotation techniques that are compatible
with all types of datasets. Practitioner R12, R13, R4, and R3 raised the problem
of operational errors and their impact on their respective data pipelines.

Logical Changes: Data drifts and change in data distribution results in the
data pipeline failures due to the incompatible logic defined in the data pipeline.
Therefore, the data pipeline needs to be monitored continuously for change in
data distributions and data shifts. Besides, data pipelines should be updated fre-
quently by changing the business logic according to the changes in data sources.
Practitioner R12, R13, and R16 explained the struggles of working with outdated
business logic in their data pipelines.

6 Opportunities

The previous section illustrated the challenges of data pipelines when imple-
mented in real-world. However, there are many opportunities the data pipeline
offers through automating fault detection and mitigation. In this section, we
survey some of the most promising opportunities of data pipelines and how
practitioners working on data are benefited by the implementation of it.

6.1 Solve Data Accessibility Challenges

Data generated by assorted multiple devices are collected, aggregated, and stored
in central storage by data pipelines without human intervention. As a result, data
teams within and outside the organization can access data from that central
storage if they have proper data access permissions. Accessing data from devices
located on the customer premises is a difficult and tedious task. Most often,
the devices will be distributed around the globe and teams has to prepare legal
agreements complying with the rules of that specific country where the device
is located for accessing data. When the data is stored after aggregation, data
loses its granularity, and as a result, teams working with fine-grained data has
to collect data separately. With data pipelines, teams can access data from any
point of the data pipeline if they have necessary permissions. This eliminates
repeated collection and storage of the same data by multiple teams.

6.2 Save Time and Effort of Human Resources

Automation of data-related activities is maximized through the implementa-
tion of data pipelines thereby reducing the human intervention. When a data
pipeline has inbuilt monitoring capability, faults will be automatically detected

180 A. R. Munappy et al.

and alarms will be raised. This reduces the effort of data pipeline managers and
flow guardians. As the data pipeline is completely automated, requests by teams
will be answered quickly. For instance, if the data quality is not satisfactory to
the data analyst, he can request the data from the desired store in the data
pipeline, and he receives it without delay. On the other hand, if the workflow is
not automated, the data analyst has to investigate and find out where the error
has occurred and then inform the responsible person to send the data again
which eventually delays the entire data analysis process. Moreover, the effort of
the data analyst is also wasted while investigating the source of data error.

“We spent time cleaning the data to meet the required quality so that it
can be used for further processing such as training or analytics. With the
data pipeline, it is easy to acquire better quality data.” - Analytics System
Architect (R3)

6.3 Improves Traceability of Data Workflow

Data workflow consists of several interconnected processes that make it com-
plex. Consequently, it is difficult to detect the exact point that induced error.
For instance, if the end-user realizes that part of the data is missing, it might be
lost during data transmission, while storing the data in a particular schema or
due to unavailability of an intermediate process. The end-user has to guess all
the different possibilities of data loss and has to investigate all the possibilities
to recover the lost data. This is a time-consuming task especially when the data
workflow is long and complex. Company C has reported that they have expe-
rienced this problem several times and as they are getting data from company
B, it took a lot of time for them to rectify the error, and sometimes they won’t
be able to recover the data. After implementing data pipelines, the process of
detecting faults is automated thereby increasing traceability.

“Everyone in the organization is aware of the steps and with data pipelines,
you will have full traceability of when the pipeline slowing down, leaking,
or stops working.” - Data Scientist (R5)

6.4 Supports Heterogeneous Data Sources

Data pipelines can handle multiple assorted data sources. Data ingestion is a
process through which data from multiple sources are made available to the
data pipeline in a uniform format. Data Ingestion is the process of streaming-
in massive amounts of data in our system, from several external sources, for
running analytics and other operations required by the business.

“Data streams in through several sources into the system at different speeds
and sizes. Data ingestion unifies this data and decreases our workload.
Data ingestion can be performed as batches or real-time.” - Data Engineer
(R10)

Data Pipeline Management in Practice: Challenges and Opportunities 181

6.5 Accelerates Data Life Cycle Activities

The data pipeline encompasses the data life cycle activities from collection to
refining; from storage to analysis. It covers the entire data moving process,
from where the data is collected, such as on an edge device, where and how
it is moved, such as through data streams or batch-processing, and where the
data is moved to, such as a data lake or application. Activities involved in the
data pipeline are automatically executed in a predefined order and consequently,
human involvement is minimized. As the activities are triggered by themselves,
the data pipeline accelerates the data life cycle process. Moreover, most of the
data pipeline activities are automated thereby increasing the speed of data life
cycle process and productivity.

6.6 Standardize the Data Workflow

The activities in a data workflow and their execution order are defined by a
data pipeline which gives the employees in the organization an overall view of
the entire data management process. Thus, it enables better communication and
collaboration between various teams in the organization. Further, data pipelines
reduce the burden on IT teams thereby reducing support and maintenance
costs as well. Standardization through data pipelines also enables monitoring
for known issues and quick troubleshooting of common problems.

“Data pipelines provide a bird’s eye view of the end to end data workflow.
Besides, it also ensures a short resolution time for frequently occurred prob-
lems.” - Product Owner (R16)

6.7 Improved Data Analytics and Machine Learning Models

Organizations can make use of carefully designed data pipelines for the prepa-
ration of high quality, well-structured, and reliable datasets for analytics and
also for developing machine learning as well as deep learning models. Besides,
data pipelines automate the movement, aggregation, transformation, and stor-
age of data from multiple assorted sources. Machine learning models are highly
sensitive to the input training data. Therefore, quality of training data is very
important. Data pipelines are traceable since the stages are predefined yielding
better quality data for the models. Moreover, data pipelines ensure a smooth
flow of data unless it fails in one of the steps.

6.8 Data Sharing Between Teams

Data pipelines enable easy data sharing between teams. Practitioners R4, R8,
and R9 mentioned that the data collected from devices in the field are undergoing
the same processing for different use cases. For instance, data cleaning is an
activity performed by all the teams before feeding the data to ML/DL models.
Therefore, there is a possibility of the same data going through the same sequence

182 A. R. Munappy et al.

of steps within different teams of the same organization. Further, data storage
also is wasted in such cases due to redundant storage. With the implementation
of data pipelines, the teams can request data from a particular step in some
other data pipeline and can process the subsequent steps in their data pipeline.
However, the data pipeline should be able to serve the requests in such cases.

6.9 Critical Element for DataOps

DataOps is a process-oriented approach on data that spans from the origin of
ideas to the creation of graphs and charts which creates value. It merges two
data pipelines namely value pipeline and innovation pipeline. Value pipeline is
a series of stages that produce value or insights and innovation pipeline is the
process through which new analytic ideas are introduced into the value pipeline.
Therefore, data pipelines are critical elements for DataOps together with Agile
data science, continuous integration, and continuous delivery practices.

7 Threats to Validity

External Validity: The presented work is derived from the cases studied with
teams in the domains of automobile and telecommunication. Some parts of the
work can be seen in parts of the company differently. All the terminologies used
in the company are normalized and the implementation details are explained
with necessary level of abstraction [15]. We do not claim that the opportunities
and challenges will be exactly the same for industries from a different discipline.

Internal Validity: To address internal validity threat, the findings were validated
with other teams in the company who were not involved in the study. Further
validation can be done by involving more companies, which we see as future
work [21].

8 Related Works

This section presents the most related previous studies on data pipeline devel-
opment and maintenance.

P. O’Donovan et al. describes an information system model that provides
a scalable and fault tolerant big data pipeline for integrating, processing and
analysing industrial equipment data [17]. The authors explain the challenges
such as development of infrastructures to support real-time smart communica-
tion, cultivation of multidisciplinary workforces and next-generation IT depart-
ments. However, the study is solely based on a smart manufacturing domain.
A survey study by C.L.Philip Chen et al. discusses about Big Data, Big Data
applications, Big Data opportunities and challenges, as well as the state-of-the-
art techniques and technologies to deal with the Big Data problems [7]. A Big
Data platform Quarry is proposed by P. Jovanovic et al. [11] manages the com-
plete data integration lifecycle in the context of complex Big Data settings,

Data Pipeline Management in Practice: Challenges and Opportunities 183

specifically focusing on the variety of data coming from numerous external data
sources. Data quality challenges and standards/frameworks to assess data quality
are discussed in many works [4,5,20]. Although there exists significant number
of data quality assessment and mitigation platforms, the industrial practitioners
experience data quality issues which indicates that the problem is not solved.

9 Conclusions

The multi-case study indicates challenges and opportunities involved in imple-
menting and managing data pipelines. The challenges are categorized into three
namely infrastructural, organizational, and data quality challenges. Neverthe-
less, the benefits data pipeline brings to the data-driven organizations are not
frivolous. A data pipeline is a critical element that can also support a DataOps
culture in the organizations. The factors inhibiting Data pipeline adoption were
mostly concerned with human aspects e.g. lack of communication and resistance
to change; and technical aspects e.g. the complexity of development. Suitability
of completely automated data pipelines might be questioned for certain domains
and industry sectors, at least for now. However, a completely automated data
pipeline is beneficial for the domains that can adopt it. Frequent updates are
advantageous, but the effects of short release cycles and other data pipeline
practices need to be studied in detail. Understanding the effects on a larger
scale could help in assessing the real value of data pipelines.

The purpose and contribution of this paper is to explore the real-time chal-
lenges of data pipelines and provide a taxonomy of the challenges. Secondly, it
discusses the benefits of data pipelines while building data-intensive models. In
future work, we intend to further extend the study with potential solutions to
overcome the listed data pipeline challenges.

References

1. Batini, C., Rula, A., Scannapieco, M., Viscusi, G.: From data quality to big data
quality. In: Big Data: Concepts, Methodologies, Tools, and Applications, pp. 1934–
1956. IGI Global (2016)

2. Burnard, P.: A method of analysing interview transcripts in qualitative research.
Nurse Educ. Today 11(6), 461–466 (1991)

3. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the
big data era. Data Sci. J. 14 (2015)

4. Carlo, B., Daniele, B., Federico, C., Simone, G.: A data quality methodology for
heterogeneous data. Int. J. Database Manage. Syst. 3(1), 60–79 (2011)

5. Carretero, A.G., Gualo, F., Caballero, I., Piattini, M.: MAMD 2.0: environment for
data quality processes implantation based on ISO 8000–6X and ISO/IEC 33000.
Comput. Stand. Interfaces 54, 139–151 (2017)

6. Caveness, E., GC, P.S., Peng, Z., Polyzotis, N., Roy, S., Zinkevich, M.: Tensorflow
data validation: Data analysis and validation in continuous ml pipelines. In: Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data, pp. 2793–2796 (2020)

184 A. R. Munappy et al.

7. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and
technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

8. Chen, G.J., et al.: Realtime data processing at Facebook. In: Proceedings of the
2016 International Conference on Management of Data, pp. 1087–1098 (2016)

9. Davenport, T.H., Dyché, J.: Big data in big companies. Int. Inst. Anal. 3, 1–31
(2013)

10. Goodhope, K., et al.: Building Linkedin’s real-time activity data pipeline. IEEE
Data Eng. Bull. 35(2), 33–45 (2012)

11. Jovanovic, P., Nadal, S., Romero, O., Abelló, A., Bilalli, B.: Quarry: a user-centered
big data integration platform. Inf. Syst. Front. 1–25 (2020). https://doi.org/10.
1007/s10796-020-10001-y

12. Kaisler, S., Armour, F., Espinosa, J.A., Money, W.: Big data: issues and challenges
moving forward. In: 46th Hawaii International Conference on System Sciences, pp.
995–1004. IEEE (2013)

13. Marr, B.: Big Data in Practice: How 45 Successful Companies used Big Data
Analytics to Deliver Extraordinary Results. Wiley, New York (2016)

14. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Real-time
Data Systems. Manning Publications Co., New York (2015)

15. Maxwell, J.A.: Designing a qualitative study. In: The SAGE Handbook of Applied
Social Research Methods, vol. 2, pp. 214–253 (2008)

16. Munappy, A., Bosch, J., Olsson, H.H., Arpteg, A., Brinne, B.: Data management
challenges for deep learning. In: 45th Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), pp. 140–147. IEEE (2019)

17. O’Donovan, P., Leahy, K., Bruton, K., O’Sullivan, D.T.J.: An industrial big data
pipeline for data-driven analytics maintenance applications in large-scale smart
manufacturing facilities. J. Big Data 2(1), 1–26 (2015). https://doi.org/10.1186/
s40537-015-0034-z

18. Pathirage, M.: Kappa architecture - where every thing is a stream. http://milinda.
pathirage.org/kappa-architecture.com/. Accessed 28 Sept 2020

19. Raman, K., Swaminathan, A., Gehrke, J., Joachims, T.: Beyond myopic inference
in big data pipelines. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 86–94 (2013)

20. Redman, T.C.: Data’s credibility problem. Harvard Bus. Rev. 91(12), 84–88 (2013)
21. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empirical Softw. Eng. 14(2), 131 (2009)
22. Singer, J., Sim, S.E., Lethbridge, T.C.: Software engineering data collection for

field studies. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds) Guide to Advanced
Empirical Software Engineering, pp. 9–34. Springer, London (2008). https://doi.
org/10.1007/978-1-84800-044-5 1

23. Verner, J.M., Sampson, J., Tosic, V., Bakar, N.A., Kitchenham, B.A.: Guidelines
for industrially-based multiple case studies in software engineering. In: 2009 Third
International Conference on Research Challenges in Information Science, pp. 313–
324. IEEE (2009)

https://doi.org/10.1007/s10796-020-10001-y
https://doi.org/10.1007/s10796-020-10001-y
https://doi.org/10.1186/s40537-015-0034-z
https://doi.org/10.1186/s40537-015-0034-z
http://milinda.pathirage.org/kappa-architecture.com/
http://milinda.pathirage.org/kappa-architecture.com/
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1007/978-1-84800-044-5_1

From a Data Science Driven Process to a
Continuous Delivery Process for Machine

Learning Systems

Lucy Ellen Lwakatare1(B), Ivica Crnkovic1, Ellinor R̊ange2, and Jan Bosch1

1 Chalmers University of Technology, Gothenburg University, Gothenburg, Sweden
{llucy,ivica.crnkovic,jan.bosch}@chalmers.se

2 Ericsson, Gothenburg, Sweden
ellinor.range@ericsson.com

Abstract. Development of machine learning (ML) enabled applications
in real-world settings is challenging and requires the consideration of
sound software engineering (SE) principles and practices. A large body
of knowledge exists on the use of modern approaches to developing tradi-
tional software components, but not ML components. Using exploratory
case study approach, this study investigates the adoption and use of
existing software development approaches, specifically continuous deliv-
ery (CD), to development of ML components. Research data was col-
lected using a multivocal literature review (MLR) and focus group tech-
nique with ten practitioners involved in developing ML-enabled systems
at a large telecommunication company. The results of our MLR show
that companies do not outright apply CD to the development of ML
components rather as a result of improving their development practices
and infrastructure over time. A process improvement conceptual model,
that includes the description of CD application to ML components is
developed and initially validated in the study.

Keywords: Machine learning system · Software process · Continuous
delivery

1 Introduction

Artificial intelligence (AI) techniques are increasingly incorporated in diverse
real-world software applications [18]. The development process of AI-enabled
applications and systems1 that employ machine learning (ML) techniques rely
on high quality data to build ML models. When built, the ML models are used
in production to make inference on new data. A significant large amount of
development effort is spent on improving efficiency in data management and
feature engineering during ML model development [22].

Few studies report on co-development of traditional software components
and AI components in software-intensive systems [18], which in practice employ
1 By AI-enabled systems we mean the software systems that include ML components.

c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 185–201, 2020.
https://doi.org/10.1007/978-3-030-64148-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_12

186 L. E. Lwakatare et al.

different software development paradigms [3]. And even though ML components
are reported to impact existing software development practices, such as software
requirements and testing [27], there is a little consideration on the ML develop-
ment process. This is problematic because ML components are often integrated
into a software system containing traditional software components and there is
a tendency of wanting to use existing software development practices [25]. At
the same time, it is not clear how companies can integrate existing software
development practices when developing ML components. Investigating the lat-
ter helps in defining an integrated and well-managed development process for an
AI-enabled system [21].

Modern software development approaches, such as continuous delivery (CD)
are well-established in practice and emphasise frequent delivery of software
changes [24]. According to practitioners [9], applying CD to development of
ML components can accelerate the delivery of ML artifacts (code, data and ML
models) and helps to ensure reproducibility and increased rate of experimen-
tation of ML models. However, there is limited reporting of the use of CD in
development of ML-enabled systems.

A disconnection between ML-processes and software development processes
can cause problems in the overall process, require additional efforts and result in
a lower quality of the final products [18]. The aim of the study is to investigate
the potential use of existing software development approaches, in particular CD,
to the development process of ML components. The main research question of
the study is the following.

Research Question: How to enable modern software development
process with continuous delivery for AI-enabled systems?

To investigate the application of CD to development of ML components,
we first performed a multivocal literature review (MLR) [7]. From MLR, we
analysed development practices and infrastructure of ML-enabled systems and
derived a conceptual model. The conceptual model distinguishes five stages for
integration of ML and software processes towards CD process for ML enabled
systems. We then performed an initial validation of the conceptual model using
a focus group discussion [15] with ten practitioners who are actively developing
ML-enabled systems, and three case studies, from a large telecommunication
company.

The main contributions of the paper is twofold. First, the study presents
a conceptual model of process improvement for ML-enabled systems that syn-
thesizes transformation of development practises over time. Second, the study
provides an initial empirical validation of the proposed conceptual model.

The rest of the paper is organised as follows. Section 2 gives an overview
of basic activities in a ML workflow, and main principles in a modern software
development process. Section 3 describes the applied research methods. Section 4
provides findings and their initial validation in Sect. 5. Section 6 briefly discusses
the findings and Sect. 7 concludes the paper.

From a Data Driven Process to a CD Process for ML Systems 187

2 Background and Related Work

This section presents an overview of the development process of ML-enabled
systems. First, the section presents the ML workflow, which constitutes develop-
ment stages and activities commonly performed in development of ML systems.
Second, a summary of CD and its application to the development process of ML
systems is presented.

2.1 Development Process of ML-Enabled Systems

The development of ML-enabled systems is data-centering, as the starting prob-
lem for such systems is data collection, understanding and preparation for ML
modeling [22,26]. These processes originate from the CRISP-DM model [11,28],
which focuses on data-mining process that identifies five stages, namely business
understanding, data understanding, data preparation, modeling, evaluation, and
deployment. An overview of the development process of ML-enabled software sys-
tem developed at Microsoft is provided by Amershi et al. [1]. The development
process consists of nine stages that primarily focus on developing, deploying,
and operating ML models. The nine stages include model requirements, data col-
lection, data cleaning, data labeling, feature engineering, model training, model
evaluation, model deployment, and model monitoring [1].

A short overview of these stages is as follows. In the ML model requirement
stage, the designers reason about the relation between system requirements and
ML model requirements [1]. The stage involves gaining an understanding of what
input data is needed, while clearly specifying the expected output, and experi-
menting with different ML algorithms [1,27]. Once the model requirements are
determined, input data is collected, processed and prepared (data cleaning, data
labeling, and feature engineering) for ML algorithms. Data cleaning involves
handling data inaccuracies (e.g. missing values or outliers) from the collected
raw data. Data labeling involves assigning ground truth ‘labels’ to each record,
which can be done manually or automatically depending on the domain. Data
management and feature engineering activities are the most critical and challeng-
ing parts of ML system development. Model training and evaluation activities
are conducted frequently and, with each iteration, designers perform different
optimizations in order to improve the model based on evaluation results. When
the final model is selected, it is deployed and monitored in production in order
to improve and maintain its quality. For most software applications it remains
crucial that deployed models adapt to the changes of the incoming data and
that the development practices and infrastructure support timely updates of the
models. A commonly used method is to periodically retrain deployed models
offline using historical data. This is because as often the size of data collected is
large and requires much pre-processing to create training datasets [18].

For most software applications, ML components are developed alongside
other traditional software components. However, the development process of
ML components neglects existing software development processes and practices

188 L. E. Lwakatare et al.

[10]. Wan et al., [27] synthesize the impacts of ML components across vari-
ous software development practices (e.g. software requirements, design, testing)
and work characteristics (e.g. skill variety, problem-solving, and task identity).
Their work as well as that of others show that the existing software development
practices need to be adapted and extended [14,19,29]. In particular, software
requirements practices need to be data-driven while mostly relying on existing
data of a particular application domain. Software testing and quality assurance
practices for ML systems will not only focus on detecting bugs in code, but also
in ML frameworks, the models (learning program) as well as data in order to
ensure correctness, model relevance, security, privacy, and fairness [29].

2.2 Continuous Delivery for ML-Enabled Systems

CD is an established software development approach emphasizing on creating a
repeatable, reliable process for releasing software changes frequently to produc-
tion environment [12]. According to the authors [12], a key tenet in CD is to
automate almost everything especially software build, testing, and deployment
processes while also ensuring that all software artifacts are kept in a version con-
trol system. CD is a particular method of agile software development approach
influenced by lean principles [17]. DevOps—concept emphasizing collaboration
between development and operations—is important in the implementation of CD
[17,24]. In CD, the deployment pipeline is an automated manifestation of the
entire software development process starting with getting software changes from
a version control system until when the changes are visible to end-users [12].
DevOps practices in the deployment pipeline involve automation of the deploy-
ment process, including automatic provisioning of the environments aimed at
eliminating (or minimizing) manual system hand-overs from the development
team to the operations team.

There is limited reporting on the use of CD to development of ML system
development in literature. Studies report on applying and adapting agile soft-
ware approach, including continuous integration (CI) practice, to development
of ML systems [13]. According to the authors [13] the use of agile approaches in
ML system development is hampered by poor architectural designs and limited
maintenance plans of ML systems. Renggli et al. [23], proposed a CI system
for ML system, which largely follows traditional CI system by allowing users to
define ML-specific test conditions. However, in contrast to traditional CI sys-
tem, the proposed CI system for ML is probabilistic meaning test conditions are
evaluated with respect to the probability of valid test and error tolerance mea-
sures [23]. One main challenging issue that is driving the adoption of CD to ML
system development is ad-hoc processes in the iterative ML model development
activities. According to practitioners [9], CD addresses this problem by automat-
ing the process of ML model building through version control and dependency
management of ML artifacts.

From a Data Driven Process to a CD Process for ML Systems 189

3 Research Method

To explore how CD is applied to the development of ML systems, we used
exploratory case study and collected data by first performing a multivocal liter-
ature review (MLR) and then conducting a focus group discussion with practi-
tioners.

3.1 Multivocal Literature Review (MLR)

MLR was selected because our systematic literature review (SLR) [18] that
focused on peer-reviewed papers showed that the aspect was discussed in only a
few papers. We performed MLR by following the guideline for conducting MLR
in software engineering provided by [7]. The goal was to review reports that
describe the application of CD to the development of ML-enabled systems.

Data Sources and Search Strategy. We used our previous literature review
[18] to include formal literature (1 study), while Google search engine was used to
identify grey literature (e.g. white papers and blog posts). The search string used
to source grey literature was “continuous delivery” AND “machine learning”.
After an initial review of the records, we observed a common use of the term
‘MLOps’. The term was also used in the search process. The search process on the
Google search engine was conducted in April 2020. The first author went through
the retrieved records page-by-page while applying inclusion and exclusion criteria
(below) in order to select relevant records. A total of 17 records were retrieved
from the Google search engine and only 8 (Table 1) were selected for further
data extraction and analysis.

Table 1. Overview of included documents from MLR. (*Included from SLR)

Ref. ML-enabled system - use case/objective

[2] Spotify’s discover weekly – to improve music discovery

[9] Uber self-driving vehicle systems – object detection, motion planning

[13] Healthcare cost analytics product – estimating healthcare cost

[16] Onfido identify verification SaaS – to verify people’s identity

[20] Twitter timelines – to show the best Tweets first

[25]* MeetMe application – Recommender system

[5,6,8] General

Inclusion and Exclusion Criteria. Inclusion and exclusion criteria were care-
fully defined to ensure that relevant records were included and not those which
were outside the scope of the study. The inclusion criteria considered sources

190 L. E. Lwakatare et al.

that (i) described in detail the application of CD to development process of ML
system, preferably also referencing an existing application in real-world settings,
(ii) authorship and evidence of the described experiences can be established
e.g., published on organisation’s blog or there is audit trail via multiple sources
(videos, links to other posts) and (iii) written in English. For exclusion criteria,
records were excluded if they did not meet the inclusion criteria.

Data Extraction and Quality Assessment. All selected records were
retrieved as PDF documents and stored in NVivo for data extraction using
thematic coding technique [4]. At first, codes were assigned inductively to the
‘CD for ML’ category and meaning, rationale, practices and tools as its sub-
categories. The other theme emerging across the sources was also coded in Nvivo
as ‘practice transformations’ category and with stage1, stage2, stage3, stage4,
and stage5 as its sub-categories. This was followed by several iterations of review-
ing and improving the coding for clarity and saturation.

3.2 Focus Group

A focus group is a technique that extends an open-ended interview to a group
discussion [15]. Data is primarily collected through planned discussions on a
topic determined by the researcher [15]. In this study, the researcher moderated
a group discussion, and the guideline by Kontio et al. [15] was used in designing
the focus group.

Designing and Conducting Focus Group. We formed a focus group with ten
participants (operational product owner, line manager, ML engineer, software
developer, and six data scientists) from a large telecommunication company.
The participants were selected based on their experience and active involvement
in the development of ML-enabled systems. Specifically, developing ML systems
that improve the quality of telecommunication hardware (HW) by using product
life cycle data collected from the field. The researcher made initial contact with
the line manager of the data analytics R&D organization, who together with one
developer selected suitable participants for the focus group. The analytics R&D
organization employs roughly 100 persons at three different sites of which half
are data scientists or have AI/ML competence.

The researcher was introduced to the selected ten participants and then later
sent an invitation containing information about the objective of the group dis-
cussion and agenda. The group discussion was conducted virtually and lasted for
1 h and 45 min. Prior to the actual meeting, the researcher first interviewed the
developer to get an overview of development context information. The developer
also provided additional documents related to development practices and ML
uses cases being worked on. Later, the researcher and developer had a meeting
to review materials planned for the focus group as well as getting background
information of each participant. During the focus group meeting, the researcher
moderated the first part of the discussions using open-ended questions. In the

From a Data Driven Process to a CD Process for ML Systems 191

second part, the researcher presented the findings of MLR for further discus-
sion. The entire virtual meeting was recorded and the researcher summarized
the recording for analysis and reporting.

Data Analysis. From the focus group discussion, a summary of descriptions
of past and present development practices and infrastructure of three selected
ML use cases were thematically coded. In addition, the additional documents
provided by the developer were also coded. The pre-defined themes from previous
MLR were used during thematic data analysis.

4 Findings

This section presents the findings of our MLR that investigated the application of
CD to the development of ML-enabled systems. Our data analysis revealed that
typically companies do not outright apply CD to ML system development but
rather tend to achieve it as a result of improving their development practices and
infrastructure. This improvement is depicted in five stages, visualized in Fig. 1
and described in Table 2.

We distinguish five different stages of development practices improvement: (i)
Manual data science-driven process, (ii) Standardized experimental-operational
symmetry process, (iii) Automated ML workflow process, (iv) Integrated soft-
ware development and ML workflow processes, and (v) Automated and fully
integrated CD and ML workflow process. We discuss the characteristic, prac-
tices, and challenges of each stage next sections.

Fig. 1. Development process improvement model for ML-enabled systems

4.1 Manual, Data Science-Driven Process

Characteristic. Early development of ML-enabled systems is driven by manual
development activities conducted by research data scientists [6,8,9,13,20]. At
this stage, data scientists and ML researchers focus on building state-of-the-
art ML models, but their process of collecting training datasets and building
ML models is entirely manual, i.e. by using basic tools and manually entering
instructions for data manipulation [8].

Practices. The development process is driven by experimental code that is inter-
actively written and executed in notebooks until a workable model is achieved.

192 L. E. Lwakatare et al.

Table 2. Description of development process improvement model stages

Stage Characteristics

Manual, data science-driven
process

Data scientist’s manual execution of ML model devel-
opment activities and the disconnect of the process with
production environment

Standardized, experimental
– operational ML process

Systematization of ML model development steps and
its alignment with operations processes

Automated, ML workflow
process

Increased automation within and across the standard-
ized ML workflow steps

Integrated, software devel-
opment and ML workflow
processes

ML component is versioned and tested w.r.t other
system components and redeployed with requirements
from software system

Automated and fully inte-
grated, CD and ML work-
flow process

Orchestration services to automate and coordinate
build, test and deployment of ML pipelines, and run-
time support for system monitoring and data collection

Data scientists tend to switch back and forth between different ML libraries and
frameworks implemented in their preferred programming languages [2]. There is
a disconnection between ML model development and its operation in produc-
tion [6,8]. To deploy trained ML model in production, data scientists handover
the trained model to software developers [8,13], e.g. through checked code in
repository or ML model registry. In turn, application developers have their own
complex setup of integrating and deploying the models in production [2,8]. For
deployment, application developers need to make available the features that are
required by the models in order to avoid problems, e.g. training-serving skew [8].

Challenges. An inadequately-defined training dataset negatively affects the func-
tioning of all ML workflow steps [13] (described in next stage). While models
often break when deployed in a production environment, there is no active mon-
itoring ML models in production [8]. The latter together with the lack of clearly
defined and quality training datasets make all future updates to the product
unnecessarily challenging [13]. The different manual activities increase the risk
for new errors throughout the process making debugging difficult [2,6,20,25].

4.2 Standardized, Experimental – Operational Symmetry Process

Characteristic. This stage focuses on implementing synergy between ML model
development and the operational processes, including model deployment and
maintenance activities.

Practices. Specifying and instituting structured ML workflow process steps that
apply to a wide array of scenarios e.g. data organisation methods, model experi-
mentation, and deployment management [2,8,9,20]. This is in addition to build-
ing connectors to commonly used ML frameworks and libraries by different teams

From a Data Driven Process to a CD Process for ML Systems 193

[2,6,20]. Common steps of ML workflow include data ingestion, data validation,
model training, model evaluation, and model training. Each step in itself touches
a variety of different systems and custom scripts or ad-hoc commands are used
for extracting, transforming, loading data, training, validating, and serving mod-
els [9]. As such, to construct ML workflow, the components need to be reusable,
composable, and potentially sharable across ML workloads [8].

Challenges. The process of establishing a standardized ML workflow reveals sev-
eral problems that need to be addressed. Each full run of the ML model devel-
opment step requires active monitoring from ML engineers in order to trigger
subsequent ML steps and remedy issues with data or custom scripts [20]. Numer-
ous iterations in model development require a capability to perform parallel
experimentation quickly for both debugging and model optimization purposes
[13,20,25]. A high number of models for complex systems makes it difficult to
keep track of different model versions and manage their dependencies [9,13].

4.3 Automated, ML Workflow Process

Characteristics. This stage is characterized by increased automation within and
across the standardized ML workflow steps. The entire ML workflow process
is productized as a system using in-built or open source technologies used to
create, manage, and run end-to-end ML steps. Example of such systems include
Google’s TensorFlow Extended (TFX) [8], Kubeflow at Spotify [2] and Airflow
at Twitter [20].

Practices. This stage allows for the creation and sharing of ML workflow compo-
nents, which are self-contained sets of code that perform one step in the ML work-
flow process (e.g. data preprocessing, data transformation, data validation, and
model training). The transition between ML workflow steps is automated lead-
ing to rapid experimentation and better readiness to move the whole pipelines
to production [8]. ML platforms, constituting an integrated set of tools that can
tackle all steps of ML workflow, provide consistent development experience for
all designers and are well designed for tasks of all sizes. Across the different
iterations of model training, importantly there is a capability to automatically
track metadata information about each pipeline execution in order to explore,
compare and examine pipelines’ runs in detail [8,9].

Challenges. Although open source tools such as Kubeflow and TFX provide high-
level orchestration to build data sets and train models, they require a significant
amount of integration [9]. Furthermore, they stop short at delivering a single
workflow and do not fully implement CD [9].

4.4 Integrated, Software Development and ML Workflow Processes

Characteristics. The first three stages are ML workflow-centric in which inte-
gration of the ML component into software is the final activity in the process.

194 L. E. Lwakatare et al.

In complex software systems, ML components are not necessarily the central
part of the entire system, but as components of a system that have to be built,
tested, and deployed [9,13]. Different from previous stages, the ML component
is under version control, i.e. identified as a component with a version specifica-
tion, and re-deployed when there is a requirement from the system. Such an ML
component is typically managed as a COTS (Commercial of the shelf) compo-
nent. The prior formalization of model development neglects contemporary SE
practices [13].

Practices. This stage is typical for many companies that use ML components
as developed in a separate process (like COTS components) and tested and
integrated into the system as other components. There is however a specific pro-
cedure of managing ML components - tests related to its ML characterizes, such
as accuracy, or performance characteristics. For example, once model metrics are
exhibiting good results, system metrics (e.g. safety and comfort measurements on
the overall vehicle motion) and hardware metrics (e.g. inference serving time on
self-driving vehicle hardware) are performed [9]. System metrics give a compre-
hensive overview of how all the parts of the system perform between component
versions e.g., how new models might act other system components [9].

Challenges. Due to poor integration of ML and software development processes
(for example, CD). The system employing CD with fast feedback from the sys-
tem operation requires fast cycles and updates of ML components but the ML
workflow process requires too many efforts in collecting new data and re-training
the models [5]. Another challenge is difficulty in finding the root cause of errors,
which might be a combination of ML component and software failure.

4.5 Automated and Fully Integrated CD and ML Workflow Process

Characteristics. This stage extends the integrated software development and ML
workflow processes with an orchestration service for coordinating build, test,
and deployment of ML pipelines, and run-time support for system monitoring
and collection of data. The deployed models can thus be continuously retrained
based on current model parameters and a combination of constantly incoming
and existing data with minimum human involvement[5,16].

Practices. At this stage, rather than deploying ML model e.g. as an API for
prediction, the ML pipeline that can automate retraining and deployment of
new models is deployed [2,5,8,9]. This allows to quickly test the workflows with
regularly updating data. An orchestration service is used to initiate the model
training scheduler to start executing model training job described in the deployed
ML pipeline [2,5,6,8,9]. The orchestration service can be implemented using, for
example, Jenkins CI tool [9]. The training job leverages the stored and tracked
information of ML artifacts’ (training code, evaluation code, data, models) ver-
sions, dependency and metadata to automatically build, test, and deploy the
new pipeline components to the target environment [9].

From a Data Driven Process to a CD Process for ML Systems 195

Challenges. ‘Concept drift’, as changes in data over time, have an impact on the
performance of deployed models [5]. The challenge is both in detecting concept
drift but also being able to alleviate, which may require training fundamentally
new and complex models [5]. This aspect is not considered in CD since models
are retrained using currently deployed model parameters.

5 Validation of Conceptual Model

In this section, we present the initial validation of the conceptual model based
on findings from one company. The focus group with practitioners at the organi-
zation looked in-depth at three ML use cases (Table 3) to compare the practice
with the conceptual model. Two ML uses cases (A and B) are in operation and
the third ML use case C is currently in the exploration phase.

Typically, some telecommunication HW units (of radio networks and base
stations) that are produced at the company’s factory and shipped to the cus-
tomer network get sent back when something goes wrong and the customer
suspects HW problems. For returned HW units, the company has a screening
process that uses an ML-enabled system to determine if something is indeed
wrong with the HW or not (use case A), especially since oftentimes the com-
pany receives non-faulty HW units. At the screening center, the operator –an
end-user of the ML-enabled system – connects the returned HW to the system
and gets predictions that identify whether the HW is good or not good. Upon
connecting, zipped log files containing information on what has happened in the
field are extracted from the returned HW and used by the ML-enabled system
to make the predictions. If there is a problem with HW, it is sent to a repair
center (use case B). At the repair center, an ML-enabled system is used to clas-
sify the category of the fault. The last ML component under exploration (use
case C) aims to detect if an HW unit is at risk of being returned if shipped while
still at the factory facilitating further analysis of the HW. Altogether, these use
cases aim to reduce the number of faulty HW units from being shipped to the
customer.

Table 3. Overview of ML use cases.

ID ML use case Description

A Fault screening of
returned HW units

Predict no fault found in returned HW units

B Fault categorization of
returned and faulty HW
units

Classify the category of faults

C Supply deviation detection Detect faulty HW units at factory that are
potentially to be returned if shipped

Manual, Data Science-Driven Process. The team of our focus group was
initially approached by a stakeholder (end-user organization) with a problem

196 L. E. Lwakatare et al.

of how to use ML to reduce returns of HW units. This led the team to ini-
tially implement an ML-enabled system for predicting No Fault Found (NFF) in
returned HW (use case A). Exploration and prototyping development was done
iteratively in Jupyter Notebook. Other use cases, including predicting HW fault
category (use case B) were also explored and experimented. In the end, demon-
strations based on the iterative development were done and discussed together
with stakeholders, who collectively agreed on the next steps, including to pro-
ductify use cases A and B. For these use cases, the team did not implement unit
tests for the training code, which was also not version controlled. However, after
a period of six months and with at most three data scientists, the team was
able to develop ML models for the use cases A and B, as well as implemented
a dashboard for comparing manufacturing volumes with the number of returns
over each month, factory and product.

At the time of our focus group discussions, the team was in the early phase
of experimenting with use case C and facing difficulties with data. Compared to
use cases A and B, use case C does not have ground truth data. For each manu-
factured HW unit, there are several hundreds of tests that are being performed
on the HW. The team uses this test data, consisting a feature vector of about
over 1500 features, to train ML models. Building ML models by the analysis of
HW units test results without having labels turned out to be difficult. Currently,
much of the efforts are on collecting and improving the quality of the labeled
dataset. An example of an approach being explored is to look at aggregated test
results of HW units and return rates of HW units on different days over the past
two years. A threshold is set on the return rates, such that a very small number
of return HW units e.g. if 2% is returned, it is considered as an acceptable day
otherwise it is a problematic day.

Standardized, Experimental – Operational ML Process. After finding the
two ML use cases (A and B) to productify, the team started to systematize the
process of implementing them. Initially, this included moving Jupyter notebook
code into git repositories and spending most of the efforts on data processing
and feature engineering. The latter is because the team was not able to extract
features from data collected by an external tool and the implementation did
not scale well in terms of the number of files the team wanted to process on a
daily basis. The team had to create a service for ingesting big zip-files with logs
and a service for parsing out features in order to send out predictions. For the
dashboard, the ingestion and preprocessing flows were scheduled on a daily basis
and the tables were exposed to Tableau. To serve predictions, all ML models were
stored in a common database and the predictions were exposed via API on a
user-interface (UI) of a software application built by another team. The training
code was versioned control but training was not done on a regular basis.

At this step, the team had created technical debt, as they did not implement
unit tests to code. Problems emerged as a result of pushing buggy code, which at
times gave incorrect data for both dashboard and models. The buggy code was
often found in discussions with stakeholders. There was a high demand for the
team to deploy the ML model in time which caused the team to cut some corners.

From a Data Driven Process to a CD Process for ML Systems 197

According to data scientists, it was a very stressful period for which the team
could have benefited from DevOps thinking. Productifying the use cases A and
B took about six months and with altogether four data scientists. During this
time period, the team also started to look into creating a model using insights
from the dashboard (use case C).

Automated ML Workflow Process. The ML pipeline consisted of a data
collection step, a dataset builder (ingestion and parsing) step, and a predictions
step. In data collection, all raw data e.g., field logs of returned HW and other
from an external tool, are stored in a common database and the collection is
outside the control of the team. The external tool provides log analysis results
information on whether the HW has passed or failed assessment giving labels for
mostly the failed cases. Prior to the dataset builder step, the team has imple-
mented an ingestion service that is used to ingest raw zip files containing logs
into a Hadoop Distributed File System (HDFS) cluster. In addition, a parsing
service was implemented and used to parse out logs from the zipped files to
JSON. In the dataset builder step, the team has written rules for transforming
and preparing datasets containing several features. As such, there can be several
paths to building the dataset depending on the project. For use cases A and B,
the training dataset is collected during model building because it is fast (about
500MB file size) and once completed it is stored in artifactory. Model training
and evaluations are done manually, often in local machines.

At the time of focus group discussions, the team considered the environment
where the models are trained and deployed as not ‘sophisticated or industrialized
environment’. There is manual tracking of the model experiments and there is
no automated way to compare model results every time new models are trained.
A major challenge is that there are still some manual steps in model training.
For instance, a data scientist can forget to copy a newly trained model into the
repository. As such, currently, the team is exploring different environments par-
ticularly Kubeflow and a company’s internal platform with the aim of utilizing
one of the platforms in the near future.

Integrated, Software Development and ML Workflow Processes. Ini-
tially, the high demand from stakeholders to create new models and the lack of
a good infrastructure raised many concerns, especially those related to the risk of
deploying models that were not automatically tested. After much learning from
previous mistakes, the team started to add more unit tests into the development
process so as to spot errors earlier and ensure that new changes do not break
existing implementations. The team had a unit test hackathon to get started
with writing unit tests, which helped to reduce some technical debt. Most of the
team members, who are data scientists also joined a study circle of DevOps and
were beginning to do smaller commits and more testing.

At present, the team has recently added CI for unit tests and code linting
in their screening models. In addition, the team has added version handling of
docker images, but are still doing model training manually on local branches.
The CI for the dashboard and other models (except for use case A) has been
a bit unstable and issues are being fixed together with the organization’s CI

198 L. E. Lwakatare et al.

team. However, the team is missing the feedback loop from the screening center.
Once the model is deployed, the team can continuously monitor the performance
of the models. Through discussions with the stakeholder and ‘if the team feels
like the performance is degrading’ only then is model retraining performed. The
retraining of the models is currently done less frequently.

Automated and Fully Integrated CD and ML Workflow Process. The
team has not achieved this stage. Related efforts are on the recent implementa-
tion of the capability to store trained models along with metadata information
(e.g. name, version, the classifier, expected features). The team is currently work-
ing on ensuring versioning of code (label creation code, feature creation, model
training configuration, model training code and model serving code) as well as
storing information and dependency tracking of other artifacts (e.g., train and
test datasets, model image).

6 Discussion

The five stages of practice improvement for ML-enabled software systems iden-
tified in our study show that applying CD to the development process of ML
components gives the ability to update deployed models continuously. While
automation and robust infrastructures achieved by applying CD are essential
for the continuous operation of AI-enabled systems, they call for additional
resources, that many organizations may not be equipped with [21].

Developing ML-enabled software system is challenging but existing “con-
ventional” software development techniques provide a good starting point to
addressing the challenges [21]. The role of a data scientist is critical in devel-
opment teams but as observed in our study data scientists have limited SE
knowledge, particularly of the development practices. As observed also in our
study, this can be improved through effective collaboration and communication
across different expertise e.g., between data scientists, software engineers, a qual-
ity assurance (QA) engineer, and product owner [13,14]. One cause of failures
in deploying and maintaining ML-enabled software systems is due to the effects
of disjointed development processes among data scientists, software engineers,
and operations staff [21]. In our study, the description of the characteristics and
practices of the last two stages attempt to integrate the process steps of data sci-
ence and software engineering. More empirical studies will need to be conducted
to further validate and give details of a well-managed development process of AI
enabled system [21].

7 Conclusion

This study explored how modern software development approaches, particularly
CD, are applied to the development process of ML-enabled systems. The results
show that companies do not outright apply CD to ML system development but
rather tend to achieve it as a result of improving their development practices

From a Data Driven Process to a CD Process for ML Systems 199

and infrastructure over time. A conceptual model that shows the evolution of
practice improvement over time is presented. In future work, we will focus on
further validation of the model in other companies serving as inputs in our
attempt to define an integrated and well-managed development process of AI-
enabled systems.

While these findings are based on a case study, in discussions with other
industrial partners in Software Center (http://www.software-center.se/) there
is a strong indication that similar challenges exist for these companies (which
will be a matter of further studies). Our findings may not generalize to companies
of much smaller size. As such, multiple case studies at organizations of different
sizes will need to be conducted in order to establish more general results.

Acknowledgement. This research was supported by Software Center, Chalmers AI
Research Centre (CHAIR), and Vinnova project HoliDev. The authors would also like
to thank all the participants of focus group discussions.

References

1. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pp. 291–300. IEEE (2019). https://doi.org/10.1109/ICSE-
SEIP.2019.00042

2. Baer, J., Ngahane, S.: The winding road to better machine learn-
ing infrastructure through Tensorflow extended and Kubeflow, December
2019. https://labs.spotify.com/2019/12/13/the-winding-road-to-better-machine-
learning-infrastructure-through-tensorflow-extended-and-kubeflow/

3. Bosch, J., Olsson, H.H., Crnkovic, I.: It takes three to tango: Requirement, out-
come/data, and AI driven development. In: SiBW, pp. 177–192 (2018)

4. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006). https://doi.org/10.1191/1478088706qp063oa

5. Derakhshan, B., Mahdiraji, A.R., Rabl, T., Markl, V.: Continuous deployment of
machine learning pipelines. In: EDBT, pp. 397–408 (2019)

6. Fowler, M.: Continuous delivery for machine learning, September 2019, https://
martinfowler.com/articles/cd4ml.html

7. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. Inf. Softw.
Technol. 106, 101–121 (2019). https://doi.org/10.1016/j.infsof.2018.09.006

8. Google: MLOps: continuous delivery and automation pipelines in machine
learning, April 2020. https://cloud.google.com/solutions/machine-learning/mlops-
continuous-delivery-and-automation-pipelines-in-machine-learning

9. Guo, Y., Ashmawy, K., Huang, E., Zeng, W.: Under the hood of Uber ATG’s
machine learning infrastructure and versioning control platform for self-driving
vehicles (2020). https://eng.uber.com/machine-learning-model-life-cycle-version-
control/

10. Hill, C., Bellamy, R., Erickson, T., Burnett, M.: Trials and tribulations of develop-
ers of intelligent systems: a field study. In: Symposium on Visual Languages and
Human-Centric Computing, pp. 162–170. IEEE (2016). https://doi.org/10.1109/
VLHCC.2016.7739680

http://www.software-center.se/
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://labs.spotify.com/2019/12/13/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow/
https://labs.spotify.com/2019/12/13/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow/
https://doi.org/10.1191/1478088706qp063oa
https://martinfowler.com/articles/cd4ml.html
https://martinfowler.com/articles/cd4ml.html
https://doi.org/10.1016/j.infsof.2018.09.006
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://eng.uber.com/machine-learning-model-life-cycle-version-control/
https://eng.uber.com/machine-learning-model-life-cycle-version-control/
https://doi.org/10.1109/VLHCC.2016.7739680
https://doi.org/10.1109/VLHCC.2016.7739680

200 L. E. Lwakatare et al.

11. Huber, S., Wiemer, H., Schneider, D., Ihlenfeldt, S.: DMME: data mining method-
ology for engineering applications - a holistic extension to the crisp-DM model.
Procedia CIRP 79, 403–408 (2019). 12th CIRP Conference on Intelligent Com-
putation in Manufacturing Engineering, 18-20 July 2018, Gulf of Naples, Italy.
https://doi.org/10.1016/j.procir.2019.02.106

12. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional, Boston
(2010)

13. Jackson, S., Yaqub, M., Li, C.X.: The agile deployment of machine learning models
in healthcare. Front. Big Data 1, 7 (2019). https://doi.org/10.3389/fdata.2018.
00007

14. Kim, M., Zimmermann, T., DeLine, R., Begel, A.: Data scientists in software teams:
state of the art and challenges. IEEE Trans. Softw. Eng. 44(11), 1024–1038 (2018).
https://doi.org/10.1109/TSE.2017.2754374

15. Kontio, J., Bragge, J., Lehtola, L.: The focus group method as an empirical tool
in software engineering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to
Advanced Empirical Software Engineering, pp. 93–116. Springer, London (2008).
https://doi.org/10.1007/978-1-84800-044-5 4

16. Lara, A.F.: Continuous delivery for ml models (2018). https://medium.com/
onfido-tech/continuous-delivery-for-ml-models-c1f9283aa971

17. Lwakatare, L.E., Kuvaja, P., Oivo, M.: Relationship of DevOps to agile, lean
and continuous deployment. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc,
A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol.
10027, pp. 399–415. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49094-6 27

18. Lwakatare, L.E., Raj, A., Crnkovic, I., Bosch, J., Olsson, H.H.: Large-scale machine
learning systems in real-world industrial settings: a review of challenges and solu-
tions. Inf. Softw. Tech. 106368 (2020). https://doi.org/10.1016/j.infsof.2020.106368

19. Murphy, C., Kaiser, G.E., Arias, M.: An approach to software testing of machine
learning applications. SEKE 167, 52–57 (2007)

20. Ngahane, S., Goodsell, D.: Productionizing ML with workows at Twitter, Decem-
ber 2019. https://blog.twitter.com/engineering/en us/topics/insights/2018/ml-
workflows.html

21. Ozkaya, I.: What is really different in engineering AI-enabled systems? IEEE Softw.
37(4), 3–6 (2020)

22. Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data management challenges
in production machine learning. In: International Conference on Management of
Data, pp. 1723–1726. ACM (2017). https://doi.org/10.1145/3035918.3054782

23. Renggli, C., et al.: Continuous integration of machine learning models with ease.
ml/ci: towards a rigorous yet practical treatment. In: 2nd SysML Conference (2019)

24. Rodŕıguez, P., et al.: Continuous deployment of software intensive products and
services: a systematic mapping study. J. Syst. Softw. 123, 265–291 (2017)

25. Schleier-Smith, J.: An architecture for agile machine learning in real-time applica-
tions. In: International Conference on Knowledge Discovery and Data Mining, pp.
2059–2068. ACM (2015)

26. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances
in Neural Information Processing Systems (NIPS) vol. 28, pp. 2503–2511. Curran
Associates, Inc. (2015)

27. Wan, Z., Xia, X., Lo, D., Murphy, G.C.: How does machine learning change software
development practices? IEEE Trans. Softw. Eng. 1–15 (2019). https://doi.org/10.
1109/TSE.2019.2937083

https://doi.org/10.1016/j.procir.2019.02.106
https://doi.org/10.3389/fdata.2018.00007
https://doi.org/10.3389/fdata.2018.00007
https://doi.org/10.1109/TSE.2017.2754374
https://doi.org/10.1007/978-1-84800-044-5_4
https://medium.com/onfido-tech/continuous-delivery-for-ml-models-c1f9283aa971
https://medium.com/onfido-tech/continuous-delivery-for-ml-models-c1f9283aa971
https://doi.org/10.1007/978-3-319-49094-6_27
https://doi.org/10.1007/978-3-319-49094-6_27
https://doi.org/10.1016/j.infsof.2020.106368
https://blog.twitter.com/engineering/en_us/topics/insights/2018/ml-workflows.html
https://blog.twitter.com/engineering/en_us/topics/insights/2018/ml-workflows.html
https://doi.org/10.1145/3035918.3054782
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/TSE.2019.2937083

From a Data Driven Process to a CD Process for ML Systems 201

28. Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining.
In: Proceedings of the 4th International Conference on the Practical Applications
of Knowledge Discovery and Data Mining, January 2000

29. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-
scapes and horizons. IEEE Trans. Softw. Eng. 1 (2020). https://doi.org/10.1109/
TSE.2019.2962027

https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1109/TSE.2019.2962027

Data Labeling: An Empirical
Investigation into Industrial Challenges

and Mitigation Strategies

Teodor Fredriksson1(B) , David Issa Mattos1(B) , Jan Bosch1(B) ,
and Helena Holmström Olsson2

1 Chalmers University of Technology, Hörselg̊angen 11, 417 56 Gothenburg, Sweden
{teodorf,davidis,jan.bosch}@chalmers.se

2 Malmö University, Nordenskiöldsgatan 1, 211 19 Malmö, Sweden
helena.holmstrom.olsson@mau.se

Abstract. Labeling is a cornerstone of supervised machine learning.
However, in industrial applications, data is often not labeled, which com-
plicates using this data for machine learning. Although there are well-
established labeling techniques such as crowdsourcing, active learning,
and semi-supervised learning, these still do not provide accurate and
reliable labels for every machine learning use case in the industry. In
this context, the industry still relies heavily on manually annotating and
labeling their data. This study investigates the challenges that compa-
nies experience when annotating and labeling their data. We performed
a case study using a semi-structured interview with data scientists at two
companies to explore their problems when labeling and annotating their
data. This paper provides two contributions. We identify industry chal-
lenges in the labeling process, and then we propose mitigation strategies
for these challenges.

Keywords: Data labeling · Machine learning · Case study

1 Introduction

Current research estimates that over 80% of engineering tasks in a machine-
learning ML project concern data preparation and labeling. The third-party
data labeling market is expected to almost triple by 2024 [8,21]. This massive
effort spent in data preparation and labeling often happens because, in industry,
datasets are often incomplete. After all, some or all instances are missing labels.
Also, the available labels are of low quality in some cases, meaning that the
label associated with a data entry is incorrect or only partially correct. Labels
of sufficient quality are a prerequisite to perform supervised machine learning as
the performance of the model in operations is directly influenced by the quality
of the training data [2].

Crowdsourcing has been a common strategy for acquiring quality labels with
human supervision [6,32], particularly for computer vision and natural language
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 202–216, 2020.
https://doi.org/10.1007/978-3-030-64148-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_13&domain=pdf
http://orcid.org/0000-0001-8176-5846
http://orcid.org/0000-0002-2501-9926
http://orcid.org/0000-0003-2854-722X
http://orcid.org/0000-0002-7700-1816
https://doi.org/10.1007/978-3-030-64148-1_13

Challenges and Mitigation Strategies for Data Labeling 203

processing applications. However, crowdsourcing has several limitations for other
industrial applications, such as allowing unknown third-party access to company
data, lack of people with an in-depth understanding of the problem, or the
business to create quality labels. In-house labeling can be half as expensive as
crowdsourced labels while providing higher quality [7]. Due to these factors,
companies still perform in-house labeling. Despite the large body of research on
crowdsourcing and machine learning systems that can overcome different label
quality problems, to the best of our knowledge, no research investigates the
challenges faced and strategies adopted by data scientists and human labelers in
the labeling process of company-specific applications. In particular, we focus on
the problems seen in applications where labeling is non-trivial and requires an
understanding of the problem domain.

Utilizing case study research based on semi-structured interviews with prac-
titioners in two companies, one of which has extensive labeling experience, we
study the challenges and the adopted mitigation strategies in the data labeling
process that these companies employ. The contribution of this paper is twofold.
First, we identify the key challenges that these companies experience concerning
labeling data. Second, we present an overview of the mitigation strategies that
companies employ regularly or potential solutions to address these challenges.

The remainder of the paper is organized as follows. In the next section, we
provide a more in-depth overview of the background of our research. Subse-
quently, in Sect. 3, we present the research method that we employed in the
paper and an overview of the case companies. Section 4 presents the challenges
that we identified during the case study, observations, and interviews at the com-
pany, the results from the expert interviews to validate the challenges as well as
the mitigation strategies. Finally, the paper is concluded in Sect. 6.

2 Background

Crowdsourcing is defined as a process of acquiring required information or results
by request of assistance from a group of many people available through online
communities. Thus crowdsourcing is a way of dividing and distributing a large
project among people. After each process is completed, the people involved in
the process are rewarded [33]. According to [21], crowdsourcing is the primary
way of achieving labels. In the context of machine learning, crowdsourcing has
its own set of problems. The primary problem is annotators that produce bad
labels. An annotator might not be able to label instances correctly. Even if an
annotator is an expert, the labels’ quality will potentially decrease over time due
to the human factor [2]. Examples of crowdsourcing platforms are the Amazon
Mechanical Turk and the Lionbridge AI [12].

Allowing a third-party company to label your data has its benefits, such as
not developing your annotation tools and labeling infrastructure. In-house label-
ing also requires investing time training your annotators, which is not optimal
if you don’t have enough time and resources. A downside is that sensitive and
confidential company data has to be shared with the crowdsourcing platforms.

204 T. Fredriksson et al.

Before selecting crowdsourcing platforms, there are essential factors, such as
how many and what kind of projects has the platform been successful with
previously? Does the platform have high-quality labeling technologies so that
high-quality labels can be obtained? How does the platform ensure that the
annotators can produce labels of sufficient quality? What are the security mea-
sures taken to ensure the safety of your data?

A tool to be used in crowdsourcing when noisy labels are cheap to obtain
is repeated-labeling. According to [15] repeated labeling should be exercised if
labeling can be repeated and the labels are noisy. This approach can improve
the quality of the labels which leads to improved quality in the machine learn-
ing model. This seems to work especially well when the repeated-labeling is
done selectively, taking into account label uncertainty and machine learning
model uncertainty. However, this approach does not guarantee that the qual-
ity is improved. Sheshadri and Lease [27] provides an empirical evaluation study
that compares different algorithms that computes the crowd consensus on bench-
mark crowdsourced data sets using the Statistical Quality Assurance Robustness
Evaluation (SQUARE) benchmark [27]. The conclusions of [27] is that no matter
what algorithm you choose, there is no significant difference in accuracy. These
algorithms includes majority voting (MV), ZenCrowd (ZC), David and Skene
(DS)/Naive Bayes (NB) [15]. There are also other ways to handle noisy labels.
For example, in [29], they improve accuracy when training a deep neural network
with noisy labels by incorporating a noise layer. So rather than correcting noisy
labels, there are ways to change the machine learning models to handle noisy
labels. The downside to this approach is that you need to know which instances
are clean and which instances are noisy. This can be difficult with industrial
data. Another strategy to detect noisy labels is confident learning which can be
used to identify noisy labels and learn from noisy labels [18].

3 Research Method

In this paper, we report on case study research. We explored the challenges of
labeling data for machine learning and what strategies can be employed to mit-
igate them. This section will present the data we collected and how we analyzed
it to identify the challenges.

A case study is a research method that investigates real-world phenom-
ena through empirical investigations. These studies aim to identify challenges
and find mitigation strategies through action, reflection, theory, and practice,
[19,22,28].

A case study suits our purpose well because of its exploratory nature, and
we are trying to learn more about specific processes at Company A and B. The
two main research questions we have are:

– RQ1: What are the key challenges that practitioners face in the process of
labeling data?

– RQ2: What are the mitigation strategies that practitioners use to overcome
these challenges?

Challenges and Mitigation Strategies for Data Labeling 205

3.1 Data Collection

Our case study was conducted in collaboration with two companies. Company
A is a worldwide telecommunication provider and one of the leading providers in
Information and Communication Technology (ICT). Company B is a company
specialized in labeling. They have developed an annotation platform to provide
the autonomous vehicles industry with labeled training data of top quality. Their
clients include software companies and research institutes.

– Phase I: Exploration - The empirical data collected during this phase is
based on an internship from November 18 2019 to February 28 2020 in which
the first author spent time at Company As office two-three days a week. The
data was collected from the data scientist by observing how the they were
working with machine learning and how they deal with data where labels
are missing as well as having access to data sets. We held discussions with
each of the data scientist working with each particular dataset to collect data
regarding the origin of the data, what they wish to use it for in the future,
and how often it is updated. Using Python we could investigate how skew the
label distribution is of the label distribution as well as examine the data to
potentially find any clustering structure in the labels. The datasets studied
in phase I came from participant I and II.

– Phase II: Validation - After the challenges had been identified during phase
I, both internal and external confirmation interviews were conducted to vali-
date if the previous phase’s challenges were general. Four participants in the
interviews where from company A and one participant was from company B.
Company A had several data scientists, but we only included scientists that
had issues with labeling. Each participant was interviewed separately, and the
interviews lasted between 25–55 min. All but one interview was conducted in
English. The one interview was conducted in Swedish and then translated to
English by the first author. During the interview, we asked questions such
as What is the purpose of your labels?, How do you get annotated data? and
How do you assess the quality of the data/labels?

Based on meetings and interviews, we managed to evaluate and plan strate-
gies to mitigate the challenges we observed during our study (Table 1).

Table 1. List of the interview participants of phase II

Company Participant Nr Title/role Experience

A I Data Scientist 4 years

A II Senior Data Scientist 8 years

A III Data Scientist 3 years

A IV Senior Data Scientist 2 years

B V Senior Data Scientist 7 years

206 T. Fredriksson et al.

3.2 Data Analysis

The interviews were analyzed by taking notes during the interviews and intern-
ship. We then performed a thematic analysis [5]. Thematic analysis is defined
as “a method for identifying, analyzing and reporting patterns” and was used
to identify the different themes and patterns in the data we collected. From the
analysis, we were able to identify themes and define the industrial challenges
based on the notes. For each interview, we identified different themes, such as
topics that came up during the interviews. Several of these themes were present
in more than one interview, so we combined the data for each of the interviews,
and based on that, we could draw conclusions based on the information on the
same theme.

3.3 Threats to Validity

According to [22] there are four different concepts of validity to consider, con-
struct validity, internal validity, external validity and reliability. To achieve con-
struct validity, we provided every participant of company A with an e-mail con-
taining all the definitions of concepts and some sample questions to be asked
during the interview. We also provided a lecture on how to use machine learning
to label data before the interviews so that the participant’s could reflect and pre-
pare for the interview. We can argue that we achieved internal validity through
data triangulation since we interviewed every person at Company A that had
experience with labels. Therefore it is implausible that we missed any necessary
information when collecting data.

4 Results

In this section, we shall present the results of our study. We begin by listing
the fundamental problems found from phase I of the study. Coming up next,
we state the problems we encountered from Phase II. The interview we held
with participant V was then used as an inspiration for formulating mitigation
strategies for the data scientist’s problems from Company A.

4.1 Phase I: Exploration

Here we list the problems that we found during Phase I of the case study.

1. Lack of a systematic approach to labeling data for specific features:
It was clear that automated labeling processes was needed. The data scien-
tists working at Company A had all kinds of needs for automatic labeling.
Currently, they have no idea how to approach the problem.

2. Unclear responsibility for labeling: Data scientists do not have the time
to label instances manually. Their stakeholders can label the data by hand,
but they do not want to do it either. Thus the data scientist is expected to
come up with a way to do the labeling.

Challenges and Mitigation Strategies for Data Labeling 207

3. Noisy labels: Participant I has a small subset of his data labeled. These
labels come from experiments conducted in a lab. The label noise seems to
be negligible, but that is not the case. There is a difference between the
generated data and the true data. The generated data will have features
that are continuous, while the generated data will be discrete. Participant II
works on a data set that contains tens of thousands of rows and columns.
The column of interest includes two class labels, “Yes” and “No”. The first
problem with the labels is that they are noisy. The “Yes” is dependent on
two errors, I and II. Only “Yes” based on error I is of interest. If the “Yes”
is based on error II. then it should be relabeled as a “No”. Furthermore, the
stakeholders do not know if the “Yes” instances are due to error I or error II.

4. Difficulty to find a correlation between labels and features: Partici-
pant I works with a dataset whose label distribution contains five classes that
describe grades from “best” to “worst”. Where 1 is “best” and 5 is “worst”.
Cluster analysis reveals that there is no particular cluster structure for some
of the labels. Labels of grade 5 seem to be in one cluster, but the other 1–4
seem to be randomly scattered in one cluster. Analysis of the data from par-
ticipant II reveals no way of telling whether the “Yes” is based on error I or
error II. This means that many of the “Yes” are mislabeled.

5. Skewed label distributions: The label distribution from both datasets is
highly skewed. The dataset from participant I has fewer instances that has a
high grade compared to low grades. For participant II the number of instances
labeled “No” is greater than the number of labels set as “Yes”. When training
a model on this data, it will overfit.

6. Time dependence: Due to the nature of participant IIs data, it is possible
that some of the “No” can become “Yes” in the future and so the “No” labels
are possibly incorrect too.

7. Difficulty to predict future uses for datasets. The purpose of the labels
in both datasets was to predict new labels for future instances provided by
the stakeholder on an irregular basis. For participant I, the labels might be
used for other purposes later. There are no current plans to use the label for
different machine learning purposes.

4.2 Phase II: Validation

The problems that appeared during the interviews can be categorized as follows:

1. Label distribution related. Question regarding the distribution.
2. Multiple-task related. Questions regarding the purpose of the labels.
3. Annotation related. Questions regarding the oracle and noisy labels.
4. Model and data reuse related. Questions regarding reuse of trained model on

new data.
Below we discuss each category in more detail.

1. Label Distribution: We found several issues related to the label distri-
bution. Participant Is data has an unknown label distribution. The current

208 T. Fredriksson et al.

labels are measured in percentages and need to be translated into at least two
classes, but if more labels are needed, that can be done. Participant II has a
label distribution that contains two classes, “Yes” and “No”. Participant IIIs
data has a label distribution that includes at least three labels. Participants
IV has more than three-thousand labels, so it is hard to get a clear picture
of its distribution. Participant I-III all have skewed label distributions. If a
dataset has a skew label distribution, then the machine learning model will
overfit. This means that if you have a binary classification problem and you
have 80% of class A and 20% of class B, the model might predict A most of
the time even when an actual case is labeled as B [10].

2. Multiple tasks: Participant I, II,and III say that that for now, the only
purpose of their labels is to find labels for new data, but the chances are that
it will be reused for something else later on. Participant IV does not use its
labels for machine learning purposes but other practical reasons. If you do not
plan ahead and only train a model concerning one task, then if you need to
use the labels for something else later, you will have to relabel the instances
for each new task.

3. Annotation: Participant I has some labeled data that comes from laboratory
experiments. However, these labels are only used to help label new instances to
be labeled manually. Participant II has its labels coming from the stakehold-
ers, but these instances need to be relabeled since they are noisy. Participant
III has labeled data coming from stakeholders, and these are expected to be
100% correct. Participant IV defines all labels by itself and does not consult
the stakeholders at all. The problem here is that the data scientists are often
tasked to do labeling on their own. Even if the data scientists get instances
from the stakeholders, the amount of labels are often of insufficient quantity
and/or quality.

4. Data Reuse: Participant III has had problems with reusing a model. First
the data was labeled into two classes “Yes” and “No. Later the “Yes” category
would be divided into sub-categories “YesA” and “YesB”. When running the
model on this new data, it would predict the old “Yes” instance as “No”
instance. Participant III has no idea as to why this happens.

4.3 Summary from Company B

Participant V of Company B has earlier experience with automatic labeling.
Therefore interview V was used to verify some actual labeling issues from the
industry. According to participant V, Company B has worked and studied auto-
matic labeling for at least seven years. Company B uses crowdsourcing to label
data using 1000 people. Participant V confirms that the labeling task takes 200
times less time thanks to active learning than if active learning was not used.
The main problem company B has with the labeling is that it is hard to evaluate
the quality labels and access the human annotator’s quality. A final remark from
Company B is that they have experienced a correlation between automation and
quality. The more automation included in the process, the less accurate will the
labels be. Three of the authors of this paper performed a systematic literature

Challenges and Mitigation Strategies for Data Labeling 209

review on automated labeling using machine learning [11]. Thanks to that paper,
we can conclude that active learning and semi-supervised learning can be used
to label instances.

4.4 Machine Learning Methods for Data Labeling

Here we present and discuss Active Learning and Semi-supervised learning meth-
ods in terms of how they can be used in practice with labeling problems.

Active Learning: Traditionally labels would be chosen randomly to be labeled
and used with machine learning. However, choosing instances to be labeled ran-
domly could lead to a model with low predictive accuracy since non-informative
instances could be selected for labeling. To mitigate the issue of choosing non-
informative instances, active learning (AL) is proposed. Active learning queries
instances by informativeness and then labels them. The different methods used to
pose queries are known as query strategies [24]. According to [11] the most com-
monly used query strategies are uncertainty sampling, error/variance reduction,
query-by-committee (QBC) and query-by-disagreement (QBD). After instances
are queried and labeled, they are added to the training set. A machine learn-
ing algorithm is then trained and evaluated. If the learner is not happy with
the results, more instances will be queried, and the model will be retrained and
evaluated. This iterative procedure will proceed until the learner decides it is
time to stop learning. Active learning has proven to outperform passive learning
if the query strategy is properly selected based on the learning algorithm [24].
Most importantly, active learning is a great way to make sure that time is not
wasted on labeling non-informative instances, thus saving time and money in
crowdsourcing [21].

Semi-supervised Learning: Semi-supervised learning (SSL) is concerned with
algorithms used in the scenario where most of the data is unlabeled, but a small
subset of it is labeled. Semi-supervised learning is mainly divided into semi-
supervised classification and constrained clustering [34].

Constrained clustering is an extension to unsupervised clustering. Con-
strained clustering requires unlabeled instances as well as some supervised infor-
mation about the clusters. The objective of constrained clustering is to improve
upon unsupervised clustering[3]. The most popular semi-supervised classifica-
tion methods are mixture models using the EM-algorithm, co-training/multi-view
learning, graph-based SSL and semi-supervised support vector machines (S3VM)
[11].

Below we list eight practical considerations of Active Learning.

1. Data exploration to determine which algorithm is best. When start-
ing on a new project involving machine learning, it is hard to know which
algorithm will yield the best result. Often there is no way of knowing before-
hand what the best choice is. There are empirical studies on which one to

210 T. Fredriksson et al.

choose, but the results are relatively mixed [17,23,25]. Since the selection of
algorithms varies so much, it is essential to understand the problem before-
hand. If it is interesting to reduce the error, then expected error or variance
reduction is the best query strategies to choose from [24]. If the sample’s
density is easy to use and there is strong evidence that support correlation
between cluster structure to the labels, then use density-weighted methods
[24]. If using extensive probabilistic models, uncertainty sampling is the only
viable option [24]. If there is no time testing out different query strategies,
it is best to use the more simple approaches based on uncertainty [24]. From
our investigation, it is clear that company A needs labels in their projects.
However, since they have never implemented an automatic labeling process
before, it is important to do right from the beginning. The data scientists
must carefully examine the distribution of data set, check whether there are
any cluster structures and if there are any relationships between the clusters
and the labels. If the data exploration is done in a detailed, correct way, then
finding the correct machine learning approach is easy, and we don’t need to
spend time testing different machine learning algorithms.

2. Alternative query types: A traditional active learner queries instances
to be labeled by an oracle. However, there are other querying ways, e.g.
human domain knowledge, incorporated into machine learning algorithms.
This means the learner builds models based on human advice, such as rules
and constraints, and labeled and unlabeled data. An example of domain
knowledge with active learning is to use information about the features. This
approach is referred to as tandem learning and incorporates feature feedback
in traditional classification problems. Active dual supervision is an area of
active learning where features are labeled. Here oracles label features that
are judged to be good predictors of one or more classes. The big question is
how to query these feature labels actively.

3. Multi-task active learning: From our interview we can see that there are
cases where labels are needed to predict labels for future instances. In other
cases the labels aren’t even needed for machine learning. In one case the
data scientist thinks that the labels will be used for other prediction task
but is unsure. The most basic way in which active learning operates is that
a machine learner is trying to solve a single task. From the interviews it is
clear the same data needs to annotated in several ways for several future
tasks. This means that the data scientist will have to spend even more time
annotating at least one time for each task. It would be more economical to
label a single instance for all sub-tasks simultaneously. This can be done with
the help of multi-task active learning [14].

4. Data reuse and the unknown model class: The labeled training set
collected after performing active learning always has a bias distribution. The
bias is connected to the class of the model used to select the queries. If
it is necessary to switch learners to a more improved learner, it might be
troublesome to reuse the training data with models of a different class. This
is an essential issue in practical use for active learning. If you know the best

Challenges and Mitigation Strategies for Data Labeling 211

model class and feature set beforehand, then active learning can safely be
used. Otherwise, active learning will be outperformed by passive learning.

5. Unreliable oracles: It is essential to have access to top-quality labeled data.
If the labels come from some experiments, there is almost always some noise
present. In one of the data sets from company A, a small subset of the data
was labeled. The labels of that particular data set come from experiments
conducted in a lab. The label noise seems to be negligible, but that is not
the case. There is a difference between the generated data and the actual
data. The actual data will have continuous features, while the generated data
will have discrete features. Another dataset that we studied has labels that
came from customer data. The labels were coded “Yes” and “No”. However,
the “Yes” was due to factors A and B. So the problem here is to find a
model that can predict the labels, but we are only interested in the “Yes”
that is due to factor A. The “Yes” due to factor B needs to be relabeled
to a “No”. Since the customer data does not provide whether the “Yes” are
due to factor A or B. The second problem was that some of the “No” could
develop into a “Yes” over time. It was up to the data scientist to find a way
to relabel the data correctly. The data scientist had a solution to the problem
but realized that it was faulty and asked us for help. We took a look at the
data and the current solution. We saw two large clusters, but no significant
relationship existed between the different labels and the features. We found
two clusters, but both contained almost equally many “Yes” and “No”. Let’s
say that the first cluster contained about 60% “Yes” and 40% “No” and
in the second cluster we had 60% “No” and 40% “Yes”. After doing this,
all of the first cluster instances were relabeled as “Yes” and all instances
in the second cluster were relabeled as “No”. We conclude that this is an
approach that will yield noisy labels. The same goes if the labels come from
a human annotator because some of the instances might be difficult to label.
People can easily be distracted and tired over time, so the labels’ quality will
vary over time. Thanks to crowdsourcing, several people can annotate the
same data, and that it is easier to determine which label is the correct one
and produce “gold-standard quality training sets”. This approach can also
be used to evaluate learning algorithms on training sets that are non-gold-
standard. The big question is: How do we use noisy oracles in active learning?
When should the learner query new unlabeled instances rather than update
currently labeled instances if we suspect an error. Studies, where estimates of
both oracle and model uncertainty were taken into account, show that data
can be improved by selectively repeated labeling. How do we evaluate the
annotators? How might the effect of payment influence annotation quality?
What to do if some instances are noisy no matter what oracle you use and
repeated labeling does not improve the situation?

6. Skewed label distributions: In two of the data sets we studied, the dis-
tributions of the labels are skewed. That is, there is more of one label than
there is of another. In the “Yes” and “No” labeled example, there are way
more “No” instances. When the label distribution is skewed, active learning
might not give much better results than passive learning. If the labels are not

212 T. Fredriksson et al.

balanced, active learning might query more of one label than another. The
skewed distribution is a problem, but the lack of labeled data is also a prob-
lem. In one of the datasets, we have instances labeled from an experiment.
Very few labels are labeled from the beginning, and new unlabeled data is
coming every fifteen minutes. “Guided learning” is proposed to mitigate the
slowness problem. Guided learning allows the human annotator to search for
class-representative instances in addition to just querying for labels. Empiri-
cal studies indicate that guided learning performs better than active learning
as long as it’s annotation costs are less than eight times more expensive than
labeling queries.

7. Real labeling costs and cost reduction: From observing the data scien-
tists at Company A, we would say that they will spend about 80% of the
time they spend on data science prepossessing the data. Therefore we rec-
ognize that they do not have time to label too many instances, and it is
crucial to reduce the time it takes to label things manually. If the possibility
exists, avoid manual labeling. Assume that the cost of labeling is uniform.
The smaller the training set used, the lower will the associated costs be. How-
ever, in some applications, the cost might be varying, so simply reducing the
labeled instances in the training data does not necessarily reduce the cost.
This problem is studied within cost-sensitive active learning. To reduce the
effort in active learning, automatic pre-annotation can help. In automatic
pre-annotation the current model predictions helps to query the labels [4,9].
This can often help the laboring efforts of the learner. If the models make
many classification mistakes, then there will be extra work for the human
annotator to correct them. To mitigate these problems correlation propa-
gation can be used. In correlation propagation, the local edits are used to
update the prediction interactively. In general automatic pre-annotation and
correction propagation do not deal with labeling costs themselves. However,
they do try to reduce the costs indirectly by minimizing the number of label-
ing actions performed by human oracle. Other cost-sensitive active learning
methods take varying labeling costs into account. The learner can incorpo-
rate both current labeling costs and expected future errors in classification
costs [16]. The costs might not even be deterministic but stochastic. In many
applications, the costs are not known beforehand. However, they might be
able to be described as a function over annotation time [26]. To find such
a function, train a regression cost-model that predicts the annotation costs.
Studies involving real human annotation cost shows the following results.

– Annotation costs are not constant across instances [1,20,30,31].
– Active learners that ignore costs might not perform better than passive

learners [24].
– The annotations costs may vary on the person doing the annotation [1,13].
– The annotation costs can include stochastic components. Jitter and pause

are two types of noise that affect the annotation speed.
– Annotation can be predicted after seeing only a few labeled instances

[30,31].

Challenges and Mitigation Strategies for Data Labeling 213

8. Stopping criteria: Since active learning is an iterative process, it is relevant
to know when to stop learning. Based on our empirical findings, the data
scientists have no interest in doing any manual labeling, and if they have to,
they want to do it as little as possible. So when the cost of gathering more
training data is higher than the cost of the current system’s errors, then it is
time to stop extending the training set and hence stop training the machine
learning algorithm. From our experience at company A the data scientist have
so little time free from doing other tasks than data prepossessing, so time is
the most common stopping factor.

4.5 Challenges and Mitigation Strategies

Many of the problems identified during phase I and phase II overlap to a certain
degree, so we took all the problems and summarized them into three challenges
(C1–C3) that were later mapped to three mitigation strategies (MS1–MS3).
These mitigation strategies are derived from the practical consideration above.
Finally, we map MS1 to C1, MS2 to C2, and MS3 to C3.

C1: Pre-processing: This challenge represents all that needs to be done
during the planning stage of the labeling procedure. This would include
creating a systematic approach for labeling (problem 1 of phase I), doing
an exploratory data analysis to find the correlation between labels and
features (problem 4 of phase I), as well as choosing a model that can be
reused on new data (problem 6 of phase I) and label instances concerning
multiple tasks (problem 7 of phase I, problem 4 of phase II).

MS1: Planning: This strategy contains all the solution frameworks from prac-
tical consideration 1, 2, 3, 4, 7 and 8 as they all involve the steps necessary
to plan an active learning strategy for labeling.

C2: Annotation: This challenge represents the problems concerning choosing
an annotator as well as evaluating and reduce the label noise (problems
2, 3 from phase I and problem 3 from phase II).

MS2: Oracle selection: This strategy contains only solution frameworks from
practical consideration 5. It describes how we can choose oracles to pro-
duce top quality labels.

C3: Label Distribution: This challenge represents all the problems concern-
ing the symmetry of the label distributions such as learning with a skew
label distribution (problem 5 of Phase I and problem 1 o Phase II).

MS3: Label distribution: This strategy contains solution frameworks from
practical consideration 6. It describes how we can do labeling when the
label distribution is skew.

5 Discussion

We learned that active learning is a popular tool for acquiring labels from our
verification interview with Company B. Thanks to active learning, the labeling
task takes 200 times less than if active learning was not used.

214 T. Fredriksson et al.

In the background, we presented some current practices that can help with
labeling. The most popular practice being crowdsourcing. However, crowdsourc-
ing has its own set of problems. The primary concern is those bad annotators
will produce noisy labels due to inexperience or human factors. Secondly, The
benefit of allowing third-company to label data is that you don’t have to spend
time training your employees to do the job, nor do you need to develop your own
annotation tools and infrastructure. The big downside is that you have to share
confidential company data with the crowdsourcing platform. Repeated labeling
can improve the quality of the labels, but there are no guarantees that this will
enhance the quality. Rather than correcting noisy labels, there are ways in which
you can change the machine learning models to handle noisy labels. The down-
side to this is that you need to know which instances are bad, and this can be
difficult in an industrial setting.

None of the techniques discussed in the background utilizes automated label-
ing using machine learning. Thanks to our efforts, we formulated three labeling
challenges and provided mitigation strategies based on active machine learning.
These challenges are related to questions such as, How can labeling processes
be structured? Who and how do we label the instances? Can the correlation
between labels and features be found, so that labels can be determined from the
features? Both manual and automatic labeling involves some noise in the labels.
How should these noisy labels be used? What do we do if the distribution of
the labels is skewed? How do we consider the fact that some of the labels might
change over time, due to the nature of the data? How do we label instances so
that the labels can be useful for several future tasks?

Three mitigation strategies that could possibly solve the three challenges
were presented.

6 Conclusion

This study aims to provide a detailed overview of the challenges that the industry
faces with labeling and outline mitigation strategies for these challenges.

To the best of our knowledge 95% of all the machine learning algorithms
deployed in the industry are supervised. Therefore, every dataset must be com-
plete with labeled instances. Otherwise, the data would be insufficient, and
supervised learning would not be possible.

It proves to be challenging to find and structure a labeling process. You need
to define a systematic approach for labeling and examine the data to choose
the optimal model. Finally, you need to select an oracle to produce top-quality
labels as well as plan how to handle skewed label distributions.

The contribution of this paper is twofold. First, based on a case study involv-
ing two companies, we identified problems that companies experience in relation
to labeling data. We validated these problems using interviews at both companies
and summarized all problems into challenges. Second, we present an overview of
the mitigation strategies that companies employ (or could employ) to address
the challenges.

Challenges and Mitigation Strategies for Data Labeling 215

In our future work, we aim to further develop the challenges and mitigation
strategies with more companies. In addition, we intend to develop solutions to
simplify the use of automated labeling in industrial contexts.

Acknowledgments. This work was partially supported by the Wallenberg AI
Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wal-
lenberg Foundation.

References

1. Arora, S., Nyberg, E., Rose, C.: Estimating annotation cost for active learning in a
multi-annotator environment. In: Proceedings of the NAACL HLT 2009 Workshop
on Active Learning for Natural Language Processing, pp. 18–26 (2009)

2. AzatiSoftware: AzatiSoftware Automated Data Labeling with Machine Learning
(2019). https://azati.ai/automated-data-labeling-with-machine-learning

3. Bair, E.: Semi-supervised clustering methods. Wiley Interdiscip. Rev. Comput.
Stat. 5(5), 349–361 (2013)

4. Baldridge, J., Osborne, M.: Active learning and the total cost of annotation. In:
Proceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing, pp. 9–16 (2004)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

6. Chang, J.C., Amershi, S., Kamar, E.: Revolt: collaborative crowdsourcing for label-
ing machine learning datasets. In: Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, pp. 2334–2346 (2017)

7. Cloud Factory, H.: Crowd vs. Managed Team: A studo on Quality Data Process-
ing at Scale (2020). https://go.cloudfactory.com/hubfs/02-Contents/3-Reports/
Crowd-vs-Managed-Team-Hivemind-Study.pdf

8. Cognilytica Research: Data Preparation & Labeling for AI 2020. Technical report,
Cognilytica Research (2020)

9. Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks.
In: AAAI, vol. 5, pp. 746–751 (2005)

10. DataScience, T.: What To Do When Your Classification Data is Imbalanced?
(2019). https://towardsdatascience.com/what-to-do-when-your-classification-data
set-is-imbalanced-6af031b12a36

11. Fredriksson, T., Bosch, J., Holmström-Olsson, H.: Machine learning models for
automatic labeling: a systematic literature review (2020)

12. hackernoon.com: Crowdsourcing Data Labeling for Machine Learning Projects
(2020). https://hackernoon.com/crowdsourcing-data-labeling-for-machine-learnin
g-projects-a-how-to-guide-cp6h32nd

13. Haertel, R.A., Seppi, K.D., Ringger, E.K., Carroll, J.L.: Return on investment for
active learning. In: Proceedings of the NIPS Workshop on Cost-Sensitive Learning,
vol. 72 (2008)

14. Harpale, A.: Multi-task active learning. Ph.D. thesis, Carnegie Mellon University
(2012)

15. Ipeirotis, P.G., Provost, F., Sheng, V.S., Wang, J.: Repeated labeling using multiple
noisy labelers. Data Min. Knowl. Discov. 28(2), 402–441 (2013). https://doi.org/
10.1007/s10618-013-0306-1

https://azati.ai/automated-data-labeling-with-machine-learning
https://go.cloudfactory.com/hubfs/02-Contents/3-Reports/Crowd-vs-Managed-Team-Hivemind-Study.pdf
https://go.cloudfactory.com/hubfs/02-Contents/3-Reports/Crowd-vs-Managed-Team-Hivemind-Study.pdf
https://towardsdatascience.com/what-to-do-when-your-classification-dataset-is-imbalanced-6af031b12a36
https://towardsdatascience.com/what-to-do-when-your-classification-dataset-is-imbalanced-6af031b12a36
https://hackernoon.com/crowdsourcing-data-labeling-for-machine-learning-projects-a-how-to-guide-cp6h32nd
https://hackernoon.com/crowdsourcing-data-labeling-for-machine-learning-projects-a-how-to-guide-cp6h32nd
https://doi.org/10.1007/s10618-013-0306-1
https://doi.org/10.1007/s10618-013-0306-1

216 T. Fredriksson et al.

16. Kapoor, A., Horvitz, E., Basu, S.: Selective supervision: guiding supervised learning
with decision-theoretic active learning. IJCAI 7, 877–882 (2007)

17. Körner, C., Wrobel, S.: Multi-class ensemble-based active learning. In: Fürnkranz,
J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
687–694. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 68

18. Northcutt, C.G., Jiang, L., Chuang, I.L.: Confident learning: estimating uncer-
tainty in dataset labels. arXiv preprint arXiv:1911.00068 (2019)

19. Reason, P., Bradbury, H.: Handbook of Action Research: Participative Inquiry and
Practice. Sage, London (2001)

20. Ringger, E.K., et al.: Assessing the costs of machine-assisted corpus annotation
through a user study. In: LREC, vol. 8, pp. 3318–3324 (2008)

21. Roh, Y., Heo, G., Whang, S.E.: A survey on data collection for machine learning:
a big data-AI integration perspective. IEEE Trans. Knowl. Data Eng. (2019)

22. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131 (2009)

23. Schein, A.I., Ungar, L.H.: Active learning for logistic regression: an evaluation.
Mach. Learn. 68(3), 235–265 (2007)

24. Settles, B.: Active learning. Morgan Claypool. Synthesis Lectures on AI and ML
(2012)

25. Settles, B., Craven, M.: An analysis of active learning strategies for sequence label-
ing tasks. In: Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing, pp. 1070–1079 (2008)

26. Settles, B., Craven, M., Friedland, L.: Active learning with real annotation costs.
In: Proceedings of the NIPS Workshop on Cost-Sensitive Learning, Vancouver,
CA, pp. 1–10 (2008)

27. Sheshadri, A., Lease, M.: Square: a benchmark for research on computing crowd
consensus. In: First AAAI Conference on Human Computation and Crowdsourcing
(2013)

28. Staron, M.: Action Research in Software Engineering: Theory and Applications.
Springe, Chamr (2019). https://doi.org/10.1007/978-3-030-32610-4

29. Sukhbaatar, S., Fergus, R.: Learning from noisy labels with deep neural networks.
arXiv preprint arXiv:1406.2080 2(3), 4 (2014)

30. Vijayanarasimhan, S., Grauman, K.: What’s it going to cost you?: predicting effort
vs. informativeness for multi-label image annotations. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2262–2269. IEEE (2009)

31. Wallace, B.C., Small, K., Brodley, C.E., Lau, J., Trikalinos, T.A.: Modeling annota-
tion time to reduce workload in comparative effectiveness reviews. In: Proceedings
of the 1st ACM International Health Informatics Symposium, pp. 28–35 (2010)

32. Zhang, J., Sheng, V.S., Li, T., Wu, X.: Improving crowdsourced label quality using
noise correction. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1675–1688 (2017)

33. Zhang, J., Wu, X., Sheng, V.S.: Learning from crowdsourced labeled data: a sur-
vey. Artif. Intell. Rev. 46(4), 543–576 (2016). https://doi.org/10.1007/s10462-016-
9491-9

34. Zhu, X.J.: Semi-supervised learning literature survey. Technical report. University
of Wisconsin-Madison Department of Computer Sciences (2005)

https://doi.org/10.1007/11871842_68
http://arxiv.org/abs/1911.00068
https://doi.org/10.1007/978-3-030-32610-4
http://arxiv.org/abs/1406.2080
https://doi.org/10.1007/s10462-016-9491-9
https://doi.org/10.1007/s10462-016-9491-9

An End-to-End Framework for
Productive Use of Machine Learning
in Software Analytics and Business

Intelligence Solutions

Iris Figalist1(B), Christoph Elsner1, Jan Bosch2,
and Helena Holmström Olsson3

1 Corporate Technology, Siemens AG, 81739 Munich, Germany
{iris.figalist,christoph.elsner}@siemens.com

2 Department of Computer Science and Engineering,
Chalmers University of Technology, Hörselg̊angen 11, 412 96 Göteborg, Sweden

jan.bosch@chalmers.se
3 Department of Computer Science and Media Technology, Malmö University,

Nordenskiöldsgatan, 211 19 Malmö, Sweden
helena.holmstrom.olsson@mau.se

Abstract. Nowadays, machine learning (ML) is an integral component
in a wide range of areas, including software analytics (SA) and busi-
ness intelligence (BI). As a result, the interest in custom ML-based soft-
ware analytics and business intelligence solutions is rising. In practice,
however, such solutions often get stuck in a prototypical stage because
setting up an infrastructure for deployment and maintenance is consid-
ered complex and time-consuming. For this reason, we aim at structur-
ing the entire process and making it more transparent by deriving an
end-to-end framework from existing literature for building and deploy-
ing ML-based software analytics and business intelligence solutions. The
framework is structured in three iterative cycles representing different
stages in a model’s lifecycle: prototyping, deployment, update. As a
result, the framework specifically supports the transitions between these
stages while also covering all important activities from data collection
to retraining deployed ML models. To validate the applicability of the
framework in practice, we compare it to and apply it in a real-world
ML-based SA/BI solution.

Keywords: Machine learning · Software analytics · Business
intelligence

1 Introduction

A vast amount of data is produced by software-intensive systems every day. As a
result, software providers often try to gain insights from data using software ana-
lytics [23] or business intelligence [24] (SA/BI) tools. As existing tools are typi-
cally quite generic and can often not provide the desired depth of product-specific
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 217–233, 2020.
https://doi.org/10.1007/978-3-030-64148-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_14

218 I. Figalist et al.

and stakeholder-targeted information, there is often a need for customized soft-
ware analytics or business intelligence (SA/BI) solutions that leverage the full
potential of modern machine learning (ML) techniques.

However, as such solutions are used as internal systems for monitoring or
decision-making, these are often not perceived as something of direct customer
value by managers. This results in a lack of priority, time and, resources assigned
to setup and maintain ML-based SA/BI solutions [15]. In addition to that, the
effort of going beyond a prototypical analysis and deploying it to and maintaining
it in production is perceived as extremely high [15,30]. Paired with a lack of
expertise in this domain, which is often the case if the actual product is not
related to ML [6], custom ML-based SA/BI solutions are rarely deployed in
production [15]. Nevertheless, this is considered crucial in order to continuously
gain valuable insights and use it for actual decision making [21].

To address this, we conduct a literature review of important domains related
to ML, specifically data management and processing, model building, and model
deployment. The results are then used to derive a framework for building end-to-
end ML-based SA/BI solutions consisting of three iterative cycles: a prototyping
cycle, a deployment cycle, and an update cycle. To validate the applicability
of the framework in practice, we compare it to and apply it in a real-world,
customized ML-based SA/BI solutions.

The contribution of this paper is an end-to-end approach that covers all
steps from data collection to retraining deployed ML models while at the same
time taking the different conceptual stages into consideration (prototypical,
deployment, and update). By specifically addressing the transition between these
stages, our framework supports practitioners in advancing their prototypical
analysis to a deployed and continuously retrained ML model.

The remainder of this paper is structured as follows: First, we outline the
background of our study in Sect. 2. In Sect. 3 we provide an overview of the
research method and the study design. The results of the literature review are
presented in Sect. 4, before introducing the framework in Sect. 5. The framework
validation is outlined in Sect. 6, followed by a conclusion in Sect. 7.

2 Background

The term software analytics (SA) describes analytics performed on software data
to generate valuable insights for various stakeholders, from managers to software
engineers, that ultimately support their decision making [6,23]. Related to this,
the field of business intelligence (BI), sometimes also referred to as business
analytics, applies data mining techniques to operational data in order to derive
high-quality information for managerial decision making [24].

With its increase in popularity, artificial intelligence soon became an integral
part of SA and BI solutions [7,11]. As a result, many companies aim at getting
the most out of their data by running ML-based analyses on it. While some
knowledge can be extracted using out-of-the-box tools, more in-depth analyses
often require custom ML solutions.

An End-to-End Framework for Productive Use of Machine Learning 219

In many cases, these custom solutions start out as a prototypical analysis or
a proof of concept [15,30]. However, in order to make actual use of the results,
they need to be provided in a continuous manner by deploying the model to
production and retraining the model on a regular basis [21]. Precisely this is
the point at which custom ML-based SA/BI solutions often get stuck. In a
previous study [15], we identified a vicious circle that frequently prevents an
end-to-end implementation of such analyses. One of the key issues is that an
ineffective prototypical analysis can often not prove the value that it could deliver
in production, leading to a lack of priority, time, and resources assigned to the
topic [15].

Moreover, in the context of SA and BI there is often a lack of expertise in
data engineering, data analytics, and in building an infrastructure for both [6,15].
For this reason, the framework presented in our study aims at compensating this
to some extent by providing a structured approach for the transition between
prototypical analysis and productively usable analysis.

3 Research Method and Study Design

As an end-to-end development of ML-based SA/BI solutions requires broad
knowledge that is distributed across several, well-researched domains, we selected
a deductive research approach for our study. Deductive approaches rely on exist-
ing theories for building hypotheses which are then confirmed or rejected using
real-world observations [28]. The overall research process is outlined in Fig. 1.

Literature Review

• Identification of research
topics

• Selection & quality
assessment of studies

• Extraction of relevant
information

Model Derivation

• Extraction of key activities
from literature

• Buildingmodel by
connecting and
systematically arranging
activities from relevantfields

Model Validation

• Comparison andapplication
of framework to real-world
SA/BIsolution

• Semi-structured expert
interviews

Fig. 1. Research process

As a first step, we conducted a literature review [18] which serves as the foun-
dation for our study. Based on the requirements of our framework, we identified
three overarching categories that comprise the results of our review: data man-
agement and processing, model building, and model deployment. To achieve our
research goal, we queried common scientific libraries (IEEXplore, ACM Digital
Library, ScienceDirect, Springer Link) using search terms related to the respec-
tive categories: data (quality, cleaning, preprocessing, transformation, manage-
ment, continuous extraction) and machine learning model (training, evaluation,
deployment [pipeline], management, serving).

As inclusion criteria we defined 1) research papers that outline approaches
and/or challenges in data management and processing, model building, or model

220 I. Figalist et al.

deployment; and 2) case studies and experience reports describing concrete
actions and processes for at least one of the categories. We excluded non-scientific
contributions (e.g. posters or presentations/talks) and studies that were not writ-
ten in English.

Next, we extracted all mentioned activities and challenges out of each selected
paper and accumulated the results to common activities and challenges based
on the frequency of occurrences. In order to derive a framework for productively
applying ML in SA/BI solutions, we merged and systematically arranged the
key activities of the investigated domains.

To validate the applicability of the framework in practice, we first compare
it to the current state of a real-world ML-based SA/BI solution being developed
for an industrial platform provider. In a second step, we utilize the framework to
strategically plan and direct the upcoming activities. To achieve this, we collab-
orated with two software architects and two product managers of the platform.
The product managers are the future user of the system and, therefore, provided
us with a specific use case while the software architects supported us in build-
ing the ML-based SA/BI solution. The platform itself is based on Amazon Web
Services1 (AWS). For this reason, we utilize existing AWS services for imple-
menting and deploying our solution. In order to get a comprehensive picture of
all the activities, we interviewed the stakeholders in several recap sessions to
gain a detailed understanding of individual steps that we could not directly be
involved in due to company processes.

4 Literature Review

4.1 Data Management and Processing

The most important prerequisite for training accurate ML models is providing
high-quality training data [26,29]. At the same time, assembling high-quality
data sets, and engineering and selecting appropriate features based on it, is very
time-consuming and requires a vast amount of effort and resources [14].

As a result, we investigate the common activities (see Table 1) in data man-
agement and data processing required for a successful application in machine
learning systems as well as the challenges (see Table 2) that come with these
activities. The identified activities can be grouped into six overarching categories:
1) Data preparation; 2) data cleaning; 3) data validation; 4) data evaluation; 5)
data serving; and 6) extract, transform, and load (ETL) tasks.

During the data preparation, raw input data is examined for suitable features
before being transformed (e.g. aggregations of one or more raw input data fields)
into training data [4,5,14,21,26,27]. Next, the data is cleaned by filtering out
uncorrelated data [10,26], specifying quality rules, detecting errors, inconsisten-
cies and anomalies [4,8,19], and fixing these errors [8,19,26,36].

To guarantee a successful preparation and cleaning of the data, each batch of
data needs to be validated based on its properties [4,5,26,27,29,36] and potential

1 https://aws.amazon.com/.

https://aws.amazon.com/

An End-to-End Framework for Productive Use of Machine Learning 221

dependencies [26], deviations [5,26], or impact of features on model accuracy or
performance [14,26] need to be identified.

Once a model is trained, the goal of data evaluation is to evaluate the choice
and encoding of the data based on the results produced by a model trained on the
data, for instance by performing sanity checks [14,26]. After a suitable solution
was found, the newly emerging input data needs to be transformed to so-called
serving data which is processible by the model [4,26]. This usually involves the
same transformation steps as required for the training data. After the serving
data was successfully processed by the model, it is channeled back as training
data for future iterations [26].

In order to execute the aforementioned steps in an iterative and continuous
manner, automated ETL tasks need to be set up. This involves the extraction
of data from its source, transporting it to a processing pipeline, transforming it
to target values, and finally making it accessible to and loadable by respective
machine learning models [13,34,35].

Table 1 provides a detailed overview of common activities in data manage-
ment and data processing grouped into six categories.

Table 1. Common activities in data management and processing for machine learning

Activity Publications

Data preparation

Identification of features and their properties based on raw data [14,21,26]

Transformation of input data to training data [4,5,14,26,27]

Data cleaning

Investigating and understanding effect of cleaning data on model accu-
racy & filtering out uncorrelated data

[10,26]

Ensure data quality, specification of (quality) rules & actions for rules [4,8,19]

Detection of data errors [8,19]

Definition of data fixes & execution of error repairs [8,19,26,36]

Data validation

Triggering validation pipeline for each batch of data [5,29,36]

Generation of descriptive statistics of data, checking data properties
based on specified schema/patterns & identification of errors or anoma-
lies in training data

[4,5,26,27,29,36]

Identification of features with significant impact on model accuracy [14,26]

Identification of dependencies to other data sources or infrastructure [26]

Comparison of training and serving data to identify potential deviations [5,26]

Data evaluation

Performing sanity checks on data [26]

Evaluation of choice and encoding of data based on model results [14,26]

(continued)

222 I. Figalist et al.

Table 1. (continued)

Activity Publications

Data serving

Transformation of serving input data to serving data processible by

model

[4,26]

Channeling serving data back as training data [26]

Extract, transform, load (ETL)

Extraction of data from sources [13,34,35]

Transportation of data to processing pipeline (e.g. for data cleaning or
filtering)

[13,34,35]

Transformation of source data to target values [13,34,35]

Loading of cleaned & transformed data [13,34,35]

As a natural consequence, these activities also entail a couple of challenges
which are presented in Table 2 and mostly related to 1) data understanding; 2)
data preparation; 3) data cleaning; and 4) data validation.

Table 2. Common challenges in data management and processing

Category Challenge
DU Set expectations of data; How to know something (e.g. a distribution) is “right”?

[26]
DU Analysis of features in conjunction [26]
DU Understanding if data reflects reality [26]
DU Identification of sources of data errors [26]
DC Dealing with data inconsistency, missing features, unit changes,. . . [26], [29], [36]
DC & DV Dealing with dynamic data environments (constantly changing constraints) [10],

[29], [36]
DV Formulation of understandable and actionable alerts [4], [26]
DP Engineering set of features most predictive of the label [26]
DP Unused data due to data overload / too much data to be processed [14]
DP Feature experiments (e.g. different combinations of input features to examine their

predictive value) affect multiple stakeholders (e.g. software or site reliability engi-
neers responsible for pipeline) [26]

DP & DC Merging data from multiple sources & deal with unstructured data [8], [10], [13],
[16], [29]

DP, DC & DV Achieving scalability of data processing and error detection in distributed settings
[8], [10], [19]

Data understanding = DU, data cleaning = DC, data validation = DV, data preparation = DP

4.2 Model Building

In the model building phase, one or multiple models are prepared, built, and
evaluated based on the previously generated input features. This is typically
an iterative process that involves running an analysis, evaluating the results,
and adapting or optimizing parameters and input features until an adequate
solution is found [14,22,33]. Table 3 outlines common activities that are part of
this process.

An End-to-End Framework for Productive Use of Machine Learning 223

Table 3. Common activities in model preparation, building, and evaluation

Activity Publications

Model preparation

Selection of appropriate analysis/model type [14,17,21,27]

Selection of input features [4,12,14,21]

Model building

Splitting input data into training and test set [14,21]

Model training on training data [4,14,21,25,27,31,33]

Application of model to test data [4,14,21,31,33]

Model evaluation

Quality evaluation based on test results (e.g. accuracy, pre-
cision, recall, F1-score)

[4,14,21,25,27,31,33]

Decision: accept or rework model (e.g. by adapting input
features or model parameters)

[3,14,21]

Initially and based on the respective problem to solve, appropriate analysis
techniques and model types need to be selected as part of the model preparation
[14,17,21,27]. For instance, if the input data is labeled and the goal is to classify
data according to these labels, a supervised ML technique (e.g. logistic regression,
support vector machines etc.) can help to achieve this. On the other side, if the
requirement is to group unlabeled objects by their similarity, an unsupervised app-
roach (e.g. k-means clustering, hierarchical clustering etc.) is the better choice.

Oftentimes, it is not advisable to use all available features as input features
for the selected model as this can create noise and cause a decrease in model
accuracy [14]. This results in the need for feature selection techniques that aim
at identifying the most relevant input features for a given model [4,12,14,21].

Once the input data is filtered according to the determined feature relevance,
a training and a test data set need to be created as part of the model building
phase [14,21]. In a next step, the training set is used to train a model that was
selected to solve a specific problem [4,14,21,25,27,31,33]. Before being able to
validate the quality of the model, it is applied on the test set to investigate how
it performs on previously unseen data [4,14,21,31,33].

Consequently, the results of this step can be used for the model evaluation.
There are several metrics that support practitioners in assessing the quality of
their models, for instance by calculating the accuracy, precision, recall, or F1-
score [4,14,21,25,27,31,33]. Based on the evaluation results, the model can either
be accepted as a reasonable solution or it needs to be reworked, for example by
adapting the parameters or input features that are used for training the model
[3,14,21].

This iterative process is often accompanied by several challenges. Table 4
summarizes a few of these challenges that we feel like are most important for
our study. The presented challenges are categorized in model preparation, model
building, and model evaluation.

224 I. Figalist et al.

Table 4. Common challenges in model preparation, building, and evaluation

Category Challenge
MP Selecting appropriate model types for a specific problem [1], [14], [20]
MP Dealing with too many (irrelevant) input features [14]

MP Coordination and communication of involved stakeholders
(e.g. ML specialists, software engineers,...) [1], [2], [20]

MB Avoidance of overfitting [14]
MB Debugging of ML models [1], [2], [32]

ME Defining quality specifications (e.g. ”when is the prediction
quality good enough?”, ”is the model save to serve?” [4]

Model preparation = MP, model building = MB, model evaluation = ME

4.3 Model Deployment and Serving

In order to fully leverage the benefits of ML to gain valuable insights, it is crucial
to go beyond prototypical analyses by deploying models in production where they
are actually used [21]. It has even been observed that “organizations that make
the most of machine learning are those that have in place an infrastructure that
makes experimenting with many different learners, data sources, and learning
problems easy and efficient” [14].

For that reason, we summarize the common activities in model deployment
and model serving in Table 5.

Deployment infrastructures for ML models often consist of multiple com-
ponents each responsible for a specific task and executable as an automated

Table 5. Common activities in model deployment and model serving

Activity Publications

Components

Component for model validation (before serving & often coupled with data
validation)

[4,9,25]

Component for continuous model evaluation & monitoring (performance,
quality,...)

[4,9,25,27]

Component or serving solution to deploy model in production [4,9,21]

Component for monitoring pipelines (checkpoint after each pipeline) [27,31]

Setups

Setup model lifecycle management (to keep overview of deployed models) [9,33]

Setup workflow manager for job coordination [9,21]

Process

Loading new model before unloading old model [25]

Validation of model and serving infrastructure (incl. reliability checks)
before pushing to production environment

[4,9,25]

Continuous application of model to (new) serving data [9,21,27]

Continuous model evaluation / monitoring [4,9,25,27]

Rollback in case of errors [25,27]

Periodically update models [9,21]

An End-to-End Framework for Productive Use of Machine Learning 225

workflow coordinated by a workflow manager. Besides the component that han-
dles the actual deployment of models in production [4,9,21], it is advisable to
have additional components for validating the model before deployment [4,9,25],
for continuously evaluating and monitoring the model after being deployed in
production [4,9,25,27], and for monitoring if all pipelines are up and running as
expected [27,31].

In addition to the components, a few setups are required for automating the
deployments while keeping an overview of the deployed models. For one, a model
lifecycle management should be set up that allows the comparison and monitor-
ing of models over time and provides information on the currently deployed mod-
els [9,33]. For another, the jobs required to deploy a model can be coordinated
an executed using a workflow manager [9,21]. After triggering the workflow, the
model is updated in an automated manner and in case of errors a predefined
rollback plan is executed.

In general, the process of model deployment and model serving requires the
following steps which are typically encapsulated in respective components: First,
a new model is loaded for deployment before unloading the old model [25]. In
a next step, the model as well as the serving infrastructure are validated (e.g.
reliability checks) before pushing the new model to the production environment
[4,9,25].

Once the model is deployed to production, it can be used and continuously
applied to newly emerging serving data [9,21,27]. In order to guarantee that the
model works as expected, a continuous evaluation and monitoring of the model
is required [4,9,25,27]. In case the model does not behave as expected, a rollback
plan is executed and typically the current model is replaced by a previous well-
working version of the model [25,27]. Following this process, models can be
periodically updated and deployed to production [9,21].

Analogously to data management and model building, model deployment
and model serving also entails several challenges. Four of the key challenges
are presented in Table 6. The challenges are categorized into infrastructure and
model -specific topics.

Table 6. Common challenges in model deployment and model serving

Category Challenge
I Integration of third-party packages or tools [21], [30]
I Brittle pipelines / “pipeline jungle” [21], [30]
M Managing and monitoring multiple models [9], [30], [33]
M Dealing with expected and unexpected variations during model evaluation [4], [30]
Infrastructure = I, model = M

5 Framework Derivation

Based on the insights gained from the literature review, we derive a framework
for supporting an end-to-end development and deployment of ML models in the
context of software analytics and business intelligence (see Fig. 2).

226 I. Figalist et al.

Fig. 2. Framework for productively applying machine learning (Color figure online)

While the literature review examines the topics data management and pro-
cessing, model building, and model deployment and serving individually, in reality
a separation of the three is not that trivial. In fact, for building end-to-end solu-
tions the fields are very much interrelated as the activities depend on each other
and sometimes even overlap.

Oftentimes, ML projects start out as a prototypical analysis due to a lim-
ited amount of time and resources [15,30]. In order to use and actually benefit
from the ML model, it needs to be deployed to a production environment which
can be time and cost-intensive but nonetheless crucial [21,30]. To avoid the
deployed models from being outdated, it is important to provide a functional-
ity for dynamically deploying new models or iteratively retraining and updating
existing models [9,21].

As a result, we identify three iterative cycles which are passed through during
an end-to-end development of ML solutions and, therefore, serve as the main
dimensions in our framework: 1) Prototyping cycle (blue), 2) deployment cycle
(green), and 3) update cycle (orange).

5.1 Prototyping Cycle

In software analytics and business intelligence, relevant input data typically
emerges from multiple sources that need to be extracted, set in relation, and

An End-to-End Framework for Productive Use of Machine Learning 227

stored in a common data storage [15]. As part of the data preparation, potential
input features can be identified and extracted based on a snapshot of raw data
[14,21,26]. To ensure a sufficient data quality, a couple of data cleaning activities
need to be performed (e.g. filtering, consistency checks, or other error detection
techniques and repairs) [4,8,19,26,36].

Depending on the overarching goal of the analysis, appropriate ML models
have to be selected that are suitable to achieve a specific task [14,17,21,27].
Based on the selected model, it is recommended to apply feature selection tech-
niques to the input data set to identify a subset of the most relevant input
features [4,12,14,21]. This subset is then extracted from the overall data set and
the values of each input features are standardized. Before training the model,
the respective subset should be split into a training and a test data set (usually
70%/30% or 80%/20%) [14,21].

Training the model using training data and testing it on test data, allows
an examination of how well the model performs on previously unseen data [4],
[14,21,31,33]. Based on the test results, the choice of model parameters and input
features should be evaluated [4,14,21,25,27,31,33]. If the evaluation indicates a
decent quality of the model (e.g. based on accuracy, precision, recall, and F1-
score), it can be cleared for deployment. Otherwise, the cycle is run through
again and the model is reworked until its quality reaches a desired level.

5.2 Deployment Cycle

Taking a ML model to production involves much more than only model deploy-
ment. For one, a ETL job needs to be set up that continuously extracts, trans-
forms, and loads the latest input and serving data [13,34,35]. Before a new model
is deployed, it is loaded and validated to avoid errors of faulty behavior in the
production environment [4,9,25].

For each batch of new data a data validation pipeline is triggered that checks
the data for anomalies [5,29,36]. After one or more iterations, the update cycle
can be entered at this point in case the model needs to be retrained which is
evaluated during the model evaluation later on.

Analogous to the training data, the new input data is transformed to serving
data [4,26]. This involves data cleaning, feature extraction and standardization.
In a next step, the model can be applied to the new and preprocessed data
[9,21,27].

Since both data and model behavior evolves over time, it is crucial to con-
tinuously evaluate the model performance and its input data [4,9,25,27]. If the
model does not perform as expected, a retraining of the model is triggered for
the next iteration [9,21].

In addition to this, the results of the analysis need to be visualized. By
explaining the results as intuitively as possible, users of SA/BI solution will be
able to understand and interpret the results and turn it into actionable insights
[15]. In the last step before the cycle is repeated from the beginning, the recently
processed serving data is channeled back as training data which will be included
in upcoming retrainings of the model [26].

228 I. Figalist et al.

Since these steps are typically automated in one or multiple pipelines, it is
important to implement several checkpoints along the way, that continuously
monitor and check whether each task is working properly [27,31]. In case of
errors or anomalies, an alert should be sent to the respective stakeholder.

5.3 Update Cycle

As a natural consequence of constantly evolving data, the model’s accuracy can
start to decrease some time after being deployed [21]. As soon as this is detected
during the model evaluation in the deployment cycle, a retraining of the model
will be triggered after the upcoming data validation.

An updated data set is created that consists of the initial training data as well
as the new serving data that was channeled back as training data [26]. Analogous
to the initial training only the relevant input features are extracted, standardized
and split into a training and a test set. The model is retrained based on the new
training set and tested on the test set respectively [4,14,21,31,33].

Based on the results, the model’s input features and parameters needs to be
evaluated before deciding whether to improve the model’s quality in an addi-
tional iteration or whether to clear it for deployment and add both the current
and the new model to the model management [4,14,21,25,27,31,33]. The latter
enables a clear overview of all models and allows an easy rollback in case of
erroneous behavior in production.

6 Framework Validation

In order to validate the applicability of our framework in practice, we use a
real-world ML-based SA/BI solution that is currently being developed for an
industrial platform provider to 1) compare the activities of the framework to
the actual activities executed in practice; and 2) to strategically plan and direct
upcoming activities to finalize the end-to-end implementation.

6.1 Current Status

At the beginning of our collaboration, the product managers were interested in
running customized analyses on their customers’ usage data. Specifically, when-
ever a customer’s action triggers a request to the platform or one of its appli-
cations, it is tracked in the platform and app usage logs. The platform itself
is based on AWS. Therefore, we decided to setup the custom ML-based SA/BI
solution using the existing AWS infrastructure and services.

Currently, the platform and app usage logs produce 100 GB of data every
day. For this reason, the data is aggregated and stored in a compressed format
(26 GB per day) in AWS S3 buckets2. The log data is available for the past 1.5
years and, in addition to that, we also have access to the sales data that keeps
track of which customer purchased what kind of licenses.
2 https://aws.amazon.com/s3/.

https://aws.amazon.com/s3/

An End-to-End Framework for Productive Use of Machine Learning 229

Prototyping Cycle. As the future users of the system, the product managers
were interested in analyzing customer churn for the applications hosted on the
platform as a first use case.

In the beginning, we focus on one specific application to build a first proto-
type. Therefore, we identify potential input features based on the information
that is available in the logs (e.g. user id, http status code, relative URL path) and
pre-filter the data by the selected application. We setup a script that extracts
and aggregates the input features on customer level (n=174) while enriching
and labeling it with the sales data (binary label for churn/non-churn).

Next, we applied several different supervised ML models (support vector
machines, decision trees, logistic regression, neural network) to the data set in
an iterative manner. We apply principal component analysis to the standard-
ized input data in order to identify the most relevant subset of features, before
splitting the data set into a training and a test set.

Based on this, the models were trained on the training data and tested using
the test set. It took us several iterations and experiments with different models,
model parameters and input features before ending up with the final model that
is being deployed in the upcoming step.

Deployment Cycle. At the current state of our ML-based SA/BI solution,
we have not yet completed the deployment cycle. Before being able to deploy
the model, we had to come up with an efficient, reliable and robust solution for
handling the enormous amounts of data (100 GB per day). It was a complex
task to get an overview of the data, to define which fields to keep for long-term
storage, and finally to specify the format to store it in.

After coming up with a concept for this, one of the software architects setup
pipelines that continuously extract, transform, compress and load the latest log
data into a S3 bucket using the specified format. In addition to that, he also setup
data validation pipelines that check each batch of new data for anomalies and
inconsistencies. It is important to continuously monitor all pipelines. During one
of the interviews, the software architect explains that “we have to make sure the
pipelines are not failing for whatever reasons and if they’re failing we’re notified
and can restart them”. Moreover, they need to ensure that “the pipeline elements
that are doing the preprocessing are always up and triggered at appropriate
times”. The software architect also notes that it “requires a lot of engineering
effort to keep the pipeline running in a correct manner.”

After the data pipelines are set up, we load and deploy our ML model using
Amazon SageMaker3. The SageMaker modules for Python offer out-of-the-box
functionalities for deploying ML models to an AWS instance that are accessible
via an API (see Fig. 3).

3 https://aws.amazon.com/sagemaker/.

https://aws.amazon.com/sagemaker/

230 I. Figalist et al.

Fig. 3. Model deployment in Amazon SageMaker

Findings - current status: The activities identified in literature are consistent with
the activities we had to perform for successfully implementing our prototype, setting
up continuous data extraction, processing and validation pipelines, and deploying our
model; it is important to accept that prototyping is an iterative process; continuous
checkpoints after each automated task are crucial

6.2 Planning and Evolution

In order to use the deployed model to make actual predictions, we now plan and
execute the remaining steps following the presented framework.

Deployment Cycle. In the upcoming step, the model is applied to new serving
data. This constitutes a bit of a challenge as up until now all extracted data is
stored in the same S3 bucket. As a result, we now need to create an additional
S3 bucket for storing the serving data. In order to preprocess the newly emerged
data to serving data, we can reuse the script created during prototyping for
transforming and extracting the input features out of the raw data.

In order to continuously evaluate the model in production, we setup Amazon
SageMaker’s Model Monitor that provides summary statistics, detects concepts
drifts and indicates when a model needs to be retrained. In order to perform
potential retrainings on the newest data available, we transfer the data from the
serving S3 bucket to the training S3 bucket once it was processed by the model.
Lastly, we plan to visualize the results in Amazon QuickSight4.

Update Cycle. For continuous updates of models, AWS offers the Step Func-
tions Data Science SDK5 for Amazon Sagemaker to automate model retraining
and deployment. An ETL job is setup to extract and preprocess the latest data.
Following this, a new model is trained and evaluated. If the model accuracy is
above a certain threshold (e.g. 90%), a new endpoint is created for deployment
and the model is added to the model management.

4 https://aws.amazon.com/quicksight/.
5 https://docs.aws.amazon.com/step-functions/latest/dg/concepts-python-sdk.html.

https://aws.amazon.com/quicksight/
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-python-sdk.html

An End-to-End Framework for Productive Use of Machine Learning 231

Findings - planning and evolution: the framework supported us in keeping an
overview of remaining tasks; by following the cycles and activities in the framework
the definition of the roadmap and next steps was efficient and easy; we were able
to quickly identify errors or missing components in our original approach (storage of
training and serving data)

7 Conclusion

Gaining customized insights on product or usage behavior can be a valuable asset
for many stakeholders involved in software-intensive businesses which results in
a need for ML-based SA/BI solutions. Building and, more importantly, deploy-
ing and maintaining such solutions is, however, time-consuming, complex and
burdensome as it requires knowledge from several different domains.

For this reason, we scanned existing literature on data management and
processing, model building, and model deployment to derive a framework that
comprises all key activities from data collection to retraining of deployed models.
In addition to that, our framework is structured in three iterative cycles: a
prototyping cycle, deployment cycle, and an update cycle. These cycles resemble
stages in the lifecycle of a ML model and by outlining the transitions between
stages, our framework specifically guides the journey from a prototypical analysis
to a productively running ML model.

The results of the validation indicate that the activities of the framework are
consistent with the activities performed in practice. Moreover, the framework
is a practical tool to keep an overview of all required steps and to efficiently
define and plan upcoming activities. Moreover, we observed that the separation
of activities across the conceptual phases creates the perception that the overall,
potentially overwhelming process now consists of several smaller ones that are
easier to handle.

One limitations of our study is the development state of our ML-based SA/BI
solution. As we are still in the process of implementing parts of the deployment
and update cycle, we are only partially able to compare the framework’s activ-
ities to the activities executed in practice. Further research could, therefore, be
dedicated to a long-term validation of the framework based on already estab-
lished SA/BI solutions and to identifying remaining challenges and needs for
more in-depth guidance by practitioners to adapt the framework to their needs.

References

1. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 291–300. IEEE (2019)

2. Arpteg, A., Brinne, B., Crnkovic-Friis, L., Bosch, J.: Software engineering chal-
lenges of deep learning. In: 2018 44th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), pp. 50–59. IEEE (2018)

232 I. Figalist et al.

3. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999). https://
doi.org/10.1023/A:1007515423169

4. Baylor, D., et al.: TFX: a tensorflow-based production-scale machine learning plat-
form. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1387–1395 (2017)

5. Breck, E., Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data validation for
machine learning. In: Conference on Systems and Machine Learning (2019)

6. Buse, R.P., Zimmermann, T.: Information needs for software development analyt-
ics. In: 34th International Conference on Software Engineering, pp. 987–996. IEEE
(2012)

7. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big
data to big impact. MIS Q. 36, 1165–1188 (2012)

8. Chu, X., Ilyas, I.F., Krishnan, S., Wang, J.: Data cleaning: overview and emerging
challenges. In: Proceedings of the 2016 International Conference on Management
of Data, pp. 2201–2206 (2016)

9. Crankshaw, D., et al.: The missing piece in complex analytics: low latency, scalable
model management and serving with velox (2015)

10. Cuzzocrea, A., Song, I.Y., Davis, K.C.: Analytics over large-scale multidimensional
data: the big data revolution! In: Proceedings of the ACM 14th International Work-
shop on Data Warehousing and OLAP, pp. 101–104 (2011)

11. Dam, H.K., Tran, T., Ghose, A.: Explainable software analytics. In: Proceedings of
the 40th International Conference on Software Engineering: New Ideas and Emerg-
ing Results, pp. 53–56 (2018)

12. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(3), 131–
156 (1997)

13. Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data integration flows
for business intelligence. In: Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology, pp. 1–11
(2009)

14. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

15. Figalist, I., Elsner, C., Bosch, J., Olsson, H.H.: Breaking the vicious circle: Why
AI for software analytics and business intelligence does not take off in practice. In:
46th Euromicro Conference on Software Engineering and Advanced Applications.
IEEE (2020)

16. Hernández, M.A., Stolfo, S.J.: Real-world data is dirty: data cleansing and the
merge/purge problem. Data Min. Knowl. Disc. 2(1), 9–37 (1998). https://doi.org/
10.1023/A:1009761603038

17. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and
prospects. Science 349(6245), 255–260 (2015)

18. Keele, S.: Guidelines for performing systematic literature reviews in software engi-
neering. Technical report, Version 2.3 EBSE Technical Report (2007)

19. Khayyat, Z., et al.: BigDansing: a system for big data cleansing. In: Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data, pp.
1215–1230 (2015)

20. Kim, M., Zimmermann, T., DeLine, R., Begel, A.: Data scientists in software teams:
State of the art and challenges. IEEE Trans. Softw. Eng. 44(11), 1024–1038 (2017)

21. Lin, J., Kolcz, A.: Large-scale machine learning at twitter. In: Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data, pp. 793–
804 (2012)

https://doi.org/10.1023/A:1007515423169
https://doi.org/10.1023/A:1007515423169
https://doi.org/10.1023/A:1009761603038
https://doi.org/10.1023/A:1009761603038

An End-to-End Framework for Productive Use of Machine Learning 233

22. Lwakatare, L.E., Raj, A., Crnkovic, I., Bosch, J., Olsson, H.H.: Large-scale machine
learning systems in real-world industrial settings a review of challenges and solu-
tions. Inf. Softw. Technol. 127, 106368 (2020)

23. Menzies, T., Zimmermann, T.: Software analytics: so what? IEEE Softw. 30(4),
31–37 (2013)

24. Negash, S., Gray, P.: Business Intelligence. In: Handbook on Decision Support Sys-
tems 2. International Handbooks Information System. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-48716-6 9

25. Olston, C., et al.: Tensorflow-serving: flexible, high-performance ml serving. In:
Workshop on ML Systems at NIPS (2017)

26. Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data lifecycle challenges in
production machine learning: a survey. ACM SIGMOD Rec. 47(2), 17–28 (2018)

27. Rajaram, S., Mishra, K., O’mara, M.: Finite state automata that enables con-
tinuous delivery of machine learning models, US Patent App. 16/229,020, April
2020

28. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case study research in software
engineering: guidelines and examples. Wiley, Hoboken (2012)

29. Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biessmann, F., Grafberger, A.:
Automating large-scale data quality verification. Proc. VLDB Endow. 11(12),
1781–1794 (2018)

30. Sculley, D.: Hidden technical debt in machine learning systems. In: Advances in
neural information processing systems, pp. 2503–2511 (2015)

31. Sparks, E.R., Venkataraman, S., Kaftan, T., Franklin, M.J., Recht, B.: Key-
stoneML: Optimizing pipelines for large-scale advanced analytics. In: 2017 IEEE
33rd International Conference on Data Engineering (ICDE), pp. 535–546. IEEE
(2017)

32. Tata, S., et al.: Quick access: building a smart experience for google drive. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1643–1651 (2017)

33. Vartak, M., et al.: ModelDB: a system for machine learning model management.
In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics (2016)

34. Vassiliadis, P.: A survey of extract-transform-load technology. Int. J. Data Ware-
hous. Min. (IJDWM) 5(3), 1–27 (2009)

35. Vassiliadis, P., Simitsis, A.: Extraction, transformation, and loading. Encycl.
Database Syst. 10, 1–10 (2009)

36. Volkovs, M., Chiang, F., Szlichta, J., Miller, R.J.: Continuous data cleaning. In:
30th International Conference on Data Engineering, pp. 244–255. IEEE (2014)

https://doi.org/10.1007/978-3-540-48716-6_9

Test and Evolution

A Systematic-Oriented Process for Tool
Selection: The Case of Green and Technical Debt

Tools in Architecture Reconstruction

Daniel Guamán1,2(B) , Jennifer Pérez1(B) , Juan Garbajosa1(B) ,
and Germania Rodríguez2(B)

1 Universidad Politécnica de Madrid, Madrid, Spain
{jenifer.perez,juan.garbajosa}@upm.es
2 Universidad Técnica Particular de Loja, Loja, Ecuador

{daguaman,grrodriguez}@utpl.edu.ec

Abstract. Well-established methods in software engineering research, such as
Systematic Literature Reviews, Systematic Mappings and Case Studies are effec-
tive research methods to explore emerging areas, since they are systematic and
replicable, and produce reusable result avoiding bias. Frequently, software engi-
neers have to evaluate and select CASE (Computer Aided Software Engineer-
ing) tools that address trending issues with a non-systematic and replicable pro-
cesses. This work addresses this problem by tailoring the ISO/IEC 14102:2008
to a systematic-oriented process for the evaluation of software engineering CASE
tools in order to embrace the advantages of software engineering systematic meth-
ods in the exploration of new areas or emerging issues. This tailored ISO/IEC
14102:2008 standard prescribes a process for the preparation, design and con-
duction of the software engineering CASE tools evaluation and selection. This
process is founded in the application of systematic methods and the generation
of a pre-established assets to ensure the reusability of knowledge. In this paper,
this tailored process has been applied to address two great emerging concerns
in architectural reconstruction: technical debt and energy consumption. As result
of this adoption, this paper details the reporting analysis and the set of reusable
assets that have been generated during the evaluation process. Specifically, this
contribution presents a set of tables, statistics and a decision-making tree of the
selected tools for technical debt and energy consumption analysis in architecture
reconstruction.

Keywords: ISO/IEC14102:2008 · Systematic process · Green software ·
Architecture reconstruction · Technical debt · Tools

1 Introduction

Last decades, software engineering research has taken a step forward in the study of
the new areas and the means of reporting results by using systematic methods. Several

Thiswork is sponsored byUniversidad Técnica Particular de Loja (Computer ScienceDepartment)
and by the project CROWDSAVING (TIN2016-79726-C2-1-R).

© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 237–253, 2020.
https://doi.org/10.1007/978-3-030-64148-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_15&domain=pdf
http://orcid.org/0000-0002-2681-565X
http://orcid.org/0000-0003-3192-7995
http://orcid.org/0000-0003-0161-3485
http://orcid.org/0000-0001-8932-9213
https://doi.org/10.1007/978-3-030-64148-1_15

238 D. Guamán et al.

methods have been defined, such as Systematic Literature Reviews (SLR) [1, 2], Sys-
tematic Mappings (SM) [3] or Case Studies [4], among others. SLR and SM follow a
process driven by a set of research questions, a search string, and inclusion and exclusion
criteria for analyzing the selecting studies. On the other hand, case studies are reported
by defining the research questions and goals, the data collection and analysis of results
procedures. These research methods provide clear advantages to study emerging issues
or new areas, since they are systematic and replicable avoiding bias and also provide
reusable knowledge. Currently, software engineering undergoes a continuous emergence
of new areas and technologies, that at the same time, entails the construction of a large
amount of new tools to support them. Software engineers from industry and academy
must continuously address the evaluation of these new tools. All parties would benefit
from the availability of a systematic process that favors reusing results and, therefore,
avoids starting from scratch each time a new set of tools have to be evaluated. This work
presents a process obtained by tailoring the standard ISO/IEC 14102:2008 Information
Technology-Guideline for the Evaluation and Selection of CASE tools [5] by applying
its recommendations and systematic-methods.

The Standard ISO/IEC 14102:2008 was designed to discern, based on results, the
CASE tool that best suits the needs required for a given context or objective. The goal
of this systematic-oriented tailored process of the ISO/IEC 14102:2008 is twofold: to
be replicable and avoiding bias, together with providing reusable knowledge for engi-
neers about the tools of a specific emerging field in software engineering. The process
prescribes the preparation, design and conduction of tool evaluation in an evidenced
research context, and the kind of reusable assets that have to be obtained to ensure the
knowledge reusability. To that end, the process includes additional activities such as
SLRs or SMS, and analysis techniques based on search strings, hypothesis and RQs.

In this paper, we illustrate the adoption of the systematic-oriented tailored pro-
cess of the ISO/IEC14102:2008 standard to address two emerging issues in software
engineering, the technical debt (TD) and sustainability of software applications when
they are continuously evolving. Evolution [6] require the adoption of appropriate mea-
sures and practices at design and implementation, because a degradation in application
structure and coding may occur, affecting the internal software quality. Currently, this
quality is highly-related with technical debt (TD) [7] and software sustainability [8].
The technical dimension of the sustainability manifest is referring to: “longevity of
information, systems, and infrastructure and their adequate evolution with changing sur-
rounding conditions. It includes maintenance, innovation, obsolescence, data integrity,
etc.” This definition clearly states the relevance of sustainability in evolution, especially
in reverse engineering processes and its sub-process of architecture reconstruction [9,
21]. In addition, during architecture reconstruction, refactoring techniques are applied
to reduce technical debt and improve the internal structure without affecting the system
functionality [10, 11]. Specifically, we illustrate the adoption of the process to identify
and select tools that semi-automatically support architectural reconstruction activities in
reverse engineering to extract energy metrics and analyze technical debt. As a result of
the adoption, this work provides a set of tables, statistics and a decision tree, prescribed
by the tailored version of the standard, as a reusable knowledge to assist the software
engineers in the tool selection decision-making process.

A Systematic-Oriented Process for Tool Selection 239

Based on the aforementioned aspects, the structure of this paper is as follows: Sect. 2
provides an overview of related work; Sect. 3 describes the tailoring of the Standard
ISO/IEC 14102:2008; Sect. 4 details the description of the conducting phase, the report-
ing of results and the generation of the reusable assets from the selected tools; and finally,
Sect. 5 presents the conclusions and future work.

2 Related Work

There are well-established evaluation methods to evaluate tools as DESMET [19] and
standards such as IEEE 1209-1992 [20] and ISO/IEC 14102:2008. DESMET proposes
nine evaluation types and a set of criteria, which help the evaluator to choose the most
suitable tool for its/her needs. Users, companies, academic institutions interested in
experimental software engineering can use this method, where the evaluation context
means that we do not expect a specific method/tool to be the best in all circumstances.
DESMET has been used in works such as [12] and [13], which evaluate the impact of
using a method/tool or the suitability of a tool in terms of the needs and culture of an
organization. On the other hand, the standard IEEE 1209-1992 defines a process with
a set of inputs to obtain a candidate tool. The inputs of this process is a list of criteria
based on the user needs, an initial list of the available tools, the objectives, and the
assumptions and constraints about the evaluation. This standard has been used in the
evaluation of several frameworks such as [14, 15] and [16]. In addition, some works
use the standard ISO/IEC 14102:2008 to provide some recommendations or select tools,
take into account some criteria for different domains [17] and [18]. In this paper, we take
a step forward in the state-of the-art by providing a process with systematic techniques
to the standard in order to provide the replicability and reusability features.

3 A Systematic-Oriented ISO/IEC 14102:2008 Process

The Standard ISO/IEC 14102:2008 is a guide to select a CASE tool that best suits the
needswithin a context [5]. It consists of four processes (Preparation, Structuring, Evalua-
tion and Selection) defined by the standard and their outputs. To construct the systematic-
oriented process the standard has been tailoredwith a systematic and exploratory purpose
by prescribing how performing these processes, the definition of outputs and the kind
of assets that should produce these outputs. It aims to assist software engineers in their
study and evaluation of tools that meet trending issues determining which tools meet
certain needs or requirements and to what extent. For tailoring ISO/IEC 14102:2008,
the clauses provided in it on how to address tailoring and annexes A and B were used
[5]. The systematic-oriented tailored process of the ISO/IEC14102:2008 is presented in
Fig. 1.

The Preparation process was tailored as follows: the project plan, high-level goals
and criteria outputs of the standard are specialized into the definition of the objectives,
expectations, criteria, and hypothesis that are important in an exploratory process. The
high-level goals are the objective/s that the process that support the tool should deal
with. This objective should be complemented by answering a set of research questions
that help to understand how the objective is supported. The hypothesis are proposals to

240 D. Guamán et al.

Fig. 1. Systematic-oriented tailored version of the ISO/IEC 14102:2008

meet the objective of the selection process that should be validated after the analysis
in order to determine in what extent the objective is fulfilled. Expectations must be
associated with the objectives proposed, and should allow quantifying and classifying
the candidate tools for the study purpose. Finally, the characterization criteria have to
respond to the objectives and expectations through a set of selection decision (Yes/No)
to search the candidate tools that best fit within the specific context of search. From
this process is prescribed to elaborate a coded list for each of the elements: research
questions, expectations, hypothesis and criteria (see Fig. 1).

The structured requirements of the Structuring process have been tailored into the
identification of needs and the definition of requirements to search the list of candidates.
Needs are given by engineers/users or arise from the adoption context; whereas the
requirements are conditions or capabilities that must be met or provided by the tools.
Both, needs and requirements, are used to complement the process of searching candidate
tools and determine if these candidates satisfy the established objectives. In addition, the
structuring process is tailored by prescribing that the list of candidates must be obtained
using systematic research methods. In particular, the set of primary sources must be
obtained conducting a Systematic Mapping (SM) or a Systematic Literature Review
(SLR). Then, the list of candidate tools is complemented with a search in the grey
literature that consist in searches on the web and plugins of the most used frameworks
in the field (see Fig. 1). The reports of these reviews are reusable knowledge, but it is
also prescribed to elaborate a list of candidates to be extended with its characteristics in
the next process.

In theEvaluationprocess, the tools from the list of candidates are reported answering
the research questions and analyzing the expectations and the characterization criteria.
As the systematic-oriented process establishes, a set of tables should be produced syn-
thesizing the results (see Fig. 1). As a result, these tables, their derived statistics and
report are reusable knowledge.

Finally, the Selection process has been specialized by presenting the recommenda-
tion, as well as the criteria and the guidelines applied to recommend those tools that
satisfy the objectives, expectations and requirements defined in the Preparation process
within a given research context. As a result, the tailored version adoption, in addition to

A Systematic-Oriented Process for Tool Selection 241

strictly identify the tool/s, it also provides the decision-making process and the knowl-
edge extracted. The asset that integrates all this information is the decision tree that the
tailored version of the standard prescribes (see Fig. 1). The decision tree is ordered by the
priority decisions of the researches that conduct the study, however with the information
that the tree provides, it is possible to reorder it following another priority order.

4 The Case of the Evaluation of Green and Technical Debt Tools
in Architecture Reconstruction

This section presents a case study in order to illustrate engineers about how to use
the Systematic-Oriented ISO/IEC 14102:2008 Process. In particular, this case study
evaluates tools that allow architectural reconstruction and the measurement of technical
debt and software energy consumption metrics.

4.1 Preparation

In the Preparation process, the objective, expectations, characterization criteria and
hypothesis are defined (see Fig. 1).

In our evaluation, the objectives are: (O1) to recommend a tool or a set of tools that
allow the extraction of architectural elements and metrics to evaluate technical debt and
estimate energy consumption in software, and (O2) to study how the extraction is sup-
ported by the tools. The research questions to address both objectives are the following:
(RQ1)What are the techniques of architecture reconstruction that are implemented by the
tools? (RQ2) What are the purpose and the process that follow the techniques/methods
implemented in the tools? (and (RQ3) What are the outputs and formats provided by the
tools?. In this work, three expectations and five characterization criteria were defined
(see Table 1).

Table 1. Expectations and characterization criteria

Expectations Characterization criteria

EX1: Tools use static and/or dynamic analysis
techniques and visualization is supported by
views
EX2: Tools extract metrics used to estimate
technical debt
EX3: Tools extract metrics used to estimate
software energy consumption

CC1: Tools support at least the activities of
architecture reconstruction: extraction,
analysis and/or visualization
CC2: Tools visualize elaborated outputs:
graphics, tables or matrices
CC3: Tools support the loading of the
applications under analysis locally or from Git
repositories
CC4: Tools’ license is open source,
commercial and/or trial
CC5: Tools analyze applications coded in C,
C++, Java, C#, PHP, among others

242 D. Guamán et al.

Finally, the hypothesis are the following: H1. There are tools that in semi-automatic
way fully or partially perform software architecture reconstruction by executing its activ-
ities (extraction, analysis and/or visualization). H2. There are tools that extract metrics
and architectural elements outputs using the source code or other software artefacts as
inputs. H3. There are tools with a graphical interface to help configure (activate or inacti-
vate) and customize metrics to be executed during the extraction and analysis. H4. There
are tools that include technical debt analysis and energy consumption estimation.

4.2 Structuring

During the Structuring process, the needs and requirements were defined (see Table 2).
The objectives and requirements were used to include or exclude the tools for produc-
ing the list of candidate tools from the search (see https://bit.ly/39ficiz). Following the
systematic-oriented process, we applied the following three activities:

Table 2. Needs and requirements

Needs Requirements

NI1. The tool meets the objectives regardless
its type of license
NI2.There is supporting source code and/or
documentation for using the tool
NI3. The tool’s inputs are source code,
executable, binary and/or UML architectural
documentation
NI4.The tool supports the extraction of metrics
and/or architectural elements
NI5. The tool supports the search and selection
of applications from Git open repositories
NI6. The tool allows storing the generated data
in a local or a cloud repository
NI7. The tool generates data for analyzing
technical debt and estimating the energy
consumption
NI8. The generated data by the tool can be
shown using different representations, formats
and/or architectural views
NI9. The tool can be extended or integrated
with other tools or plugins

REQ1. Windows and/or Linux OS operation
and installation
REQ 2. Local, web and/or cloud services
execution
REQ 3. Loading applications using as inputs
source code or architectural documentation
(UML)
REQ 4. Extraction, visualization and/or
exportation of measurements and metrics
REQ 5. A single tool for analyzing technical
debt and/or energy consumption based on
metrics
REQ 6. The extracted and analyzed data is
stored in local or cloud storages
REQ 7. The metrics are exported in different
formats

PrimarySources – SecondaryStudywith a SystematicLiteratureReview (SLR). In
a previous work [19], we performed an SLR that was conducted following the guidelines
proposed by Kitchenham [20] to identify the process, techniques and tools used in
architecture reconstruction and reverse engineering. The search string used was the
following: “software architecture” and “pattern*” and “recommend*” and (“reverse

https://bit.ly/39ficiz

A Systematic-Oriented Process for Tool Selection 243

engineering” or “re-engineering” or “reconstruction”). The search was performed in
the four scientific databases (ACM DL, IEEE Xplore, Science Direct, and Springer).
As result of this SLR, 34 tools were identified. 11 tools were discarded because its last
version and technical support is outdated (under 2009), and 23 candidate tools were
selected after their first analysis. It was evidenced that these 23 tools allow: to extract
metrics and evaluate architectural designs; and to identify and analyze architectural
styles and architectural patterns using different strategies (top-down and bottom-up) and
techniques [19].

Secondary Sources - Complementary Study. Web Search: The primary sources only
provided evidence the extraction of source code metrics and architectural elements
through architecture reconstruction activities; however, there were no evidences of tech-
nical debt and green metrics. Therefore, the complementary study was used to search
dedicated tools for technical debt analysis and energy consumption, which in certain
scenarios use data generated from architecture reconstruction tools. The search in the
Web was performed on Google Scholar using as search string: “software architecture
reconstruction tool” OR “green software tool” OR “technical debt tool”. From the
review of resulting papers, we selected those tools that support (i) the extraction of code
and design metrics that can be used for energy consumption estimation and technical
debt analysis, (ii) architectural reconstruction, and/or (iii) the identification of smells
that affect the quality that increases the energy consumption or the technical debt. As
a result, 14 tools were selected, discarding those already identified as a primary source
(see Web Search, Table 3).

Table 3. Selection of tools

Source Number of tools Tools selected

Systematic literature review (SLR) 34 23

Web search (Web) 17 14

Plugins 11 4

Total 62 41

Secondary Sources - Complementary Study: Frameworks/Plugins. To extend the
primary and secondary sources, plugins that use source code to extract architectural ele-
ments and code metrics from applications written in Java were searched in Eclipse. The
keywords used in the search string was the following: “reverse engineering”, “software
reconstruction”, “technical debt” and “energy consumption”. As a result, 4 tools were
selected (see Plugins, Table 3).

4.3 Evaluation

The evaluation consists in reporting the analysis of the selected tools and synthesizing
in tables those properties that have been evidenced from the analysis. To that end, each

244 D. Guamán et al.

tool/plugin was downloaded, installed and tested with the purpose of identifying if they
fulfil the defined objectives and requirements (see the list of 41 candidates in https://bit.
ly/39ficiz and Table 4). Next, the 41 selected tools were reported answering the research
questions and checking the characterization criteria:

Table 4. Characterization of tools (list of candidates)

Search
Mechanism Tools Technique Input Output Purpose Update

Year
SLR Axivion Bauhaus Suite Static Analysis Source code Architectural elements, design metrics Architecture visualization, architecture validation, interface analysis, clone detection 2020
SLR Lattix LDM Static Analysis Source code, JAR file Architectural elements, design metrics Architecture refactory, understand architecture, dependence between software artifacts 2020
SLR Imagix4D Static Analysis Source code Architectural elements, code metrics Structural Analysis, understand architecture, design quality, collect source code metrics 2020
SLR Structure101 Static Analysis Source code Architectural elements, code metrics Structural Analysis, understand design, architecture, collect source code metrics 2018
SLR Structural analysis for Java Static Analysis Source code, JAR file Architectural elements, code and design metrics Structural Analysis, structural quality, collect design and code metrics 2019
SLR JavaNCSS Static Analysis Source code Source code metrics Collect source code metrics 2011
SLR Classycle Static Analysis Source code, Java Project Architectural elements, code metrics Collect source code metrics, code smell, package dependencies and cycles 2014
SLR Designite Static Analysis Source code, JAR file Architectural elements, code and design metrics Technical Debt, code and design smell, energy smell 2019
SLR Squale Static Analysis Source code Source code metrics Code analysis 2011
SLR Jdeodorant Static Analysis Source code, Java Project Source code metrics Code analysis, code smell, energy smell 2020
SLR iPlasma Static Analysis Source code Source code metrics Code analysis, code smell, energy smell 2010
Web PhpMetrics Static Analysis Source code Source code metrics Collect source code metrics 2020
Web Xradar Static Analysis Source code Source code and design metrics Collect design and source code metrics, code quality 2009
Web MoDisco Static Analysis Source code, Java Project Source code and design metrics Collect design and source code metrics, code quality 2020
Web Jlint Static Analysis Source code Source code metrics Collect source code metrics, code smell, energy smell 2014
Web Sonarqube Static Analysis Source code Architectural elements, code and design metrics Technical Debt, code smell, collect design and source code metrics 2020
Web Sonargraph Static Analysis Source code Architectural elements, design metrics Technical Debt, design smell, collect design metrics 2020
Web Codacy Static Analysis Source code Source code metrics Technical Debt, collect source code metrics, code quality 2020
Web Kiuwan Static Analysis Source code Source code metrics Code analysis, security analysis 2020
Web CheckStyle Static Analysis Source code Source code metrics Code analysis, code smell, energy smell 2020
Web Ndepend Static Analysis Source code, .Net assemblies Source code metrics Code analysis, code quality 2020
Web Nitriq Static Analysis Source code, .Net assemblies Source code metrics Code analysis 2012
Plugins Findbugs Static Analysis Source code, JAR file Source code metrics Structural Analysis, code quality 2015
Plugins Jdepend Static Analysis Source code, Java Project Source code and design metrics Structural Analysis, design quality, collect design and source code metrics 2020
Plugins Eclipse metrics Static Analysis Source code, Java Project Source code metrics Collect design and source code metrics 2013
Plugins PMD Static Analysis Source code Source code metrics Code analysis, code smell 2020
SLR Sigar Dynamic Analysis Executable file Hardware and energy consumption metrics System information gatherer and reporter (IT Resource) 2016
SLR Joulemeter Dynamic Analysis Executable file Energy consumption metrics Computational energy measurement (Specific application, Process Id) 2020
SLR Intel Platform Power Estimation Dynamic Analysis Executable file Energy consumption metrics Power consumption, power monitoring (Process Id) 2014
SLR PowerTop Dynamic Analysis Executable file Energy consumption metrics Power consumption and power management (Process Id) 2019
SLR jRAPL Dynamic Analysis Java Source code, JAR File Hardware and energy consumption metrics Energy and power consumption, profiling Java programs (method level, process Id) 2017
SLR RAPL Dynamic Analysis Java Source code, JAR File Hardware and energy consumption metrics Energy and power consumption information (Specific application, method level, process Id) 2014
SLR PowerAPI Dynamic Analysis Executable file, Java Source code Hardware and energy consumption metrics Energy and power consumption (Specific application, Process Id) 2020
SLR Jalen Dynamic Analysis Java Source code Energy consumption metrics Energy consumption (Specific application, method level, process Id) 2014
SLR JouleUnit Dynamic Analysis Java Source code Energy consumption metrics Energy profiling (Specific application) 2014
SLR pTop Dynamic Analysis Executable file Energy consumption metrics Energy profiling (Specific application, Process Id) 2009
SLR Java Interactive Profiler Dynamic Analysis Java Source code, JAR File Energy consumption metrics Energy profiling (Process Id) 2013
SLR Oktech Profiler Dynamic Analysis Java Source code, JAR File Energy consumption metrics Energy profiling (Specific application, Process Id) 2010
Web Oshi Dynamic Analysis Java Source code, JAR File Hardware and energy consumption metrics System information, memory and CPU usage (Specific application, method level, process Id) 2020
Web Powerstat Dynamic Analysis Executable file Hardware and energy consumption metrics Power consumption (Process Id) 2020
Web Dstat Dynamic Analysis Executable file Hardware and energy consumption metrics System resources monitor (Process Id) 2018

RQ1) What are the techniques of architecture reconstruction that are imple-
mented by the tools? The tools/plugins apply top-down and bottom-up strategies for
architecture reconstruction and use static and dynamic analysis techniques to evaluate
the architectural design. They extract different measurements andmetrics, and they visu-
alize the information in a different way. These expectations (see Table 1 and Table 4)
are analyzed following:

Static. Tools that use static analysis are widely-extended (academic, research and indus-
trial areas) due to their facilities of installation, configuration and integration with other
tools [22]. Lattix, Axivion Bauhaus Suite and MoDisco are an option in this category.
Lattix supports visualizing the system’s structure organization through class diagrams,
component diagrams or composite structure diagrams such as a Design Structure Matrix
(DSM) to analyze the software architecture and its dependencies. Axivion Bauhaus Suite
is a commercial tool used to understand and analyze architecture conformance, through
the extraction of information to determine which parts of the software are connected.
This tool supports architecture conformance assure thanks to its mechanisms of depen-
dency analysis, quality metrics analysis and different views of visualization. MoDisco is
a reverse engineering tool, which supports the extraction of information from the system
to help understand some aspects (structure, behavior, persistence, data flow, and change
impact) through the generation of a Knowledge Discovery Metamodel (KDM). In tools,
such as MoDisco, the Architecture Design Documentation (classes, packages and com-
ponents diagrams) is considered an input to analyze the architecture using a bottom-up
strategy.

https://bit.ly/39ficiz

A Systematic-Oriented Process for Tool Selection 245

Dynamic. There are some tools used for measuring energy consumption using dynamic
analysis. The SIGAR Framework, JouleMeter, Intel Platform Power Estimation, RAPL,
jRAPL Framework, Powerstat, PowerAPI, Jalen and Oshi extract and visualize metrics
for energy consumption.

RQ2)What are the purpose and the process that follow the techniques/methods
implemented in the tools?

Tools to Extract Source Code Metrics and Design Metrics. One of the purposes of the
automated static analysis (ASA) tools is the extraction of a set of features and metrics
that are quantified or qualified to get the resulting measurements. Tools as JDepend,
Structural analysis for Java (STAN), PhpMetrics, Structure 101, Eclipse Metrics, Sonar-
qube, Sonargraph, and Imagix4D are used to extract metrics that can be the input to
mathematical models to later use them with different purposes. JDepend plugin-tool
uses computation metrics. This tool analyses Java classes and source file directories and
it generates quality metrics for each Java package based on the dependencies among its
classes. STAN is an open source tool used to analyze the structure of Java programs.
It shows the design classes, packages and their dependencies using a reverse engineer-
ing process, which later will allow one to measure the software quality and to identify
the errors at the design and implementation levels by using code and design metrics. In
addition, it supports the analysis of structural dependencies to measure software stability
and complexity, as well as to detect anti-patterns. Structure 101 helps us to understand
the system structure and evaluate its complexity. It provides a visual representation of
dependencies between modules at a various architectural levels of abstraction, assisting
architects in identifying where undesirable dependencies may have occurred. Eclipse
metrics is an eclipse plugin used to collect automatically metrics such as lines of code,
number of classes, packages and files, instability, abstractness, and distance from the
main sequence. Sonargraph uses aGroovy based scripting engine and aDomain-Specific
Language for describing the software architecture. PhpMetrics applies static analysis to
PHP projects, which run with the help of the composer in the command line. Limitations
of the test medium made analysis is done by dividing the source code into their respec-
tive folders. PhpMetrics allows extracting metrics associated with complexity, volume,
object oriented andmaintainability. Finally, Imagix4D is a commercial reverse engineer-
ing tool that helps check and systematically study software at any level of abstraction,
using views to describe dependencies. It provides a large set of built-in facilities for the
automatic documentation-generation from source code. A comparison about the kind
of metrics that ASA tools are able to extract are presented in Table 5. Specifically,
they are analyzed in terms of size, complexity, CK metrics [23], Rober C. Martin [24],
dependency and maintainability.

Tools to Extract Metrics for Technical Debt Analysis. Another objective of ASA tools is
to analyse the quality of the source code or design. It is especially relevant, the technical
debt caused by the poor quality, the misuse of rules or code writing standards, the code
smells, or the anti-patterns. The selected tools with this purpose are PMD, Findbugs,
Sonargraph, Sonarqube, Codacy,Kiuwan,Designite, JDeodorant, and iPlasma. PMD is a
Java static analysis tool that identifies code smells (God Classes, Feature Envy, and Blob
Classes), defects, bugs, and unused code by using a configurable set of rules. Findbugs

246 D. Guamán et al.

Table 5. Metrics

is a static analysis tool used to extract code smells such as the occurrences of bugs and
the potential security violations. Findbugs, PMD and CkeckStyle are implemented by
Sonarqube to obtain an overview of source code analysis, and classifying the errors and
smells according their impact. Sonarqube is an open source tool used to extract metrics,
manage the code, and to measure the design quality through seven aspects: architecture
and design, duplications, unit test, complexity, potential bugs, coding rules, and com-
ments. Designite is a tool to identify technical debt, architecture smells, design smells
on Java and C# applications. Codacy is a static analysis tool used to improve the code
quality of software systems by identifying common security problems, code complex-
ity, and code coverage, among others. JDeodorant applies a static source code analysis
to examine code smells. This tool automatically checks the syntactic correctness of
smell as the clone fragments, and fixes any discrepancies by removing incomplete state-
ments and adding the missing closing brackets from incomplete blocks of code. Finally,
Kiuwan supports the certification, quality management and productivity of source code.
In addition, Sonarqube, Codacy and Kiuwan provide analysis in the Cloud through their
websites, which makes to interact easier with Git repositories (see Table 5).

Tools to Extract Metrics Used in the Software Energy Consumption Estimation. To esti-
mate the energy consumption of a software system at the code and design levels, it is
necessary to define and make use of measurements and metrics extracted through an
iterative process using tools that implement static and dynamic analyses. The metrics

A Systematic-Oriented Process for Tool Selection 247

and characteristics of Green software [25, 27] help the monitoring and evaluation pro-
cesses of software in an ecological context. This evaluation depends on the structure of
the application and the hardware infrastructure that is used for its deployment [26]. Tools
such as Sigar, JouleMeter, RAPL, jRAPL, Power API, Jalen, Java Interactive Profiler
(JIP), Oktech Profiler, Oshi, Powerstat and Dstat, are used to extract metrics to estimate
energy consumption. These tools allow one to analyze the algorithms, code structures,
patterns or other architectural elements implemented in the code that influence the soft-
ware energy consumption. From these tools, we only selected those that address the
objectives of our evaluation. A comparison about the metrics that Dynamic Analysis
tools are able to extract related to energy consumption are presented in Table 5.

(RQ3) What are the output representation formats provided by the tools? An
important set of tools or plugins, which implement static and/or dynamic techniques,
generate as output, metrics that can be used to evaluate technical debt or estimate energy
consumption (see Table 4). Another group of tools are used to identify and to show archi-
tectural elements (components and connectors) that allow the data exchange and inter-
operability. Combining the metrics and architectural elements, an architectural recon-
struction process can be carried out, driven by design and implementation decisions that
are technical debt and energy consumption-aware. However, as can be seen in Table 4,
there is no integral tool that allows analyzing technical debt and energy consumption.
Characterization Criteria are described following (see Table 1, Table 6 and https://bit.
ly/39doYoQ)

Table 6. Output representation format, operating system and license supported by tools

CC1: Tools that supports at least the activities of reverse engineering such as extrac-
tion (E), analysis (A) and/or visualization (V).All tools/plugins implement the extraction
activity. This means that a syntactic and semantic analysis is carried out to extract code
and design metrics, but not always for an architecture reconstruction purpose. As a result

https://bit.ly/39doYoQ

248 D. Guamán et al.

of the analysis, 44% of the tools perform only the process of extraction, while 29% carry
out extraction + visualization, and 27% of tools include the three activities extraction
+ analysis + visualization.

CC2: Tools that visualize elaborated outputs graphically, through tables or matrices.
Some tools that carry out static analysis present the analysis results only using matrices
(4%), Tables (38%), dependency graphs (11%), tables+ dependency graphs (8%), tables
+ graphs+matrices+ tree maps (12%), graphs+ Tables (15%), graphs+ dependency
graphs + matrices + tree maps (8%), graphs + tree maps (4%). Regarding to dynamic
analysis the metrics are visualized only using screens (6%), screens+ CSV files (27%),
CSV files + log files + text files (40%), CSV files + log files + text files + databases
(7%), and tables + graphs + CSV files (20%).

CC3: Tools that support the loading of the applications under analysis locally or
from Git repositories. 7% of tools, i.e. Sonarqube, Codacy and Kiuwan, support loading
applications from Git repositories. It is remarkable that 93% of the tools only have the
option of loading the source code or other input element if they are stored locally. Only
Sonarqube supports the loading of applications, both locally and online.

CC4: Tools license is open source, commercial and/or trial. The analysis of the
results shows that 7% of the tools can be downloaded and used because they have an
open source license and 10% are free. Only 17% of the tools have a trial/commercial
license and they can be only used temporarily. They are more specialized and have
business functionalities. Tools with a commercial type license correspond to 5%, the
tools that belong to the MIT license correspond to 10%, 7% of tools have BSD license,
5% of tools have Eclipse Public License that are part of Eclipse software. The GNU
Lesser General Public License 2.0 have 22%, whereas the rest have: 7%Apache license;
5% Commercial, Free for non-commercial use; 3% Commercial, GNU Lesser General
Public License, Open Source; and 2% Free, AGPL License.

CC5: Tools analyze applications coded in C, C++, Java, C#, PHP, among others.
42%of the tools provide the reverse engineering process or reconstruction of applications
written only in Java, 2% of tools support the identification of applications written only
in Php and 20% of the tools support the evaluation of applications written in Java and
other programming languages such as C, Python, C#. The rest of tools are distributed as
C/C++, Java 7%, tools that support C/C++, Java, .Net 10%, tools that support Java and
.Net 2%, C/C++, Java, .Net, php and others programming languages 12%, C/C++ and
.Net 5% (see Table 6).

From this analysis report, it is possible to conclude that the four defined expectations
of the study (see Table 1) are fulfilled, but their degree of coverage depends on the needs
of the researcher and the application context.

4.4 Selection

Decision Tree, Recommendations and Findings. The selection defines a tree-based
model that works as a mechanism to help the software engineer during the decision
making process of choosing the right tool or set of tools. In this case, the tool that assist
in architecture reconstruction while considering metrics to analyse technical debt and
energy consumption (see Fig. 2). This treemodel also helps to determine a set of findings
(F.number coding) and recommendations (R.number coding) as the standard establishes.

A Systematic-Oriented Process for Tool Selection 249

The decision tree is composed by three types of nodes and the transitions between
them. The decision nodes are represented by squares, transition nodes (no decision) are
represented by circles, and leaf nodes with a final decision are represented by a triangle.
The transition between nodes is represented by an arrowed labelled with the selected
option. The option is an instance of the criterion that represents the column where the
arrow is drawn. These criteria are the objective, license, use, type, input, output, activities,
programming languages and decision. They are delimited by swim lanes, where the
nodes of the corresponding criterion are included. It is important to emphasize that those
options that are not supported have not been included in the tree, omitting the death leaf
nodes; instead of including these death options, we have introduced transition options
that maybe changed in the future into decision nodes if new options are implemented.

Based on results of the decision tree study, it reveals through its initial decision
that there are no tools/framework/plugins for both analysing technical debt and energy
consumption combining static and dynamic analysis (F.1). Therefore, in this case, rec-
ommendations of two types have to be made, one for each branch. Browsing throughout
the tree, it can be observed that technical debt is addressed using static analysis and the
tools vary in their output metrics (F.2), whereas energy consumption is evaluated using
dynamic analysis because it is necessary to analyse the runtime code and the hardware
where it is deployed (F.3). To evaluate technical debt, Sonarqube, Codacy and Desig-
nite are the recommended tools (R.1) since they allow the extraction, visualization and
analysis activities in their open source, trial and free for non-commercial use versions,
respectively. Sonarqube and Codacy, which use source code as input, can be applied to
extract code metrics whose values can be compared or used in conjunction with tools such
as PMD, Findbugs, Kiuwan, iPlasma Jdeodorant to assess technical debt, code smell
and bad smell from the point of view of code or design (F.4). One of the advantages of
Codacy and Sonarqube is that they support entry elements loading remotely using Git
open repositories. Being relatively new tools, both tools provide updates, documenta-
tion and technical support for carrying out the identification, extraction and analysis
of applications of different types, sizes, domains and programming languages such as
Java, C, C++, C#, PHP, among others (F.5). However, if we pay attention to metrics
(see Table 5), from the set of open source tools, Sonarqube has wider coverage than
Imagix4D, Designite, Lattix and Codacy (F.6). On the other hand, if we want to measure
the metrics that are part of Robert C.Martin, CK and other kind of metrics, is suggested
to use additional tools such as Structural Analysis and Eclipse metrics to complement
the extraction and visualization activities (R.2). To estimate energy consumption, every
tool extract metrics at runtime such as RAM, CPU, GPU, among others. The values
of metrics are different depending of two factors: (i) the hardware where software is
deployed and (ii) the size, the type and the complexity of software specially when styles,
patterns, and code and design practices are used. Frameworks such as jRAPL, Sigar,
Oshi, tools such as RAPL, Powerstat, Joulemeter, Intel Platform Power Estimation and
Middleware as PowerAPI are proposed to extract and calculate metrics associated with
energy consumption (F.7). If the researcher needs precision on the results instead of
facility in settings, we recommend the four frameworks jRAPL, PowerAPI, Oshi and
Powerstat (R.3), since they run under Linux and have more accurate measurements

250 D. Guamán et al.

Init

en
er

gy
 c

on
su

m
pt

io
n

technical
debt

open
source local

tool

framework

Commercial,
trial

License Use Type Input Output DecisionObjective

Imagix 4D

<

Programming LanguagesActivities

C/C++, Java

Commercial

GNU Lesser General
Public License

Commercial,
Free for

non-commercial use

MIT License

Open source

BSD License

Eclipse Public License 2.0

Commercial, GNU Lesser
General Public License,

Open Source

Apache
License 2.0

local

cloud

local

local

local

local

local

local

local

local, cloud

local

tool

tool

tool

tool

plugin

tool

tool

plugin

tool

tool

tool

plugin

tool

tool

source code,
JAR file

source code, .Net assemblies

local, cloud

source code

source code

source codetool

source code

source code,
JAR file

source code

source code, Java project

source code,
JAR file

source code

source code, Java project

source code,
Java project

source code

source code

source code,
Java project

source code,
Java project

source code

source code

architectural elements,

code metrics

architectural elements, design metrics

architectural elements,
design metrics

source code metrics

source code metrics

source code metrics

architectural elements,

code metrics

architectural elements, design metrics

source code metrics

source code metrics

architectural elements,
code and design metrics

architectural elements,
code metrics

source code metrics

source code metrics

source code and
design metrics

source code metrics

source code and
design metrics

source code and
design metrics

source code metrics

architectural elements,
code and design metrics

source code metrics

E-A-V

E-A-V

E-A-V

E

E-A-V

E-A-V

E-A-V

E-V

E

E-V

E

E-V

E-V
E-A-V

E-A-V

E-V

E-V

E-V

E-V

E-A-V

E

E-A-V

E-V

C/C++, Java, .Net

C/C++, Java

C/C++, .Net

C/C++, Java, .Net, Php, others

C/C++, Java, .Net, Php, others

C/C++, Java, .Net

C/C++, Java, .Net

Java

Java

Java

C/C++, Java, .Net, Php, othersE-A-V

Sonargraph

Lattix LDM

Ndepend
Nitriq

Codacy

Kiuwan

Structure101

Axivion Bauhaus Suite

JavaNCSS
Jlint

Classycle

Squale

Checkstyle

C/C++, Java, .Net Findbugs

Java Structural Analysis
for Java

Java, .Net Designite

Php Php metrics

Java Jdeodorant

Java Jdepend

C/C++, Java iPlasma

Java Xradar

Java MoDisco

Java Eclipse metrics

C/C++, Java, .Net, Php, others Sonarqube

C/C++, Java, .Net, Php, others PMD

free

GNU Lesser General
Public License

Apache
License 2.0

MIT License

BSD License

Free, AGPL License local

local

local

local

local

tool

middleware

local

framework

tool

tool

tool

tool

framework Java Source code,
JAR File

Executable file

Executable file,
Java Source code

Java Source code,
JAR File

Java Source code,
JAR File

Executable file

Executable

fileJava Source code

Java Source code,
JAR File

Java Source code,
JAR File

Java Source code

Energy consumption E Java Interactive ProfilerC/C++, Java

Hardware and energy
consumption metrics E PowerAPI

Java and other
programming languages

Hardware and energy
consumption metrics E-V OshiJava

Energy consumption E Oktech ProfilerJava

Hardware and energy
consumption metrics E Sigar

Java and other
programming languages

Hardware and energy

consumption metrics

Energy consumption

E

E

Java and other
programming languages

Java and other
programming languages

Powerstat
Dstat

Powertop

Energy consumption

Energy consumption

E
Java and other

programming languages

Joulemeter
pTop
Intel Platform Power
Estimation

E-V Java JouleUnit

Hardware and energy
consumption metrics E RAPLJava

Hardware and energy
consumption metrics E jRAPLJava

Energy consumption E-V Java Jalen

Fig. 2. Decision tree (https://bit.ly/3hmREie)

because they avoid the consumption of additional resources (e.g. peripherals) and mea-
sure the effective energy of the application. However, they only support applications
written in Java. Alternatively, if the engineer prefers easy settings or require non-Java
applications, he/she has to select the tools Joulemeter, Intel Platform Power Estimation
(R.4). These tools have a simpler configuration than frameworks. Finally, it is important
to analyse our final objective to support architecture reconstruction driven by metrics to
analyse technical debt and estimate energy consumption (see O1). Since there is no tool

https://bit.ly/3hmREie

A Systematic-Oriented Process for Tool Selection 251

that support all three together (see Fig. 1 and Fig. 2). It is required the combination of
tools to deal with the objective and the summary of the recommendations R1-R4 is the
following: (1) to extract structure + design metrics using the tools Sonargraph, Struc-
ture101, Structural Analysis, Lattix or Imagix4D. (2) To extract source code metrics +
analyse technical debt using the tools Sonarqube, Designite, Jdeodorant and Codacy.;
and (3) To analyse energy consumption applying dynamic analysis in execution time
using source code metrics using the frameworks and tools RAPL, jRAPL, PowerAPI,
Oshi, Powerstat, Joulemeter, Intel Platform Power Estimation, depending on the require-
ments, as it has been previously detailed. This integration allows the complete analysis
for supporting the architecture reconstruction decision-making driven by technical debt
and green metrics.

Hypothesis Evaluation. After finishing the analysis and selection, it is required the
evaluation of the defined hypothesis (see Fig. 1). With regard to H1, it is possible to
conclude that all the selected tools carry out the extraction of metrics from source code
in a semiautomatic way, and later perform the analysis and visualization. In the case of
H2, there are tools that use source code to extract metrics and architectural elements.
Before using these metrics, they have to be manually collected and normalized. Respect
to H3, tools such as Sonarqube and the frameworks that estimate energy consumption
can be configured and customized to obtain specific metrics depending of the calculation
models, it can make with open source tools. From this analysis, it is also concluded that
hypothesis number four (H4) has not been already met, since there are no tools that
integrate technical debt analysis and energy consumption evaluation.

5 Conclusions and Future Work

This work presents a tailored ISO/IEC/IEEE 14102:2008 systematic-oriented process
for the evaluation and selection of tools that address emerging areas avoiding bias and
promoting knowledge reusability. This process combines systematic literature methods
and complementary studies to provide not only the resulting selected tools, but also
the acquired knowledge from the study through a set of reusable assets. Specifically,
the tailored standard has been applied for the selection and recommendation of tools
that support architecture reconstruction and the extraction of technical debt and energy
consumption metrics. This adoption has obtained the following reusable assets: the
report and its synthesized information, i.e. a set of tables and statistics, a decision tree,
four recommendations and seven findings. These assets provide valuable synthesized
information about the tools that allow the architecture reconstruction and the technical
debt and energy consumption measurement. As future work, it will be necessary to
formalize themanagement and extension of the reusable assets; as we plan to consolidate
this systematic-oriented process evaluating other types of tools. In addition, the results
of the evaluation evidence the need of creating a new tool to fulfil the hypothesis H4, as
well as extending the current assets in the future.

252 D. Guamán et al.

References

1. Keele, S.: Guidelines for performing systematic literature reviews in software engineering.
Technical report, Ver. 2.3 EBSE Technical report. EBSE (2007)

2. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software
engineering. EASE 8, 68–77 (2008)

3. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping
studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015)

4. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case study research in software engineering:
Guidelines and examples (2012)

5. ISO/IEC 14102:2008 Information Technology - Guideline for the Evaluation and Selection
of CASE Tools. Accessed 2020

6. Lehman, M.M., Belady, L.A.: Program evolution: processes of software change. Academic
Press, Cambridge (1985)

7. Cunningham, W.: The WyCash portfolio management system. ACM SIGPLAN OOPS
Messenger 4(2), 29–30 (1993)

8. Y.E. Consortium and others: Overview of ICT energy consumption, Report FP7-2888021,
European Network of Excellence in Internet Science (2013)

9. Guo, G.Y., Atlee, JoanneM., Kazman, R.: A software architecture reconstruction method. In:
Donohoe, P. (ed.) Software Architecture. ITIFIP, vol. 12, pp. 15–33. Springer, Boston (1999).
https://doi.org/10.1007/978-0-387-35563-4_2

10. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. J. Syst. Softw. 86(6),
1498–1516 (2013)

11. Verdecchia, R., Procaccianti, G., Verdecchia, R.: Empirical evaluation of the energy impact
of refactoring code smells, vol. 52, pp. 365–383, February 2018

12. Hedberg, H., Lappalainen, J.: A preliminary evaluation of software inspection tools, with
the DESMET method. In: Fifth International Conference on Quality Software (QSIC 2005),
pp. 45–52 (2005)

13. Mealy, E., Strooper, P.: Evaluating software refactoring tool support. In: Australian Software
Engineering Conference (ASWEC 2006) (2006)

14. Kabbani,N., Tilley, S., Pearson, L.: Towards an evaluation framework for SOAsecurity testing
tools. In: IEEE International Systems Conference, pp. 438–443 (2010)

15. Rivas, L., Pérez,M.,Mendoza, L.E., Grimán, P., Anna, C.: Tools selection criteria in software-
developing Small and Medium Enterprises. J. Comput. Sci. Tech. 10, 1–5 (2010)

16. Alnafjan, K.A., Alghamdi, A.S., Hossain,M.S., AlQurishi,M.: Selecting the best CASE tools
for DoDAF based C4I applications. International Information Institute (Tokyo). Information
16 (2013)

17. Lundell, B., Lings, B.: Comments on ISO 14102: the standard for CASE-tool evaluation.
Comput. Stand. Interfaces 24(5), 381–388 (2002)

18. Krawatzeck, R., Tetzner, A., Dinter, B.: An evaluation of open source unit testing tools suitable
for data warehouse testing. In: PACIS, p. 22 (2015)

19. Guamán, D., Pérez, J., Diaz, J., Cuesta, C.E.: Towards a reference process for software
architecture reconstruction. IET Softw. (accepted, publication pending) (2020)

20. Kitchenham, B.:Procedures for performing systematic reviews. Keele, UK, Keele University,
vol. 33, no. 2004, pp. 1–26 (2004)

21. Riva, C.: Reverse architecting: an industrial experience report. In: WCRE, p. 42 (2000)
22. Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: Discovering architectures from

running systems. IEEE Trans. Softw. Eng. 32(7), 454–466 (2006)
23. CKMetrics, Chidamber, S.R., Kemerer, C.F.: Ametrics suite for object oriented design. IEEE

Trans. Softw. Eng. 20(6), 476–493 (1994)

https://doi.org/10.1007/978-0-387-35563-4_2

A Systematic-Oriented Process for Tool Selection 253

24. Martin, R.C., Martin, R.: OO design quality metrics. Anal. Depend. 12(1), 151–170 (1994)
25. Kumar, M., Li, Y., Shi, W.: Energy consumption in Java: an early experience. In: 8th

International Conference on Green and Sustainable Computing (IGSC), pp. 1–8 (2017)
26. Chatzigeorgiou, A., Stephanides, G.: Energy metric for software systems. Softw. Qual. J.

10(4), 355–371 (2002)
27. Naumann, S., Dick,M., Kern, E., Johann, T.: The GREENSOFTmodel: a referencemodel for

green and sustainable software and its engineering. Sustain. Comput. Inf. Syst. 1(4), 294–304
(2011)

Redefining Legacy: A Technical Debt
Perspective

Ben D. Monaghan(B) and Julian M. Bass

University of Salford, 43 Crescent, Salford M5 4WT, UK
B.D.Monaghan1@edu.salford.ac.uk, J.Bass@salford.ac.uk

Abstract. Organisations that manage legacy systems at scale, such as
those found within large government agencies and commercial enter-
prises, face a set of unique challenges. They manage complex software
landscapes that have evolved over decades. Current conceptual defi-
nitions of legacy systems give practitioners limited insights that can
inform their daily work. In this research, we compare conceptual defini-
tions of large-scale legacy and technical debt. We hypothesise that large-
scale legacy reflects an accumulation of technical debt that has never
been through a remediation phase. To pursue this hypothesis, we iden-
tified the following question: How do practitioners describe their experi-
ence of managing large-scale legacy landscapes? We conducted 16 semi-
structured open-ended, recorded and transcribed interviews with indus-
try practitioners from 4 government organisations and 9 large enterprises
involved with the maintenance and migration of large-scale legacy sys-
tems. A snowball sampling technique was used to identify participants.
We adopted an approach informed by grounded theory. There was con-
sensus among the practitioners in our study that the landscape is frag-
mented and inflexible, consisting of many dispersed and fragile applica-
tions. Practitioners report challenges with shifting paradigms from batch
processing to near real-time customer-focused information systems. Our
findings show there is overlap between challenges experienced by par-
ticipants and symptoms typified by technical debt. We identify a novel
type of technical debt, “Ecosystem Debt” which arises from the scale,
and age, of many large-scale legacy applications. By positioning Legacy
within the context of Technical Debt, practitioners have a more concrete
understanding of the state of the systems they maintain.

Keywords: Legacy software · Technical debt · Software evolution ·
Industry perspectives · Ecosystem debt · Software ecosystems

1 Introduction

Legacy Software [4,5] is everywhere. From local companies to tech giants, it is
an issue every industry faces. Despite the issues (and costs) being well known for
decades, it’s a problem which has persisted. One area where legacy is particularly
persistent is within governments and large enterprises. The definition of Legacy
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 254–269, 2020.
https://doi.org/10.1007/978-3-030-64148-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_16&domain=pdf
http://orcid.org/0000-0001-6755-0304
http://orcid.org/0000-0002-0570-7086
https://doi.org/10.1007/978-3-030-64148-1_16

Redefining Legacy: A Technical Debt Perspective 255

Software varies. It has been defined as software that is outdated and old [4], or,
software that is mission critical but brittle, expensive to maintain and resistant
to changes [5].

Legacy Systems are typically associated with mainframe-based languages
such as COBOL and Fortran [12]. This, however, is not always the case. Modern
software developed using new techniques can also satisfy the criteria of legacy
[22]. This is especially true in large-scale web development where a product has a
long development time before it goes to market and the latest web framework is
now outdated. One common thread throughout however is that they are mission
critical and therefore maintenance costs must be tolerated.

Challenges to managing and maintaining legacy software are well understood
[5,12]. It is difficult to maintain and difficult to port to new technologies. Often
legacy software is heavily integrated with the physical hardware it operates in
(i.e. mainframes). However, legacy software persists. It has been estimated that
there are still billions of lines of legacy code in use [16]. This raises the question of
why are companies unwilling, or unable, to modernise their legacy applications?
We posit that current conceptual definitions of legacy fail to accurately convey
the day to day challenges faced when managing legacy systems. To this end, we
propose an alternative way of defining legacy by viewing it from the perspective
of technical debt. However, in order to understand how legacy relates to technical
debt we first need to capture the experiences of industry practitioners involved
in the maintenance and migration of legacy systems. This leads to the question:
How do practitioners describe their experience of managing large-scale legacy
landscapes?

In this paper we adopt a grounded theory approach, analysing 16 open-ended,
transcribed interviews from industry practitioners who have been involved in the
maintenance or migration of large scale legacy systems. We identify common
characteristics of large scale legacy systems. We present a taxonomy mapping
these to types of technical debt. We propose a new type of technical debt, which
we refer to as “Ecosystem Debt”. We also extend existing definitions of technical
debt to account for the impact of age on code related debt. Specifically in relation
to the cognitive gap which arises from shifts in development paradigms. The rest
of this paper is organised as follows: the next section provides the background.
Section 3 describes the research methods used. In Sect. 4 we present our findings.
In Sect. 5 we discuss those findings any threats to validity. Finally we conclude
in Sect. 6.

2 Background

2.1 Legacy Systems

The definition of Legacy Software varies. They are defined as software that
is outdated, or old, software that is mission critical but brittle, expensive to
maintain and resistant to changes [4]. One definition proposed by [8] is that they
simply belong to a previous generation of technology. This, however, isn’t always
the case. Modern software developed using new techniques can also satisfy the

256 B. D. Monaghan and J. M. Bass

criteria of legacy [17]. This is especially true in modern web development where
if a product has a particularly long development time before it goes to market,
what’s modern has probably evolved and the latest web framework is now old.
One common thread throughout however is that they are mission critical and
therefore worth the costs associated with maintaining them.

Research into legacy modernisation typically focuses on technical challenges,
with little focus on industry perceptions. Research often runs on the assumption
that legacy software is obsolete. However there is evidence that this may not
always be the case [16]. Practitioners from a spectrum of positions and fields
were interviewed about their perception of what their experiences with legacy
software. Their results echo existing views regarding the challenges associated
with legacy software, however they also reveal that to a number of respondents
held a favourable view of legacy software. There is a perception that legacy soft-
ware is proven technology, reliable and perhaps counter intuitively, performant.

2.2 Technical Debt

The term Technical Debt (TD) was first introduced by Cunningham [7]. TD is
used to describe developing poor-quality systems for short term gain (often for
expedience), with the view that at some point in the future the work will need to
be revisited. TD, much like financial debt, can bring benefits in the short term
(on the provision that is paid back promptly).

Although the term debt might be viewed as a bad thing, this is not necessarily
the case. Going into TD can be part of a larger strategic decision to bring a
product to market quicker, delaying quality and robustness until further into
the future [24].

While accruing TD may be a strategic decision, much like conventional debt,
it needs to be kept under control and managed. Failure to do so results in brit-
tle, hard to maintain software that becomes costly and difficult to comprehend
[26]. In certain cases the build-up of TD may not be a conscious decision [6].
Martin Fowler suggests breaking down reasons for TD into reckless, prudent,
inadvertent and deliberate [10]. There are also types of TD, such as code related
or architectural debt, Alves et al. present an ontology where they identify 12
different types [1]. Similar types are identified by both Kutchens et al. [19] and
Rios et al. [23].

2.3 Relationship Between Technical Debt and Legacy

Legacy software and Technical debt share similarities in that they are both
perceived to mean software that is in a poor state or of low quality. Holvitie
et al. [15] explore the closeness of technical debt and legacy software. They
present conceptual definitions of both, highlighting the similarities and that,
depending on the context and interpretation both terms can be used to describe
the same symptoms.

Technical debt also offers a potential mechanism for improving the qual-
ity and longevity of existing legacy software. Gupta et al. [14] present a case

Redefining Legacy: A Technical Debt Perspective 257

study on managing a legacy application by tackling technical debt issues. They
show a decrease in a number of quality defects, such as memory issues, sys-
tem crashes and performance related issues, suggesting that approaching legacy
from a technical debt perspective can alleviate issues commonly associated with
ageing software.

2.4 Software Ecosystems

Definitions of Software Ecosystems (SECO) vary [11]. Efforts have been made to
create a more concrete definition by [20], they provide the definition of a SECO
‘as the interaction of a set of actors on top of a common technological platform
that results in a number of software solutions or services’.

Research into SECOs is a growing area, however we note that there is little
research into the impact of technical debt and SECOs, much of existing research
focuses on the context and ecosystem health [11]. McGregor et al. [21] present
software ecosystems within the context of technical debt, they highlight that the
effects of technical debt in one aspect of a software ecosystem can have impacts
on other components within the same ecosystem.

3 Method

In this paper we analyse industry practitioner experiences when managing large
scale legacy software. The research question we answer is: How do practitioners
describe their experience of managing large-scale legacy landscapes?

A qualitative method approach was adopted in this study to capture and anal-
yse industry practitioner experiences within the context of large scale legacy soft-
ware. We adopted a Grounded Theory (GT) approach, analysing data collected
from semi-structured open ended interviews. GT was chosen to avoid preconceived
assumptions about how legacy is maintained and perceived by practitioners.

3.1 Research Sites

A mix of practitioners from a variety of backgrounds and industries were iden-
tified using a snowball sampling technique. Initial participants were identified
through the authors professional contact network, subsequent participants were
then identified on recommendation by initial participants. The criteria for selec-
tion was to be, or have been, involved in managing or maintaining large scale
legacy systems. Interviews were conducted both in person through meetings and
where that was not possible via Skype. The participants in this study are listed in
Table 1. To highlight the scale of the organisations that participants were from,
we briefly describe P1, Major City Council and P9, Large Insurance Company.

P1, Major City Council. P1 Is an Enterprise Architect for a Major UK City
Council (population >400k), which employs >15,000 staff. P1 is involved in
ensuring ICT systems across the City Council are aligned to the overall business
strategy.

258 B. D. Monaghan and J. M. Bass

P9, Large Insurance Company. P9 Is an IT Development manager for a large
UK based Insurance company. They have a revenue of >£5 Billion and employ
>2000 staff. P9 is involved in managing the legacy estate that the organisation
maintains, they operate out of a business unit specifically designed to manage
large scale legacy within the organisation.

Table 1. List of research participants

Identifier Job title Industry Experience

P1 Enterprise architect Major city council 18 Years

P2 CTO Start-up 15+ Years

P3 IT Director High street retailer 30 years

P4 CIO Government agency 15+ Years

P5 Head of project delivery Government department 15+ Years

P6 CIO Banking 40+ Years

P7 Senior delivery leader Government department 40+ Years

P8 CIO Large enterprise 40+ Years

P9 IT development manager Large insurance company 40+ Years

P10 CIO High street retailer 30+ Years

P11 Lead DBA Regional energy company 17 Years

P12 CIO Consultancy company 25+ Years

P13 Head of software engineering Government agency 16 Years

P14 CIO High street retail & banking 40 Years

P15 Principal architect Government agency 25+ Years

P16 Digital directory Government department 30 Years

3.2 Data Collection

A total of 16 semi-structured interviews [3] were conducted for data collection.
An open-ended approach was adopted to allow the interviewee a chance to cover
any other issues of interest beyond the semi-structured interviews. Interviews
were conducted in person where possible, otherwise remotely via Skype and
recorded. The interview recordings were then transcribed by hand. Questions
were revisited after each interview and refined. Each interview continued for
between 45–60 min.

3.3 Data Analysis

3.4 Interviews

For this paper we adopted a classical grounded theory (Glasserian) approach [13].
Grounded Theory aims to develop a theory from data without any pre-conceived

Redefining Legacy: A Technical Debt Perspective 259

perceptions. To enable this approach Interview transcripts were analysed using
an industry standard qualitative analysis tool nV ivo. We first went through the
initial transcripts, using a line by line coding. As we began to understand the
data we grouped codes into category, this allowed us to identify recurring topics
within the interview transcripts. These categories were then further grouped
into concepts. Each concept was analysed using memos. Memos were iteratively
refined via constant comparison of the concepts with the raw data.

3.5 Classifying Legacy in Terms of Technical Debt

In order to classify legacy in terms of technical debt, we identified the major types
of technical debt from literature. We limited our search to 2015–2020, using the
keywords “Technical Debt Types” OR “Technical Debt Dimensions” OR “Tech-
nical Debt Categories”. Digital libraries considered for this search were ACM
Digital Library, IEEE Xplore, Science Direct and Springer Link. Selection crite-
ria was defined as papers which define or describe types/dimensions/categories
of Technical Debt. We identified three main sources which provided definitions
of technical debt types; Alves et al. [1], Krutchen et al. [19] and Rios et al. [23].
For each concept generated as a part of interview data analysis, we compared
participants descriptions of symptoms/difficulties that they have to manage with
those described in literature to see how much, or if any, overlap there was.

4 Findings

The following section presents our findings and is structured as follows; Sub-
sect. 4.1 presents how respondents viewed and defined legacy systems. Sub-
sect. 4.2 presents the results of our analysis of practitioner experiences as com-
pared with Technical debt types. The remaining Subsects. (4.3 through to 4.8)
present the interview responses that formed the concepts highlighted in Table 2.
Figure 1 presents an example of how this process was applied to produce the con-
cept Growing Skills Gaps Impacts on ability to maintain and evolve, the findings
that support this concept are presented in Subsect. 4.7.

4.1 Practitioner Understanding of Legacy

Participants describe legacy as old code on old hardware, “They tend to be older
systems developed with older technology. Typically older programming languages,
or even sitting on older hardware” - P1, Enterprise Architect Major City Council.
And potentially no longer supported by vendors, “Coupled with that, potentially,
the vendors no longer support the products as well” - P1, Enterprise Architect
Major City Council.

Interviews reveal that legacy systems are at the end of their useful life, “The
legacy system has been in place 10 or 15 years. It’s at the end of its useful life
now” - P5, Head of Project delivery, Government Department. This is echoed
by P14, CIO High Street Retailer & Bank, “Sometimes, when people talk about

260 B. D. Monaghan and J. M. Bass

Fig. 1. Illustration on process of iterating through codes, categories and concepts

legacy they are talking about things that are nearing end of life”. However P14
also suggests that legacy is simply something which has been there for a long
time, “sometimes when people talk about legacy they just mean things that have
been there a long time, but it still does the job, it still works.”. P14 goes onto pro-
vide a more concrete definition within their organisation, “So, in [Practitioners
Organisation], when people talk about legacy systems, they talk about the things
that they want to replace, they want to get rid of”.

When discussing the term legacy, P16 suggests “I sort of try not to use the
term heritage and legacy. They have a certain connotation, which is these are
old things that we shouldn’t have” P16, Digital Director, Government Depart-
ment. They go on to then suggest that the driving force should be meeting
business needs, “when you look forward you look at; what is your business look-
ing to achieve?” - P16, Digital Director Government Department. Respondents
describe the importance of these systems to business value, “We have many sys-
tems that deliver over £100b...to the public running on COBOL-based VME” –
Digital Director, Government Department. They need to support large numbers
of customers, “they had about 4,000,000 customers” CIO, High Street Retail,
that represents significant value “average daily sales was about £2,000,000” -
CIO, High Street Retail.

Redefining Legacy: A Technical Debt Perspective 261

4.2 Legacy as a Product of Technical Debt

The concepts that were formed from interview analysis were compared with
definitions of technical available in literature [1,19,23], we present the results of
this analysis in Table 2.

Table 2. Taxonomy Classifying Participants Experience with Legacy to Types of Tech-
nical Debt

Legacy Concept Symptoms TD type

Legacy Applications
support surrounding
systems

Difficult to modify due to
external dependencies

Ecosystem Debt

Applications are
fragmented

Unforeseen consequences
when modifying or removing
legacy

Ecosystem Debt

Inherited Legacy Difficult to evolve, maintain
and integrate

Ecosystem Debt, Code Debt
Architectural Debt
Infrastructure Debt
Design Debt, Build Debt, Test Debt
Documentation Debt

Applications no
longer represent the
organisation needs

System Architecture no
longer supports business
needs
Code quality has eroded
over time impacting main-
tainability

Code Debt
Architectural Debt

Skills Gap impacts
ability to maintain or
evolve

Challenges understanding
system. Developer premi-
ums. Fear of modifying
underlying system. Lack of
maintainability and difficult
to evolve.

Code Debt, Design Debt
Architectural Debt
Documentation Debt

Complex System Ar-
chitectures

Difficult to maintain or
evolve
New functionality is bolted
on
Architectural Drift

Code Debt, Architectural Debt

4.3 Legacy Applications Support Surrounding Systems

The interviews reveal that large-scale legacy systems are composed of significant
numbers of applications, “in the retail bank you had over 600 applications” -
P12 CIO Consultancy Company. P13 describes a large number of product plat-
forms “in the Cobol estate there are 29 products platforms” – P13 Head of SWE
Government Department, a similar situation is also confirmed by P2, “There are
quite a lot of applications” – P2, CTO of Start-up.

Participants describe the size and scale of the legacy systems they are man-
aging,“One is, we’ve got a legacy fraud system. It’s the system that we use for all

262 B. D. Monaghan and J. M. Bass

of our fraud casework here. Bearing in mind, we’re a big organisation – 80,000
people – so fraud is a big deal to us.” – Head of Project Delivery, Government
Department. And need to support large numbers of internal operations “I look
after all our contact centre solutions. We have 30,000 contact centre seats here“
– P16, Director of Digital Platforms, Government Department.

Respondents describe how they need to manage many independent applica-
tions. These applications support large numbers of internal and external users.
They describe how they process significant numbers of transactions, both in
number, and in value.

4.4 Applications Are Fragmented

Participants describe highly dispersed and fragmented application landscapes,
“The application landscape is highly fragmented. There are a lot of dispersed
systems that aren’t necessarily connected together” – P2, CTO of Start-up.

P2 goes on to describe how individual applications support surrounding sys-
tems, “that system had been there so long it was supported by a number of other sur-
rounding systems as well.” – P2, CTO of Start-up. They describe that this them
difficult to replace as they impact the wider functionality of a system, “Simply
replacing the legacy system wouldn’t necessarily solve all of our problems. We’d be
impacting other parts of the process as well” – P2, CTO of Start-up. In one exam-
ple, a single application was interfacing with upwards of 200 other systems.

“For example, one of the legacy systems I’ve replaced, I think it had interfaces
with about 200 other systems. So you’ve got this real jigsaw of all these different
systems that link together” – P5, Head of Project Delivery, Government Depart-
ment.

Respondents describe a highly fragmented application landscape. These
applications can be disconnected and dispersed, or part of a complex jigsaw
of dependencies. Migrating or replacing these legacy applications can be a
challenge.

4.5 Inherited Legacy

The interviews reveal a number of participants have inherited applications
when companies are bought up, “So at the moment it’s a complex collection
of legacy systems, some of which even came into the [High Street Retailer] when
we acquired the [High Street Retail] a very long time ago” – P10, CIO, High
Street Retail. P9 describes a similar scenario, “we have really big acquired insur-
ance businesses which all come with their own large large legacy estates” - P9,
IT Development Manager, Large Enterprise. One respondent, when describing
acquiring a smaller company highlighted the impact this can have,

“they had to go through all of these scripts, either, switching them off and
seeing what happened or trying to put logging into them to try to see if and when
they got touched...just monitoring the whole thing to try to gradually unpick this
delicate, fragile, kind of landscape of scripts” – P2, CTO of Start-up.

Redefining Legacy: A Technical Debt Perspective 263

Respondents describe acquiring smaller companies. As part of this acqui-
sition they inherit the pre-existing systems that support the newly acquired
company. This expands their existing landscape even further. In some cases, the
applications they inherit may be problematic.

4.6 Applications No Longer Represent the Organisation’s Needs

Participants describe how a shift in user expectation drives evolution, “A lot of
people expect to interact with us, as an organisation – and many other organi-
sations – in the way that they do with the likes of the Amazon platforms.” - P1,
Enterprise Architect, Major City Council. One participant describes “the organ-
isation is transforming quite significantly, we’ve got lots of new policy measures
coming in, new ways of working” - P5, Head of Project Delivery, Government
Department. The same participant goes on to say

“Because the organisation is transforming quite significantly, we’ve got lots of
new policy measures coming in, new ways of working. I think we’re also moving
towards a more digital organisation. It means that some of our legacy systems
just don’t work in the new world”, and that “In terms of what our users expect,
so citizens – but also some of our business processes – the current systems just
don’t work” - P5, Head of Project Delivery, Government Department.

Participants from Government departments describe organisation needs are
driven by driven by policy change, “we have policy units that take the government
legislation, interpret it into what it is intended to do; that is translated into,
“Right. So, we need to change what we actually provide to our customers.” So,
the systems will change underneath.” – P7, Senior Delivery Leader, Government
Department. This is compounded by the frequency in which government policy
changes, “They change all the time, because government policy changes.” - P7,
Senior Delivery Leader, Government Department

One participants reveals that attempts to evolve with frequently policy driven
needs results in the degradation of the system, “...we tend to append technology
so if we started off with a nice and clean nucleus of an estate 20 or 30 years ago
is essentially we’ve gone right we need to implement this new policy and we will
add that on and add that” – P13, Head of SWE, Government Department.

Participants describe their legacy systems as no longer being able to support
organisation needs. Those from government departments describe the need to
keep up with frequent shift in government policy causing systems to degrade
over time.

4.7 Skills Gap Impacts Ability to Maintain or Evolve

Participants describe how Legacy systems can be many years old “so the majority
of our systems are on VME so some of these VME machines have been around
maybe something like 40 years” – Principal Architect, Government Department.
These systems reflect a different world, “These systems reflect what the world
was, maybe, 10 or 20 years ago” – P1, Enterprise Architect, Major City Council.

264 B. D. Monaghan and J. M. Bass

Knowledge is lost as developers retire, “if somebody is approaching retirement
and they are one of the only ones that know about that system, we should really
start to have some sort of formal handover and transfer of knowledge as well.
Otherwise, there is a knowledge gap and a skills gap there” – P1, Enterprise
Architect, Major City Council. This in turn creates risk, “The big challenge
is risk because when you get inside these things you don’t always know what
you’going to find, and there’s a danger that if you do that, you break that” –
P10, CIO, High Street Retailer.

Knowledge loss combined with change in programming paradigms means
new developers struggle to understand existing code bases, “If you’ve only ever
learned, for example, object-orientated languages, and then you’re faced with
a 20-year-old procedural language, it’s completely different” – P1, Enterprise
Architect, Major City Council.

Developers tend to want to work on the latest technology, “they’re all [devel-
opers] chasing the next shiny thing the new languages and technology” – P13,
Head of SWE, Government Department. This inevitably leads to high developer
turnover, this loss of knowledge makes future development hard, “If their coding
style, if they way they’ve written the application, is unfamiliar to the next group
of people who come in, it’s really hard. It takes longer to do development.” – P2,
CTO of Start-up.

Finding developers with the correct skill-set and understanding of procedural
code is a challenge, “Typically, it was really difficult to get the programming
skills in place to get enough of an understanding of all the nuts and bolts of
the procedural code before we could migrate away onto any new solution ” - P1,
Enterprise Architect, Major City Council.

However, P12 describes their experience with a skills gap, “when they get
old and retire you’re not going to be able to find anybody who codes in that lan-
guage” - P12, CIO, Consultancy Company. They follow up with, “well that’s
just not the case we found that we started to take in A-level apprenticeship
scheme”. Another participant echoes similar sentiment regarding the value of
apprenticeships, “We’ve got a number of apprenticeships. We’ve got a number
of apprentices in our department as well. It’s having that mix, to be perfectly
honest.” - P1, Enterprise Architect, Major City Council.

The interviews reveal that there is a lack of knowledge in the languages
that legacy systems were written in and the paradigms that were prominent at
the time. Respondents describe how developers want to use the latest technology
and that many applications have evolved through significant shifts in technology.
Additional, they reflect the world from many years ago, and participants describe
how finding the skills to bridge this gap between old and new is difficult, and
comes at a premium.

4.8 Complex System Architectures

The interviews reveal that system architectures become complex over time, P2
describes one situation “Then you just get this layering of stuff that all, kind of,
pretty much hangs together” - P2 CTO of Start-up. This is echoed by P8, who

Redefining Legacy: A Technical Debt Perspective 265

described “layers of sort of complexity sitting on the top of the base systems” -
P8, CIO, Large Enterprise. A lack of long term view causes systems to degrade,
P2 describes how “Each group that had come in had tried to create good modular
well-structured code and all the rest of it. It was in 10 different languages and 30
different frameworks” P2, CTO of Start-Up. They believe this is due to “This
is what happens when you’ve got project-based budgeting within an organisation,
rather than product-based.”, and that “If you’ve got a product that you’re contin-
uously evolving, people care about the product and there’s a much more long-term
view taken with it.” - P2, CTO Of Start-Up.

Participants describe to degradation over time as the systems as new func-
tionality is added. There is described as being due to short term decisions
being made when evolving legacy systems over time. Participants describe how
this degradation leads to complex architectures, with systems that just “hang
together” and are made up of many “layers”.

5 Discussion

In this section discuss our findings. We also introduce a new type of technical
debt, which we refer to as “Ecosystem Debt”. We extend existing definitions of
code related debt to include the impact of shifting technological paradigms, such
as that which has occurred over the last few decades.

5.1 Practitioners Experience with Legacy Systems

Participants describe a mixed experience of legacy. They corroborate existing
definitions within literature, including challenges with old code [4], and inflexi-
bility [5]. We find similar responses to Khadka et al. [16], in that participants view
legacy systems as no longer support the organisations future direction. However,
we note that our participants provided a more varied experience. Notably, we find
a more pronounced conflict between participants from a technical background
and those from management.

5.2 Legacy vs Technical Debt

Our participants experiences suggest that many of the challenges they face today
are a consequence of the decisions (or lack of) made in the past. We therefore
draw parallels between legacy systems and that of technical debt [7] i.e. deci-
sions made in the past result in costs that need to be paid for in the future.
It is therefore our view that legacy can be classified in terms of technical debt.
Specifically, legacy software is an accumulation of technical debt that is never
paid off. This can be compared to the stages of technical debt as described by
Kruchten et al. [19]. It is our view that Legacy software is software which has
reached tipping point but never gone through any form of remediation phase.

Similar overlap between legacy and technical debt is highlighted in [15]. While
we agree with the authors assessment that software practitioners managing tech-
nical debt could learn from the many decades of legacy modernisation research,

266 B. D. Monaghan and J. M. Bass

we also believe the reverse to be true; practitioners managing legacy can bor-
row from research (including tools and techniques) on managing technical debt.
Indeed, some of the benefits of this approach have already been highlighted
by [14].

Many organisations are faced with a difficult choice; do they modernise or do
they maintain? We believe that presenting legacy in technical debt terms goes
some way to helping organisations make that decision. Technical Debt can give
insight into the current state of a software system [18,19], moreover it can provide
a shared vocabulary between technical and non-technical practitioners, giving
technical practitioners the tools needed to convey the risk and costs associated
with maintaining an application [2,9].

5.3 Ecosystem Debt

The size, scale and age of large scale legacy systems brings a unique set of
symptoms that do not map directly to current types of technical debt [1,19].
We note that practitioners describe a complex application landscape that often
work together, typically supporting a number of services and staff. To the authors
this is very similar to the definition of a software ecosystem as outlined in [20].
And while there has been some research into ecosystem health [11], as well as
technical debt within the context of a software ecosystem [21] we do not believe
the ecosystem itself has been described in terms of technical debt. To this end
we define ecosystem debt as follows.

“Software systems, and the systems they support, create a software ecosystem.
Like any ecosystem, the impact on one aspect can influence others. If dependen-
cies between software systems are not managed, future changes to the individual
software systems that make up this ecosystem can be costly, if not impossible”

While current definitions of technical debt capture the state of individual
applications, we believe they fail to capture the challenges that arise from the evo-
lution of (or to) a software ecosystem. Ecosystem debt is therefore the consequence
of decisions made during an ecosystems evolution (such as inheriting external soft-
ware, integrating different, independently developed applications) that are done
for expediency, but which later cause friction and hinder development.

5.4 The Impact of Older Programming Languages and Paradigms

A common theme from all participants is having to contend with older languages
and programming paradigms. Languages such as COBOL are no longer widely
taught which makes developer recruitment difficult, indeed, many participants
cited lack of available skills as a motivation for wanting to move away from
legacy systems. However, the internal quality of legacy systems not necessarily
being of low quality they still incur the same penalties of poor quality software
(for example, difficulty onboarding new developers, hard to understand code)
[16]. We believe this to be due to the cognitive gap [25] which opens up as
programming languages become dated. In this instance, new developers have

Redefining Legacy: A Technical Debt Perspective 267

to contend with learning not only COBOL, but also understanding the way
COBOL applications were developed (structured, procedural code vs Object
Oriented). This cognitive gap makes it harder to onboard new developers. This
has a compounding affect as a lack of knowledge can itself cause technical debt
as code quality is reduced.

5.5 Threats to Validity

External Validity : The organisations who were part of this study were all located
within the United Kingdom, including Government Departments. These organ-
isations have evolved within the UKs political and regulatory environment, as
a consequence our findings may not be generalisable outside of the context of
the UK. However, to mitigate against this, we interviewed a range of different
organisations, including large scale enterprises.

Internal Validity : The target demographic for this study was practitioners
involved in large scale legacy systems. This represents a very small, focused
demographic within the IT and Software industry, as such a snowball sampling
technique was used to identify participants. To limit potential bias from respon-
dents in similar industries, we have included respondents from a varied industry
background, including a mix of enterprise and government departments.

Conclusion Validity : For this paper we used semi-structured open ended inter-
views to collect data. These interviews were refined and revised after initial
interviews were conducted. We utilised open ended questions, including allow-
ing practitioners the opportunity discuss anything they felt relevant to limit the
impact of the researchers own biases.

6 Conclusions

Organisations that manage legacy systems at scale face a set of unique challenges.
They manage complex software landscapes that have evolved over decades.
Over this period user expectations have evolved dramatically, as have technical
paradigms. Current conceptual definitions of legacy systems gives little insight
into the challenges associated with managing them, nor does it give much insight
in how to avoid the transition from non-legacy to legacy.

In this paper we identify practitioner experiences while managing large scale
legacy systems. We propose an alternative method for defining legacy systems
by classifying respondents experiences in terms of types of technical debt. We
present a new type of technical debt, which we refer to as “Ecosystem Debt”
and extend current definitions of code related debt to include the effects of age,
language choice and coding paradigm on code understanding.

We adopted a Grounded Theory approach to analysing 16 semi-structured,
open ended interviews. We interviewed industry practitioners who maintain,
or have maintained, large scale legacy systems. We used a snow ball sampling
technique to identify industry practitioners for this paper. We selected industry

268 B. D. Monaghan and J. M. Bass

practitioners from both large scale enterprises and large government department,
including practitioners from both technical and non-technical backgrounds.

Our work in this paper contributes to understanding practitioner perspec-
tives on Large Scale Legacy, to our knowledge there is only one similar study on
this topic. Furthermore, we position Legacy in terms of technical debt, identify-
ing similarities between both legacy and technical debt types. We additionally
present a new type of technical debt, and expand current understanding of exist-
ing types of technical, namely code related debt.

Acknowledgments. We would like to acknowledge and thank the participants who
took part in this study. Many of which are in senior positions, as such we appreciate
them taking the time to participate in this study.

References

1. Alves, N.S., Mendes, T.S., de Mendonça, M.G., Sṕınola, R.O., Shull, F., Seaman,
C.: Identification and management of technical debt: a systematic mapping study.
Inf. Softw. Technol. 70, 100–121 (2016)

2. Arvanitou, E.M., Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., Stamelos, I.: Mon-
itoring technical debt in an industrial setting. In: Proceedings of the Evaluation
and Assessment on Software Engineering, EASE 2019, pp. 123–132. Association
for Computing Machinery, New York (2019)

3. Bass, J., Monaghan, B.: Legacy systems interview guide, July 2020. https://doi.
org/10.17866/rd.salford.12662537.v1

4. Bennett, K.: Legacy systems: coping with success. IEEE Softw. 12(1), 19–23 (1995)
5. Bisbal, J., Lawless, D., Wu, B., Grimson, J.: Legacy information systems: issues

and directions. IEEE Softw. 16(5), 103–111 (1999)
6. Brown, N., et al.: Managing technical debt in software-reliant systems, pp. 47–52

(01 2010)
7. Cunningham, W.: The WyCash portfolio management system. SIGPLAN OOPS

Mess. 4(2), 29–30 (1992)
8. Dedeke, A.: Improving legacy-system sustainability: a systematic approach. IT

Prof. 14(1), 38–43 (2012)
9. Eisenberg, R.J.: A threshold based approach to technical debt. SIGSOFT Softw.

Eng. Notes 37(2), 1–6 (2012)
10. Fowler, M.: bliki: Technicaldebtquadrant (2020). https://martinfowler.com/bliki/

TechnicalDebtQuadrant.html
11. Garćıa-Holgado, A., Garćıa-Peñalvo, F.J.: Mapping the systematic literature stud-

ies about software ecosystems. In: Proceedings of the Sixth International Confer-
ence on Technological Ecosystems for Enhancing Multiculturality, TEEM 2018,
pp. 910–918. Association for Computing Machinery, New York (2018)

12. Gholami, M.F., Daneshgar, F., Beydoun, G., Rabhi, F.: Challenges in migrating
legacy software systems to the cloud - an empirical study. Inf. Syst. 67, 100–113
(2017)

13. Glaser, B.G.: The discovery of grounded theory: strategies for qualitative research
(2003)

14. Gupta, R.K., Manikreddy, P., Naik, S., Arya, K.: Pragmatic approach for man-
aging technical debt in legacy software project. In: Proceedings of the 9th India
Software Engineering Conference. ISEC 2016, pp. 170–176. Association for Com-
puting Machinery, New York, NY, USA (2016)

https://doi.org/10.17866/rd.salford.12662537.v1
https://doi.org/10.17866/rd.salford.12662537.v1
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Redefining Legacy: A Technical Debt Perspective 269

15. Holvitie, J., Licorish, S.A., Martini, A., Leppänen, V.: Co-existence of the’technical
debt’and’software legacy’concepts. In: QuASoQ/TDA@ APSEC. pp. 80–83 (2016)

16. Khadka, R., Batlajery, B., Saeidi, A., Jansen, S., Hage, J.: How do profession-
als perceive legacy systems and software modernization?, no. 1, pp. 36–47. IEEE
Computer Society (2014)

17. Khadka, R., Saeidi, A., Idu, A., Hage, J., Jansen, S.: Legacy to SOA evolution: a
systematic literature review. In: Migrating Legacy Applications: Challenges in Ser-
vice Oriented Architecture and Cloud Computing Environments, pp. 40–70 (2012)

18. Kontsevoi, B., Soroka, E., Terekhov, S.: Tetra, as a set of techniques and tools
for calculating technical debt principal and interest. In: Proceedings of the Second
International Conference on Technical Debt, TechDebt 2019, pp. 64–65. IEEE Press
(2019)

19. Kruchten, Philippe, A.: Managing technical debt: reducing friction in software
development. In: SEI Series in Software Engineering (2019)

20. Manikas, K., Hansen, K.M.: Software ecosystems-a systematic literature review. J.
Syst. Softw. 86(5), 1294–1306 (2013)

21. McGregor, J.D., Monteith, J.Y., Zhang, J.: Technical debt aggregation in ecosys-
tems. In: Proceedings of the Third International Workshop on Managing Technical
Debt, MTD 2012, pp. 27–30. IEEE Press (2012)

22. Razavian, M., Lago, P.: A systematic literature review on SOA migration. J. Softw.
Evol. Process 27(5), 337–372 (2015)

23. Rios, N., de Mendonça Neto, M.G., Sṕınola, R.O.: A tertiary study on techni-
cal debt: types, management strategies, research trends, and base information for
practitioners. Inf. Softw. Technol. 102, 117–145 (2018)

24. Wolff, E., Johann, S.: Technical debt. IEEE Software 32(4), 94–c3 (2015)
25. Zaytsev, V.: Open challenges in incremental coverage of legacy software languages.

In: Proceedings of the 3rd ACM SIGPLAN International Workshop on Program-
ming Experience, pp. 1–6. PX/17.2. Association for Computing Machinery, New
York (2017)

26. Zazworka, N., Shaw, M., Shull, F., Seaman, C.: Investigating the impact of design
debt on software quality, pp. 17–23 (2011)

Improving a Software Modernisation
Process by Differencing Migration Logs

Céline Deknop1,2(B), Johan Fabry2, Kim Mens1, and Vadim Zaytsev2,3

1 Université catholique de Louvain, Louvain-la-Neuve, Belgium
{celine.deknop,kim.mens}@uclouvain.be

2 Raincode Labs, Brussels, Belgium
johan@raincode.com

3 Universiteit Twente, Enschede, The Netherlands
vadim@grammarware.net

Abstract. Software written in legacy programming languages is notori-
ously ubiquitous and often comprises business-critical portions of code-
bases and portfolios. Some of these languages, like COBOL, mature,
grow, and acquire modern tooling that makes maintenance activities
more bearable. Others, like many fourth generation languages (4GLs),
stagnate and become obsolete and unmaintained, which first urges and
eventually forces migrating to other languages, if the software needs to
be kept in production. In this paper, we dissect a software modernisation
process endorsed by Raincode Labs, utilised in particular to migrate soft-
ware from a 4GL called PACBASE, to pure COBOL. Having migrated
upwards of 500 MLOC of production code to COBOL using this process,
the company has ample experience with this process. Nevertheless, we
identify some improvement points and explain the technical side of a
possible solution, based on migration log differencing, that is currently
being put to the test by Raincode migration engineers.

Keywords: Software modernisation · Legacy programming
languages · Software migration · Software evolution · Code
differencing · COBOL · PACBASE · 4GL

1 Introduction

When COBOL was first introduced and published in 1960 [6], it enabled writing
software that replaced the manual labour of thousands of people previously per-
forming pen-and-paper bookkeeping or at best manual data entry and manipu-
lation. When 4GLs (fourth generation languages) started emerging, they allowed
developers to write significantly shorter programs, and enabled automated gen-
eration of dozens of pages of COBOL code from a single statement [22,29].
Nowadays, in the era of intentionally designed software languages [18] and
domain-specific languages [31], conciseness and brevity is appreciated as much
as readability, testability, understandability and ultimately, maintainability [9].

c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 270–286, 2020.
https://doi.org/10.1007/978-3-030-64148-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_17

Improving a Software Modernisation Process by Differencing Migration Logs 271

Yet, legacy software continues to exist due to the sheer volume of it: just COBOL
alone is estimated to have at least 220 billion lines of code worldwide, accord-
ing to various sources. Business-critical legacy systems still make up a massive
fraction of the software market: in 2017, it was reported that 43% of all banking
systems in USA were built on COBOL, and that 95% of ATM swipes end up
running COBOL code [27]. Migration projects are possible, but extremely chal-
lenging [30] and prone to failure due to overconfidence, misunderstanding, and
other factors [5].

Over the last 25 years, Raincode Labs [25], a large independent compiler
company, has conducted many different legacy modernisation projects. In this
paper, we focus on the modernisation process for one specific kind of such
projects [26]: removing the dependency on the compiler and the infrastructure of
PACBASE [14], a 4GL that will be explained in Sect. 2. The research presented in
this paper is a part of the CodeDiffNG [39] research project, an Applied PhD grant
of the Brussels Capital Region that funds a collaboration between the UCLouvain
university and the Raincode Labs company. The project is aimed at exploring the
opportunities to push code differencing further by investigating advanced forms
thereof, providing engineers with a structural view of the changes and with an
explanation of their intent, especially in the context of realistically large codebases
being used over long periods of time. In that context, this collaboration initiative
with Raincode engineers aims to identify some of the problems they are still fac-
ing in their different software modernisation processes relating to the topic of code
differencing, and design use cases based around those.

In Sect. 2 we will explain in detail the problem context and software mod-
ernisation process currently adopted by the company to migrate PACBASE-
generated COBOL code to a more maintainable and human-readable equivalent.
In Sect. 3, we will present the concept of code differencing, which we want to use
to improve on the process described in the previous section. We will then detail
where exactly our solution would fit, as well as describe the principles that we
intend to put in place. Then, we will present the current state of our work in
Sect. 4. Finally, in Sect. 5, we provide an overview of other approaches that we
have explored to some extent and might explore in the farther future.

2 The Problem Space: PACBASE Migration

PACBASE [14] is a language and a tool created in the 1970s. Its original name
was PAC700, for “programmation automatique Corig” (French for “Corig auto-
mated programming”, where Corig was “conception et réalisation en informa-
tique de gestion”, a structured programming methodology popular in the 1970s).
Its selling point was offering a DSL to its users that was at a higher level than
available alternatives such as COBOL. The end users would program concise
PACBASE macros, and COBOL code would be generated for them automati-
cally. PACBASE was widely used since its creation throughout its life cycle [2].
The “Compagnie Générale d’Informatique”, which developed it, was absorbed
by IBM in 1999. In 2000, PACBASE itself was modernised and rewritten in

272 C. Deknop et al.

Java [28], but this did not suffice to prolong its life. The first attempt to sus-
pend its support was made in 2005, and its definitive retirement was announced
in 2015 [11]. Hence in companies that still rely on it, there is a pressing need to
migrate software written in PACBASE to plain COBOL.

Since 2002 Raincode Labs has often undertaken such projects of PACBASE-
generated COBOL to plain COBOL migration, one example being the case of
the insurance broker DVV Verzekeringen reported by Bernardy [4]. Raincode
Labs takes PACBASE-generated COBOL code and refactors it into a shorter,
more readable equivalent that can be maintained manually [26]. PACBASE is
an aged technology that will ultimately disappear, and an extensive discussion
of the way PACBASE itself works is out of scope of this paper. Our main focus
here is on the migration process of PACBASE-generated COBOL to a more
concise, maintainable, and human-readable equivalent, and on how differencing
of migration logs can help to improve that process.

The PACBASE migration process is achieved through a set of 140 trans-
formation rules developed and refined by Raincode Labs over many years. Each
single transformation rule can be seen as a local automated refactoring designed
to be simple enough so that it can be proven not to change the semantics of the
code; yet making it just a bit more concise, readable or maintainable. All rules
are applied iteratively to the code until no further refactorings can be applied.
This entire process and the artefacts involved are summarised in Fig. 1. Apart
from summarising the migration process, which is the focus of this section, Fig. 1
also illustrates how, as a side-effect of the migration process, a migration log is
produced. We will see in Sect. 4 how differencing of such migration logs could
help to further improve the migration process.

A concrete example of a COBOL-to-COBOL program transformation is given
in Fig. 2. All GO TO statements are removed and the control flow is turned into a
PERFORM, the COBOL equivalent of a for loop. The logic that allows to iterate
10 times, contained in lines 1 to 9, has been translated into a more familiar
VARYING UNTIL clause. Additionally, the concrete action of the loop, on lines 10
to 15 and 17 to 22 before, was simplified into a single IF ELSE that performs the
same actions. Undeniably, this new COBOL code is more concise, more readable
and more maintainable than the original (generated) one.

Fig. 1. Summary of the migration process, showing the different artefacts involved and
their transformations.

Improving a Software Modernisation Process by Differencing Migration Logs 273

Fig. 2. Example of a migration from PACBASE-generated COBOL to equivalent
COBOL code that is more concise, readable and maintainable.

Transformation rules are applied iteratively, and it takes 33 intermediary
steps to perform the migration from Fig. 2. Let us take a closer look at some of
them. The first transformation rule that is triggered is fairly simple as it simplifies
the code in “one go”, while others may need a few iterations, as we will see later.
This first rule is called NEXT SENTENCE Removal, and is applied twice.
As the name suggests, it removes the two NEXT SENTENCE instructions on lines 11
and 18, replacing them by the instruction CONTINUE. In COBOL, NEXT SENTENCE
jumps to the instruction after the next full stop (here, it jumps respectively to
lines 15 and 22), whereas the CONTINUE instruction simply does nothing and is
used as a placeholder where code is required but nothing needs to be done (here,
in the body of an if statement). In this particular example, we can easily see that
this transformation preserves behaviour, since the full stop is right after the end
of the if statement, where execution naturally continues.

Some transformation rules remove artefacts that are no longer useful. An
example of such rule would be Remove Useless Dots, that is applied four
times to the code a few steps later. Indeed, since we removed our NEXT SENTENCE
instructions, we do not need the full stops signalling such sentences anymore.
Therefore, the full stops on lines 21 and 14 get removed. At the same time,
the ones on lines 2 and 9 are deleted as well, since they never really served a
purpose. Another example of such a transformation rule would be to Remove
Labels, i.e., delete labels when they are no longer needed (in our example all
labels ultimately get removed).

Some bigger transformations, such as the creation of the PERFORM loop visible
in the resulting code in Fig. 2, may require applying quite a few intermediate
transformation rules. To remain relatively concise, we will highlight only a few of

274 C. Deknop et al.

(a) Flipped conditions without CONTINUE (b) Start of the if/else GO TO loop structure

(c) Simplified if/else clause doing the
MOVEs

(d) Creation of the PERFORM

Fig. 3. Snapshots of the loop-creation process

them in Fig. 3. First, a transformation rule Remove Idle Instructions is trig-
gered, allowing to flip the condition of the if statements and the corresponding
line of code, so that we then can get rid of the else condition now containing the
CONTINUE (Fig. 3a). Then, a transformation rule Recognise Loop-like Pat-
terns is triggered twice in a row, and after some clean-up steps, we can start
to see an if-else structure containing GO TOs that starts to resemble a loop on
lines 9, 10 and 21 (Fig. 3b). Quite a few more steps are needed however to bring
all the conditions into the simple if-else clause that we get in the end (Fig. 3c);
before the Replace GO TO by Loop Exit transformation rule can finally
create the PERFORM loop that we can see in Fig. 3d. The final steps create the
VARYING and performs some cleanups, resulting in the code on the right-hand
side of Fig. 2.

Need for Redelivery. The process of migrating an entire codebase takes
on average around two weeks, which includes tweaking the configuration,
enabling/disabling/applying the transformation rules, testing the produced
result, etc. (Although all transformations were designed to be behaviour

Improving a Software Modernisation Process by Differencing Migration Logs 275

Fig. 4. Migration process, affected by the customer still working on the PACBASE
code.

preserving, this testing phase can help convince the customer that the program
indeed behaves the same way before and after the transformation.) During those
two weeks, the customer’s programmers typically continue with active develop-
ment on the original system, making it diverge from the snapshot Raincode’s
migration team is working on, as depicted in Fig. 4. The process to integrate
these changes to the original code into the already migrated code is called a
redelivery, and will be explained shortly. The larger the migration project, the
more redelivery phases can be required to ensure the customer’s complete satis-
faction at the end of Raincode’s migration process.

The PACBASE migration process is largely automated, yet some man-
ual steps remain. In what follows, we will explain how we believe they could be
improved through advanced code differencing. One of our goals is to produce
tools that are both academically relevant and concretely useful for the com-
pany. In the paragraphs below, we dive deeper into the process that Raincode
engineers go through when migrating PACBASE projects, in order to identify
manual work that possibly can be facilitated.

Raincode Labs’ migration service is as tailored to the customer as possible.
Raincode engineers experienced in PACBASE migration collaborate closely with
the customer’s engineers familiar with customer-specific coding standards. In the
first phase, the customer selects from the 140 available transformation rules, the
ones they want to apply to their codebase. The available transformation rules
include universally appreciated GO TO elimination and rearranging control flow
for code readability. Other transformations are more cosmetic and concern data
alignment, code formatting or layout—they can be switched off when incompat-
ible with the customer’s coding standards. Raincode Labs’ migration engineers
coach the customer in choosing which rules to include, showing the transforma-
tion effect and providing suggestions about what would work best.

Once the chosen set of rules is validated, the customer wants to be sure
that the original behaviour of their programs is maintained after migration.

276 C. Deknop et al.

Since the PACBASE migration service has been used for over fifteen years
and has seen millions of processed lines of code successfully go in production,
it is quite exceptional that bugs are introduced by the PACBASE migration.
Nonetheless, the customer typically wishes to be convinced that the migrated
code (that is often business-critical) will work as intended.

To facilitate this, Raincode engineers perform a test run of the migration,
and in collaboration with the customer partition their codebase in three parts:

– 10–30 critical programs to be tested exhaustively;
– 80–100 programs to be tested thoroughly with unit and integration tests;
– the rest of the programs, to be tested for integration or not tested at all.

It is verified that all transformation rules that were triggered in the migration
process are applied at least once in the first partition, assuring that all rules get
manually tested at least once by the customer. When all lights are green, the
customer’s entire PACBASE-generated COBOL codebase is sent to Raincode
engineers, who perform a cursory analysis of the codebase. Due to the scale of
the codebase (typically 10–200 MLOC), the delivery may contain uncompilable
code or non-code artefacts. Only when both parties agree on what exactly needs
to be migrated, the actual process starts and after a few quality checks, the
result is delivered to the customer.

As previously mentioned, it is frequent that in the meantime modifications
have been introduced to the PACBASE code on the customer’s side, in paral-
lel with the migration process. In that case, a redelivery is needed. The cus-
tomer sends all PACBASE-generated COBOL code that has changed, triggering
another phase of manual analysis for Raincode engineers. This time, not only
do they have to make sure that all the code is compilable, but also need to
determine for each program if it has been migrated previously, or is something
completely new. If it is new, they have to reevaluate whether it should indeed be
migrated. If it is an update, they need to know if it has actually changed, since
come minor readability tweaks on the PACBASE level might not propagate at
all to the COBOL code or yield functionally equivalent code.

After this manual verification, the automated migration process is performed
again. Before sending the results to the customer, Raincode’s engineers now need
to do not only some quality-checks, but also make an analysis of what changed
since the delivery. This is done mostly manually and is a very subjective process:
the engineer that we interviewed described it as “we send the new migrated files
to the customer when they look good enough”. More concretely, they check if new
rules got triggered in the migration process, then look at the output of a diff
between the migrations of the previously sent version and the new one. If the
difference is small enough to be manageable, they analyse it; if it is not and they
feel like they can’t confidently assure that the behaviour is identical, they ask
the customer to perform a new test phase on those files.

Challenges of migration engineers were identified in two key places
where nontrivial manual work tends to occur in this migration process: analysis
of the initial codebase and redelivery. The codebase analysis is almost completely
manual, but fairly quick and painless. There have also been successful attempts

Improving a Software Modernisation Process by Differencing Migration Logs 277

to automate it with language identification powered by machine learning [15].
Thus, we have chosen not to focus on this part at the moment.

The remainder of the paper will focus on addressing codebase redelivery
instead. Raincode engineers could benefit from a tool that would allow them to
say precisely and confidently, what (parts of a) program(s) need(s) to be tested
again by the customer after a redelivery. Such a tool would allow the engineers
to present the changes in the migrated codebase (that were triggered by changes
to the PACBASE-generated COBOL) to the customer in an easy-to-understand
way, instead of expecting them to trust their instincts. It would help negotiations
if such a tool could provide insights on the reasons of why and how the migrated
code was changed. Indeed, sometimes even very small changes to the original
PACBASE code can have consequences on the COBOL output so significant
that the new migrated version will also drastically change. This effect is not
anticipated by most customers.

3 The Solution Space: Code Differencing

Code differencing aims at comparing two pieces of data, typically textual source
code. One piece of data is considered as source and one as target. Code differenc-
ing produces difference data that specifies what changes or edits are necessary to
go from the source to the target. This technique can be used directly, in version
control systems such as git or the Unix command diff. It is also used indirectly,
in the context of code merging [23], compression [12], convergence [38] and clone
detection [24].

Even today, many differencing tools still rely on the basic algorithm created
by Hunt and McIlroy [13] in 1976, or variants thereof. These tools treat their
input as simple lines of text or binary data. However, code is more than just
a random stream of characters. It conforms to quite specific and strict syntac-
tical structure, ready to be exploited, and it implies a logical flow of control
and dependencies among its components. A same code fragment can also reoc-
cur in multiple places within a file or across multiple files. Such subtleties are
lost when using the Hunt-McIlroy algorithm. Flat textual comparison does not
reflect developer goals and obscures the intent of the changes due to the excess
of low level information displayed, which can lead to frustrating and tedious
experiences.

Using this algorithm thus often results in outputs that are hard to use or
understand by developers, because they are too detailed or miss important rela-
tionships between the components involved in the change. They neither com-
municate nor reflect the intent, and ignore the semantics of the changes—the
very thing one tends to seek when looking at a diff. When interacting directly
with the output of a diff tool, it is often hard to get a good understanding
of what functionalities—if any—changed since the last version, simply because
there is just too much information to process at once. For example, if refactorings
were applied, the behaviour of the program was expected to remain unchanged.
Yet, the actions taken may result in changes that span over multiple files, and a

278 C. Deknop et al.

developer would need to put a lot of effort in analysing these changes to under-
stand or verify whether they indeed still respect the original program semantics.

Even interacting with diffs indirectly, like using a version control system
with a good visualisation frontend (gitk, gitx, Git Kraken, Git Extensions,
etc.), can still be frustrating to users. This is because it occasionally forces them
to be confronted with the differences at a fine-grained level and makes them
perform the merge manually. Examples of this are when just a few edits and
moves caused a file to be flagged as completely different, or when there were
simultaneous changes to the same set of lines.

3.1 Improvement Opportunities

As was illustrated in Fig. 1, the migration process takes the initial generated
COBOL files and produces new migrated versions of this code, as well as some
logs of the process. There is one log file per migrated program, and it contains
the order and nature of the transformation rules that were triggered during the
migration. This log file describes the exact process to go from the initial to the
final version of each program, splitting it in multiple subversions. A snippet of
such a log is shown in Fig. 5. Each line represents either a triggered rule along
with the number of times (patches) it got triggered, or an intermediary version.
Those intermediary versions are stored to disk, to enable analysis of the exact
effect of the rule that got applied. Two different types of intermediary versions
exist: the main phases denoted with a letter (rea, reb, . . .) and the subversions
marked with numbers (here, 0030). Other lines containing warnings or debug
information have been removed from the snippet as they will not be studied—
we just assume that Raincode engineers will only diff successfully migrated files.

We could apply differencing to any of the above artefacts: we have both
versions of the PACBASE-generated COBOL programs, the migrated COBOL
programs and migration logs for each migrated program. The idea of using the
initial generated COBOL files was quickly discarded: they are known to be hard

1:tmp/filename.COB.rea
Rename Level 49 (0 patches done)
Done (0 patches done)
1:tmp/filename.COB.reb
..
1:tmp/filename.COB.rec
Next-Sentence removal (28 patches done)
1:tmp/filename.COB.0030
Remove Useless Dots (51 patches done)
...
Done (0 patches done)
1:Result/filename.COB

Fig. 5. A simplified migration log

Improving a Software Modernisation Process by Differencing Migration Logs 279

Fig. 6. The result of log differencing for a simple shopping cart example [19].

to understand, can change drastically when regenerated from a slightly adjusted
PACBASE source, and can already be diff’ed.

Both remaining artefacts (the log files and the migrated programs) are capa-
ble of providing valuable information, each addressing some of the challenges of
migration engineers. One would give an explanation as to why and how things
changed, the other giving a clearer answer as to where things changed in the
output code. Thus, we think it would be beneficial to use a combination of dif-
ferencing both these artefacts to construct a full picture. First, we will look at
the log produced by the migration process.

3.2 Log Differencing

In prior work, Goldstein et al. [10] presented a way to use log messages to create
Finite State Automata representing the behaviour of a service when it is known
to be in a normal and working state. They create a second model from updated
logs and compare it to the first model. With that, they manage to identify
outliers or behaviour that is different and therefore considered abnormal. This
work was used in the context of mobile networks where an abnormal behaviour
can translate to network congestion.

An example of the results obtained by them [10] is shown in Fig. 6. Nodes
considered different (added or removed) have a specific border, in our exam-
ple these are the nodes PwdReset (added) and Checkout (removed). Edges are
adorned with two values separated by a semicolon. The first value is the time in
seconds that the transition took in the underlying log, which we will not consider
in our work since we are not interested in the performance of the migration pro-
cess. The second value is the transition probability evolution. The probability
to go from the first INITIAL node to the Credentials node remains unchanged
while the probability to go to the new node PwdReset evolves from 0 to 0.33.

280 C. Deknop et al.

Fig. 7. Two reduced CFGs representing successive program versions [19]

Fig. 8. Getting an isomorphic graph for the program P1 from Fig. 7 [19]

As we will see shortly in Sect. 4, translating this example to our specific
context is fairly simple. Nodes will correspond to log lines (representing either
an intermediary version or a rule), and the edges and their probabilities will
model the iterative process of the migration.

3.3 Code Differencing

The second approach we consider is to use the migrated COBOL programs
directly, and compare them in a way useful for our use case. Laski and Szer-
mer [19] propose a way to make structural diffs using reduced flow graphs (see
Fig. 7) in the context of code revalidation, which may suit our purpose quite
well.

They create reduced flow graphs for both versions (before and after the trans-
formation) and apply classical modifications (relabelling, collapsing and removal)
to their nodes in order to find an isomorphic graph (see Fig. 8). In the resulting
graph, all nodes having their initial labels represent code that did not change,
whereas all the differences abstracted by MOD are nodes that were transformed.

This representation is way more concise than the hundreds of lines given by a
diff output, and has better chances of being more legible for both the customer’s
developers and the migration engineers. Places where modifications occurred are

Improving a Software Modernisation Process by Differencing Migration Logs 281

clearly identified and can easily be found in the code under consideration for re-
test, giving a clear answer as to where things changed in the migrated code.

It is important to note that the algorithm aims at giving the most coarse
result possible without losing precision. Whenever possible, it would give an
output such as the one in Fig. 8 with parts left unchanged that do not need
to be tested. However, if the difference in the code is too big, it would output
a graph that just consists of a MOD node, which is still useful: it gives the
migration engineers footing when they tell their customer that the entire code
needs to be retested.

4 Differencing Log Files

Of the two approaches we presented, we needed to start with one. We chose to
focus on log differencing for now because it was more recent, but we fully intend
to explore diffs of the code later on.

In our efforts to improve Raincode Lab’s software modernisation process, we
started adapting the log differencing method presented by Goldstein et al. [10]
to their use case. First, we analysed the data provided by Raincode for the pilot
study of a specific migration project. The entire migration process concerned
about 3000 artefacts in total, and two redeliveries were performed. The first
concerned 47 files, the second only 8.

The log files generated by the migration process were quite substantial with
an average of around 1200 lines before cleaning up all unneeded information and
around 900 useful log lines. Even if we hope that this amount can be reduced
further by translating to graphs, we made some design choices early on to ensure
having something small enough that we could analyse.

First, we decided to divide the logs into the main phases that can be observed
in Fig. 5: rea, reb, rec, red and ref. These correspond to naturally indepen-
dent phases (preprocessing, clean up, etc.) which have always been analysed
separately by Raincode engineers. For the main migration phase, which still
contains upwards of 400 lines, we are abstracting from all intermediate subver-
sions by removing their identification number. Those numbers are too specific
to a particular instance of migration, and would prevent the resulting graphs
to be anything but linear and a simple offset in the identifying numbers would
result in the two graphs being flagged as entirely different, even if the rules were
applied in the same order.

With those decisions, we implemented the first prototype of a log file dif-
ferencing tool. As the main algorithm has already been implemented, but no
visualisation support is available yet, the images visible in Fig. 9 were produced
manually from our data. The upcoming versions of our prototype will generate
these images automatically. Our preliminary conclusions drawn from analysing
the three sets of files from both pilot study redeliveries are as follows:

First, we observed that less work-intensive phases (like rea, reb, red and
ref) produced no differences between the two sets of files. Although we cannot
guarantee that this finding would remain valid when analysing more than just

282 C. Deknop et al.

a small sample of files, one might find it somewhat intuitive that phases of
preprocessing or cleanup are likely not to change when the changes made to the
files are not substantial. We will see whether this hypothesis can be verified for
most of our other files.

The second observation on both examples is that the resulting graphs tend to
be quite linear. Most often, we find long successions of nodes having a transition
probability of 1 to the next one. Then, we find some clusters where something
changed between the two versions, creating a less linear path. This can probably
be explained by the fact that the migration process is iterative, and could also
provide an interesting way to improve our future visualisation. By collapsing
such linear parts of the graphs, we could emphasise the parts that are different,
enabling a more easy analysis of the differences “at a glance”.

The result in Fig. 9a is representative of what we see most: a long, linear graph
with changes that are quite localised (for this specific example, the entire rest of
the graph is identical between the two logs). The changes are either variations
in transition probabilities, indicating that the rules were applied more or less
times, or the creation of new path, such as between the nodes consecutive IFs
into IF THEN ELSIF and Intermediate version, meaning that the changes
resulted in a new order in which rules got triggered.

The result presented in Fig. 9b is the only occurrence we found so far of a
node being added (no removal of node has been found yet). The added node is
only an intermediary step and not a new rule, so it does not raise a major red

(a) a. (b) b

Fig. 9. A shortened mock-up of the log differencing of one of Raincode’s redelivered
file.

Improving a Software Modernisation Process by Differencing Migration Logs 283

flag. It should nonetheless be analysed in more detail by an engineer since it
creates an entirely new path moving through a big part of the graph.

5 Related Work

We have presented two approaches directly related to the pilot experiments we
are conducting at the time of writing this paper, in the hope of improving Rain-
code Labs’ software modernisation process. Many other options were explored
as well, that may or may not prove useful for our future endeavours. We detail
some of those here.

Papers presenting ideas or tools that perform differencing in specialised or
advanced ways, though a rare find, still exist. The one closest to our current
interest is be Kim and Notkin’s LSdiff [16] (Logical Structural DIFFerencing),
an approach aiming at representing structural changes in a very concise manner,
focusing on allowing the developer to understand the semantics of the changes.
However, this approach seems to be more suited for object-oriented code, which
does not correspond to our COBOL use case. There are other papers focusing
on the object-oriented paradigm, among them the tools cal-cDiff [3] and Diff-
CatchUp [35].

The modelling community could teach us a few things in this regard as well,
so we studied tools that are made to perform clear and efficient differencing on a
specific kind of model. Many of those exist for the widely-used models like UML
(e.g., UMLDiff [34]), activity diagrams (e.g., ADDiff [21]) or feature models (e.g.,
in FAMILIAR [1]). Witnessing the abundance of many different tools for each
kind of model, an approach to allow for a more generic way to difference models
was also proposed by Zhenchang Xing [33].

We also took note of different techniques used when performing data differ-
encing. From the starting point of the Hunt-McIlroy algorithm treating said data
as simple text, to the extension to binary [32] when the need of differencing more
heterogeneous artefacts. Afterwards, many different and modern techniques were
developed, including those based on control flow graphs, as described in our sec-
ond approach to the PACBASE use case and other tools making use of ASTs
or at least parse trees as with GumTree [8] or cdiff [37]. We are also exploring
the idea of enriching the initial data format with infrastructures as srcML, and
how it can be applied to differencing [20] as well as about its corresponding tool
srcDiff [7].

Finally, we are also looking at what ideas could be leveraged from other
software engineering disciplines, like software mining or code clone detection.
For instance, in the work of Kim et al. [17], logical rules are mined from the code
to help represent the structural changes. Tools using those practices were also
developed, for example ROSE [40], that mines the code to be able to suggest
which changes should happen together, or CloneDiff [36], that uses differencing
in the context of clone detection.

284 C. Deknop et al.

6 Conclusion

In this paper, we have presented a real industrial case study of a process of
software modernisation and language/technology retirement by way of iterative
code transformation. We identified some of the weakest links of this process,
stemming from limitations of contemporary code differencing techniques, and
showed how those restrictions can impact industrial processes like our PACBASE
migration use case. Finally, we described some of the state of the art in code
differencing and presented early results of how our work could build on them to
improve the current migration practices within Raincode Labs.

To reiterate, the main limitation of the way code differencing is used today
is its disregard for the nature of what is being analysed. Some research has been
done to try and overcome this, but the way differencing is still taught in classes
or used in the industry more or less corresponds to the initial Hunt-McIlroy
algorithm in most cases. Moving forward, we should keep those limitations in
mind, and try to surpass them, when designing new solutions and tools.

Acknowledgments. We thank the Raincode migration engineers Boris Pereira and
Yannick Barthol for their collaboration, as well as the participants of the seminar
SATToSE 2020, where an early version of this work was presented in June, for their
feedback.

References

1. Acher, M., Heymans, P., Collet, P., Quinton, C., Lahire, P., Merle, P.: Feature
model differences. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.)
CAiSE 2012. LNCS, vol. 7328, pp. 629–645. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31095-9 41

2. Alper, A.: Users say Pacbase worth effort. Computerworld 21 (1987)
3. Apiwattanapong, T., Orso, A., Harrold, M.J.: A differencing algorithm for object-

oriented programs. In ASE, pp. 2–13. IEEE (2004)
4. Bernardy, J.-P.: Reviving Pacbase COBOL-generated code. In: Proceedings of the

26th Annual International Computer Software and Applications. IEEE (2002)
5. Blasband, D.: The Rise and Fall of Software Recipes. Reality Bites (2016)
6. CODASYL. Initial Specifications for a Common Business Oriented Language

(COBOL) for Programming Electronic Digital Computers. Technical report,
Department of Defense, April 1960

7. Decker, M., Collard, M., Volkert, L., Maletic, J.: srcDiff: a syntactic differencing
approach to improve the understandability of deltas. J. Softw. Evol. Process 32,
10 (2019)

8. Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained
and accurate source code differencing. In: ASE. ACM (2014)

9. Feathers, M.: Working Effectively with Legacy Code. Prentice-Hall, Upper Saddle
River (2004)

10. Goldstein, M., Raz, D., Segall, I.: Experience report: log-based behavioral differ-
encing. In: ISSRE, pp. 282–293 (2017). https://doi.org/10.1109/ISSRE.2017.14

11. Hewlett-Packard. Survival guide to PACBASEtm end-of-life, October 2012.
https://www8.hp.com/uk/en/pdf/Survival guide tcm 183 1316432.pdf

https://doi.org/10.1007/978-3-642-31095-9_41
https://doi.org/10.1007/978-3-642-31095-9_41
https://doi.org/10.1109/ISSRE.2017.14
https://www8.hp.com/uk/en/pdf/Survival_guide_tcm_183_1316432.pdf

Improving a Software Modernisation Process by Differencing Migration Logs 285

12. Hunt, J.J., Vo, K.-P., Tichy, W.F.: An empirical study of delta algorithms. In:
Sommerville, I. (ed.) SCM 1996. LNCS, vol. 1167, pp. 49–66. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0023080

13. Hunt, J.W., McIlroy, M.D.: An algorithm for differential file comparison. CSTR
#41, Bell Telephone Laboratories (1976)

14. IBM. PACBASE documentation page (2020). https://www.ibm.com/support/
pages/documentation-visualage-pacbase

15. Kennedy van Dam, J., Zaytsev, V.: Software language identification with natural
language classifiers. In: SANER ERA, pp. 624–628. IEEE (2016)

16. Kim, M., Notkin, D.: Discovering and representing systematic code changes. In:
ICSE, pp. 309–319. IEEE (2009)

17. Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes for
matching across program versions. In: ICSE, pp. 333–343. IEEE (2007)

18. Lämmel, R.: Software Languages: Syntax, Semantics, and Metaprogramming.
Springer, Heidelberg (2018)

19. Laski, J.W., Szermer, W.: Identification of program modifications and its applica-
tions in software maintenance. In: ICSM, pp. 282–290. IEEE (1992)

20. Maletic, J.I., Collard, M.L.: Supporting source code difference analysis. In: ICSM,
pp. 210–219. IEEE (2004)

21. Maoz, S., Ringert, J.O., Rumpe, B.: ADDiff: semantic differencing for activity
diagrams. In: FSE, pp. 179–189. ACM (2011)

22. Martin, J.: Applications Development Without Programmers. Prentice-Hall, Upper
Saddle River (1981)

23. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng.
28(5), 449–462 (2002)

24. Min, H., Li Ping, Z.: Survey on Software Clone Detection Research. In: ICMSS,
pp. 9–16. ACM (2019)

25. Raincode Labs. https://www.raincodelabs.com
26. Raincode Labs. PACBASE Migration: More than 200 Million Lines Migrated

(2018). https://www.raincodelabs.com/pacbase
27. Reuters Graphics. COBOL blues, April 2017. http://fingfx.thomsonreuters.com/

gfx/rngs/USA-BANKS-COBOL/010040KH18J/
28. Rémy, C.: Un nouveau PacBase, entièrement Java. 01net, July 2000. https://www.

01net.com/actualites/un-nouveau-pacbase-entierement-java-114108.html
29. Schlueter, L.: User-Designed Computing: The Next Generation. Lexington, Lan-

ham (1988)
30. Terekhov, A.A., Verhoef, C.: The realities of language conversions. IEEE Softw.

17(6), 111–124 (2000)
31. Völter, M., et al.: DSL engineering: designing, implementing and using domain-

specific languages (2013)
32. Z. Wang, K.P., Mcfarling, S.: BMAT - a binary matching tool for stale profile

propagation. J. Instr. Level Parallelism 2, 1–20 (2000)
33. Xing, Z.: Model Comparison with GenericDiff. In: ASE, pp. 135–138. ACM (2010)
34. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differenc-

ing. In: ASE, pp. 54–65. ACM (2005)
35. Xing, Z., Stroulia, E.: API-evolution support with diff-catchup. IEEE Trans. Softw.

Eng. 33(12), 818–836 (2007)
36. Xue, Y., Xing, Z., Jarzabek, S.: Clonediff: semantic differencing of clones. In: IWSC,

pp. 83–84. ACM (2011)
37. Yang, W.: Identifying syntactic differences between two programs. Softw. Pract.

Exp. 21(7), 739–755 (1991)

https://doi.org/10.1007/BFb0023080
https://www.ibm.com/support/pages/documentation-visualage-pacbase
https://www.ibm.com/support/pages/documentation-visualage-pacbase
https://www.raincodelabs.com
https://www.raincodelabs.com/pacbase
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/
https://www.01net.com/actualites/un-nouveau-pacbase-entierement-java-114108.html
https://www.01net.com/actualites/un-nouveau-pacbase-entierement-java-114108.html

286 C. Deknop et al.

38. Zaytsev, V.: Language convergence infrastructure. In: Fernandes, J.M., Lämmel,
R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 481–497.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18023-1 16

39. Zaytsev, V., et al.: CodeDiffNG: Advanced Source Code Diffing (2020). https://
grammarware.github.io/codediffng

40. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to
guide software changes. In: ICSE, pp. 563–572. IEEE (2004)

https://doi.org/10.1007/978-3-642-18023-1_16
https://grammarware.github.io/codediffng
https://grammarware.github.io/codediffng

The Effect of Class Noise on Continuous
Test Case Selection: A Controlled
Experiment on Industrial Data

Khaled Walid Al-Sabbagh(B) , Regina Hebig , and Miroslaw Staron

Computer Science and Engineering Department,
Chalmers | University of Gothenburg, Gothenburg, Sweden

{khaled.al-sabbagh,regina.hebig,miroslaw.staron}@gu.se

Abstract. Continuous integration and testing produce a large amount
of data about defects in code revisions, which can be utilized for training
a predictive learner to effectively select a subset of test suites. One chal-
lenge in using predictive learners lies in the noise that comes in the train-
ing data, which often leads to a decrease in classification performances.
This study examines the impact of one type of noise, called class noise,
on a learner’s ability for selecting test cases. Understanding the impact
of class noise on the performance of a learner for test case selection
would assist testers decide on the appropriateness of different noise han-
dling strategies. For this purpose, we design and implement a controlled
experiment using an industrial data-set to measure the impact of class
noise at six different levels on the predictive performance of a learner. We
measure the learning performance using the Precision, Recall, F-score,
and Mathew Correlation Coefficient (MCC) metrics. The results show a
statistically significant relationship between class noise and the learner’s
performance for test case selection. Particularly, a significant difference
between the three performance measures (Precision, F-score, and MCC)
under all the six noise levels and at 0% level was found, whereas a simi-
lar relationship between recall and class noise was found at a level above
30%. We conclude that higher class noise ratios lead to missing out more
tests in the predicted subset of test suite and increases the rate of false
alarms when the class noise ratio exceeds 30%.

Keywords: Controlled experiment · Class noise · Test case selection ·
Continuous integration

1 Introduction

In testing large systems, regression testing is performed to ensure that recent
changes in a software program do not interfere with the functionality of the
unchanged parts. Such type of testing is central for achieving continuous inte-
gration (CI), since it advocates for frequent testing and faster release of prod-
ucts to the end users’ community. In the context of CI, the number of test
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 287–303, 2020.
https://doi.org/10.1007/978-3-030-64148-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_18&domain=pdf
http://orcid.org/0000-0003-2571-5099
http://orcid.org/0000-0002-1459-2081
http://orcid.org/0000-0002-9052-0864
https://doi.org/10.1007/978-3-030-64148-1_18

288 K. W. Al-Sabbagh et al.

cases increases dramatically as commits get integrated and tested several times
every hour. A testing system is therefore deployed to reduce the size of suites
by selecting a subset of test cases that are relevant to the committed code. Over
the recent years, a surge of interest among practitioners has evolved to utilize
machine learning (ML) to support continuous test case selection (TCS) and to
automate testing activities [2,8,10]. Those interests materialized in approaches
that use data-sets of historical defects for training ML models to classify source
code as defective or not (i.e. in need for testing) or to predict test case verdicts
[2,3,8].

One challenge in using such learning models for TCS lies in the quality of
the training data, which often comes with noise. The ML literature categorized
noise into two types: attribute and class noise [6,9,20]. Attribute noise refers to
corruptions in the feature values of instances in a data-set. Examples include:
missing and incomplete feature values [16]. Class noise, on the other hand, occurs
as a result of either contradictory examples (the same entry appears more than
once and is labeled with a different class value) or misclassification (instances
labeled with different classes) [21]. This type of noise is self-evident when, for
example, analyzing the impact of code changes on test execution results. It can
occur that identical lines are labeled with different test outcomes for the same
test. These identical lines become noise when fed as input to a learning model.

To deal with the problem of class noise, testers can employ a number of
strategies. These can be exemplified by eliminating contradictory entries or re-
labeling such entries with one of the binary classes. These strategies have an
impact on the performance of a learner and the quality of recommendations of
test cases. For example, eliminating contradictory entries results in reducing the
amount of training instances, which might lead to a decrease in a learner’s ability
to capture defective patterns in the feature vectors and therefore decreases the
performance of a learner for TCS. Similarly, adopting a relabeling strategy might
lead to training a learner that is biased toward one of the classes and therefore
either include or exclude more tests from the suite. Excluding more tests in CI
implies higher risks that defects remain undetected, whereas including more tests
implies higher cost of testing. As a result, it is important for test orchestrators to
understand how much noise there is in a training data set and how much impact
it has on a learner’s performance to choose the right noise handling strategy.

Our research study examines the effect of different levels of class noise on con-
tinuous testing. The aim is to provide test orchestrators with actionable insights
into choosing the right noise handling strategy for effective TCS. For this pur-
pose, we design and implement a controlled experiment using historical code
and test execution results which belong to an industrial software. The specific
contributions of this paper are:

– providing a script for creating a free-of-noise data-set which can facilitate the
replication of this experiment on different software programs.

– presenting an empirical evaluation of the impact of class noise under different
levels on TCS.

– providing a formula for measuring class noise in source code data-sets.

The Effect of Class Noise on Continuous Test Case Selection 289

By seeding six variations of class noise levels (independent variable) into the
subjects and measuring the learning performance of an ML model (dependent
variables), we examine the impact of each level of class noise on the learning
performance of a TCS predictor. We address the following research question:

RQ: Is there a statistical difference in predictive performance for a test
case selection ML model in the presence and absence of class noise?

2 Definition and Example of Class Noise in Source Code

In this study, we define noise as the ratio of contradictory entries (mislabelled)
found in each class to the total number of points in the data-set at hand. The
ratio of noise can be calculated using the formula:

Noise ratio =
Number of Contradictory Entries

Total Number of Entries

Since the contradictory entry can only be among two (or more) entries, the
number of all entries for which a duplicate entry exists with a different class label.
A duplicate entry is an entry that has the same line vector, but can have different
labels. For example, a data-set containing ten duplicate vectors with nine that
are labeled true and one labeled false has ten contradictory entries. It is not
trivial to define a general rule to identify which class label is correct based on
the number of entries. For example, noise sources might systematically tend to
introduce false “false” labels. Since we do not know exactly which class should be
used in this context, we cannot simply re-label any instance, as suggested by the
currently used solutions (e.g. using majority voting [7] or entropy measurements
[17]) and therefore we count all such entries as contradictory. As an illustration of
the problem, in the domain of TCS, Fig. 1 shows how a program is transformed
into a line vector and assigned a class label. It illustrates how a data-set is
created for a classification task to predict whether lines of a C++ program
trigger a test case failure (class 0) or a test case pass (class 1). The class label
for each line vector is determined by the outcome of executing a single test case
that was run against the committed code fragment in CI. In this study, a class
value of ‘0’ annotates a test failure, whereas a class value of ‘1’ annotates a
passed test. The Figure shows the actual code fragment and its equivalent line
vector representation achieved via a statistical count approach (bag-of-words).
The line vectors in this example correspond to source code tokens found in the
code fragment. Note how lines 5 and 11 are included in the vector representations,
since brackets are associated with loop blocks and function declarations, which
can be important predictors to capture defective patterns. All shaded vectors
in the sparse matrix (lines 7 to 10) are class noise since pairs (7,9) and (8,10)
have the same line vectors, but different label class – 1 and 0. The green shaded
vectors are ‘true labeled instances’ whereas the gray shaded vectors are ‘false
labeled instances’. Note that the Table in Fig. 1 shows an excerpt of the entries
for this example. Since there are 11 lines of code, the total number of entries is
11. The formula for calculating the noise ratio for this example is thus:

290 K. W. Al-Sabbagh et al.

Fig. 1. Class noise in code base. (Color figure online)

Noise ratio =
4
11

= 0.36

If lines 7 to 10 are fed as input into a learning model for training, it is difficult
to predict the learner’s behavior. It depends on the learner. We also do not know
which case is correct – which lines should be re-labelled or whether we should
remove these lines. The behavior of the learner, thus, depends on the noise
removal strategy, which also impacts the test selection process. If we choose to
re-label lines 7 and 8 with class 0 (test case failure), this means that the learner
is biased towards suggesting to include the test in the test suite. If we re-label
lines 9 and 10 with class 1 (test case pass), then the learner is biased towards
predicting that a test case should not be included in a test suite. Finally, if we
remove all contradictory entries (7, 8, 9, and 10), then we reduce the learner’s
ability to capture the patterns in the feature vectors for these lines – we have
fewer training cases (11 − 4 = 7 cases).

3 Related Work

Several studies have been made to identify the effect of class noise on the learning
of ML models in several domains[1,12,19]. To our knowledge, no study addresses
the effect of class noise on the performance of ML models in a software engi-
neering context. Therefore, understanding the impact of class noise in a software
engineering context, such as testing, is important to utilize its application and
improve its reliability. This section presents studies that highlight the impact of
class noise on performances of learners in a variety of domains. It also mentions
studies that use text mining and ML for TCS and defect prediction.

The Effect of Class Noise on Continuous Test Case Selection 291

3.1 The Impact of Noise on Classification Performances

The issue of class noise in large data-sets has gained much attention in the ML
community. The most widely reported problem is the negative impact that class
noise has on classification performance.

Nettletonet et al. [12] examined the impact of class noise on classification of
four types of classifiers: naive Bayes, decision trees, k-Nearest Neighbors, and
support vector machines. The mean precision of the four models were compared
under two levels of noise: 10% and 50%. The results of the comparison showed
a minor impact on precision at 10% noise ratio and a larger impact at 50%. In
particular, the precision obtained by the Naive Bayes classifier was 67.59% under
50% noise ratio compared with 17.42% precision for the SVM classifier. Similarly,
Zhang and Yang [19] examined the performance of three linear classification
methods on text categorization, under 1%, 3%, 5%, 10%, 15%, 20% and 30%
class noise ratios. The results showed a dramatic, yet identical, decrease in the
classification performances of the three learners after noise ratio exceeded 3%.
Specifically the f-score measures for the three models ranged from 60% to 60%
under 5% noise ratio and from 40% to 43% under 30% noise ratio. Pechenizkiy
et al. [14] experimented on 8 data-sets the effect of class noise on supervised
learning in medical domains. The kNN, Näıve Bayes and C4.5 decision tree
learning algorithms were trained on the noisy datasets to evaluate the impact
of class noise on accuracy. The classification accuracy for each classifier was
compared under eleven class noise levels 0%, 2%, 4%, 6%, 8%, 10%, 12%, 14%,
16%, 18%, and 20%. The results showed that when the level of noise increases,
all classifiers trained on noisy training sets suffer from decreasing classification
accuracy. Abellan and Masegosa [1] conducted an experiment to compare the
performance of Bagging Credal decision trees (BCDT) and Bagging C4.5 in the
presence of class noise under 0%, 5%, 10%, 20% and 30% ratios. Both bagging
approaches were negatively impacted by class noise, although BCDT was more
robust to the presence of noise at a ratio above 20%. The accuracy of BCDT
model dropped from 86.9% to 78.7% under a noise level of 30% whereas the
Bagging C4.5 accuracy dropped from 87.5% to 77.2% under the same level.

3.2 Text Mining for Test Case Selection and Defect Prediction

A multitude of early approaches have used text mining techniques for leveraging
early prediction of defects and test verdicts using ML algorithms. However, these
studies omit to discuss the effect of class noise on the quality of the learning
predictors. In this paper, we highlight the results of some of these work and
validate the impact of class noise on the predictive performance of a model for
TCS using the method proposed in [2].

A previous work on TCS [2] utilized text mining from source code changes for
training various learning classifiers on predicting test case verdicts. The method
uses test execution results for labelling code lines in the relevant tested commits.
The maximum precision and recall achieved was 73% and 48% using a tree-based
ensemble. Hata et al. [8] used text mining and spam filtering algorithms to

292 K. W. Al-Sabbagh et al.

classify software modules into either fault-prone or non-fault-prone. To identify
faulty modules, the authors used bug reports in bug tracking systems. Using the
‘id’ of each bug in a given report, the authors tracked files that were reported
as defective, and consequently performed a ‘diff’ command on the same files
between a fixed revision and a preceding revision. The evaluation of the model
on a set of five open source projects reported a maximum precision and recall
values of 40% and 80% respectively. Similarly, Mizuno et al. [11] mined text
from the ArgoUML and Eclipse BIRT open source systems, and trained spam
filtering algorithms for fault-prone detection using an open source spam filtering
software. The results reported precision values of 72–75% and recall values of 70–
72%. Kim et al. [10] collected source code changes, change metadata, complexity
metrics, and log metrics to train an SVM model on predicting defects on file-
level software changes. The identification of buggy commits was performed by
mining specific keywords in change log messages. The predictor’s quality on 12
open source projects reported an average accuracy of 78% and 60% respectively.

4 Experiment Design

To answer the research question, we worked with historical test execution data
including results and their respective code changes for a system developed using
the C language in a large network infrastructure company. This section describes
the data-set and the hypotheses to be answered.

4.1 Data Collection Method

We worked with 82 test execution results (passed or failed) that belonged to 12
test cases and their respective tested code (overall 246,850 lines of code)1. First,
we used the formula presented in Sect. 2 to measure the level of class noise in the
data-set - this would help us understand the actual level of class noise found in
real-world data-sets. Applying the formula indicated a class noise level of 80.5%,
with 198,778 points identified as contradictory. For the remainder of this paper,
we will use the term ‘code changes data-set’ to refer to this data-set. Our first
preparation task for this experiment was to convert the code changes data-set
into line vectors. In this study, we utilized a bi-gram BoW model provided in an
open source measurement tool [13] to carry out the vector transformation. The
resulting output was a sparse matrix with a total of 2251 features and 246,850
vectors. To eliminate as many confounding factors as possible, we used the same
vector transformation tool and learning model across all experimental trials, and
fixed the hyper-parameter configurations in both the vector transformation tool
and the learning model (see Sect. 5.3).

1 Due to non-disclosure agreements with our industrial partner, our data-set can unfor-
tunately not be made public for replication.

The Effect of Class Noise on Continuous Test Case Selection 293

4.2 Independent Variable and Experimental Subjects

In this study, class noise is the only independent variable (treatment) examined
for an effect on classification performance. Seven variations of class noise (treat-
ment levels) were selected to support the investigation of the research question.
Namely, 0%, 10%, 20%, 30%, 40%, 50%, 60%. To apply the treatment, we used
15-fold stratified cross validation on the control group (see Sect. 5.1) to generate
fifteen experimental subjects. Each subject is treated as a hold out group for
validating a learner which gets trained on the remaining fourteen subjects. A
total of 105 trials derived from the 15-folds were conducted. Each fifteen trials
was used to evaluate the performances of a learner under one treatment level.

4.3 Dependent Variables

The dependent variables are four evaluation measures used for the performance
of an ML classifier – Precision, Recall, F-score, and Matthews Correlation Coef-
ficient (MCC) [4]. The four evaluation measures are defined as follows:

– Precision is the number of correctly predicted tests divided by the total num-
ber of predicted tests.

– Recall is the number of correctly predicted tests divided by the total number
of tests that should have been positive.

– The F-score is the harmonic mean of precision and recall.
– The MCC takes the four categories of errors and treats both the true and the

predicted classes as two variables. In this context, the metric calculates the
correlation coefficient of the actual and predicted test cases for both classes.

4.4 Experimental Hypotheses

Four hypotheses are defined according to the goals of this study and tested for
statistical significance in Sect. 6. The hypotheses were based on the assumption
that data-sets with class noise rate have a significantly negative impact on the
classification performance of an ML model for TCS compared to a data-set with
no class noise. The hypotheses are as follow:

– H0p: The mean Precision is the same for a model with and without noise
– H0r: The mean Recall is the same for a model with and without noise
– H0f: The mean F-score is the same for a model with and without noise
– H0mcc: The mean MCC is the same for a model with and without noise

For example, the first hypothesis can be interpreted as: a data-set with a higher
rate of class noise will result in significantly lower Precision rate, as indicated
by the mean Precision score across the experimental subjects. After evaluating
the hypotheses, we compare the evaluation measures under each treatment level
with those at 0% level.

294 K. W. Al-Sabbagh et al.

4.5 Data Analysis Methods

The experimental data were analyzed using the scikit learn library with Python
[15]. To begin, a normality test was carried out using the Shapiro-Wilk test to
decide whether to use a parametric or a non-parametric test for analysis. The
results showed that the distribution of the four dependent variables did not
deviate significantly from a normal distribution (see Sect. 6.2 for details). As
such, we decided to use two non-parametric tests, namely: Kruskal-Wallis and
Mann-Whitney. To evaluate the hypotheses, the Kruskal-Wallis was selected for
comparing the median scores between the four evaluation measures under the
treatment levels. The Mann–Whitney U test was selected to carry out a pairwise
comparison between the evaluation measures under each treatment level and the
same measures at a 0% noise level.

5 Experiment Operations

This section describes the operations that were carried out during this experi-
ment for creating the control group and seeding class noise.

5.1 Creation of the Control Group

To support the investigation of the hypotheses, a control group was needed to
establish a baseline for comparing the evaluation measures under the six treat-
ment levels. This control group needs to have a 0% ratio of class noise, i.e.
without contradictory entries. To have control over the noise ratio in the treat-
ment groups, these will then be created by seeding noise into copies of the control
group data-set (see Sect. 5.2). The classification performance in the treatment
groups will then be compared to that in the control group (see Sect. 5.3). In
addition, the distribution of data points in the control group is expected to
strongly influence the outcome of the experiment. To control for that we aim to
create optimal conditions for the algorithm. ML algorithms can most effectively
fit decision boundary hyper-planes when the data entries are similar and linearly
separable [5]. Therefore, we decided to start from our industrial code changes
data-set (See Sect. 4.1) and extract a subset of the data, by detecting similar
vectors in the “Bag of Words” sparse matrix. In this study, we decided to iden-
tify similarity between vectors based on their relative orientation to each other.
What follows is a detailed description of the algorithm used for constructing
the control group. The algorithm starts by loading the feature vectors from our
industrial code changes data-set and their corresponding label values (passed or
failed) into a data frame object. To establish similarity between two vectors we
use the cosine similarity function provided in the scikit learn library [15] work-
ing with a threshold of 95%. For each of the two classes (passed or failed), one
sample feature vector is randomly picked and used as a baseline vector to com-
pare its orientation against the remaining vectors within its class. The selection
criterion of the two baseline vectors is that they are not similar. This is impor-
tant to guarantee that the derived control group has no contradictory entries

The Effect of Class Noise on Continuous Test Case Selection 295

(noise ratio = 0). Each of the two baseline vectors is then compared with the
remaining vectors (non-baseline) for similarity. The only condition for selecting
the vectors is based on their similarity ratio. If the baseline and the non-baseline
vectors are similar more than the predefined ratio of 95%, then the non-baseline
vector is added to a data frame object. Table 1 shows the two baseline entries
before being converted into line vectors. Due to non-disclosure agreement with
our industrial partner, words that are not language specific such as variable and
class names are replaced with other random names.

Table 1. The two baseline entries before conversion

Line of code Class

measureThreshold(DEFAULT MEASURE) 1

if (!Session.isAvailable()) 0

The script for generating the datasets is found at the link in the footnote2.
The similarity ratio of 95% was chosen by running the above algorithm a mul-
tiple times using five ratios of the predefined similarity ratio. The criterion for
selecting the optimal threshold was based on the evaluation measures of a ran-
dom forest model, trained and tested on the derived control data-set. That is,
if the model’s Precision and Recall reached 100%, i.e. made neither false posi-
tive nor false negative predictions, then we know that control group has reached
sufficient similarity for the ML algorithm to work as efficient as possible. The
following threshold values of similarity were experimented using the above algo-
rithm: 75%, 80%, 85%, 90%, and 95%. Experimenting on these ratios with a
random forest model showed that a ratio of 95% cosine similarity between the
baseline vector and the rest yield a 100% of Precision, Recall, f-score, and MCC.
As a result, we used a ratio of 95% to generate the control group. The resulting
group contained 9,330 line vectors with zero contradictory entries between the
two classes. The distribution of these entries per class was as follow:

– Entries that have at least one duplicate within the same class: 3679 entries
labeled as failed and 4280 entries as pass.

– Entries with no duplicates in the data-set: 1 entry labeled as failed and 1370
entries as passed.

5.2 Class Noise Generation

To generate class noise into the experimental subjects, we followed the definition
of noise introduced in Sect. 2 by carrying out the following two-steps procedure:

1. Given a noise ratio Nr, we randomly pick a portion of Nr from the population
of duplicate vectors within each class in the training and validation subjects.

2 https://github.com/khaledwalidsabbagh/noise free set.git.

https://github.com/khaledwalidsabbagh/noise_free_set.git

296 K. W. Al-Sabbagh et al.

2. We re-label half of the label values of duplicate entries selected in step 1 to the
opposite class to generate Nr noise ratio. In situations where the number of
duplicate entries in Nr are uneven, we re-label half of the selected Nr portion
minus one entry.

In this experiment, a design choice was made to seed each treatment level (10%,
20%, 30%, 40%, 50%, and 60%) into both the training and validation subjects.
This is because we wanted to reflect a real-world scenario where the data in
both the training and test sets comes with class noise. The above procedure was
repeated 15 times for each level, making a total of 90 trials.

A common issue in supervised ML is that the arithmetic classification accu-
racy becomes biased toward the majority class in the training data-set, which
might lead to the extraction of poor conclusions. This effect might be magnified
if noise was added without checking the balance of classes after generating noise.
In this experiment, due to the large computational cost required to check the
distribution of classes across 90 trials, we only checked the distribution under
10% noise ratio. Figure 2 shows how the classes in the training and validation
subjects were distributed across 15 trials for a 10% noise ratio. The x-axis cor-
responds to the binary classes and the y-axis represents the number of entries in
the training and validation sets. The Figure shows a fairly balanced distribution
in the training subjects with an average of 3421 entries in the passed class and
3993 entries in the failed class.

Fig. 2. The Distribution of the binary classes after generating noise at 10% ratio.

5.3 Performance Evaluation Using Random Forest

We evaluate the effect of each noise level on learning by training a random
forest model. The choice of using a random forest model was due to its low
computational cost compared to deep learning models. The hyper-parameters of
the model were kept to their default state as found in the scikit-learn library
(version 0.20.4). The only configuration was made on the n estimator parameters
(changed from 10 to 100), which corresponds to the number of trees in the forest.
We tuned this parameter to minimize chances of over-fitting the model.

The Effect of Class Noise on Continuous Test Case Selection 297

6 Results

This section discusses the results of the statistical tests conducted to evaluate
hypotheses H0p, H0r, H0f, and H0mcc and to answer the research question.

6.1 Descriptive Statistics

The descriptive statistics are presented in Tables 2, 3, 4, and 5 individually for
each dependent variable. The values for Precision (Table 2), Recall (Table 3),
F-score (Table 4), and MCC (Table 5) are shown for each of the noise ratio (0%,
10%, 20%, 30%, 40%, 50%, and 60%). A first evident observation from the tables
is that there is a statistically significant relationship between the mean values of
the four dependent variables and the noise ratio, where a lower value of a given
dependent variable indicates higher noise ratio. Three general observations can
be made by examining the data shown in the four tables:

– There is an inverse trend between noise ratio and learning precision, f-score,
and MCC. That is, when the noise level increases, the classifier trained on
noisy instances suffers a small decrease in the four evaluation measures.
Figure 3 shows this relationship where the x-axis indicates the noise ratio
and the y-axis represents the evaluation measures.

– There exists a higher dispersion in the evaluation scores when the noise level
increases (i.e. higher standard deviation [SD]).

– The mean difference between the recall values under each noise ratio is rela-
tively smaller than those with the other three dependent variables.

Table 2. Descriptive stats for precision.

Noise N Mean SD SE 95% Conf.

0% 15 0.997 0.000 0.000 0.997

10% 15 0.966 0.009 0.002 0.961

20% 15 0.933 0.019 0.005 0.923

30% 15 0.900 0.029 0.007 0.884

40% 15 0.867 0.039 0.010 0.846

50% 15 0.834 0.048 0.012 0.808

60% 15 0.801 0.059 0.015 0.770

Table 3. Descriptive stats for recall.

Noise N Mean SD SE 95% Conf.

0% 15 1.000 0.000 0.000 1.000

10% 15 0.984 0.032 0.008 0.967

20% 15 0.970 0.061 0.015 0.937

30% 15 0.955 0.086 0.022 0.910

40% 15 0.940 0.109 0.028 0.883

50% 15 0.931 0.134 0.034 0.860

60% 15 0.897 0.144 0.037 0.821

298 K. W. Al-Sabbagh et al.

Table 4. Descriptive stats for F-Score.

Noise N Mean SD SE 95% Conf.

0% 15 0.998 0.000 0.000 0.998

10% 15 0.974 0.013 0.003 0.967

20% 15 0.949 0.025 0.006 0.936

30% 15 0.923 0.034 0.008 0.905

40% 15 0.897 0.044 0.011 0.873

50% 15 0.871 0.055 0.014 0.842

60% 15 0.836 0.059 0.015 0.805

Table 5. Descriptive stats for MCC.

Noise N Mean SD SE 95% Conf.

0% 15 0.996 0.000 0.000 0.996

10% 15 0.946 0.030 0.007 0.930

20% 15 0.894 0.060 0.015 0.863

30% 15 0.841 0.088 0.022 0.795

40% 15 0.790 0.119 0.030 0.727

50% 15 0.742 0.156 0.040 0.660

60% 15 0.674 0.181 0.046 0.579

Fig. 3. Mean distribution of the evaluation measures.

6.2 Hypotheses Testing

We begin the evaluation of the hypotheses by checking whether the distribution
of the dependent variables deviates from a normal distribution. The Shapiro-
Wilk test results were statistically significant for all the evaluation measures in
the majority of the noise ratios. Table 6 shows the statistical results of normality
for the dependent variables on all noise ratios. These results indicate that the
assumption of normality in the majority of the samples can be rejected, as indi-
cated by the p-value (p <0.05) in Table 6. Since we have issues with normality in
the majority of samples, we decided to run a non-parametric test for comparing
the difference between the performance scores under the six noise ratios.

To examine the impact of class noise on the four dependent variables, the
Kruskal-Wallis test was conducted. Table 7 summarizes the statistical compar-
ison results, indicating a significant difference in Precision, F-score, and MCC.
Specifically, the results of the comparison for precision showed a test statistics
of 56.8 and a p-value below 0.001. Likewise, a significant difference in the com-
parisons between the evaluation measures of F-score and MCC (F-score Results:
Test Statistics = 54.172, p-value <0.005, MCC Results: Test Statistics = 53.398,
p-value <0.005) groups was found. In contrast, no significant difference between
the Recall measures was identified.

The Effect of Class Noise on Continuous Test Case Selection 299

Table 6. Statistical results for normality.

0% 10% 20% 30% 40% 50% 60%

Precision
Stat=0.59
p<0.005

Stat=0.82
p=0.02

Stat=0.87
p=0.11

Stat=0.91
p=0.28

Stat=0.91
p=0.32

Stat=0.88
p=0.13

Stat=0.92
p=0.40

Recall
Stat=1.00
p=1.00

Stat=0.36
p<0.005

Stat=0.50
p<0.005

Stat=0.50
p<0.005

Stat=0.54
p<0.005

Stat=0.56
p<0.005

Stat=0.53
p<0.005

F-Score
Stat=0.59
p<0.005

Stat=0.78
p=0.009

Stat=0.67
p<0.005

Stat=0.74
p=0.003

Stat=0.83
p=0.037

Stat=0.69
p=0.001

Stat=0.8
p=0.02

MCC
Stat=0.68
p=0.001

Stat=0.77
p=0.01

Stat=0.65
p<0.005

Stat=0.69
p=0.001

Stat=0.77
p=0.01

Stat=0.63
p<0.005

Stat=0.69
p=0.001

Table 7. Statistical comparison between the evaluation measures at all noise levels.

p-value statistics

precision p<0.005 Statistics=56.858
recall p=0.164 Statistics=9.180
f-score p<0.005 Statistics=54.172
mcc p<0.005 Statistics=53.398

The Mann–Whitney U test with Precision, F-score, and MCC as the depen-
dent variables and noise ratio as the independent variable revealed a significant
difference (p-value below 0.005) under each of the six levels when compared with
the same measures in the no-treatment sample. However, the statistical results
for recall only showed a significant difference when the noise level exceeded 30%.
Table 8 summarizes the statistical results from the Mann–Whitney test under
the six treatment levels. The analysis results from this experiment indicate that
there is a statistical significant difference in predictive performance for a test
case selection model in the presence and absence of class noise. The results from
the Kruskal-Wallis test were in line with the expectations for hypotheses H0p,
H0f, H0mcc, which confirm that we can reject the null hypotheses for H0p, H0f,
H0mcc, whereas no similar conclusion can be drawn for hypothesis H0r. While
no significant difference between the recall values was drawn from the Kruskal-
Wallis test, the Mann-Whitney test indicates that there is a significant inverse
causality between class noise and recall when noise exceeds 30%. In the domain
of TCS, the practical implications can be summarized as follow:

– Higher class noise slightly increases the predictor’s bias toward the pass class
(lower precision rate), and therefore leads to missing out tests that should be
included in the test suite.

– A class noise level above 30% has a significant effect on the learner’s Recall.
Therefore, the rate of false alarms (failed tests) in TCS increases significantly
above 30% noise ratio.

300 K. W. Al-Sabbagh et al.

Table 8. The comparison results from Mann-Whitney test

10% 20% 30% 40% 50% 60%

Precision
Stat=7.5,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Recall
Stat=45,
p=0.184

Stat=40.000,
p=0.084

Stat=40.000,
p=0.084

Stat=35.000,
p<0.005

Stat=30.000,
p=0.017

Stat=25,
p=0.007

F-Score
Stat=7.5,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

MCC
Stat=7.5,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

7 Threats to Validity

When analyzing the validity of our study, we used the framework recommended
by Wohlin et al. [18]. We discuss the threats to validity in four categories: exter-
nal, internal, construct, and conclusion.

External Validity: External validity refers to the degree to which the results
can be generalized to applied software engineering practice.

Test Cases. Since our experimental subjects belong to twelve test cases only, it
is difficult to decide whether the sample is representative. However, to increase
the likelihood of drawing a representative sample and to control as many con-
founding factors, we randomly selected a small sample of 12 test cases. Also,
the random selection of tests has the potential of increasing the probability of
drawing a representative sample.

Control Group. The study employed a similarity based mechanism to derive the
control group, which resulted in eliminating many entries from the original sam-
ple. This might affect the representativeness of the sample. However, our control
group contained points that belong to an industrial program, which is arguably
more representative than studying points that we construct ourselves. This was
a trade-off decision between external and internal validity, since we wanted to
study the impact of class noise on TCS in an industrial setting and therefore
maximize the external validity.

Nature of Test Failure. There is a probability of mis-labelling code changes if
test failures were due to factors external to defects in the source code (e.g.,
machinery malfunctions or environment upgrades). To minimize this threat, we
collected data for multiple test executions that belong to several test cases, thus
minimizing the probability of identifying tests that are not representative.

The Effect of Class Noise on Continuous Test Case Selection 301

Internal Validity. Internal validity refers to the degree to which conclusions
can be drawn about the causal effect of independent on dependent variables.

Instrumentation. A potential internal threat is the presence of undetected defects
in the tool used for vector transformation, data-collection, and noise injection.
This threat was controlled by carrying out a careful inspection of the scripts and
testing them on different subsets of data of varying sizes.

Use of a Single ML Model. This study employed a random forest model to
examine the effect of class noise on classification performances. However, the
analysis results might differ when other learning models are used. This was a
design choice since we wanted to study the effect of a single treatment and to
control as many confounding factors as possible.

Construct Validity. Construct validity refers to the degree to which experi-
mental variables accurately measure the concepts they purport to measure.

Noise Ratio Algorithm. Our noise injection algorithm modifies label values with-
out tracking which entries that are being modified. This might lead to relabeling
the same duplicate line multiple times during noise generation. Consequently, the
injected noise level might be below the desired level. Thus, our study likely under-
estimates the effects of noise. However, the results still allowed us to identify a
significant statistical difference in the predictive performance of TCS model,
thereby to answer the research question.

Majority Class Problem. Due to the large computational cost required to check
the balance of the binary classes under the six treatment levels, we only checked
for the class distributions for one noise level - 10%. Hence, there is a chance
that the remaining unchecked trials are imbalanced. Nevertheless, the down-
ward trend in the predictive performances as noise ratio increases indicates that
the predictor was not biased toward a majority class.

Conclusion Validity. Conclusion validity focuses on how sure we can be that
the treatment we use really is related to the actual outcome we observe.

Differences Among Subjects. The descriptive statistics indicated that we have
a few outliers in the sample. Therefore, we ran the analysis twice (with and
without outliers) to examine if they had any impact on the results. Based on the
analysis, we found that dropping the outliers had no effect on the results, thus
we decided to keep them in the analysis.

8 Conclusion and Future Work

This research study examined the effect of different levels of class noise on the
predictive performance of a model for TCS using an industrial data-set. A for-
mula for measuring the level of class noise was provided to assist testers gain

302 K. W. Al-Sabbagh et al.

actionable insights into the impact of class noise on the quality of recommenda-
tions of test cases. Further, quantifying the level of noise in training data enables
testers make informed decisions about which noise handling strategy to use to
improve continuous TCS if necessary. The results from our research provide
empirical evidence for a causal relationship between six levels of class noise and
Precision, F-score, and MCC, whereas a similar causality between class noise
and recall was found at a noise ratio above 30%. In the domain of the inves-
tigated problem, this means that higher class noise yields to an increased bias
towards predicting test case passes and therefore including more of those tests
in the suite. This is penalized with an increased hardware cost for executing the
passing tests. Similarly, as class noise exceeds 30%, the prediction of false alarms
with the negative class (failed tests) increases.

There are still several questions that need to be answered before concluding
that class noise handling strategies can be used in an industrial setting. A first
question is about finding the best method to handle class noise with respect to
efficiency and effectiveness. Future research that study the impact of attribute
noise on the learning of a classifier and how that compares with the impact of
class noise are needed. Other directions for future research include evaluating
the level of class noise at which ML can be deemed useful by companies in
predicting test case failures, evaluate the relative drop of performance from a
random sample of industrial code changes and compare the performance of the
learner with the observations drawn from this experiment, study and compare
the effect of different code formatting on capturing noisy instances in the data
and the performance of a classifier for TCS. Finally, we aim at comparatively
exploring the sensitivity of other learning models to class and attribute noise.

References

1. Abellán, J., Masegosa, A.R.: Bagging decision trees on data sets with classification
noise. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 248–265.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11829-6 17

2. Al-Sabbagh, K.W., Staron, M., Hebig, R., Meding, W.: Predicting test case ver-
dicts using textual analysis of committed code churns. In: Joint Proceedings of the
International Workshop on Software Measurement and the International Confer-
ence on Software Process and Product Measurement (IWSM Mensura 2019), vol.
2476, pp. 138–153 (2019)

3. Aversano, L., Cerulo, L., Del Grosso, C.: Learning from bug-introducing changes
to prevent fault prone code. In: Ninth International Workshop on Principles of
Software Evolution: In Conjunction with the 6th ESEC/FSE Joint Meeting, pp.
19–26. ACM (2007)

4. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data
using Matthews Correlation Coefficient metric. PloS one 12(6), e0177678 (2017)

5. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey.
IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2013)

6. Gamberger, D., Lavrac, N., Dzeroski, S.: Noise detection and elimination in data
preprocessing: experiments in medical domains. Appl. Artif. Intell. 14(2), 205–223
(2000)

https://doi.org/10.1007/978-3-642-11829-6_17

The Effect of Class Noise on Continuous Test Case Selection 303

7. Guan, D., Yuan, W., Shen, L.: Class noise detection by multiple voting. In: 2013
Ninth International Conference on Natural Computation (ICNC), pp. 906–911.
IEEE (2013)

8. Hata, H., Mizuno, O., Kikuno, T.: Fault-prone module detection using large-scale
text features based on spam filtering. Empir. Softw. Eng. 15(2), 147–165 (2010).
https://doi.org/10.1007/s10664-009-9117-9

9. John, G.H.: Robust decision trees: removing outliers from databases. KDD 95,
174–179 (1995)

10. Kim, S., Whitehead Jr., E.J., Zhang, Y.: Classifying software changes: clean or
buggy? IEEE Trans. Softw. Eng. 34(2), 181–196 (2008)

11. Mizuno, O., Ikami, S., Nakaichi, S., Kikuno, T.: Spam filter based approach for
finding fault-prone software modules. In: Proceedings of the Fourth International
Workshop on Mining Software Repositories, p. 4. IEEE Computer Society (2007)

12. Nettleton, D.F., Orriols-Puig, A., Fornells, A.: A study of the effect of different
types of noise on the precision of supervised learning techniques. Artif. Intell. Rev.
33(4), 275–306 (2010). https://doi.org/10.1007/s10462-010-9156-z

13. Ochodek, M., Staron, M., Bargowski, D., Meding, W., Hebig, R.: Using machine
learning to design a flexible LOC counter. In: 2017 IEEE Workshop on Machine
Learning Techniques for Software Quality Evaluation (MaLTeSQuE), pp. 14–20.
IEEE (2017)

14. Pechenizkiy, M., Tsymbal, A., Puuronen, S., Pechenizkiy, O.: Class noise and
supervised learning in medical domains: The effect of feature extraction. In: 19th
IEEE Symposium on Computer-Based Medical Systems (CBMS 2006), pp. 708–
713. IEEE (2006)

15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

16. Sáez, J.A., Luengo, J., Herrera, F.: Evaluating the classifier behavior with noisy
data considering performance and robustness: the equalized loss of accuracy mea-
sure. Neurocomputing 176, 26–35 (2016)

17. Sluban, B., Lavrač, N.: Relating ensemble diversity and performance: a study in
class noise detection. Neurocomputing 160, 120–131 (2015)

18. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

19. Zhang, J., Yang, Y.: Robustness of regularized linear classification methods in
text categorization. In: Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Informaion Retrieval, pp. 190–197
(2003)

20. Zhao, Q., Nishida, T.: Using qualitative hypotheses to identify inaccurate data. J.
Artif. Intell. Res. 3, 119–145 (1995)

21. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell.
Rev. 22(3), 177–210 (2004). https://doi.org/10.1007/s10462-004-0751-8

https://doi.org/10.1007/s10664-009-9117-9
https://doi.org/10.1007/s10462-010-9156-z
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/s10462-004-0751-8

On Clones and Comments in Production
and Test Classes: An Empirical Study

Steve Counsell(B), Steve Swift, Mahir Arzoky, and Giuseppe Destefnas

Department of Computer Science, Brunel University, London, UK
steve.counsell@brunel.ac.uk

Abstract. While many OO class features have been explored in detail,
little work in the past has explored the characteristics of test classes.
In this exploratory paper, we investigate traits of these classes which
we believe demonstrate distinct differences between test classes and pro-
duction classes. We explore differences between the number of clones,
the number of comments and the maintainability of each class type. We
believe that developers unjustifiably treat test classes as “second-class
citizens” and we would therefore expect test classes to contain a) far
more clones, b) a far lower (i.e., poorer) comment density and, c) worse
maintainability levels. Six open-source systems were used as a basis of
the work. Results showed that all three suppositions were indeed sup-
ported; this suggests the need to explore test classes in more detail and
to remedy this clear problem that contributes to the level of technical
debt.

1 Introduction

Many aspects of code have been empirically studied over the past forty or so
years, including those of coupling, cohesion, complexity and size [1,7,11]. These
have all contributed to a deep understanding of, for example, how systems evolve
and the relationship between those factors and faults [2]. One aspect of empirical
analysis that has been overlooked however, (for reasons unknown to the authors)
is the relationship between production and (unit) test code. In this paper, we
explore those differences from three perspectives: firstly, we examine the number
of clones in each type of class [9]. Secondly, the number of comments found in
each. Finally, we explore the maintainability of each type of class with respect to
clones and comments. The general hypothesis running through this paper is that
test classes are treated differently by developers and, as a result, they will firstly,
contain far more clones than production classes because of regular, haphazard
and uncontrolled copy and pasting (cloning). Secondly, they will have fewer
comments and thirdly, be more difficult to maintain. We adopt this negative
stance because we believe that developers unjustifiably treat test classes “like
second class citizens” compared to production classes and, as a result, tend to
invest less time in housekeeping activities (test classes consequently “smell” more
[4]). We feel that their proper upkeep is as important as any component in a
system since they work closely with (and for) a system’s production classes.
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 304–311, 2020.
https://doi.org/10.1007/978-3-030-64148-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_19

On Clones and Comments in Production and Test Classes 305

2 Preliminaries

2.1 Metrics Studied

We analysed different types of feature from six open-source systems. The six
systems were first used in a different study by Kadar et al., [6] and it is their
data, made freely available for download, that we analyse and use in this paper.
The first of the two metrics was the number of instances of clones in a class. Four
types of clone can be defined [10]; however, the SourceMeter tool1 which was
used to collect the metrics uses just one, namely: “Identical code fragments except
for variations in white space, layout and comments”. It is this definition that we
use in the paper. The second metric was Comment Density (CD) calculated by
dividing the total number of comments in a class by the number of lines of code
(LOC). A CD value of 0.5 tells us that half the lines in the class are comments;
equally, a CD value of zero implies that the class contains zero comments. The
metric therefore gives us an idea of the extent of class commenting, relative to
class size. We note that the data set of Kadar et al., [6] provided all three of
these metrics (i.e., number of clones, CD and LOC). The paper itself examined
refactoring and values of source code metrics from open-source systems improved
by those refactorings. Their results showed that lower class maintainability trig-
gered more code refactorings in practice; those refactorings decrease complexity,
code lines, coupling and clone metrics in those systems. To support our analysis,
we sub-divided their data set into test and production classes.

2.2 Systems Analysed

In [6], multiple releases of Java open-source systems were used. In this study,
however, we chose just the latest version of each system to provide us with the
most up-to-date and most decayed picture of what the system looked like. A
brief summary of each of the six systems follows: Antlr4 is a parser generator for
reading or translating structured text or binary files; Junit is a system to write
and run repeatable tests and Mapdb an embedded database engine. The Mct
system is a NASA-based for visualization framework for mission operations, Oryx
a web-based editor for modeling business processes and finally, Titan a system
for developers to manage their development artefacts. Table 1 summarises the six
systems and shows the URL, number of production classes (Prod.) and number
of test classes for each.

3 Data Analysis

3.1 Summary Statistics

Table 2 shows summary data for the clone metric. The table shows the mean and
maximum (Max.) values of the metric for the six systems for both production

1 www.sourcemeter.com.

www.sourcemeter.com

306 S. Counsell et al.

Table 1. Six systems studied (summary data)

System URL #Production #Test

Antlr4 https://github.com/antlr/antlr4 397 119

JUnit https://github.com/junit-team/junit 152 717

Mapdb https://github.com/jankotek/MapDB 161 170

Mct https://github.com/nasa/mct 1341 821

Oryx https://github.com/cloudera/oryx 469 76

Titan https://github.com/thinkaurelius/titan 1022 464

(Prod.) and test classes. We note that the median clone value was zero in all
six systems and are hence excluded from the table. We see that there is clear
trend for clones to be more frequent in test classes than production classes.
Looking at the data, the mean number of clones in the former exceeds that of
the production data by some margin, except for the JUnit system, but even
then, it is only marginal: 0.13 versus 0.11. The notable system is Mapdb. One
test class in this system had no less than 2188 clones. Inspection of the raw data
revealed this class to be TreeMapExtendTest. This class had 1525 methods,
13459 lines of code and was coupled to just one other class. Other classes also
featured prominently in the data. The Mct system had a test class containing
137 clones. This was TestPanAndZoomManager with 10 methods, 852 lines of
code and was coupled to 20 other classes. Equally, the Antlr4 system had a high
mean number of clones, with one test class containing 158 clones. This class was
called TestTokenStreamRewriter and comprised just 47 methods, 865 lines of
code and was coupled to 10 other classes.

Table 2. Clone summary data

System Prod. Test

Mean Max. Mean Max.

Antlr4 0.12 2 8.14 158

JUnit 0.13 4 0.11 9

Mapdb 1.27 33 22.39 2188

Mct 1.13 81 1.86 137

Oryx 0.38 21 0.26 4

Titan 0.16 8 0.81 71

Table 3 shows the CD values for each of the six systems. Here, we include
the median values, since, in contrast to the clone data, they were mostly non-
zero valued. In keeping with our initial surmise, it is clear from the data that
test classes tend to have a lower number of comments given by the CD metric

https://github.com/antlr/antlr4
https://github.com/junit-team/junit
https://github.com/jankotek/MapDB
https://github.com/nasa/mct
https://github.com/cloudera/oryx
https://github.com/thinkaurelius/titan

On Clones and Comments in Production and Test Classes 307

than production classes and, in some cases, significantly so; in fact, for every
system, the mean CD in production classes exceeds that of test classes. The
most striking feature of the data in Table 3 however, is the wide gap between
the mean and median values for each of the systems. For example, the mean CD
for production classes was 0.19, but for test classes was only 0.05. This was a
trend replicated across almost all six systems (the Oryx system had matching
means (0.12)). The system with the highest mean in production classes for CD
was JUnit (value 0.20), closely followed by Antlr4 (0.19); this last system had
the highest median CD (0.13). Approximately half of the production classes in
this system therefore had at least one comment line for every 14–15 lines of code
compared with one comment line for every 50 lines of code in its test classes
(median 0.02).

Table 3. CD summary data

System Prod. Test

Mean Median Max. Mean Median Max.

Antlr4 0.19 0.13 0.86 0.05 0.02 0.51

JUnit 0.20 0.04 0.81 0.03 0.00 0.80

Mapdb 0.13 0.05 0.95 0.10 0.01 0.78

Mct 0.14 0.03 0.82 0.04 0.00 0.77

Oryx 0.12 0.07 0.60 0.12 0.00 0.77

Titan 0.10 0.05 0.95 0.09 0.03 0.96

3.2 Statistical Analysis

Clones Versus CD. One question arising from the analysis of differences
between the Clone and CD data is the extent of the relationship between the
two sets of data. In other words, is it the case that classes with larger numbers
of clones have fewer comments or vice versa? Moreover, does that relationship
hold across both production and test classes? We suggest that clones in pro-
duction classes will have significantly more comments than those in test classes,
since developers will take more care of production classes when they clone code
and actually think about adding comments when they add a clone. Test classes,
on the other hand, will have fewer comments associated with their clone code
because developers will simply “dump” clones judiciously into test classes with-
out care and attention to basic housekeeping. To test our position, we extracted
the CD for all production and test classes and excluded classes containing zero
clones. This gave a sample size of 454 production classes and 621 test classes
with at least one clone. Figure 1 shows the plot of CD for production classes and
test classes in the six systems. It shows the range of CD values on the x-axis and
the percentage that lay in that range on the y-axis. The scale on the x-axis is in
increments of 0.1, with the leftmost measure for number of zeros. For example,

308 S. Counsell et al.

for production classes, 25.60% of those classes had a value greater than zero and
less than or equal to 0.1 (the second pair of bars from the left); the corresponding
value for test classes was 36.78%. Fig. 1 shows a trend that we suspected. In the
low range of CD values from 0.0–0.1, test classes had a higher frequency. How-
ever, from 0.1–0.7, the opposite is the case. The trend implies that test classes
had a lower CD than production classes across almost the entire range of CD
values and are clearly treated differently to production classes in this sense.

Fig. 1. Plot of CD percentage for classes (Prod. vs. Test)

Maintainability Analysis. We have seen from Table 2 and Table 3 that there
were noticeable differences between test and production classes, both in number
of clones and in terms of comment lines. To delve a little deeper into the differ-
ences between the two types of class, we then explored the relationship between
clones and CD in the set of test and production classes through a metric which
captures class maintainability. We believe that the presence of clones in a class
and a class’ number of comments (obtained through the CD metric) have a direct
relationship with maintainability. We would expect a class with multiple clones
to be less maintainable than one with few clones, since a single change to one
clone may require multiple changes to identical clones. Equally, we might reason-
ably expect a class with relatively few comment lines (and a low CD) to be less
maintainable than one with a high CD on the assumption that comments are
“useful to have around” for comprehension purposes. To this end, we correlated
each set of clone and CD data with the Relative Maintainability Index (RMI)
metric of Hegedus et al., [5]. The aim of this metric according is to react the
level of maintainability of a class compared with the other classes in the system.
It is similar to the well-known maintainability index [8], but is calculated using
dynamic thresholds from a benchmark database instead of a xed formula. Fur-
ther technical details of the RMI can be found in [5]. Table 4 shows the results for

On Clones and Comments in Production and Test Classes 309

the six systems and gives three correlation coefficients: Pearson’s, Spearman’s
and Kendall’s. Pearson’s is a parametric measure and assumes a distribution
(i.e., usually normal). Spearman’s and Kendall’s coefficients are non-parametric,
making no assumption about the data distribution (i.e., usually non-normal) [3].
So, for example, for production classes in the Antlr4 system, the three correlation
coefficients were all negative and significant (Pearson’s value −0.42, Kendall’s
−0.27 and Spearman’s −0.33). In fact, every value in the table shows a negative
value; this might be expected from our viewpoint since, in theory, the higher the
number of clones in a class, the lower the level of maintainability. If a class has
the same snippet of code in multiple places, then any change may also have to be
made in multiple places, capturing one reason why cloning is considered danger-
ous. What is interesting about Table 4 is the large difference between the values
for production and test classes. In every case apart from the Oryx system (and
a single value for Mct), the significance values for test classes exceeded those of
production classes. This suggests that the effect on maintainability of clones in
test classes is far more pronounced than for production classes. In other words,
the greater the number of clones, the more difficult it is to make a change(s)
to that class. This supports our initial view that test classes get relatively low
support and are less well maintained than test classes. The presence of clones
makes the job of the developer in maintaining classes more difficult.

Table 4. Correlation data for clones vs. RMI

System Prod. Test

Pear. Kend. Spear. Pear. Kend. Spear.

Antlr4 −0.42 −0.27 −0.33 −0.67 −0.66 −0.79

JUnit −0.17 −0.23 −0.27 −0.29 −0.24 −0.30

Mapdb −0.75 −0.44 −0.54 −0.97 −0.51 −0.62

Mct −0.54 −0.45 −0.56 −0.49 −0.46 −0.57

Oryx −0.55 −0.43 −0.52 −0.51 −0.39 −0.49

Titan −0.25 −0.25 −0.30 −0.82 −0.38 −0.46

Table 5 shows the correlation values for CD against RMI. In this table, an
‘∗’ denotes that the value was not significant at the 1% level. Most of the values
in the table are negative and significant at the 1% level. This is particularly
true of the JUnit system, which has the highest correlation values. Many of the
value (13 of the 36) however, were not significant at the 1% level. This seemed
to be more pronounced in the Mapdb and Oryx systems; many (8 in number)
of the ‘∗’ values are in test classes. While the over-riding message is that the
higher the CD, the lower the RMI and vice versa, this is not the case as much
for test classes in some systems. From the data, maintainability is not influenced
as highly by comments in test classes to the extent it is in production classes.

310 S. Counsell et al.

Table 5. Correlation data for CD vs.RMI

System Prod. Test

Pear. Kend. Spear. Pear. Kend. Spear.

Antlr4 −0.07* −0.14 −0.21 −0.24 −0.42 −0.57

JUnit −0.24 −0.23 −0.31 −0.17 −0.22 −0.28

Mapdb −0.07* −0.27 −0.37 0.02* −0.09* −0.14*

Mct −0.03* −0.13 −0.18 −0.07* −0.17 −0.23

Oryx −0.08* −0.17 −0.26 0.00* 0.02* −0.06*

Titan −0.10* −0.26 −0.37 −0.02* −0.17 −0.24

4 Discussion

The preceding analysis raises some interesting discussion points. The first ques-
tion that naturally arises is why these results were found for test classes? We
believe that test classes are seen as a necessary part of any system, but there is
an attitude that because they are not the public face of a system and are very
much in the background, they are treated accordingly. Of course, we have only
looked at a few aspects of test classes and it may be the case that other OO
aspects might show the relationship in a different light. One interesting avenue
for future work would be to explore fault incidence in each class type. This might
help pinpoint with more certainty the true influence of clones and comments and
how they aid or hinder maintainability. If faults occur less in test classes, then
our results becomes academic only. Also, in this paper, we have assumed that
comments are a generally beneficial thing to have in code and that a low CD
value reflects poor practice. We accept that comments have their darker side;
sometimes, inaccurate comments are worse than no comments. However, gener-
ally speaking, it is accepted that comments are useful. We have also assumed
that clones are bad practice; yet one of the main reasons why cloning takes place
is to prevent the rewrite of code that already exists. We think that it is the side
effects of this process where the danger lies (poor copying and pasting practice).

We also need to consider the threats to the validity of the study. Firstly,
we only used six systems in our study. In this short paper, our intention was
to highlight key features of production and test classes and we fully intend to
illustrate more issues in a later, wider study. Secondly, we have assumed that
maintainability, as measured by the RMI metric properly captures elements of
the maintenance process. In defence of the metric, Hegedus et al., [5] showed
that it accurately captured many of the intuitive aspects of the process and
we feel confident using it on that basis. Thirdly, it may be that other types of
clone (apart from that studied) have a more sinister effect on classes of both
types on maintainability and class composition. For example, clones that carry
out the same computation but use different variable names. Fourthly, this is a
short research paper and there are many aspects of the work that we would
have liked to, but could not cover (e.g., a full literature review, an analysis of

On Clones and Comments in Production and Test Classes 311

further metrics). The sole intention of the work however, was to explore the ideas
and present preliminary findings. Finally, we have only examined open-source
systems. It may be that the same traits do not arise in commercial software; we
also leave this question for further work.

5 Conclusions and Future Work

In this paper, we explored the characteristics of test classes in six open-source
systems. Our aim was to establish traits in test classes compared to that of pro-
duction classes. Our supposition was that test classes were given less attention by
developers and that would firstly, contain far more clones than production classes
because of regular, haphazard and uncontrolled copy and pasting (cloning); sec-
ondly, would have fewer comments and thirdly, be more difficult to maintain.
We adopted this stance because we believed that developers care less about test
class upkeep, treat test classes like second class citizens compared to production
classes and, as a result, tend to invest less time and effort in basic housekeeping
activities on test classes; our results bore out our initial views. Future work will
focus on repeating this analysis with more systems and to investigate other OO
aspects such as coupling with class type.

References

1. Basili, V., Briand, L., Melo, W.: A validation of OO design metrics as quality
indicators. IEEE Trans. Soft. Eng. 22(10), 751–761 (1996)

2. Cartwright, M., Shepperd, M.: An empirical investigation of an object-oriented
software system. IEEE Trans. Softw. Eng. 26(8), 786–796 (2000)

3. Field, A.: Discovering Statistics Using IBM SPSS Statistics, 4th edn. Sage Publi-
cations Ltd., Thousand Oaks (2013)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

5. Hegedus, P., Bakota, T., Ladányi, G., Faragó, C., Ferenc, R.: A drill-down approach
for measuring maintainability at source code element level. Commun. EASST 60
(2013)

6. Kadar, I., Hegedus, P., Ferenc, R., Gyimothy, T.: A manually validated code refac-
toring dataset and its assessment regarding software maintainability. In: PROMISE
2016, Ciudad Real, pp. 10:1–10:4. ACM (2016)

7. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320
(1976)

8. Oman, P., Hagemeister, J.: Metrics for assessing a software system’s maintain-
ability. In: Proceedings of the Conference on Software Maintenance, pp. 337–344
(1992)

9. Roy, C., Cordy, J.: Benchmarks for software clone detection: a ten-year retrospec-
tive. In: Software Analysis, Evolution and Reengineering, SANER, Campobasso,
Italy, pp. 26–37. IEEE Computer Society (2018)

10. Roy, C., Cordy, J., Koschke, R.: Comparison and evaluation of code clone detection
techniques and tools: a qualitative approach. Sci. Comput. Program. 74(7), 470–
495 (2009)

11. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Syst. J.
13(2), 115–139 (1974)

Social and Human Aspects

Dimensions of Consistency in GSD: Social
Factors, Structures and Interactions

Outi Sievi-Korte1(B), Fabian Fagerholm2, Kari Systä1, and Tommi Mikkonen3

1 Tampere University, Tampere, Finland
outi.sievi-korte@tuni.fi, kari.systa@tuni.fi

2 Aalto University, Espoo, Finland
fabian.fagerholm@aalto.fi

3 University of Helsinki, Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract. Global software development (GSD) implies a distributed
development organization, where coordination is needed to efficiently
achieve development objectives. So far, socio-technical congruence has
examined coordination needs and activities through software code depen-
dencies. However, GSD requires coordination beyond software artifacts.
In this paper, we present an interview-based study of software practi-
tioners from companies engaged in GSD. The study examines how dif-
ferent dimensions of interactions are interrelated, and how they affect
software development. Our study suggests that, in addition to the rela-
tionship between organizational and technical system structure, GSD
performance is affected by consistency in communication, operational
procedures, and social structures. These can only partially be impacted
through formal procedures, and we suggest that distributing coordination
work by empowering developers could lead to increased performance.

Keywords: Global software development · Human factors ·
Socio-technical system · Coordination · Communication

1 Introduction

Global software development (GSD) can be defined as “software work undertaken
at geographically separated locations across national boundaries in a coordinated
fashion involving real time (synchronous) and asynchronous interaction” [25].
GSD is said to have several benefits in terms of productivity, cost savings, skill
pool access, and customer proximity [1], but it accentuates the need to coor-
dinate work tasks among those involved. With group members being separated
geographically, temporally, and culturally, coordination becomes more difficult.

The concept of socio-technical congruence (STC) captures the notion of a
relationship between coordination needs and actual coordination activities: if
there is a match between the two, congruence is high (and vice versa) [8]. STC
can be measured through a family of techniques that are based on extracting task
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 315–330, 2020.
https://doi.org/10.1007/978-3-030-64148-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_20

316 O. Sievi-Korte et al.

dependencies from source code repositories [26]. Files that are commonly changed
together are assumed to have a technical dependency [8]. It is thus possible to
calculate to what extent current coordination activities, as played out through
the communication and collaboration tools used by software developers, match
the dependencies indicated by previous source code change sets.

Several researchers have identified factors that can hamper coordination in
GSD, and ways in which sub-optimal coordination can surface as a worsening in
STC metrics [26]. However, STC does not draw a complete picture of coordina-
tion challenges in GSD. STC measurements use after-the-fact data that describe
some of the most detailed-level tasks operating closest to or directly on the source
code. They do not consider the planning and deliberation that precedes these
tasks, the coordination judgments that are made while the tasks are carried
out, or the human relationships that form the basis of coordination. A study on
architectural design in GSD [29] implies that many issues voiced by practitioners
concern social interactions and the organization of communication.

Increasing STC requires additional effort in the form of specific coordination
activities, which run the risk of decreasing developer productivity [26]. STC
techniques do not describe how to avoid such risks. What is often overlooked
in GSD is its effect on developers’ behavior and habits, and a consideration of
the cognitive, affective, motivational, and social processes involved. From that
perspective, coordination in GSD is an active human process unfolding in a
socio-technical system. Its results can be partially observed by measuring STC –
but to understand the process itself, we must look beyond artifact repositories.

In this paper, we aim to uncover more of the social factors, structures, and
interactions that are at play when the coordination process unfolds in GSD. We
utilize the data collected by Sievi-Korte et al. [29] to find instances of social
aspects of coordination in GSD. We describe factors that influence the quality
of the coordination process, describe threats to that process, and discuss means
by which those threats might be mitigated. Through this knowledge, we aim
to assist organizations that wish to utilize GSD to gain more of the potential
benefits while avoiding adverse effects on both internal and external stakeholders.

2 Background

When practicing GSD, temporal, geographical, and socio-cultural distance has
a direct and immediate effect on developers’ socio-technical environment. For
example, time-zone differences make communication asynchronous. Emails and
even instant messages receive delayed answers, and phone and video calls are
difficult to schedule with no overlapping office hours between sites. Product
development may be slowed, rather than allowing effective utilization of time
zone differences [7]. Increased coordination needs present another challenge, and
can arise due to delays, integration issues, and mismatches in required skills.
Inspired by Conway’s Law [9], researchers have examined STC, formal com-
munication structures, and tool support as vehicles for improved coordination
(e.g., [2]). To successfully operate in a GSD setting, developers should thus be

Dimensions of Consistency in GSD 317

able to consider how their own actions influence both the social and technical
sides of the software development activity.

Difficulties in distributed software projects can be forecasted by various theo-
ries and empirical findings in the organizational, behavioral, and social sciences.
For example, when groups bring their behaviors under normative control, those
norms begin to regulate team members’ behavior [11]. Norms usually develop
informally from corporate and national cultures, but may be set collectively or by
leaders through rewards and sanctions. Unless their norms are compatible, differ-
ent groups may expect different behaviors, causing misinterpretation of actions
and intentions, and resulting in inefficiency and enmity [6]. This provides an
explanation of a social mechanism influencing software projects: norm alignment
requires communication, and hinges on the complexity, richness, and speed of the
real communication networks connecting developers. In other words, addressing
the problem requires entering the social world of developers and agreeing on
behavioral changes. It then becomes necessary to trust developers’ social skills
and adapting formal procedures and structures to support them.

Relying on developers’ social skills requires that the management is more
informed regarding the mechanisms of social behavior among developers. An
understanding of the social aspects of software development and promoting social
awareness and constructive social behavior among developers (see [21]) can begin
to address the deeper issues involved. Those issues are present at the level of
individuals, but they also become built into the processes, working methods, and
artifacts involved in software projects – all part of the socio-technical system in
which software development happens. Failing to take social behavior into account
may lead to accumulating social debt in the organization, which in turn leads to
deterioration of the software itself [32].

Through practitioner workshops, Rothman and Hastie [24] found issues
related to how the socio-technical environment is set up. For example, enforcing
processes does not work if inter-team practices are not considered. Not enabling
meetings ends up costing more than arranging meetings between sites as issues
accumulate due to lack of trust. Teams struggle with handling inequality and
accommodating differences. However, the reasons behind these issues were not
studied further. We attempt to address this gap in the present paper.

Solutions to software engineering problems are often sought in technical
methods and practices, but many problems in GSD require a different approach.
Sievi-Korte et al. [27] used a systematic literature review (SLR) to create a con-
ceptual model of software architecting in GSD. The model encompasses areas
such as ways of working, knowledge management, and task allocation – all sub-
ject to communication and process challenges that could potentially be mitigated
by architecting guidelines and technical solutions. These challenges and poten-
tial solutions were further investigated in an empirical study [29]. The empirical
study revealed an abundance of issues that stemmed from social interactions
between stakeholders and the organization of communication. Mechanisms based
on repository measurement or tools were not able to bring adequate solutions.
Such social and behavioral issues are further investigated in the present paper.

318 O. Sievi-Korte et al.

3 Research Approach

We utilize data from an earlier study by Sievi-Korte et al. [29], that consists of
semi-structured interviews with 13 software developers or architects from seven
companies engaged in GSD. All participants had several years of experience from
globally distributed projects. Five companies had their headquarters in Finland
and two in other countries (Europe and North America). The interview questions
were based on the results obtained in an SLR [27].

The previous study [29] collected challenges and practices that practitioners
faced doing software architecture design in the context of GSD. In this study, we
focus only on material that did not consider architecting challenges or practices.
Instead, we reanalyze the data to examine the social side of software develop-
ment. An initial extraction of data relevant to this theme gave us a working set
of 109 quotes1. As Sievi-Korte et al. [29] only concentrated on findings related
to architectural design, this paper thus complements their findings.

Research Questions. As mentioned above, current methods based on STC that
utilize the structural dependency between technical artifacts and communication
seem insufficient to tackle challenges that have been reported in GSD. We should
thus expand the picture and assume that more flexible structures are needed in
large-scale software development. We should more carefully consider the social
mechanisms that underlie the challenges in GSD also from other perspectives
than development activities and related artifacts. We pose the following research
questions in the context of software product design in GSD:

RQ1: How does the coordination process in GSD manifest in terms of social
factors, structures, and interactions?
RQ2: What factors influence the quality of the coordination process?
RQ3: How can the threats to the coordination process be mitigated?

Research Process. The research process for this study is depicted in Fig. 1
and described below. During the process we used thematic analysis [5]. First,
in an initial analysis of the interviews, conducted jointly by all authors, there
appeared to be repeating patterns in the challenges described by the practi-
tioners. As an experiment, we divided individual quotes from the interviews
equally between all authors and attempted to extract anti-patterns from them,
if possible. Each found anti-pattern was expected to include context containing
a problem, (wrong) solution to the problem, and (negative) consequences.

We then conducted a joint workshop to validate the found anti-patterns.
During the workshop we examined each anti-pattern on completeness and dis-
cussed it in relation to the original quote. At this time we could immediately
see that 1) not all quotes had resulted in anti-patterns, and 2) in many cases
the anti-pattern was incomplete, i.e., either there was not enough context in the

1 The transcripts were coded in full by the first author. The codes “practice” and
“challenge” were predetermined; other codes were freely generated during the coding
process. The coding process has been reported elsewhere in detail [28].

Dimensions of Consistency in GSD 319

Quotes
(109)

SLR Interview
questions

Interviews Transcripts Coding

Select quotes not coded as architecting practice/challenge

Initial
analysis

Anti-
patterns

(81)

Validation
(workshop)

Initial themes
(11)

Anti-patterns
grouped under
themes

Workshop

Consistency
dimensions

Themes mapped
to consistencies

Previos study

Current study

Validation

Themes (13)

Architecting practices [27]

Fig. 1. Research process

quote, or the solution or consequences was unclear. We decided not to pursue
with anti-patterns in the sense that they would be presented as a result of this
study. However, we did continue using the anti-pattern drafts in our analysis, as
they had allowed us to abstract the vast number of often very verbose quotes
into a condensed format, easing their further analysis. Reviewing the set of anti-
patterns, we could identify a number of recurring themes from keywords found
in the patterns. Based on the validation workshop notes, one author created a
set of 11 initial themes, and coded the anti-patterns according to the themes.
Doing so, it appeared that each anti-pattern supported two themes, and thus
was coded with a primary and secondary theme.

The themes and coding were validated by all other authors. Each of them
individually and separately attempted to code the anti-patterns using the initial
themes. When we cross-checked our coding, we could find a number of conflicts.
Upon solving conflicts in the coding, the set of themes was redesigned to contain
13 different themes, which all authors agreed upon. We then conducted a second
joint workshop to resolve the remaining conflicts. As a way to resolve the conflicts,
we revisited the data in a more holistic manner, going back to the original quotes
and the context surrounding them. We shortly noticed that while STC could easily
be seen as an underlying phenomenon behind many of the themes, they appeared
to touch other dimensions as well that were yet undefined. In the end we could see
that the intertwined dimensions of individual developer and organization could
complement STC. These dimensions are discussed in the following.

4 Results

Our analysis uncovered two sets of themes that we call consistency dimensions.
Communication between and within teams and sites, in all forms reported by
the participants, were grouped as communication consistency. The relationships
between technical processes, organizational hierarchy and the social interactions
between developers were termed operational consistency. We also saw how the
dimensions of social interactions, communication, and processes were linked to
STC. We see these consistency dimensions as independent of, yet interlinked
with, STC. Whereas STC is grounded in detailed code artifacts, our consistency

320 O. Sievi-Korte et al.

dimensions concern other parts of the socio-technical system where software
development happens. They currently lack a numerical operationalization like
the STC metrics discussed previously. In this paper, they are instead repre-
sented by the themes that specify concrete problems related to each consistency
dimension.

Figure 2 presents the themes forming our model of social interactions in
GSD organizations. The themes either describe communication (in)consistency
or operational (in)consistency. Our two consistency dimensions are linked to STC
both as concerns that individual developers may have to address and as aspects
of the overall socio-technical system (represented by the outermost gear with
its corresponding distances; see, e.g., [1,13]). At the heart of our model is the
developer, who must find means to communicate with others, follow processes,
and produce technical artifacts – and engage in social interactions during such
activities. In the following, we first describe the themes (highlighted in bold)
together with quotes from our interviewees, to illuminate the abstract consis-
tency dimensions, and then discuss the model as a whole.

Developer

Socio-technical
Congruence

Operational
Consistency

Communica
tion
Consistency

Socio-technical system

Theme Theme description

Organisational
hierarchy

Differences in hierarchies (flat
vs. layered) between sites.

Processes Matching of defined processes
and daily activi tes.

Differences
between sites

Differences in equipment,
human resources and access
to knowledge between sites.

Expectations Varying expectations on
outcomes.

How to write
documentation

Different levels of expected
details between sites.

Commitment Commitment to tasks.

Technical
learning curve

Differences in learning new
technologies due to varying
backgrounds.

Theme Theme description

Working
culture

Differences in level of detail
required in communication.

Access to
knowledge

Realization of
communication methods
between sites.

Verbal
communication

Differences in how different
cultures are addressed.

How to read
documentation

Matching of intended
interpretation and actual
interpretation of document.

Assumptions Assumptions on the status
or meaning of items.

Social learning
curve

Differences in learning how
to work with different
cultures.

Fig. 2. Social interactions in a GSD organization.

4.1 Communication Consistency

Communication consistency concerns the match between ways (technical
arrangement of communication), forms (presentation of content) and balance
(amount of interaction) of communication in different parts of the organization
and between individuals. Major issues in communication may arise from dif-
ferences in working cultures between sites. Cultural misunderstandings can
result in severe difficulties, such as avoidant behavior, as in this example: “the

Dimensions of Consistency in GSD 321

issue is that in some cultures you don’t tell the manager something won’t be done,
you only tell him when you have no choice and that’s because it is due now, and
it just isn’t there. And that can be a big problem.” This is not necessarily a factor
of any particular culture but rather reflects the lack of a trustful relationship
between people from different cultures. One party may be accustomed to very
direct communication and have a long history with colleagues, whereas another
party is used to a more subtle form or has just joined the development effort. In
general, it is known that developers’ views on productivity varies [19] and that
they communicate with their managers in different ways, so it is not surprising
that issues arise in GSD when the communication bandwidth is limited or trust
has not yet been built.

While verbal communication is understandably challenging between dif-
ferent sites, a bigger issue is that when live meetings are not feasible, develop-
ers are forced to settle for reading documentation. Misunderstandings eas-
ily arise, like “when somebody writes [something that] is perfectly clear to the
person who wrote it and their nearby colleagues [but that] can be interpreted
entirely differently at a remote site, and that sometimes comes true in differ-
ences of implementation”. These challenges are linked to operational consistency
through procedures for how documentation is written. The process and practices
for writing documentation should consider that documentation may be used to
substitute verbal communication, and thus it needs to be self-explanatory and
unambiguous.

Above all else, problems arise from actual lack of communication and from
communication that parties are not able to understand. A big issue for prac-
titioners is assumptions about what people at other sites know or how they
view the project’s status and goals. Team mental models – representations of
key elements in the environment shared across team members [20] – are critical
for mutual understanding among individuals. In GSD, mental models must be
shared across geographically separated teams [3]. The salience of key elements
may differ considerably between teams at different sites, and the environment
may even be completely different, with varying understanding of common key
elements. Convergence in mental models does not occur by itself over time even
within the same geographically collocated team. Rather, as team member roles
become more differentiated, interaction can decrease and the shared mental mod-
els decline [16]. These conditions can cause wildly different mental models across
distributed teams, leading to assumptions that stifle communications.

Conflicting views may even result in using incorrect information to ques-
tion solutions. As noted in our material, “people quite easily develop their own
notion of what’s going on and their own image on what we’re doing, and then
all of the work is filtered through that notion, and then they wonder why we’re
doing this, why aren’t we doing that, and they might not realize at any point that
we’re talking about two different things.” Apart from assumptions on the techni-
cal aspects, information may be interpreted incorrectly because of assumptions
arising from cultural differences. Easing the social learning curve would help
communication between developers from different cultures. A concrete example

322 O. Sievi-Korte et al.

from a case company is to arrange multi-cultural parties to celebrate diversity,
instead of treating it as an obstacle.

These issues describe the effects of poor communication consistency. Com-
munication has already been identified as a part of STC as a structural property
of an organization [8] and as a factor that is associated with development speed
[13]. We extend the viewpoint from aspects of communication that are measur-
able on the surface (number of meetings and interactions) to considering ways,
forms, and balance of communication, as well as expectations regarding them.
These are factors that stem directly from individual developers, and how they
are enabled to and actually do communicate with each other.

Our presentation of communication consistency further supports the Media
Synchronicity Theory [10], which states that working communication requires
working processes both for conveyance (i.e., distributing information), and con-
vergence (i.e., reaching a common understanding of the information). Communi-
cation consistency in ways, forms and balance are required to enable good con-
veyance and convergence. The issues we have found are often due to insufficient
means (or will) for distributing particular information, or inadequate processing
of that information between parties, leading to conflicting views.

To increase communication consistency, two core issues must be addressed.
The first is to ensure consistency in how communication is technically arranged.
All sites and teams must be provided with adequate means to communicate
with each other, thus providing consistent access to knowledge. The second
is ensuring consistency in how content is communicated, which is much more
difficult. Teams and individuals should be able to reflect on their communica-
tion mechanisms and recognize critical differences and similarities that prohibit
working communication. A method to handle issues leading to inconsistent com-
munication should then be constructed. The method should also promote equal-
ity – communication should be a dialogue, effectively requiring developers to use
and develop their social skills.

4.2 Operational Consistency

With operational consistency, we mean the extent to which social structures in
an organization are aligned with operational structures governing how work is
performed. When these are inconsistent, the formal, operational structure pulls
in a different direction than what employees do, creating tension and problems.
Such issues are amplified when there are inconsistencies between sites.

Differences in organizational hierarchy between sites easily create disrup-
tions. Developers working with certain assumptions of organizational hierarchy
may find it difficult to interact with others operating under different assump-
tions, as illustrated in our material: “because in Central Europe [there tends to
be] a steeper hierarchy. You cannot dismiss the rules of conversation. Archi-
tects only talk to architects and software developers to software developers. In
Finland, there’s no need for such hierarchy. We can speak freely with anyone.”
Furthermore, many operational practices include assumptions of organizational
structure, e.g., many agile methods assume cross-disciplinary and self-organized

Dimensions of Consistency in GSD 323

teams. This theme is also linked with communication consistency, particularly
working culture – the norms and guidelines developers from different sites and
cultures are accustomed to, and how they should be communicated to be under-
stood correctly. Operational consistency focuses on organizational structures;
communication consistency is concerned with how developers talk about them.

Processes are the primary means to organize software development activities
over time, and they contain many assumptions about social work organization.
For instance, how strictly processes are followed, how exactly they are assumed
to specify what to do, and what developers can do beyond what processes say.
Issues related to processes often escalate due to mismatches in expectations
about results, progress, and what others do: “it might be that in some places
[...] you are told very specifically what you must do and how you must do it, and
initiative is not part of the process. Then again others might think that if you
just say something very broadly, like start doing something like this, [...] people
expect you to be more active [or] you make more independent choices.”

Differences between sites can lead to differences in available resources
(both people and equipment). For example, sites A and C in our material were
both working on a hardware-dependent piece of software, but had different ver-
sions of the hardware. Tests that passed at Site A would fail at Site C. Developers
at Site A would “think that Site C are in the wrong, and then no one knows where
the problem is.” Finding the root cause of a problem in such a situation can take
a long time, particularly when the other site feels like they are being blamed for
problems they have not created. Commitment is closely linked to site differ-
ences. Feeling blamed for problems, experiencing a lack of respect and not being
involved in decision-making will quickly lead to uncommitted developers, par-
ticularly at remote sites. Lack of commitment, in turn, will affect how well work
is carried out, how processes are followed, and how communication is handled,
and thus commitment issues should be carefully handled.

Participants reported issues arising from assumptions that everyone has
understood things the same way. Integrating documentation instructions
into the operational procedures is one way of combating this problem, as in this
example from a case company: “we aim to say every obvious thing out loud ...
and then we also write these so-called self-evident truths down in the design doc-
uments.”. Here, developers had noted how mismatches in assumptions could lead
to serious problems, and had created a consensus to help each other via documen-
tation. However, inconsistency may arise if sites differ in how they approach the
documentation activity: “I have seen some examples [where expectations], par-
ticularly in Site B, for documentation was to be extremely detailed. It’s almost
instructions [for] ‘how to write code’, and that’s not how we work here.”. We
can see how both parties can quickly become equally frustrated – Site A from
feeling the need to document items they feel are self-evident, and Site B from
feeling they are not being given all the information they need. Flexibility from
developers on both sites is required to find a working process.

Operational inconsistency may appear as differences in technical learning
curve. Developers working at different sites often have different educational

324 O. Sievi-Korte et al.

backgrounds. Thus, learning new tools and technologies is easier for some than
others. If an organization does not give sufficient support via training to bridge
this gap, differences in the skill base may result in conflicts.

The aforementioned issues describe poor operational consistency. Develop-
ment processes, practices, ways of working, and other operational methods may
be implemented or understood differently at different organizational sites due to
differences in organizational structure, local organizational or national culture
and norms, or other social factors. Low operational consistency leads to clashes
between planned work practices and people’s natural social interactions and
dynamics around work organization. Operational consistency can be improved
if the organization, operational practices, and social interaction between indi-
viduals match. Thus, to enforce operational consistency, managers should allow
teams of developers (in effect, the organization structure) to flexibly restructure
itself around tasks. An organizational structure or mode of working should not
be imposed on teams as a matter of standard policy, but such decisions should be
based on situational evidence and followed by attention to the social interactions
that emerge, leaving room for individuals to take initiative. A key prerequisite
of operational consistency is trust. The less trust people at different sites have,
the heavier and less flexible processes need to be used. Thus, establishing trust
between developers should be a high priority for GSD managers [22].

4.3 Wheels in Motion

To aid the aforementioned challenges in people management and soft issues,
we need to explore the GSD organization beyond STC. Our analysis reveals
two dimensions affecting GSD – operational and communication consistency –
that complement the existing and widely recognized STC. The new consistency
dimensions are distinct from STC as they do not directly concern the software
artifacts under development. Rather, they reflect the fit between work imagined
on the drawing board and how developers are actually able to carry it out.

The different consistencies in our model are interlinked, and if one wheel
breaks, the whole system comes to a halt. Problems in one organizational dimen-
sion will reflect on and spread to other dimensions (see Fig. 2). Poor operational
consistency is often caused, e.g., by processes that do not support daily activi-
ties, such as those with hierarchies and actions that do not fit agile development
within teams. Lack of support for daily activities will easily lead to develop-
ers not knowing what they should be doing and with whom. This will soon be
visible as erratic communication between developers – a decrease in communica-
tion consistency. Vice versa, developers who are unable to properly communicate
(inconsistent communication) will likely be unable to follow desired processes.
Thus, inadequate support for operational consistency (poor match between daily
work and process) will manifest as poor communication, and poor communica-
tion consistency will reflect back on operational consistency. The two will impact
STC, as they either disrupt coordination activities or deteriorate the software
architecture in such a way that coordination no longer matches what the organi-
zation is capable of handling. Improvement and maintenance actions that strive

Dimensions of Consistency in GSD 325

to make GSD work better must focus on the root causes within the consistency
dimensions. Similarly – if communication between developers is fluent, hick-ups
in processes are easier to solve, and when processes support daily tasks, there
is both less need for communication and better grounds for fruitful, two-way
conversations.

Finally, distances affect the consistency dimensions. We saw social distance
particularly in issues related to organizational hierarchies, inequality, commit-
ment, working culture, assumptions and social learning curve. Temporal and
geographical distance were visible particularly in processes and communica-
tion mechanisms – how to handle development tasks and communication when
face-to-face meetings are not possible. Distances also often create distrust, and
unclear reasoning (often due to poor communication) can also easily create fear.
Fear and distrust can cause inconsistency, and that inconsistency can feed dis-
trust in a vicious cycle. Similar findings, stressing the need to agree about the
norms of work and build discipline toward the process are reported by Piri [22].

5 Discussion

Our empirical material suggests that social factors in GSD can be viewed as a
multi-dimensional system, having two consistency dimensions interacting with
STC, all affecting one another and being influenced by distances. In the following
we will discuss our research questions and the limitations of our study.

5.1 The Socio-technical System

Based on our study, we propose reconsidering how we view GSD. We set out to
study social interactions in GSD, starting with RQ1: How does the coordination
process in GSD manifest in terms of social factors, structures, and interactions?.
The coordination process in GSD manifests in terms of social factors, structures,
and interactions as a model with two consistency dimensions. With STC, these
form a system (as given in Fig. 2) that can explain why coordination works or
breaks down in the interactions between individual developers and the overall
socio-technical system that is active in GSD.

We wanted to probe deeper in to the coordination process with RQ2: “What
factors influence the quality of the coordination process?”. The quality of the
coordination process is influenced by the degree of consistency in the communi-
cation and operational dimensions. Our interview material highlights the diffi-
culties practitioners face when there are inconsistencies between processes and
practices. A lack of consistency commonly caused increased dissatisfaction, lack
of motivation, and frustration among the practitioners. These co-occur with
delays in schedule and with sub-optimal quality of the resulting software.

Finally, our attempt was to elicit a way of correcting found issues in addition
to just identifying them, as we posed RQ3: “How can the threats to the coordi-
nation process be mitigated?”. The first step is to identify how inconsistencies in
communication and operations can threaten effective coordination of software

326 O. Sievi-Korte et al.

development. These threats can then be mitigated by distributing coordination
work and empowering developers to coordinate their parts of the socio-technical
system. Distributing coordination work requires workforce training and a high
degree of trust. It also requires improving ways, forms, and balance in communi-
cation and aligning the formal, operational structure in the organization with the
natural social interaction structures that exist on an interpersonal level. These
activities could be built into the software development process by including dis-
tributed coordination activities on all levels of the organization.

Accepting that the development of any large piece of software requires social
interaction, the stereotypical image of a programmer as technology-oriented and
socially inept is challenged in GSD. A developer should be capable of adapting to
different communication styles to increase communication consistency as well as
to different ways of coordinating work to increase operational consistency. Several
of the comments by participants in our study shows that some developers are
already tacitly aware of such issues.

Achieving wide improvement in GSD escapes formal definitions of organi-
zation, processes, and procedures, and relies on organizations’ ability to foster
social developers and their cooperative skills. Furthermore, relying on develop-
ers’ social skills requires that the management is more informed regarding the
mechanisms of social behavior among software developers.

5.2 Related Work

Mariani [17] presents recent advances in coordinating socio-technical systems,
and stresses the need to include socio-cognitive aspects in technical solutions
from the very beginning of design. While current work in GSD mostly relates to
the technical-to-social mindset as defined by Mariani, we could utilize the princi-
ples and theories of social-to-technical mindset to improve coordination. Similar
relationships between social protocols, coordination mechanisms (operations)
and communication, as presented here, have also been given as a framework by
Giuffrida and Dittrich [12]. They base the framework on theories of coordination
mechanisms and communicative genres, and support the rather abstract frame-
work with ample examples from their empirical study. However, this framework
concentrates heavily on communication alone, while we present a more balanced
view of the different social aspects in GSD projects.

Furthermore, Jolak et al. [15] discuss communication aspects of GSD in the
light of geographical and social distance. They analyzed the categories of col-
laborative discussions in joint design tasks and noted that collocated and dis-
tributed teams differed in the quality of the communication – the amount of
creative debate was smaller in distributed cases. This can be seen as lack of
communication consistency and is assumed to lead poorer design since creative
thinking and constructive criticism are reduced. Robinson [23], in turn, reports
findings how team members spread across sites do not feel that they belong into
the same team, even though week-long face-to-face meetups are arranged twice
a year. This highlights the need for continuously upholding communication con-
sistency. Similar problems in communication consistency, and particularly the

Dimensions of Consistency in GSD 327

form and balance of communication have been identified by Stray et al. [31],
who studied the use of Slack in virtual agile teams. They noted that even when
using such direct messaging, there are significant differences in levels of activity,
stemming mainly from language skills and knowledge level. Further, using too
much personal mode was found a barrier - supporting our identification of social
learning curve as an essential theme in communication consistency.

Problems similar to what we found with regard to operational consistency
have also been reported by Hussain et al. [14] in the context of requirements
management and informal change requests. Informal requirement changes are
a direct product of deviating from defined processes, and contain elements of
challenges related to organizational hierarchy, varying expectations and inequal-
ity between sites – all elements of operational consistency. Furthermore, Björn
et al. [4] also report issues around similar themes in their empirical study on
how agile methods were adopted in a global setup – severe challenges were dis-
covered as a direct result of inadequate matching of operations (development
methodology) and social interactions.

Finally, Sigfridsson [30] reports empirical findings from an organization where
consistency was well supported. Teams would actively work on and adjust their
practices to allow for better collaboration across sites, and the organization
had several actions alleviating, e.g., inequality between sites, such as worldwide
seminars to learn new technologies. In the organization in question, teams did
not think of distribution as a problem, but just as a mundane thing. This work
shows how truly important it is to support and achieve a balance of consistencies.

5.3 Limitations and Validity

There are some limitations to be addressed regarding our study, namely com-
pleteness, potential bias and limits to data synthesis. In addition to limitations,
as with any study, we must consider the potential threats to the validity of our
results. We address threats to validity following Maxwell’s categorization [18].

Limitations. We first consider potential bias. While the first author was
involved in a previous study utilizing the same interview material as here, none
of the other three authors were involved in the previous study in any way. There
were thus three researchers, who had a neutral and objective stance to the mate-
rial, validating all the findings. As all steps in the research process were defined
jointly and included validation with all authors involved, we are confident that
there are no substantial risks related to bias.

Second, we consider the completeness and coverage of our interview material.
While one could always wish for a larger set of interviewees, thirteen intervie-
wees already gives us a credible sample when we consider the variance in compa-
nies. Our interview material was gained from seven different companies, covering
together almost 20 different sites, with headquarters in three different countries.
The companies also varied in sizes and domain.

Finally, we need to consider the limits of our data synthesis. We used a form
of thematic analysis [5], which potentially lacks in transparency. To avoid this

328 O. Sievi-Korte et al.

potential drawback, all steps leading to creation of the consistency model have
been validated - anti-patterns derived from the quotes, coding of anti-patterns
under themes, and arranging of themes in the consistency model. Thus, we have
traceability from our model back to raw data (quotes) as well as validated out-
comes. However, the actual creation of our consistency model did not follow a
strict procedure, but is a product of joint interpretative synthesis conducted in
a workshop setting, and we acknowledge the weakness of its repeatability.

Threats to Validity. Descriptive validity concerns accurate recording and pre-
sentation of the data, based on which conclusions are made. All the interviews
were recorded, and the recordings were transcribed by an independent profes-
sional. Transcriptions were copied verbatim into an analysis tools (NVivo), from
which individual quotes have been extracted. In case a single quote was difficult
to interpret, using the tool it was easy to find the context surrounding the quote.

Threats related to theoretical validity are ultimately concerned with whether
we captured what we intend to in relation to our hypothesis. Our study was
exploratory. As we had no hypothesis, but an open research question, there were
no risks that interview subjects, questions or the process would be biased towards
confirming our hypothesis. However, there are validity threats regarding how well
our material is suited to answer our research questions. The interview protocol
was not designed to uncover issues or practices related to social interactions.
Thus, issues discovered in the interviews may lack sufficient context or details.

Interpretive validity threats concern correct interpretations of the material.
As discussed above, we consider researcher bias not to be a real risk in this study,
as we did not have a clear hypothesis or a pre-determined vision of how the
material would answer our research question. The results were derived purely
based on the research process and combined analyses of the researchers. To
strengthen the validity of our joint analyses, we always referred back to the
original interview quotes and checked that the quotes supported our findings.

Regarding generalizability, we are confident that internal generalizability
(within the field of software engineering) is fairly well satisfied due to variance
in the represented companies in terms of size, involved sites and domains. There
is no reason to believe that the results would not in general apply to companies
in the field of software engineering involved in GSD.

6 Conclusion

We explored social factors affecting GSD beyond those defined as a part of STC.
We specifically wanted to answer questions related to the coordination process in
GSD, it’s quality and how can threats to the process be mitigated. Our research
has led to a new model of the GSD organization, composed of two consistency
dimensions, STC, the developer at the center, and distances affecting all actions.

Solving the problems of GSD requires continuous attention to multiple, com-
plex and interlinked phenomena with organizational, architectural, operational,
cultural, and communication factors. Given the complexity of this challenge, it
is unlikely that a formal, top-down approach alone will be successful. The role

Dimensions of Consistency in GSD 329

of management shifts towards incentivizing, coaching and mentoring, and pro-
viding developers with resources they need to accomplish organizational goals.
By identifying threats related to inconsistencies and carefully considering the
interlinked nature of organizational dimensions as revealed in our study, GSD
organizations can increase consistency in all dimensions and make their software
development engine run more smoothly.

References

1. Ågerfalk, P.J., Fitzgerald, B., Holmström Olsson, H., Ó Conchúir, E.: Benefits
of global software development: the known and unknown. In: Wang, Q., Pfahl,
D., Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 1–9. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79588-9 1

2. Bano, M., Zowghi, D., Sarkissian, N.: Empirical study of communication structures
and barriers in geographically distributed teams. IET Softw. 10(5), 147–153 (2016)

3. Bass, M.: Monitoring GSD projects via shared mental models: a suggested app-
roach. In: Proceedings of the 2006 International Workshop on Global Software
Development for the Practitioner, GSD 2006, pp. 34–37. ACM, New York, NY,
USA (2006)

4. Bjørn, P., Søderberg, A.M., Krishna, S.: Translocality in global software develop-
ment: the dark side of global agile. Hum. Comput. Interact. 34, 174–203 (2019)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

6. Carmel, E., Agarwal, R.: Tactical approaches for alleviating distance in global
software development. IEEE Softw. 18(2), 22–29 (2001)

7. Casey, C., Richardson, I.: Implementation of global software development: a struc-
tured approach. J. Softw. Evol. Process 14(5), 247–262 (2009)

8. Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-technical congruence: a frame-
work for assessing the impact of technical and work dependencies on software
development productivity. In: Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, pp. 2–11. ACM
(2008)

9. Conway, M.E.: How do committees invent? Datamation 14(4), 28–31 (1968)
10. Dennis, A.R., Fuller, R.M., Valacich, J.S.: Media, tasks, and communication

processes: a theory of media synchronicity. MIS Q. 32(3), 575–600 (2008).
http://dl.acm.org/citation.cfm?id=2017388.2017395

11. Feldman, D.C.: The development and enforcement of group norms. Acad. Manag.
Rev. 9(1), 47–53 (1984)

12. Giuffrida, R., Dittrich, Y.: A conceptual framework to study the role of commu-
nication through social software for coordination in globally-distributed software
teams. Inf. Soft. Technol. 63, 11–30 (2015). https://doi.org/10.1016/j.infsof.2015.
02.013. http://www.sciencedirect.com/science/article/pii/S095058491500049X

13. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication in
globally distributed software development. IEEE Trans. Softw. Eng. 29, 481–494
(2003)

14. Hussain, W., Zowghi, D., Clear, T., MacDonell, S., Blincoe, K.: Managing require-
ments change the informal way: when saying ‘no’ is not an option. In: 2016
IEEE 24th International Requirements Engineering Conference (RE), pp. 126–135,
September 2016. https://doi.org/10.1109/RE.2016.64

https://doi.org/10.1007/978-3-540-79588-9_1
http://dl.acm.org/citation.cfm?id=2017388.2017395
https://doi.org/10.1016/j.infsof.2015.02.013
https://doi.org/10.1016/j.infsof.2015.02.013
http://www.sciencedirect.com/science/article/pii/S095058491500049X
https://doi.org/10.1109/RE.2016.64

330 O. Sievi-Korte et al.

15. Jolak, R., Wortmann, A., Chaudron, M., Rumpe, B.: Does distance still matter?
Revisiting collaborative distributed software design. IEEE Softw. 35, 40–47 (2018)

16. Levesque, L.L., Wilson, J.M., Wholey, D.R.: Cognitive divergence and shared men-
tal models in software development project teams. J. Organ. Behav. 22(2), 135–144
(2001)

17. Mariani, S.: Coordination in socio-technical systems: where are we now? Where
do we go next? Sci. Comput. Program. 184, 102317 (2019). https://doi.org/10.
1016/j.scico.2019.102317. http://www.sciencedirect.com/science/article/pii/S016
7642319301157

18. Maxwell, J.A.: Understanding and validity in qualitative research. Harv. Educ.
Rev. 62, 279–301 (1992)

19. Meyer, A., Fritz, T., Murphy, G., Zimmermann, T.: Software developers’ percep-
tions of productivity. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 19–29. ACM (2014)

20. Mohammed, S., Ferzandi, L., Hamilton, K.: Metaphor no more: a 15-year review
of the team mental model construct. J. Manag. 36(4), 876–910 (2010)

21. Oshri, I., Kotlarsky, J., Willcocks, L.P.: Global software development: exploring
socialization and face-to-face meetings in distributed strategic projects. J. Strateg.
Inf. Syst. 16(1), 25–49 (2007)

22. Piri, A., Niinimäki, T., Lassenius, C.: Fear and distrust in global software engi-
neering projects. J. Softw. Evol. Process 24, 185–205 (2012)

23. Robinson, P.: Communication network in an agile distributed software development
team. In: Proceedings of the ACM/IEEE 14th International Conference on Global
Software Development (ICGSE), pp. 90–94 (2019)

24. Rothman, J., Hastie, S.: Lessons learned from leading workshops about geograph-
ically distributed agile teams. IEEE Softw. 30, 7–10 (2013)

25. Sahay, S., Nicholson, B., Krishna, S.: Global IT Outsourcing: Software Develop-
ment Across Borders. Cambridge University Press, Cambridge (2003)

26. Sierra, J.M., Vizcáıno, A., Genero, M., Piattini, M.: A systematic mapping study
about socio-technical congruence.Inf. Softw. Technol. 94, 111–129 (2018)

27. Sievi-Korte, O., Beecham, S., Richardson, I.: Challenges and recommended prac-
tices for software architecting in global software development. Inf. Softw. Technol.
106, 234–253 (2019)

28. Sievi-Korte, O., Richardson, I., Beecham, S.: Protocol for an Empirical Study on
Software Architecture Design in Global Software Development, Lero Technical
report No. TR 2019 01 (2019). https://www.lero.ie/sites/default/files/TR 2019
01 Protocol for GSD Arch Design Framework.pdf

29. Sievi-Korte, O., Richardson, I., Beecham, S.: Software architecture design in global
software development: an empirical study. J. Syst. Softw. 158 (2019). https://doi.
org/10.1016/j.jss.2019.110400

30. Sigfridsson, A.: A conceptual framework to study the role of communication
through social software for coordination in globally distributed software teams.
Ph.D. thesis, University of Limerick, Department of Computer Science and Infor-
mation Systems (2010)

31. Stray, V., Moe, N.B., Noroozi, M.: Slack me if you can! using enterprise social
networking tools in virtual agile teams. In: Proceedings of the ACM/IEEE 14th
International Conference on Global Software Development (ICGSE), pp. 101–111
(2019)

32. Tamburri, D.A., Kruchten, P., Lago, P., Vliet, H.: Social debt in software engineer-
ing: insights from industry. J. Internet Serv. Appl. 6(1), 1–17 (2015). https://doi.
org/10.1186/s13174-015-0024-6

https://doi.org/10.1016/j.scico.2019.102317
https://doi.org/10.1016/j.scico.2019.102317
http://www.sciencedirect.com/science/article/pii/S0167642319301157
http://www.sciencedirect.com/science/article/pii/S0167642319301157
https://www.lero.ie/sites/default/files/TR_2019_01_Protocol_for_GSD_Arch_Design_Framework.pdf
https://www.lero.ie/sites/default/files/TR_2019_01_Protocol_for_GSD_Arch_Design_Framework.pdf
https://doi.org/10.1016/j.jss.2019.110400
https://doi.org/10.1016/j.jss.2019.110400
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1186/s13174-015-0024-6

Ethical Guidelines for Solving Ethical Issues
and Developing AI Systems

Nagadivya Balasubramaniam(B), Marjo Kauppinen, Sari Kujala, and Kari Hiekkanen

Aalto University, 02150 Espoo, Finland
{nagadivya.balasubramaniam,marjo.kauppinen,sari.kujala,

kari.hiekkanen}@aalto.fi

Abstract. Artificial intelligence (AI) has become a fast-growing trend. Increas-
ingly, organizations are interested in developing AI systems, but many of them
have realized that the use of AI technologies can raise ethical questions. The
goal of this study was to analyze what kind of ethical guidelines companies have
for solving potential ethical issues of AI and developing AI systems. This paper
presents the results of the case study conducted in three companies. The ethical
guidelines defined by the case companies focused on solving potential ethical
issues, such as accountability, explainability, fairness, privacy, and transparency.
To analyze different viewpoints on critical ethical issues, two of the companies
recommended using multi-disciplinary development teams. The companies also
considered defining the purposes of theirAI systems and analyzing their impacts to
be important practices. Based on the results of the study, we suggest that organiza-
tions develop and use ethical guidelines to prioritize critical quality requirements
of AI. The results also indicate that transparency, explainability, fairness, and
privacy can be critical quality requirements of AI systems.

Keywords: AI system development · AI ethical issues · AI ethical guidelines ·
Quality requirements

1 Introduction

The utilization ofAI technologies has unlocked significant social benefits [29]. However,
the black box nature of AI technologies has raised several ethical questions among its
stakeholders concerning safety, privacy, security, and transparency of AI systems [27,
33]. Questions about value priorities and minimizing value trade-offs in designing AI
systems have led to several studies on AI ethics [13, 17].

Autonomous systems, such as autonomous cars and health robots, extend ethical
issues into a domain where making imprecise recommendations could impact human
lives [4, 32]. To develop a responsible AI, human and ethical values need to be embodied
in the system design, rather than considering themmerely part of an obligatory checklist
[13].

Ethical issues, such as bias, diversity, and privacy preferences need to be consid-
ered during the software engineering (SE) process [3, 23]. Aydemir and Dalpiaz [3]

© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 331–346, 2020.
https://doi.org/10.1007/978-3-030-64148-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_21

332 N. Balasubramaniam et al.

highlighted the importance of analyzing ethical issues from the very beginning of SE
process, that is, right from the requirements definition. To develop ethical AI, there
are over 80 ethical AI guidelines documents and standards [22]. However, studies on
applying ethical practices when developing AI are lacking.

The goal of this study was to explore what kind of ethical guidelines companies have
for solving potential ethical issues and developing AI systems. First, we performed a
literature review to identify the potential ethical issues of AI systems and compared the
AI ethical guidelines by three expert groups. Next, we conducted the case study in three
Finnish companies and analyzed their ethical guidelines for developing AI systems.
The participating companies were from the retail, banking, and software consultancy
domains. In this paper, we use “AI systems” to refer to intelligent systems, AI solutions,
AI applications, AI services, and AI products.

This paper is organized as follows. Section 2 describes the related work focusing
on the ethical issues and ethical guidelines of AI systems. In Sect. 3, we present the
research method used in this study. Section 4 describes the results of the analysis of the
case companies’ AI ethical guidelines. In Sect. 5, we discuss how these ethical guidelines
can be used during the development of AI systems. Finally, we draw conclusions based
on the results of the study and suggest future research directions.

2 Related Work

2.1 Ethical Issues of AI

Organizations are embracing many new digital technologies, such as AI and machine
learning. These developments, however, raise new ethical issues that impact their users
[33]. The common ethical issues of AI are: autonomy [17, 23, 26, 30], anonymity [14],
fairness [23, 26, 30], privacy [17, 23, 30], safety [2, 5, 23, 28, 30], security [23, 26, 28,
30], transparency [16, 23, 30], and trust [16, 23, 28].

Ethical issues related to autonomy, anonymity, and privacy are interrelated. For
many AI systems, collecting volumes of personal data from different sources is the
cornerstone of their operation. The potential misuse of data could lead to major privacy
threats [23]. In some cases, privacy issues ofAI are bound to produce both individual- and
society-level impacts [17, 30]. Likewise, ethical concerns related to autonomy include 1)
the extent to which technologies can influence humans [30], 2) the level of consideration
of personal autonomy, such as the surveillance of workers [26], 3) the capacity of indi-
viduals to make their own choices [23], and 4) the possibilities of man out-of-the-loop
operations and their impact [30].

Data exclusion and discrimination byAI systems lead to the ethical issue of fairness,
which is also related to public values, such as human dignity and justice [23, 30]. AI
technology is expected to cater to everyone without any discrimination with respect
to gender, age, accessibility, etc.; it has “the moral obligation to act on fair adjunction
between conflicting claims” [23]. One ethical issue AI systems run into, however, is
producing unfair outcomes because of data bias, exclusion, or discrimination [30]. For
example, profiling users based on their data could lead to unfair outcomes for some user
groups [30].

Ethical Guidelines for Solving Ethical Issues 333

With the influx of new technologies and smart devices, security issues are increas-
ingly complex [30]. For instance, hacking a coffee machine in someone’s home can help
the hackers to open their front door. Similarly, AI safety triggers ethical and societal
issues. When designing technologies such as autonomous vehicles [11], virtual-reality
applications [30], and tracking technologies, such as using GPS to track elderly patients
in everyday settings [28, 30], the safety of users is crucial. In the AI system development,
compromising users’ safety is an ethical issue [28].

The lack of transparency in the data used for AI decision-making and the neglect of
transparency rights when developing AI systems also create ethical issues [16, 30]. The
lack of visibility or simply the black box nature of these AI systems leaves many users
confused about certain suggestions made by the AI devices. Transparency represents
the significance of the stakeholders’ “right to know” [16]. This enables the transparency
and trust to go hand in hand [16, 23]. Explanations of AI decisions are key to building
trustworthy AI systems [16, 28]. Although the lack of explanation does not stop all
users from relying on the systems, explanation plays a major role in building trust
[28]. Moreover, incorporating adequate measures with respect to ethical issues related
to security, privacy, autonomy, and transparency during AI system development helps
acquire users’ trust [23].

2.2 Ethical Guidelines for Practitioners to Develop AI Systems

More than 80 public and private AI ethical guidelines documents exist [22]. In this litera-
ture review, we focus on recently published ethical guidelines by three established expert
groups: European Commission’s (EU) Ethical guidelines for trustworthy AI [18], Insti-
tute of Electrical and Electronic Engineers’ (IEEE) Ethically Aligned Design [19], and
Software and Information Industry Association’s (SIIA) Ethical Principles for Artificial
Intelligence and Data Analytics [31]. These high-level guideline documents targeted
for all types of organizations, including both the public and private sectors. Table 1
summarizes the ethical guidelines of the three expert groups.

Transparency, autonomy, fairness, safety, and privacy ethical guidelines are related to
the ethical issues of AI discussed in the previous section. The ethical guidelines on well-
being involve both societal and environmental well-being. Encompassing sustainability
and monitoring social impact are key phenomena in the well-being of users [18, 19].
Examining the risks of misuse also protects and prevents AI systems from causing harm.
In addition, these expert groups defined explainability, accountability, and responsibility
guidelines to consider potential ethical concerns in AI system development. The ethical
guidelines on purpose of AI systemwas defined to clarify the effectiveness and impact of
AI systems [19]. Also, the necessity of having teams with diverse skills and competence
to operate of AI systems effectively is highlighted in their competence guidelines [18,
19].

Floridi et al. [20] proposed an ethical framework that synthesized the opportunities,
risks, recommendations, and principles to develop “Good AI Society”. The framework’s
five ethical principles were beneficence, non-maleficence, autonomy, justice, and expli-
cability [20]. Apart from such AI ethical guidelines documents, other tools are available,
such as data ethics canvas [25] and ethics matrix [24], to aid practitioners in identifying
ethical issues of AI.

334 N. Balasubramaniam et al.

Table 1. Overview of the ethical guidelines of the three expert groups. E – ethical guideline
defined explicitly in the document; I – ethical guideline mentioned implicitly in the document.

Ethical guidelines EU [19] IEEE [20] SIIA [32]
Transparency E E E
Well-being E E E

Awareness of misuse and harm E E E
Explainability E I E
Accountability E E

Autonomy E E
Fairness E I I

Responsibility I I E
Safety E I
Privacy E I

Purpose of AI system I E
Competence I E

3 Research Method

3.1 Research Process

The research question of this study was what kind of ethical guidelines companies
have for solvingpotential ethical issues anddevelopingAI systems.We conducted this
study using qualitative methods [7] to understand companies’ current situations relating
onAI ethics and ethical guidelines.As a first step,we defined the objectives and questions
of our interviews. Then, the interview questions were validated by senior researchers
and improved based on their feedback. Afterward, we conducted two pilot interviews
and three actual interviews. Finally, we analyzed the interview data and ethical-guideline
documents. The data collection and analysis are described inmore detail in the following
sections.

The unit of analysis in our empirical research process was a company that had
already defined ethical guidelines for developing AI systems. We sought companies
that represented different application domains for a multiple cases study, a method that
Yin [34] has recommended for exploring a relatively new issue, such as ethical AI.
We selected three case companies that were recommended by an AI expert who was
knowledgeable about which organizations have already invested in ethical guidelines
for AI systems.

3.2 Case Companies

Company A is a software consultancy company. It designs and delivers new digital
services and products and has a data science teamwith around 20 people who are mainly
data scientists and coders. Moreover, the company had organized AI ethics coaching for
its employees and customers.

Company B is a Finnish retail company involved in the car, food, and building trades.
Its AI team comprises of 25 people with different skills and capabilities. At the time of
the interviews (2019), it had discussed AI ethics internally for a few years.

Ethical Guidelines for Solving Ethical Issues 335

Company C is one of the largest financial service providers in Finland with millions
of customers. It provides banking and insurance services. It had formed data science
teams of 15 persons and started working on ethical AI since 2017. The company has
also organized ethics training for its data scientists. Table 2 summarizes each company’s
number of employees and application domain.

Table 2. Overview of the case companies.

Company ID for interviewee Number of employees Application domain

A P1 500 Software consultancy

B P2 ~22 500 Retail

C P3 ~12 300 Banking

3.3 Data Collection

This paper’s first author designed the interview questions using Boyce and Neale’s [6]
guidelines, which were then improved based on the feedback received from the three
senior researchers, who are the other authors of the paper. We also tested the questions
with two practitioners in order to check their feasibility and understandability.We did not
make any changes to the interview questions after the pilot testing. However, these two
pilot interviews were not included in this study because the first company did not have
concrete ethical guidelines for the development of AI systems. The second company of
the pilot interviews had recently started to develop a technology platform for helping
organizations deliver explainable AI services. A representative at this second company
recommended the companies and interviewees for this case study.

We organized our interview questions into two parts: the organizational context of
the interviewees, and the ethics and ethical guidelines of their companies. The first two
authors of the paper interviewed one person from each case company. The interviewees
were deeply knowledgeable about the ethical guidelines of their companies and had
closely collaborated with professionals of various backgrounds such as data scientists,
designers, and developers.

We conducted the interviews in late 2018 and early 2019. The lengths of the inter-
views varied from 60 to 80min. The interviewees agreed to audio recordings of the inter-
views, and we assured anonymization in results. After the interviews, the interviewees
shared the ethical guideline documents of their respective companies.

Company A had designed a data ethics canvas to capture possible ethical issues and
the actions needed to mitigate them. The canvas consisted of 40 questions categorized
into five sections. The company also shared its AI ethics training document, which
contained a set of ethical guidelines. Company B’s ethical principles document had five
guideline categories and ten guidelines in total. Similarly, Company C had defined five
ethical guideline categories in its document.

336 N. Balasubramaniam et al.

3.4 Data Analysis

The next step was to analyze the data we collected from the documents and interviews.
The audio files from the interviewswere transcribed, and the notes taken during the inter-
views were attached to the transcriptions. We applied the Eisenhardt research method
[15] in the data analysis. We performed a within case analysis with the codes categorized
based on the ethical issues of AI and created a case description report for each company.
Thereafter, based on the case description written for each company, the cross-case anal-
ysis method was employed, during which evidence data from one case description was
compared to the other cases to report the results [15]. Figure 1 gives an overview of the
data analysis process employed in this study.

Fig. 1. Overview of data analysis

We used Charmaz’s [8] grounded theory method on coding and code-comparison
practices to the qualitative interview data for the purpose of analysis only. To elaborate
the coding process, the first two authors of this paper first read the documents and
transcripts separately. Then, they inductively applied descriptive labels (i.e., “codes”) to
segments of text in each document and transcript. These high-level categories of codes
were formed based on the ethical issues of AI. Next, the first two researchers iteratively
compared and discussed the codes and categorizations. Missing codes were added, and
ambiguous codes were resolved during the iterations. In addition to the codes related
to ethical issues of AI, the authors also identified codes related to ethical practices for
solving ethical issues at the case companies.

4 Results

The first subsection below describes what kind of ethical guidelines the case companies
have for solving potential ethical issues of AI. The second subsection describes a small
set of practices that can support the use of the ethical guidelines during AI system
development.

Ethical Guidelines for Solving Ethical Issues 337

4.1 Ethical Guidelines Focusing on Potential Ethical Issues of AI

Table 3 summarizes the ethical guidelines the case companies defined for developing AI
systems, which have been categorized according to potential ethical issues.

Accountability: To ensure accountability, the ethical guidelines of Company A sug-
gest assigning a responsible person to each project to identify any possible unintended
consequences of the AI system. Then, the responsible person is in-charge of handling
and controlling the harm, ethical issues, and consequences of the AI system.

At Company B, the ethical guidelines for accountability highlighted the importance
of responsibility in AI systems. The guideline states that the company is responsible
for its AI systems and its decisions. Moreover, the company’s data collection and uti-
lization when creating algorithms is driven by acting responsibly. The company is also
responsible for AI developed outside the company and used in their systems (P2). At
the time of the interview, the data scientists of the company were attempting to open AI
black box and trying to understand its underlying decision mechanism, as the company
is accountable and responsible for all AI services they provide to customers.

The interviewee at CompanyB (P2)mentioned that AI ethics is part of the company’s
sustainable strategy. Therefore, the company and its partners use AI systems to build a
better society and a better world. The goal of their corporate responsibility is to improve
social welfare, and P2 asserted that the company held itself responsible for creating
values for consumers and society.

Company C’s ethical guidelines on accountability required defining owners whowill
be responsible for guiding the company’s operations and the algorithms developed by
the company. They also aim to keep track of the ethics of AI system throughout its life
cycle. The company also focuses on using data and AI responsibly with people-first
approach, and its ethical guidelines underscore that the company’s choices when apply-
ing AI should always be responsible. P3 expressed a high-level viewpoint on corporate
responsibility that comprised company responsibility, societal responsibility, and cus-
tomers’ responsibility. Currently, Company C prioritizes societal responsibility, which
P3 supported: “We have to act sustainably in society and take good care of the society….
People expect the bank to do right things.”

The accountability-related ethical guidelines in our case companies associate
accountabilitywith developing responsibleAI. CompaniesA andCmentioned defining a
person or owner who would be responsible for identifying the unintended consequences
and ethical issues of AI. However, Company B portrayed its own responsibility for
the decisions of AI systems. In particular, Companies B and C emphasized developing
responsible AI as a part of their societal responsibility.

Explainability: The ethical guidelines of Company A comprehended the importance
of designing explainability from the beginning of AI system development, which the
adoption of the General Data Protection Regulation (GDPR) in the EU pushed them to
do (P1). To guide the development teams with respect to explainability, the following
basic questions were defined in the data ethics canvas: 1) Is explainability needed? 2)
Who needs it? and 3) How much are you able to explain the system? The interviewee
also mentioned that considering the explainability from the beginning helps in choosing
the right algorithmic model for the AI system.

338 N. Balasubramaniam et al.

Table 3. Overview of ethical guidelines and ethical issues of AI

Ethical issue of AI Ethical guidelines of AI

Accountability (A, B, C) Decide who will be responsible and contacted if the system is seen
causing harm, and decide who in the project resolves ethical issues
(A)
Use responsibility and security to direct the collection and
utilization of the data and the creation of AI solutions and
algorithms (B)
Be responsible for the AI systems and the decisions they make (B)
Define owners for the principles guiding the company’s operations
and for the algorithms the company has developed. Ensure the
ethics of AI throughout its life cycle (C)
Use data and AI responsibly for the good of the customers (C)

Explainability (A) Design and build in explainability from the beginning, where it is
paramount to provide justification for the outcomes of the system
Do not use manipulative design – instead design for understanding

Fairness (A, B) Avoid creating or reinforcing bias that can lead to unfair outcomes
(A)
Use diverse/inclusive training and test data to ensure fairness and
inclusivity (A)
Respect human rights and the use of AI systems must not lead to
discrimination (B)

Privacy (A, B, C) Collect, store, and use personal data safely and default to high
privacy (A)
Anonymize data as much as possible (A)
Use responsibility and security direct the collection and utilization
of the data and the creation of AI solutions and algorithms (B)
Protect the data and privacy of the customers (B)
Guarantee privacy and personal data protection for the individuals
represented in the data used, in accordance with our data protection
principles (C)

Transparency (A, B, C) Prioritize transparency in the system and strive to increase trust in
all of them (A)
Go for maximum transparency and openness in the system
whenever possible (A)
Inform transparently to customers of where and how the company
utilizes the data they have provided (B)
Act openly in relation with customers, partners, and stakeholders,
ensuring sufficient transparency for the evaluation of the AI the
company has developed (C)
Discuss the company’s use of AI openly and subject the work to
public scrutiny (C)

According to the interviewee P1, explainability is also about understanding. The
biggest problem with understandability is that it is difficult to explain an AI system’s

Ethical Guidelines for Solving Ethical Issues 339

results, even for the people who built it. Furthermore, P1 said “It is important to design
easy systems to use; that is, whoever is using the system must also know what happens
under the hood”. The problem, however, is that explanations provided by the system are
difficult for the users to understand, so they do not add any value (P1).

According to the interviewee at Company B (P2), it is an important, necessary skill
for the data scientists to explain the AI systems they create. They should understand
what is inside the AI black box, that is, what kind of data there are and how the AI
system uses them (P2). Company B highlights explainability as a key part of building
responsible AI.

To summarize, the companies represented their ethical guidelines on explainability
as a branch of transparency. The interviewees at Companies A and B indicated that
explainability was doable by understanding the AI system, and they mentioned a lack
of skills in explaining the AI as a hurdle for implementing explainability guidelines.

Fairness: Company A’s ethical guidelines on fairness aim to remove bias from its data.
Fairness in AI systems is closely related to the inclusion and exclusion of the data, which
were described as either overrepresentation or underrepresentation or as bias and gaps
in the data. Their ethical guidelines require representation of diverse set of people as
possible during AI system design. Likewise, our interviewee (P1) pointed to inclusion
as a hot topic in the industry.

One of Company A’s ethical guidelines on fairness advocates for avoiding creating
or reinforcing bias that produces unfair results. According to P1, “There is no right way
to erase or handle bias, because it is always context sensitive.” The interviewee also
mentioned that each team analyzes and decides how to make results less biased, based
on their particular project.

The interviewee at Company C pointed to fairness in relation to customers’ trust.
P3 highlighted it by saying “To gain the trust of the customer, they have to trust that
the bank is doing fair, right and so forth.” P3 added that acting fairly is vital to ethical
banking. To elaborate, the key point related to acting fairly is that customers can trust
that analysis and decisions that concern them aremade correctly by following the correct
process (P3). According to the interviewee, fairness concerns not only individuals but
also society, so it is ethical to work openly, friendly, and equally to do right things that
people expect from the company (P3).

In summary, the companies’ fairness ethical guidelines aimed to eliminate bias and
discrimination from their data. Company A showcased the need for inclusion in data to
achieve fair outcomes. Likewise, Companies B and C described how their AI systems
which do not discriminate, helped protecting human rights and contribute to common
good to the whole society.

Privacy: The privacy ethical guidelines of CompanyA focusedmainly on personal data
protection. The GDPR was a key reason for prioritizing data privacy ethical guidelines.
Data anonymization is one way to ensure privacy in AI systems (P1). To handle personal
data safely, it is essential to reveal to the users on how their personal data is utilized
by the AI system. Their ethical guidelines also emphasized collecting minimal sensitive
data from users.

From the Company A interviewee’s perspective, privacy and safety are important for
any project that deals with data. Furthermore, P1 highlighted that “AI projects introduce

340 N. Balasubramaniam et al.

new vulnerabilities, so that we have to be extra careful with data security and privacy.”
Privacy, security and safety were mentioned as tightly coupled concepts by our inter-
viewee. P1 also commented about users’ right to check their data privacy in compliance
with the GDPR. It is important to make it as easy as possible for users to exercise their
rights to data privacy (P1).

The ethical guidelines of Company B on privacy highlighted data protection and the
privacy of customers. The interviewee explained that “it is really important to understand
privacy that we are using customer data heavily.” so, the company needs to ensure what
is their rights with respect to customer data (P2). The interviewee also pointed out the
influence of the GDPR when creating the data platforms. The GDPR affects how the
privacy and security of customer data is handled (P2).

A key concept mentioned by the interviewee was about permission. That is, permis-
sion from users to use their data and to combine them with data from other sources.
Customers have a right to their data, and they can decline permission to use them (P2).
According to P2, the company must be aware of why it is collecting the data, and what
kind of permissions it has from its customers.

CompanyC has ethical guidelines on privacy protection that aim to guarantee privacy
and personal data protection to the individuals represented in their data. P3 emphasized
that “banking and financial services are as sensitive as health issues from an ethical
point of view and privacy point of view.” The company also provides data protection
and ethics courses which mainly focus on privacy, privacy issues, privacy regulations,
data security, and ways to use data in compliance with the GDPR. Because the company
complies with privacy laws in the EU (P3), one important question in its trainingmaterial
is about trust and privacy: “Can customers trust that the information that concerns them
stays private?”

According to the interviewee, the company is trying to protect its rights to utilize
the data it collects, especially according to the latest version of privacy regulations. P3
also added that there are many constraints on what the company can do with data, and
that the company is cautious about using data. The foremost thing Company C does is
to look at it from customers’ perspective. This is because, according to the privacy laws,
the customers have extensive rights to know and control what is done with their data.
In addition, the company has proposed employing data anonymization so that they can
observe customers’ behavior without pinpointing individuals.

In summary, the case companies’ ethical guidelines on privacy illustrated the con-
tribution of the GDPR. Data privacy, personal data protection, data security, and data
anonymization are the foundation of defining ethical guidelines in the case companies.
In the same way, the companies exhibited their compliance with privacy laws and reg-
ulations. In addition, Companies B and C highlighted the importance of privacy ethical
guidelines in order to ensure customers’ trust.

Transparency: The ethical guidelines of Company A highlighted the importance of
transparency, one of its values – in addition to trust, caring, and continuous learning
(P1). Therefore, its ethical guidelines recommended that development teams to prioritize
maximum transparency and openness in their AI systems whenever possible. However,
maximizing transparency is not straightforward. The interviewee mentioned that there

Ethical Guidelines for Solving Ethical Issues 341

can also be several reasons, such as business secrets and privacy, that development teams
have to manage with transparency.

According to the interviewee, transparency starts with technical transparency, which
means exposing the data and algorithms of AI systems. The interviewee’s definition of
transparency also included explainability: “It doesn’t need to be lengthy explanation,
but it needs to be understandable, otherwise it is not transparency.” P1 also explained
that transparency is doable despite problems such as lack of data (or inclusive data) and
data plus algorithm opacity.

The ethical guidelines of Company B feature transparency, along with the responsi-
bility and security ethical guidelines. The guidelines focus on informing the customers
on how the company utilizes their data. Being open and transparent is the goal of Com-
pany B. The interviewee mentioned privacy as a prerequisite for transparency. That is,
if the customer has given permission to use their data, then it is easy for the company to
implement transparency (P2).

At the time of our interview, the company was discussing how to be more transparent
about the AI behind its recommendations and results. The interviewee mentioned that
the company needs to improve transparency and the related technical things. One of the
proposals to ensure transparency is to open algorithms (P2).

Company C’s ethical guidelines on transparency are associated with openness. The
guideline highlights that it is crucial to act openly with customers, partners, and stake-
holders. Thismeans discussing the use ofAI openly andopening thework of the company
to review and public scrutiny.

To summarize, all the case companies aimed to work openly and transparently. They
see opening their data and algorithms as a starting point to ensure transparency. It is also
critical to ensure that the data and analytics are correct. Being transparent with customers
gains their trust, which the companies portray as a key value.

4.2 Practices Supporting the Use of the Ethical Guidelines of AI

This section describes the following three practices that can support the use of ethical
guidelines in the development of AI systems:

• Defining the purpose of the AI system
• Analyzing the impacts of the AI system
• Using multi-disciplinary teams

Defining the Purpose of the AI System. All our case companies focused on defining
the purpose of the AI system clearly. Company A emphasized that it is important to
ensure the system that the company designs and builds have a clear purpose so that the
system will be trusted to behave adhering to its purpose. In addition, the key factors like
what is the expected result of the system and how it will be measured need to defined.

In their ethical guidelines, Company B highlighted their objective of creating solu-
tions that are useful for customers. The company focused on the practice of placing
the needs of the customers first and creating an AI system that is useful to customers.
Furthermore, the company only uses their customer data for purposes for which their

342 N. Balasubramaniam et al.

customers have given permission. Customers should control the data that the company
can use (P2). Altogether, the company aims to achieve the best customer experience.

Company C’s viewpoint is that, when defining the purpose, the objectives guiding
the use of AI need to be determined clearly. This objective can be refined if necessary,
based on changed data, technical possibilities, and the work environment. In addition,
the company also considers things from customers’ perspectives, which is also the focus
of Company B.

Analyzing the Impact of the AI System. Company A’s analysis of the impact of its
AI system is supported by the following two guidelines:

• Respect and be mindful of the impact on people affected by the system
• Consider the impact of the system beyond its users, and consider the positive and
negative consequences of the system

Company B mentioned that when analyzing the impact, the data-driven insight
enables the company to provide added values to the everyday lives of its customers.
This adheres to their guideline of placing customers needs’ first. Company C’s approach
to analyzing its impact is carefully studying the effects of their choices on the company,
customers, and the society.

Using Multi-disciplinary Teams. Companies A and B highlighted the importance of
multi-disciplinary teams when developing AI systems. According to one interviewee
(P1), the key thing for Company A is to make sure that development teams are truly
multi-disciplinary. The reason to have designers, social scientists, and domain experts
in addition to data scientists is to ensure that all the relevant viewpoints are taken
into account and explanations provided by AI systems are understandable to people
(P1). The interviewee from Company B (P2) explained that they had “different kinds of
backgrounds in all teams so that they can really give new kind of value to the team”

5 Discussion

5.1 Ethical Guidelines of AI for the Development of AI Systems

In this section, we first compare the ethical guidelines of the case companies with the
ethical issues reported in the existing literature and the ethical guidelines defined by the
three expert groups. Then, we discuss how organizations can use their ethical guidelines
to convert potential ethical issues into quality requirements for AI systems.

The analysis of the ethical guidelines of the case companies revealed that their guide-
lines focused on solving the potential ethical issues ofAI systems, such as accountability,
explainability, fairness, privacy, and transparency. When comparing these results with
the ethical issues of AI systems that we identified in the existing literature, we observed
several similarities. The ethical guidelines of the case companies covered the following
ethical issues reported in the literature: anonymity [14], fairness [23, 26, 30], privacy
[17, 23, 30], security [23, 26, 28, 30], transparency [16, 23, 30], and trust [16, 23, 28].

Ethical Guidelines for Solving Ethical Issues 343

The ethical guidelines of the case companies on accountability, explainability, fair-
ness, privacy, and transparency also corresponded to the ethical guidelines recommended
by the three expert groups [18, 19, 31]. Also, the case companies’ guidelines on account-
ability related to the well-being and responsibility guidelines specified by the expert
groups. Furthermore, both the ethical guidelines of the expert groups [18, 19] and the
interviewees of our study recommend defining the purpose of AI system.

The existing literature already offers many ethical guidelines. However, it can be
difficult for companies to know which one of these guidelines they should select to be
used in their AI development. In addition, existing guidelines can be too comprehensive
and broad for development teams to apply, especially in agile projects. The case com-
panies in this study have defined company-specific guidelines that are compact. These
guidelines bring up a set of potential ethical issues that the AI development teams can
focus on.

Based on the results of this case study, we propose that organizations define a set of
ethical guidelines for handling potential ethical issues during the development of AI.We
also recommend that organizations use their ethical guidelines to identify and prioritize
the critical quality requirements of the AI systems.

All our case companies had defined guidelines on transparency. The transparency
guidelines of the case companies emphasized the need for being open to the use of AI
and informing customers what data is used and how it is used in the AI system. The
companies also highlighted prioritizing transparency when developing AI systems to
gain users’ trust. Cysneiros et al. [11, 12] have also proposed transparency as a key
quality requirement of AI systems, and Horkoff’s [21] study on the quality requirements
of machine learning revealed transparency as a key quality.

The findings of our study indicate that the explainability guidelines complement
and support the transparency guidelines. The companies’ ethical guidelines related to
explainability pointed out the importance of justifying the outcomes of AI systems and
building in explainability from the beginning. Similarly, Chazette and Schneider [9, 10]
highlighted explanation as an option to mitigate the lack of transparency of a system and
portrayed explainability as an emerging quality requirement of systems.

The fairness guidelines of our case companies focused on two goals: avoiding bias
and respecting human rights. First, it is critical to avoid discrimination, which could lead
to unfair results. In addition, one of the solutions to tackle fairness issues is to adopt
inclusivity in data used to train AI. The literature [9, 10, 21] indicates that fairness is a
quality requirement.

The privacy guidelines of the case companies covered anonymity, security, and data
protection aspects. All the interviewees especially pointed out the importance of ensuring
the privacy of personal data because of the GDPR. Cysneiros et al. [11, 12] have also
highlighted privacy as a potential quality requirement of AI systems.

The accountability guidelines of the case companies recommended assigning owners
for the AI algorithms the company has developed. In addition, the guidelines suggested
naming responsible persons who will be contacted when the AI system is causing harm
and who will resolve ethical issues. Based on these accountability guidelines, we deduce
that the companies perceive accountability as a characteristic of professional conduct
rather than a system characteristic i.e. quality requirement of the AI system.

344 N. Balasubramaniam et al.

In addition to the ethical guidelines of AI systems, the case companies recommended
practices that can support the application of these guidelines to development projects. For
example, two of the case companies recommended using multi-disciplinary teams when
considering different viewpoints on ethical issues. The interviewees also highlighted
the importance of defining a clear purpose for AI systems by focusing especially on
customer needs. The ethical guidelines of one of the companies even emphasized the
necessity of considering the impacts of the system beyond the user, and consider any
positive and negative consequences the system might have for society. The analysis of
potential negative consequences relates closely to misuse cases, which is a requirements
engineering practice to be used for identifying use cases with hostile intent and negative
scenarios [1].

5.2 Limitations of This Study

Generalizability. One important question related to case studies is: to what extent can
the results of the study be considered representative of a broader range of organizations?
We acknowledge that the number of our case companies was rather low. They represent,
however, three different application domains. These companies were also recommended
by an AI expert who is knowledgeable about which organizations have already invested
in ethical guidelines of AI systems. According to that expert, these case companies are
forerunners. Therefore, we believe that other organizations can learn from the ethical
guidelines described in this paper.

Reliability. The data collection and analysis processes also left room for researcher bias.
To avoid misinterpretation and bias in the interview questions, three senior researchers
reviewed the interview questions, which we also tested with two practitioners. In addi-
tion, two researchers conducted the interviews together. The first author asked the inter-
view questions, and the second author asked follow-up questions based on the intervie-
wees’ answers. Likewise, researcher triangulation was used in order to avoid researcher
bias in the data analysis.

Construct Validity. The number of interviewees in our case study was also low, as
we interviewed only one person from each company. To handle this limitation, the
triangulation of data sources was used. In order to gainmore knowledge about the ethical
guidelines, we were also able to analyze the ethical guideline documents of all the case
companies. Furthermore, the study was done at company level. Therefore, we are not
able to report how the ethical guidelines are applied in AI projects. We believe that this
kind of company-level study provides valuable knowledge about the commitment to and
support of companies for the ethical development of AI systems. We also understand
that ethical guidelines are valuable when they are used in development projects.

6 Conclusions

The goal of this study was to analyze what kind of ethical guidelines companies have
defined for solving potential ethical issues of AI and developing AI systems. The ethical

Ethical Guidelines for Solving Ethical Issues 345

guidelines of the case companies focused on solving ethical issues, such as accountabil-
ity, explainability, fairness, privacy, and transparency. Based on the results of this study,
we suggest that organizations develop and use their ethical guidelines to identify and
prioritize critical quality requirements of AI. The results also indicate that transparency,
explainability, fairness, and privacy can be critical quality requirements of AI systems.
In addition, defining the purposes of their AI systems clearly and analyzing impacts
of their AI systems can assist multi-disciplinary development teams in solving ethical
issues during the development of AI systems.

One important direction in our future research is to conduct case studies and inves-
tigate how ethical guidelines are used in AI projects. Our goal is to compare the ways
development teams have applied the ethical guidelines of their organizations, the chal-
lenges they have faced, and their positive experiences using those ethical guidelines.
Our particular research interest is to understand how critical quality requirements of AI
systems are defined and tested in practice.

References

1. Alexander, I.: Misuse cases: use cases with hostile intent. IEEE Softw. 20, 58–68 (2003)
2. Arnold, T., Scheutz, M.: The “big red-button” is too late: an alternative model for ethical

evaluation of AI systems. Ethics Inf. Technol. 20(1), 59–69 (2018)
3. Aydemir, F.B., Dalpiaz, F.: A roadmap for ethics-aware software engineering. In: ACM/IEEE

International Workshop on Software Fairness (FairWare 2018), pp. 15–21 (2018)
4. Bonnemains, V., Claire, S., Tessier, C.: Embedded ethics: some technical and ethical

challenges. Ethics Inf. Technol. 20(1), 41–58 (2018)
5. Bostrom, N., Yudkowsky, E.: The ethics of artificial intelligence. In: Frankish, K., Ram-

say, W.M., (eds.) Cambridge Handbook of Artificial Intelligence, pp. 316–334. Cambridge
University Press (2011)

6. Boyce, C., Neale, P.: Conducting in-depth interviews: a guide for designing and conducting
in-depth interviews. Evaluation 2(May), 1–16 (2006)

7. Cassell, C., Symon, G.: Essential Guide to Qualitative Methods in Organizational Research.
SAGE Publications, London (2012)

8. Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Qualitative
Analysis. SAGE Publications, London (2006)

9. Chazette, L., Karras, O., Schneider, K.: Do end-users want explanations? Analyzing the
role of explainability as an emerging aspect of non-functional requirements. In: RE 2019,
pp. 223–233 (2018)

10. Chazette, L., Schneider, K.: Explainability as non-functional requirement: challenges and
recommendations. Requirements Eng. (2020)

11. Cysneiros, L.M., Raffi, M.A., Leite, J.C.S.P.: Software transparency as a key requirement for
self-driving cars. In: RE 2018, pp. 382–387 (2018)

12. Cysneiros, L.M., do Prado Leite, J.C.S.: Non-functional requirements orienting the devel-
opment of socially responsible software. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P.,
Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 335–342. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-49418-6_23

13. Dignum, V.: Ethics in artificial intelligence: introduction to the special issue. Ethics Inf.
Technol. 20(1), 1–3 (2018)

14. Doyle, T., Veranas, J.: Public anonymity and the connected world. Ethics Inf. Technol. 16(3),
207–218 (2014). https://doi.org/10.1007/s10676-014-9346-5

https://doi.org/10.1007/978-3-030-49418-6_23
https://doi.org/10.1007/s10676-014-9346-5

346 N. Balasubramaniam et al.

15. Eisenhardt, K.M.: Building theories from case study research. Acad. Manage. Rev. 14(4),
532–550 (1989)

16. Elia, J.: Transparency rights, technology, and trust. Ethics Inf. Technol. 11, 145–153 (2009)
17. Etzioni, A., Etzioni, O.: AI assisted ethics. Ethics Inf. Technol. 18(2), 149–156 (2016). https://

doi.org/10.1007/s10676-016-9400-6
18. European Commission: Ethics Guidelines for Trustworthy AI. https://ec.europa.eu/futurium/

en/ai-alliance-consultation/guidelines. Accessed 24 Jan 2020
19. IEEE: Ethically Aligned Design, First Edition https://ethicsinaction.ieee.org/. Accessed 24

Nov 2019
20. Floridi, L., Cowls, J., Beltramatti, M., et al.: AI4people: an ethical framework for a good

AI society: opportunities, risks, principles, and recommendations. Mind. Mach. 28, 689–707
(2018)

21. Horkoff, J.:Non-functional requirements formachine learning: challenges andnewdirections.
In: International Requirements Engineering Conference, pp. 386–391 (2019)

22. Jobin, A., Lenca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nat. Mach.
Intell. 1, 389–399 (2019)

23. Jones, S., Hara, S., Augusto, J.C.: eFRIEND: an ethical framework for intelligent environment
development. Ethics Inf. Technol. 17, 11–25 (2015)

24. Mepham, B., Kaiser, M., Thorstensen, E., Tomkins, S., Millar, K., et al.: Ethical Matrix
Manual (2006)

25. Open Data Institute: Data Ethics Canvas. https://theodi.org/wp-content/uploads/2019/07/
ODI-Data-Ethics-Canvas-2019-05.pdf. Accessed 24 Jun 2020

26. Palm, E.: Securing privacy at work: the importance of contextualized consent. Ethics Inf.
Technol. 11, 233–241 (2009)

27. Peslak, A.R.: Improving software quality: an ethics-based approach. In: SIGMS 2004,
pp. 144–149 (2004)

28. Pieters,W.: Explanation and trust: what to tell the user in security and AI? Ethics Inf. Technol.
13, 53–64 (2011)

29. Rahwan, I.: Society-in-the-loop: programming the algorithmic social contract. Ethics Inf.
Technol. 20(1), 5–14 (2018)

30. Royakkers, L., Timmer, J., Kool, L., van Est, R.V.: Societal and ethical issues of digitization.
Ethics Inf. Technol. 20, 1–16 (2018). https://doi.org/10.1007/s10676-018-9452-x

31. SIIA (Software and Information Industry Association): Ethical Principles for Artificial
Intelligence and Data Analytics, pp. 1–25 (2017)

32. Stanford University: One hundred year study on artificial intelligence (AI100). In: Artificial
Intelligence and Life in 2030. Stanford University. https://ai100.stanford.edu/. Accessed 15
Dec 2019

33. Vampley, P., Dazeley, R., Foale, C., et al.: Human-aligned artificial intelligence in a multi
objective problem. Ethics Inf. Technol. 20(1), 27–40 (2018)

34. Yin, R.K.: Case Study Research Design and Methods. Sage, Thousand Oaks (2013)

https://doi.org/10.1007/s10676-016-9400-6
https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines
https://ethicsinaction.ieee.org/
https://theodi.org/wp-content/uploads/2019/07/ODI-Data-Ethics-Canvas-2019-05.pdf
https://doi.org/10.1007/s10676-018-9452-x
https://ai100.stanford.edu/

Sentiment Polarity and Bug Introduction

Simone Romano1, Maria Caulo2(B), Giuseppe Scanniello2,
Maria Teresa Baldassarre1, and Danilo Caivano1

1 University of Bari, Bari, Italy
{simone.romano,mariateresa.baldassarre,danilo.caivano}@uniba.it

2 University of Basilicata, Potenza, Italy
{maria.caulo,giuseppe.scanniello}@unibas.it

Abstract. Researchers have shown a growing interest in the affective
states (i.e., emotions and moods) of developers while performing soft-
ware engineering tasks. We investigate the association between develop-
ers’ sentiment polarity—i.e., negativity and positivity—and bug intro-
duction. To pursue our research objective, we executed a case-control
study in the Mining Software Repository (MSR) context. Our exposures
are developers’ negativity and positivity captured, by using sentiment
analysis, from commit comments of software repositories; while our “dis-
ease” is bug introduction—i.e., if the changes of a commit introduce
bugs. We found that developers’ negativity is associated to bug intro-
duction, as well as developers’ positivity. These findings seem to foster
a continuous monitoring of developers’ affective states so as to prevent
the introduction of bugs or discover bugs as early as possible.

Keywords: Bug · Sentiment analysis · Case-control study

1 Introduction

The Software Engineering (SE) community has displayed a growing interest in
the affective states (i.e., emotions and moods) of developers [10,12,16,29,40].
To capture developers’ affective states in SE work, researchers have borrowed
self-assessment measurement instruments (e.g., based on questionnaires) from
the Psychology research community [10]. Such measurement instruments require
developers to explicitly share their affective state during and/or after perform-
ing SE tasks [11]. Other researchers have leveraged measurement instruments
based on biometric sensors to capture how developers feel while performing SE
tasks [29]. In both cases, researchers must hand out measurement instruments to
developers. Therefore, these instruments are not feasible solutions when mining
existing software repositories, which are known to contain valuable information
on software projects and developers [14]. In this type of studies, a more appro-
priate solution is sentiment analysis, which allows mining developers’ affective
states—usually sentiment polarity (i.e., positivity, negativity, and neutrality)—
from SE textual artifacts like commit and issue comments [12,13,30,33].

c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 347–363, 2020.
https://doi.org/10.1007/978-3-030-64148-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_22

348 S. Romano et al.

In this paper, we rely on sentiment analysis to capture developers’ sentiment
polarity from commit comments of software repositories, and then investigate
the association between sentiment polarity and bug introduction. In particular,
we study the following main Research Question (RQ):

RQ. Is there an association between developers’ sentiment polarity—specifically,
developers’ negativity and positivity—and bug introduction?

We hypothesize that developers’ negativity might cause developers to introduce
bugs in source code. This hypothesis is consistent with the findings of a survey,
which lists low code quality (e.g., buggy code) as a possible consequence of devel-
opers’ unhappiness—an affective state associated to negativity [10]. Moreover,
according to the respondents of this survey, being happy leads them to introduce
fewer bugs. Therefore, we also hypothesize that developers’ positivity might be
negatively associated to bug introduction.

To answer our main RQ, we borrowed a kind of observational study, namely
the case-control one [24], from the medical field, and applied it in the Mining
Software Repository (MSR) context. Case-control studies compare two groups—
i.e., cases and controls—differing in an outcome (e.g., having or not a certain
disease) to determine whether or not a supposed factor (or multiple supposed
factors) can explain that outcome. We identified the cases and controls based on
our outcome of interest, namely being Bug-Introducing-Change (BIC) commit—
i.e., commits whose changes introduce bugs—or not. Accordingly, the cases were
BIC commits and the controls were non-BIC commits. Afterward, we employed
human raters to detect negativity and positivity in both BIC and non-BIC com-
mits. In other words, we exploited human raters, rather than sentiment analysis
tools, to determine, and then compare, the proportions of commits containing
negativity and positivity in the case and control groups.

Paper Structure. In Sect. 2, we provide background information and summa-
rize related work. Our case-control study is detailed in Sect. 3. We present the
results in Sect. 4 and discuss them in Sect. 5. Potential threats to validity are in
Sect. 6. Final remarks and future work conclude the paper.

2 Background and Related Work

We provide background information on case-control studies. We then present
sentiment analysis tools for use on SE textual artifacts along with their empirical
evaluations. Finally, we explore work related to ours.

2.1 Case-Control Studies

In the medical field, case-control studies provide a powerful method for studying
rare outcomes of interest (e.g., rare disease) [22]. In particular, they are used

Sentiment Polarity and Bug Introduction 349

to determine whether an association exists between some exposures (i.e., some
supposed causal factors) and an outcome of interest [24]. To this end, researchers
first identify the cases—a group of people known to have a certain outcome—
and then select the controls—a group of people known to not have that outcome.
Afterward, researchers look back to find which people in each group had some
exposures and which did not. It is easy to grasp that case-control studies are
retrospective—in contrast to those prospective in which researchers record some
supposed causal factors and then wait for the outcome to arise. Another char-
acteristic of case-control studies is that the ratio of cases and controls is not the
same as in the population—usually, the ratio of the cases in the population is
very small as the outcome of interest is rare [22].

Based on the selection of the controls, case-control studies are either
unmatched or matched [22]. In unmatched case-control studies, controls are
entirely selected at random or at random but preserving some proportions of
certain confounding factors1 (e.g., by keeping the proportions of males between
cases and controls constant). This latter kind of selection is known as frequency
matching. On the other hand, in matched case-control studies, controls are
selected to match individual cases based on some matching factors (e.g., each
case and the matched control have the same date of birth).

2.2 Sentiment Analysis Tools and Their Empirical Assessment
in SE

Early work in the SE research field has leveraged general-purpose sentiment anal-
ysis tools (e.g., SentiStrength [41]) to mine sentiment polarity from SE textual
artifacts [12,13,33]. Later, researchers have showed that general-purpose senti-
ment analysis tools can perform poorly when applied to SE textual artifacts [19].
To improve the performance of such tools on SE textual artifacts, researchers
have first tuned general-purpose sentiment analysis tools for use in the SE
context—e.g., Islam and Zibran [16] tuned SentiStrength to mine sentiment
polarity from commit comments—and then devised SE-specific sentiment anal-
ysis tools—e.g., SentiCR [1], Senti4SD [3], SentiSW [7], and SentiStrength-SE
[18]). The above-mentioned tools have been also empirically validated by their
authors. In particular, these tools have been validated on datasets of JIRA issue
comments [7,18]; code review comments [1]; questions, answers, and comments
extracted from Stack Overflow [3]; and GitHub issue comments [7].

Novielli et al. [31] investigated the extent to which sentiment analysis tools
agree with human raters (as well as to which extent they agree with each other).
The results suggest that, in general, tools leveraging supervised learning (i.e.,
SentiCR and Senti4SD) perform slightly better. However, their performance is
quite comparable to that of a lexicon-based tool like SentiStrength-SE. Also,
the performance of tools based on supervised learning varies when applied on
datasets different from those used in the training phase. Finally, the performance
of lexicon-based tools like SentiStrength-SE varies from a dataset to another.

1 They are factors associated to an exposure, which cause the outcome of interest [24].

350 S. Romano et al.

Lin et al. [25] also performed a comparison among sentiment analysis tools on
different datasets (i.e., Stack Overflow posts, app reviews, and JIRA issue com-
ments). Similarly to Novielli et al. [31], they observed variations in tools’ per-
formance when applied on different datasets.

Summing up, the results of our study of the literature suggested that:
(i) researchers should not use general-purpose sentiment analysis tools [19]; (ii)
no SE-specific tool has been empirically assessed on commit comments; and
(iii) the performance of sentiment analysis tools varies from a dataset to another
[25,31]. Based on these results, we decided not to use sentiment analysis tool
in our case-control study; rather, similarly to Murgia et al. [30], we exploited
human raters to detect sentimental polarity. Although employing human raters
to execute a sentiment analysis task requires more effort and time than using
sentiment analysis tools, the measures resulting from the use of human raters
should be more reliable, and then allowed us to mitigate threats concerned to
the reliability of the measures [43].

2.3 Developers’ Affective States and Bug Introduction

Graziotin et al. [10] investigated the consequences of developers’ happiness and
unhappiness while developing software through a survey. The authors elicited 42
consequences of unhappiness and 32 consequences of happiness. Low code quality
(e.g., buggy code) is listed as a possible consequence of developers’ unhappiness,
while high code quality is listed as a possible consequence of their happiness.
Souza and Silva [40] studied, through an MSR study, if broken continuous-
integration builds—i.e., builds that cannot compile or cannot pass all tests
because of bugs—are associated to developers’ negativity. To capture developers’
negativity from commit comments, the authors used SentiStrength. The results
suggest that commits containing negativity are slightly more likely to result in
broken builds than those that do not contain negativity. Islam and Zibran [17]
conducted an MSR study to understand if there are differences in the inten-
sity of developers’ negativity and positivity when introducing bugs (i.e., among
BIC commits). To this end, they ran SentiStrength-SE on a dataset by Ray
et al. [34] containing BIC commits, which were identified by applying a heuris-
tic. They found that the intensity of developers’ positivity is significantly higher
than the intensity of developers’ negativity. Also, they compared BIC commits
with Bug-Fixing-Change (BFC) commits—i.e., commits involved in bug-fixing
operations—in terms of intensity of developers’ negativity and positivity. They
reported that neither the intensity of positivity nor the one of negativity differs
so much between BIC and BFC commits. These studies [10,17,40] differ from
our study in a substantial way. First, the kind of empirical investigation is differ-
ent. Second, only our investigation compares BIC to non-BIC commits so as to
demonstrate that an association exists between developers’ sentiment polarity
and bug introduction. In this respect, it is worth highlighting that, although
Islam and Zibran’s study [17] focuses on BIC commits, the authors did not com-
pare BIC commits with non-BIC ones and, therefore, that study cannot prove
that developers’ sentiment polarity is associated to bug introduction.

Sentiment Polarity and Bug Introduction 351

Huq et al. [15] studied whether sentiment polarity of commit comments (and
code reviews) of pull requests can indicate bug introduction in the next commits.
The authors used SentiStrength-SE to extract sentiment polarity from com-
mit comments. The commits of pull requests, of six open-source Java projects
(different from those used by Ray et al.), were classified as BIC or non-BIC—to
identify BIC commits, a heuristic was applied. The authors found that, within
pull requests, commit comments preceding BIC commits were more negative
than those preceding non-BIC commits. Then, the authors concluded that when
developers submit commits containing mostly negativity, then their next com-
mits are prone to introduce bugs. Unlike Huq et al., we do not: (i) exclusively
focus on the commits of pull requests and (ii) compare BIC and non-BIC com-
mits based on the sentiment polarity of the preceding commits (i.e., we are not
interested in studying whether sentiment polarity of commit comments can indi-
cate bug introduction in the next commits). Finally, we manually inspected the
comments of BIC and non-BIC commits.

3 The Case-Control Study

In our case-control study, we considered commits of software repositories of
projects included in the Defects4J dataset (v.1.5.0) [21], which contains 438
bugs from 6 open-source Java projects. We conducted such a kind of study
because: (i) case-control studies are appropriate for the investigation of a rare
outcome of interest [22] like BIC commits2 and (ii) case-control studies require
fewer data points (i.e., fewer commits) as compared to prospective studies [39].3

To conduct our study, we selected commits from Defects4J that played the
role of either case or control. The cases were BIC commits, while the controls were
non-BIC commits. We then applied, for each BIC commit, sentiment analysis
on the commit comment to ascertain which was the sentiment polarity of the
developer who modified the source code of that commit (so introducing some
bugs). Similarly, we ascertained developer’s sentiment polarity for each non-BIC
commit playing the role of control. It is easy to grasp that we assume, based on
empirical evidence [32] and similarly to previous work in SE [16,30], a causal
relationship between developers’ sentimental polarity and what developers write
in their commit comments. Summing up, our outcome of interest is being a
BIC commit or not, while the exposures are developers’ negativity—i.e., if a
commit comment contains negativity or not—and developers’ positivity—i.e., if
a commit comment contains positivity or not.

2 According to Campos Neto et al. [4], the number of BIC commits in Defects4J is
284. This number is much smaller than the total number of commits in Defects4J,
namely 17402, so suggesting that BIC commits are rare—in particular, less than 2%
of the commits in Defects4J are BIC.

3 This is, if we had first identified commits containing negativity, or positivity, and then
determined the proportions of BIC and non-BIC commits, we would have needed
more commits to achieve the same statistical power as our case-control study.

352 S. Romano et al.

3.1 Selection of Cases and Controls

We used Defects4J because the selection of the cases required the identification
of BIC commits that, in turn, can be identified only when bugs are documented.
This dataset directly archives, for each bug, the corresponding BFC commit;
however, it does not directly store information on BIC commits. Such informa-
tion has been recently provided by Campos Neto et al. [4], who have manually
identified, in Defects4J (v.1.5.0), BIC commits of 302 bugs, out of a total of
438, so complementing Defects4J. Some descriptive statistics of Defects4J,
complemented with BIC-commit information, are shown in Table 1. A BIC com-
mit can be BFC at the same time. That is, the changes made to fix a bug might
cause the introduction of some other bugs. In Table 1, we show in parentheses
the number of BIC commits that are BFC and the total number of commits
that are BFC.

Table 1. Summary of Defects4J complemented with BIC-commit information.

Project #BIC commits #Commits

JFreeChart 7 (0 are BFC) 916 (26 are BFC)

Closure compiler 68 (8 are BFC) 2989 (176 are BFC)

Commons lang 47 (4 are BFC) 3598 (65 are BFC)

Commons math 91 (9 are BFC) 4918 (106 are BFC)

Mockito 50 (2 are BFC) 3263 (38 are BFC)

Joda time 21 (4 are BFC) 1718 (27 are BFC)

Sum 284 (27 are BFC) 17402 (438 are BFC)

We selected, as cases, all BIC commits Campos Neto et al. [4] identified in
Defects4J, in total 284. It is worth noting that the number of (unique) BIC
commits is less than the number of bugs (i.e., 302) because a given commit can
introduce one or more bugs.

As suggested in the literature [22], we selected the controls from the same
“population” at risk as the cases (i.e., Defects4J). To have the same distribution
of some confounding factors (also known as confounders) between cases and
controls, we sampled the controls by applied frequency matching. That is, we
selected non-BIC commits at random, but taking into account two constraints.
First, the proportions of the software projects had to be constant between the
cases and controls (e.g., since the commits of Commons Math accounted for 32%
of the cases, we randomly selected the controls so that 32% of them belonged
to Commons Math). We fixed this constraint because we hypothesize that the
project might affect the sentiment polarity of its developers. This hypothesis is
consistent with the results reported by Guzman et al. [12] (e.g., the proportion
of developers’ negativity was higher on commit comments from CraftBukkit
as compared to six other projects). Second, the proportions of BFC commits

Sentiment Polarity and Bug Introduction 353

had to be the same between the cases and controls for each software project
(e.g., since the BFC commits of Commons Math account for 3% of the cases,
we randomly selected the controls so that 3% of them were BFC commits of
Commons Math). We fixed this constraint because we hypothesize that being or
not a BFC commit might affect developers’ sentiment polarity. In this respect,
it has been shown that developers feel rewarded, so raising positivity, when
watching a test suite pass (i.e., when the bar of JUnit turns into green) [35].
Furthermore, when selecting the controls, we only took into account commits
where developers had modified at least one Java file—i.e., commits that did not
concern the modification of Java files were discarded. This is because the cases
were BIC commits with at least one Java file modified—i.e., taking into account
non-BIC commits with no Java file modified would have implied a selection bias.

To increase statistical power, we applied a well-known technique that consists
of selecting more than one control per case [24]. However, selecting more than two
controls per case only produce small gains in statistical power [24]. By keeping
this in mind, we sampled the controls so that their number was twice the number
of the cases (i.e., 568 vs. 284).

3.2 Ascertainment of Exposures

We hypothesized that developers’ negativity might be a risk factor for BIC com-
mits (i.e., we hypothesized a positive association), while developers’ positivity
might be a protective factor against BIC commits (i.e., we hypothesized a nega-
tive association). Therefore, the exposures we took into account are: negativity
and positivity. We treated both negativity and positivity as binary factors, each
having two levels, namely yes or no. For example, yes for the negativity factor
means that a developer felt negative feelings while modifying the source code of
a commit, while no means that a developer did not feel negative affects. It is
worth mentioning that commit comments, being textual artifacts, can contain
negativity and positivity at the same time [41].

To capture negativity and positivity of developers who modified source code,
we involved human raters, who were asked to execute a sentiment analysis task
on the comments of 852 commits, of which 284 were cases and 568 were controls.
In total, four SE researchers with knowledge of sentiment analysis (i.e., four out
of the authors of this paper) played the role of raters. The workload was equally
and randomly divided among the raters so that each commit comment was eval-
uated by two raters. When evaluating a commit comment, the two raters worked
independently from one another. This is to avoid that a rater could influence the
evaluation of the other. Moreover, besides the comment of a commit, the two
raters were unaware of any other information about that commit. For example,
the two raters did not know whether a comment corresponded to a case or a
control. This is because we arranged a level of blinding4 to mitigate a threat of

4 It means concealing research design elements (e.g., treatment assignment) from indi-
viduals involved in an empirical study (e.g., raters) [27].

354 S. Romano et al.

experimenter bias [43]. The use of blinding has been encouraged in the Medicine
research field [27], as well as in the SE one [9].

Each rater was asked to read one commit comment at a time and provide: (i)
a polarity label for negativity (i.e., yes if the comment contained negativity, no
otherwise); and (ii) a polarity label for positivity (i.e., yes if the comment con-
tained positivity, no otherwise). To do this, the raters had to keep into account
Shaver et al.’s emotion framework [36], which organizes emotions according to
a hierarchy of three levels: basic emotions, II-level emotions, and III-level emo-
tions. Thanks to this framework, the emotions the raters recognized in commit
comments could be mapped to positivity and negativity. In Table 1 of our online
appendix,5 we show the mapping between sentiment polarity and emotions from
Shaver et al.’s framework—note that surprise can be either a positive or negative
emotion depending on the context [3,18]. The use of Shaver et al.’s framework
[36] to manually rate sentiment polarity of texts is not new in SE work [3,30].

Table 2. Sample commit comments with the corresponding emotions, based on Shaver
et al.’s framework, and polarity labels.

Commit comment Basic emotion II-level emotion III-level emotion Negativity Positivity

“Removed those pesky

getDateOnlyMillis and

getTimeOnlyMillis

methods.”

Anger Irritation Annoyance Yes No

“fixed the build:) (compiles

fine under eclipse...)”

Joy Cheerfulness Happiness No Yes

In Table 2, we show two examples of commit comments with the correspond-
ing emotions, according to Shaver et al.’s framework, and polarity labels.

The pairs of raters agreed on negativity contained in commit comments 758
times (89%), while on positivity 755 times (88.6%). We also computed Cohen’s
kappa coefficient (κ) [5] to measure the strength of the agreement between the
pair of raters, and thus estimate the reliability of their evaluations. We chose
this coefficient because it was conceived for the measurement of the agreement
between two raters only [5] and used for purposes similar to ours [6]. κ ranges in
[−1, 1], where 1 means perfect agreement. For both negativity and positivity, we
observed a fair agreement6 (κ = 0.37 for negativity and κ = 0.26 for positivity)
for our initial ratings. Such a level of agreement can be considered acceptable
since it concerns initial ratings, not those finals. For the 94 commit comments on
which we had disagreements on negativity, as well as the 97 commit comments
on which we had disagreements on positivity, we planned a series of meetings
in which the other two raters had to determine the final ratings. That is, if
a pair of raters disagreed on the negativity contained in a commit comment,
or similarly on the positivity, then the other two raters attempted to reach a
5 https://tinyurl.com/y2f62sz9.
6 The agreement is: poor if κ < 0; slight if 0 ≤ κ ≤ 0.2; fair if 0.2 < κ ≤ 0.4; moderate

if 0.4 < κ ≤ 0.6; substantial if 0.6 < κ ≤ 0.8; or almost perfect if 0.8 < κ < 1 [23].

https://tinyurl.com/y2f62sz9

Sentiment Polarity and Bug Introduction 355

consensus by discussing that commit in a meeting. Again, besides the comment
of a commit, the two raters involved in the meeting were unaware of any other
information about that commit. Our rating protocol based on two levels—i.e.,
individual and independent ratings of SE artifacts followed by meetings in case
of disagreements between raters—is similar to that used by Ahmed et al. [1] and
Corazza et al. [6].

3.3 Data Analysis

As usual in case-control studies [22,24], we computed the Odds Ratios (ORs)
for developers’ negativity and positivity to measure the strength of their
association to BIC commits (i.e., bug introduction). The interpretation of the
OR for negativity follows:

Table 3. Results on the association between developers’ sentiment polarity and bug
introduction. In bold, CIs and p-values that suggest significant associations.

Factor Level BIC commits Non-BIC commits OR 95% CI p-value

Negativity No 252 (88.7%) 534 (94%) - - -

Yes 32 (11.3%) 34 (6%) 1.994 [1.203 − 3.306] 0.009

Positivity No 250 (88%) 534 (94%) - - -

Yes 34 (12%) 34 (6%) 2.136 [1.297 − 3.516] 0.003

– If the OR is greater than 1, there is a positive association between negativ-
ity and BIC commits—i.e., the odds of negativity among BIC commits are
greater than the odds of negativity among non-BIC commits. Thus, negativity
can be a risk factor for BIC commits.

– If the OR is less than 1, there is a negative association—i.e., the odds of nega-
tivity among BIC commits are lower than those of negativity among non-BIC
commits. Thus, negativity can be a protective factor against BIC commits.

– If the OR is 1, negativity is not associated with BIC commits.

As for positivity, the OR interpretation is similar to that mentioned above.
To determine if the associations of negativity and positivity to BIC commits are
statistically significant (from here on, simply significant), we computed 95% Con-
fidence Intervals (CIs) of the ORs. If a CI does not cross the null value (i.e., 1),
the association is considered significant [24]. Also, we ran Fisher’s exact test [8]
to confirm the significance of the associations. We opted for that test of inde-
pendence, rather than others (e.g., chi-square test), because it is recommended
when the total sample size is less than 1000 [26]—our total sample size is 852. As
usual, we fixed the significance level, α, at 0.05. That is, if the p-value returned
by Fisher’s exact test is less than α, the association is considered significant.
Both analysis script and raw data can be found in our replication package.7

7 https://tinyurl.com/yxgk7vye.

https://tinyurl.com/yxgk7vye

356 S. Romano et al.

4 Results

We present the results on the association between developers’ sentiment polarity
and bug introduction. We also report the results of a subgroup analysis on Java
files changed (i.e., a potential confounder) to study if the number of changed
files in BIC and non-BIC commits could affect our outcomes.

4.1 Sentiment Polarity and Bug Introduction

In Table 3, we summarize the results on the association between developers’
sentiment polarity and bug introduction.

Negativity. As shown in Table 3, commit comments containing negativity are
quite rare as compared to those non-containing negativity. Only 11.3% of com-
ments among BIC commits contain negativity, while only 6% of comments among
non-BIC commits contain negativity. In total, the prevalence of commit com-
ments containing negativity is equal to 7.7%. Despite the proportions of commit
comments containing negativity are quite small for both BIC and non-BIC com-
mits, we can observe that the proportion of commit comments containing nega-
tivity among BIC commits is higher than that among non-BIC commits (11.3%
vs. 6%). In particular, the OR (1.994) is greater than one; therefore, negativity
can be a risk factor for BIC commits, namely for bug introduction. The question
now arises on whether such an association between negativity and BIC commits
is significant or not. The CI ([1.203 − 3.306]) suggests a significant association
as it does not cross 1. This outcome is confirmed by Fisher’s exact test as the
p-value (0.009) is less than α. We can thus answer our RQ as follows:

A positive association exists between developers’ negativity and bug introduction.
The odds of developers’ negativity are 1.994 times greater in those commits whose
changes introduce bugs than they are in those commits whose changes do not in-
troduce bugs. Such an association implies that developers’ negativity can be a risk
factor for bug introduction.

Positivity. Commit comments containing positivity are quite rare as well (see
Table 3). Only 12% and 6% of comments among BIC and non-BIC commits,
respectively, contain positivity. Overall, 8% of commit comments contain positiv-
ity. The proportion of commit comments containing positivity among BIC com-
mits is higher than the same proportion among non-BIC commits (12% vs. 6%)
so resulting in an OR of 2.136. That is, unlike our initial hypothesis in which we
supposed that positivity might be a protective factor against BIC commits, the
OR indicates the opposite, namely positivity can be a risk factor for BIC com-
mits. This outcome is also significant as the CI ([1.297 − 3.516]) does not span
1 and the p-value (0.003) is less than α. We can thus answer our RQ as follows:

Sentiment Polarity and Bug Introduction 357

A positive association exists between developers’ positivity and bug introduction.
The odds of developers’ positivity are 2.136 times greater in those commits whose
changes introduce bugs than they are in the commits whose changes do not introduce
bugs. Such an association implies that developers’ positivity can be a risk factor for
bug introduction.

Neutrality (Further Analysis). We found, unexpectedly, that both negativ-
ity and positivity can be risk factors for bug introduction. Accordingly, neutrality
could be a protective factor against bug introduction if the (negative) associa-
tion between neutrality and BIC commits was significant. To ascertain whether
such a speculation was true, we performed a further analysis. In particular, we
computed the proportions of commit comments containing neutrality for both
BIC and non-BIC commits (which are equal to 79.2% and 88.2%, respectively).
We then computed the strength (i.e., OR) of the association between neutrality
and BIC commits (which was equal to 0.51) and checked the significance of that
association. The results indicate that the (negative) association between neutral-
ity and BIC commits is significant as the CI ([0.347−0.748]) did not cross 1 and
the p-value (0.001) returned by Fisher’s exact test was less than α. Therefore,
neutrality can be a protective factor against bug introduction.

4.2 Subgroup Analysis About Java Files Changed

Sinha et al. [38] found a strong correlation between the number of files changed
in commits and the sentiment polarity captured from the comments of those
commits. Therefore, we performed a subgroup analysis to understand if the

Table 4. Results on the association between developers’ sentiment polarity and bug
introduction for the Java-files-changed confounder.

Confounder level Factor BIC commits Non-BIC commits OR 95% CI p-value

Name Level

1 Negativity No 21 (77.8%) 217 (91.9%) - - -

Yes 6 (22.2%) 19 (8.1%) 3.263 [1.175 − 9.061] 0.03

Positivity No 22 (81.5%) 225 (95.3%) - - -

Yes 5 (18.5%) 11 (4.7%) 4.649 [1.481 − 14.597] 0.015

2 Negativity No 74 (92.5%) 145 (92.9%) - - -

Yes 6 (7.5%) 11 (7.1%) 1.069 [0.38 − 3.004] 1

Positivity No 75 (93.8%) 141 (90.4%) - - -

Yes 5 (6.2%) 15 (9.6%) 0.627 [0.219 − 1.791] 0.465

3–4 Negativity No 55 (88.7%) 83 (97.6%) - - -

Yes 7 (11.3%) 2 (2.4%) 5.282 [1.058 − 26.371] 0.036

Positivity No 52 (83.9%) 3 (96.5%) - - -

Yes 10 (16.1%) 82 (3.5%) 5.256 [1.382 − 19.998] 0.015

>4 Negativity No 102 (88.7%) 89 (97.8%) - - -

Yes 13 (11.3%) 2 (2.2%) 5.672 [1.246 − 25.818] 0.014

Positivity No 101 (87.8%) 86 (94.5%) - - -

Yes 14 (12.2%) 5 (5.5%) 2.384 [0.825 − 6.887] 0.145

358 S. Romano et al.

number of Java files changed in BIC and non-BIC commits could have influenced
the association between developers’ sentiment polarity and bug introduction. To
this end, for each commit, i, in the case and control groups, we counted the
number of Java files changed, xi, and computed the first (Q1), second (Q2), and
third (Q3) quartiles of this distribution. The quartiles resulted to be equal to
1, 2, and 4, respectively. We then categorized each commit into four categories
depending on whether: (i) xi ≤ Q1; (ii) Q1 < xi ≤ Q2; (iii) Q2 < xi ≤ Q3;
or (iv) xi > Q3. Accordingly, the first category included commits with just one
Java file changed, while the second one included commits with just two Java
files changed. As for the third category, it comprised commits with either three
or four Java files changed. Finally, the fourth category included commits where
developers had changed more than four Java files changed. The categorization
of factors by using quartiles is a common technique in case-control studies [42].

Table 4 summarizes the results on the association between sentiment polarity
and bug introduction for each level of the Java-files-changed confounder.

Negativity. By looking at the results in Table 4, we can notice that there is a
positive association—i.e., the ORs are greater than 1—between developers’ neg-
ativity and bug introduction for any level of the Java-files-changed confounder.
These positive associations are also significant—the CIs do not span 1 and the
p-values are less than α—for three out of four levels, namely: when the number
of Java files changed is equal to one, equal to three or four, and greater than
four. For these three levels, the strength of the association between developers’
negativity and bug introduction grows up to 3.263, 5.282, and 5.672, respectively.

Positivity. The results in Table 4 also show a positive association—i.e., the
ORs are greater than 1—between developers’ positivity and bug introduction for
three out of four levels of the Java-files-changed confounder—the only exception
is when the number of Java files changed is equal to two (the same held for
negativity). The results indicate a significant association when the number of
Java files changed is equal to one and equal to three or four (see both CIs and
p-values). For these two levels, the strength of the association grows up to 4.649
and 5.256, respectively. When the number of Java files changed is equal to two,
the OR suggests a negative association since is it less than 1. However, such
a negative association could be due to chance as it is not significant—the CI
crosses 1 and the p-value is not less than α.

Summary. The positive association between developers’ negativity and bug
introduction we observed on the whole in Subsect. 4.1 is confirmed when con-
sidering different amount of Java files changed. Similarly, we can confirm the
positive association between positivity and bug introduction we found on the
whole—although we found a negative association when the number of Java files
is equal to two, it is not significant.

Sentiment Polarity and Bug Introduction 359

5 Overall Discussion

We found, in line with our initial hypothesis, that a positive association (OR =
1.994) between developers’ negativity and bug introduction exists, namely
developers’ negativity can be a risk factor for bug introduction. This finding
is consistent with that of the survey by Graziotin et al. [10]—low code quality
(e.g., buggy code) can be a consequence of developers’ unhappiness—and Souza
et al. [40]—commits containing negativity are slightly more likely to result in
broken builds than those that do not contain negativity.

We also hypothesized that developers’ positivity might be a protective fac-
tor against bug introduction. Rather, we found that a positive association
(OR = 2.136) exists, namely developers’ positivity can be a risk factor for bug
introduction. This result seems to contrast with that by Graziotin et al. [10], who
list high code quality (e.g., bug-free code) as a possible consequence of develop-
ers’ happiness. However, there is a plausible explanation for this finding: feeling
positivity (e.g., being enthusiastic for something) could divert the attention of
developers away from their code so leading developers to introduce bugs.

Both extremes of sentiment polarity—i.e., negativity and positivity—can be
risk factors to bug introduction; on the other hand, neutrality (which is the
complement of negativity and positivity) can be a protective factor against bug
introduction. These findings justify a more expensive and time-consuming obser-
vational study with a cohort of developers to assess causality between developers’
sentiment polarity and bug introduction. Also, our findings and those by Grazi-
otin et al. [10] and Souza et al. [40] seem to foster a continuous monitoring
of developers’ affective states so as to prevent the introduction of bugs or dis-
cover bugs as early as possible. In particular, software companies could supply
their developers with measurement instruments of affective state, like Affective
Slider8 (AR) [2] or by means of wearable smart bracelets [37], to continuously
monitor the affective states of the developers and then suggest countermeasures.
Examples of countermeasures are letting developers take a break to wash out
developers’ negativity, or positivity; or recommending developers who feel neg-
ativity, or positivity, to spend more time in testing their code than what they
would normally do to discover bugs as early as possible. Furthermore, when
looking for commits introducing bugs, those commits containing negativity or
positivity should be prioritized.

6 Threats to Validity

We discuss threats to internal, external, construct, and conclusion validity.

Internal Validity. Case-control studies prove associations, they do not demon-
strate causation [24]. Therefore, our study can just prove that an association
between developers’ sentiment polarity—i.e., negativity and positivity—and bug
introduction exists.
8 It consists of two sliders to collect in real-time self-reported ratings of pleasure and

arousal—two dimensions of emotions.

360 S. Romano et al.

External Validity. We ran our study within the context of Defects4J [21],
which comprises six Java projects, because of the need of knowing actual bugs
and thus their BIC commits. We did not run our case-control study within
the context of the dataset by Ray et al. [34] because, unlike Campos Neto
et al. [4], the authors of that dataset automatically identified BIC commits
by applying a heuristic. Although the use of a heuristic might allow identify-
ing more BIC commits, the reliability of the identified BIC commits would be
worse as compared to manually-identified BIC commits. That is, if we had run
our case-control study with Ray et al.’s dataset, we would have had a stronger
threat of reliability of measures [43]. Furthermore, since we drew upon the work
of external researchers who manually identified BIC commits [4], we should have
also mitigated a threat of experimenter bias [43].

Although Defects4J is widely used in SE experimentation [4,28] and has
allowed us to know actual bugs and have more reliable BIC commits as compared
to other solutions we cannot guarantee that our results can be generalized to
other contexts (e.g., Ray et al.’s dataset, industrial projects, non-Java projects,
and so on) or the universe of Java projects. When we planned our study, we had
to reach a trade-off between generalizability of results and reliability of measures.
Since this is the first study investigating on an association between developers’
sentiment polarity and bug introduction, we preferred to maximize reliability
of measures, rather than generalizability of results. In the future, we plan to
triangulate our results through replications in other contexts like Ray et al.’s
dataset or projects hosted on GitHub (e.g., by using an implementation of the
SZZ algorithm [4]).

Construct Validity. We executed sentiment analysis on commit comments to
determine the sentiment polarity of developers who modified the source code
of those commits. That is, we assume a causal relationship between develop-
ers’ sentimental polarity and what developers write in their commit comments.
Despite such an assumption is based on empirical evidence [32] and shared by
SE researchers [16,30], there might be a threat due to this assumption.

Although we controlled and analyzed some confounders, other confounders
might affect the studied association.

Conclusion Validity. To increase statistical power, we doubled the number of
the controls with respect to that of the cases—such a technique is well-known
in the context of case-control studies [24]. Doubling the number of controls
allowed us to reach values of statistical power equal to 71.6%, for the associ-
ation between developers’ negativity and bug introduction, and 81%, for the
association between developers’ positivity and bug introduction. According to
Juristo and Moreno [20], 70% of statistical power is acceptable.

Another potential threat concerns the manual sentiment analysis. To limit
raters’ subjectivity, two raters evaluated each commit comment by taking into
account Shaver et al.’s framework [36] and, although there were discussions
between two other raters in case of disagreements, we still could not prevent

Sentiment Polarity and Bug Introduction 361

eventual unreliable ratings. For instance, one rater could have dominated the
discussion and biased the other rater. Nevertheless, the use of human raters
should allow having more reliable outcomes as compared to the use of sentiment
analysis tools.

The identification of BIC commits might affect the result. It might be hap-
pened that the set of cases does not include some BIC commits and then some
BIC commits were wrongly selected as controls. Nevertheless, we found that both
negativity and positivity are positively associated to bug introduction and such
associations are both significant. That is, BIC commits contain both more neg-
ativity and positivity as compared to non-BIC commits. If we assumed that (i)
some BIC commits had been wrongly selected as controls and (ii) BIC commits
contain both more negativity and positivity, this would have lead us to under-
estimate the strength of the actual associations of negativity and positivity to
bug introduction, but such actual associations would have been still positive
and statistically significant. Therefore, wrongly selecting some BIC commits as
controls should not represent a big issue since the statistical conclusions of our
case-control study would be the same.

7 Conclusion and Future Work

We presented the results of a case-control study to investigate the associa-
tion between developers’ sentiment polarity—negativity and positivity—and bug
introduction. We found that there is a positive association between developers’
negativity, as well as developers’ positivity, and bug introduction. This means
that both negativity and positivity could be risk factors for bug introduction.
The findings of our study seem to foster a continuous monitoring of developers’
affective states so as to prevent the introduction of bugs or discover bugs as
early as possible. The obtained results also justify a prospective observational
study with a cohort of developers to investigate the effects of their polarity on
bug introduction. We also plan to replicate our study in different contexts (e.g.,
industry) to gather further evidence on the association between developers’ sen-
timent polarity and bug introduction.

References

1. Ahmed, T., Bosu, A., Iqbal, A., Rahimi, S.: SentiCR: a customized sentiment
analysis tool for code review interactions. In: Proceedings of ASE, pp. 106–111.
IEEE (2017)

2. Betella, A., Verschure, P.F.M.J.: The affective slider: a digital self-assessment scale
for the measurement of human emotions. PLoS ONE 11(2), 1–11 (2016)

3. Calefato, F., Lanubile, F., Maiorano, F., Novielli, N.: Sentiment polarity detection
for software development. Empirical Softw. Eng. J. 23(3), 1352–1382 (2018)

4. Campos Neto, E., da Costa, D.A., Kulesza, U.: Revisiting and improving SZZ
implementations. In: Proceedings of ESEM, pp. 1–12. IEEE (2019)

5. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur.
20(1), 37–46 (1960)

362 S. Romano et al.

6. Corazza, A., Maggio, V., Scanniello, G.: Coherence of comments and method imple-
mentations: a dataset and an empirical investigation. Software Qual. J. 26(2),
751–777 (2016). https://doi.org/10.1007/s11219-016-9347-1

7. Ding, J., Sun, H., Wang, X., Liu, X.: Entity-level sentiment analysis of issue com-
ments. In: Proceedings of SEmotion, pp. 7–13. ACM (2018)

8. Fisher, R.A.: Statistical Methods for Research Workers, 5th edn. Oliver and Boyd,
Edinburgh (1934)

9. Fucci, D., et al.: An external replication on the effects of test-driven development
using a multi-site blind analysis approach. In: Proceedings of ESEM, pp. 3:1–3:10.
ACM (2016)

10. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when
software developers are (un)happy. J. Syst. Softw. 140, 32–47 (2018)

11. Graziotin, D., Wang, X., Abrahamsson, P.: Are happy developers more productive?
In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.) PROFES 2013.
LNCS, vol. 7983, pp. 50–64. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39259-7 7

12. Guzman, E., Azócar, D., Li, Y.: Sentiment analysis of commit comments in GitHub:
an empirical study. In: Proceedings of MSR, pp. 352–355. ACM (2014)

13. Guzman, E., Bruegge, B.: Towards emotional awareness in software development
teams. In: Proceedings of ESEC/FSE, pp. 671–674. ACM (2013)

14. Hassan, A.E.: The road ahead for mining software repositories. In: Proceedings of
FoSM, pp. 48–57 (2008)

15. Huq, S.F., Sadiq, A.Z., Sakib, K.: Understanding the effect of developer senti-
ment on fix-inducing changes: an exploratory study on GitHub pull requests. In:
Proceedings of Asia-Pacific Software Engineering Conference, pp. 514–521. IEEE
(2019)

16. Islam, M.R., Zibran, M.F.: Towards understanding and exploiting developers’ emo-
tional variations in software engineering. In: Proceedings of SERA, pp. 185–192
(2016)

17. Islam, M.R., Zibran, M.F.: Sentiment analysis of software bug related commit
messages. In: Proceedings of SEDE, pp. 3–8 (2018)

18. Islam, M.R., Zibran, M.F.: SentiStrength-SE: exploiting domain specificity for
improved sentiment analysis in software engineering text. J. Syst. Softw. 145,
125–146 (2018)

19. Jongeling, R., Sarkar, P., Datta, S., Serebrenik, A.: On negative results when using
sentiment analysis tools for software engineering research. Empirical Softw. Eng.
22(5), 2543–2584 (2017). https://doi.org/10.1007/s10664-016-9493-x

20. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Kluwer Academic Publishers, Boston (2001)

21. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for java programs. In: Proceedings of ISSTA, pp. 437–440.
ACM (2014)

22. Keogh, R.H., Cox, D.R.: Case-Control Studies. Institute of Mathematical Statistics
Monographs. Cambridge University Press, Cambridge (2014)

23. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33(1), 159–174 (1977)

24. Lewallen, S., Courtright, P.B.: Epidemiology in practice: case-control studies. Com-
mun. Eye Health 11(28), 57–8 (1998)

25. Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M., Oliveto, R.: Sentiment
analysis for software engineering: how far can we go? In: Proceedings of ICSE, pp.
94–104. ACM (2018)

https://doi.org/10.1007/s11219-016-9347-1
https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1007/978-3-642-39259-7_7
https://doi.org/10.1007/s10664-016-9493-x

Sentiment Polarity and Bug Introduction 363

26. McDonald, J.H.: Handbook of Biological Statistics. Sparky House Publishing, Bal-
timore (2009)

27. Miller, L.E., Stewart, M.E.: The blind leading the blind: Use and misuse of blinding
in randomized controlled trials. Contemp. Clin. Trials 32(2), 240–243 (2011)

28. Miranda, B., Cruciani, E., Verdecchia, R., Bertolino, A.: Fast approaches to scal-
able similarity-based test case prioritization. In: Proceedings of ICSE, pp. 222–232.
ACM (2018)

29. Müller, S.C., Fritz, T.: Stuck and frustrated or in flow and happy: sensing devel-
opers’ emotions and progress. In: Proceedings of ICSE, vol. 1, pp. 688–699 (2015)

30. Murgia, A., Tourani, P., Adams, B., Ortu, M.: Do developers feel emotions? An
exploratory analysis of emotions in software artifacts. In: Proceedings of MSR 2014,
pp. 262–271. ACM (2014)

31. Novielli, N., Girardi, D., Lanubile, F.: A benchmark study on sentiment analysis for
software engineering research. In: Proceedings of MSR, pp. 364–375. ACM (2018)

32. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf.
Retrieval 2(1–2), 1–135 (2008)

33. Pletea, D., Vasilescu, B., Serebrenik, A.: Security and emotion: sentiment analy-
sis of security discussions on GitHub. In: Proceedings of Working Conference on
Mining Software Repositories, pp. 348–351. ACM (2014)

34. Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., Devanbu, P.: On the
“naturalness” of buggy code. In: Proceedings of ICSE, pp. 428–439. ACM (2016)

35. Romano, S., Fucci, D., Scanniello, G., Turhan, B., Juristo, N.: Findings from a
multi-method study on test-driven development. Inf. Softw. Technol. 89, 64–77
(2017)

36. Shaver, P., Schwartz, J., Kirson, D., O’Connor, G.: Emotion knowledge: further
exploration of a prototype approach. J. Pers. Soc. Psychol. 52(6), 1061–86 (1987)

37. Shu, L., et al.: Wearable emotion recognition using heart rate data from a smart
bracelet. Sensors 20(3), 718–736 (2020)

38. Sinha, V., Lazar, A., Sharif, B.: Analyzing developer sentiment in commit logs. In:
Proceedings of MSR, pp. 520-523. ACM (2016)

39. Song, J.W., Chung, K.C.: Observational studies: cohort and case-control studies.
Plast. Reconstr. Surg. 126(6), 2234–42 (2010)

40. Souza, R., Silva, B.: Sentiment analysis of travis CI builds. In: Proceedings of MSR,
pp. 459–462. IEEE (2017)

41. Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment strength detection for the
social web. J. Am. Soc. Inform. Sci. Technol. 63(1), 163–173 (2012)

42. Turner, E.L., Dobson, J.E., Pocock, S.J.: Categorisation of continuous risk factors
in epidemiological publications: a survey of current practice. Epidemiol. Perspect.
Innov. 7(9), 10 (2010)

43. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Software Development

Kuksa∗: Self-adaptive Microservices
in Automotive Systems

Ahmad Banijamali1(B) , Pasi Kuvaja1 , Markku Oivo1 ,
and Pooyan Jamshidi2

1 M3S Research Unit, ITEE Faculty, University of Oulu, Oulu, Finland
{ahmad.banijamali,pasi.Kuvaja,markku.oivo}@oulu.fi

2 Computer Science and Engineering Department, University of South Carolina,
Columbia, USA

pjamshid@cse.sc.edu

Abstract. In pervasive dynamic environments, vehicles connect to other
objects to send operational data and receive updates so that vehicu-
lar applications can provide services to users on demand. Automotive
systems should be self-adaptive, thereby they can make real-time deci-
sions based on changing operating conditions. Emerging modern solu-
tions, such as microservices could improve self-adaptation capabilities
and ensure higher levels of quality performance in many domains. We
employed a real-world automotive platform called Eclipse Kuksa to pro-
pose a framework based on microservices architecture to enhance the self-
adaptation capabilities of automotive systems for runtime data analysis.
To evaluate the designed solution, we conducted an experiment in an
automotive laboratory setting where our solution was implemented as a
microservice-based adaptation engine and integrated with other Eclipse
Kuksa components. The results of our study indicate the importance
of design trade-offs for quality requirements’ satisfaction levels of each
microservices and the whole system for the optimal performance of an
adaptive system at runtime.

Keywords: Microservices · Self-adaptive systems · Automotive ·
Cloud

1 Introduction

The importance of software in the automotive domain has increased because
most of the innovations in new cars originate from software, large computing
power, and modern sensors. A vehicle is now a part of a network to collaborate
with other vehicles, cloud, edge, and the surrounding infrastructure to deliver
value-added services [19]. Cloud and edge platforms have enabled new services
based on access to car data and functions from outside the car. Because of the
large volume of these data, service management in the domain of connected
vehicles is appealing for reliable and efficient solutions [23], allowing for scalable
and autonomic processing.
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 367–384, 2020.
https://doi.org/10.1007/978-3-030-64148-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_23&domain=pdf
http://orcid.org/0000-0002-6283-142X
http://orcid.org/0000-0002-1488-6928
http://orcid.org/0000-0002-1698-2323
http://orcid.org/0000-0002-9342-0703
https://doi.org/10.1007/978-3-030-64148-1_23

368 A. Banijamali et al.

In the highly dynamic environment that automotive systems operate, services
should be able to automatically and quickly adapt to changes at runtime to
preserve a level of quality under the complex operating conditions, such as scaling
workloads and faults [17]. To turn vehicles into self-adaptive systems, we have
to combine self-managing capabilities with architectural design patterns that
enable self-adaptive functioning under complex working conditions [2].

Microservice architectures are a potential solution for designing and deploying
self-adaptive business capabilities [18]. Although there have been many attempts
in the development of self-adaptive systems, a small number of microservices solu-
tions, such asKubernetes, loadbalancers, and circuit breakers could find theirways
to the industry to facilitate autonomic management of microservice systems [17].

There is also an increasing interest in microservices in the automotive
domain; however, the research on the microservice architectures that enable
self-adaptive automotive systems is still in the early stage. A previous survey
[4] highlighted this research gap for architecture-based self-adaptation in auto-
motive systems. To address this need, we empirically investigated how microser-
vices patterns, such as load balancing, resiliency mechanisms, and monitoring
systems can improve the self-adaptive quality performance under the dynamic
conditions of the automotive domain [3]. In this paper, we extend the study
on the microservice architectures in the automotive domain to suggest a frame-
work called Kuksa∗ that aims at improving the self-adaptation capabilities of
automotive systems by proposing a microservice-based autonomic controller. We
employed the Eclipse Kuksa architecture1 in the automotive domain to design
Kuksa∗ and evaluated it in an automotive experimental laboratory setting.

The results of this study are valuable for the system architects and aca-
demic researchers in the automotive domain. Industrial practitioners can benefit
from experimental results on the performance and configurations of self-adaptive
microservice systems in a real-world industrial case in the automotive domain.
Academics can also gain insights into quality research gaps, service optimisa-
tion, and quality trade-off challenges in self-adaptive systems. The key contri-
butions of the study are as follows: (1) the Kuksa∗ framework to enhance the
self-adaptation capabilities of automotive systems by using microservice archi-
tectures and (2) the empirical evaluation of the framework in an experimental
setting and showing the results of design and runtime trade-offs.

2 Background and Related Work

This section provides a brief overview of previous studies and related work.

2.1 Background

Microservices: Large monolithic systems hardly can scale when different mod-
ules have conflicting resource requirements, life cycles, and deployment frame-
works [3]. Thus, there has been an increasing interest to migrate systems to
1 https://www.eclipse.org/kuksa/.

https://www.eclipse.org/kuksa/

Kuksa∗: Self-adaptive Microservices in Automotive Systems 369

more scalable and reliable architectures, such as microservices [5]. Breaking down
applications into a set of smaller, interconnected services trades external com-
plexity for microservice simplicity [18].

Microservices are a design alternative that is used to foster further research on
self-adaptive systems [17]. They isolate business functions into small services to
optimise the autonomy, modifiability, and replaceability of the services. Microser-
vice architectures pertain to challenges that should be carefully addressed. For
example, they increase the complexity due to only the fact that they are dis-
tributed. Therefore, it is necessary to have inter-process and autonomic commu-
nications among different microservices [5]. Although microservices improve the
communication with the back-end databases, they apply partitioned database
architecture, which means it is often necessary to update multiple databases that
are owned by different services [21] and to have an eventual consistency-based
approach. Also, a large number of microservices in an application may increase
latency and performance issues [5]. Therefore, microservices should work as self-
adaptive systems that dynamically learn and adapt their behaviours to preserve
specific quality levels under dynamic operating conditions [17].

Cloud Platforms in the Automotive Domain: Cloud platforms in the
automotive domain are designed for high scalability and flexibility and offer
the continuous delivery of new software applications, such as telematics, info-
tainment, fleet management, and remote diagnostics and maintenance [13]. The
creation of scalable, extensible, and hardware-agnostic platforms has facilitated
the deployment of collaborative vehicle applications [25]. With the vehicle move-
ment, it is necessary not only to have access to an infinitely scalable architecture
supporting data analytics and application development in the cloud [24] but also
to adapt to changes in the operating conditions [26]. For instance, when there is
an interruption in the communication network, services in vehicles or the cloud
should adopt alternative offline scenarios [26].

2.2 Related Work

Architecture-based adaptation is addressed by (1) the adaptation capability of
a system to change with minimal human intervention and (2) the control loop
mechanisms in the system that separate core services from adaptation services
[27]. Policy-based architecture adaptation is an approach to map a functional
situation to relevant action, strategy, or reconfiguration [12]. We used this app-
roach to decouple a system adaptation logic with knowledge about how to react
when an adaptation is required. Architecture-based adaptation allows architec-
tural reconfiguration based on predefined rules [27].

Architectural configurations impact the performance of self-adaptive software
systems [20]. There exist many techniques, such as Bayesian optimisation [14]
and multi-objective optimisation [10] that have been used for moving towards the
optimal performance of self-adaptive systems. Furthermore, many approaches,
such as planning and constraint-solving algorithms have been used to find a new
target configuration that satisfies the given constraints of a system [29].

370 A. Banijamali et al.

Control loops are commonly used in policy-based architecture adaptation
approaches to collect data about external environments and make autonomic
decisions [15]. In this regard, inducing microservices with the primitives of self-
adaptivity is a strong candidate for addressing autonomic trade-offs [11]. Pereira
et al. [22] presented an adaptive system that designed the control loop compo-
nents in the form of microservices that are easily deployed in a container-based
system, such as Kubernetes. Another study [1] proposed an architecture-based
self-adaptation service for cloud-native applications based on the Rainbow self-
adaptation framework with support for Docker containers and Kubernetes. Cur-
rent approaches mainly rely on the quantitative verification of system proper-
ties, including techniques to produce formal guarantees about the quantitative
aspects of systems, such as performance [8].

There has been considerable work in the area of managing software systems
by using service compositions and adaptations [7]. However, they hardly address
the problem from the dynamic adaptation perspective by balancing microservices
performance at runtime, specifically in the automotive domain. Our study has
tackled this issue and investigated how self-adaptive microservices can optimise
automotive systems’ performance at runtime.

3 Research Method

This section describes the current study’s objective, research questions, research
methods, and the Eclipse Kuksa framework.

3.1 Objective and Research Questions

The study objective is to design a microservice architecture for enhancing the
self-adaptation capabilities of automotive systems. To achieve this objective, we
devised the following research questions (RQs):

– RQ1: How can microservices be applied in the design of self-adaptive
systems in the automotive domain?

– RQ2: What are the quality trade-offs at runtime when using self-
adaptive microservices in the automotive domain?

3.2 Research Methods

To propose the Kuksa∗ framework, we applied the concept of control loops
(MAPE-K) [15] to render a design solution that improves over the system life
cycle through accumulating knowledge. In addition, we opted for an experimen-
tal method and a laboratory setting (see Sect. 5 for the detailed description of the
experimental scenario and setting) that allowed us to investigate performance
trade-offs from the Kuksa∗ framework and the system under evaluation regarding
self-adaptation capabilities. We investigated how self-adaptation microservices

Kuksa∗: Self-adaptive Microservices in Automotive Systems 371

can adapt the system to changes and how they can register changes into the
whole system. The laboratory setting helped us to demonstrate and control the
impact of changes on the performance of the designed architecture because real
context evaluations are often safety-critical, complex, and costly [28].

We designed multiple microservices to enable the self-adaptation in our
designed setting and to evaluate the system performance based on an “adaptive
video streaming scenario”. We selected this scenario because of its importance
in other automotive scenarios, such as the driver assistance, collision-avoidance,
safety-critical scenarios, vehicle-to-vehicle communication, autonomous driving,
and comfort systems and its significance in security scenarios in the automo-
tive domain. The video streaming presents an example scenario to show the
performance of self-adaptive microservices under highly dynamic conditions of
automotive systems, although Kuksa∗ has high flexibility to be adopted and
customised for other scenarios in the automotive domain.

We used the results of previous studies [8,16] to create a metric for measuring
the performance of the self-adaptive system under evaluation and comparing it
with the static system architecture. The performance of software systems denotes
its capabilities in its execution [8], in which two important measures include the
solution quality and the time taken to achieve the solution [16]. Hence, the total
performance in our designed system composed of time performance and solution
quality performance [8], as follows:

p(sys) = wt.tp(sys) + wq.qp(sys)

where wt + wq = 1. The parameters of wt and wq, respectively, indicated the
weight factors (importance) for time performance tp(sys) and quality perfor-
mance qp(sys). Normalisation of tp(sys) and qp(sys) in a range of 0 to 1 allowed
us to sum them up in our metric.

Time and quality performances were measured based on the average perfor-
mance from multiple runs. The tp(sys) used the average time required for the
reconfiguration of the video streaming microservice which translates into the
time involved in finding a new adaptation strategy configuration in a separate
run r. The tp(sys) was calculated based on the ratio of the time needed for
reconfiguration in a run r, as follows:

tp(r) = 1 −
∑

Reconfiguration time(r)
Duration(r)

The quality performance was calculated based on the achieved video stream
quality, using two factors of frame rate and frame quality, that the system was
able to apply within a run r, as follows:

qp(r) =
∑

Quality(r)
Quality max

The codomain of qp(r) was [0, 1] and a value close to 1 indicated a better-achieved
quality as 1 would imply that the maximum quality performance was reached.

372 A. Banijamali et al.

3.3 Eclipse Kuksa

Eclipse Kuksa is a project that provides an open and secure cloud platform
to connect a wide range of vehicles to the cloud via in-car and Internet connec-
tions. It aims at the mass differentiation of vehicles through application systems,
software solutions, and services. The project comprises three open-source soft-
ware platforms for the (1) in-vehicle, (2) cloud, and (3) application integrated
development environment, shown in Fig. 1 (adopted from [3]).

Fig. 1. Software architecture of Eclipse Kuksa.

Gateways (in-vehicle/cloud) enable data communication from vehicles (i.e.,
car CAN-Bus) or control commands delivery to vehicles. The gateways provide
remote service interfaces for connecting vehicles and devices to the cloud back-
end using protocols, such as MQTT. The middleware layer in the in-vehicle
platform includes APIs to abstract the vehicle’s electrical/electronic architecture
and communication libraries to enable communication services and manage the
network access. OS layer includes, for example, AGL core services, boot loader,
hardware abstractions, and platform update manager.

Device representation provides a digital representation of devices to realise
the distinct functionality of domain-specific services. Device registry grants
access to a distinct functionality for only eligible devices and users. Domain-
specific services are developed according to various use cases and scenarios in
the cloud or vehicles to handle different functions. Data storage is necessary
for reliable data management systems that can handle the data complexities
related to the size, consistency, performance, scalability, and security of different
microservices. Device management is responsible for tasks, such as the provi-
sioning, configuration, monitoring, and diagnostics of connected devices. Kuksa
app store is a digital repository for software applications developed by vehicle
manufacturers and other third-party providers. Visualisation and data analytics
efficiently identify, collect, clean, analyse, and visualise that data to enable new
services.

Kuksa∗: Self-adaptive Microservices in Automotive Systems 373

The Kuksa architecture [3] relies on more microservices, including Service
discovery and registry, which automatically registers and deregisters service
instances. It provides a source to find out which of the service instances are cur-
rently available. Configuration server stores service configurations to isolate the
configuration properties from codes and to enable autonomous service rebuild-
ing or restarting. Monitoring presents the state of microservices-based systems
using consolidated logs, reports, and infrastructure-level metrics, for example,
for monitoring service usage and finding performance bottlenecks. Orchestration
collectively provides the mechanisms that deploy, maintain, and scale services
and applications based on configuration settings to meet different workloads.

4 Kuksa*: A Self-adaptive Microservice-based Framework
for Automotive Systems

Automotive systems, such as driver assistance or safety-critical systems should
allow for modifications of services and systems by taking appropriate actions
at runtime based on changes in the vehicle operating condition [7]. The actions
can include, for example, replacing one microservice instance with another (e.g.,
upgrading power train and safety electronic services based on the new trailer
attached to the vehicle), changing the number of microservice replicas (e.g.,
increasing load of vehicular data communication with surrounding objects in a
crowded area), and dynamically changing the quality requirements of microser-
vices (e.g., adding new safety requirements and constraints in bad weather con-
ditions) [17]. The functions are automated at runtime in a control loop that
collects the details from automotive systems and sensors and acts accordingly.

The autonomic controller, shown in Fig. 2, applies the microservice archi-
tecture to improve the in-vehicle and cloud systems with self-adaptation capa-
bilities. It continuously monitors and analyses vehicle’s working conditions and
executes appropriate actions to resolve issues or improve system quality perfor-
mance in vehicles with minimal human intervention. Kuksa∗ was constructed
on top of the Eclipse Kuksa platforms, in which container-based services are
deployed in Kubernetes clusters to provide actuation and operation of vehicular
systems (see Sect. 3.3). The service discovery and registry continuously provides
a list of available services and registers and deregisters service instances.

The autonomic controller is responsible for the execution of the MAPE-K
control loop by using Monitoring, Analysis, Planning, and Execution services.
These are container images that are registered to the device registry mechanism
and deployed in orchestration mechanisms, such as Kubernetes to work as the
control loop microservices. The monitoring services provide solutions for collect-
ing, filtering, and reporting runtime executions and performance data from the
managed resources in vehicles, such as domain-specific services, sensors, CAN-
Bus, Lin, and network nodes. To define variables to be monitored at runtime, it is
necessary to collect quality requirements for the healthy functioning of an auto-
motive system (e.g., prioritised emergency messaging of a vehicle accident) and
translate them to runtime variables (e.g., network speed ≥1 MB/s and processing

374 A. Banijamali et al.

Fig. 2. The Kuksa∗ framework.

time <1 s). The variables are associated with an automotive scenario (e.g., the
emergency braking distance per speed) or the system’s behaviour in that scenario
(e.g., system reconfiguration time or response time). The monitoring results are
affected by sensing issues, such as latency, inaccuracy, or reliability [9].

The values of the monitored variables are sent for runtime analysis services to
model the system’s operating conditions and provide a perception of the current
scenario surrounding the managed system of the vehicle. Many techniques and
solutions (i.e., machine learning or fuzzy logic) can be used here to learn about
the performing environment, such as traffic states in different urban areas and
provide more efficient and reliable models that facilitate the prediction of future
conditions (e.g., analysing data loads and driver’s profiles to optimise services’
data consumption). Using the microservice architecture assures that the analysis
services are highly available to model operating conditions at complex runtime
situations of vehicles, although the distribution of microservice may require extra
monitoring data to decrease the possibility of wrong perceptions of the current
environment scenario and the likelihood of triggering faulty adaptation decisions.
For example, the adaptive cruise control can receive more data from the vehicle’s
radar to confirm that it provides reliable results (e.g. no distortion is present).
The results of the analysis services are presented as the adaptation strategies,
including creating new strategies or keeping existing ones based on the compar-
ison of the optimum and actual working conditions. Adaptation strategies are
collected and stored in databases called the adaptation strategy registry.

The adaptation planning services are responsible for making decisions about
triggering a new adaptation strategy and sending a set of actions needed to

Kuksa∗: Self-adaptive Microservices in Automotive Systems 375

reach the optimum state. The decisions can include, for example, adding or
removing microservice replicas, triggering a new service while stopping a run-
ning one (e.g., disabling the cruise control service while alarming the user),
replacing a container image with a newly downloaded service, optimising quality
attributes in a list of multiple running automotive services, updating the ser-
vice deployment processes (e.g., deploy new applications only when there is a
high-speed network connection or the vehicle is parked), or a combination of
these actions. The independency among different microservices makes them a
secure alternative for runtime planning of new updates and reconfigurations in
vehicular systems. The solution space could include inputs from, for example,
drivers, application providers, or vehicle manufacturers or be created at runtime
by using, for example, artificial intelligence models. The analysis and planning
services may confront challenges concerning latency or model uncertainty [9].

The adaptation execution services control the implementation of a strategy
and are able to deploy runtime updates. Comparing to monolithic architectures,
microservices allow simplifying the solution space as we need to test and execute
a smaller set of services. The strategy could be directly updated in services at
runtime, e.g., infotainment systems, or it may require extra privileges from vehi-
cle manufacturers before deployment, e.g., cruise control systems. The knowledge
from this phase is stored in the knowledge base to be used in more informed deci-
sion making over the lifetime of the system. Uncertainties related to execution
latency or executor reliability are expected at this stage [9].

The final part of the Kuksa∗ framework is the knowledge base that con-
tains multiple repositories, which provide access to the knowledge and data
from microservices according to the interfaces prescribed by the architecture.
The knowledge base maintains data of the managed automotive system (i.e.,
configuration data, adaptation models, service data consumption, service con-
figurations) and the environment (i.e., traffic modelling data, network data, con-
nected objects profiles), adaptation goals, and the states shared by other four
services in the autonomic controller. The challenge with using historical data in
future scenarios is the effort to capture the delta in knowledge from prior and
posterior states, quality requirements, and quality satisfaction levels.

5 Experimental Evaluation

5.1 Experimental Scenario

To show how we can implement the Kuksa∗ framework, we used a laboratory
setting and deployed a container-based control loop on the in-vehicle platform of
the Eclipse Kuksa to demonstrate self-adaptation microservices in the automo-
tive domain. The experiment was implemented on a mobile robotic device called
rover. The control loop enabled adaptive services for video streaming from a
camera on the rover to the cloud back-end. The video received in the cloud was
encoded and forwarded to a cloud-native streaming service. The streaming ser-
vice was attached to a storage service running on the cloud back-end that was
responsible for archiving the received video packages. The evaluation has been

376 A. Banijamali et al.

done by comparing the system performance under evaluation when we had static
and adaptive configurations (see Sect. 5.2 for more detail on the configuration
settings). The null hypothesis of this experiment indicates that there is no sig-
nificant difference between the performance of the static and adaptive systems
under evaluation.

We planned that the self-adaptive video streaming scenario uses three
microservices in the control loop to monitor, analyse, plan, and execute new
configurations based on the changes in the performing conditions and adjust its
performance by adapting the video frame rate and scale according to network
speed conditions. During the experiment, the rover was constantly moving in a
circular path in the lab with a speed of 3 km/h. The connection speed test ser-
vice was responsible for the monitoring of the network connection speed in the
rover. The user’s config. service enabled the registration of new user’s configura-
tions over-the-air using a Wi-Fi network. The video adaptation service took the
responsibility of the planning and generating new adaptation strategies accord-
ing to the network connection speed and the configuration setup received from
users. The list of adaptation strategies was defined as the microservice’s input
in the adaptation space (see Table 2). The video-streaming services dynamically
executed new adaptation strategies from the adaptation strategy registry repos-
itory in case of changing configurations or network load conditions. We designed
multiple data stores (representing the knowledge-base in MAPE-K loop) to be
connected to the microservices, in which it allowed us to minimise failures and
the overhead load in our system because microservices could access the histor-
ical data in case there were service interruptions, service failures, or no new
configurations. All services were container-based and were running in a Kuber-
netes cluster that was responsible for creating managing service replicas. In the
designed scenario, the frame rate and scale of the video were automatically and
dynamically reduced if the load of the network increased and passed a specific
threshold. The threshold was calculated based on the average upload speed in a
period of three hours before the experiment.

5.2 Experimental Setting

The In-vehicle Platform: We used an open-source mobile robotic car, which
has a RoverSense layer designed for in-vehicle communication demonstrations
and a motor driver layer (Arduino) on top of a Raspberry Pi 3 Model B (RPi3).
The rover hardware was simulating an electronic control unit (ECU) in vehi-
cles. It runs based on the in-vehicle Kuksa platform, which included AGL as
the operating system and an API for handling rover communications. The in-
vehicle Kuksa platform also runs customised software called roverapp2 designed
for a Linux-based, embedded single board computer (i.e., RPi3). The RoverSense
layer enables control of the rover and sends telemetry data from rover sensors
and camera data, such as video streaming, infrared proximity, and ultrasound.

2 https://app4mc-rover.github.io/rover-app/.

https://app4mc-rover.github.io/rover-app/

Kuksa∗: Self-adaptive Microservices in Automotive Systems 377

In our experiment, the rover sent the video streams using the real-time messag-
ing protocol (RTMP), which was enabled by the FFMPEG project. The list of
microservices that were running on the Kuksa in-vehicle platform is as Table 1.

Table 1. Microservices configuration

Microservice Technology Configuration

Service discovery Hashicorp Consul discovery

Video adaptation Python –

Speed test Speedtest-cli Dynamic IP (DHCP)

Video streaming FFMPEG Maxrate:3M, bufsize:6M, t:30 s

Also, we had three configuration settings of ‘low rate’ (LR), ‘high rate’ (HR),
and ‘adaptive’ in the adaptation space, as shown in Table 2.

Table 2. Adaptation space

Configuration setting Frame rate Video scale

Static
LR 30 320:240

HR 60 720:480

Adaptive
30 320:240

60 720:480

The Cloud Back-End: In the designed experiment, the cloud back-end was
running on the Microsoft Azure. We had a message encoder that was connected
to a live streaming service on the back-end. The live streaming service was cre-
ated in “Media service” on Microsoft Azure and allowed transforming, analysing,
and streaming media on a single platform. The videos received in the cloud were
archived in a database. All communications between the rover and Azure cloud
platform were done through an open Wi-Fi connection on the RPi3. Figure 3
shows the automotive setting in our experiment.

5.3 Results

There were three rounds of video streaming from the rover to the cloud back-
end. The first two rounds were static with fixed parameters for ‘frame rate’ and
‘video scale’, and the third round used the adaptive configuration based on the
network load. Each experiment round included 100 runs of video streaming with
a length of 30 s each, meaning 3000 s of video streaming in each round.

The adaptive system dynamically changed the video streaming configura-
tion according to the latest adaptation strategies. The video adaptation service

378 A. Banijamali et al.

Fig. 3. The experimental setting.

continuously provided new adaptation strategies based on the results from the
monitoring and user config. services. In the adaptive configuration setting, the
video adaptation service generated the LR configuration in 31% of the total runs,
and the rest was done with the HR configuration. Figure 4 shows the outcome
of our experiment using different configuration settings. It shows how the video
streaming configuration was changing according to network connection loads. It
indicates that the adaptive system configuration attempted to reach an optimum
for the video frame rate and quality (low values in video frame quality graph
means better image quality).

Table 3 provides the aggregated results of our experiment. In this table, XrY q
shows quality trade-offs for the video streaming sent to the cloud. For example,
5r5q declares equal weight for the video frame rate per second (fps) and the
video frame quality. 9r1q shows that the importance of having double fps is nine
times more than the frame quality, where 1r9q shows the opposite.

Fig. 4. The system behaviour in three configuration settings.

Kuksa∗: Self-adaptive Microservices in Automotive Systems 379

On the other side, p1(sys) shows equal weight factors for the time and quality
performances (wt = wq = 0.5), and p2(sys) shows more importance given to the
time performance rather than quality performance (wt = 9 ∗wq), where p3(sys)
shows the opposite weight factors and more stress on the quality performance
(wq = 9 ∗ wt).

Table 3. Evaluation results for two architecture designs

Metric Static system Adaptive system

LR HR

5r5q 9r1q 1r9q 5r5q 9r1q 1r9q 5r5q 9r1q 1r9q

tp 1 1 0.91

qp 0.74 0.55 0.94 0.6 0.92 0.28 0.68 0.78 0.58

p1(sys) 0.87 0.78 0.97 0.8 0.96 0.64 0.8 0.85 0.75

p2(sys) 0.97 0.96 0.99 0.96 0.99 0.93 0.89 0.9 0.88

p3(sys) 0.77 0.6 0.95 0.64 0.93 0.35 0.7 0.79 0.61

*Remark: tp: time perf., qp: quality perf., pN(sys): three weight
settings for time and quality perf., XrY q: three weight settings
for video frame rate and video frame quality.

It was necessary to provide multiple sets of trade-off in the evaluation set-
ting because various scenarios in vehicles require customised, adaptive settings
according to the system quality requirements; for example, safety-critical sce-
narios may need higher frame rates or lower configuration times comparing to
the vehicular comfort systems.

The results show a better time performance when we had static system,
p2(sys), configurations. The reason for this is that the configuration time was
shorter because the video streaming microservice did not require checking exter-
nal configuration strategies. However, in an adaptive configuration scenario, the
video streaming service had to continuously check the new adaptation strategies
from video adaptation strategies, in which it reduced the time performance.

The quality performance of the adaptive system stood between the qual-
ity performances from the HR and LR configuration settings. This means that
depending on the importance of the fps or frame quality in our requirements, the
adaptive system configuration can be adjusted to deliver the required outcome.
We could see similar results in the total system performance, p(sys), measure-
ments. For example, when we required a higher frame rate with an emphasis on
qp, the adaptive system showed better results than the static LR configuration
setting, but when we needed higher frame quality and higher qp, we had better
results from the adaptive system compared with the static HR setting.

380 A. Banijamali et al.

Summary. To have optimal performance from a self-adaptive automo-
tive system, design trade-offs are necessary at runtime for balancing the
expected quality requirements’ satisfaction levels of each microservice and
the whole system.

6 Discussion

6.1 Overview of Findings and Their Implications

RQ1. How can microservices be applied in the design of self-adaptive systems in
the automotive domain? The vehicular systems should be able to adjust their
behaviours according to uncertainties in operating conditions, such as changes
in the list of running services, quality requirements satisfaction levels, accessi-
bility to data, adaptability of resources, and working contexts. Importing sev-
eral microservices in the control loop of a self-adaptive system architecture can
increase the complexity of the whole system, for example, because of the long
reconfiguration time of multiple service replicas or a wrong perception of the
vehicle’s environment as the reason of conflicting data from different services.
Although presenting control components in a form of separate microservices to
optimise the behaviour of other services increased the modifiability, configura-
bility, and availability of the system when there was a need for reconfigurations.
System adaptations were isolated to limited services, while other services were
not affected. This provides higher flexibility in proposing new complex adapta-
tion strategies and models into safety-critical systems of a vehicle.

In vehicular systems, it is necessary to prioritise safety-critical quality
requirements over other quality requirements when we make quality trade-off
decisions. Microservices make it easier to design the safety-critical trade-offs
when making adaptation decisions as they minimise the posterior conflicts among
services. Microservice design allowed us to keep all services lightweight, which
reduced the time and effort necessary for reconfiguration.

RQ2. What are the quality trade-offs at runtime when using self-adaptive
microservices in the automotive domain? We evaluated the runtime performance
of a self-adaptive architecture based on microservices in a laboratory setting.
Our results indicate that the total performance of the system widely depends on
the performance of the individual service instances. Increasing communication
among the multiple service instances increased the total time of reaching the final
optimum state after registering a new adaptation strategy, resulting in reduced
configuration time performance in the system.

The designed architecture resulted in better fault-tolerance of the system
because different service instances could fetch the historical data from the knowl-
edge base in case there was no updated information available. This kept the whole
system running if the control services could not register adaptation strategies;
although multiple data stores may raise challenges, such as data inconsistency.

Kuksa∗: Self-adaptive Microservices in Automotive Systems 381

Using service management mechanisms, such as Kubernetes improved resiliency
and healthy function of all services.

To guarantee performance levels, we designed multiple sets of configuration
settings (see Table 3) that may be considered in various operating situations of
vehicles. The preliminary set of quality attributes and their satisfaction levels for
each service and the whole system can be negotiated and designed in vehicular
systems; although new configurations may be fetched at runtime from analysis
services that use machine learning.

6.2 Threats to Validity

There are threats to the validity [28] of our results. Improving the construct
validity required using the right measures in the experiment. The measures in
this study were composed based on the relevant approaches and metrics for mea-
suring software system performance in peer-reviewed studies. Internal validity
is addressed through the relationship between the constructs and the proposed
explanation. We applied an experimental approach in a laboratory setting with
defined objectives. Also, the study planning and implementation, the experimen-
tal setting, and study results were reviewed and discussed among the authors.

External validity is related to the generalisability of the study. We decided to
use a real-world platform and a mobile robotic device (simulating the vehicular
ECUs) to address the adaptive performance of a video streaming service based
on time and quality measures. Even though the system under evaluation does
not represent all scenarios in the automotive domain, such as safety-critical sit-
uations, the findings show how self-adaption microservices can be used to adapt
to dynamic real-time requirements of vehicular systems. In addition, Kuksa∗ was
designed to be flexibly applied in other automotive scenarios. However, the find-
ings of this study should not be generalised beyond its original scope. We have
provided all the details about the experimental setting and all publicly available
materials on GitHub3.

6.3 Recommendations for Future Research

The measures used in this study were extracted from the prior software engi-
neering studies. We propose future studies to investigate the performance of self-
adaptive automotive microservices using domain-specific measures from automo-
tive software engineering. In addition, future studies could strengthen our results
by evaluating our services and experimental setting in a real automotive environ-
ment where there exist safety-critical scenarios, such as the service unreliability
due to communication network interruptions. To improve the understanding of
the self-adaptive microservices in automotive systems, we propose more stud-
ies on the learning configuration algorithms, domain-specific testing approaches,
and quality measurements of self-adaptive microservices.

3 https://github.com/ahmadbanijamali/Adaptive-video-streaming.

https://github.com/ahmadbanijamali/Adaptive-video-streaming

382 A. Banijamali et al.

Adaptive video-streaming services are used as an example to introduce the
self-adaption microservice into automotive systems. We propose future studies
to investigate the application of self-adaptation microservices in other automo-
tive scenarios and review the set decisions about how decentralised each of the
MAPE-K services must be made.

7 Conclusions

Microservices have gained increasing popularity in the automotive domain. Con-
sidering the dynamic working conditions in vehicles and beyond them, software
systems should adapt their behaviours based on changes in the operating and
surrounding environments. We aimed to investigate self-adaptation microser-
vices in the automotive domain. To achieve that aim, we proposed the Kuksa∗

framework by updating the architecture of a real-world automotive platform and
investigated the framework applicability in an automotive laboratory setting.

Our proposed design could adapt the system behaviour according to the
changes in the performing conditions. Our study showed that system perfor-
mance requires design trade-offs for balancing the expected quality requirements’
satisfaction levels. Our findings show the potential of using microservices for self-
adaptive automotive systems at runtime.

References

1. Aderaldo, C.M., Mendonça, N.C., Schmerl, B., Garlan, D., Kubow: an architecture-
based self-adaptation service for cloud-native applications. In: Proceedings of the
13th European Conference on Software Architecture, pp. 42–45 (2019)

2. Banijamali, A., Heisig, P., Kristan, J., Kuvaja, P., Oivo, M.: Software architecture
design of cloud platforms in automotive domain: an online survey. In: 12th IEEE
International Conference on Service-Oriented Computing and Applications, pp.
168–175. IEEE (2019)

3. Banijamali, A., Jamshidi, P., Kuvaja, P., Oivo, M.: Kuksa: a cloud-native archi-
tecture for enabling continuous delivery in the automotive domain. In: Franch, X.,
Männistö, T., Mart́ınez-Fernández, S. (eds.) PROFES 2019. LNCS, vol. 11915, pp.
455–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35333-9 32

4. Banijamali, A., Pakanen, O., Kuvaja, P., Oivo, M.: Software architectures of the
convergence of cloud computing and the internet of things: a systematic literature
review. Info. Soft. Tech. 122, 106271 (2020)

5. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley, Boston (2015)

6. Baylov, K., Dimov, A.: Reference architecture for self-adaptive microservice sys-
tems. In: Ivanović, M., Bădică, C., Dix, J., Jovanović, Z., Malgeri, M., Savić, M.
(eds.) IDC 2017. SCI, vol. 737, pp. 297–303. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-66379-1 26

7. de Lemos, R., et al.: Software engineering for self-adaptive systems: research chal-
lenges in the provision of assurances. In: de Lemos, R., Garlan, D., Ghezzi, C.,
Giese, H. (eds.) Software Engineering for Self-Adaptive Systems III. Assurances.
LNCS, vol. 9640, pp. 3–30. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-74183-3 1

https://doi.org/10.1007/978-3-030-35333-9_32
https://doi.org/10.1007/978-3-319-66379-1_26
https://doi.org/10.1007/978-3-319-66379-1_26
https://doi.org/10.1007/978-3-319-74183-3_1
https://doi.org/10.1007/978-3-319-74183-3_1

Kuksa∗: Self-adaptive Microservices in Automotive Systems 383

8. Eberhardinger, B., Ponsar, H., Klumpp, D., Reif, W.: Measuring and evaluating the
performance of self-organization mechanisms within collective adaptive systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 202–220.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5 14

9. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

10. Filieri, A., Hoffmann, H., Maggio, M.: Automated multi-objective control for self-
adaptive software design. In: Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, pp. 13–24 (2015)

11. Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: a self-adaptive
roadmap. In: International Conference on Services Computing (SCC), pp. 813–818.
IEEE (2016)

12. Ho, H.N., Lee, E.: Model-based reinforcement learning approach for planning in
self-adaptive software system. In: Proceedings of the 9th International Conference
on Ubiquitous Information, Management and Communication, pp. 1–8 (2015)

13. Jain, P.: Automotive Cloud Technology to Drive Industry’s New Business Models, 7
May 2019. http://shiftmobility.com/2017/06/automotive-cloud-technology-drive-
automotive-industrys-new-business-models

14. Jamshidi P., Casale G.: An uncertainty-aware approach to optimal configuration
of stream processing systems. In: 2016 IEEE 24th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pp. 39–48. IEEE (2016)

15. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

16. McGeoch, C.: A Guide to Experimental Algorithmics. Cambridge University Press,
Cambridge (2012)

17. Mendonça, N.C., Jamshidi, P., Garlan, D., Pahl, C.: Developing self-adaptive
microservice systems: challenges and directions. IEEE Softw. (2019)

18. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media Inc., Sebastopol (2015)

19. Nobre, J.C., et al.: Vehicular software-defined networking and fog computing: inte-
gration and design principles. Ad Hoc Netw. 82, 172–181 (2019)

20. Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change mod-
els and change rules for sustainable cloud software architectures. J. Softw. Evol.
Process 29(2), e1849 (2017)

21. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. ACM Trans. Internet Tech. (TOIT) 18(2), 1–23 (2018)

22. Pereira, J.A., et al.: A platform to enable self-adaptive cloud applications using
trustworthiness properties. In: 15th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS). IEEE (2020)

23. Shukla, R.M., Sengupta, S., Chatterjee, M.: Software-defined network and cloud-
edge collaboration for smart and connected vehicles. In: Proceedings of the Work-
shop Program of the 19th International Conference on Distributed Computing and
Networking, pp. 1–6 (2018)

24. Siegel, J.E., Erb, D.C., Sarma, S.E.: A survey of the connected vehicle landscape-
architectures, enabling technologies, applications, and development areas. IEEE
Trans. Intell. Transp. Syst. 19, 2391–2406 (2017)

25. Staron, M.: Automotive Software Architectures. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58610-6

https://doi.org/10.1007/978-3-030-03424-5_14
https://doi.org/10.1007/978-3-642-35813-5_9
http://shiftmobility.com/2017/06/automotive-cloud-technology-drive-automotive-industrys-new-business-models
http://shiftmobility.com/2017/06/automotive-cloud-technology-drive-automotive-industrys-new-business-models
https://doi.org/10.1007/978-3-319-58610-6
https://doi.org/10.1007/978-3-319-58610-6

384 A. Banijamali et al.

26. Sun, J., Yang, C., Tanjo, T., Sage, K., Aida, K.: Implementation of Self-adaptive
Middleware for Mobile Vehicle Tracking Applications on Edge Computing. In:
Xiang, Y., Sun, J., Fortino, G., Guerrieri, A., Jung, J.J. (eds.) IDCS 2018. LNCS,
vol. 11226, pp. 1–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02738-4 1

27. Weyns, D., Iftikhar, M.U., Hughes, D., Matthys, N.: Applying Architecture-Based
Adaptation to Automate the Management of Internet-of-Things. In: Cuesta, C.E.,
Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp. 49–67. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00761-4 4

28. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

29. Zeller M., Prehofer C.: Timing constraints for runtime adaptation in real-time, net-
worked embedded systems. In: 7th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS), pp. 73–82. IEEE (2012)

https://doi.org/10.1007/978-3-030-02738-4_1
https://doi.org/10.1007/978-3-030-02738-4_1
https://doi.org/10.1007/978-3-030-00761-4_4
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Compliance Requirements in Large-Scale
Software Development: An Industrial

Case Study

Muhammad Usman1(B), Michael Felderer1,2, Michael Unterkalmsteiner1,
Eriks Klotins1, Daniel Mendez1,3, and Emil Alégroth1

1 Blekinge Institute of Technology, Karlskrona, Sweden
{Muhammad.Usman,Michael.Felderer,Michael.Unterkalmsteiner,

Eriks.Klotins,Daniel.Mendez,Emil.Alegroth}@bth.se
2 University of Innsbruck, Innsbruck, Austria

3 fortiss GmbH, Munich, Germany

Abstract. Regulatory compliance is a well-studied area, including
research on how to model, check, analyse, enact, and verify compliance of
software. However, while the theoretical body of knowledge is vast, empir-
ical evidence on challenges with regulatory compliance, as faced by indus-
trial practitioners particularly in the Software Engineering domain, is still
lacking. In this paper, we report on an industrial case study which aims
at providing insights into common practices and challenges with check-
ing and analysing regulatory compliance, and we discuss our insights in
direct relation to the state of reported evidence. Our study is performed
at Ericsson AB, a large telecommunications company, which must com-
ply to both locally and internationally governing regulatory entities and
standards such as GDPR. The main contributions of this work are empir-
ical evidence on challenges experienced by Ericsson that complement the
existing body of knowledge on regulatory compliance.

Keywords: Regulatory compliance · Empirical study

1 Introduction

Modern software development is driven by the problems and needs of vari-
ous stakeholder groups, formulated as requirements that guide software product
development. While a majority of these requirements are typically distilled from
business stakeholders, e.g. customers or users, a group of growing importance is
community stakeholders [3,23]. Community stakeholders, such as governments
and other organizations, issue laws, regulations and policies, and best practices,
commonly referred to as compliance requirements [2].

Compliance requirements typically aim at a broad range of stakehold-
ers and use cases, and they are, thus, purposefully expressed in general
terms, omitting implementation-specific details. Elicitation and interpretation of
implementation-specific details are thereby left to the expertise of affected par-
ties, e.g. individual companies or organisations. However, while the requirements
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 385–401, 2020.
https://doi.org/10.1007/978-3-030-64148-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_24

386 M. Usman et al.

aim at providing guidance, they also pose challenges, especially in the analysis
phase as stakeholders with different objectives may interpret the requirements
differently [6,11,19,27].

Inconsistent interpretations may have severe consequences. For example,
varying interpretations between development organization and regulating bod-
ies may lead to rework, delays, financial and legal repercussions. This risk is
exacerbated by the fact that verification of compliance is often performed late
in the software development process. Consequently, any issues discovered in the
compliance verification are costly to repair.

In this study, we investigate how compliance requirements are handled at
Ericsson AB1, a large telecommunications organization. This study is carried
out as part of a long-term research collaboration with the aim of jointly devel-
oping and improving software engineering practices in a research-centric environ-
ment. In our study at hands, we focus on understanding challenges and potential
improvements in interpreting organization-wide compliance requirements for the
implementation in specific use cases.

The rest of this paper is structured as follows: Section 2 presents background
in regulatory compliance concepts and terms. Section 3 provides an overview of
related studies in the area. Section 4 describes the research questions, the studied
case, and outlines the research methods. Section 5 presents our findings. Section 6
discusses the findings, Section 7 concludes the paper.

2 Background and Terminology

Regulatory compliance is the act of ensuring adherence of an organization, pro-
cess, and/or (software) product to regulations like standards, laws, guidelines,
or specifications [2]. Regulatory compliance addresses goals and mitigates risks.
These goals and risks are typically linked to dependability properties [5] like
privacy, security or safety and result in regulatory artifacts like standards, laws,
guidelines, or specifications.

Compliance tasks are common activities that are carried out in order to
achieve compliance with regulations. These tasks include compliance modeling,
checking, analysis and enactment [2].

Compliance modeling tasks address activities involved in the discovery and
formalization of text extracted from regulations needing compliance. Compli-
ance checking tasks are activities that ensure that the formalized representations
of regulations (the models) capture correctly compliance requirements. Often,
activities for compliance modelling and checking are intertwined and used itera-
tively. Compliance analysis tasks involve activities that provide insight into the
state of compliance of an organization, a process, a (software) product, etc., as
a result of the fulfilment or violation of the compliance requirements, possibly
measured via models. Compliance enactment tasks involve activities for mak-
ing changes to an organization, a process, or a (software) product in order to
establish or re-establish compliance with a regulation.
1 www.ericsson.com.

www.ericsson.com

Compliance Requirements in Large-Scale Software Development 387

The study presented in this paper covers compliance checking and analysis
tasks that are performed within software and system development, which covers
the core activities of software development including analysis, design, construc-
tion, and testing.

3 Related Work

In order to collect related approaches we analyzed available secondary studies
on the topic of regulatory compliance and extracted relevant primary studies
on checking and analysis of regulatory requirements from them. The list of sec-
ondary studies is shown in Table 1.

Table 1. Investigated secondary studies on regulatory compliance

Title Venue Year Ref.

A systematic literature mapping of goal and non-goal
modelling methods for legal and regulatory compliance

Requirements engineering
journal

2018 [2]

Are we done with business process compliance: state of
the art and challenges ahead

Knowledge and
Information systems
journal

2018 [15]

Using business process compliance approaches for
compliance management with regard to digitization:
evidence from a systematic literature review

International conference
on business process
management

2018 [33]

An extended systematic literature review on provision
of evidence for safety certification

Information and software
technology journal

2014 [28]

A systematic review of compliance measurement based
on goals and indicators

Advanced information
systems engineering
workshops

2011 [34]

A systematic review of goal-oriented requirements
management frameworks for business process
compliance

Workshop on
requirements engineering
and aw

2011 [10]

From the secondary studies, we extracted overall 22 primary studies related to
checking and analysis of regulatory and legal compliance requirements. As regula-
tions like laws or standards are often region or even country specific, most primary
studies explicitly refer to regulations from a specific region or country, i.e., USA or
Canada [7,16,17,21], Latin America [35], Australia [1], and Europe [19,36]. Only
laws or regulations specific to Asian countries are not covered.

The studies also cover classical regulated domains including finance [17,36],
medical [7,19–21,25], law [11,27], public administration [35], automotive [30],
and avionics [4,8].

A prominent topic in the studies on regulatory requirements is the extrac-
tion or definition of models [7,17,25,36] for compliance checking or monitoring.
However, formal checking of compliance is resource-intensive and therefore its
complexity is investigated [12,38]. As regulatory requirements intentionally or

388 M. Usman et al.

unintentionally differ in scope, their interpretation is an important topic covered
in several publications [6,11,19,27].

Core regulated properties covered are related to security [20], privacy [16,20]
and safety [4,18,30].

Most papers are either validated by examples or evaluated based on case
studies. Only a few surveys on regulatory compliance are available. Abdullah
et al. [1] present a survey on emerging challenges in managing regulatory com-
pliance. The report [31] presents a survey on the state of regulatory compliance
in practice.

50% of the 22 papers directly address software development and its arti-
facts. Most papers cover compliance modelling followed by compliance checking,
analysis and enactment. Challenges explicitly mentioned are the complexity and
ambiguity of regulations by nature [20], documentation and modeling of the
relevant regulatory constraints and their derivations, establishing and keeping
traceability of artifacts as well as change management and evolution for keeping
the documents, history, and references up to date [30,36], and simple, easy-to-use
and aligned modeling and reasoning approaches [18,36].

Via snowball sampling from the related primary studies, we found another very
closely related paper to our work by Nekvi et al. [29]. In that paper, the authors
present impediments to regulatory compliance of requirements in contractual sys-
tems engineering projects based on a case study from the railway domain.

In addition, several other papers, not covered by the secondary studies, dis-
cuss software engineering aspects of regulatory compliance. Hamou-Lhadj [14]
discusses regulatory compliance and its impact on software development in gen-
eral. Furthermore, a compliance support framework for global software compa-
nies is provided in [13]. Several authors discuss the relationship between agile
software development and regulatory compliance. Mishra and Weistroffer [26]
discuss issues with incorporating regulatory compliance into agile development.

In the medical domain, McHugh et al. [22] discusses barriers to adopting
agile practices when developing medical device software. Soltana et al. [36] refine
their UML-based compliance checking approach to enable checking against the
GDPR [37]. Fitzgerald and Stol [9] shape the term “continuous compliance”
expressing that software development seeks to satisfy regulatory compliance
standards on a continuous basis, rather than operating a “big-bang” approach to
ensuring compliance just prior to release of the overall product. Finally, Hashmi
et al. [15] discuss the potential of blockchain to compliance adherence in dis-
tributed software delivery.

Synthesis of this body of work shows that regulatory compliance is a well
studied area. However, whilst the theoretical foundation is well established, the
amount of empirical industrial case studies [29] and surveys [1,31] on compliance
checking and analysis is limited rendering our understanding of what challenges
industry faces still weak. This understanding, however, is imperative to steer
research activities in a problem-driven manner. This leads us to conclude that
there is a gap of knowledge about the regulatory compliance challenges experi-
enced by industrial practitioners. Thereby providing motivation for this study
and support for the value of its contribution.

Compliance Requirements in Large-Scale Software Development 389

4 Research Methodology

Our goal was to develop support for understanding the current processes and
challenges associated with checking and analysis of compliance requirements in a
large-scale software development context. To do so, we conducted an exploratory
case study [32]. In this section, we describe the research questions, the case, and
also the data collection and analysis methods.

4.1 Guiding Research Question

We framed the following guiding research question to steer our study:

What are the challenges and potential improvements for checking and anal-
ysis of the compliance requirements?

The research question aims at identifying the challenges faced along the pro-
cess of checking and analysing the compliance requirements and also the poten-
tial improvements to address the challenges.

4.2 Case Description

The case company is Ericsson AB, a large multinational company developing
software-intensive products related to Information and Communication Tech-
nology (ICT) for service providers. Besides the business requirements of the
individual products, there are some generic requirements that are applicable to
the entire Ericsson portfolio including over 100 products. The compliance with
these generic requirements is mandatory for all products. In this study, we refer
to these requirements as compliance requirements. Compliance requirements are
specified and maintained by a central unit at the organization level. The central
unit also proposes and maintains the design rules and guidelines for supporting
the development teams in implementing the compliance requirements.

The case under investigation is a large software product in the telecommu-
nication domain that consists of several sub-systems. Multiple teams, which are
geographically distributed, are involved in the development of each sub-system.
In the studied case product, the following organisational units work together to
handle the compliance requirements:

– Product management: The product management unit selects the compliance
requirements that apply to the release under consideration.

– System management: System management, together with the product man-
agement, performs the initial analysis to identify the impacted sub-systems.
In this initial analysis step, the system management tries to clarify the com-
pliance requirements by reducing assumptions with additional information.

– Sub-systems’ development unit: The development unit of each impacted sub-
system is responsible for ensuring compliance with the selected compliance
requirements, for example, by using the recommended design rules during
implementation.

390 M. Usman et al.

– Verification unit: In the end, the verification unit performs the verification
of compliance requirements. The verification process results in a compliance
report identifying the sub-systems that are compliant (fully or partially) and
non-compliant with the compliance requirements.

The unit of analysis in this study is the compliance process used by multiple
units and roles in the case company who specify, analyse, plan, implement and
verify compliance requirements.

4.3 Data Collection and Analysis

To maximize the validity of our results, we used a combination of different
research methods to collect the data.

– Group discussions - We performed two open-ended group discussions involv-
ing multiple researchers and practitioners. The first one was performed at the
very beginning of the study to define the scope of the study and agree on a
plan. The group discussion involved two researchers (first and third author),
unit manager (our main contact for the study) and a member of the verifi-
cation unit of the case product. The second group discussion was performed
towards the end of the study, wherein the researchers (first, second and the
fourth author) presented the results and together with the practitioners, rep-
resenting different units related to the compliance work, identified the future
course of actions

– Workshop - To understand the current state-of-the-practice on the verifi-
cation of the compliance requirements, we conducted a three-hour workshop
involving the following roles from the case product: one product manager, one
system manager, two architects from two different sub-systems, one product
owner and one deployment lead. The verification unit was not represented in
the workshop, instead we interviewed them separately to ensure that all the
participants feel free to express their opinions. The first author lead the work-
shop with the support of the third and fourth author. The third and fourth
author independently took notes to capture the discussions. During the work-
shop, we used an instrument (see Sect. 4.4 and Fig. 1 for more details about
the instrument) to collect data.
We conducted the workshop according to the following plan:
• Introduction (15 min): To introduce the participants to each other and to

describe the purpose of the workshop
• Description of the data collection instrument and the remaining workshop

activities (15 min)
• Data collection using the workshop instrument (30 min)
• Break (15 min)
• Open discussion and presentations of the collected data (60 min)
• Prioritize the ideas to work in the future (30 min)
• Summary (15 min)

Compliance Requirements in Large-Scale Software Development 391

– Interviews - The workshop did not have the representation from the cen-
tral unit that specifies the compliance requirements nor the verification unit
that performs the testing. To cover these two units, we performed two semi-
structured interviews that lasted for about an hour each: one with the infor-
mation owner who is responsible for writing and maintaining the compliance
requirements, and second with a test manager of the unit responsible for
verifying the compliance requirements.

– Process documentation - We also received and reviewed the official description
of the processes related to the compliance work in the case product.

We analyzed the qualitative data about challenges collected during the work-
shop and the interviews by applying coding [24]. We used the knowledge obtained
from the related works and during the initial group discussions to assign inter-
pretative codes [24] to group the challenges into different categories (e.g., process
related challenge). The first author assigned these interpretive codes to catego-
rize the challenges. The proposed categories were presented to the other authors
and also to the workshop participants.

4.4 Workshop Instrument

In the product under investigation, the compliance work includes various inter-
dependent activities connected through their inputs and outputs. The practi-
tioners involved in the initial group discussion highlighted the importance of
alignment between different activities. To systematically collect the data about
different compliance activities involving multiple units, we designed a workshop
instrument (see Fig. 1). We shared the workshop instrument with the unit man-
ager of the verification team one week before the workshop. We requested the
unit manager to review the instrument and provide us their feedback. The unit
manager did not suggest any changes in the instrument. The workshop instru-
ment consists of the following parts:

– Activity: Each role relevant to the compliance work is responsible for one
or more activities. In this part of the instrument, the workshop participants
were asked to describe one compliance work-related activity in which they are
involved. The instrument also captures the challenges that the participants
face while performing the activity. The activity may involve other resources
(e.g., other roles or tools). Therefore, the instrument also has a question
about other resources used during the activity, if any. Lastly, some categories
of compliance requirements (e.g., security related compliance requirements)
are more challenging to handle. The instrument covers the categories of the
compliance requirements as well to identify the one that are more challenging
to handle.

– Inputs and their owners: Compliance activities depend on certain inputs that
are owned or produced by other roles. For example, compliance requirements
are described and maintained by a central unit. To understand the alignment
and expectations of different roles from each other, it is important to capture

392 M. Usman et al.

Fig. 1. Instrument used in the case study (one instance filled out by one of our workshop
participant).

if different roles have a shared understanding with regards to inputs and their
ownership.

– Outputs and their users: Like inputs, the instrument also captures the outputs
produced by the described activity and roles that need that output.

5 Results

In the following, we report on the study results. Note that our discussion of those
results in relation to the existing body of knowledge is provided in subsequent
sections.

5.1 Overview

In total, seven practitioners from the case product and one from the central unit
participated in the study: six in the workshop and two during the interviews.
During the workshop and the interviews, the participants highlighted several
challenges related to the compliance requirements. The identified challenges are
related to the compliance analysis and checking tasks (see Sect. 2 for details
on the four types of compliance tasks). The modeling task only came under
discussion during the interview with the participant from the central unit that

Compliance Requirements in Large-Scale Software Development 393

specifies and maintains the compliance requirements. Since the workshop partici-
pants do not specify compliance requirements, the focus during the workshop was
on interpretation of the requirements, rather than their modeling. Furthermore,
the enactment task did not come under any discussion during the interviews or
the workshop. The findings of the current study may result in the initiation of
some enactment related tasks. Besides challenges, the participants also provided
several ideas to further improve the compliance work.

We analyzed the identified challenges and grouped them into three cate-
gories: requirements specification related challenges, process related challenges
and resource related challenges. We now discuss these challenges and associated
improvements suggested by the study participants.

5.2 Requirements Specification Related Challenges

In this category, we included the challenges related to the way the compliance
requirements are specified. Compliance requirements are not written for a specific
product; instead, they are specified at an abstract level as general requirements
that are applicable for all products in the case organization. All participants high-
lighted the challenge of interpreting the compliance requirements in the context
of their product. They view the interpretation of the compliance requirements as
the most challenging aspect of the compliance work. Furthermore, at times dif-
ferent units interpret the same compliance requirement differently, which results
in disagreements about the expectations. System management is already com-
plimenting the compliance requirements with some additional information to
explain them better. The workshop participants suggested to take the additional
explanation idea forward and develop a shared interpretation of the compliance
requirements in the context of the product.

Some compliance requirements conflict with other requirements (e.g., secu-
rity and usability), and it becomes challenging to perform the trade-off analysis.
In the case product, the business requirements are handled as use cases, while
compliance requirements are handled separately. The development teams find it
challenging to focus on both business and compliance requirements. Lastly, the
central unit that specifies and maintains the compliance requirements, also pro-
poses the design rules to help in the implementation of the compliance require-
ments. However, in some cases, the link between compliance requirements and
the corresponding design rules is not easy to follow. Table 2 lists the requirements
specification related challenges.

Challenges: ‘...Interpreting the compliance requirements, how the general high-
level requirements apply to the environment that the product exists within...’

Product Owner
Challenges: ‘...Interpretation of the compliance requirements into our product’s
context...’

System Manager
Challenges: ‘...Understanding the intent of the requirements...’

Architect

394 M. Usman et al.

Table 2. Requirements specification related challenges

Challenge description

- Interpretation of compliance requirements in the context of a specific product

- Differences in the understanding of the compliance requirements

- Abstractness of the compliance requirements

- Trade-offs and conflicts between different compliance requirements

- Missing linkage with the business use cases

- Linkage between the compliance requirements and design rules

5.3 Process Related Challenges

In this category, we included the challenges related to the compliance process.
The participants highlighted the need to further improve the alignment between
different compliance activities. The participants also suggested to improve the
coordination between different roles and units involved in the compliance process.
In particular, the coordination between the verification unit and the development
unit in each sub-system needs to further improve. The case product has several
sub-systems, which do not have a consistent process of handling the compliance
work.

Furthermore, at times different categories of compliance requirements (e.g.,
security) are handled differently. The participants highlighted the need to have
a consistent process for all compliance requirements. They suggested to further
improve the documentation of the entire compliance process with the aim to
improve the alignment between different units and to clarify the involved roles
and their responsibilities. The participants also shared the view to introduce
better requirements management tools to effectively manage and communicate
the compliance requirements. Additionally, since compliance requirements and
business requirements are managed separately, the participants identified the
need to establish a balance between the two types of requirements. Lastly, com-
pliance tasks are not fully automated yet, which makes it a time-consuming and
effort-intensive work. Table 3 lists the process related challenges.

Challenges: ‘...Different processes used in different organizations resulting
in bumpy compliance project requiring extra alignment and project manage-
ment...’

Deployment Lead
Challenges: ‘...Balance between functional and compliance requirements devel-
opment...’

Product Manager

5.4 Resource Related Challenges

In this category, we included challenges that are related to the resources (peo-
ple, tools) required for handling the compliance requirements. All participants

Compliance Requirements in Large-Scale Software Development 395

Table 3. Process related challenges

Challenge description

- Coordination and alignment of the compliance tasks between sub-systems’ teams

- Compliance requirements not communicated properly

- Different compliance requirements (e.g., security) managed differently

- Missing dedicated process at the sub-system level

- Lack of coordination between verification and development teams

- Change management of compliance requirements

- Establishing a balance between compliance and business requirements

- Prioritising the right compliance requirements

- Lack of automation

highlighted the lack of available resources and time for handling the compliance
requirements. Business requirements that are handled separately consume most
of the capacity of the development teams. The teams find it hard to allocate
enough resources to handle the compliance requirements. Furthermore, com-
pliance work requires much coordination with other units, which means addi-
tional time and resources. The participants also highlighted that the developers
are relatively less aware of the compliance requirements and associated design
rules as compared to the business requirements. The participants suggested to
increase and expand the existing training programs and initiatives to improve
the awareness and knowledge about compliance requirements and design rules.
Lastly, participants also pointed out that there is a need to introduce better
tools to manage the compliance requirements. Table 4 lists the resource related
challenges.

Table 4. Resource related challenges

Challenge description

- Lack of dedicated resources and time to handle compliance requirements

- Lack of awareness among developers about compliance requirements

- Lack of awareness among developers about design rules

- Tools used to manage compliance requirements are not appropriate

6 Discussion

While research on supporting modelling, checking, analysing and enacting com-
pliance tasks is abound, as witnessed by the secondary studies discussed in
Sect. 3, studies that investigate compliance challenges in practice are rare [29].
Furthermore, most of those studies base their findings on educated opinion or
experience [29]. In this paper, we contribute to the body of knowledge of regu-
latory compliance challenges, initially compiled by Nekvi and Madhavji [29], by

396 M. Usman et al.

adding the case study reported in Sect. 5 and the studies listed in Table 5, which
are discussed next. We further provide a brief discussion on fruitful experiences
when using this rather unconventional instrumentation before concluding with
a discussion of the threats to validity and the mitigation measures.

6.1 Results in Relation to Existing Evidence

Table 5. Studies on challenges in compliance requirements

Paper Context Type of study

Abdullah et al. [1] Compliance management Case study

Conmy and Paige [8] Safety standards (avionics) Educated opinion

Boella et al. [6] Business processes Educated opinion

Ghanavati et al. [11] Business processes Experience

Nekvi and Madhavji [29] Railway regulations Case study

Abdullah et al. [1] grouped compliance management challenges into customer,
regulation and solution related factors. Common challenges to our study are the
lack of connecting compliance to business objectives, the lack of communicating a
common understanding of compliance continuously to employees, inconsistencies
in applying regulations, the lack of compliance practices applied throughout
an organization, and the lack of tool support for compliance management and
monitoring.

Conmy and Paige [8] found that the reuse of models in model-driven architec-
ture (MDA) development processes is challenging when there is a need to certify
artefacts. With simple and reusable models, the certification process becomes
more burdensome as information is spread between artefacts. On the other hand,
if information is duplicated and/or organized such that certification becomes
easier, the model artefacts become harder to maintain and reuse, reducing the
benefits of MDA.

Both Boella et al. [6] and Ghanavati et al. [11] report on the difficulty of
interpreting regulations. The common identified challenges are (1) the need to
interpret generic regulations such that they are implementable in specific situ-
ations; (2) the communication between stakeholders with different background
and viewing compliance issues from their perspective and language; and (3)
compliance dynamics, referring to changes in regulations or products that are
regulated, and the need to adapt efficiently and effectively to such changes.

Finally, Nekvi and Madhavji [29] found the following common challenges:
(1) identifying and accessing relevant set of regulatory documents; (2) the num-
ber, size and complexity (in terms of cross-references) of regulations; and (3)
cross-cutting concerns of regulations that span different subsystems and require
communication between development groups.

Compliance Requirements in Large-Scale Software Development 397

Looking at the studies that investigate regulatory requirements, we observe
that few developed a dedicated data collection instrument for systematically
identifying challenges. Only Nekvi and Madhavji [29] and Abdullah et al. [1]
conducted case studies and reported detailed data collection and analysis pro-
cedures while the majority of the research relies on experience and educated
opinion reports.

Looking at the results of our case study, we find support for all the challenges
reported at Ericsson AB. Hence, we conclude that, while the business domains
and contexts may differ, there exists a core of common challenges to regulatory
requirements that are in need for more solution-oriented research.

6.2 Discussion of Research Methodology

In our workshops, we used a specifically designed instrument to connect different
compliance activities using their inputs, outputs and owners/users and to iden-
tify the state of compliance practice through which the compliance requirements
are analyzed, implemented, and verified. Furthermore, it also aims at capturing
the challenges involved in the entire compliance work. The workshop participants
were asked to fill one instrument per activity. In total, six company participants
filled 11 such instruments (hand-written on A3 paper, see one transcribed exam-
ple in Fig. 1). Next, the participants were asked to present their instruments
during one hour open discussion session.

Overall, we noticed that this discussion facilitated the participants to under-
stand the perspectives of other roles, and also to develop a shared understanding
of the compliance work. In particular, the discussion on the challenges faced by
each role helped the other roles to realize the importance of better coordination
and alignment.

The workshop instrument therefore helped us to not only collect the rel-
evant data efficiently, but it also supported us in structuring the discussion
session around the main themes involving compliance activities and their pur-
pose, challenges, categories of the compliance requirements that are more dif-
ficult to handle, and the inputs and outputs of the activities. The participants
themselves explicitly appreciated the idea of using such a structured instrument
during the workshop which is also the reason why we cordially invite interested
researchers and practitioners to employ it (or variants of it) themselves report in
their respective environments. In our personal view and experience from using it,
the workshop instrument provides a good support in understanding the state of
compliance practice in large-scale software projects wherein multiple units need
to work together to handle the compliance requirements.

6.3 Threats to Validity

As any other empirical study, ours has faced several threats to validity. Here, we
report on the most prominent ones related the sampling strategy, subjectivity,
and to generalisation.

398 M. Usman et al.

(Convenience) Sampling. Our choice of industry partner emerges from the pre-
existing relationship with them and can be seen as opportunistic. However, we
argue that the company is well established and a representative candidate for
the research area under investigation. Further, we were able to draw from the
insights and experiences of a broad spectrum of stakeholders and, thus, are
confident about the completeness in the views and expressed opinions of the
involved parties to be able to draw the conclusions we have drawn.

Subjectivity. Subjectivity always plays a vital role in qualitative studies and
ranges from several forms of bias of the participants over (mis-)interpreting oth-
ers’ opinions and statements to potential inaccuracies in the coding. While we
were particularly interested in gathering subjective experiences and opinions, we
were able to mitigate threats emerging from bias and mis-interpretations poten-
tially distorting our results such as by the trustful long-enduring relationship
with the partner, by re-assuring the participants transparently about the scope
of the study and how we handle the data over them always having the possibil-
ity of re-evaluating our results along the final presentation. Especially the latter
strengthens our confidence in the accuracy of our coding and in the correctness
of how we have captured and interpreted the results.

7 Conclusion

In this paper, we investigated the state of practice in regulatory compliance with
an industrial case study. Our primary contribution are the insights gathered on
the challenges and a mapping towards existing literature, of what challenges
with regulatory compliance can be observed in industrial practice in Ericsson.

To this end, we have further developed a particular workshop instrument.
This instrument was effective to identify both the regulatory compliance process
used by Ericsson but also gaps and challenges within this process. As such, we
perceive this instrument as valuable both for researchers studying the area of
regulatory compliance as well as practitioners that wish to evaluate their own
compliance process and practices.

Acknowledgments. We would like to acknowledge that this work was supported
by the Knowledge Foundation through the projects SERT – Software Engineering
ReThought and OSIR (reference number 20190081) at Blekinge Institute of Technol-
ogy, Sweden.

References

1. Syed Abdullah, N., Sadiq, S., Indulska, M.: Emerging challenges in information sys-
tems research for regulatory compliance management. In: Pernici, B. (ed.) CAiSE
2010. LNCS, vol. 6051, pp. 251–265. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13094-6 21

2. Akhigbe, O., Amyot, D., Richards, G.: A systematic literature mapping of goal and
non-goal modelling methods for legal and regulatory compliance. Requirements
Eng. 24(4), 459–481 (2018). https://doi.org/10.1007/s00766-018-0294-1

https://doi.org/10.1007/978-3-642-13094-6_21
https://doi.org/10.1007/978-3-642-13094-6_21
https://doi.org/10.1007/s00766-018-0294-1

Compliance Requirements in Large-Scale Software Development 399

3. Alexander, I.F.: A taxonomy of stakeholders: human roles in system development.
Int. J. Technol. Hum. Inter. (IJTHI) 1(1), 23–59 (2005)

4. Arthasartsri, S., Ren, H.: Validation and verification methodologies in a380 aircraft
reliability program. In: 2009 8th International Conference on Reliability, Maintain-
ability and Safety, pp. 1356–1363. IEEE (2009)

5. Avizienis, A., Laprie, J.C., Randell, B., et al.: Fundamental concepts of depend-
ability. University of Newcastle upon Tyne, Computing Science (2001)

6. Boella, G., Janssen, M., Hulstijn, J., Humphreys, L., Van Der Torre, L.: Man-
aging legal interpretation in regulatory compliance. In: Proceedings of the 14th
International Conference on Artificial Intelligence and Law, pp. 23–32 (2013)

7. Breaux, T.D., Anton, A.I.: An algorithm to generate compliance monitors from reg-
ulations. Technical report, North Carolina State University, Department of Com-
puter Science (2006)

8. Conmy, P., Paige, R.F.: Challenges when using model driven architecture in the
development of safety critical software. In: 4th International Workshop on Model-
Based Methodologies for Pervasive and Embedded Software, MOMPES 2007, pp.
127–136. IEEE (2007)

9. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

10. Ghanavati, S., Amyot, D., Peyton, L.: A systematic review of goal-oriented require-
ments management frameworks for business process compliance. In: 2011 4th Inter-
national Workshop on Requirements Engineering and Law, pp. 25–34. IEEE (2011)

11. Ghanavati, S., Hulstijn, J.: Impact of legal interpretation in business process com-
pliance. In: 2015 IEEE/ACM 1st International Workshop on TEchnical and LEgal
aspects of data pRivacy and SEcurity, pp. 26–31. IEEE (2015)

12. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory com-
pliance for business process models through semantic annotations. In: Ardagna,
D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 5–17. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-8 2

13. Hamou-Lhadj, A., Hamou-Lhadj, A.: Towards a compliance support framework for
global software companies. In: Proceedings of the Software Engineering Conference,
p. 2 (2007)

14. Hamou-Lhadj, A.: Regulatory compliance and its impact on software development.
Software Compliance Research Group, Department of Electrical and Computer
Engineering (2015)

15. Hashmi, M., Governatori, G., Lam, H.-P., Wynn, M.T.: Are we done with business
process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1),
79–133 (2018). https://doi.org/10.1007/s10115-017-1142-1

16. Hassan, W., Logrippo, L.: Validating compliance with privacy legislation (2008,
submitted)

17. Hassan, W., Logrippo, L.: Governance requirements extraction model for legal
compliance validation. In: 2009 2nd International Workshop on Requirements Engi-
neering and Law, pp. 7–12. IEEE (2009)

18. Hu, Z., Bilich, C.G.: Experience with establishment of reusable and certifiable
safety lifecycle model within ABB. In: Buth, B., Rabe, G., Seyfarth, T. (eds.)
SAFECOMP 2009. LNCS, vol. 5775, pp. 132–144. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04468-7 12

19. Ingolfo, S., Siena, A., Mylopoulos, J., Susi, A., Perini, A.: Arguing regulatory
compliance of software requirements. Data Knowl. Eng. 87, 279–296 (2013)

https://doi.org/10.1007/978-3-642-00328-8_2
https://doi.org/10.1007/s10115-017-1142-1
https://doi.org/10.1007/978-3-642-04468-7_12

400 M. Usman et al.

20. Massey, A.K., Otto, P.N., Hayward, L.J., Antón, A.I.: Evaluating existing security
and privacy requirements for legal compliance. Requirements Eng. 15(1), 119–137
(2010)

21. Maxwell, J.C., Antón, A.I.: Checking existing requirements for compliance with law
using a production rule model. In: 2009 2nd International Workshop on Require-
ments Engineering and Law, pp. 1–6. IEEE (2009)

22. McHugh, M., McCaffery, F., Casey, V.: Barriers to adopting agile practices when
developing medical device software. In: Mas, A., Mesquida, A., Rout, T., O’Connor,
R.V., Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp. 141–147. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-30439-2 13

23. Midgley, G.: The sacred and profane in critical systems thinking. Syst. Pract. 5(1),
5–16 (1992)

24. Miles, M.B., Huberman, A.M., Huberman, M.A., Huberman, M.: Qualitative Data
Analysis: An Expanded Sourcebook. Sage, Thousand Oaks (1994)

25. Miseldine, P.L., Flegel, U., Schaad, A.: Supporting evidence-based compliance eval-
uation for partial business process outsourcing scenarios. In: 2008 Requirements
Engineering and Law, pp. 31–34. IEEE (2008)

26. Mishra, S., Weistroffer, H.R.: Issues with incorporating regulatory compliance into
agile development: a critical analysis. Southern Association for Information Sys-
tems (SAIS) (2008)

27. Muthuri, R., Boella, G., Hulstijn, J., Humphreys, L.: Argumentation-based legal
requirements engineering: the role of legal interpretation in requirements acqui-
sition. In: 2016 IEEE 24th International Requirements Engineering Conference
Workshops (REW), pp. 249–258. IEEE (2016)

28. Nair, S., De La Vara, J.L., Sabetzadeh, M., Briand, L.: An extended systematic lit-
erature review on provision of evidence for safety certification. Inf. Softw. Technol.
56(7), 689–717 (2014)

29. Nekvi, M.R.I., Madhavji, N.H.: Impediments to regulatory compliance of require-
ments in contractual systems engineering projects: a case study. ACM Trans. Man-
age. Inf. Syst. (TMIS) 5(3), 1–35 (2014)

30. Penzenstadler, B., Leuser, J.: Complying with law for RE in the automotive
domain. In: 2008 Requirements Engineering and Law, pp. 11–15. IEEE (2008)

31. PWC: Moving Beyond the Baseline: Leveraging the Compliance Function to Gain
a Competitive Edge (2015)

32. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131 (2009)

33. Sackmann, S., Kuehnel, S., Seyffarth, T.: Using business process compliance
approaches for compliance management with regard to digitization: evidence from a
systematic literature review. In: Weske, M., Montali, M., Weber, I., vom Brocke, J.
(eds.) BPM 2018. LNCS, vol. 11080, pp. 409–425. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98648-7 24

34. Shamsaei, A., Amyot, D., Pourshahid, A.: A systematic review of compliance mea-
surement based on goals and indicators. In: Salinesi, C., Pastor, O. (eds.) CAiSE
2011. LNBIP, vol. 83, pp. 228–237. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22056-2 25

35. da Silva Barboza, L., Gilberto Filho, A.A., de Souza, R.A.: Towards a legal com-
pliance verification approach on the procurement process of it solutions for the
Brazilian federal public administration. In: 2014 IEEE 7th International Work-
shop on Requirements Engineering and Law (RELAW), pp. 39–40. IEEE (2014)

https://doi.org/10.1007/978-3-642-30439-2_13
https://doi.org/10.1007/978-3-319-98648-7_24
https://doi.org/10.1007/978-3-319-98648-7_24
https://doi.org/10.1007/978-3-642-22056-2_25
https://doi.org/10.1007/978-3-642-22056-2_25

Compliance Requirements in Large-Scale Software Development 401

36. Soltana, G., Sabetzadeh, M., Briand, L.C.: Model-based simulation of legal require-
ments: experience from tax policy simulation. In: 2016 IEEE 24th International
Requirements Engineering Conference (RE), pp. 303–312. IEEE (2016)

37. Torre, D., Soltana, G., Sabetzadeh, M., Briand, L.C., Auffinger, Y., Goes, P.: Using
models to enable compliance checking against the GDPR: an experience report.
In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems (MODELS), pp. 1–11. IEEE (2019)

38. Tosatto, S.C., Governatori, G., Kelsen, P.: Business process regulatory compliance
is hard. IEEE Trans. Serv. Comput. 8(6), 958–970 (2014)

Software Startup Practices – Software
Development in Startups Through the Lens

of the Essence Theory of Software Engineering

Kai-Kristian Kemell1(B) , Ville Ravaska1, Anh Nguyen-Duc2 ,
and Pekka Abrahamsson1

1 University of Jyväskylä, Jyväskylä 40014, Finland
kai-kristian.o.kemell@jyu.fi

2 University of Southeast Norway, Notodden, Norway

Abstract. Software startups continue to be important drivers of economy glob-
ally. As the initial investment required to found a new software company becomes
smaller and smaller resulting from technological advances such as cloud technol-
ogy, increasing numbers of new software startups are born. Startups are considered
to differ fromother types of software organizations in variousways, including soft-
ware development. In this paper, we study software development in startups from
the point of view of practices to better understand how startups develop software.
Using extant literature and case study data, we devise a list of practices which we
categorize using the Essence Theory of Software Engineering (Essence). Based
on the data, we propose a list of common practices utilized by software startups.
Additionally, we propose potential changes to Essence to make it better suited for
the software startup context.

Keywords: Software startup · Essence Theory of Software Engineering ·
Software development · Software development practice · Case study

1 Introduction

Software startups continue to be important drivers of economy globally. As the initial
investment required to found a new software company becomes smaller and smaller
as a result of technological progress, more and more startups are founded. While most
startups fail [4], just like most new companies [13], some go on to become mature,
established software organizations, or even multinational technology giants.

Typically, the main argument for studying software startups is that they differ from
mature software organizations in variousways, thusmaking the findings ofmany existing
studies not directly applicable to them. This is a result of there still being no accurate
definition for what a startup is [21, 23]. Various characteristics such as time pressure or
resource scarcity are attributed to startups to differentiate them from mature companies
[21], but academically drawing an exact line has been a challenge in the area [13]. The
way software startups develop software has been one area of study.

© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 402–418, 2020.
https://doi.org/10.1007/978-3-030-64148-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_25&domain=pdf
http://orcid.org/0000-0002-0225-4560
http://orcid.org/0000-0002-7063-9200
http://orcid.org/0000-0002-4360-2226
https://doi.org/10.1007/978-3-030-64148-1_25

Software Startup Practices 403

For example, Paternoster et al. [21] conducted a more general, large-scale study
aiming to understand how software startups develop software. They noted that software
startups operate mostly using various Agile practices or ad hoc methods. Specific facets
of software development (SWD) in software startups, such as prototyping [19] have
also been studied. However, studies focusing on Software Engineering (SE) practices in
software startups are still scarce, and studies into SWD in software startups in general are
still needed [23]. Some startup practices such as the FiveWhys are commonly discussed
in e.g. startup education, but systematic studies are lacking.

Thus, to better understandhowsoftware startups develop software,we studypractices
in this paper. Specifically, we seek to understand what practices are commonly used by
software startups. In addition, we approach this topic through the lens of the Essence
Theory of Software Engineering and seek to understand how this theory fits into the
context of software startups. To this end, we study how the seven alphas of the theory
(Sect. 2.3) fit the context of software startups, and whether other alphas would be needed
to make the theory better suited for this context.

2 Background – Software Startups, Software Development
Practices, and the Essence Theory of Software Engineering

This section is split into three subsections. First, we discuss SWD in software startups.
Then, we define SWD practices in this context. Finally, we discuss Essence.

2.1 Software Development in Software Startups

Typically, software startups do not strictly follow any formal software development
method [21]. Instead, they combine practices from different methods that suit their
needs at the moment or simply use ad hoc practices [18].

As the aim of this study is to uncover software development practices universal to
(most) software startups, a notable paper is that of Dande et al. [6]. Dande et al. [6]
studied software startups in Finland and Switzerland and devised a list of 63 practices
commonly utilized by software startups. However, these practices are not solely soft-
ware development ones but also include practices related to customers and business.
Kamulegeya et al. [11] studied these practices and reported that they seemed to apply
in the Ugandan startup context as well, further validating this list of practices. They do
add, however, that culture and location might influence commonly used practices.

Other studies focusing on practices have not aimed to create such extensive lists of
practices but have nonetheless studied software startup practices in different contexts.
Klotins, Unterkalmsteiner, and Gorschek [15], for example, created a framework for
categorizing software startup practices that differs from the one proposed by Dande
et al. [6]. Giardino et al. [9] propose the Greenfield Startup Model to explain software
development in early-stage software startups. In the process, they uncovered various
practices that supplement and confirm the findings of Dande et al. [6]. Paternoster et al.
[21] in their study on how software startups develop software discuss having found 213
practices, which, however, were not listed in their paper. Nonetheless, their findings to
lend support to those of Dande et al. [6].

404 K.-K. Kemell et al.

2.2 Software Development Practice as a Construct

Jacobson et al. [10] suggest that a set of practices is what forms a method in the context
of SE. Methods, according them, describe ways-of-working, i.e. how work should be
carried out. A way-of-working exists in an organization even if a formal SE method is
not utilized [10]. A practice, then, describes a more atomic unit of work.

Historically in academic literature, and particularly in Information Systems, the con-
struct technique has been used for the same purpose in the context of method engineering
[22]. Tolvanen [22] defines a technique to be a set of steps and rules that define how
a representation of information system is derived and handled using conceptual struc-
ture and related notation. A tool, in this context, refers to a computer-based application
supporting the use of a technique.

2.3 The Essence Theory of Software Engineering

The Essence Theory of Software Engineering [10] provides a way of describingmethods
and practices. It consists of a notational language and a so-called kernel, which includes
building blocks that can be used as a basis for constructing methods. The kernel, its
authors argue [10], contains elements that are found in any SE project.

The Essence kernel contains three types of objects: alphas (i.e. things to work with),
activities (i.e. things to do), and competencies (skills required to carry out the work). In
this study, we focus on the alphas in the context of software startups. The seven Essence
alphas are as follows: (1) Stakeholders, (2) Opportunity, (3) Requirements, (4) Software
System, (5) Team, (6) Way of Working, and (7) Work. These alphas are split into three
areas of concern. The first two belong in the customer area of concern, numbers three and
four in the solution area of concern, and the last three in the endeavor area of concern.
Furthermore, each alpha has alpha states used to track progress on the alpha [10].

The authors of Essence posit [10] that these are the essential elements that are present
in every SE project. Every project, then, has its own unique context, which most likely
contains more things to work with, but those are not universal to every project. In order
to reap the most benefits out of Essence, its users would then extend this basic kernel
with the Essence language to include these unique features of their particular project or
company to describe their method(s) with it.

In this paper, the role of Essence is two-fold. First, it serves as a framework for
analyzing our data.We utilize the alphas to sort the software startup practiceswe discover
into categories. Secondly, in the process of doing so, we study whether all the uncovered
practices fit into these seven alphas. I.e., do the alphas also present all the essential
elements of software development in software startups?

We chose to utilize Essence as the framework for this study for two reasons. First,
Essence is an OMG standard. Standards can shape the industry and should be studied.
In this case, we are particularly interested in seeing whether Essence suits startups as
well. Secondly, Essence provides one framework for categorizing work in SE projects
through its kernel and alphas. In studying practices, we considered it important that we
have a framework for categorizing them in some fashion.

Software Startup Practices 405

3 Study Design

The goal of this study is outlined at the end of the introduction. We approached this
topic using a qualitative multiple case study approach. Aside from this empirical data,
we utilized the list of 63 startup practices presented by Dande et al. [6].

3.1 Data Collection

The empirical data for this studywas collected bymeans of amultiple case study (n= 13)
(Table 1). The interviews were conducted F2F. The audio was recorded, and the record-
ings were transcribed for analysis. All the respondents were CEOs or founders, as we
wanted respondents with extensive case company knowledge.

Table 1. Cases.

Case Employees Company domain Respondents Age (in years, at the time of
interview)

1 6 Software/Hardware 1 <1

2 5 Software 3 1–3

3 3 Software/Hardware 2 <1

4 5 Software 1 1–3

5 7 Software/Consulting 1 <1

6 3 Software/Hardware 1 1–3

7 8 Software 1 >3

8 12 Software 1 >3

9 6 Software 1 1–3

10 5 Software 1 >3

11 85 Software/Hardware 1 1–3

12 5 Software/Hardware 1 >3

13 6 Software 1 >3

We utilized a qualitative, thematic interview approach. We chose a thematic app-
roach because most software startups develop software ad hoc [18, 21]. Data were then
collected with one of two interview instruments depending on how technical the respon-
dent(s) were. With technical respondents, we utilized an interview instrument (found on
Figshare1) more focused on the technical aspects of software development (interviews
6 to 13 in Table 1). With less technical respondents and in group interviews, we utilized
an interview instrument built around the Essence alphas (same Figshare link below).

In utilizing two interview instruments, we wanted to gain a deeper understanding of
the practices used through triangulation in terms of data collectionmethods, as suggested

1 https://doi.org/10.6084/m9.figshare.13017227.v1.

https://doi.org/10.6084/m9.figshare.13017227.v1

406 K.-K. Kemell et al.

by Langley [16] in the context of process data. Using different types of data can provide a
more comprehensive understanding of the phenomenon. In this case,we felt that focusing
solely on the technical practices might omit less technical ones.

3.2 Data Analysis

The analysis of the empirical material in this paper was conducted following the thematic
synthesis guidelines of Cruzes and Dyba [5]. The material was first transcribed for
analysis. The material was then read thoroughly for an initial overview of the data. After
this, the coding process was started, and each interview was coded. These codes were
then arranged into themes. The coding process was done inductively, with codes and
themes arising from the data (as opposed to e.g. using Essence as the framework at this
stage). E.g., codes included such codes ‘team’, ‘funding’, and ‘prototype’. Using this
approach, we analyzed the data to find practices, either ones already discussed by Dande
et al. [6] or novel ones, with the novel ones made into a list.

Practices that were discussed by two or more of the case startups were considered
prevalent enough to be included into the list of practices. Once the empirical data had
been analyzed and new practices had been formulated, we took the list of 63 software
startup practices of Dande et al. [6] and these new practices and inserted them into the
framework of the Essence Theory of Software Engineering [10] and its alphas. I.e., we
categorized each practice, if possible, under one of these alphas (see Sect. 5.2 for critical
discussion about this approach). The categorized practices were then reviewed by three
other authors to form a consensus.

4 Results

This section is divided into 9 subsections. In the first one, we present the new practices
we uncovered through the case study. In the next seven, we go over the results in relation
to each Essence alpha, discussing the practices found in each category. In the ninth and
final one, we discuss practices that did not fit under any of these alphas.

Given the space limitations of this paper, the clarifying descriptions for the 63 prac-
tices of Dande et al. [6] have not been included in the tables in this section. Such
descriptions have, on the other hand, been added for any novel practices proposed by
us. Each practice has an identified (Pn), where practices P64 and up are practices based
on the empirical data and practices P63 and below are from Dande et al. [6].

4.1 New Practices

Based on the data, we propose 13 new practices (Table 2) that were not present in the
list of Dande et al. [6]. These practices were mentioned by at least two case startups.
Other new practices were also uncovered but discussed by only one case startup. These
practices were not considered common based on this set of data.

Software Startup Practices 407

Table 2. New practices based on our data.

ID Practice Description

P64 Study subjects that support the startup Studying while working on a startup gains
competence in the team without growing in
personnel

P65 Attend startup events Startup events provide opportunity for
feedback from experts and allows you to
meet potential investors

P66 Create an MVP early on MVP helps you to focus on the most
important features in the beginning

P67 Test features with customers Testing features with real customers gets
you the best feedback

P68 Get advisors Experienced professionals or investors can
help startup to grow in advisor or mentor
role

P69 Use efficient tools to plan your business
model

Business model canvas, pitch deck etc. help
you to focus your business idea and are
easy to change if needed

P70 Test different tools Start with tools team is familiar with and
test different ones to find those that work
the best for you

P71 Conduct market research Research the markets and competitors to
focus your idea and to find your unique
value proposition

P72 Have frequent meetings with the whole
team

Use meetings to organize and plan your
work at least once a week

P73 Avoid strict roles Let the team co-operate in all of the tasks

P74 Create a prototype Create prototype to validate your product
or features

P75 Use efficient communication tools Use tools that allow natural communication
inside the team when not working in the
same space

P76 Prioritize features Choose which features are needed now and
plan others for future releases

4.2 Opportunity

The opportunity alpha is related to understanding the needs the system is to fulfill and
is within the customer area of concern. Practices for this alpha are presented in Table 3
below. No new practices for this category were found in the data.

The case startupswere highly focused on understanding their customers and fulfilling
the needs of the customer (segments). This is in line with the idea of software startups
being product-oriented and customer-focused. On the other hand, the lack of support for

408 K.-K. Kemell et al.

Table 3. Practices for the Opportunity alpha.

ID Practice Cases supporting

P1 Focus your product 1, 2, 6, 7, 8, 9, 11, 12, 13

P2 Find your value proposition and stick to it on all levels 9, 13

P4 Focus on goals, whys 9

P18 Validate that your product sells 1, 2, 4, 5, 7, 8, 11

P20 Form deep relations with the first customers to really
understand their needs

1, 6, 9, 11, 13

P33 In the development of customer solutions, find a unique value
proposition in your way of acting

1, 2, 3, 5, 6, 8, 9

P34 Follow communities 1, 2

P4 makes it seem that these startups were more focused on fulfilling the needs they had
uncovered rather than understanding why these needs were important.

Focusing on the system and the needs it was intended to fulfill was considered
important from the point of view of competition as well. Focusing on one’s unique value
proposition is conventionally considered an important strategy for differentiating from
one’s competitors.

4.3 Stakeholders

Four practices were categorized under the stakeholder alpha (Table 4), which is another
alpha in the customer area of concern in Essence. For startups, most notable stakeholders
are typically investors and customers or users. In addition, nearly half of the case startups
discussed the importance of their advisors as stakeholders (P68).

Table 4. Practices for the Stakeholders alpha.

ID Practice Cases supporting

P24 Keep customer communications simple and natural 6

P32 Showing alternatives is the highest proof of expertise –

P35 Share ideas and get more back 1, 2

P68 Get advisors 1, 4, 5, 6, 8, 9

Especially early-stage startups tend to rely on advisors. For example, startup ecosys-
tems tend to foster advisor relationships in various ways. Startups working in incubators
are likely to receive guidance from various experts. Advisors can provide startups with
capabilities they are lacking and help them expand their contact networks.

The practice of sharing ideas to hone them and to get feedback was also discussed by
some case startups. While in some cases companies may be reluctant to share their ideas

Software Startup Practices 409

in fears of having them stolen, none of the case startups indicated this type of concerns.
To this end, advisors can also provide feedback if a startup is afraid of revealing their
ideas to potential investors due to such concerns.

4.4 Requirements

Requirements help provide scope for the work being done on the system. Four new
practices were uncovered in this category and most existing practices in this category
were well-supported by the cases (Table 5).

Table 5. Practices for the Requirements alpha.

ID Practice Cases supporting Cases conflicting

P3 Present the product as facilitating
rather than competing to the
competitors

– 1, 2, 6

P5 Use proven UX methods 12 –

P10 Design and conduct experiments to
find out about user preferences

1, 2, 4, 6, 9, 12, 13 –

P21 Use planning tools that really show
value provided to customers

2 –

P51 Anything goes in product planning 1, 2, 11 –

P52 To minimize problems with changes
and variations develop a very
focused concept

1, 2, 3, 4, 5, 6, 7, 12, 13 –

P53 Develop only what is needed now 1, 2, 3, 12 –

P66 Create an MVP in the beginning 1, 2, 4, 13 –

P67 Test features with customers 1, 3, 4, 5, 6, 7, 8, 9, 11 –

P74 Create prototype 1, 2, 3, 4, 5, 6, 9, 12 –

P76 Prioritize features 1, 2, 3, 9, 11 –

However, P3 was in conflict of what some of the case startups stated. P3 posits that
a startup should present its product as facilitating rather than competing. While this is
one valid approach, startups do also seek to compete in some cases.

The requirements alpha, in the data, was closely related to the stakeholders alpha:
uncovering customer needs was the main focus in requirements (P10). In the case star-
tups, prototypeswere typically used to do carry out validation (P67, P74).While a startup
should be open to new features and needs (P51), they should be prioritized (P76) to create
a clear core product (P52, P53).

410 K.-K. Kemell et al.

4.5 Software System

The software system alpha is focused on the product itself, i.e. the system; software or
hardware. The software system alpha is in the solution area of concern of the Essence
kernel. Some of the previously proposed practices were largely prevalent in the cases
while some received little support from our data. More technical practices (P23, P54,
P57) would have required a more technical focus from the interviews. No new practices
were proposed for this category. The practices for this category are in Table 6.

Table 6. Practices for the Software System alpha.

ID Practice Cases supporting Cases conflicting

P7 Have a single product, no per customer variants 1, 2, 3, 5, 7, 8, 11, 12 6, 13

P8 Restrict the number of platforms that your
product works on

1, 2, 3, 4, 7, 12 –

P14 Anyone can release and stop release 2 –

P23 Adapt your release cycles to the culture of your
users

– –

P54 Make features easy to remove – –

P55 Use extendable product architecture 1, 2, 3, 9, 11 –

P57 Bughunt – –

P58 Test APIs automatically, UIs manually 2, 13 –

P59 Use generic, non-proprietary technologies 2, 7 –

P60 Create a solid platform 3, 8, 9, 11 –

Out of the practices of this category, only P7 had some conflicts in the data. This
practice is largely B2C focused, whereas a B2B startup might understandably focus on
tailoring its system especially for larger customers. However, it is perhaps worth aiming
for a modular product where such manual tailoring is not needed.

Overall, these practices further underlined that startups should have a clear focus in
their development. For example, they should focus on a limited number of platforms,
possibly only one initially (P8). Additionally, startups are conventionally seen as agile
and their systems as prone to changes based on feedback. Indeed, these practices support
the idea that the system should be developed with modifications in mind (P60). Features
should be easily added (P55) or removed (P54) when necessary.

4.6 Work

Work in the context of Essence refers to the work tasks required to produce the system.
It is under the endeavor area of concern in the Essence kernel. For software startups,
this also involves business model development. How the work is carried out from the
point of view of e.g. methods, belongs into the way of working category, on the other

Software Startup Practices 411

hand. Few existing practices were considered to belong into this category and no new
practices for this category were found (Table 7).

Table 7. Practices for the Work alpha.

ID Practice Cases supporting

P44 Tailored gates and done criteria 8

P48 Fail fast, stop and fix 1

P62 Use the most efficient programming languages and platforms 2, 3, 7

While P48 is arguably closely related to prototyping and validation activities which
were extensively discussed by the respondents, it was seldom discussed directly. On the
other hand, P62 was discussed in relation to system architecture. Efficiency in this case
was considered subjectively: the developers focused on languages and platforms they
had prior experience with and could thus start working the fastest with.

4.7 Team

The team comprises the individuals working on the startup, the founders or owners and
the employees or unpaid ones. It is under the endeavor area of concern in the Essence
kernel. The team sizes for the case startups are in Table 1 in Sect. 3. One new practice
(P64) was added into this category based on the data (Table 8).

Table 8. Practices for the Team alpha.

ID Practice Cases supporting Cases conflicting

P26 Flat organization 1, 2, 3, 5, 9 –

P27 Consider career expectations of good people 4, 9 –

P28 Don’t grow in personnel 1, 2, 3, 12 –

P29 Bind key people 2, 3, 6, 7 –

P36 Small co-located teams 1, 2, 3, 4, 5, 6 12

P37 Have multi-skilled developers 1, 2, 3, 12 –

P38 Keep teams stable in growth mode 1, 2, 3, 4, 6, 7, 13 9

P40 Sharing competence in team 4, 5 –

P41 Start with competence focus and expand as
needed

1, 2, 3, 4, 6, 8, 9, 13 –

P42 Start with small experienced team and expand
as needed

1, 2, 3, 4, 7, 8, 12, 13 1, 2, 3

P64 Study skills and topics that support your startup 1, 2, 3, 4, 8, 9 –

412 K.-K. Kemell et al.

The most mentioned practices were P41 and P42. The initial team is important as it
needs to have the required competencies (P41). To this end, an experienced teammay be
required (P42). Some of the cases conflicted with P42, although not because the teams
did not want an experienced team but simply because they could not find one.

However, this did not mean that the startups did not want and experienced team.
Rather, they simply did not have one due to being founded by a group of students with
little prior experience.

If the team is lacking competencies and expanding the team is not possible or feasible
in a given situation, the existing team members may be have to learn new skills instead
(P64). This also ties to P37, as the small team sizes often result in a single employee
having to take on various different tasks. A developer is often involved in business
decisions as well, especially in early-stage startups.

Flat organization structures (P26) are associated with startups and this was also the
case in our data. Involving employees in decision-making may also serve to better bind
them (P29). With a small, focused team, staff turnover can be damaging (P38).

4.8 Way of Working

Way of Working refers to how the work is carried out, including practices, tools, pro-
cesses, and methods [10]. It is under the endeavor area of concern in the Essence kernel.
Most previously proposed practices were supported by our data in this category. Four
new practices were proposed for this category (Table 9).

Most case startups discussed having taken some existing agile practices and tailoring
them rather than using them by the book (P47). While this ties to P72 in that frequent
team meetings are common in agile development, it gained enough emphasis to be its
own separate practice. On the other hand, the use of by-the-book methods (P46) was not
discussed by any respondent, with the startups using various mixed practices.

Communication in general is an important part of agile development, and arguably
development in general. The case startups frequently discussed the importance of tools
in facilitating communication (P75). While shared physical workspaces can reduce the
need for tools, their importance is highlighted when working remotely. An early-stage
startup may not have a physical workspace, or its members may have erratic work hours
due to day jobs, making communication tools important.

Self-organizing teams are recommended in agile development and this is also
arguably common for startups (P39, P73).

4.9 Other Practices Unsuited for Existing Essence Alphas

Not all of the practices we propose, or the ones proposed by Dande et al. [6], fit under
any of the existing Essence alphas. These were practices related to the business aspect of
software startups, such as marketing, business model development, or funding. Whereas
Essence focuses on SE in mature software organizations, the business aspect in software
startups is closely intertwined with software development. For example, the needs of
the customers or the customers in general, may not be clear to a software startup, which
results in the requirements evolving over time.

Software Startup Practices 413

Table 9. Practices for the Way of Working alpha.

ID Practice Cases supporting Cases conflicting

P9 Use enabling specifications 1, 2, 3 –

P15 Create the development culture before processes 1, 8, 11 –

P39 Let teams self-select 1, 2, 3, 5, 8 –

P43 Have different processes for different goals – –

P45 Time process improvements right 3 –

P46 Find the overall development approach that fits
your company and its business

– –

P47 Tailor common agile practices for your culture
and needs

1, 2, 3, 4, 6, 7, 8, 13 –

P49 Move fast and break things 4, 7 –

P50 Forget Software Engineering 1 –

P61 Choose scalable technologies 2, 3, 9, 11 –

P63 Start with familiar technologies and processes 1, 2, 3, 7 –

P70 Test different tools 1, 3 –

P72 Have frequent meetings with the whole team 1, 2, 3, 4, 5, 8, 12 –

P73 Don’t have strict roles 1, 2, 3 9

P75 Use efficient communication tools 2, 3, 5 –

Practices P6, P11, P25, P31, and P71 concern marketing activities. For example, P25
is about getting a few initial customers who are particularly interested in the system and
who can then be used as reference customers inmarketing, orwho themselves canmarket
the product. P6 and P31 are more general marketing practices. These types of activities
are difficult to incorporate into any existing Essence alpha. While marketing is a cus-
tomer related activity and thus could be linked to stakeholders, the existing stakeholder
alpha focuses on clearly identified and involved stakeholders such as the organization
commissioning a project, as opposed to obtaining new customers (stakeholders).

P16 and P17 are related to funding. Funding or simply available cash to burn is
something that is constantly tracked in a startup, much like the alphas are tracked in
Essence. No existing alpha supports funding with clear emphasis. Some of the alpha
states of theWork alpha include mentions of securing sufficient funding, but this process
is seldom so straightforward in a startup.

The remaining practices in this category are related to overall business model devel-
opment and business planning. For example, P13 suggests that outsourcing some part of
the business can help the startup focus on the core product, and P22 suggests a strategy
for rapid and high growth. P30, on the other hand, could be filed under the Stakeholders
alpha, but doing so might not place sufficient emphasis on the strategic importance of
such decisions from a business point of view.

414 K.-K. Kemell et al.

As we do not formally develop new alphas in this paper, we leave the proposals
related to these observations for the following discussion section (Table 10).

Table 10. Practices not applicable to any existing Essence alpha.

ID Practice Case supporting Case conflicting

P6 Do something spectacular – –

P11 Use tools to collect data about user
behavior

1, 2, 7 –

P12 Make your idea into a product 1, 2, 3, 4, 5, 6, 7, 8, 12, 13 11

P13 Outsource your growth 5, 9, 11, 12, 13 3

P16 Get venture capital and push your
product

1, 2, 4, 5, 8, 9 3

P17 Fund it yourself 1, 2, 3, 7, 9 –

P19 Focus early on those people who
will give you income in the long run

5, 6, 7, 8, 11, 13 –

P22 Start locally grow globally 1, 2, 3, 6, 7, 8, 9, 13 –

P25 Help customers create a great
showcase for you with support

1, 6, 8, 9 –

P30 Form partnerships and bonds with
other startups

1, 3, 4, 5, 13 –

P31 Make your own strength as a
“brand”

8 –

P56 Only use reliable metrics 5, 6, 7 –

P65 Attend startup events 1, 2, 3, 4, 8 –

P69 Use efficient tools to plan your
business model

1, 2, 3 –

P71 Conduct market research 1, 2, 6, 12 –

5 Discussion

The primary contributions of this study are (1) this list of practices 76 and its implications
we discuss here, and (2) the implications these practices have for utilizing Essence in the
startup context. First, In terms of the practices and the data overall, our findings seem to
support existing literature. Paternoster et al. [21] argued that startups develop software
using various agile practices or ad hoc. The case startups of this study did discuss the
utilization of methods either, only occasionally mentioning singular practices that could
be seen as Agile. Many of the practices, such as focusing on a set of functionalities or
utilizing MVPs, are also discussed in the Greenfield Startup Model of Giardino et al.
[9].

Software Startup Practices 415

It is common for larger software organizations, too, to take amethod such as SCRUM
and then omit some practices to create yet another “scrumbut,” with quality practices
often the first ones to go [8]. Startups, on the other hand, seem to seldom even use tailored
methods, pointing to an even higher degree of unsystematic approaches to SE – based
on both our data and existing studies (e.g. [18, 21]).

In terms of how startups differ from mature organizations, aside from the aforemen-
tioned use of ad hoc methods and singular agile practices, technical debt is one element
typically associated with startups [1, 9]. Some of the practices were ones that would
arguably generate technical debt (e.g. “move fast, break things”), but the case startups
did not explicitly discuss technical debt as an issue.

The list of practices in this paper presents a closer look at the way software startups
develop software. These existing studies have focused on method use and specific issues
faced by startups such as technical debt accumulation, orMVPs. By better understanding
what practices startups use we can further our understanding of how they differ from
larger software organizations. This is arguably important as it possible that one factor
contributing to the lack of method use in startups may be that they feel that existing
methods are not well-suited for the startup context. The practices listed in this paper
support existing literature. For example, P66 posits that an MVP should built early on,
which is in line with Klotins et al. [14] who argue that one common issue for software
startups is taking too long with an initial version of the product.

The other contribution of this paper is related to Essence, which we have used as a
theoretical framework for categorizing the practices in this paper. Essence is intended
to be used in any SE endeavor. Its so-called kernel, its authors argue [10], contains the
elements present in every SE endeavor. This kernel acts as a set of building blocks that
can then be extended using the Essence language to describe methods.

In this paper, we looked at Essence from the point of view of software startups. Based
on our data and extant literature (e.g. [14, 15]), the business aspect is deeply intertwined
with software development in the startup context. In fact, Klotins et al. [14] argue that
software startups largely fail due to business issues that originate from SE processes.
This supports the idea that SE and business aspects are difficult to separate in software
startups. If the goal of Essence is to contain the elements present in every SE endeavor,
for the startup context this would thus seem to include business elements.

For example, a conventional software project that is commissioned has clear require-
ments which have been agreed upon with the customer(s). On the other hand, software
startups spend significant effort trying to ascertain whether their idea addresses a real
need of a real customer (segment) at all. These idea or business validation activities
to hand-in-hand with development activities. Moreover, whereas a developer in a large
organization simply develops, in startups roles are seldom so clear-cut, especially early
on. In an early-stage startup, a developer may be involved in business activities as well.

Some of the practices in this paper, namely the business-related ones, were not
well-suited for any existing Essence alpha. To better incorporate the business aspect
into Essence in order to make it more suitable for the startup context, we propose the
following: (1) a fourth area of concern for business aspects should be added, and (2)
new alphas for this business area of concern should be added. We suggest that funding,
business model, and marketing could be new alphas for this area of concern.

416 K.-K. Kemell et al.

Alphas are things to work with and while using Essence one tracks progress on the
alphas, each of which is split into alpha states to aid in this process. Therefore, each
of these three new alphas should be in some way measurable. First, funding pivotal
for any startup [3], and can be quantitatively measured with various metrics, making it
a straightforward alpha. Progress on this alpha is likely to fluctuate as cash is burned
and new funding is obtained. Secondly, business model development is at the core of a
startup [17]. Indeed, one widely used definition for what is a startup posits that a startup
is a “temporary organization designed to look for a business model that is repeatable
and scalable” [2]. Startups constantly invest resources into validating that they are trying
to address a real need. Progress on business model development could be tracked by
evaluating how well the current business model is functioning and to what extent it is
already operational. Thirdly and finally,marketingmaywarrant its own alpha.Marketing
is as important to startups as it is to any other company [4]. Startups generally have less
capital to use on marketing, forcing them to get creative.

Alternatively, one other option would be to look at other theories and frameworks
commonly utilized by startups for business model development. Potential business-
related alphas could be derived e.g. from the Business Model Canvas [20].

5.1 Practical Implications

The primary practical contribution of this study are the practices listed in the tables in
the results section. These practices can help guide work in software startups. Moreover,
they can be used to construct methods in conjunction with other practices. Additionally,
based on these practices and the data, we suggest the following implications:

• Flat organization and self-organizing teams seem to be an effective way for construct-
ing the initial team. Self-organizing teams have been noted to be beneficial in Agile
[12]. It may also be beneficial to avoid strict roles.

• You should have a clear idea of what is the core product and what features are the key
features at any given moment. Having a scope too large for the product or an MVP is
a frequent reason for failure in software startups [14].

• Forming close relationships with initial customers and users is beneficial. They can
help you develop your product and participate in development. They can also aid in
marketing. For example, user communities on social media platforms built around
your (future) product can be very beneficial.

5.2 Limitations of the Study

There are several limitations in this study. First, defining practices is a challenge in
various ways. The level of abstraction in defining a practice can be subjective, and a
single practice, when trying to describe howwork should be carried out, can be described
with varying levels of detail. Thus, some practices could be combined under a single
practice of a higher level of abstraction rather than being split intomultiple,more detailed
practices. This is something that should be taken into account when looking at the
practices discussed in this paper.

Software Startup Practices 417

Secondly, practices in Essence can belong under multiple alphas. For the clarity
of presentation, we chose to separate them into categories by alpha. However, some
practices under one alpha could also justifiably be assigned under another alpha. Thus,
the categorization in this paper is not conclusive and was used to 1) structure the analysis
section, and 2) to evaluatewhether each practicewould fit under any existing alpha. Some
of the business-focused practices could not clearly fit under any existing alpha, which
was one of the main contributions of this study.

Thirdly, eliciting practices is also a challenge. Aside from practices explicitly consid-
ered practices by the respondents (e.g. pair programming), practices need to be defined
based on what the respondents tell about their startup and its team and their work. This,
too, is not a fully process if the practices are defined by an external party (researchers).We
present but one way of categorizing work in startups into practices. Indeed, though they
never listed them, Paternoster et al. [21] report to have found 213 practices, indicating
that many more practices could be found based on different data.

Finally, qualitative studies can suffer from generalizability issues due to the nature
of the approach. We, however, argue that 13 cases is sufficient for some generalizability.
E.g., Eisenhardt [7] suggests five cases to be sufficient for novel research areas.

6 Conclusions

In this paper, we have studied Software Engineering (SE) in software startups from the
point of view of practices, by means of a case study of 13 startups. Data were collected
through semi-structured interviews. This set of data was used to complement and expand
upon the results of an existing study that produced a list of 63 practices [6]. Based on our
empirical data and this list, we propose 76 software startup practices that can be used in
method engineering in the startup context.

We then took these practices and inserted them into the framework of the Essence
Theory of Software Engineering to understand whether Essence also covers the aspects
of SE in software startups and not just conventional SE projects. Our results suggest
that the business aspect of startups is so intertwined with SE that the more business-
oriented practices could not fit into the framework of Essene. We propose that Essence
either be extended to include these business aspects for the startup context, or that other
theories and tools are used in conjunctionwith it to cover the business aspect.We propose
potential new alphas that could be used to extend Essence.

References

1. Besker, T., Martini, A., Lokuge, R.E., Blincoe, K., Bosch, J.: Embracing technical debt, from
a startup company perspective. In: Proceedings of the 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE (2018)

2. Blank, S.: The four steps to the epiphany: successful strategies for products that win.
BookBaby (2007)

3. Chang, S.J.: Venture capital financing, strategic alliances, and the initial public offerings of
Internet startups. J. Bus. Ventur. 19(5), 721–741 (2004)

418 K.-K. Kemell et al.

4. Crowne, M.: Why software product startups fail and what to do about it. Evolution of soft-
ware product development in startup companies. In: Proceedings of the 2002 Engineering
Management Conference IEMC 2002, pp. 338–343. IEEE (2002)

5. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software engineering.
In: Proceedings of the 2011SymposiumonEmpirical SoftwareEngineering andMeasurement
(ESEM), pp. 275–284. IEEE (2011)

6. Dande, A., et al.: Software startup patterns - an empirical study. Tampereen teknillinen
yliopisto. Tietotekniikan laitos. Raportti-Tampere University of Technology. Department of
Pervasive Computing. Report; 4 (2014)

7. Eisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev. 14(4),
532–550 (1989)

8. Ghanbari, H., Vartiainen, T., Siponen, M.: Omission of quality software development
practices: a systematic literature review. ACM Comput. Surv. 51(2) (2018)

9. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Software
development in startup companies: the greenfield startup model. IEEE Trans. Softw. Eng.
42(6), 585–604 (2016)

10. Jacobson, I., Ng, P.W., McMahon, P., Spence, I., Lidman, S.: The essence of software
engineering: the SEMAT kernel. ACM Queue 10(10), 40 (2012)

11. Kamulegeya, G., Hebig, R., Hammouda, I., Chaudron, M., Mugwanya, R.: Exploring the
applicability of software startup patterns in the ugandan context. In: Proceedings of the
43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
pp. 116–124. IEEE (2017)

12. Karhatsu, H., Ikonen, M., Kettunen, P., Fagerholm, F., Abrahamsson, P.: Building blocks for
self-organizing software development teams a frameworkmodel and empirical pilot study. In:
Proceedings of the 2nd International Conference on Software Technology and Engineering
(ICSTE) (2010)

13. Klotins, E.: Software start-ups through an empirical lens: are start-ups snowflakes? In:
Proceedings of the International Workshop on Software-intensive Business: Start-ups,
Ecosystems and Platforms (SiBW) (2018)

14. Klotins, E., Unterkalmsteiner, M., Gorschek, T.: Software engineering antipatterns in start-
ups. IEEE Softw. 36(2), 118–126 (2018)

15. Klotins, E., Unterkalmsteiner, M., Gorschek, T.: Software engineering in start-up companies:
an analysis of 88 experience reports. Empir. Softw. Eng. 24(1), 68–102 (2018)

16. Langley, A.: Strategies for theorizing from process data. Acad. Manag. Rev. 24(4) (1999)
17. Lueg, R., Malinauskaite, L., Marinova, I.: The vital role of business processes for a business

model: the case of a startup company. Probl. Perspect.Manag. 12(4(contin.)), 213–220 (2014)
18. Melegati, J., Goldman, A., Paulo, S.: Requirements engineering in software startups: a

grounded theory approach. In: 2nd InternationalWorkshop on Software Startups, Trondheim,
Norway (2016)

19. Nguyen-Duc, A., Wang, X., Abrahamsson, P.: What Influences the Speed of prototyping? An
empirical investigation of twenty software startups. In: Baumeister, H., Lichter, H., Riebisch,
M. (eds.) XP 2017. LNBIP, vol. 283, pp. 20–36. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57633-6_2

20. Osterwalder, A., Pigneur, Y., Clark, T.: Business Model Generation: A Handbook for
Visionaries, Game Changers, and Challengers. Wiley, Hoboken (2010)

21. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Software
development in startup companies: a systematic mapping study. Inf. Softw. Technol. 56(10),
1200–1218 (2014)

22. Tolvanen, J.P.: Incremental method engineering with modeling tools: theoretical principles
and empirical evidence. Ph.D. thesis, University of Jyvaskyla (1998)

23. Unterkalmsteiner, M., et al.: Software startups - a research agenda. E-Informatica Softw. Eng.
J. 1, 89–124 (2016)

https://doi.org/10.1007/978-3-319-57633-6_2

An Empirical Investigation into Industrial Use
of Software Metrics Programs

Prabhat Ram1(B), Pilar Rodríguez2, Markku Oivo1, Alessandra Bagnato3,
Antonin Abherve3, Michał Choraś4, and Rafał Kozik4

1 M3S, Faculty of ITEE, University of Oulu, Oulu 90014, Finland
{prabhat.ram,markku.oivo}@oulu.fi

2 Faculty of Computer Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
pilar.rodriguez@upms.es
3 Softeam, 75016 Paris, France

{alessandra.bagnato,antonin.abherve}@softeam.fr
4 ITTI Sp. z o.o, Poznań and UTP, Bydgoszcz, Poland

chorasm@utp.edu.pl, rafal.kozik@itti.com.pl

Abstract. Practitioners adopt software metrics programs to support their soft-
ware development from the perspective of either overall quality, performance, or
both. Current literature details and justifies the role of a metrics program in a
software organization’s software development, but empirical evidence to demon-
strate its actual use and concomitant benefits remains scarce. In the context of an
EU H2020 Project, we conducted a multiple case study to investigate how two
software-intensive Agile companies utilized a metrics program in their software
development.We invited practitioners from the two case companies to report on the
actual use of the metrics program, the underlying rationale, and any benefits they
may have witnessed. We also collected and analyzed metrics data from multiple
use cases to explain the reported use of themetrics. The analysis revealed improve-
ments like better code review practices and formalization of quality requirements
management, either as a direct consequence or as a byproduct of the use of themet-
rics. The contrasting contexts like company size, project characteristics, and gen-
eral perspective towardsmetrics programs could explainwhy one company viewed
the metrics as a trigger for their reported improvements, while the other company
saw metrics as the main driver for their improvements. Empirical evidence from
our study should help practitioners adopt a more favorable view towards metrics
programs, who were otherwise reluctant due to lack of evidence of their utility
and benefits in industrial context.

Keywords: Metrics program · Process metrics · Decision-making

1 Introduction

With modern software development methods like Agile, the emphasis is on short feed-
back cycles and quick decision-making, where it is imperative that facts and not mere
impressions drive actions [1]. Software practitioners are interested in bothminingdata for

© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 419–433, 2020.
https://doi.org/10.1007/978-3-030-64148-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-64148-1_26

420 P. Ram et al.

insights and using those insights for decision-making [2, 3], thereby facilitating success-
ful software systems development [4]. Software metrics programs (MPs) can empower
practitioners to accomplish the above objectives [5, 6]. Metrics can help generate action-
able information to help fulfill an MP’s purpose of facilitating decision-making [7, 8].
MPs also enable objective evaluation of software development processes, contributing
to continuous improvement and learning in industrial software development context [9].
Current literature reports on successful adoption of MPs [10–13] and characteristics
that make metrics actionable [14–16] in Agile software development (ASD). However,
empirical investigation into actualMPuse for software development in industrial context,
and the resulting benefits, remains scarce.

In their literature review, Kupiainen et al. [7] highlighted the lack of empirical evi-
dence demonstrating the use and rationale of MPs in ASD in large industrial context.
Some studies provide empirical evidence of success factors for adopting anMP [11–13].
However, the limited study scope prevents discussion of successful MP adoption trans-
lating into successful use, especially inASD. Similarly, studies like [16] and [17] provide
evidence of MPs influencing actions in organizations using ASD, but do not detail the
motivation of such a use and consequent benefits, if any. Studies like [11–13, 16] and
[17] provide a curtailed view of MPs in practice, falling short of discussing MP’s use
in industrial context and how practitioners benefit from them. We argue that providing
such details, supported by clear empirical evidence, can act as a strong motivator for
practitioners to adopt a favorable view towards MPs. Moreover, such studies can also
provide insights that interested practitioners can follow to replicate successful adoption
and use of MPs.

We undertook our research in the context of an EU H2020 Project called Q-Rapids
(Project), where the goal was to develop an agile-based, data-driven, and quality-aware
rapid software development framework [18]. The Project comprised four software-
intensive companies as industrial partners, and we focused our research efforts on the
two case companies (CCs) that had progressed to use the Project Solution in their daily
work, of which the MP is an integral component. We build upon the findings from our
previous studies, where we presented software metrics definition [19] and their success-
ful operationalization [20] at these CCs. The practitioners reported positive outcomes
from the use of the MP for software development. These developments motivate the
following research question:

RQ: How do software-intensive companies using Agile software development utilize
software metrics in their software development?

On the back of our collaborations with the CCs, we claim following research con-
tributions. These contributions are enriched by the rationale and validation provided by
the CC practitioners invited to contribute to this study.

1. Empirical account of MP use at two contextually different software-intensive
companies using ASD.

2. Empirical evidence of MP use for software development and decision-making in
software-intensive companies using ASD.

In the remainder of the paper, we discuss background and related work in Sect. 2,
describe the research method in Sect. 3, and our study’s findings in Sect. 4. We discuss

An Empirical Investigation into Industrial Use 421

the results in Sect. 5, threats to our research’s validity in Sect. 6, and conclusion and
future research directions in Sect. 7.

2 Background and Related Work

We first provide a brief background on the Project to aid in comprehension of the study,
as we reference different elements and features from the Project throughout the paper.
Next, we present the state of the art relevant to our study. Literature documenting use
of data to inform an organization’s software development process would be relevant for
our study. However, since our primary focus is on MPs, we discuss only those literature
that center on MPs.

2.1 Q-Rapids Project

The goal of the Project is to develop an agile-based, data-driven, quality-aware rapid
software development framework [18]. The objective of this framework (Solution) is to
help practitioners make data-driven decisions in rapid cycles. The Solution comprises
tools and methods for quality requirements elicitation and management. It also includes
a dashboard to monitor indicators concerning product quality, process performance,
among others [21].

Our collaboration on the Project centers on definition and operationalization of
process metrics. Process metrics measure software development processes. Different
process metrics are aggregated into process factors, which are further aggregated into
strategic indicators (SIs), collectively constituting theMP.Developers are likely to prefer
the lowest level of process metrics, which gives them access to process measurements at
ground level. Process factors allow stakeholders like Product Owners (POs) and Project
Managers (PMs) to get a refined view of the development process at project and team
level. SIs are suitable for upper management, interested in high-level representation of
the software development process at their organization.

We focus on the process performance SI and the process metrics constituting it.
The process performance SI measures the performance of an organization’s software
development process.Among theSolution features, the ‘quality alert’ feature [22] carries
significance in this study, as we discuss in Sect. 4.1. Here, once a metric crosses a user-
defined threshold, indicating violation of quality goals defined by the use-case Quality
Engineers, this feature triggers a quality alert. The alert includes a recommendation,
in the form of an abstract quality issue (e.g. quality requirement), to resolve the said
violation.

2.2 Related Work

Staron and Meding [13] recommend success factors for MP implementation based on
their study of a five-year old MP at Ericsson AB, where they also report that designers
and quality managers believe that the MP provides benefits to the management process.
Studies by Hall and Fenton [11] and Iversen and Mathiassen [12] focus on success
factors for implementingMPs. Similarly, case studies included in the literature review on

422 P. Ram et al.

measurement programs [23] discuss mainly the experience of implementing an MP, and
how use ofMP facilitated an organization’s transition toASD. In our previous study [20],
we focus on presenting the factors for successful operationalization of ametrics program,
and a special emphasis is laid onmetrics trustworthiness. One common objectivemissing
from these studies is the discussion of actualMPuse in an industrial context. Our research
addresses this gap by providing empirical evidence demonstrating how practitioners use
MPs towards software development, especially in their decision-making.

In their literature review, Kupiainen et al. [7] call for more empirical studies to
explore the rationale and use of MPs, especially in large industrial context. Although
most existing studies present initial emerging results of using an MP, lacking empirical
evaluation in industrial context, there are few exceptions. A study by Dubinsky et al.
[24] report on the use of an MP at an extreme programming (XP) development team
of the Israeli Air Force. The authors conclude that use of metrics could lead to more
accurate and professional decision-making. Díaz-Ley et al. [25] studied a measurement
program (synonymous with metrics programs) targeted towards small-and-medium-size
enterprises (SMEs), and found that use of metrics can help practitioners define measure-
ment goals that are well aligned with their organization’s maturity. Port and Taber [16]
provide empirical evidence ofMP use and their actionability in a large industrial context.
With the help of metrics and analytics programs, the authors illustrate the supporting
role an MP played in strategic maintenance of a critical system at NASA’s Jet Propul-
sion Laboratory. Similarly, Vacanti and Vallet [17] conducted a case study at Siemens
Health Services (SHS), and presented results of an MP’s actionability, helping SHS
increase productivity and improve process performance. These studies highlight MP use
and its potential for influencing actions in software development in industrial context,
but empirical evidence for the same is limited to only one case company. Furthermore,
the rationale that underlie the reported use of the metrics and their alleged benefits lack
explicit validation by the practitioners involved. Our research targets the common objec-
tive of providing empirical evidence of MP use in large industrial context. However, our
research also includes multiple CCs and use cases (UCs) to argue the said objective. Fur-
thermore, we support our claims by inviting the involved practitioners to validate them
and to provide additional insights, especially the rationale that drive their MP utilization.

3 Research Method

Following the guidelines recommended by Runeson and Höst [26], we conducted a
multiple case study to answer the RQ. In addition, we invited practitioners from each
CC to validate our findings and provide supporting rationales.

3.1 Research Context

In order to understand better the MP use and the underlying rationale, we describe both
the software development context and the Solution context at the two CCs.

Software Development Context. The following table characterizes the two CCs’
software development context (Table 1):

An Empirical Investigation into Industrial Use 423

Table 1. Case company characteristics

Parameters Case Company 1 Case Company 2

ID CC1 CC2

Size Large SME

Domain Commercial services and solutions Multi-industry

Development method Customized Agile ScrumBan & ScrumBut

Use case(s) Software modeling tool Warehouse Mgmt. System

Length of solution use ~2.5 years ~2 years

Use case team size 9 15

Case Company 1 (CC1) is a large-size company (>900 employees), with the goal
of using the MP to improve the quality of its ASD process through early detection
of anomalies in their development. CC1 uses various software development methods
that adhere to Agile principles. Among other solutions, CC1 develops modeling tool
for model-driven development. Part of a 25-year-old product line, the company has
multiple releases of this tool in the market. CC1 has used the Solution in the course of
development of the past four releases of the tool. In our study, we utilize data from three
product releases (UC1.1–UC1.3) that were developed during the course of the Project.

CaseCompany2 (CC2) is anSME type consulting company (around100 employees),
developing solutions formultiple industrial and application domains (e.g. administration,
utilities, e-Health, etc.). The company has its own process for acquiring functional and
quality requirements, and the initial mockups and user stories collected during this
process forms the basis for their development process. Due to these exceptions, the
company reports its development method as ScrumBut. Similarly, ScrumBan refers to
the company’s iterative software development, and its use of Kanban board to monitor
backlogs. Currently, the company is in the process of going agile on a large-scale,
and uses the abovementioned customized Agile approach for project management. The
company aims to use the MP to allow its developers to anticipate design issues, security
issues, and platform limitations. After piloting the Solution on mostly finished projects,
the company used it in a project to develop an enterprise class integrated software system
for managing warehouses. We focus on this project (UC2.1) for our study.

Solution Context. On the back of their experience of using generic metrics (e.g. Sonar-
Qube1 code quality metrics), CC1 were convinced that an MP could be useful only
if it was adapted to their specific context, with respect to their processes and the data
available. The MP allowed CC1 practitioners to capitalize and analyze the historical
data, and identify problems and obstacles to their processes. This is evident in their
choice of process metrics, available in Appendix2. CC1 found that involvement of MP
target users played a significant role in their successful operationalization of the MP.
Their involvement and feedback helped CC1 get the results that they deemed reliable.

1 https://docs.sonarqube.org/latest/user-guide/metric-definitions/.
2 https://zenodo.org/record/3953067#.X2DSo3kzZaQ.

https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://zenodo.org/record/3953067#.X2DSo3kzZaQ

424 P. Ram et al.

This was accomplished only after adapting the MP to their context, leading to growth in
target users’ confidence in the MP. As a result, the CC1 UC development team utilizes
the metrics in their regular meetings to discuss new releases, and plan steps for the next
product releases.

Informed by their positive and formative experience from the pilot UC, CC2 contin-
ued to use the Solution in their next UC, albeit with customizations that are exclusive
to this company. Influenced by their use of SonarQube code quality metrics, CC2 had
reservations about theMP’s potential to induce process improvements. They viewed it as
a tool that can help monitor the process, and can be of value if and only if it were tailored
to CC2’s projects. This perspective largely dictated their choice of metrics. For CC2,MP
operationalization was a success because of three major factors, (i) some process met-
rics provided additional value (unavailable elsewhere) in understanding the development
process, (ii) the MP was first tested and introduced gradually to complement existing
processes, and (iii) the MP facilitated and enhanced CC2’s culture of transparency. With
respect to the second factor, CC2 evaluated the MP’s usefulness by conducting a ret-
rospective session. The objectives were to explore the relevant process metrics used in
the first six months of UC2.1, get feedback on the reasons of the impacts of the process
metrics, and document the results of these impacts in a template. Consequently, CC2
arrived at a list of process metrics considered most valuable by its practitioners. These
metrics were related to estimation efforts, bug density, issues velocity, and bug correc-
tion performance. In terms of transparency, the MP helped anchor PO’s opinions and
decisions in actual data, which the developers could verify and validate by using the
Solution dashboard.

3.2 Data Collection

TheCCs had been sharing processmetrics data with the Project researchers on amonthly
basis, along with a short report on their use of the Solution. In the course of several
follow-up interactions with the CCs, we also learned that they had been utilizing MP to
undertake process improvements. The following table provides context for the data we
collected for this study (Table 2):

Table 2. Data collection context

Parameters CC1 CC2

Data period Oct. 2018–Sep. 2019 Nov. 2018–Aug. 2019

Use case UC1.1–UC1.3 UC2.1

Type of data Process metrics

Focus Process performance (SI)

Our decision to focus on process metrics data was based on the objective of eval-
uating the use of MP, as reported by the CCs, and because we were responsible for

An Empirical Investigation into Industrial Use 425

implementing only process metrics. Both CCs reported an overall improvement in the
process performance SI, which is automatically computed and collected on a daily basis.
For example, the process performance SI in CC1 is the average of the three process fac-
tors of tasks’ velocity, testing performance, and testing performance. These individual
process factors are, in turn, the average of the process metrics that constitute them. The
same logic applies for SI computation for CC2. These data provide the evidence neces-
sary to support the reported MP use by the two CCs. In addition, the data also provide
a quantitative underpinning to the rationale provided by the CC practitioners invited to
contribute to this study.

3.3 Data Analysis

The following table presents the analysis approachwe adopted for this study. The focus is
on analyzing the process performance SI data in order to explain CCs’metrics utilization
in their software development, especially towards decisions for process improvements.
SI data are the only quantitative evidence available to draw any legitimate conclusion
towards the reported use of the Solution, and to anchor the subsequent discussion by the
invited practitioners (Table 3).

Table 3. Data analysis approach

Parameters CC1 CC2

Analysis Kruskal-Wallis Test, and Pairwise Mann-Whitney U Test Trend analysis

In CC1, the extent of MP use across the three UCs evolved, as the practitioners
customized and refined the process metrics to reflect their way of working. The SI data
does not follow normal distribution, so we use Kruskal-Wallis Test, also known as one-
way ANOVA by rank. It is a non-parametric test that can help us assess whether the
difference in the process performance SI measured across the three UCs is statistically
significant. In the event that it is, we use Pairwise Mann-Whitney U-Test as a post-hoc
analysis to determine the specific UC that is statistically significant from others. We
did not use Kruskal-Wallis Test in case of CC2, because the data comes from just one
UC. Instead, we perform trend analysis on the UC2.1 SI data. Post analysis, we invited
practitioners from each CC to review our findings, and provide rationale to support our
claims and their reported MP use.

4 Findings

We first present the empirical evidence of the MP use for software development at each
CC, based on the reported use of metrics for specific interventions and improvements.
Here, the invited practitioners provide the necessary background, the actual use of the
metrics for the above-stated purpose, and the rationale for such use, especially with
respect to their decision-making. Next, we analyze the process metrics data to strengthen
the above claims, providing a quantitative background to the reported use and the reported
benefits, if any.

426 P. Ram et al.

4.1 CC1

The MP helped CC1 identify the blocking points that could cause potential delays in
their release. For example, CC1 used the ‘non-blocking files’ metric to identify problems
blocking their development tasks, critical for development features for their upcoming
release, and prioritized the said development activities. In addition to bottleneck iden-
tification, the MP also facilitated process improvements, apparent from the results of
using the ‘critical issues ratio’ process metric. Here, however, the metric’s influence
was supplemented by the ‘quality alert’ feature. The above metric triggered an alert,
which recommended a quality requirement. The PM accepted the said quality require-
ment, and proposed it as a development task to address the problem both the metric and
the alert indicated. This formalized quality requirementsmanagement is an improvement
over CC1’s past ad-hoc resource mobilization to address quality-related issues. Based on
the above two instances of MP use, CC1 managed to improve their development process
by improving their product quality, and optimized their effort to manage that quality.

Overall, and reflecting the improvements described above, CC1 reported an improve-
ment of 10%–20% in their process performance SI since they started using the Solution,
which includes the MP. UC1.1 data available is from the period when its release was due
by around two months. For consistency, we used UC1.2 and UC1.3 data from similar
periods. We also excluded data from the process factor ‘tasks velocity’ due to reliability
issues. The process metrics, and their interrelationships with process factors and the SI
specific to CC1, is available in Appendix. The following table gives a snapshot of the
data we used to support the reported MP use and improvements (Table 4).

Table 4. CC1 data context

Use case Data Period Total data points Solution use

UC1.1 Process performance SI Two months before the
release date

186 Low

UC1.2 Medium

UC1.3 Medium

The extent of Solution Usewas determined by the Solution’smaturity and availability
of its different features. This also includes the perceived reliability of the MP data. CC1
Champion confirmed the above labelling of the extent of Solution Use. The following
table provides descriptive statistics of the process performance SI from the three UC
datasets, followed by their boxplot visualization in Fig. 1. Each UC dataset comprises
the SI data computed and collected on a daily basis, and is from a period of two months
prior to the release date (Table 5).

An Empirical Investigation into Industrial Use 427

Table 5. Descriptive statistics of CC1 dataset

Solution use N Mean Standard
deviation

Median

UC1.1 61 0.829 0.0429 0.845

UC1.2 63 0.854 0.0258 0.855

UC1.3 62 0.907 0.0291 0.920

0.90

P
ro

ce
ss

 P
e

rf
o

rm
a

n
ce

 S
I

V
a

lu
e

s

0.85

0.80

0.75

U s e C a s e
LOW MEDIUM MEDIUM

Fig. 1. Box-plot for the CC1 process performance SI

In the above box-plot, the Y-axis represents the SI values. The X-axis corresponds to
the extent of Solution Use for the three respective UCs. The chart demonstrates that the
median SI across the three UCs increased as the use of the Solution increased at CC1.
Despite the extent of Solution Use for both UC1.2 and UC1.3 being the same (Medium),
the chart suggests performance difference between the two UC samples. We analyzed
the SI data using Kruskal-Wallis Test with the null hypothesis (H0): the samples come
from the same population, and alternative hypothesis (Ha): the samples do not come
from the same population. The results from the test are shown in Table 6:

With the critical chi-square value (5.99) less than the observed chi-square value
(85.27), and with the computed p value less than the significance level alpha = 0.05,
we reject H0 and accept Ha. This suggests that the SI values in three UCs have statis-
tically significant performance difference from each other for at least one UC sample,
corresponding to a strong effect size (epsilon squared, e2 = .0.46). In order to determine
which UC sample is significantly different, we performed pairwise comparison using
Pairwise Mann-Whitney U Test. The result of this post-hoc analysis test is shown in
Table 7:

Table 7 lists p values as the result from the comparison amongUCs. All the computed
p values for these comparisons are less than the significance level alpha = 0.05. This
suggests that there is a statistically significant difference among UCs. More specifically,

428 P. Ram et al.

Table 6. Kruskal-Wallis test

Kruskal-Wallis test for CC1 Process
performance SI

K (observed chi-square value) 85.27

K (critical chi-square value) 5.99

df 2

p value <0.0001

alpha 0.05

epsilon squared (effect size measure) 0.46

Table 7. Pairwise Mann-Whitney U test results

Pairwise Mann-Whitney U test UC1.1 UC1.2

UC1.2 0.011

UC1.3 <0.0001 <0.0001

UC1.2 is significantly different from UC1.1, and UC1.3 is significantly different from
both UC1.1 and UC1.2. This significant difference coincides with the increased use of
the Solution across these UCs.

In view of CC1’s MP use, informed by their approach to theMP and experience with
it so far, CC1 practitioners maintain that the MP was one of the contributors to influence
their software development, resulting in benefits like identification of blocking points and
formalization of their quality requirementsmanagement process.Maturation effect could
be one of the reasons why despite the medium Solution Use in both UC1.2 and UC1.3,
the difference in the process performance SI for the latter was statistically significant
from the other two UCs. CC1 finds that the MP gives the practitioners a ‘behind the
scene’ of their development process, broadening their overall perspective. As a result,
CC1 views MP more as a decision-support tool, rather than a control tool, which aligns
well with the perspective they harbored for MPs in general from the start of the Project.

4.2 CC2

The MP helped improve CC2’s code review process, by allowing medium-experienced
developers address merge requests, a task earlier reserved only for experienced develop-
ers. The MP also allowed the PO and Senior Managers (SMs) to identify that four days
is the optimal reported effort spent on a task, which in turn improved their developers’
efficiency. CC2 was interested in POs and SMs making quick team-oriented decisions
without involving too many stakeholders like the CEO or the company board. The MP
made this possible, as now the CC2 practitioners had the means to verify and validate
PO and SM’s actions. The trust CC2 managed to build for the MP is evident in its use

An Empirical Investigation into Industrial Use 429

in the weekly Scrum meetings, to learn to improve their way of working, motivate the
team, and identify problems and find solutions for them.

Similar to the results from the pilot UC, CC2 reported an overall improvement even
for their UC2.1 process performance SI. The data corresponds to the MP use throughout
UC2.1, but we excluded the data for the ‘resolved issues throughput’ process metrics
due to reliability concerns. The following table (Table 8) provides an overview of the
data we used to conduct the trend analysis illustrated in Fig. 2:

Table 8. CC2 data context

Use Case Data Period Total data points

UC2.1 Process performance SI Throughout UC2.1 225

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19

P E R I O D 1 P E R I O D 2 P E R I O D 3

P
ro

ce
ss

 P
e

rf
o

rm
a

n
ce

 S
I

V
a

lu
e

s

Fig. 2. UC2.1 process performance SI trend

CC2Champion demarcated the threePeriods in the chart to highlight the exceptional
Period 2. Certain eventualities at the company impacted CC2’s software development
performance for a short period, which is reflected in the downward trend of Period 2.
Otherwise, the chart indicates an upward trend, suggesting improvement in UC2.1’s
process performance SI as the Solution use increased, relative to the use in the pilot UC.

Process metrics from the MP made possible the important changes in CC2, like
enabling a suitable teammanagement culture. In addition to other in-house metrics CC2
developed, the processmetrics from theMP facilitated PO’s understanding of the process
dynamics. Based on theMP, CC2’s decisions like increasing the number of developers to
perform merge requests and improving effort estimation, reveals the practitioners were
relying completely and only on theMP for the above improvement decisions. This claim
is further supported by the improvement seen in UC2.1 SI, as depicted in the upward
trends in Period 1 and Period 3 in Fig. 2.

430 P. Ram et al.

5 Discussion

Based on the two CCs’ reported MP use, their underlying rationales, and the alleged
role of the metrics in their decision-making, we argue that the CC practitioners used the
MP as either a trigger or the main driver for their software development. We discuss the
results from these two perspectives and answer the RQ.

5.1 Metrics Program as a Trigger

Based on the reported MP use by CC1, informed by their experience and their general
approach toMPs, the practitioners viewedmetrics as a trigger that directed them towards
taking certain actions. CC1 practitioners believe a standalone MP is not enough to
influence actions and drive development. Other contributing factors play an equally
important role. They subscribe to the idea that MPs, and the underlying metrics, are not
‘magic’ that can lay out clear and concise action to be taken [14]. The MP can only
guide them, provided its data are corroborated using different means like the original
data source or an authority at the organization. The need for corroboration is an implicit
requirement for evaluating MP data reliability [2]. Any meaningful improvements and
development driven by MPs can only be a result of several other factors working in
harmony [27]. This principle is visible in CC1’s use of ‘critical issues ratio’ metric
and the ‘quality alert’ feature, as part of their new and formalized quality requirement
management process.

CC1 is a large-size company, which may explain their reluctance at relying solely
on the MP for making development decisions. With respect to project characteristics,
it is difficult to draw any conclusion, as every single CC1 UCs involved development
of different versions of the same modeling tool. However, based on [7], we argue that
at least company size, if not project characteristics, moderated the MP’s potential to
influence software development at CC1. Furthermore, CC1’s perspective towards the
MP remained, largely, unchanged throughout the Project, which further dictated their
utilization of the MP as only a tool to inform their decision-making. Their original
perspective of the MP being only a decision-support tool is also in line with the claim
of CC1 using the MP only as a trigger.

5.2 Metrics Program as a Main Driver

The retrospective sessions helped CC2 establish an organization-wide trust in the MP.
The resulting transparency compelled the POandSM to use theMP for improving ‘merge
requests’ and effort estimation processes, which led to positive outcomes. Therefore, we
argue that CC2 are proponents of using MP as a main driver in their software devel-
opment. This stance is predicated on conditions like adapting the MP to their context,
target user feedback, and transparency.

On the back of better visibility and overall transparency, CC2 now completely relies
on the MP to carry out improvements. This is compatible with the findings in [17],
where specific interventions inferred from the flow3 metrics led to an increase in pro-
ductivity and process performance at SHS. Furthermore, CC2 also achieved the goal

3 Workflow metrics such as Work in Progress, Cycle Time, and Throughput.

An Empirical Investigation into Industrial Use 431

of equipping its POs and SMs with the responsibility to take decisions independent of
other stakeholders. The retrospective sessions were instrumental in convincing the CC2
of the MP’s resourcefulness for achieving the said goal. With the MP now adapted to
CC2’s context, its practitioners are confident in using theMP as their main driver towards
everyday software development, and even undertaking decisions for improvements. This
clearly highlights a diametric shift in CC2’s earlier view of MP being useful mainly as
a monitoring tool.

6 Threats to Validity

We report on the threats to our study’s validity based on the guidelines recommended
by Runeson and Höst [26].

The study is designed based on the MP and its constituents of process metrics,
process factors, and SIs, which have been verified in theory and in practice in our
previous studies [19, 20]. However, there is potential for misrepresentation of the results
of the quantitative analysis, which threatens the study’s construct validity. To mitigate
this threat, we discussed and verified these results with the CC practitioners, particularly
the Project/UC champion. Furthermore, we invited them to contribute to this study, and
validate the results and the claims derived from them.

Other confounding factors could have influenced our results, affecting the internal
validity of our claim regarding how each CC used the MP. For example, improvement
in UC1.3 SI values could be due to maturation effect. We have tried to mitigate this
threat by allowing the practitioners from the corresponding CC to validate these claims
by providing the underlying rationale. Furthermore, we excluded the data that could
interfere with the legitimacy of the results, and kept the CC practitioners in the loop of
every decision concerning data collection and processing.

The study involves only two software-intensive companies, each with their distinct
context, which affects the external validity of our study. However, we have provided
a detailed context for each CC, and used that to shape our discussion on their specific
MP use for software development and improvement decisions. Therefore, our findings
may be applicable to organizations that are similar in context to any of the two CCs.
Moreover, rather than a rulebook, our study can serve as a starting point for interested
organizations. Additionally, our overarching goal is to trigger further investigations on
the research topic and gaps we have attempted to address here.

Multiple researchers and practitioners have helped elaborate and validate the findings
from the study. However, only one researcher was involved in metrics data collection,
which may affect the reliability of our study.

7 Conclusion

The state of the art provides limited empirical evidence for metrics programs use in ASD
in industrial contexts, especially for decision-making. However, studies that provide
empirical evidence of metrics programs use in large industrial settings, supported by
their usage rationale and consequent benefits, remains scarce. In the context of the EU
H2020 Q-Rapids Project, we have tried to address this research gap.

432 P. Ram et al.

We collaborated with two software-intensive companies, and reported on their met-
rics programs use for software development, including decisions made towards process
improvements. Analyzing process metrics data from the two case companies, we rein-
forced the empirical evidence to support the rationale provided by the practitioners for
their reported use of metrics programs for software development and decision-making.
Company size and perspective towards MP’s potential for software development are the
two probable distinguishing criteria explaining their use at the two case companies. For
a large-size company with a cautionary perspective, a metrics program can only act as a
trigger for software development and decision-making. In contrast, for SMEs, it can act
as the main driver, provided company-specific conditions like adapting to their context,
target user feedback and transparency are met.

Future work could include evaluation of several use cases across multiple large-size
companies and SMEs to improve generalizability of our findings.

Acknowledgments. This work is a result of the Q-Rapids Project, funded by the European
Union’s Horizon 2020 research and innovation program, under grant agreement No. 732253.

References

1. Liechti, O., Pasquier, J., Reis, R.: Beyond dashboards: On the many facets of metrics and
feedback in agile organizations. In: Proceedings - 2017 IEEE/ACM 10th International Work-
shop on Cooperative and Human Aspects of Software Engineering, CHASE 2017, pp. 16–22
(2017)

2. Staron, M., Meding, W.: Ensuring reliability of information provided by measurement sys-
tems. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-Gallego, J.J., Brunekreef, J.
(eds.) IWSM 2009. LNCS, vol. 5891, pp. 1–16. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-05415-0_1

3. Yang, Y., Falessi, D., Menzies, T., Hihn, J.: Actionable analytics for you. IEEE Softw. 35,
51–53 (2018)

4. Bird, C., Murphy, B., Nagappan, N., Zimmermann, T.: Empirical software engineering
at Microsoft Research. In: Proceedings of the ACM Conference on Computer Supported
Cooperative Work. CSCW, pp. 143–150 (2011)

5. Menzies, T., Zimmermann, T.: Software analytics: so what? IEEE Softw. 30, 31–37 (2013)
6. Zhang, D., Han, S., Dang, Y., Lou, J.G., Zhang, H., Xie, T.: Software analytics in practice.

IEEE Softw. 30, 30–37 (2013)
7. Kupiainen, E., Mäntylä, M.V., Itkonen, J.: Using metrics in Agile and lean software develop-

ment - A systematic literature review of industrial studies. Inf. Softw. Technol. 62, 143–163
(2015)

8. Staron, M., Meding, W.: Transparent measures: Cost-efficient measurement processes in SE.
In: Software Technology Transfer Workshop, pp. 1–4, Kista, Sweden (2015)

9. Van Solingen, R., Berghout, E.: Integrating goal-oriented measurement in industrial software
engineering: Industrial experiences with and additions to the Goal/Question/Metric method
(GQM). In: Proceedings of Seventh International Software andMetrics Symposium, pp. 246–
258 (2001)

10. Mendonça,M.G., Basili, V.R.: Validation of an approach for improving existingmeasurement
frameworks. IEEE Trans. Softw. Eng. 26, 484–499 (2000)

https://doi.org/10.1007/978-3-642-05415-0_1

An Empirical Investigation into Industrial Use 433

11. Hall, T., Fenton, N.: Implementing effective software metrics programs. IEEE Softw. 14,
55–64 (1997)

12. Iversen, J., Mathiassen, L.: Cultivation and engineering of a software metrics program. Inf.
Syst. J. 13, 3–19 (2003)

13. Staron, M., Meding, W.: Factors determining long-term success of a measurement program:
An industrial case study. e-Informatica Softw. Eng. J. 1, 7–23 (2012)

14. Croll, A., Yoskovitz, B.: Lean Analytics: Use Data to Build a Better Startup Faster (2013)
15. Buse, R.P.L., Zimmermann, T.: Information needs for software development analytics -

Microsoft research. MSR Technical report 2011-8, pp. 1–16 (2011)
16. Port, D., Taber, B.: Actionable analytics for strategic maintenance of critical software: An

industry experience report. IEEE Softw. 35, 58–63 (2017)
17. Vacanti, D., Vallet, B.: Actionable Metrics at Siemens Health Services (2014)
18. Franch, X., et al.: Data-driven requirements engineering in agile projects: The Q-Rapids app-

roach. In: Proceedings - 2017 IEEE 25th International Requirements Engineering Conference
Workshops, REW 2017, pp. 411–414 (2017)

19. Ram, P., Rodriguez, P., Oivo, M.: Software process measurement and related challenges in
agile software development: A multiple case study. In: Kuhrmann, M., et al. (eds.) PROFES
2018. LNCS, vol. 11271, pp. 272–287. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03673-7_20

20. Ram, P., Rodriguez, P., Oivo, M.: Success factors for effective process metrics operational-
ization in agile software development: A multiple case study. In: Proceedings of the 2019
International Conference on Software and System Process (2019)

21. López, L., et al.: Q-rapids tool prototype: supporting decision-makers in managing quality in
rapid software development. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol.
317, pp. 200–208. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9_17

22. Oriol,M., et al.: Data-driven elicitation of quality requirements in agile companies. In: Piattini,
M., Rupino da Cunha, P., García Rodríguez de Guzmán, I., Pérez-Castillo, R. (eds.) QUATIC
2019. CCIS, vol. 1010, pp. 49–63. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-29238-6_4

23. Tahir, T., Rasool, G., Gencel, C.: A systematic literature review on software measurement
programs. Inf. Softw. Technol. 73, 101–121 (2016)

24. Dubinsky, Y., Talby, D., Hazzan, O., Keren, A.: Agile metrics at the Israeli Air Force. In:
Agile Development Conference (ADC 2005), pp. 12–19. IEEE Computer Society (2005)

25. Díaz-Ley, M., García, F., Piattini, M.: Implementing software measurement programs in non
mature small settings. In: Cuadrado-Gallego, J.J., Braungarten, R., Dumke, R.R., Abran, A.
(eds.) IWSM/Mensura -2007. LNCS, vol. 4895, pp. 154–167. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85553-8_13

26. Runeson, P., Höst,M.:Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14, 131–164 (2009)

27. Meneely, A.: Actionable metrics are better metrics. In: Perspectives on Data Science for
Software Engineering, pp. 283–287. Elsevier (2016)

https://doi.org/10.1007/978-3-030-03673-7_20
https://doi.org/10.1007/978-3-319-92901-9_17
https://doi.org/10.1007/978-3-030-29238-6_4
https://doi.org/10.1007/978-3-540-85553-8_13

Integration of Security Standards
in DevOps Pipelines: An Industry

Case Study

Fabiola Moyón1(B) , Rafael Soares2, Maria Pinto-Albuquerque2 ,
Daniel Mendez3,4 , and Kristian Beckers5

1 Siemens CT and Technical University of Munich, Munich, Germany
fabiola.moyon@siemens.com

2 Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Lisbon, Portugal
{rafael soares,maria.albuquerque}@iscte-iul.pt

3 Blekinge Institute of Technology, Karlskrona, Sweden
daniel.mendez@bth.se

4 fortiss GmbH, Munich, Germany
5 Social Engineering Academy, Munich, Germany
kristian.beckers@social-engineering.academy

Abstract. In the last decade, companies adopted DevOps as a fast path
to deliver software products according to customer expectations, with
well aligned teams and in continuous cycles. As a basic practice, DevOps
relies on pipelines that simulate factory swim-lanes. The more automa-
tion in the pipeline, the shorter a lead time is supposed to be. How-
ever, applying DevOps is challenging, particularly for industrial control
systems (ICS) that support critical infrastructures and that must obey
to rigorous requirements from security regulations and standards. Cur-
rent research on security compliant DevOps presents open gaps for this
particular domain and in general for systematic application of security
standards. In this paper, we present a systematic approach to integrate
standard-based security activities into DevOps pipelines and highlight
their automation potential. Our intention is to share our experiences
and help practitioners to overcome the trade-off between adding security
activities into the development process and keeping a short lead time. We
conducted an evaluation of our approach at a large industrial company
considering the IEC 62443-4-1 security standard that regulates ICS. The
results strengthen our confidence in the usefulness of our approach and
artefacts, and in that they can support practitioners to achieve security
compliance while preserving agility including short lead times.

Keywords: Secure software engineering · Security standards · Agile
software engineering · DevOps pipeline · DevSecOps · Industrial
control systems

c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 434–452, 2020.
https://doi.org/10.1007/978-3-030-64148-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_27&domain=pdf
http://orcid.org/0000-0003-0535-1371
http://orcid.org/0000-0002-2725-7629
http://orcid.org/0000-0003-0619-6027
https://doi.org/10.1007/978-3-030-64148-1_27

Integration of Security Standards in DevOps Pipelines 435

1 Introduction

Agile methodologies aim to deliver software products that satisfy customer needs
while enabling collaboration among stakeholders [2]. Lean techniques apply man-
ufacturing flows to deliver software products with waste reduction, increased vis-
ibility of the manufacturing pipeline, and better team collaboration [23] DevOps
relies on both agile and lean practices to break the barriers between development
(Dev) and operation (Ops) teams [13]. This extends the benefits beyond deliv-
ery to the operation of software products. By applying DevOps, organizations
attempt to deliver and operate software products according to customer expec-
tations, with well aligned teams and with focus on continuous improvement of
the process flows. The indicator of improvement is reducing the time-frame to
transform a customer need into a usable software functionality at the production
environment – so-called lead time [15].

To shorten the lead time, DevOps relies on automation practices [17], where
Continuous Integration/Continuous Delivery (CI/CD) pipelines are essential.
The term pipeline refers to so-called factory swim-lanes and describes a system-
atic alignment of processes and tools to release software products in a seamless
manner, often characterised with the metaphor of “pushing a button”. This
“button” triggers a set of automated checks and tests aimed at software quality
assurance [8].

While DevOps was originally conceptualized for IT companies, industrial
companies have started as well to embrace DevOps practices [1,5]. However,
there are yet several challenges to overcome before DevOps can be largely applied
in highly regulated domains with high demand for quality attributes, in partic-
ular security [30].

Especially the domain of industrial control systems (ICS), where software
products are vital to support critical infrastructure, is characterised by the need
of compliance with security standards. The ICS domain is regulated by the
security standards family IEC-62443, where the IEC-62443-4-1 standard (the
4-1 standard) states process requirements for secure product development life-
cycle [10].

Nowadays, the software engineering (SE) field lacks methods to demonstrate
compliance with security standards when applying DevOps [30]. There are initial
contributions on security in agile methods, as well as on DevOps (e.g. [12,19,
28,31]); however, publications which address the compliance of security are very
scarce and do not yet cover completely the ICS domain [16,21].

In addition, a challenge for the SE field is the trade-off between adding secu-
rity activities during development and keeping a short lead time [14].

To achieve security compliance for DevOps, we argue that we first need to
understand how to systematically integrate security standard requirements into
DevOps pipelines. In this paper, we address this problem for the representative
standard in the ICS domain: the IEC 62443-4-1 standard for secure product
development. Through a case study, we analyze its application in a large indus-
trial company.

436 F. Moyón et al.

Integration is possible since both the security standard and the DevOps
pipeline are based on activity flows. The 4-1 standard requirements are a set
of processes to ensure security in the product development lifeycle. The DevOps
pipeline is a process chain to deliver software products [8]. Hence, we mapped
the 4-1 process requirements into the applicable DevOps pipeline stages, namely:
concept, code, build, test, release, deploy, operate and monitor [13].

In addition, given that DevOps relies on automation to keep short lead times,
we determine to what extent the 4-1 standard requirements can be automated.
Ideally, the more automatable the standard security requirement, the less impact
on the lead time.

In summary, to improve the product development process in security regu-
lated environments, this work presents two contributions:

1. an approach to systematically describe security compliant DevOps pipelines,
together with a first instance for the IEC 62443-4-1 standard, and

2. a description of automation capabilities of the 4-1 standard security require-
ments, together with details of available security tools, if one exists to date.

Our contributions may support companies driving DevOps for ICS to sat-
isfy not only customer needs but also regulatory demands, without losing the
benefits of agile and DevOps. With a description of non-automatable standard
requirements, we raise awareness of where in the product life-cycle to emphasize
collaboration between security and DevOps teams. Also, by describing automa-
tion capabilities, we provide paths to implement security with less impact on
the lead time. Moreover, for the research field of security compliance, our work
reduces the gaps with relation to security compliant DevOps.

To evaluate the applicability and usefulness of our contributions, we con-
ducted a qualitative study consisting of interviews with expert practitioners in
a large industrial company. Results show that the integration approach may
be applied to describe DevOps compliance with other security standards or in
other regulated domains, e.g. finance, telecommunications. Moreover, the study
revealed that the 4-1 standard automation capabilities motivate practitioners
to implement compliance programs based on automation. Nowadays, this work’s
artefacts are applied in the company to introduce Dev and Ops teams to security
compliance with the 4-1 standard and to perform DevSecOps assessments.

The rest of this paper is structured as follows. In Sect. 2, we discuss funda-
mentals and related work. Section 3 presents the steps we propose to integrate
security standards into DevOps pipelines, through systematic identification of
activities and automation capabilities, while pointing out at which stages of the
pipeline each security requirement fits. Section 4 presents how the integration
approach delivers, for the 4-1 standard, a description of automation capabilities
as well as a specification of Security Standard Compliant (S2C) DevOps Pipeline
Specification. Section 5 reports on the evaluation. In Sect. 6, we discuss the main
findings, impact and limitations of our work. Finally in Sect. 7, we summarize
current and further work.

Integration of Security Standards in DevOps Pipelines 437

2 Fundamentals and Related Work

In this section, we describe the DevOps concepts including the automation prac-
tice. Later, we present a summary of the relevant work in the field of security
compliant DevOps.

2.1 DevOps and Pipelines

DevOps combines working philosophies and practices to remove the bar-
rier between the development (Dev) and operation (Ops) teams. Key ele-
ments include collaboration, automation, measurement, and monitoring [18].
An essential aspect for automation is the concept of the Continuous Integra-
tion/Continuous Delivery (CI/CD) pipeline. This pipeline describes the align-
ment of processes and tools to automate steps in the Software Development Life
Cycle (SDLC) process, which includes initiating code builds, running acceptance
tests, and deploying to staging and production environments. Pipelines produce
artefacts that may serve as evidence for compliance [8].

Debates on DevOps concepts, definitions, and practices are active with yet
no clear consensus [17]. In the contribution at hands, we concentrate on the
so-called automation practice [13] and we recognize pipelines as the concrete
manifestation of this practice in industrial environments. When using the term
DevOps pipeline, we refer to the sequence of processes that transform needs of
a customer into valuable product increments and deployed them to production
site.

For this work, we chose as main reference the original DevOps Pipeline (the
well-known infinite symbol), as it represents the sequence from customer needs
to deployed functionalities. For specific details, we analyzed also the pipeline
proposals from: Bird, Humbley and Gartner [4,6,8].

2.2 DevSecOps and Security Standards

The term “DevSecOps” has emerged as organisations, that started to apply
DevOps techniques, were concerned about security aspects. It refers to the incor-
poration of security practices in a DevOps environment through the collabora-
tion between development, operation, and security teams [20]. Reports correlated
security automation with DevOps success and recommended the integration of
security earlier in the development life cycle, moving from operational to devel-
opment stages [5,27]. To achieve this, CI/CD pipelines were adapted to include
security practices [4].

In general, publications, that refer to DevOps and regulations-based security,
are scarce. Authors explore security in regulated environments [19,30] and where
to introduce security activities in DevOps [12,31]. However DevSecOps compli-
ant with a particular standard or domain is still missing. In our experience in
industrial environments, a major gap for security compliance is identifying which
DevOps artefacts can serve as compliance evidence.

438 F. Moyón et al.

The ICS domain is regulated by the IEC 62443 standard family, whose sibling
the IEC 62443-4-1 (the 4-1) provides process requirements (activities, artefacts,
and flows) to achieve a secure product development life-cycle [10]. It contains
eight practices, which are: security management (SM), to ensure that security
activities are adequately executed through the product’s life cycle; specifica-
tion of security requirements (SR), to accurately elicit product’s security
capabilities; secure design (SD), to ensure that security is involved from over-
all architecture to individual components; secure implementation (SI), to
ensure applicability of secure coding and implementation practices; security
verification and validation testing (SVV), to ensure that security design
was implemented; management of security-related issues (DM), to han-
dle product’s security-related issues; security update management (SUM),
to ensure timely delivery of security updates; and finally security guidelines
(SG) to provide sufficient documentation for secure product deployment.

This work extends the field by specifying which practices of the 4-1 stan-
dard apply for each DevOps phase. Although previous work refers to security
involvement into pipelines [4], our contribution fills the gap of applying security
from the point of view of security standards: involving more than technology,
the people and process aspects. In addition, at a granular level, we determine
which security standard activities can be automated in a pipeline.

3 Integration of Security Standards into DevOps
Pipelines

In industrial environments adopting DevOps, we aim to improve the product
development process by achieving security compliance with less impact on the
leadtime. Therefore it is our intention to determine to what extent security
standard requirements can be automated and how a DevOps pipeline will look
like when orchestrating such requirements.

Security compliance requirements are stated in security standards and to
integrate them into DevOps, we propose a systematic approach that consists of
three steps (see Fig. 1). First, we list the standard activities in a precise way.
Second, for each standard activity, we determine the automation capabilities
and finally, we map activities into the DevOps Pipeline stages. The approach
is applied for the 4-1 security standard for secure product development in ICS.
The artefacts presented in this paper are instances for this particular standard;
however, the structure can serve as template for the analysis of other standards
describing secure development life-cycles and applicable in other domains like
the ISO 27034 for secure software development. A complete set of artefacts is
part of our contribution and can be accessed in our online material at https://
doi.org/10.6084/m9.figshare.11294534.

In the following sub-sections, we describe the steps in detail and present the
artefacts.

https://doi.org/10.6084/m9.figshare.11294534
https://doi.org/10.6084/m9.figshare.11294534

Integration of Security Standards in DevOps Pipelines 439

Fig. 1. Approach to integrate security standards into DevOps Pipelines. For illustration
purposes, artefacts are shown as particular instances of the 4-1 standard. Artefact in
white was adopted from previous work [22]. The final output of this approach is the
Security Standard Compliant (S2C) DevOps Pipeline presented in Sect. 4

3.1 Describe Standard Requirements as Activities

This step focuses on a detailed analysis of the standard and its requirements. As
result, we obtain a precise description of the standard requirements to the level of
activities with inputs and outputs. Each requirement may contain several activ-
ities to be orchestrated in a pipeline. Inputs and outputs serve to build up the
orchestration flow, meaning: the output of one activity is the input of the next.

For this case study, we based this analysis on existent process models of the
4-1 standard [22]. Such models represent the 4-1 standard requirements with the
Business Process Model and Notation (BPMN). From the 4-1 process models,
we extracted tasks, events, and gateways of the standard requirements. All of
them where considered as activities to be orchestrated. Further, we also made
explicit the input and output based on the artefacts, also depicted in the 4-1
process models. This analysis resulted into 160 activities.

Figure 2 (steps 1 and 2) presents an example of how activities are extracted
from a requirement of the 4-1 standard. The example shows an excerpt of how
the 4-1 process models depict the requirement SI-1 Secure implementation review
belonging to the practice Secure Implementation.

3.2 Determine Automation Capabilities for the Standard

This step analyzes if the standard activities can be automated. The term automa-
tion capability is based in two criteria:

Automation Level. Describes to what extent the security standard activities
can be automated. The following are the automation categories:

– Human Task: Automation is not possible. A human must perform the activity.
– Transparency: A human can perform the activity based on tool results e.g.

visualization.

440 F. Moyón et al.

– Partial Automation: Parts of the activity can be automated but required
manual input to be completed.

– Tool Possible: Activity can be automated, but no tool was identified.
– Complete: Activity can be completely performed by a tool and tools are

available.

Fig. 2. Description on how IEC 62443-4-1 requirements extracted from process models
(1) can be refined as activities (2) with input, output and automation capabilities (3).
Finally, the activities are mapped into pipeline stages (4)

Tool Support. For activities that can be automated, we searched available
tools in several sources and investigate if the tools fit the automation level [7,
24,25]. Finally, a tool list is compiled including first open source tools as well
as those that can be integrated into Continuous Integration tools (e.g.,Jenkins,
Gitlab CI).

The automation level and tool support are dependent criteria, e.g. an activity
may seem to be fully automated, however there may not be a tool that fulfills
the activity completely. Figure 2 (step 3) shows an example of how automation
capabilities are described for the activities extracted after step 3.1. These activi-
ties refer two tasks that implement the requirement SI-1 Secure implementation
review. The 4-1 process models notate them as SI-t5 and SI-t6.

3.3 Map Activities into Pipeline Stages

In this step, we identify in which stages of the DevOps pipeline the security stan-
dard activities should take place. To this aim, we find characteristics in common
in both DevOps pipeline and the 4-1 standard. Afterwards, we determine for each
activity of the 4-1 standard the corresponding stage(s) of the DevOps pipeline.

Integration of Security Standards in DevOps Pipelines 441

Security standard activities are included as early as possible in the pipeline,
prioritizing stages where the product is not yet in the production environment.
Figure 2 (step 4) shows an example of the mapping of 4-1 activities into pipeline
stages. To have an overview of every 4-1 practice, the individual activities with
their automation capabilities are aggregated into per 4-1 practice. These models
are called Pipeline Specifications of the Standard Practice and are available in
the online material.

Finally, this step aggregates the individual activities in a high-level overview,
a Security Standard Compliant (S2C) DevOps Pipeline. In this section, we pre-
sented an example for the SI practice of the 4-1 standard. In the following section,
we point out key points related to the rest of the standard practices.

4 DevOps Compliant with the 4-1 Security Standard

Applying the integration steps for the 4-1 security standard resulted into: a
description of automation capabilities for the 4-1 standard practices and a
instance of a (S2C) DevOps Pipeline for this specific standard. In this section,
we describe them.

4.1 Automation Capabilities of the 4-1 Standard

Ideally, to support the DevOps aim of reducing the lead time, security activities
require to be completely automated. Summarizing the 4-1 security activities per
automation level, this occurs for 31% of the 4-1 security activities. It means that a
tool is available and can completely implement the security activity when orches-
trated into a pipeline. The opposite occurs for 38% of the standard activities,

Fig. 3. Summary of Automation capabilities per practice of the IEC 62443-4-1. For
the whole standard, this corresponds to: Human Task 38%; Transparency 9%; Partial
Automation 14%; Tool Possible 8%; Complete Automation 31%

442 F. Moyón et al.

which cannot be automated at all and where a human must do the task. Hence,
these security activities require comprehensive collaboration among stakehold-
ers, either including a security expert into the iterations or providing security
knowledge to DevOps team members.

Some 4-1 activities (9%) can be supported from tools to achieve transparency,
meaning that a human can take decisions based on automation e.g. dashboard
tools that aggregate security findings. Other 14% of security activities can be
partially implemented by an existent security tool. Finally, 8% of standard secu-
rity activities could be automated but, to the best of our understanding, there is
not yet documentation in our sources that such a tool is implemented and used,
e.g. tool for automatic aggregation of security findings and prioritization into
the backlog based on threat models. Figure 3 shows the automation capabilities
of the 4-1 activities grouped per practice. The 4-1 standard practices with high
automation capabilities are: security management (SM), secure verification and
validations testing (SVV), and security update management (SUM). For SM such
automation level may not be clear at first sight, but the 4-1 standard includes
in this practice security activities for environment verification, encryption/key
management and vulnerability checking of third-party components. Several secu-
rity tools implement these use cases. The SVV practice reflects a common use
case, security testing activities like vulnerability checking or port scanning are
well automated and supported by tools. For the SUM practice, tools fully auto-
mate security activities for updates delivery and installation.

In contrast, we observe practices where no automation is possible: secu-
rity requirements (SR) and security guidelines (SG). For SR, most security
activities rely on human effort (see human and partial automation in Fig. 3).
DevOps Teams should find suitable requirements engineering techniques to sup-
port DevOps objectives. In our experience, compliance of security requirements
practices is challenging for industrial environments applying agile and DevOps
practices. For SG, security activities are manual since they refer to documenta-
tion of secure configuration guidelines. In addition, we observe some practices
largely depending on human tasks, such as secure design (SD) and manage-
ment of security-related issues (DM). In SD, humans have to generate security
architecture diagrams or define measures. Tools can help for drawing or to auto-
generate architecture models but humans need to approve them. In DM, security
tools aggregate issues but experts decide what to do with findings.

4.2 Security Standard Compliant DevOps Pipeline

Besides automation capabilities, we contribute with a specification of how secu-
rity standard activities should be involved into DevOps stages. Figure 4 shows
the (S2C) DevOps Pipeline for the 4-1 standard and a brief description of key
points is the following:

Plan: Based on the customer need, during this stage, requirements are rep-
resented as user stories. Security requirements (SR) should be included in the
elicitation flow. The activities of the SR practice are rather manual and no
automation is possible (see Fig. 3).

Integration of Security Standards in DevOps Pipelines 443

The 4-1 Standard demands to perform threat modeling and describe the prod-
uct security context. The latter refers to describing required security measures for
the environment where the product will be deployed, e.g. networks or operating
systems.

To perform these activities, teams need to involve security specialists who
recommend modeling tools. Such tools do not automate the activities but provide
transparency and support documentation. Some threat modeling tools provide
lists of common threats which consider partial automation as the experts do not
need to list the threats.

A key part for compliance is to ensure that these activities are performed,
therefore the backlog management tool should include them. Here, we identified
potential for automation. User stories referring to critical components (as based
on threat models) could be automatically labeled by the backlog management
tool as security relevant. Automatic labeling can be based on natural language
analysis. This will facilitate collaboration between DevOps teams and security
experts, since security experts are included by default in the process.

In addition, in this stage, the 4-1 Practice Secure Design (SD) demands to
define secure design best practices and secure design principles. These are later
transformed into security measures for each interface of the product. Although
most activities are manual, automation may help to add preset lists of secu-
rity measures that can be included into the design. Repositories that provide
compliance evidence are the Backlog and Documentation repository.

Fig. 4. Security Standard Compliant DevOps Pipeline for the IEC 62443-4-1 Standard:
Diagram shows the 4-1 standard practices (in yellow), the DevOps stages (in green).
Solid vertical arrows depict in which DevOps stage a 4-1 practice security activity
can take place. Standard security activities impact several repositories (in brown) like
backlog, code based and test, pre-production and production environments. In addition,
security standard demands an explicit repository for documentation and logs mainte-
nance. Continuous practices (gray arrows) describe the flows to which the security
activities also apply. (Color figure online)

444 F. Moyón et al.

Finally, the practice Management of Security-related issues (DM) demands
that if security issues are detected at any stage of the pipeline, the solution
should include updates in requirements and design. Although automation exists
to detect, track and manage security issues, the manual effort is high specially
for disclosure procedures and issues validation and investigation.

Code: At this stage, teams code functionalities based on the concept. DevOps
establishes that not only functionalities can be coded, but also infrastructure and
environment configurations (the shifting left concept where Operation Teams
start working at the Code phase [15]. At this point, the 4-1 security standard
demands secure implementation (SI). Automation is possible for static code anal-
ysis. Other standard activities are rather manual like definition of coding stan-
dards and review of attachment to coding standards e.g. through peer-review.

DevOps recommends that functionalities and configurations should be stored
in the same repository and integrated into the version control tool. This allows
developers to pull not only code but also an environment that is very similar or
mirror to production. From the 4-1 standard point of view, this is relevant since
it allows to maintain evidence of all security measures including environment
hardening. In addition, it enables compliance with the standard requirements of
development environment protection part of the Security Management practice
(SM).

Build: During this stage, the teams (not only developers) commit their code.
The continuous integration tool triggers different security testing tools. If testing
is successful, code is merged and the application is ready for testing. If testing
is not successful, commit is not merged and results of testing tools need to
be synchronized with the security issues tracking tool to comply with the 4-1
standard DM Practice.

The 4-1 practice Secure Validation and Verification testing (SVV) describes
four groups of testing: security requirements testing, threat mitigation testing,
vulnerability testing and penetration testing. During Build, security requirements
testing can be done with development frameworks for behaviour-driven devel-
opment and unit testing. Threat mitigation testing requires manual tasks. Vul-
nerability testing can be completely automated with specific tools depending on
the programming language.

The 4-1 practice Security Management (SM) contains the requirement: third
party component verification. Several tools provide support for this activity.
Checks avoid the use of vulnerable components as part of the system archi-
tecture. This process is known as Continuous Integration.

Test: In the test environment, automated and user acceptance tests can occur.
The activities of the 4-1 practice SVV as well as third party component verifica-
tion apply and are highly automated. To achieve compliance, testing documen-
tation should exist and located in the documentation repository.

Release and Deploy: During these phases, the functionalities that implement
the customer’s need are made available for customers. The release stage refers
to Alfa/Beta releases and stored into a pre-production repository and during

Integration of Security Standards in DevOps Pipelines 445

the Deploy stage to the production environment. Releases allow to gather early
feedback about the implemented security measures.

During these stages, penetration testing is performed with tools that par-
tially automate the activities. Tools run tests, identify vulnerabilities, and a
team member manually analyzes and tries to exploit them. The 4-1 Practice
Security Guidelines (SG) demands documentation which is inherent a manual
task. Guidelines describes how to securely integrate, configure and maintain the
product. For large systems, such documents are of extreme value.

Note that continuous delivery represent automation until the release stage,
while continuous deployment until Production.

Operate and Monitor: The product is available for Customer use. Security
monitoring, security testing and compliance checks are highly automated. Mon-
itoring activities are part of Maintenance and artifacts belong to the Analytics
repository.

Security-related issues are tracked and redirected to the Concept stage where
the countermeasure is packed into an Update. This is known as “Continuous
Improvement and Feedback”. The 4-1 standard practice Security Update Man-
agement (SUM) demands synchronization of updates and roll-out tracking.

5 Evaluation

We performed a qualitative study at Siemens AG, a large company that con-
tributes to the IEC 62443-4-1, and where DevOps practices are applied to develop
industrial systems. Based on current practices for empirical studies [26,29], we
interviewed practitioners who are part of projects related to security compli-
ance and DevOps. The objective of the study is to answer the following research
questions:

– RQ1. How do practitioners perceive the precision of the automation classifi-
cation criteria and automation capabilities of the 4-1 standard?

– RQ2. How do practitioners perceive the usefulness of our approach artefacts,
specifically the (S2C) DevOps Pipeline for the 4-1 security standard?

5.1 Study Design

Subjects. In this study, we target practitioners that are knowledgeable of secu-
rity compliance issues in DevOps projects, and whose products must be com-
pliant with the 4-1 standard. As DevOps is recently being adopted for ICS, we
conducted the study in a large industrial company. The subject group involves 7
participants developing products for industries like digital manufacturing, smart
infrastructure, or healthcare. The number of subjects reflects the growing sta-
tus of security compliance DevOps for ICS. In addition, this number is aligned
with the current state-of-practice for comparable empirical studies on the field of
security with restricted environments (containing similar sampling sizes between
5 and 11 practitioners (c.f. [3])).

446 F. Moyón et al.

Participants are experienced professionals, with different levels of knowledge
and expertise in the IEC 62443-4-1 standard and DevOps. For anonymity rea-
sons, we excluded company roles since the number of experts in the field is
limited. Table 1 shows how the interviewees’ perceived their level of expertise.
None of the participants has classified himself as an expert in the given topic.
One participant described himself as beginner in security tools, considering, their
concentration is processes and people aspects, rather than the technology aspect
of security.

Table 1. Interviewees perception of their knowledge level in study related topics

– Beginner Medium Advanced Expert

4-1 Standard 2 3 2 0

DevOps 2 2 3 0

DevSecOps 2 2 3 0

Security tools 1 3 3 0

Interviews. The interviews involved one participant and two interviewers. A
interview protocol was prepared and is available in the online material. As prepa-
ration, specific parts of the 4-1 standard are selected to keep the time of the
interviews short. Subjects received handouts of the selected parts that corre-
spond to the artefacts presented in Fig. 1. The interviews took an average of one
hour, the flow is the following:

Introduction (5 to 10 min) Subjects are informed about the goal and the
flow of the interview. We introduce the integration approach, the protocol rigor
and measures to avoid bias.

Part 1: Automation Criteria (10 to 15 min) Aided by handouts, sub-
jects provide opinions on the clarity of the categories in the automation criteria,
namely: human task, transparency, partial automation, tools possible and com-
plete automation.

Part 2: 4-1 Automation Capabilities in detail (20 to 30 min) Subjects
are introduced to parts of the 4-1 pipeline specifications for specific selected 4-
1 practices. Handouts have sets of activities that are highlighted. Interviewees
provide opinions on the precision of the automation level for the activities and
(when applicable) selected tools. They are asked to improve the list of tools.

Part 3: 4-1 Automation Capabilities global and compliant pipeline
(10 to 20 min) Subjects take a brief introduction on the global and per practice
automation statistics of the 4-1 standard (see Fig. 3). They provide opinions
of the expectations of automation capabilities. Later, they visualize the S2C
DevOps Pipeline for the 4-1 standard (Fig. 4) and discuss the usability, benefits,
and drawbacks.

Integration of Security Standards in DevOps Pipelines 447

5.2 Results

Automation Criteria. The majority of the interviewees (6 of 7) found the
automation criteria to be precise, however, some participants argued about the
meaning of “Complete” automation. They argue that any tool would require
some human effort to configure it. Some quotes that resulted from the interviews
are listed in Table 2.

Table 2. Interview quotes regarding automation criteria

Interview no. Participant quote

2 You might come into discussion with technical practitioners
about the meaning of automation

5 For me “Partial” and “Transparency” are the same classification;
You will always have visualization and it’s not relevant for
automation

6 What is the meaning of complete automation?

7 The automation criteria would be sufficient to capture the
needed information

Automation Capabilities in Detail. The 4-1 standard pipeline specifications
seem to be applicable as the participants generally agreed on the automation
level, as well as some the selected tools. This is influenced by subjects’ levels
of awareness of the selected tools to fulfil the 4-1 standard activities. All sub-
jects were aware about the mentioned security tools and their applicability for
continuous integration and delivery pipelines. We collected very few extra tools,
but received feedback on the applicability of same tools for other use cases, and
reference to security tools expert to validate the tools list.

An advanced practitioner suggested to provide catalogs that enable easy
discovering of new or alternative tools per activity.

Automation Capabilities Global and Compliant Pipeline. Our intervie-
wees would have expected less activities in the category Tool possible and more
in Complete automation. However, they pointed out that the results seem real-
istic. Nevertheless, all subjects showed surprise with the automation capabilities
for the SM practice. Management is more a human-related practice. Later, after
a hint, interviewees with medium and advanced 4-1 knowledge remembered that
the 4-1 SM Practice contains third party components security verification which
is highly automatable and several tools are available. About the (S2C DevOps
Pipeline, they are asked if it would be helpful for building compliant pipelines.
Our interviewees were divided between its suitability for building or evaluating
pipelines. Selected quotes are listed in Table 3.

448 F. Moyón et al.

5.3 Threats to Validity

To support the representativeness, we confirmed the participants’ background
and suitability to answer our suggestions at the beginning of the interviews. The
sampling size of 5 to 11 practitioners is further in tune with current security
research and comparable studies that have a restricted environment [3].

Table 3. Interview quotes regarding the S2C DevOps pipeline

Interview no. Quote

3 You could see where you can use a tool for automation

5 A practitioner could discover new tools and easily spot a
replacement for the same task

6 You’d have to try it out when you build a task

6 Ignoring the 4-1 standard, it would be a good source of tools to
fulfil the tasks; Finding the right tool for the right task

7 Could be helpful to evaluate a pipeline

To further mitigate that participants alter their answers, we informed them
about how the anonymity of their answers was preserved. Additionally, the inter-
viewers explained the protocol and took measures to not influence answers like
remaining neutral and in silence.

Finally, to avoid false interpretations and overlook information, two inter-
viewers participated, one applying the protocol and other one controlling rigor.
Later, the results were validated by two different reviewers.

6 Discussion

6.1 Summary of Conclusions

Security standards are described as linear processes, thus, are not prepared for
DevOps iterative processes like continuous integration, delivery, or deployment.
Our work translates security standard requirements into a pipeline-ready lan-
guage describing: activity, input, output, automation capability, and when avail-
able, the list of security tools (see examples SI-t5 and SI-t6 in Fig. 2).

Security compliance activities are perceived as overload for DevOps teams,
mostly including documentation tasks that are not perceived as customer value
and that increase the lead time. Indeed, in industrial environments adopting agile
and DevOps practices, practitioners constantly argue that security compliance
reduces agility. Our work reveals that 31% of the 4-1 standard security activities
can be automated into a pipeline. In continuous software engineering, achieving
compliance for this third can be an initial objective to improve the product
development process.

Integration of Security Standards in DevOps Pipelines 449

We also identified 38% activities that can not be automated. Including them
in DevOps implies better collaboration between security experts and DevOps
teams. We recommend to improve security skills in the teams in order to avoid
bottlenecks due to lacks of security experts. These human tasks may be heavy
for the backlog and include documentation, e.g. writing security guidelines or
drawing security architecture diagrams. Although, they are not typical for agile
approaches, they are still highly demanded by standards.

6.2 Limitations

Limitations to our approach arise from our focus on a ICS specific standard.
However, since the 4-1 is derived from the ISO27034 - the main standard for
secure software development - our approach applies to other domains as well.
Also, it can be used to introduce security standards that demand process require-
ments for product delivery. Main limitations of using the 4-1 standard are: (a)
it does not cover all aspects of secure operations e.g. secure hardening, (b) the
4-1 was released in 2018, therefore knowledgeable practitioners are very rare and
belong to industrial companies who can be certified but not necessarily based
on DevOps practices. This also forces evaluation endeavours to be performed in
restricted environments and to remain qualitative of nature.

6.3 Impact

For Industry Professionals. DevOps practitioners can use our artefacts to
establish continuous security improvement roadmaps, e.g. the first iteration
could be to introduce in their DevOps pipelines the complete automated security
activities, subsequently, the partial automation activities, and so on. Currently,
in the industrial company, S2C DevOps Pipeline is applied as common language
to bridge communication between security experts, dev and ops teams. We forsee
the applicability of this pipeline specification as a pre-set documentation tem-
plate for their pipelines. Further, compliance auditors can evolve our artefacts as
templates to perform compliance assessments of DevOps pipelines with regard
to the 4-1 standard.

Security experts can use the artefacts to provide certain recommendations
on how to apply security activities in a more automated way, while avoiding
security tasks not fitting with DevOps engineering practices.

Moreover, safety practitioners may replicate the approach for functional
safety standards like the ISO/IEC 26262 or 61508 [9,11].

For Researchers. We extend the work on DevOps security for regulated envi-
ronments with a systematic method and automation criteria to evaluate how
compliance activities can influence DevOps lead time and team collaboration.
Using our artefacts, researchers can discover directions for the field like: (a)
applying machine learning to build up tools in the category “Tool possible”, e.g.
to recommend treatments to security issues, or (b) verifying if activities are clear
enough to design and build tools.

450 F. Moyón et al.

For Standardization Organizations. Artefacts serve as recommended tem-
plates to document compliance and achieve the same level of understanding
among practitioners of different fields. Our approach is one way to map and
obtain evidence for ambiguous statements in standards. Besides, the industrial
scenario may serve as a shareable case study to start discussions on how to
achieve the same level of security for several ICS. At the end, this is the aim of
standards: to pursue large application of security best practices so that ICS in
global critical infrastructures remain resilient to attacks.

7 Conclusion

The present work demonstrates the potential of systematic integration of stan-
dard requirements into DevOps pipelines. Considering that pipelines are based
on automation, our work analyzes also automation capabilities of security stan-
dard requirements as a key element to support DevOps aims. The analysis
describes which requirements of the standard can be automated, either fully
or partially. We provide an overview of the results and identified gaps. These
gaps are requirements that can not be automated and have to be performed
manually.

The qualitative evaluation in a large industrial company shows evidence that
a S2C DevOps pipeline specification is useful to assess security compliance of
DevOps pipelines. Moreover, the automation capabilities of the standard require-
ments serves to build security compliant pipelines with a potential of at least
partially automating over 60% activities arising from standard requirements.

Our contributions to the field of security compliant DevOps are as follows:

1. We developed an approach to integrate security standards into pipelines and
we validated it through an instance for the IEC 62443-4-1 standard that
regulates the ICS domain. The main artefact of this approach is the Security
Standard Compliant S2C DevOps Pipeline Specification. It describes how the
practices of the security standard fit into the DevOps Pipeline.

2. We analysed and documented the automation capabilities of the 4-1 standard,
in the context of a large industrial company that operates in the ICS market.
We found that the automation extent of this standard is 31% Complete, it
means that 31% of the 4-1 requirements can be fully automated. 38% of the
4-1 requirements are manual tasks that have to be executed by a human
expert. The remainder has the potential to be at least partially automated
with future tools and techniques.

Currently, we use the S2C DevOps pipeline specification (Fig. 4) to raise
awareness for the compliance flow in DevOps as well as possibilities to achieve
compliance automation. Also, we experiment with building up automation
pipelines for security compliance aided by the 4-1 standard pipeline specifica-
tions. Moreover, we look into building tools to increase the percentage of 4-1
requirements that can be fully automated Finally, given our positive experience
with the case at hands, we cordially invite researchers and practitioners in joining
our endeavour to further scaling up our work to other standards and domains.

Integration of Security Standards in DevOps Pipelines 451

Acknowledgements. This work is partially funded by Portuguese national funds
through FCT - Fundação para a Ciência e Tecnologia, I.P., under the project FCT
UIDB/04466/2020. Furthermore, the third author thanks the Instituto Universitário
de Lisboa and ISTAR-IUL, for their support.

References

1. Allspaw, J., Hammond, P.: 10+ deploys per day: dev and ops cooperation at Flickr.
In: Velocity: Web Performance and Operations Conference. O’Reilly (2009)

2. Beck, K., et al.: Manifesto for agile software development (2001)
3. Ben Othmane, L., Jaatun, M.G., Weippl, E.: Empirical Research for Software Secu-

rity: Foundations and Experience. CRC Press, Boca Raton (2017)
4. Bird, J.: Security as code: security tools and practices in continuous delivery, Chap.

4, pp. 32–36. O’Reilly Media, Incorporated (2016)
5. DORA: Accelerate: State of DevOps (2019). https://services.google.com/fh/files/

misc/state-of-devops-2019.pdf
6. Gartner: 10 things to get right for successful DevSecOps (2017). https://

www.gartner.com/en/documents/3811369/10-things-to-get-right-for-successful-
devsecops

7. Hsu, T.H.C.: Hands-On Security in DevOps: Ensure Continuous Security, Deploy-
ment, and Delivery with DevSecOps. Packt Publishing Ltd., Birmingham (2018)

8. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, London (2010)

9. IEC: 61508 - functional safety. International Electrotechnical Commission (2010)
10. (IEC): IEC 62443-4-1. Security for industrial automation and control systems Part

4-1 Product security development life-cycle requirements (2018)
11. ISO: 26262 - road vehicles – functional safety. International Standards Organization

(2011)
12. Jaatun, M.G., Cruzes, D.S., Luna, J.: DevOps for better software security in the

cloud invited paper. In: Proceedings of the 12th ARES. ACM, New York (2017)
13. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: a system-

atic mapping study on definitions and practices. In: Proceedings of Workshop XP.
ACM, USA (2016)

14. Kim, G., Behr, K., Spafford, G.: The Phoenix Project: A Novel About IT, DevOps,
and Helping Your Business Win. IT Revolution Press, Portland (2018)

15. Kim, G., Humble, J., Debois, P., Willis, J.: The DevOps Handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution Press, Portland (2016)

16. Laukkarinen, T., Kuusinen, K., Mikkonen, T.: Regulated software meets DevOps.
Inf. Softw. Technol. 97, 176–178 (2018)

17. Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P.: A survey of DevOps
concepts and challenges, vol. 52. Association for Computing Machinery, New York
(2019)

18. Lwakatare, L.E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In: Lassenius,
C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 212–217.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2 19

19. Michener, J.R., Clager, A.T.: Mitigating an oxymoron: compliance in a DevOps
environments. In: 2016 IEEE 40th COMPSAC, vol. 1, pp. 396–398 (2016)

20. Mohan, V., Othmane, L.B.: SecDevOps: is it a marketing buzzword?-mapping
research on security in DevOps. In: 11th ARES, pp. 542–547. IEEE (2016)

https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://www.gartner.com/en/documents/3811369/10-things-to-get-right-for-successful-devsecops
https://www.gartner.com/en/documents/3811369/10-things-to-get-right-for-successful-devsecops
https://www.gartner.com/en/documents/3811369/10-things-to-get-right-for-successful-devsecops
https://doi.org/10.1007/978-3-319-18612-2_19

452 F. Moyón et al.

21. Morales, J., Turner, R., Miller, S., Capell, P., Place, P., Shepard, D.: Guide to
implementing DevSecOps for a system of systems in highly regulated environments.
Technical report, CMU/SEI-2020-TR-002. SEI, Carnegie Mellon University, Pitts-
burgh, PA (2020)

22. Moyón, F., Beckers, K., Klepper, S., Lachberger, P., Bruegge, B.: Towards contin-
uous security compliance in agile software development at scale. In: Proceedings
of RCoSE. ACM (2018)

23. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Agile Software Development Series. Pearson Education, London (2003)

24. SANS: SANS secure DevOps toolchain and securing web application technologies
checklist (2018)

25. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. IEEE
(2017)

26. Shull, F., Singer, J., Sjøberg, D.I.: Guide to Advanced Empirical Software Engi-
neering. Springer, London (2007). https://doi.org/10.1007/978-1-84800-044-5

27. Sonatype: DevSecOps community survey 2019 (2019)
28. Ur Rahman, A.A., Williams, L.: Software security in DevOps: synthesizing prac-

titioners’ perceptions and practices. In: Proceedings of International Workshop
CSED. ACM, USA (2016)

29. Wagner, S., Fernández, D.M., Felderer, M., Graziotin, D., Kalinowski, M.: Chal-
lenges in survey research. ArXiv abs/1908.05899 (2019)

30. Yasar, H.: Implementing secure DevOps assessment for highly regulated environ-
ments. In: Proceedings of the 12th ARES. ACM, USA (2017)

31. Yasar, H., Kontostathis, K.: Where to integrate security practices on DevOps plat-
form. Int. J. Secur. Softw. Eng. 7(4), 39–50 (2016)

https://doi.org/10.1007/978-1-84800-044-5

Exploring the Microservice Development
Process in Small and Medium-Sized

Organizations

Jonas Sorgalla1(B) , Sabine Sachweh1, and Albert Zündorf2

1 IDiAL Institute, University of Applied Sciences and Arts Dortmund,
Otto-Hahn-Str. 27, 44227 Dortmund, Germany

{jonas.sorgalla,sabine.sachweh}@fh-dortmund.de
2 Department of Computer Science and Electrical Engineering, University of Kassel,

Wilhelmshöher Allee 73, 34121 Kassel, Germany
zuendorf@uni-kassel.de

Abstract. Microservice Architecture (MSA) describes an increasingly
popular architectural style in which business capabilities are wrapped
into autonomously developable and deployable software units known as
microservices. Following Conway’s Law, the corresponding microservice
development process (MDP) requires a distinct accountable team for
each microservice to facilitate service autonomy. Although there are best
practices for larger enterprises to take this organizational requirement
into account, there is currently a lack of empirically founded understand-
ing, how the adaptation of MSA in smaller organizations that have more
constraint resources can be successful. Therefore, we have conducted
an interview study comprising six cases of such small to medium-sized
development organizations (SMDOs) in which we explore their applied
MDP using the Grounded Theory methodology. Among others, we exam-
ined team composition, collaboration formats, technology, and central
challenges. Our results show that in most of the studied cases, shifts of
service ownership occur and most use a code-first approach neglecting
documentation. Based on our observations, we assume that SMDOs in
particular are threatened to contradict service independence. Overall,
our exploratory results provide starting points for further research in the
field of microservice development.

Keywords: Microservice architecture · Qualitative research ·
Empirical software engineering · Exploratory case study

1 Introduction

Microservice Architecture (MSA) [12] describes a novel architectural style for the
development of service-based software systems. Hereby, a system comprises mul-
tiple microservices, each of which embodies a business capability. Each microser-
vice runs as a dedicated autonomous process and uses stateless communica-
tion methods, e.g., RESTful HTTP [7], to communicate with other services in
c© Springer Nature Switzerland AG 2020
M. Morisio et al. (Eds.): PROFES 2020, LNCS 12562, pp. 453–460, 2020.
https://doi.org/10.1007/978-3-030-64148-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64148-1_28&domain=pdf
http://orcid.org/0000-0002-7532-7767
https://doi.org/10.1007/978-3-030-64148-1_28

454 J. Sorgalla et al.

the system. Following Conway’s Law [4], which describes the close relationship
between the structure of a system and the structure of the developing orga-
nization, the use of several development teams in a microservice development
process (MDP) is generally considered reasonable [2]. Hereby, each team owns
one or more services, i.e., it is solely responsible for the owned services’ lifecy-
cle comprising design, development, deployment, and maintenance. This focus
on service-specific independence ensures that microservices are well combinable
with principles such as DevOps and containerization [2]. Thus, MSA is attributed
the advantages of maintainability, scalability, and robustness [12]. Despite all the
advantages, applying MSA also comes at a certain cost [15]. The architectural
complexity increases significantly. This is exemplified by the fact that microser-
vices require a profound set of additional infrastructure services, e.g. service
discovery or service configuration [2], which is particularly demanding in the
early development phases [15]. Additionally, software engineers need to familiar-
ize themselves with a broad range of different technologies and practices, which
is conceived more challenging than with monolithic system architecture [3].

Overall, the characteristics of MSA have made it a popular architectural style
not only with large organizations such as Netflix1 or Spotify2, but increasingly
also with small and medium-sized development organizations (SMDOs) [10].
Large organizations are able to utilize existing large-scale process models, e.g.,
the Scaled Agile Framework (SAFe) [1], Scrum at Scale [17], or the Spotify
Model [16], to organize the agile development of a microservice system across
multiple teams. These models inherently address Conway’s Law and provide
means to deal with the MSA-related efforts such as new required knowledge
or infrastructure development. However, as SMDOs do not have the necessary
resources to introduce large-scale models in a feasible way [6], they are not able
to overcome these hurdles in the same way as larger organizations do. Therefore,
we assume that SMDOs, in particular, could benefit from the adoption of new
methods and techniques which address MSA’s complexity. Although modern
software engineering has already produced promising approaches [13], we still
lack knowledge about how such approaches can be successfully integrated into
existing MDPs.

In this regard, we present an exploratory multi-case study [20] comprising
six cases of SMDOs that apply MSA. Our study’s major goal is to get insights
into this unique environment and explore how SMDOs organize their collabora-
tion process to develop a microservice system. Based on that we aim to derive
hypotheses for future research which contributes to make MSA more applicable
for SMDOs.

The remainder of this paper is structured as follows. In Sect. 2 we present
related work to our study. Section 3 describes the applied methodology and
Sect. 4 introduces the cases. We discuss results and derived hypotheses in Sect. 5.
Finally, we state threats to validity of our study in Sect. 6 and conclude the paper
in Sect. 7.

1 https://www.netflix.com/.
2 https://www.spotify.com/.

https://www.netflix.com/
https://www.spotify.com/

Exploring the Microservice Development Process 455

2 Related Work

Regarding empirical research in the domain of microservices, there are several
related contributions to our study. For example, Taibi et al. [18] contribute a
survey-based case study and present a process framework focusing on the migra-
tion from a monolithic to a microservice architecture. Bogner et al. [3] conducted
a study comprising the analysis of 14 systems using interviews. They focused on
technologies, architectural characteristics, and the impact on software quality.
Haselböck et al. [9] also interviewed ten experts from the industry to gather
insights in the design process of microservices. Also, there are mapping studies,
e.g., [5], focusing on publication trends, technology, or industrial adoption.

Although mentioned studies provide a deeper understanding of the technical
aspects of MSA-based systems and their adaptation in industry, the unique
features of the MDP itself remain largely unexplored. With our study, we want
to make a first contribution to this field from the perspective of SMDOs.

3 Methodology

Our study can be categorized as an exploratory comparative multi-case study
[20] which is especially suitable to inductively build hypotheses. As valid cases
for our study, we define SMDOs that have fewer than 100 people involved in the
MDP. With this definition, we are also able to include larger companies that have
only a small development team. Additionally, the organizations must be in the
process of applying MSA either to migrate or to build a new software product.
We select the participants based on existing contacts, i.e. on availability [20].

We gather and analyze data by utilizing the Grounded Theory methodology
(GTM) [8] and follow the guideline provided by Urquhart [19]. Therefore, we
prepared and pre-tested a semi-structured interview guideline3 relying on open
questions centered around the following areas: (i) Structure of the MDP; (ii)
MSA system which is built by the MDP; (iii) Challenges and solutions faced
when applying MSA; and (iv) Used auxiliary means such as tools and methods.

Our data gathering procedure comprises the audio recording as well as tak-
ing notes during the interviews. We then transcribe each interview and align
the audio recording with the transcription in our analysis software. We analyze
the data by first paraphrasing the statements in each interview and inductively
derive an initial set of coding categories. Lastly, we refine the codes through case
comparison.

4 Case Description

We conducted a total of five in-depth interviews with leading software architects,
each lasting approximately 1.5 h, as shown in Table 1. Our participants (IP1 to
5) reported to us about six cases (CS1 to 6) each from a different SMDO. In

3 Detailed guideline: https://github.com/SeelabFhdo/PROFES2020/.

https://github.com/SeelabFhdo/PROFES2020/

456 J. Sorgalla et al.

the following, we briefly describe each case. We categorize them by whether the
MDP involves a new development (greenfield), a new development based on an
existing system as a template (templated greenfield), or a migration in which
parts of a monolithic system are step-wise replaced by microservices.

Table 1. Case overview of explored SMDO cases.

CS IP Type Domain #Services #Ppl #Teams

CS1 IP1
Templated
Greenfield

Public
Administration

60 ≈30 5

CS2 IP2 Migration B2B E-Commerce 8 10 3
CS3 IP3 Greenfield IoT 18 28 2
CS4

IP4
Migration B2B E-Commerce 34 ≈10 2

CS5 Migration B2C E-Commerce 8 ≈10 2

CS6 IP5
Templated
Greenfield

Logistics 15-20 75 ≈10

CS1 describes an SMDO that develops and offers a software product in the
domain of public administration. Approximately 30 people work in five teams
building the microservice system which comprises 60 services. IP1 is employed
as a leading software architect in the company. Although the software is created
from scratch, the tailoring of the services is heavily influenced by a previous
software solution. Hence, we categorized it as a templated greenfield MDP.

CS2 entails a consulting company and its contractor as a developing organi-
zation. IP2 is the leading technical consultant. The organization is responsible
for migrating a business-to-business (b2b) e-commerce platform for chemical
components from a monolith to a microservice system. It comprises ten people
in three teams. They maintain the existing monolith and have migrated func-
tionality into eight microservices.

CS3 involves an SMDO which develops a system for managing IoT assets as
its main product in a greenfield MDP. Business customers either purchase the
software directly or use it as an as-a-service solution. For each customer, the
software is customized to their specific IoT assets and corporate identity. The
system consists of 18 microservices. The SMDO comprises 28 people of which 12
work in the core team, which is responsible for the core system, and the rest in the
solution team, which customizes the core for customers. Hence, the solution team
gets flexibly split depending on the number of ongoing customization processes.
IP3 is the leading architect of the core team.

CS4 describes an SMDO consisting of ten people of which four come from
a large company and six from a consulting firm. The ten people are organized
in two equally-sized teams. The SMDO is migrating a b2b e-commerce plat-
form for electronic products from a monolith to a microservice system currently
comprising 34 microservices. IP4 is the accountable principle consultant.

CS5 comprises another SMDO in which IP4 is also the accountable consul-
tant but contracted by a different company. The SMDO’s product is a business-
to-customer e-commerce platform in the domain of package delivery. Overall,

Exploring the Microservice Development Process 457

ten people work in two teams to migrate the existing solution to a microservice
system currently consisting of eight services.

CS6 entails a microservice system with 15 to 20 microservices in the logistic
domain loosely based upon an existing system as a template. The reporting IP5
is a team leader in the SMDO which comprises 75 people in approx. ten teams.

5 Results and Discussion

In the following, we present and discuss our results by categories based on the
GTM coding procedure. For each category, we draw hypotheses (H1 to 6) based
on the cases which could be investigated in future research.

Technology. All of the explored cases are relying on Java whereby the Spring
framework with five out of six cases is the prevailing microservice foundation.
Asked for reasons, the interview partners state the availability of Java devel-
opers on the labor market most prominently, e.g., IP2 elaborates “You simply
don’t find any Ruby developers on the market [. . .]. We had to switch to Java.”
Regarding Spring, respondents say that they particularly appreciate the good
availability of tutorials and simplicity. A similar picture is shown regarding the
communication mechanism. Except for CS6 which uses Kafka4, RESTful HTTP
is the predominant means of inter-service communication. While all the SMDOs
state to use Kubernetes5, the Ops-related aspects generally seem to be a major
area of concern. CS2, CS4, and CS6 are hosting their system using a Cloud
provider while the remainder currently applies self-hosting but strive to also
shift hosting into the cloud. Asked for the complexity of self-hosting a container-
ization infrastructure such as Kubernetes, IP3 comments “Have fun installing
Kubernetes on your own server, I’m not keen on that. [. . .] I’ll stick to AWS.”
Interestingly, the possibility to use heterogeneous technologies across microser-
vices in the same system is not taken up by the SMDOs. This agrees with the
findings of Bogner et al. [3].

(H1). Overall, the decisions seem to be driven by the need to simplify the learn-
ing process and avoid technical complexity. Criteria like performance or main-
tainability seem secondary. This tradeoff might lead to a tendency for SMDOs
to develop higher technical debt [18] in the long run.

Collaboration. Regarding the collaboration during the MDP, we distinguish
between two levels: team-internal and cross-team collaboration. On the internal
level, all SMDOs state to apply the Scrum methodology [14]. When asked about
the existence of specialist roles, all IPs deny, e.g., IP3 states that they “are
generally full stack developers and don’t distinguish between special roles except
the typical Scrum roles.”

On the cross-team level, CS1 has structured its collaboration inspired by
the Spotify Model including, e.g., an architecture and a UI/UX guild. How-
ever, at the same time, there is a higher-level technical architecture team to
4 https://kafka.apache.org/.
5 https://kubernetes.io/.

https://kafka.apache.org/
https://kubernetes.io/

458 J. Sorgalla et al.

ensure coordination and alignment between the teams. The SMDO of CS2 is
formally embedded in a larger organizational model called Holacracy6 of the
overall enterprise. However, its implementation is not perceived useful as IP2
comments: “so it feels no different, it is a piece of hierarchy, [. . .] you still have
the same drudgery.” CS3 to 6 each apply a custom approach without stating
formal models as inspiration. Overall, we notice that all SMDOs have tried to
establish formats for knowledge sharing across teams once a week. However,
there are no formats in which the teams exchange information about what they
have achieved or what they are working on with each other. In this regard, IP5
clarifies “we got rid of these lengthy meetings which just burn time and money.”

(H2). As a result, individual teams tend to have no overview of the bigger picture
of the system and its functionality. This may be harmful to establish a common
goal in the organization, thus, drive teams to make decisions not based on what
is the best for the overall system but only for their respective services.

(H3). There is a trend in all SMDOs to establish specialized units. In particular,
there is always a dedicated team for the Ops aspects, such as managing Kuber-
netes, and a team accountable for the interface structure of the overall team.
We identify this as a common strategy applied by SMDOs to deal with MSA’s
inherent complexity.

Microservice Ownership. One of MSA’s core principles is service ownership,
i.e., one team is accountable for a distinct microservice during its entire software
lifecycle [12] (cf. Sect. 1). Although establishing special units, e.g., for service
operations or interface design, contradicts the ownership principle, it is not per-
ceived as a concern by the IPs. However, we argue that there is an evident
potential conflict between Conway’s Law [4] and the SMDOs with two or three
teams. The fewer teams are involved in the application of MSA, the greater
the risk that all services are implemented by the same organizational unit. This
could lead to unwanted dependencies of the services during deployment, which
is, e.g., the case with CS2.

(H4). Due to the low number of people involved and the trend to establish
specialized units, SMDOs in particular are likely to repeatedly shift the respon-
sibility for microservices. We assume this as a major factor that gives rise to an
excessive coupling of services.

(H5). In addition, especially the migration cases tend to implement one func-
tionality after the other and neglect the maintenance of previous services, i.e.,
previously migrated functionality. In the long run, such migration MDPs with
few involved people suffer a growing decrease in development velocity due to
people being bound by the required maintenance of previous services.

Development Infrastructure. Each of the SMDOs explored relies on various
auxiliary means during the MDP such as GitLab7 or Jenkins8. However, except
6 https://www.holacracy.org/.
7 https://gitlab.com/.
8 https://www.jenkins.io/.

https://www.holacracy.org/
https://gitlab.com/
https://www.jenkins.io/

Exploring the Microservice Development Process 459

for CS6, no special computer-aided software engineering tools were used. Espe-
cially UML modeling was rejected by all IPs as too inefficient, e.g., IP2 states that
he rather relies on actual source code to look at service dependencies because
it “shows the reality and not how it was planned.” Instead, textual modeling
approaches for interface descriptions such as Swagger9 are predominant.

(H6). Textual approaches are particularly popular because of the perceived quick
returns and the derivation from source code. Similar to H2, this focus on means
which address only individual services could also be harmful to a common under-
standing and thus impair the process of collaboration.

6 Threats to Validity

Following the prevailing category system for threats to validity in qualitative
research by Maxwell [11], there are five major categories: descriptive validity,
interpretive validity, theoretical validity, generalizability, and evaluative validity.

To ensure descriptive validity we audio-recorded each interview and tran-
scribed it. We linked the audio to the text sections in our analytic software and
used the combined media as a source for our analysis (cf. Sect. 3). This also
helped us to ensure interpretive validity, as we had emotions such as laughter or
irony available during the analysis. Regarding the theoretical validity, we checked
that the resulting hypotheses (cf. Sect. 5) do not contradict each other and fos-
tered the validity by rigorously applying the GTM coding procedure (cf. Sect. 3).
We assume good internal generalizability, because the explored SMDOs each gen-
erated similar non contradicting insights, i.e., the study felt saturated. However,
due to the small sample size and case selection by availability, it is mandatory
to further test the hypotheses (cf. Sect. 5) with other empirical means to ensure
abstract generalizability. To facilitate evaluative validity we discussed our drawn
assumptions in a workshop with our research group.

7 Conclusion and Future Work

In this paper, we presented an exploratory case study among six organizations
in the process of adapting MSA. We particularly focused on SMDOs because
existing reports from industry and formal process models of MSA adaptation
mostly focus on larger organizations (cf. Sect. 1). We transcribed each interview
and applied GTM as analysis means (cf. Sect. 3). Based on the interview data we
were able to derive six hypotheses (cf. Sect. 5) regarding threats and challenges
for a successful application of MSA by SMDOs. We consider these hypotheses
interesting starting points for further research. In this regard, in the future, we
plan to conduct a prototype study addressing H2 and H6 by implementing an
automatic collaboration solution that generates an architectural overview based
on existing swagger descriptions.

9 https://www.swagger.io/.

https://www.swagger.io/

460 J. Sorgalla et al.

References

1. Achieving business agility with safe R© 5.0. Technical report, Scaled Agile Inc.
2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables

DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)
3. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Microservices in indus-

try: insights into technologies, characteristics, and software quality. In: 2019 IEEE
International Conference on Software Architecture Companion (ICSA-C), pp. 187–
195 (2019)

4. Conway, M.E.: How do committees invent. Datamation 14(4), 28–31 (1968)
5. Di Francesco, P., Lago, P., Malavolta, I.: Architecting with microservices: a sys-

tematic mapping study. J. Syst. Softw. 150, 77–97 (2019)
6. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-

scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

7. Fielding, R.: Representational state transfer. In: Architectural Styles and the
Design of Network-based Software Architecture, pp. 76–85 (2000)

8. Glaser, B.G., Strauss, A.L.: Discovery of Grounded Theory: Strategies for Quali-
tative Research. Routledge, Abingdon (2017)

9. Haselböck, S., Weinreich, R., Buchgeher, G.: An expert interview study on areas
of microservice design. In: 2018 IEEE 11th Conference on Service-Oriented Com-
puting and Applications (SOCA), pp. 137–144 (2018)

10. Knoche, H., Hasselbring, W.: Drivers and barriers for microservice adoption - a sur-
vey among professionals in Germany. Enterp. Model. Inf. Syst. Archit. (EMISAJ)
– Int. J. Concept. Model. 14(1), 1–35 (2019)

11. Maxwell, J.: Understanding and validity in qualitative research. Harv. Educ. Rev.
62(3), 279–301 (1992)

12. Newman, S.: Building Microservices. O’Reilly Media, Newton (2015)
13. Rademacher, F., Sorgalla, J., Wizenty, P., Sachweh, S., Zündorf, A.: Graphical and

textual model-driven microservice development. In: Bucchiarone, A., et al. (eds.)
Microservices, pp. 147–179. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-31646-4 7

14. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, vol. 1. Prentice
Hall, Upper Saddle River (2002)

15. Singleton, A.: The economics of microservices. IEEE Cloud Comput. 3(5), 16–20
(2016)

16. Smite, D., Moe, N.B., Levinta, G., Floryan, M.: Spotify guilds: how to succeed
with knowledge sharing in large-scale agile organizations. IEEE Softw. 36(2), 51–
57 (2019)

17. Sutherland, J.: The scrum@scale guide version 2.0. Technical report, Scrum Inc.
18. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating

to microservices architectures: an empirical investigation. IEEE Cloud Comput.
4(5), 22–32 (2017)

19. Urquhart, C.: Grounded Theory for Qualitative Research: A Practical Guide.
SAGE Publications, Ltd., Thousand Oaks (2013)

20. Yin, R.K.: Case Study Research and Applications: Design and Methods, 6th edn.
SAGE Publications, Thousand Oaks (2017)

https://doi.org/10.1007/978-3-030-31646-4_7
https://doi.org/10.1007/978-3-030-31646-4_7

Author Index

Abherve, Antonin 419
Abrahamsson, Pekka 402
Aho, Timo 153
Alégroth, Emil 385
Al-Sabbagh, Khaled Walid 287
Aoyama, Mikio 88
Arzoky, Mahir 304

Bagnato, Alessandra 419
Balasubramaniam, Nagadivya 331
Baldassarre, Maria Teresa 347
Banijamali, Ahmad 367
Barbosa, Simone 106
Bass, Julian M. 254
Bastos, Ricardo 125, 142
Batista, Solon Tarso 106
Beckers, Kristian 69, 434
Bosch, Jan 168, 185, 202, 217
Brandão, André 106

Caivano, Danilo 347
Caulo, Maria 347
Choraś, Michał 419
Chueke, Jacques 106
Counsell, Steve 304
Crnkovic, Ivica 185

da Costa, Marcelo 106
da Silva Cardoso, Gabriel 106
Daljajev, Kadri 37
Deknop, Céline 270
Destefnas, Giuseppe 304

Elsner, Christoph 217

Fabry, Johan 270
Fagerholm, Fabian 315
Felderer, Michael 385
Ferreira, Bruna 106
Figalist, Iris 217
Fischer, Marinho 106
Fredriksson, Teodor 202

Garbajosa, Juan 237
Goulart, Willer 106
Guamán, Daniel 237
Guckenbiehl, Pascal 53

Hayashi, Kengo 88
Hebig, Regina 287
Hiekkanen, Kari 331

Itagyba, Bruno 106

Jamshidi, Pooyan 367

Kalinowski, Marcos 106
Kauppinen, Marjo 331
Kemell, Kai-Kristian 402
Kilamo, Terhi 153
Klepper, Sebastian 69
Klotins, Eriks 385
Kozik, Rafał 419
Krieg, Alexander 20
Kujala, Sari 331
Kuramoto, André 106
Kuvaja, Pasi 367

Lemes, Deborah 106
Lima, Rodrigo 106
Lopes, Hélio 106
Lopes, Odnei 106
Lwakatare, Lucy Ellen 185

Machado, Michele 142
Marczak, Sabrina 125, 142
Mattos, David Issa 202
Memon, Bakhtawar 3
Méndez, Daniel 69, 385, 434
Mens, Kim 270
Mikkonen, Tommi 153, 315
Milani, Fredrik 37
Monaghan, Ben D. 254
Moralles, Cassiano 125, 142
Moyón, Fabiola 69, 434
Munappy, Aiswarya Raj 168

Nguyen-Duc, Anh 402

Oivo, Markku 367, 419
Olsson, Helena Holmström 202, 217
Olsson, Helena Homström 168

Paruch, Lucas 3
Pelizaro, Carlos 106
Pereira, Eliana 125, 142
Pereira, Juliana Alves 106
Pérez, Jennifer 237
Pfahl, Dietmar 37
Pinto-Albuquerque, Maria 434
Poggi, Marcus 106
Prenner, Nils 20

Ram, Prabhat 419
Rånge, Ellinor 185
Ravaska, Ville 402
Rodríguez, Germania 237
Rodríguez, Pilar 419
Romano, Simone 347

Sachweh, Sabine 453
Salerno, Larissa 125, 142
Salgado, Cristiane 106
Scanniello, Giuseppe 347
Schneider, Kurt 20
Scott, Ezequiel 37

Sievi-Korte, Outi 153, 315
Signoretti, Ingrid 125, 142
Silva, Thuener 106
Soares, Rafael 434
Sorgalla, Jonas 453
Staron, Miroslaw 287
Stray, Viktoria 3
Swift, Steve 304
Systä, Kari 315

Teixeira, Alex Furtado 106
Teixeira, Bianca 106
Theobald, Sven 20, 53
Trindade, Cássio 125, 142

Unterkalmsteiner, Michael 385
Usman, Muhammad 385

Villamizar, Hugo 106

Waltemberg, Marcus 106
Warrak, Jorge Alam 106

Yaman, Sezin 153

Zaytsev, Vadim 270
Zorzetti, Maximilian 125, 142
Zündorf, Albert 453

462 Author Index

	Preface
	Organization
	Contents
	Agile Software Development
	A Systematic Literature Review on Agile Coaching and the Role of the Agile Coach
	1 Introduction
	2 Agile Coaching and the Role of an Agile Coach
	3 Review Method
	3.1 Search Strategy
	3.2 Study Search
	3.3 Study Selection
	3.4 Data Extraction and Synthesis

	4 Results
	4.1 Tasks and Responsibilities of an Agile Coach
	4.2 Skills Required by an Agile Coach

	5 Discussion
	5.1 Limitations

	6 Conclusion and Future Work
	References

	Agile Leadership and Agile Management on Organizational Level - A Systematic Literature Review
	1 Introduction
	2 Related Work and Background
	2.1 Management vs. Leadership
	2.2 Traditional Management
	2.3 Agile Organization

	3 Research Design
	3.1 Research Questions
	3.2 Research Method
	3.3 Selection Method
	3.4 Data Analysis
	3.5 Threats to Validity

	4 Results
	4.1 RQ1: Definition of Agile Leadership and Agile Management
	4.2 RQ2: Motivation for Agile Leadership and Agile Management

	5 Conclusion and Future Work
	References

	A Study of the Agile Coach’s Role
	1 Introduction
	2 Related Work
	3 Method
	3.1 Case Study Design and Execution

	4 Results
	4.1 The Objectives of Agile Coaches
	4.2 The Methods Used by Agile Coaches
	4.3 The Challenges that Agile Coaches Face
	4.4 The Skills of Agile Coaches
	4.5 The Value Delivered by Agile Coaches

	5 Discussion
	6 Limitations
	7 Conclusion
	References

	Impediment Management of Agile Software Development Teams
	1 Introduction
	2 Related Work
	2.1 Wiklund et al. (2013)
	2.2 Power and Conboy (2014)
	2.3 Power (2014)
	2.4 Larusdottir, Cajander and Simader (2014)
	2.5 Carroll, O’Connor and Edison (2018)
	2.6 Alahyari, Gorscheck and Svensson (2019)
	2.7 Power (2019)
	2.8 Conclusion and Contribution

	3 Study Design
	3.1 Research Goal and Questions
	3.2 Interview Guideline
	3.3 Interview Execution
	3.4 Data Analysis

	4 Study Results
	4.1 Impediment Management
	4.2 Impediment Management Process
	4.3 Limitations

	5 Conclusion and Future Work
	References

	How to Integrate Security Compliance Requirements with Agile Software Engineering at Scale?
	1 Introduction
	2 Fundamentals and Related Work
	3 S2C-SAFe Framework in a Nutshell
	3.1 Security Requirements (SR)
	3.2 Secure Implementation (SI)
	3.3 Security Verification and Validation Testing (SVV)

	4 Study Design
	4.1 Subject Selection
	4.2 Survey Instrument

	5 Study Results
	5.1 Subject Knowledge
	5.2 Applicability of S2C-SAFe (RQ 1)
	5.3 Continuous Security Compliance Challenges (RQ 2)

	6 Conclusion
	6.1 Impact and Implications
	6.2 Relation to Existing Evidence
	6.3 Limitations and Threats to Validity

	References

	A Portfolio-Driven Development Model and Its Management Method of Agile Product Line Engineering Applied to Automotive Software Development
	1 Introduction
	2 Related Work
	3 Approach
	4 Portfolio-Driven Development Model
	4.1 Overview of the Development Model
	4.2 Portfolio Level (Program Management)
	4.3 Product Level (Project Management)
	4.4 Sprint Level (Team Management)

	5 Portfolio-Driven Management Method
	5.1 Management Life Cycle
	5.2 Establish
	5.3 Evaluate
	5.4 Prioritize
	5.5 Select
	5.6 Manage
	5.7 Feedback

	6 Application to APLE of Automotive Software
	6.1 Context of Application
	6.2 Application Period and Operation of Teams and SPL

	7 Evaluation
	7.1 Evaluation Method
	7.2 Predictability of Productivity of Resources
	7.3 Predictability of Development Size of Products
	7.4 Controllability of a Trade-off Triangle

	8 Discussions
	8.1 RQ1: A Development Model to Manage Multiple SPLs in an Entire Development
	8.2 RQ2: A Management Method to Manage Multiple SPLs in an Entire Development
	8.3 RQ3: Effectiveness in APLE

	9 Conclusions
	References

	Lean R&D: An Agile Research and Development Approach for Digital Transformation
	1 Introduction
	2 Background
	2.1 Continuous Software Engineering
	2.2 Lean Inception

	3 The Lean R&D Approach
	3.1 Approach Overview

	4 Case Study Design
	4.1 Context
	4.2 Goal and Research Questions
	4.3 Case and Subject Selection
	4.4 Data Collection and Analysis Procedures
	4.5 Validity Procedures

	5 Results and Discussion
	6 Concluding Remarks
	References

	Success and Failure Factors for Adopting a Combined Approach: A Case Study of Two Software Development Teams
	1 Introduction
	2 Background
	2.1 Combined Approach
	2.2 Transformation Process

	3 Research Method
	3.1 Case Setting
	3.2 Data Collection and Methods
	3.3 Data Analysis

	4 Results
	4.1 Success Factors
	4.2 Failure Factors

	5 Discussion
	6 Conclusions, Limitations, and Future Work
	References

	A Practice-Informed Conceptual Model for a Combined Approach of Agile, User-Centered Design, and Lean Startup
	1 Introduction
	2 Background
	2.1 Agile, Lean Startup, and User-Centered Design

	3 Research Method
	3.1 Case Study
	3.2 Data Collection
	3.3 Data Analysis

	4 Empirically-Grounded Conceptual Model
	4.1 Discussion

	5 Conclusion
	References

	Data Science
	Demystifying Data Science Projects: A Look on the People and Process of Data Science Today
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	4 Interviews
	4.1 Experimentation
	4.2 Development Approach
	4.3 Multi-disciplinary Team(work)

	5 Discussion
	5.1 Process and Collaboration in Data Science
	5.2 Threats to Validity

	6 Conclusions
	References

	Data Pipeline Management in Practice: Challenges and Opportunities
	1 Introduction
	2 Background
	3 Research Methodology
	3.1 Exploratory Case Study
	3.2 Data Collection
	3.3 Data Analysis

	4 Use Cases
	5 Challenges to Data Pipeline Management
	5.1 Infrastructure Challenges
	5.2 Organizational Challenges
	5.3 Data Quality Challenges

	6 Opportunities
	6.1 Solve Data Accessibility Challenges
	6.2 Save Time and Effort of Human Resources
	6.3 Improves Traceability of Data Workflow
	6.4 Supports Heterogeneous Data Sources
	6.5 Accelerates Data Life Cycle Activities
	6.6 Standardize the Data Workflow
	6.7 Improved Data Analytics and Machine Learning Models
	6.8 Data Sharing Between Teams
	6.9 Critical Element for DataOps

	7 Threats to Validity
	8 Related Works
	9 Conclusions
	References

	From a Data Science Driven Process to a Continuous Delivery Process for Machine Learning Systems
	1 Introduction
	2 Background and Related Work
	2.1 Development Process of ML-Enabled Systems
	2.2 Continuous Delivery for ML-Enabled Systems

	3 Research Method
	3.1 Multivocal Literature Review (MLR)
	3.2 Focus Group

	4 Findings
	4.1 Manual, Data Science-Driven Process
	4.2 Standardized, Experimental – Operational Symmetry Process
	4.3 Automated, ML Workflow Process
	4.4 Integrated, Software Development and ML Workflow Processes
	4.5 Automated and Fully Integrated CD and ML Workflow Process

	5 Validation of Conceptual Model
	6 Discussion
	7 Conclusion
	References

	Data Labeling: An Empirical Investigation into Industrial Challenges and Mitigation Strategies
	1 Introduction
	2 Background
	3 Research Method
	3.1 Data Collection
	3.2 Data Analysis
	3.3 Threats to Validity

	4 Results
	4.1 Phase I: Exploration
	4.2 Phase II: Validation
	4.3 Summary from Company B
	4.4 Machine Learning Methods for Data Labeling
	4.5 Challenges and Mitigation Strategies

	5 Discussion
	6 Conclusion
	References

	An End-to-End Framework for Productive Use of Machine Learning in Software Analytics and Business Intelligence Solutions
	1 Introduction
	2 Background
	3 Research Method and Study Design
	4 Literature Review
	4.1 Data Management and Processing
	4.2 Model Building
	4.3 Model Deployment and Serving

	5 Framework Derivation
	5.1 Prototyping Cycle
	5.2 Deployment Cycle
	5.3 Update Cycle

	6 Framework Validation
	6.1 Current Status
	6.2 Planning and Evolution

	7 Conclusion
	References

	Test and Evolution
	A Systematic-Oriented Process for Tool Selection: The Case of Green and Technical Debt Tools in Architecture Reconstruction
	1 Introduction
	2 Related Work
	3 A Systematic-Oriented ISO/IEC 14102:2008 Process
	4 The Case of the Evaluation of Green and Technical Debt Tools in Architecture Reconstruction
	4.1 Preparation
	4.2 Structuring
	4.3 Evaluation
	4.4 Selection

	5 Conclusions and Future Work
	References

	Redefining Legacy: A Technical Debt Perspective
	1 Introduction
	2 Background
	2.1 Legacy Systems
	2.2 Technical Debt
	2.3 Relationship Between Technical Debt and Legacy
	2.4 Software Ecosystems

	3 Method
	3.1 Research Sites
	3.2 Data Collection
	3.3 Data Analysis
	3.4 Interviews
	3.5 Classifying Legacy in Terms of Technical Debt

	4 Findings
	4.1 Practitioner Understanding of Legacy
	4.2 Legacy as a Product of Technical Debt
	4.3 Legacy Applications Support Surrounding Systems
	4.4 Applications Are Fragmented
	4.5 Inherited Legacy
	4.6 Applications No Longer Represent the Organisation's Needs
	4.7 Skills Gap Impacts Ability to Maintain or Evolve
	4.8 Complex System Architectures

	5 Discussion
	5.1 Practitioners Experience with Legacy Systems
	5.2 Legacy vs Technical Debt
	5.3 Ecosystem Debt
	5.4 The Impact of Older Programming Languages and Paradigms
	5.5 Threats to Validity

	6 Conclusions
	References

	Improving a Software Modernisation Process by Differencing Migration Logs
	1 Introduction
	2 The Problem Space: PACBASE Migration
	3 The Solution Space: Code Differencing
	3.1 Improvement Opportunities
	3.2 Log Differencing
	3.3 Code Differencing

	4 Differencing Log Files
	5 Related Work
	6 Conclusion
	References

	The Effect of Class Noise on Continuous Test Case Selection: A Controlled Experiment on Industrial Data
	1 Introduction
	2 Definition and Example of Class Noise in Source Code
	3 Related Work
	3.1 The Impact of Noise on Classification Performances
	3.2 Text Mining for Test Case Selection and Defect Prediction

	4 Experiment Design
	4.1 Data Collection Method
	4.2 Independent Variable and Experimental Subjects
	4.3 Dependent Variables
	4.4 Experimental Hypotheses
	4.5 Data Analysis Methods

	5 Experiment Operations
	5.1 Creation of the Control Group
	5.2 Class Noise Generation
	5.3 Performance Evaluation Using Random Forest

	6 Results
	6.1 Descriptive Statistics
	6.2 Hypotheses Testing

	7 Threats to Validity
	8 Conclusion and Future Work
	References

	On Clones and Comments in Production and Test Classes: An Empirical Study
	1 Introduction
	2 Preliminaries
	2.1 Metrics Studied
	2.2 Systems Analysed

	3 Data Analysis
	3.1 Summary Statistics
	3.2 Statistical Analysis

	4 Discussion
	5 Conclusions and Future Work
	References

	Social and Human Aspects
	Dimensions of Consistency in GSD: Social Factors, Structures and Interactions
	1 Introduction
	2 Background
	3 Research Approach
	4 Results
	4.1 Communication Consistency
	4.2 Operational Consistency
	4.3 Wheels in Motion

	5 Discussion
	5.1 The Socio-technical System
	5.2 Related Work
	5.3 Limitations and Validity

	6 Conclusion
	References

	Ethical Guidelines for Solving Ethical Issues and Developing AI Systems
	1 Introduction
	2 Related Work
	2.1 Ethical Issues of AI
	2.2 Ethical Guidelines for Practitioners to Develop AI Systems

	3 Research Method
	3.1 Research Process
	3.2 Case Companies
	3.3 Data Collection
	3.4 Data Analysis

	4 Results
	4.1 Ethical Guidelines Focusing on Potential Ethical Issues of AI
	4.2 Practices Supporting the Use of the Ethical Guidelines of AI

	5 Discussion
	5.1 Ethical Guidelines of AI for the Development of AI Systems
	5.2 Limitations of This Study

	6 Conclusions
	References

	Sentiment Polarity and Bug Introduction
	1 Introduction
	2 Background and Related Work
	2.1 Case-Control Studies
	2.2 Sentiment Analysis Tools and Their Empirical Assessment in SE
	2.3 Developers' Affective States and Bug Introduction

	3 The Case-Control Study
	3.1 Selection of Cases and Controls
	3.2 Ascertainment of Exposures
	3.3 Data Analysis

	4 Results
	4.1 Sentiment Polarity and Bug Introduction
	4.2 Subgroup Analysis About Java Files Changed

	5 Overall Discussion
	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Software Development
	Kuksa*: Self-adaptive Microservices in Automotive Systems
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Research Method
	3.1 Objective and Research Questions
	3.2 Research Methods
	3.3 Eclipse Kuksa

	4 Kuksa*: A Self-adaptive Microservice-based Framework for Automotive Systems
	5 Experimental Evaluation
	5.1 Experimental Scenario
	5.2 Experimental Setting
	5.3 Results

	6 Discussion
	6.1 Overview of Findings and Their Implications
	6.2 Threats to Validity
	6.3 Recommendations for Future Research

	7 Conclusions
	References

	Compliance Requirements in Large-Scale Software Development: An Industrial Case Study
	1 Introduction
	2 Background and Terminology
	3 Related Work
	4 Research Methodology
	4.1 Guiding Research Question
	4.2 Case Description
	4.3 Data Collection and Analysis
	4.4 Workshop Instrument

	5 Results
	5.1 Overview
	5.2 Requirements Specification Related Challenges
	5.3 Process Related Challenges
	5.4 Resource Related Challenges

	6 Discussion
	6.1 Results in Relation to Existing Evidence
	6.2 Discussion of Research Methodology
	6.3 Threats to Validity

	7 Conclusion
	References

	Software Startup Practices – Software Development in Startups Through the Lens of the Essence Theory of Software Engineering
	1 Introduction
	2 Background – Software Startups, Software Development Practices, and the Essence Theory of Software Engineering
	2.1 Software Development in Software Startups
	2.2 Software Development Practice as a Construct
	2.3 The Essence Theory of Software Engineering

	3 Study Design
	3.1 Data Collection
	3.2 Data Analysis

	4 Results
	4.1 New Practices
	4.2 Opportunity
	4.3 Stakeholders
	4.4 Requirements
	4.5 Software System
	4.6 Work
	4.7 Team
	4.8 Way of Working
	4.9 Other Practices Unsuited for Existing Essence Alphas

	5 Discussion
	5.1 Practical Implications
	5.2 Limitations of the Study

	6 Conclusions
	References

	An Empirical Investigation into Industrial Use of Software Metrics Programs
	1 Introduction
	2 Background and Related Work
	2.1 Q-Rapids Project
	2.2 Related Work

	3 Research Method
	3.1 Research Context
	3.2 Data Collection
	3.3 Data Analysis

	4 Findings
	4.1 CC1
	4.2 CC2

	5 Discussion
	5.1 Metrics Program as a Trigger
	5.2 Metrics Program as a Main Driver

	6 Threats to Validity
	7 Conclusion
	References

	Integration of Security Standards in DevOps Pipelines: An Industry Case Study
	1 Introduction
	2 Fundamentals and Related Work
	2.1 DevOps and Pipelines
	2.2 DevSecOps and Security Standards

	3 Integration of Security Standards into DevOps Pipelines
	3.1 Describe Standard Requirements as Activities
	3.2 Determine Automation Capabilities for the Standard
	3.3 Map Activities into Pipeline Stages

	4 DevOps Compliant with the 4-1 Security Standard
	4.1 Automation Capabilities of the 4-1 Standard
	4.2 Security Standard Compliant DevOps Pipeline

	5 Evaluation
	5.1 Study Design
	5.2 Results
	5.3 Threats to Validity

	6 Discussion
	6.1 Summary of Conclusions
	6.2 Limitations
	6.3 Impact

	7 Conclusion
	References

	Exploring the Microservice Development Process in Small and Medium-Sized Organizations
	1 Introduction
	2 Related Work
	3 Methodology
	4 Case Description
	5 Results and Discussion
	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Author Index

