
Chapter 9
Application of AHP for Groundwater
Potential Zones Mapping in Plateau Fringe
Terrain: Study from Western Province
of West Bengal

Manas Karmakar,Monali Banerjee,MrinalMandal , and Debasis Ghosh

Abstract The water-stressed Joyponda river basin is situated on the hard rock
terrain of Chotanagpur Granite Gneiss Complex of Archean age and older alluvium
of Quaternary. An assessment is carried out to delineate the groundwater prospect
zones for this densely populated river basin taking into account eleven hydro-
geological factors, namely, geology, lineament, geomorphology, slope, curvature,
drainage, rainfall, soil, infiltration number, topographic wetness index and land use
land cover. To prepare the thematic layers of all these parameters, different maps,
satellite images and data are collected from various national and international
organizations and analysed in different Remote Sensing (RS) and Geographical
Information System (GIS) softwares. The Analytical Hierarchy Process (AHP)
model is considered in this study to assign weight for all factors depending upon
their influencing capacities in the development of groundwater. The map of ground-
water prospect zones is prepared integrating all the factors in GIS software. The
applied model is also validated computing overall accuracy assessment and Kappa
co-efficient. The study confirms that an area of 37.49% of the Joyponda river basin
bears good to very good groundwater potentiality. Around 10.97% of the basin is
delineated as very poor groundwater prospect zones. A significant proportion of
basin area of 28.93% is moderately potential for groundwater. The result of accuracy
assessment of the study ensures the 85% validity of the model. Moreover, the Kappa
co-efficient is calculated as 0.81 and describes an almost perfect agreement between
simulated model and reference points.
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9.1 Introduction

Water is the most precious natural resource for all living organisms in the world. But
in the last few decades, a rapid population growth, unsustainable use of water and
climate change altogether have decreased the volume of freshwater across the globe
(Hinrichsen and Tacio 2002; Lakhsmi et al. 2018). It is estimated that around
844 million people in the world are devoid of fresh drinking water, and 3 out of
10 people cannot use safely managed drinking water (Gun 2012). The amount of
available freshwater in the world is 2.50%, and 1.5% of this total freshwater is
recorded as groundwater (Chow et al. 2008). This little amount of freshwater,
i.e. groundwater, is considered as the only source of potable water supply to the
half of the world population (World Water Assessment Programme 2009); and
around 15 million people of the world use it as the main source of freshwater supply
for their multi-purpose activities (Agarwal et al. 2013; Teixeira et al. 2013). Even
most of the rural (about 90%) settlements of the world directly depend on the
groundwater for drinking purpose (Jaiswal et al. 2003; Sar et al. 2015). The
excessive rate of groundwater exploitation to keep parity with the demands of
ever-increasing populations has been taking the world towards the serious crisis of
freshwater (Suhag 2016; Guru et al. 2017). It is reported by the Central Water
Commission (CWC) of India that around 1800 million people of the world will
suffer from the severe freshwater crisis in the near future (Central Water Commis-
sion 2010). It is estimated that the Asian countries withdraw around two-thirds of the
globally explored groundwater, and India is the largest user in this regard (World
Bank 2010), because 80% of rural areas and 50% of urban areas in India directly
bank on groundwater for the domestic purposes (Lakhsmi and Reddy 2018).
According to the Central Ground Water Board (CGWB) of India, around 230 billion
cubic meter groundwater is withdrawn every year in India (Central Ground Water
Board 2017), out of which 89% and 9% are used for agricultural irrigation and
domestic purposes, respectively, and remaining groundwater is used for industrial
and other activities of the country (Suhag 2016). If the rate of groundwater exploi-
tation maintains this present trend, a drastic decline of groundwater table will be
experienced by 60% of districts of India in the coming two decades compromising
Indian agricultural productions not less than 25% (World Bank 2010). Extensive rate
of groundwater extraction will definitely be decreasing the storage of the aquifers in
the near future. In India, most of the aquifers (53.31%) are found in hard rocks terrain
(Groundwater Estimation Committee 2017), where around 65% of India’s geograph-
ical areas are made of hard rocks with less than 5% of porosity level (Saraf and
Choudhury 1998). Generally, groundwater in hard rocks terrain is mainly concen-
trated in different fractured zones, and it becomes very difficult to account the
availability of groundwater without proper assessment of aquifers
(Sivaramakrishnan et al. 2015). Broadly, there are two types of groundwater assess-
ment methods, namely, conventional and advanced methods (Goldman and
Neubauer 1994; Lakhsmi and Reddy 2018). The geophysical technique of conven-
tional method is used to explore the aquifer characteristics and identification of sites
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for borehole drilling (Lakhsmi and Reddy 2018; Etikala et al. 2019). The main
drawbacks of conventional method to delineate groundwater potential zones are
expensive instruments, extensive field visits, more labour supports and time require-
ments (Mukherjee et al. 2012). In contrast, the geospatial technologies of advanced
method are proved to be more cost-effective and less time consuming in preliminary
estimation of groundwater prospect zones (Faust et al. 1991; Hinton 1996; Jha et al.
2007; Razandi et al. 2015; Santharam and Elangovan 2018). The Remote Sensing
(RS) and Geographical Information System (GIS) are the indirect means in ground-
water exploration using several directly related hydro-geological factors, which
determine the availability of groundwater (Javed and Wani 2009). These factors
are geomorphology, slope, soil, geology, rainfall, lineament, infiltration number,
drainage, land use land cover, curvature and topographic wetness index (Subba Rao
2006; Magesh et al. 2012; Rajaveni et al. 2017; Santharam and Elangovan 2018;
Arulbalaji et al. 2019). In recent past, several researchers from various disciplines
have successfully integrated different hydro-geological factors in RS and GIS
environment to delineate groundwater prospect zones employing different statistical
and mathematical models, such as Analytical Hierarchy Process (AHP) (Mandal
et al. 2016; Maity and Mandal 2017; Panahi et al. 2017; Aydi 2018), Frequency
Ratio Model (FRM) (Ozdermir 2011; Trabelsi et al. 2019), Multi-Influencing Factor
(MIF) (Magesh et al. 2012; Nasir et al. 2018; Ghosh et al. 2020), Certainty Factor
Model (CRM) (Razandi et al. 2015; Hou et al. 2018) and Artificial Neural Network
(ANN) (Baghapour et al. 2016; Lee et al. 2019). The AHP model is one of the most
popular Multi-Criteria Decision-Making (MCDM) techniques and has been used
with RS and GIS techniques more widely for its capacity to simplify the complex
system of groundwater occurrence in various natural environments (Mandal et al.
2016; Arulbalaji et al. 2019; Kumar et al. 2020), such as in hard rocks regions
(Shekhar and Pandey 2014; Maity and Mandal 2017; Murmu et al. 2019), semi-arid
regions (Machiwal et al. 2011; Kumar et al. 2014; Singh et al. 2018; Rajasekhar et al.
2019) and also for coastal regions (Gangadharan et al. 2016; Swetha et al. 2017). In
general, the western part of West Bengal experiences the high intensity rainfall for
short period of time followed by high rate of runoff due to high topographic slope
that leads to water scarcity during hot dry season (Nag and Das 2017; Government of
West Bengal 2017). The present study deals with the delineation of groundwater
prospect zones of Joyponda river basin situated on the plateau fringe zone of
Chotanagpur Granite Gneiss Complex (CGGC) of Bankura district in the state of
West Bengal, India. The uniqueness of the basin is that it is composed of heteroge-
neous lithology. The upper reach is mainly comprised of hard rocks, and the lower
reach is composed of alluvium. This region has already been identified as one of the
drought-prone areas in West Bengal (Government of West Bengal 2017). The
demand for freshwater remains always high among the people of the river basin
throughout the year because the population density of the basin (528/km2) is much
higher than the national average (382/km2) of India (Census of India 2011), though
the total groundwater withdrawal of Bankura district is 40% out of the total net
available groundwater (Central Ground Water Board 2017). This report indicates
that there are plenty scopes of groundwater exploration, and it can only be done by
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the proper investigations. There have several works already been carried out in
different parts of CGGC to assess the availability of groundwater. Majority of the
studies mention that the abundance of groundwater varies from space to space
depending upon the different hydro-geological factors (Chowdhury et al. 2010;
Shekhar and Pandey 2014; Ghosh et al. 2015, 2020; Das 2017; Nag and Das
2017; Maity and Mandal 2017; Das et al. 2019; Murmu et al. 2019). In this context,
an attempt has been made here to delineate groundwater potential zones of the
Joyponda river basin considering various significant hydro-geological parameters
of the study of interest using the RS and GIS techniques along with the AHP model.

9.2 Study Area

The river Joyponda, a left-hand tributary of the Shilabati River, originates near Boga
village of Indpur Community Development (C.D.) block of Bankura district, West
Bengal. The river flows over the four C.D. blocks of Bankura district, such as Indpur,
Onda, Taldangra and Simlapal, and meets the river Shilabati at Chakrasol village of
Simlapal C.D. block. The total stretch of the river is 60.63 km covering the basin
area of 396.69 km2. The shape of the basin is elongated, and the river Joyponda starts
its journey from north-west direction to south-east direction, almost in a diagonal
path. The geographical extension of the basin is 22�53033.8700 N to 23�10031.6800 N
and 86�50056.03500 E to 87�12052.6800 E (Fig. 9.1). The basin area is mainly
consisted of Pre-Cambrian metamorphic rocks of CGGC and older alluvium of
Lalgarh formation and Sijua formation (Vaidyanadhan and Ghosh 1993; Geological
Survey of India 2001). The presence of the pediment-pediplain complex makes the
upper part of the basin more undulating (Sen et al. 1998). The hot and dry tropical
climate prevails over the study area with maximum temperature of 45 �C and
minimum temperature of 7 �C. The rainfall of this area, blessed by the South-West
Monsoon, is recorded as 1353 mm, which takes place mostly in between June to
September (Government of West Bengal 2014). The hard rock terrain with rolling
topography and less permeability increases the surface runoff during the Monsoon
period, and the area encounters severe shortage of surface water (Maity and Mandal
2017; Ghosh et al. 2020). Thus, the non-perennial Joyponda river basin experiences
semi-arid type of climatic conditions except rainy season. This adverse nature of the
region helps to grow the deciduous type of natural vegetation, namely, sal (Shorea
robusta), palash (Butea monosperma), mahua (Madhuca longifolia) and babla
(Vachellia nilotica). Moreover, different types of cactus, shrubs and bushes in bare
land of the study area are also found (Forest Survey of India 1985). A total number of
244 villages with 209,522 populations come under the jurisdiction of the Joyponda
river basin. The river basin shares 5.83% of the total population of Bankura district
(Census of India 2011).
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9.3 Materials and Methods

9.3.1 Data Sources

To assess the groundwater prospect zones of the Joyponda river basin, a total number
of eleven influential hydro-geological factors, such as geology, lineament, geomor-
phology, slope, curvature, drainage, rainfall, soil, infiltration number, topographic
wetness index and land use land cover, are taken into consideration. We obtain
different data sets for these selected factors from various sources, such as Digital
Elevation Model (DEM) of Shuttle Radar Topography Mission (SRTM) with spatial
resolution of 1-Arc second (downloaded from https://earthexplorer.usgs.gov)
acquired on 23 September 2014; Landsat-8 Operational Land Imager (OLI) satellite
image with 30 m spatial resolution acquired on 24 April 2018 (downloaded from
https://earthexplorer.usgs.gov); district resource map of the Geological Survey of
India (GSI) on a 1:50000 scale; geomorphology map of GSI on a 1:250000 scale;
soil map of National Bureau of Soil Survey and Land Use Planning (NBSS&LUP) of
India on a 1:250000 scale; and station-wise rainfall data of Central Water Commis-
sion (CWC) of India to prepare individual thematic layer. The application of RS and
GIS softwares is done here using Erdas Imagine 2014, PCI Geomatica 2016 and
ArcGIS 10.3.1 to process and analyse different data.

Fig. 9.1 Location map of the Joyponda river basin
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9.3.2 Preparation of Thematic Layers

The drainage basin of the Joyponda River, which is the base map of the present
study, is delineated from SRTM-DEM using hydrology tool in ArcGIS software.
The drainage density and infiltration number of thematic layers are prepared using
hydrology tool of spatial analyst in ArcGIS software using SRTM-DEM. On the
contrary, the surface tool of spatial analyst is adopted to create slope, curvature and
topography wetness index thematic layers employing the SRTM-DEM. The OLI
satellite image of Landsat-8 is taken to produce land use land cover thematic layer
applying the raster tool in Erdas Imagine software. The OLI image is then classified
into different categories of land use land cover types using maximum likelihood
algorithm of supervised classification. To prepare the lineament density map, a
Principle Component Analysis (PCA) of OLI image is performed in Erdas Imagine
software adopting spectral tool. The extracted lineaments based on the output of
PCA of the study of interest are produced adopting line algorithm tool of PCI
Geomatica software. The thematic layer of lineament is also verified with ‘lineament
(50k) theme layer’ of the study area prepared by the National Remote Sensing
Centre (NRSC) of India, and it is freely available on NRSC portal (downloaded
from https://bhuvan.nrsc.gov.in) at ‘Thematic Services’ option. Moreover, the pre-
pared lineament density map is also validated with the district resource map of GSI.
The geology and geomorphology maps of the Joyponda river basin are reproduced
from the GSI maps using the editor tool of ArcGIS software. The CWC data of
rainfall from 2014 to 2018 of four nearby rain gauge stations of the basin are
considered to prepare the rainfall map interpolating the rainfall data adopting Inverse
Distance Weighted (IWD) method of spatial analyst tool in ArcGIS software. The
editor tool of ArcGIS software is also used to make a soil map of the study area from
the map of NBSS&LUP. During the preparation of different thematic layers, the
maps are geo-coded following Universal Transverse Mercator (UTM) projection,
World Geodetic Survey-84 (WGS-84) and 45 N zone as per requirements.

9.3.3 Application of AHP Model

All the eleven selected hydro-geological factors are mutually interrelated, and the
groundwater development almost depends on these factors. The AHP model is used
in this study to assign weight to each factor and their respective sub-classes
depending upon the gravity of influence of each factor in the occurrence and
movement of groundwater.

The AHP model developed by T. Saaty in 1980 is an effective multi-criteria
decision-making technique, which helps to quantify the weight of a selected factor in
numerical form. This model can easily solve many complexities in resource explo-
ration and planning adopting the best possible opportunities (Olson 1988;
Chowdhury et al. 2010; Shekhar and Pandey 2014; Malik et al. 2014; Pintu et al.
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2017; Maity and Mandal 2017; Waris et al. 2019; Kumar et al. 2020). To assign
weight considering the nine-point scale of Saaty (1980), all the eleven factors are
now arranged in a hierarchical structure based on priorities. Each score of nine-point
scale (Saaty 1990) has a specific definition of importance, such as (1) equal,
(2) weak, (3) moderate, (4) moderate plus, (5) strong, (6) strong plus, (7) very
strong, (8) very, very strong and (9) extreme. The priority of employing weight to
each factor is done based on proper field investigations and review of literatures. In
the next step, a pair-wise comparison matrix is formed to compute the normalized
weight of an individual factor (Table 9.1).

The justification of assigned weight of each factor given by the decision-maker
can be verified with the help of consistency index, and it is the best part of this model
(Saaty and Vargas 1982; Ramanathan 2001; Arulbalaji et al. 2019; Das et al. 2019;
Waris et al. 2019). The consistency index is calculated using the following equation
(formula 9.1):

CI ¼ λmax � nð Þ
n� 1ð Þ ð9:1Þ

where CI simply denotes consistency index. The λmax represents the principle
eigenvalue, which is calculated using eigenvector technique (Malik et al. 2014),
and n is the total number of factors used in the study. The Consistency Ratio (CR) is
computed for the verification of judgement coherence. If the value of CR happens to
be more than 0.1, the judgement value cannot be accepted. Thus, it becomes
necessary to consider new judgement values for all factors to reach the CR value
less than 0.1. The following expression is used to calculate the CR (formula 9.2),
where RCI is the random consistency index, which is proposed by Saaty in 1980
(Saaty 1990):

CR ¼ CI
RCI

ð9:2Þ

9.3.4 Calculation of Groundwater Potential Zones Index
and Accuracy Assessment

The Groundwater Potential Zones Index (GPZI) is computed taking into account all
the 11 thematic layers of selected parameters adopting weighted linear combination
method of map algebra tool in ArcGIS software. The derived GPZI is dimensionless.
Formula 9.3 is used to calculate the GPZI. Here, Wi is the normalized weight of ith

factor, Rj represents the rank of jth sub-class in respective ith factor, m denotes the
total number of factors, and n is the total number of sub-classes of all factors. Finally,
obtained GPZI values are divided into five distinct classes, such as very poor, poor,
moderate, good and very good using natural break classification system in ArcGIS
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software. The final Groundwater Potential Zones (GPZ) map is validated with the
Pre-Monsoon groundwater level data, which are collected from 27 pre-existing dug
wells distributed across the river basin. The groundwater level data of 14 dug wells
are collected from CGWB, and remaining groundwater level data of 13 dug wells are
gathered during the field investigation in the month of March 2020. The overall
accuracy assessment is computed to understand the accuracy level of the applied
model, and the Kappa co-efficient is also calculated to validate the model. The
complete description of used methodology of this present study is shown by a flow
chart diagram for better understanding (Fig. 9.2).

Fig. 9.2 Flow chart showing the methodology adopted
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GPZI ¼
Xn

i¼1

Xm

w¼1

Wi � R j

� � ð9:3Þ

9.3.5 Groundwater Recharge Estimation

The identification of potential groundwater recharge zones can be delineated with
the help of GPZ map. If the amount of potential recharge is estimated for the present
river basin, it will be easy to identify good groundwater potential zones, and
ultimately it will facilitate in groundwater planning and management (Reese and
Risser 2010; Nemaxwi et al. 2019). The spatial distribution of natural groundwater
recharge is calculated adopting the rainfall infiltration factor method of Groundwater
Estimation Committee (GEC) 2015 of Government of India (formula 9.4). Rr is the
amount of natural groundwater recharge, ppt denotes the average annual rainfall and
Rnp represents the rainfall infiltration factor, which is obtained from GEC-1997
norms (Groundwater Estimation Committee 2017). Now, IDW method of spatial
analyst tool is used in ArcGIS software to prepare the map of potential groundwater
recharge amount.

Rr ¼ ppt � Rnp � area
� � ð9:4Þ

9.4 Results and Discussions

9.4.1 Geological Setting

Geological setting of an area plays a significant role in determining the thickness of
groundwater bearing strata (Arulbalaji et al. 2019). The Joyponda river basin area is
consisted of different rock types of various geological ages ranging from Proterozoic
to Quaternary (Sen et al. 1998; Geological Survey of India 2001). The entire basin
area can be divided almost into two broad equal halves in general. The upper portion
consists of granitic gneiss (45.34%) of extended part of Chota Nagpur Plateau of
Archean age with a couple of scattered concentration of lateritic patches (Lalgarh
formation), while the lower portion of the basin (51.74%) is mainly developed by the
accumulation of alluviums (Table 9.2). The concentration of older alluvium is
observed more in the basin with smaller amount of deposition of newer alluviums
near the confluence point of the Joyponda and Shilabati rivers (Fig 9.4). The laterite
deposition in the lower basin area is seen in some small pockets from east to west
direction (Fig. 9.3). From the hydro-geological point of view, the older and newer
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Table 9.2 Classification of factors and assignment of rank for sub-classes on the basis of
influencing capacity in development of groundwater

Factors
Normalized
weight Sub-classes

Area
(%) Rank

Geology 0.14 Granitic gneiss 45.34 3

Laterite 2.24 4

Older alluvium 51.74 5

Newer alluvium 0.69 6

Geomorphology 0.13 Upland plain 60.61 4

Pediment-pediplain
complex

34.79 3

Flood plain 2.50 5

Water bodies 2.09 6

Slope (degree) 0.11 <1.04 29.86 6

1.04–2.26 39.69 4

2.26–3.78 23.73 3

3.78–12.04 6.72 2

Land use land cover 0.11 Agricultural land 62.12 5

Forest cover 5.42 5

Shrub land 23.42 4

Barren land 6.56 3

Water bodies 1.00 6

Fallow land 1.48 2

Lineament density
(km/km2)

0.1 0.11–0.31 24.84 2

0.31–0.39 46.78 3

0.39–0.49 19.38 5

0.49–0.74 9.00 6

Soil 0.1 Fine-fine silty 38.29 4

Fine loamy 28.65 5

Coarse loamy 23.78 6

Loamy skeletal 2.99 3

Clayey skeletal 6.29 2

Infiltration number 0.08 0.11–0.73 27.65 2

0.73–1.06 35.79 3

1.06–1.42 29.33 5

1.42–2.14 7.23 6

Drainage density (km/km2) 0.08 0.63–0.95 13.62 6

0.95–1.09 47.35 4

1.09–1.25 30.12 3

1.25–1.51 8.91 2

Rainfall (mm) 0.06 1147–1178 12.62 2

1178–1201 17.40 3

1201–1222 25.87 5

1222–1241 44.11 6

(continued)
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alluviums are considered as the major water bearing aquifers in the basin area
followed by the laterite and granitic gneiss (Groundwater Estimation Committee
2017) (Fig. 9.4).

Table 9.2 (continued)

Factors
Normalized
weight Sub-classes

Area
(%) Rank

Topographic wetness
index

0.05 5.01–7.95 56.11 2

7.95–10.39 26.27 3

10.39–14.05 14.43 4

14.05–23.31 3.18 5

Curvature 0.05 (�1.58) – (�0.23) 10.27 1

(�0.23) – 0.00 53.62 2

0.00–0.23 24.45 4

0.23–2.38 11.66 6

Fig. 9.3 Geological setting of the study area
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9.4.2 Lineament Density

The groundwater potentiality in hard rocks terrain is largely controlled by the
discontinuity of rock surface, such as joints, fractures, faults and shear zones.
These linear or curvilinear tectonically deformed features create favourable condi-
tions for downward movement of water through the hard rocks surface and ulti-
mately that gives rise to the development of pocket aquifers (Chandra et al. 2006;
Acharya and Malik 2012; Shailaja et al. 2019). The permeability and secondary
porosity are highly influenced by the areas of high lineaments (Arulbalaji et al. 2019;
Ghosh et al. 2020). The high lineament density zones are observed in different
pockets of the basin in circular, semi-circular and elongated patterns covering an area
of 28.38% of the total basin (Fig. 9.5). The moderate type of lineament density is
seen along the basin almost from source to sink of the river, while some portion of
the basin boundary (24.84%) shares low amount of lineament density (Table 9.2).

Fig. 9.4 Field photographs of the Joyponda river basin
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9.4.3 Geomorphology

Geomorphology is the science which tries to understand the evolution of landforms of
complex diversity and different geomorphic processes acting upon them
(Summerfield 1999; Goudie 2004; Huggett 2007). It also provides details about the
distribution of weathered zones, processes of water movement and characteristics of
underlying lithology (Murmu et al. 2019). The geomorphic features of the area are
divided into four distinct categories. The upper portion of the basin, which is
pediment-pediplain complex, occupies 34.79% area of the total basin, and this
complex is considered as less favourable for groundwater recharge due to its undu-
lating topographical characteristics. The upland plain (60.61%) mainly dominates the
entire basin from upper-middle course of the Joyponda river up to the confluence
point (Table 9.2). There are plenty numbers of small water bodies observed across the
river basin randomly. A small proportion of flood plain area is contributed by the river
Joyponda from its middle reach to sink (Fig. 9.6). The weathered and loose materials
of upland plain and alluvium of flood plain are more suitable in the movement and
occurrence of groundwater (Krishnamurthy et al. 1996).

Fig. 9.5 Lineament density of the study area
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9.4.4 Slope

The steepness of topography is a very crucial factor in groundwater development of
an area. The degree of slope is directly proportional to the surface runoff and inverse
to the infiltration rate (Siva et al. 2017). The higher amount of slope reduces the
chance of water percolation into the soil and resulting less amount of groundwater
recharge (Singh et al. 2013). The high degree of slope covering an area of 6.72% is
observed across the basin due to concentration of low dissected residual hills
(Fig. 9.7). The low degree of slope (i.e. less than 1.04 degree) is mainly found in
the riverine areas of lower course sharing an area of 29.86% of the total basin. This
area is most favourable for groundwater recharge due to loose sediments. A signif-
icant proportion of the basin area (63.42%) experiences moderate type of slope
varying from 1.04 to 3.78 degree (Table 9.2).

Fig. 9.6 Geomorphological map of the study area
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9.4.5 Curvature

Curvature refers to the amount of bend of topographic surface from being a hori-
zontal plain. The shapes of bend or curve of topography are considered as convex
profile, when it is curved upward, and concave profile, when it is curved downward
(Benjmel et al. 2020). The concave upward profile has the highest potentiality in
groundwater recharge (Arulbalaji et al. 2019). High curvature value represents the
deceleration of runoff and enhancement in water infiltration rate. The curvature
values of the study area lie in between �0.23 and 2.38. The concave surface
occupies around 36.11% of the total basin area (Table 9.2), and it reflects a good
signature of high amount of water accumulation though most part of the river basin
area experiences convex surface (Fig. 9.8).

Fig. 9.7 Slope map of the study area
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9.4.6 Drainage Density

Drainage density of an area is expressed as a ratio between sum of the total stream
lengths considering all stream orders of a unit to the total unit area (Horton 1932;
Kale and Gupta 2001). There is a positive relation of drainage density with slope,
altitude and rainfall, while negative relation exists with vegetation cover and infil-
tration rate (Chorley and Morgan 1962; Morisawa 1962; Hugget 2007). The higher
drainage density is an indicator of high runoff and less groundwater recharge. In
contrast, the lower drainage density areas are suitable for groundwater recharge
(Magesh et al. 2012). The drainage density of the river basin is classified into four
distinct categories. Most of the drainage basin (60.97%) enjoys almost low drainage
density, i.e. less than 1.09 km/km2 (Table 9.2), and it is mainly found in the entire
middle portion of the basin. The higher degree of drainage density is observed either
in elongated pattern or circular pattern over the river basin, and the lower order
streams are mainly incipient ephemeral in nature along with short life span in terms
of their perennial character (Fig. 9.9).

Fig. 9.8 Curvature map of the study area
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9.4.7 Rainfall

Rainfall is the main source of groundwater recharge in this area. The maximum
rainfall is received in between June to September by the entire area due to advent of
Monsoon (Nag and Ray 2015). According to the CGWB more than 80% of
precipitation flows away as runoff of this hard rocks terrain due to low rate of
permeability and topographical irregularities (CGWB 2017). Thus, the low intensity
rainfall of longer duration is more preferable in groundwater recharge compared to
the high intensity rainfall of short period (Nasir et al. 2018). The annual average
rainfall of the basin varies from 1147 mm to 1241 mm as per the CWC database. The
entire river basin has divided itself into four distinct rainfall categories from north-
west to south-east direction like a stair case (Fig. 9.10). The higher amount of rainfall
is enjoyed by the upper portion of the basin, whereas the amount of rainfall decreases
gradually towards the lower catchment area of the basin. Most of the basin area
(69.98%) enjoys more than 1201 mm rainfall (Table 9.2).

Fig. 9.9 Drainage density map of the study area
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9.4.8 Soil

The groundwater recharge is determined by a number of properties of soil, such as
soil type, texture, water infiltration, percolation, permeability and water holding
capacity (Shekhar and Pandey 2014; Murmu et al. 2019). The coarse texture of
soil is more favourable for groundwater recharge followed by fine texture (Maity and
Mandal 2017; Ghosh et al. 2020). There are five types of soils found in the study area
(Fig. 9.11), and the coarse loamy soil covers an area of 23.78% of the Joyponda river
basin, followed by fine loamy soil (28.65%) and fine-fine silty soil (38.29%). The
clayey skeletal soil and loamy skeletal soil account for 6.29% and 2.99% of the basin
area, respectively (Table 9.2).

9.4.9 Infiltration Number

The infiltration number is used to understand the potential infiltration capacity of an
area, and it is the result of stream frequency and drainage density (Prabhakaran and

Fig. 9.10 Rainfall distribution map of the study area
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Raj 2018). There is an inverse relation between infiltration number and groundwater
recharge. The higher infiltration number is unfavourable for groundwater recharge
and leads to high runoff. Less infiltration number increases the chances of high
groundwater recharge (Joji et al. 2013; Ghosh and Jana 2018; Prabhakaran and Raj
2018). Infiltration number of the basin varies from 0.11 to 2.14. Most of the basin
area (63.44%) comes under the less infiltration number, i.e. less than 1.06
(Table 9.2). Areas of higher infiltration number of more than 1.42 are mainly
found in circular pattern from middle to lower reach of the basin, while medium
infiltration number is highly concentrated in elongated pattern almost in the middle
of the basin (Fig. 9.12).

9.4.10 Topographic Wetness Index

Topographic wetness index helps to perceive the role of topography in controlling
the potential groundwater infiltration. It is computed considering the propensity of
water to be stored up at any point of the basin and the propensity of water to move

Fig. 9.11 Soil map of the study area
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down due to gravitational force (Nampak et al. 2014; Arulbalaji et al. 2019). This
index of the basin varies from 5.01 to 23.31. The higher index value of an area over
the river basin indicates good potentiality of groundwater, and vice-versa. An area of
17.61% of the river basin enjoys higher topographic wetness index, i.e. more than
10.39 (Table 9.2). The rest of the basin area experiences low to moderate topo-
graphic wetness index (Fig. 9.13).

9.4.11 Land Use Land Cover

In the process of groundwater development, the role of land use land cover is
indisputable, and it also portrays the details about the surface water, groundwater,
infiltration, soil moisture, water holding capacity and runoff rate (Singh et al. 2017).
The entire basin area is categorized into six classes based on land use land cover.
Most of the basin area (62.12%) is utilized for agricultural practices, which bear
good potentiality of groundwater recharge. Forest cover and shrub land share
28.84% of total basin area (Table 9.2). This vegetation cover is found to be good

Fig. 9.12 Infiltration number map of the study area
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transmitter of water into the ground creating routes for water percolation unfastening
the soils and rocks by their roots (Murmu et al. 2019). There is a very small amount
of water bodies (1.00%) existing over the basin. The main concentration of barren
land is located at the top of the river basin, and a few numbers of patches of barren
land are observed in small semi-circular pattern scattering over the basin (Fig. 9.14)

9.4.12 GPZ of the Joyponda River Basin

The prospect zones of groundwater of Joyponda river basin are delineated using the
integrated approach of AHP and geospatial techniques considering a total number of
eleven hydro-geological factors. It is estimated that the basin enjoys 12.62% of area
as very good GPZ followed by good (24.47%). The moderate prospect zone of
groundwater is recorded as 28.93%. Only 10.97% area of the river basin experiences
very poor groundwater potentiality followed by poor potential zones (Table 9.3).
The prospect zones of good to very good lie mainly in between middle to lower reach
of the river basin (Fig. 9.15).

Fig. 9.13 Topographic wetness index map of the study area
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9.4.13 Accuracy Assessment of GPZ Map

Before the judicious use of the GPZ map, it is a prerequisite condition to assess the
accuracy level and validity of the applied model. To do the same, the Pre-Monsoon
groundwater level data of 27 dug wells distributed over the river basin are taken into
account. These individual dug wells are considered as reference points to investigate
groundwater prospect. The range of the groundwater level data lies in between 0.90
mbgl and 9.97 mbgl, and the data are classified into five different categories in
ArcGIS software adopting natural break classify system, namely, very poor (7.25

Fig. 9.14 Land use land cover map of the study area

Table 9.3 Descriptive statistics of groundwater potential zones

Groundwater potential zones Area (km2) Area (%) No. of reference dug wells

Very poor 43.5 10.97 4

Poor 89.69 22.61 4

Moderate 114.78 28.93 7

Good 98.67 24.87 4

Very good 50.05 12.62 8
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mbgl to 9.97 mbgl), poor (6.39 mbgl to 7.25 mbgl), moderate (4.39 mbgl to 6.39
mbgl), good (2.89 mbgl to 4.39 mbgl) and very good (0.90 mbgl to 2.89 mbgl). The
calculated value of the overall accuracy assessment of the study is found to be 85%,
which certainly upholds the implication of the used model. The study shows that the
higher depth of water level of dug wells is found at the upper part of the basin, while
the lower depth of water level of dug wells is observed at the lower part of the river
basin. Here, the Kappa co-efficient is also computed to understand the level of
agreement between simulated GPZ map and reference points of dug wells. Gener-
ally, the value of the Kappa co-efficient belongs to 0 to 1, where 1 represents almost
perfect agreement and 0 denotes less than chance of agreement (Viera and Garrett
2005). The Kappa co-efficient value of the present study is computed as 0.81, which
indicates towards the almost perfect agreement between simulated model and
observed value of reference points.

Fig. 9.15 Groundwater potential zones map of the study area
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9.4.14 Estimation of Natural Groundwater Recharge

In the present day, identification of groundwater recharge zones emerges with great
importance to quantify the amount of infiltrated water into the ground for amplifi-
cation of groundwater storage (Oke et al. 2015). The amount of recharge highly
depends on the characteristics of hydro-geological unit. The duration and intensity of
rainfall amount, pore space of soil, permeability, slope, etc. are primarily key
determinants of groundwater recharge. The average annual rainfall of the study
area varies from 1147 mm to 1241 mm. To calculate the amount of groundwater
recharge from rainfall, the specified method of GEC 2015 is applied using raster
calculator in ArcGIS software. It is estimated that the whole basin area receives
average annual rainfall of 4.77 � 108 m3. Of the total volume of obtained rainfall,
only 13.78% water, i.e. 6.5 � 107 m3, is credited to groundwater storage. The lower
river basin area provides more rainfall for groundwater recharge compared to the
upper catchment area (Fig. 9.16), which receives highest amount of rainfall in the
basin. It is the topography which influences the variation of groundwater recharge by
its inherent characteristics.

Fig. 9.16 Spatial distribution of natural groundwater recharge amount
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9.5 Conclusion

The study reveals that an area of 148.73 km2 (37.49%) of the total Joyponda river
basin enjoys good to very good potentiality of groundwater. These zones are mainly
observed at lower basin areas, where older alluvium, gentle slope and high lineament
density coexist. The areas of very poor to poor groundwater prospect occupy
133.19 km2 (36.03%) area of the total basin. This area is mainly situated at the
upper reach of the basin, which is characterized by high drainage density, high
degree of slope, less lineament density, hard granitic gneiss rocks and high runoff.
To meet the demands for water of populations of the basin mainly during the
scorching dry summer, the groundwater exploration is required to be made when
there is no such option left. Many a time, it was witnessed that the people of this
region were discouraged due to the failing of borehole drillings in search of
groundwater. Only the delineated GPZ are required to explore to minimize the risk
of failures. This work may also help in disclosing many ways of new researches
related to estimation of groundwater storage, rate of recharge, nature of aquifers, etc.
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