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Abstract Anthropogenic activities viz. modern agricultural practices, industrial-
ization and mining have long term detrimental effects on environment. All these
factors lead to the increase in heavy metal concentration in both hydrosphere and
lithosphere. The extreme use of chemical fertilizers in agricultural field possesses
a major threat to human and animal health and also causes various environmental
hazards. The utilization of the chemical fertilizers can be reduced through biological
aspects. Rhizosphere bacterial community is majorly involved in the plant growth
and colonized in root zones of the plants with enhanced symbiotic relationship with
plant community. These bacteria support the plant growth at normal and stressed
conditions. These naturally occurring bacteria will pave a way to minimize the use of
chemical fertilizers and hence in reducing the risk hazards. Plant-soil-root ecosystem
is an important interface between soil and plants and also plays a significant role in
the biosorption of heavy metals from contaminated soils. The rhizobacteria dwelling
in this soil are known to affect heavy metal mobility and availability to the growing
plant through the release of chelating agents, acidification, phosphate solubilization
and redox changes, therefore having tremendous potentials to enhance the biore-
mediation processes. Bioremoval strategies with appropriate heavy metal-adapted
rhizobacteria have received considerable importance. This chapter aims to reveal the
sources of heavy metals and its effects on various life forms with special emphasis
on PGPR assisted mechanisms for bioremoval of heavy metals from heavy metal
implicated sites in the environment.
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1 Introduction

Various industries such as cosmetics, textiles, tanneries emerge worldwide to fulfill
the various requirements of enlarging population. These advancements have put an
increasing burden on the environment by releasing large quantities of hazardous
wastes, heavy metals, metalloids and chemicals that lead to serious problems in an
ecosystem (Ayansina and Olubukola 2017). Heavy metals are naturally occurring
elements that have a high atomic weight and a density at least 5 times greater than
that of water (Tchounwou et al. 2012). The increase in heavy metal concentration in
the environment at alarming rate may directly or indirectly affect plants, microbes,
animals and human beings. Enormous amount of heavy metals are used in various
fungicides and chemical fertilizers, wastewater irrigation and sewage sludge which
in turn contaminates water resources as well as agricultural soils (Akcil et al. 2015).
Copper conjugated pesticides are very expensive and formulated to have fungicidal
and bactericidal actions (CIPAC 1992). Copper-(II) ion (Cu2+) enters the fungal
spores during germination and accumulates until a high concentration is achieved to
kill the spores. However, antifungal activity is restricted to prevent the spore germina-
tion. Hence a prophylactic mode of fungicidal action is observed with copper based
fungicides. Unfortunately, the deposition does happen on the crop before fungal
spores begin to germinate indicating the essentiality of environment risk assessments.
A similar mechanism is postulated for antibacterial action of copper based pesti-
cides in day-to-day agriculture by US-EPA (United States Environmental Protection
Agency) in the year 2000. Examples of copper based fungicides include GalbinAr,
Efdalbakirox, Moltifen and Bromix. Waheed and Nahed (2017) have analyzed the
presence of Arsenic (As), Cadmium (Cd) and Lead (Pb) as impurities and copper as
conjugates in the above listed copper based fungicidal formulates before and after
storage at 54 °C for 21 days.

Microbes play an important role in substance turnover of heavy metal contami-
nation which will clean up the metal contaminated sites (Spain and Alm 2003). If
the heavy metal is fewer in concentration it may act as active elements in plants
and microorganisms. For example, Copper (Cu), manganese (Mn), molybdenum
(Mo), nickel (Ni) and zinc (Zn) are actually micronutrients which mean these heavy
metals are needed at very low quantities for the normal growth of plants. Iron (Fe)
is not generally considered as a heavy metal because it is essential for growth and
metabolism of both plants and animals at its optimum level. However when the
above listed heavy metals are presented at supra-optimum levels (i.e., above 0.1%)
they are toxic to plants and rhizosphere microorganisms (Nies 1999).To circumvent
the metal stress, bacteria progress through many types of mechanisms to overcome
the uptake of heavy metal ions. The mechanisms include efflux of metal ions outside
the cell, binding and accumulation of the metal ions inside the cell and reduction of
heavy metal ions to the less toxic states (Nies 1999). Cations of the heavy metals
bind to glutathione in gram negative bacteria, which would result in bisglutathionato
complexes. Bisglutathionato complexes in turn react with the molecular oxygen
forming the Oxidized bisglutathione (Kachur et al. 1998). Reduced forms of heavy
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metals, which are less toxic, are released from the biosglutothionato complex into
the environment. More heavy metal is uptaken by Gram positive bacteria due to
presence of glycoproteins. Less heavy metal uptake by Gram negative bacteria is
observed due to phospholipids and Lipopolysaccharides (LPS) (Das et al. 2008).

Plant growth promoting rhizobacteria (PGPR) play a vital role in agriculture
mainly in the host plant adaptation to metal contaminated area by activation of
several physiological changes in the plant cell metabolism. This improves toler-
ance of growing plants towards high amount of heavy metal implications (Conrath
et al. 2006).The plant growth promoting bacteria assist the phytoremediation process
through mechanisms that support plant growth including nitrogen metabolisms,
synthesis and secretion of phytohormones such as indole-3-acetic acid (IAA),
Cytokinins, acetonin and 2,3 butanediol, and organic acids as well as defense
molecules such as siderophores, I—aminocyclopropane—I–carboxylate deaminase
(ACC) (Khan et al. 2009; Taghavi et al. 2009).

2 Various Methods for Removal of Heavy Metals

A variety of physical, chemical and biological methods were in use to remove metals
from the environment which are as follows (Joo et al. 2010; Pagnanelli et al. 2010):

2.1 Physical Methods

Reverse osmosis, Membrane technology, Evaporation recovery, Filtration and Ion
exchange.

2.2 Chemical Methods

Electrochemical treatment, chemical precipitation and oxidation/reduction reactions.
Though the abovementionedmethodswere not the initial choice as they are costly,

ineffective, and labor-intensive or the treatment process lacks selectivity (Chen 2008;
Tang 2008), the study carried out by Talos 2009, on bioremediation or biosorption—
based remediation techniques concluded that the natural processes are found to be
cost effective and in that line biological methods to remove heavy metals stands first
and employs microorganisms such as bacteria, fungi and algae. The present chapter
describes the types of heavy metals, chances of environmental release and its effect
on earth and life forms. In addition it specially emphasizes the role of Bacteria and
Rhizobacterial communities on heavy metal removal and detoxification and safe
release into the environment.
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3 Effects of Heavy Metal Accumulation on the Earth

Environment is polluted by various ways and heavy metals are the main source for
pollution which affects many biological systems in the world as heavy metals does
not undergo biodegradation. According to the Biological functions, these metals
has been classified as: (i) toxic metalloids and metals with undefined biological
functions, (ii) fundamentalmetalswith knownbiological functions, (iii) non-essential
and nontoxic metal with no biological functions (Pepper et al. 2015). Heavy metals
ions are chemical moieties whichwould influence its negative effects through diverse
mechanisms such as protein damage, DNA damage and oxidative damage through
the production of reactive oxygen species etc., (Assal et al. 2017). Most of the heavy
metals are toxic to the environment in that Pb, Co, Cd stands in the first line and are
differentiated from other pollutants; those are not biodegraded however these heavy
metals can be accumulated in living organisms resulting in various diseases and
disorders even at lower concentrations (Pehlivan et al. 2009). Soil is the backbone
of agriculture and the worst effects are caused due to the accumulation of heavy
metals in plants. Higher organisms that consume heavy metal accumulated plants
face numerous health issues. This may also have a negative crash on balance of
soil micro flora, plant growth and in the ground cover at the level of ground water
purity (Roy et al. 2005). The toxicity of heavy metal against the plant and plant
associated microbes are described in the table as well as the most of the PGPRwhich
are involved in the phytoremediation has shown in the Table 1.

3.1 Arsenic

Arsenic is moderately distributed in natural waters which are related with geological
sources. Likewise in various locations of anthropogenic inputs, such as the use of
pesticides, insecticides as well as the combustion of fossil fuels are the enormously
important additional sources. Oxidation states III and V of arsenic occurs in natural
waters, in the form of arsenic acid (H3AsO5) and its salts, arsenous acid (H3AsO3)
and its salts, respectively (Sawyer et al. 2003). Arsenic contamination in groundwater
may create major problem during irrigations. For example, it accumulates in plant
tissues including grains and contaminates food chain (Verma et al. 2016). In recent,
study has been carried out to inspect the molecular mechanisms and physiology of
arsenic accumulation, toxicity, detoxification and tolerance in various plants (Kumar
et al. 2015) some of the plant growth promoting rhizobacteria which is resistant to
the arsenic is shown in the Table 1.
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3.2 Lead

Lead can affect the various life forms through contamination from old lead plumbing
pipes, dusts, fuels from various industrial sites and also in the old orchard sites in
production where arsenate and lead is mostly used (Tangahu et al. 2011). Long term
exposure to lead is found to be intensely toxic to both animals as well as plants which
is non-biodegradable and has several harmful effects on organic systems including
soil properties i.e., pH, organic carbon, amorphous iron, aluminium oxides (FEAL),
and cation exchange capacity. (Bradham et al. 2006; Pehlivan et al. 2009). Several
bacteria, such as Arthrobacter spp., Bacillus megaterium, Pseudomonas marginalis,
Citrobacter freundii, Staphylococcus aureus, and E. coli have been found to be
resistant to lead (Das et al. 2016).

3.3 Cadmium

Cadmium is highly soluble in water therefore it is easily up taken by plants which
results in phytotoxicity followed by entry through the pathways into the food chain
causing serious harmful effects to human beings (Buchet et al. 1990). This heavy
metal has been classified into carcinogenic to humans by The International Agency
for Research on Cancer (IARC 1993). Still at low concentrations, cadmium alters
some enzyme activities including those enzymes involved in Calvin cycle, CO2

fixation, Carbohydrate and Phosphorus metabolisms (Gill and Tuteja 2011). This
may result in the underdeveloped growth, alterations in chloroplast ultrastructure,
Chlorosis, leaf epinasty, inhibition of photosynthesis and pollen germination, alter-
ations in nitrogen (N) and sulphur (S) metabolism and disruption of the antioxi-
dant machinery (Gill and Tuteja 2011). In a report by Roane et al. (2001), Pseu-
domonas strain H1 and Bacillus strain H9 showed an intracellular mechanism of
cadmium sequestration (36%) for reducing cadmium toxicity. These strains showed
the production of exopolymers (EPS) which accumulated cadmium and reduced
soluble cadmium levels by 22% and 11%, respectively.

3.4 Chromium

Seventh most rich metal on earth is chromium and exists in two stable states in
the environment: they are trivalent Cr3+ and hexavalent Cr6+. Source of Chromium
contamination is due to the use of Cr in many industries such as leather tanning,
metal plating, and other metallurgical procedures. The insufficient disposal of their
wastes may give rise to concentrations above the natural values (Wuana 2011).
Chromium inhibits sulphate membrane transport and causes oxidative damage in
bacteria. Against chromium toxicity, microbes involve in two mechanisms. The first
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and foremost is chromate efflux from the cells, and another one is the reduction of
toxic form Cr6+ into less toxic form Cr3+. The efflux protein of chromate is encoded
by chrAgene, which has homologs in eubacteria, archaea, and also in some eukary-
otes (Das et al. 2016). Nies et al. (1998) defined about two chromate efflux pumps
with six transmembrane segments but Diaz-Magana et al. (2009) described that in
E. coli, these two pumps are not separate ones, however together form a heterodimer
of 12 segments.

3.5 Copper

Copper is third oldest abundantly used metal having wide applications in wires,
architecture, motors and medicines. Consuming more amount of copper in the
body causes Copperiedus, leading to the production of Reactive Oxygen Species
(ROS), which have the potential to damage proteins, DNA and lipids. Two oxida-
tion states Cu(I) and Cu(II) involve in copper cycles and dislocate iron (Fe) from
available Fe–S clusters in dehydratases and other iron sulphur proteins (Macomber
and Imlay 2009). Plasmid pRJ1004-mediated copper resistance in bacteria was first
reported by Tetaz and Luke (1983). Later on Bender and Cooksey (1986) identi-
fied native pPT23D plasmids in Pseudomonas syringae helping tomato from copper
toxicity. However, the removal of cytoplasmic copper is involved by ATPase-driven
copper efflux system. Periplasmic copper handling, metallochaperones, multicopper
oxidases and Resistance-Nodulation-Division (RND) systems are involved in this
process (Bondarczuk and Piotrowska-Seget 2013).

3.6 Mercury

Compared to other toxicmetal pollutants,mercury is one of themost toxic elements in
the earth which has severe health concerns. It is strong in sediments, soils, water and
atmosphere. Through anthropogenic activities mercury enters into the environment.
Mercury resistant bacteria have two operons. One of the operons is narrow-spectrum
mer operon and another one is broad spectrum mer operon (Matsui et al. 2016).
Consensus sequence GMTCAAC is present in the mercury binding site. MerP scav-
enges inorganic mercury ions and transports them to theMerT protein (Hamlett et al.
1992). merC expression in Arabidopsis thaliana and Nicotiana tabacum has led to
their doubling ability to accumulate mercury (Sasaki et al. 2006).



22 K. KirupaSree et al.

3.7 Nickel

Nickel is most abundantly disturbed in the environment which exists as five stable
isotopes 58Ni, 60Ni, 61Ni, 62Ni, 64Ni. Nickel has vital role in the biochemistry of
microbes and plants. Most of the enzyme contains nickel active site such as ureases,
hydrogenases, superoxide dismutases, and glyoxalase enzyme contains in the form
of Ni–Fe clusters or use nickel as a co-factor. Nickel is highly toxic to the humans
and animals because it’s potential to cross the placenta and affect the developing
fetus. Nickel resistance in bacteria is generally mediated by metal efflux pumps, this
resistance mechanism is well studied in Cupriavidus metallidurans CH34 formerly
called Ralstonia metallidurans by Grass et al. (2000). It has been reported that in the
presence of CnrCBA transenvelope efflux pump encoded by the cnrYHXCBAT gene
system, Ni is expelled out of the cell (Maillard et al. 2015). Through cnrY and cnrC
the cnr promoter is initiated while the nickel enters into the periplasm, transcription
occurs. The CnrCBA encodes a highly efficient pump which is activated only in
micromolar concentrations of nickel. These gene products form an efflux pump to
efflux excess nickel outside the cell. Certain standard levels of heavy metals allowed
to be present in mg per Kg of soil varies with countries as below in Table 2.

4 Bioremediation of Heavy Metals by Microorganisms

Bioremediation is the process of removing heavy metals through biological aspects
which also involves microorganisms. These microbes decrease the heavy metal ion
toxicity by immobilizing, uptake, mobilizing and transformation of heavy metals
(Hassan et al. 2017). Numerous symbiotic PGPR resides in plant roots and also as
free-living bacteria in the rhizosphere soil that positively alters plant growth and
increases the productivity by the production of growth regulators, through supplying
and facilitating nutrient uptake from soil (Nadeem et al. 2014). Most of the studies

Table 2 Permissible level of
heavy metals

Heavy metal
(mg/kg)

Austria
standard

The European
Union standard

Indian
standard

Al – – –

As 50 – –

Cd 5 3 3–6

Co 50 – –

Cr 100 150 –

Cu 100 140 135–270

Ni 100 75 75–150

Pb 100 300 250–500

Zn 100 300 –
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have reported that PGPR act as potential elicitors for heavy metal tolerance as well
as abiotic stress tolerance (Dary et al. 2010; Tiwari et al. 2016, 2017). These PGPR
bind with the bioavailablemetals by forming complexes with siderophores such as
Desferroxamines, Dihydroxybenzoic acids and Rhizoferrins (Dimpka et al. 2016),
particular metabolites like heme in Bacillus japonicum by ferrochelatases, metal-
lothionein cation-binding proteins (Chandrangsu 2017) and bacterial heavy metal
transporters such as Pb(II)/Cd(II)/Zn(II)-transporting ATPase in E. coli (Rajkumar
et al. 2010; Ahemad 2012). The agriculturally important microorganisms evolved
various mechanisms to overcome heavy metal stress which includes (a) transport
of metals across cytoplasmic membrane; (b) biosorption and bioaccumulation to the
cell walls; (c)metal entrapment in the extracellular capsules; (d) heavymetals precip-
itation; and (e) metal detoxification via oxidation–reduction reactions (Zubair et al.
2016). The harmful effects of heavy metals are reduced through various microbes
of Heavy-metal-tolerant PGPR including Bacillus, Pseudomonas, Streptomyces and
Methylobacterium which has the potentials to improve the growth and yield of the
crops (Sessitsch et al. 2013).

Plant growth promoting bacteria are involved in the biosorption of heavy metals
in which siderophores and IAA are accountable for metal uptake with which indirect
defence mechanisms are activated (Spaepen and Vanderleyden 2011). Siderophores
reduce the abiotic stresses forced on plants by making stable complexes with toxic
heavy metals of environmental concern such as Cd, Cu, Cr, Pb and Zn (Rajkumar
et al. 2010).

4.1 Role of Microbes in Detoxification of Heavy Metal

In order to survive at high concentration of heavy metals, bacteria need to develop
different mechanisms to confer resistances to these heavy metals. There is no general
mechanism for resistance in bacteria towards all heavy metal ions. Though it is well
known that both living and dead cells are capable of metal accumulation but there
are differences in the mechanism involved.

There are four possible known mechanisms postulated in bacterial heavy metal
resistances. They are as follows:

• The first mechanism is by keeping the toxic ion out of the cell by altering a
membrane transport system involved in initial cellular accumulation.

• The second mechanism is the intracellular or extracellular sequestration by
specific metal-ion binding components (analogous to the phytochelatins in plants
and the metallothioneins of eukaryotes, but generally binding occurs at the level
of the cell wall in bacteria). Extracellular accumulation/precipitation may be
facilitated by using viable microorganisms. However, cell surface sorption or
complexation can occur within alive or dead microorganisms, while intracellular
accumulation requires microbial activity (Macek et al. 2011).
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• The third mechanism includes plasmid mediated bacterial metal ion resis-
tance, which involves highly specific anion or cation efflux systems encoded by
resistance genes associated with plasmids.

• The fourth and widely known mechanism involves detoxification of the toxic
anion or cation by enzymatically converting it from a more toxic to a less toxic
form. This mechanism does essentially occur in detoxification of inorganic and
organomercurials.

Some other major mechanisms of microbial metal transformations between
soluble and insoluble metal species include chemolithotrophic leaching,
chemoorganotrophic leaching, rock and mineral bioweathering and biodeteriora-
tion, biocorrosion, redox mobilization, methylation, complexation (For example,
complex formationwithmicrobial products such asmetallothionein like proteins and
extracellular polymers (EPS) in case of soluble metal species whereas for insoluble
metal species the process includes biosorption, accumulation, biomineral forma-
tion, redox immobilization, metal sorption to biogenic minerals and formation of
metalloid nanoparticlesare well notable processes (Tunali 2006)). The key factors in
controlling these mechanisms include:

• The nature of the biomass i.e. living or non-living;
• The type of biological ligands available for heavy metal sequestration;
• The chemical, stereochemical and coordination characteristics of the targeted

metals and metalloid species (Remoudaki et al. 1999).
• The hysic-chemical characteristics of the metal solution such as pH, and presence

of competing co-ions (Esposito 2002).

4.2 Interaction Between the Heavy Metals and Microbes

Numerous mechanisms have been executed by bacteria to detoxify and resist heavy
metals by which the metal ions bind to the cell surface and incorporate electro-
static interactions, covalent binding, Van der Waals forces, redox interactions and
extracellular precipitation or by means of all these as combined processes (Blanco
et al. 2000). In general the response of bacteria may fall into two categories: (1)
mechanisms dependent on activation by specific metals, and (2) general mecha-
nisms, which convey resistance but do not depend on metal stress for their activa-
tion. Uptake of heavymetals and detoxification through Heavymetal tolerant—plant
growth promoting microbes is largely responsible for the Bioaccumulation. There
are two methods involved in bioaccumulation of Heavy metals: one is passive uptake
which is also knownas biosorption, ametabolism independent accumulation of heavy
metals by inactive non-living biomass or living cells/biological materials. Another
one is active uptake that occurs only in alive cells, it requires energy and metabolism
for the exchange of metals (Gutierrez-Corona et al. 2016). One or a blend of different
processes involved in the biosorption includes coordination, complexation, chelation,
ion exchange, entrapment andmicro precipitation (Pokethitiyook and Poolpak 2016).
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Biosorption of heavy metals from the contaminated site by means of microbes are
associatedwithin the cell wall and functional groups like –SH, –OH, and –COOHand
other biomolecules have more affinity for heavy metals. Metal-binding peptides and
chelators involved inmetal binding such asmetallothioneins (MT) and glutathione—
derived peptides (PC). These PC and MT are secreted by rhizosphere fungi, bacteria
and also by plants in response to heavy metals stress (Miransari 2011).

4.3 Mechanisms Behind the Utility of Heavy Metals
by Microorganisms

Heavy metal ions are trapped by the cellular structure of microorganisms and conse-
quently attached to the binding sites of the cell wall (Malik 2004). This method
is known as passive uptake or biosorption, and is exclusively independent of the
metabolic cycles. The amount ofmetals biosorbed depends on the kinetic equilibrium
and composition of themetals at the cellular surface. Themechanism involves several
process including electrostatic interaction, ion exchange and surface complexation.
Absorption of heavy metal is carried out by fragments of cells and tissues, or living
cells or by dead biomass as passive uptake by surface complexation on the cell
wall and other outer layers (Fomina et al. 2014). In cellular metabolic cycles, these
heavy metal ions may pass across the cell membrane and the process is known as
bioaccumulation or active uptake.

4.4 Bioaccumulation or Active Uptake of Heavy Metals
in Bacteria

In gram positive bacteria peptidoglycan layer contains alanine, glutamic acid, meso-
diaminopimelic acid, polymers of glycerol and teichoic acid whereas in gram nega-
tive bacteria, cell wall contains enzymes, lipoproteins, glycoproteins, lipopolysac-
charides and phospholipids which concerned as the active site for metal binding
(Lesmana et al. 2009; Fomina et al. 2014; Gupta et al. 2015). The process involved
in the bioaccumulation of heavy metals in the living cell is dependent on a variety
of physical, chemical and biological mechanisms. The intercellular and extracellular
process plays a partial and ill-defined role in biosorption as well (Fomina et al. 2014).
The microbes which accumulate heavy metals have the tolerance capacity to one or
more metals at higher concentrations, and it has the ability to change the toxic forms
to harmless forms thereby reducing the toxic levels of the metals in the environment
(Fig. 1). Simultaneously these organisms do retain the heavy metals contained in the
cells (Mosa et al. 2016).

Microorganisms hidemany kinds ofmetal-bindingmetabolites and produce extra-
cellular polymeric substances like polysaccharides and associated components such
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Fig. 1 Bioaccumulation/active uptake of heavy metals by plant growth promoting rhizosphere
bacteria

as capsules, slimes and sheaths, and biofilms for with heavy metals (Fomina et al.
2014).

4.5 Biosorption or Passive Uptake in Bacteria

Among microorganisms, bacteria constitute of being the most abundant, versatile,
most diverse creature on this planet earth (Norberg et al. 1984; Abbas et al. 2014).
They are fundamentally classified on the basis of their morphology as rod, cocci or
spirillum (Wang et al. 2009; Abbas et al. 2014). A bacterium has relatively simple
morphology consisting of cell wall, cell membrane, capsule, slime layer and internal
structures, such as ribosomes,mesosomes etc. Slime layer contains functional groups
like carboxyl, amino, phosphate or sulfate for metal chelation (Abbas et al. 2014).
Cell wall in general, is dependable for surface binding sites and the binding strength
for different metal ions depend on different binding mechanisms. There exist many
intracellular and extracellular events in bacteria involving microbial bioremediation
of toxic pollutants from the environment. In response to the presence of toxic metals
in the environment, resistant bacteria synthesize many intracellular and extracel-
lular enzymes to remove/degrade the toxic form of metals to non-toxic/less toxic
forms (Fig. 2). Various bacterial species belonging to the genus such as Bacillus,
Pseudomonas, Escherichia exhibit biosorption property because of their small size
and ability to grow in different environmental conditions (Vasudevan et al. 2001;
Vijayaraghavan et al. 2008; Kinoshita et al. 2013).

Gram positive bacteria are comprised of thick peptidoglycan layer connected by
amino acid bridges, also known to contain polyalcohols and teichoic acids. On the
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Fig. 2 Bioremoval of heavy metals from the environment by resistant bacteria through passive
uptake in response to the presence of toxic metals in the environment. Here, resistant bacteria
synthesize many intracellular and extracellular enzymes to remove/detoxify the toxic form of
heavy metals to non-toxic/less toxic forms. These processes include (1) Entry of heavy metal with
high toxicity (2) Metal sequestration by metallothioneins, (3) Conjugate formation with organic
compounds/precipitation, (4) Oxidation–reduction of metals, (5) Metal efflux by metal transporters
followed by bioremoval through microbial products such as biosurfactants or EPS

whole, Gram positive bacterial cell wall comprised of 90% peptidoglycan. Some
teichoic acids are linked to lipids of lipid bilayer forming lipoteichoic acid. These
lipoteichoic acids again formapart of cytoplasmicmembrane.They constitute linkage
of peptidoglycan to cytoplasmic membrane. This results in cross linking of peptido-
glycan forming a grid like structure. These teichoic acids are responsible for negative
charge on cell wall due to presence of phosphodiester bonds between teichoic acid
monomers (Abbas et al. 2014). Hence, affinity towards the heavy metals is more
favoured in cell wall of gram positive bacteria as these heavy metals are cationic
in nature. On the other hand, Gram negative bacterial cell wall contains an addi-
tional outer membrane composed of phospholipids and lipopolysaccharides. Gram
negative cell wall contains 10–20% peptidoglycan. The negative charge on the Gram
negative bacteria is due to lipopolysaccharides, teichoic acids, teichuronic acids.
Extracellular polysaccharides also exhibit the properties of metal binding. Bacterial
cell wall encountering the metal ion is the first component of biosorption. The metal
ions get attached to the functional groups (amine, carboxyl, hydroxyl, phosphate,
sulfate, and amine) present on the cell wall (Abdi 2015). The general metal uptake
process involves binding ofmetal ions to reactive groups present on bacterial cell wall
followed by internalization of metal ions inside the cell (Abbas et al. 2014). More
metal uptake is carried out byGrampositive bacteria due to presence of glycoproteins
which facilitates the internalization. However, fewer metal uptakes byGram negative
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bacteria are observed due to presence of phospholipids and LPS which favours the
phenomenon of adsorption (Gourdon et al. 1990; Das et al. 2008). Microorganisms
have advanced mechanisms to protect themselves from the toxic doses of heavy
metals such as adsorption, oxidation/reduction, or methylation. These mechanisms
can be adopted with some manipulation in treatment strategies for the removal of
metals from polluted environments (Hashim et al. 2011).

5 Applications and Future Prospects

Detection of novel genes and proteins associated with the ability of eco-friendly
clean-up will be a great benefit to achieve enhanced bioremediation. To identify new
genes which may be expressed in the presence of a particular heavy metal pollu-
tant, gene expression studies employing microarray technology and whole genome
sequencing assays shall be worthwhile.Microbes possessmany unique characteristic
features such as biofilm formation, biosurfactant productions, secondary metabolites
synthesis, and many more to withstand the adverse conditions in the environment.
These properties of metal resistant bacteria may be harnessed for their enhanced
utilization in bioremediation. Recently, multispecies biofilm communities have been
explored for their metal tolerance and bio-mineralization properties (Golby et al.
2014). Though bacteria develop metal-resistant phenotypes and genotypes as a mode
of adaptation in the contaminated environments, the gene pool of these resistant
bacteria can be a choice of research thirst in near future to have a proper insight into
the molecular genetics approaches for an enhanced heavy metal bioremediation so
as to save the environment.

6 Conclusion

This chapter revealed both the active (Bioaccumulation) and passive (Biosorption)
mechanisms of bioremoval of toxic heavy metals by Heavy metal tolerant-plant
growth promoting rhizobacteria. These communities are widely involved in the
removal of heavy metals from the polluted environment. At this juncture, Bacte-
rial siderophores gain importance because of their capability to interact with the
heavy metals like Fe, Ni, Cd, Cu, and Zn. In which the metal uptake is concerned
through two special proteins. They are metallo-proteins or metal-binding proteins
and peptides. The use of PGPR for plant growth improvement is presently receiving
substantial worldwide concentration and the latest successive PGPR researches have
exhibit luminous prospects for bioremediation of polluted soil environments. In addi-
tion, the rapid development of molecular biological methods is bringing valuable
advantages to identify and enhance the rhizobacterial traits involved in heavy metal
bioremoval from the areas under heavy metal stress.
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