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1 Introduction

The topological design and configuration of a network determines its service
capabilities to transport flows of material, energy, or information effectively. These
capabilities include the network’s ability to route origin-to-destination flows on
paths that meet performance requirements such as maximum permitted route
length, time, transshipments, or likelihood of failure. To account for the interde-
pendence between design and routing decisions, optimization models for network
design jointly decide the network configuration and flow routes. However, due to
economies of scale (e.g., fixed costs) in network design, optimal solutions to a
basic network design model that focuses on cost minimization, without explicitly
imposing routing constraints, may not meet the service requirements. For instance,
when fixed costs are very high, the optimal network configuration will be sparse,
implying that the routes for origin-to-destination flows on the chosen network can
be long. Similarly, since facilities with higher performance capabilities (e.g., faster
transport service) are more expensive, the minimum cost network design may select
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cheaper arcs that have poorer routing performance. So, for application contexts in
which providing good or guaranteed end-to-end service performance is important,
we must augment the basic network design model by explicitly incorporating
the desired performance requirements. These requirements often take the form of
constraints on the routes chosen for each origin-to-destination flow. The goals of
this chapter are to explore and understand the structure of network design problems
with additional route performance requirements, and discuss tailored algorithms
to effectively solve the problem. For this purpose, we focus on a core model that
augments the uncapacitated multicommodity, fixed-charge network design model
with constraints on the arc flow variables to capture the routing requirements for
each origin-destination pair. We refer to this model as the Network Design with
Routing Requirements (NDRR) problem. This NP-hard problem encompasses a
broad spectrum of models including the well-known Budget-constrained shortest
path and Hop-constrained network design problems. We discuss modeling and
theoretical issues as well as algorithmic strategies for the NDRR problem (including
valid inequalities and decomposition methods), and relate these issues to prior work
on special cases such as constrained shortest path and hop-constrained network
design problems that can also arise as subproblems of the general NDRR problem.
The simpler and special structure of these problems makes them more amenable
to theoretical analysis, and have led to tailored solution techniques. We discuss
opportunities to extend these results and methods to the NDRR problem and its
capacitated variant. Next, we outline some practical application contexts for the
NDRR model.

The NDRR model and its variants apply to transportation, telecommunication,
electricity distribution, and other network-based service contexts. We briefly outline
selected applications particularly in the transportation sector where route per-
formance requirements can take various forms for different modes of freight or
passenger transport.

• The vehicle routing problem with delivery deadlines (e.g., Desaulniers et al.
2014; Vidal et al. 2013) requires finding minimum-distance vehicle routes to
deliver products from depots to geographically dispersed customers, with each
customer requiring delivery by a specified time. We can view this problem as a
NDRR problem (with additional constraints to ensure that the routes are cyclic)
in which each required delivery corresponds to a commodity to be dispatched
from a depot to a customer location; selecting an arc from i to j corresponds
to routing a truck (carrying orders for multiple customers) between these two
locations at a fixed cost equal to the distance from i to j. The delivery deadline
for each customer imposes an upper limit on the time that the truck assigned
to this customer takes to reach the customer location after departing from the
depot, including the time for intermediate deliveries. Thus, the route performance
requirement for each customer is the total time for the depot-to-customer route.

• Package and less-than-truckload carriers need to decide when to dispatch trailers
(loaded or empty) between various hub or transshipment locations, and how to
route shipments on the chosen services (e.g., Malandraki et al. 2001; Estrada
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and Robuse 2009). Chapter 12 of this volume on Service Network Design and
Chap. 14 on Motor Carrier Network Design elaborate on the optimization models
that arise in this context. Moving trailers between any pair of hubs incurs fixed
costs that depend both on distance and the frequency of these services. More
frequent movements increase cost, but reduce the waiting (at hub) and/or total
travel time for shipments. Shipments may have different priorities, with some
requiring time-definite deliveries and others having less stringent requirements.
This service design problem can be viewed as a NDRR problem defined on
a time-space network whose arcs represent trailer movements and connections
(including waiting) at hubs, with the additional requirement that shipments must
be routed within their guaranteed origin-to-destination transit times.

• Airline crew scheduling (e.g., Gopalakrishnan and Johnson 2005) entails decid-
ing the pairing or duty cycle for each crew member to ensure that each scheduled
flight has the required complement of crew members while satisfying crew work
rules. The cost of each duty cycle depends on the crew member’s assigned flight
legs, deadheads, and layovers at intermediate locations. Federal regulations and
union rules limit the total duration and possibly the number of layovers in each
duty cycle. In the NDRR framework, the commodities are crew members, and the
routes correspond to deciding the sequence of flight legs for each duty cycle such
that the cycle duration (and number of layovers) does not exceed the permitted
value.

• Service design for freight railroads (e.g., Zhu et al. 2014; see also Chap. 13)
requires, as one of its components, designing an effective blocking network.
This problem entails selecting a limited number of blocks (sequences or paths
of train-service legs, which can be viewed as logical links between yards, on
which groups of railcars travel together) for routing shipments (e.g., Barnhart
et al. 2000; Ahuja et al. 2007). To limit the number of times railcars are re-
classified, i.e., moved from one block to the next block at an intermediate yard,
during their origin-to-destination trip, the number of arcs in each shipment’s trip
plan must not exceed a pre-specified upper limit (that can vary by shipment).

• Liner container shipping companies must decide the cyclic routes for their ships,
the frequency of service on each route, and the movement of containers between
origins and destinations on the chosen services (e.g., Agarwal and Ergun 2008;
see also Chap. 15). The route for each container consists of a sequence of sailing
legs on different services, with transshipment from one service to the other at
intermediate ports. Transshipments are expensive due to cargo damage or loss,
handling, and storage; they also increase the origin-to-destination transit time
because containers have to wait at the intermediate port for the next scheduled
service. So, shipping companies seek to design their service network so that
they can transport cargo subject to restrictions on the transit time and number
of transshipments (e.g., Balakrishnan and Karsten 2017; Karsten et al. 2017).

Analogous applications with route performance requirements are also pervasive
in telecommunications network planning. The performance specifications, often
referred to as Quality of Service (QoS) requirements, stem from the need to
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limit the ‘latency’ or end-to-end transmission delay for the many vital and time-
sensitive traffic flows on telecommunication networks, including voice-over-IP,
distributed game playing, transmission of financial information, and emergency
communications. The latency depends on the speeds of the links on the path as
well as the number and speeds of intermediate routers/switches. Moreover, we
must route critical communications over ‘reliable’ paths having low probability of
link failures or packet switching loss. For certain applications such as multicast
broadcast networks, QoS considerations impose additional requirements such as
limiting the number of links or hops on the paths from the root node (typically,
the message source) to every other node (distribution points or destinations).

The problem of deciding the optimal network configuration (or upgrading an
existing network) while ensuring adequate routing performance also arises in
contexts such as energy distribution (e.g., De Boeck and Fortz 2017) and supply
chain networks, and applies to various scheduling problems that we can define
over virtual (versus physical) networks. For instance, we can view the parallel
machine, non-preemptive scheduling problem where jobs have different release
times and deadlines and require sequence-dependent change-over times (or costs)
as the problem of identifying the least cost star network (with as many branches
as the number of machines) that spans all the job nodes, with restrictions on the
maximum time to reach each job node from the root node. Other applications of the
NDRR framework include managing feature addition during a product’s life-cycle
(e.g., Wilhelm et al. 2003) and optimal path configuration for radar avoidance (e.g.,
Zabarankin et al. 2001).

Given such widespread applications of the NDRR problem, we focus on how
to effectively model and solve this problem. Section 2 provides a classification
of network design problems with routing requirements, and formulates the core
version that we will address in the remainder of the chapter. We also discuss the
challenges in solving the problem, and outline some related threads of theoretical
research on the problem’s difficulty. Section 3 outlines a polyhedral approach for
effectively solving the general network design problem with routing requirements
that combines problem reduction, model strengthening, and cutting planes. Sec-
tion 4 addresses two notable special cases of the problem—constrained shortest
path and hop-constrained network design problems—that can arise as subproblems
of the general problem. We also describe illustrative tailored solution approaches
that exploit the special structure of these problems. Section 5 discusses decom-
position methods to solve the general problem, including Lagrangian relaxation,
column generation, and Benders decomposition. We also discuss how the preceding
methods can be extended to the capacitated variant of the problem that imposes
arc capacity constraints in addition to routing requirements. Section 6 provides
Bibliographical Notes on prior literature related to the discussions in the following
sections. Section 7 concludes the paper with a summary of key observations
and learnings about the NDRR problem, and some thoughts on future research
directions.
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2 Problem Classification and Model Formulation

Network design encompasses a vast array of models that differ in their features and
assumptions depending on the application context. Section 2.1 briefly outlines a
framework to classify network design problems based on their structure and assump-
tions. Section 2.2 elaborates on the types of additional flow constraints (besides
demand, supply, and flow conservation constraints) that routing requirements may
impose. Section 2.3 presents the integer programming formulation for the NDRR
problem that we study, and Sect. 2.4 provides insight into why the problem is
challenging and why even some of its simpler special cases are difficult.

2.1 Model Classification

The two core decisions for network design are: (1) which arcs, from the given
set of candidate arcs, to include in the design, and (2) how to route the origin-
to-destination flows on the chosen arcs so as to satisfy demand. We refer to
the corresponding decision variables as design variables and flow or routing
variables. Two types of constraints are common to all network design models:
flow conservation constraints on the flow variables (including demand and supply
constraints), and forcing constraints to relate the design and routing decisions, i.e.,
to ensure that flow is only routed on arcs that are included in the design. We can
differentiate network design problems along the following four main dimensions,
based on the arc and flow characteristics and requirements.

• Directed arcs that can carry flows only in the arc’s direction versus Undirected
edges that permit flows in both directions. Generally, network design models
(without any additional valid inequalities) over undirected networks tend to have
weaker LP lower bounds than those for directed networks (see, for example,
Balakrishnan et al. 1989).

• Multiple commodities, distinguished by their origins and destinations, costs,
and other characteristics, versus a Single homogeneous commodity that can be
supplied by any source to a destination. With multiple commodities, the origin-
destination demand pattern can be arbitrary or have special structure (e.g., single
source, single destination, or complete demand between every pair of nodes).
For network design, multicommodity formulations can be tighter (e.g., Rardin
and Choe 1979; Vanderbeck and Wolsey 2010).

• Non-bifurcated flows that must be routed on a single path from each com-
modity’s origin to destination versus Bifurcated flows that permit splitting the
required flows among multiple origin-to-destination paths. Ensuring that flows
are non-bifurcated requires defining binary variables to define the path for each
commodity, making the problems more difficult to solve.

• Additional constraints: Network design applications in practice may impose
additional constraints besides the flow conservation and forcing constraints of
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the basic uncapacitated model. These constraints fall into two main categories—
configuration constraints and flow restrictions. Configuration or design con-
straints involve only the design variables, and define the permissible configu-
rations. For instance, some applications require the design to be a tree network
(e.g., for multicasting) while others seek a network that is the union of cycles
(e.g., container ship routes, fiber optic ring networks). Flow or routing restrictions
limit the routing options by imposing constraints on the flow variables. We will
discuss these latter constraints in more detail in Sect. 2.2.

Within this framework, the model can accommodate several other variants
such as different objective functions (e.g., maximizing profits with the flexibility
to selectively meet demands, or minimizing the number of transshipments) and
incorporating node attributes (costs, waiting or processing times, other capabilities).
In this chapter, we focus on directed, multicommodity problems with non-bifurcated
flows together with additional constraints that we discuss next to account for service
requirements.

2.2 Routing Requirements

We capture routing and service requirements by constraining the routes on which
commodities can flow. We can broadly classify such constraints as inter-commodity
constraints or intra-commodity constraints. Inter-commodity constraints enforce
joint requirements on the flows of multiple commodities. The most common
example is the arc capacity constraint to ensure that the total flow of all commodities
on an arc does not exceed the arc’s capacity. Other examples include situations
in which using an arc for one (or more) commodity on an arc necessitates either
not routing another commodity (or subset of commodities) or co-routing another
commodity on that arc. For instance, in the rail freight industry, policy and
technological restrictions prohibit transporting certain combinations of commodities
on the same arc. Likewise, in crew scheduling, some organizations favor keeping
crew members from different occupations (commodities) together as a team for
multiple trips. Intra-commodity constraints refer to flow constraints that involve flow
variables from a single commodity. Many of the applications discussed in Sect. 1
fall into this category since they impose performance or service requirements on
each origin-to-destination flow, which in our model corresponds to an individual
commodity. These applications vary in the performance metric they use to ensure
that the solution meets service requirements. Further, the metric is often additive,
i.e., the total value of the metric for a path, which the constraint seeks to limit, is the
sum of the metrics of the arcs and nodes on this path. We next list some common
metrics.

• Time: In transportation applications, the metric for each arc (node) is often the
transportation (transshipment) time. Upper bounds on the transit time from origin
to destination, which is the sum of traversal times of the arcs and nodes on the
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route, can stem from delivery deadlines, product perishability, or the need to
reduce in-transit inventory.

• Distance: Each arc has an associated distance, and operational or service
considerations may require selecting origin-to-destination routes whose distance
does not exceed a pre-specified value that can vary with the origin-destination
pair.

• Cost: Arcs and nodes may have associated costs or other financial metrics
(different from those in the cost minimization objective function) for using the
arcs or for processing at the nodes. Associated constraints, sometimes called
budget constraints, impose upper limits on the total cost for each origin-to-
destination route.

• Transshipments: Many contexts require limiting the number of intermediate
transshipments on origin-to-destination routes, for instance, to avoid excessive
handling and to regulate the effort and time for processing at nodes. By
associating a metric whose value is one for each arc, the total value for any
origin-to-destination route is the number of hops, i.e., number of arcs on this
route; the service requirement imposes an upper bound on this value.

• Reliability: In contexts where arcs (or nodes) can fail, a natural service require-
ment is that the reliability of any chosen origin-to-destination route, defined as
the likelihood that this route is operational, must exceed a pre-specified threshold
value. Defining the performance metric of each arc (node) as the logarithm of the
probability that the arc (node) will be operational and assuming that arc (and
node) failures are independent, the service requirement imposes a lower bound
on the sum of the arc (node) metrics on any route.

Additional constraints on flow variables may also arise due to operational
restrictions or policies that govern routing decisions. For instance, we can add
constraints to model logical conditions such as the following: if the route contains
arcs from a specified subset, it must not include any arc (or must necessarily include
every arc) from another subset. These constraints arise in transportation contexts
(e.g., shipment routing for different materials on railroads) and also to impose
special configuration requirements such as requiring multiple possible routes for
each commodity (e.g., Grotschel et al. 1995; Balakrishnan et al. 2009).

In each of the above examples, the requirement (e.g., maximum transit time,
maximum permitted number of hops, minimum required reliability) can vary by
origin-destination pair. Further, if we classify traffic flows between an origin and
destination into multiple types based on their priorities or service characteristics,
we can define separate commodities for each flow type, permitting finer-grained
differentiation of routing requirements. Finally, we can readily incorporate perfor-
mance metrics associated with nodes by simply adding the value of each metric
corresponding to a node to the metric of each arc that is incident to (or from) that
node. Next, we present an integer programming formulation for the network design
problem with routing constraints, and discuss some of its special cases.
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2.3 Model Formulation

As noted in Sects. 2.1 and 2.2, network design problems with routing restrictions
have many different variants. Our main focus in this chapter is to understand the
effects on problem structure and solution strategies when we impose performance
or service requirements on origin-to-destination routes in network design solutions.
Accordingly, we consider the core multicommodity, fixed charge, uncapacitated
network design problem, requiring non-bifurcated flows for each commodity,
augmented with intra-commodity routing constraints.

We use the following notation to formulate this optimization problem. Let
G = (N ,A ) be the directed graph on which the problem is defined. Node set
N consists of n (= |N |) nodes representing origin, destination, or transshipment
nodes, and arc set A contains arcs that are available for installation and use. Let
K denote the set of commodities. Commodity k ∈ K originates at node O(k) and
terminates at node D(k). Commodities may be further distinguished by their routing
and service requirements, i.e., we can have multiple commodities with the same
origin and destination but different routing constraints. Without loss of generality
(since the network is uncapacitated), we scale each commodity’s demand to one but
permit the routing or flow cost to vary by commodity. Define N +

i = {j ∈ N :
(i, j) ∈ A } and N −

i = {j ∈ N : (j, i) ∈ A } as the subsets of downstream and
upstream neighbors for each node i.

The network design problem has two sets of binary decision variables: (1) design
variable yij , for each arc (i, j) ∈ A , that takes the value one if the solution includes
arc (i, j) in the design, and is zero otherwise; and, (2) routing or flow variable xk

ij ,
for arc (i, j) ∈ A and commodity k ∈ K that equals one if the solution routes
commodity k on arc (i, j). Let fij and ck

ij respectively denote the non-negative
fixed cost for using arc (i, j) and flow cost for routing commodity k on this arc.
We permit imposing mk different routing constraints for each commodity k, one
corresponding to each performance metric of interest (as discussed in Sect. 2.2). For
each metric m = 1, 2, . . . , mk , let qkm

ij denote the non-negative coefficient or weight

of the routing variable xk
ij in the mth constraint, and let Qkm be the weight limit.

Using this notation, we can formulate the Network Design problem with Routing
Requirements (NDRR) as the following integer program, denoted as model [NDRR].

Minimize
∑

(i,j)∈A
(fij yij +

∑

k∈K
ck
ij x

k
ij ) (8.1)

subject to:

∑
j∈N +

i
xk
ij − ∑

j∈N −
i

xk
ji =

⎧
⎨

⎩

1 if i = O(k),

−1 if i = D(k),

0 otherwise,
∀ i ∈ N , (8.2)

xk
ij ≤ yij , ∀ (i, j) ∈ A , k ∈ K , (8.3)
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∑
(i,j)∈A qkm

ij xk
ij ≤ Qkm, ∀k ∈ K ,m = 1, 2, . . . , mk, (8.4)

xk
ij = 0 or 1, yij = 0 or 1, ∀ (i, j) ∈ A , k ∈ K . (8.5)

The objective function (8.1) minimizes the total fixed and routing costs. Con-
straints (8.2) impose flow conservation at every node for each commodity. Together
with the integrality constraints (8.5) on the routing variables xk

ij , the flow conser-
vation equations ensure that the flow solution selects a single origin-to-destination
route for each commodity k. The forcing constraints (8.3) relate the design and
routing decisions; they specify that we can route commodity k on an arc (i, j)

only if the design includes this arc (after incurring its fixed cost). Although it is
possible to represent this condition using fewer ‘aggregate’ forcing constraints of
the form

∑
k∈K xk

ij ≤ |K |yij , one for each arc, the disaggregate version (8.3)
yields a tighter linear programming (LP) relaxation (see Balakrishnan et al. 1989).
The routing constraints (8.4) require the total weight of commodity k’s route to be
less than or equal to the weight limit, for each metric m = 1, 2, . . . , mk . Finally,
constraints (8.5) require the design and flow variables to be binary. Note that we
have assumed, for notational simplicity, that every commodity can flow on each arc
in the set A . If a commodity is prohibited from flowing on certain arcs (e.g., due
to operational or technological issues), we can eliminate the corresponding flow
variables from the formulation.

The [NDRR] model has two interesting special cases that we will study further
Sect. 4. First, if the setK contains just one commodity, then the problem reduces to
finding the shortest path that satisfies all the routing constraints for this commodity.
This special case, called the Constrained Shortest Path (CSP) problem, is interesting
both because it has direct applications in a variety of practical settings and because
it often arises as a subproblem in decomposition algorithms for the NDRR problem
and other models. Section 4.1 discusses its properties and solution algorithms. In
the second interesting and relevant special class of problems, which we call Hop-
constrained problems, there is only one weight metric, with weight qk1

ij = 1 for
every commodity k and arc (i, j), and the weight limit for commodity k is the max-
imum allowable number of arcs (or hops) on the commodity’s origin-to-destination
route. We refer to this limit as the hop limit. Among such hop-constrained problems,
we consider path and tree versions. For the latter version, we are given a root node
and seek a minimum spanning tree such that none of the nodes are more than a
specified number of hops away from the root node in the chosen tree. This problem,
which we call the Hop-constrained Minimum Spanning Tree (HCMST) problem,
can be modeled as a special case of the NDRR problem in which |K | = n − 1, the
root node is the common origin node for all commodities, and every other node is
a destination. The Hop-constrained Steiner Tree problem generalizes the HCMST
problem by requiring only a subset of nodes to be connected to the root node,
i.e., commodities are defined only for a subset of non-root nodes. As we noted in
Sect. 2.2, hop constraints are common in many practical applications. Section 4.2
discusses properties and solution methods for hop-constrained problems.
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We conclude this discussion by noting that model [NDRR] is an arc-flow formu-
lation of the NDRR problem in which the flow variables model each commodity’s
route as a sequence of arcs. As an alternative, we might consider a path-flow
formulation in which the (binary) flow variables represent the choice of origin-
to-destination path for each commodity. By limiting (a priori) the available paths
to those that are feasible, i.e., satisfy all the routing constraints, the model only
requires path selection and forcing constraints. The path-flow formulation has the
advantage of having a tighter LP relaxation, and hence higher LP lower bounds,
than the arc-flow model. However, it also has the significant drawback of requiring
an exponential (in the size of the network) number of path-flow variables. One
approach for overcoming this drawback is to use column generation to solve the
problem; this approach iteratively generates promising paths based on the dual
values for the current solution. However, the subproblem to generate columns is a
CSP problem, which is itself NP-hard. In Sect. 6, we discuss the column generation
approach to solve NDRR problems.

2.4 Challenges in Solving the NDRR Problem

The NDRR problem is challenging to solve (compared to the basic uncapacitated
fixed-charge network design problem) due to the added routing restrictions which
complicate the problem structure and make it difficult to even find feasible solutions.
We next discuss these issues.

Problem Complexity Adding routing requirements to even simple problems can
make them computationally difficult and intractable. For instance, the Shortest Path
problem can be efficiently solved, but if we add just one routing constraint, the
resulting problem, often called the Budget-constrained Shortest Path (BCSP) prob-
lem, is NP-hard (see Garey and Johnson 2002). Similarly, although the Minimum
Spanning Tree problem is polynomially solvable, if we add hop constraints (to limit
the number of arcs on the path from a root node to every other node), we obtain the
HCMST problem, which is NP-hard even if the number of hops is limited to two.
The result follows using a transformation from the uncapacitated facility location
problem (Dahl 1998). Since the BCSP and the HCMST problems are both special
cases of network design with routing requirements, the NDRR problem is also NP-
hard.

Multiple Routing Requirements If a commodity has more than one routing
requirement, then even finding a feasible solution is NP-hard (Balakrishnan et al.
2020, Grandoni et al. 2014). The four-node example shown in Fig. 8.1, with two
routing requirements for a commodity, illustrates this issue. In this example, the
commodity originates at node 1 and terminates at node 4. The numbers next to
each arc show the arc’s cost and its two weights, one for each metric, in the two
routing constraints. The weight limits for both metrics is five. The minimum cost
path from node 1 to node 4 is 1-2-4, but this path does not satisfy either routing
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(cij; q1
ij, q2

ij)

(0; 3, 5) (0; 3, 1)

(0; 0, 0)

(0; 0, 0)

(4; 5, 3) (4; 1, 3)

1 4

3

2

Fig. 8.1 Example with multiple routing requirements

constraint. If the problem contains only one routing constraint, say, only the first
constraint, we can readily verify if the problem instance is feasible by finding the
shortest “weight” path, using the arc weight for the first metric as the length of
each arc. In this example, the shortest weight path for the first metric is 1-2-3-4,
with a total weight of 4. Hence, the problem instance is feasible with just the first
routing constraint. However, this path does not meet the second routing requirement.
Similarly, the shortest weight path 1-3-2-4 using the second set of weights as arc
lengths satisfies the second routing requirement, but not the first. The paths 1-2-4
and 1-3-4 satisfy neither routing constraint. So, this problem instance is infeasible if
we impose both routing constraints. Observe that we had to examine every origin-
to-destination path to determine that the instance is infeasible, suggesting that, with
multiple routing requirements, even verifying feasibility is difficult.

Worst-Case Integrality Gap As another indicator of the added problem difficulty
when we incorporate a routing constraint, consider again the BCSP problem.
We know that the network flow formulation of the unconstrained Shortest Path
problem has integer extreme points; so, the LP relaxation of this problem has
an integer optimal solution with zero integrality gap. However, when we add a
budget constraint, the integrality property no longer holds. That is, the optimal
solution to the LP relaxation of the BCSP can be fractional, necessitating the explicit
addition of integrality constraints. The fractional LP solution arises because the
solution can satisfy the budget constraint ‘on average’ by routing partial flows on
two different paths—one with low cost but high weight and another with higher
cost but lower weight. With more than one weight constraint, the LP solution
can be a convex combination of more than two paths, none of which satisfy all
the weight constraints. These observations suggest that, for general fixed-charge
network design problems, the gap between the optimal IP and LP values may be
higher when we include routing requirements compared to the gap without these
restrictions.
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Finally, note that for the CSP problem (and the more general NDRR problem),
if the problem imposes only one routing requirement for each commodity (as in
the above example), then the original problem is feasible if and only if the LP
relaxation is feasible. Moreover, we can construct a feasible solution from the LP
solution by routing each commodity over its feasible route on which the LP solution
routes a fractional flow, and setting the design variables on all the arcs belonging to
these routes to one. However, these observations do not hold when there are two or
more routing requirements for a commodity. In this case, the LP relaxation may be
feasible even if the original integer program is not. So, we cannot readily construct
a feasible IP solution from the LP solution.

3 Solving the NDRR Problem

As our discussions in the previous sections indicate, adding routing requirements to
fixed-charge network design models makes them more difficult to solve. Therefore,
effectively solving these problems requires exploiting the embedded structure of
these problems to reduce problem size, raise lower bounds, and develop specialized
solution methods to accelerate performance. We focus on methods that can either
solve the problem optimally or provide guarantees of solution quality. We do not
consider the many possible meta-heuristic approaches that solve the NDRR problem
approximately but do not assure near-optimality. This section describes a cutting
plane approach to solve the arc flow formulation of the general NDRR problem
based on the recent paper by Balakrishnan et al. (2017), henceforth abbreviated
as BLM, which is the only paper to date that addresses the general version of
this problem. In Sect. 3.1, we discuss problem reduction methods to eliminate
decision variables and also tighten the NDRR problem formulation. Section 3.2
discusses valid inequalities and outlines polyhedral results that underlie a cutting
plane approach for the NDRR problem. Computational tests using this method,
together with problem reduction and optimization-based heuristics, demonstrated
that this approach can significantly reduce computational time compared to applying
standard solution procedures.

3.1 Problem Reduction

Problem reduction refers to methods that we can apply a priori (before solving
the problem) to fix the values for some decision variables based on feasibility
requirements or properties of optimal solutions. For the NDRR problem, these
techniques entail either eliminating (i.e., fixing at zero) some commodity routing
or design variables, or requiring a commodity to flow through an arc (i.e., fixing
the corresponding commodity flow and design variables to one). Such restrictions
not only reduce the size of the model formulation (by eliminating variables and
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constraints), but can also tighten the model, i.e., increase the optimal value of the LP
relaxation. We next discuss some intuitive approaches to reduce the NDRR problem.
For this discussion, for any commodity k ∈ K and metricm = 1, 2, . . . , mk , letLkm

ab

denote the total length of a shortest weight path from node a to node b in the given
graph, using the arc weight qkm

ij as the length of each arc (i, j).

Eliminating Flows To determine if we can eliminate the flow of commodity k on
an arc (i, j), we check if, for each metric m, the shortest weight path from O(k) to
D(k) containing this arc, consisting of the shortest weight path from O(k) to node
i, arc (i, j), and the shortest weight path from node j to D(k) has total weight not
exceeding the weight limit Qkm. If not, i.e., if:

Lkm
O(k)i + qkm

ij + Lkm
jD(k) > Qkm (8.6)

for at least one metric m = 1, 2, . . . , mk , then arc (i, j) does not belong to
any feasible origin-to-destination path for commodity k, and so we can eliminate
variable xk

ij and the associated forcing constraint (8.3) from the model formulation.
Further, if the above test eliminates the flow of commodity k on all arcs incident
to (or from) a node i, we can eliminate the flow conservation constraint in (8.2) for
this commodity at node i. Finally, if we find that only one commodity k′ can flow on
an arc (i, j), then we can omit the design variable yij from the formulation, simply
add the fixed cost fij to the routing cost ck′

ij for this commodity, and eliminate the
corresponding forcing constraint in (8.3).

Fixing Flows For any arc (i, j) and commodity k, let Lkm
ab (A \(i, j)) denote the

total weight (or length) of a shortest weight path from node a to node b after deleting
arc (i, j) from the given graph, and using the arc weights for metricm as arc lengths.
Then, if

Lkm
O(k)D(k)(A \(i, j)) > Qkm (8.7)

for at least one metric m = 1, 2, . . . , mk , i.e., the shortest weight path that does not
include arc (i, j) is not feasible for some metric, then commodity k must necessarily
flow on arc (i, j). In this case, we can set xk

ij = yij = 1 in the formulation, drop
these two variables, and omit all the forcing constraints (8.3) for arc (i, j). Further,
since commodity k can only be routed on an elementary path (without cycles) in
any optimal solution, we impose the restriction that this commodity cannot flow on
any other arc that is incident from node i or to node j . So, we can drop the variables
xk
i′j ′ for all arcs (i′, j ′) with either i′ = i or j ′ = j but not both, and eliminate the
forcing constraints for these variables.

Fixing Routes For any commodity k and any feasible (satisfying routing require-
ments) origin-to-destination path p for this commodity, let C(p) = ∑

(i,j)∈p ck
ij

and T C(p) = ∑
(i,j)∈p(fij + ck

ij ) respectively denote the routing cost and the total

(fixed plus routing) cost of this path. The total cost essentially assigns the fixed
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cost of every arc on path p to commodity k. Suppose the problem instance has a
unique feasible O(k)-to-D(k) path p∗ whose total cost T C(p∗) does not exceed
the routing C(p) for any other feasible path p for commodity k. Then, the NDRR
problem has an optimal solution that routes commodity k on path p∗, implying that
we can fix the route for commodity k. To apply this test, we use a CSP algorithm,
with commodity k’s routing requirements as constraints, to identify path p∗ and
the other paths. Specifically, p∗ is the constrained shortest path using the total cost
(fij + ck

ij ) as the length of each arc (i, j). To find the other paths p, we apply the
following procedure. For every arc (i, j) in p∗, we delete (i, j) from the network,
find the constrained shortest path using routing costs as arc lengths, and choose p′
as the least (routing) cost path among these paths. If T C(p∗) ≤ C(p′), then we can
eliminate commodity k (and all its associated variables and constraints) from the
problem formulation since this commodity must flow on path p∗; in this case, we
fix to one the values of the design variables yij for all arcs (i, j) on p∗, and omit the
forcing constraints for the underlying flow variables.

The above discussion illustrates the two broad approaches to reduce the problem
size by eliminating or fixing variables—based on weight feasibility, such as the
first two conditions for eliminating or fixing flows, or on cost (optimality) such
as the third test for fixing routes. These approaches can greatly improve solution
performance for the overall NDRR problem both by reducing model size (variables
and constraints) and by raising the LP lower bounds. The effectiveness of these
tests depends on the characteristics of the problem instance. The feasibility tests
(for eliminating or fixing flows) are likely to be more effective if the weight limits
in the routing requirements are somewhat stringent (tight), the network is sparse, and
the arcs vary widely in their weights. For instance, for the hop-constrained network
design problem (that requires each commodity to flow on a route that uses no more
than a prespecified number of arcs or hops), if the hop limits are small and the
network is sparse, the test to eliminate flows can be very effective since many arcs
may not belong to any low-hop path from the commodity’s origin to destination. If,
in addition to the hop constraint, the route is also subject to a more general weight
constraint and the distribution of arc weights has wide dispersion, then the problem
instance may permit further reduction. We conclude this discussion by noting that
the first two methods, for eliminating and fixing flow variables, also apply to the
CSP problem.

3.2 Valid Inequalities and Composite Algorithm
for the NDRR Problem

Polyhedral approaches have proven to be very effective to solve several notoriously
difficult integer programming problems, including many variants of network design.
The success of these methods rests on using strong problem formulations (i.e.,
formulations with small gaps between the optimal value of the integer program and
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its LP relaxation) and on developing tight valid inequalities, preferably facets, that
can be added to cutoff fractional solutions. Often, tailored valid inequalities, that
exploit insights about the polyhedral structure of the underlying problems, are most
effective and yield significant improvements in the LP lower bounds. Previously,
researchers have studied the polyhedral structure and developed tighter formulations
for certain special cases of the NDRR problem such as hop-constrained network
design (see Sect. 4). For the general NDRR problem, we next summarize the work
of Balakrishnan et al. (2017) (BLM) who developed and successfully applied several
classes of valid inequalities to solve the problem’s arc flow formulation [NDRR].

The LP relaxation of model [NDRR] may achieve a much smaller optimal value
than the integer program by splitting the flow of a commodity across multiple origin-
to-destination paths. This flow splitting occurs for two reasons: (1) by splitting
flows, the LP relaxation can select fractional values for the design (yij ) variables,
thus only partially absorbing the arc fixed costs; and (2) the LP solution can
reduce the routing cost component of its objective value by partially routing a
commodity’s flow on paths that have low routing costs but high weights since
it is only required to meet the route restrictions ‘on average’ (as illustrated in
Sect. 2.3). The first reason applies more generally to other fixed-charge problems,
whereas the second reason is specific to the NDRR problem. BLM propose three
broad families of inequalities, called Route Composition, Contingent Routing, and
Multicommodity Design inequalities, to reduce flow splitting, and prove that some
specific versions of these inequalities are facet-defining. The first two inequality
classes focus on reducing (partial) flows on infeasible paths, thus addressing the
second reason above, whereas the last class addresses both reasons. To motivate
these inequalities, provide intuition, and highlight the underlying principles, we
discuss a few illustrative versions of these inequalities; BLM provide a more
comprehensive treatment.

Route Composition inequalities These commodity-specific inequalities impose
the condition that the route for a given commodity must not contain more than a
certain number of arcs from a carefully chosen subset of arcs. Since each routing
requirement resembles the capacity constraint in a knapsack problem, constraints
analogous to the knapsack cover inequality (e.g., Nemhauser and Wolsey 1988) are
a natural starting point for NDRR valid inequalities. Specifically, if A ′ is a subset
of arcs such that

∑
(i,j)∈A ′ qkm

ij > Qkm for some metric m = 1, 2, . . . , mk , then no
feasible path for commodity k can contain all the arcs in A ′, and so the inequality∑

(i,j)∈A ′ xkm
ij ≤ |A ′| − 1 is valid. However, this inequality is based solely on the

arc weights and does not take into account a key requirement that governs the choice
of commodity k’s routing variables in the NDRR problem, namely, that the set of
arcs on which commodity k flows must constitute an elementary path from O(k) to
D(k). By exploiting this requirement, we can formulate a cut that is significantly
stronger than the basic cover inequality. To illustrate this opportunity, consider the
flow of commodity k on two arcs (i1, j1) and (i2, j2), and suppose the sum of the
weights of these two arcs is less than the weight limit for every metric m. So, based
solely on their individual weights, we cannot impose the requirement that at most
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one of these arcs must be selected for commodity k. However, if we can determine
that the two arcs cannot simultaneously belong to any feasible O(k)-to-D(k) path,
then the inequality xk

i1j1
+ xk

i2j2
≤ 1 is valid. For this purpose, we note that any

path that contains both arcs must either traverse arc (i1, j1) first before arc (i2, j2),
or vice versa. For any metric m, the total weight of the shortest weight origin-to-
destination path that contains arc (i1, j1) before arc (i2, j2) is L1km = Lkm

O(k)i1
+

qkm
i1j1

+ Lkm
j1i2

+ qkm
i2j2

+ Lkm
j2D(k), whereas the smallest total weight if the order is

reversed isL2km = Lkm
O(k)i2

+qkm
i2j2

+Lkm
j2i1

+qkm
i1j1

+Lkm
j1D(k). The smaller of these two

total weights is the weight of the shortest weight O(k)-to-D(k) path that contains
both arcs. Hence, if Min{L1km, L2km} > Qkm for some metric m, we cannot route
commodity k on any path that contains both arcs. In this situation, we say that xk

i1j1

and xk
i2j2

are incompatible flows, and the inequality xk
i1j1

+ xk
i2j2

≤ 1 is valid. We

can further strengthen this inequality by ‘lifting’ it, i.e., by adding some other flow
variables to the left-hand side. For instance, if A ′ ∈ A is a set of arcs such that the
flow variables xk

i′1j ′
1
and xk

i′2j ′
2
for all (i′1, j ′

1), (i
′
2, j

′
2) ∈ A ′ are pair-wise incompatible

with each other, then the inequality
∑

(i′,j ′)∈A ′ xk
i′j ′ ≤ 1 is valid.

We can also generalize this inequality. Let r > 1 be an integer, and arc set A ′ ⊆
A with |A ′| ≥ r . If no feasible solution to formulation [NDRR] permits commodity
k to flow over more that (r−1) arcs ofA ′, then we say thatA ′ is r-arc incompatible.
Given an r-arc incompatible set A ′, let A ′′ ⊆ A \ A ′. If every arc (i, j) ∈ A ′′
is incompatible for commodity k with every arc in A ′ ∪ A ′′, then the inequality∑

(i,j)∈A ′ xk
ij +(r−1)

∑
(i,j)∈A ′′ xk

ij ≤ r−1 is valid. This discussion illustrates how
we can jointly exploit the weight constraints and the origin-to-destination routing
requirement to develop tight valid inequalities for the NDRR problem.

Contingent Routing Inequalities This second class of inequalities further extends
this principle of combining the weight constraints and the origin-to-destination
routing requirement. A version of these inequalities, call Lifted Turn constraints,
expresses the requirement that if a commodity flows on any arc in one subset, it must
also flow on an arc of another subset. Consider a node v, where v is neither the origin
nor the destination of commodity k. Let Out(v) ⊆ N +

v be a subset of the outgoing
arcs at node v. If In(v) ⊆ N −

v denotes the maximal subset of incoming arcs (i, v)

into node v such that every arc in In(v) is pair-wise incompatible with every arc
in Out(v), then the inequality

∑
(i,v)∈In(v) xk

iv ≤ ∑
(v,j)∈N +

v \Out(v) xk
vj is valid.

Note that the pair-wise incompatibility between arcs in In(v) and arcs in Out(v)

arises because, for some m, L1km = Lkm
O(k)i + qkm

iv + qkm
vj + Lkm

jD(k) > Qkm, for

all (i, v) ∈ In(v) and (v, j) ∈ Out(v). Given the arc set Out(v), we can identify
In(v) in the following way. Let Lkm

min(Out(v)) = min(v,j)∈Out(v)(q
km
vj + Lkm

jD(k))

and Lkm
max(N

+
v \ Out(v)) = max(v,j)∈N +

v \Out(v)(q
km
vj + Lkm

jD(k)). An arc (i, v)

belongs to In(v) if and only if Lkm
O(k)i + qkm

iv + Lkm
max(N

+
v \ Out(v)) ≤ Qkm and

Lkm
O(k)i +qkm

iv +Lkm
min(Out(v)) > Qkm. BLM discuss an alternate way of identifying
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the sets In(v) and Out(v), and show that the Lifted Turn inequality is facet defining
under mild conditions. They also discuss a generalization of this inequality obtained
by considering arcs that are incident to and from a subgraph spanning multiple nodes
instead of the single node v.

Multicommodity Design Inequalities Both the previous two classes of inequali-
ties restrict the flows of a single commodity and do not involve the design variables.
The Multicommodity Design (MCD) inequalities impose variable upper bounds
(that depend on the design variables) on the sum of flows of multiple commodities
on various arcs. This very general class of inequalities is particularly effective
in eliminating fractional LP solutions to [NDRR] because it relates the design
and flow variables across multiple commodities and arcs. We first define two
underlying commodity-specific relationships, called OR and IF relationships, that
stem respectively from the Route Composition and Contingent Routing inequalities
(both of which focus on a single commodity):

• an OR(k,A ′, λ) relationship specifies that no feasible path for commodity k can
use more than λ arcs from a set A ′; and,

• an IF (k,A ′,A ′′) relationship specifies that if commodity k flows on an arc of
A ′ ⊂ A , then it must also flow on an arc of A ′′ ⊆ A \ A ′.

These two types of inequalities permit us to develop the following broad class
of MCD inequalities. Let Ω = R1, R2, . . . , RQ denote Q relationships such

that relationship q is either an OR(k,A ′, λ) relationship or an IF (k,A ′,A ′′)
relationship. Let IOR and IIF denote the subsets of indices q corresponding to
the OR and IF relationships in the set Ω , and suppose δij is an even number of
relationships in Ω that involve arc (i, j) ∈ A . Adding the inequalities in Ω to the

forcing constraints x
kq

ij ≤ yij , and rounding down the resulting right hand side gives
the following inequality for model [NDRR]:

∑

q∈IOR

∑

(i,j)∈A ′
q

x
kq

ij +
∑

q∈IIF

∑

(i,j)∈A ′
q

x
kq

ij ≤
∑

(i,j)∈A

δij yij

2
+ �

∑

q∈IOR

λq

2
�. (8.8)

This MCD inequality tightens the [NDRR] if
∑

q∈IOR
λq is odd. When the subset

IIF is empty, the MCD inequality has only OR relationships on the left hand side,
and is facet defining under relatively mild conditions.

Composite Algorithm We can solve the NDRR problem by developing a tailored
approach that uses the inequalities discussed above in a cutting plane approach,
blended with an optimization-based heuristic. Since the number of inequalities in
each of the classes is exponential in the input size, BLM use heuristics to identify
inequalities violated by the LP solution. After solving the LP relaxation of this
strong model, they use a LP-based heuristic to identify a feasible solution that fixes
and releases variable values, an approach that is fast and effective for generating
near-optimal solutions for large-scale instances. This method yields solutions that
are within 1% of optimality, significantly outperforming (both in terms of solution
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time and solution quality at termination) a standard branch-and-bound procedure
(with built-in general cutting planes) that attempts to solve the base NDRR model
without model strengthening and problem reduction.

3.3 Extension to Capacitated Network Design with Routing
Restrictions

The approach discussed thus far can be extended to the Capacitated Network Design
problem with Routing Restrictions (CNDRR) that not only imposes the routing
constraints with non-bifurcated flow but also incorporates the following arc capacity
constraints. If dk denotes the demand for commodity k and uij is the capacity of arc
(i, j), then we simply add the constraints

∑
k∈K dkxk

ij ≤ uij yij for all arcs (i, j),

to the [NDRR] formulation to model the CNDRR problem. Observe that, in this
constraint although it suffices to use just the capacity uij as the right-hand side value,
multiplying this value with the design variable yij strengthens the formulation. The
CNDRR problem is more difficult because its LP relaxation can have fractional
flows even when all the design variables are integer-valued and all the fractional
flow paths for each commodity satisfy its routing requirements.

Researchers have developed various families of valid inequalities for the Capac-
itated Network Design (CND) problem (without routing restrictions) or its variant,
the network loading problem (with discrete and modular capacities), to tighten the
model. Such inequalities include the cutset, flow-cutset, partition, residual capacity,
and c-strong inequalities. These inequalities remain valid even for the CNDRR
problem, and so we can add them to the CNDRR formulation to strengthen it.
Conversely, we can add the weight constraints and our NDRR valid inequalities
to the formulation of the capacitated network design problem without routing
constraints.

Interestingly, our commodity routing constraint and the arc capacity constraint
are analogous but ‘orthogonal’ in the following sense. The routing constraint
imposes an upper limit on the total weight of all the arcs on which a given
commodity flows, whereas the arc capacity constraint limits the total flow of all
the commodities that use a given arc. Conceptually, we can think of the routing
constraint as a ‘longitudinal’ requirement along a commodity’s path, whereas the
capacity constraint is a ‘lateral’ requirement across commodities for an arc. We
can exploit this complementary nature of the two requirements to tighten the valid
inequalities for the routing requirements (or to eliminate variables) based on the
capacity constraints and vice versa. We provide below some examples of such
‘integration’ of the two requirements to strengthen the CNDRR model.
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• Suppose the demand dk for a commodity k exceeds the capacity of an arc (i, j).
In this case, not only can we omit the variable xk

ij (since commodity k cannot
flow on arc (i, j)), but also delete this arc from the network when computing
the shortest weight paths needed to eliminate or fix flows of commodity k

(see NDRR problem reduction methods in Sect. 3.1). Moreover, eliminating the
arc flow variable xk

ij can tighten both the Route Composition and Contingent
Routing inequalities discussed in Sect. 3.2. For instance, for the Lifted Turn
inequalities, although arc (i, j) may be compatible (from the perspective of the
routing constraints) with one or more arcs in the set In(v) incident to node
v = i, we can omit this variable from the right-hand side of the inequality,
thereby strengthening it. Conversely, if during problem reduction based on
routing constraints, we discover that commodity k cannot flow an arc (i, j) (since
the length of the shortest weight path through this arc exceeds a weight limit),
then omitting this arc flow from the arc capacity constraint can help tighten any
related CND valid inequalities.

• Consider two commodities k1 and k2 that can individually flow on an arc (i′, j ′),
but cannot simultaneously on this arc due to the arc’s capacity constraint, i.e.,
because dk1 + dk2 > ui′j ′ . Further, suppose there is an arc (i1, j1) (and arc
(i2, j2)) such that, if k1 (respectively, k2) flows on this arc it must necessarily
flow on arc (i′, j ′) to meet the weight limits, i.e., the length of the shortest weight
path that includes arc (i1, j1) (respectively, (i2, j2)) but excludes arc (i′, j ′)
exceeds the weight limit for one or more metrics for commodity k1 (respectively,
k2). In this case, either commodity k1 can flow on arc (i1, j1) or k2 can flow on
(i2, j2), but not both, implying that the inequality xk1

i1,j1
+ xk2

i2,j2
≤ 1 is valid.

We can extend this inequality to subsets of three or more commodities. There
are other such opportunities to develop ‘integrated’ inequalities that are based on
jointly considering the arc capacity and routing requirements.

• We obtained the Multicommodity Design inequalities by aggregating judiciously
chosen Route Composition and Contingent Routing inequalities, and applying
rounding. For the CNDRR problem, we now have additional inequalities based
on arc capacity constraints that we can consider for aggregation. For instance,
based on the demand for different commodities and the capacity of an arc
(i, j), we can impose cover inequalities of the form

∑
k∈K ′ xk

ij ≤ λ, for an
appropriate subset of commodities K ′. We can now consider combinations of
these inequalities with those obtained using the routing requirements to develop
an even richer set of Multicommodity Design inequalities.

In summary, for the CNDRR problem, we can strengthen the basic model by
directly adding both our NDRR valid inequalities and cuts developed for capacitated
network design problems. However, there are many opportunities to further reduce
problem size and develop integrated inequalities based on the joint consideration of
routing and capacity constraints.
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4 NDRR Special Cases: Constrained Shortest Paths and
Hop-Constrained Problems

Unlike the general NDRR problem, two special cases—the Constrained Shortest
Path (CSP) and Hop-constrained Tree problems—have been well-studied in the
literature. This section briefly reviews salient results and methods for these two
special cases since the proposed modeling and solution strategies for these problems
may prove useful for solving the broader NDRR problem. For instance, the CSP
problem arises as a subproblem when solving the NDRR problem using column
generation. The discussion also serves to illustrate approaches to develop and ana-
lyze approximation algorithms for the special cases, possibly pointing to principles
that may extend to the general NDRR problem (for which no such analysis currently
exists). Finally, for certain special cases (e.g., some hop-constrained problems with
low hop limits), researchers have fully characterized the convex hull of feasible
solutions. These results together with a hop-constrained problem formulation based
on layered networks may provide the foundation to develop tighter (extended)
NDRR problem formulations. Section 6 on Bibliographical Notes outlines the
literature related to the topics discussed in this section and the next.

4.1 Constrained Shortest Path (CSP) Problem

The CSP problem is a single-commodity version of the NDRR problem that requires
identifying the least expensive path from a given origin node s to a destination t

whose total weight for each metric m does not exceed the corresponding weight
limit. The literature sometimes refers to the problem containing only one routing
constraint (one metric) as the Budget-constrained Shortest Path (BCSP) problem. To
distinguish this problem from the more general version, we refer to the problem with
a single commodity but multiple metrics and constraints as the Weight-constrained
Shortest Path orWCSP problem. For these special cases, we can simplify the NDRR
problem formulation as follows. Since there is only one commodity, we can omit the
commodity index on the flow variables and weight limits. For the BCSP problem,
since there is only one metric, we also omit the index m. Moreover, with positive
costs, yij = 1 if and only if xij = 1. So, we can omit the design variables yij and
forcing constraints (8.3), and use (fij + cij ) as the flow cost of each arc (i, j) in
the objective function. As noted previously, the CSP problem is NP-hard. We next
discuss some theoretical results on approximation algorithms for the CSP problem,
and later outline two interesting solution approaches that are effective in practice.
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4.1.1 Approximation Schemes for the CSP Problem

For NP-hard problems such as the CSP problem, there are approximation (heuristic)
algorithms that have provable bounds on solution quality. To facilitate the analysis
of their performance, these algorithms are often simple and run in polynomial
time. (For more complicated schemes such as neighborhood search, it is often not
possible to characterize worst-case performance or even computational complexity.)
Given any input or problem instance, an approximation scheme generates a feasible
solution whose value is guaranteed (a priori) to be within a pre-specified (worst-
case) factor of the optimal solution value. For minimization problems, this guarantee
is expressed in terms of the maximum possible ratio of the cost of the approximate
solution to the optimal value. Common techniques for obtaining these bounds
include methods based on LP relaxation, Lagrangian relaxation, iterative rounding,
randomized rounding, primal-dual methods, greedy heuristics, and scaling and
rounding. The approach used depends on the problem’s underlying structure and
solution characteristics. For some problems, researchers have been able to develop
desirable bounds that are either a constant factor (e.g., for network design special
cases such as the Steiner tree, Traveling Salesman, and Facility Location problems)
or depend on the problem dimensions. For instance, Balakrishnan et al. (1996)
propose a efficient overlay heuristic for the uncapacitated network design problem
and showed that this method yields a solution that is guaranteed to be within a factor
of |K | of the optimal value (this is the first known bound for this problem). In other
situations, the running time depends on the desired (maximum) approximation error
ε > 0. A fully polynomial-time approximation scheme, abbreviated as FPTAS, for
a minimization problem generates a solution that is guaranteed to be within a factor
of (1 + ε) of the optimal solution in running time that is polynomial in 1/ε and the
size of the input.

Since the specialized approximation algorithms rely on a problem’s underlying
structure to characterize worst-case performance, even seemingly minor changes to
the problem affect the methods’ applicability, analysis, and bounds. For instance, for
the Knapsack problem, a slight variation of the greedy algorithm that selects items in
decreasing order of value-to-weight is easy to analyze; it produces a solution value
that is within a factor of 1

2 of the optimal value. Although the BCSP problem has
a knapsack-type constraint, the previous greedy approach is not applicable since
the chosen arcs must also form an origin-to-destination path. The predominant
method used to develop approximation schemes for the CSP problem is scaling-
and-rounding. This approach entails reducing the weights or costs, by scaling and
rounding, to low enough values so that the scaled problem can be solved efficiently.
Although the scaled problem only yields an approximate solution to the original
problem, the method has better time complexity than exact algorithms. The larger
the scaling factor, the quicker the method runs but the solutions may be further from
optimality. By judiciously selecting the scaling method and using other algorithmic
steps (e.g., to determine tight bounds), the algorithm can yield an ε-optimal solution
in polynomial time.
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We next outline a FPTAS for the BCSP problem defined over acyclic graphs to
illustrate these ideas. The method is based on a dynamic programming algorithm
to solve the BCSP problem. When applied to the original problem (without any
cost or weight scaling), this algorithm finds the optimal solution in O(|A |Z∗) time,
where Z∗ is the (unknown) optimal value of the problem. We can readily determine
a priori upper bounds on Z∗ (e.g., Z∗ ≤ ∑

(i,j)∈A cij or, better yet, the sum of

the (n − 1) highest arc costs since no simple path can contain more than (n − 1)
arcs). But since these bounds depend on the data (e.g., arc costs), the dynamic
programming method, applied using the original parameters, is pseudo-polynomial.
Now, suppose we can develop lower and upper bounds, LB and UB, on the optimal
value such that UB/LB ≤ 2. Then, for a specified approximation error ε, when
we apply the dynamic program after scaling and rounding the arc cost coefficients
to dij = �cij /(LBε/(n − 1))�, the method runs in polynomial time (O(|A |n/ε))
and generates a solution whose approximation error is at most εLB ≤ εZ∗, i.e., the
solution is ε-optimal. To achieve the appropriate bounds needed for this approach,
we start with LB = 1 and UB = sum of the (n − 1) highest arc costs, and
iteratively apply (in polynomial time) the scaling-and-rounding method to reduce
the UB and raise the LB until UB/LB ≤ 2. The method also extends to BCSP
problems over general graphs. As this discussion illustrates, developing a FPTAS
requires innovative approaches and insights about the problem structure and how to
exploit its properties, with a focus on both characterizing the approximation error
and reducing computational effort.

Unlike the BCSP problem, fewer approximation results are known for the
more general WCSP problem with two or more weight constraints. Approximation
algorithms are also available for a variant of the WCSP problem that allows
bounded violation of the weight constraints. That is, in addition to approximating the
objective function value to within a factor of (1 + ε) (for minimization problems)
these methods also permit relaxing (approximating) the weight constraints. When
the weight limits can be exceeded by the same factor (1 + ε), the approximation
algorithm for the WCSP problem essentially seeks an appropriate solution(s) to a
multiobjective shortest path problem having costs and routing metrics as different
criteria.

4.1.2 CSP Solution Algorithms

We next discuss two interesting solution methods for the CSP problem (with non-
negative arc costs) that exploit its special structure. These methods, although not
polynomial, are effective in practice.
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4.1.3 Handler and Zang’s Algorithm

For the BCSP problem, Handler and Zang (1980), abbreviated as HZ, consider
the Lagrangian relaxation obtained by dualizing the single weight constraint with
multiplier u, and proposed a novel solution approach to solve the Lagrangian dual
and close the optimality gap. For this scheme, the Lagrangian subproblem:

L(u) = min
∑

(i,j)∈A
(cij + uqij )xij − uQ, subject to (8.2) and (8.5),

is a shortest path problem using arc lengths (cij + uqij ); this path’s length, when
reduced by uQ, represents the optimal value L(u) of the Lagrangian subproblem.
For any u ≥ 0, L(u) is a lower bound on the optimal value of the original
problem. We can solve the Lagrangian dual problem, maximize {L(u):u ≥ 0}, by
iteratively adjusting u using, for instance, a general technique such as sub-gradient
optimization or a more specialized approach. HZ propose a tailored method that
exploits the BCSP problem’s special structure (and the fact that we need to optimize
just one dual multiplier) to solve the Lagrangian dual and reduce any remaining
duality gap. The Lagrangian value L(u) is a piecewise linear, concave function of u,
with each segment of the piecewise function corresponding to the Lagrangian value
for one origin-to-destination path. Starting with two paths (one which minimizes
cost without the budget constraint and one which minimizes budget usage), the dual
solution method iteratively refines an upper (piecewise linear) approximation for the
L(u) function by sequentially generating s-to-t paths and updating the multiplier u.
The method monotonically increases the Lagrangian lower bound, denoted as LB.
If at any iteration, the Lagrangian solution is feasible (i.e., satisfies the budget
constraint), we can also update the upper bound UB if the cost of this new path is
lower than the current best upper bound. When the method terminates, we may still
have a duality gap, i.e., LB may be less than UB. The following approach closes this
gap. For the final value of the dual multiplier u, instead of finding just the shortest
path (as we do to solve the Lagrangian subproblem), suppose we sequentially
identify the rth shortest path (using the Lagrangian costs), for increasing values
of r . Let Lr(u) be the (Lagrangian) cost of the rth shortest path. We update LB as
Lr(u), and can possibly update UB if the rth shortest path is feasible for the BCSP
problem. We increment r and repeat the process until LB equals or is sufficiently
close to UB. Since the network contains only a finite number of (elementary) origin-
to-destination paths, this gap reduction procedure will terminate in a finite number
of iterations.

Node Labeling Approach
Another approach to solve the BCSP problem is by generalizing Dijkstra’s label-
setting shortest path algorithm. The generalization entails associating multiple
labels with each node i, one for each sub-path from node s to i that can potentially
belong to the optimal solution. With one routing constraint, each label contains two
elements, the cost and weight, associated with a path from s to i. We only maintain
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labels for paths that are undominated, i.e., if p and p′ are two different paths from
s to i, and path p′ has higher cost than path p, then this path is undominated only
if it has strictly lower weight than path p. We can also omit some labels based on
feasibility requirements: if the path corresponding to a label cannot be extended to
reach node t within the weight limit (i.e., the path is not a sub-path of a feasible route
for the commodity), then we can ignore this path. The method initializes the problem
by assigning the label (0, 0) to node s, and then iteratively chooses the lowest cost
label among all labels that have not been previously chosen. Since each node can
have up to Q (the weight limit) labels (assuming nonnegative integer weights),
the node labeling approach may not be effective when Q is large. Preprocessing
techniques can significantly improve the empirical computational performance of
the node labeling algorithm. These techniques consist of feasibility tests to identify
and delete nodes and arcs that an optimal solution will not use. Using information
from a Lagrangian relaxation of the weight constraint, e.g., to prune node labels,
yields further improvements. In extensive computational tests, the node labeling
algorithm with preprocessing is more effective than scaling techniques (Sect. 4.1.1).
The node labeling approach can be extended to the WCSP problem with multiple
weight constraints.

To conclude, in the context of the NDRR problem, the CSP problem is interesting
and relevant because: (1) it captures the core NDRR feature of finding an origin-
to-destination path for each commodity subject to routing constraints; (2) the
CSP problem has received significant attention in the literature on approximation
algorithms since the single commodity structure makes it more tractable; and (3) the
CSP problem arises as a subproblem when we consider decomposition algorithms
such as Lagrangian relaxation and column generation for solving the general NDRR
problem (see Sect. 5). The CSP approximation algorithms and analysis may provide
leads for analyzing the worst-case performance of approximation methods for the
NDRR problem, although the presence of shared fixed costs, across commodities, in
the NDRR problem may significantly complicate the analysis (possibly accounting
for the lack of analogous results on network design problems, in general). The CSP
algorithms, particularly the node labeling approach, can serve to solve subproblems
quickly in NDRR decomposition approaches. We note that the problem reduction
methods and two classes of valid inequalities—the Route Composition and Route
Coordination inequalities—that BLM developed for the general NDRR problem
also apply to the WCSP problem. With these inequalities, solving the strengthened
WCSP model using state-of-the-art integer programming solvers may also be
competitive. To our knowledge, this approach has not been tested.

4.2 Hop-Constrained Routing and Design Problems

We now consider the special version of the commodity routing requirement in which
all arc weights are equal to one. If Hk denotes commodity k’s weight limit in this
constraint, the routing requirement states that each commodity k must use a path that
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contains no more than Hk arcs (hops). Therefore, we refer to this restriction as a hop
constraint and to the corresponding weight limit as the hop-limit. (More generally,
if all arcs have the same weight, not necessarily one, we can scale the weights and
scale and round down the weight limit to convert the constraint to a hop constraint.)
We refer to this special case of the NDRR problem with only hop restrictions as the
Hop-constrained Network Design (HCND) problem. Balakrishnan and Altinkemer
(1992) were the first to study the HCND problem; they develop and test a solution
procedure based on Lagrangian relaxation. The literature has largely focused on a
restricted version that we call the Hop-constrained Tree (HCT) problem in which
there is a single source or root node that needs to be connected to other specified
nodes, called terminal nodes, via a tree network, and all routing costs are zero.
The problem is typically defined over an undirected network, and assumes the
same hop-limit H for all commodities. If all nodes of the network, except the root
node, are terminal nodes, then the required configuration is a spanning tree, i.e.,
the problem is a Hop-constrained Minimum Spanning Tree (HCMST). Otherwise,
the design is a tree that spans the root node and all terminal nodes, and optionally
includes non-terminal, i.e., Steiner, nodes. We refer to this latter problem as the Hop-
constrained Steiner Tree problem. This section discusses approximation schemes
for the HCMST problem, a layered network representation of hop-constrained path
and tree problems that yields extended (tighter) model formulations, and some
polyhedral results for these problems.

4.2.1 Approximation Algorithms for the HCMST Problem

Approximation algorithms for constrained tree problems largely focus on the
Diameter Constrained Minimum Spanning Tree (DCMST) problem which, as we
discuss next, is related to the HCMST problem. Given a maximum permitted
diameter D, the DCMST problem seeks a minimum cost spanning tree such that the
number of edges (hops) between any two pairs of nodes is at most D. If the diameter
is even, say, D = 2H , we can solve n HCMST problems, each with a different node
as the root node and hop-limit equal to H , and pick the lowest cost solution among
these n problems as the optimal configuration for the DCMST problem. If D is
odd and equals (2H + 1), then any feasible DCMST solution must have an edge
(i, j) such that every other node is connected to either node i or node j via a path
containing no more than H edges. Thus, if we merge (or contract) nodes i and j ,
the solution is a DCMST with even diameter (D − 1) = 2H (with the merged
node as its center). So, we can solve the original DCMST problem by solving |A |
HCMST problems, each obtained by contracting one edge of the original network.
Conversely, we can also transform a HCMST problem into an equivalent DCMST
problem as follows. Given the root node s and hop-limit H of the HCMST problem,
we augment the network by adding two strings of H nodes, incident from node s,
connected by zero cost arcs. Then, solving a DCMST problem, with diameter limit
D = 2H , over the augmented network yields the HCMST solution rooted at node
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s and satisfying the hop-limit. So, given an approximation algorithm with known
performance guarantee for the DCMST problem, we can obtain an approximate
solution with the same guarantee for the HCMST problem. The DCMST problem
is NP-Hard even with D = 4 and with edge costs that are all either one or two
(Garey and Johnson 2002), motivating the exploration of approximation methods.
For instance, for the Diameter Constrained Steiner Tree problem (a generalization
of DCMST in which the solution is only required to span a subset of nodes
called terminal nodes and can optionally span other nodes called Steiner nodes),
an approximation algorithm combining greedy selection and exhaustive search has
a worst-case ratio of O(log(|T |)), where T is the set of terminal nodes.

Interestingly, the HCMST special case with H = 2, which we call the two-
hop HCMST problem, is equivalent to the uncapacitated facility location (UFL)
problem. Given an instance of the UFL problem (with a dummy source node which
is connected to all facility nodes), we can construct an equivalent two-hop HCMST
instance by adding zero cost arcs between the facility nodes. Conversely, we obtain
a UFL instance (with the root node as the dummy source node) corresponding to
any two-hop HCMST instance by defining both a facility and a customer for each
original non-root node, and assigning the cost for each original arc (i, j) to the arc
from plant i to customer j (this cost is zero when i = j ). These transformations
imply that the approximation results for the UFL problem, such as the constant
worst-case bounds based on greedy and cost scaling methods, also apply to the two-
hop HCMST problem with metric costs. Developing a constant bound algorithm for
the general HCMST problem remains an open problem.

4.2.2 Polyhedral Results for Hop-Constrained Path Problems

In Sect. 3, we discussed some polyhedral results for the general NDRR problem. For
NDRR special cases when the underlying flow problem is a hop-constrained path
or tree problem, there are specialized valid inequalities and polyhedral results for
the underlying flow problems (assuming that all origin-to-destination paths must be
elementary).

For the Hop-constrained Shortest Path (HCSP) problem, it is possible to char-
acterize the underlying polytope when the hop-limit H is small and fixed. Since
the HCSP problem has only one commodity, we omit the commodity index k

in the following discussions. For H = 2, the solution can only contain arcs of
the type (s, i) or (i, t) for some node i ∈ N . Therefore, we can set the flow
xij = 0 on all other arcs (i, j) that are not incident at either node s or t . These
equalities, together with the flow conservation constraints for nodes s and t , and
nonnegativity requirements on the xij variables, completely describe the convex
hull of feasible solutions to the HCSP problem with H = 2. For H = 3, the flow
conservation constraints at all nodes, the nonnegativity requirements on the full set
of xij variables, and the inequalities
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xsi −
∑

j∈N \{s,t}
xij ≥ 0 ∀i ∈ N \{s, t} (8.9)

together give a complete description of the HCSP polytope.
Constraint (8.9) is a special version of a broad class of inequalities called

jump inequalities. The basic jump inequality has the following structure. Let
V1, V2, . . . , VH+2 be pairwise node-disjoint sets that partition the node setN , with
V1 = {s} and VH+2 = {t}. Define jump J = ∪1≤i≤j−2{Vi, Vj }, where {Vi, Vj } is
the set of arcs (a, b) such that a ∈ Vi and b ∈ Vj . If J (s-t, H) denotes the set of all
jumps, then the jump inequality is

∑

(a,b)∈J

yab ≥ 1 ∀J ∈ J (s-t, H) (8.10)

By definition of the jump J , if an s-to-t path does not use any of the arcs in J , then
the path must have at least (H + 1) arcs, and so is not a feasible path for the hop-
constrained problem. Lifted versions of these jump inequalities can define facets for
HCSP problems with higher hop-limits (H > 3).

4.2.3 Layered Networks and Extended Formulations
for Hop-Constrained Problems

When the routing requirement is a hop constraint, defining the commodity flows
over a layered (expanded) network provides a convenient and intuitive represen-
tation of the network design (or shortest path) problem and also yields tighter
formulations. We first discuss the structure and properties of the layered network
for a single commodity (e.g., for the HCSP problem), and then address extensions
to problems with multiple commodities, including hop-constrained tree problems.
An important by-product of these layered network representations is that, using
projection techniques on the associated extended formulations, we can obtain strong
valid inequalities in the original space of design variables.

Layered Network Representation for Hop-Constrained Paths
Suppose a commodity from s to t must be routed on a path containing no more than
H arcs (in the following discussion, we omit this commodity’s index). The original
NDRR problem formulation [NDRR] defines (binary) commodity flow variables xij

on the original network, and imposes the hop constraint as
∑

(i,j)∈A xij ≤ H .
Instead, suppose we define the flow variables over the following expanded network
containing (H + 1) layers, indexed from h = 1 to h = (H + 1). Layer 1 contains
only the source node s, and layer (H + 1) only the sink node t . Each intermediate
layer, h = 2, 3, . . . , H , contains a copy of every node i = s , labeled as node <

i, h >. The source node has label < s, 1 >, and sink node in the last layer has label
< t,H + 1 >. If the original graph contains an arc (i, j), in the layered graph we
connect node < i, h > to node < j, h + 1 >, except when h is H we only consider
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Fig. 8.2 Example of layered network for one commodity. (a) Original network. (b) Layered
network with H = 3

j = t . We also add ‘dummy’ arcs, with zero cost, from < t, h > to < t, h + 1 >

for h = 2, 3, . . . , H . Since the hop limit H must be less than the number of nodes
n (assuming that we only permit elementary paths, which holds if all costs are non-
negative), the size (number of nodes and arcs) of the layered network is no more
than n times the size of the original network. Figure 8.2 illustrates this construction.
Figure 8.2a shows the original network with source node s = 1 and sink node t = 5.
Figure 8.2b shows the layered network with hop-limit H = 3.

From this construction, we can readily see that any path from < s, 1 > to <

t,H + 1 > in the layered network satisfies the hop constraint, and conversely every
feasible path in the original network has a corresponding path from < s, 1 > to
< t,H +1 > in the layered network. Therefore, if we define the routing variables as
arc flows over the layered network (instead of the original network), then we do not
need to explicitly impose the hop constraints on the routing variables. Specifically,
instead of using the flow variables xij defined over the original graph, we now define
disaggregated hop-indexed flow variables xh

ij , for h = 1, 2, . . . , H . The variable

xh
ij takes the value one if arc (i, j) is the hth hop on the commodity’s route from

origin s to destination t , and is zero otherwise. Equivalently, xh
ij is the flow from

node < i, h > to node < j, h + 1 > in the layered graph. The flow conservation
constraints are:

∑

j∈N +
i

xh
ij −

∑

j∈N −
i

xh+1
j i =

⎧
⎨

⎩

1 if i = s,

−1 if i = t,

0 otherwise.
∀h = 1, 2, . . . , H − 1. (8.11)

For the HCSP problem, since any elementary s-to-t path cannot contain an arc
(i, j) on more than one of the H hops, the ‘routing’ cost associated with each
disaggregated flow variable xh

ij is the same as the routing cost cij on the original
arc (i, j). So, the HCSP problem’s layer-indexed formulation, denoted as [L-HCSP],
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minimizes
∑

(i,j)∈A
∑H

h=1 cij x
h
ij subject to the flow conservation constraints (8.11)

and integrality requirements xh
ij = 0 or 1 for all (i, j) ∈ A , h = 1, 2, . . . , H .

This model is the same as the formulation for the (unconstrained) shortest path
problem over the layered network. Indeed, we can relate the HCSP problem’s
interpretation as the shortest path in the layered network to the well-known dynamic
programming recursion: d(j, h) = min{d(j, h−1),mini:(i,j)∈A {d(i, h−1)+cij }},
where d(j, h) denotes the shortest distance from node s to node j using h or fewer
hops, for solving the hop-constrained shortest path problem (e.g., Lawler 1976).
These observations imply that formulation [L-HCSP] is exact, i.e., it completely
describes the HCSP polytope. In contrast, the LP relaxation of the original NDRR
formulation, specialized to the HCSP problem, can have fractional solutions with
non-zero integrality gap. Thus, although the layered formulation contains H (which
is O(n)) times as many variables as the original formulation [NDRR] applied to the
HCSP problem, the use of hop-indexed flow variables serves to strengthen the LP
relaxation and close the integrality gap.

Layered Network and Extended Formulation for Hop-Constrained Trees
As noted earlier, the HCT problem requires designing a minimum cost tree that
connects a root node s to a specified set T of terminal nodes, with a hop-limit of H

on each root-to-terminal path. When T includes all nodes except the root node, the
design is a spanning tree; otherwise, it is a Steiner tree. We can view this problem
as a tree-constrained multicommodity HCND problem containing one commodity
k for each terminal node that originates at the root node s and has node k ∈ T as its
destination. Applying the previous hop-indexed disaggregation to each commodity’s
flow variables, we obtain a formulation that is stronger than the [NDRR] formulation
with added tree constraints.

4.2.4 Extended Formulations for General NDRR Problems

The models based on layered networks and the hop-indexed variables discussed
in the previous section add to the rich history of using disaggregate variables to
improve the effectiveness of formulations. Another related development is the use of
extended formulations, obtained by adding new variables, for various combinatorial
optimization problems. Research on this topic of extended formulations started
mainly as a theoretical tool, but in recent years researchers have also examined
their value for strengthening the LP relaxation when solving difficult integer
programs (see Wolsey 2011). We can interpret the formulations based on the layered
network representation of hop-constrained problems as extended formulations for
the underlying problem.

The layered network concepts and modeling enhancements can also extend to
more general NDRR problems, e.g., with multiple sources and destinations, without
explicit tree configuration requirements, and with general (and multiple) routing
constraints (vs. hop limits). For instance, we can represent problems with a general
weight constraint (with arbitrary positive integer coefficients) in the following way.
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Assume, for notational simplicity, that the integer arc weights and weight limits
are the same for all commodities. For a routing constraint with a limit of Q for
commodity k, we have (Q + 1) instead of (H + 1) layers in the layered network
representation. Arcs between layers are not always between adjacent layers as is
the case for the hop-constrained version. Instead, for each arc (i, j) with weight qij

in the original network, the layered network contains an arc from node < i, q >

to node < j, q + qij > for 1 ≤ q ≤ (Q − qij + 1). Corresponding to each

such arc, we define a disaggregated flow variable x
kq
ij , and use flow conservation

constraints analogous to (8.11) and the forcing constraints
∑Q−qij +1

q=1 x
kq
ij ≤ yij .

Further, if the solution is required to be a tree, then we can also disaggregate the
design variables as long as the arc weights and weight limits are the same for all
commodities. Note that the size of the layered network, and hence the number of
variables in the disaggregate formulation, is pseudo-polynomial since it depends
on the weight limit Q. When this limit is very large or if there are multiple routing
constraints, the extended formulation will be too large to solve directly using general
purpose integer programming solvers. To mitigate this difficulty, we can apply an
iterative approach that starts with a small layered network, and increases its size
until we obtain a feasible solution that is sufficiently close to optimal.

If the problem imposes more than one routing constraint for each commodity, we
can develop a ‘multi-dimensional’ layered network that implicitly captures multiple
routing requirements. For instance, suppose there are two routing constraints with
weight limits Q1 and Q2. Then, the multi-dimensional layered network contains
Q1Q2 layers containing nodes of the form < i, q1, q2 >, with 1 ≤ qm ≤ (Qm +
1),m = 1, 2, and arcs from this node to node < j, q1+q1

ij , q
2+q2

ij > for every arc
(i, j) of the original network. Using the flow variables (and design variables, for tree
sub-networks) on this layered network, we can develop an extended formulation for
the NDRR problem.

In summary, for network design problems with hop limits or general weight
constraints, layered network representations permit incorporating these routing
restrictions implicitly by defining appropriate disaggregated decision variables
instead of explicitly adding routing restrictions in the basic NDRR problem.
This approach yields tighter formulations, but at the expense of requiring many
more decision variables. Note that these extended formulations also apply to the
capacitated version of the problem, e.g., the CNDRR problem with hop limits as the
routing restrictions. For this problem, in each arc capacity constraint, we replace
the original arc flow variables with the sum of the corresponding layer-indexed
variables. Moreover, we can also add cuts developed for capacitated network design
(using the sum of disaggregate flow variables in place of original arc flow variables)
to this model to further strengthen the model. Since the layered formulation is
tighter than the previous CNDRR model, it can improve the performance of the
decomposition schemes discussed next.
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5 Decomposition Strategies for the NDRR Problem

Section 3 discussed BLM’s cutting plane approach to solve the general NDRR
problem, and Sect. 4 outlined an alternate approach, using extended formulations, to
strengthen the problem’s LP relaxation and accelerate integer programming solvers.
This section outlines other possible solution strategies based on decomposition
methods, including Lagrangian relaxation, column generation, and Benders decom-
position.

5.1 Lagrangian Relaxation

Lagrangian relaxation techniques are attractive when the problem contains embed-
ded special structures that can be solved more easily. The NDRR problem has two
such structures, corresponding respectively to uncapacitated network design and
constrained shortest paths. If we dualize the routing constraints (8.4), the resulting
subproblem is an uncapacitated fixed charge network design problem. Although this
problem is NP-hard, Balakrishnan et al. (1989) describe a dual ascent procedure
that is very effective in solving problems of reasonable size. When used as the
procedure to solve Lagrangian subproblems, it may be possible to further accelerate
the procedure by warm-starting it using dual values from the previous iteration.
However, identifying a solution to the original NDRR problem that satisfies all the
routing constraints may be difficult (recall from Sect. 2 that, even if we are given the
network design, finding feasible solutions can be NP-hard when there are multiple
routing constraints).

An alternative Lagrangian relaxation scheme consists of dualizing the forcing
constraints (8.3), resulting in |K | CSP subproblems, one for each commodity
k. CSP solution methods such as the node labeling algorithm (Sect. 4.1.2) are
quite effective and quick. Potentially, when repeatedly solving CSP problems for
a commodity, each of which differ only in the arc cost coefficients (which depend
on the Lagrangian multiplier values), we can modify these methods to improve
their performance (e.g., previous feasible solutions yield upper bounds for the
current problem). Of course, since the computational effort for these pseudo-
polynomial algorithms depends on the weight limits, solving each subproblem can
be time consuming when these limits are large. Also, with a large number of arcs
and commodities, the number of forcing constraints, and hence Lagrangian dual
variables, is very large; so, the convergence of the Lagrangian dual problem may be
slow.

We note that neither subproblem in the above two Lagrangian relaxation schemes
satisfies the integrality property (i.e., the optimal solution to the LP relaxation of the
subproblem may have fractional values). So, the best Lagrangian lower bound can
exceed the LP lower bound, obtained by solving the LP relaxation of the original
NDRR problem formulation (8.1)–(8.5). So, for problem instances where using
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either of the above subproblem solution procedures is practical, using Lagrangian
relaxation at intermediate nodes of a branch-and-bound procedure can outperform
standard LP-based branch-and-bound algorithms.

For the CNDRR problem, we have additional choices for the Lagrangian scheme.
For instance, dualizing the arc capacity constraints results in NDRR subproblems,
whereas relaxing the routing restrictions yields capacitated network design subprob-
lems. To further simplify the subproblems, we can dualize additional constraints
such as the forcing constraints or the flow conservation equations to obtain CSP
or knapsack subproblems. In general, capacitated design problems tend to be more
difficult to solve using this technique unless the model is further strengthened with
valid inequalities (such as design inequalities based on arc capacity constraints).

5.2 Column Generation (Dantzig-Wolfe Decomposition)

As noted in Sect. 2, instead of formulating the NDRR problem using arc flow
variables, we can also consider a path selection formulation that uses path flow
variables corresponding to feasible origin-to-destination paths (satisfying the rout-
ing restrictions) for each commodity. We can view this reformulation (from the
arc to path representation) as a change of variables, just as the layered network
representation replaces the original arc flow variables with layer-indexed arc flow
variables. Since the path flow model only considers origin-to-destination paths
that meet the routing constraints, it has a stronger LP relaxation. However, since
the number of such paths is exponential in the network size, we cannot explicitly
solve the full model (except when the number of candidate paths is limited due to
highly restrictive weight or hop limits). Instead, we can apply a column generation
technique that iteratively generates promising paths based on the LP dual solution,
embedded in a branch-and-price procedure to close the integrality gap. Applying
column generation to the general NDRR problem requires iteratively solving a CSP
subproblem for each commodity k in order to find a feasible O(k)-to-D(k) path
with negative reduced cost (not surprisingly, these pricing problems are the same
as the Lagrangian subproblems that we need to solve when we dualize the forcing
constraints of the arc flow model). The restricted master problem (RMP) is a linear
program that chooses the path to be used for each commodity k from among the
paths generated so far. The optimal dual prices of the RMP determine the arc costs
in the CSP subproblems. Branching is needed to reduce the optimality gap between
the LP value and the current best upper bound.

For the NDRR path flow model, the column generation procedure can require
excessive number of iterations to converge because of the huge number of candidate
paths for each commodity. One cause of slow convergence is that, during the initial
iterations, the RMP (with only few columns) may not approximate the full problem
very well and so its solution may not be close to optimality for the full problem.
Consequently, the dual prices at these iterations may not adequately approximate
the optimal dual prices of the full problem, causing the procedure to generate new
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columns that are not very useful. These columns can cause the RMP solutions to
vary widely from iteration to iteration. Stabilization techniques can improve the
convergence of column generation procedure by mitigating these difficulties. One
successful approach has been to use a pre-chosen stabilization point, and constrain
the RMP solutions to remain “close” to the stabilization point through the use of
penalty functions.

Another technique is to improve the LP bounds of column generation model by
adding cuts to the master problem. This technique, known as branch-and-cut-and-
price, can be useful but care is necessary since the added cuts introduce new dual
variables that change the structure of the pricing operation. If the pricing subproblem
becomes difficult or intractable, then the column generation approach is impractical.
However, for specific types of added cuts known as robust cuts, the basic structure of
the pricing operation is unchanged. For example, in the arc-path approach to column
generation, cuts using only design variables are robust.

The column generation approach also applies to the CNDRR problem, except
that the RMP now also includes the arc capacity constraints (expressed in terms
of the path flow variables). Again, it is important to strengthen the master problem
by adding valid inequalities, preferably using robust cuts so as not to complicate
the subproblems. Column generation has proven to be among the most successful
methods for related capacitated problems such as vehicle routing and Capacitated
Minimum Spanning Tree (CMST) problems. The CMST problem requires find
the minimum cost spanning tree such that the total demand in each subtree of a
designated root node does not exceed the capacity C of the arcs incident from
the root node. For this problem, instead of paths, the columns represent feasible
subtrees (that satisfy the capacity constraint) with degree one at the root node.
Unfortunately, the pricing subproblem is strongly NP-hard and not practical com-
putationally, necessitating some improvements to the branch-and-price approach
such as modifying the column space. Specifically, instead of subtrees, using a set of
arborescence-like structures permits a pseudo-polynomial algorithm (with respect to
C) for the pricing subproblem. We can build upon these methods to solve CNDRR
variants such as CMST with hop or more general routing restrictions. For instance,
we can use a layer-indexed model for the pricing subproblem to capture both the hop
limits and capacity limit for arcs incident to the root node. Such extensions provide
fertile ground for further work.

5.3 Benders Decomposition

Benders decomposition entails fixing a subset of variables in a master problem,
and solving LP subproblems whose dual values induce so-called Benders cuts in
the master problem. Modern implementations of this approach, known as Benders
branch-and-cut, embed the procedure into a branch-and-bound framework, add a
Benders cut at each node in the search tree, and solve the master problem only once.
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For the NDRR problem, if we fix the design variables at values yij = yij in the
master problem, the resulting subproblems are CSP problems for each commodity
k over the candidate network formed by A = {a ∈ A |yij = 1}. Unfortunately, the
resulting subproblems are integer programs, and so Benders decomposition is not
directly applicable. However, for the special case when all the routing constraints
(8.4) are hop-limits, by using the disaggregated (hop-indexed) flow variables, the
Benders subproblems are linear programs since they are simply (unconstrained)
shortest path problems over the layered network for each commodity (but only
including arcs chosen by the master problem). The Benders subproblems can,
however, be infeasible because, in the current design chosen by the Benders master
problem, the destination D(k) may not be reachable from the origin O(k) within the
desired hop-limit (i.e., O(k) and D(k) are not connected in the layered network). In
this case, we must generate and add a Benders feasibility cut to the master problem.
In general, it is difficult to generate effective Benders feasibility cuts; this topic is
currently an active area of research. Another possible strategy is to skip adding
an feasibility cut and continue the branching process. This approach trades off
the additional effort required in the search tree with the benefit of not generating
feasibility cuts.

As we noted in Sect. 4.2.4, for NDRR problems with one routing constraint,
having non-unitary coefficients, we can use the pseudo-polynomial layered network
to model the disaggregate flow variables. In this case too, the subproblem of
selecting a feasible path for a given set of design variables is a linear program,
permitting the application of Benders decomposition.

Finally, the Benders approach also extends to CNDRR problems, except that
feasibility of subproblems now depends on both whether the design contains at
least one feasible origin-to-destination path (satisfying routing restrictions) for every
commodity, and also meets arc capacity constraints (across all commodities). We
can potentially improve Benders performance by tightening the LP relaxation of
the design problem formulation in the master problem by adding cuts that only
involve the design variables, such as those obtained using projection techniques
of the capacitated network design problem, or reformulating the problem using
disaggregated variables. Note that adding cuts to the Benders master problem is
analogous to adding robust cuts for column generation. Master problem cuts (robust
cuts) do not complicate the solution of the Benders subproblems (column generation
pricing operation). Adding more general cuts can complicate the efficient solution
of the subproblems just as non-robust cuts complicate the column generation pricing
operation.

6 Bibliographical Notes

Valid Inequalities and Cutting Plane Methods for the General NDRR Problem
Although network design problems have been studied extensively (e.g., Magnanti
and Wong 1984; Balakrishnan et al. 1997; Crainic 2000), little research has been
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done on the NDRR problem. Barnhart and Schneur (1996), Armacost et al. (2002),
and recently, Yildiz and Savelsbergh (2019) study optimal design for express
delivery using ground and air transportation in order to determine multimodal
time-sensitive origin-destination routes. Other related network design problems that
also have a flavor of network design and/or flow routing with restrictions include
reliable path routing, reliable network design, and survivable network design (e.g.,
Balakrishnan et al. 2009). Balakrishnan et al. (2017) (BLM) is the first paper to
address the general NDRR problem, and develop a tailored cutting plane-based
approach for this problem. The discussion in Sect. 3 is largely based on this paper.
BLM provides a more general framework and treatment of the three classes of
valid inequalities discussed in Sect. 3. Moreover, they describe some sophisticated
lifting procedures, and prove that some versions of these inequalities are facets of
the NDRR polyhedron. They report extensive computational results from applying
the cutting plane procedure (using heuristic separation procedures to iteratively find
violated inequalities) at the root node of a branch-and-bound algorithm, combined
with an optimization-based heuristic method, for a variety of NDRR test problems
containing up to 80 nodes, 320 arcs, and 240 commodities.

Extension to Capacitated NDRR Problems Magnanti et al. (1993, 1995) were
among the first to study the capacitated network design problem where multiple
modular facilities can be installed on the network arcs. They developed the cutset,
residual capacity and 3-partition inequalities, and studied their theoretical and
computational effectiveness. Bienstock and Gunluk (1996) developed several facet-
defining inequalities that extend the cutset and the 3-partition inequalities. Atamturk
and Rajan (2002) study single-arc set relaxations of the problem and show that the
separation problem of the residual capacity inequalities (for the splittable case) can
be solved in linear time while the separation problem for the c-strong inequalities
(developed by Brockmuller et al. (2004) for the unsplittable case) is NP-hard. They
extend the c-strong inequalities and conduct computational experiments to test the
effectiveness of these inequalities. Benhamiche et al. (2016) study the polyhedral
structure of a model where a commodity flow cannot split even across two different
facilities on the same arc. Gendron et al. (1999) provide a survey of multicommodity
capacitated network design models. They also summarize the theoretical strengths
and present a computational comparison of several different relaxations of an arc-
based formulation of the problem.

Approximation Schemes for the Budget-Constrained Shortest Path (BCSP) Prob-
lem Vazirani (2013) and Williamson and Shmoys (2011) provide comprehensive
discussions of approximation schemes for various problem settings. For the BCSP
problem over acyclic graphs, Warburton (1987) was the first to develop a FPTAS.
The complexity of his approximation scheme is O(n3ε−1log(n)�log(UB)�), where
ε is the performance guarantee (i.e., the heuristic solution value is within a
factor of (1 + ε) of the optimal solution value) and UB is an upper bound on
the optimal solution value. Hassin (1992) employs the principles underlying this
method, but uses a constant bound on the ratio of UB to LB to develop an
approximation algorithm with complexity O(|A |n2ε−1log(nε−1)). Section 4.1.1
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summarizes this method. Lorenz and Raz (2001) further improve the approximation
scheme, achieving a n-fold reduction in time complexity, by simplifying the method
for obtaining upper and lower bounds, and permitting a larger approximation error
in the first stage. This method runs in O(|A |n(log log n+1/ε)). Ergun et al. (2002)
also improve Hassin’s algorithm but by making the scaling factor adaptive, starting
with a large scaling factor. As the difference between current upper and lower
bounds decreases, the method reduces the scaling factor. This strategy improves
solution quality without adversely affecting the running time, resulting in a FPTAS
with time complexity of O(|A |nε−1).

CSP Solution Algorithms One possible drawback to the Handler-Zang (HZ)
approach for solving BCSP problems is that reducing the gap may require
generating a large number of rth shortest paths. Desrochers and Soumis (1988)
propose solving the BCSP problem by generalizing Dijkstra’s shortest path
algorithm. Dumitrescu and Boland (2003) use preprocessing techniques to
accelerate the node-labeling algorithm, and demonstrate computationally that these
methods can improve performance by an order of magnitude. Feng and Korkmaz
(2015) and Pugliese and Gueriero (2013) provide some suggestions to the reduce the
number of r th shortest paths needed to close the gap. Feng and Korkmaz also discuss
an extension of the HZ method to solve weight-constrained shortest path (WCSP)
problems. Pugliese and Gueriero (2013) review the methodological literature for
WCSP problems with multiple metrics, and even with negative arc costs.

Approximation Algorithms for the Diameter-Constrained and Hop-Constrained
Minimum Spanning Tree (DCMST and HCMST) Problems Kortsarz and Peleg
(1999) analyze the heuristic worst-case performance of a DCMST problem with
maximum diameter of five. Marathe et al. (1998) develop approximation algo-
rithms for a generalization of the Diameter-constrained Minimum Spanning Tree
(DCMST) problem where the weights associated with arcs are not necessarily one.
This generalization requires the total weight of the path connecting any pair of nodes
in the tree to be less than or equal a specified value. The authors’ approach starts with
clusters consisting of single nodes, and sequentially merges these clusters until just
one cluster remains, which is the heuristic solution. Hassin and Levin (2003) study
a problem in which the diameter is not fixed, but rather pairs of nodes have hop
limits that belong to {1, 2,∞}. Assuming metric edge costs, they develop a constant
ratio algorithm. They also consider cases where the graph induced by node-pairs
with hop-limit of one or two is a Hamiltonian graph or a 2-vertex connected graph.
Althaus et al. (2005) develop a randomized algorithm with approximation ratio of
O(log(n)) for the HCMST problem with metric costs.

Polyhedral Results for Hop-Constrained Design Problems For the Hop-constrained
Shortest Path (HCSP) problem, Dahl and Gouveia (2004) provide a complete
characterization of the underlying polytope when the hop limit H is small. Dahl
(1998) originally introduced the jump constraints while Grotschel and Stephan
(2014) propose a systematic way of generating jump constraints as well as other
inequalities via projection of a HCSP problem formulation that uses hop-indexed
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variables (see Sect. 4.2.3). Although the basic jump inequalities do not necessarily
define facets of the HCSP problem with general hop-limits, Reidl (2017) provides
necessary and sufficient conditions for lifted jump inequalities to be facets of the
HCSP polytope. Stephan (2009) identifies other facets by studying the polyhedral
structure of related combinatorial problems.

Extended Formulations for Hop-Constrained Problems Gouveia (1998) is among
the first researchers to study models with hop-indexed variables for hop-constrained
problems. The variable disaggregation approach also extends to Hop-constrained
Network Design (HCND) problems by defining hop-indexed flow variables for each
commodity. This hop-indexed model is tighter than representing the hop constraints
as routing requirements in formulation [NDRR], but the hop-indexed model does
not fully close the integrality gap for HCND problems (unlike the situation for
the HCSP problem). Researchers have used layered network representations and
successfully applied the associated formulations with disaggregated (hop-indexed)
flow variables to several special cases and variants of hop-constrained network
design including minimum spanning tree problems with diameter constraints (e.g.,
Gouveia and Magnanti 2003; Gouveia et al. 2004, 2006), hub location with
hop constraints (Camargo et al. 2017), and container shipping service selection
with limited transshipments (Balakrishnan and Karsten 2017). The higher LP
lower bounds of the hop-indexed model significantly accelerate branch-and-bound
solution procedures for these problems.

Layered Network and Extended Formulations for Hop-Constrained Tree (HCT)
Problems Gouveia et al. (2011), henceforth abbreviated as GSU, further strengthen
this model by exploiting the problem’s tree configuration requirement. Specifically,
they show how to represent the HCT problem as a Steiner tree problem defined
over a (single) layered network (instead of defining a separate layered network
for each commodity). Effectively, this approach permits disaggregating the design
variables (by hop index). For their equivalent Steiner tree problem, GSU consider
a directed cut formulation (Maculan 1987) that contains only design variables (no
flow variables since they do not consider routing costs), and uses cutset constraints
to ensure connectivity from the root to every terminal node. GSU show that this
model is tighter than the previous HCT formulation with hop-indexed flow variables
defined over separate layered networks for each commodity. The authors also extend
this approach to the DCMST problem. Their computational results demonstrate
that using the stronger model reduces computational time by about two orders
of magnitude compared to earlier methods (e.g., Gouveia and Magnanti 2003;
Gouveia et al. 2004) that solve the model with only disaggregated flow variables. In
Sect. 4.2.4, we discuss an extension of this technique of disaggregating the design
variables to more general types of NDRR problems.

GSU’s idea of disaggregating the design variables also relates to other interesting
work. Ruthmair and Raidl (2011) apply disaggregation to Steiner tree problems
with a single weight constraint for each commodity. To avoid solving the full
extended formulation, they start with a small layered network obtained by deleting
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some nodes, removing the outgoing arcs for each deleted node, and redirecting its
incoming arcs to a corresponding node in an earlier (later) layer. Solving the reduced
network provides a valid lower (upper) bound. The approach iteratively increases
the size of the layered network until the upper and lower bounds are sufficiently
close. Boland et al. (2017) developed and applied a similar strategy in the context
of time-space networks (which are related to layered networks).

Another way of reducing the size of the layered network is to apply scaling-and-
rounding (sometimes known as discretization) to the weight constraint to reduce
the size of its coefficients. In the context of time-space networks, the approach of
scaling-and-rounding the time unit does not seem to be as effective computationally
as the methodology described above (Boland et al. 2017, 2019).

Extended Formulations for General NDRR Problems Researchers have recog-
nized the benefits of reformulating various network design problems (e.g., facility
location, Steiner trees, and uncapacitated fixed charge network design) using
disaggregated variables and forcing constraints. For example, for fixed-charge
network design, instead of using one commodity to represent all the flow originating
from a source node, replacing the single commodity with multiple commodities,
each corresponding to one destination served by that source, yields tighter model
formulations and improved solution techniques (see Magnanti and Wong 1984).
For research related to extended formulations, see, for example, Vanderbeck and
Wolsey (2010), Conforti et al. (2010), Conforti et al. (2014), and Fiorini and
Pashkovich (2015). Applying projection techniques (e.g., Conforti et al. 2014) to the
extended formulations (with disaggregated flow or design variables) can yield valid
inequalities and facets for the original problem formulation [NDRR]. For related
work on projection techniques applied to the CSP polyhedron, see Coulard et al.
(1994), and Grotschel and Stephan (2014). Mirchandani (2000) uses projection
for the capacitated network loading problem, and Rardin and Wolsey (1993) use
projection for uncapacitated network design models with multiple sources and sinks
for each commodity. Gouveia et al. (2011) apply projection techniques to the single
layered network model for HCT problems to obtain valid inequalities for the base
model.

Column Generation Branch-and-price, which embeds the column generation tech-
nique within a branch-and-bound tree search framework (Barnhart et al. 1998;
Desrosiers et al. 1995), has proved successful for various types of integer optimiza-
tion problems. Column generation has been very successfully used in crew schedul-
ing and routing problems, with routing requirements that reflect, for instance, time
or distance limits of vehicle routes and work shifts (see Lubbecke and Desrosiers
2005 for an extensive list of references on applications of column generation).

Stabilization and other techniques can be useful in improving the convergence of
column generation. Lubbecke and Desrosiers (2005) and Lemaréchal et al. (1995)
discuss the use of a pre-chosen stabilization point. These general ideas have proven
very successful in the special context of delay-constrained minimum spanning
trees and Steiner trees. Computational tests by Leitner et al. (2012) show that the
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stabilized version of column generation is about one order of magnitude faster
than the usual column generation procedure for larger problems. The approach
can solve difficult problems for networks with up to 999 nodes and about 10,000
arcs. Stabilized column generation is also at least competitive with state-of-the-
art techniques using branch-and-cut applied to the single layered network model
formulation (Gouveia et al. 2011).

Another convergence difficulty arises when the RMP primal solution is degener-
ate, implying multiple optimal dual prices in the master problem. Holloway (1973)
suggests choosing an optimal dual solution that would benefit the overall conver-
gence of column generation (i.e., choose a set of dual prices that would accurately
reflect the optimal dual prices of the full problem). Such an approach would be
similar in spirit to Magnanti and Wong (1981) (see also Rahmaniani et al. 2017)
who propose exploiting degeneracy in Benders subproblems (whereas Holloway’s
proposal concerns degeneracy in the column generation master problem).

Uchoa et al. (2008) and Costa et al. (2019) discuss innovative branch-and-cut-
and-price approaches to the Capacitated Minimum Spanning Tree (CMST) and
the vehicle routing problems, respectively. Uchoa et al. use a new column space
representation as well as robust cuts (see Poggi de Arago and Uchoa 2003) based on
a new expanded representation of the arc flow variables based on capacity-indexed
arc flows (similar to a layered network representation of arc flows) proposed by
Gouveia and Martins (1999). Costa et al. (2019) give a comprehensive survey of
techniques for improving the performance of column generation for vehicle routing
including robust and non-robust cuts as well various other strategies. Some research
has shown that the careful addition of non-robust cuts can improve the overall
performance of the column generation approach. Thus, the cuts proposed in Sect. 3
(which are non-robust) might be of interest in the context of a column generation
approach.

Benders Decomposition For an introduction to Benders decomposition and a
general treatment of this approach, see, for example, Conforti et al. (2014). Over
the years, researchers have suggested various techniques to improve Benders’
classic approach. See Rahmaniani et al. (2017) for a comprehensive overview. As
mentioned in Sect. 5.3, an active area of research is generating effective Benders
feasibility cuts. See, for instance, Camargo et al. (2017).

Botton et al. (2013) apply Benders decomposition to a Hop-constrained Sur-
vivable Network Design problem. That is, in addition to hop constraints on the
commodity routes, the problem also requires ensuring that each commodity has
as least γ arc-disjoint origin-to-destination paths (which must all satisfy the hop
limit restriction) in the chosen design. The objective is to minimize the total fixed
cost of the chosen design arcs. For the design problem under consideration, at least
one commodity’s subproblem will always be infeasible until the relaxed master
problem generates an optimal solution to the original design problem. The authors
avoid this difficult issue by modifying the Benders branch-and-cut procedure by
only occasionally generating Benders cuts (i.e. solving the subproblems). Thus,
they trade off having a larger search tree for reducing the subproblem computation
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time. This modified approach is an order of magnitude faster than the usual Benders
decomposition approach. The decomposition approach can solve medium to large
sized problems with up to 41 nodes and 820 edges and is significantly faster than
solving the original formulation with CPLEX.

As mentioned in Sect. 5, strengthening the LP relaxation of the model for-
mulation can improve the performance of Benders decomposition. Section 6.2
of Rahmaniani et al. (2017) discusses various research work on adding valid
inequalities to the Benders master problem to strengthen the overall formulation.
Magnanti and Wong (1981) discuss a framework for evaluating different model
formulations (having different sets of subproblem variables) in the context of
Benders decomposition based on their LP relaxation strength when the master
problem variables have fixed values. Certain formulations can offer a richer (better)
set of Benders cuts than other ones.

7 Concluding Remarks

In this chapter, we have reviewed various applications of network design with
routing requirements, identified the challenges of solving this problem, and outlined
modeling and solution approaches for the problem. We next summarize the key
observations and learnings, and identify some opportunities for future work.

Applications Route constrained network design problems arise in a broad spectrum
of industries. These include the transportation industry, where the NDRR problem
applications comprise networks on the land, sea, and air. There are also many
applications in telecommunications and other areas such as electricity distribution
and machine scheduling.

Polyhedral Approach Using preprocessing techniques combined with insights
about the problem structure, Balakrishnan et al. (2017) derive and implement com-
putationally effective facets and valid inequalities for the NDRR problem. For the
CNDRR problem, the added capacity constraints make solving the problem more
challenging. So, using tight formulations, with added valid inequalities to strengthen
the formulation, will be key for effective CNDRR solution performance. The ideas
outlined in Sect. 3 to develop integrated inequalities that jointly consider the routing
and capacity restrictions provide interesting and useful research directions to pursue.

Constrained Shortest Path heuristics There is a wide spectrum of creative
approaches including Lagrangian relaxation with path enumeration, generalized
Dijkstra algorithm with preprocessing, and scaling. Different goals (e.g., improving
computational efficiency vs. improving worst-case bounds) result in different types
of heuristic improvements. Can we obtain heuristic worst-case bounds for the
weight-constrained shortest path problem with multiple routing requirements?
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Worst-Case Analysis Sections 4.1.1 and 4.2.1 discuss the worst-case analysis of
approximation algorithms for some special cases of the NDRR problem. These
theoretical studies are challenging but facilitate our understanding about which
particular problem characteristics make the NDRR problem easier or harder to
solve. Can we build upon these previous studies to develop and analyze the worst-
case performance of heuristics for more general NDRR problems?

Layered Networks The layered network approach uses variable disaggregation
to obtain a tighter LP relaxation for hop-constrained spanning trees. The tighter
formulation improves computational performance. Importantly, removing disaggre-
gated variables in this model via projection constitutes a systematic method for
obtaining polyhedral results in the original problem space (see previous discussion
on extended formulations for general NDRR problems). Adopting and extending
this approach for other problems appears to be promising.

The layered network variable disaggregation technique is different from previous
approaches. Instead of disaggregating a commodity into a finer set of commodities
(as researchers have previously done for facility location and uncapacitated fixed
charge network design), it disaggregates a flow variable into a series of hop-indexed
flow variables (or a design variable into a series of hop-indexed design variables).
Could there be other new variable disaggregation schemes for different types of
network design problems?

Decomposition Techniques Leveraging advances (over the past several decades) in
decomposition techniques (e.g., stabilization, improved column pricing methods),
embedding within a tree search procedure (e.g., branch-and-price or branch-
and-cut) and exploiting the structural properties of the NDRR problem solution
results in useful algorithms for some of its special cases. Further exploitation
of these advances appears to be a promising area for future research. Moreover,
decomposition techniques are more flexible and can address problem variants such
as stochastic or prize-collecting variants more easily than other types of solution
techniques.

Capacitated Network Design with Routing Restrictions Network design problems
become more challenging to solve if we just add routing restrictions or arc capacity
constraints. Even the simplest versions of the combined CNDRR model, which has
both types of constraints are NP-hard, and are likely to be quite difficult to solve.
Our discussion has highlighted the longitudinal (single commodity, multiple arc)
structure versus lateral (single arc, multiple commodity) structure of the routing
and capacity constraints. Developing effective solution methods will require lever-
aging and integrating the principles and approaches developed for the NDRR and
capacitated network design models. For each of the modeling and methodological
approaches (polyhedral methods, extended formulations, Lagrangian relaxation,
column generation, and Benders decomposition) presented in this paper, we have
also discussed possible ways to extend them to the CNDRR problem. Perhaps,
research to solve the CNDRR problem can begin by first addressing its special
cases such as the capacitated minimum spanning tree with hop limits, capacitated
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hop-constrained network design, or two-commodity CNDRR before considering
more general routing restrictions. These special cases have the advantage of
providing a wider range of improved modeling options such as the layered network
representation. Since there is little or no literature on the CNDRR problem and since
this problem has considerable practical relevance, investigating and developing
effective solution approaches for this problem is a promising and fruitful avenue
for research.
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