Chapter 20 ®
Collaboration in Transport and Logistics e
Networks

Behzad Hezarkhani, Marco Slikker, and Tom Van Woensel

1 Introduction

Transport and logistics companies invested substantially to increase the efficiency
of their individual operations. Research has also been fruitful in finding ways to
optimize problems of planning routes, scheduling deliveries, designing networks,
and deploying resources. It is generally well-understood that economy of scale in
transportation and logistics plays a crucial role in increasing efficiency. Yet, efforts
towards internal optimization cannot always increase the economies of scale for
organizations beyond their operational scope. This is problematic as the logistics
and transportation sector is fragmented and many operators of different sizes are
present. It is no wonder then that the logistics sector suffers from low overall
efficiency—for example, more than 20% for all truck movements in Europe is
completely empty and the remainder is hardly ever full.

The success of new network design approaches, building on concepts, models
and methodologies such as the Physical Internet, City Logistics, synchromodal
networks, etc., is also to a large part depending upon the ability to successfully
collaborate and agree on these cost-and-benefit sharing mechanisms. Collaboration
is a way to open possibilities for achieving these important economies of scale
needed for a successful implementation any Physical Internet or City Logistics
solution. In fact, collaboration may positively affect many aspects. For example, by
consolidating their loads, carriers can increase their service level and reduce their
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total costs. Carriers could increase the utilization rate of their assets when combining
their delivery demands. Finally, as a result of consolidated cargo and combined trips,
the socio-environmental problems of transport and logistics can also be mitigated.

Despite the clear advantages of collaborative logistics, in practice, cooperation
and collaboration among organizations are exceptions. Collaboration among carriers
is often hampered by their competitive positions and by the risks of divulging
information and losing customers. Shippers, on the other hand, may hesitate to
collaborate as they might not have a clear understanding of collaborative mecha-
nisms employed and whether or not they receive a fair share out of collaborative
operations. Finally, designing a fair cost sharing scheme is a major impediment for
collaboration.

This type of collaboration problems falls in the area of cooperative game
theory, where coalitions and their respective cost sharing issues are researched. The
intention of this chapter is not to give an exhaustive review of cost sharing problems,
but to provide an overview of relevant approaches in dealing with cost sharing
problems for collaboration in the setting of logistics network design problems.

By abstracting a cooperative situation into a cooperative game, consisting of a
player set and a function that determines the cost of different groups of players,
cooperative game theory studies solutions that satisfy collections of logically
desirable properties expressed in relation to such an abstraction. The players in
these situations require or provide transportation-based logistics services. The cost
of groups of players is obtained via a network design optimization problem. The
specific features of cooperative situations under study provide grounds for refining
well-known solutions in cooperative game theory or develop new ones that are
appropriate for special situations.

Important to note is that cooperative games are build on stylized situations.
A situation is a description of the real-life problem to handle (e.g., network
optimization or service network design). However, for these situations, we need
to obtain the exact value of possible coalitions (e.g., players working together).
From an Operations Research perspective, many of these underlying situations
are combinatorial problems, leading to significant calculation times to obtain the
relevant (optimal) values. That is why a large body of cooperative game theory
literature is build around stylized models. Clearly, solutions in cooperative game
context can prove to be unsatisfactory in more complex situations.

This chapter is build around three parts. In the first part, we discuss the most
important components around cooperation within a transport and logistics network
setting. In the second part, we discuss cost-sharing problems in some basic and
stylized network design models. The simplicity of underlying situations in this
category allows for adoption of well-known game theoretic solutions such as the
core (Shapley 1955) and the Shapley value (Shapley 1953). The search for the
core of cooperative games in network situations has motivated a large body of
literature, and implementation of the Shapley value is suggested by a host of
research in collaborative logistics. In the third part, we look at more operational
problems in collaborative logistics and overview the cooperative truckload delivery
situations where logistics providers jointly devise plans for their daily pick-
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up/transport/deliver operations. We discuss desirable properties for allocations rules
in these situations and introduce an appropriate one for these situations.

This chapter is organized as follows. Section 2 discusses the key concepts
revolving around collaboration in transport and logistics networks. Section 3
provides some background and preliminaries on cooperative game theory and the
relevant main concepts. In Section 4, we discuss the cost sharing problem in stylized
cooperative network design problems, in particular, minimum cost spanning tree,
facility location, and hub location. In Section 5, we turn our attention to designing
logistics service networks and focus on cooperative truckload delivery situations.
Section 6 concludes the chapter.

2 Key Collaboration Concepts in Transport and Logistics
Networks

Transport and Logistics networks collaboration involves different aspects: Commu-
nication, Coordination, and Consolidation. Many different actors are involved in
Transport and Logistics activities. One way of reducing costs is to consolidate activ-
ities, e.g. freight consolidation or capacity consolidation, as such reducing empty
mileage or under-filled resources. But, these stakeholders hardly communicate with
each other, let alone that there is a form of coordination.

Over the past years, more and more different types of collaboration emerged.
Vertical collaboration, getting popular in the 90s, involves collaboration within
the supply chain, i.e. connecting the upstream and downstream partners. This
lead to concepts like Vendor Managed Inventory (VMI), factory gate pricing,
Collaborative Planning Forecasting and Replenishment (CPFR), and Efficient
Consumer Response (ECR). At this moment, these concepts were mainly focused
on costs efficiency in the different key supply chain decision areas like inventory,
transportation, forecasting, etc. Early 200, next to costs efficiency, companies also
started to consider other drivers like sustainability and greenhouse gas emissions.
Also in transport and logistics, continued observations on low vehicle utilisations,
and a large number of empty running vehicles, lead to strong understanding that
collaboration could be a solution towards costs reductions but also to significant
reductions in the environmental pressure.

Next to vertical collaboration, horizontal collaboration started to gain momen-
tum over the past 10 years. Here, collaboration in distribution and coordination
among similar stakeholders, e.g. logistics service providers or shippers, is the focus.
The rationale is that bundling of physical good flows into (urban) areas, results in
fewer negative impacts (decongestion, less negative externalities in cities). Clearly,
Transport and Logistics networks are large constructs of multiple many-to-many
interconnected stakeholders, active in both horizontal and vertical relations.

Cruijssen et al. (2007) investigated the opportunities and obstacles carriers face
in horizontal collaborations. They organized a spectrum of collaboration types from
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basically no collaboration (i.e. “arms length”) to a full integration, which is similar
to a merger of companies. In between these two extremes, three different levels
(denoted as Type I, II and III) are distinguished. Type I consists of partners who
know and trust each other. They coordinate their activities and planning on a limited
basis. The collaboration partnership may be short-term and a single division of each
company may focus on one single activity. Type II collaboration maintains a longer
collaborative relationship. The scope of collaboration for the participants is not only
to coordinate, but also to integrate part of their business planning. The horizon is of
a long though finite length and multiple divisions or functions of the companies
are involved. Type III collaboration refers to those organizations which have a
significant level of integration, and each company treat others as an extension of
its own business unit. There is no end date for this kind of collaboration.

Other collaboration (Communication, Coordination, and Consolidation) con-
cepts also arise in other Transport and Logistics networks fields. Again aiming to
reduce vehicle movements and/or increase utilization, crowd logistics is a sharing
economy concept. Unorganized individuals (the crowd) offer their services (e.g.
movement or capacity) to the platform. In this setup, transportation is outsourced to
the crowd or crowdsourced. Efficient use of different transportation modes, enabled
by the use of standardized containers, presents a challenge. Synchro-modality as
structured, efficient and synchronic combination of two or more transportation
modes also brings interesting collaboration issues, as it also involves multiple
stakeholders (i.e. modalities). In these concepts, issues around pricing, revenue and
cost sharing are abundantly around.

These logistics processes can also be transformed to the Physical Internet
(PI) paradigm. This PI acts as an autonomously managed network with nodes
(locations where freight is collected, transferred or delivered) and flows (transport
movements). For each request, a specific path from the origin to the destination
through the network is determined, using standardized transport unit (e.g. contain-
ers). A number of prerequisites for successful Physical Internet implementations
are real-time monitoring within dispatching systems, integrated in an information-
sharing platform, high-level advanced predictions of the future supply of transport
movements and advanced collaborative decision support systems, including pain-
and-gain sharing mechanisms.

3 Cost Sharing: Preliminaries

Consider a situation wherein a set of players (partners) collaborate among them-
selves to improve upon their joint costs. The cost sharing problem in a situation
entails finding ways to allocate the joint costs among the players. A solution to a
cost sharing problem indicates appropriate ways to do the latter.

We distinguish between two alternative approaches to solve cost sharing prob-
lems. The first approach (o) defines a cooperative game associated with the situation
and uses cooperative game theory to come up with allocations and/or cost-shares. A
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cooperative game among a set of players is defined by the joint costs of collaboration
among the grand coalition as well as all sub-coalitions. The second approach
(B) deals directly with the situation at hand and obtains cost-shares using the
information contained in the situation. In this approach, the solution often relies
on the underlying optimization problems.

Situations can be either more succinct or more expressive than their associated
games. Cooperative games explicitly describe the costs of every sub-coalition, while
these costs do not appear explicitly in the underlying situation. In this regard, a
situation may present relevant justifications for a certain solution that cannot be
devised just by focusing on costs of sub-coalitions. However, as the game theoretical
solutions abstract away the details of underlying situations, they provide a generic
framework to tackle cost sharing problems. In the remainder of this section, we
introduce some 5 notions from cooperative game theory. Figure 20.1 illustrates the
two approaches possible to cost sharing problems.

3.1 Cooperative Cost Games

A cooperative game is a pair (N, c) consisting of a player set N = {1, ...,n} and
a characteristic cost function ¢ which assigns to every group of players S € N,
hereafter a coalition, the cost ¢(S) € R. For the empty set we fix ¢(¥) = 0.

The cooperative game (N, c) is subadditive if for every two disjoint coalitions
Sand T,ie., S, T € N with SNT = ¢, we have

c(SUT) < c(S) + o(T).

If a game is subadditive, then the cost of a combination of disjoint coalitions are
always at most as much as the sum of their stand-alone costs so cooperation among
players could be beneficial. We focus our attention in this chapter on subadditive
games.

The cooperative game (N, ¢) is concave if for every Sand 7 with S C T C N
andeveryi € N\ T we have

Fig. 20.1 A situation [, its Situation ]| ———————— - Game (’\" (.I')
associated game (N, ¢, and l

two approaches to cost
sharing Situation Game

Solution Solution
o

| |

a(T)

ch)
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c(SU{i}) —c(S) = (T U{i}) —c(T).

Concavity of a game implies that the marginal cost of adding a new player to a larger
coalition is non-increasing.

Example 1 Consider a cooperative game among three players, N = {1, 2, 3}. The
costs for various coalitions are as follows. For § € N we have: ¢(S) = 10if S| =1,
c(S) = 19if | S| = 2, and c(S) = 24 if |§| = 3. Compared to the sum of their stand-
alone costs, two-player coalitions save one and the grand coalition saves a total of
6. The game is sub-additive. It is also concave—for instance, the marginal cost of
adding player 1 to player 2 is 9 units and the marginal cost of adding player 1 to the
coalition of players 2 and 3 is 5 units.

The example above motivates an alternative approach in defining cooperative
games. For every cooperative cost game (N, c¢) there exists a dual cost-savings
game (N, v) where forevery S C N:v(S) = ZieS c({i}) —c(S). The characteristic
function in a savings game gives the amount of savings that can be made in
coalitions compared to the stand-alone costs of the players involved.

Let a; € R be the cost-share of player i € N. An allocation a = (a;);cn is a
vector of cost-shares for all players. A basic set of properties can be defined to reflect
appropriate conditions that allocations should satisfy. Let (N, ¢) be an arbitrary but
fixed game for the rest of this section.

An allocation « satisfies the Efficiency property if > .y a; = ¢(N). With an
efficient allocation, the entire cost of the grand coalition is shared among the players
so that no excess or shortage occurs.

An allocation a satisfies the Individual Rationality property if for every i €
N we have a; < c({i}). If an allocation fails to satisfy the individual rationality
property, then some players would be better off not collaborating.

Two players i, j € N are substitutable if ¢(S U {i}) = c¢(S U {j}) forall § <
N\ {i, j}. An allocation a satisfies the Symmetry property if for every pair of
substitutable players i, j € N it holds that ¢; = a;. This property reflects a basic
fairness feature, that is, for two players that are identical in contributions to costs,
their cost-shares must be equal as well.

Example 2 In Example 1, both allocations a = (8,8, 8) and (6,9, 10) satisfy
efficiency, and individually rationality. Only the former allocation satisfies the
symmetry property.

3.2 Solutions for Cooperative Cost Games

Let & be the set of all cooperative cost games. Let 4’ C ¢ be a subset of all
cooperative cost games. A (game) solution on ¢’ is a set-valued function B that
determines a set of allocations for every cooperative cost game in ¢’. A solution



20 Collaboration in Transport and Logistics Networks 633

B on 4’ is called single-valued if |3(N, c¢)| = 1 for every (N, c) € 4’. For any
single-valued solution B on ¢’ we refer to the function that assigns to any game
(N, ¢) € ¢’ the unique element in B(N, ¢) as an allocation rule.

We introduce some of the well-known solutions for cooperative games.

3.2.1 Core

The individual rationality property can be extended over all coalitions of players
by requiring that the sum of cost-shares of players in every coalition be at most as
much as the characteristic cost of that coalition. An allocation a is stable for the
game (N, c) € 4 if forevery S € N we have ) ;.¢a; < c(S). The core of game
(N, ¢) € 9 is the set of all efficient and stable allocations. That is,

€(N,c) = {a eR"|Y aj=c(N)and » a; <c(S).,YSCN¢.
ieEN ieS

Given a game (N, c), consider the following linear program:

max E a;

ieN

st Y ai <) VSCN
ieS

The core of (N, ¢) is non-empty if and only if at optimality the objective function
of the above program is ¢(N), that is, an optimal solution to the above program a*
satisfies ) ;. a = c(N). If the latter holds, then every optimal solution to the
program above is an allocation in the core and vice versa. Consider the dual to the
program above:

min Z dsc(S)

SCN

s.t. Z Sg =1 YieN
SCN,S>i

By the strong duality theorem, the core of the game (N, c) is non-empty if and only
if the optimal value of the objective function in the dual formulation is also c¢(N).
Bondareva (1963) and Shapley (1967) provide a related condition for non-emptiness
of the core of a game. A map « : 2V \ {#}} — [0, 1] is a balanced map if for all
i € N we have
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Z K(S) = 1.

SCN,S>i

The game (N, c) is a balanced game if for every balanced map « it holds that

D k($)e(S) = e(N).

Se2N\ {4}

Bondareva (1963) and Shapley (1967) show independently that the core of a
game is non-empty if and only if it is a balanced game.

Example 3 Let N = {1, 2,3} and consider the game (N, c¢). An example of a
balanced map in this case is ¥(S) = 0.5if S C N and |S| = 2 and «(S) = 0
for all other S € N. A necessary, but not sufficient, condition for the game to have
a non-empty core is to have 0.5¢({1, 2}) + 0.5¢({1, 3}) + 0.5¢({2, 3}) = c¢(N), i.e.,
c({1,2}) + c({1, 3}) + c({2,3}) = 2c¢(N). Hence whenever the latter condition is
violated the core of (N, ¢) would be empty.

The following example shows that the core of a game can be empty.

Example 4 Consider the game (N, c) with N = {1, 2, 3}. The costs for various
coalitions of players are as follows. For § € N we have: ¢(§) = 11if |S] = 1,
c(S) = 17 if |S| = 2, ¢(S) = 28 if |S| = 3. Note that c({1,2}) + c({1,3}) +
c({2,3}) = 174+ 174+ 17 = 51 < 56 = 2¢(N). By the condition established in
Example 3 we conclude that € (N, ¢) = @.

3.2.2 Shapley Value

The Shapley value is a single-valued solution, i.e. for every game it results in a set
with a single element (a singleton). To describe the allocation rule leading to this
element, to which we refer as the Shapley value as well, let 0 : N — N be a
bijection of players in N. o can represent the order in which players join in. Denote
the set of all such permutations with IT(N). For a given permutation o, let o (i)
be the position of player i in the order and P7 = {j € N|o(j) < o (i)} be the
set of players that come before i, including i itself, in o. We define the marginal
contribution of a player in an order as the cost that the player adds to the coalition of
players joining before him. Given the game (N, ¢) € ¢, the marginal contribution
of player i in o is

mi (N, c) =c(P7) —c(P7 \ {i})

Let m(N,c) = (m?(N,c)),_, be the vector of marginal contributions of all
players in o. The Shapley value of a game (N, ¢) is defined as
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1
PN, o) = — > m(N.o).

" oell(N)

The Shapley value divides the total cost of the grand coalition according to the
average marginal contributions of players in all different orders that they can join
the cooperative game. Note that there are exactly n! of such orders. An alternative
formulation of the Shapley value is

3 (ISI = DIAN] = 1SD!

®(N,c) = Tl

[c(S) —c(S\{iD]
SCN,ieS§ ieN
Example 5 In Examples 1 and 3 the corresponding Shapley values are (8, 8, 8) and
(9,9, 9) respectively.

Shapley (1971) shows that if (N, ¢) is a concave game then we have @ (N, ¢) €
% (N, c), i.e., the Shapley value is in the core. For ease of comparison we refer to
the set containing @ (N, ¢) as SH(N, ¢), thatis, SH(N, c) = {® (N, c¢)} for every
(N,c) e 9.

3.2.3 Least-Core

The intuitive appeal of the stability concept and the possibility of having empty
cores motivates alternative solutions that address the stability-related issues. An
allocation a for the game (N, c¢) € ¥ is e-stable if Z[GS ai — e < c(S) for all
S C N. The set of all e-stable allocations of the game associated with a situation
comprises the e-core (Shapley and Shubik 1966).

The least-core of a game (Maschler et al. 1979) is the intersection of all non-
empty e-cores of it. Accordingly, the least-core of a game (N, c) € ¥ is defined
as:

LE€(N,c) = {a e RV

Zai = ¢(N) and Za,- —eMin < ¢(5),VS C N} .

ieN ieS

where

€™ (N, ¢) = min {e eR

Za,- = ¢(N) and Zai —e<c(9),VS C N}.

ieN ieS

Considering the definition of e-core, it can be observed that when the core is
not empty, then the least-core is a subset of the core. Also, for every game one can
always find values of € such that the corresponding e-core is non-empty.
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3.2.4 Nucleolus

The nucleolus (Schmeidler 1969) is another well-studied solution for cooperative
games. Let (N, ¢) € ¢ be a given cooperative cost game. Define the imputation set
of (N, ¢) as

I(N,c) = {a e RN

Y ai=c(N)anda; < c({i}).Vi € N} .

ieN

Observe that if (N, ¢) is a subadditive game, then the imputation set of the game is
non-empty. Consider an allocation a € RY. Define the coalitional unhappiness of
every coalition S C N as

Os(a) = Zai —¢(9).

ieS

Let 6 (a) contain the elements (fs(a))scy in a non-increasing order. For two vectors
0,0 € R™, the lexicographical order 8 <; 6’ implies that either § = @', or there
is] <t <msuchthat§; = 6/ forl < j < tand 6; < 6;. The nucleolus of
the game (N, ¢), i.e. n(N, ¢), is the set of imputations whose associated vectors of
unhappiness are lexicographically minimal:

n(N,c) ={a € I(N,c)|0(a) < 6(d'),Va' € I(N,0)}.

The nucleolus of a game has the least maximum unhappiness over all coalitions in
a lexicographical manner. For every subadditive cooperative game, the nucleolus
is always non-empty, unique, and is contained in the least-core (Schmeidler 1969).
We remark that the allocation rule leading to the unique element of the nucleolus is
often times referred to as the nucleolus as well.

3.2.5 Comparing Solutions

We present some desirable properties for solutions and compare the aforementioned
ones across these properties.

A solution B on ¢’ satisfies the non-emptiness property if for every (N, ¢) € ¢’
itholds that B(N, c¢) # @. The non-emptiness of a solution assures that it can suggest
ways for cost sharing in all games.

As we saw in Examples 1 and 2, the core can include many allocations or no
allocation at all. The least-unstability property is the next best thing to maintain
if stability is not achievable. A solution 8 on ¥’ satisfies the least-unstability
property if for every (N, ¢) € 4’ and every a € (N, c) we have ) ; _qa; — €* <
c(S) for every S C N where
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Table 20.1 Comparing Allocation rule NE SV |[LU

solutions on subadditive S
games; NE: non-emptiness, Core 4 X x v v
SV: single-value, LU: Shapley value | SH |v' |V |Xx X
least-unstability, S: stability Least-core LEC |V x |V X

Nucleolus n v vV X

€*(N,c) =min{e € Ry Zai = ¢(N) and Zai —e<c(S),¥VSCN
ieN ieS

If the latter holds while €* = 0, we say that the solution is stable.

Table 20.1 compares core, Shapley value, least-core and nucleolus on the class
of subadditive games along these properties. As can be seen from this table, there is
no perfect solution that can satisfy all these properties. The core is the only solution
that guarantees stability. However, the core can be empty. The Shapley value is a
single-valued solution but it may fail to be stable—or least-unstable when the core
is empty. The least-core and nucleolus are both least-unstable (they are stable if the
core is not empty). Furthermore, the nucleolus is a single-valued solution, that is, it
always obtains a unique allocation.

3.3 Solutions for Situations

As mentioned earlier, a collaborative situation is a succinct description of relevant
information necessary to analyze the context. Formally, we denote a collaborative
situation with I". The set of all situations with player set N is also denoted with .7.
The joint cost of collaboration among all players in N in situation I" € .7 is ¢! (N).

Let .7 be a subset of all situations. A (situation) solution on .7 is a set-valued
function « that determines a set of allocations for every situation I" € 7. In line
with solutions for cooperative cost games we can consider single-valued solutions
and allocation rules for situations as well.

If a situation allows for explicit calculation of joint costs for all sub-coalitions,
then one can construct a cooperative cost game associated with the situation. Given
such a situation I” the associated game is denoted with (N, cr ). In this case, a
situation solution « on .7’ can be defined by drawing upon a game solution 8
on &', that is, a(I") = B(N, cl), if for every I' € .7’ we have (N, c) € ¥'.
Accordingly, one can redefine the properties defined for game solutions in the
previous sub-section to situation solutions by requiring the properties to hold in the
associated games. The advantage of using situation solutions over game solutions is
their ability to incorporate more details from situations that allows for formalizing
properties which cannot otherwise be defined over associated games. We elaborate
further on this issue in next sections.
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4 Cost Sharing in Logistics Network Situations

In this section, we discuss cost sharing in some of the stylized logistics network
design situations. We particularly focus on possibilities for having a non-empty core
in the games associated with these situations.

4.1 Minimum Cost Spanning Tree (mcst) Games

The minimum cost spanning tree (mcst) problem is a well-studied problem in
operations research. An mcst problem consists of a set of nodes including a special
node called “source”. The costs of establishing links among all nodes are known.
Subsequently, a minimum cost spanning tree is a set of links between the nodes that
connects all nodes to the source and has the lowest total cost of establishing links
among all possibilities to do so.

The cooperative version of an mcst problem represents the situation where each
node, except the source, corresponds to a player and the players collaborate to
establish a network of paths to reach the source at the lowest total cost. In the
context of logistics, players on nodes can represent a set of suppliers who want
to establish transportation channels to a customer. The issue of sharing the cost of
an mcst among the players is critical in such contexts.

Formally, let N = {1, ..., n} be a set of players each corresponding to a node
and denote the source node with 0. The set of all nodes is denoted with N* =
{0, 1, ..., n}. The set of links that can be established in the network is denoted with
LY = {{i,j}li,j € NT,i # j}. The connection cost function w : Lt — R,
gives the cost that needs to be incurred in order to establish a link between any
pair of nodes in the network. For convenience we refer to w({i, j}) as w;; for every
{i, j} € L™. A minimum cost spanning tree (mcst) situation can be represented with
the tuple:

=N, w).

For every coalition S C N, let Eg be a set of links constituting a minimum cost
spanning tree for players in S using the nodes in St only. The cooperative mcst
game associated with situation I" is the pair (N, ¢') where for every S € N we
have ¢ (8) = 3y wij-

Example 6 Figure 20.2 illustrates a network with four nodes that corresponds to
an mcst situation I with three players. The connection costs along all links are
presented in the figure. The mcst for the grand coalition is indicated with bold lines.
Observe that ¢/ (N) = 27, while ¢/ ({1}) = 6, ¢ ({2}) = 17, I'({3}) = 18,
'y =6, (1,2} = 23, ¢ ({1,3)) = 19, and ¢! ({2, 3}) = 25. Note that
c({1, 3}) — c({3}) = 1, that is, the contribution of player 1 when he joins player 3 is
1. However, we have c({1, 2, 3}) — c({2, 3}) = 2. Therefore, player 1’s contribution
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Fig. 20.2 An mcst example
(Norde et al. 2004)

to costs increases when joining coalition of players 2 and 3. Thus, the game is not
concave.

The fundamental result regarding cores of mcst games is as follows.
Theorem 1 The core of an mcst game is non-empty.

The first proof for non-emptiness of the core of an mcst game is given by Bird
(1976). Tamir (1991) shows that the characteristic function of an mcst game can
be represented with a mixed-integer linear program and that allocations in the core
can be obtained via solutions to the dual of the integer relaxation of such program.
Nevertheless, an interesting feature of mcst games is that one can obtain allocations
in the core without solving a linear program and directly from the situation. This was
shown by Bird (1976) using the Prim (1957) algorithm for solving an mcst problem.
The Prim’s algorithm for finding an mcst over a given network starts by
establishing a link between the source and the node such that the cost of this link is
the lowest among all. It continues by establishing another link between a connected
node and an unconnected node with the lowest connection cost. By repeating the last
step the algorithm connects all nodes to the source. The solution for mcst situations
that obtains by requiring newly connected players to pay their connection costs is
called Bird’s solution. The literature often referred to this solution as Bird’s rule.

Bird’s Solution Given situation I" = (N1, w), let E ﬁ be an mcst obtained from
Prim’s algorithm. For every player i € N, find j € N7 such that i is directly
connected to j in E ﬁ on the path toward the source. Let aiB (I'") = w;j. Bird’s
solution o (I") is the set of all allocations that are obtained in this manner.

Let o* be an ordering of nodes as they are connected to the source using Prim’s
algorithm. The ordering is such that if 0*(i) < o*(j) forany i, j € N, theni is
on the path from j to the source. Then the allocation to player i € N obtained by
Bird’s solution with respect to o™ is exactly his marginal contribution, that is

aP () = c(P?") — c(P7\ {i}).
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Fig. 20.3 The mcst situation
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Bird’s solution always obtains allocations in the core, as implied by the theorem
below.

Theorem 2 For every mest situation I" we have aB(I") € €(N, ¢!).

It should be noted that Prim’s algorithm does not necessarily produce unique mcsts
thus the allocations obtained from Bird’s solution need not be unique. We remark
that convex combinations of allocations obtained via Bird’s solution also generate
allocations in the core (Curiel 1997).

Bird’s solution provides a straightforward approach to obtain allocations in the
core of these games. This solution directly builds upon the situation and thus one
does not need to obtain the costs of all sub-coalitions or solve a linear program
for finding core allocations. But is this solution always satisfactory? Consider the
following example.

Example 7 Consider an mcst situation I" with two players (see Fig. 20.3). Let M be
a large number and ¢ a small number. Bird’s solution obtains the unique allocation
aB(I") = (M, 2¢) which is in the core. In this example, both players are at a long
distance from the source although player 2 is slightly further away, i.e. ¢/ ({2}) =
e ({1}) + e. Still, Bird’s solution requires player 1 to pay the entire cost of its
connection while player 2 pays almost nothing. One would argue that this is not
fair—especially when there are other allocations in the core. The core of the game
isE(N,cl) = {(x, M+2¢e —x)|e <x < M}. Notice that in the allocation (M, 2¢)
players 1 and 2 are paying respectively the maximum and minimum amounts that
they could pay in any core allocation.

The issue observed in Example 7 concerning Bird’s solution is not coincidental.
In fact, Bird’s solution always gives extreme points in the cores of mcst games
(Granot and Huberman 1981). Subsequently, Bird’s solution always makes every
group of players who are directly connected to the source collectively pay their
stand-alone costs. The players that join such coalitions only pay their marginal cost
of connection and thus enjoy the benefits of collaboration the most. A closer look at
Bird’s solution reveals some other shortcomings. We present an example.

Example 8 Consider again the situation I" in Fig.20.2. The highlighted mcst is
indeed the one obtained by Prim’s algorithm. We have a®B (") = (6, 8, 13) which is
in the core of the game. It can be verified that in coalition {2, 3} player 3 is allocated
with 8 according to Bird’s solution which is less than what that player pays in the
grand coalition, i.e. 13.
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As seen in Example 8, Bird’s solution may result in some players being allocated
with higher costs in larger coalitions. If this is the case, then such players might
object to the inclusion of more players to the game despite the fact that the grand
coalition can benefit from having more players (due to subaditivity). Accordingly,
Bird’s solution does not satisfy the population monotonicity property (Sprumont
1990).

An alternative approach for obtaining the allocations in the core of mcst games
without recourse to the characteristic function is proposed by Norde et al. (2004)
which is closely related to the Kruskal (1956) algorithm for obtaining mcsts. This
solution is slightly less straightforward to obtain than Bird’s solution. However, it
has the additional advantage of producing allocations that ensure players in smaller
coalitions would never be worse off by the addition of new players to the coalition
(and thus satisfies the population monotonicity property).

There are several extensions of mcst games in the literature. We discuss two of
such extensions briefly in this section.

Extension 1 Recall that in the original mcst game the cost of sub-coalitions are
defined with regard to the mcsts that connect their members to the source drawing
upon the nodes in their corresponding network only. That is, members of § C N
cannot use nodes involving players not in S for connecting to the source. The first
extension of mcst games relaxes this assumption, that is, coalitions of players can
construct their connection to the source using the nodes corresponding to other
players. For instance, suppose the players in a coalition correspond to factories in
different cities who would like to construct a network of pipelines to a supplier
of water. Then the factories can indeed construct the network through the cities
where other factories are located at. Given the mcst situation I, in the associated
monotone mcst game (Granot and Huberman 1981), (N, ¢l ), forevery S C N we
have

()= min (T).
SCTCN

Theorem 3 The core of a monotone mcst game is non-empty. Bird’s solution gives
extreme points of the cores of monotone mcst games.

Extension 2 In the previous extension, we allowed sub-coalitions to use outsiders’
nodes to construct their path to the source. Still, the grand coalition of players
constituted all available nodes except the source node. Another extension of mcst
games allows for additional nodes in the network, i.e. nodes that correspond to no
players in N. Let

I'=(V,N,w)
be a situation with a set of nodes V' that includes the source node, the set of players

N C V, and the connection cost function w defined over pairs of nodes in V_ In the
Steiner Tree game (Megiddo 1978; Sharkey 1995) associated with I", (N, '), the
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Fig. 20.4 An extended mcst 3
example (Sharkey 1995) >
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cost of each coalition § € N is the cost of mcst that connects players in S to the
source while using any nodes in V. The following example shows that the core of
these games can be empty.

Example 9 An extended mcst situation is depicted in Fig.20.4. The node set
includes six locations in addition to the source. There are three players in the
grand coalition. The cost of connection on all links are 1. Observe that ¢/ (S) = 2
whenever |S| = 1, ¢/'(S) = 3 whenever |S| = 2, and ¢/ (N) = 5. Note that
cd'qu, 2y +¢7{1,3) +e'((2,3) = 9 < 2¢7(N) = 10. By the condition
established in Example 3 we conclude that the core of the game is empty.

4.2 Facility Location Games

In facility location games, players collaborate to jointly open facilities as well as
to establish connections to their locations. The basic facility location situation can
be formulated as follows. Let V be a set of nodes. The player set is a subset of
the nodes, that is N € V. A flow function f : N — R, gives the requirement
of demand for each player. Let E C {{i, j}|i, j € V} be the link set representing
feasible connections between the nodes. A connection cost function w : E — R4
gives the cost of providing one unit of service across each link. We let w;; = 0 for
alli € N. The function ¢ : V — R gives the total investment needed to establish
facilities at different nodes (fixed costs). A facility location situation is thus

I'=(V,N, f,E,w,1).

Given the facility location situation I”, the associated cooperative cost games is the
pair (N, ¢') where for every S € N we have:
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()= min Y frwgxa+ Y an (20.1)
ie€S,keV{ik}eE keV
s.t. Yo x=1 Vies (20.2)
keV:{i,k}eE
yi — Xix >0 VieS,VkeV :{i,k} € E
(20.3)
Xik, Yk € {0, 1} Vie S,VkeV :{i,k} € E
(20.4)

The program above minimizes the total cost of flow as well as opening facilities.
The optimal solution satisfies the following constraints. First, all players in a
coalition must be connected to a facility. Second, a facility should be established
if there is a link to a player. Finally, integrality constraints ensure the feasibility of
solution. The dual program associated with the relaxation of program (20.1)-(20.4)
for N is

()= max)_a (20.5)
ieN
st. ai — ik < fiwix  VkeV,VieN:{ik}€E (20.6)
Z wik <tr VkeV (20.7)
ieN:{i,k}eE
pixk >0 Yie NNVkeV:{i,kl€E (20.8)

The solutions of the primal and the dual programs can be used to provide insights
regarding non-emptiness of the core. Kolen (1983), Chardaire (1998), and Goemans
and Skutella (2004) show that the dual program above is exactly the same as the
program for obtaining the core of the game. Therefore, non-emptiness of the core
can be guaranteed when the optimal objective function of the dual equals that of the
original (un-relaxed) program. In other words, the core is non-empty if the duality
gap is zero.

Theorem 4 Let I' = (V, N, f, E, w, t) be a facility location situation. The core of
the associated game (N, c') is non-empty if and only if c(N) = ¢(N), that is, there
is no integrality gap between the primal and dual (of the relaxation) programs for
the grand coalition.

As implied by the result above, an integrality gap renders the core of a facility
location game empty. The example below shows that facility location games can
have empty cores.

Example 10 The network of a facility location situation is depicted in Fig. 20.5. All
nodes are situated on a circle and require a unit flow. The distance between every
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Fig. 20.5 A facility location °

situation on a circle
(Goemans and Skutella 2004)
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pair of adjacent nodes, which constitute the link set, is one and the cost of flow
equals the distance. There are three players, N = {1, 2, 3}, located at nodes i, iii, and
v respectively. The cost of opening a facility on nodes ii, iv, and vi is two and for the
other nodes the cost is a large number. In the associated cooperative game individual
players each need one facility adjacent to them thus ¢/ (§) = 241 = 3 for | S| = 1.
In two-player coalitions one facility can serve both players so ¢! (§) = 24+1+1 =4
for | S| = 2. Finally, in the grand coalition the best option is to open two facilities
thus ¢/ (N) = 242414141 = 7. Note that ¢/ ({1, 2})+cT ({1, 3)+cT({2,3) =
12 < 14 = 2¢7(N). By the condition established in Example 3 we conclude that
the core of the game is empty.

There are several special situations where the zero duality gap between the primal
and dual programs, and subsequently non-emptiness of the core, can be proven to
always hold. For instance, suppose that the underlying graph of the situation (V, E)
is a tree—i.e. there is exactly one path between any two nodes—and that the costs
of connection between any pair of nodes correspond to the metric distance between
those nodes on the corresponding planar graph. In this case, the original program
can be re-written in the following way. For each playeri € N,let0 = rj; < rjp <

. < rjv| be the ordered sequence of distances between player i’s node and all
other nodes. Also let r;y+1 = M where M is a sufficiently large number. Define
the variables z;; such that z;; = 1 if player i is not connected to an open facility
which is situated at the distance less than or equal to r;;, and z;; = 0 otherwise.

Also, define ul/ & such that u{k = lifcjp <r;jand u{.‘j = 0 otherwise. Then we have
(see Kolen 1983):

Sy = min Y fitrijr—ri)zij+ Y (20.9)
ieS, jeVv keV
j B . .
s.t. o whtzi=1 VieS,VjeV (20.10)
keV:{i,k}eE

Zij» vk € 0, 1) VieS,VkeV  (20.11)
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Fig. 20.6 A facility location situation on a line

Constraint (20.10) ensures that whenever there is no open facility within the range
rij from i, then z;; = 1. Kolen (1983) show that the constraint coefficient matrix in
the program above has a special feature which guarantees a zero duality gap. Thus,
in this class of situations the core is always non-empty.

Example 11 A facility location situation I” "is depicted in Fig.20.6. The only
difference between this situation and the one in Example 10 is that the nodes are now
situated on a line. In the cooperative game associated with this situation individual

players each need one facility adjacent to them thus ¢/ (§) = 2+ 1 = 3 for
|S| = 1. In two-player coalitions {1, 2} and {2, 3} one facility can serve both players

socl (§)=2+1+4+1=4forS = {{1,2}, {1, 3}}. However, for coalition {1, 3}
we have ¢!” ({1,3}) = 242+ 1+ 1 = 6. Finally, in the grand coalition the best

option is again to open two facilities thus ¢/ (N) =2 +2+ 1+ 1+ 1 = 7. Notice
that allocation a = (2, 2, 3) is in the core.

4.3 Hub Location Games

Another class of collaborative situations related to logistical problems pertains to
finding the locations of logistical hubs, i.e., points of consolidation in a network,
which allows for more efficient dispatching of vehicles. The basic hub location
situation encompass hub-spoke structures where the transport costs in between hubs
are cheaper due to the use of more efficient means of movement. Accordingly,
in these collaborative situations players jointly establish hubs and connections to
reduce the cost of their aggregated network.

Let V be a set of nodes in a network and let the player set N be situated amongst
the nodes, i.e., N C V. Each player is positioned on a node and has transportation
requirements from his node to other nodes. Let the requirement function f : N X
V — R; represent the latter. Define the link cost function w : V x V. — Ry
and hub cost function ¢ : V — R,. The cost of direct movements between nodes
are sufficiently high so that it is beneficial that flows of goods between two nodes
always pass through hubs. The link costs satisfy the triangular inequalities which
ensure that transports between any two nodes does not need more than two hubs
involved. Finally, let the coefficient A € [0, 1] be the discount factor for movements
between hubs. This means, if there are two hubs established at nodes i and j, then
the unit cost of transportation from i to j drops from w;; to Aw;;. A hub location
situation is a tuple



646 B. Hezarkhani et al.
I'=(V,N, f,w,t,A).
The players collectively decide to open hubs at some nodes in order to satisfy the

flow requirements with the minimum cost. Skorin-Kapov (1998) gives a formulation
of the optimal cost for the grand coalition as

cN)y=min Y fij Wi + MW + W) Xijkm + P e Vik (20.12)
i€eN;j,k,meV keV
sty =1 VieN (20.13)
keV
Yik — Yik = 0 Vi,keV (20.14)
injkmzyik Vie N,Vj,keV
meV
(20.15)
injkm=yjm Vie NNVjimeV
keV
(20.16)
Xijkm =0 Vie N,Vk,jmeV
(20.17)
ik € {0, 1} Vi,keV (20.18)

The program above minimizes the total cost of movements between nodes and
through hubs, plus the cost of establishing the hubs. Each player must be connected
to a hub. The variable x; i, represents the fraction of flow from i’s node to j that
passes through hubs k and m. The zero-one variable y = (y;;);, jev also indicates
the connections between nodes and hubs with y;; indicating the establishment of a
hub at node i. The constraint (20.15) (respectively constraint (20.16)) indicates that
the entire flow from a player i’s node to destination j will be routed via link ik (link
mj) if and only if i is allocated to hub k (j is allocated to hub m) independently of
the destination (source). Let (x*, y*) be an optimal solution to the above problem.

There are different possibilities for defining cooperative games associated with
hub locations situations based on how the cost of sub-coalitions are defined. In
the basic hub location game (Skorin-Kapov 1998) the cost of sub-coalitions are
calculated on the network which is optimal for the grand coalition. Let y,’:s =1
whenever there is i € § such that x;"jkm > 0 or x;“jmk > 0, that is, y,fs = 1if
a member of S uses the hub k. Then, the basic hub-location game associated with
situation I" is (N, ¢I') where ¢(N) is defined above and for S C N we have

c®) = > fijWik + AW + W)X + Y (20.19)

ieS keV
j.k,meV
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Therefore, the cost of a sub-coalition S is the total transportation cost of movements
on the optimal network plus the cost of establishing the hubs that S uses on the
optimal network.

Theorem S5 Let I' = (V, N, f, w, t, A) be a hub location situation. The core of the
basic hub location game associated with I is non-empty.

4.4 Delivery Consolidation Games

With the increasing attention to reducing the negative side effects of transportation
such as congestion and pollution, Urban Consolidation Centers (UCC) became an
important new logistical initiative. Through a UCC, logistics providers can combine
their LTL cargo and collaboratively dispatch FTL trucks to urban areas. However,
the cost of joint dispatches must be shared among the users. In this section we
overview a cost sharing game associated with UCCs introduced in Hezarkhani et al.
(2019). The carriers (players) have deliveries that are destined for the same area.
Instead of individually driving to their destinations, the players can arrive at the
consolidation center and bundle their cargo into full-truck loads. The deliveries are
time-sensitive and the amounts of savings that the carriers obtain are dependent on
their dispatch times.

The network V consists of only two nodes: a consolidation center and a common
destination and the players in N can drive the distance between the two nodes either
individually or jointly. We call 7; the arrival time of delivery i to UCC and assume
that deliveries have non-identical arrival times and that N is arranged by increasing
order of arrival times, i.e., r| < r» < ... < r,. Let p; > 0 be the waiting
penalty rate for player i, that is the cost that he incurs when his cargo sits in the
consolidation center for a unit of time. Thus, the cost to player i if dispatched from
the consolidation center at time d; > r; is p;(d; — r;). The cost of dispatching
a truck from the consolidation center to the common destination is W > 0. We
assume players have small yet time sensitive cargo and the capacity of a truck is not
a restriction. Accordingly, a Dispatch Consolidation (DC) situation can be defined
by the tuple I = (V, N, r, p, W).

The consolidation center decides a collection of dispatches, representing consol-
idated subsets of players, and their associated dispatch times. The objective of the
UCC is to minimize the sum of waiting and dispatching costs for all players. One can
verify that the optimal time for the dispatch of a fixed group of playersin 7 € N,
is the arrival time of the last player in 7. Denote the first and last arriving delivery
in T with b(T') and e(T'), respectively. Since the players are ordered by their arrival
times, b(T) and e(T') also represent respectively the smallest and largest elements
in T'. The cost function f for a group of players T C N is

fr= Z [pi (recry —ri)] + W.

ieT
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We can construct the optimization problem as a set packing formulation and define
the associated dispatch consolidation (DC) game by letting c(S) to be

cF(S) = min Z Xt fr

TCS

s.t. Z x> 1 ViesS
TCS:S>i
x7 € {0, 1} VT C S

DC games are special instances of the class of set packing games (Deng et al. 1999).
The general characterization of the conditions for non-emptiness of the cores of set
packing games gives us the following result; The core of a DC game is non-empty
if and only if the integer relaxation of the program above for N does not affect
optimality.

Using the results of Barany et al. (1986) regarding zero duality gap of set packing
problems on trees via their sub-trees, Hezarkhani et al. (2019) show that integer
relaxation of the program above in DC games does not affect optimality. Therefore,
the core of any DC games is non-empty.

The extension of DC games to incorporate restrictive capacities of the trucks is
also considered by Hezarkhani et al. (2019). With restrictive capacities, DC games
might have an empty core. In this case, Hezarkhani et al. (2019) introduce the notion
of component-wise core as an alternative notion of stability and prove that DC
games with restrictive capacities have non-empty component-wise cores.

5 Cost Sharing in Cooperative Truck-Load Delivery
Situations

The logistical situations studied in the previous section were all concerned with
establishing the physical network which is comprised of links, facilities, and hubs.
The corresponding decisions are at the strategic level and as such necessitate a long
term cooperation time line. However, there are other opportunities for cooperative
logistics which deal with day-to-day activities of participating players and target
operational decisions. In these service logistics situations, the nature of cost sharing
problems can be different. In this section, we discuss the Cooperative Truck-Load
Delivery (CTLD) situations, introduced by Hezarkhani et al. (2016), that arise in
service network design and explain how an appropriate allocation rule for these
situations can be devised.

CTLD situations are comprised of a number of logistics providers and their
individual resources—e.g. depots, trucks, drivers, equipment, etc. Players have
delivery requirements. A delivery requirement is simplified as an order for picking
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up cargo at some location and transporting it to another location. In practice,
delivery requirements can be more complex and involve time windows, special
equipment and personnel, and other constraints. The delivery requirements must
be fulfilled by vehicles in feasible trips. In this context, the players seek to
collaboratively design their service network at the tactical as well as operational
levels.

Formally, let V be a set of nodes corresponding to spatial locations, and w :
V x V — RT be a distance function which satisfies the triangular inequalities.
We assume hereafter that cost and distance are equivalent. A set of delivery
requirements {d', ..., d"} is given. A delivery requirement d* corresponds to an
arc (i¥, j*), consisting of the corresponding pickup location i* € V and delivery
location j* € V, ik # j*. The fulfillment of the delivery requirement d* corresponds
to a single traverse of the arc (i*, j¥) for requirement k. A non-empty set of depots
{01, el oh} C V is available. The depots station vehicles that fulfill the delivery
requirements. Delivery requirements must be fulfilled in trips. A trip is a sequence
of deliveries that start and ends at a particular depot. Thus a trip / can be defined
as a tuple (01 . D! ! ) where o' is the origin/destination, D! is a subset of deliveries
that are fulfilled in /, and o is an ordering of deliveries in D’ which represents the
sequence of fulfillments in trip /. Let . be the set of all such trips. Let L € .Z be
the feasible trip set. The feasibility of a trip can depend on the number and type of
deliveries it fulfills, specific depots and equipment that must be employed, and other
details.

The cost of a feasible trip /, w', is the sum of costs of the arcs traversed in trip /.
The full kilometers cost of a trip is independent of both the choice of the trip’s depot
and the sequence of fulfillments:

wlF = Z w(ik,jk).

k:dkeD!

The second part of a trip’s cost, i.e. empty kilometers cost, is the cost associated with
the distance travelled from/to the depot and among different fulfillments:

|D'|—1

1
w%:w(ol,i”ll>+ Z w(j”i,i"/£+1>+w<jg|01,ol>,
k=1

where the shorthand notation o,ﬁ represents the index of the delivery requirement that
is fulfilled after all the k — 1 deliveries preceding it in o are fulfilled. By |D!| we
denote the number of deliveries in D'. The cost of trip [ is defined by w' = w%—i—le.

A fulfillment plan P from O to D is a collection of feasible trips in L(O, D) that
fulfills all deliveries in D exactly once. The deliveries fulfilled in the trips of the
plan P partition the corresponding set of delivery requirements, i.e. | J;cp D'=D
and D'N DK = @ forall k,l € P with[ # k. The cost of the fulfillment plan P is the
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total cost of its trips, i.e. w(P) = Y ;cp w'. Accordingly, w(P) is decomposable
into full and empty movements:

w(P) = wp(P) +wg(P),
where wr(P) = Y p wé, and wg(P) = ) ;cp w% are the total costs of full and

empty kilometers of P respectively. Let £2(0, D) be the set of feasible plans from
O to D. The cost of optimal plan from O to D is

w*(0,D)= min w(P).
Pe(0,D)

Consider a non-empty set N = {1,...,n} of players. Each player i € N

possesses a set of delivery requirements D; = {dil, e dl.m '} and a non-empty set
of depots O; = {ol.l, e of”} such that UjeyD; = {d',...,d"} and Ujeny O; =
{01, ...,oh}. Let Og = U;jes0; and Dg = U;¢sD; denote the combined set of

depots and delivery requirements of players in coalition S C N. The set L(Og, Dgs)
contains all feasible trips that coalition S € N can use to fulfill its combined
delivery requirements. Combining all this, a CTLD situation is a tuple:

I'=(N,V,w, (Di)ien, (Odien, L).

Let 7' be the set of all CTLD situations. By joint planning of fulfillments, a
coalition in a CTLD situation could reduce the cost of its empty kilometers. The
cost saving generated by a coalition can be due to utilization of a larger pool of
depots for constructing trips or combining fulfillments together more efficiently in
trips, or both. It can be verified that shrinking the set of delivery requirements cannot
increase the minimum cost of delivery, and augmenting the set of depots cannot
increase the minimum cost of delivery. Also, there is a subadditive effect with regard
to the minimum costs of fulfillment that results from aggregated planning of delivery
requirements (see Hezarkhani et al. 2016).

We refer to the cost games associated with CTLD situations as the CTLD games.
The characteristic function in CTLD game (N, ¢!y associated with situation I’
assigns to coalition S € N the cost

¢ (8) = w*(0s, Ds).

Although there are special CTLD situations where the core is always non-empty
(see Ozener and Ergun 2008 and Hezarkhani et al. 2014), in general, CTLD games
can have empty cores, as shown in the example below.

Example 12 Consider the CTLD situation I" depicted in Fig. 20.7. There are three
players N = {1, 2, 3} each having a depot and a delivery requirement. The distance
between the pickup and delivery locations for all delivery requirements is two and
the distance from the depots to any pickup/delivery point is one. The set of feasible
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Fig. 20.7 A CTLD situation &
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trips includes all trips which fulfill no more than two delivery requirements, i.e.
L = {l € Z||D'| < 2} (only two deliveries can be fulfilled sequentially during
a day). For § € N we have ¢/'(S) = 4if [S| = 1, ¢['(S) = 6if [S| = 2, and
¢ (N) = 10. Applying the condition in Example 3, we obtain that the core of this
game is empty.

5.1 Desirable Properties for CTLD Solutions

In order to find solutions for CTLD situations, i.e., solutions defined over the set of
all CTLD situations .7, we define a set of properties that could be considered as
desirable in these situations.

The notion of stability is a critical concept in many cooperative situations,
including CTLD situations. Given the possibility of having empty cores, we seek
for the best possible outcomes in terms of instability of allocations. Thus the first
desirable property for CTLD solutions is that of least-unstability. A solution & on
T satisfies the least-unstability property if for every I' € .7’ and every a € a(I")
we have ), ¢a; —€* < cl'(S) for every S C N where €* is defined in the same
way as in Sect. 3.2.5 for the associated game (N, .

The highly competitive nature of logistics markets as well as the limited number
of potential participants necessitate solutions that are capable of incorporating
the notion of competitiveness among the logistics providers. The two properties
discussed in the remainder of this section are specific to CTLD situations and
address issues concerning the competitive positions of the players and the scope
beyond which the network of deliveries of a player should be ignored by the
solution. We start by introducing two special classes of delivery requirements in
CTLD situations. Let I € .7/ be a CTLD situation with player set N. D C D; is a
separable delivery set (SDS) of player i if

w*(0;, D) + w*(On, Dy \ D) = w*(On, Dy). (20.20)

Let SDS;(I") be the set of separable delivery sets of i. The stand-alone cost of
fulfilling a separable delivery set of a player is additive to the cost of fulfilling



652 B. Hezarkhani et al.

Fig. 20.8 Separable and
irrelevant deliveries

the remaining deliveries in the grand coalition. Therefore, a player can individually
fulfill a separable delivery set of itself without disrupting the optimality of delivery
plans in the grand coalition. Let I" € &' be a CTLD situation with player set N.
D C D; is an irrelevant delivery set (IDS) of i if for all D’ € D, all § € N with
i € S,and all D” C Dg\ D it holds that

w*(0;, D) + w*(0s, D") = w*(0g, D' U D"). (20.21)

Let IDS;(I") be the set of irrelevant delivery sets of i. The cost of fulfilling any
subsets of irrelevant deliveries of a player is additive to any subset of the set of
remaining deliveries in any coalition that includes that player, so the player can ful-
fill such deliveries separately in any possible combination with other deliveries. The
following example elaborates on the notion of separable and irrelevant deliveries.

Example 13 Figure 20.8 depicts a CTLD situation I" with two players N = {1, 2}.
It is easy to see that player 1 can individually fulfill the delivery requirement
{dll}. Also, player 1 can take out either {dz,df} or {di‘} (but not both sets!)
from the grand coalition’s delivery requirements and fulfill them separately such
that the total cost of fulfillment does not increase. Thus, we have SDS|(I") =
{{d1}, {d}, d}}, {d}}, {d]. d?, d3}. (d], d}}} and DS, = {{d}}}.

Given le C Dj,let I'\ le be a CTLD situation that coincides with I" except
for the delivery set of i which is replaced by D; \ D;. Define the independence of
irrelevant deliveries property as the insensitivity of a solution to the exclusion of
irrelevant deliveries of the players. A solution for CTLD situations « satisfies the
independence of irrelevant deliveries property if for every I' € .7/, every a €
a(IM), and every a’ € a(I" \ D) it holds for every i € N and every D € IDS;(I")
that ; = a; + w*(0;, D) anda; = a;. forevery j € N\ {i}.

The last property addresses the competitive aspect of solutions in CTLD
situations.

We define the average cost of fulfillment from O to D # (J as

2(0, D) = %(’DL))) (20.22)
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Fig. 20.9 A CTLD situation
where players have different
competitive positions

where wg(D) is the cost of full kilometers needed to be traversed to fulfill D.
The average cost of fulfillment z(O, D) represents the average distance (cost) that
need to be traveled (incurred) in D in order to fulfill a unit distance of delivery
requirement.

The average cost of fulfillment provides a basis for calculating unit delivery
prices in logistics markets. However, it can also be utilized as a measure of
comparison among the players. This idea is motivated by the observation that a
lower average cost of fulfillment of a logistics player compared to that of another
logistics player allows the former to charge a lower unit price for its delivery
services while remaining profitable. Therefore, if for two players i and j it holds
that z(0;, D;j) < z(Oj, Dj), it can be stated that prior to cooperation, i is in a
better competitive position than j. The definition of average cost of fulfillment can
be naturally extended to incorporate the savings allocated to the players after the
cooperation. Given an allocation a and player i € N, D; # (J, define the average
cost of fulfillment of a player i under a as

a;
wr(D;)

7 (0;, D) = (20.23)

We are now ready to present a competitiveness property defined over a restricted
set of CTLD situations. Let .7’ be the set of all CTLD situations I € 7’ with
player set N such that SDS;(I") = {#} for alli € N. A CTLD solution satisfies

the restricted competitiveness property if for every situation I” with player set
N ={1,2} and any a € «(I") it holds that

2{(01, D1)z(02, D3) = 25(02, D2)z(01, D). (20.24)

Example 14 Figure 20.9 represents a CTLD situation with two players N = {1, 2}.
Assuming that the distance between any two locations is 1, we get z(O1, D) = 1.5
and z(03, D;) = 2. The cooperation in this case results in ¢/ (N) = 3, i.e., 2
units of saving compared to individual fulfillments ¢! ({1}) = 3 and ¢! ({2}) = 2.
Observe that the allocation a = (1.8, 1.2) preserves the competitive positions of
players 1 and 2 before and after the cooperation, resulting in z{ (01, D1) = 0.9 and
75(02, D2) = 1.2.
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5.2 A Solution for CTLD Situations

The proposed CTLD solution is constructed in two steps. In the first step, we
introduce a proportional allocation, a”, which incorporates the notions of compet-
itiveness and scope defined in the previous section. In the second step, we use the
latter proportional allocation to construct a least-unstable solution, o, for CTLD
situations.

Let I' € 9’ be a CTLD situation with player set N. D C D; is a minimal
essential delivery set (MEDS) of player i if

w*(0;, Di \ D) + w*(On, Dy\i U D) = w*(Oy, Dy). (20.25)
and for every D' C D, D # @:
w*(0,~, D,’ \ D/) + w*(ON, DN\,' U D/) > w*(ON, DN) (20.26)

and w*(0;, D) < w*(0;, D’) for any D' that satisfy the above two conditions.
Fix I', let D" € MEDS;(I"), and define

w*(0;, D}")
ZjeN w*(0;, D;'")

al (M=w*(0;, Di)— > w*(0;, Dj)—w*(Oy, Dy)
JeEN

(20.27)

The allocation a® obtains a unique efficient allocation that divides the savings
obtained in the grand coalition of CTLD situation I among players with non-
empty essential delivery sets proportional to the stand-alone cost of their minimal
essential deliveries. The above formulation assumes that the essential delivery set
of all players are non-empty. See Hezarkhani et al. (2016) for the treatment of the
other case. The allocation a? completely preserves the competitive positions of the
players with regard to their minimal essential delivery sets. This means that for every
pair of players i, j € N with non-empty essential delivery sets we have

P P
2" Do, pm 25 Do), DM
z(0;, D"y z;(0;, D7)

The allocation a”, however, does not necessarily obtain a least-unstable alloca-
tion. In order to achieve this, we present our CTLD solution af:
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af (I') = argmin Z(a,.” (I') — a;)? (20.28)
LZERN ieN

st. Y aj—€* <w*(0s, Dy) VSCN (20.29)
ieS

> ai = w*(Oy. D) (20.30)
ieN

where €* is defined in Sect. 3.2.3. Given the situation I", a” (I") gives the set of all
€*-stable allocations that have the shortest distance from the proportional allocation
a® (I"). The following result is proven by Hezarkhani et al. (2016).

Theorem 6 o satisfies the nonemptiness, uniqueness, least-unstability, indepen-
dence of irrelevant deliveries, and restricted competitiveness properties for all
CTLD situations.

6 Bibliographical Notes

We split this section in two parts: literature on collaborations and literature on the
relevant game theorical background.

6.1 Collaborations

Quak and Tavasszy (2011) report that among more than 100 initiatives in urban
logistics collaborations, more than half of them fail during implementation. There
are several underlying reasons for this (Vanovermeire et al. 2014), e.g. collaboration
among carriers is often hampered by their competitive positions and by the risks
of divulging information and losing customers. Shippers, on the other hand, may
hesitate to collaborate as they might not have a clear understanding of collaborative
mechanisms employed and whether or not they receive a fair share out of collabo-
rative operations. In a survey based on a large number of logistics service providers
(LSPs) in Belgium, Cruijssen et al. (2007) observe that despite the obvious benefits
of cooperation, designing a fair cost sharing scheme is a major impediment for
collaboration among LSPs. For more information on the fill rates of vehicles refer
to (Eurostat 2018).

Good examples of such cost sharing reviews already exist in the literature (see
e.g. Deng and Fang 2008; Marinakis et al. 2008). Although the literature often
associates the definition of the core to Gillies (1959), it was Shapley who first
defined the core in its current form (Zhao 2018).

In their review paper, Gansterer and Hartl (2018) distinguish between centralized
versus decentralized planning in cooperation. Having perfect information with
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regards to all requests (central planning) leads to profit sharing approaches, usually
based on game-theoretical principles. In decentralized planning, imperfect infor-
mation to no request information is assumed. Most research is circulating around
horizontal collaboration and cost sharing concepts. Early research on horizontal
collaboration considering independent freight carriers is discussed in Kopfer and
Pankratz (1998), researching a groupage system, and coining the term Collaborative
Transport Planning (CTP). One fair allocation of the savings can be done via the
Shapley value introduced by Shapley (1953) that uniquely distributes the savings
among the participants.

Cruijssen, and Salomon (2004) showed that order sharing potentially leads to
remarkable savings up to 15%. In a follow up paper, Cruijssen et al. (2007) inves-
tigated the opportunities and obstacles carriers face in horizontal collaborations.
Topics such as a fair allocation of the savings, carrier differentiation, trust and the
extent of cooperation are important drivers for success or failure (see also Pomponi
et al. (2015)).

Krajewska and Kopfer (2006) introduced an exchange mechanism build around
three phases: preprocessing, exchange mechanism, and profit sharing. These coop-
eration mechanisms are applied to the pickup and delivery problem with time
windows (PDPTW) in Krajewska and Kopfer (2006) and Krajewska et al. (2008).
This problem is extended with transshipment points for the collaborating carriers
by Vornhusen et al. (2014). Wang et al. (2017) investigated the capacitated VRP.
Cuervo et al. (2016) did simulations on the effects of partner characteristics. Larger
order portfolios lead to larger gains through collaborative coalitions.

Berger and Bierwirth (2010) focused on the exchange mechanism in cooperation
for the traveling salesman problem with pickup and delivery. The auctioning of
request bundles is an NP-hard combinatorial auctioning problem (CAP). Wang and
Kopfer (2014) showed potential cost savings of on average 18.2% up to 64.8%.
Wang et al. (2017) applied a route—based bidding mechanism to the PDPTW. Li et
al. (2015) formulated a single request exchange approach. Jacob and Buer (2018)
investigated the effects of non-truthful bidding and showed that is individually
rational but not collectively rational, resulting into a variant of the famous prisoner’s
dilemma.

Gansterer and Hartl (2016) investigated several request evaluation strategies
building on Berger and Bierwirth (2010). Using heuristics, they solve larger
instances for the TSP with precedence constraints. Gansterer and Hartl (2018)
showed that attractive subsets of predefined bundles can be effectively identified,
reducing the computation complexity. More recently, Gansterer et al. (2020) showed
the advantage to bundle requests rather than individual requests. Karels et al. (2020)
investigate an auction mechanism to facilitate collaboration amongst carriers while
maintaining autonomy for the individual carriers, based on a traditional vehicle
routing problem.
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6.2 Game Theoretical Concepts

Lloyd Shapley introduced two of the most well-known game theoretic solutions,
i.e., the core (Shapley 1955), and the Shapley value (Shapley 1953). Although the
literature often associates the definition of the core to Gillies (1959), it was Shapley
who first defined the core in its current form (Zhao 2018). The search for the core
of cooperative games in network situations has motivated a large body of literature
(e.g. Borm et al. 2001; Curiel 2008), and implementation of the Shapley value has
been suggested by a host of research in collaborative logistics (e.g. Krajewska et al.
2008).

The Nucleolus was first developed by Schmeidler (1969). The unhappiness
function used in the definition of the nucleolus can be defined in other ways as
well. See Tijs and Driessen (1986) for a review of alternative definitions. Alternative
approaches for proving non-emptiness of the cores of mcst games have been
proposed in the literature, (e.g., Bird 1976, Granot 1986, Granot and Huberman
1981, and Tamir 1991). Although the basic mcst situation presented here deals with
undirected graphs, similar results also hold for the more general situations with
directed graphs. The proof in Tamir (1991) is for directed situations. The proof
of Theorem 2 is given in Granot and Huberman (1981). Other solutions for mcst
situations have been discussed, among others, by Aarts and Driessen (1993) and
Bogomolnaia and Moulin (2010) via the concept of the irreducible core, which
gives subsets of core allocations. It is worth mentioning that the Shapley value in
mcst games is also studied in Kar (2002) who provides an axiomatization of this
allocation rule for the class of mcst games. Interested readers can refer to Granot
and Huberman (1981) for the proof of Theorem 3.

Further extensions of the facility location game are studied in the literature, see
for instance Mallozzi (2011) and Xu and Du (2006).

The proof of Theorem 5 is given by Skorin-Kapov (1998) where he also considers
other variations of hub location games. Further extensions of hub locations games
are discussed in Matsubayashi et al. (2005) and Skorin-Kapov (2001).

6.3 Other Classes of Stylized Situations Related to Cooperative
Network Design Problems

There are several other classes of stylized situations related to cooperative network
design problems for which the cost sharing problems have been studied in the
literature. In traveling salesman situations, the goal is to construct cycles with
minimum total cost from a source through a set of given nodes representing the
players. Accordingly, in traveling salesman games players in a coalition cooperate
to establish such cycles among themselves and the source. The main difference
between the traveling salesman and mecst situations is that of cycles versus trees
in constructing solutions respectively. It has been proven that all traveling salesman
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games with five or less players have non-empty cores (Potters et al. 1992; Tamir
1989; Kuipers 1993). However, for games with six players and above the core can
be empty (Tamir 1989; Faigle et al. 1998). In vehicle routing situations, the players
would have demands with specific sizes that must be satisfied with vehicles with
limited capacity via tours from an origin node. As the class of vehicle routing
situations contains the traveling salesman situations as a special instance, the
negative results regarding the emptiness of the cores of associated games holds as
well. However, Gothe-Lundgren et al. (1996) casts the vehicle routing situations as
set partitioning problems and show that non-emptiness of the core can be guaranteed
whenever the duality gap for the corresponding linear relaxation is zero. Interested
readers are also referred to Chinese-Postman Games (Hamers et al. 1999; Platz
and Hamers 2013), Delivery Scheduling Games (Hezarkhani 2016), and Delivery
Consolidation Games (Hezarkhani et al. 2019).

7 Conclusions and Perspectives

In this chapter, we looked into the role of cooperation within Transport and Logistics
networks. The success concepts like the Physical Internet, urban hubs, or crowd-
sourcing, depends heavily on managing the pain-and-gain sharing mechanisms.
Clearly, having multiple stakeholders involved in the transportation processes,
leads to important cooperation issues. The drivers for cooperation are mainly
related to resource utilization optimizations, leading to e.g. less empty mileage or
increase truckloads. Game theory helps us to model, understand and optimize these
collaborations from a cost sharing perspective. Cooperative game theory provides a
set of tools and techniques to address such problems.

Most discussed Transport and Logistics applications (including the network
design models) involve very complex situations, as their underlying models are
not easy to solve to optimality in a tractable way. This poses a serious problem
in adoption of available solutions originating from cooperative game theory. Hence,
finding appropriate cost shares is challenging for the Operations Research-based
network design models, and we have to revert to the more basic and stylized network
design models.

In these highly stylized situations, it might be possible to directly use well-known
solutions. Accordingly, one might be able to devise solutions that obtain appropriate
cost shares, e.g. allocations in the core, directly from the underlying optimization
problems. Specifically, in a collaborative network design situation, there might be a
straightforward connection between the optimization program and the appropriate
cost shares.

However, classical approaches in cooperative game theory alone are not able
to satisfactorily solve cost-sharing problems in the more complex network design
situations. On the one hand, the core of games associated with these simulations
might be empty—even in relatively simple situations. On the other hand, inherent
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difficulties in solving the underlying optimization problem can render these solu-
tions too complex (or time consuming).

Despite the theoretical appeal of basic problems discussed in the previous
sections, collaborative situations in practice are often complicated by many factors
and constraints. Solutions might need to satisfy properties that are specific to
a collaborative situations and cannot be captured by standard game-theoretic
solutions.

All this motivates research on situation-specific solutions for more advanced
network design models. In developing reasonable solutions for these situations, one
can formulate practical requirements in terms of desirable properties. We argue that
on exactly on this interface of cooperative game theory and network design models,
investigating the desirable properties of these solutions and their formal definition
ex-ante is needed to obtain more meaningful results, rather than using standard game
theoretical solutions.
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