
Chapter 2
Fixed-Charge Network Design Problems

Teodor Gabriel Crainic, Michel Gendreau, and Bernard Gendron

1 Introduction

This chapter sets the stage for the remaining chapters of the book. The main goal of
in this chapter is to introduce problems and models that involve design decisions
captured with arc-based binary variables. These variables represent building an
infrastructure (e.g., roadways or railbeds) or establishing a transportation service
(such as a bus or railway line, along with its schedule). Associated with these
decisions are fixed costs that appear in the objective function or in constraints,
typically then to represent budget limitations. While this chapter focuses on
problems and models for fixed-charge network design, the next two chapters deal
with exact and heuristic algorithms for solving such problems.

A fundamental distinction in network design problems is whether the demand can
be represented as one commodity (possibly with multiple origins and multiple des-
tinations) or as multiple commodities that need to be differentiated. The underlying
problems that represent the transportation decisions, once the design decisions are
taken, are significantly different in terms of their complexity and size, even though
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both can be cast as network flow problems. This chapter follows this fundamental
distinction, with Sect. 2 dedicated to single-commodity formulations and Sect. 3 to
multicommodity formulations.

Another important characteristic of network design problems is whether or not
there are capacities. Indeed, the presence of capacities greatly complicates the task
of finding feasible solutions. This is true especially in the multicommodity case,
when capacities bind commodities together. We also consider the cost structure as
another significant feature of network design problems, since the presence of fixed
design costs and variable transportation costs in the objective function introduces
complex trade-offs that further complicate the identification of optimal solutions.

In addition to the problems’ features, we identify in this chapter a few basic
modeling approaches for network design. First, while the transportation decisions
are typically represented with arc flow variables, it is also possible to use path
flow variables, which introduces models with an exponential number of variables
that can be handled with column generation algorithms (see Chap. 3). Such path-
based formulations can be of interest for computational reasons, but also for
modeling purposes, since they permit representing path-dependent costs that are not
additive by arc. Second, when transportation costs are ignored, flow variables can
be projected out. In the single-commodity case, we can then exploit the max-flow-
min-cut theorem to derive inequalities that are easy to generate within cutting-plane
algorithms. Although these inequalities do not suffice in the multicommodity case,
they are still useful, as will be seen in Chap. 3.

2 Single-Commodity Formulations

Let G = (N ,A ) be a directed graph, where N is the set of nodes and A ⊆
N ×N is the set of potential arcs (in some situations, parallel arcs might be allowed
and might even simplify the models, see, e.g., Chap. 6). A limited flow capacity
uij > 0 is associated with each arc (i, j) ∈ A . The network design problem consists
of selecting a subset of arcs fromA to satisfy a given demand at minimum total cost.

The demand to satisfy is defined at the nodes of the graph, which are partitioned
into three subsets: N o, the set of origin (source) nodes, N d , the set of destination
(sink) nodes, and N t , the set of transshipment (intermediate) nodes. Each origin
i ∈ N o has a supply (availability) wi > 0 of the given commodity, each destination
i ∈ N d has a demand (request) wi < 0 of the same commodity, while each trans-
shipment node i ∈ N t has neither availability nor request, i.e., wi = 0. The net
supply across any set S ⊆ N is defined as W(S ) ≡ ∑

i∈S wi . We assume
that demand is balanced, i.e., W(N ) = 0. Standard network flow transformations
(adding a dummy origin or a dummy destination) might be applied when this is not
the case. For instance, if W(N ) > 0, we add a dummy destination j , with demand
-W(N ), that is connected to every origin i by an arc (i, j) of capacity W(N ) and
arbitrarily large fixed cost.
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The total cost of satisfying the demand consists of the sum of the costs to select
the arcs to be included in the final design and the transportation costs to move the
flow. For each potential arc (i, j) ∈ A , let fij ≥ 0 be the fixed design cost charged
whenever the arc is selected for inclusion in the optimal design, and cij ≥ 0 the unit
transportation cost.

We introduce binary design variables yij , (i, j) ∈ A , indicating if arc (i, j) is
included (open, yij = 1) or not (closed, yij = 0) in the final design, and continuous
flow variables xij ≥ 0, (i, j) ∈ A , equal to the amount of flow on each arc.
The mathematical formulation of the single-commodity capacitated fixed-charge
network design problem (SCFND) can then be written as

Minimize
∑

(i,j)∈A

(
fij yij + cij xij

)
(2.1)

Subject to
∑

j∈N +
i

xij − ∑
j∈N −

i
xji = wi, ∀ i ∈ N , (2.2)

xij ≤ uij yij , ∀ (i, j) ∈ A , (2.3)

xij ≥ 0, ∀ (i, j) ∈ A , (2.4)

yij ∈ {0, 1}, ∀ (i, j) ∈ A , (2.5)

where, for each i ∈ N , we define

N +
i = {j ∈ N : (i, j) ∈ A }, N −

i = {j ∈ N : (j, i) ∈ A }.

The objective function (2.1) minimizes the total cost computed as the sum of the
total fixed cost for arcs included in the optimal design and the total transportation
cost for the commodity. Constraints (2.2) enforce flow conservation at nodes, while
constraints (2.3) are the so-called linking constraints guaranteeing that flows use
open arcs only and are less than the corresponding arc capacities.

Some variants of the problem include a budget constraint on any one of the
main cost terms, design or transportation, the most common being a design budget
constraint

∑

(i,j)∈A
fij yij ≤ B, (2.6)

where B > 0 is the global design budget. When such a constraint is added, the
corresponding fixed cost term in the objective function is typically removed, which
yields the single-commodity capacitated budget network design problem (SCBND).

Model (2.1)–(2.5) is also known as the arc-based formulation. An equivalent
path-based formulation can be derived by using the fact that the arc flows can
be decomposed into a finite set of path flows, each path connecting an origin to
a destination. Note that there always exists an optimal solution with no flows on
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directed cycles, since all costs are nonnegative. For this reason, unless otherwise
stated, we assume that all paths are elementary (without any directed cycle) and
simply use the term “path” to designate an elementary path. Let P be the set of
paths, each path p ∈ P connecting an origin to a destination, and hp ≥ 0 the
amount of flow on path p ∈ P . The path-based formulation of the SCFND can then
be written as

Minimize
∑

(i,j)∈A
fij yij +

∑

p∈P
ephp (2.7)

Subject to
∑

j∈N +
i

∑
p∈P δ

p
ij hp = |wi |, ∀ i ∈ N o, (2.8)

∑
j∈N −

i

∑
p∈P δ

p
jihp = |wi |, ∀ i ∈ N d , (2.9)

∑
p∈P δ

p
ij hp ≤ uij yij , ∀ (i, j) ∈ A , (2.10)

hp ≥ 0, ∀p ∈ P, (2.11)

yij ∈ {0, 1}, ∀ (i, j) ∈ A , (2.12)

where δ
p
ij is the constant that indicates whether (i.e., δp

ij = 1) or not (i.e., δp
ij = 0)

arc (i, j) ∈ A belongs to path p ∈ P and ep = ∑
(i,j)∈A δ

p
ij cij , ∀p ∈ P .

Note that xij = ∑
p∈P δ

p
ij hp,∀ (i, j) ∈ A . In addition, it is worth to mention that

the number of paths is exponential in the size of the graph, but that any solution
expressed in terms of the arc flow variables xij can be decomposed into a small
number of paths (at most |N | + |A |) in polynomial time.

It is interesting to note that the LP relaxation of both the arc-based and the path-
based models reduces to a minimum cost network flow problem with transportation
costs equal to cij + fij /uij on each arc (i, j) ∈ A . Indeed, when replacing the
integrality constraints (2.5) by yij ∈ [0, 1],∀ (i, j) ∈ A , the yij variables can be
projected out, since fij ≥ 0 implies that there exists an optimal solution such that
the linking constraints (2.3) are satisfied at equality, i.e., yij = xij /uij ,∀ (i, j) ∈ A .
Using these equations to project out the yij variables, we then obtain the following
arc-based minimum cost network flow model:

Minimize
∑

(i,j)∈A

(
cij + fij /uij

)
xij (2.13)

Subject to
∑

j∈N +
i

xij − ∑
j∈N −

i
xji = wi, ∀ i ∈ N , (2.14)

0 ≤ xij ≤ uij , ∀ (i, j) ∈ A . (2.15)

In the remainder of Sect. 2, we discuss three special cases of the SCFND: the
case where there are no transportation costs, for which we present an equivalent
cut-set-based formulation in Sect. 2.1; the case where there are no capacities, the
single-commodity uncapacitated fixed-charge network design problem (SUFND),
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presented in Sect. 2.2; and the case of a bipartite graph, the fixed-charge transporta-
tion problem (FCTP), described in Sect. 2.3.

2.1 Cut-Set-Based Formulation

A cut is a partition of N into two subsets S and S ≡ N \ S such that the net
supply across S is positive, i.e., W(S ) > 0 (note that this condition implies that
at least one destination is not in S , i.e., N d ∩ S 	= ∅). A cut-set (S ,S ) is the
subset of arcs induced by the cut, i.e., (S ,S ) = {(i, j) ∈ A : i ∈ S , j ∈ S }.
The max-flow-min-cut theorem guarantees the existence of a feasible solution to the
SCFND if and only if the (exponentially many) cut-set-based inequalities (2.16) are
satisfied,

∑

(i,j)∈(S ,S )

uij yij ≥ W(S ), ∀S ⊂ N , W(S ) > 0. (2.16)

When we consider the special case of the SCFND where cij = 0 for any arc
(i, j) ∈ A , we can project out the xij variables and obtain an equivalent cut-set-
based formulation

Minimize
∑

(i,j)∈A
fij yij (2.17)

subject to (2.16) and (2.5).
Obviously, when there are strictly positive transportation costs on some of

the arcs, we cannot project out the xij variables by using only the cut-set-based
inequalities. In that case, we would have to exploit LP duality to derive additional
valid inequalities affecting the global transportation cost v = ∑

(i,j)∈A cij xij , as in
the celebrated Benders decomposition method (see the details of such an approach
in Chap. 3).

2.2 The Uncapacitated Variant of the Problem

A particular case of the SCFND is obtained when there are no arc capacities on the
flows. Since the flow on any arc is bounded by W(N o), we can then formulate the
problem in the same way as the arc-based formulation of the SCFND by replacing
uij by W(N o) on every arc (i, j) ∈ A . The cut-set-based inequalities (2.16) then
reduce to the following connectivity inequalities:

∑

(i,j)∈(S ,S )

yij ≥ 1, ∀S ⊂ N , W(S ) > 0. (2.18)
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The structure of any feasible solution to the SUFND corresponds to a directed
forest that contains directed trees rooted at each origin. In particular, when there is
only one origin and no transportation costs, the problem reduces to the N P-hard
directed Steiner tree problem, where the terminals correspond to the destinations.

2.3 Fixed-Charge Transportation Problem

The fixed-charge transportation problem (FCTP) is the special case of the SUFND
where the graph is bipartite, i.e., N = N o ∪ N d and A ⊆ N o × N d . Because
of the particular structure of the graph, the amount of flow on any arc (i, j) ∈ A
is bounded by uij = min{|wi |, |wj |}. The arc-based formulation of the FCTP can
then be written as

Minimize
∑

(i,j)∈A

(
fij yij + cij xij

)
(2.19)

Subject to
∑

j∈N +
i

xij = |wi |, ∀ i ∈ N o, (2.20)

∑
j∈N −

i
xji = |wi |, ∀ i ∈ N d , (2.21)

xij ≤ uij yij , ∀ (i, j) ∈ A , (2.22)

xij ≥ 0, ∀ (i, j) ∈ A , (2.23)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (2.24)

Since any path p ∈ P between an origin i ∈ N o and a destination j ∈ N d

corresponds to an arc (i, j) ∈ A , the arc-based and path-based formulations
for the FCTP are exactly the same. Although the FCTP might appear to be a
relatively restrictive special case of the SCFND, it is possible, through network flow
transformations, to reformulate any SCFND on graph G = (N ,A ) as an FCTP, by
associating each arc (i, j) ∈ A with an origin of supply uij and each node i ∈ N
with a destination of demand wi − ∑

l∈N +
i

uil . In the resulting bipartite graph, we
introduce two outgoing arcs associated with each origin (i, j) ∈ A : one arc incident
to destination i ∈ N with all costs equal to 0 and one arc incident to destination
j ∈ N with design cost equal to fij and transportation cost equal to cij . Hence,
any algorithm to solve the FCTP could be used to solve the SCFND, although at
the expense of a significant increase in the instance size, since the number of nodes
and the number of arcs in an FCTP reformulation of the SCFND are, respectively,
|N | + |A | and 2 × |A |.
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3 Multicommodity Formulations

In this section, we consider network design problems for which several commodi-
ties, represented by set K , share the same directed graph G = (N ,A ). The
demand to satisfy for any commodity k ∈ K is defined at each node i ∈ N
and is denoted as wk

i . We discuss below how to represent the demand for each
commodity. For now, we simply assume that the demand is balanced for each
commodity k ∈ K , i.e.,

∑
i∈N wk

i = 0. The total flow of all commodities on
any arc (i, j) ∈ A is limited by the capacity uij > 0. We wish to minimize the
sum of the costs to select the arcs to be included in the design and the transportation
costs to move the flow of all commodities, where for each arc (i, j) ∈ A , fij ≥ 0
is the fixed design cost charged whenever the arc is included in the optimal design,
and ck

ij ≥ 0 is the unit transportation cost for commodity k ∈ K .
Using binary design variables yij , (i, j) ∈ A , as in the single-commodity case,

and continuous multicommodity flow variables xk
ij ≥ 0, (i, j) ∈ A , k ∈ K , the

arc-based model for the multicommodity capacitated fixed-charge network design
problem (MCFND) can then be written as

Minimize
∑

(i,j)∈A
fij yij +

∑

k∈K

∑

(i,j)∈A
ck
ij x

k
ij (2.25)

Subject to
∑

j∈N +
i

xk
ij − ∑

j∈N −
i

xk
ji = wk

i , ∀ i ∈ N ,∀ k ∈ K , (2.26)

∑
k∈K xk

ij ≤ uij yij , ∀ (i, j) ∈ A , (2.27)

xk
ij ≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K , (2.28)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (2.29)

The objective function (2.25) minimizes the total cost computed as the sum of the
total fixed cost for arcs included in the optimal design and the total transportation
cost for commodities. Constraints (2.26) correspond to flow conservation equations
for each node and each commodity. Relations (2.27) represent capacity constraints
for each arc. These are also linking constraints, linking together flow and design
variables by forbidding any flow to pass through an arc that is not chosen as part
of the design. Note that it is easy to include commodity-dependent capacities uk

ij ,
(i, j) ∈ A , k ∈ K , although we do not consider this case here. One could then
simply add the constraints

xk
ij ≤ uk

ij , ∀ (i, j) ∈ A , ∀ k ∈ K , (2.30)

or, even better,

xk
ij ≤ uk

ij yij , ∀ (i, j) ∈ A , ∀ k ∈ K . (2.31)
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Below, we comment further on these two different ways of modeling commodity-
dependent capacities.

Although this appears to be a special case, we define a commodity as an origin-
destination (OD) pair (O(k),D(k)) with a demand dk > 0 to satisfy between
O(k) ∈ N and D(k) ∈ N , in which case we have

wk
i =

⎧
⎨

⎩

dk, if i = O(k),

−dk, if i = D(k),

0, otherwise.

Note that we can always represent a commodity as an OD pair, even when there
are several products (physical goods, information or people), each with many
origins and many destinations. First, for each product, we introduce a super-origin
connected to each origin for the product. Each super-origin has a supply equal to the
total supply for the corresponding product. Each arc (i, j) from the super-origin has
no costs and a capacity equal to the supply at j . Thus, we obtain a new, larger, graph
where each commodity has one origin, but many destinations. At this stage, there
are two possible ways to obtain a network in which every commodity corresponds
to an OD pair. The first approach is to introduce super-destinations, in the same
way as the super-origins, which further increases the size of the graph. The second
approach can be used when there are no destination-dependent data (for instance,
when there are no commodity-dependent capacities and when transportation costs
do not depend on destinations). This approach keeps the size of the graph constant,
but increases the number of commodities by simply introducing a commodity for
each pair between a super-origin and a destination, with a demand equal to the
demand at that destination. Any of these techniques has an implication on the size
of the corresponding models and, hence, on the solution methods. We further discuss
these issues in several chapters, but for the remainder of the book, unless otherwise
stated, we assume that a commodity is defined as an OD pair.

The path-based formulation for the MCFND uses this equivalence between a
commodity and an OD pair. To derive this model, we introducePk , the set of paths
between O(k) and D(k) for each k ∈ K and hk

p ≥ 0, the amount of flow on path
p ∈ Pk, k ∈ K . The path-based model for the MCFND is then written as

Minimize
∑

(i,j)∈A
fij yij +

∑

k∈K

∑

p∈Pk

ek
phk

p (2.32)

Subject to
∑

p∈Pk hk
p = dk, ∀ k ∈ K , (2.33)

∑
k∈K

∑
p∈Pk δ

p
ij h

k
p ≤ uij yij , ∀ (i, j) ∈ A , (2.34)

hk
p ≥ 0, ∀ k ∈ K ,∀p ∈ Pk, (2.35)

yij ∈ {0, 1}, ∀ (i, j) ∈ A , (2.36)
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where δ
p
ij indicates whether (i.e., δ

p
ij = 1) or not (i.e., δ

p
ij = 0) arc (i, j) ∈ A

belongs to path p ∈ ∪k∈K Pk and ek
p = ∑

(i,j)∈A δ
p
ij c

k
ij , ∀ k ∈ K , ∀p ∈ Pk .

Thus, xk
ij = ∑

p∈Pk δ
p
ij h

k
p, ∀ (i, j) ∈ A , ∀ k ∈ K .

An important variant of the MCFND is the case with unsplittable (or non-
bifurcated) flows, where a single path betweenO(k) andD(k)must be used for each
commodity k ∈ K . We can easily modify both the path-based and the arc-based
formulations to model this additional requirement. For the path-based formulation,
we define a binary variable Hk

p that assumes value 1, if path p ∈ Pk is used for
commodity k ∈ K , and value 0, otherwise. We then have the equations hk

p = dkHk
p ,

∀ k ∈ K ,∀p ∈ Pk , allowing us to project out variables hk
p, leaving a model

that has only binary variables. For the arc-based formulation, we introduce a binary
variable Xk

ij that takes value 1, if arc (i, j) ∈ A belongs to the path between O(k)

and D(k) for commodity k ∈ K , and value 0, otherwise. Similarly, we use the
equations xk

ij = dkXk
ij , ∀ (i, j) ∈ A ,∀ k ∈ K , to project our variables xk

ij and end
up with a model that has only binary variables.

For both the arc-based and the path-based formulations, the LP relaxation
reduces to a minimum cost multicommodity network flow problem with transporta-
tion costs per commodity k ∈ K equal to ck

ij + fij /uij on each arc (i, j) ∈ A .
Indeed, using the same argument as in the single-commodity case, the continuous
yij variables can be projected out, since there is always an optimal solution that sat-
isfies the linking constraints (2.27) at equality, i.e., yij = ∑

k∈K xk
ij /uij ,∀ (i, j) ∈

A , which yields the following arc-based minimum cost multicommodity network
flow model:

Minimize
∑

k∈K

∑

(i,j)∈A

(
ck
ij + fij /uij

)
xk
ij (2.37)

Subject to
∑

j∈N +
i

xk
ij

− ∑
j∈N −

i
xk
ji

= wk
i
, ∀ i ∈ N , ∀ k ∈ K , (2.38)

∑
k∈K xk

ij
≤ uij , ∀ (i, j) ∈ A , (2.39)

xk
ij

≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K . (2.40)

The LP relaxation lower bound is generally far from the optimal value, hence the
name weak relaxation to qualify it. A tighter lower bound is obtained by adding the
following valid inequalities to the arc-based model

xk
ij ≤ bk

ij yij , ∀ (i, j) ∈ A , ∀ k ∈ K , (2.41)

where bk
ij is an upper bound on the amount of flow of commodity k ∈ K on

arc (i, j) ∈ A , for instance bk
ij = min{uij , d

k} (or bk
ij = uk

ij , if there is a

commodity-dependent capacity uk
ij < min{uij , d

k}). These inequalities are called
strong linking constraints and the corresponding LP relaxation the strong relaxation.
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It is easy to see that there exists an optimal solution to this LP relaxation such that
yij = max{maxk∈K {xk

ij /b
k
ij },

∑
k∈K xk

ij /uij },∀ (i, j) ∈ A . Obviously, projecting
out the continuous yij variables by using these equations would yield a non-linear
programming problem. Instead, most solution methods for the strong relaxation
leave the yij variables in the formulation. Because the number of strong linking
constraints is typically large for reasonably sized instances, solving the strong
relaxation can be quite challenging. Chapter 3 reviews several methods to solve
the strong relaxation.

In Sect. 3.1, we study the special case where there are no capacities, the
multicommodity uncapacitated fixed-charge network design problem (MUFND).
Then, Sect. 3.2 presents the generalization of the cut-set-based inequalities for
multicommodity fixed-charge network design problems.

3.1 The Uncapacitated Variant of the Problem

When there are no arc capacities on the multicommodity flows, we can formulate
the resulting MUFND by replacing uij with

∑
k∈K dk on every arc (i, j) ∈ A . In

addition, the strong linking constraints (2.41) can then be simplified by replacing
bk
ij with dk , for any arc (i, j) ∈ A and any commodity k ∈ K . It is then trivial
to observe that the linking constraints (2.27) are implied by the strong linking
constraints (2.41), since (2.27) are obtained by aggregating (2.41) over K .

This discussion illustrates the choice between two formulations: the aggregated
model, which does not include the strong linking constraints (2.41), and the
disaggregated model, where the linking constraints (2.27) are replaced by the
strong ones. Our discussion above on the quality of the LP relaxation bounds for
the MCFND also applies to the MUFND: the aggregated model yields a weak
LP relaxation bound, while the LP relaxation of the disaggregated formulation is
significantly stronger.

To summarize, the disaggregated model for the MUFND can be stated as

Minimize
∑

(i,j)∈A
fij yij +

∑

k∈K

∑

(i,j)∈A
ck
ij x

k
ij (2.42)

Subject to
∑

j∈N +
i

xk
ij

− ∑
j∈N −

i
xk
ji

= wk
i
, ∀ i ∈ N , ∀ k ∈ K , (2.43)

xk
ij

≤ dkyij , ∀ (i, j) ∈ A , ∀ k ∈ K , (2.44)

xk
ij

≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K , (2.45)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (2.46)

It is worth noting that, once the yij variables are fixed, the resulting subproblem
decomposes into |K | shortest path subproblems, i.e., it consists in finding the
shortest path between O(k) and D(k) for each commodity k ∈ K , which is easy
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since the transportation costs are nonnegative. As a consequence, there exists an
optimal solution to theMUFNDwhere a single path is used between O(k) and D(k)

for each commodity k ∈ K , i.e., the flows are unsplittable. By contrast, for the
MCFND, the subproblem obtained after fixing the yij variables is a minimum cost
multicommodity network flow problem, which is significantly more difficult, even
though it is a linear program. In particular, there are MCNFD instances for which
all optimal solutions incur splittable flows, i.e., several paths are used to satisfy the
demand dk for some commodity k ∈ K .

3.2 Cut-Set-Based Inequalities

It is easy to generalize cut-set-based inequalities for the MCFND. Using the same
definitions and notations as in Sect. 2.1, we derive the following valid inequalities
from Eqs. (2.26) and capacity constraints (2.27):

∑

(i,j)∈(S ,S )

uij yij ≥
∑

k∈K (S ,S )

dk, ∀S ⊂ N , S 	= ∅, (2.47)

where K (S ,S ) = {k ∈ K : O(k) ∈ S , D(k) ∈ S }. By combining flow
conservation equations (2.26) with strong linking constraints (2.41), we can derive
the following commodity-dependent cut-set-based inequalities

∑

(i,j)∈(S ,S )

bk
ij yij ≥ dk, ∀S ⊂ N , ∀ k ∈ K , O(k) ∈ S , D(k) ∈ S .

(2.48)

Contrary to the SCFND for which (2.16) are not only necessary (valid), but
also sufficient to characterize any feasible solution, cut-set-based inequalities (2.47)
and (2.48) do not characterize feasible solutions to theMCFND. Consequently, even
if there are no transportation costs, we cannot obtain a reformulation in the space of
the yij variables by using only the cut-set-based inequalities (2.47) and (2.48). To
derive such a reformulation, we would have to use Benders feasibility cuts, a topic
covered in Chap. 3.

For theMUFND, inequalities (2.48) reduce to the following connectivity inequal-
ities, which imply cut-set-based inequalities (2.47):

∑

(i,j)∈(S ,S )

yij ≥ 1, ∀S ⊂ N , ∀ k ∈ K , O(k) ∈ S , D(k) ∈ S . (2.49)

For theMUFNDwith no transportation costs, i.e., ck
ij = 0 for any arc (i, j) ∈ A and

any commodity k ∈ K , these connectivity inequalities define a reformulation of the
problem obtained by projecting out the xk

ij variables, the cut-set-based formulation:
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Minimize
∑

(i,j)∈A
fij yij (2.50)

subject to (2.46) and (2.49). This observation illustrates another significant differ-
ence between theMCFND and theMUFND: while cut-set-based inequalities (2.49)
characterize feasible solutions to the MUFND, feasible solutions to the MCFND
cannot be completely characterized by cut-set-based inequalities (2.47) and (2.48).

4 Bibliographical Notes

The study of fixed-charge problems (with an underlying general LP structure)
originated from the work of Hirsch and Dantzig (1968), first published as a technical
report in 1954. To the best of our knowledge, the first article that presents a
special case of single-commodity fixed-charge network design problem is Balinski
(1961), where the FCTP is introduced. The arc-based formulation of the problem is
described and it is shown that the LP relaxation reduces to a linear transportation
problem with costs cij + fij /uij on each arc (i, j) ∈ A . A similar result applies to
the SCFND, as we have seen in Sect. 2.

In 1961, also appeared one of the first studies on multicommodity network
design, due to Gomory and Hu (1961). In the problem considered in that paper,
there are several commodities, each commodity k ∈ K having a demand dk to be
routed between the origin O(k) and the destination D(k), and we wish to decide
how many units of capacity yij to install on each edge of an undirected network,
so as to minimize the cost of installing the capacities, where each unit of capacity
installed on edge (i, j) incurs a cost fij . This problem can be modeled with general
integer variables yij , rather than binary variables, and cut-set-based inequalities can
be used to represent the set of feasible solutions. Generalizations of this problem are
studied in Chaps. 5 and 6.

Following the seminal papers of Balinski (1961) and Gomory and Hu (1961),
the research on network design has been fruitful during the next 25 years. The
early efforts of the research community are synthesized in the survey papers of
Magnanti and Wong (1984) and Minoux (1989). The first paper formalizes the
MUFND, showing that it generalizes well-known problems, such as the shortest
path problem, the traveling salesman problem and the Steiner tree problem. The
second paper emphasizes the importance of piecewise linear costs in network design
applications (see Chap. 6). Both papers include significant reviews on algorithms for
the multicommodity uncapacitated budget network design problem (MUBND).

Most papers on single-commodity network design have focused on the FCTP,
which is not surprising, given that the SCFND can be reformulated as an FCTP
(Malek-Zavarei and Frisch 1972). We review the papers on the FCTP in Chaps. 3
and 4. Notable exceptions are the works on the directed Steiner tree problem
and its generalization, the SUFND. On the first problem, we mention the seminal
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work of Wong (1984), which proposes both a multicommodity flow model (each
destination is identified as a commodity) and a cut-set-based formulation, showing
that the two LP relaxations are equivalent. Similar results are obtained for other
network design problems defined over trees (Magnanti and Wolsey 1995). On the
SUFND with a single origin, it is worth mentioning the work of Rardin and Wolsey
(1993), showing that a multicommodity reformulation of the problem, where each
destination corresponds to a commodity, has the same LP relaxation as the one
obtained from the single-commodity model by adding so-called dicut collection
inequalities, which involve both the design variables and the single-commodity flow
variables.

Following the early research on the MUBND, subsequent works on the MUFND
can be found in Balakrishan (1987) on the path-based model and in Balakrishnan
et al. (1989) on the arc-based model. On the MCFND and its generalization
where each commodity has several origins and several destinations, early research
(Rardin and Choe 1979; Gendron and Crainic 1994) has focused on disaggregated
formulations and the impact of strong linking inequalities on the quality of the
LP relaxation. Balakrishnan et al. (1997) presents an annotated bibliography that
contains most references on network design that appeared since 1961. In Chaps. 3
and 4, we review many other references on the MUFND and on theMCFND.

5 Conclusions and Perspectives

This introductory chapter has presented basic fixed-charge network design prob-
lems and formulations. It has allowed us to identify fundamental distinctions
between problems and models, which we further explore in the next chapters.
In particular, we have seen significant differences between single-commodity and
multicommodity formulations. Indeed, when the design variables are fixed or when
their integrality is relaxed, the SCFND has an underlying single-commodity mini-
mum cost network flow problem, for which many efficient specialized algorithms
exist, while the MCFND displays a multicommodity minimum cost network flow
problem, which is significantly more difficult, although it is a linear program.
Also, when there are no transportation costs, the SCFND can be formulated with
cut-set-based inequalities, by virtue of the max-flow-min-cut theorem, while cut-
set-based inequalities are necessary, but not sufficient, to model the MCFND with
no transportation costs. We have also emphasized important differences between
uncapacitated and capacitated problems. For both the SUFND and the MUFND,
connectivity inequalities are necessary and sufficient to characterize feasible solu-
tions. Clearly, these inequalities are proper subsets of the cut-set-based inequalities
for the SCFND and the MCFND, and therefore necessary, but not sufficient, to
describe feasible solutions.

While the nature of the demand, single-commodity versus multicommodity, is
a fundamental distinction between network design models, it is worth noting that
single-commodity and multicommodity formulations can often be used for the same
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problem. For instance, we could reformulate the SCFND with a single origin and
multiple destinations as an MCFND, where each commodity is associated with a
destination. The advantage of this reformulation comes when we introduce strong
linking inequalities, which then improve the LP relaxation, often significantly so.
The disadvantage, of course, lies in the large number of additional flow variables
and valid inequalities. Two approaches can be used to mitigate this effect. One is to
develop decomposition methods, such as column-and-row generation algorithms,
which we study in Chap. 3. Another is to derive inequalities equivalent to the
strong linking constraints, but in the space of single-commodity flow (and design)
variables. Some inequalities of this type have been derived for the SUFND with a
single origin, but to the best of our knowledge, not for its capacitated counterpart.
This is an avenue for future research.
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