
Chapter 19
Logistics Network Design

Jean-François Cordeau, Walid Klibi, and Stefan Nickel

1 Introduction

The design of logistics networks is one of the most important areas of applica-
tion for multicommodity network design models. Logistics networks (or supply
chains) connect suppliers, manufacturing plants, warehouses, distribution centers
and customers to coordinate the acquisition of raw materials and components,
their transformation into finished products and the delivery of these products to
the customers. The design of these networks is complex and involves making a
large number of interdependent decisions concerning the selection of suppliers, the
location of production and distribution facilities, the assignment of products to the
facilities, the selection of transportation modes, and the determination of the flows
of raw materials, components and finished products in the network. Figure 19.1
illustrates the structure of a classical logistics network with suppliers providing
raw materials to production plants which, in turn, deliver finished products to
warehouses. Finally, these warehouses are responsible for serving the demand of
the customers. Nodes that are not connected to others represent potential facilities
that are not currently part of the network.

Logistics network design is of course strategic in nature and concerns the long
term. However, it is essential when designing a network to take into account the
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Suppliers Plants Warehouses Customers

Fig. 19.1 Example of a three-echelon logistics network

tactical and operational repercussions of the strategic decisions. For instance, the
selection of proper locations and capacity levels for production plants depends to a
large extent on the selection of suppliers, on the choice of which products will be
made in each plant, on the transportation modes used to connect the various nodes
in the network, and even on the amount of flow circulating on the arcs. Of course,
tactical and operational decisions will be revised more frequently as demand and
other parameters change in the environment of the firm.

In addition to combining multiple types of intertwined decisions, logistics
network design problems usually involve several categories of costs: fixed costs
associated with facility locations, acquisition costs for raw materials and com-
ponents, production costs, transportation costs, inventory holding costs, etc. Not
surprisingly, several studies have shown that very important savings can be achieved
by taking the design decisions in an integrated way (see, e.g. Arntzen et al. 1995;
Fleischmann et al. 2006; Ulstein et al. 2006). Companies often benefit from the
re-optimization of their logistics networks following changes in their business
environment: new market opportunities, changes in production or transportation
costs, new technologies, changes in trade regulations, etc. Mergers and acquisitions
also often create the need for a firm to revise the structure of its logistics network.
Accordingly, logistics networks are rarely designed from scratch and optimization
models usually aim at finding the best way to adapt an existing network to new
market conditions.

Over the last 40 years, the realism of logistics network design models has greatly
improved and efficient solution methods have been developed to solve these models.
There is now a vast literature on the topic with a very large number of models
addressing the many problem variants encountered in practice (see, e.g. Melo et al.
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2009; Martel and Klibi 2016). The purpose of this chapter is to provide a general
modeling framework that can be used to express many of these variants and to give a
brief overview of the main solution methodologies. We also devote attention to two
important and recent trends: the treatment of risk and uncertainty in the design of
logistics networks and the incorporation of environmental, sustainability and reverse
logistics aspects.

The rest of the chapter is organized as follows. Section 2 introduces the modeling
framework and discusses various extensions. This is followed by a discussion of
risk and uncertainty concepts in Sect. 3 and of reverse logistics, environmental and
sustainability aspects in Sect. 4. Section 5 is devoted to solution methods. Finally,
Sect. 6 provides bibliographic notes and Sect. 7 concludes the chapter.

2 A General Modeling Framework for Logistics Network
Design

The purpose of this section is to introduce a general formulation that captures the
fundamental aspects of logistics network design and can also serve as a basis to
incorporate various extensions that are often required in practical applications. This
formulation is itself based on the model proposed by Cordeau et al. (2006) but it
has been generalized to consider multiple time periods as well as arbitrary network
structures and bills of materials.

2.1 Notation

We denote byK be the set of all item types circulating in the logistics network. This
set can be partitioned into a subset R of raw materials, a subset A of assemblies
and a subset F of finished products such that K = R ∪ A ∪ F . We assume here
that raw materials are acquired from external suppliers whereas finished products
are delivered to customers. Assemblies are intermediate components that are made
either from raw materials or from other assemblies. For every item k ∈ A ∪ F , let
Bk ⊆ R ∪ A denote the subset of items that are needed to make item k. Similarly,
for every raw material or assembly � ∈ R ∪ A , let K� ⊆ A ∪ F denote the
assemblies and finished products that require item �. For every k ∈ K and � ∈ Bk ,
we denote by bk� the amount of item � required for the production of one unit of
item k. The setBk and values bk� define the bill of materials for item k.

The set of potential suppliers is denoted byS and, for every raw material r ∈ R,
we letS r ⊆ S represent the subset of suppliers that may provide r . We also letP
andW denote the sets of potential locations for plants and warehouses, respectively.
For every item k ∈ K , we let Pk denote the subset of plants where item k can be
produced or used in the production of other items. Similarly, W k represents the
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warehouses where item k can be stored. Finally, we denote by C the set of customer
locations. In most applications, a customer c would not represent an individual
customer or a specific company but rather an aggregation of the demand of a given
region.

To simplify the writing of the model, we let O = S ∪ P ∪ W and D = P ∪
W ∪ C denote the sets of possible origins and destinations for the items circulating
in the network. For every k ∈ K , we also define Ok ⊆ O and Dk ⊆ D as the sets
of possible origins and destinations for item k, respectively. For any node i ∈ O , let
also Ki = {k ∈ K |i ∈ Ok ∪ Dk} be the set of items which may originate from or
be destined to node i.

The planning horizon is divided into a set of consecutive time periods denoted
by T . For every c ∈ C , f ∈ F and t ∈ T , let d

f t
c be the demand of customer c

for finished product f in period t .
The model uses three types of binary variables to represent decisions related to

the selection of nodes in the network and the assignment of items to these nodes.
For every node i ∈ O , we define a binary variable yi equal to 1 if and only if the
node is selected, and we let ci be the fixed cost of selecting this node. For every
item k ∈ K and every node i ∈ Ok , let also vk

i be a binary variable, with cost ck
i ,

taking value 1 if and only if item k is assigned to node i. These variables represent
the decisions to acquire raw materials from certain suppliers or to make and store
products in certain plants and warehouses. Finally, for every k ∈ K , i ∈ Ok and
j ∈ Dk , let wk

ij be a binary variable, with cost ck
ij , equal to 1 if and only if origin i

provides item k to destination j .
For every node i ∈ O , let qi be the output capacity of this node, and for every

k ∈ Ki , let uk
i be the amount of capacity required by one unit of item k at node i.

For every k ∈ K and i ∈ Ok , let also qk
i be the capacity of node i for item k and

qk
ij be the maximum that can be provided to destination j ∈ Dk .
We assume that a setMij of potential transportation modes is associated to every

origin-destination pair (i, j) ∈ O ×D . For every m ∈ Mij , we then define a binary
variable zm

ij equal to 1 if and only if transportation mode m is used between origin i

and destination j . We use the notation cm
ij to represent the fixed cost of using mode

m and let qm
ij be its capacity in each time period. For every k ∈ K , i ∈ Ok and

j ∈ Dk , M k
ij ⊆ Mij is the subset of feasible transportation modes between i and j

for item k, and ukm is the unit capacity consumption for item k in mode m.
Finally, the model uses two types of continuous variables to represent acquisition,

production, storage and transportation decisions. For every m ∈ M k
ij and t ∈ T , we

define a non-negative variable xkmt
ij , with cost ckmt

ij , representing the number of units

of item k transported from i to j using mode m in period t . Unit costs ckmt
ij should

include not only transportation expenses but also relevant acquisition, production
and handling costs at the origin node i. This does not cause any loss of generality
since the total flow going through a node can be computed as the sum of the flows
on the arcs leaving that node. For every item k ∈ K and every node w ∈ W k , we
also let I kt

w denote the inventory of item k in node w at the end of period t and we let
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Table 19.1 Summary of notation for sets

A Set of assemblies

Bk Set of items needed to make item k

C Set of customers

C f Set of customers that require product f

D Set of destinations

Dk Set of potential destinations for item k

F Set of finished products

K Set of all items

K � Set of items that require item �

Ki Set of items that may originate or be destined to i

Mij Set of transportation modes between i and j

M k
ij Set of transportation modes between i and j for item k

O Set of origins

Ok Set of potential origins for item k

P Set of potential plant locations

Pk Set of plant locations where item k can be produced or used

R Set of raw materials

S Set of potential suppliers

S � Set of potential suppliers providing raw material �

T Set of time periods

W Set of potential warehouse locations

W k Set of warehouse locations where item k can be stored

gkt
w be the cost of holding one unit of item k at node w in period t . We assume here

that inventory is held only at warehouse nodes. If a plant possesses storage areas
for assemblies or finished products, it can be modeled by multiple nodes connected
among themselves and representing the various functions of the plant.

Tables 19.1, 19.2 and 19.3 provide a summary of the notation.

2.2 Formulation

The logistics network design problem (LNDP) consists in minimizing the following
objective function, which comprises all the fixed costs associated with the binary
design variables and unit costs associated with the flow and inventory variables:

Minimize
∑

i∈O

⎡

⎣ciyi +
∑

j∈D

∑

m∈Mij

cm
ij z

m
ij

⎤

⎦ +
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Table 19.2 Summary of notation for parameters

bk� Amount of item � needed in one unit of item k

ci Fixed cost of selecting origin i

ck
i Fixed cost of assigning item k to origin i

ck
ij Fixed cost of providing item k to destination j from origin i

cm
ij Fixed cost of using transportation mode m between i and j

ckmt
ij Unit cost for providing item k to j from i with mode m in period t

d
f t
c Demand of customer c for product f in period t

gkt
w Cost of holding one unit of item k at node w during period t

qi Capacity of node i in equivalent units

qm
ij Capacity of mode m between i and j in equivalent units

qk
i Upper limit on the amount of item k shipped from node i

qk
ij Upper limit on the amount of item k shipped from i to j

uk
i Amount of capacity required by one unit of item k at node i

ukm Amount of capacity required by one unit of item k in mode m

Table 19.3 Summary of notation for variables

I kt
w Inventory of item k in location w at the end of period t

xkmt
ij Amount of item k shipped from i to j with mode m in period t

yi = 1 if node i is selected

vk
i = 1 if item k is assigned to origin i

wk
ij = 1 if node i provides item k to destination j

zm
ij = 1 if mode m is selected between i and j

∑

k∈K

∑

i∈Ok

⎡

⎢⎣ck
i v

k
i +

∑

j∈Dk

⎡

⎢⎣ck
ijw

k
ij +

∑

m∈Mk
ij

∑

t∈T
ckmt
ij xkmt

ij

⎤

⎥⎦

⎤

⎥⎦ +
∑

k∈K

∑

w∈W k

∑

t∈T
gkt

w I kt
w .

(19.1)

The first group of constraints comprises equations related to the flow of items in
the network:

∑

i∈O�

∑

m∈M �
ip

x�mt
ip −

∑

k∈K �

∑

j∈Dk

∑

m∈M k
pj

bk�xkmt
pj =0 � ∈ R ∪ A ; p∈P�; t∈T

(19.2)
∑

i∈Ok

∑

m∈M k
iw

xkmt
iw −

∑

j∈Dk

∑

m∈M k
wj

xkmt
wj +Ik,t−1

w −Ikt
w =0 k ∈ K ; w ∈ W k; t ∈ T

(19.3)
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∑

i∈Of

∑

m∈M f
ic

x
f mt
ic

= d
f t
c f ∈ F ; c ∈ C f ; t ∈ T .

(19.4)

Constraints (19.2) force the amount of raw material or assembly � shipped to
plant p in period t to be equal to the amount required by all assemblies and finished
products made at this plant during the same period. Constraints (19.3) ensure that the
amount of item k entering warehouse w during period t plus the inventory available
at the beginning of period t is equal to the amount leaving the warehouse during
that period plus the amount available at the end of the period. To ensure consistent
inventory levels, the last period in the horizon can be connected to the first one,
which has the effect of forcing the inventory level at the end of the last period to be
equal to the inventory level at the beginning of the first one. Demand constraints are
imposed by Eqs. (19.4).

The second group of constraints comprises inequalities related to the capacity of
the nodes and arcs in the network:

∑

k∈K

∑

j∈Dk

∑

m∈M k
ij

uk
i x

kmt
ij − qiyi ≤ 0 i ∈ O; t ∈ T (19.5)

∑

j∈Dk

∑

m∈M k
ij

xkmt
ij − qk

i vk
i ≤ 0 k ∈ K ; i ∈ Ok; t ∈ T (19.6)

∑

m∈M k
ij

xkmt
ij − qk

ijw
k
ij ≤ 0 k ∈ K ; i ∈ Ok; j ∈ Dk; t ∈ T (19.7)

∑

k∈K
ukmxkmt

ij − qm
ij zm

ij ≤ 0 i ∈ O; j ∈ D;m ∈ Mij ; t ∈ T . (19.8)

Constraints (19.5) impose aggregate capacity limits on suppliers, plants and
warehouses, whereas limits for individual items are enforced through (19.6).
Constraints (19.7) force node i to be selected if units of item k are transported
from i to j . Finally, capacity constraints for individual transportation modes are
represented by (19.8).

It should be noted that single-sourcing for item k at destination j can be imposed
with the constraint

∑

i∈Ok

wk
ij ≤ 1. (19.9)

Furthermore, the following constraint can impose a single-assignment rule to ensure
that all units of an item k come from the same origin:
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∑

i∈Ok

vk
i ≤ 1. (19.10)

2.3 Extensions

The above formulation captures the essential aspects of the LNDP but it can also be
generalized to address a variety of practical situations. For the sake of clarity, each
extension is presented separately although the different extensions can obviously be
combined.

2.3.1 Lower Bounds and Capacity Alternatives

Lower limits on acquisition, production, storage and transportation activities can be
imposed by using constraints similar to (19.5)–(19.8) but reversing the inequality
sign. In particular, lower bounds can be used to model quantity discounts or any
other situation where a minimal volume is necessary for a given unit cost to be
applicable. The combined use of lower and upper bounds can also serve to model
situations where several capacity alternatives, with different operating costs, exist
for the configuration of a node in the network. This also applies to different layouts
or configurations of facilities.

2.3.2 Multi-Period Design Decisions

The above model assumes that all binary decisions are made at the beginning of the
planning horizon and that the network structure thus remains the same throughout
this horizon. However, facility location decisions are usually highly dependent on
the value of some parameters such as the fixed costs of the facilities and the customer
demand. If these parameters are expected to vary over time, it may be desirable to
plan in advance for future adjustments in the number and location of facilities and
in other related decisions. In this case, locating a set of facilities becomes a question
not only of “where” but also of “when”. This can be achieved by associating a time
index to the binary design decisions and by adapting constraints (19.5)–(19.8) to
reflect the fact that network configuration and facility capacity evolve over time.
In particular, let yit indicate whether the facility at node i is open and operating
in period t . Simply adding the time index would allow for frequent opening and
closing of facilities, which does not adequately reflect an implementable evolution
of a real-world supply chain network. To depict the network evolution of a growing
enterprise, constraints (19.11) ensure that facilities that have once been openend
remain open throughout the planning horizon:



19 Logistics Network Design 607

yi,t−1 − yit ≤ 0 i ∈ I ; t ∈ T \ {1}. (19.11)

When planning the optimal evolution of an existing supply chain network, the
successive closing of existing facilities becomes important. In such phase-in/phase-
out models the set of nodes I can be partitioned into two subsets: I C , the set of
locations where existing facilities can be removed, and I O , the set of locations
where new facilities can be installed. To ensure consistency in the resulting network
configuration constraints (19.11) are replaced with constraints (19.12) and (19.13):

yi,t−1 − yit ≤ 0 i ∈ I O; t ∈ T \ {1} (19.12)

yit − yi,t−1 ≤ 0 i ∈ I C; t ∈ T \ {1}. (19.13)

The explicit consideration of opening and closing costs for facilities in this context
was first introduced by Wesolowsky and Truscott (1975).
Multi-period models are sometimes called dynamic (location) models in the liter-
ature. Note that this is somewhat misleading because design decisions can only
be made at specific moments, namely at the beginning of each indexed period.
Some models go even further and, mostly in an attempt to reduce complexity,
divide the set of periods T into strategic and tactical periods, whereby changes
in the network configuration are restricted to the strategic periods. A multi-period
modeling framework involves one extra dimension in the decision space: the timing.
Hence, the resulting models tend to be large and harder to solve, even for instances
of moderate size. Accordingly, one may ask whether it is worth considering this
extra dimension instead of making static decisions even though costs, demands and
other parameters may vary over time. An answer to this question can be given by
the value of the multi-period solution, a concept first introduced by Alumur et al.
(2012) in the context of a multi-period reverse logistics network design problem.
The value of the multi-period solution compares the optimal value of the multi-
period problem and the value of a solution found by solving a static counterpart. We
refer the interested reader to Nickel and Saldanha-da-Gama (2015) for an in-depth
discussion of multi-period facility location models and for details on the value of
the multi-period solution.

2.3.3 Inventory Level Constraints

Lower and upper bounds on inventory levels in warehouses can be added to the
model by introducing constraints on the I kt

w variables. In particular, an upper bound
q̂kt
w on the amount of item k held in inventory in warehouse w at the end of period t

can be imposed with the following constraint:

I kt
w ≤ q̂kt

w vk
w. (19.14)
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Similarly, an upper bound q̂t
w on the total amount of inventory held in warehouse w

at the end of period t can be imposed with the following constraint:

∑

k∈K
uk

wIkt
w ≤ q̂t

wyw. (19.15)

Because the LNDP is a strategic planning problem defined over a long planning
horizon, the length of the time periods usually does not allow for a detailed
representation of operational inventory decisions. Nevertheless, constraints can be
imposed on expected safety stocks and cyclic (replenishment) inventory levels by
relying on turnover ratios. Let ρkt

w denote the expected turnover ratio for item k at
warehouse w in period t . A lower bound on the total inventory level at the end of
period t can be imposed as follows:

I kt
w ≥

∑

d∈Dk

∑

m∈M k
wd

1

ρkt
w

xkmt
wd . (19.16)

The actual inventory level can of course be larger than the lower bound when
fluctuations in demand make it beneficial to accumulate inventory in some periods
to be used in later ones. It is well known in inventory control that, because of
pooling effects, the amount of safety stock needed increases less than linearly
with the amount of demand served by a warehouse. To capture this non-linear
relationship between demand volume and operational inventory levels, one may
define several copies of the same warehouse with different turnover ratios for
the given product. Better approximations of the concave relationship between
throughput and inventory levels can be obtained by using a continuous piece-wise
linear function specified as a set of base levels (the equivalent of a fixed cost) and
unit rates of increase (the equivalent of a unit cost). Mathematically, this relationship
can be imposed by using the constraint

I kt
w ≥ αkt

w +
∑

d∈Dk

∑

m∈M k
wd

βkt
w xkmt

wd , (19.17)

where αkt
w represents the base level and βkt

w is the unit increase rate. This will lead
to the type of approximation represented in Fig. 19.2.

It should be observed that by setting αkt
w = 0 for every segment, one obtains the

first approximation (19.16) based only on turnover ratios. Furthermore, if a single
segment is used, the value of βkt

w should correspond to the inverse of the expected
turnover ratio. If this value is estimated with respect to the maximum possible
throughput, one will obtain the approximation illustrated in Fig. 19.3.

We refer to Martel (2005) for a detailed treatment of inventory representation in
LNDPs.
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Fig. 19.2 Inventory levels with piece-wise linear segments

Fig. 19.3 Inventory levels
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2.3.4 Profit Maximization

The traditional focus in logistics network design is to minimize costs while
satisfying an exogenous demand. In a value-creation paradigm, however, it may be
more appropriate to consider a profit maximization objective function that captures
both costs and revenues. Model (1)–(8) can be modified in different ways to account
for profit maximization. A common approach is to consider the demand as a decision
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variable. This can be accomplished by associating a unit revenue r
f
c with product

f and customer c and by replacing equality constraints (19.4) with two inequalities
imposing minimum and maximum demand levels to be served in each market as
follows:

∑

i∈Of

∑

m∈M f
ic

x
f mt
ic ≥ d̄

f t
c f ∈ F ; c ∈ C f ; t ∈ T (19.18)

∑

i∈Of

∑

m∈M f
ic

x
f mt
ic ≤ d̂

f t
c f ∈ F ; c ∈ C f ; t ∈ T . (19.19)

Here, d̄f t
c and d̂

f t
c represent, respectively, the minimum amount of demand to be

served and the maximum potential demand of customer c for product f in period
t . Setting both parameters to the same value corresponds to imposing the equality
constraints (19.4). The following term should be added to the objective function to
measure total revenue:

∑

t∈T

∑

c∈C

∑

f ∈F

∑

i∈Of

∑

m∈M f
ic

r
f
c x

f mt
ic .

The latter expression assumes that unit revenue is constant, which makes the
objective function linear and preserves model tractability. However, if demand is
assumed to depend on price and price is itself treated as a decision variable, then the
objective function becomes non-linear and makes the problem harder to solve. The
above approach also assumes that demand is independent of the network design.
In practice, sales are often affected not only by price but also by the design of the
logistics network itself because it has an impact on various aspects of service such as
response time, i.e., the time it takes to deliver a product to the customer. Figure 19.4
illustrates how, for a given price, the revenues (RS) and costs (CS) may depend on
the response time S provided by the logistics network and, consequently, how the
economic value added by the network can be expressed as the difference between
revenue and cost. It also shows that beyond a given response time Smax revenues
can decline abruptly.

This suggests another approach to address profit maximization: one can perform
a sensitivity analysis based on the price and response time variations. For given
values of price and response time, the demand can be estimated and the revenues
calculated a priori. Then, the cost minimization model can be solved after removing
from the model the variables that correspond to customer assignments that would
violate the target response time S. Varying the price and response time allows one
to approximate the two curves shown in Fig. 19.4 and to identify the value of S for
which the difference P S between RS and CS is maximized.

Finally, a more sophisticated approach to treat profit maximization is to model the
set of potential market policies offered by a company through binary policy selection
variables. A market policy specifies the price, desired response time and other
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Fig. 19.4 Economic value added for a given logistics network design

attributes, and is characterised by a fixed implementation cost, service constraints
and demand bounds. This approach is explained in more detail by Martel and Klibi
(2016).

2.3.5 International Aspects

Some aspects related to international operations can easily be taken into consid-
eration with this model. For example, exchange rates should be used to convert
monetary values into a unique, common currency. In addition, tariffs and duties for
products that cross a border can be added directly to the cost of the corresponding
arcs. Local content rules can often be enforced in the form of lower bounds on
a sum of arc flow variables. However, more complex questions such as transfer
pricing and taxation require the introduction of additional variables and constraints.
In particular, transfer pricing usually leads to non-linear formulations because of the
need to determine both costs and flows simultaneously on some arcs of the networks.
A detailed treatment of international aspects is beyond the scope of this chapter and
we instead refer to Arntzen et al. (1995), Martel (2005) and to Martel and Klibi
(2016).
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3 Risk and Uncertainty

Because logistics network design decisions concern the long term, several of
the input parameters are often subject to risk and uncertainty. Several modeling
approaches can be considered to take this uncertainty into account. In this section,
we explain how two of these approaches, stochastic programming and robust
optimization, can be applied to the LNDP.

3.1 Stochastic Programming

Stochastic programming is a well-known optimization technique to address mathe-
matical programs in which some of the data are random variables. It assumes that
the probability distributions of the random parameters are known a priori. One
can distinguish between two main types of models: (1) stochastic programs with
recourse that explicitly model recourse decisions to hedge against uncertainty, and
(2) chance-constrained programs that impose restrictions on the probability that a
constraint is violated due to stochasticity. Here, we limit ourselves to the case of
stochastic programming with recourse, which is the most common approach in the
context of logistics network design.

Referring to formulation (1)–(8) of the LNDP, the aim is to incorporate notions
of cost, demand and capacity uncertainty in the model. When all design decisions
are made at once, the problem can be formulated as a two-stage stochastic program
with recourse. When several design periods are considered, one obtains a multi-
stage program, which is more difficult to solve. Under a two-stage setting, some
decisions are made in the first stage before the uncertain information is known. In
the second stage, the values of the random variables become known and the recourse
actions are taken. In our context, the first stage could, for example, correspond to
fixing all of the binary design variables. The second stage would consist in choosing
the flows and resulting inventory levels in the network and also in choosing the
short-term actions required to match supply and demand (i.e., use of additional
capacity, subcontracting, or overtime). Uncertainty should thus be restricted to
parameters that affect only the flow variables in connection with demand, unit costs
and capacities. However, fixed costs associated with the binary variables should be
deterministic. Structural information such as bills of materials should also be known
with certainty. As a basic rule of thumb, one may consider that information that
varies from period to period in the deterministic model can be considered random
in the stochastic program, while information that is not period-dependent should be
deterministic.

Let H denote the set of possible scenarios and, for each scenario h ∈ H ,
denote by ph the probability of scenario h being realized. Each scenario represents
a realization of the vector of uncertain parameters. When continuous probability
distributions are considered, the set H is implicitly infinite. However, a subset of
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scenarios can be generated by a sampling method. The main modification required
to the demand, cost, and capacity parameters is the addition of a scenario index
h. For every scenario h, let xkmth

ij and I kth
w denote the flows and inventory levels

under scenario h. Using this notation, the generic LNDP model (19.1)–(19.8) can
be transformed into the following two-stage stochastic program with recourse:

Minimize
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⎣ciyi +
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⎤

⎦+

EH [Q(y, z, v, w, h)] , (19.20)

where Q(y, z, v, w, h) is the optimal value of the second-stage program and EH [·]
denotes the expectation with respect to the scenario set H . For a given scenario h

and given values ȳ, z̄, v̄, w̄ of the first-stage decisions, the second-stage problem can
be expressed as follows:

Minimize
∑

t∈T

∑

k∈K
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∑
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⎥⎦ (19.21)

subject to
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(19.27)
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∑

k∈K
ukmxkmth

ij − qmh
ij z̄m

ij ≤ 0 i ∈ O; j ∈ D;m ∈ Mij ; t ∈ T .

(19.28)

In the presence of uncertainty, it may not be possible to fully satisfy the customer
demand under every scenario. To ensure that the second stage problem is always
feasible, one may introduce in the demand constraints (19.24) recourse variables
a

f th
c representing the amount of demand not satisfied for customer c and product

f in period t under scenario h. These variables can be appended to the objective
function with a recourse cost of e

f th
c per unit to represent the cost of the recourse

needed when demand cannot be fully satisfied. Alternatively, one may introduce
recourse variables in the capacity constraints if the demand should always be
satisfied in full but possible recourse actions consist in acquiring extra capacity
through subcontracting, overtime or any other means.

3.2 Robust Optimization

The above approach can be used to deal with general forms of uncertainty concern-
ing demand, cost and capacity parameters. It assumes, however, that information is
available on the likelihood of each scenario and that planners are risk-neutral. Under
these assumptions, minimizing the expected cost is perfectly reasonable. In practice,
however, decision-makers are often risk-averse and they may care more about the
worst-case cost than the expected cost. In addition, rare events such as natural
disasters or terrorist attacks do not have well-defined probabilities of occurrence.
Even if they do, the probabilities are usually very small and will not have any real
impact on the optimal solution to the problem although the corresponding events
may have dramatic consequences.

One way to overcome these limitations of stochastic programming is to use
robust optimization. In classical robust optimization, one is interested in finding
a solution that minimizes the cost under the worst possible scenario. This leads
to a min-max objective function, which is often seen as too pessimistic because
it assumes that all uncertain parameters can take their worst possible value at the
same time. An interesting alternative to worst-case optimization is the “budget-of-
uncertainty” approach of Bertsimas and Sim (2004). This approach assumes that
the number of uncertain parameters that can deviate from their nominal value or the
sum of these deviations is bounded from above by a value known as the budget of
uncertainty. This approach generally leads to more balanced solutions that are less
sensitive to extreme scenarios. However, it still puts the focus on the worst-case at
the expense of average performance.

A possibly more appropriate approach in practice is to combine the idea of
average cost optimization with some notion of robust optimization in the same
model. For example, risk aversion can be taken into account by adding to the
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objective function of the two-stage stochastic program an extra term measuring the
worst-case cost with respect to the different possible scenarios. The problem then
becomes parametric because one must define the relative weight of this extra term
in the objective function.

LetDH [C(y, z, v, w, h)] denote a risk measure that the decision-makers want to
consider in the selection process of robust solutions. Shapiro et al. (2009) identified a
set of coherent risk measures that satisfy a number of convexity, monotonicity, trans-
lation equivalence, and positive homogeneity properties in stochastic programming.
For instance the mean absolute upper semi-deviation from the mean is a common
downside risk measure which can be written as follows:

DH [C(y, z, v, w, h)] = EH [(C(y, z, v, w, h) − EH [C(y, z, v, w, h)])+],
(19.29)

where (x)+ = max{0, x}. Alternatively, a worst case measure is given by the
maximum upper semi-deviation:

DH [C(y, z, v, w, h)] = maxH [(C(y, z, v, w, h) − EH [C(y, z, v, w, h)])+].
(19.30)

With either of these measures, one can transform the objective function (19.21)
into the following weighted sum:

Minimize EH [C(y, z, v, w, h)] + ωDH [C(y, z, v, w, h)] , (19.31)

where ω ≥ 0 is a scaling parameter.
Finally, one can also use the risk measures (19.29) or (19.30) to impose a

constraint on risk inside a stochastic program. This is achieved by adding the
constraint

DH [C(y, z, v, w, h)] ≤ ω0, (19.32)

where ω0 corresponds to the upper bound on risk tolerance.

4 Reverse Logistics, Environmental Aspects and
Sustainability

While traditional logistics network design has focused on forward logistics, i.e., the
movement of goods from suppliers to end customers, there is a growing interest
in both the scientific literature and the industry for the design of reverse logistics
networks to manage upstream flows from end customers back to the plants and
even to the suppliers. The logistics network for recovery and revalorization of used
products can take several forms, depending on the industrial context. This could be a
network composed by a second-hand market independent of the original equipment
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manufacturer (OEM) or an internal network based on demand for parts or used
products by the OEM’s manufacturing or remanufacturing activities. We note that
when forward and reverse flows are coupled the resulting problem is referred to as
a closed-loop logistics network design problem (Akçalı et al. 2009; Easwaran and
Uster 2010).

The decisions related to the design of a reverse logistics network may involve
the determination of the optimal locations and capacities of collection centers,
inspection centers, remanufacturing facilities, and recycling plants in addition to
the optimal shipment strategies between these facilities. There usually are various
options available including repair, refurbishing, and recycling of products as well
as alternatives such as inspection, disassembly, disposal, or selling to suppliers,
to the secondary market or to external remanufacturing facilities. Different actors
and facilities are also involved in reverse logistics networks, e.g., disposers, re-
manufacturers, and the secondary market. Moreover, unlike forward networks,
which are mostly driven by economic considerations, there are further factors
motivating the establishment of reverse logistics networks such as environmental
laws and regulations (Mota et al. 2014). Finally, uncertainty is also prevalent
because the supply of returned products is often highly unpredictable. Hence,
reverse LNDPs are usually quite complex.

Items that are shipped in a reverse logistics network include used, repaired, or
refurbished products, as well as components or raw materials of such products. The
set of items K must thus account for different states (used, repaired, refurbished)
of the same product. The transitions between the stages of products at nodes
of the network as well as the reverse bills of materials need to be considered
when modeling these problems. The most important type of constraints in reverse
logistics network design models is the flow balance constraints. Flow balance
needs to account for the total amount of products recovered at a location as well
as the transition between different states of the product through various recovery
options. For example, a used product may turn into a refurbished product at
a remanufacturing facility. Another important issue to consider within the flow
balance constraints of a reverse logistics network design model is the reverse bills
of materials. A product may be decomposed into its components at a disassembly
facility. Let δ�k denote the amount of item k obtained by recovering one unit of item
�. One needs to define a new decision variable rkt

p representing the amount of item
k recovered at location p in period t . Assuming that recovery takes one period of
time, the flow conservation constraint for item k at recovery plant p in period t can
then be formulated as follows:

∑

i∈Ok

∑

m∈M k
ip

xkmt
ip −

∑

j∈Dk

∑

m∈M k
pj

xkmt
pj +

∑

�∈K
δ�kr�,t−1

p − rkt
p = 0. (19.33)

As noted above, the major driving forces in reverse logistics networks include
not only economic factors, but also legislation and environmental consciousness.
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Hence, there can be constraints associated with recovery targets. An example of
such a constraint would be:

∑

p∈P

t∑

τ=1

rkτ
p ≥ RT kt k ∈ K ; t ∈ T , (19.34)

where RT kt denotes the recovery target of item k up until the end of period t . This
constraint forces the recovery target of each item to be met by the end of each period.

In terms of the objective function, it is common to consider profit maximization
in reverse LNDPs rather than cost minimization. As noted in Alumur et al. (2012), a
company could fully outsource its reverse logistics operations if the only motivation
is to satisfy legislation or regulations. Moreover, there are usually multiple actors
involved in the design and operation of a reverse logistics network in addition to
those involved in a forward network. These multiple stakeholders include producers,
distributors, third-party logistics providers, disposers, and municipalities. Multiple
actors may obviously lead to multi-objective decision problems.

In practice, the estimation of greenhouse gas (GHG) emissions may be difficult
because they cover upstream and downstream activities that are not under the
control of a single company. For GHG, the common measure is the CO2-equivalent
emissions (in kgCO2e/unit load) that could apply to inbound flows associated to
suppliers and to outbound flows to include transportation emissions to customers.
Accordingly, there is a growing preoccupation for the incorporation of environmen-
tal constraints in the design of forward and reverse logistics networks (Mota et al.
2014). Certain types of constraints can be imposed easily in the LNDP. For example,
a limit on CO2 emissions can be treated by imposing aggregate constraints on the
sum of flows in the network. If ek

i and ekm
ij denote the emissions produced by the flow

(e.g., the production or storage) of one unit of item k at node i and the transportation
of one unit of item k from node i to node j with mode m, then an upper bound Et

on total emissions in period t can be imposed with the following constraint:

∑

i∈O

∑

j∈D

∑

k∈K

∑

m∈M k
ij

(ek
i + ekm

ij )xkmt
ij ≤ Et . (19.35)

In addition to environmental efficiency, there is a growing focus on social
sustainability (Tang and Zhou 2012; Giusti et al. 2019). However, characterizing
and measuring social well-being in logistics is still in its infancy. Employment is
often cited as the main social indicator in connection with regional development
(Mota et al. 2014). Other social objectives can take the form of an equity concern
related to space, returns, or production factors and can be expressed in the LNDP as
equity constraints in terms of lower and upper bounds.
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5 Solution Methods

Because the LNDP is usually formulated as a mixed-integer program (MIP), it is
often solved by general-purpose branch-and-bound or branch-and-cut solvers. How-
ever, the formulations are sometimes very large and solving them to near-optimality
can be a challenge, even for state-of-the-art solvers. Hence, decomposition methods
are often used to separate the problem into smaller and more tractable components.
Several heuristic algorithms have also been developed to identify good solutions in
reasonable time. This section provides an overview of the main solution methods.

5.1 Exact Algorithms

MIP formulations such as the one provided in Sect. 2.2 can be solved successfully
by branch-and-cut for moderate size instances. However, like many network design
problems, these formulations tend to have large integrality gaps caused by the
presence of fixed costs associated with the binary design decisions. When facilities
or arcs in the network are capacitated, linear programming (LP) solutions tend to
be very fractional and a significant amount of branching is required to reach an
optimal integer solution. The performance of branch-and-bound algorithms can
be improved by strengthening the LP relaxations through the addition of valid
inequalities, either directly in the formulation, or in the form of cuts in a branch-
and-cut algorithm. General families of inequalities, such as cutset inequalities, can
often be used directly or can be adapted to the special network structure considered.
For example, the simple inequalities vk

i ≤ yi, ∀i ∈ O , have been shown to
considerably strengthen the LP relaxation of formulation (1)–(8). Cordeau et al.
(2006) provide several other families of valid inequalities. Even with the addition of
valid inequalities, large-scale instances of the LNDP can remain formidably difficult
to solve. Hence, several authors have turned to decomposition methods.

5.1.1 Lagrangian Relaxation

If one relaxes demand and flow conservations (2)–(4), the resulting subproblem
becomes separable by origin node. This relaxation has been successfully exploited
by some authors. For example, Pirkul and Jayaraman (1998) observed that by
relaxing the demand constraints and the flow conservation constraints at the
warehouses, their formulation decomposed into a set of independent continuous
knapsack problems, one for each warehouse and each plant. In the same way,
Hinojosa et al. (2008) relaxed the demand and flow conservations constraints
connecting the distribution levels in a two-echelon warehouse location model
with multiple commodities. The resulting subproblem decomposes by echelon, by
facility and by time period. More recently, Pimentel et al. (2013) used a Lagrangian
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heuristic procedure to solve a stochastic LNDP, whereas Badri et al. (2013) used
Lagrangian relaxation for a deterministic variant. In general, the weakness of these
approaches is that they rarely provide feasible integer solutions. Hence, Lagrangian
heuristics are usually necessary to produce good feasible solutions.

5.1.2 Benders Decomposition

The most popular decomposition approach for the LNDP is Benders decomposition.
By keeping all binary design decisions in the master problem, one obtains a
linear and continuous subproblem which usually takes the form of a capacitated
multicommodity network flow problem. Although this problem is not separable by
commodity, it is nevertheless much easier to solve than the original formulation.
When the number of binary design decisions is small but the number of arcs in the
network and the number of commodities is large, this decomposition can be very
beneficial. The use of Benders decomposition to solve variants of the LNDP was
investigated, among others, by Dogan and Goetschalckx (1999) and by Cordeau
et al. (2006). Santoso et al. (2005) considered several acceleration techniques to
solve a stochastic variant of the LNDP within a sample average approximation
(SAA) framework. In particular, the use of a trust region for the master problem
together with knapsack inequalities, cut strengthening and cut disaggregation was
shown to improve performance. More recently, Mariel and Minner (2017) also
used Benders decomposition in a heuristic way to solve a problem with a bilinear
objective function arising in the context of supply chain design under NAFTA local
content requirements. It is worth noting that in a scenario-based formulation of the
LNPD, the decomposition scheme can decompose the subproblem by scenario and
allow the use of parallelism.

5.2 Heuristic Algorithms

Several authors have observed that the LP relaxation solution sometimes contains
many location variables that naturally take value 0 or 1. This has led to the idea of
gradually rounding the LP solution into an integer one. For example, Thanh et al.
(2010) solve a sequence of LPs by fixing some binary decisions at each step until all
binary variables are integer or the remaining MIP can be solved to optimality. The
idea of rounding the LP solution was also used by Melo et al. (2014), who proposed
four rounding strategies followed by a local search algorithm to repair infeasibility
or improve the resulting integer solution.

An interesting idea when designing heuristics for LNDPs is to explore the space
of the integer design variables while relying on a general-purpose LP solver to
set the values of the continuous variables to their optimal values. This idea was
exploited, for example, by Melo et al. (2012) who use tabu search for a dynamic
facility location problem. Their heuristic explores the space of the binary facility
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location variables while the remaining (continuous) variables are set by solving
an LP. A rounding procedure is used to compute an initial solution and infeasible
solutions that violate the budget constraints are allowed during the search. The
neighborhood considered consists of solutions obtained by changing the status of a
single facility at a time. The idea was also used by Carle et al. (2012) who described
an agent-based metaheuristic for multi-period LNDPs with an explicit calculation of
inventory levels. This metaheuristic combines tabu search procedures with iterated
local search and mixed-integer programming to separately and iteratively optimize
different components of the problem. Cordeau et al. (2008) devised an iterated
local search heuristic for a special case of the problem with single assignment.
Under single assignment constraints, the problem becomes purely combinatorial
in nature and it can be stated directly with just the binary variables. Hence, the
impact of opening or closing a facility or of changing the product assignment can
be easily computed, which allows a fast exploration of a solution’s neighborhood.
Finally, an interesting approach is to take advantage of the strategic-tactical structure
of the LNDP model to devise a hierarchical or nested heuristic approach. This
allows decoupling the location and allocation decisions from the product flows and
inventory decisions, and solving the corresponding parts of the problem with an
appropriate exact or heuristic algorithm (see, for instance, You and Grossmann 2008
and Klibi et al. 2010a).

6 Bibliographical Notes

The design of logistics networks is rooted in discrete facility location (Daskin 2011;
Laporte et al. 2016) and most early models were direct extensions of capacitated
or uncapacitated facility location problems with fixed costs (Aikens 1985; ReVelle
and Eiselt 2005). One of the first papers addressing the design of multicommodity
distribution networks is that of Geoffrion and Graves (1974). Over the years,
many models have been introduced with a focus on improving the realism and
comprehensiveness of the problem setting. In particular, several models have been
introduced to combine production and distribution decisions (Cohen and Lee 1989;
Vidal and Goetschalckx 1997; Elhedhli and Goffin 2005).

An important area of research concerns the incorporation of international aspects
in supply chain design. Arntzen et al. (1995) introduced a formulation capturing
duties, duty drawback, local content rules and offset requirements. This was
followed by Vidal and Goetschalckx (2001) and Goetschalckx et al. (2002) who
took into account issues of transfer pricing. More recently, Mariel and Minner
(2017) have modeled the problem of locating plants and planning production and
distribution under the North American Free Trade Agreement local content rules.

The most comprehensive and realistic modeling framework described to date in
the scientific literature is probably that of Martel (2005). The objective function
aims to maximize after tax net revenue by taking into account the impact of delivery
times on demand. Complex product structures with arbitrary bills of materials are



19 Logistics Network Design 621

considered along with facility layout and capacity options. A detailed representation
of inventory levels is embedded in the formulation as well as a rather rich cost
structure. Finally, many aspects of transfer prices, taxes, tariffs and duties are taken
into account. The resulting formulation contains nonlinear terms in the objective
function but it can be solved iteratively by using piecewise linear approximations of
these terms that are updated each time the problem is solved.

Another important stream of literature concerns the dynamic location of facilities
over a multiple-period planning horizon. Multi-period models were proposed,
among others, by Martel (2005), Melo et al. (2006), Thanh et al. (2008), Hinojosa
et al. (2008), and Jena et al. (2015). Melo et al. (2006) have introduced a general
framework that not only supports facility relocation or shutdown but also capacity
expansion and reduction under a budget constraint in each time period. This
framework is mostly targeted at distribution network design as it does not consider
supplier selection or the transformation of raw materials into finished products.
Another multi-period model for supply chain design was introduced by Thanh et al.
(2008). Facilities can be opened and closed during the planning horizon and modular
capacities are considered for each facility. They also consider both seasonal and
cyclic stocks. Finally, the work of Klibi and Martel (2013) provides a modeling
framework for logistics network design under uncertainty. The problem is cast as
a two-level organizational decision (strategic–operational) and is characterized by
multiple design cycles and multiple planning periods.

Beside time aspects, the treatment of risk and uncertainty related to logistics
networks is of inherent importance for realistic models (Dunke et al. 2018).
Surprisingly the literature lacks a clear distinction between the notion of risk and
uncertainty. An in-depth study of the notion of supply chain risk can be found in
Heckmann et al. (2015). An approach for modelling risk and for the generation
of scenarios in the LNDP can be found in Klibi and Martel (2012). Finally, in
Heckmann and Nickel (2017) a more general discussion of common flaws in supply
chain risk analysis is presented.

The application of robust optimization techniques to LNDPs is still a relatively
new area of research. An interesting comparison and application of different
formulations to a case study can be found in Govindan and Fattahi (2017). Robust
optimization approaches were proposed to deal with simple location problems
(Snyder and Daskin 2006). We refer to Klibi et al. (2010b) for a broader discussion
of robustness issues in the design of logistics networks. With respect to uncertainty,
Santoso et al. (2005) and Schutz et al. (2009) proposed to apply the sample
average approximation (SAA) method coupled with Benders decomposition and
dual decomposition, respectively, to solve stochastic LNDPs. For more details and
background on stochastic programming in the context of logistics network design
the reader is referred to Correia and Saldanha-da-Gama (2015), Fan et al. (2017),
and to Govindan et al. (2017).

There is a quickly growing literature on green logistics network design and the
incorporation of sustainability objectives and constraints. Two classes of problems
can be distinguished: reverse logistics network and closed-loop logistics network
design problems. The recent work of Mota et al. (2014) is linked to the former class
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with the establishment of reverse logistics networks including environmental laws
and regulations. The work of Chaabane et al. (2012) considers life cycle assessment
principles and emission trading schemes to design sustainable logistics network.
The work of Akçalı et al. (2009) and Easwaran and Uster (2010) is oriented towards
closed-loop network design problems. We also refer to Tang and Zhou (2012) for a
discussion of social sustainability and to Garcia and You (2015) for the inclusion of
sustainability issues in multi-objective optimization of LNDPs.

7 Conclusions and Perspectives

Logistics network design problems are challenging combinatorial optimization
problems with widespread applications and a high potential for impact in terms
of cost reduction and performance improvement for companies involved in the
manufacturing and distribution of goods. The field has attracted a lot of attention
in the operations research community and the models and algorithms currently
available can solve instances of reasonable size with a sufficient degree of realism.
Nevertheless, there still exist many opportunities for improvement.

One of the main challenges is the treatment of uncertainty. Although it is
easy to formulate two-stage or multi-stage versions of the LNDP, solving these
models remains extremely difficult. Because the problems involve a large number of
uncertain parameters, one must consider large sets of scenarios to obtain a sufficient
degree of precision in the representation of uncertainty. Decomposition methods
such as Benders decomposition can be used to obtain some form of separability but
convergence to an optimal solution is usually very slow.

Another area that could largely benefit from additional research is the integration
of forward and reverse logistics network design decisions into so-called “closed-
loop” supply chains. With environmental regulations becoming more stringent in
most countries, there is a growing need to design forward networks that can also
handle reverse flows in an effective way from the start. The resulting problems are
again highly complex and difficult to solve.

Finally, we would like to point out that the growing importance of on-line
commerce is slowly changing the way logistics networks are designed. The focus
is now placed less on cost minimization through economies of scale and more on
revenue maximization through improved quality of service to the end customers.
The reorganization of distribution, in the retail sector in particular, gives rise to
multi-channel distribution network structures and to a mix between fulfillment and
storage strategies.
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