
Chapter 18
Hub Network Design

Ivan Contreras

1 Introduction

Hub networks are frequently employed in many transportation, telecommunication
and computer systems to efficiently route commodities between many origins and
destinations. A distinguishing feature of hub networks is the use of transshipment,
consolidation, or sorting points for commodities, called hub facilities, to connect a
large number of origin/destination (O/D) pairs by using a small number of links.
Commodities having the same origin but different destinations are consolidated
when routed to the hubs and are then combined with other commodities having
different origins but the same destination. The use of hub facilities helps centralize
commodity handling and sorting operations, reduce set-up costs, and achieve
economies of scale on routing costs through the consolidation of flows. Hub
networks can be seen as hierarchical networks which, in their most basic form,
contain two levels: an access-level network connecting O/D nodes to hubs, and a
hub-level network connecting hub nodes between them. The design of hub networks
involves selecting nodes to place hub facilities, determining the arcs to connect O/D
nodes and hubs, and selecting the paths to route commodities.

Hub network design problems (HNDPs) lie at the heart of network design
planning in transportation and telecommunication systems. Application areas of
HNDPs in transportation include air freight and passenger travel, postal delivery,
express package delivery, trucking, liner shipping, public transportation, and rapid
transit systems. Demand corresponds to passengers, mail, express packages, or
goods carried by airplanes, trucks, trains, or vessels moved on physical networks
such as roads and railways or through the air or water. Hub facilities are sorting

I. Contreras (�)
Concordia University and Interuniversity Research Centre on Enterprise Networks,
Logistics and Transportation (CIRRELT), Montreal, QC, Canada
e-mail: icontrer@encs.concordia.ca; ivan.contreras@concordia.ca

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_18

567

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_18&domain=pdf
mailto:icontrer@encs.concordia.ca
mailto:ivan.contreras@concordia.ca
https://doi.org/10.1007/978-3-030-64018-7_18


568 I. Contreras

centers or transportation terminals in which one or more transportation modes
interact. Hubs are used as intermediate facilities to consolidate flows, perform an
activity to commodities (i.e., sort, assemble, label), or transfer them to other modes
of transportation. Consolidation of flows at hubs enables economies of scale on
transportation costs, not only on the routing of flows between hubs but also between
O/D nodes and hubs. Sometimes hubs are required route commodities. Some other
times hubs are not required but desirable for economical reasons.

Applications of HNDPs in telecommunications arise in the design of distributed
data networks, where commodities correspond to electronic data that are routed
over a variety of physical links such as co-axial cables and fiber optic links or
through the air via satellite channels and microwave links. Hub facilities correspond
to hardware such as switches, concentrators, and multiplexors which help to provide
efficient connections between tributary and backbone networks. Large set-up costs
for hub facilities and communication links, in combination with economies of scale
in data transmissions and network utilization, motivate the use of hub-and-spoke
architectures.

HNDPs constitute a challenging class of network optimization problems involv-
ing two types of design decisions: (1) the location of hub facilities at nodes of an
underlying network, and (2) the activation of various classes of links to connect
origin, destinations, and hubs. Given the inherent complexity of the interaction
between these two types of decisions, HNDPs were first studied from a facility
location perspective. In particular, the so-called hub location problems (HLPs) focus
on the interaction between hub facilities and consider the location of hubs as the key
decision. Most HLPs use a set of assumptions that simplify the design and routing
decisions to the point of being completely determined by the allocation decisions
of O/D nodes to hubs. When such simplifying assumptions are relaxed, HNDPs are
more closely related to multicommodity network design problems (MNDPs). In fact,
HNDPs are a particular class of MNDPs in which node selection decisions are taken
into account. A specific class of such general HNPDs, denoted as hub arc location
problems (HALPs), have also been studied in which a set of hub arcs, and their
associated hub nodes, need to be selected. In this case, the modeling of O/D paths
become more involved as the allocation of nodes to hubs does no longer determine
the routing of flow through the hub network. HALPs retain some assumptions of
HLPs, specially the ones regarding the design of the access-level network. The
rich variety of applications has also given rise to HNDPs with specific hub network
topologies and to more general models involving design decisions on both hub and
access levels as well as additional node selection decisions.

This chapter studies HNPDs from a network design perspective. We focus
on the role network design and routing decisions play in the formulation and
solution of various classes of HNDPs. Section 2 starts with some preliminaries,
including the key features of hub networks, the types of decisions that can be taken
into account, and how these decisions interact between them. We also describe
commonly considered assumptions and properties of HNDPs and how these impact
their formulation. In particular, Sect. 3 introduces different formulations for various
classes of HLPs problems considering three allocation patterns: multiple, single, and
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r-allocation. Section 4 presents more complex HNDPs such as HALPs and other
problems with specific hub network topologies such as tree-star, start-star, ring-star,
and hub line networks. For all these classes of problems, we highlight their most
relevant applications and describe some formulations which have been developed
and exploited in combination with decomposition methods to solve them. Section 5
provides a historical review of key references on HNDPs together with some of
the most significant milestones in the field. Conclusions and perspectives follow in
Sect. 6.

2 Preliminaries

A generic hub network design problem can be described as follows. Consider a
complete graph G = (N ,E ), whereN is the set of nodes representing the origins
and destinations of flows as well as the set of potential hub locations, and E is
the set of edges. For each node pair (i, j), let Wij ≥ 0 and dij ≥ 0 denote the
amount of flow to be routed and the distance, respectively, from the origin i ∈
N to the destination j ∈ N . For each node i ∈ N , fi is the fixed set-up cost
for locating a hub, whereas for each e ∈ E , ge denotes the fixed set-up cost for
activating an (undirected) hub arc. A hub arc e = (i, j) ∈ E connects two different
hub nodes i and j and has a unit flow cost of αdij . The parameter α (0 ≤ α ≤ 1)
is used as a discount factor to provide reduced unit flow costs on hub arcs to reflect
economies of scale resulting from consolidation of flows between hubs. The unit
flow cost between O/D pairs is given by the length of the path between the origin
and destination nodes in the solution network. Each O/D path has a collection leg
from the origin node to the first hub, possibly a transfer leg between the first and
the last hubs, and a distribution leg from the last hub to the destination node.

Depending on the assumptions and considered application, the solution network
of a HNDP consists of up to four types of arcs: (1) hub arcs connecting two hubs
with a discounted flow cost, (2) bridge arcs connecting also two hub nodes but
without benefiting from the reduced unit flow cost of a hub arc, (3) access arcs
connecting non-hub nodes and hubs, and (4) direct arcs connecting two non-hub
nodes. A generic HNDP consists of locating a set of hub facilities, activating a set
of arcs, and of determining the routing of flows through the hub network, with the
objective of minimizing the total set-up and flow cost.

HLPs are a class of HNDPs which have been most studied in the literature. They
focus on the location of a set of hub facilities and the assignment of O/D nodes to
these facilities. Arc selection and routing decisions are mainly determined by the
assumptions made on the cost structure and the assignment pattern. In particular,
there are four assumptions underlying most HLPs: (1) commodities have to be
routed via a set of hubs, (2) hub, access and bridge arcs have no set-up cost, (3)
the discount factor α is the same for all hub arcs and does not depend on the amount
of flow routed on each hub arc, (4) distances dij satisfy the triangle inequality. The
following properties are a direct consequence of these assumptions:
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• O/D paths with hubs: Assumption 1 prohibits direct connections between O/D
nodes that are not hubs and hence, O/D paths must include at least one hub node.
Note that this assumption is rather mild, as it is always possible to add a dummy
hub and associated flow costs to represent direct connections between non-hub
nodes.

• Fully-interconnected hubs: Assumption 2 allows hubs to be interconnected at
no extra cost and, together with Assumptions 3 and 4, an important resulting
property is that the set of hub arcs define a complete subgraph on the set of hub
nodes. As a consequence, hub arc selection decisions become trivial once the
location of hub nodes is known.

• one-hub-arc O/D paths: Another important property obtained when combining
all assumptions is that O/D paths contain at least one and at most two hubs.
However, it is important to note that whenever Assumption 2 or 4 are not
satisfied, paths may contain more than two hubs and more than one hub arc.

The above properties do not only simplify the network design decisions in HLPs,
as they are completely determined by the location and assignment decisions, but
most importantly, they significantly reduce the number of O/D paths that need
to be considered on a hub network. In HLPs, O/D paths include either a single
hub node and no hub arc, or two hub nodes and a single hub arc. Moreover,
because of Assumptions 2 and 4, each collection and distribution leg, if present,
contains only one access arc. O/D paths are thus of the form (i, k,m, j), where
(k,m) ∈ N × N is the ordered pair of hubs to which i and j are allocated,
respectively. The flow cost of routing Wij along the path (i, k,m, j) is then given
by Wij

(
χdik + αdkm + δdmj

)
, where χ, α, and δ represent the collection, transfer

and distribution costs along the path. To reflect economies of scale between hubs,
we assume that α < χ and α < δ. Note that these paths contain one, two or at
most three arcs, depending on the number of visited hubs and on the function of
origins and destinations (i.e., hub or non-hub nodes). As a consequence, there are
only O(n2) paths for each O/D pair. As we will show in Sect. 3, this allows the
development of tight path-based formulations with O(n4) variables that explicitly
consider all these paths and for some allocation patterns, they do not even require
the use of flow conservation constraints.

In the case of more general HNDPs that do not satisfy some of the above
mentioned assumptions, the modeling of O/D paths becomes more involved given
that hub nodes are not necessarily fully interconnected and due to the presence
of bridge arcs. O/D paths may contain more than three arcs and visit more than
two hub nodes. The transfer leg can use several bridge and hub arcs, depending
on whether additional assumptions on the structure of O/D paths are considered
or not. This means that a much larger number of O/D paths exist. In fact, for the
case of a complete graph the number of paths between all pairs of nodes is given
by

∑n−2
i=0 (n − 2)!/(n − 2 − i)! As a consequence, path-based formulations for

HNDP would have up to O(nn−2) variables. Flow conservation constraints are now
needed when extending arc-based formulations of HLPs which contain only O(n4)
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Fig. 18.1 Solution network of a hub location problem (a) and a hub network design problem (b)

variables. In Sect. 4, we highlight the added complexity in formulating and solving
HNDPs where non-trivial arc selection and routing decisions need to be made.

Figure 18.1a shows an example of a solution network of a HLP in which different
structures on O/D paths arise (squares represent hub nodes and circles represent
non-hub nodes). The path (5, 8, 3, 4) is a two-hub path formed by the access arcs
(5, 8), (4, 3) and the hub arc (8, 3). The path (9, 9, 2, 1) is also a two-hub path but
containing only the access arc (1, 2) and the hub arc (2, 9). The path (3, 3, 9, 9) is
yet another two-hub path formed only by the hub arc (3, 9). The path (4, 3, 3, 6) is a
one-hub path containing only the access arcs (4, 3) and (6, 3). The path (5, 8, 8, 8)
is also a one-hub path containing the single access arc (5, 8).

Figure 18.1b shows an example of a solution network of a more general HNDP in
which different structures on O/D paths arise (dashed lines represent bridge arcs).
The path (5, 8, 9, 6) is a three-hub path formed by the bridge arc (5, 8), the hub
arc (8, 9), and the access arc (9, 6). The path (1, 2, 8, 9, 3, 4) is a four-hub path
containing the access arcs (1, 2), (4, 3) and the hub arcs (2, 8), (8, 9), and (9, 3).

3 Hub Location Problems

HLPs focus on the location of hub facilities and the assignment of O/D nodes to
open hubs. At the hub-level network, hub arc selection decisions are completely
determined by the location of the hubs, given that they are full-interconnected
with hub arcs. At the access-level network, arc selection decisions are given by
the allocation of O/D nodes to hubs. There are three possible allocation strategies:
multiple assignments, single assignments, and r-allocation. In the case of HLPs in
which there is no set-up cost for the activation of access arcs, once the hub locations
are known, the flow cost is minimized by finding a shortest path on the network
induced by the selected hubs for each O/D pair, resulting in a multiple allocation
pattern of O/D nodes to hubs. That is, a O/D node may be directly connected to
more than one hub facility. A multiple assignment pattern simplifies the routing
decisions and provides greater flexibility on hub networks, allowing lower flow cost
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solutions. However, they may considerably increase the network design cost as a
larger number of access links must be activated. Applications in which it would
be reasonable to consider multiple assignments arise mainly in transportation, in
particular in air freight and passenger travel, public transportation, and rapid transit
systems. In these cases, access arcs either do not correspond to physical links or
they are associated with existing physical infrastructure (i.e., roads or highways)
and hence, there is no set-up cost associated with them.

In a single assignments strategy, each O/D node must be connected to exactly
one hub facility. All commodities with the same origin (or destination) are thus
routed via the same access arc. Applications of a single assignment strategy arise
in telecommunications, where access arcs correspond to physical links having
significant set-up costs which need to be installed to provide connection and com-
munication services to terminal nodes. Other applications arise in transportation, in
particular in express package and postal delivery where commodities are usually
consolidated at O/D nodes to be sent to the same sorting facility. Finally, in an r-
allocation strategy each O/D node can be connected to at most r hubs. This strategy
generalizes both single and multiple assignment strategies and, at the same time,
provides the flexibility of allowing nodes to be allocated to two or more hubs while
keeping some control on the number of access arcs on the solution network. In
what follows, we describe the most relevant formulations that have been introduced
to model each of the allocation strategies. We also point out to the most relevant
solution algorithms developed for each of these classes of problems.

3.1 Multiple Assignments

We can use the so-called flow-based formulations to model HLPs with multiple
assignments. They use continuous variables to determine the amount of flow routed
on a particular arc originated at a given node. In the case of multiple assignments, we
need three sets of flow variables to model the collection, transfer, and distribution
legs in an O/D path. In particular, for the collection leg we define the continuous
variables Uik , i, k ∈ N , equal to the amount of flow from origin node i sent directly
to hub k via access arc (i, k). For the transfer leg, let Yikm, i, j, k ∈ N , be equal
to the amount of flow originated at node i and passing through hub arc (k,m).
Finally, for the distribution leg let Xijm, i, j,m ∈ N , be equal to the amount of
flow from origin i sent from hub m directly to destination j via access arc (m, j).
We also define binary location variables zi , i ∈ N , equal to 1 if and only if a hub
is located at node i. Using these sets of decision variables, we can formulate HLPs
with multiple assignments as follows:

minimize
∑

k∈N
fkzk +

∑

i,k∈N
χdikUik +

∑

i,k,m∈N
αdkmYikm +

∑

i,j,m∈N
δdmjXijm
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subject to
∑

k∈N
Uik = Oi i ∈ N (18.1)

∑

m∈N
Xijm = Wij i, j ∈ N (18.2)

Uik +
∑

m∈N
Yimk =

∑

m∈N
Yikm +

∑

j∈N
Xijk i, k ∈ N (18.3)

Uik ≤ Oizk i, k ∈ N (18.4)

Xijm ≤ Wij zm i, j,m ∈ N (18.5)

Uik, Yijk, Xijk ≥ 0 i, j, k ∈ N (18.6)

zk ∈ {0, 1} k ∈ N . (18.7)

Constraints (18.1)–(18.3) correspond to the flow conservation equations for a
network flow problem for each origin node i. In particular, for each node i ∈ N
there is a network with 2n + 1 nodes. The first node is the source with a supply
of Oi and then, there are n transshipment nodes, one for each possible hub node
k ∈ N . Finally, the demand at each of the n destination nodes j is given
as Wij . Constraints (18.4)–(18.5) ensure that flows are routed via open hubs. The
above formulation contains O(n3) variables and O(n3) constraints. If the flow
requirements are symmetric, i.e., Wij = Wji , ∀i, j ∈ N , and if the collection
and distribution cots are equal (χ = δ), then the Uik variables can be eliminated
from the formulation by using:

Uik =
∑

j∈N
Xjik ∀i, k ∈ N .

Arc-based formulations can also be adapted for the case of HLPs with multiple
assignments. For each i, j, k,m ∈ N , we define binary variables xijkm equal to 1
if and only if the flow originated at i and destination j is routed via hub arc (k,m).
Using the same set of location variables zi in combination with the arc variables
xijkm, the problem can be stated as follows:

minimize
∑

k∈N
fkzk +

∑

i,j,k,m∈N
Wij

(
χdik + αdkm + δdmj

)
xijkm

subject to
∑

k,m∈N
xijkm = 1 i, j ∈ N (18.8)

∑

m∈N
xijkm +

∑

m∈N \{k}
xijmk ≤ zk i, j, k ∈ N (18.9)

xijkm ≥ 0 i, j, k,m ∈ N (18.10)

zk ∈ {0, 1} k ∈ N . (18.11)
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Constraints (18.8) state that exactly one hub arc must be selected to route the flow
from origin i to destination j . Constraints (18.9) ensure that O/D paths (i, k,m, j)

use only open hubs. This formulation has O(n4) variables and O(n3) constraints
and usually provides tight LP bounds. In addition, we note that this arc-based
formulation is equivalent to a path-based formulation given that all O/D paths are
completely characterized by the arc variables xijkm.

Given that O/D nodes can be connected to more than one hub facility, we
can exploit some properties on the structure of O/D paths to do preprocessing in
order to significantly reduce the number of required variables in the formulation.
In particular, it is known that every flow uses at most one direction of a hub arc,
the one with lower flow cost. We thus define an undirected flow cost Fije for each
e = (k,m) ∈ E and i, j ∈ N as Fije = min{Fijkm, Fijmk}. The number of
variables can be further reduced by defining a set of candidate hub arcs Eij for each
O/D pair. This is done by using the property that no flow will be routed through a
hub arc containing two hubs whenever it is cheaper to route it through only one of
them.

The xijkm can be projected out from the arc-based formulation via Benders
decomposition to obtain a valid formulation in the space of the binary variables zi .
The Benders reformulation of the arc-based formulation is:

minimize
∑

k∈N
fkzk + η

subject to
∑

k∈N
zk ≥ 1 (18.12)

η ≥
∑

i∈N
ar
i zi r = 1, . . . , |QD|, (18.13)

zk ∈ {0, 1} k ∈ N , (18.14)

where QD is the set of extreme points of the dual subproblem associated with
constraints (18.8)–(18.9). Non-dominated Benders cuts (18.13) can be efficiently
generated with ad hoc algorithms that resort on the solution of linear and network
flow problems.

3.2 Single Assignments

Flow-based formulations can also be adapted to model HLPs with single assign-
ments. Similarly to the case of multiple assignments, we use continuous variables
to compute the amount of flow routed on a particular arc originated at a given node.
However, in the case of single assignments, we only need to use the set of flow
variables associated with the hub arcs (Yikm). For each pair i, k ∈ N , we also
define binary location/allocation variables zik , equal to one if and only if node i is
assigned to hub k. When i = k, variable zkk represents the establishment or not of a
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hub at node k. HLPs with single assignments can be formulated as follows:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,k,m∈N
αdkmYikm

subject to
∑

m∈N
Yimk + Oizik =

∑

j∈N
Wij zjk +

∑

m∈N
Yikm i, k ∈ N (18.15)

∑

k∈N
zik = 1 i ∈ N (18.16)

zik ≤ zkk i, k ∈ N (18.17)

zik ∈ {0, 1} i, k ∈ N (18.18)

Yikm ≥ 0 i, k, m ∈ N . (18.19)

Constraints (18.15) state that the flow entering to hub k either directly from
node i or via other hubs m has to be equal to the flow leaving to either other
hubs m or to destination nodes j . Constraints (18.16) ensure that each O/D node is
assigned to exactly one hub node. Finally, constraints (18.17) guarantee O/D nodes
are assigned to open hubs. The above formulation contains O(n3) variables and
O(n2) constraints.

HLPs with single assignments are closely related to classical discrete location
problems. In fact, they can be modeled as facility location problems with additional
quadratic costs associated with the interaction of O/D nodes. HLPs with single
assignments can be stated as the following quadratic binary integer program:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,j,k,m∈N
αWij dkmzikzjm (18.20)

subject to (18.16)–(18.18).

Note that constraints (18.16)–(18.18) define the set of feasible solutions to the so-
called uncapacitated facility location problem (UFLP). In fact, when the quadratic
term of the objective (18.20) is removed, the HLP with single assignments reduces
to the UFLP. However, contrary to the UFLP, integrality conditions on the allocation
variables zik need to be explicitly stated to have a valid formulation. This is mainly
due to the fact that objective (18.20) is non-convex.

We now discuss different approaches that have been considered to handle the
quadratic term of the objective (18.20). The first one is to use the reformulation
linearization technique of Adams and Sherali (1990), to obtain the following linear
MIP formulation:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,j,k,m∈N
αWijdkmxijkm
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subject to (18.16)–(18.18)
∑

m∈N
xijkm = zik i, j, k ∈ N (18.21)

∑

k∈N
xijkm = zjm i, j,m ∈ N (18.22)

xijkm ≥ 0 i, j, k,m ∈ N . (18.23)

where xijkm, i, j, k,m ∈ N , are variables equal to 1 if and only if the flow
originated at i and destination j transits via hub arc (k,m). This formulation can
be seen as an arc-based formulation in which constraints (18.21)–(18.22) are flow
conservation equations for n2 networks, each of which associated with an O/D pair
(i, j). In addition, it contains O(n4) variables and O(n3) constraints and is known
to provide tight LP bounds. Moreover, constraints (18.16) can be replaced by

∑

k,m∈N
xijkm = 1 ∀i, j ∈ N , (18.24)

to obtain an alternative valid formulation. This highlights that, due to the particular
structure of a fully interconnected hub-level network, this formulation can also
be seen as a path-based formulation given that it uses path variables xijkm to
characterize all O/D paths visiting either one or two hub nodes. In this case,
constraints (18.24) correspond to the convexity constraints associated with O/D
pairs. These arc/path-based formulations have been used in combination with
decomposition methods to develop adhoc solution algorithms for efficiently solving
various HLPs with single assignments (see, Sect. 5).

It is possible to use projection methods to eliminate the path variables xijkm of
arc-based formulations to obtain MIP formulations with fewer variables. The first
one is a direct method used in Mirchandani (2000) to project out flow variables for
network loading problems. The second one is an indirect method used in Rardin
and Wolsey (1993) for uncapacitated fixed charge network flow problems. Labbé
and Yaman (2004) apply the direct projection method on an arc-based formulation
and analyze the strength and dominance of these projection inequalities. The
authors prove that a subset of these projection inequalities are facet-defining and
that some others, are dominated by other families of facet-defining inequalities.
Labbé et al. (2005) show that the projection inequalities defined by a subset of the
extreme rays of the projection cone are sufficient to provide a valid formulation for
HLPs with single assignments. In particular, HLPs with single assignments can be
formulated as

minimize
∑

k∈N
fkZk +

∑

i,k∈N
(χOi + δDi)dikzik +

∑

k,m∈N
αdkmykm

subject to (18.16)–(18.18)
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ykm ≥
∑

(i,j)∈K

Wij

(
zik + zjm − 1

)
k,m ∈ N ,K ⊆ N × N (18.25)

ykm ≥ 0 k,m ∈ N , (18.26)

where ykm, k,m ∈ N are an additional set of continuous variables equal to the
amount of flow routed on hub arc (k,m). For each arc (k,m), constraints (18.25)
and (18.26) imply

ykm = max
K⊆N ×N

∑

(i,j)∈K

Wij

(
zik + zjm − 1

) =
∑

(i,j)∈Kkm

Wij

(
zik + zjm − 1

)
,

where Kkm is the set of all demands which are routed on hub arc (k,m). This
formulation contains onlyO(n2) variables but an exponential number of constraints.
Constraints (18.25) are a particular case of a more general class of facet defining
inequalities which can be separated in polynomial time.

An alternative to project out the path variables xijkm is by using Benders
decomposition (BD) to obtain a valid reformulation in the space of the original zik

variables. In particular, the Benders reformulation of the arc-based formulation is:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi)dikzik + η

subject to (18.16)–(18.18)
∑

k∈N
zkk ≥ 1 (18.27)

η ≥
∑

i,k∈N
ar
ikzik r = 1, . . . , |PD|, (18.28)

where PD is the set of extreme points of the dual subproblem associated with
constraints (18.21)–(18.22). Even though there is an exponential number of con-
straints (18.28), non-dominated cuts can be efficiently separated with ad hoc
algorithms that resort on the solution of linear and network flow problems.

3.3 r-Allocation

The r-allocation strategy provides flexibility in the design of hub networks without
explicitly considering set-up costs on access arcs. It has as particular cases both
single and multiple assignment strategies. Flow-based and arc-based formulations
can also be adapted to model HLPs with r-allocation.

In the case of the flow-based formulation, we combine the location/allocation
variables zik from the single assignments variant with the flow variables Uik , Yikm,
and Xijm from the multiple assignments variant to model the collection, transfer,
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and distribution legs, respectively. Similarly to the multiple assignments strategy,
we also need the Uik variables for the collection leg, as it is no longer possible to
model it using the allocation variables zik . Using these sets of variables, we obtain
the following flow-based formulation:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
χdikUik +

∑

i,k,m∈N
αdkmYikm +

∑

i,j,m∈N
δdmjXijm

subject to (18.1)–(18.3), (18.6), (18.17)–(18.18)
∑

k∈N
zik ≤ r i ∈ N (18.29)

Uik ≤ Oizik i, k ∈ N (18.30)

Xijm ≤ Wij zjm i, j, m ∈ N . (18.31)

Constraints (18.29) ensure that each O/D node is allocated to at most r hub
facilities, whereas constraints (18.30) and (18.31) state that flow can be routed
on access arcs (i, k) and (j,m) only if they have been activated, respectively.
These constraints are equivalent to constraints (18.4) and (18.5) from the multiple
assignment variant but yield stronger bounds. Note that in order to model HLPs
considering an r-allocation strategy, it is needed to combine not only the set of
variables but also the set of constraints (18.1)–(18.3), (18.6) from the multiple
assignments variant with constraints (18.17)–(18.18) from the single assignments
variant.

In the case of the arc-based formulation, the location/allocation zik variables and
the routing variables xijkm from the single assignments variant are enough to model
the problem. The formulation is as follows:

minimize
∑

k∈N
fkzkk +

∑

i,j,k,m∈N
Wij

(
χdik + αdkm + δdmj

)
xijkm

subject to (18.17)–(18.18), (18.29)
∑

k∈N

∑

m∈N
xijkm = 1 ∀ i, j ∈ N (18.32)

∑

m∈N

xijkm ≤ zik i, j, k ∈ N (18.33)

∑

k∈N

xijkm ≤ zjm i, j,m ∈ N (18.34)

xijkm ≥ 0 i, j, k,m ∈ N . (18.35)

Constraints (18.32) state that the flow associated with each node pair must be
routed using one O/D path. Constraints (18.33) and (18.34) state that only O/D
paths associated with active access arcs can be used to route commodities.
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As expected, these formulations considering such flexible allocation strategies
tend to be more difficult to solve as compared to the best formulations presented in
Sects. 3.1 and 3.2 for specific multiple and single allocation variants.

4 Hub Network Design Problems

Full interconnection between hub nodes may be prohibitive in applications where
there is a considerable set-up cost associated with the hub arcs. To overcome this
drawback of standard HLPs, several problems considering incomplete hub networks
have been studied. Formulating and solving more general HNDPs represent a bigger
challenge as compared to standard HLPs. This is due to the fact that HNDPs
involve additional design decisions such as link activation of hub, access and
bridge arcs as well as non-trivial routing decisions. It is no longer possible to
state HNDPs as quadratic extensions of facility location problems but rather as
extensions of MNDPs in which node selection (i.e., location) decisions need to be
taken into account. HNDPs are a class of network optimization problems known to
be significantly more difficult to solve in practice as compared to facility location
problems. One of the main reasons is that O/D paths may contain more than three
arcs and visit more than two hubs. As a consequence, they cannot longer be mainly
determined by the allocation decisions. Flow conservation constraints and additional
design variables for arc selection decisions are now needed to explicitly model O/D
paths in both flow and arc-based formulations. This has a negative impact in the
quality of the LP bounds associated with these formulations when compared to the
LP bounds obtained with standard HLPs.

In the first part of this section we concentrate on a particular class of HNLPs,
referred to as hub arc location problems (HALPs), which have as key decisions the
location of hub arcs. These problems retain some of the assumptions used in hub
location models, specially the ones that relate to the cost structure and allocation
patterns to simplify the design decisions at the access level network and to focus on
the design decisions at the hub level network. In the second part we study HALPs
that consider specific hub network topologies arising from various applications and
highlight how these topologies impact the routing decisions.

4.1 Hub Arc Location Problems

A fundamental difference between HALPs and HLPs is that solution networks may
not longer have a fully interconnected hub-level network. HALPs explicitly consider
link activation decisions in hub and bridge arcs. Additional restrictions may be
imposed on the topology of hub-level networks. However, an important simplifying
assumption that is retained from HLPs, as compared with more general HNDPs, is
that they do not involve non-trivial link activation decision on access arcs. That is,
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similar to HLPs, assignment patterns determine the design decisions in the access-
level network. As a result, both single, multiple, and r-allocation HALPs variants
can be considered.

In HALPs hubs are not necessarily fully interconnected due to the set up cost on
the hub arcs or because additional conditions on the network topology are imposed.
This causes O/D paths to become more involved, since they may use more than three
arcs and visit more than two hubs. Similar to HLPs, because of Assumptions 2 and
4, each collection and distribution leg, if present, employs either one access arc or
one bridge arc. However, the transfer leg can now use several bridge and hub arcs,
depending on the particular assumptions considered on the structure of O/D paths.

To simplify the added complexity of the routing decisions in HALPs an
additional assumption, referred to as the one-hub-arc O/D path assumption, can
be considered. It states that O/D paths must contain at most one hub arc on the
transfer leg. In turn, this limits paths to have at most three arcs, being the first and
last ones either access or bridge arcs and the intermediate arc, if it exists, a hub
arc. This assumption is used to duplicate the level of service obtained in HLPs
and is also consistent with practice. In air transportation, for example, it ensures
that a passenger will never have to change flights more than twice. In ground
transportation, it is convenient to restrict the number of break-bulk terminals that
each commodity has to pass through so as to reduce handling and congestion at
terminals and to provide a form of performance guarantee. O/D paths are once
more of the form (i, k,m, j), and we can thus define their associated flow costs
as Wij

(
χdik + αdkm + δdmj

)
.

In what follows we first describe some HALPs that consider the one-hub-arc
assumption. We then discuss other more general HALPs that do not consider any
assumption on the structure of O/D paths. In particular, we show how the routing
the decisions become more involved given that it is needed to determine whether a
discount is perceived between two hub nodes or not.

4.1.1 Models with One-Hub-Arc O/D Paths

These problems do not consider set-up costs on the activation of hub nodes and hub
arcs. Instead, they considered a cardinality constraint on the number of hub arcs in
the solution network. The selected hub arcs induce a set of hub nodes, but there is no
limit on the number of activated hubs. These HALPs consider multiple assignments
and the goal is to minimize the total flow cost.

Given that in this case bridge arcs can only exist in the collection or distribution
legs, a flow-based formulation can be obtained by using the same set of flow
variablesUik , Yikm, andXijm used in HLPs to model flows passing on the collection,
transfer, and distribution legs, respectively. In addition, for (k,m) ∈ E , we define
binary variables ykm equal to one if and only if hub arc (k,m) is selected. Using
these sets of variables, we can formulate the problem as follows:
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minimize
∑

i,k∈N
χdikUik +

∑

i,k,m∈N
αdkmYikm +

∑

i,j,m∈N
δdmjXijm

subject to (18.1)–(18.2), (18.4)–(18.7)
∑

(k,m)∈E
ykm = q (18.36)

zk ≤
∑

(k,m)∈E
ykm k ∈ N (18.37)

Uik =
∑

m∈N
Yikm i, k ∈ N (18.38)

∑

m∈N
Yimk =

∑

j∈N
Xijk i, k ∈ N (18.39)

Yikk ≤ Oizk i, k ∈ N (18.40)

Yikm + Yimk ≤ Mikmykm i ∈ N , (k,m) ∈ E (18.41)

ykm ∈ {0, 1} (k,m) ∈ E , (18.42)

where Mikm ≤ Oi is an upper bound on the amount of flow originated at i that can
be routed via hub arc (k,m). Constraints (18.36) force the number of selected hub
arcs to be equal to q, whereas constraints (18.37) ensure that a location variable zk is
activated only if there exist at least one hub arc incident to node k. These constraints,
in combination with (18.4)–(18.7), and (18.40), ensure that flow variables Uik , Yikm,
and Xijm are used only at open hubs. Constraints (18.41) guarantee that flow is
routed via two different hub nodes with a discounted cost only if the associated
hub arc is selected. Finally, constraints (18.38) and (18.39) are flow conservation
constraints for each node i and each potential hub k. This formulation contains
O(n3) variables and O(n3) constraints.

A more general class of HALPs with multiple assignments has also been studied.
In particular, these problems contain both set-up costs and cardinality constraints on
hub arcs and hub nodes. For each e ∈ E , ge denotes the set-up cost for selecting hub
arc e. This class of HALPs consist of locating a set of at most q hub arcs (q ≥ 1),
that induce a set of at most p hub nodes (p ≥ 2), and of determining the routing
of commodities through the hub network, with the objective of minimizing the total
set-up and flow cost.

Taking into account the one-hub-arc assumption, we define the cost for routing

Wij when using hub arc e = (k,m) as, Feij = Wk min
{
F 1

eij , F
2
eij , F

3
eij , F

4
eij

}
,

where

F 1
eij = χdik+αdkm + δdmj ; F 2

eij = χdim + αdmk + δdjk;
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F 3
eij = χdik +δdkj ; F 4

eij = χdim + δdmj .

Note that the definition of Feij uses some properties of the considered multiple
assignments pattern and cost structure. First, every commodity uses at most one
direction of a hub arc, the one with lower flow cost. It is thus possible to know a
priori how the end hub nodes of a given hub arc e would be connected with origin
i and destination j , in case such commodity is routed via hub arc e. Second, no
commodity will be routed through a hub arc whenever it is cheaper to route it
through only one of its hub nodes. Therefore, some O/D paths may not contain a
transfer leg (i.e., a hub arc).

For each i, j ∈ N and e ∈ E we define (undirected) routing variables xeij

equal to 1 if and only if demand originated at i and destination j is routed via hub
arc e. Using these variables, an arc-based formulation for this class of HALPs can
be obtained as follows:

minimize
∑

i∈N
fizi +

∑

e∈E
geye +

∑

i,j∈N

∑

e∈E
Feij xije

subject to
∑

e∈E
ye ≤ p (18.43)

∑

i∈N
zi ≤ q (18.44)

∑

e∈E
xije = 1 ∀i, j ∈ N (18.45)

xije ≤ ye ∀e ∈ E , i, j ∈ N (18.46)

ye ≤ zk ∀e = (k,m) ∈ E (18.47)

ye ≤ zm ∀e = (k,m) ∈ E (18.48)

ye, zi ∈ {0, 1} ∀e ∈ E , i ∈ N (18.49)

xije ≥ ∀e ∈ E , i, j ∈ N . (18.50)

Constraints (18.43) and (18.44) state the maximum cardinality constraint on
the hub arcs and hub nodes, respectively. Constraints (18.45) guarantee that every
commodity is assigned to exactly one hub arc, whereas (18.46) allow commodities
to be routed only via selected hub arcs. Constraints (18.47) and (18.48) ensure that
the end nodes of hub arcs are open hub nodes. This formulation has O(n4) variables
and O(n4) constraints.

This general class of HALPs can be stated as the minimization of a real-
valued supermodular set function. This fundamental property, which is also known
for other types of facility location problems (Wolsey 1983), can be exploited to
develop formulations. In particular, using supermodular properties, it is possible to
completely eliminate the routing variables xijkm from the above formulation. For
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each i, j ∈ N , we order the elements of E by non-decreasing values of their
coefficients Fije, and we denote erk to the r-th element according to that ordering.
That is, Fije1 ≤ Fije2 ≤ · · · ≤ Fije|E | ≤ Fije|E |+1 , where Fije|E |+1 = Fije∗
is the cost for the fictitious edge e∗ such that (1) Fije∗ > maxe∈E Fije, for all
i, j ∈ N ; and (2)

∑
i,j∈N Fije∗ > maxe∈E (fe + ∑

i,j∈N Fije). This assumption
guarantees that at least one hub variable ye is at value one in any optimal solution.
A formulation for this class of HALPs is as follows:

minimize
∑

i∈N
fizi +

∑

e∈E
geye +

∑

i,j∈N
ηij

subject to (18.43)–(18.44), (18.47)–(18.49)

ηij ≥ Fijer +
∑

e∈E
(Fije − Fijer )̄ ye r = 1, . . . , |E | + 1, i, j ∈ N ,

(18.51)

where ηij are continuous decision variables used to evaluate the flow cost of O/D
pair (i, j) and (x)̄ = min {0, x}. Constraints (18.51) are the so-called supermodular
constraints computing the flow cost for each O/D pair by only taking into account
the set of open hub arcs. This formulation has only O(n2) variables and O(n4)

constraints.

4.1.2 Models with Arbitrary O/D Paths

We now focus on a general class of HALPs that relax the one-hub-arc O/D path
assumption and allow paths to contain more than one hub/bridge arc on the transfer
leg. A flow-based formulation can be obtained by using the same set of flow
variables Uik , Yikm, and Xijm as before plus an additional set of flow variables Bikm,
i, j, k ∈ N , equal to the amount of flow originated at node i and passing through
bridge arc (k,m). Let β denote the unit flow cost of bridge arcs, where β > α. A
flow-based formulation can be stated as follows:

minimize
∑

i,k∈N
χdikUik +

∑

i,k,m∈N
dkm (αYikm + βBikm) +

∑

i,j,m∈N
δdmjXijm

subject to (18.1)–(18.2), (18.4)–(18.7), (18.36), (18.37), (18.40), (18.41)

Uik +
∑

m∈N
(Yimk + Bimk)

=
∑

m∈N
(Yikm + Bikm) +

∑

j∈N
Xijk i, k ∈ N (18.52)

Bikm ≤ Mikmzk i, k,m ∈ N (18.53)

Bikm ≤ Mikmzm i, k,m ∈ N (18.54)
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Bikm ≥ 0 i, k,m ∈ N .

Constraints (18.52) correspond to the flow conservation equations for each origin
i and potential hub node k. Note that the flow entering into a hub can come either
directly from the origin i or from other hub nodes via hub arcs or bridge arcs.
Similarly, the flow leaving the node can go either directly to destination nodes j

or to other hub nodes via hub arcs and bridge arcs. Constraints (18.53) and (18.54)
ensure that bridge arcs are used only between open hub nodes. This formulation
contains O(n3) variables and O(n3) constraints.

Arc-based formulations can also be adapted for this class of HALPs. Given that
O/D paths cannot longer be characterized by using only the routing variables xijkm,
as it is the case in HLPs with multiple assignments and HALPs with one-hub-arc
O/D paths, we need to combine them with other variables to properly model O/D
paths. In particular, we use the Uik and Xijm variables used in previous flow-based
formulations to model the collection and distribution legs, respectively, together
with the routing variables xijkm that state whether the hub arc (k,m), and its
associated discounted cost, is used to route the demand associated with node pair
i, j . In addition, we define the (non discounted) routing variables bijkm equal to
one if and only if the flow originated at i and destination j uses bridge arc (k,m).
Note that both xijkm and bijkm are required to properly model the transfer leg. An
arc-based formulation can be stated as follows:

minimize
∑

i,j∈N
Wij

⎛

⎝
∑

k∈N
χdikUijk +

∑

k,m∈N
dkm

(
αxijkm + βbijkm

) +
∑

m∈N
δdmjXijm

⎞

⎠

subject to (18.7), (18.36) and (18.37)
∑

k∈N

Uijk = 1 i, j ∈ N (18.55)

∑

m

Xijm = 1 i, j ∈ N (18.56)

Uijk +
∑

m∈N

(
xijmk + bijmk

)

=
∑

m∈N

(
xijkm + bijkm

) +
∑

j∈N
Xijk i, j, k ∈ N (18.57)

Uijk ≤ zk i, j, k ∈ N (18.58)

Xijm ≤ zm i, j,m ∈ N (18.59)

xijkm + xijmk ≤ ykm i, j ∈ N , (k,m) ∈ E (18.60)
∑

m∈N
bijkm ≤ zk i, j, k ∈ N (18.61)

∑

k∈N
bijkm ≤ zm i, j,m ∈ N (18.62)

Uijk, Yijk ≥ 0 i, j, k ∈ N .
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xijkm, bijkm ≥ 0 i, j, k,m ∈ N .

Constraints (18.55)–(18.57) correspond to the flow conservation equations for each
node pair and potential hub. Constraints (18.58)–(18.59) forces the flow on the
access arcs to be routed via open hubs. Constraints (18.60) ensure that discounted
costs are perceived on the transfer leg only for the selected hub arcs, whereas (18.61)
and (18.62) allow bridge arcs to be used only between open hub nodes. This
formulation has O(n4) variables and O(n4) constraints.

Note that in none of the HLPs and HALPs discussed until now, there has been a
need to add flow conservation constraints for the case of arc-based formulations. All
previous formulations exploited in one way or the other the property (or assumption)
that O/D paths can be characterized by the hubs to which origins and destinations
are assigned to. Note that not only the required number variables has doubled, but
also several additional constraints are need to model feasible O/D paths.

4.2 Specific Hub Network Topologies

We now focus on HNDPs that consider specific hub network topologies emerging
from various applications in transportation and telecommunications. In particular,
we study four topologies: star-start hub networks, tree-start hub networks, cycle-star
hub networks, and hub line networks. We describe the main applications associated
with these topologies and provide formulations that exploit their structure.

4.2.1 Star-Star Hub Networks

A start-start hub network consists of a set of hub nodes directly connected to a
central hub node (i.e., a hub-level network is a star). Each O/D node is connected
to a hub node, creating a set of stars at the access-level network (see Fig. 18.2a).
Applications of such networks arise in the design of satellite communication
networks (Helme and Magnanti 1989), where homing stations (hub facilities)
containing an earth station and a local switch are used in combination with terrestrial
and satellite links to connect node pairs. Nodes connected to the same homing
station communicate through the local switch, whereas nodes connected to different
homing stations use their assigned earth stations and the satellite. Other applications
of start-start hub networks arise in the area of cargo delivery. Yaman (2008) provides
a concrete application associated with one of the largest cargo delivery companies
in Turkey, in which a star-star hub network with central hub located in Ankara is
used. Commodities originated at a city are sent to a single hub. At the hub, cargo
arriving from different cities are collected and sorted. If the destination is served by
the same hub, the cargo is routed directly to its destination. Otherwise, the cargo is
sent to a central hub facility where it is further routed to the hub of the destination
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Fig. 18.2 Structure of (a) cycle-star, (b) star-star, (c) tree-star, and (d) line hub network

and eventually to its destination. Hub arcs are served with higher capacity trucks or
cargo airplanes.

Let 0 denote the central hub which has already been located and let dk0 denote
the unit flow cost between hub k and node 0. Assuming a star structure at the hub-
level network simplifies, to some extent, the hub arc selection and routing decisions.
For instance, arc selection decisions are determined by the location decisions—if a
hub is located at node k, the hub arc (k, 0) will be activated. Moreover, exactly two
possible paths exist to connect node pairs. On the one side, if two nodes i and j are
assigned to the same hub k, then the flow from node i to node j will follow the path
(i, k, j), containing only two access arcs and no hub arcs. On the other side, if node
i is assigned to hub k and node j is assigned to hub m �= k, then the flow from i

to j will follow the path (i, k, 0,m, j). That is, it will contain two access arcs and
two hub arcs. This means that in order to compute the flow cost for each O/D pair
we only need to know which type of path will be used. It is possible to exploit this
feature to model star-star hub networks as follows. For each k ∈ N and i, j ∈ N ,
i �= j , we define the variable uijk equal to one if and only if one of the nodes i

and j is assigned to hub k. That is, when uijk is equal to one that means that flows
between nodes i and j (in both directions) are routed on the hub arc (k, 0). Using
these variables in combination with the location/allocation variables zik we obtain
the following formulation:
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minimize
∑

k∈N
fkzkk+

∑

i,k∈N
(χOi+δDi)dikzik+

∑

k∈N

∑

i,j∈N :i �=j

(
Wij+Wji

)
αdk0uijk

subject to (18.16)–(18.18)

uijk ≥ zik − zjk k ∈ N , i, jN , i �= j (18.63)

uijk ≥ zjk − zik k ∈ N , i, jN , i �= j. (18.64)

Note that constraints (18.63)–(18.64) are used to model the nonlinear term uijk =
|zik − zjk| that makes uijk variables equal to one whenever two O/D nodes are
assigned to different hubs. This formulation contains O(n3) variables and O(n3)

constraints.
An alternative formulation can be obtained by using projection inequalities

similar to the ones introduced in Sect. 3.2 for HLPs with single assignments. In
particular, for each j ∈ N we define continuous variables yk equal to the amount
of flow routed on hub arc (k, 0). We can then formulate this problem as:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi)dikzik +

∑

k∈N
αdk0yk

subject to (18.16)–(18.18)

yk ≥
∑

(i,j)∈K

(
Wij + Wji

) (
zik − zjk

)
k ∈ N ,K ⊆ N × N , (18.65)

were constraints (18.65) have the same interpretation as (18.25), i.e., to compute the
amount of flow routed on hub arc (k, 0). This formulation has only O(n2) variables
but an exponential number of constraints.

4.2.2 Tree-Star Hub Networks

A tree-star hub network consists of a set of hub nodes connected via a spanning
tree (i.e., hub-level network is a tree). Each O/D node is assigned to exactly
one hub, creating a set of stars at the access-level network (see Fig. 18.2b).
Potential applications of such networks arise in the design of digital data service
networks (Lee et al. 1996), where private service networks are constructed for
individual organizations by connecting customer sites to digital switching offices
(hub facilities) with bridging capabilities. These hubs are connected with fiber
optic links and given that there is a very high set-up cost associated with these
links, service providers usually consider tree topologies to minimize the number
of required links to provide connection services between customer sites. Other
applications of tree-star hub networks arise in the design of rapid transit systems.
Contreras et al. (2010) give a concrete example in the design of the high-speed train
network in Spain, which has been designed with a tree structure and it is intended
that, when finished, each city (O/D node) with more than 10,000 inhabitants will be
within 50 km of some high-speed train station (hub facilities). Kim and Tcha (1992)
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provides additional applications of tree-star networks in the design of community
access television systems (CATV).

Contrary to star-star topologies, arc selection and routing decisions become more
involved in the case of tree-star topologies as these cannot be determined by the
location/allocation decisions. In fact, even if the location of hubs and allocation
of O/D nodes to hubs is given, the problem is still NP-hard as it reduces to the
well-known optimum communication spanning tree problem (Hu 1974; Zetina et
al. 2019). Before discussing formulations, we define the graph of flows GF =
(N ,EF ), as the undirected graph with node set N and an edge associated with
each pair (i, j) ∈ N × N such that Wij + Wji > 0. We assume that GF is
made up of a single connected component since otherwise the problem can be
decomposed into several independent ones, one for each connected component in
GF . Whenever a particular application requires a single tree and the graph of flows
contains more than one connected component, we can replace the flows of value
zero with Wij = ε > 0 sufficiently small.

Hub arc variables ykm used in HALPs can also be employed to construct the
tree of hubs. Moreover, flow conservation constraints are explicitly included in
formulations to model O/D paths. A flow-based formulation for the design of tree-
star hub networks can be stated as follows:

minimize
∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,k,m∈N
αdkmYikm

subject to (18.15)–(18.19), (18.41)–(18.42)
∑

k∈N
zkk = p (18.66)

∑

(k,m)∈E
ykm = p − 1 (18.67)

zkm + ykm ≤ zmm (k,m) ∈ E (18.68)

zmk + ykm ≤ zkk (k,m) ∈ E . (18.69)

Constraints (18.66) and (18.67) ensure that exactly p hub nodes and p − 1
hub arcs are selected, respectively, which in combination with flow conservation
constraints (18.15) guarantee that the selected p − 1 hub arcs define a single
connected component associated with the p selected hubs, i.e., a tree spanning all
hubs. Constraints (18.68) and (18.69) are a stronger version of the standard linking
constraints (18.47) and (18.48). Finally, note that the assumption that the graph of
flows GF contains a single connected component, together with (18.66), (18.67)
and (18.15), eliminates the need for subtour elimination constraints. However,
when direct connections are allowed between non-hub nodes the following set of
constraints need to be included to obtain a valid formulation.
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∑

(k,m)∈S×S

ykm ≤
∑

k∈S\{s}
zk ∀S ⊆ N , s ∈ S. (18.70)

An arc-based formulation can also be used to design tree-star hub networks:

minimize
∑

i,k∈N
(χOi + δDi)dikzik +

∑

i,j,k,m∈N
αWijdkmxijkm

subject to (18.16)–(18.18), (18.66)–(18.69)

zik +
∑

m∈N
xijmk =

∑

m∈N
xijkm + zjk i, j, k ∈ N . (18.71)

Constraints (18.71) are the flow conservation equations stating that for each node
pair (i, j) and potential hub k, the flow from i to j may enter node k either directly
from its origin via access arc (i, k) or through another hub via a hub arc (m, k).
Similarly, the flow may exit node k either directly to its destination via access arc
(m, j) or through another hub via a hub arc (k,m).

4.2.3 Cycle-Star Hub Networks

A cycle-star hub network consists of a set of hub nodes connected with a set of hub
arcs by means of a cycle. Each O/D node must be connected to exactly one hub
node, creating a set of stars at the access-level network (see Fig. 18.2c). Potential
applications of cycle-star hub networks arise in the design of telecommunication
networks (Lee et al. 1993; Xu et al. 1999) where a number of tributary networks
are connected to a backbone network via a set of hubs. Given the large set-up costs
associated with the installation of a set of links, network planners usually consider
the design of a network containing the minimum number of links. Although tree-star
and line-star topologies are attractive network topologies for this goal, these may not
be appropriate for telecommunications networks where there are requirements for
the backbone network to guarantee the existence of at least one path between O/D
nodes in case a backbone link fails. A cycle-star hub network ensures connectivity of
the network in such disruptive scenario while minimizing the set-up cost. Additional
applications arise in the design of rapid transit systems. Network planners may be
interested in the extension of public transportation networks in a metropolitan areas
by installing a circular rapid transit line, such as a subway, a tram or an express lane.
Examples of circular lines are the Moscow Underground, the Melbourne Circular
Tram Line, and some of the Montreal bus lines (e.g., 33, 55, and 470). In some
situations, a cycle is desirable not only due to reliability requirements but also
because it offers an alternative path which can considerably reduce the travel time
between node pairs.

Similar to tree-star topologies, arc selection and routing decisions are more
involved as these cannot be determined by location/allocation decisions. In fact,
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even if the location of hubs and allocation of O/D nodes is given, the problem is still
NP-hard as it reduces to the so-calledminimum flow cost Hamiltonian cycle problem
(Ortiz-Astorquiza et al. 2015). Given that hub arcs are undirected and uncapacitated,
for each pair of hub nodes there exist exactly two possible paths on the cycle and the
flows associated with the O/D nodes allocated to such hubs will be routed through
the least cost path containing an undetermined number of hub arcs. A flow-based
formulation for the design of cycle-star hub networks can be stated as follows:

minimize
∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,k,m∈N
αdkmYikm

subject to (18.15)–(18.19), (18.41)–(18.42), (18.68)–(18.69)
∑

k∈N
zkk = p (18.72)

∑

(k,m)∈E
ykm = p (18.73)

∑

(k,m)∈E
ykm = 2zk k ∈ N . (18.74)

Constraints (18.72)–(18.74) together with flow conservation equations (18.15)
guarantee that the set of selected hub arcs form a cycle of hubs. Similar to tree-star
hub networks, subtour elimination constraints (18.70) need to be incorporated when
considering direct connections between non-hub nodes to obtain a valid formulation.

An arc-based formulation can be stated as follows:

minimize
∑

i,k∈N
(χOi + δDi)dikzik +

∑

i,j,k,m∈N
αWijdkmxijkm

subject to (18.16)–(18.18), (18.71), (18.68)–(18.69), (18.72)–(18.74).

4.2.4 Hub Line Networks

A hub line network consists of a set of hub nodes connected by means of a path (or
line). In this case, each O/D node can be assigned to more than one hub node, i.e.,
a multiple allocation pattern (see Fig. 18.2d). Potential applications for hub lines
arise in public transportation planning, in particular in the design of rapid transit
systems and highway networks (Martins de Sá et al. 2015). Network planners may
consider the expansion of an existing network in a metropolitan region to improve
users’ travel time by installing a rapid transit line, such as a subway, tram, or light
rail line or an express bus lane. Hubs correspond to central stations such as subway,
tram, bus or train stations. The aim is to minimize the total travel time between
node pairs. Additional applications of hub line topologies appear in the design of
road networks, where network planners may be interested in extending current road
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network in urban, suburban, or rural regions when constructing a new path-shaped
highway or express lane. Hub nodes can be seen as a set of interchanges between
highways and other existing roads (Lari et al. 2008).

Similar to tree-star and cycle-star hub networks, arc selection and routing
decisions are not determined by the location decisions. Hub arc variables ykm are
needed to construct the (undirected) line of hubs. Also, flow variables Uijk and Xijk

used in HALPs are required to model the routing at the access-level network. An
arc-based formulation for the design of hub line networks is as follows:

minimize
∑

i,j

Wij

⎛

⎝
∑

k∈N
χdikUijk +

∑

k,m∈N
dkmαxijkm +

∑

m∈N
δdmjXijm

⎞

⎠

subject to (18.7), (18.55)–(18.56), (18.58)–(18.60)
∑

k∈N
zk = p (18.75)

∑

(k,m)∈E
ykm = p − 1 (18.76)

∑

(k,m)∈E
ykm ≤ 2zk k ∈ N (18.77)

Uijk +
∑

m∈N
xijmk =

∑

m∈N
xijkm + Xijk i, j, k ∈ N . (18.78)

Constraints (18.75)–(18.77) limit the number of hub nodes, hub arcs and degree
of each hub node to at most two, respectively. Constraints (18.78) are the flow
conservation equation which properly account for flows whenever a hub k is used.
All these constraints together ensure that the hub-level is connected, forming a
hub line. Similar to tree-star and cycle-star hub networks subtour elimination
constraints (18.70) need to be added when considering direct connections between
non-hub nodes to obtain a valid formulation.

5 Bibliographical Notes

The study of HLPs began with the pioneering work of O’Kelly (1986a), for
continuous models, and O’Kelly (1986b), for discrete models. Campbell (1994a),
Klincewicz (1998), and Bryan and O’Kelly (1999) provide early reviews and
focus on classification schemes, fundamentals, and models with applications in the
areas of telecommunications and air transportation. Campbell et al. (2001) wrote a
comprehensive survey in which the location of hubs is the key decision. Alumur and
Kara (2008) provided a classification scheme and review of the growing literature on
network hub location models before 2008. Campbell and O’Kelly (2012) provided
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an insight into early motivations for analyzing hub location models and highlighted
recent research directions. Contreras and O’Kelly (2019) wrote a concise overview
of the main developments and most recent trends in hub location such as flow
dependent discounted costs, capacitated models, uncertainty, dynamic and multi-
modal models, and competition and collaboration.

In what follows, we highlight some of the most relevant references with respect
to the development of mathematical models and solution algorithms for solving hub
location and hub network design problems.

5.1 Hub Location Problems

O’Kelly (1987) provided the first formulation for a hub location problem with single
assignments. O’Kelly formulated this problem as a discrete location problem with
additional quadratic costs associated with the interaction of O/D nodes. The study
of hub location models with multiple assignments originated in Campbell (1992),
in which various formulations for this class of problems were presented.

The work of Skorin-Kapov et al. (1997) and Ernst and Krishnamoorthy (1996,
1998b) presented the first generation of tight arc-based formulations and useful
flow-based formulations for single and multiple allocation variants of HLPs.
However, the tightest arc-based formulation known so far for multiple assignment
variants is the one independently introduced by Hamacher et al. (2004) and Marín
(2005a). The former obtains this formulation by lifting facet-defining inequalities of
the well-known uncapacitated facility location problem whereas the latter obtains
the same set of facet-defining constraints as well as other facets by reformulating
the problem as a set packing problem and identifying maximum cliques in an
auxiliary graph. Boland et al. (2004) presented preprocessing procedures to reduce
the number of variables and constraints for flow-based formulations, as well as some
valid inequalities that improve LP relaxation bounds of capacitated variants.

Contreras et al. (2009b) used the Benders reformulation of Sect. 3.1 to develop
and exact algorithm for uncapacitated HLPs with multiple assignments that, in
combination with other algorithmic features such as preprocessing, a heuristic, and
elimination tests, provided solutions for large-scale instances with up to 500 nodes.
This Benders reformulation has also been extended to solve multi-level capacitated
instances with up to 300 nodes (Contreras et al. 2012), and stochastic problems
dealing with uncertainties in both demand flows and transportation costs (Contreras
et al. 2011a).

Arc-based formulations have also been used to develop ad hoc solution algo-
rithms for various HLPs with single assignments. Pirkul and Schilling (1998) use
a Lagrangean relaxation (LR) in which constraints (18.16), (18.21)–(18.22) are
relaxed to approximately solve p-hub median problems with single assignments.
Contreras et al. (2009a) and Elhedhli and Wu (2010) use LRs in which con-
straints (18.21)–(18.22) are relaxed to solve capacitated HLP variants. Contreras
et al. (2011b) use the LR of Contreras et al. (2009a) to solve integer restricted
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master problems containing a small subset of the xijkm variables and generating
more if needed with a column generation procedure. This lower bounding procedure
is embedded within a branch-and-price algorithm to solve capacitated instances with
up to 200 nodes. Contreras et al. (2010, 2017) presented some families of extended
cut-set inequalities that can help improve the LP bounds associated with flow-based
formulations. Labbé et al. (2005) developed a branch-and-cut algorithm that uses
several families of projection inequalities to solve quadratic capacitated variants
with up to 50 nodes.

Camargo and Miranda (2012) and Camargo et al. (2011) were the first works to
introduce Benders reformulations for solving HLPs with single assignments. The
authors use a hybrid outer-approximation / Benders decomposition algorithm for
dealing with the nonlinearity caused by functions used to represent congestion at
hubs. Contreras et al. (2021) recently used a Benders reformulation within a branch-
and-cut framework to optimally solve uncapacitated and capacitated instances with
up to 900 nodes.

5.2 Hub Network Design Problems

O’Kelly and Miller (1994) is the first work discussing the need of including addi-
tional design decisions in hub location models. The authors provide a classification
of hub network topologies based on protocols that consider the allocation pattern of
O/D nodes, the interconnection between hub nodes, and the possibility of allowing
direct connections between O/D nodes.

Campbell et al. (2005a) introduced HALPs and provided a classification scheme
for them that accounts for assumptions on hub-level network decisions, access-level
network decisions, and O/D path decisions. In a follow-up paper, Campbell et al.
(2005b) presented an exact enumeration-based algorithm to solve instances with up
to 25 nodes and q = 6 for several classes of HALPs. Contreras and Fernández
(2014) showed how a general class of HALPs can be stated as the minimization of
a real-valued supermodular set function and developed a branch-and-cut algorithm
using supermodular cuts to solve various particular cases of HALPs for instances
with up to 125 nodes.

More complex HALPs have been studied where additional features need to be
taken into account. In the context of air passenger transportation, Sasaki et al.
(2014) study competitive HALPs with multiple assignments in a Stackelberg frame-
work. Gelareh et al. (2010) deals with another competitive HALP with multiple
assignments arising in liner shipping. The authors extend path-based formulations
for this variant and present a LR algorithm to obtain bounds for instances with
up to 20 nodes. Tanash et al. (2017) focus on HALPs with single assignments in
which flow dependent costs are considered. The authors propose a branch-and-
bound algorithm that uses an arc-based formulation to solve instances with up
to 50 nodes. Gelareh and Nickel (2011) study HALPs with multiple assignments
arising in urban transport and liner shipping. A Benders decomposition algorithm is
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proposed to solve the considered problem. A multi-period extension of this problem
is presented in Gelareh et al. (2015), where a Benders decomposition is also used to
solve it. Rothenbcher et al. (2016) deals with HALPs with multiple assignments in
which there exist capacities on hub arcs. A branch-and-price algorithm that uses
a path-based formulation is developed to solve the problem. The pricing of the
path variables is NP-hard as it corresponds to solving a shortest path problem
with resource constraints. Camargo et al. (2017) focus on HALPs with multiple
assignments in which flow-dependent discounted flow costs and hop-constraints
are considered. The authors present a Benders reformulation and a branch-and-
cut algorithm to solve it. After a number of algorithmic features are employed to
generate non-dominated cuts, instances with up to 80 nodes can be optimally solved.

In the case of star-star hub network topologies, Labbé and Yaman (2008)
performed a polyhedral analysis and show that inequalities (18.63)–(18.65) are
facet-defining. Using a LR algorithm based on the above formulation, the authors
solved instances with up to 150 nodes. Tree-start hub networks seem to be more
challenging to solve. Martins de Sá et al. (2013) presented a Benders decomposition
algorithm that uses the arc-based formulation to optimally solve instances with up to
100 nodes. Contreras et al. (2017) developed a branch-and-cut algorithm for HNDPs
with a cycle-star topology using a flow-based formulation in combination with a
general class of mixed-dicut inequalities to solve instances with up to 100 nodes. In
the case of hub lines, Martins de Sá et al. (2015) introduced a Benders reformulation
based on an arc-based formulation and developed a branch-and-cut algorithm to
solve instances with up to 100 nodes.

6 Conclusions and Perspectives

We have provided an overview of hub network design problems in which both
location and arc selection are key decisions. We focused on the role network
design and routing decisions play in the formulation and solution of various classes
of hub network design problems of increasing complexity. We pointed out how
the assumptions and properties presented in Sect. 2 simplify the network design
decisions, giving rise to a first generation of hub location models dealing mostly
with the location of hubs and the assignment of O/D nodes to open hubs. We
have also highlighted how network design decisions become more involved when
removing some of these assumptions, leading to the study of a second generation
of models sharing more features to the more complex multi-commodity network
design problems than to discrete facility location problems.

Although substantial progress has been made by researchers and practitioners
in the area of hub network design, there is still significant work ahead. In many
practical applications additional design and tactical decisions need to be taken into
account to accurately model the associated systems. For instance, some applications
require the design of more complex access networks that are no longer determined
by an assignment pattern of O/D nodes to hubs. Klincewicz (1998) reviews various
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models arising in the design of telecommunications networks in which tributary
trees are used. Yaman et al. (2007) considers a concrete application in cargo delivery
systems in which multi-stop access paths visiting more than one O/D node in the
way to a hub node are used to route commodities. Camargo et al. (2013), Rodríguez-
Martín et al. (2014), Cardoso Lopes et al. (2016), and Kartal et al. (2017) among
others, study models arising in freight transportation and express delivery in which
collection, transfer or distribution tours have to be designed. The formulation and
solution of such complex problems is far more challenging as compared to standard
HLPS and even to HALPs.

Other applications, such as in airline and ground transportation, require addi-
tional design decisions associated with the nodes and served commodities (Alibeyg
et al. 2016, 2018). For example, in the case of airline companies network planners
have to design their network when entering into the market, or may have to
modify already established networks through alliances, merges and acquisitions.
The decisions are to determine the cities that will be part of their network and which
O/D flights to activate in order to offer air travel services to passengers between
cities so as to maximize the profit.

Finally, another interesting facet of hub networks which has been rarely studied
is the integration of network design with scheduling decisions. Yaman et al. (2012)
studies a concrete application arising in cargo delivery systems for next-day delivery
in which the goal is to simultaneously design a hub network and to decide on the
release times of trucks from each demand center so that the total cargo guaranteed
to be delivered by the next day is above a threshold while minimizing the flow cost.
Masaeli et al. (2018) study another model arising in parcel delivery systems in which
the number of dispatches to operate on the hub network as well as the time period
of dispatching each vehicle from a hub are taken into account while designing the
hub network.
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