
Chapter 17
Public Transportation

Antonio Mauttone, Héctor Cancela, and María E. Urquhart

1 Introduction

Public Transportation (PT) refers to shared transportation services (Teodorovic and
Janic 2016) which operate using infrastructure like roads or rails, and vehicles
like buses or trains. Usually, it includes urban public transit and intercity public
transportation, both characterized by fixed routes and schedules which are available
for use by all persons who pay the established fare (Vuchic 2007). PT has been
gaining importance since sustainability is increasingly identified as one of the pri-
mary goals of the society. When compared against other motorized transport modes,
PT exhibits higher efficiency rates in terms of energy consumption, greenhouse
emissions, noise pollution and usage of public space. However, both setting and
operating of PT systems involve very large expenditures. Moreover, the performance
of these systems from the viewpoint of the users is a key aspect in order to offer a
successful service, which reveals the need for effective planning methodologies.

The planning of PT systems offers various opportunities for optimization. The
whole process can be decomposed into several planning stages which define
a sequence of hierarchical decisions, namely, network design, frequency and
timetable determination, and fleet and crew scheduling (Ceder and Wilson 1986;
Goosens et al. 2004). According to this approach, network design plays a very
relevant role within the overall planning process since it impacts in every subsequent
stage, and therefore in every component cost of the system. In that context, the
meaning of the term public transport network depends on the specific mode. For
systems based on buses which share the street with regular vehicles (i.e., cars) there
is no cost of infrastructure building, or it can be negligible. On the other hand, rapid
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transit, rail and metro systems involve large investments due to building of exclusive
corridors, railways and tunnels; we refer to these elements as the physical network.
In addition, in PT systems there is a second network level which is defined by the
services that operate over the street network for classical bus systems and over the
physical network for rapid transit, rail and metro systems: the routes followed by the
vehicles. This level is referred as the route network. The operation of these routes
determines a relevant component of the operating cost of the system, in the form
of vehicle and personnel cost per distance and time unit respectively. Also, both
topological structure and frequency (vehicles passing per time unit) of the routes
determine largely the level of service offered to the users in terms of overall travel
time, which includes time spent walking (from origin and to destination stops or
stations), waiting, and on-board the vehicle.

When approached as a network design problem, models of both physical and
route networks represent stops and stations as network nodes, and street and rail
sections as network links. Usually, the nodes are fixed and decisions are related to
inclusion or exclusion of the links in the solution. In the most general case, each
link has attributes like building cost, travel time and capacity. A first approach for
PT network design is the general fixed charge network design model described in
Chap. 2, where each commodity represents a specific group of people traveling
from some origin node to another destination node. However, there are distinctive
characteristics of PT systems which add particular difficulties. When modeling the
design of routes, decisions are not related to single links, instead they refer to a
sequence of links. Moreover, the system is composed by several routes which may
overlap, i.e., they can share common links. Also, the performance evaluation of the
system from the viewpoint of the users entails modeling their behavior with respect
to the set of enabled links or routes. This is a very particular characteristic of PT
network design models, since users behave by themselves and their interests can
be conflicting with the interests of the operator, which entails considering special
features in the corresponding network design models.

This chapter presents concepts, models and solution methods for PT network
design. In order to precise the scope, we consider only models that include topolog-
ical variables (Farahani et al. 2013), i.e., variables which represent decisions about
nodes and links. However, we also consider models that include non-topological
variables like frequency or vehicle size, when they represent decisions which are
taken simultaneously with topological ones. These non-topological variables have
great influence on PT network design, although they do not define directly its
structure.

Regarding chapter organization, Sect. 2 states the main concepts and notation
whereas Sect. 3 presents several models for PT network design including several
problem aspects. Section 4 presents relevant solution methods, both for the models
presented at Sect. 3 as for other models whose solution approaches exhibit key
algorithmic concepts. Section 5 presents a compilation of the main bibliography
in chronological order, whereas Sect. 6 offers perspectives for future research in the
topic.
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2 Background

2.1 Basic Concepts and Notation

The physical structure of PT systems suggests a direct network representation. The
elements of the network have attributes which represent parameters of the users
(people who use the services), the operators (companies or agencies which offer the
services) and the whole society (typically related to infrastructure building).

Let G be a directed graph with corresponding set of nodes N which represents
junctions, stops or stations and set of arcs A which represents sections of streets or
rails between nodes. There are several ways to build the graph model G from real
data; the international community has not agreed in a single standard one (Heyken
Soares et al. 2019). Given that in many cases PT systems exhibit a symmetric pattern
of services, we also consider an undirected variant of G with corresponding sets of
vertices V and edges E . An arc a ∈ A (edge e ∈ E ) can be identified by its
corresponding ordered (unordered) pair of endpoint nodes (i, j) (vertices [i, j ]).
Also, for each arc a ∈ A we define user cost cu

a ≥ 0 which represents the cost
(usually travel time) experienced by the user when traversing a, and operator cost
co
a ≥ 0 which represents the cost incurred by the operator due to offering a service
which traverses a (usually travel time or distance). Undirected versions of both user
and operator cost are defined for edges e ∈ E , namely, cu

e and co
e respectively. In

general terms, each arc a ∈ A has capacity ua ≥ 0 which states the maximum
flow that can traverse a per time unit. The entities which flow over arcs can be
either persons (mostly referred as users or passengers) or vehicles (buses, trains),
depending on the specific context. Thus, if an arc represents a physical element
(street or rail section), the flow is measured in terms of vehicles and its magnitude
is directly proportional to the frequencies of the services which operate over the arc.
On the other hand, if an arc represents a route section, the flow is measured in terms
of passengers and its magnitude is directly proportional to the demand attracted by
the route, i.e., the passengers traveling on-board the vehicles operating the route.
The passenger demand for PT is modeled as a set of commoditiesK . Each element
k ∈ K has origin and destination nodes O(k) and D(k), respectively, and demand
(passengers per time unit in a given time horizon) dk > 0 between O(k) ∈ N and
D(k) ∈ N . In the context of PT systems, K defines an origin-destination (OD)
matrix and each element k ∈ K is called OD pair. These commodities share the
same network, therefore, when applicable, they are collectively constrained by arc
capacities. The demand corresponding to OD pair k ∈ K is said to be covered
if O(k) and D(k) are connected by the PT network, independent on its capacity.
Moreover, if the network capacity allows flowing the whole amount dk , the demand
is also said to be satisfied.

A PT route is defined as a sequence of adjacent nodes or vertices in G and it has
a cyclic pattern. When defined in terms of undirected edges, it is assumed that it
operates in both directions. On the other hand, directed routes should be defined as
cycles in G . Let R be the set of all routes in G according to this definition. In the
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most general case, a route stops at every node where it passes. Therefore, passengers
can access the corresponding service (either to board or to alight) in all those nodes.
Each route r ∈ R has frequency fr ≥ 0 which expresses the number of vehicles
per time unit operating the route. The special case fr = 0 is sometimes used to state
that route r is disabled. A route with its frequency is sometimes referred as a line.

The operation cost of routes depends on both distance and time. Assuming a
constant average speed, the distance component of the variable cost of a route
r ∈ R is proportional to its cycle time

∑
a∈r co

a . Moreover, the time component
is proportional to its frequency fr . A combined measure of the variable cost can
be defined as fr

∑
a∈r co

a , which stands for the number of vehicles that operate
simultaneously in r . In the most general case, this measure is taken as a proxy for
operation cost.

Regarding user cost, the PT network determines one of its main attributes: travel
time. For OD pair k ∈ K , it is assumed without loss of generality that users travel
along the shortest path defined by the enabled arcs, which can be formulated as

Minimize
∑

a∈A
cu
axa (17.1)

Subject to
∑

a∈A +
n

xa − ∑
a∈A −

n
xa = wnk, ∀ n ∈ N , (17.2)

0 ≤ xa ≤ ua, ∀ a ∈ A , (17.3)

where setsA +
n ⊆ A andA −

n ⊆ A denote outgoing and incoming arcs respectively
of node n ∈ N and wnk is equal to dk if n = O(k), −dk if n = D(k) and 0
otherwise.

Formulation (17.1)–(17.3) denotes a minimum cost flow problem (Ahuja et al.
1993), where decision variable xa represents the flow of passengers over arc a.
Moreover, the value ua defines a capacity constraint for arc a ∈ A . Thus, if a

is enabled because its corresponding physical link is built and there is a line which
operates over it, a sufficiently large value of ua will allow the entire demand dk

to flow over a. This is the case in which all passengers follow the same (shortest)
path from O(k) to D(k). But if ua values are not large enough, some passengers
are forced to take other paths with larger cost due to insufficient capacity in the
shortest path, which gives rise to a capacitated user equilibrium with constant arc
cost (Correa et al. 2004). This is a variation of the classical equilibrium in private car
networks where the cost of each arc depends on its flow, therefore all different paths
followed by the demand corresponding to the same OD pair have the same cost
(Sheffi 1985). Typically, arc capacities in PT networks are defined by the capacity
of the infrastructure (allowable speed, number of lanes) and the services (route
frequency and vehicle capacity). In PT network design models, these elements can
be either fixed parameters as well as decision variables. In any case, let Pk ∈ A
(E in the undirected version) denote the set of arcs (edges) with flow greater than
zero in the optimal solution of (17.1)–(17.3). If capacities allow the whole demand
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dk to flow over the same path, then Pk denotes the shortest path between O(k) and
D(k). Otherwise, it denotes the set of arcs corresponding to all the paths followed
by the demand. Any of these paths can represent either direct trips (using a single
line) or trips with transfers (using two or more lines), depending on the modeling of
the network and the hypothesis assumed regarding passenger behavior.

So far, formulation (17.1)–(17.3) represents reasonably the passenger behavior
taking into account only the on-board travel time. Walking time can also be
modeled using this formulation, by including specific nodes that represent trip
origins and destinations (e.g., nodes representing geographical zones) and walking
arcs connecting these nodes with the stops and stations. However, in some cases
the waiting time should also be considered, either as an attribute for shortest path
calculations or as a parameter for evaluating system performance. The waiting
time at the stop is non-linearly related to the frequency of the line or set of lines
which lead to destination. This phenomenon entails more complex formulations.
Moreover, the effect of capacity over the waiting time and the flow distribution on
lines leads to even more complex formulations with respect to passenger behavior.

2.2 Problem Nomenclature, General Formulation and Solution
Approach for Public Transportation Network Design

Public transportation network design involves managing several levels of networks.
In this context, we denote as PND (Physical Network Design) the problem of
designing the physical network, i.e., decisions related to building dedicated bus
lanes, rail or metro lines. Moreover, we denote as RND (Route Network Design)
the problem of designing the routes over an existing physical network. This may
comprise the design of a single route with a particular goal or the design of a
complete set of routes to satisfy the whole demand of a given scenario.

In order to formulate a general optimization model for public transportation
network design, firstly we can identify topological and non-topological decision
variables (Farahani et al. 2013), namely, Xt and Xn respectively. In the first group
there are decisions related to nodes and arcs of G , e.g., station location, rail
building or route structure. Relevant non-topological decision variables include
route frequency and vehicle capacity. Moreover, in PT network design models
we need variables that represent the behavior of passengers, namely, Xb. These
variables are not controlled directly by the planner, however, they depend on his
decisions regarding infrastructure building and service provision. For that reason,
usually they are modeled explicitly since they determine a relevant component of
system performance.

The objective function expresses the goal of the planner, which may take several
forms. It can be either a direct formulation of the interests of both users and
operators, or it can represent a more general system goal. Very often, the planner
is forced to manage opposite interests. For instance, a high number of routes with
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high frequencies contribute to increase the level of service from the viewpoint of
the user, but it causes high operation costs as well, which might not be sustainable
in the economic sense. This leads to consider multiobjective formulations (Ehrgott
2005).

The modeling of passenger behavior entails considering a hierarchical process
where the planner makes a decision (e.g., regarding routes) and the passengers
choose their routing over those services, producing flow values which are necessary
for the planner in order to fully compute its measure of system performance. Despite
the fact that this hierarchical process in some cases can be modeled properly as a
standard optimization problem, its most general formulation entails a multiple-level
(more specifically, two-level or bilevel) formulation (Bard 1998).

Finally, the constraints can be of several types, ranging from criteria of the
planners (which may include performance indicators of users, operators and the
overall system) to physical constraints regarding route structure, infrastructure and
vehicle capacity. Budgetary constraints imposed over infrastructure building and
service operation are often included as well.

A generic formulation for the public transportation network design problem
can be defined as (17.4)–(17.7). For m > 1 the objective function is a vector
which represents several goals which should be taken into account simultaneously.
Constraint (17.5) may take standard forms like equalities or inequalities. Con-
straint (17.6) states that passenger behavior variables Xb should take the optimal
value of an additional optimization problem, where X̄b are decision variables and
H states the criterion of the users for traveling over the network set by the planner
through fixed values Xt and Xn, constrained by function Z. An example of this
second level optimization problem is the shortest path routing stated by (17.1)–
(17.3).

Minimize [F1(X
t ,Xn,Xb), . . . Fm(Xt ,Xn,Xb)] (17.4)

Subject to G(Xt ,Xn,Xb) ≤ 0, (17.5)

Xb = argmin H(Xt ,Xn, X̄b), (17.6)

Subject to Z(Xt ,Xn, X̄b) ≤ 0. (17.7)

Both PND and RND addressed as optimization problems, exhibit several sources
of complexity. The underlying network design problem already has a combinatorial
structure which entails high computational complexity (Johnson et al. 1978). The
feasible space of topological variables of RND is huge, given the size of the set R
of all possible routes. Passenger behavior sub-models usually included as the second
level problem in (17.4)–(17.7) add complexity to the overall formulation, especially
when the more complex variants of (17.1)–(17.3) are considered. The multiobjective
and multilevel structure poses the need for specific resolution methods, which can
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be either exact or heuristic. In general terms, exact methods always rely over an
explicit mathematical programming formulation. Conversely, these formulations
are often used to implement heuristic methods instead of exact ones. The RND
problem is approached by two different strategies in order to determine the values
of topological variables Xt : (1) generating a pool of many good candidate routes
(which we call route generation) and then selecting the optimal subset (route
selection) and (2) generating a set of routes which constitutes a feasible solution,
which may be improved in a further stage (route set generation and improvement).
Moreover, heuristic and metaheuristic methods for RND often decouple the sub-
problems of determining the optimal values for non-topological variables Xn

and passenger behavior variables Xb. The resolution of these sub-problems are
coded into specific sub-routines which are called appropriately during the overall
optimization process.

3 Models for Public Transportation Network Optimization

In this section we present several models for both PND and RND problems. The
passenger behavior appears explicitly on RND, since a full characterization of
the public transportation services (lines) is modeled. For that reason Sects. 3.1–
3.4 focus on RND, assuming a physical network already established. The models
presented apply to different PT modes, which share common elements in the context
of strategic and tactical planning, namely, networks, lines, passengers, vehicles,
capacities and budgetary constraints. Differences among the general hypotheses
assumed in the models presented, are mainly due to the specific transport mode
under discussion. Thus, in models for intercity railway line planning (Sect. 3.1),
the underlying network is sparse and the passengers are assumed to schedule their
arrival to the station according to the timetable. In models for bus line planning
(Sect. 3.2) the underlying network (streets) is assumed to be dense. In bus based
systems including services with different characteristics regarding frequency and
regularity, the modeling of waiting time is relevant (Sect. 3.3). Whenever line
capacity comes into play (Sect. 3.4), the services should be designed taking into
account the reaction of the users. The issue of transfers between lines appears in
almost every medium to large sized scenario. Transfers have a great impact on both
users (perceived level of service) and operators (number of lines, which influences
operations cost), and its modeling is not straightforward.

Table 17.1 provides a list of main symbols used in this section. Moreover, the
nonnegative real variable x is used to denote flow, either over arcs a, routes r and
paths p, also indexed by commodity k. Similarly, the binary variable y is used to
denote the decision of including a route r or line l into the solution.
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Table 17.1 Definitions of main symbols

Symbol Definition

G Graph representing the underlying network

N (V ) Nodes (vertices) of the graph

A (E ) Directed arcs (undirected edges) of the graph

A +
n (A −

n ) Incoming (outgoing) arcs to (from) node n

cu
a (cu

e ) User cost of arc a (edge e)

co
a (co

e ) Operator cost of arc a (edge e)

ua Capacity of arc a

K Set of commodities (OD pairs)

O(k) (D(k)) Origin (destination) node of commodity k

dk Demand of commodity k

wnk Equal to dk if n = O(k), −dk if n = D(k) and 0 otherwise

R Set of all routes defined over G

R0 Pool of candidate routes

fr Frequency of route r

3.1 User and Operator Oriented Models with Fixed Passenger
Behavior

In railway systems it is reasonable to assume that services will be provided along
shortest paths from passenger viewpoint over the physical network. This allows
introducing the system-split hypothesis, which states that passengers always travel
along shortest paths in G (with respect to cost cu

a ) independently of the routes.
Consequently, the passenger behavior can be fixed, thus simplifying the models by
solving a priori problem (17.1)–(17.3) for each commodity k ∈ K and loading the
corresponding flows over the network links.

Model (17.8)–(17.13) selects an optimal subset of routes with their correspond-
ing frequencies, from a given pool R0 ⊆ R of routes defined over the physical
network (Bussieck et al. 1997). The model adopts the undirected versions of both
G and R, and takes into account demand data given as an OD matrix. The system
performance is represented by the amount of direct demand satisfied, denoted by
xrk for route r ∈ R0 and OD pair k ∈ K .

Constraint (17.9) bounds the passenger flow (thus preventing infinite values) by
the demand of each OD pair, while constraint (17.10) links passenger flow with
the capacity of each route r , which is defined as the product of the train capacity
C and the route frequency fr . Finally, constraint (17.11) states that the sum of the
frequencies of all routes passing by edge e must be equal to the load of that edge
(te, resulting from the fixed system-split flows computed a priori) divided by the
train capacity. This last constraint prevents unnecessary high frequencies by setting
values which ensure route capacity. The routes included in the solution are those r

such that fr > 0.
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Maximize
∑

r∈R0

∑

k∈K ,Pk⊆r

xrk (17.8)

Subject to
∑

r∈R0,Pk⊆r xrk ≤ dk, ∀ k ∈ K , (17.9)
∑

k∈K ,e∈Pk⊆r xrk ≤ Cfr, ∀ e ∈ E , r ∈ R0, (17.10)
∑

r∈R0,e∈r fr = �te/C�, ∀ e ∈ E , (17.11)

xrk ≥ 0, ∀ r ∈ R0, k ∈ K , (17.12)

fr ∈ Z+, ∀ r ∈ R0. (17.13)

Note that depending on the routes included in the pool R0, the whole demand
dk,∀k ∈ K will be satisfied (either directly or indirectly) or not. If for each k ∈ K ,
the pool R0 includes at least one route comprising both O(k) and D(k), the whole
demand is likely to be satisfied directly. This kind of solution does not take into
account explicitly the interest of the operator, since there is not an explicit upper
bound on the number of lines. For this reason, formulation (17.8)–(17.13) is referred
as user oriented.

On the other hand, operator oriented models usually seek to minimize operation
costs (Goosens et al. 2004). We use the concept of line to define set R̂0 = R0 ×
F × S , where F ⊂ Z+ denotes possible values of frequencies and S ⊂ Z+
denotes possible values for number of carriages, both corresponding to each route
r ∈ R0. Each element l ∈ R̂0 has route rl , frequency fl and number of carriages sl .
Model (17.14)–(17.18) also assumes an a priori system-split loading of OD flows
to each edge e of the network, which determines the required frequency fe and
number of carriages se. Parameter kl states the line cost (including fixed and variable
components per train and carriage), while yl is a binary decision variable which
states whether or not to include line l ∈ R̂0 in the solution.

Minimize
∑

l∈R̂0

klyl (17.14)

Subject to
∑

l∈R̂0(e)
flyl ≥ fe, ∀ e ∈ E , (17.15)

∑
l∈R̂0(e)

flslyl ≥ ce, ∀ e ∈ E , (17.16)
∑

l∈R0,rl=r yl ≤ 1, ∀ r ∈ R0, (17.17)

yl ∈ {0, 1}, ∀ l ∈ R̂0. (17.18)

Constraints (17.15) and (17.16) ensure capacity fulfillment by setting appropriate
values of frequency and number of carriages, where R̂0(e) = {l ∈ R̂0/e ∈ rl}.
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Constraint (17.17) ensures that for each route r ∈ R0, at most one line from R̂0 is
selected.

Note that formulation (17.14)–(17.18) minimizes operation costs, while passen-
gers’ interest is taken into account by the system-split hypothesis and the constraints
which ensure sufficient capacities in the selected lines.

3.2 Explicit Modeling of Passenger Behavior

If the physical network is dense, there are many possibilities for defining routes.
This is the case of bus based systems, where the physical network is defined in
terms of the streets. In this scenario, the system-split approach is not a reasonable
assumption. Therefore, since the demand flows cannot be fixed a priori, the
passenger behavior is represented explicitly by means of specific decision variables
(Borndörfer et al. 2007). For route r ∈ R, let yr be a binary (topological) variable
which states whether or not r is included in the solution and let fr be a real
(non-topological) variable which represents its frequency. While routes are defined
over the undirected version of G , passenger paths are defined over its directed
counterpart. LetP be the set of all directed passenger paths in G and letP(k) ⊆ P
be the set of paths from O(k) to D(k). The path-based formulation is defined
by (17.19)–(17.25), where the behavioral variable xp stands for the amount of flow
over path p.

Minimize
∑

p∈P

∑

a∈p

cu
axp +

∑

r∈R

(
k
f
r yr + kv

r fr

)
(17.19)

Subject to
∑

p∈P(k) xp = dk, ∀ k ∈ K , (17.20)
∑

p∈P/a∈p xp ≤ ∑
r∈R/a∈r C

p
r fr , ∀ a ∈ A , (17.21)

∑
r∈R(e) fr ≤ Cv

e , ∀ e ∈ E , (17.22)

fr ≤ Fyr, ∀ r ∈ R, (17.23)

yr ∈ {0, 1}, fr ≥ 0, ∀ r ∈ R, (17.24)

xp ≥ 0, ∀p ∈ P. (17.25)

Unlike the models presented in Sect. 3.1, objective function (17.19) represents
simultaneously the interest of both users and operators. The first term accounts
for total travel time of users while the second one groups both fixed and variable
operator cost, using parameters k

f
r and kv

r respectively for route r ∈ R. Con-
straint (17.20) imposes flow conservation for passenger demand over paths. Line
capacity is ensured by constraint (17.21), where parameterCp

r stands for the number
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of places in vehicles performing route r . Similarly, constraint (17.22) ensures that
lines passing by edge e (street section) do not surpass collectively its capacity
(measured in terms of vehicles per time unit), stated by parameter Cv

e . Finally,
constraint (17.23) states that the frequency of route r can be greater than zero only if
r is part of the solution, where F is a parameter whose value should be sufficiently
high.

Formulation (17.19)–(17.25) denotes a multicommodity flow problem with
capacities imposed to both route frequencies and passenger flows. The first term
of the objective function ensures that passengers follow the shortest path over the
network resulting from the enabled routes. Moreover, two issues are worth to be
mentioned. First, due to constraint (17.21), the flow of a given OD pair k ∈ K
may be split into several paths with different cost due to insufficient capacity on
the shortest path (capacitated user equilibrium). Second, transfers between lines are
ignored, since the flow over a specific path is enabled by constraint (17.21) if each of
its arcs belongs to at least one route enabled by constraint (17.23). This means that
in the optimal solution, passengers may be forced to perform an arbitrary number
of transfers between routes. The first issue is further discussed in Sect. 3.4 while
the second one may be approached by using the expanded network Ĝ (R0) shown
in Fig. 17.1, where each node of G is replicated for each r ∈ R0 ⊆ R. Each arc is
also replicated for each route, which allows to model different costs for different
lines passing by the same arc. Transfer arcs are added to connect nodes which
represent the same stop or station for different lines. Finally, boarding and alighting
arcs are added to connect origins and destinations with stops or stations. By using
this expanded network, transfers between routes can be weighted and counted in the
optimization models.

3.3 Including Waiting Time

In public transportation systems, waiting time is recognized as one of the most
onerous components of the user total travel time. In some cases, ignoring waiting
time in the modeling may be justified reasonably. For instance, users of intercity
services with low frequency can schedule their arrivals to the stop or station,
assuming that timetable information is available and reliable. Moreover, users of
metro or rapid transit systems may experience low waiting time due to availability
of high frequency services. However, in other systems like most of bus based ones,
modeling of waiting time is relevant in order to state a realistic scenario.

To do that, an expanded network as shown in Fig. 17.1 (without transfer arcs) is
used (Cancela et al. 2015), where A b ⊂ A denotes the set of boarding arcs.

Over this network, we can formulate the problem of selecting the optimal subset
of routes from a provided pool R0 and setting the frequency for each selected
route, taken from a discrete set of values F = {F1, . . . Fm} indexed by q. This
discretization of frequencies is introduced to obtain a linear formulation. Each
element of F (therefore, each possible value of frequency) has its own boarding
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Fig. 17.1 Expanded network
comprising two routes
passing by two common
stations

Station node Route node

Travel arc Transfer arc

Boarding arc Alighting arc

arc in the network. Let yr be a binary topological variable which expresses whether
route r ∈ R0 is selected and frq be a non-topological binary variable which states
that frequency Fq is assigned to route r . Moreover, let xak be the amount of demand
corresponding to OD pair k which flows over arc a and let znk be the waiting time
multiplied by the flow of OD pair k at node n (both x and z are behavioral variables).
The maximum number of available vehicles is denoted by parameter B.

Minimize
∑

k∈K

⎛

⎝
∑

a∈A
cu
axak +

∑

n∈N
znk

⎞

⎠ (17.26)

Subject to
∑

r∈R0
2

∑
q∈F Fqfrq

∑
e∈r co

e ≤ B, ∀ k ∈ K , (17.27)
∑

a∈A+
n

xak − ∑
a∈A−

n
xak = wnk, ∀ n ∈ N , k ∈ K , (17.28)

xak ≤ F (a)znk, ∀ a ∈ A b+, n ∈ N , k ∈ K , (17.29)

xak ≤ dkyR0(a), ∀ a ∈ A , k ∈ K , (17.30)

xak ≤ dkfR0(a)F(a), ∀ a ∈ A b, k ∈ K , (17.31)
∑

q∈F frq = yr ∀ r ∈ R0, (17.32)

xak ≥ 0, ∀ a ∈ A , k ∈ K , (17.33)

znk ≥ 0, ∀ n ∈ N , k ∈ K , (17.34)

yr ∈ {0, 1}, ∀ r ∈ R0, (17.35)

frq ∈ {0, 1}, ∀ r ∈ R0, q ∈ F . (17.36)

Formulation (17.26)–(17.36) minimizes user total travel time, including on-board
and waiting components. Constraint (17.27) imposes a limit on the number of
vehicles used, thus representing the interest of the operator, while constraint (17.28)
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is a typical flow conservation condition. Activation constraint (17.30) states that
demand can flow only over arcs of enabled routes, while a similar activation
constraint (17.31) states that demand can flow only over arcs corresponding to the
frequency assigned to each route. In these expressions, R0(a) and F (a) denote
the route from R0 and the frequency of F respectively, corresponding to arc
a ∈ A . Constraint (17.32) states that only one value of frequency from F can
be assigned to each route. Finally, constraint (17.29) models the fact that passengers
corresponding to OD pair k waiting at node n are distributed among the set of most
convenient lines (in the sense of overall expected travel time) that lead to their
destination. For fixed values of variables y and f , the result corresponds to the
optimal strategies passenger behavior model (Spiess and Florian 1989). That model
assumes that: (1) users seek to minimize the expected total travel time along the
network, (2) the waiting time is inversely proportional to the sum of the frequencies
of lines which lead to destination, and (3) the distribution of demand among these
lines is proportional to their frequencies. A direct formulation of these assumptions
followed by a series of algebraic transformations (Spiess and Florian 1989) allow
to observe that the formulation of this passenger behavior model corresponds to a
variation of the shortest path problem (17.1)–(17.3), where the waiting time term is
added in the objective function and the flow-splitting constraint (17.29) distributes
the demand flow among different routes passing by the same stop.

3.4 Multiple Objectives and Levels of Decisions

The models presented in previous sections consider decisions of different stake-
holders within a single formulation having a standard structure. In some cases this
can be a reasonable modeling approach, however, there are situations where a more
structured formulation is needed in order to model properly particular characteristics
of the problem, namely:

• Different stakeholders may have conflicting objectives, therefore it is impossible
to arrive to the best solution from a single point of view. In public transportation
systems we can observe this interplay between users and operators, which
reveals the multiobjective nature of the problem (Ehrgott 2005). The models
presented in Sect. 3.1 are biased by definition towards some of these specific
objectives. The models of Sects. 3.2 and 3.3 formulate implicitly multiobjective
problems and allow for exploring different compromise solutions by weighting
and constraining objectives.

• Some stakeholders may require to know the reaction of subordinate ones, in
order to fully determine their decisions. Since most public transportation network
design models are conceived to support decisions of the planners, the way
in which passengers use the routes should be modeled in order to know its
consequence over the system performance. This modeling requires considering
different levels of decisions, where there is a leader (the planner) who restrains
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decisions of a follower (the passengers), in order to arrive to an optimal solution
for the whole system. This characteristic of many passenger transportation
problems entails formulating a two-level (bilevel) optimization problem (Bard
1998). The models presented in Sects. 3.2 and 3.3 include variables which
represent decisions of the planner (y and f ) and the passengers (x and z), which
are pushed jointly towards the same direction by the objective functions and
constraints.

Model (17.37)–(17.43) optimizes simultaneously the objectives of users and
operators while ensuring sufficient capacity in the lines that passengers decide to
use (Goerigk and Schmidt 2017). Lines are taken from a provided set R0. Let Co

r

be the operation cost (e.g., length) of route r ∈ R0 and C ∈ N be the capacity of
vehicles, expressed in number of passengers. The remaining symbols are defined as
in previous sections.

The existence of two objective functions implies that the optimal solution is
the set of all efficient (or Pareto optimal) solutions, instead of a single optimal
solution. That set represents the whole range of optimal trade-off levels (in terms of
routes and frequencies) between both objectives of vector (17.37). The lower-level
problem (17.40)–(17.43) states that passengers move along the shortest path defined
by the routes enabled by the upper-level, i.e., those with fr > 0. Equation (17.40)
states that variable xak of the upper-level must take optimal values from its lower-
level counterpart x̄ak . Constraint (17.38) determines frequencies in order to allow
passengers moving along shortest paths with sufficient capacity. This means that
passengers perceive unlimited capacity in routes, therefore, for each OD pair
k ∈ K the demand dk is not split. Note that by eliminating objective (17.40) and
moving constraints (17.41)–(17.43) to the upper-level, we would obtain a (single
level) relaxation of the original problem where the routing of passengers follows a
capacitated user equilibrium.

Minimize [
∑

k∈K

∑

a∈A
cu
axak,

∑

r∈R0

frC
o
r ] (17.37)

Subject to
∑

k∈K xak ≤ fR0(a)C, ∀ a ∈ A , (17.38)

fr ∈ N, ∀ r ∈ R0, (17.39)

xak ∈ argmin
∑

a∈A cu
a x̄ak, (17.40)

Subject to
∑

a∈A+
n

x̄ak − ∑
a∈A−

n
x̄ak = wnk, ∀ n ∈ N , k ∈ K , (17.41)

x̄ak ≤ dkfR0(a), ∀ a ∈ A , k ∈ K , (17.42)

x̄ak ∈ N, ∀ a ∈ A , k ∈ K . (17.43)
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3.5 Other Relevant Models

The problem of route design in bus rapid transit systems exhibits particular charac-
teristics. First, routes are defined over predefined corridors with linear structure,
unlike the mesh-like structure of the street network used by regular bus based
systems. Moreover, for a given corridor comprising n stations or stops, the number
of possible routes is 2n since limited-stop services are under consideration in order
to reduce travel time. Thus, several parallel routes can be defined over the same
corridor, each of them having a different set of stops. To model this feature, an
expanded network similar to the one shown in Fig. 17.1 can be used, where each
station is replicated for each route (Walteros et al. 2015). Both on-board (travel)
and walking arcs are considered, including arcs which model access to the stations,
walking inside the stations and changing of routes at the same station. Whenever
a route skips a station, the travel time between its previous and next stations must
fulfil the triangular inequality, thus modeling the fact that there is no delay due
to skipping intermediate stations. The domain of topological variables is defined
by all possible routes over all corridors. Typical constraints include arc capacity
given by the capacity of the stations and the lines. Also, frequencies can be included
as decision variables, which are bounded by a total number of available vehicles
(Schmid 2014).

The PND problem involves decisions regarding infrastructure building of metro
and rapid transit systems, namely, the construction of stations and tracks or
corridors. Even though decisions regarding routes is not a primary concern in the
context of this problem, they are taken into account due to their relevance regarding
system performance. A typical way of addressing this problem is to choose a small
number of routes, maximizing the coverage of a given demand between a set of
fixed points, subject to a maximum available construction budget (Laporte et al.
2007). The binary variables srv and yre state whether route r uses station v ∈ V and
edge e ∈ E respectively. The passenger behavior is modeled with binary variables
zk and xek which state whether OD pair k ∈ K uses the public transportation
network and whether it employs edge e ∈ E from that network, respectively. The
formulation aims at the maximization of trips attracted to the public network, where
the demand is split according to parameters which express the user cost of traversing
each edge by using the public mode or the private one (typically, the car mode). An
extension to this model considers the incremental building of the network across a
set T of given periods (Marín and Jaramillo 2008). In this context, some problem
data depend on the specific period t ∈ T , namely, the OD matrix, construction
costs, available budget and user cost within the public network. Clearly, in order to
support multistage long-term planning, the dimensionality of the model is increased.

A different modeling approach for incremental building of the physical network
proposes the design of single routes, which can be used as building block for
obtaining a complete system made by different routes (Dufourd et al. 1996). In
this case, decisions are the location of a single route, while maximizing population
coverage under constraints of number of stations and inter-station spacing. A route is
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defined as a sequence of potential stations s ∈ S taken from a grid which represents
a discretization of the study region. Each potential station s has coordinates in
the Euclidean space, which are used to estimate its population catchment based
in concentric geometrical shapes and the distance between the station and squares
of the grid which intersect with the shape. This is a variation of covering-path like
problems, which results in a non-linear integer mathematical program. Moreover,
variations of this model consider the coverage of origin-destination trips instead of
the maximization of population catchment (Laporte et al. 2005). This is done by
replacing the original objective function by an expression which relates coverage
areas of pairs of stations. Furthermore, this value is multiplied by a logit factor in
order to determine the share of demand that is attracted by the public network, which
is assumed to compete against a private mode. Construction costs are represented in
these models by constraints on maximum route length and number of stations.

4 Solution Approaches

In this section, we present an overview of solution methods for public transportation
network design problems, either related to models of Sect. 3 or to other ones
which exhibit relevant algorithmic ideas. In a first level, methods are classified into
mathematical programming and heuristic based ones, depending on whether they
are based on an explicit mathematical formulation.

4.1 Mathematical Programming Based Methods

Several problems related to PT network design are formulated as mathematical
programs, usually mixed integer linear ones (MILP). In most cases, small problem
instances can be solved by using commercial MILP software developed by third
parties. However, for larger instances some solution methods involve specific algo-
rithmic developments. These methods are strongly determined by the mathematical
formulation, since they exploit its properties. They can be classified into branch-
and-bound-and-cut and decomposition methods.

4.1.1 Branch-and-Bound-and-Cut Methods

Problem (17.8)–(17.13) is solved by using branch and bound with three problem
specific improvements: a relaxation obtained by aggregating variables xrk across
all routes r ∈ R0, cutting planes induced by constraints (17.10) and (17.11) in the
relaxed problem, and upper and lower bounds derived by using the relaxed problem.
It is worth noting that solutions of the relaxed problem ensure demand satisfaction
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by all lines collectively but they disregard the capacities of individual lines, therefore
they cannot be easily transformed into feasible solutions of the original problem.

Moreover, problem (17.14)–(17.18) is solved firstly by applying a formulation
strengthening through preprocessing, which involves coefficient reduction, variable
reduction linked to the coefficient reduction and constraint reduction using dom-
inance rules. Next, the branch and bound is enriched with cutting planes derived
from constraints (17.15) and (17.16), several branching rules and a primal heuristic
which builds a solution based in the resolution of the linear relaxation.

In order to find the set of efficient solutions for the multiobjective prob-
lem (17.37)–(17.43) the ε-constraint method is applied with respect to the second
objective. This means that the second component of vector (17.37) is transformed
into a constraint, which enables to find efficient solutions by varying its right-hand
side. Moreover, the bilevel structure of the problem is eliminated by substitution of
the lower-problem (17.40)–(17.43) by its optimality conditions. This can be done by
combining duality, specific properties of the shortest-path problem and linearization
techniques.

4.1.2 Decomposition Methods

Problem (17.19)–(17.25) is solved by a column generation approach, given the
super-polynomial number of variables. In a first step, the linear relaxation is solved
by iteratively pricing passenger and line path variables until no improvement is
found. The pricing of passenger variables is a polynomial-time solvable shortest
path problem. On the other hand, the pricing of line variables is aNP-hard maximum
weighted path problem. In a second step, the algorithm builds an integer solution
from the set of routes having nonzero frequencies in the optimal solution of the
linear relaxation. This is done by a greedy procedure which deletes routes as long
as all OD pairs are covered and the objective value decreases.

The PND problem of choosing a small number of routes while maximizing
demand coverage can be solved by applying the Benders decomposition (Marín
and Jaramillo 2009). The problem is partitioned into the master (which involves
variables related to infrastructure building) and the sub-problem (which deals with
passenger behavior). At each iteration of the algorithm, dual variables of the sub-
problem define optimality or feasibility cuts which are added to the constraints
of the master problem. Moreover, several extensions are introduced in order to
improve the performance of the method, namely, separation of the sub-problem by
OD pair, elimination of inactive cuts and specific shortest path algorithms to solve
the sub-problem. These improvements allow for solving realistic size instances of
the problem.
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4.2 Heuristic Based Methods

We refer as heuristic methods for PT network design to those which are not driven
by an explicit mathematical programming formulation. The algorithms presented
apply to variants of models presented in Sect. 3. The objectives to be optimized can
be, among others: user benefit maximization, operator cost minimization or total
welfare maximization (Kepaptsoglou and Karlaftis 2009). Moreover, the heuristic
methods for RND are classified into: (1) route generation and route selection,
and (2) route set generation and improvement. The first approach considers the
generation of single routes (route generation), which also can be used to compose a
pool of candidate routes from which an optimal subset will be then selected (route
selection). The second approach generates a complete solution in a first stage (route
set generation), which can be then improved (route set improvement).

4.2.1 Route Generation and Selection

In the context of RND, the route generation and selection approach entails generat-
ing firstly a pool of many good candidate routes, from which the optimal (or best
possible) subset is selected in a second stage. When generating the pool, usually
the following criteria are taken into consideration: (1) the candidate routes should
be good, both for users and operators, (2) each element of the pool has to fulfil
some constraints which can be verified at route level individually, e.g., route length,
duration and circuity, overlapping with existing routes, (3) a compromise between
a small pool concentrated in few routes and a larger pool which provides more
diversity should be managed. The usual way for generating candidate routes is
based on shortest paths between node pairs of G , which can include origins and
destinations of OD pairs given by set K or all possible node pairs taken from
N × N . These routes are expected to provide a good level of service in terms
of travel time from the users viewpoint. But since this pool could be very restrictive,
additional routes are usually generated. To do this, different ideas can be applied:
(1) taking a route generated from a shortest path P and generating additional similar
routes by successively eliminating each edge from P and recomputing the shortest
path, (2) generating k-shortest paths for every node pair of G (as we increase the
value of k, a larger and more diverse pool can be obtained). Since routes generated
from shortest paths could be biased towards the interest of users, alternative ways
of generating routes biased towards operator’s interest are taken into consideration,
for instance, including in the pool routes generated by analyzing the concentration
of demand flow in the arcs of G (Cipriani et al. 2012). To do that, a system-split like
procedure is first run, which produces the aggregated flow from all OD pairs k ∈ K
over each arc a ∈ A . Then, routes are generated by selecting highly loaded arcs and
adding links until specific termination criteria involving route constraints are met.
So far, the candidate routes generated by these methods do not collectively ensure
the fulfilment of global constraints at the route selection level, like demand coverage
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(in the topological sense) and demand satisfaction (in terms of capacity). This issue
can be addressed by a model based pool generation (over minimal spanning trees)
which ensures capacity fulfilment (Gattermann et al. 2016).

Heuristics based on route generation and selection involve a second phase where
the best possible subset of routes is selected from the pool of candidate routes. This
entails solving a set covering like problem, with a large number of variables. We
identify two approaches to solve this problem heuristically for RND: (1) genetic
algorithms based search, and (2) neighborhood based search. In the first group,
usually the route identifiers are coded into a chromosome which can be of either
fixed or variable length, thus allowing solutions with different number of routes. The
individuals (sets of routes, i.e., solutions to RND) are then evolved using classical
genetic operators like one point or two point crossover, and mutation. Note that
crossing two individuals entails exchanging routes between solutions. Regarding
neighborhood based search, a set of neighbors of a given solution to RND can be
defined by replacing each route by one of its contiguous (similar) elements in the
pool. Note that the structure of the routes defined during the pool generation does
not change due to the search process. Moreover, since the pool does not necessary
guarantee demand coverage of all demand OD pairs, the unsatisfied demand can be
included in the objective function to penalize this fact.

4.2.2 Route Set Generation and Improvement

The route set generation approach produces a complete solution for RND. Usually,
feasibility at both route and solution level is ensured. Most algorithms perform
an incremental construction, which can be either biased or unbiased. In the first
group, the main idea is to build some skeleton routes which are then enlarged by
inserting nodes until the whole demand given by set K is covered. Skeletons are
built by connecting high demand OD pairs, either enumerating and selecting the
best sequence of intermediate nodes or computing shortest paths. Then, additional
demand is covered by inserting nodes into the initial skeletons. However, the
node insertion should discard cases where the resulting route becomes too large,
circuitous or overloaded. The solutions generated by these methods are expected to
be good by construction, however, they can be improved in a further stage. On the
other hand, the unbiased approach aims at generating initial solutions which need to
be improved in a second stage. In this case, the route set generation method should
ensure diversity, while the route set improvement should ensure a comprehensive
exploration of the search space. Usually, the construction is performed by selecting
randomly an initial node and then adding randomly additional nodes. The solution
should guarantee minimal levels of demand coverage and connectivity. To do that,
usually all nodes of G should be reached by routes, and a reasonable number of
route intersections (which enable transfers) should be ensured.

The route set improvement entails either modifying existing routes or generating
new ones. We again identify two different approaches depending on the adoption
of genetic or neighborhood search. In the first group, problem specific genetic
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operators can be applied to the initial solution, namely, add/delete arc, route merge,
route break, route sprout and route crossover. Regarding neighborhood search,
a typical approach applies simple arc add/delete operators to each route of the
solution. A more complex neighborhood structure involves exploring alternative
deviating paths from an initial one, which can be modified at given points (Zhao and
Zeng 2008). It is worth noting that whatever the neighborhood structure is adopted,
any method for escaping from local optima can be used, e.g., simulated annealing
or tabu search.

A related methodology which falls within this category is the generation and
improvement of a single route in the context of PND. This is done by considering the
grid-based set of potential nodes and constructing either a random walk along one of
the two diagonals of the square grid (Dufourd et al. 1996) or a greedy biased initial
solution (Bruno et al. 2002). Then, local search is applied, where the neighborhood
of the solution is obtained by moving one of its stations to a contiguous position in
the grid.

4.2.3 Handling Specific Problem Features

Heuristic methods for PT network design often have to deal with two distinctive
problem characteristics: (1) the multiobjective structure due to existence of conflict-
ing objectives, and (2) the bilevel structure resulting from the passenger behavior
model.

The treatment of multiple objectives is sometimes performed implicitly, where
algorithms are conceived to balance the different objectives during solution con-
struction (Baaj and Mahmassani 1995; Mauttone and Urquhart 2009a). In this case,
the output is a single solution but, by changing appropriately some parameters,
different trade-off solutions can be obtained. A different approach consists of
solving heuristically a model which weights the different objectives into a single
function (Pattnaik et al. 1998). By changing the weights, different trade-off solutions
can be obtained. Finally, some other algorithms produce in a single run, an entire
set of trade-off solutions (Israeli and Ceder 1995; Mauttone and Urquhart 2009b;
Oliveira and Barbieri 2015). This is attained by means of specific operators and
parameter settings.

In the context of heuristics, whenever a solution is changed due to local
move or genetic operator, usually the passenger behavior model should be run
in order to evaluate the system performance under the new conditions. This
entails solving variants of the shortest path problem (17.1)–(17.3). In absence of
capacity constraints, the computation is equivalent to solving |K | independent
shortest path problems. But, if passengers are restrained by vehicle capacity, the
resulting multicommodity flow problem is more difficult to solve. In this case,
specific accelerating techniques can help to reduce computation time (Walteros et
al. 2015). Although more complex and detailed passenger behavior models exist
in the literature (Desaulniers and Hickman 2007), their complexity in PT network
optimization models and algorithms must be kept bounded, given the strategic and
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tactical characteristics of the problems involved. In any case, the computational
effort spent by calling the passenger behavior model is significant with respect to
the overall execution time of PT network design algorithms.

5 Bibliographical Notes

Some relevant surveys are worth to be mentioned before discussing the specific
literature on public transportation network design. In Schöbel (2012), the RND
problem is discussed from a mathematical programming perspective, providing
formalization for several concepts including the notion of user and operator oriented
models. Kepaptsoglou and Karlaftis (2009) review models and algorithms for
RND, proposing the classification of solution approaches into (1) candidate route
generation and route configuration and (2) route construction and improvement.
Laporte and Mesa (2015) review methodologies for PND, including the location of
stations, design of a single route and of the entire network. In Farahani et al. (2013),
an overview of methodologies for several urban transportation network design
problems is provided, including both private and public modes. The study focuses
in models and algorithms dealing with topological variables, presents a general
bilevel formulation for the problems and identifies problem instances reported in
the literature up to the year of publication. More recently, Iliopoulou et al. (2019)
review metaheuristic approaches to RND, identifying relevant algorithmic aspects
like route representation, repair and recombination.

Early work in public transportation network optimization consists of heuristics
and it can be traced from Lampkin and Saalmans (1967), where the heuristic for
route set construction based in skeletons and further node insertion is proposed.
This method was later extended by Silman et al. (1974), who include a route deletion
procedure and consider transfers between routes when computing demand coverage
and travel time. Dubois et al. (1979) tackle both PND and RND problems for bus
systems. Actually, the PND does not entail infrastructure building, instead it refers
to selecting the set of streets which will be used by the bus routes, which reduces
the size of the underlying network used as input in the RND problem. Unlike the
methods mentioned above, which allow for generating a route set from an empty
solution, the concept of route set improvement is developed by Mandl (1980). That
author proposes a method that applies insertion and deletion of nodes in routes and
interchange of parts between routes of an already existing solution. The route set
construction based on skeletons is resumed by Baaj and Mahmassani (1995), who
enrich the procedure for node selection and insertion. Also, these authors propose
the idea of building skeletons based on k-shortest paths instead of the shortest one,
in order to diversify the search during construction. Mauttone and Urquhart (2009a)
modify the node insertion procedure by proposing a pair insertion which seeks to
cover high demand OD pairs directly. More recently, Islam et al. (2019) propose
a greedy algorithm inspired by the work of Baaj and Mahmassani (1995), which
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builds routes between high demand OD pairs by appending shortest route segments
that consider both travel cost and demand coverage.

The first studies which apply metaheuristics to RND consist of genetic algo-
rithms. Pattnaik et al. (1998) solve the route selection problem by encoding the
identifiers of routes taken from a predefined pool, into a chromosome which can
be of either fixed or variable length. Further developments propose extensions to
include frequency encoding (Tom and Mohan 2003) and parallel implementations
(Agrawal and Tom 2004). Another relevant application of metaheuristics to route
selection in the context of RND is due to Fan and Machemehl (2006), who apply
simulated annealing to select the best subset of routes from a predefined pool of
candidates. Fan and Mumford (2010) apply simulated annealing for searching on
the space of route structure. A different application of genetic algorithms to RND is
proposed by Ngamchai and Lovell (2003) for the route set improvement problem,
implementing several problem specific operators which modify the structure of the
routes of the initial solution. More recent applications of metaheuristics involve the
use of ant and bee colony optimization (Nikolic and Teodorovic 2014; Szeto and
Jiang 2014; Yu et al. 2012) and particle swarm optimization (Kechagiopoulos and
Beligiannis 2014), either for construction or for improvement of solutions.

Mathematical programming approaches are more recent and they were firstly
applied to passenger rail transportation. Regarding RND, Bussieck et al. (1997)
proposed the user oriented model and the corresponding solution method based
in relaxations, cutting planes and bounds. The operator oriented model is due to
Claessens et al. (1998), who also present complexity results and a solution method
based in reformulation and lower bounding. Their work is resumed by Goosens
et al. (2004), who propose a solution method based on formulation strengthening
and branch and cut. Goosens et al. (2006) extend the model to allow lines with
different stopping patterns. While the studies mentioned above consider fixed
passenger behavior, Borndörfer et al. (2007) introduce a path-based model which
generates the routes. They also present complexity results and a solution method
based on column generation. Other formulations which include explicit modeling
of passenger behavior have been proposed by Guan et al. (2006) and Cancela et
al. (2015). Finally, other relevant work include the study of Schöbel and Scholl
(2006), who proposed the expanded network to account for transfers, previously
adopted by Spiess and Florian (1989) and later improved by Goerigk and Schmidt
(2017). Regarding PND problems, Laporte et al. (2007) propose a base formulation,
which is then extended by Marín and Jaramillo (2008). The single route location
problem is due to Dufourd et al. (1996), then extended by Laporte et al. (2005).
Latest developments in this line are due to Gutiérrez-Jarpa et al. (2017).

We should mention several studies which are relevant due to the treatment of
particular aspects of public transportation network design problems. Lee and Vuchic
(2005) model elastic demand by allowing a variable share of public transportation
demand from a given fixed overall demand and they study the influence of several
parameters over the resulting networks. Szeto and Jiang (2014) use information
from the mathematical formulation to reduce the number of calls to the passenger
behavior model in the context of a metaheuristic solving method. Bagloee and Ceder
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(2011) handle large size networks comprising up to 13,487 nodes, 52,742 arcs and
142,041 OD pairs. Mumford (2013) makes an effort to establish a set of benchmark
instances for public transportation network optimization.

Finally, it is worth noting the existence of a complementary stream of publi-
cations dealing with public transportation network design from a structural point
of view. Laporte et al. (2000) identify several network structures (star, cartwheel,
triangle and grid) and evaluate their effectiveness according to indexes that represent
the interest of passengers. In this line, more recently Fielbaum et al. (2018) apply
some of the models discussed in this chapter to cities with different structures
(monocentric, polycentric and dispersed) paying attention to the role of transfers,
thus, filling the gap between the different streams of research on the same topic.

6 Conclusions and Perspectives

Public transportation network design problems have been studied since more than
five decades ago. Several problem aspects are well explained by the existing models.
Moreover, several solution methods have been tested and documented, constituting a
rich basis for developing new ones. In the following, we identify current challenges
and future perspectives of this area of research.

Mathematical programming approaches face the challenge of solving huge mixed
integer linear problems (MILP). The small city used as test case for RND in
(Borndörfer et al. 2007) seems to establish the limit on the size of solvable instances
using this approach. Newer MILP solvers should be evaluated regarding exact
resolution, even considering formulations which incorporate additional problem
features like transfers (Schöbel and Scholl 2006), waiting time (Cancela et al. 2015)
and capacities (Goerigk and Schmidt 2017).

Metaheuristics have shown to be the most effective methods for solving medium
and large-sized problem instances. Nevertheless, they face the main challenge of
minimizing the calls to the passenger behavior model, which is the most critical
algorithmic component of the overall solution methods. Techniques like the one
proposed by Szeto and Jiang (2014), which attempts to discard unnecessary solution
evaluations should be explored. Regarding experimental evaluation of accuracy
of metaheuristics, the lack of a well established set of benchmark instances with
reference values is a weakness of the field. This situation needs to be addressed,
a remarkable contribution in this sense is the work of Mumford (2013). Recent
works have shown progress on the field (Iliopoulou et al. 2019), mainly in the
computational aspect of the methods that tackle the combinatorial complexity of the
problem, where more elaborated experiments are conducted regarding parameter
tuning, benchmark and reproducibility.

The modeling of passenger behavior under vehicle capacity constraints is a very
relevant aspect of public transportation network design models. The capacitated
user equilibrium modeled in Borndörfer et al. (2007) assumes that some users
are willing to choose longer paths with respect to other users traveling from the
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same origin to the same destination. This could be questionable in the context
of real systems. A different approach is adopted in the bilevel model of Goerigk
and Schmidt (2017), which ensures sufficient capacity for all users. However,
this entails taking into account two other issues: (1) solving the more complex
bilevel formulation, and (2) discussing whether real systems are able to implement
these solutions, mainly due to high frequency requirements. While the design of
uncongested public transportation systems can be a reasonable goal, sometimes
it is necessary to recognize that congestion plays a role in network design due to
limitations on the available resources. The effect of congestion over passengers
(especially over waiting time and route choice) leads to complex models (Gendreau
1984) which have been successfully addressed at the descriptive level (Cepeda et al.
2006), i.e., models that represent passenger behavior given a fixed set of routes.
However, normative models for congested public transportation network design
are much more difficult to solve, since they turn into mathematical programs with
equilibrium constraints (Colson et al. 2007).

Finally, other aspects of public transportation network design like stochastic
demand (An and Lo 2016) and integration of stages (Canca et al. 2017) also deserve
attention, due to their relevance at the practical level as for the challenge they pose
at both modeling and algorithmic levels. In fact, these issues have been recently
approached by the research community, as part of the effort to build models which
are able to better represent real life systems.
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