
Chapter 11
Robust Network Design

Arie M. C. A. Koster and Daniel R. Schmidt

1 Introduction

Designing a network is usually done on the basis of a forecast of the future/expected
demand. Such a forecast will by definition not be an accurate representation of
the reality. If the design process involves long-term and/or strategic decisions, the
quality of the forecast determines the feasibility of the network design for its future
purpose. Where an increase of the forecast values might be a simple solution to
this problem, it is obvious that such a line of action might be too rough and hence
unnecessary costly. Robust optimization offers a more informed alternative in such
cases.

In the following, we first introduce the basics of robust optimization. Next, we
survey its application to single- and multicommodity network design. At appropriate
times, extensions of the basic idea of robust optimization are also introduced.
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2 Robust Optimization

2.1 What Is Robust Optimization?

According to a text book by Ben-Tal et al. (2009), robust optimization is a
“methodology for handling optimization problems with uncertain data”. We extend
this notion of robustness and say that a solution to an optimization problem is robust
if it is feasible for a prescribed range of scenarios rather than in a single situation.
Let us illustrate this concept with an example. Suppose we are to plan a network for
an internet provider. We are provided with forecasts for the planning period and as a
first step, we convert the forecasts into hard numbers for our problem input. This step
will almost certainly introduce rounding errors and is prone to rule out potentially
useful solutions. After this “rounding” step, we run an exact optimization algorithm
– but only after we introduced errors and inaccuracies! How can we make sure that
this solution is even feasible for the real (unknown) network requirements? There
is another problem with our approach. We might be planning a network that sees
different usage scenarios throughout the day, and while classical optimization can
find a network for each scenario, it lacks the methodology to find a network that
works in all of them. The methodology in this chapter gives us the ability to find
solutions that are robust against imprecisions in the input and shifting use cases.
Among other things, it will let us cope with inprecise numbers and lets us plan
a network that can support different traffic peaks without requiring that all peaks
can be handled simultaneously. Throughout, our approach will be as follows. First,
we need to identify a set of possible network configurations or scenarios. This set
is called the uncertainty set. Then, we will look for worst-case robust solutions,
i.e. solutions that are feasible no matter which scenario occurs. The challenge here
is to carefully select an appropriate uncertainty set: The broader the set, the more
expensive our solution becomes. Still, if we were to accept that some solution is
not feasible in all scenarios, we would accept that in some scenarios we violate our
side constraints. Thus, a worst-case model is appropriate if in the application, safety
is critical and a failure of the optimized system is not permitted or more expensive
than guarding against it. If we are sure that all parameters realizations will occur
eventually or if the probability distribution of the realizations is not known, then
worst-case robustness is a good modeling choice as well (if only for the lack of
alternatives).

2.2 Chance-Constrained Model

Robust optimization can be viewed as a specialization of chance-constrained
optimization. As it is often impossible to map all possible inputs onto the uncertainty
set, there remains a (hopefully small) chance that a robust solution is infeasible.
Stated otherwise, a chance-constrained optimization model can be reformulated as
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a robust optimization model by determining an uncertainty set guaranteeing that
solutions to the robust optimization model satisfy the original constraints with high
probability. More formally, assuming uncertainties in the constraint matrix of an
arbitrary linear program min{cTx | Ax ≥ b, x ≥ 0} only, a chance-constrained
optimization program in its general form is:

Minimize
n∑

j=1
cixi (11.1)

Subject to Pr

(
n∑

j=1
aij xj ≥ bi

)

≥ 1 − εi ∀ i = 1, . . . , m (11.2)

xj ≥ 0 ∀ j = 1, . . . , n. (11.3)

Here, εi > 0 is the maximum probability of violating the i-th constraint and the
matrix entries aij are no longer deterministic values, but random variables following
a (possibly unknown) distribution. Alternatively, all constraints can be considered
jointly in a single chance constraint:

Pr

⎛

⎝
n∑

j=1

aij xj ≥ bi ∀ i = 1, . . . , m

⎞

⎠ ≥ 1 − ε (11.4)

In this case, a single value ε > 0 specifies the maximum probability that a chance-
constrained solution is infeasible.

Chance-constrained models are often difficult to solve, in particular if informa-
tion on the probability distribution is not (or only limitedly) available. Tractability
is further restricted by dependencies between the random variables. In the context
of network design, we refer to Pascali (2009) for a chance-constrained approach. In
the context of broadband wireless networks, we are aware of another work reducing
the model to a deterministic problem in case of independent random variables, see
Claßen et al. (2014). Alternatively, by following a robust optimization approach,
we sometimes can guarantee that the solution satisfies the inequalities with high
probability, either in theory, or in practice (by evaluating historical data). Therefore,
we next describe a number of commonly used uncertainty sets.

2.3 Interval Uncertainty

In many cases, parts of the constraint matrix are based on physical measurements
or forecasts and are thus not known with arbitrary precision. To capture this kind of
uncertain input, assume that each coefficient aij of A has a nominal value āij (the
value that was measured or predicted) and that the true value for aij can deviate
by at most âij ≥ 0 from our nominal choice. We define an uncertainty set UI that
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consists of all matrices A with coefficients aij ∈ [āij − âij , āij + âij ]:

UI :=
{
(aij )

m,n
i,j=1 ∈ Rm×n

∣
∣
∣ aij ∈ [āij − âij , āij + âij ] ∀ i, j

}
. (11.5)

Since there is no coupling between the individual coefficients, the worst-case
scenario occurs when all coefficients deviate in the worst possible way. This happens
when aij is set to āij −âij for all i, j (assuming a system of typeAx ≥ b) and results
in the following program.

Minimize
n∑

j=1

cixi (11.6)

Subject to
n∑

j=1
(āij − âij )xj ≥ bi ∀ i = 1, . . . , m (11.7)

xj ≥ 0 ∀ j = 1, . . . , n. (11.8)

This is a classical result by Soyster (1973). As an example, suppose that our input
numbers were measured with an accuracy of 1%. Then, we set āij to the value that
was measured and let âij = 0.01 · āij for all i, j .

2.4 Budget Uncertainty

In a practical setting, it is unlikely that all coefficients deviate in the worst possible
way at the same time. In consequence, solutions from the interval uncertainty model
tend to be unnecessarily costly. To obtain a less conservative model, we assume an
uncertainty budget that limits the total deviation. Changing the budget will allow us
to control the conservatism of the model.

In order to control the level of robustness, let us introduce a parameter vector
Γ ∈ Zm

≥0 whose i-th entry Γi decides how many coefficients of the i-th constraint

may deviate from their nominal value at the same time.1 We define the following
set of uncertain matrices based on the choice of Γ .

1The model can be extended to choose a fractional Γ ∈ Rm
≥0 with the interpretation that �Γi�

coefficients of constraint i deviate maximally and a single coefficient aij of constraint i deviates
by the remaining amount (Γi − �Γi�)âij . The extension is straight-forward, yet omitting it makes
the exposition significantly easier. For the full model, see Bertsimas and Sim (2004).
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UB(Γ ) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a)
m,n
i,j=1 ∈ Rm×n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S1, . . . , Sm ⊆ {1, . . . , n}
|Si | ≤ Γi ∀ i = 1, . . . , m

aij ∈ [āij − âij , āij + âij ], if j ∈ Si

aij = āij , otherwise

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

We say that a solution is Γ -robust if it is feasible for all A ∈ UB(Γ ). By increasing
some Γi , we increase the robustness as well as the cost of the solution; this is what
we call the price of robustness. In this way, solving the model for different values of
Γ allows us to find a good trade-off between robustness and cost; the extreme cases
being the interval model (set Γi = n for all i = 1, . . . , m) or a non-robust model
(set Γi = 0 for all i = 1, . . . , m). We have the following program with respect to
UB(Γ ).

Minimize
n∑

j=1

cj xj (11.9)

Subject to
n∑

j=1
āij xj − max

S⊆{1,...,n}
|S|≤Γi

∑

j∈S

âij xj ≥ bi ∀ i = 1, . . . , m (11.10)

xj ≥ 0 ∀ j = 1, . . . , n (11.11)

If we fix a selection S of deviating coefficients in any constraint i of (11.9)–(11.11),
then this constraint is most restrictive if aij deviates to the lower bound āij − âij

for all j ∈ S, as xj ≥ 0. This is modeled by the reformulated constraint (11.10).
Program (11.9)–(11.11) can be casted into a linear program by replacing the inner
optimization problem by its dual; a method that we shall see in more detail in
Sect. 5.3.

The budget uncertainty model has nice theoretical properties with respect to
chance-constrained optimization: Let Ã result by randomly (but symmetrically)
perturbing the coefficients of the original matrix A while obeying the maximum
deviations. Then, the probability that a Γ -robust solution violates the i-th constraint
of Ãx ≥ b is bounded by exp(−Γ 2

i /2n); independently of the distribution of the
perturbation.2

2A tighter, but more involved bound can be shown; see Bertsimas and Sim (2004).
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2.5 Polyhedral Uncertainty and the Robust Counterpart

To model interval and budget uncertainty, we have collected all possible realizations
of the constraint matrixA in an uncertainty setU ⊆ Rm×n and looked for a solution
x ≥ 0 that is robust feasible, i.e., one that satisfies Ax ≥ b for all choices of
A ∈ U . In general, we can choose any closed, bounded setU as our uncertainty set.
Furthermore, we can always replace U by its convex hull convU without changing
the feasible region of the uncertain program. In fact, we shall assume that U is
a polytope in the following. Given an arbitrary linear program min{cTx | Ax ≥
b, x ≥ 0} and a polytope U , we call the system

Minimize
n∑

j=1

cj xj (11.12)

Subject to
n∑

j=1
aij xj ≥ bi ∀ i = 1, . . . , m, ∀ (aij )

m,n
i,j=1 ∈ U (11.13)

xj ≥ 0 ∀ j = 1, . . . , n (11.14)

the robust counterpart of our original linear program. In order to model an uncertain
right-hand side b of a linear program as well, we can introduce a fixed auxiliary
variable and move b to the constraint matrix.

Polynomial time optimization over the feasible region of (11.12)–(11.14) is
equivalent to having a polynomial time separation algorithm for the feasible region.
This is an algorithm that decides whether a given point x ∈ Rn

≥0 is feasible
for (11.12)–(11.14) and if not, yields a scenario A ∈ U and an index i ∈ 1, . . . , m
such that rowi (A)Tx < bi , where rowi (A) denotes the i-th row of A. Such a
separation algorithm for the robust counterpart exists if a separation oracle for U
exists; indeed, to separate x∗ from the feasible region of (11.12)–(11.14), it suffices
to solve

b∗
i := min

{
rowi (A)Tx∗ ∣

∣ A ∈ U
}

(11.15)

for all i = 1, . . . , m. If for some i we have b∗
i < bi , then there is a separating

inequality rowi (A)Tx ≥ bi . Yet, solving (11.15) is possible in polynomial time if
and only if there is a polynomial time separation algorithm for U .

Theorem 1 (Ben-Tal and Nemirovski (1999)) Let U ⊆ Rm×n and let b ∈ Rm.
Then the robust counterpart

min
{
cTx

∣
∣ Ax ≥ b, x ≥ 0, ∀ A ∈ U

}
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is solvable in time polynomial in m and n if there is separation algorithm for U
with a running time polynomial in m and n. 
�
Thus, we can solve worst-case robust linear programs polynomially if we can
separate polynomially over the uncertainty set.

If the uncertainty polytope is given in its vertex description U =
conv{A1, . . . , Ak} then separation is always possible in time polynomial in n,m

and k (although k may be exponentially large in m or n). We say that U is a discrete
set in this case.

If the uncertainty polytope is described by a system of linear inequalities, a
dualization approach similar to the budget uncertainty case can be applied.

2.6 Multi-stage Robustness

In the classical worst-case robust model, we take all the decisions in a single stage
before we know the realization of the uncertain parameters. This modelling is not
always desirable: We could instead imagine fixing some variables here-and-now
while adjusting other variables once (part of) the uncertain parameters have realized.
As an example in the network design context, we might decide on the capacities
in a first stage (without knowing the realizations of the uncertain demands) and
postpone the routing of the traffic to a point in time where the demands are known
with certainty. Or, we might conservatively buy parts of the network in advance
and rent additional capacity as needed. Depending on fewer uncertain parameters,
such multi-stage models allow for less expensive solutions without sacrificing
their robustness. The price for the additional flexibility is a computionally harder
model, as even models with two stages of robustness tend to be NP-hard to solve.
A middle ground is achieved by assuming a tractable dependence between the
uncertain parameters and the adjustable, later stage variables. Models with affine
robustness assume that the adjustable variables can be computed as affine functions
from the uncertain data. Recoverable robustness more generally asks for a tractable
algorithm that computes feasible values for all adjustable variables given the first
stage decisions and the parameter realization.

3 Robust Network Designs

In the sequel, we will apply the robust optimization approach to network design. As
opposed to the introductory Chap. 2, we suppose that G = (N ,E ) is an undirected
graph with a node set N and a set of potential edges E ⊆ (N

2

)
. To emphasize

the difference, we use the notation {i, j} to distinguish an undirected edge between
i, j ∈ N from the directed arcs (i, j) and (j, i). Then, a flow f on G assigns a flow
value fij and fji to both possible orientations of each edge {i, j} and a capacity
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vector u ∈ RE admits a flow f if fij +fji ≤ uij . Following the robust optimization
paradigm, we consider a setting where the supplies / demands of the nodes in the
graph are uncertain. The robust network design problem is the task to select a
capacity uij ≥ 0 for each edge {i, j} such that all possible demand realizations
can be satisfied while minimizing the total costs for installing the capacities.

Exactly how the demands are satisfied will vary throughout the chapter. We
will first consider some single-commodity models and then generalize to multiple
commodities. Given that we optimize over multiple scenarios, another modeling
choice arises: Do we need to fix the routing of the demands before we know which
scenario will realize or are we allowed to select a suitable routing once we know the
scenario realization? In the former case, we need to compute a routing template, i.e.
[0, 1]-valued flow. Given an arc (i, j), we interpret the template flow fij ∈ [0, 1] as
the percentage of the demand that is routed along (i, j). In the terms of the previous
section, this yields a single-stage optimization problem and we say that we model a
static routing in this case. If in the latter case, we are allowed to choose the routing
after a scenario has realized, we perform a two-stage optimization. This is known
as a dynamic routing. In general, dynamic routings offer more flexibility and thus,
cheaper solutions. They are, however, much harder to compute and do not fit all
practical applications. Models in between static and dynamic routing exist; see for
instance Poss and Raack (2013).

4 Single-Commodity Formulations

In Chap. 2, Sect. 2, we defined a deterministic (i.e., non-robust) single-commodity
flow by saying that every node has a demand wi of the single commodity. We
generalize this notion by introducing an uncertainty set U ⊆ RN such that any
scenario w ∈ U defines a demand wi for each node. As before, we say that i ∈ N
has a supply of the single commodity in the scenariow ifwi > 0, we say that i has a
demand of the commodity in scenario w ifwi < 0 and that i is a transshipment node
in scenario w if wi = 0. It is possible for nodes to a have a supply in one scenario
and a demand in another which means that our partitioning of the nodes into origin
nodesN o

w , destination nodesN d
w and transshipment nodesN t

w now depends on the
scenario w ∈ U . As before, we assume that the supplies and demands are balanced
in all scenarios in U and observe that if

∑
i∈N wi �= 0 for some w ∈ U , then no

flow can satisfy the supplies and demands simultaneously and the problem instance
is infeasible.

Given G , an edge-cost vector c ∈ RN≥0 and an uncertainty set U ⊆ RN , the
Single-Commodity Capacitated Robust Network Design Problem (SSCCRND) is
the task to find an integral minimum-cost capacity vector u ∈ ZE that admits a
feasible flow for each w ∈ U while minimizing the capacity installation costs∑

{i,j}∈E cij uij . I.e., it is a two-stage robust optimization problem. The capacity
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vector u has to be determined before the realization of the demand vector w is
known, but the flow can be scenario-specific.

The SSCCRND problem is NP-hard, even if U is a discrete uncertainty set with
three scenarios that only use demands wi ∈ {−1, 0, 1} and that agree on a common
origin node. The deterministic variant of the problem (i.e., |U | = 1) is polynomial
time solvable as a minimum-cost flow problem, however, which is in contrast to the
deterministic SCFND in Chap. 2, Sect. 2. It is currently unknown if the SSCCRND
problem with two scenarios is NP-hard.

4.1 A Flow-Based Formulation

The general problem admits a flow-based formulation of the SSCCRND problem
that is similar to the flow-based formulation in Chap. 2, Sect. 2. It has an integer
capacity variable uij for each edge {i, j} ∈ E and two continuous arc-flow variables
f w

ij , f w
ji for each edge {i, j} ∈ E and each scenario w ∈ U (modeling the flow on

{i, j} in scenario w).

Minimize
∑

{i,j}∈E

cij uij (11.16)

Subject to
∑

{i,j}∈E

(
f w

ij − f w
ji

) = wi ∀ i ∈ N ,∀ w ∈ U (11.17)

f w
ij + f w

ji ≤ uij ∀ {i, j} ∈ E ,∀ w ∈ U (11.18)

f w
ij , f w

ji ≥ 0 ∀ {i, j} ∈ E ,∀ w ∈ U (11.19)

uij ∈ ZE≥0 ∀ {i, j} ∈ E (11.20)

This formulation is known as the flow-based formulation and matches the definition
of SSCCRND exactly; any feasible solution defines a feasible flow f w for all
scenarios w ∈ U along with minimum integer capacities that support the flows.
The constraint matrix of formulation (11.16)–(11.20) is not totally unimodular and
thus the integrality requirement for the capacity variables is necessary. Given integer
values for u, however, we can always find a feasible f that is integer as well
(provided w is integer), even though integrality of the scenario flows is not required
in the definition of the SSCCRND problem.

Formulation (11.16)–(11.20) potentially has an infinite number of variables.
Assuming U is a polytope, to make it a finite formulation, we can equivalently
replace U by the set of its vertices. Still, not only may the number of vertices of U
be large, if U is given in a linear description, it is non-trivial to compute all vertices
of U efficiently.
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4.2 A Cut-Set-Based Formulation

We obtain a formulation of finite size by projecting out the flow variables in (11.16)–
(11.20). The result is a cut-set-based formulation that has an integer capacity
variable uij for each edge {i, j}. Before we introduce the formulation itself,
let us define a robust cut-set-based inequality for the SSCCRND problem as a
generalization of the cut-set-based inequalities (2.16) in Chap. 2. Consider any cut
S ⊆ N and some scenario w ∈ U . Any feasible choice of capacities u must
satisfy

∑
{i,j}∈(S ,S̄ )

uij ≥ WS (w), where WS (w) := | ∑i∈S wi | is defined

analogously to Chap. 2, Sect. 2.1. This is true for all w ∈ U and thus, it is necessary
that u satisfies

∑

{i,j}∈(S ,S̄ )

uij ≥ max
w∈U

WS (w). (11.21)

Inequality (11.21) is a robust cut-set-based inequality for the SSCCRND problem.
It turns out that a capacity vector u is feasible if it satisfies the robust cut-set-

based inequality (11.21) for all S ⊆ N . This yields the following cut-set-based
formulation for the SSCCRND problem.

Minimize
∑

{i,j}∈E

cij uij (11.22)

Subject to
∑

{i,j}∈(S ,S̄ )

uij ≥ max
w∈U

| ∑

i∈S
wi | ∀ S ⊆ N (11.23)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.24)

The cut-set-based formulation is equivalent to the flow-based formulation (11.16)–
(11.20) in the sense that the (fractional) solutions of the projection of (11.16)–
(11.20) onto the u-space are exactly those defined by (11.23)–(11.24). The linear
programming bounds obtained from the relaxations of the flow-based formulation
and the cut-set-based formulation are hence the same. A cut-set-based inequal-
ity (11.23) for a set S with maxw∈U

∑
i∈S wi > 0 defines a facet of the

feasible region of (11.23)–(11.24) if both S and the complement set S̄ induce a
connected subgraph of G . The non-negativity constraint (11.24) for uij , {i, j} ∈ E
is dominated by a cut-set-based inequality if removing {i, j} disconnects G into two
partitions with non-zero total balance. In all other cases, the constraint defines a
facet of the feasible region of the cut-set-based formulation.
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4.3 Separating Robust Cut-Set-Based Inequalities

The size of the cut-set-based formulation is independent ofU . However, the number
of constraints in the formulation is exponential in the size of G . Whether these
constraints can be separated with sufficient efficiency depends on the uncertainty
set; for general uncertainty sets, the separation is NP-hard. In this case, applying
the generic transformation of the robust counterpart from Sect. 2.5 leads to a linear
program with exponentially many constraints and variables. Neither a separation
nor a pricing algorithm is known for this program. Alternatively, the problem can
be reformulated as a non-convex quadratic program.

There are known tractable special cases, however. The first tractable case occurs
when the vertices of U can be enumerated efficiently (for instance, because U is
a discrete uncertainty set). Then, the separation requires one run of a minimum s-t-
cut algorithm per vertex of U . We discuss two other tractable special case in more
detail below.

4.3.1 The Single-Commodity Hose Uncertainty Set

Hose uncertainty corresponds to the interval robustness model in the previous
section, with the additional constraint that all scenarios must induce balanced
supplies and demands. For each node i ∈ N , we define a lower bound wmin

i ∈ Z
and an upper boundwmax

i ∈ Z on the demand at i and consider any fluctuation of the
demands that lies within these bounds and defines a balanced scenario. This results
in the following uncertainty set.

UH (wmin, wmax) :=
{
w ∈ RV

∣
∣
∣ wi ∈ [wmin

i , wmax
i ]∀ i ∈ N ∧

∑

i∈N

wi = 0
}
.

(11.25)

The SSCCRND problem with Hose uncertainties remains NP-hard, as does the
separation problem for the robust cut-set-based inequalities. However, the separa-
tion problem can be reformulated as a mixed integer linear program (MILP) in the
following way. The MILP computes a cut S and the value of the right-hand side
of the corresponding cut-set-based inequality. For each node i ∈ N , we introduce
a variable πi indicating if i ∈ S and a binary decision variable ρij indicating
if {i, j} ∈ (S , S̄ ). An additional continuous variable W holds the right-hand side
value of the cut-set-based inequality corresponding to S . The MIP minimizes the
slack of the cut-set-based inequality induced by S = {i ∈ N | πi = 1}.

Minimize
∑

{i,j}∈E

u∗
ij ρij − W (11.26)
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Subject to W ≤ ∑

i∈N
πiw

max
i (11.27)

W ≤ − ∑

i∈N
(1 − πi)w

min
i (11.28)

πi − πj ≤ ρij ∀ {i, j} ∈ E (11.29)

πj − πi ≤ ρij ∀ {i, j} ∈ E (11.30)

πi ∈ {0, 1} ∀ i ∈ N (11.31)

ρij ∈ {0, 1} ∀ {i, j} ∈ E (11.32)

Here, the essential insight is that we can assume without loss of generality that
the minimum slack is attained by a cut-set-based inequality for a set S where
maxw∈UH

∑
i∈S wi is non-negative (otherwise, replace S by the complement S̄ ).

This observation implies that the right-hand side of the inequality simplifies to

max
w∈UH

∣
∣
∣
∑

i∈S

wi

∣
∣
∣ = max

{∑

i∈S

wmax
i ,−

∑

i∈S̄

wmin
i

}
, (11.33)

which is modeled by the constraints (11.27) and (11.28). Computational experi-
ments show that this MILP is solvable for reasonable instance sizes.

4.3.2 Network Containment

The network containment uncertainty polytope defines another tractable special case
of the SSCCRND problem. In this model, the demand is not defined directly at each
node, but through demand requests: For each pair of nodes i, j ∈ N , we define
a minimum and a maximum amount rmin

ij , rmax
ij , respectively, of the global single

commodity that j can request from i. We then project the demand requests down
onto node demands by writing the corresponding uncertainty polytope as

UC := {
(
∑

j∈N

(rij − rji))i∈N ∈ RN
∣
∣ rmin

ij ≤ rij ≤ rmax
ij ∀ i, j ∈ N

}
(11.34)

Thus, for any choice of demand requests r , we obtain a scenario w where the
demand wi at node i is exactly the total amount

∑
j∈N rij of the commodity

requested from i minus the total amount
∑

j∈N rij of the commodity requested
by i. In contrast to the Hose model, the scenarios defined in this way are always
balanced even without an explicit balancing constraint. The definition also implies
that at any node i, the demand request rij may be satisfied by any node j ′ (i.e., in
general, we may have j ′ �= j ) as long as i receives or sends the correct amount of the
commodity. The cut-set separation problem for the network containment uncertainty
polytope can be solved by a mixed integer linear program similarly to the Hose
polytope.
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4.4 Strengthening the Formulations

The feasible regions of the flow-based and of the cut-set-based formulation admit
a project-and-lift cut generation procedure that works by contracting edges in an
SSCCRND instance. To contract any edge {i, j} ∈ E, we merge i and j into a super
node i′. All nodes that were previously adjacent to i or j are now adjacent to i′ and
we delete all resulting parallel edges. In all scenarios w ∈ U , we set the demand
of i′ to be wi + wj . By applying this procedure repeatedly, we can project any
SSCCRND instance I into an instance I ′ with fewer nodes and edges. This smaller
instance has nice properties: Any valid inequality for I ′ can be turned into a valid
inequality for I by appropriately lifting the coefficients and moreover, the lifting
procedure ensures that facet-defining inequalities for I ′ remain facet-defining for I .

To find valid inequalities for I ′, we can repeatedly contract edges until we obtain
an instance of constant size. We then apply the target cut approach that finds facet-
defining inequalities by solving a linear program that has an inequality for each
vertex of the feasible region of I ′. In the special case where I ′ is a triangle graph, its
three super-nodes define a partitioning of the node set into three disjoint sets S1 ∪
S2 ∪ S3 = N . This partitioning gives rise to the class of 3-partition inequalities:

∑

{i,j}∈(S1:S2)

uij +
∑

{i,j}∈(S1:S3)

uij +
∑

{i,j}∈(S2:S3)

uij ≥
⌈

WS1 + WS2 + WS3

2

⌉

.

(11.35)

Here, for any S ,S ′ ∈ N , we define (S : S ′) := {{i, j} ∈ E | i ∈ S ∧ j ∈ S ′}
to be the set of edges with one endpoint in S and one endpoint in S ′. Further,
we let WS := maxw∈U WS (w)| be the right-hand side value of the cut-set-
based inequality induced by S . The 3-partition inequalities are facet-defining
for the feasible region defined by the cut-set-based formulation (11.22)–(11.24)
if WS1 + WS2 + WS3 > 0 is odd and each of the sets S1,S2,S3 induces
a connected subgraph. The 3-partition inequality corresponding to S1,S2 and
S3 can be generated as a {0, 1

2 }-Chvátal-Gomory cuts from the cut-set-based
inequalities corresponding to S1, S2 and S1 ∪ S2.

4.5 Variants of the Problem

It is straight-forward to rewrite (11.22)–(11.24) for a setting where opening an edge
{i, j} incurs a fixed-cost of cij , but provides a fixed capacity uij . The variant with
fixed costs and uncapacitated edges can then be seen as the special case where
the fixed capacities are set to the sum W = ∑

i∈N maxw∈U |wi | of the maximum
demands. IfU is described by a system of inequalities, this value can be obtained by
solving a linear program for each node i ∈ N . Transportation costs (in the worst-
case) can be added to the objective function of the flow-based formulation (11.16)–
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(11.20). Neither variants with fixed costs, transportation costs, nor uncapacitated
variants have been considered in the literature so far, to the best of our knowledge.

5 Multicommodity Formulations

If the traffic between different pairs of nodes in our network has to be distinguished,
then the multicommodity flow model is an appropriate modeling choice. Analo-
gously to Chap. 2, Sect. 3 we assume that each commodity k ∈ K is given as an
origin-destination pair (O(k),D(k)) ∈ N × N . To model the uncertain demands,
we consider an uncertainty polytope U ⊆ RK . Any scenario d ∈ U specifies a
demand dk for commodity k ∈ K . As before, we can re-write the demands as flow
balances by setting

w
k,d
i :=

⎧
⎪⎪⎨

⎪⎪⎩

dk, if i = O(k)

−dk, if i = D(k)

0, otherwise

∀ d ∈ U ,∀ k ∈ K ,∀ i ∈ N . (11.36)

Here, however, the uncertainty polytope introduces a dependence of w on the sce-
nario d. Given an undirected graph G = (N ,E ) with commodities (O(k),D(k))

for k ∈ K , a scenario polytope U ⊆ RK , and an installation cost cij for each edge
e ∈ E , the MSCCRND problem is to find an integer capacity uij for each edge {i, j}
such that

∑
{i,j}∈E cij uij is minimum and all demands in U can be routed. In the

dynamic routing case, the demands must be routed with a multicommodity flow. In
the case of static routing, the demands are routed with a routing template as briefly
described in Sect. 3.

5.1 Standard Uncertainty Sets

Consider the application of the budget uncertainty approach to multicommodity
network design (cf. Sect. 2.4). We denote by d̄k a nominal value for the demand
of each commodity k ∈ K and we suppose that the true demand of the commodity
can deviate from its nominal value by at most d̂k . Additionally, there can be at most
Γ ∈ Z≥0 deviations at the same time. We define the resulting uncertainty set as the
Γ -robustness polytope for the MSCCRND.
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UB(d̄, d̂, Γ ) := conv

⎧
⎪⎪⎨

⎪⎪⎩
d ∈ RK≥0

∣
∣
∣
∣
∣
∣
∣
∣

dk ∈ [d̄k − d̂k, d̄k + d̂k], if k ∈ S

dk = d̄k, otherwise

∀ S ⊆ K with |S| ≤ Γ

⎫
⎪⎪⎬

⎪⎪⎭
.

(11.37)

Defining S(Γ ) := {σ ∈ [0, 1]K | ∑
k∈K σk ≤ Γ } as the set of possible deviations,

we can rewrite the Γ -robustness polytope equivalently as the following set.

UB(d̄, d̂, Γ ) = d̄ + {
(σ kd̂k)k∈K ∈ RK≥0

∣
∣ σ ∈ S(Γ )

}
. (11.38)

An alternative to the budget uncertainty set was proposed by Fingerhut et al. (1997)
and Duffield et al. (1999) independently. In the Hose model, we only assume that
we know the maximum incoming traffic d in

i and the maximum outgoing traffic dout
i

at each node i ∈ V . We then define a commodity (s, t) with demand dst for all pairs
of nodes s, t ∈ N and consider any demand vector d that adheres to the traffic
bounds. We call the resulting uncertainty set

UH (d in, dout) :=
{
d ∈ RN ×N

≥0

∣
∣
∣

∑

t∈N

dit ≤ dout
i ∧

∑

s∈N

dsi ≤ d in
i ∀ i ∈ N

}

(11.39)

the (multicommodity) Hose polytope. We speak of the symmetric Hose polytope if
d in
i = dout

i for all nodes i ∈ N .
For this uncertainty model, we only need to estimate Θ(|N |) parameters (as

opposed to a worst case of Θ(|N |2) in the budget uncertainty case). Additionally,
these parameters are easier to predict and can even be known exactly if they stem
from technical specifications or legal contracts.

5.2 The VPN Problem

The MSCCRND problem with Hose uncertainties and static routing is known as
the Virtual Private Network (VPN) design problem. The problem is NP-hard in
general, but can be solved efficiently if the Hose polytope is symmetric in the above
sense and if we force the flow to be unsplittable. In that case, there is always an
optimum routing template that forms a tree and optimum tree routing templates for
unsplittable flows can be found in polynomial time. We will see in the following
section how the general VPN problem can be solved with ILP methods.
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5.3 Static Routing: Arc-Flow Based Formulations

In the static routing case, the flow formulation does not need a set of arc-flow
variables for every scenario: As we use the same routing template in all scenarios,
a single set is sufficient. Here, for all commodities k ∈ K and all edges {i, j} ∈ E ,
the routing template variables f k

ij and f k
ji denote the fraction of the demand of

the commodity k that is routed via the arcs (i, j) and (j, i), respectively, in each
scenario d ∈ U . As before, we use an integer variable uij to model the capacity of
the edge {i, j}, for all {i, j} ∈ E .

Minimize
∑

{i,j}∈E

cij uij (11.40)

Subject to
∑

{i,j}∈E

f k
ij − f k

ji =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = O(k)

−1, if i = D(k)

0, otherwise

∀ k ∈ K

∀ i ∈ N
(11.41)

∑

k∈K
dk · (

f k
ij + f k

ji

) ≤ uij

∀ {i, j} ∈ E

∀ d ∈ U
(11.42)

f k
ij , f

k
ji ∈ [0, 1] ∀ {i, j} ∈ E

∀ k ∈ K
(11.43)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.44)

Again, it is sufficient to include the constraints (11.42) for the vertices ofU . Forcing
that f is binary leads to a variant where the template for each commodity uses a
unique path and thus, a routing template for an unsplittable flow.

Let us now robustify the arc-flow formulation (11.40)–(11.44) with the Γ -
robustness model.

Minimize
∑

{i,j}∈E

cij uij (11.45)

Subject to

∑

{i,j}∈E
f k

ij − f k
ji =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = O(k)

−1, if i = D(k)

0, otherwise

∀ k ∈ K

∀ i ∈ V
(11.46)

∑

k∈K
d̄k(f k

ij + f k
ji) + max

σ∈UB(Γ )

∑

k∈K
σkd̂

k
(
f k

ij + f k
ji

) ≤ uij ∀ {i, j} ∈ E (11.47)
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f k
ij , f

k
ji ∈ [0, 1] ∀ {i, j} ∈ E

∀ k ∈ K
(11.48)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.49)

The constraint (11.47) contains an optimization problem in itself so that the formula-
tion is a two level program.We would like to collapse the program into a single level.
Unfortunately, in the inner level inside of the constraint (11.47), we seek tomaximize∑

k∈K σkd̂
k(f k

ij +f k
ji) over UB(Γ ) while the outer level (11.45)–(11.48) strives to

minimize this value. If we could rewrite the maximization as an equivalent mini-
mization problem, we could collapse the two levels as desired. Given fixed template
flows f k , this can be achieved by modeling maxσ inUB(Γ )

∑
k∈K σkd̂

k
(
f k

ij +f k
ji

)
as

a linear program and replacing it by its dual

Minimize γij · Γ +
∑

k∈K

τ k
ij (11.50)

Subject to γij + τ k
ij ≥ d̂k(f k

ij + f k
ji) ∀ k ∈ K (11.51)

τ k
ij ≥ 0 ∀ k ∈ K (11.52)

γij ≥ 0 (11.53)

for all edges {i, j} ∈ E . The result is a compact mixed-integer linear program with
Θ(|N |2|E |) variables and Θ(|N |3 + |N |2|E |) constraints.

Minimize
∑

{i,j}∈E

cij uij (11.54)

Subject to
∑

{i,j}∈E
f k
ij

− f k
ji

=

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = O(k)

−1, if i = D(k)

0, otherwise

∀ k ∈ K

∀ i ∈ N
(11.55)

∑

k∈K
d̄k(f k

ij
+ f k

ji
) + γij · Γ + ∑

k∈K
τk
ij

≤ uij ∀ {i, j} ∈ E (11.56)

γij + τk
ij

− d̂k(f k
ij

+ f k
ji

) ≥ 0
∀ k ∈ K

∀ {i, j} ∈ E
(11.57)

τk
ij

≥ 0
∀ k ∈ K

∀ {i, j} ∈ E
(11.58)

γij ≥ 0 ∀ {i, j} ∈ E (11.59)



334 A. M. C. A. Koster and D. R. Schmidt

f k
ij

, f k
ji

∈ [0, 1]
∀ k ∈ K

∀ {i, j} ∈ E
(11.60)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.61)

As the objective function makes sure that the left-hand side of constraint (11.56) is
minimized, we can omit the explicit minimization without inserting complementary
slackness conditions.

Alternatively, we can solve the separation problem for the constraints (11.47).
Given fixed f and u, the problem amounts to finding a deviation σ ∈ UB(Γ ) and
an edge {i, j} ∈ E such that

∑

k∈K

d̄k(f k
ij + f k

ji) +
∑

k∈K

σkd̂k
(
f k

ij + f k
ji

)
> uij (11.62)

or to decide that none such combination of a deviation and an edge exists. The
problem can be solved separately for each fixed edge {i, j} ∈ E . Then, it amounts
to solving

max
σ∈UB(Γ )

∑

k∈K

σkd̂k
(
f k

ij + f k
ji

)
. (11.63)

If the optimum value of (11.63) is larger than uij − ∑
k∈K d̄k(f k

ij + f k
ji), then

we found a violated inequality; otherwise, no violated inequality involving the
edge {i, j} exists. To solve (11.63), we can sort the values d̂k(f k

ij + f k
ji) for

k ∈ K in non-increasing order. Then, the first Γ commodities determine a worst-
case deviation. This approach yields a program that initially has Θ(|K ||N |)
constraints and Θ(|K ||E |) variables. To solve the linear programming relaxation
of the problem, we need to solve Θ(|E |) separation problems per iteration of the
separation algorithm.

To combine the arc-flow formulation with the Hose polytope, we can equivalently
replace constraint (11.42) by the optimization

uij = max
∑

s,t∈V

dst (f st
ij + f st

j i ) (11.64)

Subject to
∑

t∈V

dst ≤ dout
s ∀ s ∈ V (11.65)

∑

s∈V

dst ≤ d in
t ∀ t ∈ V (11.66)

dst ≥ 0 ∀ s, t ∈ V (11.67)

for all {i, j} ∈ E . For fixed f , this gives us a bounded, feasible linear program
for each edge {i, j} ∈ E. Again, we now replace these programs by their dual.
In the linear program for edge {i, j}, denote by ω

ij
s and υ

ij
t the dual variables
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corresponding to the constraints (11.65) and (11.66), respectively. This yields the
following dual for each edge {i, j} ∈ E .

Minimize
∑

s∈N

dout
s ω

ij
s +

∑

t∈N

d in
t υ

ij
t (11.68)

Subject to ω
ij
s + υ

ij
t ≥ f st

ij + f st
j i ∀ s, t ∈ V (11.69)

ω
ij
s ≥ 0 ∀ s ∈ V (11.70)

υ
ij
t ≥ 0 ∀ t ∈ V (11.71)

This program is linear, even for a non-fixed f . We insert it into formulation (11.40)–
(11.44), replacing constraint (11.41).

Minimize
∑

{i,j}∈E

cij uij (11.72)

Subject to
∑

{i,j}∈E

f st
ij − f st

j i =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = s

−1, if i = t

0, otherwise

∀ s, t ∈ N

∀ i ∈ N
(11.73)

∑

s∈N
dout
s ω

ij
s + ∑

t∈N
d in
s υ

ij
s ≤ uij ∀ {i, j} ∈ E (11.74)

ω
ij
s + υ

ij
t ≥ f st

ij + f st
j i

∀{i, j} ∈ E

∀ s, t ∈ N
(11.75)

ω
ij
s , υ

ij
s ≥ 0

∀ {i, j} ∈ E

∀ s ∈ N
(11.76)

f st
ij , f st

j i ∈ [0, 1] ∀ {i, j} ∈ E

∀ s, t ∈ N
(11.77)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.78)

In this way, we directly obtain a single level mixed integer linear program and
do not need any further linearization. Solving the program gives us minimum cost
integer capacities for MSCCRND with static routing over the Hose polytope. The
program has Θ(|N |2|E |) variables and Θ(|N |3+|N |2|E |) constraints. A similar
approach for a problem variant with multiple facilities was given by Altin et al.
(2011). Requiring that f is integral yields an MIP formulation for the VPN problem.
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5.4 Static Routing: Path Based Formulations

In the static routing case, the MSCCRND problem with an arbitrary uncertainty
set U can be cast into a path-formulation. In this formulation, we additionally
assume that there is an upper bound ūij on the capacity uij of edge {i, j} ∈ E
so that the feasible region is bounded. If these bounds are not desired, they can be
replaced by a sufficiently large number (for instance, we can set the upper bound to∑

i∈N

∑
k∈K maxd∈U dk

i for all edges). For ease of notation, we let Pk be the set
of all paths between the origin O(k) of the k-th commodity and its destination D(k),
for all k ∈ K . As before, let P = ∪k∈K Pk . We use a continuous path variable
xp for each p ∈ P .

Minimize
∑

{i,j}∈E

cij uij (11.79)

Subject to
∑

p∈Pk

xp = 1 ∀ k ∈ K (11.80)

∑

k∈K

∑

p∈Pk :{i,j}∈p

dkxp ≤ uij

∀ {i, j} ∈ E

∀ d ∈ U
(11.81)

xp ∈ [0, 1] ∀ p ∈ P (11.82)

uij ∈ {0, . . . , ūij } ∀ {i, j} ∈ E (11.83)

To model unsplittable routing it suffices to turn the path-flow variables x in
program (11.79)–(11.83) into binary variables.

We now decompose the path formulation (11.79)–(11.83) into a master and two
satellite problems. The master problem consists of a variant of the path formulation.
It maintains a set P̄ ⊆ P of relevant paths as well as a set of relevant scenarios
Ū ⊆ U . Both sets are initially empty.

Minimize
∑

{i,j}∈E

cij uij (11.84)

Subject to
∑

p∈ ¯cP k

xp ≥ 1 ∀ k ∈ K (11.85)

∑

p∈Pk :{i,j}∈p

xp ≤ f k
ij ∀ k ∈ K , ∀ {i, j} ∈ E (11.86)

∑

k∈K
f k

ij d
k ≤ uij ∀ {i, j} ∈ E ∀ (dst )s,t∈V ∈ Ū (11.87)
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uij ≤ ūij ∀ {i, j} ∈ E (11.88)

xp ∈ [0, 1] ∀ p ∈ P̄ (11.89)

f k
ij ∈ [0, 1] ∀ k ∈ K , ∀ {i, j} ∈ E (11.90)

The master problem (11.84)–(11.90) is bounded. Suppose for the moment that it
is feasible as well and let u∗ be an optimum solution for the problem. In order to
guarantee that u∗ is globally optimum, we need to make sure that adding additional
paths to P̄ cannot improve the value of u∗. Moreover, u∗ must be globally feasible,
i.e., the capacities must be sufficient to route all scenarios in U (and not only those
in Ū ). For the former problem, we solve a path satellite problem.

It consists of computing a shortest path between all origin-destination pairs with
respect to the dual variables π and ρ of the constraints (11.85) and (11.86). Indeed,
one can argue that if

∑
{i,j}∈p ρk

ij < πk for some O(k)-D(k)-path p �∈ P̄ , then

p will improve the current solution u∗. In this case, we add the path p to P̄ . To
ensure global feasibility on the other hand, we separate inequalities of type (11.87)
in a demand satellite problem. Given fixed routing variables f and fixed capacities u

from an optimum solution of (11.84)–(11.90), it suffices to solve the linear program

umax
ij := max

∑

k∈K

f k
ij d

k (11.91)

Subject to d ∈ U (11.92)

for all edges {i, j} ∈ E. Notice that here, we optimize over the entire scenario set.
If for some edge {i, j} ∈ E we find that umax

ij > uij , then the inequality

∑

k∈K

f k
ij d

k ≤ uij (11.93)

is violated by (f, u). We add the corresponding optimum solution of (11.91)–(11.92)
to Ū , thus adding the violated inequality (11.93) to the master problem.

To solve the master problem to global optimality, it now suffices to iteratively
call the path satellite, the demand satellite and the master problem itself until neither
new paths nor new scenarios are found. If at some point during the computation the
master problem becomes infeasible, we call the path satellite and if no improving
paths can be found, then the problem instance must be globally infeasible (i.e., the
upper bounds for the capacities are too restrictive to route all scenarios in U ).

5.5 Dynamic Routing: Arc-Flow Based Formulations

The robustification of the capacitated multicommodity network design problem
works analogously to the SSCCRND case. For the arc-flow formulation, we
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introduce one set of arc-flow variables for each scenario d ∈ U and each
commodity k ∈ {1, . . . , K}. This gives us a robustified version of the classical arc-
flow formulation.

Minimize
∑

{i,j}∈E

cij uij (11.94)

Subject to
∑

{i,j}∈E

f
k,d
ij − f

k,d
ji = w

k,d
i , ∀ i ∈ V,∀ d ∈ U , ∀ k ∈ K (11.95)

∑

k∈K
f

k,d
ij + f

k,d
ji ≤ uij , ∀ {i, j} ∈ E , ∀ d ∈ U , (11.96)

f
k,d
ij , f

k,d
ji ≥ 0, ∀ k ∈ K , ∀ d ∈ U , ∀ {i,j} ∈E (11.97)

uij ∈ ZE≥0, ∀ {i, j} ∈ E (11.98)

Featuring 2|K ||E | flow-variables for each scenario d ∈ U and Θ(|E |) con-
straints (11.96) for all d ∈ U , this formulation is of infinite size. Again, if U is
a polytope, we can replace U by the set of its vertices to obtain a finite (although
potentially inpractical) formulation.

5.6 Dynamic Routing: Formulations Without Flow Variables

As also can be observed for deterministic multi-commodity network design prob-
lems, Gale’s cut condition is not sufficient for the existence of a multi-commodity
flow and thus, these problems cannot be cast into a cut-set based formulation in
general. There is, however, a generalization of Gale’s condition, called the Japanese
Theorem, by Onaga and Kakusho (1971) that enables us to formulate the problem
with capacity variables only. Let M ⊆ RN ×N

≥0 be the metric cone, i.e., set of

all real metrics on N . Given capacities u ∈ RE≥0, a feasible multicommodity flow
exists if and only if

∑

{i,j}∈E

μijuij ≥
∑

k∈K

dk · distμ(O(k),D(k)) ∀ metrics μ ∈ M , (11.99)

where distμ(s, t) denotes the shortest path distance from s ∈ N to t ∈ N with
respect to μ. To see why the condition is necessary, observe the following: Let μ ∈
M be any metric and let us interpretμ as edge weights. Then, the network has a total
weighted capacity of U := ∑

{i,j}∈E μijuij . Sending one unit of flow from O(k)

to D(k) along a path p ∈ Pk “consumes” a weighted capacity of
∑

{i,j}∈p μijuij

and there exists a feasible multicommodity flow if all demands can be sent while
consuming at most the total weighted capacity U . But how much weighted capacity
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do we need to consume at least in order to send all the demands? The best we
can do is to send dk units along a shortest O(k)-D(k)-path for all k ∈ K and
this consumes a weighted capacity of exactly

∑
k∈K dk distμ(O(k),D(k)). Thus, if

∑
{i,j}∈E μijuij <

∑
k∈K dk distμ(O(k),D(k)) for any metric μ, then no feasible

multicommodity flow can exist under our choice of u. A rigorous proof of both the
sufficiency and the necessity of the condition follows from applying Farkas’ Lemma
to the path formulation (2.32)–(2.36) in Chap. 2, Sect. 3.

The Japanese Theorem directly leads to the following capacity formulation for
the MSCCRND problem with dynamic routing.

Minimize
∑

{i,j}∈E

cij uij (11.100)

Subject to

∑

{i,j}∈E
μijuij ≥ max

d∈U

∑

k∈K
dk · distμ(O(k),D(k)) ∀ μ ∈ M (11.101)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.102)

The inequalities (11.101) are called metric inequalities and while there is an infinite
number of metrics μ ∈ M , it is sufficient to include metric inequalities only for
the (finitely many) extreme rays of the metric cone M . The result is a finite integer
linear program, but to make it practically viable, we need a separation algorithm.
The only known separation algorithm for the metric inequalities so far is to write
the separation problem as a bi-level (continuous) linear program and to then apply
a standard transformation to turn it into a single-level quadratic program with
complementary slackness conditions. This program can then be linearized; however,
the linearization requires additional integer variables and big-M constraints.

For static routing and budget uncertainty set UB(d̄, d̂, Γ ), a straight-forward
generalization of the metric inequalities is not sufficient. In Claßen et al. (2015)
the correct right hand side of (11.101) for this case is derived alongside with a
polynomial time separation algorithm.

5.7 Strengthening the Formulations

The correctness of all the above formulations does not imply that the linear
relaxation is close to an optimal integer solution. To improve the performance
of branch-and-bound based solvers, the formulations can be strengthened with
(facet-defining) valid inequalities. For this, the metric inequalities (11.101) are
of particular interest. These inequalities are valid for the earlier formulations and
connect capacities of different edges. Let us define the cut-metric
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μij :=
{
1, if i ∈ S and j ∈ S̄

0, otherwise
(11.103)

for some cut-set S ⊆ V , i.e., the edges between S and S̄ have length 1 whereas
all other edges have length 0. Clearly, the cut-metric is a metric, and hence the robust
cut-set inequality

∑

{i,j}∈(S ,S̄ )

uij ≥
⎡

⎢
⎢
⎢
max
d∈U

⎛

⎝
∑

k∈K :O(k)∈S ,D(k)∈S̄

dk +
∑

k∈K :O(k)∈S̄ ,D(k)∈S

dk

⎞

⎠

⎤

⎥
⎥
⎥

(11.104)

is a valid inequality (since the left hand side is integer-valued, the right hand side can
be rounded up to the next integer). For budget uncertainty, the right hand side can be
computed by selecting the Γ largest deviations among those commodities crossing
the cut (in addition to the nominal values). In fact, in this case the robust cut-set
inequality (11.104) define a facet if both S and S̄ induce connected subgraphs and
actual rounding is performed.

Further valid inequalities can be derived by considering k-partitions of the
node set (cf. Sect. 4.4) or considering a single edge capacity constraint (11.47)
(generalizing the so-called arc-residual capacity constraints, cf. Kutschka (2013)).

6 Bibliographical Notes

Robust optimization is an emerging field of research. Probably the earliest work in
the field was reported by Soyster (1973). In the context of discrete optimization,
several contribution were made by Kouvelis and Yu (1997). The budget uncertainty
set was introduced by Bertsimas and Sim (2003, 2004) and is probably the most
successful approach to date. A generalization of the budget uncertainty model
to be used in the context of network design has been introduced by Büsing
and D’Andreagiovanni (2012). We refer to Ben-Tal et al. (2009) for a robust
optimization in continuous optimization. Multi-stage robustness was proposed
by Ben-Tal et al. (2004). See Liebchen et al. (2009) for an introduction to
recoverable robustness.

The first works for the single-commodity case of robust network design discuss
the case where the uncertainty set is a finite list of scenarios. This case was first
studied by Minoux (1989) and by Sanità (2009). Buchheim et al. (2011) propose the
arc-flow-based formulation. Target cuts are due to Buchheim et al. (2008). Álvarez-
Miranda et al. (2012) introduce the cut-set-based formulation with a separation
algorithm for discrete scenario sets. The separation for cut-set inequalities under
Hose uncertainty is due to Cacchiani et al. (2016). The 3-partition inequalities and
their facet-defining properties were studied by Magnanti et al. (1993), Agarwal
(2006), Cacchiani et al. (2016), and Schmidt (2014). Pesenti et al. (2004) study
the network containment problem.
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In the context of multicommodity network design, robust optimization was
merely applied to communication networks. Belotti et al. (2008) consider network
engineering. Altin et al. (2011) study network design with under the Hose uncer-
tainty model and we refer to Koster et al. (2013) for network design under budget
uncertainty.

The arc-flow based formulation for the MSCCRND problem with static routing
and budget uncertainty is due to Koster et al. (2013); this includes the reformulation
as a linear program and the separation algorithm. Altin et al. (2007) robustify the
arc-flow formulation with Hose uncertainties. The path-flow formulation together
with the solution algorithm was proposed by Ben-Ameur and Kerivin (2005).

The separation of robust metric inequalities for dynamic routing is due to Mattia
(2013). Claßen et al. (2015) derive robust metric inequalities for static routing; the
derivation of robust cutset inequalities as Chvátal-Gomory cuts is due to Koster et al.
(2013).

The polynomial time algorithm for optimum tree routing templates for the VPN
problem with unsplittable flows was given by Gupta et al. (2001). Goyal et al. (2008)
prove that the VPN problem with unsplittable flows always has an optimum tree
routing template.

For multi-stage robustness and affine recourse models in network design we refer
to Atamtürk and Zhang (2007), Ben-Ameur (2007), and Poss and Raack (2013).

Instances of robust network design can be found at SNDlib Orlowski et al.
(2010).

7 Conclusions and Perspectives

In recent years, network design has been on the one hand a fruitful application area
for the emerging field of robust optimization. But, on the other hand, the robust
network design has also been stimulating the further development of the robust
optimization methodology. It can be expected that both these developments will
continue in the years to come. In particular, multi-stage robustness concepts are still
in their development and different applications will require new angles of view to
arrive at suitable solutions. The increasing complexity by robustness concepts in
general, and multi-stage concepts in particular, will force the development of new
algorithmic ideas to deal with them.
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