
Teodor Gabriel Crainic
Michel Gendreau
Bernard Gendron   Editors

Network Design 
with Applications 
to Transportation 
and Logistics



Network Design with Applications to
Transportation and Logistics



Teodor Gabriel Crainic • Michel Gendreau
Bernard Gendron
Editors

Network Design with
Applications to
Transportation and Logistics



Editors
Teodor Gabriel Crainic
CIRRELT and AOTI
Université du Québec à Montréal
Montréal, QC, Canada

Michel Gendreau
CIRRELT and MAGI
Polytechnique Montréal
Montréal, QC, Canada

Bernard Gendron
CIRRELT and Département d’informatique
et de recherche opérationnelle
Université de Montréal
Montréal, QC, Canada

ISBN 978-3-030-64017-0 ISBN 978-3-030-64018-7 (eBook)
https://doi.org/10.1007/978-3-030-64018-7

© The Editor(s) (if applicable) and The Author(s) 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-64018-7


À nos épouses Diane, Johanne et Wissal et à
nos enfants Lucie, Manon, Catherine,
Laurent et Gabrielle.



Contents

1 A Book About Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Teodor Gabriel Crainic, Michel Gendreau, and Bernard Gendron

Part I Basic Design Problems

2 Fixed-Charge Network Design Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Teodor Gabriel Crainic, Michel Gendreau, and Bernard Gendron

3 Exact Methods for Fixed-Charge Network Design . . . . . . . . . . . . . . . . . . . . . 29
Teodor Gabriel Crainic and Bernard Gendron

4 Heuristics and Metaheuristics for Fixed-Charge Network Design . . . . 89
Teodor Gabriel Crainic and Michel Gendreau

Part II Advanced Problems and Models

5 Multicommodity Multifacility Network Design . . . . . . . . . . . . . . . . . . . . . . . . . 139
Alper Atamtürk and Oktay Günlük

6 Piecewise Linear Cost Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Antonio Frangioni and Bernard Gendron

7 Topology-Constrained Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Bernard Fortz

8 Network Design with Routing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Anantaram Balakrishnan, Thomas L. Magnanti,
Prakash Mirchandani, and Richard T. Wong

9 Bilevel Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Martine Labbé and Patrice Marcotte

10 Stochastic Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Mike Hewitt, Walter Rei, and Stein W. Wallace

vii



viii Contents

11 Robust Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Arie M. C. A. Koster and Daniel R. Schmidt

Part III Applications in Transportation and Logistics

12 Service Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Teodor Gabriel Crainic and Mike Hewitt

13 Freight Railroad Service Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Mervat Chouman and Teodor Gabriel Crainic

14 Motor Carrier Service Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Ilke Bakir, Alan Erera, and Martin Savelsbergh

15 Liner Shipping Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Marielle Christiansen, Erik Hellsten, David Pisinger,
David Sacramento, and Charlotte Vilhelmsen

16 City Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Teodor Gabriel Crainic, Guido Perboli, and Nicoletta Ricciardi

17 Public Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Antonio Mauttone, Héctor Cancela, and María E. Urquhart

18 Hub Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
Ivan Contreras

19 Logistics Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Jean-François Cordeau, Walid Klibi, and Stefan Nickel

20 Collaboration in Transport and Logistics Networks . . . . . . . . . . . . . . . . . . . 619
Behzad Hezarkhani, Marco Slikker, and Tom Van Woensel

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655



Chapter 1
A Book About Network Design

Teodor Gabriel Crainic, Michel Gendreau, and Bernard Gendron

1 Introduction

Network design problems arise whenever optimal choices have to be made that
can be represented conceptually as the selection of a subset of links in a graph.
Typically, these optimal choices are the result of complex tradeoffs between various
types of costs and constraints. In particular, most network design problems involve
fixed costs associated with link selection and variable costs associated with flows
(of people, goods, information,. . . ). Because of their combinatorial nature and the
complexity of their objective functions and constraints, network design problems
are inherently difficult (most of them are N P-hard). For this reason, models and
algorithms for network design problems involve approaches from several areas of
combinatorial optimization and mathematical programming.

In this book, we study network design problems, as well as models and algo-
rithms to solve them, through techniques derived from network optimization, linear
programming (LP), mixed-integer linear programming (MILP), metaheuristics, and
large-scale optimization. The book is intended to be useful not only to researchers

T. G. Crainic (�)
CIRRELT and AOTI, Université du Québec à Montréal, Montréal, QC, Canada
e-mail: TeodorGabriel.Crainic@cirrelt.net

M. Gendreau
CIRRELT and MAGI, Polytechnique Montréal, Montréal, QC, Canada
e-mail: Michel.Gendreau@cirrelt.net

B. Gendron
CIRRELT and Département d’informatique et de recherche opérationnelle,
Université de Montréal, Montréal, QC, Canada
e-mail: Bernard.Gendron@cirrelt.net

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_1&domain=pdf
mailto:TeodorGabriel.Crainic@cirrelt.net
mailto:Michel.Gendreau@cirrelt.net
mailto:Bernard.Gendron@cirrelt.net
https://doi.org/10.1007/978-3-030-64018-7_1


2 T. G. Crainic et al.

specialized in these areas, but first and foremost, to graduate students in operations
research, management science, analytics, and related fields. A special effort was
made by all authors involved in the different chapters to make the exposition
didactic. In particular, to facilitate reading, the main body of each chapter contains
very few citations. Instead, a section on bibliographical notes is included at the end
of each chapter, helping the reader to summarize the content of the chapter, to get
an appreciation of the historical development of the particular topic addressed in the
chapter, and to look for additional references. We assume that the reader is familiar
with the basics of LP and MILP, including an exposition to linear network flow
problems. More advanced topics, such as mathematical decomposition (including
Lagrangian duality and Benders decomposition) and metaheuristics, are reviewed
in Chaps. 3 and 4, although they are only covered in enough details to make the
exposition self-contained. The reader who is less familiar with these topics would
benefit from reading the articles and books that are referenced in these chapters.

Network design problems are prominent in transportation and logistics, but
also in other areas, such as telecommunication and manufacturing. This book is
about applications in transportation and logistics, although many problems, models
and algorithms can be adapted to other areas. In fact, the first ten chapters of
the book are dedicated to the network design methodology, common to most
problem settings and applications, and many application-oriented chapters contain
material that is highly relevant to other areas than transportation and logistics. Even
though we purposely restricted ourselves to transportation and logistics, covering
all applications of network design in that area is impossible and we had to make
some difficult choices. In particular, the broad areas of facility location and supply
chain management yield optimization problems that can be cast as the selection of a
subset of nodes in a graph. By duplicating nodes and by introducing links between
each node and its “copy,” such problems can be seen as involving the selection of
a subset of links, hence as network design problems. As such, they are covered in
some chapters of the book, but not to the same extent as they are in books dedicated
to facility location and supply chain management.

In Sect. 2, we summarize the contents of the book, including a short description
of each chapter. Section 3 contains bibliographical notes on books related to the
prerequisites mentioned above. We comment on the origins of the book and the
research perspectives that we hope it will stimulate in Sect. 4. We conclude this
introductory chapter with a few words of thanks.

2 Contents of the Book

The book is divided into three parts. Part I, entitled Basic Problems and Models,
includes Chaps. 2 to 4 and focuses on models and algorithms for fixed-charge
network design problems. Such problems display the typical objective function
that involves fixed design costs and variable flow costs, which is common to most
network design problems. Problems studied in Part I are otherwise assumed to be



1 A Book About Network Design 3

deterministic and their structure to be relatively “simple,” typically including only
flow conservation and capacity constraints. Part II, entitled Advanced Problems and
Models, contains Chaps. 5 to 11. It is dedicated to network design problems and
models that involve more complex objective functions and constraints. For instance,
Part II studies problems that include non-linear objective functions, topological
constraints, and uncertain data. Part III, entitled Applications in Transportation
and Logistics, addresses network design problems encountered in the areas of
transportation and logistics. Both people and freight transportation are considered,
by all modes. Chapters 12 to 20 make up this part of the book. We now review in
more details the content of each chapter in the three parts of the book.

2.1 Part I: Basic Problems and Models

Chapter 2, Fixed-Charge Network Design Problems, by Crainic, Gendreau, and
Gendron, introduces problems and models that involve design decisions captured
with arc-based binary variables. In particular, this chapter deals with problems
and models that involve fixed design costs in the objective function. Problems
and models are distinguished according to several characteristics, in particular:
whether the demand can be represented as a single commodity or as multiple
commodities; whether or not there are arc capacities; and whether or not there are
variable transportation costs in the objective function, in addition to the fixed design
costs. These characteristics yield different variants of network design problems and
models, with various degrees of complexity. A few basic modeling approaches are
studied, including the use of path flow variables instead of arc flow variables and
the derivation of cut-set-based inequalities.

Chapter 3, Exact Methods for Fixed-Charge Network Design, by Crainic and
Gendron, focuses on exact algorithms for single-commodity and multicommodity
fixed-charge network design. These problems are notoriously difficult, since they are
in general strongly N P-hard. Multicommodity capacitated fixed-charge problems
are particularly challenging, since even their LP relaxations are difficult to solve, and
the formulations display a large number of variables and constraints. In this context,
decomposition methods that exploit subproblem structures are particularly useful.
This chapter is divided into three parts. Part I presents relaxations that can improve
the quality of the lower bounds, while exploiting the subproblem structures. Part II
focuses on enumeration algorithms that use the modeling techniques covered in Part
I. Part III is dedicated to the solution of large-scale instances by heuristic methods
and parallel algorithms that exploit the techniques presented in the first two parts.

Chapter 4, Heuristics and Metaheuristics for Fixed-Charge Network Design,
by Crainic and Gendreau, considers the heuristics and metaheuristics that are
widely used to tackle difficult network design problems. The chapter begins with a
presentation of fundamental concepts for the development of heuristic approaches,
such as search spaces, neighborhoods, and populations of solutions. The main
heuristic and metaheuristic solution methods are then introduced: constructive



4 T. G. Crainic et al.

and local search heuristics, neighborhood-based metaheuristics, population-based
methods, matheuristics, parallel meta- and matheuristics. The chapter focuses on
the application of these methods to fixed-charge transportation and multicommodity
capacitated fixed-charge network design problems. It also provides a historical
perspective on the development of the field since the 1960’s, as well as a number
of challenging research avenues for meta- and matheuristics for network design
problems.

2.2 Part II: Advanced Problems and Models

Chapter 5, Multicommodity Multifacility Network Design, by Atamtürk and Günlük,
studies multicommodity network design models where capacity can be added to
the arcs using multiples of facilities that might have different capacities. This class
of models appears frequently in supply chain design, service network design, and
telecommunication network capacity expansion problems. Valid inequalities used as
cutting planes in enumeration algorithms have been instrumental in solving large-
scale instances. This chapter reviews advances in polyhedral theory for this class
of models by emphasizing three fundamental techniques: metric inequalities for
projecting out continuous flow variables; mixed-integer rounding from appropriate
base relaxations; and shrinking the network to a small k-node graph. The basic
inequalities derived from arc-set, cut-set, and partition relaxations are also useful
for solving robust and survivable network design models.

Chapter 6, Piecewise Linear Cost Network Design, by Frangioni and Gendron,
considers one of the most important extensions to “basic” network design models
required to accurately model real-world applications: the fact that the capacity on
the arcs does not come in an “all-or-nothing” fashion, but with a more complex
cost. Every reasonable cost-of-capacity function can be approximated as a piecewise
linear one, where the extent of the approximation can be tightly controlled at the cost
of the number of breakpoints. This chapter focuses on such models, considering
both a general case and some more restricted ones that serve to illustrate the main
concepts. It is shown that the best models in terms of tightness of the LP relaxation
bound suffer from a significant increase in the number of variables. Techniques
that efficiently solve very large formulations are presented, showing that they are
instrumental for the practical solution of piecewise linear cost network design
problems.

Chapter 7, Topology-Constrained Network Design, by Fortz, studies models and
techniques for long-term planning of networks for which demands are not known
in advance. In this case, the objective is to build a network at minimum cost,
considering only the fixed cost associated with opening a link. Capacity and routing
costs are ignored. Nevertheless, the network is subject to topological constraints to
ensure its connectivity and survivability. This chapter covers the design of connected
networks (in particular, the minimum spanning tree problem), followed by the
design of networks requiring a higher level of survivability in terms of the number of



1 A Book About Network Design 5

available node-disjoint paths, to allow re-routing in case of failures. To avoid delays
in the networks, models where the length of paths is bounded are also studied, by
introducing hop constraints or covering of the links by cycles of bounded lengths.

Chapter 8, Network Design with Routing Requirements, by Balakrishnan, Mag-
nanti, Mirchandani, and Wong, addresses network design problems in which
constraints on flow routing decisions are imposed to ensure good end-to-end service
performance. The chapter discusses modeling and methodological issues for effec-
tively solving fixed-charge network design problems with routing requirements.
This problem is N P-hard; the added routing restrictions increase computational
difficulty even to find feasible solutions. The chapter first discusses recent results
and a composite algorithm that combines problem reduction, valid inequalities, and
heuristics with branch-and-bound to effectively solve problem instances with vary-
ing characteristics. Theoretical developments, modeling strategies, and algorithms
for two well-studied special cases of the problem are presented next. This part
focuses on constrained shortest path and hop-constrained network design models,
presenting approximation algorithms, polyhedral results, extended model formu-
lations, and specialized algorithms. The chapter concludes with decomposition
solution methods, and a number of key observations and insights into addressing
the routing-constrained network design problem.

Chapter 9, Bilevel Network Design, by Labbé and Marcotte, is dedicated to
network design problems involving conflicting agents, referred to as the designer
and the users, respectively. This paradigm is especially relevant when the designer
of a network does not have a direct control of user flows, who are assigned according
to their own logic. Such problems are best cast into the framework of bilevel
programming, where the designer anticipates the reaction of rational users to its
course of action, which fits many situations of interest. This chapter considers four
applications of very different nature: the continuous network design problem; a
competitive location-queuing model; the network pricing problem; and the bilevel
network interdiction problem. Algorithmic issues are particularly emphasized.

Chapter 10, Stochastic Network Design, by Hewitt, Rei, and Wallace, study
problems that explicitly account for various sources and levels of uncertainty. The
chapter focuses on stochastic network design, addressing both the main modeling
paradigms and the solution methods that can be applied. The paradigms are first
illustrated on the stochastic fixed-charge capacitated multicommodity network
design problem. This is followed up with a presentation of how scenario generation
is applied to approximate the random distributions used to model the stochastic
parameters in network design models. The general solution approaches, both exact
and heuristic, that can be applied to solve stochastic network design models are then
described, emphasizing how decomposition strategies may be used to produce more
efficient solution processes for the considered models. The chapter concludes with
perspectives regarding the future research in the field.

Chapter 11, Robust Network Design, by Koster and Schmidt, examines the
robust network design problem, which is a network design problem under demand
uncertainty, but in the framework of robust optimization. It is important to highlight
that in this framework, the uncertainty of input parameters is approached by finding



6 T. G. Crainic et al.

a solution that is feasible for all considered input vectors. This is particularly
important when the design process involves long-term or strategic decisions, since
the quality of demand forecasts determines the feasibility of the network design for
its future purpose. After a brief introduction to robust optimization, its application
to single- and multicommodity network design is presented. At appropriate times,
extensions of the basic idea of robust optimization are also introduced.

2.3 Part III: Applications in Transportation and Logistics

Chapter 12, Service Network Design, by Crainic and Hewitt, opens the third part
of the book, which focuses on network design as core methodology to address
planning and assist decision making in various application areas. The chapter
addresses service network design, the term designating issues, decisions, and
network-design models targeted to planning the activities and resources of the
supply side of a transportation or logistics system, with the general goal of satisfying
demand efficiently, profitably, and within the quality standards agreed upon with the
customers generating this demand. Service network design is particularly relevant in
the context of consolidation-based transportation, an umbrella term for companies
and systems which group and transport within the same vehicle several freight
loads of different customers, aiming for a profitable balance between economy-
of-scale-based costs and high service quality for customers. This chapter presents
a comprehensive overview of the general service network design methodology,
which is to be found in many application fields, many of which are addressed in
the following chapters, including railroads, less-than-truckload motor carriers, land
and water-based intermodal transport, and city logistics. The chapter starts with
an overview of consolidation-based freight carriers and planning issues, situating
service network design in this context. The static version of the problem is described
next, followed by the time-dependent service network design problems where the
schedules of the selected services are part of the design. The challenging issue
of representing the management of resources into tactical planning is considered
next, followed by how uncertainty may be addressed. The chapter concludes with
bibliographical notes, which also address algorithmic issues, and with a research
agenda for service network design.

Chapter 13, Freight Railroad Service Network Design, by Chouman and Crainic,
examines the relation between railroad planning for freight transportation and
network design. Rail transportation provides economically-priced, environmentally-
friendly, and timely freight transportation services at all levels. To achieve this
performance, railroads operate mostly according to a double consolidation policy,
as cars are grouped into blocks, which are grouped into trains, and set up tactical
operations plans specifying the train services and schedules to operate, the blocks to
build at each terminal, the routing of blocks and cars, and the resource assignment
to support these operations. Tactical planning is thus a very complex problem.
Operations research provides the service network design methodology to build the



1 A Book About Network Design 7

railroad tactical plan making the most efficient use of the railroad’s resources to
achieve its performance objectives. The chapter focuses on service network design
models for railroad tactical planning, targeting both particular activities, such as car
blocking and train makeup, and integrated network-wide planning processes. Static
and time-dependent problem contexts and models are presented. Particular attention
is devoted to models and methods for integrated planning.

Chapter 14, Motor Carrier Service Network Design, by Bakir, Erera, and
Savelsberg, discusses the service network design models and solution method-
ologies specifically focused on problems that arise in the planning of operations
in the trucking, or motor freight, industry. Consolidation carriers such as less-
than-truckload and package trucking companies face flow planning problems to
decide how to route freight between transfer terminals, and load planning problems
to decide how to consolidate shipments into trailer-loads and container-loads for
dispatch. Integer programming models are introduced for these network design
decision problems as well as exact and heuristic solution methods.

Chapter 15, Liner Shipping Network Design, by Christiansen, Hellsten, Pisinger,
Sacramento, and Vilhelmsen, studies issues related to the construction of service
networks for long-haul liner-shipping navigation. Liner shipping is the service
of transporting large volumes of cargo using ocean-going vessels, sailing regular
routes on fixed schedules. Designing a good network is a complex task, in which
many aspects have to be taken into account. The chapter gives a brief introduction
to containerised liner shipping, RoRo liner shipping, and network design, and
introduces the LINER-LIB test instances for network design in containerised liner
shipping. The most common network design models for containerised liner shipping
are presented, including, integrated Mixed Integer Programming models, and two-
stage algorithms where the service generation and the flowing of containers are
separated into two steps. The chapter concludes with a discussion of future trends
in liner shipping, indicating directions for future research.

Chapter 16, City Logistics, by Crainic, Perboli, and Ricciardi, examines City
Logistics systems, which aim to reduce the nuisances associated with freight trans-
portation within urban areas, while sustaining the social and economic development
of the organizations and cities involved. City Logistics displays several core charac-
teristics, e.g., cooperation among stakeholders, consolidation of cargo of different
stakeholders within the same vehicles, synchronization of operations, resource shar-
ing, multi and intermodal operations, which makes for complex planning problems.
Network design is one the main methodologies used to address these issues. The
particular settings and characteristics of City Logistics systems bring modeling
challenges and lead to new formulations that account for several layers of facilities
and operations, time-dependency of demand and activities, synchronization of fleets
at terminals, integration of private and public transportation and logistic means, and
that combine network design and vehicle routing. This chapter aims to capture these
characteristics, present the network design methodology currently available, and
identify promising research avenues for City Logistics and network design.

Chapter 17, Public Transportation, by Mauttone, Cancela, and Urquhart, focuses
on network design methodologies applied to problems arising at the strategic



8 T. G. Crainic et al.

and tactical planning of public transportation systems, including both urban and
intercity services. The main problems discussed are the design of bus, rail and
metro networks, which involve making decisions over links or groups of links from
a given underlying network. In general terms, the resulting network should take into
account the interests of different stakeholders, namely, the ones who perceive the
cost of traveling across the network and those who perceive the cost of building
the infrastructure and operating the services over it. The chapter presents several
mathematical formulations, including aspects like passenger behavior, multiple
objectives and multiple levels of decisions, as well as an overview of solution
approaches covering both exact and heuristic methods and considering several
sub-problems like route generation, route selection, and route set generation and
improvement.

Chapter 18, Hub Network Design, by Contreras, examines a network design
problem lying at the heart of network design planning in transportation and
telecommunications systems. Hub-based networks provide connections between
many origins and destinations via hub facilities that serve as transshipment,
consolidation, or sorting points for commodities. Hub facilities help to reduce
the number of required arcs to connect all nodes and enable economies of scale
due to the consolidation of flows on relatively few arcs. Hub network design
can be seen as a class of multicommodity network design problems in which
node selection decisions are taken into account. This chapter overviews the key
features of hub networks, the types of decisions that are usually considered when
designing them, and how these decisions interact between them. It also describes
commonly considered assumptions and properties and highlights how these impact
the formulation and solution of various classes of hub network design problems.

Chapter 19, Logistics Network Design, by Cordeau, Klibi, and Nickel treats one
of the most important areas of application for multi-commodity network design
models, namely the design of logistics networks (or supply chains). Logistics
networks connect suppliers, manufacturing plants, warehouses, distribution centers
and customers to coordinate the acquisition of raw materials and components, their
transformation into finished products, the movements of materials and components,
and the delivery of the products to customers. The realism of logistics network
design models has greatly improved over the last 40 years, and efficient solution
methods have been developed to solve these models. There is now a vast literature on
the topic with a very large number of models addressing the many problem variants
encountered in practice. This chapter provides a general modeling framework that
can be used to express many of these variants and gives a brief overview of the
main solution methodologies. It also discusses two important and recent trends:
the treatment of risk and uncertainty in the design of logistics networks and the
incorporation of environmental, sustainability and reverse logistics aspects.

Chapter 20, Collaboration in Transport and Logistics Networks, by Hezarkhani,
Slikker, and van Woensel, looks into issues that are becoming increasingly promi-
nent in freight transportation and logistics, namely, stakeholder collaboration, to
achieve economies of scale, as well as better resource utilization and decreased
negative social impacts. The success of new network design concepts building on



1 A Book About Network Design 9

the domains of the Physical Internet, City Logistics, synchromodal networks, etc. is
thus depending for to a large part upon the ability of stakeholders to successfully
collaborate and agree on cost, benefit, risk, and resource sharing mechanisms.
Yet, designing a fair cost-and-benefit sharing scheme is a major impediment for
collaboration. The purpose of this chapter is to provide an overview of approaches
in dealing with cost sharing problems in collaborative logistics and network
design. The chapter discusses cost-sharing problems in some basic and stylized
network design models as well as in the context of more operational problems in
collaborative transport and logistics. Two alternative approaches to addressing cost-
sharing problems are identified. The first defines a cooperative game associated
with the situation and uses cooperative game theory to come up with allocations
and/or cost shares. The second approach deals directly with the situation at hand and
obtains cost shares using the information contained in the problem setting. In this
approach, the solution often relies on the structure of the underlying optimization
problem. The specific features of cooperative situations provide grounds for refining
well-known solutions in cooperative game theory or develop new ones that are
appropriate for special situations.

3 Bibliographical Notes

As mentioned in the Introduction, we assume the reader is familiar with the areas of
LP, MILP and network optimization. Many excellent books on these topics can be
recommended, among which we cite: Chvátal (1983); Schrijver (1986); Nemhauser
and Wolsey (1988); Ahuja et al. (1993); Wolsey (1998); Conforti et al. (2014).
The book does not cover in detail the related research on facility location and
supply chain management, on which there are several books, including: Laporte
et al. (2015); Shapiro (2007); Goetschalckx (2011). For references on the history of
network design research, we refer the reader to the bibliographical notes at the end
of Chap. 2.

4 Conclusions and Perspectives

We started the adventure of writing this book more than 10 years ago. Our initial
intent was to publish “the definitive” work on network design in transportation and
logistics. Soon, we realized that writing the book alone, without the help of our
colleagues and friends, would be sheer utopia. In particular, covering all aspects
of the topic is an immense task. Some 5 years ago, we asked the best experts on
the different subjects to join our efforts to finally be able to produce the book.
We warmly thank our colleagues who wrote the different chapters, as well as the
reviewers who helped us to improve the final product.



10 T. G. Crainic et al.

Since the early days of our own research on network design in the 80’s and 90’s,
a lot has been achieved in solving these problems and in expanding the applications.
The evolution of the field of combinatorial optimization during the last 30 years
is no stranger to this fact. The area of metaheuristics was still in its infancy in
1990. Significant progresses were achieved in the 1990’s when different paradigms
were explored on many problems, most prominently derived from applications
in transportation and logistics. Network design was one important class of such
problems on which metaheuristics proved their utility and we modestly contributed
to that evolution, soon realizing that hybrid metaheuristics that exploit mathematical
programming were needed. In parallel with that evolution, in the early 2000’s, MILP
research has integrated the principles of metaheuristics, expanding the capabilities
of state-of-the-art solvers. This major change immediately followed the fruitful
line of research on polyhedral theory that led to the development of general-
purpose cutting-plane methods that changed the face of industrial MILP solvers.
Network design problems were instrumental in achieving these progresses, as their
basic fixed-charge flow structure appears in so many formulations. On the side of
exact methods, decomposition algorithms, initially proposed in the early 60’s, were
rediscovered in the last 40 years and led to significant advances in many areas,
including transportation and logistics. Again, network design was at the heart of
this evolution.

Significant progress has thus been made in the quest for solving large-scale
network design problems. Simultaneously, one could observe a significant broad-
ening of the scope of network design applications, and a continuous emulation
between problem definition and modeling, on the one hand, and problem-solving
methodology, on the other hand. It is this emulation and cross-fertilization that made
the field grow and will continue to steadily and strongly do so. A lot remains to be
done.

Each chapter of this book discusses perspectives for future avenues of research.
It it not our intent here to summarize these specific conclusions, but rather to
identify what we think will be general directions of research on network design
in the coming years. On the problem-definition side, the contemplated problems
will continue growing in complexity, explicitly accounting for, e.g., several layers
of decisions, synchronization of decisions and decision makers, and uncertainty, to
name but a few. With respect to solution methods, we believe, first, that the trend
of research on matheuristics, the hybrid algorithms that combine metaheuristics
and mathematical programming is far from over, and will be important in mak-
ing significant progress in solving large-scale network design problems. Second,
decomposition methods will expand their applicability, with the help of industrial
MILP solvers, which gradually integrate these approaches. Instead of seeing MILP
solvers as “competitors,” researchers will look at them as allies. As a result, more
sophisticated decomposition schemes will be developed, exploiting the inherent
structure of network design models to solve realistically-sized instances. Third, the
area of parallel combinatorial optimization, to which we modestly contributed, will
expand in the years to come. The goal will be to develop algorithmic paradigms that
exploit the current knowledge, but escape from the sequential way of thinking that



1 A Book About Network Design 11

is too often implicitly assumed, in particular in mathematical programming. We are
confident that these general perspectives, as well as those more specific identified in
the different chapters of the book, will lead to fruitful research agendas that will help
us to solve large-scale network design problems and to expand their applicability in
many areas of transportation and logistics.

Acknowledgments First and foremost, we wish to address our warmest thanks to the authors of
the different chapters who accepted so graciously our invitation to contribute to the book. Without
their generous involvement, the book would not show such a rich variety of topics, allowing us
to cover most of the models, methods and applications of network design in transportation and
logistics. We also want to thank the reviewers, who dedicated time and effort to help the authors
and ourselves to improve the final product.

We owe so much to our collaborators and students who worked with us over the years on
developing models and methods for network design problems. Our research efforts also benefited
from the environment offered by the CIRRELT, its staff and its professionals. We thank these
individuals, as well as the FRQNT (Québec) and our universities, UQÀM, Polytechnique Montréal
and Université de Montréal, for their financial contributions and the infrastructures and resources
they offer through the CIRRELT. We also gratefully acknowledge the support of the Government
of Canada, through its NSERC programs, of the Government of Québec, through its FRQNT
programs, and of our partners in public and private institutions. The three funding sources have
generously contributed to our research developments.

Teodor Gabriel Crainic holds the Chair on Intelligent Logistics and Transportation Systems
Planning of the Université du Québec à Montréal. The financial contributions of ClearDestination
and NSERC (Canada) that support the Chair are gratefully acknowledged. He is Adjunct Professor
at the Département d’informatique et de recherche opérationnelle (DIRO), Université de Montréal,
and Co-Director, Intelligent Transportation Systems Laboratory, Interuniversity Research Centre
on Enterprise Networks, Logistics and Transportation (CIRRELT), Canada.

Michel Gendreau is Professor of Operations Research in the Department of Mathematics
and Industrial Engineering of Polytechnique Montréal. The support of the department and
Polytechnique to his research activities is gratefully acknowledged.

Bernard Gendron holds the Purolator Research Chair on Data Intelligence for Logistics at
the Département d’informatique et de recherche opérationnelle (DIRO), Université de Montréal.
The financial contributions of Purolator, NSERC (Canada) and Prompt (Québec) that support the
Chair are gratefully acknowledged. He also holds the Research Chair on the Transformation of
Transport at DIRO, financially supported by the MEI (Québec), whose support is also gratefully
acknowledged.

References

Ahuja, R., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms, and
applications. Upper Saddle River: Prentice Hall.

Chvátal, V. (1983). Linear programming. New York: W.H. Freeman.
Conforti, M., Cornuéjols, G., & Zambelli, G. (2014). Integer programming. Berlin: Springer.
Goetschalckx, M. (2011). Supply chain engineering. Berlin: Springer.
Laporte, G., Nickel, S., & Saldanha da Gama, F. (Eds.) (2015). Location science. Berlin: Springer.
Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. Hoboken:

John Wiley and Sons.
Schrijver, A. (1986). Theory of linear and integer programming. Hoboken: John Wiley and Sons.
Shapiro, J. F. (2007). Modeling the supply chain. Pacific Grove: Thomson Brooks/Cole.
Wolsey, L. A. (1998). Integer programming. Hoboken: John Wiley and Sons.



Part I
Basic Design Problems



Chapter 2
Fixed-Charge Network Design Problems

Teodor Gabriel Crainic, Michel Gendreau, and Bernard Gendron

1 Introduction

This chapter sets the stage for the remaining chapters of the book. The main goal of
in this chapter is to introduce problems and models that involve design decisions
captured with arc-based binary variables. These variables represent building an
infrastructure (e.g., roadways or railbeds) or establishing a transportation service
(such as a bus or railway line, along with its schedule). Associated with these
decisions are fixed costs that appear in the objective function or in constraints,
typically then to represent budget limitations. While this chapter focuses on
problems and models for fixed-charge network design, the next two chapters deal
with exact and heuristic algorithms for solving such problems.

A fundamental distinction in network design problems is whether the demand can
be represented as one commodity (possibly with multiple origins and multiple des-
tinations) or as multiple commodities that need to be differentiated. The underlying
problems that represent the transportation decisions, once the design decisions are
taken, are significantly different in terms of their complexity and size, even though

T. G. Crainic
CIRRELT and AOTI, Université du Québec à Montréal, Montréal, QC, Canada
e-mail: TeodorGabriel.Crainic@cirrelt.net

M. Gendreau
CIRRELT and MAGI, Polytechnique Montréal, Montréal, QC, Canada
e-mail: Michel.Gendreau@cirrelt.net

B. Gendron (�)
CIRRELT and Département d’informatique et de recherche opérationnelle,
Université de Montréal, Montréal, QC, Canada
e-mail: Bernard.Gendron@cirrelt.net

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_2&domain=pdf
mailto:TeodorGabriel.Crainic@cirrelt.net
mailto:Michel.Gendreau@cirrelt.net
mailto:Bernard.Gendron@cirrelt.net
https://doi.org/10.1007/978-3-030-64018-7_2


16 T. G. Crainic et al.

both can be cast as network flow problems. This chapter follows this fundamental
distinction, with Sect. 2 dedicated to single-commodity formulations and Sect. 3 to
multicommodity formulations.

Another important characteristic of network design problems is whether or not
there are capacities. Indeed, the presence of capacities greatly complicates the task
of finding feasible solutions. This is true especially in the multicommodity case,
when capacities bind commodities together. We also consider the cost structure as
another significant feature of network design problems, since the presence of fixed
design costs and variable transportation costs in the objective function introduces
complex trade-offs that further complicate the identification of optimal solutions.

In addition to the problems’ features, we identify in this chapter a few basic
modeling approaches for network design. First, while the transportation decisions
are typically represented with arc flow variables, it is also possible to use path
flow variables, which introduces models with an exponential number of variables
that can be handled with column generation algorithms (see Chap. 3). Such path-
based formulations can be of interest for computational reasons, but also for
modeling purposes, since they permit representing path-dependent costs that are not
additive by arc. Second, when transportation costs are ignored, flow variables can
be projected out. In the single-commodity case, we can then exploit the max-flow-
min-cut theorem to derive inequalities that are easy to generate within cutting-plane
algorithms. Although these inequalities do not suffice in the multicommodity case,
they are still useful, as will be seen in Chap. 3.

2 Single-Commodity Formulations

Let G = (N ,A ) be a directed graph, where N is the set of nodes and A ⊆
N ×N is the set of potential arcs (in some situations, parallel arcs might be allowed
and might even simplify the models, see, e.g., Chap. 6). A limited flow capacity
uij > 0 is associated with each arc (i, j) ∈ A . The network design problem consists
of selecting a subset of arcs from A to satisfy a given demand at minimum total cost.

The demand to satisfy is defined at the nodes of the graph, which are partitioned
into three subsets: N o, the set of origin (source) nodes, N d , the set of destination
(sink) nodes, and N t , the set of transshipment (intermediate) nodes. Each origin
i ∈ N o has a supply (availability) wi > 0 of the given commodity, each destination
i ∈ N d has a demand (request) wi < 0 of the same commodity, while each trans-
shipment node i ∈ N t has neither availability nor request, i.e., wi = 0. The net
supply across any set S ⊆ N is defined as W(S ) ≡ ∑

i∈S wi . We assume
that demand is balanced, i.e., W(N ) = 0. Standard network flow transformations
(adding a dummy origin or a dummy destination) might be applied when this is not
the case. For instance, if W(N ) > 0, we add a dummy destination j , with demand
-W(N ), that is connected to every origin i by an arc (i, j) of capacity W(N ) and
arbitrarily large fixed cost.



2 Fixed-Charge Network Design Problems 17

The total cost of satisfying the demand consists of the sum of the costs to select
the arcs to be included in the final design and the transportation costs to move the
flow. For each potential arc (i, j) ∈ A , let fij ≥ 0 be the fixed design cost charged
whenever the arc is selected for inclusion in the optimal design, and cij ≥ 0 the unit
transportation cost.

We introduce binary design variables yij , (i, j) ∈ A , indicating if arc (i, j) is
included (open, yij = 1) or not (closed, yij = 0) in the final design, and continuous
flow variables xij ≥ 0, (i, j) ∈ A , equal to the amount of flow on each arc.
The mathematical formulation of the single-commodity capacitated fixed-charge
network design problem (SCFND) can then be written as

Minimize
∑

(i,j)∈A

(
fij yij + cij xij

)
(2.1)

Subject to
∑

j∈N +
i
xij −∑j∈N −

i
xji = wi, ∀ i ∈ N , (2.2)

xij ≤ uij yij , ∀ (i, j) ∈ A , (2.3)

xij ≥ 0, ∀ (i, j) ∈ A , (2.4)

yij ∈ {0, 1}, ∀ (i, j) ∈ A , (2.5)

where, for each i ∈ N , we define

N +
i = {j ∈ N : (i, j) ∈ A }, N −

i = {j ∈ N : (j, i) ∈ A }.

The objective function (2.1) minimizes the total cost computed as the sum of the
total fixed cost for arcs included in the optimal design and the total transportation
cost for the commodity. Constraints (2.2) enforce flow conservation at nodes, while
constraints (2.3) are the so-called linking constraints guaranteeing that flows use
open arcs only and are less than the corresponding arc capacities.

Some variants of the problem include a budget constraint on any one of the
main cost terms, design or transportation, the most common being a design budget
constraint

∑

(i,j)∈A
fij yij ≤ B, (2.6)

where B > 0 is the global design budget. When such a constraint is added, the
corresponding fixed cost term in the objective function is typically removed, which
yields the single-commodity capacitated budget network design problem (SCBND).

Model (2.1)–(2.5) is also known as the arc-based formulation. An equivalent
path-based formulation can be derived by using the fact that the arc flows can
be decomposed into a finite set of path flows, each path connecting an origin to
a destination. Note that there always exists an optimal solution with no flows on



18 T. G. Crainic et al.

directed cycles, since all costs are nonnegative. For this reason, unless otherwise
stated, we assume that all paths are elementary (without any directed cycle) and
simply use the term “path” to designate an elementary path. Let P be the set of
paths, each path p ∈ P connecting an origin to a destination, and hp ≥ 0 the
amount of flow on path p ∈P . The path-based formulation of the SCFND can then
be written as

Minimize
∑

(i,j)∈A
fij yij +

∑

p∈P
ephp (2.7)

Subject to
∑

j∈N +
i

∑
p∈P δ

p
ij hp = |wi |, ∀ i ∈ N o, (2.8)

∑
j∈N −

i

∑
p∈P δ

p
jihp = |wi |, ∀ i ∈ N d , (2.9)

∑
p∈P δ

p
ij hp ≤ uij yij , ∀ (i, j) ∈ A , (2.10)

hp ≥ 0, ∀p ∈P, (2.11)

yij ∈ {0, 1}, ∀ (i, j) ∈ A , (2.12)

where δpij is the constant that indicates whether (i.e., δpij = 1) or not (i.e., δpij = 0)

arc (i, j) ∈ A belongs to path p ∈ P and ep = ∑
(i,j)∈A δ

p
ij cij , ∀p ∈ P .

Note that xij =∑p∈P δ
p
ij hp,∀ (i, j) ∈ A . In addition, it is worth to mention that

the number of paths is exponential in the size of the graph, but that any solution
expressed in terms of the arc flow variables xij can be decomposed into a small
number of paths (at most |N | + |A |) in polynomial time.

It is interesting to note that the LP relaxation of both the arc-based and the path-
based models reduces to a minimum cost network flow problem with transportation
costs equal to cij + fij /uij on each arc (i, j) ∈ A . Indeed, when replacing the
integrality constraints (2.5) by yij ∈ [0, 1],∀ (i, j) ∈ A , the yij variables can be
projected out, since fij ≥ 0 implies that there exists an optimal solution such that
the linking constraints (2.3) are satisfied at equality, i.e., yij = xij /uij ,∀ (i, j) ∈ A .
Using these equations to project out the yij variables, we then obtain the following
arc-based minimum cost network flow model:

Minimize
∑

(i,j)∈A

(
cij + fij /uij

)
xij (2.13)

Subject to
∑

j∈N +
i
xij −∑j∈N −

i
xji = wi, ∀ i ∈ N , (2.14)

0 ≤ xij ≤ uij , ∀ (i, j) ∈ A . (2.15)

In the remainder of Sect. 2, we discuss three special cases of the SCFND: the
case where there are no transportation costs, for which we present an equivalent
cut-set-based formulation in Sect. 2.1; the case where there are no capacities, the
single-commodity uncapacitated fixed-charge network design problem (SUFND),



2 Fixed-Charge Network Design Problems 19

presented in Sect. 2.2; and the case of a bipartite graph, the fixed-charge transporta-
tion problem (FCTP), described in Sect. 2.3.

2.1 Cut-Set-Based Formulation

A cut is a partition of N into two subsets S and S ≡ N \S such that the net
supply across S is positive, i.e., W(S ) > 0 (note that this condition implies that
at least one destination is not in S , i.e., N d ∩S 	= ∅). A cut-set (S ,S ) is the
subset of arcs induced by the cut, i.e., (S ,S ) = {(i, j) ∈ A : i ∈ S , j ∈ S }.
The max-flow-min-cut theorem guarantees the existence of a feasible solution to the
SCFND if and only if the (exponentially many) cut-set-based inequalities (2.16) are
satisfied,

∑

(i,j)∈(S ,S )

uij yij ≥ W(S ), ∀S ⊂ N , W(S ) > 0. (2.16)

When we consider the special case of the SCFND where cij = 0 for any arc
(i, j) ∈ A , we can project out the xij variables and obtain an equivalent cut-set-
based formulation

Minimize
∑

(i,j)∈A
fij yij (2.17)

subject to (2.16) and (2.5).
Obviously, when there are strictly positive transportation costs on some of

the arcs, we cannot project out the xij variables by using only the cut-set-based
inequalities. In that case, we would have to exploit LP duality to derive additional
valid inequalities affecting the global transportation cost v =∑(i,j)∈A cij xij , as in
the celebrated Benders decomposition method (see the details of such an approach
in Chap. 3).

2.2 The Uncapacitated Variant of the Problem

A particular case of the SCFND is obtained when there are no arc capacities on the
flows. Since the flow on any arc is bounded by W(N o), we can then formulate the
problem in the same way as the arc-based formulation of the SCFND by replacing
uij by W(N o) on every arc (i, j) ∈ A . The cut-set-based inequalities (2.16) then
reduce to the following connectivity inequalities:

∑

(i,j)∈(S ,S )

yij ≥ 1, ∀S ⊂ N , W(S ) > 0. (2.18)



20 T. G. Crainic et al.

The structure of any feasible solution to the SUFND corresponds to a directed
forest that contains directed trees rooted at each origin. In particular, when there is
only one origin and no transportation costs, the problem reduces to the N P-hard
directed Steiner tree problem, where the terminals correspond to the destinations.

2.3 Fixed-Charge Transportation Problem

The fixed-charge transportation problem (FCTP) is the special case of the SUFND
where the graph is bipartite, i.e., N = N o ∪N d and A ⊆ N o ×N d . Because
of the particular structure of the graph, the amount of flow on any arc (i, j) ∈ A
is bounded by uij = min{|wi |, |wj |}. The arc-based formulation of the FCTP can
then be written as

Minimize
∑

(i,j)∈A

(
fij yij + cij xij

)
(2.19)

Subject to
∑

j∈N +
i
xij = |wi |, ∀ i ∈ N o, (2.20)

∑
j∈N −

i
xji = |wi |, ∀ i ∈ N d , (2.21)

xij ≤ uij yij , ∀ (i, j) ∈ A , (2.22)

xij ≥ 0, ∀ (i, j) ∈ A , (2.23)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (2.24)

Since any path p ∈ P between an origin i ∈ N o and a destination j ∈ N d

corresponds to an arc (i, j) ∈ A , the arc-based and path-based formulations
for the FCTP are exactly the same. Although the FCTP might appear to be a
relatively restrictive special case of the SCFND, it is possible, through network flow
transformations, to reformulate any SCFND on graph G = (N ,A ) as an FCTP, by
associating each arc (i, j) ∈ A with an origin of supply uij and each node i ∈ N
with a destination of demand wi −∑l∈N +

i
uil . In the resulting bipartite graph, we

introduce two outgoing arcs associated with each origin (i, j) ∈ A : one arc incident
to destination i ∈ N with all costs equal to 0 and one arc incident to destination
j ∈ N with design cost equal to fij and transportation cost equal to cij . Hence,
any algorithm to solve the FCTP could be used to solve the SCFND, although at
the expense of a significant increase in the instance size, since the number of nodes
and the number of arcs in an FCTP reformulation of the SCFND are, respectively,
|N | + |A | and 2× |A |.



2 Fixed-Charge Network Design Problems 21

3 Multicommodity Formulations

In this section, we consider network design problems for which several commodi-
ties, represented by set K , share the same directed graph G = (N ,A ). The
demand to satisfy for any commodity k ∈ K is defined at each node i ∈ N
and is denoted as wk

i . We discuss below how to represent the demand for each
commodity. For now, we simply assume that the demand is balanced for each
commodity k ∈ K , i.e.,

∑
i∈N wk

i = 0. The total flow of all commodities on
any arc (i, j) ∈ A is limited by the capacity uij > 0. We wish to minimize the
sum of the costs to select the arcs to be included in the design and the transportation
costs to move the flow of all commodities, where for each arc (i, j) ∈ A , fij ≥ 0
is the fixed design cost charged whenever the arc is included in the optimal design,
and ckij ≥ 0 is the unit transportation cost for commodity k ∈ K .

Using binary design variables yij , (i, j) ∈ A , as in the single-commodity case,
and continuous multicommodity flow variables xkij ≥ 0, (i, j) ∈ A , k ∈ K , the
arc-based model for the multicommodity capacitated fixed-charge network design
problem (MCFND) can then be written as

Minimize
∑

(i,j)∈A
fij yij +

∑

k∈K

∑

(i,j)∈A
ckij x

k
ij (2.25)

Subject to
∑

j∈N +
i
xkij −

∑
j∈N −

i
xkji = wk

i , ∀ i ∈ N ,∀ k ∈ K , (2.26)

∑
k∈K xkij ≤ uij yij , ∀ (i, j) ∈ A , (2.27)

xkij ≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K , (2.28)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (2.29)

The objective function (2.25) minimizes the total cost computed as the sum of the
total fixed cost for arcs included in the optimal design and the total transportation
cost for commodities. Constraints (2.26) correspond to flow conservation equations
for each node and each commodity. Relations (2.27) represent capacity constraints
for each arc. These are also linking constraints, linking together flow and design
variables by forbidding any flow to pass through an arc that is not chosen as part
of the design. Note that it is easy to include commodity-dependent capacities ukij ,
(i, j) ∈ A , k ∈ K , although we do not consider this case here. One could then
simply add the constraints

xkij ≤ ukij , ∀ (i, j) ∈ A , ∀ k ∈ K , (2.30)

or, even better,

xkij ≤ ukij yij , ∀ (i, j) ∈ A , ∀ k ∈ K . (2.31)



22 T. G. Crainic et al.

Below, we comment further on these two different ways of modeling commodity-
dependent capacities.

Although this appears to be a special case, we define a commodity as an origin-
destination (OD) pair (O(k),D(k)) with a demand dk > 0 to satisfy between
O(k) ∈ N and D(k) ∈ N , in which case we have

wk
i =

⎧
⎨

⎩

dk, if i = O(k),

−dk, if i = D(k),

0, otherwise.

Note that we can always represent a commodity as an OD pair, even when there
are several products (physical goods, information or people), each with many
origins and many destinations. First, for each product, we introduce a super-origin
connected to each origin for the product. Each super-origin has a supply equal to the
total supply for the corresponding product. Each arc (i, j) from the super-origin has
no costs and a capacity equal to the supply at j . Thus, we obtain a new, larger, graph
where each commodity has one origin, but many destinations. At this stage, there
are two possible ways to obtain a network in which every commodity corresponds
to an OD pair. The first approach is to introduce super-destinations, in the same
way as the super-origins, which further increases the size of the graph. The second
approach can be used when there are no destination-dependent data (for instance,
when there are no commodity-dependent capacities and when transportation costs
do not depend on destinations). This approach keeps the size of the graph constant,
but increases the number of commodities by simply introducing a commodity for
each pair between a super-origin and a destination, with a demand equal to the
demand at that destination. Any of these techniques has an implication on the size
of the corresponding models and, hence, on the solution methods. We further discuss
these issues in several chapters, but for the remainder of the book, unless otherwise
stated, we assume that a commodity is defined as an OD pair.

The path-based formulation for the MCFND uses this equivalence between a
commodity and an OD pair. To derive this model, we introduce Pk , the set of paths
between O(k) and D(k) for each k ∈ K and hkp ≥ 0, the amount of flow on path
p ∈Pk, k ∈ K . The path-based model for the MCFND is then written as

Minimize
∑

(i,j)∈A
fij yij +

∑

k∈K

∑

p∈Pk

ekph
k
p (2.32)

Subject to
∑

p∈Pk hkp = dk, ∀ k ∈ K , (2.33)
∑

k∈K
∑

p∈Pk δ
p
ij h

k
p ≤ uij yij , ∀ (i, j) ∈ A , (2.34)

hkp ≥ 0, ∀ k ∈ K ,∀p ∈Pk, (2.35)

yij ∈ {0, 1}, ∀ (i, j) ∈ A , (2.36)



2 Fixed-Charge Network Design Problems 23

where δ
p
ij indicates whether (i.e., δpij = 1) or not (i.e., δpij = 0) arc (i, j) ∈ A

belongs to path p ∈ ∪k∈K Pk and ekp =
∑

(i,j)∈A δ
p
ij c

k
ij , ∀ k ∈ K , ∀p ∈ Pk .

Thus, xkij =
∑

p∈Pk δ
p
ij h

k
p, ∀ (i, j) ∈ A , ∀ k ∈ K .

An important variant of the MCFND is the case with unsplittable (or non-
bifurcated) flows, where a single path betweenO(k) andD(k)must be used for each
commodity k ∈ K . We can easily modify both the path-based and the arc-based
formulations to model this additional requirement. For the path-based formulation,
we define a binary variable Hk

p that assumes value 1, if path p ∈ Pk is used for
commodity k ∈ K , and value 0, otherwise. We then have the equations hkp = dkHk

p ,
∀ k ∈ K ,∀p ∈ Pk , allowing us to project out variables hkp, leaving a model
that has only binary variables. For the arc-based formulation, we introduce a binary
variable Xk

ij that takes value 1, if arc (i, j) ∈ A belongs to the path between O(k)
and D(k) for commodity k ∈ K , and value 0, otherwise. Similarly, we use the
equations xkij = dkXk

ij , ∀ (i, j) ∈ A ,∀ k ∈ K , to project our variables xkij and end
up with a model that has only binary variables.

For both the arc-based and the path-based formulations, the LP relaxation
reduces to a minimum cost multicommodity network flow problem with transporta-
tion costs per commodity k ∈ K equal to ckij + fij /uij on each arc (i, j) ∈ A .
Indeed, using the same argument as in the single-commodity case, the continuous
yij variables can be projected out, since there is always an optimal solution that sat-
isfies the linking constraints (2.27) at equality, i.e., yij =∑k∈K xkij /uij ,∀ (i, j) ∈
A , which yields the following arc-based minimum cost multicommodity network
flow model:

Minimize
∑

k∈K

∑

(i,j)∈A

(
ckij + fij /uij

)
xkij (2.37)

Subject to
∑

j∈N +
i
xk
ij
−∑

j∈N −
i
xk
ji
= wk

i
, ∀ i ∈ N , ∀ k ∈ K , (2.38)

∑
k∈K xk

ij
≤ uij , ∀ (i, j) ∈ A , (2.39)

xk
ij
≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K . (2.40)

The LP relaxation lower bound is generally far from the optimal value, hence the
name weak relaxation to qualify it. A tighter lower bound is obtained by adding the
following valid inequalities to the arc-based model

xkij ≤ bkij yij , ∀ (i, j) ∈ A , ∀ k ∈ K , (2.41)

where bkij is an upper bound on the amount of flow of commodity k ∈ K on

arc (i, j) ∈ A , for instance bkij = min{uij , dk} (or bkij = ukij , if there is a

commodity-dependent capacity ukij < min{uij , dk}). These inequalities are called
strong linking constraints and the corresponding LP relaxation the strong relaxation.



24 T. G. Crainic et al.

It is easy to see that there exists an optimal solution to this LP relaxation such that
yij = max{maxk∈K {xkij /bkij },

∑
k∈K xkij /uij },∀ (i, j) ∈ A . Obviously, projecting

out the continuous yij variables by using these equations would yield a non-linear
programming problem. Instead, most solution methods for the strong relaxation
leave the yij variables in the formulation. Because the number of strong linking
constraints is typically large for reasonably sized instances, solving the strong
relaxation can be quite challenging. Chapter 3 reviews several methods to solve
the strong relaxation.

In Sect. 3.1, we study the special case where there are no capacities, the
multicommodity uncapacitated fixed-charge network design problem (MUFND).
Then, Sect. 3.2 presents the generalization of the cut-set-based inequalities for
multicommodity fixed-charge network design problems.

3.1 The Uncapacitated Variant of the Problem

When there are no arc capacities on the multicommodity flows, we can formulate
the resulting MUFND by replacing uij with

∑
k∈K dk on every arc (i, j) ∈ A . In

addition, the strong linking constraints (2.41) can then be simplified by replacing
bkij with dk , for any arc (i, j) ∈ A and any commodity k ∈ K . It is then trivial
to observe that the linking constraints (2.27) are implied by the strong linking
constraints (2.41), since (2.27) are obtained by aggregating (2.41) over K .

This discussion illustrates the choice between two formulations: the aggregated
model, which does not include the strong linking constraints (2.41), and the
disaggregated model, where the linking constraints (2.27) are replaced by the
strong ones. Our discussion above on the quality of the LP relaxation bounds for
the MCFND also applies to the MUFND: the aggregated model yields a weak
LP relaxation bound, while the LP relaxation of the disaggregated formulation is
significantly stronger.

To summarize, the disaggregated model for the MUFND can be stated as

Minimize
∑

(i,j)∈A
fij yij +

∑

k∈K

∑

(i,j)∈A
ckij x

k
ij (2.42)

Subject to
∑

j∈N +
i
xk
ij
−∑

j∈N −
i
xk
ji
= wk

i
, ∀ i ∈ N , ∀ k ∈ K , (2.43)

xk
ij
≤ dkyij , ∀ (i, j) ∈ A , ∀ k ∈ K , (2.44)

xk
ij
≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K , (2.45)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (2.46)

It is worth noting that, once the yij variables are fixed, the resulting subproblem
decomposes into |K | shortest path subproblems, i.e., it consists in finding the
shortest path between O(k) and D(k) for each commodity k ∈ K , which is easy



2 Fixed-Charge Network Design Problems 25

since the transportation costs are nonnegative. As a consequence, there exists an
optimal solution to the MUFND where a single path is used between O(k) and D(k)
for each commodity k ∈ K , i.e., the flows are unsplittable. By contrast, for the
MCFND, the subproblem obtained after fixing the yij variables is a minimum cost
multicommodity network flow problem, which is significantly more difficult, even
though it is a linear program. In particular, there are MCNFD instances for which
all optimal solutions incur splittable flows, i.e., several paths are used to satisfy the
demand dk for some commodity k ∈ K .

3.2 Cut-Set-Based Inequalities

It is easy to generalize cut-set-based inequalities for the MCFND. Using the same
definitions and notations as in Sect. 2.1, we derive the following valid inequalities
from Eqs. (2.26) and capacity constraints (2.27):

∑

(i,j)∈(S ,S )

uij yij ≥
∑

k∈K (S ,S )

dk, ∀S ⊂ N , S 	= ∅, (2.47)

where K (S ,S ) = {k ∈ K : O(k) ∈ S , D(k) ∈ S }. By combining flow
conservation equations (2.26) with strong linking constraints (2.41), we can derive
the following commodity-dependent cut-set-based inequalities

∑

(i,j)∈(S ,S )

bkij yij ≥ dk, ∀S ⊂ N , ∀ k ∈ K , O(k) ∈ S , D(k) ∈ S .

(2.48)

Contrary to the SCFND for which (2.16) are not only necessary (valid), but
also sufficient to characterize any feasible solution, cut-set-based inequalities (2.47)
and (2.48) do not characterize feasible solutions to the MCFND. Consequently, even
if there are no transportation costs, we cannot obtain a reformulation in the space of
the yij variables by using only the cut-set-based inequalities (2.47) and (2.48). To
derive such a reformulation, we would have to use Benders feasibility cuts, a topic
covered in Chap. 3.

For the MUFND, inequalities (2.48) reduce to the following connectivity inequal-
ities, which imply cut-set-based inequalities (2.47):

∑

(i,j)∈(S ,S )

yij ≥ 1, ∀S ⊂ N , ∀ k ∈ K , O(k) ∈ S , D(k) ∈ S . (2.49)

For the MUFND with no transportation costs, i.e., ckij = 0 for any arc (i, j) ∈ A and
any commodity k ∈ K , these connectivity inequalities define a reformulation of the
problem obtained by projecting out the xkij variables, the cut-set-based formulation:



26 T. G. Crainic et al.

Minimize
∑

(i,j)∈A
fij yij (2.50)

subject to (2.46) and (2.49). This observation illustrates another significant differ-
ence between the MCFND and the MUFND: while cut-set-based inequalities (2.49)
characterize feasible solutions to the MUFND, feasible solutions to the MCFND
cannot be completely characterized by cut-set-based inequalities (2.47) and (2.48).

4 Bibliographical Notes

The study of fixed-charge problems (with an underlying general LP structure)
originated from the work of Hirsch and Dantzig (1968), first published as a technical
report in 1954. To the best of our knowledge, the first article that presents a
special case of single-commodity fixed-charge network design problem is Balinski
(1961), where the FCTP is introduced. The arc-based formulation of the problem is
described and it is shown that the LP relaxation reduces to a linear transportation
problem with costs cij + fij /uij on each arc (i, j) ∈ A . A similar result applies to
the SCFND, as we have seen in Sect. 2.

In 1961, also appeared one of the first studies on multicommodity network
design, due to Gomory and Hu (1961). In the problem considered in that paper,
there are several commodities, each commodity k ∈ K having a demand dk to be
routed between the origin O(k) and the destination D(k), and we wish to decide
how many units of capacity yij to install on each edge of an undirected network,
so as to minimize the cost of installing the capacities, where each unit of capacity
installed on edge (i, j) incurs a cost fij . This problem can be modeled with general
integer variables yij , rather than binary variables, and cut-set-based inequalities can
be used to represent the set of feasible solutions. Generalizations of this problem are
studied in Chaps. 5 and 6.

Following the seminal papers of Balinski (1961) and Gomory and Hu (1961),
the research on network design has been fruitful during the next 25 years. The
early efforts of the research community are synthesized in the survey papers of
Magnanti and Wong (1984) and Minoux (1989). The first paper formalizes the
MUFND, showing that it generalizes well-known problems, such as the shortest
path problem, the traveling salesman problem and the Steiner tree problem. The
second paper emphasizes the importance of piecewise linear costs in network design
applications (see Chap. 6). Both papers include significant reviews on algorithms for
the multicommodity uncapacitated budget network design problem (MUBND).

Most papers on single-commodity network design have focused on the FCTP,
which is not surprising, given that the SCFND can be reformulated as an FCTP
(Malek-Zavarei and Frisch 1972). We review the papers on the FCTP in Chaps. 3
and 4. Notable exceptions are the works on the directed Steiner tree problem
and its generalization, the SUFND. On the first problem, we mention the seminal



2 Fixed-Charge Network Design Problems 27

work of Wong (1984), which proposes both a multicommodity flow model (each
destination is identified as a commodity) and a cut-set-based formulation, showing
that the two LP relaxations are equivalent. Similar results are obtained for other
network design problems defined over trees (Magnanti and Wolsey 1995). On the
SUFND with a single origin, it is worth mentioning the work of Rardin and Wolsey
(1993), showing that a multicommodity reformulation of the problem, where each
destination corresponds to a commodity, has the same LP relaxation as the one
obtained from the single-commodity model by adding so-called dicut collection
inequalities, which involve both the design variables and the single-commodity flow
variables.

Following the early research on the MUBND, subsequent works on the MUFND
can be found in Balakrishan (1987) on the path-based model and in Balakrishnan
et al. (1989) on the arc-based model. On the MCFND and its generalization
where each commodity has several origins and several destinations, early research
(Rardin and Choe 1979; Gendron and Crainic 1994) has focused on disaggregated
formulations and the impact of strong linking inequalities on the quality of the
LP relaxation. Balakrishnan et al. (1997) presents an annotated bibliography that
contains most references on network design that appeared since 1961. In Chaps. 3
and 4, we review many other references on the MUFND and on the MCFND.

5 Conclusions and Perspectives

This introductory chapter has presented basic fixed-charge network design prob-
lems and formulations. It has allowed us to identify fundamental distinctions
between problems and models, which we further explore in the next chapters.
In particular, we have seen significant differences between single-commodity and
multicommodity formulations. Indeed, when the design variables are fixed or when
their integrality is relaxed, the SCFND has an underlying single-commodity mini-
mum cost network flow problem, for which many efficient specialized algorithms
exist, while the MCFND displays a multicommodity minimum cost network flow
problem, which is significantly more difficult, although it is a linear program.
Also, when there are no transportation costs, the SCFND can be formulated with
cut-set-based inequalities, by virtue of the max-flow-min-cut theorem, while cut-
set-based inequalities are necessary, but not sufficient, to model the MCFND with
no transportation costs. We have also emphasized important differences between
uncapacitated and capacitated problems. For both the SUFND and the MUFND,
connectivity inequalities are necessary and sufficient to characterize feasible solu-
tions. Clearly, these inequalities are proper subsets of the cut-set-based inequalities
for the SCFND and the MCFND, and therefore necessary, but not sufficient, to
describe feasible solutions.

While the nature of the demand, single-commodity versus multicommodity, is
a fundamental distinction between network design models, it is worth noting that
single-commodity and multicommodity formulations can often be used for the same



28 T. G. Crainic et al.

problem. For instance, we could reformulate the SCFND with a single origin and
multiple destinations as an MCFND, where each commodity is associated with a
destination. The advantage of this reformulation comes when we introduce strong
linking inequalities, which then improve the LP relaxation, often significantly so.
The disadvantage, of course, lies in the large number of additional flow variables
and valid inequalities. Two approaches can be used to mitigate this effect. One is to
develop decomposition methods, such as column-and-row generation algorithms,
which we study in Chap. 3. Another is to derive inequalities equivalent to the
strong linking constraints, but in the space of single-commodity flow (and design)
variables. Some inequalities of this type have been derived for the SUFND with a
single origin, but to the best of our knowledge, not for its capacitated counterpart.
This is an avenue for future research.

References

Balakrishnan, A. (1987). LP extreme points and cuts for the fixed charge network design.
Mathematical Programming, 39, 263–284.

Balakrishnan, A., Magnanti, T. L., & Mirchandani, P. (1997). Network design. In M. Dell’Amico,
F. Maffioli, & S. Martello (Eds.), Annotated bibliographies in combinatorial optimization (pp.
311–334). New York: Wiley.

Balakrishnan, A., Magnanti, T. L., & Wong, R. (1989). A dual-ascent procedure for large-scale
uncapacitated network design. Operations Research, 37(5), 716–740.

Balinski, M. L. (1961). Fixed-cost transportation problems. Naval Research Logistics, 8(1), 41–54.
Gendron, B., & Crainic, T. G. (1994). Relaxations for Multicommodity Capacitated Network

Design Problems. Publication CRT-965, Centre for Research on Transportation, University of
Montreal.

Gomory, R. E., & Hu, T. C. (1961). Multiterminal network flows. SIAM Journal of Applied
Mathematics, 9, 551–570.

Hirsch, W. M., & Dantzig, G. B. (1968). The fixed charge problem. Naval Research Logistics,
15(3), 413–424.

Magnanti, T. L., & Wolsey, L. A. (1995). Optimal trees. In M. Ball, T. L. Magnanti, C. L.
Monma, & G. L. Nemhauser (Eds.), Network models. Handbooks in Operations Research and
Management Science (vol. 7, pp. 503–615). Amsterdam: North-Holland.

Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning: Models and
algorithms. Transportation Science, 18(1), 1–55.

Malek-Zavarei, M., & Frisch, I. T. (1972). On the fixed cost flow problem. International Journal
of Control, 16(5), 897–902.

Minoux, M. (1989). Network synthesis and optimum network design problems: models, solution
methods and applications. Networks, 19, 313–360.

Rardin, R. L., & Choe, U. (1979). Tighter Relaxations of Fixed Charge Network Flow Problems.
Report J-79-18, Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta.

Rardin, R. L., & Wolsey, L. A. (1993). Valid Inequalities and Projecting the multicommodity
extended formulation for uncapacitated fixed charge network flow problems. European Journal
of Operational Research, 71, 95–109.

Wong, R. T. (1984). A dual ascent approach for steiner tree problems in a directed graph.
Mathematical Programming, 28, 217–287.



Chapter 3
Exact Methods for Fixed-Charge
Network Design

Teodor Gabriel Crainic and Bernard Gendron

1 Introduction

This chapter is dedicated to exact algorithms for the fixed-charge network design
problems introduced in Chap. 2. These problems are notoriously difficult to solve
and many factors contribute to their complexity. First and foremost, most network
design problems presented in Chap. 2 are strongly N P-hard. This is the case for
both the SCFND and the MCFND, i.e., the single-commodity and multicommodity
capacitated fixed-charge network design problems. In practice, this result implies
that no polynomial (even, pseudo-polynomial) algorithms are known to solve these
problems (and it is unlikely that any polynomial algorithm can be found to solve
them, unless P = N P). Another factor that makes these problems so difficult
to solve is the objective function that comprises fixed design costs and variable
transportation costs. This results in complex tradeoffs between fixed and variable
costs, which complicates the task of finding optimal solutions. In addition, simple
linear approximations of such functions are typically weak, in particular when fixed
costs are significant compared to variable costs.

Among fixed-charge network design problems, the developments in Chap. 2
clearly identify multicommodity capacitated problems as the most challenging.
These problems are difficult for the reasons stated above, but also because their
underlying multicommodity capacitated network flow subproblems are compu-

T. G. Crainic
CIRRELT and AOTI, Université du Québec à Montréal, Montréal, QC, Canada
e-mail: TeodorGabriel.Crainic@cirrelt.net

B. Gendron (�)
CIRRELT and Département d’informatique et de recherche opérationnelle,
Université de Montréal, Montréal, QC, Canada
e-mail: Bernard.Gendron@cirrelt.net

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_3&domain=pdf
mailto:TeodorGabriel.Crainic@cirrelt.net
mailto:Bernard.Gendron@cirrelt.net
https://doi.org/10.1007/978-3-030-64018-7_3


30 T. G. Crainic and B. Gendron

tationally elusive, even if they can be solved as linear programs. In particular,
these models are often highly degenerate. Models for the MCFND also contain
a large number of variables and constraints. Indeed, the arc-based model for the
MCFND has O(|A |) binary design variables and O(|A | × |K |) continuous
flow variables. Chapter 2 has emphasized the importance of adding strong linking
inequalities between these two types of variables to compute better LP relaxations.
The drawback is to significantly increase the number of constraints from O((|N |×
|K |)+ |A |) to O(|A | × |K |). To handle such large-scale models, decomposition
methods that exploit subproblem structures are often useful.

The chapter is divided into three parts. Part I presents relaxations that can
improve the quality of the lower bounds, while exploiting the subproblem structures.
This part contains three sections: Sect. 2 on Lagrangian relaxations and Dantzig–
Wolfe reformulations; Sect. 3 on relaxations by projection and Benders reformula-
tions; Sect. 4 on valid inequalities. Part II focuses on enumeration algorithms that
use the modeling techniques covered in Part I. This part includes four sections:
Sect. 5 on branch-and-bound algorithms; Sect. 6 on branch-and-cut algorithms;
Sect. 7 on Benders decomposition; Sect. 8 on branch-and-price algorithms. Part III
is dedicated to the solution of large-scale instances by combining the advanced
enumeration algorithms of Part II with heuristic methods, a topic covered in Sect. 9,
and by exploiting parallel computing, as explained in Sect. 10.

Part I: Relaxations

2 Lagrangian Relaxations and Dantzig–Wolfe
Reformulations

We study two classical Lagrangian relaxations for network design models, one that
involves relaxing the linking constraints, the other being obtained by relaxing the
flow conservation equations. Alternative Lagrangian relaxations are also studied.
We focus mostly on the general single-commodity and multicommodity capacitated
fixed-charge models, i.e., the SCFND and the MCFND. First, we give a primer
on Lagrangian relaxation, introducing the necessary notions to understand the
remainder of this section.

2.1 A Primer on Lagrangian Relaxation

We are given a MILP model of the form z = min{cx |Ax ≥ b, x ∈ X},
where X is a bounded feasible set defined by linear constraints and integrality
requirements on some (or all) of the variables. The Lagrangian relaxation of
constraints Ax ≥ b consists in relaxing them and in penalizing their violations



3 Exact Methods for Fixed-Charge Network Design 31

in the objective with Lagrange multipliers γ ≥ 0. We then obtain the Lagrangian
subproblem v(γ ) = min{c − γA)x | x ∈ X} = min{c − γA)x | x ∈ conv(X)},
where conv(X) is the convex hull of X. The Lagrangian subproblem is said to
have the integrality property if conv(X) = X, where X is obtained from X by
relaxing the integrality requirements (in other words, an integer optimal solution to
the Lagrangian subproblem can be obtained even if the integrality constraints are
relaxed). It is easy to see that v(γ ) + γ b ≤ z, with optimal Lagrange multipliers
obtained by solving the Lagrangian dual: v = maxγ≥0{v(γ ) + γ b}. The primal
interpretation of Lagrangian duality states that v = min{cx |Ax ≥ b, x ∈
conv(X)}. Since conv(X) ⊆ X, this implies that v ≥ z, the LP relaxation lower
bound, with v = z if conv(X) = X.

We now assume that X is decomposable into m = |L | bounded MILP feasible
sets: x = (x1, . . . , xm) ∈ X1 × · · · × Xm = X. Since any point xl ∈ conv(Xl),
l ∈ L , can be written as a convex combination of the extreme points (ξql )q∈Ql

of conv(Xl), we can reformulate the Lagrangian dual as an LP with the so-called
Dantzig–Wolfe reformulation, where the variable λql , l ∈ L , q ∈ Ql , represents the
weight given to extreme point ξql :

v = Minimize
∑

l∈L

∑

q∈Ql

cλ
q
l ξ

q
l (3.1)

Subject to
∑

l∈L
∑

q∈Ql
Aλ

q
l ξ

q
l ≥ b, (3.2)

∑
q∈Ql

λ
q
l = 1, ∀ l ∈ L , (3.3)

λ
q
l ≥ 0, ∀ l ∈ L ,∀ q ∈ Ql . (3.4)

2.2 Relaxing Linking Constraints

First, we consider the Lagrangian relaxation of the linking constraints for the
SCFND. After adding the redundant bounding constraints on the flow variables

xij ≤ uij , ∀ (i, j) ∈ A , (3.5)

we relax the linking constraints and penalize their violations in the objective
function with Lagrange multipliers αij ≥ 0, (i, j) ∈ A . We thus obtain the
following Lagrangian subproblem:

Minimize
∑

(i,j)∈A

{
(fij − αijuij )yij + (cij + αij )xij

}
(3.6)

Subject to
∑

j∈N +
i
xij −∑j∈N −

i
xji = wi, ∀ i ∈ N , (3.7)



32 T. G. Crainic and B. Gendron

0 ≤ xij ≤ uij , ∀ (i, j) ∈ A , (3.8)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (3.9)

This Lagrangian subproblem decomposes into two parts: a subproblem in
flow variables that reduces to a single-commodity minimum cost network flow
problem and a subproblem in design variables that is solvable by inspection, i.e.,
yij = 1 if fij − αijuij < 0, and 0, otherwise, (i, j) ∈ A . It is clear that the
Lagrangian subproblem would be solved in the same way if the design variables
were continuous, i.e., yij ∈ [0, 1], (i, j) ∈ A . The Lagrangian subproblem thus has
the integrality property, which implies that the Lagrangian dual provides the same
lower bound as the LP relaxation. It follows that optimal Lagrange multipliers are
given by αij = fij /uij , (i, j) ∈ A , since the corresponding Lagrangian subproblem
reduces to the LP relaxation (see Chap. 2, Sect. 2).

Now, we turn our attention to the Lagrangian relaxation of the linking constraints
for the MCFND. To obtain a Lagrangian bound that is at least as good as the
strong relaxation (see Chap. 2, Sect. 3), we consider the Lagrangian relaxation of
the capacity constraints and the strong linking constraints:

∑
k∈K xkij ≤ uij yij , ∀ (i, j) ∈ A , (3.10)

xkij ≤ bkij yij , ∀ (i, j) ∈ A , ∀ k ∈ K . (3.11)

If we denote by αij ≥ 0, (i, j) ∈ A , and βkij ≥ 0, (i, j) ∈ A, k ∈ K , the Lagrange
multipliers associated with constraints (3.10) and (3.11), respectively, we obtain the
following Lagrangian subproblem:

Minimize
∑

(i,j)∈A

⎧
⎨

⎩

⎛

⎝fij − αijuij −
∑

k∈K
βkij b

k
ij

⎞

⎠ yij +
∑

k∈K
(ckij + αij + βkij )xkij

⎫
⎬

⎭

(3.12)

Subject to
∑

j∈N +
i
xk
ij
−∑

j∈N −
i
xk
ji
= wk

i
, ∀ i ∈ N , ∀ k ∈ K , (3.13)

xk
ij
≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K , (3.14)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (3.15)

This Lagrangian subproblem decomposes into two parts: a subproblem in flow
variables and a subproblem in design variables that is solvable by inspection, i.e.,
yij = 1 if fij −αijuij −∑k∈K βkij b

k
ij < 0, and 0, otherwise, (i, j) ∈ A . In exactly

the same way as for the SCFND, the Lagrangian subproblem has the integrality
property, which implies that the Lagrangian dual gives the same lower bound as
the strong relaxation. Note that the subproblem in flow variables reduces to the
computation of a shortest path (with respect to arc lengths ckij + αij + βkij ) between



3 Exact Methods for Fixed-Charge Network Design 33

O(k) and D(k) for each commodity k ∈ K . Hence, this Lagrangian relaxation is
called the shortest path relaxation.

Using the particular structure of the Lagrangian subproblem that is decomposable
into |K | shortest path problems and |A | problems solvable by inspection, one can
model the Lagrangian dual with the following Dantzig–Wolfe reformulation (the
notation is introduced in Chap. 2, Sect. 3):

Minimize
∑

(i,j)∈A
fij yij +

∑

(i,j)∈A

∑

k∈K

∑

p∈Pk

dkckij δ
p
ij h

k
p (3.16)

Subject to
∑

p∈Pk hkp = 1, ∀ k ∈ K , (3.17)
∑

k∈K
∑

p∈Pk dkδ
p
ij
hkp ≤ uij yij , ∀ (i, j) ∈ A , (3.18)

∑
p∈Pk dkδ

p
ij
hkp ≤ bk

ij
yij , ∀ (i, j) ∈ A , ∀ k ∈ K , (3.19)

hkp ≥ 0, ∀ k ∈ K , ∀p ∈Pk, (3.20)

yij ∈ [0, 1], ∀ (i, j) ∈ A . (3.21)

By imposing integrality on the design variables, we obtain a reformulation of
the MCFND. This reformulation corresponds to the path-based model introduced
in Chap. 2, Sect. 3, with two modifications: (1) for each commodity k ∈ K , the
path-based flow variable hkp now provides the fraction of the demand dk that is
satisfied through path p ∈Pk instead of the actual flow; (2) the model is reinforced
by adding the strong linking constraints (3.19). The LP relaxation of this so-called
path-based reformulation of the MCFND solves the Lagrangian dual, providing the
same lower bound as the strong relaxation.

2.3 Relaxing Flow Conservation Constraints

We study the subproblems that arise when the flow conservation constraints are
relaxed in a Lagrangian way. We consider first the case of the SCFND.

After relaxing the flow conservation equations, penalizing their violations in the
objective function with Lagrange multipliers πi , i ∈ N , we obtain the following
Lagrangian subproblem:

Minimize
∑

(i,j)∈A

{
fij yij + (cij + πi − πj )xij

}−
∑

i∈N
πiwi (3.22)

Subject to 0 ≤ xij ≤ uij yij , ∀ (i, j) ∈ A , (3.23)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (3.24)



34 T. G. Crainic and B. Gendron

This subproblem decomposes by arc: for each (i, j) ∈ A , if fij + (cij + πi −
πj )uij < 0, then the optimal solution is yij = 1 and xij = uij ; otherwise, an
optimal solution is yij = xij = 0. It is clear that this Lagrangian subproblem has
the integrality property, which implies that the Lagrangian dual provides the same
lower bound as the LP relaxation. It follows that optimal Lagrange multipliers πi ,
i ∈ N , can be obtained by solving the LP relaxation as a minimum cost network
flow problem with transportation costs equal to cij + fij /uij on each arc (i, i) ∈ A
(see Chap. 2, Sect. 2), where πi corresponds to the dual variable associated with the
flow conservation equation for node i ∈ N .

For the MCFND, we consider the formulation obtained after adding the strong
linking inequalities (3.11) in order for the Lagrangian dual to provide a lower
bound that is at least as good as that of the strong relaxation. After relaxing the
flow conservation equations in a Lagrangian way, using Lagrange multipliers πki ,
i ∈ N , k ∈ K , we obtain the following subproblem:

Minimize
∑

(i,j)∈A
fij yij +

∑

k∈K

∑

(i,j)∈A
(ckij +πki −πkj )xkij +

∑

k∈K
dk(πkD(k)−πkO(k))

(3.25)

Subject to
∑

k∈K xkij ≤ uij yij , ∀ (i, j) ∈ A , (3.26)

xkij ≤ bkij yij , ∀ (i, j) ∈ A , ∀ k ∈ K , (3.27)

xkij ≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K , (3.28)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (3.29)

This Lagrangian subproblem decomposes by arc. For each arc (i, j), a contin-
uous knapsack problem (with costs ckij + πki − πkj , k ∈ K ) is obtained for each
value yij ∈ {0, 1}. If yij = 0, all variables assume value 0. If yij = 1, the solution
(̃xkij )k∈K to the continuous knapsack problem is compared to the solution where all

variables take value 0: if fij +∑k∈K (ckij + πki − πkj )̃x
k
ij < 0, then yij = 1 and

xkij = x̃kij , k ∈ K , is the optimal solution; otherwise, the solution with all variables
equal to 0 is optimal. Because of its particular structure, this Lagrangian relaxation
is called the knapsack relaxation.

We now show that this Lagrangian subproblem has the integrality property.
Consider the LP relaxation of the Lagrangian subproblem, which also decomposes
by arc. For each (i, j) ∈ A , given ŷij ∈ [0, 1], an optimal solution in x variables
is obtained by solving the following continuous knapsack problem: wij (ŷij ) =
min{∑k∈K (ckij+πki −πkj )xkij |

∑
k∈K xkij ≤ uij ŷij ; 0 ≤ xkij ≤ bkij ŷij , k ∈ K }. It is

easy to see that an optimal solution to this continuous knapsack problem is either 0,
if fij ŷij +wij (ŷij ) ≥ 0, or ŷij x̃kij , k ∈ K , otherwise, where (̃xkij )k∈K is an optimal
solution to the continuous knapsack problem when ŷij = 1. The minimum value
of the LP relaxation of the Lagrangian subproblem for arc (i, j) ∈ A is therefore
obtained either for ŷij = 0, or for ŷij = 1, since fij +wij (1) ≤ fij ŷij +wij (ŷij ), if



3 Exact Methods for Fixed-Charge Network Design 35

fij ŷij+wij (ŷij ) < 0. Thus, the Lagrangian subproblem has the integrality property,
which implies that the Lagrangian dual gives the same lower bound as the strong
relaxation.

To derive a Dantzig–Wolfe reformulation of the Lagrangian dual for the knap-
sack relaxation, we define for each arc (i, j) ∈ A , the set {(ξkqij )k∈K ,q∈Qij

}
of non-trivial extreme points (i.e., excluding 0) of the knapsack polyhedron
{(xkij )k∈K |

∑
k∈K xkij ≤ uij ; 0 ≤ xkij ≤ bkij , k ∈ K }. Since the Lagrangian

subproblem is decomposable into one subproblem for each (i, j) ∈ A and
each value yij ∈ {0, 1}, the Lagrangian dual for the knapsack relaxation can be
formulated as follows:

Minimize
∑

(i,j)∈A
fij yij +

∑

(i,j)∈A

∑

q∈Qij

∑

k∈K
ckij ξ

kq
ij λ

q
ij (3.30)

Subject to
∑

j∈N +
i

∑

q∈Qij

ξ
kq
ij λ

q
ij −

∑

j∈N −
i

∑

q∈Qji

ξ
kq
ij λ

q
ji = wk

i , ∀ i ∈ N ,∀ k ∈ K , (3.31)

∑
q∈Qij

λ
q
ij = yij , ∀ (i, j) ∈ A , (3.32)

λ
q
ij ≥ 0, ∀ (i, j) ∈ A ,∀ q ∈ Qij , (3.33)

yij ∈ [0, 1], ∀ (i, j) ∈ A , (3.34)

where λqij , (i, j) ∈ A , q ∈ Qij , is the convex combination weight assigned to the

extreme point (ξkqij )k∈K in an optimal solution to the Lagrangian dual. By imposing
integrality on the design variables, we obtain a reformulation of the MCFND.
The LP relaxation of this so-called knapsack-based reformulation of the MCFND
provides the same lower bound as the strong relaxation, given that the Lagrangian
subproblem has the integrality property.

2.4 Other Lagrangian Relaxations

As just seen above, the two alternatives, relaxing the linking constrains or the flow
conservation equations, yield Lagrangian duals that provide the same lower bound
as the LP relaxation, and this is the case for both the SCFND and the MCFND. In
this section, we examine other Lagrangian relaxations that can give tighter lower
bounds than the LP relaxation. We show two techniques to derive such relaxations:
variable splitting (also called Lagrangian decomposition) and constraint splitting.
We illustrate the first technique for a special case of the SCFND, the fixed-charge
transportation problem, or FCTP, while the second technique is shown for the
MCFND. Note that similar techniques can be used for other network design models,
but are simpler to explain on these two problems.



36 T. G. Crainic and B. Gendron

Variable splitting first involves introducing copies of some of the variables, along
with corresponding copy equations. Then, some constraints are rewritten by using
the copy variables, in order to exhibit a decomposable structure in the Lagrangian
subproblem obtained after relaxing the copy equations. We illustrate this technique
for the FCTP, formulated as in Chap. 2, Sect. 2.3:

Minimize
∑

(i,j)∈A

(
fij yij + cij xij

)
(3.35)

Subject to
∑

j∈N +
i
xij = |wi |, ∀ i ∈ N o, (3.36)

∑
j∈N −

i
xji = |wi |, ∀ i ∈ N d , (3.37)

xij ≤ uij yij , ∀ (i, j) ∈ A , (3.38)

xij ≥ 0, ∀ (i, j) ∈ A , (3.39)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (3.40)

We create copies for all variables: sij is a copy of xij and tij is a copy of yij for
all (i, j) ∈ A . This is specified by the following copy equations:

xij = sij , ∀ (i, j) ∈ A , (3.41)

yij = tij , ∀ (i, j) ∈ A . (3.42)

We then rewrite constraints (3.37) using the copy variables and introduce redundant
constraints equivalent to (3.38)–(3.40), but for the copy variables:

∑
j∈N −

i
sj i = |wi |, ∀ i ∈ N d , (3.43)

sji ≤ uji tj i , ∀ (j, i) ∈ A , (3.44)

sji ≥ 0, ∀ (j, i) ∈ A , (3.45)

tj i ∈ {0, 1}, ∀ (j, i) ∈ A . (3.46)

This yields the following reformulation of the FCTP:

Minimize
∑

(i,j)∈A

(
fij yij + cij xij

)
(3.47)

Subject to (3.36), (3.38)–(3.46).
Relaxing the copy Eqs. (3.41) and (3.42) using Lagrange multipliers ξij and ωij ,

(i, j) ∈ A , respectively, we derive the following Lagrangian subproblem:

Minimize
∑

(i,j)∈A

{
(fij − ωij )yij + (cij − ξij )xij

}+
∑

(i,j)∈A

(
ωij tij + ξij sij

)

(3.48)



3 Exact Methods for Fixed-Charge Network Design 37

Subject to (3.36), (3.38)–(3.40), (3.43)–(3.46). This subproblem decomposes into
two parts, one that depends on the original variables x and y, and the other on the
copy variables s and t . Both parts further decompose by node, the first part for each
node i ∈ N o and the second part for each node i ∈ N d , yielding the Lagrangian
bound v(ξ, ω) =∑i∈N o v

O
i (ξ, ω)+

∑
i∈N d vDi (ξ, ω), where

vOi (ξ, ω) = Minimize
∑

j∈N +
i

{
(fij − ωij )yij + (cij − ξij )xij

}
(3.49)

Subject to
∑

j∈N +
i
xij = |wi |, (3.50)

xij ≤ uij yij , ∀ j ∈ N +
i , (3.51)

xij ≥ 0, ∀ j ∈ N +
i , (3.52)

yij ∈ {0, 1}, ∀ j ∈ N +
i , (3.53)

and

vDi (ξ, ω) = Minimize
∑

j∈N −
i

(
ωjitj i + ξjisji

)
(3.54)

Subject to
∑

j∈N −
i
sj i = |wi |, (3.55)

sji ≤ uji tj i , ∀ j ∈ N −
i , (3.56)

sji ≥ 0, ∀ j ∈ N −
i , (3.57)

tj i ∈ {0, 1}, ∀ j ∈ N −
i . (3.58)

Each of these node-based subproblems has the structure of a single-node fixed-
charge flow problem, which we study further in Sect. 4. This Lagrangian subproblem
does not have the integrality property, which implies that the Lagrangian dual bound
can improve upon the LP relaxation bound.

We now illustrate the constraint splitting technique for the MCFND. The
technique consists in dividing a set of constraints into several subsets that define a
reformulation, and then to relax one of these subsets in a Lagrangian way to obtain
a decomposable subproblem. For the MCFND, we divide the flow conservation
equations into three subsets of constraints:

∑
j∈N +

i
xkij −

∑
j∈N −

i
xkji = 0, ∀ i ∈ N ,∀ k ∈ K T

i , (3.59)
∑

j∈N +
i
xkij = dk, ∀ i ∈ N ,∀ k ∈ K O

i , (3.60)

xkij = 0, ∀ i ∈ N ,∀ j ∈ N +
i ,∀ k ∈ K O

j ∪K D
i , (3.61)



38 T. G. Crainic and B. Gendron

where, for each node i ∈ N , we define K O
i = {k ∈ K | i = O(k)}, K D

i = {k ∈
K | i = D(k)} and K T

i = {k ∈ K | i 	= O(k),D(k)}. Constraints (3.59)–(3.61)
exploit two basic properties: (1) for each k ∈ K , the flow conservation equation at
i = D(k) is redundant; (2) because the costs are nonnegative, there is an optimal
solution with no directed cycles, which implies that, for each arc (i, j) ∈ A, we
have xkij = 0 if k ∈ K O

j or k ∈ K D
i .

We relax constraints (3.59) in a Lagrangian way, using Lagrange multipliers
πki , i ∈ N , k ∈ K T

i . We also add the following valid inequalities to improve
the relaxation:

∑
j∈N +

i
xkij ≤ gki , ∀ i ∈ N ,∀ k ∈ K T

i , (3.62)

where gki = min{dk,∑j∈N −
i
uji}, i ∈ N , k ∈ K T

i . The resulting Lagrangian
subproblem decomposes by node, yielding the Lagrangian bound v(π) =∑

i∈N vi(π), where

vi(π) = Minimize
∑

j∈N +
i

⎛

⎝
∑

k∈K
ckij (π)x

k
ij + fij yij

⎞

⎠ (3.63)

Subject to
∑

j∈N +
i
xkij = dk, ∀ k ∈ K O

i , (3.64)

∑
j∈N +

i
xkij ≤ gki , ∀ k ∈ K T

i , (3.65)

xkij = 0, ∀ j ∈ N +
i ,∀ k ∈ K O

j ∪K D
i , (3.66)

∑
k∈K xkij ≤ uij yij , ∀ j ∈ N +

i , (3.67)

xkij ≤ bkij yij , ∀ j ∈ N +
i ,∀ k ∈ K , (3.68)

xkij ≥ 0, ∀ j ∈ N +
i ,∀ k ∈ K , (3.69)

yij ∈ {0, 1}, ∀ j ∈ N +
i , (3.70)

where

ckij (π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ckij + πki − πkj , if k ∈ K T
i ∩K T

j ,

ckij + πki , if k ∈ K T
i \K T

j ,

ckij − πkj , if k ∈ K T
j \K T

i ,

ckij , if k ∈ K O
i ∩K D

j ,

∀ j ∈ N +
i ,∀ k ∈ K .

It is easy to see that this subproblem reduces to a capacitated facility location
problem, where “depots” correspond to arcs (i, j), j ∈ N +

i , and “customers” are



3 Exact Methods for Fixed-Charge Network Design 39

associated with commodities k ∈ K O
i ∪K T

i . This yields a Lagrangian subproblem
that does not have the integrality property. Hence, the resulting Lagrangian dual
bound can improve upon the LP relaxation bound.

This section has illustrated two useful techniques, variable splitting and con-
straint splitting, to derive Lagrangian relaxations that obtain potentially better lower
bounds than the LP relaxation one. This comes at the cost, however, of having
to solve more difficult Lagrangian subproblems. This is clearly the case for the
Lagrangian relaxations we studied for the MCFND. Indeed, the shortest path and
knapsack relaxations yield Lagrangian subproblems that are easy to solve, but their
corresponding Lagrangian dual bounds are equal to the strong relaxation bound. By
contrast, the relaxation studied in this section improves upon the strong relaxation
bound, at the expense of having to solve capacitated facility location subproblems,
which are notoriously difficult and for which some of the most efficient algorithms
also use Lagrangian relaxation.

3 Relaxations by Projection and Benders Reformulations

In this section, we study the Benders reformulations that can be obtained for
single-commodity and multicommodity network design models. The discussion is
limited to modeling aspects, in particular the structure of the Benders subproblems.
Additional considerations on Benders decomposition and its algorithmic features
are presented in Sect. 7. We first present a primer on Benders decomposition,
limiting ourselves to the modeling aspects that are relevant to the remainder of this
section.

3.1 A Primer on Benders Decomposition

Given a model of the form z = min{fy + cx |Ax + Dy ≥ b, x ≥ 0, y ∈ Y },
where Y is a bounded MILP feasible set, Benders decomposition first consists in
reformulating the model as follows: z = miny∈Y {fy+minx≥0{cx |Ax ≥ b−Dy} }.
For any y ∈ Y , the Benders subproblem v(y) = minx≥0{cx |Ax ≥ b − Dy} is
a linear program that can be reformulated with its dual v(y) = maxλ≥0{λ(b −
Dy) | λA ≤ c}, assuming v(y) is unbounded whenever the Benders subproblem is
infeasible for a given y ∈ Y . Thus, we obtain the following reformulation of the
model: z = miny∈Y {fy +maxλ≥0{λ(b −Dy) | λA ≤ c} }. A key advantage of this
reformulation is that the dual polyhedron D = {λ ≥ 0 | λA ≤ c} is independent of
y ∈ Y , which implies that the solutions to the dual of the Benders subproblem can be
either extreme points of D , if the Benders subproblem is feasible, or extreme rays of
D , if the Benders subproblem is infeasible. We denote by PD and RD , respectively,
the two finite sets of extreme points and extreme rays of D . Obviously, when the



40 T. G. Crainic and B. Gendron

Benders subproblem is infeasible for a given y ∈ Y , this cannot yield an optimal
solution to the original model. Hence, such y ∈ Y can be cut from the feasible
domain using the property that v(y) is bounded if and only if λ(b−Dy) ≤ 0, ∀λ ∈
RD . Each of these inequalities is called a Benders feasibility cut. Otherwise, for
any y ∈ Y that yields a feasible Benders subproblem, the corresponding optimal
solution to its dual can be found at an extreme point of D . Thus, the model can be
reformulated as follows: z = miny∈Y {fy + maxλ∈PD

{λ(b − Dy) | λ(b − Dy) ≤
0, ∀λ ∈ RD }. This last model can be simply linearized by introducing a variable
v whose value we seek to minimize and by imposing the constraints λ(b − Dy) ≤
v, ∀λ ∈ PD . Each of these inequalities is called a Benders optimality cut. Thus,
we arrive at the Benders reformulation:

z = Minimize fy + v (3.71)

Subject to λ(b −Dy) ≤ v, ∀ λ ∈PD , (3.72)

λ(b −Dy) ≤ 0, ∀ λ ∈ RD , (3.73)

y ∈ Y. (3.74)

Since the projection of the polyhedron F = {(x, y) |Ax+Dy ≥ b, x ≥ 0} onto
Y , projY (F ) = {y ∈ Y | ∃x ≥ 0, Ax + Dy ≥ b} corresponds to the polyhedron
{y ∈ Y | ∃λ ≥ 0, λA ≤ c, λ(b −Dy) ≤ 0, ∀λ ∈ RD }, the Benders reformulation
is also called reformulation by projection. Relaxations can be obtained from that
reformulation in two ways. First, by replacing the set Y with a larger set Y ⊇ Y . In
particular, if Y is obtained by relaxing the integrality constraints, the corresponding
Benders reformulation is equivalent to the LP relaxation of the original model.
Second, it is not realistic to assume that the sets PD and RD are known in advance.
Hence, a natural relaxation is to generate only a subset of the corresponding Benders
cuts. The process of gradually adding such cuts, thus tightening the relaxation, is
called Benders decomposition and is described in more details in Sect. 7.

Now, we assume that the matrix (A, b) has a decomposable structure into m =
|L | blocks, i.e., {x ≥ 0 |Ax ≥ b} = {x = (x1, . . . , xm) ≥ 0 |Alxl ≥ bl, l ∈ L }. In
general, such a structure cannot be exploited in the presence of y variables, i.e., the
constraints Ax +Dy ≥ b are no more decomposable into m blocks. By projecting
F onto Y , the Benders reformulation allows one to exploit the decomposition, since
for any given y ∈ Y , we then have {x ≥ 0 |Ax ≥ b −Dy} = {x = (x1, . . . , xm) ≥
0 |Alxl ≥ (b − Dy)l, l ∈ L }, where (b − Dy)l corresponds to the lth component
of (the constant) vector b − Dy. Thus, the Benders subproblem decomposes into
m smaller subproblems and we can define the dual polyhedron accordingly D =
D1 × · · · × Dm, where Dl = {λl ≥ 0 | λlAl ≤ cl}, l ∈ L (cl is the lth component
of c). Denoting PDl

and RDl
, respectively, the sets of extreme points and extreme

rays of Dl , we can derive the disaggregated Benders reformulation

z = Minimize fy +
∑

l∈L
vl (3.75)



3 Exact Methods for Fixed-Charge Network Design 41

Subject to λl(b −Dy)l ≤ vl, ∀ l ∈ L ,∀ λl ∈PDl
, (3.76)

λl(b −Dy)l ≤ 0, ∀ l ∈ L , ∀ λl ∈ RDl
, (3.77)

y ∈ Y. (3.78)

Of course, when the Benders subproblem has a decomposable structure, one can
still use the standard, aggregated, Benders reformulation (3.71)–(3.74). In general,
the disaggregated form (3.75)–(3.78) is preferable, for algorithmic reasons that we
further discuss in Sect. 7.

We now focus on the SCFND and, then, on the MCFND, including some special
cases of these problems. For all models, we define Y = {yij ∈ {0, 1}, (i, j) ∈ A }.

3.2 Single-Commodity Formulations

For the SCFND, the Benders subproblem is a minimum cost network flow problem
for any y ∈ Y :

Minimize
∑

(i,j)∈A
cij xij (3.79)

Subject to
∑

j∈N +
i
xij −∑j∈N −

i
xji = wi, ∀ i ∈ N , (3.80)

0 ≤ xij ≤ uij yij , ∀ (i, j) ∈ A , (3.81)

The dual of the Benders subproblem can then be written as follows, where π and
α are the vectors of the dual variables associated with constraints (3.80) and (3.81),
respectively:

Maximize
∑

i∈N
πiwi −

∑

(i,j)∈A
αijuij yij (3.82)

Subject to πi − πj − αij ≤ cij , ∀ (i, j) ∈ A , (3.83)

αij ≥ 0, ∀ (i, j) ∈ A , (3.84)

The dual polyhedron is thus defined as follows: D = {(π, α) |πi − πj − αij ≤
cij , αij ≥ 0, ∀ (i, j) ∈ A } with its sets of extreme points and extreme rays
denoted PD and RD , respectively. The Benders reformulation can then be written
as follows:

Minimize
∑

(i,j)∈A
fij yij + v (3.85)



42 T. G. Crainic and B. Gendron

Subject to
∑

i∈N πiwi −∑(i,j)∈A αijuij yij ≤ v, ∀ (π, α) ∈PD , (3.86)
∑

i∈N πiwi −∑(i,j)∈A αijuij yij ≤ 0, ∀ (π, α) ∈ RD , (3.87)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (3.88)

Benders feasibility cuts (3.87) can be simplified by deriving necessary and
sufficient conditions for a given y ∈ Y to yield a feasible solution to the Benders
subproblem. As discussed in Chap. 2, Sect. 2.1, the max-flow-min-cut theorem
guarantees the existence of a feasible solution to the SCFND if and only if the
following cut-set-based inequalities are satisfied:

∑

(i,j)∈(S ,S )

uij yij ≥ W(S ), ∀S ⊂ N , W(S ) > 0, (3.89)

where, as introduced in Chap. 2, W(S ) = ∑
i∈S wi is the net supply across any

cut S ⊆ N . These inequalities simply state that there should be enough capacity
provided by the design solution y ∈ Y to satisfy the demand across any cut.

Two special cases of the cut-set-based inequalities are worth mentioning. First, if
we restrict ourselves to single-node cuts, i.e., |S | = 1 or |S | = 1, then we obtain
the following inequalities:

∑
j∈N +

i
uij yij ≥ |wi |, ∀ i ∈ N o, (3.90)

∑
j∈N −

i
ujiyji ≥ |wi |, ∀ i ∈ N d . (3.91)

These inequalities guarantee that the design solution y ∈ Y provides enough
capacity to use the supply at each origin and meet the demand at each destination.
A second special case of cut-set-based inequalities is obtained when we relax
the capacity constraints by replacing uij with W(N o) in each of them. We
can divide the resulting cut-set inequalities by W(N o) and round up the ratio
W(S )/W(N o) ≤ 1, since the left-hand side

∑
(i,j)∈(S ,S )

yij is integer, to obtain
the following connectivity inequalities:

∑

(i,j)∈(S ,S )

yij ≥ 1, ∀S ⊂ N , W(S ) > 0. (3.92)

As discussed in Chap. 2, Sect. 2.2, these inequalities are sufficient to characterize
feasibility of y ∈ Y for the SUFND. The particular structure of the Benders
feasibility cuts, including these two special cases, can be exploited when solving
the Benders subproblem for the SCFND, as discussed further in Sect. 7.



3 Exact Methods for Fixed-Charge Network Design 43

3.3 Multicommodity Formulations

For the MCFND, the Benders subproblem is a multicommodity minimum cost
network flow problem for any y ∈ Y :

Minimize
∑

k∈K

∑

(i,j)∈A
ckij x

k
ij (3.93)

Subject to
∑

j∈N +
i
xk
ij
−∑

j∈N −
i
xk
ji
= wk

i
, ∀ i ∈ N , ∀ k ∈ K , (3.94)

∑
k∈K xk

ij
≤ uij yij , ∀ (i, j) ∈ A , (3.95)

0 ≤ xk
ij
≤ bk

ij
yij , ∀ (i, j) ∈ A , ∀ k ∈ K . (3.96)

The dual of the Benders subproblem can then be written as follows, where π , α
and β are the vectors of the dual variables associated with constraints (3.94), (3.95),
and (3.96), respectively:

Maximize
∑

i∈N

∑

k∈K
πki wi

k −
∑

(i,j)∈A

⎛

⎝αijuij +
∑

k∈K
βkij b

k
ij

⎞

⎠ yij (3.97)

Subject to πki − πkj − αij − βkij ≤ ckij , ∀ (i, j) ∈ A ,∀ k ∈ K , (3.98)

αij ≥ 0, ∀ (i, j) ∈ A , (3.99)

βkij ≥ 0, ∀ (i, j) ∈ A ,∀ k ∈ K . (3.100)

The dual polyhedron is thus defined as follows: D = {(π, α, β) |πki − πkj − αij −
βkij ≤ ckij , β

k
ij ≥ 0,∀(i, j) ∈ A ,∀k ∈ K , αij ≥ 0, ∀ (i, j) ∈ A } with its sets of

extreme points and extreme rays denoted PD and RD , respectively. The Benders
reformulation can then be written as follows:

Minimize
∑

(i,j)∈A
fij yij + v (3.101)

Subject to

∑

i∈N

∑

k∈K
πki wi

k −
∑

(i,j)∈A

(

αij uij +
∑

k∈K
βkij b

k
ij

)

yij ≤ v, ∀ (π, α, β) ∈PD , (3.102)

∑

i∈N

∑

k∈K
πki wi

k −
∑

(i,j)∈A

(

αij uij +
∑

k∈K
βkij b

k
ij

)

yij ≤ 0, ∀ (π, α, β) ∈ RD , (3.103)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (3.104)



44 T. G. Crainic and B. Gendron

In contrast with the single-commodity case, cut-set-based inequalities (see
Chap. 2, Sect. 3.2) are necessary, but not sufficient to characterize feasible solutions
to the MCFND. As a consequence, these inequalities form a proper subset of the
Benders feasibility cuts (3.103).

When there are no arc capacities on the multicommodity flows, the Benders
reformulation can be significantly simplified. Indeed, as discussed in Chap. 2,
Sect. 3.2, the following connectivity inequalities are then both necessary and
sufficient to characterize any feasible solution to the resulting MUFND:

∑

(i,j)∈(S ,S )

yij ≥ 1, ∀S ⊂ N , ∀ k ∈ K , O(k) ∈ S , D(k) ∈ S . (3.105)

In addition, the Benders subproblem decomposes by commodity k ∈ K , yielding
the following model for any y ∈ Y :

Minimize
∑

(i,j)∈A
ckij x

k
ij (3.106)

Subject to
∑

j∈N +
i
xkij −

∑
j∈N −

i
xkji = wk

i , ∀ i ∈ N , (3.107)

0 ≤ xkij ≤ dkyij , ∀ (i, j) ∈ A . (3.108)

Assuming this problem is feasible, i.e., there exists at least one path connecting
O(k) to D(k), it reduces to the computation of a shortest path between O(k) and
D(k) with nonnegative arc lengths, which can be solved efficiently by Dijkstra’s
algorithm.

The dual polyhedron associated with each k ∈ K is then defined as follows:
Dk = {(πk, βk) |πki − πkj − βkij ≤ ckij , βkij ≥ 0,∀(i, j) ∈ A , } with
its set of extreme points denoted PDk . Note that, after solving the Benders
subproblem (3.106)–(3.108), we can easily derive πk from the shortest path lengths
and then βk can be obtained by combining dual feasibility and complementary
slackness conditions. The Benders reformulation for the MUFND can be written as
follows, taking advantage of the fact that the Benders subproblem is decomposable
by k ∈ K :

Minimize
∑

(i,j)∈A
fij yij +

∑

k∈K
vk (3.109)

Subject to (3.105) and

∑

i∈N
πki wi

k −
∑

(i,j)∈A
βkij d

kyij ≤ vk, ∀ k ∈ K ,∀ (πk, βk) ∈PDk , (3.110)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (3.111)



3 Exact Methods for Fixed-Charge Network Design 45

The MUFND is thus particularly amenable to Benders decomposition, having
three features that its capacitated counterpart, the MCFND, does not share: (1)
Benders feasibility cuts can be easily generated as they reduce to connectivity
inequalities; (2) the Benders subproblem can be efficiently solved by Disjktra’s
shortest path algorithm; (3) the Benders subproblem decomposes by k ∈ K , thus
allowing us to generate multiple Benders cuts each time the Benders subproblem is
solved. Additional details on Benders decomposition for multicommodity formula-
tions can be found in Sect. 7.

4 Valid Inequalities

In this section, we present valid inequalities for the MCFND that can be used in
branch-and-cut algorithms (see Sect. 6). We focus on the MCFND, although the
concepts can be easily adapted to single-commodity network design problems, as
discussed below.

The inequalities that we study are based on cut-sets. In this context, for any
proper subset S of N , we recall the notations (S ,S ) = {(i, j) ∈ A : i ∈ S , j ∈
S } and K (S ,S ) = {k ∈ K : O(k) ∈ S , D(k) ∈ S }. In addition, given any
nonempty subset of commodities L ⊆ K , we define bL

ij = min{uij ,∑k∈L dk}
for each arc (i, j) ∈ A , which is an upper bound on the flow of the commodities in
subset L on arc (i, j). Similarly, we introduce wL

i =
∑

k∈L wk
i to represent the

net supply of the commodities in L at any node i ∈ N .
For given nonempty subsets S ⊂ N and L ⊆ K , we obtain the following

relaxation after summing flow conservation equations over these two sets:

∑

(i,j)∈(S ,S )

xL
ij −

∑

(j,i)∈(S ,S )

xL
j i =

∑

i∈S
wL
i , (3.112)

0 ≤ xL
ij ≤ bL

ij yij , ∀ (i, j) ∈ A , (3.113)

yij ∈ {0, 1}, ∀ (i, j) ∈ A , (3.114)

where xL
ij =

∑
k∈L xkij for any arc (i, j) ∈ A . It is clear that a similar relaxation

can be derived for single-commodity network design by dropping the index L and
by replacing bL

ij by the capacity uij for each arc (i, j) ∈ A . The inequalities that we
now derive from this relaxation can thus be easily adapted to this case. Specifically,
we study cover inequalities, as well as flow cover and flow pack inequalities. These
inequalities are based on further relaxations that also appear in a large number of
MILP models and are thus applicable not only to the MCFND, but also to many
other problems.



46 T. G. Crainic and B. Gendron

4.1 Cover Inequalities

For the MCFND, we can express the right-hand-side of Eq. (3.112) as follows:

∑

i∈S
wL
i =

∑

k∈L ∩K (S ,S )

dk −
∑

k∈L ∩K (S ,S )

dk.

Using (3.113) for each arc (i, j) ∈ (S ,S ) and the inequality

∑

(j,i)∈(S ,S )

xL
j i ≥

∑

k∈L ∩K (S ,S )

dk,

we obtain the inequality

∑

(i,j)∈(S ,S )

bL
ij yij ≥

∑

k∈L ∩K (S ,S )

dk. (3.115)

By restricting L to the extreme cases L = K and L = {k} such that O(k) ∈ S
and D(k) ∈ S , k ∈ K , we obtain the cut-set-based inequalities for the MCFND
introduced in Chap. 2, Sect. 3.2:

∑

(i,j)∈(S ,S )

uij yij ≥
∑

k∈K (S ,S )

dk (3.116)

and

∑

(i,j)∈(S ,S )

bkij yij ≥ dk, ∀ k ∈ K , O(k) ∈ S , D(k) ∈ S . (3.117)

Using inequality (3.115), we can adapt to the MCFND concepts originally devel-
oped for the 0-1 knapsack problem: C ⊆ (S ,S ) is a cover if the total capacity
of the arcs in (S ,S ) \ C does not cover the demand, i.e.,

∑
(i,j)∈(S ,S )\C bL

ij <
∑

k∈L ∩K (S ,S )
dk . In addition, a cover C ⊆ (S ,S ) is minimal if it is sufficient

to open any arc in C to cover the demand, i.e.,
∑

(i,j)∈(S ,S )\C bL
ij + bL

pq ≥
∑

k∈L ∩K (S ,S )
dk, ∀(p, q) ∈ C . For every cover C ⊆ (S ,S ), we then obtain

the cover inequality (CI)

∑

(i,j)∈C
yij ≥ 1. (3.118)

This inequality states that at least one arc from the cover C must be selected in
the final design solution in order to meet the demand. If C is a minimal cover, we



3 Exact Methods for Fixed-Charge Network Design 47

can apply a lifting procedure to derive a facet of the convex hull of the set defined
by (3.115) and yij ∈ {0, 1},∀(i, j) ∈ (S ,S ). We discuss further the use of this
inequality in the context of a branch-and-cut algorithm in Sect. 6.

4.2 Flow Cover and Flow Pack Inequalities

By relaxing Eq. (3.112) as follows:

∑

(i,j)∈(S ,S )

xL
ij −

∑

(j,i)∈(S ,S )

xL
j i ≤ WL

S , (3.119)

where WL
S = ∑

i∈S wL
i , we obtain a single-node fixed-charge flow structure,

defined over the variables (xL , y) restricted to the arcs in (S ,S )∪ (S ,S ). Two
classes of inequalities have been derived for such structure, the flow cover and flow
pack inequalities, which we now describe.

A flow cover (C1,C2) is defined by two sets C1 ⊆ (S ,S ) and C2 ⊆ (S ,S )

such that μ =∑(i,j)∈C1
bL
ij −

∑
(j,i)∈C2

bL
j i −WL

S > 0. The flow cover inequality
(FCI) is then defined as

∑

(i,j)∈C1

(xL
ij + (bL

ij − μ)+(1− yij )) ≤
∑

(j,i)∈D2

min{bL
j i , μ}yji +

∑

(j,i)∈C2

bL
j i

+WL
S +

∑

(j,i)∈(S ,S )\C2∪D2

xL
j i ,(3.120)

where a+ = max{0, a} and D2 ⊂ (S ,S ) \ C2.
Using the same notation as above, a flow pack (C1,C2) is defined by two sets

C1 ⊆ (S ,S ) and C2 ⊆ (S ,S ) such that μ = ∑(i,j)∈C1
bL
ij −

∑
(j,i)∈C2

bL
j i −

WL
S < 0. The flow pack inequality (FPI) is then defined as

∑

(i,j)∈C1

xL
ij +

∑

(i,j)∈D1

(xL
ij −min{bL

ij ,−μ}yij )) ≤
∑

(j,i)∈(S ,S )\C2

xL
j i

+
∑

(i,j)∈C1

bL
ij −

∑

(j,i)∈C2

(bL
j i + μ)+(1− yji), (3.121)

where D1 ⊂ (S ,S ) \ C1. The FPI can be viewed as a flow cover inequality for
the relaxation defined by the inequality

∑
(j,i)∈(S ,S )

xL
j i −

∑
(i,j)∈(S ,S )

xL
ij −

tL
(S ,S )

≤ −WL
S , where tL

(S ,S )
is a slack variable.

Under mild conditions, both the FCI and the FPI can be lifted to obtain facet-
defining inequalities for the convex hull of the set defined by (3.119) with the



48 T. G. Crainic and B. Gendron

variables (xL , y) restricted to the arcs in (S ,S ) ∪ (S ,S ). We study the
integration of these inequalities in a branch-and-cut algorithm in Sect. 6.

Part II: Enumeration Algorithms

5 Branch-and-Bound Algorithms

Branch-and-bound (B&B) algorithms are the most popular methods in MILP.
They gradually generate feasible solutions (potentially all of them) by defining
restrictions, also called subproblems. At each step, a subproblem (initially, the
original problem) is partitioned into two or more subproblems defined in such
a way that the union of their feasible domains corresponds to the set of all
feasible solutions to the current subproblem. Such an operation, called branching,
guarantees that no feasible solutions are “forgotten” along the process. For fixed-
charge network design problems, branching is typically performed in a standard
way by selecting a single binary design variable yij and by generating the two
subproblems defined by adding the constraints yij = 0 and yij = 1, respectively.
The difficulty lies in the choice of the variable to branch on, a topic that we cover in
Sect. 5.2. This whole process corresponds to the construction of a tree, where each
node is associated with a subproblem and there is an arc between two nodes, the
parent and one of its children, when this child is generated from the parent by a
branching operation.

To restrict the size of the tree, bounds on the optimal value of each subproblem
need to be computed. More precisely, for any minimization problem, an upper bound
can be obtained by computing feasible solutions to the subproblem, which are also
feasible to the original problem, given the nature of the branching operations. In
general, only the best feasible solution found so far, called the incumbent, is kept
in memory, along with its objective value Z∗. This value is used to eliminate, or
fathom, any node for which the feasible domain contains only solutions that cannot
improve upon Z∗. To test this case, a lower bound Zl(Q) on the optimal value
of every subproblem Q is computed by a suitably defined relaxation. Whenever
Zl(Q) ≥ Z∗, we can fathom node Q. Note that this also includes the cases
where the feasible domain of Q is empty, corresponding to Zl(Q) = +∞, and
where Q is solved to optimality, i.e., a feasible solution (of value Zl(Q)) for the
original problem is obtained when solving the relaxation. In Sect. 5.1, we study
some relaxations for network design problems, commonly used in B&B algorithms.

Note that we consider B&B algorithms that integrate advanced features, such as
cut and column generation, in the subsequent sections of this chapter. In addition,
heuristic methods for computing feasible solutions are mostly studied in Chap. 4.
In Sect. 9, however, we consider heuristic methods that are tightly linked to the
decomposition approaches studied in this chapter.



3 Exact Methods for Fixed-Charge Network Design 49

5.1 Relaxations

As seen in Chap. 2, Sect. 2, the LP relaxation for the SCFND reduces to a minimum
cost network flow problem with transportation costs equal to cij + fij /uij on each
arc (i, j) ∈ A . As a result, the LP relaxation can be solved efficiently at each node
of the tree. In particular, when branching on a variable yij , the node associated with
yij = 0 is evaluated by setting fij to an arbitrarily large value, while for the node
associated with yij = 1, the fixed cost fij is added to the optimal value of the
minimum cost network flow problem obtained by setting the transportation cost of
arc (i, j) to cij . In general, the solution obtained by solving the LP relaxation at
the parent node can be used to quickly reoptimize the LP relaxations of its children.
Similar LP relaxations can be obtained for special cases of the SCFND, in particular
the FCTP, for which the LP relaxation reduces to a classical transportation problem.

The situation becomes more complicated when considering the MCFND. The
weak relaxation (introduced in Chap. 2, Sect. 3) is already difficult to solve, as
it reduces to a minimum cost multicommodity network flow problem, which is
a “structured” LP of typically large size that is often solved by decomposition
techniques. To make things worse, as observed in Chap. 2, Sect. 3, the lower bound
provided by the weak relaxation is generally far from the optimal value. Hence,
the strong relaxation is used to derive tighter lower bounds. Adding all the strong
linking constraints a priori and solving the model with a state-of-the-art LP solver is
typically too slow. Adding these constraints in a dynamic way, within a cutting-plane
method, is significantly more efficient. We explore this approach further in Sect. 6.
Here, we consider an alternative approach based on the Lagrangian relaxation of
the flow conservation constraints, which we studied in Sect. 2.3. The resulting
Lagrangian subproblem can be solved efficiently, as it decomposes by arc, each
of the resulting subproblems being reduced to a continuous knapsack problem. For
this so-called knapsack relaxation, we noticed that the associated Lagrangian dual
provides the same bound as the strong relaxation.

One approach to solve the Lagrangian dual is to apply column generation to
the Dantzig–Wolfe reformulation presented in Sect. 2.3. Such an approach could be
embedded in a branch-and-price algorithm to solve the MCFND, as explained in
Sect. 8. Here, we outline a B&B algorithm based on a subgradient method to solve
the Lagrangian dual.

Inspired by the classical gradient method for differentiable convex optimization,
a subgradient method is an iterative algorithm for solving non-differentiable convex
optimization problems, of which the Lagrangian dual is a special case. In this
context, a subgradient method amounts to updating the values of the Lagrange
multipliers by taking a step in the direction of a subgradient of the Lagrange
function, which is easily computed by evaluating, at the optimal solution of the
Lagrangian subproblem, the difference between the two sides of the constraints
relaxed in a Lagrangian way.

For the knapsack relaxation, the subproblem for each arc (i, j) ∈ A can be
written as follows, where πki , i ∈ N , k ∈ K , are the Lagrange multipliers



50 T. G. Crainic and B. Gendron

associated with the flow conservation equations:

Minimize vij (π, yij ) = fij yij +
∑

k∈K
(ckij + πki − πkj )xkij (3.122)

Subject to
∑

k∈K xkij ≤ uij yij , (3.123)

0 ≤ xkij ≤ bkij yij , ∀ k ∈ K , (3.124)

yij ∈ {0, 1}. (3.125)

By solving the continuous knapsack problem obtained when we fix yij = 1, we
compute vij (π, 1) and compare it with vij (π, 0) = 0 to derive the optimal value
vij (π) = min{vij (π, 0), vij (π, 1)}. If vij (π) = vij (π, 1), the optimal solution is
yij = 1, with xij given by the solution of the continuous knapsack problem, and
otherwise, the optimal solution is yij = xij = 0.

Given an optimal solution (x, y) to the Lagrangian subproblem (obtained by
solving this subproblem for all arcs), a subgradient (of the Lagrange function at
the point π = (πki )

k∈K
i∈N ) is a vector for which each component, corresponding to

i ∈ N , k ∈ K , is computed as

∑

j∈N +
i

xkij −
∑

j∈N −
i

xkji − wk
i .

By taking a step in that direction, the Lagrange multipliers are updated and the
next iteration starts by solving the Lagrangian subproblem with the new multipliers.
The procedure stops when the current subgradient assumes value 0, meaning that
none of the relaxed constraints is violated by the current solution to the Lagrangian
subproblem. Unfortunately, that almost never happens for problem instances of even
moderate size, even though we can show the theoretical convergence of the method
under reasonable assumptions on the sequence of step sizes used to update the
multipliers at each iteration. Hence, the subgradient method typically stops after
a maximum number of iterations is achieved. In practice, it can be considered as a
(relatively fast) heuristic for solving the Lagrangian dual.

At every iteration of the subgradient method, we obtain a lower bound on the
optimal value of the MCFND, which is computed as:

Zl(π) =
∑

(i,j)∈A
vij (π)−

∑

i∈N

∑

k∈K
πki w

k
i

At any given node of the tree, if this lower bound is larger than or equal to
the incumbent value Z∗, the subgradient procedure is stopped and the node is
fathomed. Since the subgradient method does not necessarily produce a non-
decreasing sequence of lower bounds, we keep the best lower bound, along with
the corresponding vector of Lagrange multipliers. When branching on a variable



3 Exact Methods for Fixed-Charge Network Design 51

yij , these multipliers can be used to initialize the children nodes. The child node
corresponding to yij = 0 is then easily evaluated by setting all variables to
0 in the solution of the Lagrangian subproblem, with vij (π) = 0. The child
node corresponding to yij = 1 is evaluated by solving the continuous knapsack
problem (3.122)–(3.125) with the additional constraint yij = 1. The subgradient
procedure can be resumed at each node, in order to solve (approximately) the
Lagrangian dual of the restricted subproblem defining each B&B node.

In order for this B&B algorithm to converge, it is necessary to solve to optimality
the multicommodity minimum cost network flow problem obtained when all design
variables are fixed to 0 or 1. Otherwise, because the subgradient method is a
heuristic for the Lagrangian dual, it is possible that it is terminated without reaching
convergence, even when all design variables are fixed. In addition, to boost the
performance of the B&B algorithm, one should integrate Lagrangian heuristics, at
least at the root node of the B&B tree, a topic that we cover in Sect. 9.2. The other
features that contribute to the performance of the method include the branching and
filtering techniques, which we study next.

Another approach is based on the Lagrangian relaxation of the linking constraints
(see Sect. 2.2), giving rise to Lagrangian subproblems that decompose by com-
modities and can be solved as shortest path problems. The resulting shortest path
relaxation is used in a branch-and-price algorithm presented in Sect. 8.

5.2 Branching

Branching rules, both for general MILPs and for particular structures, have been the
object of intense research over the last five decades. The state-of-the-art is based on
the principle that, among several candidate variables to branch on, we should choose
the one that contributes to the largest weighted increase in the lower bound, a term
that we define precisely as follows. We are given a parent node with a computed
lower bound Zl and a set of candidate binary variables C . For each variable y in
C , we compute estimates q0 and q1 of how much the lower bound would increase
when adding y = 0 and y = 1, respectively. The weighted increase is then defined
as (1 − μ)min{q0, q1} + μmax{q0, q1}, where μ is a parameter (typically set to a
small value). Choosing the variable in C that achieves the largest weighted increase
generally yield the best branching rules, which then differ in the way they compute
the estimates q0 and q1.

In pseudo-cost branching, estimates are obtained by keeping track of the actual
increases observed when branching on each variable and by computing average
increases as estimates. The problem with this rule is that these estimates are totally
unknown at the beginning of the tree exploration and quite uncertain for a while. It
is only after accumulating a number of actual increases that these estimates become
reliable, but poor branching decisions could have been made by then. In strong
branching, estimates are computed by a (dual-based) heuristic. For example, if the
lower bound at the parent node is computed by solving a linear program with



52 T. G. Crainic and B. Gendron

the simplex method, the estimates are obtained by performing the dual simplex
method for a limited number of iterations. The problem with this rule is that the
procedure can be computationally heavy, although it generally produces smaller
trees, unfortunately not always compensated by the large amount of time spent in
branching. Reliability branching combines the advantages of the two former rules,
pseudo-cost branching and strong branching. Unless “enough” actual increases
have been computed for any candidate variable, the estimates for that variable
are computed as in strong branching. Otherwise, the pseudo-cost estimates are
considered reliable and used instead. Further refinements can contribute to the
superior performance of the approach, in particular techniques to restrict the set
of candidate variables for which we have to compute strong branching estimates.

A successful adaptation of these branching rules, typically applied to general
MILPs, to fixed-charge network design problems clearly depends on the relaxations
used at every node of the tree. To characterize a B&B node, we partition the set of
arcs A into three categories: the closed arcs A0, with design variables fixed to 0;
the open arcs A1, with design variables fixed to 1; and the free arcs A01, with design
variables not yet fixed.

For the SCFND, a minimum cost network flow problem is solved, generating
an optimal solution x from which we can derive the optimal solution in terms of
the design variables: yij = xij /uij , for each (i, j) ∈ A01. As usual, the set of
candidate variables is restricted to those that assume a fractional value, i.e., such that
0 < yij < 1, (i, i) ∈ A01, or equivalently, 0 < xij < uij , (i, j) ∈ A01. Assume
that x is computed by the network simplex method, which implies that x is a primal
basic feasible solution. Since adding any of the constraints yij = 0 or yij = 1
can be achieved by adjusting the transportation cost of arc (i, j), x is also a primal
basic feasible solution for each of these two restricted subproblems. This means
that we can compute strong branching estimates by reoptimizing efficiently with the
network simplex method. Adapting reliability branching to this B&B algorithm for
the SCFND is then straightforward.

We now turn our attention to the MCFND, for which we have proposed a
Lagrangian-based B&B algorithm that makes use of subgradient optimization to
compute the lower bounds at each node. In that case, all free variables are considered
candidates for branching, since there is no fractional LP solution. The strong
branching estimates can be obtained by performing subgradient optimization for
a “small” number of iterations, using as input the best Lagrange multipliers from
the current node. The procedure should be ran long enough to give it a chance
to record an increase in the lower bound due to branching. As it can be costly
to evaluate each candidate variable in this way, especially near the root node of
the tree, when no variables are fixed, it is important to reduce the number of
strong branching evaluations without compromising the overall performance of the
branching scheme. In standard reliability branching, this is done by first sorting the
candidate variables according to their pseudo-cost estimates, typically initialized
with their cost and then gradually updated as actual increases are computed by
strong branching evaluations. Here, we can use the Lagrangian subproblem instead
to perform this task.



3 Exact Methods for Fixed-Charge Network Design 53

Looking back at the subproblem for each arc (i, j) ∈ A , defined by (3.122)–
(3.125), one can observe that, if vij (π, 1) < 0, then yij = 1, otherwise, yij = 0.
In the first case, if we impose the constraint yij = 0, then the lower bound
would increase by at least −vij (π, 1), while in the second case, if we impose
the constraint yij = 1, the lower bound would increase by at least vij (π, 1). In
other words, |vij (π, 1)| can be seen as a weighted increase (with μ > 0) and be
used to choose only the “best” candidate variables for strong branching evaluations.
Specifically, the free arcs can be sorted in non-increasing order of |vij (π, 1)|. Then,
strong branching evaluations are performed in this order, but stopped as soon as the
best candidate remains the same for λ consecutive strong branching evaluations.
Typically, λ is a small value, say 4, so that strong branching evaluations are
performed only for a fraction of the candidate variables. For example, let us assume
that λ = 4 and that the second candidate in the initial order is better (according
to strong branching evaluations) than the first, but also better than the next four
candidates. Then, only five strong branching evaluations would be performed.

5.3 Filtering

Filtering methods are applied at every node of the tree. The general idea is to exclude
solutions that cannot be optimal, given the current status of the design variables, i.e.,
the partition of the set of arcs into A0, A1 and A01. Special types of filtering are
worth noting: bound reduction consists in decreasing (increasing) the upper (lower)
bound on a single variable, while variable fixing, a special case of bound reduction,
assigns a value to a single variable.

A common approach in filtering methods is to deduce from the addition of
a constraint C the impossibility of finding an optimal solution that satisfies
simultaneously C and the constraints that define the current B&B node. Hence,
constraint ¬C , the complement of C , can be added to cut all solutions that satisfy
C . To infer that the addition of C cannot lead to an optimal solution, we generally
compute a lower boundZl(C ) on the optimal value of the restricted problem derived
from the addition of C . If Zl(C ) ≥ Z∗, we can conclude that no optimal solution
can be found when constraint C is added. A particular case of this test arises when
we can deduce that no feasible solution can be obtained when C is added, since this
case can be reduced to Zl(C ) = +∞.

For the SCFND, the reduced costs rij derived from the LP relaxation can be
used to perform variable fixing. Indeed, for each non-basic variable xij at value
xij ∈ {0, uij } and such that (i, j) ∈ A01, we have rij ≤ 0 if xij = uij , and
rij ≥ 0 if xij = 0. If we add the constraint yij = (1 − yij ), where yij = xij /uij ,
then Zl + |rij |uij is a lower bound on the optimal value of the resulting problem,
using standard LP duality theory. Therefore, if Zl + |rij |uij ≥ Z∗, then we can fix
yij to value yij . In addition, we can perform bound reduction and replace uij by
vij = (Z∗ − Zl)/rij , whenever xij = 0 and rij > 0.



54 T. G. Crainic and B. Gendron

For the MCFND, LP-based reduced costs are not available in our Lagrangian-
based B&B algorithm. However, the values vij (π, 1) can be interpreted as
Lagrangian reduced costs associated with the variables yij . Indeed, for each
(i, j) ∈ A01, as observed in Sect. 5.2, Zl + |vij (π, 1)| is a lower bound on the
restricted problem obtained by adding the constraint yij = 1 − yij . Consequently,
if Zl + |vij (π, 1)| ≥ Z∗, then we can fix yij to value yij .

We can also perform filtering based on feasibility. For instance, we can fix flow
and design variables based on connectivity tests. Indeed, when, for some commodity
k, an arc (i, j) does not belong to any path between O(k) and D(k), the upper
bound bkij associated with variable xkij can be fixed to 0. Similarly, when, for some
commodity k, an arc (i, j) belongs to all paths between O(k) and D(k), the lower
bound associated with variable xkij can be fixed to dk . In addition, an arc (i, j)

can be closed when it does not belong to any path between O(k) and D(k) for
all commodities k. Conversely, an arc (i, j) can be opened when it belongs to all
paths between O(k) and D(k) for at least one commodity k. This last test prevents
the occurrence of infeasible subproblems due to a lack of connectivity. These tests
can be easily performed using graph traversal algorithms. They can be triggered
when some arcs have been closed since the last time the tests were performed. They
can also be performed at the root node of the tree in order to simplify the problem
instance.

6 Branch-and-Cut Algorithms

Branch-and-cut (B&C) algorithms are special cases of B&B that integrate a cutting-
plane procedure in the computation of relaxation bounds. Given a set of valid
inequalities, such an iterative procedure alternates between the solution of an LP
relaxation and the addition of some of these valid inequalities to the LP relaxation.
After solving the LP relaxation, if a fractional solution is obtained, then at least one
valid inequality that cuts off (is violated by) that solution is added to the formulation
and the next iteration is triggered. This process stops when an integer solution
is obtained or when no more valid inequalities violated by the current fractional
solution can be found. Such a cutting-plane procedure can be called at every node
or at specific nodes of the tree, but is typically always invoked at the root node, since
the cuts then added to the LP relaxation are propagated to every node of the tree.

The set of valid inequalities considered in a cutting-plane procedure is often
partitioned into subsets, called classes of valid inequalities. For each class of
valid inequalities, the separation problem is solved (either with a heuristic or an
exact method): given a fractional solution, either at least one (ideally, the most)
violated valid inequality is found or it is determined that there are no violated valid
inequalities. Cuts identified through separation are often related to restrictions of
the original problem obtained by fixing subsets of variables. In order to generate
inequalities that are valid without any restrictions, a lifting procedure is applied. We



3 Exact Methods for Fixed-Charge Network Design 55

now study separation and lifting procedures used in a cutting-plane method for the
MCFND. This is a typical example of a difficult network design problem solved
by a B&C algorithm that makes use of several classes of valid inequalities, namely
strong linking, cover, flow cover and flow pack inequalities. In the remainder of this
section, we use (x, y), with the appropriate indices, to denote the current fractional
LP solution.

6.1 Separation and Lifting

Although there is a polynomial number, O(|A | × |K |), of strong linking inequal-
ities, adding all of them to the LP relaxation yields large models that frequently
exhibit degeneracy. Only a small number of these inequalities are typically added
using a cutting-plane procedure. We note that the separation of strong linking
inequalities is trivial, as it suffices to scan each arc and each commodity to identify
all violated inequalities. For the cut-set-based inequalities introduced in Sect. 4,
we assume a cut-set (S ,S ) is given (see Sect. 6.2 for a description of cut-set
generation procedures).

In our discussion on separation and lifting for cover inequalities, we use L = K
for the sake of simplicity, but we note that the generalization to any subset L ⊆ K
is easy. To simplify the notation, we then use dS =

∑
k∈K (S ,S )

dk . To generate a
violated cover inequality (CI), we first determine, a priori, two subsets C1 (the open
arcs) and C0 (the closed arcs) in (S ,S ) that satisfy the condition

∑

(i,j)∈(S ,S )\(C1∪C0)

uij ≥ dS −
∑

(i,j)∈C1

uij > 0.

The sets C1 and C0 are typically obtained by an iterative procedure that makes use
of the current LP solution y. At each iteration, such a procedure attempts to close
an arc (i, j) with a small value yij such that the residual capacity after closing the
arc still covers the residual demand, or to open an arc (i, j) with a large value yij
such that there is still some residual demand to cover after opening the arc (i, j).

We then define the restricted cut-set inequality induced by C1 and C0 as

∑

(i,j)∈(S ,S )\(C1∪C0)

uij yij ≥ dS −
∑

(i,j)∈C1

uij .

To define a cover C for this restricted cut-set inequality, a heuristic can be used
that considers the arcs in non-decreasing order of yij , thus attempting to exclude
as much as possible from the set C the arcs with large yij , in order to increase the
chance of finding a violated inequality. Once a cover is obtained, it is easy to extract
a minimal cover from it, by removing some of the arcs until the cover becomes
minimal. Once the cover C is constructed, since the induced inequality is restricted
to open arcs in C1 and closed arcs in C0, lifting (down for the variables in C1 and up



56 T. G. Crainic and B. Gendron

for the variables in C0) is necessary to ensure its validity for the original problem.
Note that, even if the identified CI is not violated, it is possible to find a violated one
through the lifting procedure.

Lifting a CI consists in determining coefficients γij for all (i, j) ∈ (S ,S ) \ C
such that

∑

(i,j)∈(S ,S )\C
γij yij +

∑

(i,j)∈C
yij ≥ 1 +

∑

(i,j)∈(S ,S )\(C∪C0)

γij

is valid for the original problem. The lifting procedure is applied sequentially,
meaning that the variables are lifted one after the other in some predetermined
order. For each (i, j), the corresponding lifting coefficient γij can be determined
by solving a 0-1 knapsack problem. The quality of the resulting lifted inequality
depends on the order in which the variables are lifted.

To generate flow cover and flow pack inequalities, we use two simpler valid
inequalities. The first one is the single-arc flow pack inequality (SFPI), defined as:

∑

(i,j)∈C ′1
xL
ij + xL

rt ≤ (
∑

(j,i)∈C ′2
bL
j i +WL

S )yrt +

∑

(j,i)∈(S ,S )\C ′2
xL
j i + (1− yrt )

∑

(i,j)∈C ′1
bL
ij , (3.126)

where (r, t) ∈ (S ,S ), C ′1 ⊆ (S ,S ) \ {(r, t)} and C ′2 ⊆ (S ,S ). The second
valid inequality is called the single-arc flow cover inequality (SFCI):

∑

(i,j)∈C ′1
xL
ij + xL

rt ≤ (
∑

(j,i)∈C ′2
bL
j i +WL

S )(1− yrt )+

∑

(j,i)∈(S ,S )\C ′2
xL
j i + yrt

∑

(i,j)∈C ′1
bL
ij , (3.127)

where (r, t) ∈ (S ,S ), C ′1 ⊆ (S ,S ) and C ′2 ⊆ (S ,S ) \ {(r, t)}.
The interest of these single-arc inequalities is that their separation problems are

simple, in contrast with the FCI and the FPI, which are hard to separate. Indeed,
given an arc (r, t) ∈ (S ,S ), separating the SFPI consists in setting

C ′1 = {(i, j) ∈ (S ,S ) \ {(r, t)} | xL
ij > (1− yrt )bL

ij },

C ′2 = {(j, i) ∈ (S ,S ) | bL
j i yrt < xL

j i }.

For each subset S , the separation procedure thus scans each arc in (S ,S ), trying
to find a violated SFPI associated with this arc. If S consists of a singleton



3 Exact Methods for Fixed-Charge Network Design 57

containing the origin of commodity k, we set L = {k} and C ′2 = ∅, since
in this case there is no flow of commodity k coming into r . Otherwise, we set
L = {k ∈ K |xkrt > 0}, in order to maximize the left-hand side of (3.126) and
increase the chance of a violation. The separation procedure for the SFCI is derived
in a similar way.

Once a violated SFPI is obtained, we lift the inequality to obtain an FPI. First,
we set C1 = C ′1, C2 = C ′2 and μ = μ′. Then, we initialize D1 = {(r, t)} and add to
D1 each arc (i, j) ∈ (S ,S ) \ C1 such that xL

ij − min{bL
ij ,−μ}yij > 0. Finally,

we lift the resulting FPI using a sequence-independent lifting procedure: we lift all
variables in C1 and the variables in (S ,S ) \ C2 such that yij = 0. In addition,

if μ′ + bL
rt > 0, we lift the violated SFPI to generate a violated FCI. We first add

(r, t) to C ′1 to obtain C1, set C2 = C ′2 and compute μ = μ′ + bL
rt . Then, for each

arc (i, j) ∈ C1 such that bL
ij > μ, we add to the left hand side of the inequality

the term (bL
ij − μ)(1 − yij ). We then set D2 = {(j, i) ∈ (S ,S ) \ C2 | xL

j i >

min{bL
j i , μ}yji}. Finally, we lift the resulting FCI as follows: we lift all variables in

C2 and the variables in (S ,S ) \ C1 such that yij = 0.
We proceed similarly when a violated SFCI is generated. First, we lift the

inequality to derive a violated FCI. To this end, we set C1 = C ′1, C2 = C ′2 and
μ = μ′, and then proceed as above to obtain a lifted FCI. If μ′ − bL

rt < 0, we also
lift the violated SFCI to generate a violated FPI, by setting C1 = C ′1, adding (r, t) to
C ′2 to obtain C2 and computing μ = μ′−bL

rt ; then, we proceed as above to generate
a lifted FPI.

6.2 Computational Issues

In any B&C algorithm, the computational effort required to generate cuts must
translate into significant improvement in the relaxation bound, in particular at the
root node of the tree. Typically, “many” cuts are generated at the root node of the
tree, possibly by keeping them in memory through a so-called cut pool, while “few”
additional cuts are generated at other nodes, especially the cuts that can be generated
quickly and that provide significant improvement to the relaxation bound. In our
case, the strong linking inequalities display such features: they are easy to generate
and they improve, often significantly so, the lower bound. Hence, they should be
generated at all nodes of the tree and before the cut-set-based inequalities. The latter
are more expensive to generate and their generation should be performed only at the
root node. In addition, these inequalities depend on the generation of cut-sets.

Single-node cut-sets that consists of one node i (origin or destination of at least
one commodity) are easy to generate and should always be used to derive cut-
set-based inequalities. Extending to subsets S ⊂ N that contain more than one
element is not trivial. Some key observations can be useful. First, if we consider
constructing subsets of cardinality l > 1 from a subset of cardinality l − 1, the



58 T. G. Crainic and B. Gendron

new subsets must add nodes that are connected by at least one arc to the nodes in
the subset of cardinality l − 1 to avoid generating inequalities that are aggregations
of previously generated ones. For example, given that we first consider single-node
cut-sets, we can then generate subsets S ⊂ N of cardinality 2 by merging two
single-node subsets such that there is at least one arc between the two nodes. The
same principle applies when building subsets of cardinality 3 or more. Second, it is
possible to strengthen the cut-set-based inequality (3.115) with the following metric
inequality:

∑

(i,j)∈(S ,S )

bL
ij yij ≥

∑

k∈L ∩K (S ,S )

πkS dk, (3.128)

where πkS is the smallest number of arcs in (S ,S ) in any path between O(k)

and D(k). For a given subset S such that O(k) ∈ S , computing πkS is easy, as
it reduces to the computation of a shortest path between O(k) and D(k) with arc
lengths equal to 0, except for arcs in (S ,S ), which are given arc lengths of 1.

Thus, when generating cut-set-based inequalities at the root node, a reasonable
strategy is to generate cut-sets based on subsets of N of cardinality l, where l is
relatively “small” (say, 2 or 3), while considering the two principles stated above
(limiting ourselves to the extreme cases L = K and L = {k}, k ∈ K ). In this
way, we can pre-generate several cut-sets, along with their corresponding metric
inequalities, store them in memory, and then use them to generate violated cover,
flow cover and flow pack inequalities. To generate cut-set-based inequalities for
subsets of N of larger sizes, we can resort to approaches inspired by metaheuristics
(studied in Chap. 4 in the context of deriving “good” feasible solutions to network
design problems). Such approaches typically start with a construction procedure,
which provides an initial partition of N into subsets of a given cardinality. They
then perform a local search procedure that moves nodes among subsets around
cycles, thus preserving the cardinality of the generated subsets of N .

In addition to the generation of cuts at the different nodes of the tree, another
fundamental issue in any B&C algorithm is its ability to reoptimize, i.e., to reuse
information from the ancestor nodes to speed up the computation at the current node.
This is typically achieved in two ways. First, by using a hybrid search strategy that
combines the depth-first and best-first search approaches. After branching, the next
node to evaluate is the child that gives the smallest estimated lower bound increase
among the two generated children. The other child is stored in the node pool. When
backtracking, we select the node that has the smallest lower bound estimate among
all the nodes in the node pool. Second, when a node is handled immediately after
its parent, the LP relaxation is simply reoptimized after taking into account the
additions made by branching. When a node is obtained from backtracking, the LP
relaxation is built by considering the LP solution from its parent and by adding cuts
violated by this solution. This can be done efficiently, not only for the strong linking
inequalities, but also for the cover, flow cover and flow pack inequalities, since the
latter are generated only at the root and stored in the cut pool.



3 Exact Methods for Fixed-Charge Network Design 59

7 Benders Decomposition

In its simplest form, Benders decomposition is a cutting-plane algorithm that
solves the Benders reformulation. At each iteration, a relaxation of the Benders
reformulation, called the master problem, is solved, providing a lower bound and a
solution y, which is then given as input to the Benders subproblem. If the Benders
subproblem is infeasible, a Benders feasibility cut is generated and added to the
master problem. Otherwise, we have identified a feasible solution x to the Benders
subproblem, and hence a feasible solution (x, y) to the overall problem. The solution
(x, y) is stored as the incumbent if its objective value improves upon that of the best
known feasible solution. Then, either a Benders optimality cut is found and added to
the master problem, or the relaxation bound and the incumbent objective value are
equal, in which case the algorithm stops. This stopping test is necessarily satisfied
at some point, since the master problem is a reformulation that contains a finite set
of linear inequalities, i.e., the number of generated Benders cuts is finite.

This simple algorithmic scheme has several limitations that we now address in
the case of network design problems. Specifically, we first study how to solve the
LP relaxation of the Benders reformulation and how this simple feature can leverage
the performance of Benders decomposition. Then, we see how the iterative cutting-
plane algorithm outlined above can be modified to fit within a B&C framework.
Finally, we discuss several computational issues that need to be addressed to speed
up Benders decomposition.

7.1 Linear Programming Relaxation

When applying Benders decomposition, it is useful to start by solving the LP
relaxation of the Benders reformulation obtained by replacing the constraint y ∈ Y
by y ∈ Y . This LP relaxation can be solved by the cutting-plane algorithm
presented above. Indeed, after solving the master problem (then, an LP model of,
typically, small size), the solution y is given as input to the Benders subproblem.
Then, either a Benders cut is generated and added to the LP master problem, or
the method is stopped because the relaxation bound and the incumbent objective
value are equal, where the incumbent is the best known feasible solution to the
LP relaxation. So, when the stopping criterion is verified, the LP relaxation of the
Benders reformulation, which is the same as the Benders reformulation of the LP
relaxation of the original model, has been solved.

Applying Benders decomposition to solve the LP relaxation is interesting, as
it allows to generate (potentially many) Benders cuts without having to solve the
integer relaxed master problem to optimality. In fact, any y ∈ Y can be given as input
to the Benders subproblem to generate Benders cuts. Since these cuts are expressed
in terms of the extreme points and extreme rays of the dual polyhedron, which does
not depend on y, the cuts generated when solving the LP relaxation might be useful



60 T. G. Crainic and B. Gendron

and might then reduce the computational time needed to generate the cuts when
solving the MILP model with the constraint y ∈ Y .

The LP relaxation of the Benders reformulation for the SCFND can be solved
efficiently. The master problem can be initialized with single-node cut-set-based
inequalities (3.90)–(3.91), which are valid for the LP relaxation of the original
model. For any solution y ∈ Y to the master problem, we can exploit the particular
structure of the Benders feasibility cuts, presented in Sect. 3.2, to solve efficiently
the Benders subproblem. We first define the support graph G (y) = (N ,A (y)),
where A (y) = {(i, j) ∈ A | yij > 0}. First, the violation of connectivity
inequalities (3.92) is verified by a graph traversal algorithm that identifies all
connected components of the support graph G (y). If at least one destination is
disconnected from all origins, then a violated connectivity inequality is identified,
where S corresponds to the connected component associated with such destination.
Second, if there are no violated connectivity inequalities, the violation of cut-set-
based inequalities (3.89) can be verified by solving a maximum flow problem with
capacities uij yij on each arc (i, j) in the support graph augmented with a source s
(or super-origin), connected to each origin i ∈ N o by an arc (s, i) with capacity
|wi |, and a sink t (or super-destination), connected to each destination i ∈ N d by
an arc (i, t) with capacity |wi |. If the capacity provided by y ∈ Y is insufficient,
the solution to this maximum flow problem identifies a cut-set (S ,S ) for which
the corresponding inequality is violated. Third, if there are no violated cut-set-based
inequalities, then the Benders subproblem is necessarily feasible, by the max-flow-
min-cut theorem. In that case, the Benders subproblem is solved, typically by a
specialized minimum cost network flow algorithm, to identify a violated Benders
optimality cut (3.86).

A similar approach for solving the LP relaxation for the MCFND can be adopted,
but key differences arise, showing the higher complexity of multicommodity
network design. The master problem can be initialized with cut-set-based metric
inequalities using subsets of N of “small” cardinality, in the same way as in the
initialization of the B&C root node described in Sect. 6.2. Then, for any solution
y ∈ Y to the master problem, the violation of connectivity inequalities (3.105) can
be verified by a graph traversal algorithm that identifies all connected components
of the support graph G (y). If any destination is disconnected from its origin,
then a violated connectivity inequality is identified, where S corresponds to the
connected component associated with that destination. If there are no violated
connectivity inequalities, we cannot solve a single maximum flow problem to
verify the feasibility of the Benders subproblem for y, as we did for the SCFND.
We can, however, solve one maximum flow problem per commodity to quickly
identify Benders feasibility cuts of the form (3.117) without solving immediately
the multicommodity Benders subproblem. To this end, for each commodity k ∈ K ,
O(k) andD(k) are, respectively, the source and the sink in a maximum flow problem
on the support graph with capacities bkij yij on each arc (i, j). The solution to this
maximum flow problem can be used to identify a violated cut-set-based inequality of
the form (3.117). If no violated cut-set-based inequalities can be found in this way,
the Benders subproblem is not necessarily feasible. We have to solve the resulting



3 Exact Methods for Fixed-Charge Network Design 61

multicommodity minimum cost network flow problem to identify a violated Benders
cut, either an optimality one, (3.102), or a feasibility one, (3.103).

When solving the LP relaxation of the MUFND, several simplifications can be
implemented, since the Benders feasibility cuts reduce to connectivity inequal-
ities (3.105). A subset of these inequalities, corresponding to subsets of N of
“small” cardinality, can be generated to initialize the master problem. Given a
solution y ∈ Y to the master problem, the violation of connectivity inequalities can
be verified in the same way as for the MCFND. If no such violated inequalities are
found, we cannot conclude that the Benders subproblem is feasible, since there are
capacities dkyij on each arc (i, j) for each commodity k, and 0 < dkyij < dk

whenever yij has a fractional value. In that case, we can, however, solve one
maximum flow problem per commodity k (with capacities dkyij on each arc (i, j)),
in a similar way as we did for the MCFND, to identify further violated connectivity
inequalities. If no such inequalities are found, we can conclude, contrary to the
situation with the MCFND, that the Benders subproblem is feasible. The latter can
then be solved as |K | minimum cost network flow problems with capacities dkyij
on each arc (i, j) for each commodity k, which can be simplified to the computation
of shortest paths by Dijkstra’s algorithm in the case where y ∈ Y . Because the
Benders subproblem decomposes by commodity, we can then generate up to |K |
Benders optimality cuts of the form (3.110) at each iteration. This is in contrast with
the MCFND, for which a single Benders cut is generated after solving the Benders
subproblem.

7.2 Branch-and-Benders-Cut Algorithms

While the iterative Benders decomposition method is well-adapted to solve the LP
relaxation, it has serious drawbacks when it is used to solve the MILP model. In
particular, each iteration involves solving the relaxed master problem, which is an
MILP model where only a subset of the Benders cuts have been generated. One can
solve this MILP with a B&C algorithm, but that would imply calling this algorithm
several times. While a fair amount of information from previous iterations could be
used to initialize the B&C algorithm at a given iteration, the setup time would still
be significant and the re-optimization capabilities limited. For this reason, Benders
decomposition is mostly used within the framework of a single B&C algorithm. At
the root node, the LP relaxation is solved with the cutting-plane procedure defined
by the iterative Benders decomposition presented in Sect. 7.1. Using the terminology
introduced when studying B&C algorithms, one can see the Benders subproblem as
the separation problem for the class of valid inequalities defined as Benders cuts.
At other nodes than the root, Benders cuts are typically generated only when an
integer solution is found, since the corresponding node can be fathomed only if
no violated Benders cuts can then be found. The resulting B&C algorithm is often
called Branch-and-Benders-Cut (B&BC) to differentiate it from a “standard” B&C
method.



62 T. G. Crainic and B. Gendron

We now illustrate this approach for the MCFND and contrast it with the B&C
algorithm presented in Sect. 6 for the same problem. At the root node, we solve
the LP relaxation of the Benders reformulation, as explained in Sect. 7.1. Note
that this reformulation does not contain the flow variables as these have all been
projected out and are handled in the Benders subproblem. The transportation costs
are now captured in the single variable v, whose variation is controlled by the
Benders optimality cuts. At nodes where an integral solution is found, Benders
cuts can be generated in the same way as at the root node, i.e., first, by verifying
connectivity, second, by solving single-commodity maximum flow problems, and
third, by solving the multicommodity flow problem. Note that the solution to a
maximum flow problem could still generate a violated inequality, even if the solution
is integral, since the capacities bkij on some arcs (i, j) can be smaller than dk for
some commodity k.

When comparing the B&BC and B&C algorithms, we note that two classes of
valid inequalities used in the B&C method of Sect. 6 are easy to consider in the
B&BC algorithm. First, the strong linking inequalities are added explicitly to the
Benders subproblem, since when y is fixed, they become simple upper bounds
on the flow variables. The information they contain is “captured” by the dual
variables β that appear in the Benders cuts (3.102)–(3.103). Second, the cover
inequalities involve only the design variables and can therefore be added to the
master problem. They can be seen as strengthened cut-set-based inequalities that
exploit the integrality of the design variables to cut fractional solutions. The flow
cover and flow pack inequalities cannot be easily integrated in the B&BC algorithm,
since their addition to the Benders subproblem would significantly complicate the
latter, contrary to the strong linking inequalities.

In the special case of the MUFND, this B&BC algorithm has to be adapted to
exploit the structure of the problem. At the root node, the LP relaxation of the
Benders reformulation is solved as discussed in Sect. 7.1. Observe that, in this
reformulation, the transportation costs per commodity k are captured in the variable
vk , reflecting the separability of the Benders cuts and subproblems. At nodes where
an integer solution is found, the generation of Benders cuts can be significantly sim-
plified. Indeed, verifying that there are no violated connectivity inequalities (3.105)
is sufficient to conclude that the Benders subproblem is feasible. Also, any feasible
Benders subproblem can be solved with |K | applications of Dijkstra’s shortest
path algorithm (|N | applications of that algorithm when transportation costs do
not depend on the destinations), without resorting to maximum flow or minimum
cost network flow algorithms, as is the case when y is a fractional solution at the
root node.

7.3 Computational Issues

While the disaggregated Benders reformulation has the clear advantage of allowing
the generation of multiple Benders cuts at each iteration, this feature might result
in a very large number of added cuts and thus in an increase of the computational



3 Exact Methods for Fixed-Charge Network Design 63

time needed to solve the master problem. A simple workaround is to solve only a
subset of the separable Benders subproblems at each iteration. Consider the example
of the MUFND, where the solution of the LP relaxation at the root node involves
maximum flow and minimum cost network flow computations. Instead of solving
all |K | subproblems, we could solve only a proportion of these, say approximately
|K |/t , where t is a positive integer, chosen in such a way that within t iterations of
the method, all commodities are “covered.”

Degeneracy is a major computational issue in Benders decomposition. In par-
ticular, a degenerate Benders subproblem implies that there are several optimal
dual solutions. It is important to select among those the one that provides the
“deepest” cut. This idea is formalized into the notion of Pareto-optimal cut, which
is a cut that is not dominated by any other cut. To generate such a cut, one may
solve an auxiliary subproblem, in addition to the dual Benders subproblem. The
constraints of this auxiliary subproblem define the face of optimal dual solutions,
while the objective maximizes the difference between the left-hand side of a Benders
optimality cut evaluated at a so-called core point y0, which, if appropriately chosen,
guarantees to find a Pareto-optimal cut. While the details of this topic are beyond
the scope of Chap. 3, we mention it here, because finding Pareto-optimal cuts
efficiently can yield significant speedups when solving network design problems
with Benders decomposition. In particular, multicommodity minimum cost network
flow problems are often highly degenerate: ignoring this might result in poor
performance of Benders decomposition.

Another important issue in Benders decomposition is the phenomenon of
“oscillation” or “zig-zagging” in the sequence of solutions to the master problem:
it is possible to move from a relatively good solution (as measured by the objective
value) to a much worse one, which in turn has an effect on the quality of the
Benders cuts. To avoid such phenomenon, several techniques have been proposed,
which typically use a stabilizing point (in the interior of the convex hull of feasible
solutions to the master problem) and try to identify cuts that do not deviate much
from this point. The description of these so-called stabilization techniques is beyond
the scope of Chap. 3, but they are extremely important to achieve good performance
of Benders decomposition, especially to derive tight cuts at the root node of the
B&BC tree. For problems where the Benders subproblem is not separable, such as
the MCFND, a single cut is generated at each iteration of Benders decomposition at
the root node. Hence, the generation of tight cuts is extremely slow in that case and
stabilization techniques are essential to warm start the master problem as early as
possible before starting the exploration of the tree.

8 Branch-and-Price Algorithms

In this section, we present branch-and-price (B&P) algorithms to solve the MCFND
based on the Dantzig–Wolfe reformulations introduced in Sect. 2, namely the path-
based reformulation, (3.16)–(3.21), and the knapsack-based reformulation, (3.30)–



64 T. G. Crainic and B. Gendron

(3.34). Since these two reformulations of the MCFND involve an exponential
number of variables, we use a column generation procedure to solve the Dantzig–
Wolfe reformulations, which are LP models.

Starting with a small number of variables, the procedure iterates between
solving a restriction of the Dantzig–Wolfe reformulation and the generation of
new variables through a pricing subproblem. The restriction of the Dantzig–Wolfe
reformulation, called the restricted master problem, is simply the LP model for
which the non generated variables are implicitly fixed to value 0. Once the restricted
master problem is solved, new variables are sought by computing their reduced
costs through the pricing subproblem. If variables with negative reduced costs are
found, they are added to the restricted master problem. Since the restricted master
problem is solved to optimality, all variables present in the LP master problem have
nonnegative reduced costs, which imply that the columns with negative reduced
costs identified by the pricing subproblem are necessarily new variables. The
procedure stops when no columns with negative reduced costs are found when
solving the pricing subproblem, which means that the Dantzig–Wolfe reformulation
is solved.

Column generation solves the Dantzig–Wolfe reformulation (an LP model), but
not necessarily the MCFND. In particular, we might end up the column generation
procedure with a fractional solution, i.e., some design variables take fractional
values. In this case, branching is needed to derive an optimal integer solution, which
yields B&P algorithms that perform column generation at each node of the tree.
Contrary to B&C algorithms, where most of the effort of generating cuts is spent
at the root node, B&P algorithms perform column generation at every node of the
tree. Otherwise, if column generation were applied only at the root node, then a
restriction of the model (not a reformulation) would be solved by branching, because
some variables with a positive value in an optimal integer solution could be forced
to take value 0, as the corresponding columns would not have been generated at the
root.

We first examine the structure of the pricing subproblems, then how branching
and filtering are performed, for both the path-based and the knapsack-based
reformulations. Finally, we discuss some key computational issues that arise when
developing B&P algorithms for the MCFND.

8.1 Pricing Subproblems

For the path-based reformulation, (3.16)–(3.21), only the path variables hkp, k ∈
K , p ∈ Pk , need to be generated dynamically. The reduced cost ckp of variable
hkp, k ∈ K , p ∈Pk , can be computed as follows:

ckp =
∑

(i,j)∈A
δ
p
ij d

k
(
ckij + αij + βkij

)
− ηk, (3.129)



3 Exact Methods for Fixed-Charge Network Design 65

where ηk, k ∈ K , αij , (i, j) ∈ A and βkij , (i, j) ∈ A , k ∈ K are the dual
variables associated with constraints (3.17), (3.18), and (3.19), respectively. For the
variables that already appear in the restricted master problem, we know that ckp ≥ 0,
k ∈ K , p ∈ Pk . For the other path variables, not yet generated, it suffices to
solve the Lagrangian subproblem (3.12)–(3.15), i.e., the shortest path relaxation.
Indeed, after solving this relaxation, we obtain the shortest path p ∈ Pk for each
commodity k ∈ K with respect to arc lengths (ckij +αij + βkij ) on each (i, j) ∈ A ,

which is then “loaded” with the demand dk to derive
∑

(i,j)∈A δ
p
ij d

k(ckij + αij +
βkij ) = ckp + ηk . Then, if ckp < 0, the corresponding (new) path variable hkp is
added to the master problem. Because the Lagrangian subproblem decomposes by
commodity, this column generation procedure might add several columns at each
iteration, at most one per commodity. Being able to generate several columns at each
iteration is a desirable feature that typically improves the performance of column
generation.

In order to generate columns, it is clearly not necessary to solve the part of
the Lagrangian subproblem related to the design variables, i.e., the |A | problems
solvable by inspection. However, the extra computations are negligible and they
allow to generate a lower bound at every iteration. This is important, since the
restricted master problem provides a lower bound only when the column generation
has converged to an optimal solution of the Dantzig–Wolfe reformulation. Other-
wise, because it is a restriction, the master problem at each iteration only gives an
upper bound on the optimal value of the Dantzig–Wolfe reformulation. Having a
lower bound at every iteration is important in the case where the column generation
procedure experiments a “tailing off” effect, i.e., very slow convergence towards the
end. In such a case, the column generation procedure might be stopped before the
end, but a lower bound is still available for branching and filtering purposes.

Now, we turn our attention to the pricing subproblem for the knapsack-based
reformulation, (3.30)–(3.34). In this case also, only the knapsack variables λ

q
ij ,

(i, j) ∈ A , q ∈ Qij , have to be generated in a dynamic way. The reduced cost
c
q
ij of variable λqij , (i, j) ∈ A , q ∈ Qij , can be computed as follows:

c
q
ij =

∑

k∈K

(
ckij + πki − πkj

)
ξ
kq
ij + θij , (3.130)

where −πki , i ∈ N , k ∈ K and θij , (i, j) ∈ A are the dual variables associated
with constraints (3.31) and (3.32), respectively. For the knapsack variables already
in the master problem, we have c

q
ij ≥ 0, (i, j) ∈ A , q ∈ Qij . For the other

knapsack variables, we need to solve the Lagrangian subproblem (3.25)–(3.29), i.e.,
the knapsack relaxation. Indeed, this relaxation decomposes by arc and provides
a solution (̃xkij )k∈K to the continuous knapsack problem for arc (i, j) whenever

fij +∑k∈K (ckij +πki −πkj )̃xkij < 0. By construction (̃xkij )k∈K is an extreme point

of the knapsack polyhedron {(xkij )k∈K |
∑

k∈K xkij ≤ uij ; 0 ≤ xkij ≤ bkij , k ∈ K },



66 T. G. Crainic and B. Gendron

which we denote with the index q ∈ Qij , i.e., (̃xkij )k∈K ≡ (ξ
kq
ij )k∈K In addition, it

is a simple exercise (using dual feasibility and complementary slackness conditions)
to show that there always exists an optimal solution to the dual of the Dantzig–
Wolfe reformulation such that θij = fij for each (i, j) ∈ A . Hence, the condition
c
q
ij < 0 is equivalent to fij +∑k∈K (ckij + πki − πkj )̃x

k
ij < 0, which shows that

the pricing subproblem corresponds to the Lagrangian subproblem. The resulting
column generation procedure might add several columns at each iteration, at most
one per arc. We note also that a lower bound is computed at every iteration, similarly
to the path-based reformulation.

8.2 Branching and Filtering

Branching can be tricky in B&P algorithms, in particular when integer variables are
represented with convex combinations of extreme points of underlying polyhedra.
In that case, branching on the convex combination variables has the side effect
of destroying the structure of the pricing subproblem. This is why specialized
branching rules have been devised that typically branch on the original integer
variables, which is usually easy to handle in the pricing subproblem. Both the
path-based and the knapsack-based reformulations of the MCFND do not use
convex combination variables to represent the binary design variables. This makes
branching much easier, since the original design variables are present both in the
master problem and in the pricing subproblem.

There are two obvious equivalent ways to perform branching for the two
reformulations. Assuming we branch on variable yij , (i, j) ∈ A , a first approach is
simply to add the branching constraints yij ≤ 0 and yij ≥ 1 to the master problem,
which introduces corresponding dual variables that are given as input to the pricing
subproblem. Thus, the effect of the branching constraints immediately propagates to
the pricing subproblem. A second approach consists in modifying the fixed cost fij
instead of adding the branching constraints. Specifically, the effect of the branching
constraint yij ≤ 0 is captured by setting fij to an arbitrarily large value in both the
master problem and the pricing subproblem. Likewise, the effect of the branching
constraint yij ≥ 1 is captured by setting fij = 0 and by adding the constant term fij
to the objective value in both the master problem and the pricing subproblem. This
last approach has some advantages, as it preserves the structures of both the master
problem and the subproblem. In addition, if the master problem is solved with the
primal simplex method, re-optimization is direct, as a primal basic feasible solution
is readily available.

Concerning the selection of the variable yij to branch on, we first note that,
contrary to the Lagrangian-based B&B algorithm for the MCFND presented in
Sect. 5, fractional-valued variables are available from the optimal solution of the
Dantzig–Wolfe reformulation. Thus, candidate variables for branching can be
restricted to those with fractional values in the optimal solution of the Dantzig–
Wolfe reformulation, in the same way as in standard B&B algorithms. Among



3 Exact Methods for Fixed-Charge Network Design 67

these candidate variables, we can choose the one to branch on based on reliability
branching, as discussed in Sect. 5.2. To compute the strong branching estimates,
we can use the same approach, i.e., solve the knapsack subproblem to derive the
estimates |vij (π, 1)|. For the knapsack-based reformulation, these have already been
computed when solving the pricing subproblem. For the path-based reformulation,
we can give as input to the knapsack relaxation the shortest path lengths π derived
when solving the pricing subproblem.

In addition to their use for branching, the values |vij (π, 1)| can be used to
perform variable fixing, exactly in the same way as in the Lagrangian-based B&B
for the MCFND, as explained in Sect. 5.3. In contrast to that algorithm, however,
the B&P algorithms can also perform LP-based reduced cost fixing. Specifically,
after solving the Dantzig–Wolfe reformulation, if we denote as rij the reduced
cost of each non-basic free ((i, j) ∈ A01) variable yij at value yij ∈ {0, 1}, if
Zl + |rij | ≥ Z∗, then we can fix yij to value yij , where Z∗ is the incumbent
value. Filtering based on connectivity tests can also be easily integrated into the
B&P algorithms. For instance, using graph traversal algorithms, we can determine
if an arc can be closed (if it does not belong to any path between O(k) and D(k)

for all commodities k) or opened (if it belongs to all paths between O(k) and D(k)
for at least one commodity k). Because these different filtering techniques involve
only the design variables, they are as easy to integrate in the B&P algorithm as the
branching constraints.

8.3 Computational Issues

The path-based reformulation, similar to the standard model for the MCFND,
displays a large number of strong linking inequalities (3.19). It is impractical to
generate all of them a priori, even for problems of moderate size, given that only
a small fraction of them are active in an optimal solution of the Dantzig–Wolfe
reformulation. Hence, in a similar way as in the B&C algorithm for the MCFND
presented in Sect. 6, these inequalities should be generated in a dynamic way in a
cutting-plane fashion. The resulting column-and-row generation procedure would
alternate between column generation iterations (using the primal simplex method)
and cutting-plane iterations (using the dual simplex method), until no more columns
with negative reduced costs and no more violated inequalities can be found. The
addition of cuts is easily managed in this case, since the separation problem for
strong linking inequalities is trivial. Because of this last feature, it is preferable to
generate strong linking inequalities at each node of the tree, not only at the root node.
Note that positive values of the dual variables β are possible only for generated
strong linking inequalities that are active at the current solution of the restricted
master problem.

For the knapsack-based reformulation, the strong linking inequalities are part of
the pricing subproblem, so they do not need to be generated through a cutting-plane



68 T. G. Crainic and B. Gendron

procedure. It is possible, however, to generate other classes of valid inequalities,
both for this reformulation and for the path-based one. The cover inequalities,
introduced in Sect. 4.1, involve only the design variables and can be added to
the Dantzig–Wolfe reformulation in a similar way as branching constraints: dual
variables are associated with them and given as input to the pricing subproblem,
thus preserving its structure. The flow cover and flow pack inequalities, described
in Sect. 4.2, involve both the flow and the design variables. To integrate them in the
Dantzig–Wolfe reformulation and to solve the corresponding separation problems,
we need to “translate” the flow variables to the convex combination variables.
For the path-based reformulation, this is simply achieved by the formula xkij =∑

p∈Pk dkδ
p
ij h

k
p, (i, j) ∈ A , k ∈ K , while for the knapsack-based reformulation,

we use xkij =
∑

q∈Qij
ξ
kq
ij λ

q
ij , (i, j) ∈ A , k ∈ K . Because the separation problems

for cover, flow cover and flow pack inequalities are difficult and time-consuming
to solve (see Sect. 6.1), it is preferable to generate these inequalities only at the
root node. This also has the advantage of “freezing” the set of Lagrange multipliers
(associated with these inequalities) to give as input to the pricing subproblems, once
the root node has been solved.

In a similar way as for Benders decomposition, degeneracy and “oscillations”
(but, this time, in the dual space, i.e., the space of Lagrange multipliers) are
major concerns to guarantee good performance of column generation. Subgradient
optimization methods are often used to warm start the column generation proce-
dure, providing at a relatively low computational cost both a set of “interesting”
columns and good estimates of optimal Lagrange multipliers. Various stabilization
techniques have also been proposed, typically based on defining a “good” dual point,
also called stability center, with the goal of not deviating much from that point. To
achieve this goal, one approach is to add a stabilizing term to the objective function
that penalizes moves that are too far from the stability center. A full description of
such stabilization techniques, in particular the well-known bundle method, is beyond
the scope of Chap. 3, but it is important to mention that they have been successfully
adapted to the MCFND and to other network design models (see Chap. 6).

Part III: Solution of Large-Scale Instances

9 Connections with Heuristic Methods

This section describes fundamental connections between the exact algorithms
described in this chapter and heuristic methods that attempt to find “good” feasible
solutions to network design problems, without necessarily reaching optimality.
While heuristics, in particular metaheuristics and matheuristics, are covered exten-
sively in Chap. 4, the heuristic methods presented here are tightly linked with the
decomposition and enumeration approaches described in this chapter. In general,



3 Exact Methods for Fixed-Charge Network Design 69

these heuristic methods provide not only feasible solutions, but also estimates of
how good these solutions are, since they yield relaxation bounds. This is in contrast
with several methods presented in Chap. 4.

We first present slope scaling methods, a class of basic heuristics that have been
used successfully for solving several fixed-charge network design problems, both
single-commodity and multicommodity, This class of heuristics turn out to play an
important role in the design of Lagrangian heuristics, which we present next. The
use of heuristics in Benders decomposition and in enumeration algorithms closes
this section.

9.1 Slope Scaling Heuristics

We illustrate the slope scaling heuristics on the MCFND, but it should be clear
from our developments how to adapt such heuristics to other fixed-charge network
design problems. Slope scaling heuristics are based on the observation that feasible
solutions to the MCFND can be obtained by solving multicommodity minimum
cost network flow problems, an observation that is already exploited in Benders
decomposition. While in that case, we give as input to the Benders subproblem
the values of the design variables, in slope scaling heuristics, all arcs can be used,
but modified transportation costs ckij , (i, j) ∈ A , k ∈ K , are given as input and
updated along the iterations.

At iteration 0, initial modified transportation costs c(0) are provided as input,
being typically derived from a relaxation. For example, using the simple lineariza-
tion of the fixed costs derived from the weak relaxation (see Chap. 2, Sect. 3),
one can use ckij (0) = ckij + fij /uij , (i, j) ∈ A , k ∈ K . Other initial modified
transportation costs, derived from Lagrangian relaxation, are discussed in Sect. 9.2.

At any iteration t , the following multicommodity minimum cost network flow
problem is solved:

Minimize
∑

k∈K

∑

(i,j)∈A
ckij (t)x

k
ij (3.131)

Subject to
∑

j∈N +
i
xk
ij
−∑

j∈N −
i
xk
ji
= wk

i
, ∀ i ∈ N , ∀ k ∈ K , (3.132)

∑
k∈K xk

ij
≤ uij , ∀ (i, j) ∈ A , (3.133)

xk
ij
≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K . (3.134)

Given a feasible solution x(t) to this problem, a feasible solution (x(t), y(t)) to the
MCFND can be derived as follows: yij (t) = �

∑
k∈K xkij (t)/uij �, (i, j) ∈ A , with

objective value Z(x(t), y(t)) =∑(i,j)∈A
(
fij yij (t)+

∑
k∈K ckij x

k
ij (t)

)
.



70 T. G. Crainic and B. Gendron

The modified transportation costs ckij (t), (i, j) ∈ A , k ∈ K , are then updated

as follows at any iteration t > 0, where we use the notation ξ ij (t) =
∑

k∈K xkij (t),
(i, j) ∈ A :

ckij (t) =
{
ckij +

(
fij /ξ ij (t − 1)

)
, if ξ ij (t − 1) > 0,

ckij (t − 1), otherwise.

The procedure is stopped whenever two successive solutions provide the same
objective value: Z(x(t), y(t)) = Z(x(t − 1), y(t − 1)). In that case, if x(t) =
x(t − 1), the objective value of the multicommodity minimum cost network flow
problem (3.131), corresponds to that of the MCFND:

∑

k∈K
∑

(i,j)∈A
ckij (t)x

k
ij (t) =

∑

k∈K
∑

(i,j)∈A +(t−1)

{
ckij +

(
fij /ξ ij (t − 1)

)}
xkij (t)

= ∑

k∈K
∑

(i,j)∈A
ckij x

k
ij (t)+

∑

(i,j)∈A +(t)

{
(
fij /ξ ij (t)

) ∑

k∈K
xkij (t)

}

= ∑

k∈K
∑

(i,j)∈A
ckij x

k
ij (t)+

∑

(i,j)∈A
fij yij (t),

where we use the notation A +(t) = {(i, j) ∈ A | ξ ij (t) > 0} for any t ≥ 0.
Although the solution (x(t), y(t)) is designed to reflect the exact costs, it is

computed by using the modified transportation costs, not the original ones. Hence,
we can possibly (in fact, most of the times) improve upon its value by solving the
Benders subproblem, (3.93)–(3.96), with y = y(t). The difference lies in the fact
that the Benders subproblem, also a multicommodity minimum cost network flow
problem, uses the original transportation costs. Note that this Benders subproblem
is necessarily feasible, since x(t) is a feasible solution.

9.2 Lagrangian Heuristics

We illustrate the principle of Lagrangian heuristics on the MCFND, although it is
straightforward to adapt it to other network design problems. We can use any of the
Lagrangian relaxations for the MCFND introduced in Sect. 2.

The basic idea is to use the information derived from the Lagrangian subproblems
to guide the derivation of feasible solutions of “good” quality. In its simplest form,
a Lagrangian heuristic alternates between phases of Lagrangian dual optimization
(using, for instance, a subgradient optimization method) and heuristic improvement.
This last phase is given as input a partial solution (often not feasible) derived from
the Lagrangian subproblems considered during the Lagrangian dual optimization
phase. This partial solution is used to guide the construction of a feasible solution,
which can then be further improved with specialized heuristics.



3 Exact Methods for Fixed-Charge Network Design 71

As an example, we use the knapsack relaxation for the MCFND and we assume
that the Lagrangian dual is solved with a subgradient optimization method, as
in Sect. 5. Suppose we interrupt the subgradient optimization method at regular
intervals to extract the solution (x, y) to the last Lagrangian subproblem. Solving the
Benders subproblem, (3.93)–(3.96), with y = y, would then provide an upper bound
on the optimal value of the MCFND, provided the Benders subproblem is feasible.
Unfortunately, this is rarely the case and imposing constraints that ensure feasibility
of the Benders subproblem is far from trivial, as discussed in Sect. 3.3. A slope
scaling heuristic can be used to overcome this limitation. Indeed, at any iteration of
a slope scaling heuristic, a feasible solution to the MCFND is obtained, since all arcs
can be used. We can then simply penalize the arcs that are closed in the Lagrangian
subproblem solution to guide the search for feasible solutions. This can be done by
changing the initial modified transportation costs ckij (0), (i, j) ∈ A , k ∈ K , given

as input to the slope scaling heuristic: ckij (0) = ckij + (M(1 − yij ) + 1)fij /uij ,
where M is a large positive number. This way, if yij = 0, then the corresponding
arc is heavily penalized, while if yij = 1, we obtain the same initial modified
transportation costs as in the standard slope scaling heuristic presented in Sect. 9.1.
The slope scaling heuristic for the MCFND thus provides an elegant and effective
approach to design Lagrangian heuristics: it gives a simple way to construct an
initial feasible solution, guided by a Lagrangian subproblem solution, which is then
improved through the slope scaling iterations.

In this example, we used a partial solution y derived from a single Lagrangian
subproblem. However, it is in general more effective to consider a weighted
average of the Lagrangian subproblem solutions generated since the start of the
Lagrangian dual optimization method. For instance, we could give more weight to
the subproblem solutions found more recently and less to those generated earlier.
Such an approach would generate a partial solution y that is fractional, being a
weighted average of several Lagrangian subproblem solutions. The slope scaling
heuristic could still be performed as described above, with the interpretation that
the initial modified transportation costs would penalize the arcs that are often closed,
especially in recent Lagrangian subproblem solutions.

9.3 Benders Decomposition and Heuristics

A remarkable feature of Benders decomposition is its ability to generate Benders
cuts when provided with any candidate design solution y. For the MCFND, we have
used this feature to warm start the B&BC algorithm by solving the LP relaxation
at the root node with Benders decomposition, as discussed in Sect. 7.1. Another
way of exploiting this property is to perform heuristics before starting the B&BC to
generate candidate design solutions y, which are then given as input to the Benders
subproblem (3.93)–(3.96). After solving this subproblem, we can then generate
Benders cuts that are used to initialize the B&BC algorithm, in addition to the cuts



72 T. G. Crainic and B. Gendron

derived from solving the LP relaxation. An example of such an approach consists in
applying the Lagrangian heuristic described in Sect. 9.2: at the end of each call to
the slope scaling heuristic, the Benders subproblem is solved using as input the best
solution found during the slope scaling iterations. It is then immediate to generate a
Benders optimality cut from this solution and to use it to “feed” the initial relaxed
master problem.

Another interesting feature of Benders decomposition is the ease with which
it can integrate virtually any type of cut involving only the design variables. To
illustrate this property, suppose we are given a partial assignment of values to the
design variables, represented by the sets A0, A1, and A01 of closed, open and free
arcs, respectively. If we can determine that no feasible solutions to the MCFND
derived from this partial assignment could improve upon the best known feasible
solution, then we could add the following combinatorial Benders cut to the Benders
master problem:

∑

(i,j)∈A0

yij +
∑

(i,j)∈A1

(1− yij ) ≥ 1,

stating that at least one of the variables fixed to 0 or 1 must change its status in an
improving feasible solution. We give an example of the use of such cut, particularly
relevant in the context of using Benders decomposition to derive heuristics.

We assume that we are solving the LP relaxation by Benders decomposition, as
in Sect. 7.1. At any iteration, we have a solution y such that the design variables
can be partitioned into three subsets: A0 = {(i, j) ∈ A | yij ≤ δ0}, A1 =
{(i, j) ∈ A | yij ≥ 1 − δ1} and A01 = {(i, j) ∈ A | δ0 < yij < 1 − δ1}, where
δ0 ≥ 0 and δ1 ≥ 0 are parameters such that δ0 + δ1 < 1. The idea is to solve the
restricted MCFND obtained by fixing yij to 0 for each (i, j) ∈ A0 and to 1 for each
(i, j) ∈ A1, which we denote M(A0,A1). If M(A0,A1) is solved to optimality,
we can then generate a combinatorial Benders cut, since we can then safely cut all
feasible solutions to M(A0,A1), given that we kept in memory its optimal solution.
If M(A0,A1) is too difficult to solve to optimality, we can still generate feasible
solutions to M(A0,A1), as well as corresponding Benders optimality cuts, for
instance by solving M(A0,A1) by B&BC with a limited computational time. There
is one case where we can quickly generate a combinatorial Benders cut without
trying to solve M(A0,A1): when M(A0,A1) is infeasible. This can happen only if
the Benders subproblem for the candidate solution ỹ is infeasible, where ỹij = 0, if
(i, j) ∈ A0, and ỹij = 1, otherwise. In such a case, the combinatorial Benders cut
can be strengthened to

∑
(i,j)∈A0

yij ≥ 1. The advantage of this inequality is that it
cuts all solutions where the arcs in A0 are closed, as opposed to the standard Benders
feasibility cut derived from ỹ, which cuts some of these solutions (including ỹ), but
not necessarily all.

After trying to solve M(A0,A1) to optimality, we can still generate the
corresponding combinatorial Benders cut to eliminate all solutions where the arcs
in A0 are closed and those in A1 are open. If M(A0,A1) was not solved to
optimality, this would turn the method into a heuristic. Otherwise, ifM(A0,A1)was



3 Exact Methods for Fixed-Charge Network Design 73

solved to optimality, we would not lose any global optimal solution by adding the
combinatorial Benders cut. We would, however, remove feasible solutions, which
implies that the objective value of the master problem would not be anymore, in
general, a lower bound on the optimal value of the unrestricted MCFND. This can be
corrected by rewriting the combinatorial Benders cut with the following L-shaped
cut, first proposed in the context of stochastic integer programming (see Chap. 9):

v ≥
⎛

⎝Zl −
∑

(i,j)∈A
fij yij

⎞

⎠−
⎛

⎝
∑

(i,j)∈A0

yij +
∑

(i,j)∈A1

(1− yij )− 1

⎞

⎠ (Z∗ − Zl),

where Zl and Z∗ are, respectively, lower and upper bounds on the optimal value of
the unrestricted MCFND. In particular, when generating the cut, we could simply
use the lower bound provided by the Benders master problem for Zl and the value
of the incumbent solution for Z∗. If Z∗ is indeed the optimal value to M(A0,A1)

and it finally turns out to be the optimal value of the unrestricted MCFND, then
we would have

∑
(i,j)∈A0

yij + ∑(i,j)∈A1
(1 − yij ) = 0 in an optimal solution,

which would imply the valid inequality
∑

(i,j)∈A fij yij + v ≥ Z∗. Otherwise, the

L-shaped cut would imply that
∑

(i,j)∈A fij yij + v ≥ Zl , which is also valid.

9.4 Enumeration Algorithms and Heuristics

It is well-recognized that performing effective heuristics before starting the explo-
ration of the tree is essential to achieve good performance in any enumeration
algorithm. To achieve that goal for the MCFND, we can use the heuristics outlined
in the previous sections, as well as the more sophisticated approaches described in
Chap. 4.

In addition, we can also define restricted problems based on the solution of the
relaxation and call the enumeration algorithm itself to solve that restricted problem,
at least in a heuristic fashion, for instance by imposing a limited computational time.
We have described such an approach in the context of Benders decomposition in
Sect. 9.3. For the B&C and B&P algorithms described in Sects. 6 and 8, respectively,
the principle is similar, since these algorithms involve solving an LP model to derive
relaxation bounds. From a fractional solution y, we partition the arcs into the three
sets, A0, A1 and A01, as defined in Sect. 9.3. Then, we solve the restricted problem
M(A0,A1) defined by fixing to 0 the variables in A0 and to 1 the variables in A1.
To solve M(A0,A1), we call the enumeration algorithm itself, but by switching it to
a heuristic mode: for instance, by “freezing” the model (no further addition of cuts
or columns) and by searching the tree in a depth-first fashion to quickly find feasible
solutions. For the Lagrangian-based B&B described in Sect. 5, a similar approach
can be adopted, but instead of defining y based on the solution of an LP model, we



74 T. G. Crainic and B. Gendron

then compute y as a weighted average of the Lagrangian subproblem solutions, as
already discussed in Sect. 9.2.

Other than using the relaxation solutions to define restricted problems, it is also
possible, for that purpose, to exploit the best feasible solutions already found by
the enumeration algorithm. A popular approach, adopted in modern MILP solvers,
is to define a population of elite solutions and to combine two (or more) of these
elite solutions to define restricted problems. For example, two solutions y and ỹ are
chosen from the population and the arcs (i, j) for which the two solutions “agree”
(i.e., yij = ỹij ) are fixed, while the other variables are free.

10 Parallel Algorithms

Realistically-sized instances of network design problems are extremely difficult
to solve to optimality. One reason is the large size of the models themselves, in
terms of the number of variables and constraints, which justifies the development
of the advanced decomposition methods presented in this chapter. Another reason
is the combinatorial explosion that results from the huge number of network
configurations, represented in the models by the binary design variables. For a large-
size MCFND instance with 1000 arcs and 1000 commodities, there would be up
to 21000 network configurations, each involving the solution of a multicommodity
network flow model having 1,000,000 variables. Parallel algorithms can contribute
to curb this combinatorial explosion. In this section, we cover the development of
parallel enumeration algorithms. As mentioned in Sect. 9, heuristics are essential
components of enumeration algorithms, but their parallel implementations are
beyond the scope of this chapter and are rather discussed in Chap. 4.

Three types of parallelism can be exploited in enumeration algorithms. Type 1,
node-based parallelism, refers to the parallel computation of operations at each node
of the tree, for example, solving relaxations and performing heuristics or branching.
Type 2, single-tree parallelism, includes algorithms that perform the exploration
of the tree concurrently on several processors. Type 3, multiple-tree parallelism,
involves the concurrent exploration of several trees, where each tree has its own
set of operations and parameter values. We now review each of these types of
parallelism as they relate to the solution of network design problems. We use the
MCFND as our representative problem in this discussion, although the concepts
apply to other problems as well. We also discuss the potential for hybrid algorithms
that combine several types of parallelism in a single method.

10.1 Node-Based Parallelism

In the context of solving the MCFND, decomposition arises naturally when defining
relaxations and the resulting separable subproblems are directly amenable to parallel



3 Exact Methods for Fixed-Charge Network Design 75

computations. When studying Lagrangian relaxations in Sect. 2, we have seen
three approaches that yield separable Lagrangian subproblems: the shortest path
relaxation, separable by commodity; the knapsack relaxation, separable by arc; and
the facility location relaxation, separable by node. These three approaches are thus
amenable to parallelization that could yield significant speedups when computing
the lower bounds at each node of an enumeration tree, either in a Lagrangian-based
B&B algorithm similar to the one described in Sect. 5, or in a B&P algorithm such
as those presented in Sect. 8. There is a serious limitation though, which is the
necessity to synchronize the computations at every iteration of a Lagrangian dual
optimization method, either subgradient optimization or column generation, in order
to generate a new set of Lagrange multiplier values. This is why the development
of asynchronous algorithms that preserve convergence properties, while speeding
up the computations by avoiding the necessity to synchronize at every iteration,
is a topic for further research in the context of Lagrangian relaxation methods for
network design.

Benders decomposition, even when the Benders subproblem is separable, appar-
ently suffers from the same drawback. However, it has the remarkable property
that several candidate solutions, generated for instance from several heuristics or
relaxation methods, can be given to the Benders subproblem to generate multiple
cuts in parallel. In that case, clever management of cuts must be performed to
avoid repeating the same cuts several times or having too many inactive cuts. In
any case, parallel computing appears especially promising in the context of building
a strong initial Benders master problem before starting the B&BC algorithm. This
could be seen as exploiting a special form of node-based parallelism to perform cut
generation at the root node. Similar approaches could be used for B&C algorithms
such as the one presented in Sect. 6. For instance, cuts for multiple reference points,
not only for the current LP fractional solution, could be generated in parallel. This
is similar in spirit to some stabilization approaches adopted in Benders or Dantzig–
Wolfe decomposition.

10.2 Single-Tree Parallelism

Exploring an enumeration tree in parallel can be tricky, as the potential speedup
obtained from this approach could be impaired by so-called anomalies that arise
from performing much more work in parallel than in sequential. This happens
whenever a branch is explored in parallel that would be fathomed in sequential. The
reason for such extra work comes from the fact that incumbent values are generated
in different branches of the tree. For example, consider a parallel algorithm on
two processors that explores two subtrees, s1 and s2, one per processor. Subtree
s1 contains the optimal value, found after exploring 100 nodes, while subtree s2
also explores 100 nodes before being communicated the optimal value found by
subtree s1. So, this parallel algorithm explores a total of 200 nodes. Assume, in
addition, that if the optimal value was known when starting the exploration of



76 T. G. Crainic and B. Gendron

s2, the subtree would be immediately fathomed, without exploring any node. If
a sequential algorithm first explores subtree s1, then it would generate only 100
nodes, compared to 200 nodes for the parallel algorithm. This would result in a
speedup of 1, much less than the linear speedup of 2. The speedup could even be
less than 1, considering the necessity to communicate between the two processors.
To overcome this difficulty, we need to perform effective heuristics at the root node.
If a near-optimal solution is found by these heuristics, anomalies then rarely happen.

Another tricky aspect in the exploration of an enumeration tree is the necessity
to balance the workload among processors to avoid that too many processors fall
out of work and remain idle for long periods. In general, the distribution of work
follows three basic schemes, which induce different search control mechanisms:
master-slave, collegial and hybrid. In a master-slave scheme, the generation of
nodes (and thus, the control of the search) is centralized in a single processor,
the master, that sends nodes to the other processors, called the slaves. The master
performs branching operations, while the slaves compute the bounds at each node.
This approach suffers from a scalability issue, as the number of processors increase,
because of the necessity for the slaves to wait for the master to “feed” them. In a
collegial, or distributed, approach, the nodes are distributed among processors, each
of them managing its own tree. The control of the search is thus collectively assumed
among the processors. It is then important to design efficient communication
schemes to share information, in particular incumbent values, but also pseudo-
costs, cuts or columns. In addition, workload balancing strategies are critical in
such a scheme to ensure a successful implementation. In a hybrid scheme, part
of the information is centralized in a single processor that receives them from
each processor and broadcasts them to all. Each processor, except the centralized
one, manages its own tree, but shares some nodes with the central processor that
can distribute it to starving processors, even before waiting for them to become
idle. As in a collegial scheme, the control of the search is collectively assumed
among the processors, but the central processor plays a prominent role. In general,
hybrid schemes show a good tradeoff between efficiency (by balancing the workload
effectively as in a collegial approach) and robustness (by quickly broadcasting the
relevant global information, in particular the incumbent, as in master-slave scheme),
resulting in superior performance, compared to the two other approaches. The
hybrid strategy can easily be adapted to both distributed or shared-memory parallel
architectures.

The enumeration algorithms for the MCFND presented in Sects. 5–8 are all
good candidates for such parallel implementation. Indeed, the computations at each
node take a significant amount of time and the trees are typically large, even for
moderate size instances, as soon as the fixed costs are important compared to the
transportation costs. Of course, the parallel exploration of the tree becomes possible
only when enough nodes are generated after the computations at the root node.
In this case, to exploit parallelism as early as possible, we could use node-based
parallelism at the root and at nodes near the root.



3 Exact Methods for Fixed-Charge Network Design 77

10.3 Multiple-Tree Parallelism

Any enumeration algorithm that solves a particular instance of a problem is prone to
computational performances that vary significantly depending on the different com-
ponents of the algorithm (relaxations, heuristics, branching rules, among others),
as well as on the values of the parameters. In this context, it is almost impossible
to identify a “best” sequential implementation of an enumeration algorithm that
would solve every instance of a problem in the smallest computational time. It
could then be advantageous to have several variants of enumeration algorithms
performed in parallel, the idea being that, over a large set of instances, we could
obtain a significant speedup when compared to a sequential implementation that
uses particular algorithmic components and parameters.

Such strategy would be particularly useful when the heuristics at the root struggle
to identify near-optimal solutions for most instances. In that case, optimal solutions
would be identified in different branches of the tree and a parallel single-tree
algorithm would be prone to anomalies. By using multiple-tree parallelism, with
many different algorithmic strategies that showed good sequential performance,
at least for some classes of instances, we protect ourselves against detrimental
parallel performance. Clearly, multiple-tree parallelism can be combined with
single-tree parallelism. For instance, assume that we have a distributed system
of shared-memory multiprocessors, a very common architecture nowadays. Each
multiprocessor in the distributed system could perform an enumeration algorithm,
using different algorithmic components and parameter values than the other multi-
processors in the system, thus implementing multiple-tree parallelism. In addition,
the enumeration algorithm performed by each multiprocessor could be parallelized
among its own processors, resulting into single-tree parallelism.

Because the MCFND can be solved by the many enumeration algorithms
presented in Sects. 5–8, it is clearly an interesting candidate for multiple-tree
parallelism, given the fact that one can hardly identify a single “best” algorithm.
A similar observation can be made concerning the many heuristics proposed to
solve the MCFND, which also suggests that a similar approach (i.e., performing
different heuristics in parallel) gives superior performance for the MCFND. Further
discussion on this topic can be found in Chap. 4.

11 Bibliographical Notes

The challenges that arise when solving fixed-charge network design problems
are already summarized in the survey papers that appeared in the 1980s, due
to Magnanti and Wong (1984) and Minoux (1989). A summary of the exact
algorithms based on decomposition for the MCFND can be found in Gendron et al.
(1999) and Gendron (2011). More recent references on both single-commodity and
multicommodity fixed-charge network design are provided in this section.



78 T. G. Crainic and B. Gendron

Lagrangian Relaxations and Dantzig–Wolfe Reformulations
Lagrangian relaxation for MILP models and its relationship with Dantizig-Wolfe
reformulations is the main topic of Geoffrion (1974); Fisher (2004); Frangioni
(2005), as well as being covered in classical textbooks on MILP (Nemhauser and
Wolsey 1988; Wolsey 1998). The idea of decomposing large-scale structured LP
models, which is the basis for column generation methods, is due to Dantzig and
Wolfe (1960).

The relaxation of the linking constraints for the MCFND and its resulting shortest
path subproblem appeared first in Gendron and Crainic (1994a). The associated
Lagrangian dual is solved either with subgradient algorithms (Crainic et al. 2001;
Frangioni et al. 2017) or with bundle methods (Crainic et al. 2001; Frangioni and
Gorgone 2014). The structure of the Dantzig–Wolfe reformulation of the Lagrangian
dual is exploited to develop a very efficient bundle method in Frangioni and Gorgone
(2014). The dual-ascent method presented in Balakrishnan et al. (1989) for the
MUFND can be seen as a specialized, fast, heuristic for solving the Lagrangian
dual associated with the relaxation of the linking constraints.

The relaxation of the flow conservation constraints for the MCFND and its
resulting knapsack subproblem appeared first in Gendron and Crainic (1994a). It
is subsequently used in several Lagrangian-based B&B algorithms (Holmberg and
Yuan 2000; Sellmann et al. 2002; Kliewer and Timajev 2005). The Lagrangian dual
is solved either with subgradient algorithms (Holmberg and Yuan 2000; Crainic
et al. 2001; Sellmann et al. 2002; Frangioni et al. 2017) or with bundle methods
(Crainic et al. 2001; Kliewer and Timajev 2005). The Dantzig–Wolfe reformulation
presented here is derived from a more general network design model in Frangioni
et al. (2020). Gendron (2019) generalizes to a large class of network design models
the results on the relative strength of the Lagrangian duals obtained by relaxing
either the linking constraints or the flow conservation equations.

The application of variable splitting to the FCTP can be found in Zhao et al.
(2018). Algorithms for the resulting single-node fixed charge flow problems are
studied in Klose (2008); Görtz amd Klose (2009). The constraint splitting technique
for the MCFND is due to Akhavan Kazemzadeh et al. (2021). The resulting
Lagrangian subproblem reduces to capacitated facility location problems, often
solved by Lagrangian relaxation (Klose and Görtz 2007; Görtz and Klose 2012).
For the MCFND, stronger Lagrangian bounds based on variable splitting can also
be found in Akhavan Kazemzadeh et al. (2021).

Relaxations by Projection and Benders Reformulations
The idea of projecting a MILP model onto the space of “complicating” integer
variables to derive a more compact reformulation (at least in terms of the number
of variables) is due to Benders (1962). The approach has since been applied to
a large spectrum of problems, starting from the seminal work of Geoffrion and
Graves (1974) on muticommodity facility location. The vast literature on Benders
decomposition is reviewed in Rahmaniani et al. (2017), while the application of the
approach to network design problems is the topic of Costa (2005).



3 Exact Methods for Fixed-Charge Network Design 79

To the best of our knowledge, Benders decomposition has not been used for
solving the SCFND and its particular cases. We note, however, that the cut-set-
based inequalities are often used in branch-and-cut algorithms, for instance for
the SUFND (Ortega and Wolsey 2003) and for the FCTP (Agarwal and Aneja
2012). The structure of the cut-set-based inequalities for the FCTP is exploited
in Göthe-Lundgren and Larsson (1994) to derive an algorithm for the pure FCTP,
the variant of the FCTP without variable transportation costs. Single-source single-
commodity network design problems are often reformulated as multicommodity
network design problems (each destination is identified as a commodity), and
Benders decomposition can then be used to address the resulting large-scale
formulation (Ljubić et al. 2012).

The structure of Benders feasibility cuts for the MCFND is studied in Costa et al.
(2009), while a Benders decomposition algorithm for the problem is developed in
Costa et al. (2012). The application of the method to the MUFND is presented in
Magnanti et al. (1986). Recently, Zetina et al. (2019) revisits Benders decomposition
for the MUFND, taking advantage of the many refinements to the algorithm that
have been proposed since the 1980s.

Valid Inequalities
Valid inequalities for MILP models are covered in classical textbooks (Nemhauser
and Wolsey 1988; Wolsey 1998). A comprehensive survey can also be found
in Wolsey (2003). Most of the material in Sect. 4 is adapted from Chouman
et al. (2017). Valid inequalities based on cut-sets are part of the cutting-plane
procedures of state-of-the-art MILP solvers, which are able to generate cover and
flow cover inequalities (Gu et al. 1998, 1999b; Atamtürk 2005), but also to detect
multicommodity network design structures to generate cut-set-based inequalities
(Achterberg and Raack 2010).

Cover inequalities for the 0-1 knapsack problem were independently studied in
Balas (1975); Hammer et al. (1975); Wolsey (1975). Computational issues related
to their generation in the context of a general MILP solver are investigated in
Gu et al. (1998, 1999a). The single-node fixed-charge flow problem and flow
cover inequalities were first studied in Padberg et al. (1985). Subsequently, flow
cover inequalities were integrated in general MILP solvers (Van Roy and Wolsey
1987; Gu et al. 1999b). Flow pack inequalities were proposed in Stallaert (1997);
Atamtürk (2001). Other inequalities for the single-node fixed-charge flow problem
are developed in Letchford and Souli (2019).

Apart from cut-sets, other concepts from network optimization can be exploited
to derive valid inequalities for fixed-charge network design. In particular, it is
possible to generalize the idea of partitioning the set of nodes into more than
two subsets, giving rise to three- or four-partition inequalities (Atamtürk et al.
2016a; Agarwal and Aneja 2017). Paths of the network can also be used to derive
inequalities (Van Roy and Wolsey 1987), in conjunction with flow cover and flow
pack inequalities (Atamtürk et al. 2016b). Chapter 5 reviews other references
relevant to the generation of valid inequalities for multicommodity network design
models with general integer variables.



80 T. G. Crainic and B. Gendron

Branch-and-Bound Algorithms
“Branch-and-bound” is a term coined in Little et al. (1963), although the B&B
algorithm for integer programs is attributed to Land and Doig (1960). It is true,
however, that Manne and Markowitz (1957), for stating the principles behind the
algorithm, and Eastman (1958), for essentially developing the algorithm for the
traveling salesman problem, are precursors. The origins of B&B algorithms are
discussed in Cook (2012).

The B&B algorithm that exploits the minimum cost network flow structure of the
LP relaxation for the SCFND was first developed in Kennington and Unger (1976)
for the FCTP. Subsequently, many researchers continued to focus on the FCTP by
improving variable fixing and domain reduction techniques in the B&B algorithm
(Barr et al. 1981; Cabot and Erenguc 1984, 1986; Palekar et al. 1990; Lamar and
Wallace 1997; Bell et al. 1999).

The main ideas of the Lagrangian-based B&B algorithm for the MCFND that we
describe in Sect. 5.1 were first presented in Holmberg and Yuan (2000), following
work on a similar approach applied to the MUFND (Holmberg and Hellstrand 1998).
Sellmann et al. (2002); Kliewer and Timajev (2005) use the same relaxation in
their Lagrangian-based B&B algorithms for the MCFND and focus on improving
variable fixing, heuristics and Lagrangian dual optimization.

Branching is an active topic of research in computational MILP. Benichou et al.
(1971) proposed pseudo-cost branching, while strong branching was introduced in
Applegate et al. (1995) as a key element in the Concorde code for solving very
large-scale traveling salesman problems. The successful combination of these two
techniques into the so-called reliability branching rule is due to Achterberg et al.
(2005). All these rules are integrated into state-of-the-art MILP solvers. Reliability
branching has been used in the B&C algorithm for the MCFND proposed in
Chouman et al. (2018).

The term “filtering” is used in the area of constraint programming (Rossi
et al. 2006) to describe domain reduction techniques that are called recursively
at each node of the search tree. The description of filtering techniques for the
MCFND in Sect. 5.3 follows the developments in Chouman et al. (2018). In the
MILP community, filtering techniques, when applied at the root, are sometimes
called “preprocessing,” a term that captures filtering techniques like probing,
but that also includes elimination of constraints and variables, and reduction of
coefficients (Savelsbergh 1994). Filtering through the reduced costs (also called
“penalties”) derived from Lagrangian relaxation plays a significant role in the B&B
algorithms for the FCTP, where it was first introduced in Cabot and Erenguc (1984)
and subsequently improved in the references on B&B algorithms for the FCTP
mentioned above.

Branch-and-Cut Algorithms
Cutting-plane methods originated from the seminal papers of Dantzig et al. (1954),
on the traveling salesman problem, and of Gomory (1958), on MILP. The term
“branch-and-cut” was first introduced in Padberg and Rinaldi (1987). The develop-
ments in Sect. 6 summarize the cutting-plane procedure presented in Chouman et al.



3 Exact Methods for Fixed-Charge Network Design 81

(2017) and the B&C algorithm for the MCFND described in Chouman et al. (2018).
For single-commodity fixed-charge problems, B&C algorithms were proposed in
Ortega and Wolsey (2003) for the SUFND and in Agarwal and Aneja (2012) for the
FCTP.

Sequential lifting for cover inequalities was already proposed in Balas (1975);
Wolsey (1975) to derive facet-defining inequalities for the convex hull of solutions to
a 0-1 knapsack set. The approach was generalized and integrated in state-of-the-art
MILP solvers in the 1990s (Gu et al. 1998). The generation of flow cover inequalities
is often derived from covers (Nemhauser and Wolsey 1988; Gu et al. 1999b),
while the approach described in Sect. 6.1, based on single-arc inequalities, is from
Chouman et al. (2017). Sequence-independent lifting for cover inequalities was
proposed in Balas (1975), and was subsequently strengthened in Gu et al. (2000),
where the approach is generalized to mixed 0-1 programs. Sequence-independent
lifting for flow cover and flow pack inequalities is due to Atamtürk (2001).

Heuristics for generating cut-sets to derive valid inequalities can be found in
Ortega and Wolsey (2003); Achterberg and Raack (2010); Chouman et al. (2017).
Metric inequalities are recognized as essential ingredients of any cutting-plane
algorithm for multicommodity network design problems (Costa et al. 2009); see
also Chap. 5. The importance of cutting-plane procedures in state-of-the-art MILP
solvers, as well as the related computational issues, are discussed in Atamtürk and
Savelsbergh (2005); Bixby and Rothberg (2007).

Benders Decomposition
As mentioned above, Benders decomposition originated from the seminal paper of
Benders (1962). A successful application of the method was presented in Geoffrion
and Graves (1974). Research on improving and generalizing the approach has
culminated in automatic Benders decomposition now offered in state-of-the-art
MILP solvers (Bonami et al. 2020).

Solving the LP relaxation by Benders decomposition to warm start the generation
of cuts for the MILP model is due to McDaniel and Devine (1977). This algorithmic
refinement has been applied to the MCFND (Costa et al. 2012) and to the MUFND
(Zetina et al. 2019). Accelerating the generation of Benders feasibility cuts for
network design through maximum flow computations is also common (Ljubić et al.
2012; Zetina et al. 2019).

Embedding Benders decomposition within a B&C framework has been used at
least since the late 1990s. The idea can be found in the network design literature,
for instance, in Sridhar and Park (2000); Fortz and Poss (2009); Ljubić et al. (2012).
The integration of additional valid inequalities in the resulting BB&C algorithm
is advocated as a strong advantage of the approach. For example, strong linking
inequalities and cover inequalities are generated for the network design problem
considered in Ljubić et al. (2012).

The concept of Pareto-optimal Benders cuts is due to Magnanti and Wong (1981).
It has since been used in many implementations of Benders decomposition, in
particular for the MCFND (Costa et al. 2012; Naoum-Sawaya and Elhedhli 2013).
Popular stabilization techniques for Benders decomposition are based on the “in-



82 T. G. Crainic and B. Gendron

out” principle (Fischetti et al. 2016), where a convex combination of the current
master problem solution and a stability center is separated, and on the addition of
local branching constraints (Baena et al. 2020), which are gradually “reversed” to
guarantee convergence. A recent survey of computational issues and algorithmic
refinements of Benders decomposition applied to the stochastic MCFND (see
Chap. 9) can be found in Rahmaniani et al. (2018).

Branch-and-Price Algorithms
Column generation in LP started with the seminal papers of Ford and Fulkerson
(1958), on the multicommodity maximum flow problem, and Dantzig and Wolfe
(1960), on its generalization to block-structured LP models. Its first use for solving
integer programs can be found in the work of Gilmore and Gomory (1961, 1963)
on the cutting stock problem. Applying column generation at each node of the B&B
tree was introduced in Desrosiers et al. (1984), while the term “branch-and-price”
was popularized in the 1990s (Barnhart et al. 1998).

B&P algorithms for the FCTP have been proposed recently (Roberti et al. 2015;
Mingozzi and Roberti 2018). Roberti et al. (2015) solve by column generation
the Dantzig–Wolfe reformulation associated with the relaxation of the demand
constraints at the destinations. In Mingozzi and Roberti (2018), column generation
is used to solve the Dantzig–Wolfe reformulation associated with the variable
splitting approach presented in Sect. 2.4; see also Zhao et al. (2018).

Column generation for the MCFND was first proposed in Crainic et al. (2001),
where the bundle method, which can be interpreted as a stabilized variant of
column generation (Ben Amor et al. 2009), is used to optimize the Lagrangian
duals for both the shortest path and the knapsack relaxations. Note, however, that
the Dantzig–Wolfe reformulations used in Crainic et al. (2001) do not exploit the
structure, as they introduce one master problem variable per (aggregated) solution
of the Lagrangian subproblem. It is only in Frangioni and Gorgone (2014) that
the decomposable structure of the shortest path relaxation is exploited to develop
a bundle method that solves (very efficiently) the Dantzig–Wolfe reformulation
presented in Sect. 2.2. Concerning the knapsack relaxation, the “quasi-separable”
structure revealed in the Dantzig–Wolfe reformulation presented in Sect. 2.3 is
the topic of Frangioni et al. (2020). In Akhavan Kazemzadeh et al. (2021), the
facility location relaxation, presented in Sect. 2.4, is solved by a stabilized column
generation method that exploits its separability by node.

To the best of our knowledge, the only papers on exact algorithms for the
MCFND that use column generation are due to Kliewer and Timajev (2005) and
Gendron and Larose (2014). The first one makes use of the knapsack relaxation,
where the Lagrangian dual at each node is solved by a bundle method (with an
aggregated master problem). The second contribution solves the arc-based model at
each node by dynamic generation of both multicommodity flow variables and strong
linking inequalities.

Connections with Heuristic Methods
Slope scaling heuristics for the FCTP are presented in Kim and Pardalos (1999).
The approach is generalized to the MCFND in Eksioglu et al. (2002); Crainic



3 Exact Methods for Fixed-Charge Network Design 83

et al. (2004). A variant of slope scaling, called capacity scaling, is proposed for the
MCFND in Katayama et al. (2009). Embedding slope scaling within a Lagrangian
heuristic can be found in Gendron and Gouveia (2017), for a piecewise linear
multicommodity network design problem, and in Akhavan Kazemzadeh et al.
(2021), for the MCFND. Using slope scaling heuristics to provide cuts to the
Benders master problem for the MCFND can be found in Costa et al. (2012). For the
MCFND, an algorithm that alternates between the solution of the LP relaxation and
a restricted problem derived from that solution, as described in Sects. 9.3 and 9.4,
is presented in Gendron et al. (2018). At each step, a combinatorial Benders cut is
added to the LP relaxation to identify a new solution. More sophisticated algorithms
along the same lines, based on column-and-row generation (adding strong linking
and cover inequalities to a path-based model), are proposed in Hewitt et al. (2010)
for the MCFND and in Hewitt et al. (2013) for the unsplittable variant of the
MCFND. The MILP heuristic based on a population of elite solutions, which we
refer to at the end of Sect. 9, is known as “polishing” and is due to Rothberg (2007).

Parallel Algorithms
The classification of parallel B&B algorithms presented in Sect. 10 is due to
Gendron and Crainic (1994b). The master-slave, collegial and hybrid parallelization
strategies are implemented and tested on a multicommodity fixed-charge location
problem in Bourbeau et al. (2000). The design of parallel B&B algorithms is an
ongoing topic of research, see, for instance (Ralphs et al. 2003; Carvajal et al. 2014;
Eckstein et al. 2015). Parallel computing has been heavily used to solve network
design problems, but mostly in the context of advanced heuristic methods, although
the exact algorithm of Hewitt et al. (2013) is parallelized. More details on parallel
heuristic algorithms are given in Chap. 4.

12 Conclusions and Perspectives

In this chapter, we have studied exact algorithms for solving fixed-charge network
design problems. A recurring theme in all the sections of this chapter is the
importance of exploiting structure to develop efficient algorithms. For instance, we
have seen that, for the (single-commodity) FCTP, relatively straightforward B&B
algorithms can be used, but that they benefit from the integration of Lagrangian-
based filtering by reduced costs, often called “penalties” in the literature, see,
e.g., Bell et al. (1999). For large-scale instances of the FCTP, new models that
can be derived from Dantzig–Wolfe reformulations associated with the Lagrangian
decomposition (variable splitting) technique, presented in Sect. 2.4, have been
shown to be very effective (Mingozzi and Roberti 2018). Such models are solved
through column generation and are strengthened with the addition of cuts, yielding
advanced branch-price-and-cut (BP&C) implementations.

For the more difficult (multicommodity) MCFND, researchers have identified
effective and efficient Lagrangian relaxation approaches. So far, with the exception



84 T. G. Crainic and B. Gendron

of the B&B algorithm based on subgradient optimization, presented in Sect. 5, most
of these relaxations have been exploited in the context of deriving heuristics (Akha-
van Kazemzadeh et al. 2021). These heuristics are clearly essential ingredients in the
quest for optimal solutions, but more significant effort must be deployed to develop
exact methods that can solve very large-scale instances. The development of BP&C
algorithms and their parallel implementations are promising avenues of research in
this direction.

It is noteworthy that state-of-the-art MILP solvers can nowadays perform
advanced algorithmic techniques that very few people would have think possible
not long ago. For instance, the ability of the solvers to detect subproblem structures
and to generate cuts has significantly improved in the last 25 years. Solvers can not
only generate cover and flow cover inequalities, presented in Sect. 4, but they are
also able to exploit the multicommodity structures present in many network design
problems (Achterberg and Raack 2010). Another significant development in recent
years is the integration in MILP solvers of advanced decomposition methods, in
particular Benders decomposition. This has enabled researchers to take advantage
of general-purpose techniques, such as Pareto-optimal cuts and stabilization, now
implemented in the MILP solver, and to focus on the particular aspects of the
decomposition that exploits the structure of the problem they wish to solve. Recent
examples of this line of research can be found in Fischetti et al. (2016); Zetina
et al. (2019). Following this trend, we encourage researchers to see MILP solvers
as allies, rather than adversaries, in the quest for optimal solutions to very large-
scale network design problem instances. Indeed, through the addition of cuts, MILP
solvers already exploit a lot of the structure present in network design models
and can be used to find optimal solutions to (smaller) subproblems that exhibit
multicommodity flow or facility location structures (Akhavan Kazemzadeh et al.
2021).

References

Achterberg, T., Koch, T., & Martin, A. (2005). Branching rules revisitied. Operations Research
Letters, 33, 42–54.

Achterberg, T., & Raack, C. (2010). The MCF-separator: Detecting and exploiting multi-
commodity flow structures in MIPs. Mathematical Programming Computation, 2, 125–165.

Agarwal, Y., & Aneja, Y. (2012). Fixed-charge transportation problem: Facets of the projection
polyhedron. Operations Research, 60(3), 638–654.

Agarwal, Y. K., & Aneja, Y.P. (2017). Fixed charge multicommodity network design using p-
Partition facets. European Journal of Operational Research, 258, 124–135.

Akhavan Kazemzadeh, M. R., Bektas, T., Crainic, T. G., Frangioni, A., Gendron, B., & Gorgone,
E. (2021). Node-based Lagrangian relaxations for multicommodity capacitated fixed-charge
network design. Discrete Applied Mathematics, in press http://dx.doi.org/10.1016/j.dam.2020.
12.024.

Applegate, D., Bixby, R. E., Chvátal, V., & Cook, W. (1995). Finding cuts in the TSP. Technical
Report 95-05, DIMACS.

http://dx.doi.org/10.1016/j.dam.2020.12.024
http://dx.doi.org/10.1016/j.dam.2020.12.024


3 Exact Methods for Fixed-Charge Network Design 85

Atamtürk, A. (2001). Flow pack facets for the single node fixed charge flow polytope. Operations
Research Letters, 29, 107–114.

Atamtürk, A. (2005). Cover and pack inequalities for (mixed) integer programming. Annals of
Operations Research, 139, 21–38.

Atamtürk, A., Gómez, A., & Küçükyavuz, S. (2016a). Three-partition flow cover inequalities for
constant capacity fixed-charge network flow problems. Networks, 67, 299–315.

Atamtürk, A., Küçükyavuz, S., & Tezel, B. (2016b). Path cover and path pack inequalities for
the capacitated fixed-charge network flow problem. SIAM Journal on Optimization, 27(3),
1943–1976.

Atamtürk, A., & Savelsbergh, M. W. P. (2005). Integer-programming software systems. Annals of
Operations Research, 140, 67–124.

Baena, D., Castro, J., & Frangioni, A. (2020). Stabilized Benders methods for large-scale
combinatorial optimization, with application to data privacy. Management Science, 66(7),
3051–3068.

Balakrishnan, A., Magnanti, T. L., & Wong, R. (1989). A dual-ascent procedure for large-scale
uncapacitated network design. Operations Research, 37(5), 716–740.

Balas, E. (1975). Facets of the knapsack polytope. Mathematical Programming, 8, 146–164.
Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998).

Branch-and-price: Column generation for solving huge integer programs. Operations Research,
46, 316–329.

Barr, R. S., Glover, F., & Klingman, D. (1981). A new optimization method for large scale fixed
charge transportation problems. Operations Research, 29(3), 448–463.

Bell, G. J., Lamar, B. W., & Wallace, C. A. (1999). Capacity improvement, penalties, and the fixed
charge transportation problem. Naval Research Logistics, 46, 341–355.

Ben Amor, H. M. T., Desrosiers, J., & Frangioni, A. (2009). On the choice of explicit stabilizing
terms in column generation. Discrete Applied Mathematics, 157, 1167–1184.

Benders, J. F. (1962) Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4, 238–252.

Benichou, M., Gauthier, J. M., Girodet, P., Hentges, G., Ribiere, G., & Vincent, O. (1971).
Experiments in mixed-integer programming. Mathematical Programming, 1, 76–94.

Bixby, R. E., & Rotberg, E. (2007). Progress in computational mixed integer programming—a look
back from the other side of the tipping point. Annals of Operations Research, 149, 37–41.

Bonami, P., Salvagnin, D., & Tramontani, A. (2020). Implementing automatic Benders decompo-
sition in a modern MIP solver. In D. Bienstock, G. Zambelli (Eds.) Integer programming and
combinatorial optimization—IPCO 2020. Lecture notes in computer science, vol. 12125 (pp.
78–90).

Bourbeau, B., Crainic, T. G., & Gendron, B. (2000). Branch-and-bound parallelization strategies
applied to a depot location and container fleet management problem. Parallel Computing, 26,
27–46.

Cabot, A. V., & Erenguc, S. S. (1984). Some branch-and-bound procedures for fixed-cost
transportation problems. Naval Research Logistics, 31, 145–154.

Cabot, A. V., & Erenguc, S. S. (1986). Improved penalties for fixed cost linear programs using
Lagrangian relaxation. Management Science, 32, 856–869.

Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel, V., & Shao, Y. (2014). Using diver-
sification, communication and parallelism to solve mixed-integer linear programs. Operations
Research Letters, 42, 186–189.

Chouman, M., Crainic, T. G., & Gendron, B. (2017). Commodity representations and cut-set-based
inequalities for multicommodity capacitated fixed-charge network design. Transportation
Science, 51(2), 650–667.

Chouman, M., Crainic, T. G., & Gendron, B. (2018). The impact of filtering in a branch-and-
cut algorithn for multicommodity capacitated fixed-charge network design. EURO Journal of
Computational Optimization, 6, 143–184.

Cook, W. (2012). Markowitz and Manne + Eastman + Land and Doig = Branch and Bound. In M.
Grötschel (Ed.) Optimization Stories, Documenta Mathematica, extra volume (pp. 227–238)



86 T. G. Crainic and B. Gendron

Costa, A. M. (2005). A survey on Benders decomposition applied to fixed-charge network design
problems. Computers and Operations Research, 32, 1429–1450.

Costa, A., Cordeau, J. F., & Gendron, B. (2009). Benders, metric and cutset inequalities for
multicommodity capacitated network design. Computational Optimization and Applications,
42, 371–392.

Costa, A., Cordeau, J. F., Gendron, B., & Laporte, G. (2012). Accelerating Benders decomposition
with heuristic master problem solutions. Pesquisa Operacional, 32(1), 3–19.

Crainic, T. G., Frangioni, A., & Gendron, B. (2001). Bundle-based relaxation methods for
multicommodity capacitated fixed charge network design. Discrete Applied Mathematics, 112,
73–99.

Crainic, T. G., Gendron, B., & Hernu, G. (2004). A slope scaling/lagrangean perturbation heuristic
with long-term memory for multicommodity capacitated fixed-charge network design. Journal
of Heuristics, 10, 525–545.

Dantzig, G. B., Fulkerson, D. R., & Johnson, S. M. (1954). Solution of a large scale traveling sales-
man problem. Technical Report P-510, Santa Monica: RAND corporation.

Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations
Research, 8(1), 101–111.

Desrosiers, J., Soumis, F., & Desrochers, M. (1984). Routing with time windows by column
generation. Networks, 14, 545–565.

Eastman, W. L. (1958). Linear programming with pattern constraints. Ph.D. Thesis, Cambridge:
Department of Economics, Harvard University.

Eckstein, J., Hart, W. E., & Phililips, C. A. (2015). PEBBL: An object-oriented framework for
scalable parallel branch and bound. Mathematical Programming Computation, 7, 429–469.

Eksioglu, S. D., Pardalos, P. M., & Romeijn, H. E. (2002). A dynamic slope scaling procedure for
the fixed-charge cost multi-commodity network flow problem. In P. M. Pardalos, V. K. Tsit-
siringos (Eds.) Financial engineering, E-commerce and supply chain. Applied Optimization,
vol. 70 (pp. 247–270). Berlin: Springer.

Fisher, M. L. (2004). The Lagrangian relaxation method for solving integer programming
problems. Management Science, 50(12), 1861–1871.

Fischetti, M., Ljubić, I., & Sinnl, M. (2016). Redesigning Benders decomposition for large-scale
facility location. Management Science, 63, 2146–2162.

Ford, L. R., & Fulkerson, D. R. (1958). A suggested computation for maximal multicommodity
network flows. Management Science, 5, 97–101.

Fortz, B., & Poss, M. (2009). An improved Benders decomposition applied to a multi-layer network
design problem. Operations Research Letters, 37(5), 359–364.

Frangioni, A. (2005). About Lagrangian methods in integer optimization. Annals of Operations
Research, 139, 163–193.

Frangioni, A., & Gorgone, E. (2014). Bundle methods for sum-functions with “easy" components:
Applications to multicommodity network design. Mathematical Programming A, 145, 133–
161.

Frangioni, A., Gendron, B., & Gorgone, E. (2017). On the computational efficiency of subgradient
methods: A case study with Lagrangian bounds. Mathematical Programming Computation, 9,
573–604.

Frangioni, A., Gendron, B., & Gorgone, E. (2020) Quasi-separable Dantzig–Wolfe reformulations
for network design. In M. Baïou, B. Gendron, O. Günlük, A. R. Mahjoub (Eds.) Combinatorial
optimization—ISCO 2020. Lecture Notes in Computer Science, vol. 12176 (pp. 227–236)

Gendron, B. (2011). Decomposition methods for network design. Procedia Social and Behavioral
Sciences, 20, 31–37.

Gendron, B. (2019). Revisiting Lagrangian relaxation for network design. Discrete Applied
Mathematics, 261, 203–218.

Gendron, B., & Crainic, T. G. (1994a). Relaxations for multicommodity capacitated network
design problems. Publication CRT-965, Centre for Research on Transportation. Montreal:
University of Montreal.



3 Exact Methods for Fixed-Charge Network Design 87

Gendron, B., & Crainic, T. G. (1994b). Parallel branch-and-bound algorithms: Survey and
synthesis. Operations Research, 42(6), 1042–1066.

Gendron, B., Crainic, T. G., & Frangioni, A. (1999). Multicommodity capacitated network design.
In B. Sansò, P. Soriano, (Eds.) Telecommunications network planning. Berlin: Springer (pp.
1–19).

Gendron, B., & Gouveia, L. (2017). Reformulations by discretization for piecewise linear integer
multicommodity network flow problems. Transportation Science, 51(2), 629–649.

Gendron, B., Hanafi, S., & Todosijevic, R. (2018). Matheuristics based on iterative linear
programming and slope scaling for multicommodity capacitated fixed charge network design.
European Journal of Operational Research, 268, 70–81.

Gendron, B., & Larose, M. (2014). Branch-and-price-and-cut for large-scale multicommodity
capacitated fixed-charge network design. EURO Journal on Computational Optimization, 2,
55–75.

Geoffrion, A. M. (1974). Lagrangean relaxation for integer programming. Mathematical Program-
ming Studies, 2, 82–114.

Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system design by Benders
decomposition. Management Science, 20(5), 822–844.

Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock
problem. Operations Research, 9, 849–859.

Gilmore, P. C., & Gomory, R. E. (1963). A linear programming approach to the cutting-stock
problem—Part II. Operations Research, 11, 863–888.

Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society, 64, 275–278.

Görtz, S., & Klose, A. (2009). Analysis of some greedy algorithms for the single-sink fixed-charge
transportation problem. Journal of Heuristics, 15, 331–349.

Görtz, S., & Klose, A. (2012). A simple but usually fast branch-and-bound algorithm for the
capacitated facility location problem. INFORMS Journal on Computing, 24(4), 597–610.

Göthe-Lundgren, M., & Larsson, T. (1994). A set covering reformulation of the pure fixed charge
transportation problem. Discrete Applied Mathematics, 48, 245–259.

Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1998). Lifted cover inequalities for 0-1 integer
programs: Computation. INFORMS Journal on Computing, 10, 427–437.

Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1999a). Lifted cover inequalities for 0-1
integer programs: Complexity. INFORMS Journal on Computing, 11, 117–123.

Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1999b). Lifted flow cover inequalities for
mixed 0-1 integer programs. Mathematical Programming, 85, 439–467.

Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (2000). Sequence independent lifting in mixed
integer programming. Journal of Combinatorial Optimization, 4, 109–129.

Hammer, P. L., Johnson, E. L., & Peled, U. N. (1975). Facets of regular 0-1 polytopes.
Mathematical Programming, 8, 179–206.

Hewitt, M., Nemhauser, G. L., & Savelsbergh, M. W. P. (2010). Combining exact and heuristic
approaches for the capacitated fixed-charge network flow problem. INFORMS Journal on
Computing, 22(2), 314–325.

Hewitt, M., Nemhauser, G. L., & Savelsbergh, M. W. P. (2013). Branch-and-price guided search
for integer programs with an application to the multicommodity fixed-charge network flow
problem. INFORMS Journal on Computing, 25(2), 302–316.

Holmberg, K., & Hellstrand, J. (1998). Solving the uncapcitated network design problem by a
Lagrangian heuristic and branch-and-bound. Operations Research, 46(2), 247–259.

Holmberg, K., & Yuan, D. (2000). A Lagrangian heuristic based branch-and-bound approach for
the capacitated network design problem. Operations Research, 48(3), 461–481.

Katayama, N., Chen, M., & Kubo, M. (2009). A capacity scaling heuristic for the multicommodity
capacitated network design problem. Journal of Computational and Applied Mathematics,
232(1), 90–101.

Kennington, J., & Unger, E. (1976). A branch-and-bound algorithm for the fixed-charge transporta-
tion problem. Management Science, 22(10), 1116–1126.



88 T. G. Crainic and B. Gendron

Kim, D., & Pardalos, P. M. (1999). A solution approach to the fixed charge network flow problem
using a dynamic slope scaling procedure. Operations Research Letters, 24, 195–203.

Kliewer, G., & Timajev, L. (2005). Relax-and-cut for capacitated network design. In G. S. Brodal,
S. Leonardi, (Eds.) Algorithms—ESA 2005. Lecture Notes in Computer Science, vol. 3669 (pp.
47–58).

Klose, A. (2008). Algorithms for solving the single-sink fixed-charge transportation problem.
Computers and Operations Research, 35(6), 2079–2092.

Klose, A., & Görtz, S. (2007). A branch-and-price algorithm for the capacitated facility location
problem. European Journal of Operational Research, 179, 1109–1125.

Lamar, B. W., & Wallace, C. A. (1997). Revised-modified penalties for fixed charge transportation
problems. Management Science, 43(10), 1431–1436.

Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming
problems. Econometrica, 28, 497–520.

Letchford, A. N., & Souli, G. (2019). New valid inequalities for the fixed-charge and single-node
flow polytopes. Operations Research Letters, 47, 353–357.

Little, J. D. C., Murty, K. G., Sweeney, D. W., & Karel, C. (1963). An algorithm for the traveling
salesman problem. Operations Research, 11, 972–989.

Ljubić, I., Putz, P., & Salazar-González, J. J. (2012). Exact approaches to the single-source network
loading problem. Networks, 59(1), 89–106.

Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders decomposition: algorithmic
enhancement and model selection criteria. Operations Research, 29(3), 464–484.

Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning: Models and
algorithms. Transportation Science, 18(1), 1–55.

Magnanti, T. L., Mireault, P., & Wong, R. T. (1986). Tailoring Benders decomposition for
uncapacitated network design. Mathematical Programming Studies, 26, 112–154.

Manne, A. S., & Markowitz, H. M. (1957). On the solution of discrete programming problems.
Econometrica, 25, 84–110.

McDaniel, D., & Devine, M. (1977). A modified Benders’ partitioning algorithm for mixed integer
programming. Management Science, 24(3), 312–319.

Mingozzi, A., & Roberti, R. (2018). An exact algorithm for the fixed charge transportation problem
based on matching source and sink patterns. Transportation Science, 52(2), 229–238.

Minoux, M. (1989). Network synthesis and optimum network design problems: Models, solution
methods and applications. Networks, 19, 313–360.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and Combinatorial Optimization. New York:
Wiley.

Naoum-Sawaya, J., & Elhedhli, S. (2013). An interior-point Benders based branch-and-cut
algorithm for mixed integer programs. Annals of Operations Research, 210, 33–55.

Ortega, F., & Wolsey, L. A. (2003). A branch-and-cut algorithm for the single-commodity,
uncapacitated, fixed-charge network flow problem. Networks, 41(3), 143–158.

Padberg, M. W., & Rinaldi, G. (1987). Optimization of a 532-city symmetric traveling salesman
problem by branch and cut. Operations Research Letters, 6, 1–7.

Padberg, M. W., Van Roy, T. J., & Wolsey, L. A. (1985). Valid linear inequalities for fixed charge
problems. Operations Research, 33, 842–861.

Palekar, U. S., Karwan, M. H., & Zionts, S. (1990). Branch-and-bound method for the fixed charge
transportation problem. Management Science, 36(9), 1092–1105.

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decomposition
algorithm: A literature review. European Journal of Operational Research, 259, 801–817.

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2018). Accelerating the Benders
decomposition method: Application to stochastic network design problems. SIAM Journal on
Optimization, 28(1), 875–903.

Ralphs, T. K., Ladányi, L., & Saltzman, M. J. (2003). Parallel branch, cut, and price for large-scale
discrete optimization. Mathematical Programming B, 98, 253–280.



3 Exact Methods for Fixed-Charge Network Design 89

Roberti, R., Bartolini, E., & Mingozzi, A. (2015). The fixed charge transportation problem: An
exact algorithm based on a new integer programming formulation. Management Science, 61(6),
1275–1291.

Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of Constraint Programming. Amsterdam:
Elsevier.

Rothberg, E. (2007). An evolutionary algorithm for polishing mixed integer programming solu-
tions. INFORMS Journal on Computing, 19(4), 534–541.

Savelsbergh, M. W. P. (1994). Preprocessing and probing techniques in mixed integer program-
ming. ORSA Journal on Computing, 6(4), 445–454.

Sellmann, M., Kliewer, G., & Koberstein, A. (2002). Lagrangian cardinality cuts and variable
fixing for capacitated network design. In R. Möhring, & R. Raman (Eds.) Algorithms—ESA
2002, Lecture Notes in Computer Science, vol. 2461 (pp. 845–858).

Sridhar, V., & Park, J. S. (2000). Benders-and-cut algorithm for fixed-charge capacitated network
design problem. European Journal of Operational Research, 125, 622–632.

Stallaert, J. I. A. (1997). The complementary class of generalized flow cover inequalities. Discrete
Applied Mathematics, 77, 73–80.

Van Roy, T. J., & Wolsey, L. A. (1987). Solving mixed integer programming problems using
automatic reformulation. Operations Research, 35, 45–57.

Wolsey, L. A. (1975). Faces of linear inequalities in 0-1 variables. Mathematical Programming, 8,
165–178.

Wolsey, L. A. (1998) Integer Programming. New York: Wiley.
Wolsey, L. A. (2003). Strong formulations for mixed integer programs: Valid inequalities and

extended formulations. Mathematical Programming B, 97, 423–447.
Zetina, C. A., Contreras, I., & Cordeau, J. F. (2019). Exact algorithms based on Benders

decomposition for multicommodity uncapacitated fixed-charge network design. Computers and
Operations Research, 111, 311–324.

Zhao, Y., Larsson, T., Rönnberg, E., & Pardalos, P. M. (2018). The fixed charge transportation
problem: A strong formulation based on Lagrangian decomposition and column generation.
Journal of Global Optimization, 72, 517–538.



Chapter 4
Heuristics and Metaheuristics for
Fixed-Charge Network Design

Teodor Gabriel Crainic and Michel Gendreau

1 Introduction

While the methods based on exact solution principles described in Chap. 3 provide
means to solve network design problem instances that have become of significant
size over the years, it is important to realize that they are not the only way by
which one can address network design problems. Actually, over the last 60 years
or so, various approaches have been proposed to derive approximate solutions for
various types of network design problems. These approaches have been used mostly
to deal with the larger instances that are typically encountered in the context of
real-life applications, which cannot be addressed by exact methods. In some cases,
constraints on the time available for deriving good feasible solutions to complex
problems has been a strong incentive for resorting to heuristics and metaheuristics.

Heuristic and metaheuristic approaches differ from the mathematical-
programming based methods of Chap. 3 in many ways. A key difference is that
they are based on the exploration of a search space, which is often quite different
from the notion of feasible space of exact approaches. We will examine the notion
of search space more thoroughly in the next section, as well as other important
concepts.

Approximate approaches to network design problems can be broken down into
three large classes: first, so-called classical heuristics, which rely on fairly simple

T. G. Crainic
CIRRELT and AOTI, Université du Québec à Montréal, Montréal, QC, Canada
e-mail: TeodorGabriel.Crainic@cirrelt.net

M. Gendreau (�)
CIRRELT and MAGI, Polytechnique Montréal, Montréal, QC, Canada
e-mail: Michel.Gendreau@cirrelt.net

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_4

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_4&domain=pdf
mailto:TeodorGabriel.Crainic@cirrelt.net
mailto:Michel.Gendreau@cirrelt.net
https://doi.org/10.1007/978-3-030-64018-7_4


92 T. G. Crainic and M. Gendreau

rules for building and improving tentative solutions; second, metaheuristics, which
are methods that rely on sophisticated search strategies to derive very good (often
near-optimal) solutions to the problem at hand; and third, matheuristics, which
combine algorithmic components from metaheuristics with procedures derived from
exact methods applied to the model formulation. In this chapter, we will examine
these three classes, as well as parallel methaheuristics, which are methods that
leverage the power of parallel computing to find better approximate solutions.

This chapter is organized as follows. In Sect. 2, we first present a number of basic
concepts that are central to the way in which heuristics and metaheuristics tackle
combinatorial problems. Section 3 is devoted to the more traditional heuristics,
while the two following sections are devoted to the two main classes of metaheuris-
tics, i.e., neighborhood-based metaheuristics and population-based metaheuristics.
The first class refers to methods that follow a trajectory of solutions, moving at
each step from a current tentative solution to a different neighbor. Population-
based methods rely on the the application of various operations on a population
of several possible solutions to the problem at hand with the objective of identifying
an interesting one at the end of the procedure; in several of these methods, the
operations considered mimick processes that are observed in the evolution of
species. Some important applications of matheuristics to network design problem
are then presented in Sect. 6. Section 7 follows and presents solution approaches
that use parallel computing; while these methods often combine ideas and elements
from the previous sections, several go much further and are among the best meta-
or matheuristics for network design problems. Bibliographical notes are provided
in Sect. 8. We summarize the main conclusions of this chapter and provide some
research perspectives in Sect. 9.

In Sects. 3–5, we review in different subsections several methods that fall under
the general heading of the section. For each of these methods, we first briefly
recall the general principles of the method. This is followed in most cases by a
presentation of the application of the method to one or several of the network design
problems described in Chap. 2. In some cases, when we are not aware of any direct
application of a method to network design problems in transportation and logistics,
the presentation of relevant applications is deferred to Sects. 6 or 8.

2 Basic Concepts

We first examine the notion of search space, which is central in heuristics and
metaheuristics. Furthermore, the exploration of this search space is conducted
normally by considering neighborhoods or populations of solutions. We review
these basic concepts, as well as a few others, in the following.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 93

2.1 Search Space

The search space that will be explored by the search is a key component of the
methods examined in this chapter. This notion refers to the space of solutions that
can be considered through the exploration. While it may seem natural to equate the
search space with the set of feasible solutions to a problem, there are many situations
where this is not attractive.

To better understand this, consider the single-commodity fixed-charge trans-
portation problem (FCTP) and the formulation proposed in Sect. 2.3 of Chap. 2.
This problem is defined on a network G = {N ,A }, the set A encompassing the
possible design arcs, between the origin (source) and destination (sink) nodes of set
N = N o ∪N d , among which the selection is to be made. For simplicity sake, we
assume in the following that the underlying bipartite graph is complete. Each design
arc is characterized by a fixed selection cost, fij , a unit flow transportation cost, cij ,
and a capacity, uij , limiting the volume of commodity one may assign to the arc.
The objective is to fulfill at minimal total cost, computed as the sum on the total
fixed and transportation costs, the demand for transportation between the origins,
each with supply (availability) wi > 0 of the given commodity, and destinations,
each with a demand (request) wi < 0 of the same commodity.

Two types of decision variables are defined: xij continuous variables that refer
to the amount of flow going from vertex i to vertex j , and yij binary variables that
indicate whether arc (i, j) is used in the solution or not. Thus, one could imagine
that the search space would consist of feasible pairs of (x, y) vectors. However, one
can do much better because of the close relationships between the x and y vectors
that make up any optimal solution. In particular, in an optimal solution, one will
have yij = 1 iff xij > 0. One could thus define the search space with respect to the
x variables only. An alternate approach, which is much more easily implemented,
defines the search space with respect to the y variables. For any given value ȳ of the
y vector, a complete solution can be recovered by solving an auxiliary transportation
problem:

Minimize
∑

(i,j)∈A
cij xij (4.1)

Subject to
∑

j∈N +
i
xij = |wi |, ∀ i ∈ N o, (4.2)

∑
j∈N −

i
xji = |wi |, ∀ i ∈ N d , (4.3)

xij ≤ uij ȳij , ∀ (i, j) ∈ A , (4.4)

xij ≥ 0, ∀ (i, j) ∈ A . (4.5)

where constraints (4.2) and (4.3) enforce the supply (wi, i ∈ N o) and demand
(wi, i ∈ N d ) conditions at origin and destination nodes, respectively, while
constraint (4.4) limits the flow on each selected arc to its capacity, uij .



94 T. G. Crainic and M. Gendreau

It is important to note that, in many methods, the search space is often not limited
to feasible solutions. In fact, many extremely successful metaheuristics rely heavily
on the possibility of considering infeasible solutions during the search, especially
when dealing with very constrained problems. This is usually managed by adding
penalties to the objective to account for violations of some constraints (see Gendreau
et al. 1994, for a very successful use of these ideas).

2.2 Neighborhoods

Several of the methods that we discuss in this chapter, notably, Local Search
improvement heuristics and neighborhood-based metaheuristics, rely heavily upon
the concept of move, which refers to the transition from one solution in the search
space to another by the application of some transformation. In many methods, these
transformations are rather limited and give rise to solutions that are just slightly
modified, but this is not always the case and moves implying major changes to the
solutions were proposed for several methods.

The set of all the solutions that can be produced by applying an allowable move
to a given solution S gives rise to the neighborhood N (S) of this solution S. The
definition of the neighborhood structures (there could be one or several depending
on the complexity of the method) that will be used in a search process is one of its
central features. The definition of these neighborhood structures is highly dependent
on the choices made for the search space, since neighborhoods allow us to go from
one element in the search space to another (or, more correctly, define a set of other
elements of the search space that one could reach in a single move).

Consider again the fixed-charge transportation problem and suppose that we have
chosen to explore the space of the binary y variables. In this search space, a neigh-
borhood structure that is commonly used is the so-called add-drop neighborhood,
which associates to any given ȳ vector the set of all y vectors that differ from ȳ in
only a single entry (either we add an arc (i′, j ′) for which we had previously ȳi′j ′ =
0, or we drop an arc for which ȳi′j ′ = 1). Thus the add-drop neighborhood NAD(ȳ)
is the set {y|yij = ȳij , (i, j) ∈ A \ (i′, j ′) and yi′j ′ = 1− ȳi′j ′,∀(i′, j ′) ∈ A }.

An alternate neighborhood structure for the same search space is that of the swap
neighborhood, which corresponds to changing simultaneously two entries in the ȳ
vector: a null one that now takes the value 1 and a positive one that becomes 0.

Neighborhood-based methods usually require that, at each iteration, the solutions
in the neighborhood N (S) of the current solution S be examined to find an
attractive candidate solution for the next iteration. There are several ways of
performing this exploration. A very common one consists in examining all the
elements of N (S) and in selecting the one with the best objective function value.
This is called best-improvement search. If neighborhoods are large, one could
instead stop the procedure as soon as a solution that improves on S is found, which
is first-improvement search. More sophisticated ways to perform the evaluation in



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 95

the neighborhood N (S) have been proposed, mostly to reduce the computational
burden of each iteration. These are often refereed to as candidate-list strategies.

2.3 Populations

As their name implies, population-based metaheuristics rely on the exploitation of
populations (i.e., samples) of solutions of the problem at hand to explore a chosen
search space. Usually, most of these solutions are feasible ones, but in some cases,
infeasible solutions may be considered as well. Central to population-based methods
is the process of constructing new solutions by combining elements or features of
existing ones.

There is a wide range of population-based metaheuristics and the specific mech-
anisms that they use thus vary quite a lot, but any population-based metaheuristic
must address a number of fundamental questions:

• How is the initial population created?
• At each iteration, how are chosen existing population members to create new

ones? (selection)
• How are features from selected population members selected? (crossover or other

combination procedure)
• What other modifications are performed on elements from the population?

(mutation or education)
• How are less interesting members of the population deleted?
• When should the search process stop?

We will see in Sect. 5 the answers provided by different methods to these
questions.

2.4 Evaluating the Performance of Heuristics
and Metaheuristics

In general, the evaluation of the performance of heuristics and metaheuristics is a
much more complex issue than for exact methods. Among other things, it is not
just a matter of measuring how much computing (CPU) time a method requires to
find the optimal solution to a problem. Furthermore, except in very special cases,
there are very few theoretical results that one can derive in this area. The evaluation
of heuristics and metaheuristics thus relies heavily on empirical computational
experiments performed on suitable sets of benchmark instances. Such benchmarks
should be reasonably representative of the types of actual instances that one would
like to solve with the methods at hand.

One must also avoid the pitfall of using the same sets of instances to calibrate
the parameters of the methods being tested and to derive performance measures.



96 T. G. Crainic and M. Gendreau

If this is not done, one may end up in a situation where the parameter values are
too well adapted to the instances at hand (i.e., this is a case of over-fitting) with
the consequence that the performance observed on the benchmark instances would
not generalize to other instances, thus leading to completely erroneous conclusions.
Ideally, one would also like to have in benchmark instances that are small enough
to be tackled by exact methods to allow for the estimation of the optimality gaps
between heuristic solutions and actual optimal solutions.

Another issue that is far from trivial is deciding how much time or how many
iterations to allow to heuristics, since many of these methods do not have obvious
a priori stopping criteria. With additional time, the quality of solutions improves,
but often in a very different fashion. Different methods thus display different
performance profiles over time, which makes a direct comparison often rather
difficult.

A factor that often complicates comparisons between various methods aimed at
solving the same class of problems is the fact that different authors use different
sets of test instances, which makes it almost impossible to derive any meaningful
comparisons between the methods. We are not aware of any widely used benchmark
for the fixed-charge transportation problem. The situation is different for the
multicommodity capacitated fixed-charge network design problem (MCFND). Most
authors who proposed solution methods for the MCFND have relied on the same set
of benchmark instances to assess the performance of this method. This benchmark
was proposed in Gendron and Crainic (1994), and it is made up of two sets of
instances. The main set, which is called set C, is made up of 43 instances having
between 20 and 100 nodes, between 100 and 700 arcs, from 10 to 400 commodities,
different fixed to variable costs ratios, and loose or tight capacity constraints,
providing the means to thoroughly assess the performance of algorithms on a wide
range of problem features; this is the set used by most authors in their computational
experiments. A second set, called set R, was created to study more systematically
the impact of problem characteristics on algorithmic performance. It is made up
of 18 basic networks, having from 10 to 20 nodes, 25 to 300 arcs, and 10 to 200
commodities; for each network, 9 instances are created by considering three levels
of fixed cost and three levels of capacity tightness, thus yielding a total of 162
instances. In this chapter, we will refer to these sets of benchmark instances as sets
C and R of the Gendron-Crainic benchmark.

3 Classical Heuristics

When dealing with large or difficult problems in combinatorial optimization,
heuristic methods have been used since the beginnings of operations research. We
refer to methods used since the early ages of operations research as classical ones.
In general, one distinguishes between constructive and improvement heuristics, but
these are often used in conjunction to provide better-quality solutions.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 97

3.1 Constructive Heuristics

The main objective pursued in constructive heuristics is simply to obtain some
feasible solution for the problem at hand, with the hope that this solution will be
“good enough” for the intended usage, or that it can serve as initial solution for
a more involved heuristic procedure. The archetypical example of a constructive
heuristic is the so-called greedy heuristic, which builds a solution one element at
the time, at the lowest cost possible (assuming that the problem is a minimization
one).

To illustrate how such a method works, let us consider the fixed-charge trans-
portation formulation recalled in Sect. 2 (see also Sect. 2.3 of Chap. 2). One way
of applying a greedy approach for this problem is to compute the unit linearized
cost c′ij = fij /uij + cij for all arcs (i, j) ∈ A , and to select the arc with the
minimum value. One then assigns a flow of value xij = min{|wi |, |wj |} to arc
(i, j). The values for wi and wj are then decreased by xij , since the transportation
requests for nodes i and j have been partially fulfilled. The process then goes
through another iteration, without taking into account the arc (i, j), which can
no longer be used, until all requests have been assigned. When the problem is
defined on a complete bipartite graph and when demands are balanced, i.e., when∑

i∈N o wi =∑j∈N d wj , this process leads to a feasible solution.
Greedy methods are fast but yield results of dubious quality in many cases,

particularly for network design problems. It has been experimentally shown, for
example, that the last arcs selected by the greedy heuristic above for the trans-
portation problem are among the most costly ones in the network. A constructive
method alleviating such shortcomings for network design makes use of the same unit
linearized arc cost defined above, but is based on solving the linear programming
relaxation of the problem with those costs, and selecting the arcs with positive
flow in the optimal solution. More precisely, one first solves the minimum cost
transportation problem (4.1)–(4.5) with cij = c′ij . Then, yij = 1 if xij > 0 in
the optimal solution, and 0, otherwise. This procedure has experimentally produced
very good feasible solutions not only for the fixed-charge transportation problem,
but also more broadly for the single and the multicommodity capacitated fixed-
charge network design formulations.

3.2 Improvement Methods (Local Search)

Improvement methods are the natural complement to constructive heuristics, in
the sense that these are methods that are meant to produce sequences of feasible
solutions that improve on one another with respect to the objective function of the
problem at hand. Most of these methods are based on the principles of Local Search,
which iteratively applies “local” modifications to a so-called current solution in such
a way that the modified solution improves the objective value at each step. This



98 T. G. Crainic and M. Gendreau

monotonicity condition ensures that the method will not cycle. It will eventually
reach a solution such that no improving one can be determined by the application
of the possible local modifications. Whenever this happens, the search has found a
local optimum and terminates.

It must be emphasized that Local Search methods rely heavily rely on the
concepts of search space and neighborhoods presented in Sect. 2. It must be noted,
however, that traditional Local Search methods rarely consider infeasible solutions
in their exploration process.

3.2.1 Basic Local Search

The basic principle of Local Search is simply to explore in an iterative fashion the
selected search space for the problem at hand by performing at each iteration a move
from the current solution S to an improving feasible one selected in its neighborhood
N (S), until a local optimum is encountered. The improving solution chosen at each
iteration can be selected according to best-improvement or first-improvement rules.

3.2.2 A Local Approach Search for the Fixed-Charge Transportation
Problem

We now describe a fairly simple, yet effective, approach for the fixed-charge
transportation problem. This Local Search method relies on the exploration of the
extreme points of the polyhedron of the transportation problem defined by equations

∑
j∈N +

i
xij = |wi |, ∀ i ∈ N o, (4.6)

∑
j∈N −

i
xji = |wi |, ∀ i ∈ N d , (4.7)

xij ≤ uij , ∀ (i, j) ∈ A , (4.8)

xij ≥ 0, ∀ (i, j) ∈ A . (4.9)

These extreme points correspond to feasible basic solutions of the transportation
problem. It has been known since the 1950s (Hirsch and Dantzig 1954), that an
optimal solution of the fixed-charge transportation problem can be found in one of
the extreme points of this polyhedron. Thus, one can simply explore the search space
defined by these extreme points (feasible bases of the system (4.6)–(4.9)). A natural
way to do so is to consider pivot operations from one feasible basic solution to
another, and use them to define a neighborhood structure on this search space. It
is also interesting to note that, since bases of the system (4.6)–(4.9) correspond to
spanning trees of the underlying bipartite graph, one can also interpret the search
using this neighborhood as searching the space of the spanning trees of the bipartite
graph, where adjacent spanning trees only differ in two edges.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 99

A Local Search procedure for the fixed-charge transportation problem can thus
start from any basic solution to (4.6)–(4.9), and proceed by performing pivots on
this system. Let’s note x̄ the vector of continuous variables corresponding to the
current extreme point solution. The cost of this solution is then easily obtained as
the sum of the variable

∑
(i,j)∈A cij xij and fixed costs fij of arcs (i, j) for which

xij > 0.
This basic Local Search can be expected to rapidly run into a local optimum

and thus to terminate prematurely. One way to improve its performance consists
in considering, when running into a local optimum, an extended neighborhood that
contains extreme points that are two pivots away from the current solution (i.e.,
solutions that are obtained by pivoting into the current basis a pair of non-basic
variables). Obviously, the exploration of the set of extreme points that are two pivots
away is significantly more expensive than just looking at adjacent extreme points,
but it yields significantly better solutions. Defining several such neighborhoods, e.g.,
1-pivot, 2-pivots, 3-pivots, . . . , and rules specifying when and how the search passes
from one neighborhood to another leads to metaheuristics.

4 Neighborhood-Based Metaheuristics

As we already mentioned, neighborhood-based metaheuristics rely on following a
trajectory of related solutions to the problem at hand; hence, they are also referred
to as trajectory-based methods. In many ways, these methods can be seen as
generalizations of the Local Search methods of the previous section, using the same
basic concepts of search spaces and neighborhoods, with a few twists that we now
explain.

All neighborhood-based metaheuristics rely on more sophisticated search strate-
gies than Local Search, in particular by including more than one search heuristic. In
this way, they perfectly illustrate the definition of metaheuristics (and matheuristics)
as heuristics guiding other heuristics. Moreover, in the improvement methods of the
previous section, one normally chooses the feasible neighbor with the best objective
function value to become the new current solution and the search terminates
whenever N (S) does not contain any improving feasible neighbor. This is not
the case in neighborhood-based metaheuristics, which often use different rules for
selecting the new current solution and do not terminate when they encounter local
optima.

We first focus on Tabu Search methods, which have seen very successful
applications to classical network design problems. We then present rapidly four
other neighborhood-based metaheuristics, which have been integrated into hybrid
methods or matheuristics, or applied to complex network design problems that are
beyond the scope of this chapter: Simulated Annealing, Iterated Local Search,
Greedy Randomized Adaptive Search Procedure, and Variable Neighborhood
Search.



100 T. G. Crainic and M. Gendreau

4.1 Tabu Search

Traditional Local Search methods are plagued by the fact that their exploration of
the search space terminates whenever they run out of improving neighbors, i.e.,
whenever they run into a local optimum of the problem with respect to the chosen
neighborhood structure. In many problems, this can lead to very poor heuristic
solutions. The key ideas of Tabu Search is (1) to continue exploring the search space
even when a local optimum is encountered, and (2) to learn during the exploration
about the search space, the trajectory, and the search behavior (e.g., identifying
variables or zones critical to good solutions). Continuing the exploration beyond
a local optimum may, however, easily lead to cycling: after moving from a local
optimum to one of its neighbors, the search could very well move back to the just-
visited local optimum. To prevent this from happening, one must forbid some moves
by declaring then tabu for a certain time length or number of iterations. In practice,
one records in some short-term memory key information on the moves that were
performed in the most recent iterations and declares tabu either the reverse moves
or moves involving particular configurations of the solution attributes (e.g., paths
for commodities recently involved in moves). Note that the tabu status may be lifted
if the candidate solution is improving with respect to an aspiration criterion. The
latter is generally defined as a minimum threshold by which the candidate solution
must better than the local or global current best solution (e.g., the objective-function
value of the candidate must be lower by at least α% than the value of the current
best), in order for the tabu status to be lifted.

Actually, Tabu Search goes well beyond simply exploiting short-term memory.
Longer-term memories are used to implement two key ideas: search intensification
and search diversification.

The idea behind search intensification is, from times to times, to interrupt the
regular search process to explore more thoroughly portions of the search space in
which good solutions, e.g., the best known solution, have been encountered. This
more thorough search is often accomplished by switching to a different neighbor-
hood structure: for instance, if one uses an add-drop neighborhood structure for
regular search, then intensification could use a swap neighborhood.

Diversification can be seen as the complement of intensification. Here, the main
objective is to insure that the search covers a wide portion of the search space, i.e.,
that several different possible solutions are examined. Diversification is often based
on long-term memories, such as frequency memory, which records the number of
times that some solution element, e.g., a design arc, has appeared in the current
solution. The basic idea is to implement algorithmic mechanisms to “force” these
less frequent elements into the current solution, thus redirecting the search to
unexplored or little explored parts of the search space. Diversification has become a
key component of most meta- and matheuristic strategies.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 101

4.1.1 Tabu Search for the Fixed-Charge Transportation Problem

A natural way of applying Tabu Search to the fixed-charge transportation problem
is by extending the ideas of Sect. 3.2.2 with respect to the choice of search space
and neighborhood structure. Thus, one can implement a Tabu Search metaheuristic
using the set of extreme points of the polyhedron defined by the system (4.6)–(4.9)
as search space, and a neighborhood structure defined by pivot operations. Because
of the more sophisticated search mechanisms available in Tabu Search, one can just
consider 1-pivot moves and adjacent extreme points as neighbors of a given solution.

The search can be initiated from any feasible solution to (4.6)–(4.9). Since moves
correspond to pivot operations, they can be defined in terms of flow (continuous)
variables entering the basis, or equivalently, the arcs of the spanning tree to which
this basis corresponds. In that context, tabu restrictions are defined with respect to
the arcs of that spanning tree: (1) an arc leaving the spanning tree and becoming
non-basic is prevented from reentering the basis for ξin iterations; (2) when an arc
becomes basic, it must remain in the solution for at least ξout iterations. The values
for these tabu tenures can be fixed throughout the search or be reset at some random
values in a given interval during the search. These tabus prevent some solutions in
the neighborhood of the current solution to be considered as candidates for the next
move, unless these solutions are improving with respect to an aspiration criterion.

To reduce the computational burden, one can consider at each iteration only the
moves involving non-basic arcs originating from a single origin. In the next iteration,
the selected origin is moved to the next one. This candidate list strategy is disabled
when all moves considered are tabu.

When the basic search process starts to stagnate (i.e., a large number of iterations
have been performed without improving the best solution found), it is a good idea to
consider intensifying the search in the hope of identifying better solutions. One way
of inducing intensification is to reduce the impact of the fixed cost of arcs that have
been present in the basis of the current solution for a large number of iterations. By
reducing the contribution of the fixed cost of these arcs in the objective, these arcs
become more attractive and thus more likely to be again present in the spanning
tree. This reduction of fixed cost is applied until an overall better solution is found
or for a certain number of moves.

Diversification can be encouraged in a fashion similar to the one used for
intensification, but instead reducing the impact of the fixed cost of arcs that
have seldom been present in the basis of the current solution. The length of this
diversification phase can be fixed. Another option for diversification is to directly
force into the spanning tree arcs that have been out of the basis for the longest time.

Because they do not stop at local optima, Tabu Search heuristics could, in theory,
go on for ever. We thus need stopping criteria. In its simplest form, these could be
a pre-defined number of iterations or, more usually, a number of iterations without
improvement of the best solution found. In the context of a complex search strategy
involving both intensification and diversification phases, it makes more sense to stop
the search after a given number of such phases and return the best solution found.



102 T. G. Crainic and M. Gendreau

4.1.2 Tabu Search for the Multicommodity Capacitated Fixed-Charge
Network Design Problem

We now examine how Tabu Search can be used to tackle multicommodity capac-
itated fixed-charge network design (MCFND) formulations (Sect. 3, Chap. 3). We
briefly recall the notation of the MCFND. The problem is defined on a network
G = (N ,A ) shared by several commodities represented by set K . The demand
wk
i to satisfy for any commodity k ∈ K is defined at each node i ∈ N and, for

simplicity, we assume that
∑

i∈N wk
i = 0, k ∈ K , i.e., the demand is balanced

for each commodity. Each potential design arc (i, j) ∈ A is characterized by
its fixed cost fij , charged whenever the arc is included in the optimal design, its
capacity uij , limiting the total flow of all commodities on the arc, and commodity-
specific unit transportation costs ckij , k ∈ K . The MCFND minimizes the sum of
the costs to select the arcs to be included in the design and the transportation costs to
move the commodity flows, within the transportation capacities of the selected arcs.
Using binary design variables yij , (i, j) ∈ A , and continuous multicommodity flow
variables xkij ≥ 0, (i, j) ∈ A , k ∈ K , the arc-based MCFND model is written as

Minimize
∑

(i,j)∈A
fij yij +

∑

k∈K

∑

(i,j)∈A
ckij x

k
ij (4.10)

Subject to
∑

j∈N +
i
xk
ij
−∑

j∈N −
i
xk
ji
= wk

i
, ∀ i ∈ N , ∀ k ∈ K , (4.11)

∑
k∈K xk

ij
≤ uij yij , ∀ (i, j) ∈ A , (4.12)

xk
ij
≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K , (4.13)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (4.14)

Tabu Search has been applied quite successfully to complex facility location
problems, which display strong similarities with network design problems (in fact,
many facility location problems can be easily transformed into equivalent network
design problems). Several of these successful implementations were based on the
exploration of the search space of binary location (i.e., design) variables using the
add-drop and swap neighborhood structures described in Sect. 2.2. This type of
approach would thus seem attractive for tackling the MCFND: once design variables
have been set to given values given by the vector ȳ, corresponding continuous
flow variables can be easily recovered by solving the auxiliary minimum cost
multicommodity network flow (MCMNF) problem:

Minimize
∑

k∈K

∑

(i,j)∈A
ckij x

k
ij (4.15)

Subject to
∑

j∈N +
i
xk
ij
−∑

j∈N −
i
xk
ji
= wk

i
, ∀ i ∈ N , ∀ k ∈ K , (4.16)



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 103

∑
k∈K xk

ij
≤ uij ȳij , ∀ (i, j) ∈ A , (4.17)

xk
ij
≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K , (4.18)

yij ∈ {0, 1}, ∀ (i, j) ∈ A . (4.19)

Unfortunately, this fairly straightforward approach performs very poorly for
network design, which presents a more complex network structure compared to
location. Moves that close arcs may have a strong impact on the current solution,
when closing paths that are used by many commodities between several origin-
destination pairs, but moves that open new arcs are very often ineffective, since,
in most cases, they will not lead directly to the creation of new paths for the
commodities.

Pivot-Based Neighborhoods

The ideas underlying the solution methods presented in Sects. 3.2.2 and 4.1.1 offer
more promising alternatives. Here again, the key idea is to consider as search
space the set of extreme points of the MCMNF problem, with all arcs open, i.e.,
the problem obtained by deleting the ȳij ’s from the linear program (4.15)–(4.18).
This search space can be explored by performing pivots from one feasible solution
to another. The original ckij arcs costs may be used or the linearized ones, i.e.,

c′kij = fij /uij + ckij , (i, j) ∈ A , k ∈ K . One generally expects to obtained better
results by resorting to the linearized costs. As for the values of the design variables
yij , they are easily recovered by setting yij = 1, when

∑
k∈K xkij > 0, and 0,

otherwise.
At this point, it is important to recall that large MCMNF problems are solved

more effectively using path-flow formulations and column generation techniques.
This suggests switching to the path-based formulation and exploring the extreme
points of the linear capacitated multicommodity flow subproblem of this formula-
tion. Let Pk be the set of feasible paths in G for commodity k ∈ K , let’s define
the decision variable hkp as the volume of commodity k moved on path p ∈Pk .

Minimize
∑

(i,j)∈A

∑

k∈K

∑

p∈Pk

ckij δ
p
ij h

k
p (4.20)

Subject to
∑

p∈Pk hkp = dk, ∀ k ∈ K , (4.21)
∑

k∈K
∑

p∈Pk δ
p
ij h

k
p ≤ uij , ∀ (i, j) ∈ A , (4.22)

hkp ≥ 0, ∀ k ∈ K ,∀p ∈Pk, (4.23)



104 T. G. Crainic and M. Gendreau

where δ
p
ij indicates whether (i.e., δpij = 1) or not (i.e., δpij = 0) arc (i, j) ∈ A

belongs to path p ∈ ∪k∈K Pk (thus, xkij =
∑

p∈Pk δ
p
ij h

k
p, ∀ (i, j) ∈ A ).

In this formulation, pivots are made with respect to the path variables hkp (again,
path costs may be the original or the linearized ones). A move thus corresponds to
entering a currently unused path-flow variable hk

′
p′ , k

′ ∈ K , in the basis, which, in
turn, forces out of the basis a path p′′, of any commodity, for which the flow is driven
to zero. Moves are evaluated by computing the difference in the total cost of the
current solution, which is the sum of the variation of the total cost for the continuous
variables plus the difference in the fixed cost of the binary design variables whose
status has changed from open to closed or vice-versa. To prevent cycling, tabus are
imposed on pivoting variables out of the basis, by assigning a random tabu tenure to
each path entering the basis.

As in any path-based formulation, the number of paths can be huge. One
must thus start the algorithm with a limited number of paths for each commodity
and resort to column generation to identify additional ones. In this tabu search
procedure, a column generation phase could be performed, for example, after a
given number of moves without observing an improvement in the best known
solution. As for search diversification, it could be performed after a set number
of column generation phases without improvement of the objective. It is induced by
closing a small subset of often-used arcs (as recorded in frequency memories) for
some time.

A Better Approach: Using Cycle-Based Neighborhoods

While the Tabu Search described above proved quite effective, especially when
dealing with problems with a small number of commodities, its performance is
not totally satisfactory when one must solve network design instances with a large
number of commodities, as one often encounters in practical applications. The main
reason for this is that the moves considered in the extreme-point neighborhood only
consider flow modifications of a single commodity at the time. This turns out to be
too myopic for instances with several commodities.

One way to address this is to revisit approaches based on the exploration of
the search space of design (i.e., binary) decision variables. As we have mentioned
earlier, simple neighborhood structures for this search space, such as add-drop and
swap, are clearly ineffective. One must thus look for new neighborhood structures
that allow for a thorough and efficient search of the space of design variables. In this
quest, one must first note that in order to significantly modify a solution in a network
design problem, one must be able to open and close simultaneously sequences of
arcs that make up subpaths. Furthermore, given a specific complete solution (i.e.,
including the values of the continuous variables), possible flow movements can only
take place along cycles in the residual graph with respect to this solution.

The cycle-based neighborhood relies on the identification of cycles of given
capacities in the residual graph. This is achieved by considering sets of candidate



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 105

arcs as starting points for creating cycles; then, a labeling heuristic is used to
identify low-cost cycles containing each of the candidate arcs. For each solution,
once the cycle has been identified, the flow pattern is adjusted by solving exactly
the associated MCMNF problem defined by (4.15)–(4.18), where ȳ is the design
solution being evaluated. One of the most advantageous features of this new neigh-
borhood structure is that it allows significant modifications of the current solution
at each iteration, involving simultaneous flow changes for several commodities on
several arcs.

To speed up the exploration of the cycle neighborhood, the flows of all commodi-
ties are aggregated in residual graphs. Because of that, the MCMNF problem may
turn out to be infeasible, which requires the use of a suitable restoration procedure
to retrieve a feasible solution.

The intrinsic power of the cycle neighborhood allows for the use of a fairly
simple global search strategy. Hence, search intensification, implemented through
flow modifications of single commodities, is invoked when very good solutions are
obtained. With respect to search termination, very simple criteria, such as the total
number of iterations or the global CPU time elapsed, can be used.

A comprehensive computational experimentation on the C instances of the
Gendron-Crainic benchmark has shown that Tabu Search based on cycle neighbor-
hoods is much more effective than the pivot-based approach described previously.

4.2 Other Neighborhood-Based Metaheuristics

In this section, we describe rapidly four families of metaheuristics, which, to the best
of our knowledge, have not been yet applied directly to the solution of basic network
design problems in the context of transportation and logistics. The main reason for
presenting these families is that most of them are used as part of hybrid methods
or matheuristics presented later in the chapter. In some cases, these methods have
been applied to more complex variants of the problems that we discuss, as will be
mentioned in the bibliographical notes of Sect. 8.

It is important to note that all these methods could be used, by themselves,
to tackle the fixed-charge transportation or the multicommodity capacitated fixed-
charge network design problems using some of the neighborhoods defined earlier.

4.2.1 Simulated Annealing

Simulated Annealing (SA) is one of the oldest and simplest metaheuristics. Accord-
ing to an analogy with the cooling of material in a heat bath, solutions to an
optimization problem correspond to configurations of particles and the value of
the objective function to the energy of the system for a given configuration. The
trajectory followed by an SA procedure can be interpreted as a controlled random
walk in the search space: at each step, a random solution is generated in the



106 T. G. Crainic and M. Gendreau

neighborhood of the current solution; if this new solution leads to an improved
solution, the new solution is accepted and becomes the current one; if the tentative
move deteriorates the objective, it is performed subject to a probabilistic acceptance
criterion, which depends on the magnitude of the deterioration and a search control
parameter, called the temperature. This temperature is slowly decreased with time,
making non-improving moves more and more difficult to accept. Interestingly,
under suitable assumptions on the number of temperature levels and the number
of iterations per level, Markov chain theory can be used to show that SA should
converge asymptotically to the global optimum of the problem at hand. In practice,
however, these assumptions cannot be fulfilled within reasonable computation
times. More relevant is the fact that, if one records the best solution observed during
the random walk in the search space, a high-quality solution can often be identified
within a reasonable computational effort.

Deterministic versions were also proposed under the names of deterministic
annealing and threshold acceptance.These methods are similar in the sense that
they are neighborhood search methods in which deterioration of the objective up to
a threshold is accepted, the threshold decreasing as the algorithm progresses.

4.2.2 Iterated Local Search

Iterated Local Search (ILS) is a rather straightforward metaheuristic that, in its
simplest form, combines basic Local Search with the concept of perturbation. Thus,
ILS escapes from local optima by applying random perturbations to the current
local optimum s� to produce an intermediate solution s′, to which Local Search
is again applied. This leads to another local optimum solution s′�, which can be
selected according to some acceptance criterion; if the solution s′� does not satisfy
the criterion, the search returns to s�, from which a new perturbed solution s′′ is
created. In many implementations, the acceptance criterion is very simple: s′� is
accepted as the new current solution only if its objective function value is better than
the value of s�. Obviously, more sophisticated acceptance criteria may be used, and
perturbation schemes may be devised to account for the past history of the search.

4.2.3 Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure (GRASP) is a fairly straightforward
iterative metaheuristic that combines the simplicity of greedy solution heuristics
with the power of randomized algorithms to tackle difficult combinatorial problems.
Typically, each iteration of a GRASP metaheuristic is made up of two phases: a
construction phase and a Local Search phase. In the former phase, a solution to the
problem at hand is constructed by selecting one element at the time. The selection
process follows greedy principles, but in randomized fashion: instead of selecting



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 107

the most attractive element, a restricted candidate list (RCL) containing a subset
of the most attractive elements is maintained and an element of RCL is chosen at
random to be included in the solution. This procedure is repeated until a full solution
is constructed. In the second phase, a suitable Local Search procedure is applied to
the solution just constructed. It is important to note that the procedure can be applied
a large number of times, since the choices made in the construction phase, being
randomized, will lead to different solutions. One can thus consider a large number
of possible solutions to the problem at hand. GRASP typically stops after performing
a given number of iterations.

4.2.4 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a neighborhood-based metaheuristic that
strives to perform a more effective exploration of the search space by exploiting
several neighborhoods, but not simultaneously, i.e, different neighborhoods are
considered in sequence. In its simpler version, which is called Variable Neigh-
borhood Descent (VND), neighborhoods are considered individually until one runs
into a local optimum; when this happens one switches to the next neighborhood in
the sequence. Several strategies can be applied with respect to the exploration of
the neighborhoods. One may, e.g., restart the search using the first neighborhood
or consider neighborhoods cyclically. The search terminates when none of the
considered neighborhoods can lead to a better solution; this corresponds to having
found a local optimum for each of these neighborhood structures. In general, if
several neighborhoods are examined, the final solution should be an excellent one.

Other forms of VNS consider more intricate search mechanisms. One important
mechanism is the use of a shaking function to generate points at random in some
neighborhood before starting the exploration. Many of the advanced versions of
VNS combine deterministic and stochastic changes of neighborhoods.

5 Population-Based Metaheuristics

As was already mentioned, population-based metaheuristics explore a suitably
defined search space for the problem at hand by evolving a population of solutions
through the applications of combination mechanisms and other procedures, which
depend on the specific method considered. There is a wide range of population-
based metaheuristics, but, in this chapter, we will focus on three families that have
proved useful for solving network design problems: (1) Genetic and Evolutionary
Algorithms, (2) Path Relinking procedures, and (3) Scatter Search.



108 T. G. Crainic and M. Gendreau

5.1 Genetic Algorithms/Evolutionary Algorithms

Genetic Algorithms (GAs) are probably the first metaheuristic, going back to
the mid-1970s, more than 10 years before the term metaheuristic was coined by
Glover (1986). The basic GA is based on an analogy with the Darwinian evolution
principles, the fundamental idea being to replicate the evolution of a population
of individuals, which represent solutions to the problem at hand. Solutions and,
indirectly, the search space are encoded as chromosomes. In early implementations
of GA, chromosomes were simply bit strings, but natural encoding has become the
norm in later implementations. The selection of individuals is performed according
to their fitness, high fitness values corresponding to highly-desirable individuals.
The fitness measure may be the objective function value associated with the
individual (solution), or more complex measures accounting, e.g., for the distance
from an “ideal” or the average measure for the population.

The basic GA mechanisms revolve around three key operators: selection, which
identifies which individuals should be selected as parents for reproduction, i.e., to
be used for creating new individuals; crossover, which creates one or two offsprings
from the genetic material (i.e., features) of a pair of parents; and mutation, which
randomly modifies the value of some gene (basic element of a chromosome).
Selection is based on the fitness of individuals, often with stochastic elements, such
as in roulette-wheel selection; the rationale is that one hopes that better offspring
will be obtained from the best parents. Basic crossover operators, based on the
bit-string representation of chromosomes, were originally proposed, but, over time,
more sophisticated crossovers were designed for specific classes of problems.

Typically, a GA runs for a number of generations (iterations). In each generation,
some individuals are selected to reproduce; then, new individuals are created from
these by the application of the crossover operator; and mutation is applied to their
offspring. The resulting new individuals are then added to the population, usually
replacing less fit ones or all of them. It should be noted that some GAs simply create
and introduce offspring in the population without considering generations.

A critical element in the successful application of GA is the need to maintain
diversity inside the population: if individuals in the population become too similar,
the method loses its ability to properly explore the search space. This realization has
led to the introduction of the concept of biased fitness, which combines diversity
considerations in the fitness function.

Over time, it has also become obvious that pure GA methods, implementing
the traditional operators only, are usually not powerful enough to address hard
combinatorial problems. This has led to the development of hybrid GAs that use
some form of neighborhood search to improve offspring. In this case, one often
talks of an education operator.

Evolutionary Algorithms (EAs) can be seen as an extension and generalization
of GAs. Mutation plays a much more important role than recombination, mutation
operators being often much more sophisticated than in GAs. Moreover, in many
EAs, the representation of individuals includes strategy parameters in addition to
the solution vector.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 109

5.1.1 A Genetic Algorithm for the Fixed-Charge Transportation Problem

Several GAs have been proposed for tackling the FCTP. We present a fairly recent
implementation.

This GA explores the set of basic solutions of the standard formulation of
the transportation problem obtained by opening all arcs of the bipartite graph, as
in Sects. 3.2.2 and 4.1.1. However, the representation of these solutions is quite
different from what we have seen in these subsections. The GA uses a so-called
priority-based encoding of solutions. In this scheme, each solution (i.e., individual
or chromosome) is represented using a vector of length (m + n), where m is
the number of sources and n is the number of of destinations. Each chromosome
corresponds to a permutation of the integers between 1 and (m + n). The first
m genes (entries) of the chromosome are associated with sources and the n last
ones with destinations. The value of a specific gene indicates the priority given to
a source or a destination when decoding the chromosome, with (m + n) being the
highest priority and 1 the lowest. The decoding of a chromosome is performed by
considering the residual supply (resp. demand) in source (resp. destination) nodes
and entries in the cost matrix for the problem, in a process reminescent of the greedy
procedure of Sect. 3.1. The main difference, however, is that arcs on which flows will
be added are selected on the basis of the priority-based representation. Considering
the properties of the transportation problem, the decoding of a chromosome always
result in a feasible solution whose fitness can be evaluated easily.

Because of its specific nature, the priority-based encoding requires the use
of specialized crossover and mutation operators. Two new crossover operators
are proposed: the order of priority exchange crossover (OPEX) and the priority
exchange crossover (PEX). Both of these crossovers return two priority-based
encoded offsprings from two parents in the same encoding. A specialized mutation
operator, based on the OPEX crossover applied to two segments of a chromosome, is
also used. The method uses a mixed selection strategy for population management.
Computational experiments showed that the proposed GA would systematically
outperform GAs with a spanning-tree based representation of chromosomes. Fur-
thermore, the method can easily be adapted to tackle quadratic flow transportation
costs.

5.1.2 A Genetic Algorithm for the Multicommodity Capacitated
Fixed-Charge Network Design Problem

Let us now describe a fairly straighforward application of GA mechanisms to solve
the MCFND. The search space for this implementation is the space of feasible
binary design vectors. The fitness of any ȳ vector is given by the sum of the fixed
costs of the arcs open in ȳ and the optimal value of the MCMNF problem associated
to ȳ and defined by (4.15)–(4.18). The best individuals are thus those with a low
fitness.



110 T. G. Crainic and M. Gendreau

The method proceeds on a generation by generation basis. In each generation, a
number of pairs of parents are selected for reproduction on the basis of their rank
(w.r.t. to fitness) within the population, in accordance with roulette-wheel selection
schemes. This selection scheme avoids a premature convergence of the population
because of the dominance of super-individuals who would be repeatedly selected.

Two crossover operators are examined. Both of them yield a pair of offsprings
from each pair of parents. The first one is the uniform crossover, which is based on
the application of a randomly generated binary uniform mask m of the same length
as the chromosomes. Each entry in m takes the value 0 or 1 with probability 0.5.
When m(i) = 1, the i-th gene of the first offspring O1 is copied from the i-th gene
of the first parent P1 and the i-th gene of the second offspring O2 is copied from
the i-th gene of the second parent P2. When m(i) = 0, the roles of P1 and P2 are
reversed.

A second crossover, called the frequency crossover, attempts to incorporate some
of the knowledge gathered from the characteristics of good solutions to the problem
at hand. Let φi be the frequency of apparition of arc i in good solutions. A randomly
generated binary mask m in which the probability that m(i) = 1 is equal to φi is
defined. The frequency crossover then works as follows: whenm(i) = 1 and the i-th
gene of the first parent P1 is also equal to 1, then the i-th gene of the first offspring
O1 is set equal to 1 and the i-th gene of the second offspring O2 is copied from
the i-th gene of the second parent P2; otherwise (i.e., when m(i) = 0 or when the
i-th gene of the first parent P1 is equal to 0), then the i-th gene of the first offspring
O1 is copied from the i-th gene of the second parent P2 and the i-th gene of the
second offspring O2 is copied from the i-th gene of the first parent P1, as in the
uniform crossover when m(i) = 0. Feasible offsprings are added to the population.
When the population reaches a given threshold, a number of least fit individuals are
eliminated according to a (λ+ μ) population management strategy.

The GA may be stopped after a set number of generations, of new offsprings, or
when the population diversity becomes too low. This GA is also part of a hybrid
parallel search method, which will be described in Sect. 7, and it proved quite
successful in this context.

5.2 Path Relinking

Path Relinking was specifically developed to intensify and diversify the exploration
of promising portions of the search space of combinatorial optimization problems.
As such, it is not meant to be used as a stand-alone method, but rather to complement
other solution procedures, which are often neighborhood-based metaheuristics.

The basic idea is to first construct, using some other method, an initial reference
set of solutions (this is the initial population for this method). This reference
set should contain, as much as possible, excellent solutions (they are called elite
solutions), but one should also strive to maintain some level of diversity of solutions
in the reference set. The main step of the method consists of choosing in the



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 111

reference set two solutions, an initial solution and a guiding solution, and then
following a path in the search space from the initial solution towards the guiding
one, by gradually introducing in the initial solution features of the guiding solution.
The rationale behind this procedure is that paths linking good solutions have an
excellent chance of containing even better solutions. When improving solutions are
found on a path, they can be added to the reference set. The exploration of the path
between the initial and the guiding solutions can be stopped before reaching the
guiding solution. At that time, new initial and guiding solutions are selected and the
process repeated. Path Relinking can stop after a set CPU time or a given number of
selections of initial and guiding solutions.

5.2.1 Path Relinking for the Multicommodity Capacitated Fixed-Charge
Network Design Problem

Path Relinking was applied to the MCFND problem in the context of an extensive
computational study. The basic metaheuristic applied was the Tabu Search that uses
cycle-based neighborhoods. Different strategies were considered for collecting elite
solutions and creating the reference set:

• (S1): Best solutions
• (S2): Best local minima found during the search
• (S3): Local minima that improve those already in the reference set
• (S4): Solutions far from those previously chosen and better than the worst one
• (S5): Best solutions, then extend with solutions far from those already chosen
• (S6): Best solutions, then extend with solutions close to those already chosen

Several criteria were also considered for the selection of the initial and the
guiding solutions:

• (C1): Best and worst
• (C2): Best and the second best
• (C3): Best and the solution with the maximum Hamming distance from best
• (C4): Randomly
• (C5): The most distant solutions
• (C6): Worst and best

Trajectories between initial and guiding solutions are explored using a variant
of the cycle-based neighborhood in which the flows of a single commodity are
modified each time. This procedure allows to progressively introduce in the current
solution arcs that are present in the guiding solution, but not not in the current one,
and to remove arcs that do not belong to the guiding solution. The best solution
obtained during a relinking process is added to the reference set, if it improves the
best overall solution.

Computational experiments on both the C and the R instances of the Gendron-
Crainic benchmark highlighted a number of important conclusions. First, it is not
necessary to use a large reference set; in the experiments, using a reference set of



112 T. G. Crainic and M. Gendreau

size 6 yielded the better performance. Second, diversity and long relinking paths
provide the most effective exploration and the best solutions in the end; hence, the
combination of strategy (S3) and criterion (C5) led to the best results overall. Third,
when it is properly used and calibrated, Path Relinking is an effective approach for
tackling multicommodity capacitated fixed-charge network design problem.

5.3 Scatter Search

Scatter Search is another technique that has been proposed to combine good
known solutions for a problem in the hope of finding even better ones. It shares
many concepts with Path Relinking, such as the use of a reference set. The basic
mechanism is to perform a weighted linear combination of two or more vectors that
represent solutions extracted from the reference set. As such, it is therefore naturally
suited to tackle continuous optimization problems. It can, however, be applied to
problems with integer decision variables, such as network design problems.

5.3.1 Scatter Search for the Multicommodity Capacitated Fixed-Charge
Network Design Problem

The search space for the application of Scatter Search to the MCFND encompasses
the binary design variables. Since we are dealing with integer variables, the
basic Scatter Search mechanism is adapted by resorting to sophisticated rounding
procedures to fix some of the binary variables and letting others be free.

At the start of the algorithm, the cycle-based Tabu Search is applied to create an
initial population of solutions, from which the reference set is initialized with with
improving local optima, i.e., local optima better than solutions already in the set.

At each iteration, a candidate set CS of L solutions is created by including the
best solution in the reference set, the solution that is the farthest away from it in
Hamming distance, and a number of randomly selected elements of the reference
set. The binary vectors for these L solutions are then combined using weights
ωl,∀ l ∈ CS, to compute a desirability factor mij for each arc (i, j) ∈ A . The
desirability factors are then compared for each arc to two thresholds tc and to, with
0 < tc < to < 1:

• When 0 ≤ mij < tc, we close arc (i, j) in the new solution;
• When to < mij ≤ 1, we open arc (i, j) in the new solution;
• When tc ≤ mij ≤ to, we leave arc (i, j) undecided in the new solution.

Four different weighting schemes were tested for combining vectors of the
candidate set. These are:

• Voting (V): ωl = 1,∀ l ∈ CS;
• Cost (C): ωl = 1/(cost difference between solution l and the best solution);



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 113

• Distance (H): ωl = 1/(Hamming distance between sol. l and the best solution);
• Frequency (F): ωl = frequency of arc (i, j) in the best solutions.

The incomplete solution obtained from the combination procedure is then further
processed. First, a special minimum cost multicommodity network flow problem,
similar to (4.15)–(4.18), is solved using CPLEX. In this MCMNF problem, arcs
that have been closed by the rounding scheme have their capacity set to 0, while the
variable cost of undecided arcs is set to fij /uij + cij . A feasible solution for the
MCFND is extracted from the MCMNF optimal solution by opening all arcs with
flow; this solution is then improved by applying the cycle-based Tabu Search.

Preliminary testing on a small set of instances permitted to identify the best
values for the thresholds: 0.4 for tc and 0.6 for to. Extensive computational
experiments on the C instances of the Gendron-Crainic benchmark tested different
values for the size L of the candidate set and the size of the reference set, as well as
the various weighting schemes. These experiments led to the following conclusions.
First, there should be at least 20 elements in the reference set. Second, results with
only two elements in the candidate set are clearly inferior; results withL = 3, 4, or 5
are globally comparable; in practice, it seems that L = 3 or 4 is the best choice.
Third, while all combinations of L and weighting schemes can produce on some
instance results that are better than those of the Path Relinking implementation
of Sect. 5.2.1, on average, none of the combinations does as well. Fourth, the
Frequency weighting scheme is clearly inferior to the other three. Overall, the
observed performance seems to indicate that the full potential of Scatter Search
has not been exploited in the proposed method.

5.3.2 An Improved Scatter Search-Evolutionary Algorithm for the
Multicommodity Capacitated Fixed-Charge Network Design
Problem

We now consider a more involved method involving Scatter Search to tackle
MCFND problems. This method can be decomposed into three major phases: an
Initialization phase, a Scatter Search phase, and an Education phase based on
Iterated Local Search (ILS). While the Initialization phase is executed only once at
the beginning of the algorithm to produce an initial population of solutions stored in
reference set R, the two other phases are performed iteratively to improve solutions
in set R. The termination criterion of the algorithm is the elapsed CPU time.

The Initialization phase seeks to produce a population of solutions that are of
good quality, but also diverse. The solutions considered at this step include both the
binary design variables and the flow variables. These initial solutions are constructed
by gradually constructing shortest paths for all commodities between their origin
and their destination; the sequence in which commodities are routed is randomized
and single or multiple paths may be constructed for each commodity. λ solutions are
created, but only μ with μ < λ are retained. In fact, the first μ solutions created are
first assigned to R and each one of the remaining (λ−μ) is considered for replacing



114 T. G. Crainic and M. Gendreau

the worst solution in R, if it cost is lower than that the cost of the best solution in R
or if it dominates some solution in R both in terms of solution quality and solution
diversity (measured in terms of Hamming distance to the best solution).

It should be noted that the search that takes place in the following phases is
performed in the space of the binary design variables. The values of the flow
variables for a given design are obtained by solving the associated MCMNF
problem, as in several of the other solution methods that we have seen for the
MCFND.

In the Scatter Search phase, solution recombination takes place. In each iteration,
a total of 2μ offsprings are created, each one being determined by combining
features from a candidate set CS made up of κ solutions. The selection procedure
for choosing the solutions that make up the candidate set is probabilistic, but it
does not involve the cost of solutions directly. Instead, as the method proceeds,
information on the performance of solutions with respect to the Education phase
is recorded, for each, in a measure which is called its solvency ratio (SR). For any
given solution s, SR is the ratio of the number of times that an offspring of solution
s has been included in R (after education) to the number of times that solution s

has been selected to produce an offspring. It is thus a measure of the effectiveness
of solution s to produce useful offsprings for future generations. The recombination
process itself is based, for each arc (i, j), on a weighted sum of the design variables
of the solutions of CS for this arc. The weight given to each depends upon its
objective value and a correction factor to lessen the importance of solutions that
have appeared often in CS. This computation allows to determine a preferred status
of open or closed for each arc in the offspring. The corresponding binary vector is
then a tentative design solution, for which one can solve the associated MCMNF
problem with a linear programming solver. If this problem is feasible, the offspring
can proceed; if it is infeasible, the design must be repaired using a process similar to
the one performed in the Initialization phase. At the end of the Scatter Search phase,
the best μ offsprings, in terms of solution cost, are retained to proceed to the next
phase.

In the Education phase, the μ best offsprings coming from the Scatter Search
phase go through a process aimed at improving their quality. Each offspring is
educated individually by going through an ILS procedure. This ILS procedure has
two components: a neighborhood search that can be seen as an extension of the
cycle-based Tabu Search of Sect. 4.1.2, and a perturbation strategy, called Ejection
Cycles, which partially modifies the current solution using information stored in a
long-term memory of the search.

This method was applied to the C instances of the Gendron-Crainic benchmark.
The results obtained show that this method is very competitive with the best existing
ones (including the methods described in the next section) and could identify new
best solutions for some instances.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 115

6 Matheuristics

Matheuristics is a broad term that covers all solution approaches that combine exact
solution procedures with metaheuristic methods. As such, there is no set recipe
for deriving matheuristics; each matheuristic is a unique method and should be
described as such for the time being. Perhaps, in the future, someone will propose
a taxonomy of matheuristics and provide a more insightful description of these
methods. In this chapter, we present four interesting matheuristics that have been
proposed for tackling network design problems.

6.1 A Local Branching Matheuristic for the Multicommodity
Capacitated Fixed-Charge Network Design Problem

Local Branching (LB) is a matheuristic that was developed in the early 2000’s to
leverage the power of mixed integer programming (MIP) solvers. It is particularly
aimed at combinatorial optimization problems that can be modeled with binary
decision variables. The central idea of LB is to explore partially the space of feasible
binary vectors using depth-first tree search. At each iteration, the search is limited
to considering a fairly small neighborhood of a reference solution by the addition
of so-called local branching constraints, which require solutions to differ from the
reference solution by no more than k values. This defines what is called a k-Opt
neighborhood. The reference solution is updated whenever an improving incumbent
is found. In theory, if the underlying tree search was performed completely, LB
would be an exact method, but the addition of CPU time limits and bounds on the
depth of some branches of the search tree turns it into an approximate procedure.

Network design problems with their binary design decision variables are natural
candidates for the application of LB, which was thus applied to the MCFND. The
MIP formulation used in the application is the arc-based formulation of Chap. 2 to
which are added the strong linking constraints described in this chapter, as well as
the local branching constraints. An important feature of the method as implemented
is that the MIP considered at each node of the search tree is not solved to optimality;
as soon as a feasible solution that improves upon the value of the reference solution
is found, the values of the design variables are fixed and optimal values for the flow
variables are derived from the resulting MCMNF. This procedure guarantees that
the proper objective function value is determined for the corresponding design.

Computational experiments on the C instances of the Gendron-Crainic bench-
mark showed that an LB-based matheuristic could lead to improved solutions for
several instances in reasonable CPU times.



116 T. G. Crainic and M. Gendreau

6.2 A Matheuristic Combining Exact and Heuristic
Approaches for the Multicommodity Capacitated
Fixed-Charge Network Design Problem

We now describe a method that was developed with the objective of producing
provably high-quality solutions quickly for the MCFND. The method relies on a
neighborhood search procedure that explores the space of binary design variables
using a MIP solver, in a fashion reminescent of the method presented in the
previous subsection. In each iteration, a subset of design variables of the arc-based
formulation of the MCFND is thus chosen and “freed”, while the other binary
variables are held fixed, and the resulting MIP is solved. Several strategies for
choosing which arcs should be freed are used; these involve identifying arcs that are
used in some commodity paths of the current solution, in paths derived from solving
some linear relaxations, in paths that were observed in improving solutions, and so
on. Proper choice of the restricted IP and proper seeding of the initial solution used
to solve it should result in most cases in improved solutions and thus better upper
bounds.

A lower bound on the optimal value of the problem is also computed at
each iteration. It is provided by the value of the LP relaxation of the path-based
formulation. However, since this bound is known to be weak, valid inequalities are
added to this formulation. These include strong linking inequalities between the
design and the flow variables, as well as lifted cover inequalities found while solving
the small MIP at each iteration.

The proposed approach was tested on a comprehensive set of instances. In partic-
ular, it was used to tackle the 37 most difficult C instances of the Gendron-Crainic
benchmark. On these instances, it clearly outperformed the methods presented in
Sects. 4.1.2 and 5.2, both in terms of solution quality and computing times. It
was also able to find in a few minutes solutions that were on average only 2.37%
more expensive than to those obtained by CPLEX in several hours of computation.
When tested on larger instances with 500 nodes, 2000–3000 arcs, and 50–200
commodities, it produced in 15 min of CPU time solutions that were on average
more than 20% better than those obtained by CPLEX after 12 h of computation.

It is important to note that this solution approach can tackle not only the MCFND
basic formulation presented in Chap. 2, but also its variant in which commodities
must be routed on a single path between their origin and their destination. This is
partly due to the fact that the mathematical formulations used are not exactly the
ones presented in Chap. 2: instead of using variables xkij to represent the flow of
commodity k on arc (i, j), these variables denote the fraction of the demand of
commodity k that uses arc (i, j). Single-path constraints for commodities are easily
enforced by requiring these xkij variables to be binary.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 117

6.3 A Hybrid Simulated Annealing-Column Generation
Matheuristic for the Multicommodity Capacitated
Fixed-Charge Network Design Problem

This method is a fairly straightforward hybridization of Simulated Annealing to
determine the values of the binary design variable and Column Generation to solve
the path-based formulation of the MCMNF problem for a given vector of binary
variables ȳ. Thus, the SA heuristic explores the search space of binary design
vectors using moves in the add-drop neighborhood. Several strategies are considered
for choosing the arcs to be closed, sometimes complemented by the opening of
arcs along some paths when the current solution becomes infeasible. The objective
function associated with any solution is the sum of the fixed costs of open design
arcs plus the objective value of the corresponding MCMNF problem. Solutions are
accepted (and thus moves performed) according to standard SA acceptance rules.
The temperature is adjusted after a fixed number of add/drop cycles; it is lowered
according to a linear function. In this method, the methods stops after a examining
pre-determined number of temperature settings without improvement.

Extensive analysis was performed to tune the various parameters of the method.
With the best parameter values, the method was shown to perform quite well. On the
43 C instances of the Gendron-Crainic benchmark, it produced better results than
the Local Branching algorithm of Sect. 6.1 and CPLEX with a time limit of 600 s.
These conclusions were shown to be statistically significant.

6.4 A Cutting-Plane Based Matheuristic for the
Multicommodity Capacitated Fixed-Charge Network
Design Problem

This matheuristic is based on a new neighborhood structure which relies on cutting
planes for its definition. The fashion in which the neighborhood is defined is
procedural. Given an incumbent (current) solution, an arc open in this solution is
selected to be closed. Several criteria were considered for selecting that arc, but
in the end two were retained: (1) the arc with the maximum combined unit cost
(including fixed and variable costs), given its current flow; (2) the arc with the
highest fixed cost for residual capacity (i.e., the product of the arc fixed cost by the
ratio of unused to total capacity). These two criteria point out to open arcs whose
usage does not seem to be very efficient. Then, the continuous (LP) relaxation of the
MCFND is solved with two additional constraints: (1) a constraint closing the arc
selected in the previous step, and (2) a constraint requiring the number of open arcs
(other than the one selected to be closed) to remain the same as in the incumbent.
If this LP is infeasible, a new open arc is selected to be closed and the procedure is
repeated. Once a feasible solution to the LP is found, families of valid inequalities



118 T. G. Crainic and M. Gendreau

are added to this LP. Three families are considered: (1) strong linking constraints
(presented in Chap. 2) between individual commodity flows and design variables;
(2) flow cover inequalities, and (3) flow pack inequalities. It should be noted that
strong linking constraints are added to the LP as long as they increase its objective
value. As for the flow cover and flow packing inequalities, they are identified by
applying a separation algorithm presented in Chouman et al. (2009). These valid
inequalities and the constraint on the number of open arcs define a so-called strong
LP. A new MIP sub-model is then defined from the strong LP by adding to it three
constraints: (1) one that forces to open arcs that carry flow in both the strong LP
solution and the incumbent; (2) a constraint that closes arcs that do not carry flow in
both the strong LP solution and the incumbent; and (3) the constraint that forces to
close the arc selected at the beginning of the procedure. The resulting MIP is solved
by Local Branching, as in the method described in Sect. 6.1. The solution obtained
is the desired neighbor to the current solution.

The proposed neighborhood structure was used within a Tabu Search heuristic.
The initial solution for this Tabu Search is a feasible one, which is obtained
by solving the LP relaxation of the problem, adding valid inequalities as in the
procedure that defines the neighborhood structure, and rounding up the value of
binary design variables in this strong LP. Two tabu lists are used. The first one
records the list of recently closed arcs; these arcs are forced to remain closed for
a number of iterations to prevent cycling. The second tabu list is used whenever
the new solution produced by the neighborhood structure is infeasible or worse
than the incumbent solution. In that case, several moves are attempted from the
incumbent until an improving one is found or a pre-defined number of non-
improving neighbors is reached; the tabu list is used to record the arcs closed in
the unsuccessful attempts. The procedure stops after a pre-defined CPU time or a
set number of iterations without improvement of the incumbent.

The values of the parameters of the proposed tabu search heuristic were carefully
tuned using a statistical design of the experiments. Computational results on 37 of
the 43 C instances of the Gendron-Crainic benchmark (the six easiest problems were
left out) showed the effectiveness of the proposed methods: it clearly outperformed
the oldest methods and did as well or better than the most up-to-date.

7 Parallel Metaheuristics

Parallel/distributed/concurrent computing means that several processes work simul-
taneously on several processors addressing a given problem instance and aiming to
identify the best or a good feasible solution for that instance. Parallel metaheuristics
and matheuristics aim for two major goals. The first, common to all parallel-
computing developments, is to solve larger problem instances, faster. The second is
proper to heuristics and it concerns the robustness of the search, i.e., its capability to
offer a consistently high level of performance over a wide variety of problem settings
and instance characteristics. Parallel metaheuristics built according to cooperative



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 119

multi-search strategies have thus proved to be much more robust than sequential
versions, offering higher quality solutions, and requiring less extensive, and expen-
sive, parameter-calibration efforts. It is worth noticing that multi-search methods,
particularly when based on cooperation, generally display a behavior different
from those of the sequential methods involved, offering enhanced performance
compared to sequential methods and other parallelization strategies. They are thus
acknowledged as proper metaheuristics.

The objective of this section is to present a brief unified overview of the main
parallel metaheuristic concepts and strategies. Note that these are of a general nature
with respect to the metaheuristic type and combinatorial optimization problems.
We will identify network design applications, of course, and will signal relevant
particularities for neighborhood- and population-based meta- and matheuristics.

Parallelism follows from a decomposition of the algorithmic work required
to address the problem, and the distribution of the resulting tasks to available
processors. The decomposition may concern the algorithm, the search space, or
the problem structure. Parallel strategies may then be classified according to, on
the one hand, what is decomposed and how it is done, and, on the other hand,
how the global problem-solving search is controlled, how information is exchanged
among tasks and how, eventually, new information is created (the diversity of the
searches involved may also be used, but we skip it in the following for chapter-
length reasons).

Functional parallelism and search-space separation make up the first dimension.
Within each decomposition strategy, strategies are then described in terms of
Search Control Cardinality, specifying whether the global search is controlled
by a single (1-control—1C) or several (p-control—pC) processes, which may
collaborate or not, as well as of Search Control and Communications, addressing
how information is exchanged and used to control or guide the search. Synchronous
and asynchronous communications are found in parallel computing. All processes
stop, at moments exogenously determined, in the former case, to engage in some
form of communication and information exchange. In the latter case, each process is
in charge of its own search and of establishing communications and exchanges with
other processes. Four categories are defined to reflect the quantity and quality of the
information exchanged and shared, as well as the additional knowledge derived from
these exchanges (if any); Rigid and Knowledge synchronization, and Collegial (C)
and Knowledge Collegial (KC) asynchronous strategies. These concepts and their
applications to network design is further described in the next subsections.

7.1 Functional Parallel Strategies

Functional or low-level parallelism decomposes computing-intensive parts of the
algorithm into a number of tasks, which work on the same data or on a dedicated
part, and run in parallel. Such strategies thus aim to accelerate the search, without
modifying the algorithmic logic, the search space, or the behavior of the sequential



120 T. G. Crainic and M. Gendreau

metaheuristic. Most low-level parallel strategies belong to the 1C/RS class and are
usually implemented according to the classical master-slave parallel programming
model. A “master” program initiates the exploration from a single solution or
population. It executes the sequential metaheuristic (1-control), separating and dis-
patching computation-intensive tasks, which often corresponds for metaheuristics
to the execution of the innermost loop iterations, e.g., evaluating neighbors or
individuals, or having ants forage concurrently. Slaves perform the tasks in parallel,
and return the results to the master which, once all the results are in, resumes the
normal logic of the sequential metaheuristic. The master has complete control on
the algorithm execution; it decides the work allocation for all other processors and
initiates communications. No communications take place among slave programs.

Functional parallelism is often a low-level component of hierarchical paral-
lelization strategies and may be extremely interesting when the problem requires
a significant part of the computing effort to be spent in inner-loop algorithmic
components. This is often the case for network design, in particular when search
spaces are based on the design decision variables. The evaluation of neighbors and
individuals often requires in this case to find the optimal, or at least a very good
solution to the multicommodity capacitated network flow subproblem, which may
be quite computationally intensive. The parallel evaluation of several neighbors,
of the fitness and diversity measures of individuals, or of scatter-search operators
on several combinations of solutions in the reference set could be of significant
help in those circumstances. Note that similar observations may be made for pivot-
based moves. Note also that one could use the graphical processing units (GPU),
ubiquitous within most computers, to further parallelize pivot operations, either as
moves, or as part of customized linear-programming solvers. This is an interesting
research area.

7.2 Search-Space Separation: Domain-Decomposition
Strategies

The general idea of the second major class of parallel strategies is to decompose
the search space and to address the problem on each resulting component using a
particular solution method. Two main classes of such strategies may be defined:
domain decomposition and multi search. The former explicitly separates the space
yielding a number of subproblems to be addressed simultaneously, their solutions
being then combined into a complete solution to the original problem, while the
latter performs the separation implicitly, through the concurrent explorations of the
complete space by several methods, named solvers in the following, which may
exchange information or not. Multi-search strategies, particularly those based on
cooperation principles, are at the core of most successful developments in parallel
metaheuristics, particularly for complex, multi-attribute combinatorial problem, as
those found in network design and applications. Note that search-space decompo-



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 121

sition methods induce different search behaviors and yield different solutions when
compared to the corresponding sequential metaheuristics involved.

The basic idea of domain decomposition is intuitively simple and appealing:
separate the search space into smaller subspaces, address the resulting subproblems
by applying the sequential metaheuristic on each subspace, collect the respective
partial solutions, and reconstruct an entire solution out of the partial ones. The
subspaces may be disjoint, their union yielding the full space, or a certain amount
of subspace overlap may be allowed, either explicitly, or implicitly by allowing
the search within a given subspace to reach out to some part of one or several
other subspaces through, e.g., neighborhood moves or individual crossovers. The
separation may be obtained by identifying a subset of variables (and corresponding
constraints, eventually) and discarding or fixing the other variables and constraints,
the goal being to obtain smaller, easier to address subproblems. For network design,
separation could thus be defined along groups of arcs, nodes (commodity origins or
destinations), commodities, paths of potential design arcs, etc., based on attributes of
the corresponding elements (e.g., proximity of nodes or arcs fixed cost over capacity
ratio) or solutions at previous iterations. Discarding does not appear appropriate
when considering the commodities and arcs of multicommodity capacitated network
design problems, however. Separation by variable fixing (and projection of the
corresponding constraints) appears more flexible as one still works on smaller
subproblems, but considering the complete vector of decision variables, some of
which are fixed. This is also a more general approach and it is part of advanced
cooperative search methods described later.

Notice that strict partitioning restricts the solvers to their subspaces, resulting
in part of the search space being unreachable and the loss of exploration quality.
Covers partially address this issue. Yet, to guarantee that all potential solutions are
reachable, one must make overlapping cover the entire search space, which negates
the benefits of decomposition. The “change the separation and start again” idea is
at the core of the 1C/RS and pC/KS strategies proposed to avoid these drawbacks,
where the separation is modified periodically, and the search is restarted using the
new decomposition. The master (in the former case, or the collaborating processes,
in the latter) applies the decomposition, reconstructs complete solutions, modifies
the separation, and determines when stopping conditions are met.

An application of this strategy to the MCFND may partition the search space of
full feasible solutions based on commodities and variable fixing. Starting from a
given (initial) solution, one forms partitions of commodities sharing at least one
design arc (a graph-partitioning method minimizing the number of shared arcs
could be used). The design and flow decisions corresponding to commodities not
belonging to a given partition are fixed. Each partition corresponds to a smaller, and
hopefully easier to address, problem and is explored by a Local Search heuristic
or a more complex metaheuristic, as presented in the previous sections of the
chapter. The best solutions obtained within the partitions are collected once the
explorations of all partitions are completed, a complete solution is built, a new
partition is determined, and the search is restarted. Several approaches may be used
to combine the partial solutions into a complete one, e.g., fix to 0 all design arcs



122 T. G. Crainic and M. Gendreau

not used in any partition and solve exactly the reduced problem instance (assuming
the size has been sufficiently reduced), or fix to 0 as previously and fix to 1 the
design arcs with significant flow with respect to capacity (the fixed cost to flow ratio
can also be used) and solve the reduced problem. Notice that, similar to all other
sequential and parallel metaheuristics, when variable fixing yields a sufficiently
small problem instance, an exact MIP solution method may be used to a explore
the large neighborhood consisting of all solutions which may be obtained taking the
current one as initial solution. We thus define a matheuristic solution method.

Network design requires heavy computation work at each iteration in most cases
of interest. Hence, performing many iterations on several space separations may
not always appear appropriate and particular care must be taken of the efficiency
of the partition exploration. Yet, as the complexity (e.g., time representations and
several interrelated combinatorial decision layers, etc.) and dimensions (number
of commodities, arcs, time periods, etc.) of the contemplated network design
problems continue to grow, decomposition methods appear increasingly needed, in
particular combined with other parallelization strategies, cooperation in particular.
This defines a rich and challenging research area.

7.3 Search-Space Separation: Multi-Search Strategies

Independent multi-search was among the first parallelization strategies proposed. It
is also the most simple and straightforward pC parallelization strategy, offering a
simple tool for looking for a “good” solution without investment in methodological
development or coding. It seeks to accelerate the exploration of the search space
by initiating simultaneous solvers from different initial points (with or without
different search strategies). No attempt is made to take advantage of the multiple
solvers running in parallel other than to identify the best overall solution as a final
synchronization step. One therefore needs quite a relatively high number of solvers
running in parallel to achieve interesting results.

Cooperative multi-search has emerged as one of the most successful meta-
heuristic methodologies to address hard optimization problems. Cooperative-search
strategies go beyond simultaneous runs of multiple independent solvers, and
integrate cooperation mechanisms to share, while the search is in progress, the
information obtained from this diversified exploration of the same problem instance.
This sharing, and the eventual creation of new information out of the shared one,
yields in most cases a collective output of superior quality compared to independent
and sequential search, and makes cooperative multi-search a “new” metaheuristic
class.

Cooperative-search strategies are defined by the solvers engaged in cooperation
and their interaction mechanism, including the nature of the information shared.
The metaheuristic or exact solvers do not need to belong to the same solution-
method class and may address either the complete problem at hand, or explore
partial problems defined by decomposing the initial problem through mathematical



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 123

programming or attribute-based heuristic approaches. The decomposition method
implicitly defines how a complete solution is built out of partial ones, in the former
case. In the latter case, some solvers work on partial problems defined by the
particular sets of attributes selected in the decomposition, while others combine
the resulting partial solutions into complete solutions to the original problem.

The information-sharing cooperation mechanism specifies how the solvers inter-
act, that is, what information is exchanged and when, how the exchanged informa-
tion is used globally (if at all), and how each solver acts on the received information,
using it within its own search and, thus, transforming it before passing it to other
solvers. The goals are to improve the performance of the solvers, and to create a
global image, even if not complete and imprecise, of the status of the cooperative
search. The status information may then be used to guide solvers, and thus the global
search, toward a better performance in terms of solution quality and computational
efficiency than the simple concatenation of results obtained by non-cooperating
solvers. Exchanged information must be meaningful and exchanges must be timely.

When and how information is shared specifies the frequency of cooperation
activities, who initiates them and when, and whether the concerned solvers must
synchronize or not. We do not elaborate further on synchronous communications,
partially because of space restrictions, but mostly because synchronization makes
parallelism more rigid, and exchanges less timely with respect to the value of
new information for solvers. (Notice that most of the discussion on cooperative
design applies to synchronous methods as well.) Strategies based on asynchronous
exchanges thus proved superior to synchronous ones, and are considered as defining
the “state-of-the-art” in parallel multi-search metaheuristics. Asynchronous coop-
erative strategies follow pC/C or pC/KC collegial principles, the main difference
being that, “new” knowledge (solutions and more as detailed next) is inferred in the
latter case, starting from the information exchanged between solvers.

Asynchronous communications provide the means to build cooperation and
information sharing among solvers without incurring synchronization overheads.
They also bring adaptability to cooperation strategies, to the extend that the parallel
metaheuristic may react more easily and dynamically adapt to the information
brought by the other solvers and exploration of the search space, than independent
or synchronous search can. These benefits come with potential issues one must care
for. For example, the available global-search information available to a given solver
may be less “complete” than in a synchronous environment. On the other hand,
too frequent data exchanges, combined with simple acceptance rules for incoming
information, may induce either a premature solver “convergence” to local optima or
an erratic search trajectory similar to a random walk. Hence the interest for applying
information-sharing based on quality, meaningfulness, and parsimony principles.

These principles translate into good and diverse solutions being the type of
information most often shared, either a single one each time or as a small set.
“Good” generally means a local optimum at the end of a search phase, a solution out
of an elite set built during the search, or the last solution of an improving sequence of
moves. The last case illustrates the parsimony and meaningfulness ideas. One could,
clearly, share each improving solution the method identifies. As such solutions are



124 T. G. Crainic and M. Gendreau

usually found within a sequence of improving moves, most of them are very similar
and, thus, they offer little new information to the other solvers, while significantly
disturbing their searches and increasing the communication overload of the parallel
metaheuristic. On the other hand, the last improving solution of the sequence brings
meaningful information about the status of the search of the emitting solver; it
also diversifies the shared information with respect to previous communications.
Numerous experiments emphasized the importance of diversification in the shared
information. Thus, always selecting and sharing the best available solution out of an
elite set proved to rapidly decrease the breath of the search, increase the amount of
worthless computational work (many solvers search in the same region), and bring
the search to be confined within an often-visited region of the search space, or to
an early “convergence” to a not-so-good solution. Strategies that select randomly
among an elite set, but bias the choice toward good-and-different solutions, proved
more efficient and yielded higher-quality solutions.

Context information may also be shared profitably, particularly when embedded
in mechanisms used to generate new knowledge or to guide the search. Context
refers to data collected by a solver during its exploration, such as the statistical
information relative to the presence of particular solution elements in improving
solutions (e.g., the medium and long-term memories on selected design arcs or
cycles of design arcs built by tabu search), the impact of particular moves on
the search trajectory (e.g., the scores of closing/opening design paths within a
large adaptive neighborhood search), population diversity measures and individual
resilience across generations, etc.

Cooperating solvers may exchange information directly or indirectly. Direct
exchanges of information, often used in the genetic-based evolutionary literature,
occur either when a number of concerned solvers agree on a meeting point in time to
share information, or when a solver broadcasts its information to one or several other
solvers without prior mutual agreement. The latter case is to be avoided as it requires
solvers to include capabilities to store received information without disturbing their
own search trajectories until they are ready to consider it. Failure to implement
such mechanisms generally results in bad performance, as observed for strategies
combining uncontrolled broadcasting of information and immediate acceptance of
received data.

Indirect exchanges of information are performed through an independent, “cen-
tralized”, device (implemented on a single processor or on a layered array of
processors) called memory in this chapter. The memory serves as shared resource of
data for cooperating solvers, which access it according to their own internal logic to
post and retrieve information. Classical retrieval mechanisms are based on random
selection, which may be uniform or, similar to the case of posted information, biased
to favor solutions with high rankings based on solution value and diversity. The
memory accepts incoming solutions for as long as it is not full. Acceptance becomes
conditional to the relative interest of the incoming solution in terms of value,
compared to the “worst” solution in the memory, and diversity, a slightly worse
solution being preferred if it increases the diversity of solutions in the memory.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 125

To illustrate, consider three pC/C metaheuristics for the MCFND. The first is
based on the principles of repetitive applications of Local Search and perturbation
of the resulting local optima (e.g., GRASP and Iterated Local Search). Each solver
runs a Local Search for the MCFND on the full problem instance for a given initial
solution. Solvers deposit their final local optima into the memory, if improved during
the current run of the LS, and retrieve a new starting solution (different from the ones
already explored) from the memory. The method may be enriched by having each
solver run first a Local Search building an elite set of solutions, followed by a Path
Relinking on that elite set. Solvers may then send a small group of solutions (e.g.,
the Local-Search local optima and the best and most diverse solutions yielded by
the Path Relinking) to the memory. In a more advanced pC/KC version, the Path
Relinking method works also on the solutions in the memory to construct the new
starting solution when requested by a solver.

The second pC/C metaheuristic is a memory-based approach for asynchronous
parallel Tabu Search, that may be generalized to most neighborhood-based meta-
heuristics. Each solver runs a TS for the MCFND (see Sect. 4.1.2) from the
same or different initial solutions. Solvers could run the same metaheuristic (from
different initial solutions, obviously), but it has been shown that running different
metaheuristics (different possibly in the value of certain key parameters only) yields
a much better overall search. Each solver sends to the memory its local optima,
when improved, and imports a solution from the memory before engaging in a
diversification phase. The imported solution is selected randomly, biased by rank
(in terms of solution value) or by diversity when the selection is made within an
elite set. More advanced pC/KC versions are discussed further in the section.

The third illustration is the Multi-level Cooperative Search, which proposes a
different pC/C asynchronous cooperative strategy based on the controlled diffusion
of information. Solvers are arrayed in a linear, conceptually vertical, communication
graph and a local memory is associated to each. Each solver works on the original
problem but at a different level of aggregation or “coarsening”, the first-level solver
addressing the complete original problem. It runs a sequential metaheuristic for the
MCFND, and communicates exclusively with the two solvers directly above and
below, that is, at a higher and a lower aggregation level, respectively. Each solver
shares improved solutions, incoming solutions not being transmitted further until
modified locally for a number of iterations to enforce the controlled diffusion of
information. The local memory is used to receive the information coming from the
immediate neighbors, the solver accessing it at moments dynamically determined
according to its internal logic (e.g., before diversification). It is noteworthy that
one can implement Multi-level Cooperative Search using a centralized memory by
adequately defining the communication protocols. Although not yet fully defined
and tested, this idea is interesting as it opens the possibility of richer exchange
mechanisms combining controlled diffusion and general availability of global
information.

Cooperative strategies including mechanisms to create new information and
solutions based on the solutions exchanged belong to the p-control knowledge
collegial (pC/KC) class. These strategies build on the flexibility of cooperation in



126 T. G. Crainic and M. Gendreau

terms of the different metaheuristics and exact methods that can be combined, and
on the population of elite solutions being hosted in the centralized memory and
continuously enhanced by the cooperating solvers. Mechanisms associated to the
memory may thus, e.g., extract and update statistics on the presence of design arcs
in the shared solutions (context information on similar statistics within particular
solvers may be equally used, when available), possibly with an associated score
relative to the solution containing them. Patterns of desirable or undesirable arcs
may be thus constructed, and may be evolved to reflect the global status of the
search (e.g., initial phase of broad exploration, middle of the solution path starting to
reduce the scope of the search, or final phases intensifying in very promising regions
before a final choice). Guidance may then be obtained by transmitting arc patterns
to solvers, to guide their trajectories toward intensification or diversification phases
(enforce the desirability or penalize the selection of certain arcs). Other learning-
type mechanisms may be devised (e.g., one may focus on design or commodity
paths or trees), this providing a rich field for research. New knowledge may also
result from post-optimization applied to solutions in memory, and by generating
new solutions out of the elite population in memory by heuristic, genetic, Scatter
Search or Path Relinking methods. The new solutions may be returned, on request,
to cooperating solvers. They also feed the learning mechanisms associated to the
memory.

Historically, two main classes of pC/KC cooperative mechanisms are found in
the literature, both based on the idea of exploiting a set of elite solutions, and their
attributes, exchanged by cooperating solvers working on the complete problem, but
differing in the information kept in memory, adaptive-memory and central-memory.

Adaptive-memory stores and scores partial elements of good solutions and
combines them to create new complete solutions that are then improved by the
cooperating solvers. The main idea, as initially proposed and applied, is to keep in
memory the individual components (e.g., design arcs, or design or commodity paths
or trees) making up the elite solutions found by the cooperating solvers, together
with memories counting for each component its frequency of inclusion in the best
solutions encountered so far, as well as its score, and rank among the population
in memory, computed from the attribute values, in particular the objective value of
its respective solutions. Solvers construct solutions out of probabilistically selected
(biased by rank) solution components in memory, enhance it by Tabu Search or
another metaheuristic and deposit their best solutions in the adaptive memory.
The probabilistic selection yields, in almost all cases, a new solution made up of
components from different elite solutions, thus inducing a diversification effect.

Central-memory methods generalize pC/C and adaptive-memory strategies.
Complete elite solutions are kept in memory, as well as attributes and context
information sent by the solvers involved in cooperation or generated in the central
memory. Together, this data is used to create new solutions and knowledge to guide
the cooperating solvers and the global search. Solvers may perform constructive,
improving and post-optimization heuristics, neighborhood- and population-based
metaheuristics and matheuristics, as well as exact solution methods on possibly
restricted (through variable fixing) versions of the problem. Other than the informa-



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 127

tion received from the cooperating solvers, the central memory keeps newly created
information out of the shared data. Statistics-building, information-extraction and
learning, and new solution-creation mechanisms provide this new “knowledge”.
Memories recording the performance of individual solutions, solution components,
and solvers may be added to the central memory, and guidance mechanisms based
on this knowledge may be gradually built.

We illustrate the basic canvas for central-memory strategies with an early pC/KS
metaheuristic combining a genetic solver (Sect. 5.1.2) and several solvers executing
the pC/C Tabu Search for the MCFND described above. The TS solvers aggressively
explore the search space, building the elite solution set in the memory, while the
GA contributes toward increasing the diversity, and hopefully the quality, of the
solutions in the memory, which the cooperating TS solvers import. The GA launches
once a certain number of elite solutions identified by the TS solvers are recorded in
memory, which becomes the initial GA population. Once running, asynchronous
migration transfers the best solution of the genetic pool to the memory, as well as
solutions from memory toward the genetic population. This strategy was actually
implemented and performed well, especially on larger instances. Moreover, it
yielded the interesting observation that, while the best overall solution was never
found by the GA solver, its inclusion in cooperation allowed the TS solvers to find
better solutions, more diversity among solutions in memory translating into a more
effective diversification of the global search.

We complete this section by addressing recent developments targeting large or
multi-attribute problem settings. The general idea of the new generation of pC/KC
meta-heuristics, called Integrative Cooperative Search (ICS), is to decompose the
problem formulation along sets of decision variables to simpler but meaningful
problem settings, in the sense that efficient solvers, can be “easily” obtained for the
partial problems either by opportunistically using existing high-performing methods
or by developing new ones. The decomposition approached evoked relative to
domain-decomposition strategies may be used in the ICS context. More complex
network structures, e.g., several design layers and time-space network represen-
tation, may be decomposed along the layer or time dimensions, respectively. The
main components of ICS, to be instantiated for each application, are (1) the
decomposition rule; (2) the Partial Solver Groups (PSGs) addressing the partial
problems resulting from the decomposition; (3) the Integrators selecting partial
solutions from PSGs, combining them, and sending the resulting complete solutions
to the Complete Solver Group (CSG); and (4) the CSG, providing the central
memory functionalities of ICS. Notice that, in order to facilitate the cooperation, a
unique solution representation, obtained by fixing rather than eliminating variables
when defining partial problems, is used throughout ICS. To illustrate consider the
generalized network design problem where nodes and arcs are characterized by
several attributes (various types, modes, and volumes of capacity, for example)
governed by compatibility rules. The problem could then be decomposed along
compatible combinations of attributes (a spatial decomposition could be also applied
for large networks), Tabu Search solvers could be assigned to each combination
(more than one solver could work on each partial problem according to a pC/C



128 T. G. Crainic and M. Gendreau

parallel strategy), while a population-based method (or group thereof), Genetic
Algorithm, Scatter Search, or Path Relinking, could integrate the partial solutions
generated by the TS solvers into complete solutions to the original problem.
Monitoring, learning, and guidance activities complement the ICS method. Not
much work has been reported in this area for network design, but ICS and related
developments make up a promising but challenging research perspective.

8 Bibliographical Notes

The use of heuristics to tackle difficult combinatorial optimization problems goes
back to the beginnings of operations research. It is therefore not surprising to
find some simple heuristics proposed to tackle network design problems, with a
clear emphasis on the fixed-charge transportation problem (FCTP). Several papers
proposing Local Search methods for the FCTP were published in the late 1960s and
the 1970s. Our discussion of Sect. 3.2.2 is based on the paper by Walker (1976),
but several other authors proposed methods that exploited similar ideas (Cooper and
Drebes 1967; Denzler 1969; Steinberg 1970; Cooper 1975).

From the mid-seventies to the following decade, one saw the rapid development
of metaheuristics, which were applied to a large range of combinatorial problems
and rapidly became the “go-to approaches” in many circles. While Genetic Algo-
rithms (GAs) came first (Holland 1975), the combinatorial optimization community
became keenly aware of the potential of methods that used completely “different”
approaches and principles after of the publication of the paper that introduced
Simulated Annealing (SA) to a wide audience (Kirkpatrick et al. 1983). This
was followed closely by the seminal paper that coined the term metaheuristics
and presented more formally Tabu Search (TS) (Glover 1986). Other fundamental
references on this topic appeared in the following years and laid much of the
groundwork for the application of TS (Glover 1989, 1990; Glover and Laguna
1993, 1997) and other metaheuristics, such as Greedy Randomized Adaptive
Search Procedure (GRASP) (Feo and Resende 1989, 1995), Variable Neighborhood
Search (VNS) (Mladenović and Hansen 1997; Hansen and Mladenović 1999), Path
Relinking (PR) and Scatter Search (SS) (Glover 1997; Glover et al. 2000). The
case of Iterated Local Search is somewhat stranger since, according to Lourenço
et al. (2019), p. 130, “this simple idea has a long history” that goes back to Baxter
(1981), but it was formalized systematically in later years. Metaheuristics came of
age with the publication in 2003 of the first Handbook of Metaheuristics covering
a wide range of methods and showing their common points and their successes in
the solution of difficult problems (Glover and Kochenberger 2003). Metaheuristics
have continued to evolve up to now. An up-to-date introduction to several of the
methods covered in this chapter, as well as latest developments, can be found in the
latest edition of the Handbook: Tabu Search (Gendreau and Potvin 2019), Simulated
Annealing (Delahaye et al. 2019), Variable Neighborhood Search (Hansen et al.
2019), Iterated Local Search (Lourenço et al. 2019), Greedy Randomized Adaptive



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 129

Search Procedure (Resende and Ribeiro 2019), Genetic Algorithms (Whitley 2019),
and parallel metaheuristics (Crainic 2019). We refer to Silberholz et al. (2019)
for a thorough discussion of how to experimentally evaluate the performance of
metaheuristics.

Matheuristics were a further development combining advances in algorithm
design with the much increased performance of mathematical programming solvers.
There is not yet an organized body of literature on the topic, but the seminal paper
that proposed the Local Branching method (Fischetti and Lodi 2003) is an excellent
introduction to the topic. Furthermore, Local Branching is widely applicable.

After these general comments on solution methods, let us discuss how they were
applied to network design problems.

With respect to the FCTP, there are few papers discussing the application of Tabu
Search to this problem. The presentation of Sect. 4.1.1 is based on the paper of Sun
et al. (1998), which is a standard reference. There are, however, a fairly large number
of papers discussing the application of Genetic Algorithms to the problem, but many
of these do not deal with the basic version of the problem. Early efforts aimed
at using GAs to address the FCTP include the methods proposed by Gottlieb and
Paulmann (1998), which examine two possible representations of solutions. Several
papers then proposed GAs based on spanning trees to solve the basic FCTP, as well
as some of its variants, for instance the FCTP with nonlinear costs (Jo et al. 2007;
Hajiaghaei-Keshteli et al. 2010; Molla-Alizadeh-Zavardehi et al. 2014) and the so-
called “Step Fixed-Charge Transportation Problem”, which is an extension of the
FCTP in which different levels of fixed costs may be incurred on an edge depending
on the flow that it carries (Molla-Alizadeh-Zavardehi et al. 2014). The presentation
of Sect. 5.1.1 refers to the paper by Lofti and Tavakkoli-Moghaddam (2013), which
presents a very effective method.

Regarding the various methods for solving the multicommodity capacitated
fixed-charge network design problem (MCFND), it became obvious in the early
’90’s that metaheuristics, such as Tabu Search, were interesting approaches for
tackling it. At first, as mentioned in Sect. 2.2, on the basis of the successful
applications of TS to complex location problems (see, e.g., Crainic et al. 1993)
based on the exploration of the search space of binary location (i.e., design)
variables using the add-drop and swap neighborhood structures, it even seemed
attractive to contemplate methods based on these neighborhood structures for the
MCFND. As we explained in the discussion on neighborhoods, this approach was
quite unsatisfactory. The two TS approaches described in Sect. 4.1.2 are based
on the papers by Crainic et al. (2000) and Ghamlouche et al. (2003); they were
among the best methods available when they were published. Among the other
neighborhood-based metaheuristics, we must mention an interesting application of
Variable Neighborhood Search to a network design problem with relays (Xiao and
Konak 2017).

On the side of population-based methods, the GA described in Sect. 5.1.2 comes
from Crainic and Gendreau (1999). It was proposed as part of the cooperative search
combining TS and GA solvers described in Sect. 7.



130 T. G. Crainic and M. Gendreau

Sections 5.2 and 5.3 present respectively the methods proposed in Ghamlouche
et al. (2004) and in Crainic and Gendreau (2007). Another Scatter Search heuristic
was proposed in 2005, but for a slightly different version of the MCFND: the
undirected variant, in which flows on opposite directions on a given edge must share
the same capacity (Alvarez et al. 2005). In this Scatter Search heuristic, solutions
are represented as blocks of paths for each origin-destination pair (commodity),
such that these paths can handle all the demand for that commodity. The initial pool
of solutions is generated using a GRASP procedure. This pool contains, as is usual
in Scatter Search implementations, a mixture of good and diverse solutions. The
procedure to construct a new solution from a subset taken from the reference set
proceeds on a commodity by commodity basis, choosing at each step the block of
paths from the solutions in the subset with the lowest cost. A repair procedure is used
to restore feasibility. Several strategies are considered for managing the reference
set. The method performs well for instances with small numbers of commodities
(10 to 50), but performance degrades for larger instances (i.e., 100 commodities).

The improved Scatter Search approach presented in Sect. 5.3.2 has been proposed
by Paraskevopoulos et al. (2016). This is the most recent among the various methods
that we presented for the MCFND and it yields very good results.

The four matheuristics described in Sect. 6 were first presented, respectively, in
Rodríguez-Martin and Salazar-González (2010); Hewitt et al. (2010); Yaghini et al.
(2013), and Yaghini et al. (2015). These four methods are competitive and provide
the top results. Furthermore, the matheuristic of Hewitt et al. (2010) scales quite well
and is capable of handling larger instances than many other approaches. The method
that achieves the best results on the benchmark instances is the one by Yaghini et al.
(2015). Among sequential methods, it represents the state-of-the-art.

Other recent matheuristics developed for the network design problem with
balancing constraints can be found in Vu et al. (2013); Chouman and Crainic (2015).
In this problem, an additional constraint that forces both arcs for each pair of arcs
(i, j), (j, i) to be either open or closed is added to the model and has a strong impact
on the solutions. The first method combines a Tabu Search based on an extension
of the cycle-based neighborhood described in 4.1.2, a Path Relinking procedure,
which exploits a path-exchange neighborhood, and an exact solution algorithm that
is applied to a restriction of the original instance to perform search intensification.
The second approach relies on two main elements that can be implemented in the
context of a MIP solver: (1) a procedure for generating cutting planes that allows for
the efficient computation of tight lower bounds (similar to the approach of Yaghini
et al. 2015) , and (2) a variable-fixing procedure to make the resulting restricted
problem solvable by a MIP solver in reasonable time. A key feature of the approach
is the use of learning mechanisms and memories to record important information
about the solution process and to orient it towards promising areas of the solution
space. Computational experiments on a large set of test instances confirmed the
efficiency of the proposed approach and the high quality of the solutions that it
produces.

Before leaving the topic of matheuristics, it is important to mention the large
body of litterature that deals with heuristics that rely on mathematical programming



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 131

formulations. These include among others the so-called slope scaling methods that
have been proposed by several authors. These methods are discussed in Chap. 3.

There is a long history of successful developments of parallel heuristics and
metaheuristics, a certain number of those contributions targeting network design
formulations. A number of surveys, taxonomies, and syntheses present a general
view of the topic, including Alba (2005); Alba et al. (2013); Crainic and Hail
(2005); Crainic (2008); Crainic and Toulouse (2010); Crainic et al. (2014); Crainic
(2019); Cung et al. (2002); Melab et al. (2006); Pedemonte et al. (2011); Schryen
(2020); Talbi (2009); Talukdar et al. (2003). Performance measures for parallel
metaheuristics are discussed in most of these books, as well as in Barr and Hickman
(1993); Crainic and Toulouse (1998, 2003).

All surveys and books include a taxonomy characterizing the parallel strategies
for metaheuristics. They agree on most counts, even though terms might differ.
Thus, fine- and coarse-grained decomposition, low-level and functional paral-
lelism, domain decomposition, diffusion, as well as synchronous and asynchronous
communications are examples of common concepts and terms. While also found
broadly, search-space decomposition, multi-search parallelism, and cooperative
search may be encountered under different names. Thus, for example, memory, pool,
and data warehouse (reference and elite set are also sometimes used) are equivalent
terms found in the parallel metaheuristic literature for the sharing data structures of
cooperative search (blackboard is often used in the computer-science and artificial-
intelligence vocabulary). We use the taxonomy and vocabulary of Crainic and Hail
(2005), generalizing Crainic et al. (1996, 1997).

Munguía et al. (2017) proposed a search-space decomposition with restarts
matheuristic for the MCFND, which inspired the description of Sect. 7. The authors
implement a large neighborhood structure explored with a MIP solver. The Local
Search explores each partition defined by a group of commodities, by applying
this move (i.e., solving exactly) to each combination of decreasing cardinality of
those commodities. Several partitions may be obtained by controlling the graph-
partitioning algorithm. A solution-recombination method proceeding in stages (two
in the implementation described), by grouping iteratively neighboring partitions
(which increases the number of variables one may fix to 0) appears particularly
interesting. The authors explored various implementations on different computer
architectures and obtained very good results. The commodity-based partitioning and
the multi-stage solution-recombination mechanisms are noteworthy as they could be
combined with learning mechanisms and cooperative search strategies.

We refer the reader to Crainic (2019) for a detailed discussion relative to
cooperative multi-search metaheuristics and the associated literature, and to Crainic
et al. (1996, 1997) and Toulouse et al. (1996, 1999a, 2004, 1998, 2000) for the
issues related to defining mechanisms and parameters for cooperation, including the
quality, meaningfulness, and parsimony principles of information sharing.

Memory-based cooperative pC/C search strategies are described in the literature
for most metaheuristic classes and combinatorial optimization problems. To the
best of our knowledge, Crainic et al. (1996) were the first to propose a memory-
based approach for asynchronous Tabu Search in their study of a multicommodity



132 T. G. Crainic and M. Gendreau

location problem with balancing requirements. The proposed method outperformed
in terms of solution quality the sequential version as well as several synchronous
and broadcast-based asynchronous cooperative strategies. The method was extended
to address the MCFND with similar results (Crainic and Gendreau 2002). The
illustrations of pC/C multi-search strategies of Sect. 7 are inspired by the work of
Ribeiro and Rosseti (2007) on pC/C GRASP for 2-path network design, and the
method of Crainic et al. (1996) and Crainic and Gendreau (2002), respectively.

Multi-level Cooperative Search (Toulouse et al. 1999b) produced excellent
results for various problem settings, including graph and hypergraph partitioning
(Ouyang et al. 2000, 2002), feature selection in biomedical data (Oduntan et al.
2008), and covering design (Dai et al. 2009), which are close to network design or
may be of interest for parallel metaheuristic strategies (e.g., graph partitioning). The
network design illustration of Sect. 7 is based is based on Crainic et al. (2006b).

The many contributions found in the literature show that centralized-memory
pC/C asynchronous cooperation strategies are generally offering very good results,
yielding high-quality solutions. They are also computationally efficient, with no
synchronization overhead, no broadcasting, and no need for complex mechanisms
to select the solvers that will receive or send information and to control the
cooperation. pC/C strategies have also proved efficient in handling the issue of
premature “convergence” in cooperative search, by diversifying the information
received by solvers through probabilistic selection from the memory and by a
somewhat large and diverse population of solutions in the memory; solvers may thus
import different solutions even when their cooperation activities are taking place
within a short time span. Such good performances and the availability of shared
information kept in the memory has brought the question of whether one could
design more advanced cooperation mechanisms taking advantage of the information
exchanged among cooperating solvers. The pC/KC strategies are the result of this
area of research.

The adaptive-memory terminology was coined by Rochat and Taillard (1995)
proposing Tabu Search-based heuristics for vehicle routing. Central-memory meth-
ods initiated with the research of Crainic et al. (1996, 1997) for multicommodity
location problem with balancing requirements and its extension to the MCFND
(Crainic and Gendreau 2002). The basic canvas for central-memory strategies of
Sect. 7 comes from those developments, as well as the study of Crainic and Gen-
dreau (1999). The pattern-building learning and guidance mechanisms are inspired
by the work of Le Bouthillier et al. (2005) for the vehicle routing problem with time
windows (see Le Bouthillier 2007, for a dynamic version of this mechanism).

According to our best knowledge, Crainic et al. (2006a) (see also Di Chiara
2006) were the first to propose an ICS method in the context of designing wireless
networks, where seven attributes were considered simultaneously. The proposed
pC/KC metaheuristic has Tabu Search solvers address limited subsets of attributes,
the others being fixed, and a GA combine the partial solutions generated by solvers
into complete solutions to the initial problem. A formal definition and evaluation of
ICS (in the vehicle routing context) is to be found in Lahrichi et al. (2015).



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 133

9 Conclusions and Perspectives

One of the main things that comes to mind when considering heuristic solution
procedures for network design problems is the realization that there has been a very
steady improvement in the performance of these methods over time: state-of-the-art
methods are now capable of producing solutions that are quite close to optimal ones
in a fraction of the time required by exact approaches. This can be very important
in some practical settings. It is also interesting to note that some of the most recent
methods scale up rather well, which means that they are able to tackle instances of
significant size, similar to the ones that one is likely to encounter in many practical
applications.

These conclusions can be traced, in our opinion, to three main causes. The first
is the proper exploitation of the mathematical properties of optimal solutions of
fixed-charge problems, namely the fact that, in most cases, they can be found at
extreme points of the feasible set. This property has had a deep impact on the
definition of search spaces for many methods, making these much more effective.
The second reason is the amazing developments in the performance of MIP solvers,
which has allowed for the integration of dedicated exact solution procedures within
many metaheuristics and matheuristics. The third reason, but not the least, are the
advances in the design of solution procedures, which now display a sophisticated
architecture to deal with the various challenges of network design problems. It is the
combination of these three factors that explain where we stand now in our efforts to
tackle these problems.

This having been said, it is important to state that a lot remains to be done:
there are indeed several intriguing approaches that one might wish to consider for
tackling network design problems. Among these, the Unified Hybrid Genetic Search
(UHGS), which combines the exploitation of a carefully managed population of
solutions with neighborhood-based search, immediately comes to mind considering
the successes obtained by this method on a wide range of difficult vehicle routing
problems (see, e.g., Vidal et al. 2012, 2014). Combining the ideas of UHGS
with tailored exact solution procedures could lead to very powerful matheuristics.
A second fascinating perspective is that of parallel and cooperative search, par-
ticularly in the ICS version. Indeed, combining various decomposition strategies,
along different dimensions of design problems, with state-of-the-art matheuristics
for the resulting problems and the recombination of solutions presents fascinating
challenging and very promising perspectives. This is also an area where advanced
learning mechanisms find a natural niche to extend the classical memory-based
capabilities of metaheuristics.

Last but not least, there is the challenge of metaheuristics and matheuristics for
the many variants of network design problems brought by applications. The other
chapters of this book present these models and identify the associated algorithmic
challenges and perspectives.



134 T. G. Crainic and M. Gendreau

References

Alba, E. (Ed.) (2005). Parallel metaheuristics: A new class of algorithms. Hoboken, NJ: Wiley.
Alba, E., Luque, G., & Nesmachnow, S. (2013). Parallel metaheuristics: recent advances and new

trends. International Transactions in Operational Research, 20(1), 1–48.
Alvarez, A. M., González-Velarde, J. L., & De-Alba, K. (2005). Scatter search for network design

problem. Annals of Operations Research, 138, 159–178.
Barr, R. S., & Hickman, B. L. (1993). Reporting computational experiments with parallel

algorithms: issues, measures, and experts opinions. ORSA Journal on Computing, 5(1), 2–18.
Baxter, J. (1981). Local optima avoidance in depot location. Journal of the Operational Research

Society, 32, 815–819.
Chouman, M., & Crainic, T. G. (2015). Cutting-plane matheuristic for service network design with

design-balanced requirements. Transportation Science 49(1), 99–113.
Chouman, M., Crainic, T. G., & Gendron, B. (2009). A cutting-plane algorithm for multi-

commodity capacitated fixed charge network design. Tech. Rep. CIRRELT-2009-20, Centre
interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et les transports,
Université de Montréal, Montréal, QC, Canada.

Cooper, L. (1975). The fixed charge problem-I: A new heuristic method. Computers & Mathemat-
ics with Applications, 1, 89–95.

Cooper, L., & Drebes, C. (1967). An approximate solution method for the fixed charge problem.
Naval Research Logistics Quarterly, 14, 101–113.

Crainic, T. G. (2008). Parallel solution methods for vehicle routing problems. In B. L.Golden,
S. Raghavan, & E. A. Wasil (Eds.). The vehicle routing problem: latest advances and new
challenges (pp. 171–198). New York, NY: Springer.

Crainic, T. G. (2019). Parallel metaheuristics and cooperative search. In M. Gendreau, & J.-Y.
Potvin (Eds.), Handbook of Metaheuristics (3rd ed., pp. 419–451). Berlin: Springer.

Crainic, T.G., & Gendreau, M. (1999). Towards an evolutionary method—cooperating multi-
thread parallel tabu search hybrid. In S. Voß, S. Martello, C. Roucairol, & I. H. Osman (Eds.),
Meta-heuristics 98: Theory and applications (pp. 331–344). Norwell, MA: Kluwer Academic
Publishers.

Crainic, T.G., & Gendreau, M. (2002). Cooperative parallel tabu search for capacitated network
design. Journal of Heuristics, 8(6), 601–627.

Crainic, T.G., & Gendreau, M. (2007) A scatter search heuristic for the fixed-charge multicommod-
ity flow network design problem. In K. Doerner, M. Gendreau, P. Greistorfer, W. J. Gutjahr, R.
F. Hartl, & M. Reimann (Eds.), Metaheuristics—progress in complex systems optimization (pp.
25–40). New York, NY: Springer.

Crainic, T. G., & Hail, N. (2005). Parallel meta-heuristics applications. In E. Alba (Ed.), Parallel
metaheuristics: A new class of algorithms (pp. 447–494). Hoboken, NJ: Wiley

Crainic, T. G., & Toulouse, M. (1998). Parallel metaheuristics. In T. G. Crainic, & G. Laporte
(Eds.), Fleet management and logistics (pp. 205–251). Norwell, MA: Kluwer Academic
Publishers.

Crainic, T. G., & Toulouse, M. (2003). Parallel strategies for meta-heuristics. In F. Glover, &
G. Kochenberger (Eds.), Handbook in metaheuristics (pp. 475–513). Norwell, MA: Kluwer
Academic Publishers.

Crainic, T. G., & Toulouse, M. (2010) Parallel meta-heuristics. In M. Gendreau, J.-Y. Potvin (Eds.).
Handbook of metaheuristics (2nd ed., pp. 497–541). Berlin: Springer.

Crainic, T. G., Gendreau, M., Soriano, P., & Toulouse, M. (1993). A Tabu search procedure
for multicommodity location/allocation with balancing requirements. Annals of Operations
Research, 41, 359–383.

Crainic, T. G., Toulouse, M., & Gendreau, M. (1996). Parallel asynchronous Tabu search
for multicommodity location-allocation with balancing requirements. Annals of Operations
Research, 63, 277–299.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 135

Crainic, T. G., Toulouse, M., & Gendreau, M. (1997). Towards a taxonomy of parallel tabu search
algorithms. INFORMS Journal on Computing, 9(1), 61–72.

Crainic, T. G., Gendreau, M., & Farvolden, J. M. (2000). A simplex-based Tabu search method for
capacitated network design. INFORMS Journal on Computing, 12(3), 223–236.

Crainic, T. G., Di Chiara, B., Nonato, M., & Tarricone, L. (2006a) Tackling electrosmog in
completely configured 3G networks by parallel cooperative meta-heuristics. IEEE Wireless
Communications, 13(6), 34–41.

Crainic, T. G., Li, Y., & Toulouse, M. (2006b). A first multilevel cooperative algorithm for
the capacitated multicommodity network design. Computers & Operations Research, 33(9),
2602–2622.

Crainic, T. G., Davidović, T., & Ramljak, D. (2014). Designing parallel meta-heuristic methods.
In M. Despotovic-Zrakic, V. Milutinovic, & A. Belic (Eds.), High performance and cloud
computing in scientific research and education (pp. 260–280). Hershey, PA: IGI Global

Cung, V. D., Martins, S. L., Ribeiro, C. C., & Roucairol, C. (2002). Strategies for the parallel
implementations of metaheuristics. In C. Ribeiro, P. Hansen (Eds.), Essays and surveys in
metaheuristics (pp. 263–308). Norwell, MA: Kluwer Academic Publishers.

Dai, C., Li, B., & Toulouse, M. (2009). A multilevel cooperative Tabu search algorithm for
the covering design problem. Journal of Combinatorial Mathematics and Combinatorial,
Computing 68, 35–65.

Delahaye, D., Chaimatanan, S., & Mongeau, M. (2019) Simulated annealing: From basics to
applications. In M. Gendreau, J.-Y. Potvin (Eds.), Handbook of metaheuristics (3rd ed., pp
1–35). Cham: Springer.

Denzler, D. R. (1969). An approximate algorithm for the fixed charge problem. Naval Research
Logistics Quarterly, 16, 411–416.

Di Chiara, B. (2006). Optimum planning of 3G cellular systems: Radio propagation models and
cooperative parallel meta-heuristics. PhD thesis, Dipartimento di ingegneria dell’innovatione,
Universitá degli Studi di Lecce, Lecce, Italy.

Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, 8, 67–71.

Feo, T. A., & Resende, M. G. C. (1995) Greedy randomized adaptive search procedures. Journal
of Global Optimization, 6, 109–134.

Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming Series B, 98,
23–47.

Gendreau, M., & Potvin, J.-Y. (2019). Tabu search. In M. Gendreau, J.-Y. Potvin (Eds.), Handbook
of Metaheuristics (3rd ed., pp. 37–55). Cham: Springer.

Gendreau, M., Hertz, A., & Laporte, G. (1994). A Tabu search heuristic for the vehicle routing
problem. Management Science, 40(10), 1276–1290.

Gendron, B., & Crainic, T. G. (1994). Relaxations for multicommodity network design problems.
Publication CRT-965, Centre de recherche sur les transports, Université de Montréal, Montréal,
QC, Canada.

Ghamlouche, I., Crainic, T. G., & Gendreau, M. (2003). Cycle-based neighbourhoods for fixed-
charge capacitated multicommodity network design. Operations Research, 51(4), 655–667.

Ghamlouche, I., Crainic, T. G., & Gendreau, M. (2004). Path relinking, cycle-based neighbour-
hoods and capacitated multicommodity network design. Annals of Operations Research, 131,
109–133.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 1(3), 533–549

Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1(3), 190–206.
Glover, F. (1990). Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.
Glover, F. (1997). A template for scatter search and path relinking. In J. Hao, E. Lutton, E. Ronald,

M. Schoenauer, & D. Snyers (Eds.), Artificial evolution, lecture notes in computer science (Vol.
1363, pp. 13–54). Berlin: Springer.

Glover, F., & Kochenberger, G. (Eds.) (2003). Handbook of metaheuristics. Norwell, MA: Kluwer
Academic Publishers.



136 T. G. Crainic and M. Gendreau

Glover, F., & Laguna, M. (1993). Tabu search. In C. Reeves (Ed.), Modern heuristic techniques for
combinatorial problems (pp. 70–150). Oxford: Blackwell Scientific Publications.

Glover, F., & Laguna, M. (1997) Tabu search. Norwell, MA: Kluwer Academic Publishers.
Glover, F., Laguna, M., & Martí, R. (2000). Fundamentals of scatter search and path relinking.

Control and Cybernetics, 39(3), 653–684.
Gottlieb, J., & Paulmann, L. (1998). Genetic algorithms for the fixed charge transportation prob-

lem. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation
(pp. 330–335)

Hajiaghaei-Keshteli, M., Molla-Alizadeh-Zavardehi, S., & Tavakkoli-Moghaddam, R. (2010)
Addressing a nonlinear fixed charge transportation problem using a spanning tree based genetic
algorithm. Computers & Industrial Engineering, 59, 259–271.

Hansen, P., Mladenović, N. (1999). An introduction to variable neighborhood search. In S. Voß, S.
Martello, C. Roucairol, & I. H. Osman (Eds.), Meta-heuristics 98: Theory & applications (pp.
433–458). Norwell, MA: Kluwer Academic Publishers.

Hansen, P., Mladenović, N., Brimberg, J., Pérez, J. A. M. (2019). Variable neighborhood search.
In: M. Gendreau, J.-Y. Potvin (Eds.), Handbook of metaheuristics (3rd ed., pp. 57–97). Cham:
Springer.

Hewitt, M., Nemhauser, G. L., & Savelsbergh, M. W. (2010) Combining exact and heuristic
approaches for the capacitated fixed-charge network flow problem. INFORMS Journal on
Computing, 22, 314–325.

Hirsch, W. M., & Dantzig, G. B. (1954) Notes on linear programming part XIX, the fixed charge
problem. Memorandum (Vol. 1383). Santa Monica, CA: Rand Research

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of
Michigan Press

Jo, J. B., Li, Y., & Gen, M. (2007). Nonlinear fixed charge transportation problem by spanning
tree-based genetic algorithm. Computers & Industrial Engineering, 53, 290–298.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983) Optimization by simulated annealing.
Science, 220, 671–680.

Lahrichi, N., Crainic, T. G., Gendreau, M., Rei, W., Crisan, G. C., & Vidal, T. (2015) An inte-
grative cooperative search framework for multi-decision-attribute combinatorial optimization.
European Journal of Operational Research, 246(2), 400–412.

Le Bouthillier, A. (2007). Recherches coopératives pour la résolution de problèmes d’optimisation
combinatoire. PhD thesis, Département d’informatique et de recherche opérationnelle, Univer-
sité de Montréal, Montréal, QC, Canada.

Le Bouthillier, A., Crainic, T. G., & Kropf, P. (2005). A guided cooperative search for the vehicle
routing problem with time windows. IEEE Intelligent Systems, 20(4), 36–42.

Lofti, M. M., & Tavakkoli-Moghaddam, R. (2013). A genetic algorithm using priority-based
encoding with new operators for fixed charge transportation problems. Applied Soft Computing,
13(5), 2711–2726.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2019). Iterated local search: Framework and
applications. In: M. Gendreau, & J.-Y. Potvin (Eds.), Handbook of metaheuristics (3rd ed.,
pp. 129–168). Cham: Springer.

Melab, N., Talbi, E. G., Cahon, S., Alba, E., & Luque, G. (2006). Parallel metaheuristics: Models
and frameworks. In E.L. Ghazali Talbi (Ed.), Parallel combinatorial optimization (pp. 149–
162). New York, NY: Wiley.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations
Research, 24:1097–1100

Molla-Alizadeh-Zavardehi, S., Mahmoodirad, A., & Rahimian, M. (2014). Step fixed charge
transportation problems. Indian Journal of Science and Technology, 7(7), 949–954.

Munguía, L. M., Ahmed, S., Bader, D. A., Nemhauser, G. L., Goel, V., & Shao, Y. (2017). A
parallel local search framework for the fixed-charge multicommodity network flow problem.
Computers & Operations Research, 77, 44–57.



4 Heuristics and Metaheuristics for Fixed-Charge Network Design 137

Oduntan, I. O., Toulouse, M., Baumgartner, R., Bowman, C., Somorjai, R., & Crainic, T. G. (2008).
A multilevel Tabu search algorithm for the feature selection problem in biomedical data sets.
Computers & Mathematics with Applications, 55(5), 1019–1033.

Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F., & Deogun, J. S. (2000). Multi-level
cooperative search: Application to the netlist/hypergraph partitioning problem. In Proceedings
of International Symposium on Physical Design (pp. 192–198). New York, NY: ACM Press.

Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F., & Deogun, J. S. (2002). Multilevel
cooperative search for the circuit/hypergraph partitioning problem. IEEE Transactions on
Computer-Aided Design, 21(6), 685–693.

Paraskevopoulos, D. C., Bektaş, T., Crainic, T. G., & Potts, C. N. (2016). A cycle-based
evolutionary algorithm for the fixed-charge capacitated multi-commodity network design
problem. European Journal of Operational Research, 253(1), 265–279.

Pedemonte, M., Nesmachnow, S., & Cancela, H. (2011). A survey of parallel ant colony
optimization. Applied Soft Computing, 11(8), 5181–5197.

Resende, M. G. C., & Ribeiro, C. C. (2019). Greedy randomized adaptive search procedures:
Advances and extensions. In M. Gendreau, & J.-Y. Potvin (Eds.), Handbook of Metaheuristics
(3rd ed., pp. 169–220). Cham: Springer.

Ribeiro, C. C., & Rosseti, I. (2007). Efficient parallel cooperative implementations of GRASP
heuristics. Parallel Computing, 33(1), 21–35.

Rochat, Y., & Taillard, E. D. (1995). Probabilistic diversification and intensification in local search
for vehicle routing. Journal of Heuristics, 1(1), 147–167.

Rodríguez-Martin, I., & Salazar-González, J. J. (2010). A local branching heuristic for the
capacitated fixed-charge network design problem. Computers & Operations Research, 37, 575–
581.

Schryen, G. (2020). Parallel computational optimization in operations research: A new integra-
tive framework, literature review and research directions. European Journal of Operational
Research, 287(1), 1–18.

Silberholz, J., Golden, B., Gupta, S., & Wang, X. (2019). Computational comparison of meta-
heuristics. In M. Gendreau, & J.-Y. Potvin (Eds.). Handbook of metaheuristics (3rd ed., pp.
581–604). Cham: Springer.

Steinberg, D. I. (1970). The fixed charge problem. Naval Research Logistics Quarterly, 17, 217–
236.

Sun, M., Aronson, J. E., McKeown, P. G., & Drinka, D. (1998). A Tabu search procedure for the
fixed charge transportation problem. European Journal of Operational Research, 106, 441–446.

Talbi, E. G. (Ed.) (2009). Metaheuristics: From design to implementation. Hoboken, NJ: Wiley.
Talukdar, S., Murthy, S., & Akkiraju, R. (2003). Assynchronous teams. In F. Glover, & G.

Kochenberger (Eds.), Handbook in metaheuristics (pp. 537–556) Norwell, MA: Kluwer
Academic Publishers.

Toulouse, M., Crainic, T. G., & Gendreau, M. (1996). Communication issues in designing
cooperative multi thread parallel searches. In I. H. Osman, & J. P. Kelly (Eds.), Meta-heuristics:
Theory & applications (pp. 501–522). Norwell, MA: Kluwer Academic Publishers.

Toulouse, M., Crainic, T. G., Sansó, B., & Thulasiraman, K. (1998). Self-organization in
cooperative search algorithms. In Proceedings of the 1998 IEEE International Conference on
Systems, Man, and Cybernetics (pp. 2379–2385). Madisson, WI: Omnipress.

Toulouse, M., Crainic, T. G., & Sansó, B. (1999a). An experimental study of systemic behavior
of cooperative search algorithms. In S. Voß, S. Martello, C. Roucairol, & I. H. Osman (Eds.),
Meta-heuristics 98: Theory & applications (pp. 373–392). Norwell, MA: Kluwer Academic
Publishers.

Toulouse, M., Thulasiraman, K., & Glover, F. (1999b). Multi-level cooperative search: a new
paradigm for combinatorial optimization and an application to graph partitioning. In P.
Amestoy, P. Berger, M. Daydé, I. Duff, V. Frayssé, L. Giraud, & D. Ruiz (Eds.), Fifth
International Euro-Par Parallel Processing Conference, Lecture Notes in Computer Science
(Vol. 1685, pp. 533–542). Heidelberg: Springer.



138 T. G. Crainic and M. Gendreau

Toulouse, M., Crainic, T. G., & Thulasiraman, K. (2000). Global optimization properties of parallel
cooperative search algorithms: A simulation study. Parallel Computing, 26(1), 91–112.

Toulouse, M., Crainic, T. G., & Sansó, B. (2004). Systemic behavior of cooperative search
algorithms. Parallel Computing, 30(1), 57–79.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A hybrid genetic algorithm
for multi-depot and periodic vehicle routing problems. Operations Research, 60(3), 611–624.

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2014). A unified solution framework for
multi-attribute vehicle routing problems. European Journal of Operational Research, 234(3),
658–673.

Vu, D. M., Crainic, T. G., & Toulouse, M. (2013). A three-stage matheuristic for the capaci-
tated multi-commodity fixed-cost network design with design-balance constraints. Journal of
Heuristics, 19, 757–795.

Walker, W. E. (1976). A heuristic adjacent extreme point algorithm for the fixed charge problem.
Management Science, 22, 587–596.

Whitley, D. (2019). Next generation genetic algorithms: A user’s guide and tutorial. In M.
Gendreau, & J.-Y. Potvin (Eds.), Handbook of metaheuristics (3rd ed., pp. 245–274). Cham:
Springer.

Xiao, Y., & Konak, A. (2017). A variable neighborhood search for the network design problem
with relays. Journal of Heuristics, 23, 137–164.

Yaghini, M., Rahbar, M., & Karimi, M. (2013). A hybrid simulated annealing and column gen-
eration approach for capacitated multicommodity network design. Journal of the Operational
Research Society, 64, 1010–1020.

Yaghini, M., Karimi, M., Rahbar, M., Sharifitabar, H. (2015). A cutting-plane neighborhood
structure for fixed-charge capacitated multicommodity network design problem. INFORMS
Journal on Computing, 27(1), 48–58.



Part II
Advanced Problems and Models



Chapter 5
Multicommodity Multifacility Network
Design

Alper Atamtürk and Oktay Günlük

1 Introduction

Here we consider multicommodity network design models, where capacity can be
added to arcs of the network using integer multiples of facilities, possibly with
varying capacities. This class of models appear frequently in telecommunication
network capacity expansion problems, train scheduling with multiple locomotive
options, supply chain and service network design problems. In the single-facility
network design problem, one installs multiples of only a single type of facility on the
arcs of the network. Routing vehicles with identical capacity in a logistics network
and installing a communication network with only one cable type are examples of
the single-facility network design problem. In the multifacility problem, one may
install different types of facilities with varying capacities, such as fiberoptic cables
with varying bandwidths, production lines or machines with different rates, or a fleet
of heterogeneous vehicles with varying capacities. The optimization problem seeks
to decide how many facilities of each type to install on the network so as to meet
the demand for each commodity at the least cost. We present the precise problem
description and the associated formulation in the next section.

Different versions of the problem are obtained depending on how the flow is
routed in the network. In the unsplittable flow version, only a single path is allowed
to route the flow from its source to its destination, which requires integer variables to

A. Atamtürk
Department of Industrial Engineering and Operations Research, University of California,
Berkeley, CA, USA
e-mail: atamturk@berkeley.edu

O. Günlük (�)
School of Information Engineering and Operations Research, Cornell University, Ithaca,
NY, USA
e-mail: oktay.gunluk@cornell.edu

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_5

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_5&domain=pdf
mailto:atamturk@berkeley.edu
mailto:oktay.gunluk@cornell.edu
https://doi.org/10.1007/978-3-030-64018-7_5


142 A. Atamtürk and O. Günlük

model its route. This is the case, for instance, in telecommunication networks using
multiprotocol label switching (MPLS) technique, production and distribution with
single sourcing, and express package delivery. The splittable case, which assumes
that flow can be routed using multiple directed paths, is obviously a relaxation of the
unsplittable case; therefore, valid inequalities for the splittable case are also valid for
the unsplittable case.

In addition, the capacity created by the facilities can be directed, bidirected, or
undirected. In the bidirected case, if a certain facility is installed on an arc, then the
same facility also needs to be installed on the reverse arc. In the undirected case, the
total flow on an arc and its reverse arc is limited by the capacity of the undirected
edge associated with the two arcs. Here we consider the directed case where the
total flow on an arc is limited by the total (directed) capacity of the arc. In a recent
paper, the authors of this chapter describe how to generate valid inequalities for the
bidirected and undirected network design problems using valid inequalities for the
directed case.

In this chapter we review strong valid inequalities for the multicommodity
multifacility network design problem. Throughout, we emphasize three fundamental
techniques that have been effective in deriving strong inequalities for network design
problems. These are the metric inequalities for projecting out the continuous flow
variables, mixed-integer rounding from appropriate base relaxations, and shrinking
the network to a small k-node graph. The valid inequalities for the network design
problem are obtained by applying these techniques to different relaxations of the
problem, namely, arc-set, cut-set and partition relaxations. The basic inequalities
derived from these relaxations are also utilized, with certain adaptations, in robust
and survivable network design problems.

This chapter is organized as follows. In the next section, we introduce the
notation used in the chapter and give a formal definition of the multicommodity
multifacility design problem. Section 3 reviews the metric inequalities for projecting
out the multicommodity flow variables, the mixed-integer rounding technique,
as well as a simplification obtained by shrinking the network for deriving valid
inequalities from a smaller network. These techniques play a central role in deriving
strong valid inequalities for the network design problem. Section 4 reviews the
inequalities from single arc capacity constraints for the splittable as well as the
unsplittable cases. Section 5 reviews the valid inequalities from two-partitions for
single as well as multifacility cases. Section 6 generalizes the inequalities in the
previous section to a higher number of partitions.

2 Problem Formulation

Let G = (N,A) be a directed graph (network), with node set N and arc set A ⊆
N × N . Each arc a ∈ A has a given existing capacity c̄a ≥ 0 and the network
design problem consists of installing additional capacity on the arcs of the network
using an (integral) combination of a given set of capacity types. The objective of the



5 Multicommodity Multifacility Network Design 143

problem is to minimize the sum of the flow routing cost and the capacity expansion
cost. Throughout we assume that the data is rational.

The demand data for the problem is given by matrix T = {tij }, where tij ≥ 0
is the amount of (directed) traffic that should be routed from node i ∈ N to
j ∈ N . Using matrix T , we can define a collection of commodities, each of which
has a certain supply and demand at each node of the network. As discussed in
Chap. 2, there are different ways to formulate the same network design problem by
changing what is meant by a commodity. Using a minimal vertex cover of the so-
called demand graph, one can obtain the smallest number of commodities required
to formulate a given problem instance correctly. Computationally, formulations
with fewer commodities may be more desirable as their continuous relaxations
solve faster. For the sake of concreteness, we will use the aggregated commodity
description but we note that most of the discussion below does not depend on
how the commodities are defined. Let K ⊆ N denote the collection of nodes with
positive supply, i.e.,

K =
{

i ∈ N :
∑

j∈N
tij > 0

}

·

We use wk
i to denote the net demand of node i ∈ N for commodity k ∈ K .

More precisely, let wk
i = tki for i 	= k and wk

k = −
∑

j∈N tkj for k ∈ K . Note
that each node k ∈ K is the unique supplier of commodity k and flow of each
commodity in the network needs to be disaggregated to obtain an individual routing
for origin-destination pairs. We also note that the aggregated commodity description
can only be used if the flow routing cost does not depend on both the origin and the
destination of the traffic that needs to be routed.

New capacity can be installed in the network using integer multiples of facilities
M , where a single unit of facility m ∈ M provides capacity cm. Without loss of
generality, we assume that cm ∈ Z for all m ∈ M and c1 < c2 < · · · < c|M|.
In this setting the network design problem involves installing enough additional
capacity on the arcs of the network so that traffic can be routed simultaneously
without violating arc capacities. For i ∈ N , let

N+i = {j ∈ N : (i, j) ∈ A} and N−i = {j ∈ N : (j, i) ∈ A}

denote the neighbors of node i ∈ N . Let integer variables yma ≥ 0 indicate
the number of facilities of type m ∈ M installed on arc a ∈ A and continuous
variables xka ≥ 0 denote the amount of flow of commodity k ∈ K routed on arc
a ∈ A. Using this notation, the following constraints define the feasible region of
the multicommodity multifacility network design problem:

∑

j∈N+i
xkij −

∑

j∈N−i
xkji = wk

i , k ∈ K, i ∈ N, (5.1)



144 A. Atamtürk and O. Günlük

∑

k∈K
xkij −

∑

m∈M
cmymij ≤ c̄ij , (i, j) ∈ A. (5.2)

Then the network design problem is stated as:

(NDP) min
{
dy + f x : (x, y) ∈ P ND

}
,

where d and f are cost vectors of appropriate size and

P ND = conv
{
(x, y) ∈ R

A×K+ × Z
A×M+ : (5.1) and (5.2)

}
·

As a concrete example with two facilities, consider a given arc a ∈ A. The
total capacity c1y1a + c2y2a given by the integer variables y1a and y2a has cost
d1ay1a + d2ay2a . Assuming economies of scale, let d1a/c1 > d2a/c2 and remember
that c1 < c2. In this case, we can write the cost function f (z) required to generate z
units of capacity (at the least cost) as:

h(z) = �z/c2�d2a +min{d2a, �(z− �z/c2�c2)/c1�d1a}

which is a piecewise linear function. Figure 5.1 illustrates an example with 3d1a <

d2a < 4d1a .
We also note that, when f = 0 it is possible to project out the multicommodity

flow variables from P ND to obtain a formulation in the space of only the discrete
capacity variables. This capacity formulation requires an exponential number of
constraints and is discussed in Sect. 3.1.

z

h(z)

c1 2c1 3c1 c2 c2+ c1

d1,a

2d1,a

3d1,a
d2,a

d1,a+d2,a

Fig. 5.1 The piecewise linear capacity installation cost function h(z)



5 Multicommodity Multifacility Network Design 145

3 Preliminaries

In this section we discuss three fundamental approaches that are useful in generating
strong cutting planes for P ND. We start with the metric inequalities, which give a
generalization of the well-known max-flow min-cut theorem to multicommodity
flows. We then discuss how valid inequalities can be generated by shrinking the
network to one with a few nodes to obtain inequalities from simpler sets. Finally,
we describe the mixed-integer rounding procedure, which is an effective method to
produce valid inequalities for general mixed-integer sets.

3.1 Metric Inequalities

Metric inequalities are introduced by Iri (1971), and Onaga and Kakusho (1971) as a
generalization of the max-flow min-cut duality to multicommodity flows. Consider
the following capacitated multicommodity flow set

F =
{

x ∈ R
A×K+ : (5.1) and

∑

k∈K
xka ≤ ca, a ∈ A

}

,

where c ∈ R
A+ denotes the arc capacities. By Farkas’ Lemma, the set F is non-empty

if and only if the following metric inequalities

∑

a∈A
cava ≥

∑

i∈N

∑

k∈K
wk
i u

k
i (5.3)

hold for all (v, u) ∈ D, where

D =
{

(v, u) ∈ R
A+ × R

N×K : vij ≥ ukj − uki , k ∈ K, (i, j) ∈ A, ukk = 0

}

·

In other words, the arc capacity vector c can accommodate a feasible routing of the
commodities if and only if it satisfies all metric inequalities generated by the non-
empty cone D. Note that for any fixed v̄ ∈ R

A+, a point (v̄, u(v̄)) ∈ D maximizes the
right-hand-side of (5.3) when u(v̄) corresponds to the shortest path lengths using
v̄ as edge weights (hence the name “metric inequality”). Therefore, it suffices to
consider metric inequalities where the vector u ∈ R

N×K satisfies this property.
When there is only a single commodity, the max-flow min-cut theorem gives a

nice characterization of the important extreme rays of the cone D. More precisely,
in this case it suffices to consider vectors v ∈ {0, 1}A, where vij = 1 if and only if
i ∈ S and j 	∈ S for some S ⊂ N that contains the source of the commodity but not
all the sinks.



146 A. Atamtürk and O. Günlük

Now consider the set P ND and a given capacity vector y ∈ R
A×M together with

the existing arc capacities c̄ and demand w. The metric inequality generated by
(u, v) ∈ D becomes

∑

a∈A
(c̄a +

∑

m∈M
cmyma)va ≥

∑

i∈N

∑

k∈K
wk
i u

k
i . (5.4)

As it is possible to check if there is a violated metric inequality in polynomial time
(by solving a linear program), one can project out the flow variables from P ND and
obtain a “capacity” formulation in the space of the capacity variables only. Clearly
this approach can be applicable only if there is no flow routing cost, i.e., f = 0 in
problem (NDP). We also note that as inequalities (5.4) do not have flow variables,
they only depend on the demand matrix and not on what commodity definition is
used for the flow variables. Consequently, the right-hand-side of inequality (5.4)
reduces to

∑
i∈N

∑
k∈N tkiu

k
i .

The integral metric inequalities are obtained by rounding up the right-hand-side
of metric inequalities associated with integral vectors (u, v) ∈ D,

∑

a∈A

∑

m∈M
cmymava ≥

⌈
∑

i∈N

∑

k∈K
wk
i u

k
i −

∑

a∈A
c̄ava

⌉

The basic cut-set inequalities discussed in Sect. 5 are special cases of the
integral metric inequalities. While the metric inequalities different from the cut-
set inequalities (Sect. 5) can be useful in strengthening the convex relaxations, their
separation requires more computational effort.

3.2 Node Partition Inequalities

Consider a partition of the node set of the directed graph G = (N,A) into p < |N |
disjoint subsets:N = ∪pt=1Nt . By shrinking these node subsets into singleton nodes,
one obtains a simplified directed graph G̃ = (Ñ, Ã)with p nodes and up to p(p−1)
arcs. In this new graph, there is an arc (i, j) ∈ Ã from node i ∈ Ñ to node j ∈ Ñ if
and only if the original graph has at least one arc (u, v) ∈ A from some node u ∈ Ni

to a node in v ∈ Nj . The existing capacity c̄ij on arc (i, j) ∈ Ã in the new network
equals the sum of the existing capacities of all the arcs from the nodes in Ni to the
nodes in Nj ; in other words, c̃ij =∑u∈Ni

∑
v∈Nj

c̄uv .

Finally, setting the demand of j ∈ Ñ for commodity k ∈ K to the total net
demand of all nodes inNj for commodity k in the original problem leads to a smaller
network design problem with p nodes. In other words, w̃k

i =
∑

v∈Ni
wk
v for all

k ∈ K and i ∈ Ñ . Note that one can reduce the number of commodities in the new



5 Multicommodity Multifacility Network Design 147

problem by aggregating the ones with the same source node but in order to keep the
notation simple, we do not discuss it here.

Now consider a feasible (integral) solution (x, y) to the original network design
problem defined on G = (N,A) with existing capacity vector c̄ and commodity
demands w. Aggregating the flow and capacity variables as described above, it is
easy to see that the resulting flow and the capacity vector (x̃, ỹ) gives a feasible
solution to the simplified p-node problem defined on G̃ = (Ñ, Ã) with existing
capacity vector c̃ and commodity demands w̃. This observation implies that valid
inequalities for the simplified problem on G̃ can be translated to valid inequalities
for the original problem on G in the following way. Let

∑

k∈K

∑

(i,j)∈Ã
α̃kij x

k
ij +

∑

m∈M

∑

(i,j)∈Ã
β̃mij ymij ≥ γ (5.5)

be a given valid inequality for the simplified problem on G̃. Then the following
inequality is valid for the original problem on G

∑

k∈K

∑

(u,v)∈A
αkuvx

k
uv +

∑

m∈M

∑

(u,v)∈A
βmuvymuv ≥ γ, (5.6)

where for any k ∈ K , m ∈ M and (u, v) ∈ A with u ∈ Ni and v ∈ Nj , we set

αkuv =
{

0, if i = j

α̃ij , otherwise
βmuv =

{
0, if i = j

β̃mij , otherwise.

3.3 MIR Inequalities

Many valid inequalities that have found use in practice for mixed-integer opti-
mization problems are based on the mixed-integer rounding (MIR) procedure of
Nemhauser and Wolsey (1988). Wolsey (1998) illustrates the basic mixed-integer
rounding on the following two variable mixed-integer set

Q =
{
(x, y) ∈ R× Z : x + y ≥ b, x ≥ 0

}
,

and shows that the basic mixed-integer rounding inequality

x + ry ≥ r�b�, (5.7)

where r = b − �b�, is valid and facet-defining for Q. Observe that if b is integer
valued, inequality (5.7) reduces to x ≥ 0. Otherwise, the inequality goes through
feasible points (0, �b�) and (r, �b�), cutting off the fractional vertex (0, b). This



148 A. Atamtürk and O. Günlük

basic principle can be applied to more general mixed-integer sets defined by a single
base inequality as follows. Let

P =
{
x ∈ R

n, y ∈ Z
l : ax + cy ≥ b, x, y ≥ 0

}

where a ∈ R
n and c ∈ R

l . Letting rj denote cj − �cj � for j = 1, . . . , l, we can
rewrite the base inequality as

∑

aj<0

ajxj +
∑

aj>0

ajxj +
∑

rj<r

rj yj +
∑

rj≥r
rj yj +

l∑

j=1

�cj �yj ≥ b

and relax it by dropping the first term, which is non-positive, and increasing the
coefficients of the fourth term, which are non-negative, to obtain the valid inequality

( ∑

aj>0

ajxj +
∑

rj<r

rj yj

)
+
(∑

rj≥r
yj +

l∑

j=1

�cj �yj
)
≥ b.

As the first two sums above are non-negative and the last two sums are integer
valued, treating the first two as the nonnegative continuous variable in the set Q and
the second two as the integer variable as in Q, we obtain the MIR inequality

∑

aj>0

ajxj +
∑

rj<r

rj yj + r
(∑

rj≥r
yj +

l∑

j=1

�cj �yj
)
≥ r�b� (5.8)

for P . This MIR inequality is generated from the base inequality ax + cy ≥ b.
Notice that, given a mixed-integer set, any valid inequality for it can be used as a
base inequality to define a relaxation of the original set. Consequently, any implied
inequality leads to an MIR cut. Gomory mixed-integer cuts, for example, can be seen
as MIR cuts generated from base inequalities obtained from the simplex tableau.

4 Valid Inequalities from Arc Sets

In this section we review the strong valid inequalities obtained from single-arc
capacity relaxations of the multicommodity network design problem. For simplicity
of the presentation, we first focus on the single-facility case. We consider both the
splittable-flow arc set:

FS =
{
(x, y) ∈ [0, 1]K × Z :

∑

i∈K
aixi ≤ a0 + y

}



5 Multicommodity Multifacility Network Design 149

and the unsplittable-flow arc set:

FU =
{
(x, y) ∈ {0, 1}K × Z :

∑

i∈K
aixi ≤ a0 + y

}
·

In Sect. 4.3 we consider the multifacility generalizations of these sets.
The set FU arises in unsplittable multicommodity problems where flow between

each source-sink pair needs to be routed on a single path. In these problems, the
disaggregated commodity definition is used and the set K contains all node pairs
with positive demand. In the formulation, a binary flow variable xka is used for each
commodity-arc pair (k, a) that takes on a value of 1 if and only if the commodity is
routed through the arc. Consequently, for each arc of the network this formulation
has a capacity constraint of the form

∑

k∈K
dkxka ≤ c̄a + cya, (5.9)

where dk > 0 is the demand of commodity k ∈ K , c̄a ≥ 0 is the existing capacity,
and c > 0 is the unit capacity to install. One arrives at FU by dividing (5.9) by c.

Similarly, one arrives at FS by redefining the flow variables associated with an arc
and a commodity as the fraction of the total supply of that commodity traveling on
that arc. In this case flow variables take values in [0, 1] and capacity constraint (5.2)
takes the form (5.9). Again, dividing (5.9) by c gives the set FS .

Without loss of generality, we assume that ai > 0 for all i ∈ K , since if ai < 0,
xi can be complemented and if ai = 0, xi can be dropped.

4.1 Splittable-Flow Arc Set

In this section we review the valid inequalities for the splittable flow arc set FS . For
S ⊆ K , by complementing the continuous variables xi, i ∈ S, we can restate the
arc capacity inequality as

∑

i∈S
ai(1− xi)−

∑

i∈K\S
aixi + y ≥ a(S)− a0, (5.10)

where a(S) stands for
∑

i∈S ai . Relaxing the inequality by dropping xi, i ∈ K \ S
and applying the MIR inequality, we obtain the residual capacity inequality

∑

i∈S
ai(1− xi) ≥ r(η − y), (5.11)



150 A. Atamtürk and O. Günlük

where η = �a(S) − a0� and r = a(S) − a0 − �a(S) − a0�. The residual capacity
inequalities together with the inequality

∑
i∈K aixi ≤ a0 + y and variable bounds

are sufficient to describe conv(FS).

Example 1 Consider the splittable arc set

FS =
{

(x, y) ∈ [0, 1]5 × Z : 1

3
x1 + 2

3
x2 + 2

3
x3 ≤ y

}

·

The non-dominated arc residual capacity inequalities for FS with r > 0 are

S r Inequalities
{1} 1/3 x1 ≤ y

{2} 2/3 x2 ≤ y

{3} 2/3 x3 ≤ y

{2, 3} 1/3 2x2 + 2x3 ≤ 2+ y
{1, 2, 3} 2/3 x1 + 2x2 + 2x3 ≤ 1+ 2y

Given a fractional point (x̄, ȳ), a violated residual capacity inequality, if it exists,
can be found by the following simple separation procedure: Let T = {i ∈ K : x̄i >
ȳ − �ȳ�}. If a0 + �ȳ� < a(T ) < a0 + �ȳ� and

∑
i∈T ai(1 − x̄i − �ȳ� + ȳ) +

(�ȳ�− ȳ)(a0+�ȳ�) < 0, then the inequality
∑

i∈T ai(1−xi) ≥ r(η−y) is violated
by (x̄, ȳ). Otherwise, there exists no residual capacity inequality violated by (x̄, ȳ).
Clearly, this procedure can be performed in linear time.

4.2 Unsplittable-Flow Arc Set

In this section we review the valid inequalities for the unsplittable flow arc set FU .
First, consider the related set

FUr =
{
(x, y) ∈ {0, 1}K × Z :

∑

i∈K
rixi ≤ r0 + y

}
,

where ri = ai − �ai�, i ∈ K ∪ {0}. There is a one-to-one relationship between the
facets of conv(FU) and conv(FUr). In particular, inequality

∑
i∈K πixi ≤ π0 + y

defines a facet for conv(FU ) if and only if inequality
∑

i∈K(πi − �ai�)xi ≤ π0 −
�a0� + y defines a facet for conv(FUr ). Therefore, we may assume, without loss of
generality, that 0 < ai < 1 for all i ∈ K and 0 < a0 < 1.



5 Multicommodity Multifacility Network Design 151

4.2.1 c-strong inequalities

For S ⊆ K consider the arc capacity inequality written as (5.10). Relaxing the
inequality by dropping xi, i ∈ K \ S and applying integer rounding, we obtain the
so-called c-strong inequality

∑

i∈S
xi ≤ cS + y, (5.12)

where cS = |S|−�a(S)−a0�. The set S is said to be maximal c-strong if cS\{i} = cS
for all i ∈ S and cS∪{i} = cS +1 for all i ∈ K \S. Inequality (5.12) is facet-defining
for conv(FU) if and only if S is maximal c-strong.

Given a point (x̄, ȳ), there is a c-strong inequality violated by (x̄, ȳ) if and
only if there exists a set S ⊆ K such that

∑
i∈S x̄i − cS > ȳ. Then, a c-strong

inequality is violated if and only if maxS⊆K
{∑

i∈S x̄i − �a0 +∑i∈S(1 − ai)�
} =

max
{∑

i∈K x̄izi − w : ∑i∈K(1 − ai)zi + a0 + 1/λ ≤ w, z ∈ {0, 1}K, w ∈
Z
} + 1 > ȳ, where λ is the least common multiple of the denominators of the

rational numbers (1− ai) and a0. The last maximization problem with the constant
term −a0− 1/λ is N P-hard. Nevertheless, the separation problem has an optimal
solution (z∗, w∗) such that z∗i = 1 if x̄i = 1 and z∗i = 0 if x̄i = 0. Therefore, we
can fix such variables to their optimal values and solve the separation problem over
i ∈ K such that 0 < x̄i < 1, which in practice can be done very efficiently even by
enumeration, as most variables take on values either 0 or 1 in the LP relaxations of
network design problems.

4.2.2 k-split c-strong Inequalities

The c-strong inequalities can be generalized by considering a relaxation of the
capacity constraints, where the integer capacity variables are allowed to take values
that are integer multiples of 1/k for a positive integer k. Thus the k-split relaxation
takes the form

Fk
U =

{
(x, y) ∈ {0, 1}K × Z :

∑

i∈K
aixi ≤ a0 + z/k

}
·

Letting ckS =
∑

i∈S�kai�− �ka(S)− ka0�, we define the k-split c-strong inequality
as

∑

i∈S
�kai�xi +

∑

i∈K\S
�kai�xi ≤ ckS + ky. (5.13)

The k-split c-strong inequality (5.13) is facet-defining for conv(FU) if (1) S is
maximal c-strong in the k-split relaxation, (2) fS > (k − 1)/k and a0 ≥ 0, (3) ai >
fS for all i ∈ S, ai < 1−fS for all i ∈ K \S, where fS = a(S)−a0−�a(S)−a0�.



152 A. Atamtürk and O. Günlük

Example 2 Consider the unsplittable arc set

FU =
{

(x, y) ∈ {0, 1}5 × Z : 1

3
x1 + 1

3
x2 + 1

3
x3 + 1

2
x4 + 2

3
x5 ≤ y

}

·

The maximal c-strong inequalities for FU are:

cS = 0 : x1 ≤ y, x2 ≤ y, x3 ≤ y, x4 ≤ y

cS = 1 : x1 + x2 + x4 ≤ 1+ y, x1 + x2 + x5 ≤ 1+ y, x2 + x3 + x4 ≤ 1+ y,
x2 + x3 + x5 ≤ 1+ y, x1 + x3 + x4 ≤ 1+ y, x1 + x3 + x5 ≤ 1+ y

cS = 2 : x1 + x2 + x3 + x4 + x5 ≤ 2+ y

As the inequalities are maximal, they are facet-defining for conv(FU). The 2-split
c-strong inequality x2 + x3 + x4 + x5 ≤ 2y and the 3-split c-strong inequality
x1 + x2 + x3 + 2x4 + 2x5 ≤ 3y are also facet-defining for conv(FU).

4.2.3 Lifted Knapsack Cover Inequalities

Facets different from c-strong and k-split c-strong inequalities can be obtained by
lifting cover inequalities from knapsack restrictions of FU . Let K0 and K1 be two
disjoint subsets of K and ν be a nonnegative integer. Consider the 0-1 knapsack
set FU(ν,K0,K1) obtained by restricting the capacity variable y to ν, all binary
variables indexed with K0 to 0 and all binary variables indexed with K1 to 1, i.e.,
FU(ν,K0,K1) ≡ {(x, y) ∈ FU : y = ν, xi = 0 for all i ∈ K0 and xi = 1 for all i ∈
K1}. For this knapsack restriction C = K \ (K0 ∪ K1) is called a cover if r =
a(C)+ a(K1)− a0− ν > 0. C is said to be a minimal cover if ai ≥ r for all i ∈ C.

The cover inequality
∑

i∈C xi ≤ |C|−1 is facet-defining for conv(FU(ν,K0,K1))

if and only if C is a minimal cover. One practical way of lifting inequalities is
sequential lifting, in which restricted variables are introduced to an inequality one
at a time in some sequence. A lifted cover inequality

∑

i∈C
xi +

∑

i∈K0

αixi +
∑

i∈K1

αi(1− xi)+ α(ν − y) ≤ |C| − 1 (5.14)

can be constructed in O(|K|3) if the capacity variable y is lifted first and such
inequalities subsume all c-strong inequalities.

Example 3 For FU given in Example 2 we list below the lifted cover inequalities of
FU that are not c-strong inequalities.



5 Multicommodity Multifacility Network Design 153

ν (C, K0, K1) Inequalities
1 ({2, 3, 4}, {1, 5},∅) x2 + x3 + x4 + x5 ≤ 2y
1 ({1, 4, 5}, {2, 3},∅) x1 + x2 + x4 + x5 ≤ 2y and x1 + x3 + x4 + x5 ≤ 2y
2 ({1, 2, 3, 4},∅, {5}) x1 + x2 + x3 + x4 + 2x5 ≤ 2y + 1
2 ({1, 2, 3, 5},∅, {4}) x1 + x2 + x3 + 2x4 + x5 ≤ 2y + 1

Computational results suggest that c-strong inequalities are quite effective in
solving unsplittable multicommodity network design problems. Moreover, while
the k-split c-strong and the lifted knapsack cover inequalities provide additional
strengthening of the relaxations, the marginal impact on top of the basic c-strong
inequalities is limited. The latter result may be due to the lack of efficient separation
procedures for these inequalities.

4.3 Multifacility Arc Set

In this section we consider the multifacility extension of the arc sets discussed in
the previous sections. Dash et al. (2016) study a continuous knapsack set with two
integer capacity variables:

FS2 =
{

(x, y) ∈ [0, 1]K × Z
2+ :

∑

i∈K
aixi ≤ a0 + c1y1 + c2y2

}

·

They show that all non-trivial facet-defining inequalities of conv(FS2) are of the
form

∑

i∈S
aixi + γ1y1 + γ2y2 ≥ β,

where S ⊆ K and w + γ1y1 + γ2y2 ≥ β is facet-defining for the set

Q(a, b) = conv
{
(w, y) ∈ R× Z

2+ : w + c1y1 + c2y2 ≥ b, a ≥ w
}
.

It turns out that all facets of Q(a, b) can be enumerated in polynomial time.
Therefore, for each S ⊆ K non-trivial facet-defining inequalities for FSM can be
obtained from relaxations of the form Q(a, b).

For the general case with many facility types

FSM =
{

(x, y) ∈ [0, 1]K × Z
M+ :

∑

i∈K
aixi ≤ a0 +

∑

m∈M
cmym

}

a similar approach of complementing the flow variables for a subset S ⊆ K , scaling
the base inequality by cs, s ∈ M , and applying mixed-integer rounding gives for



154 A. Atamtürk and O. Günlük

FSM the multifacility residual capacity inequalities

∑

m∈M
φs(cm)ym +

∑

i∈S
ai(1− xi) ≥ rsηs,

where rs = a(S)− a0 − �(a(S)− a0)/cs�cs , ηs = �(a(S)− a0)/cs�, and for k ∈ Z

φs(c) =
{
c − k(cs − rs) if kcs ≤ c < kcs + rs,
(k + 1)rs if kcs + rs ≤ c < (k + 1)cs .

5 Valid Inequalities from Cut Sets

In this section we review valid inequalities for the network design problem based
on relaxations formed over cuts of the network. We first start with the single-facility
case and then generalize the inequalities for multiple facilities.

5.1 Single-Facility Case

Consider a nonempty two-partition (U, V ) of the vertices of the network. Let bk

denote the total supply of commodity k inU for V . LetA+ be the set of arcs directed
from U to V , A− be the set of arcs directed from V to U , and A = A+ ∪ A−, as
shown in Fig. 5.2. As before, xka denotes the flow of commodity k on arc a ∈ A for
k ∈ K . The constraints of the multicommodity network design problem across the
cut are

xk(A+)− xk(A−) = bk, k ∈ K, (5.15)
∑

k∈K
xka ≤ c̄a + cya, a ∈ A. (5.16)

Then the corresponding multicommodity cut-set polyhedron is defined as

FMS = conv
{
(x, y) ∈ R

A×K+ × Z
A+ : (x, y) satisfies (5.15) and (5.16)

}
·

We refer to the single-commodity case of FMS as FSS .
In the following sections we describe valid inequalities for FMS by considering

single-commodity relaxations of FMS obtained by aggregating flow variables and
balance equations (5.15) over subsets of K . For Q ⊆ K let xQ(S) = ∑k∈Q xk(S)

and bQ =∑k∈Q bk .



5 Multicommodity Multifacility Network Design 155

S−

A+

A−

S+

Fig. 5.2 Cut-set relaxation of the network design problem

Cut-Set Inequalities Consider the following relaxation of FMS on the integer
capacity variables:

c̄(A+)+cy(A+) ≥ xK(A
+) ≥ bK.

Applying the integer rounding procedure reviewed in Sect. 3.3 to this relaxation,
one obtains the so-called cut-set inequality

y(A+) ≥ �(bK−c̄(A+))/c� (5.17)

for FMS , which is unique per cut-set relaxation. Finding the best cut-set relaxation
is not easy however. For the single-source single-sink case, the problem of finding
the best cut set can be posed as an s − t max-cut problem.

Flow-Cut-Set Inequalities The basic cut-set inequalities (5.17) can be generalized
by incorporating the flow variables in addition to the capacity variables (see
Fig. 5.2). For S+ ⊆ A+, S− ⊆ A− and Q ⊆ K consider the following relaxation
of FMS :

c̄(S+)+cy(S+)+ xQ(A+ \ S+)− xQ(S−) ≥ bQ,

0 ≤
∑

k∈Q
xka ≤ c̄a+cya, ∀a ∈ A,



156 A. Atamtürk and O. Günlük

which is written equivalently as

c
[
y(S+)− y(S−)]+ xQ(A+ \ S+)+

[
c̄(S−)+ cy(S−)− xQ(S−)

] ≥ b′Q,

0 ≤
∑

k∈Q
xka ≤ c̄a+cya, ∀a ∈ A.

where b′Q = bQ − c̄(S+)+ c̄(S−) . Letting rQ = b′Q − �b′Q/c�c and ηQ = �b′Q/c�
and observing that xQ(A+ \S+) ≥ 0, c̄(S−)+cy(S−)−xQ(S−) ≥ 0, we can apply
the MIR procedure reviewed in Sect. 3.3 to this relaxation to arrive at the flow-cut
set inequalities

rQy(S
+)+ xQ(A+ \ S+)+ (c − rQ)y(S−)− xQ(S−) ≥ rQηQ. (5.18)

The flow-cut-set inequalities (5.18) along with the balance, bound, and capacity
constraints are sufficient to describe the single-commodity case FSS .

For a givenQ ⊆ K , observe that flow-cut-set inequalities (5.18) is an exponential
class. However, given a solution (x̄, ȳ), one finds a subset S+ with the smallest left-
hand-side value as follows: if rQȳa <

∑
k∈Q x̄ka for a ∈ A+, then we include a in

S+; if (c − r)ȳa <∑
k∈Q x̄ka for a ∈ A−, then we include a ∈ S−.

For a fixed cut of the network, the complexity of separating multicommodity
flow cut-set inequalities (5.18) is an open question. Optimization of a linear function
over FMS is N P-hard as the facility location problem is a special case of it. For
a multicommodity single-facility network design problem of a single arc, cut-set
inequalities (5.21) reduce to the residual capacity inequalities (5.11), for which an
exact linear-time separation method is known. From here it follows that, for a single-
facility problem, if S+ and S− are fixed, then one can find a subset of commodities
Q ⊆ K that gives a most violated inequality in linear time. Alternatively, if Q
is fixed, since the model reduces to a single-commodity, one can find the subsets
S+ ⊆ A+ and S− ⊆ A− that give a most violated inequality in linear time as well.
However, the complexity of determining Q, S+ and S− simultaneously is an open
question.

Example 4 Consider the following single-commodity optimization problem with
two outflow arcs and one inflow arc:

max x1+x2+x3−y1−y2−y3 s.t. x1+x2−x3 = 0.5, 0 ≤ xi ≤ yi ∈ Z, i = 1, 2, 3.

One of its fractional solutions is x1 = y1 = 0.5 and all other variables zero. Adding
the cut-set inequality

y1 + y2 ≥ 1

cuts off this solution, but leads to another fractional solution: x1 = y1 = 1, x3 =
y3 = 0.5. Adding the flow-cut-set inequality



5 Multicommodity Multifacility Network Design 157

0.5x1 + y2 + 0.5x3 − y3 ≥ 0.5

cuts it off, but gives the fractional solution: x2 = y2 = 1, x3 = y3 = 0.5. Adding
the flow-cut-set inequality

y1 + 0.5x2 + 0.5x3 − y3 ≥ 0.5

cuts it off, but this time gives the fractional solution: x1 = y1 = x2 = y2 = x3 =
y3 = 0.5. Finally, adding the flow-cut-set inequality

0.5x1 + 0.5x2 + 0.5x3 − y3 ≥ 0.5

leads to an optimal integer solution x1 = 0.5, y1 = 1 and all other variables zero.

5.2 Multifacility Case

Next we consider network design models where one is allowed to install facilities
of multiple types with different capacities on the arcs of the network. Let cm be the
capacity of facility of type m, m ∈ M . No assumption is made on either the number
of facility types or the structure of capacities (other than cm > 0 and rational).

The constraints of the multicommodity multifacility problem across cut A are
written as

xk(A+)− xk(A−) = bk, k ∈ K, (5.19)
∑

k∈K
xka ≤ c̄a+

∑

m∈M
cmym,a, a ∈ A. (5.20)

So the corresponding multicommodity multifacility cut-set polyhedron is

FMM = conv
{
(x, y) ∈ R

A×K+ × Z
A×M+ : (x, y) satisfies (5.19) and (5.20)

}
.

For Q ⊆ K and s ∈ M let rs,Q = b′Q − �b′Q/cs�cs , ηs,Q = �b′Q/cs�. Then, the
following multicommodity multifacility cut-set inequality is valid for FMM :

∑

m∈M
φ+s,Q(cm)ym(S

+)+xQ(A+\ S+)+
∑

m∈M
φ−s,Q(cm)ym(S

−)−xQ(S−)≥ rs,Qηs,Q,
(5.21)

where, for k ∈ Z,

φ+s,Q(c) =
{
c − k(cs − rs,Q) if kcs ≤ c < kcs + rs,Q,
(k + 1)rs,Q if kcs + rs,Q ≤ c < (k + 1)cs,



158 A. Atamtürk and O. Günlük

and

φ−s,Q(c) =
{
c − krs,Q if kcs ≤ c < (k + 1)cs − rs,Q,
k(cs − rs,Q) if kcs − rs,Q ≤ c < kcs.

The above φ+s,Q and φ−s,Q are subadditive MIR functions written in closed form. The
multicommodity multifacility cut-set inequality (5.21) is facet-defining for FMM if
(S+, A+ \ S+) and (S−, A− \ S−) are nonempty partitions, rs,Q > 0, and bk > 0
for all k ∈ Q.

For the single-commodity case FSM , inequalities (5.21) reduce to

∑

m∈M
φ+s (cm)ym(S+)+ x(A+ \ S+)+

∑

m∈M
φ−s (cm)ym(S−)− x(S−) ≥ rsηs.

(5.22)

In this case, given a cut A for each facility s ∈ M , the multifacility cut-set
inequalities (5.22) is an exponential class by the choice of the subsets of arcs S+
and S−. However, finding a subset that gives a most violated inequality for a point
(x̄, ȳ) is straightforward. If

∑
m∈M φ+s (cm)ȳm,a < x̄a for a ∈ A+, then we include a

in S+, and if
∑

m∈M φ−s (cm)ȳm,a < x̄a for a ∈ A−, then we include a in S−. Since
φ+s (c) or φ−s (c) can be calculated in constant time, for a fixed cut A, a violated
multifacility cut-set inequality is found in O(|A||M|) if there exists any.

Example 5 We specialize inequality (5.21) for the network design problem with
two types of facilities. Let the vectors y1 and y2 denote the facilities with capacities
c1 = 1 and c2 = λ > 1 with λ ∈ Z, respectively. Let Q be a nonempty subset
of the commodities. Then by letting s = 1, we have r1,Q = bQ − �bQ� and
inequality (5.21) becomes

r1,Qy1(S
+)+ (r1,Q�λ�+min{λ−�λ�, r1,Q})y2(S

+)+xQ(A+ \S+)+ (1− r1,Q)

y1(S
−)+((1−r1,Q)�λ�+min{λ−�λ�, 1−r1,Q})y2(S

−)−xQ(S−) ≥ r1,Q�bQ�,
which, when λ is integer, reduces to

r1,Qy1(S
+)+ λr1,Qy2(S

+)+ xQ(A+ \ S+)+
(1− r1,Q)y1(S

−)+ λ(1− r1,Q)y2(S
−)− xQ(S−) ≥ r1,Q�bQ�. (5.23)

Notice that inequality (5.23) is not valid for FMM unless λ ∈ Z. Also by letting
s = 2, we have r2,Q = bQ − �bQ/λ�λ. So the corresponding multicommodity
two-facility cut-set inequality is

min{1, r2,Q}y1(S
+)+ r2,Qy2(S

+)+ xQ(A+ \ S+)+
min{1, λ− r2,Q}y1(S

−)+ (λ− r2,Q)y2(S
−)− xQ(S−) ≥ r2,Q�bQ/λ�.



5 Multicommodity Multifacility Network Design 159

It should be clear that multifacility flow-cut-set inequalities are also valid for
a single-facility model with varying capacities on the arcs of the network. The
inequalities from cut-set relaxations have been shown to be very effective in solving
network design problems in computational studies.

6 Partition Inequalities

Partition inequalities are arguably the most effective cutting planes for the network
design problem. These inequalities have non-zero coefficients for only the integer
capacity variables that cross a multicut obtained from a partition of the nodes of the
network. They generalize the cut-set inequality (5.17) described in Sect. 5.

For ease of exposition, first consider a two-partition of the node setN = N1∪N2.
As discussed in Sect. 3.2 shrinking node sets N1 and N2 leads to a network with two
nodes and two edges (assuming there is at least one arc from a node in N1 to a node
in N2, and vice versa). Then, the inequality

∑

m∈M
cmym12 ≥

∑

k∈K

∑

v∈N2

wk
v −

∑

u∈N1

∑

v∈N2

c̄uv = b

must be satisfied by all feasible solutions of the two-node problem. Following the
argument in Sect. 3.2, inequality

∑

m∈M
cm

( ∑

u∈N1

∑

v∈N2

ymuv

)

≥ b (5.24)

is valid for the solutions to the (LP relaxation of the) original problem. Notice that
inequality (5.24) is a metric inequality (5.4) generated by the vector v ∈ {0, 1}A,
where vij = 1 if and only if i ∈ N1 and j ∈ N2.

As we assume that all cm are integral, which is the case in most applications, the
inequality (5.24) leads to the integer knapsack cover set

X =
{

z ∈ Z
M :

∑

m∈M
cmzm ≥ b, z ≥ 0

}

,

where the variable zm stands for the sum
∑

u∈N1

∑
v∈N2

ymuv . Consequently, any
valid inequality

∑
m∈M αmzm ≥ β for X yields a valid inequality for P ND after

replacing each variable zm with the corresponding sum of the original variables.
The polyhedral structure of the set X when cm+1 is an integer multiple of cm for

all m = 1, . . . , |M| − 1 has been studied by Pochet and Wolsey (1995) who derive
what they call “partition” inequalities and show that these inequalities together
with the nonnegativity constraints describe conv(X). They also derive conditions



160 A. Atamtürk and O. Günlük

under which partition inequalities are valid in the general case when the divisibility
condition does not hold.

The partition inequalities described in Pochet and Wolsey (1995) are obtained by
applying the MIR procedure iteratively. More precisely, the first step is to choose
a subset {j1, j2, . . . , jr} of the index set M , where ji < ji+1, and therefore, cji <
cji+1 for all i = 1, . . . , r−1. The inequality

∑
m∈M cmzm ≥ b is then divided by cjr

and the MIR cut based on this inequality is written. The resulting MIR inequality
is then divided by cjr−1 and the MIR procedure is applied again. This process is
repeated with all cji for i = 1, . . . , r to obtain the final inequality. Note that the
sequential application of the MIR procedure yields valid inequalities even when the
divisibility condition does not hold. However, in this case, they are not sufficient to
define conv(X).

Now consider a three-partition of the node set N = N1∪N2∪N3. Following the
discussion on two-partitions, consider the single capacity network design problem
with G̃ = (Ñ, Ã) where Ñ = {1, 2, 3} and Ã = {a12, a13, a21, a23, a31, a32}.
Furthermore, let c̄a and t̄a respectively denote the existing capacity and traffic
demands for a ∈ Ã. Clearly, any valid inequality for the simplified problem on
G̃ can be transformed into a valid inequality for the original problem defined on G.

For the three-node problem, there are three possible two-partitions and for each
partition, one can write two possible cut-set inequalities by treating one of the
two sets as N1 and the other as N2. Consequently, one can write six different
two-partition inequalities where each capacity variable appears in exactly two
inequalities. Summing all six inequalities leads to

∑

a∈Ã

∑

m∈M
2cmyma ≥

∑

i∈Ñ
�si� +

∑

i∈Ñ
�ti�, (5.25)

where si denotes the difference between the traffic leaving node i and the existing
capacity on the outgoing arcs. Similarly ti is the difference between the traffic
entering node i and the existing capacity on the incoming arcs. If the right-hand-side
of inequality (5.25) is an odd number, dividing the inequality by two and rounding
up the right-hand-side yields the following inequality

∑

m∈M
cm
∑

a∈Ã
yma ≥

⌈∑
i∈Ñ�si� +

∑
i∈Ñ�ti�)

2

⌉

. (5.26)

Next we will generate a similar inequality based on metric inequalities. Let a, b ∈
Ñ be two distinct nodes and define vab ∈ {0, 1}Ã to be the vector with components
vab = vac = vbc = 1 and vba = vca = vcb = 0. Now consider the metric
inequality (5.4) generated by vab:

∑

m∈M
cm(ymab + ymac + ymbc) ≥ t̄ab + t̄ac + t̄bb − c̄ab − c̄ac − c̄bc.



5 Multicommodity Multifacility Network Design 161

Once again, if fractional, the right-hand-side of this inequality can be rounded up.
In addition, more valid inequalities can be generated using the MIR procedure
iteratively.

Furthermore, let c ∈ Ñ be the node different from a and b and note that adding
up the metric inequalities generated by vab and vcb, one obtains

∑

m∈M
cm
∑

a∈Ã
yma ≥ �dab� + �dcb� (5.27)

where dij denotes the right-hand-side of the metric inequality generated by vij

for (i, j) ∈ A. Moreover, adding up the metric inequalities generated by vba and
vca gives a similar inequality with right-hand-side of �dba� + �dca�. Similarly,
vac and vbc yields an inequality with right-hand-side of �dac� + �dbc�. Adding up
two of these inequalities with the larger right-hand-side and dividing the resulting
inequality by two leads to a valid inequality of the form (5.26). More precisely, if
both �dba�+�dca� and �dab�+�dcb� are larger than �dac�+�dbc�, then the resulting
inequality is

∑

m∈M
cm
∑

a∈Ã
yma ≥

⌈�dba� + �dca� + �dab� + �dcb�
2

⌉

. (5.28)

In addition to inequalities (5.26) and (5.28), it is possible to write similar
total capacity inequalities by combining some cut-set inequalities with metric
inequalities in such a way that the left-hand-side of the inequality has all the capacity
variables with a coefficient of two. As all these inequalities have the same left-hand-
side, only the one with the largest right-hand-side should be used. For example,
if t̄ij = 1/2 and c̄ij = 0 for (i, j) ∈ Ã, then the right-hand-side of (5.26) is 3,
whereas the right-hand-side of (5.28) is 4 and therefore inequality (5.28) is stronger
than (5.26). However, if t̄ij = 1/3 and c̄ij = 0 for (i, j) ∈ Ã, then the right-hand-
side of (5.26) is still 3, whereas the right-hand-side of (5.28) becomes 2.

Furthermore, as total capacity inequalities have the same form as inequal-
ity (5.24), one can define the corresponding integer knapsack cover set from
the stronger one and derive further valid inequalities using the MIR procedure
iteratively.

Hamid and Agarwal (2015) study the undirected variant of the two-facility
network design problem, where the total flow on an arc plus the flow on reverse
arc is limited by the capacity of the undirected edge associated with the two arcs.
In this case, the authors computationally enumerate the complete list of facets that
can be obtained from a given three-partition. Also see Agarwal (2006) for a study of
four-partition facets for the undirected variant of the single-facility network design
problem. Their computational study suggests that using larger partitions of the
node set improves the relaxation but with diminishing returns. More precisely, they
observe that two, three and four-partition cuts reduce the optimality gap of the LP
relaxation to 12.5%, 6.3%, and 2.6%, respectively.



162 A. Atamtürk and O. Günlük

7 Bibliographical Notes

7.1 Introduction

Capacity expansion problems have been studied in the context of telecommunication
(Magnanti and Wong 1984; Minoux 1989; Balakrishnan et al. 1991, 1995) and train
scheduling with multiple locomotive options (Florian et al. 1976). The unsplittable
flow version of the network design problem appears in telecommunication networks
using multiprotocol label switching (MPLS) technique, production and distribution
with single sourcing, express package delivery, and train scheduling (e.g., Gavish
and Altinkemer 1990; Barnhart et al. 2000; Davarnia et al. 2019). Özbaygin
et al. (2018) utilize the splittable flow model to solve the split delivery vehicle
routing problem. Atamtürk and Günlük (2018) study the connection between valid
inequalities for directed, bidirected and undirected network design problems.

7.2 Problem Formulation and Preliminaries

Günlük (2007) describes how to obtain the smallest number of commodities
necessary to formulate a given multicommodity flow problem. Metric inequalities
and their extensions have been used for various network design problems by several
authors, including Dahl and Stoer (1998), Mirchandani (2000), Labbé and Yaman
(2004), Avella et al. (2007), Costa et al. (2009), Bienstock et al. (1998). Mattia
(2012) presents computations that illustrate the value of utilizing metric inequalities
through a bi-level programming separation procedure. Hamid and Agarwal (2015)
show that if inequality (5.5) is facet-defining for the network design problem on
G̃ with c̃ and w̃, then inequality (5.6) is facet-defining for P ND provided that
α̃ = 0, γ > 0, and node sets N1, . . . , Np induce connected components of G. In
addition, Raack et al. (2011) show that the same result holds without the assumption
α̃ = 0 when p = 2 and |M| = 1.

7.3 Valid Inequalities from Arc Sets

The arc sets and their generalizations are studied by Magnanti et al. (1993),
Atamtürk and Rajan (2002), van Hoesel et al. (2002), Brockmüller et al. (2004),
Atamtürk and Günlük (2007), Yaman (2013). Magnanti et al. (1993) introduced
the residual capacity inequality. Atamtürk and Rajan (2002) gave the polynomial-
time separation procedure for residual capacity inequalities. Brockmüller et al.
(2004) introduced the c-strong inequality (5.12) for FU . The k-split c-strong
inequalities (Sect. 4.2.2) are given by Atamtürk and Rajan (2002). Agra and
Constantino (2006) show that all facets of Q(a, b) can be enumerated in polynomial
time.



5 Multicommodity Multifacility Network Design 163

7.4 Valid Inequalities from Cut Sets

A recent review on cut-based inequalities for network design can be found in
Raack et al. (2011). Magnanti and Mirchandani (1993) introduce the integer cut-
set inequalities for FSS . For the single-source single-sink case, given a solution,
Barahona (1996) formulated the problem of finding the best cut set as an s − t

max-cut problem. Bienstock and Günlük (1996), Chopra et al. (1998) gave the
mixed-integer flow-cut-set generalization (5.18) of the basic cut-set inequalities.
Atamtürk (2002) showed that the flow-cut-set inequalities (5.18) along with the
balance, bound, and capacity constraints are sufficient to describe the single-
commodity case FSS . Magnanti and Mirchandani (1993), Magnanti et al. (1995),
Pochet and Wolsey (1995), Bienstock and Günlük (1996), Günlük (1999), Wolsey
and Yaman (2016) give valid inequalities for the network design problem with
multiple capacities when capacities are divisible. Atamtürk et al. (2001) consider
a binary capacity version with no assumption on divisibility. multicommodity
multifacility network design problems are considered in Bienstock et al. (1998),
Atamtürk (2002).

7.5 Partition Inequalities

The polyhedral structure of the set X without the divisibility assumption on the
capacities has been studied by Atamtürk (2003) and Yaman (2007), also see the ref-
erences therein. Atamtürk et al. (2016) gave three-partition flow cover inequalities
for the fixed-charge network design problem. The total capacity inequalities were
proposed by Bienstock et al. (1998). Hamid and Agarwal (2015) has enumerated
the complete list of facets that can be obtained from a given three-partition for
the undirected variant of the two-facility network design problem. Agarwal (2006)
has studied the four-partition facets and computationally showed that using larger
partitions of the node set improves the LP relaxation but with diminishing returns.

8 Conclusions and Perspectives

In this chapter, we reviewed strong valid inequalities for the multicommodity,
multifacility network design problem. Metric inequalities for projecting out contin-
uous flow variables, mixed-integer rounding from appropriate base relaxations, and
shrinking the network to a small k-node graph have been the main tools for deriving
the inequalities introduced in the literature. Going forward, we expect more recent
techniques such as multistep mixed-integer rounding (Dash and Günlük 2006),
mingling (Atamtürk and Günlük 2010), and multistep mingling (Atamtürk and
Kianfar 2012) that generalize and extend mixed-integer rounding to be useful for



164 A. Atamtürk and O. Günlük

deriving new inequalities for this class of network design problems with continuous
as well as general integer variables.

We finish this section with comments on computational aspects and challenges
in implementing branch-and-cut algorithms. One of the prerequisites of applying
the valid inequalities described in this chapter as cutting planes is to automatically
recognize the appropriate network structure and identify flow-balance constraints
and the relevant capacity constraints as part of a hidden multicommodity, mul-
tifacility network structure. Achterberg and Raack (2010) describe algorithms to
automatically detect such network structures and generate inequalities from cut-set
relaxations. They utilize c-MIR inequalities (Marchand and Wolsey 2001), which
are obtained by first complementing bounded variables and then applying the MIR
procedure. Given a fractional solution, it is nontrivial to decide which aggregations
to apply to flow variables, which variables to complement. Nevertheless, the
automatic detection and separation procedure in this paper results in 18% time
reduction for a large set of publicly available test problems.

Acknowledgments A. Atamtürk is supported, in part, by grant FA9550-10-1-0168 from the Office
of the Assistant Secretary of Defense for Research and Engineering. O. Günlük was hosted by
the Numerical Analysis Group at Oxford Mathematical Institute and by the Alan Turing Institute
during this project and would like to thank the members of both groups for their hospitality.

References

Achterberg, T., & Raack, C. (2010). The MCF-separator: Detecting and exploiting multi-
commodity flow structures in MIPs. Mathematical Programming Computation, 2, 125–165.

Agarwal, Y. K. (2006). K-partition-based facets of the network design problem. Networks, 47,
123–139.

Agra, A., & Constantino, M. (2006). Description of 2-integer continuous knapsack polyhedra.
Discrete Optimization, 3, 95–110.

Atamtürk, A. (2002). On capacitated network design cut–set polyhedra. Mathematical Program-
ming, 92, 425–437.

Atamtürk, A. (2003). On the facets of mixed–integer knapsack polyhedron. Mathematical Pro-
gramming, 98, 145–175.

Atamtürk, A., & Günlük, O. (2007). Network design arc set with variable upper bounds. Networks,
50, 17–28.

Atamtürk, A., & Günlük, O. (2010). Mingling: Mixed-integer rounding with bounds. Mathematical
Programming, 123, 315–338.

Atamtürk, A., & Günlük, O. (2018). A note on capacity models for network design. Operations
Research Letters, 46, 414–417.

Atamtürk, A., & Kianfar, K. (2012). n-step mingling inequalities: New facets for the mixed-integer
knapsack set. Mathematical Programming, 132, 79–98.

Atamtürk, A., & Rajan, D. (2002). On splittable and unsplittable flow capacitated network design
arc-set polyhedra. Mathematical Programming, 92, 315–333.

Atamtürk, A., Nemhauser, G. L., & Savelsbergh, M. W. P. (2001). Valid inequalities for problems
with additive variable upper bounds. Mathematical Programming, 91, 145–162.

Atamtürk, A., Gómez, A., & Küçükyavuz, S. (2016). Three-partition flow cover inequalities for
constant capacity fixed-charge network flow problems. Networks, 67, 299–315.



5 Multicommodity Multifacility Network Design 165

Avella, P., Mattia, S., & Sassano, A. (2007). Metric inequalities and the network loading problem.
Discrete Optimization, 4, 103–114.

Balakrishnan, A., Magnanti, T. L., Shulman, A., & Wong, R. T. (1991). Models for planning capac-
ity expansion in local access telecommunication networks. Annals of Operations Research, 33,
239–284.

Balakrishnan, A., Magnanti, T. L., & Wong, R. T. (1995). A decomposition algorithm for local
access telecommunication network expansion planning. Operations Research, 43, 58–76.

Barahona, F. (1996). Network design using cut inequalities. SIAM Journal on Optimization, 6,
823–837.

Barnhart, C., Hane, C. A., & Vance, P. H. (2000). Using branch-and-price-and-cut to solve origin-
destination integer multicommodity flow problems. Operations Research, 48, 318–326.

Bienstock, D., & Günlük, O. (1996). Capacitated network design - Polyhedral structure and
computation. INFORMS Journal on Computing, 8, 243–259.

Bienstock, D., Chopra, S., Günlük, O., & Tsai, C. Y. (1998). Minimum cost capacity installation
for multicommodity networks. Mathematical Programming, 81, 177–199.

Brockmüller, B., Günlük, O., & Wolsey, L. A. (2004). Designing private line networks – Polyhedral
analysis and computation. Transactions on Operational Research, 16, 7–24.

Chopra, S., Gilboa, I., & Sastry, S. T. (1998). Source sink flows with capacity installation in
batches. Discrete Applied Mathematics, 85, 165–192.

Costa, A. M., Cordeau, J. F., & Gendron, B. (2009). Benders, metric and cutset inequalities for
multicommodity capacitated network design. Computational Optimization and Applications,
42, 371–392.

Dahl, G., & Stoer, M. (1998). A cutting plane algorithm for multicommodity survivable network
design problems. INFORMS Journal on Computing, 10, 1–11.

Dash, S., & Günlük, O. (2006). Valid inequalities based on simple mixed-integer sets. Mathemati-
cal Programming, 105, 29–53.

Dash, S., Günlük, O., & Wolsey, L. A. (2016). The continuous knapsack set. Mathematical
Programming, 155, 471–496.

Davarnia, D., Richard, J. P. P., Içyüz, Ay. E., & Taslimi, B. (2019). Network models with
unsplittable node flows with application to unit train scheduling. Operations Research, 67,
1053–1068.

Florian, M., Bushell, G., Ferland, J., Guérin, G., & Nastansky, L. (1976). The engine scheduling
problems in a railway network. INFOR: Information Systems and Operational Research 14,
121–138.

Gavish, B., & Altinkemer, K. (1990). Backbone network design tools with economic tradeoffs.
ORSA Journal on Computing, 2, 58–76.

Günlük, O. (1999). A branch-and-cut algorithm for capacitated network design problems. Mathe-
matical Programming, 86, 17–39.

Günlük, O. (2007). A new min-cut max-flow ratio for multicommodity flows. SIAM Journal on
Discrete Mathematics, 21, 1–15.

Hamid, F., & Agarwal, Y. K. (2015). Solving the two-facility network design problem with 3-
partition facets. Networks, 66, 11–32.

Iri, M. (1971). On an extension of the max-flow min-cut theorem to multicommodity flows. Journal
of the Operations Research Society of Japan, 13, 129–135.

Labbé, M., & Yaman, H. (2004). Projecting the flow variables for hub location problems. Networks,
44, 84–93.

Magnanti, T. L., & Mirchandani, P. (1993). Shortest paths, single origin-destination network
design, and associated polyhedra. Networks, 23, 103–121.

Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning: Models and
algorithms. Transportation Science, 18, 1–55.

Magnanti, T. L., Mirchandani, P., & Vachani, R. (1993). The convex hull of two core capacitated
network design problems. Mathematical Programming, 60, 233–250.

Magnanti, T. L., Mirchandani, P., & Vachani, R. (1995). Modeling and solving the two–facility
capacitated network loading problem. Operations Research, 43, 142–157.



166 A. Atamtürk and O. Günlük

Marchand, H., & Wolsey, L. A. (2001). Aggregation and mixed integer rounding to solve MIPs.
Operations Research, 49, 363–371.

Mattia, S. (2012). Separating tight metric inequalities by bilevel programming. Operations
Research Letters, 40, 568–572.

Minoux, M. (1989). Network synthesis and optimum network design problems: Models, solution
methods and applications. Networks, 19, 313–360.

Mirchandani, P. (2000). Projections of the capacitated network loading problem. European Journal
of Operational Research, 122, 534–560.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York:
Wiley.

Onaga, K., & Kakusho, O. (1971). On feasibility conditions of multi-commodity flows in networks.
Transactions on Circuit Theory, 18, 425–429.

Özbaygin, G., Karasan, O., & Yaman, H. (2018). New exact solution approaches for the split
delivery vehicle routing problem. EURO Journal on Computational Optimization, 6, 85–115.

Pochet, Y., & Wolsey, L. A. (1995). Integer knapsack and flow covers with divisible coefficients:
Polyhedra, optimization, and separation. Discrete Applied Mathematics, 59, 57–74.

Raack, C., Koster, A. M., Orlowski, S., & Wessäly, R. (2011). On cut-based inequalities for
capacitated network design polyhedra. Networks, 57, 141–156.

van Hoesel, S. P. M., Koster, A. M. C. A., van de Leensel, R. L. M. J., & Savelsbergh, M. W.
P. (2002). Polyhedral results for the edge capacity polytope. Mathematical Programming, 92,
335–358.

Wolsey, L. A. (1998). Integer programming. New York: Wiley.
Wolsey, L. A., & Yaman, H. (2016). Continuous knapsack sets with divisible capacities. Mathe-

matical Programming, 156, 1–20.
Yaman, H. (2007). The integer knapsack cover polyhedron. SIAM Journal on Discrete Mathemat-

ics, 21, 551–572.
Yaman, H. (2013). The splittable flow arc set with capacity and minimum load constraints.

Operations Research Letters, 41, 556–558.



Chapter 6
Piecewise Linear Cost Network Design

Antonio Frangioni and Bernard Gendron

1 Introduction

In this chapter, following the trend initiated in Chap. 5, we move decidedly away
from “basic” network design models to incorporate more and more sophisticated
elements required to accurately model real-world applications. Perhaps the first and
most important of these is the fact that the capacity on the arcs does not come in
an “all-or-nothing” fashion, but with a more complex cost. This often corresponds
to the fact that providing capacity actually boils down to provisioning appropriate
facilities on the arc (say, dedicating cars/trucks to a leg of a transportation network,
or installing stretches of optic fibre or transceivers in a telecommunication network).
In some simple cases, such as when the facilities can be installed independently from
one another or when they are all identical, the models of the previous chapters can
be adapted via the simple trick of replicating the arcs: different copies of the same
arc are present and can be independently constructed. This leads to replicating the
flow variables, which might be disadvantageous, although, as we shall see, some of
the best models are doing something similar anyway. Furthermore, in general, the
shape of the cost-of-capacity function can be much more complex due to nontrivial
interactions between installation of different facilities. For instance, in truckload
(TL) transportation, each truck being used would incur a fixed cost and the piecewise
linear cost would have a simple staircase shape where each segment corresponds
to the number of trucks being used. In less-than-truckload (LTL) transportation,

A. Frangioni (�)
Dipartimento di informatica, Università di Pisa, Italy
e-mail: frangio@di.unipi

B. Gendron
CIRRELT and Département d’informatique et de recherche opérationnelle,
Université de Montréal, Montréal, QC, Canada
e-mail: Bernard.Gendron@cirrelt.net

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_6

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_6&domain=pdf
mailto:frangio@di.unipi
mailto:Bernard.Gendron@cirrelt.net
https://doi.org/10.1007/978-3-030-64018-7_6


168 A. Frangioni and B. Gendron

Fig. 6.1 Piecewise linear
functions arising in TL and
LTL transportation

Weight

C
os
t

Typical TL cost function

Weight

C
os
t

Typical LTL cost function

instead, the costs display economies of scale according to the volume of transported
goods, which yields non-convex piecewise linear cost functions. An example of
piecewise linear functions corresponding to TL and to LTL contexts in multimodal
applications is depicted in Fig. 6.1.

Every reasonable cost-of-capacity function can be approximated as a piecewise
linear (possibly, non-convex) one, where the extent of the approximation can be
tightly controlled at the cost of the number of breakpoints. Therefore, network
design models with piecewise linear arc cost-of-capacity functions can model a large
variety of real-world applications. This chapter focuses on such models, considering



6 Piecewise Linear Cost Network Design 169

both a very general case and some more restricted ones that serve to illustrate
the main concepts. We show that the best models in terms of tightness of the LP
relaxation bound suffer from a significant increase in the number of variables,
even more so than the already rather large ones corresponding to simpler cases.
Because of this, we review the use of techniques that allow to efficiently solve
very large formulations by dynamically generating smaller portions of them. These
techniques are instrumental for the practical solution of network design problems
with piecewise linear costs.

In Sect. 2, we present formulations for a generic piecewise linear cost network
design problem, as well as for the single-facility multicommodity network design
problem, a special case of the multifacility multicommodity network design prob-
lem studied in Chap. 5. Since these formulations involve very large numbers of
variables and constraints, we have to rely on algorithms that implement column-and-
row generation. In Sect. 3, we present a framework, called structured Dantzig-Wolfe
decomposition, to develop such algorithms.

2 Formulations with Piecewise Linear Costs

We first present a generic network design model with piecewise linear costs. We
then present how a particular case of this model can be derived from the special
case of the single-facility network design model introduced in Chap. 5. This allows
us to give a polyhedral interpretation of this piecewise linear model, comparing it
with the formulation with general integer variables shown in Chap. 5.

2.1 Generic Piecewise Linear Cost Network Design
Formulation

Let G = (N ,A ) be a directed graph, where N is the set of nodes and A ⊆
N ×N is the set of potential arcs. A maximum flow capacity uij > 0 is associated
with each arc (i, j) ∈ A . Customarily, several commodities, represented by the
set K , share the flow capacity on G . A commodity k ∈ K is identified by the
amount dk of flow to be shipped between the origin O(k) and the destination D(k);
equivalently, as in Chap. 3, the commodity demand wk

i at each node i ∈ N is set
to dk if i = O(k), to −dk if i = D(k), and to 0 otherwise. Using the notation
xij =∑k∈K xkij for the total flow on each arc (i, j) ∈ A , we assume that we have
to minimize an objective function that is separable into |A | piecewise linear cost
functions gij (xij ) such that:

• gij (0) = 0;
• gij (xij ) is lower semi-continuous;
• gij (xij ) is non-decreasing.



170 A. Frangioni and B. Gendron

This last requirement is often not strictly necessary but, besides being reasonable
in applications, it can typically be assumed without loss of generality: if some larger
capacity point would cost less than a smaller one, one would never buy the latter.
The piecewise linear gij can be described by means of a finite number s(i, j) ≥ 1

of breakpoints 0 = e0
ij < e1

ij < · · · < e
s(i,j)
ij = uij . In other words, each s ∈

Sij = { 1 , . . . , s(i, j) } identifies one segment [ es−1
ij , esij ] where the function

is characterized by a linear cost (or slope) csij ≥ 0 and a fixed cost (or intercept)
f s
ij ≥ 0. The resulting problem, which we call the piecewise linear cost network

design problem (PLCND), can be seen as a generalization of the multicommodity
capacitated fixed-charge network design problem (MCFND) studied in Chaps. 2, 3,
and 4.

An arc-based mixed-integer linear programming (MILP) formulation can be
derived for the PLCND using the so-called multiple choice model to represent
piecewise linear functions. This modeling technique introduces two variables for
each (i, j) ∈ A and for each s ∈ Sij : xsij is the total flow xij on arc (i, j) ∈ A , if
it falls in segment s, and is equal to 0 otherwise; ysij is equal to 1, if xsij = xij , and
is equal to 0 otherwise. The basic model for the PLCND can then be written as:

Minimize
∑

(i,j)∈A
∑

s∈Sij
f s
ij
ys
ij
+∑(i,j)∈A

∑
s∈Sij

cs
ij
xs
ij

(6.1)

Subject to
∑

j∈N +
i
xk
ij
−∑

j∈N −
i
xk
ji
= wk

i
, ∀ i ∈ N , ∀ k ∈ K , (6.2)

xkij ≥ 0,∀ (i, j) ∈ A , ∀ k ∈ K , (6.3)

∑
k∈K xk

ij
=∑s∈Sij

xs
ij
, ∀ (i, j) ∈ A , (6.4)

es−1
ij

ysij ≤ xsij ≤ esij y
s
ij ,∀ (i, j) ∈ A , ∀s ∈ Sij , (6.5)

∑
s∈Sij

ys
ij
≤ 1, ∀ (i, j) ∈ A , (6.6)

ysij ∈ {0, 1},∀ (i, j) ∈ A , ∀s ∈ Sij . (6.7)

The objective function (6.1) minimizes the total piecewise linear costs, computed
as the sum of the total fixed and linear costs for arcs and segments included in the
optimal solution. Constraints (6.2) are the flow conservation equations for each node
and each commodity. Constraints (6.4)–(6.7) capture the definition of the variables
xsij and ysij . Note that the capacity constraints now appear as one of the constraints
in (6.5), i.e., the one corresponding to s = s(i, j).

When s(i, j) = 1 for each (i, j) ∈ A , we obtain the arc-based model for the
MCFND, for the special case of the latter where ckij = cij for each arc (i, j) ∈ A
and each commodity k ∈ K . In particular, the corresponding LP relaxation is the
so-called weak relaxation, which is known to give a lower bound that is generally
far from the optimal value, as seen in Chap. 2. This is true also in the general
case where s(i, j) > 1. In order to derive tighter LP relaxations, we need either



6 Piecewise Linear Cost Network Design 171

a different approach than the multiple choice model to represent piecewise linear
costs, or to add valid inequalities (and possibly additional variables). Unfortunately,
the multiple choice model is known to be one of a few different ways to “optimally”
represent a piecewise linear (non-convex) function, in that its continuous relaxation
(a convex problem) represents the convex envelope of the function, i.e., its tightest
possible convex approximation. In other words, all other known ways of modeling
piecewise linear costs with MILP formulations also end up giving a lower bound
that is as weak as the one given by the LP relaxation of the basic model. This,
however, only holds while keeping the rest of the formulation unchanged. Indeed,
by adding variables, we can introduce valid inequalities that generalize the strong
linking constraints derived for the MCFND, and therefore significantly strengthen
the formulation.

We introduce the additional variables xksij for each arc (i, j) ∈ A , for each
commodity k ∈ K and for each segment s ∈ Sij , with the intended semantic that
xksij = xkij if xsij > 0, and xksij = 0 otherwise. These so-called extended variables are
easily defined in terms of the previous ones:

∑
k∈K xksij = xsij , ∀ (i, j) ∈ A , ∀s ∈ Sij , (6.8)

∑
s∈Sij

xksij = xkij , ∀ (i, j) ∈ A , ∀ k ∈ K . (6.9)

Note that this reformulation is close to replicating each arc (i, j) ∈ A with as many
“parallel” copies as there are segments, as hinted at in the Introduction. Indeed,
clearly, the original variables xsij and xkij could be substituted away using (6.8)

and (6.9), leaving only the xksij as flows in an expanded graph with s(i, j) copies
of each arc (i, j) ∈ A . However, the two formulations are not the same due to
constraints (6.6) that require only one of the copies to be picked up. Furthermore,
just adding these additional variables does not improve, per se, the LP relaxation
(and, instead, makes it much larger and more costly to solve); however, it allows to
also add the valid inequalities

xksij ≤ bksij y
s
ij , ∀ (i, j) ∈ A , ∀k ∈ K , ∀s ∈ Sij , (6.10)

where bksij = min{esij , dk} is an upper bound on the flow of commodity k ∈ K
on arc (i, j) ∈ A associated with segment s ∈ Sij . It is clear that these extended
linking constraints generalize the strong linking constraints for the MCFND, i.e.,
when s(i, j) = 1 for each (i, j) ∈ A (see Chap. 2). The formulation obtained by
adding (6.8)–(6.10) to the basic model is called the extended model.

As in the MCFND, the LP relaxation bound resulting from the addition of
the extended variables and constraints is vastly better than that of the original
model (6.1)–(6.7). However, the model itself is also way larger, which means that
it cannot be efficiently solved with off-the-shelf LP technology as the size of the
problem, and in particular the number of segments, increase. Dealing with such huge
LPs requires decomposition methods like Lagrangian relaxation and Dantzig-Wolfe



172 A. Frangioni and B. Gendron

decomposition (see Chap. 3). We present such a decomposition method in Sect. 3.1,
but we first look back at the single-facility multicommodity network design problem
(see Chap. 5) and cast it as a special case of the PLCND.

2.2 Piecewise Linear Cost Model of the Single-Facility
Problem

The special case we are dealing with is that where there is only one facility type
(for each arc), which means that gij is a “uniform” staircase-structured piecewise
linear function where all the segments are alike. The corresponding single-facility
multicommodity network design problem (SFMND) is typically formulated with
general integer variables yij that represent the number of facilities installed on each
arc (i, j) ∈ A , yielding

Minimize
∑

(i,j)∈A fij yij +∑k∈K
∑

(i,j)∈A cij x
k
ij (6.11)

Subject to
∑

j∈N +
i
xkij −

∑
j∈N −

i
xkji = wk

i , ∀ i ∈ N ,∀ k ∈ K , (6.12)

∑
k∈K xkij ≤ uij yij , ∀ (i, j) ∈ A , (6.13)

xkij ≥ 0, ∀ (i, j) ∈ A , ∀ k ∈ K , (6.14)

yij ≥ 0 and integer, ∀ (i, j) ∈ A . (6.15)

The objective function (6.11) comprises the cost of installing facilities, where each
unit of facility on arc (i, j) ∈ A incurs a cost fij ≥ 0, and the total transportation
cost, where each unit of flow on arc (i, j) ∈ A incurs a cost cij ≥ 0. More generally,
transportation costs could also depend on the commodity, but we use commodity-
independent transportation costs for consistency with the definition of the PLCND
given in Sect. 2.1.

We can easily interpret this objective function as a piecewise linear function by
defining a segment s ∈ Sij for each positive number s of units of the facility
installed on arc (i, j) ∈ A . Clearly, we then have s(i, j) = �(∑k∈K dk)/uij �.
In such interpretation, we define f s

ij = sfij , csij = cij and esij = suij , for each
(i, j) ∈ A and s ∈ Sij . We use the following equations to relate the general integer
variables in model (6.11)–(6.15) to the 0-1 variables used to model the PLCND:

∑
s∈Sij

sysij = yij , ∀ (i, j) ∈ A . (6.16)

By introducing the segment-based flow variables defined by Eqs. (6.4), we
then derive a reformulation of (6.11)–(6.15) that corresponds to the basic



6 Piecewise Linear Cost Network Design 173

model (6.1)–(6.7) for the PLCND. Clearly, we can also define extended variables
and constraints to derive the stronger extended model defined by adding (6.8)–(6.10)
to the basic model.

We now establish a relationship between the LP relaxation of this piecewise
linear cost extended model (hereafter, simply called the extended relaxation) for the
SFMND and the Lagrangian relaxation of the flow conservation equations (6.12)
derived from the standard model (6.11)–(6.15). Denoting as π = (π)k∈K

i∈N the
(unrestricted) Lagrange multipliers associated with these constraints, we obtain the
following Lagrangian subproblem, by adding (redundant) upper bound constraints
on each variable:

Minimize
∑

(i,j)∈A fij yij +∑k∈K
∑

(i,j)∈A (cij + πki − πkj )xkij (6.17)

Subject to (6.13)–(6.15)

xkij ≤ dk, ∀ (i, j) ∈ A , ∀ k ∈ K , (6.18)

yij ≤ s(i, j), ∀ (i, j) ∈ A . (6.19)

Note that in the objective (6.17) the constant term “−∑i∈N
∑

k∈K πki w
k
i ” is

omitted for better readability. This Lagrangian subproblem decomposes by arc. For
each (i, j) ∈ A , we obtain the following MILP model with a single general integer
variable yij :

Minimize fij yij +∑k∈K (cij + πki − πkj )xkij (6.20)

Subject to
∑

k∈K xkij ≤ uij yij , (6.21)

0 ≤ xkij ≤ dk, ∀ k ∈ K , (6.22)

yij ∈ [ 0 , s(i, j) ] and integer. (6.23)

We can solve this arc-based MILP model by a naïve approach that solves s(i, j)
continuous knapsack problems for every positive integer value yij ∈ [ 0 , s(i, j) ],
each providing an objective value v(yij ). The optimal solution corresponds either
to the value yij that achieves the minimum objective value v(yij ), if this objective
value is negative, or to yij = 0, otherwise.

However, (6.20)–(6.23) can be solved more efficiently by observing that v(yij )
corresponds to the value of the Benders subproblem obtained by partitioning the
variables in the “natural” way, i.e., the single yij in the master and all the xkij ,
for k ∈ K , in the subproblem. It is well-known, from the theory of Benders
decomposition, that v(yij ) is a convex function of yij . This is true, in particular,
if Benders decomposition is applied to the LP relaxation of the arc-based MILP
model. Thus, v(yij ) is a convex function of (continuous) yij ∈ [ 0 , s(i, j) ].
However, it is easy to realize that the yij component of the optimal solution of



174 A. Frangioni and B. Gendron

the continuous relaxation of (6.20)–(6.23) is immediately available by the closed
formula yij = (

∑
k∈K xkij )/uij . This means that such continuous relaxation is in

fact equivalent to

Minimize
{∑

k∈K (fij /uij + cij + πki − πkj )xkij | 0 ≤ xkij ≤ dk, k ∈ K
}
.

(6.24)

In turn, an optimal solution to (6.24) is immediately obtained by setting, for each
k ∈ K , xkij = dk if (fij /uij + cij + πki − πkj ) < 0, and xkij = 0 otherwise.
Thus, the minimizer of the convex function v(yij ) over the interval [ 0 , s(i, j) ]
is given by yij = (

∑
k∈K xkij )/uij . The convexity of the function v(yij ) implies

that an optimal integer solution is either �yij � or �yij �. It suffices to solve the
two corresponding continuous knapsack problems (in fact, only one if �yij � = 0)
to derive an optimal solution to (6.20)–(6.23). Both approaches have to solve
continuous knapsack problems, but the naïve one requires a pseudo-polynomial
number (s(i, j) = �(∑k∈K dk)/uij �) of them, while the faster approach only
requires a constant number (at most, two) of them.

Although not efficient, the naïve approach has a nice theoretical interpretation:
for each arc (i, j) ∈ A , the arc-based MILP model (6.20)–(6.23) decomposes for
each value yij ∈ { 1 , . . . , s(i, j) }. In other words, it corresponds to solving an
optimization problem (with linear objective function) over a finite union of bounded
polyhedra ∪s∈Sij

Ps
ij , where

Ps
ij = { xij = (xkij )

k∈K | ∑k∈K xkij ≤ suij , 0 ≤ xkij ≤ dk, k ∈ K }.

There is a well-known modeling technique to formulate (linear) optimization
problems over a finite union of bounded polyhedra as a linear programming model.
It consists in associating to each polyhedron Ps

ij a continuous weight variable
θsij ≥ 0, to be multiplied to the RHS of all constraints defining the polyhedron, and a

“copy” ξksij of each original continuous variable xkij , k ∈ K . Applying the technique
yields the following LP reformulation of the arc-based MILP model (6.20)–(6.23):

Minimize
∑

s∈Sij
sfij θ

s
ij +

∑
k∈K

∑
s∈Sij

(cij + πki − πkj )ξksij (6.25)

Subject to
∑

k∈K ξksij ≤ suij θ
s
ij , ∀s ∈ Sij , (6.26)

0 ≤ ξksij ≤ dkθsij , ∀ k ∈ K , ∀s ∈ Sij , (6.27)

∑
s∈Sij

θ sij ≤ 1, (6.28)

θsij ≥ 0, ∀s ∈ Sij . (6.29)

Indeed, one can show that there exists an integer optimal solution, i.e., θsij ∈ {0, 1},
s ∈ Sij , to this LP model. Hence, we can derive an optimal solution to the arc-based



6 Piecewise Linear Cost Network Design 175

MILP model (6.20)–(6.23) by using the equations:

∑
s∈Sij

ξ ksij = xkij , ∀k ∈ K , (6.30)

∑
s∈Sij

sθsij = yij . (6.31)

This implies that the convex hull of feasible solutions to the arc-based MILP model
is given by the projection on the space of variables (yij , (xkij )

k∈K ) of the set of
solutions that satisfy (6.26)–(6.31). The primal interpretation of Lagrangian duality
(see Chap. 3) then allows us to express the Lagrangian dual as follows:

Minimize
∑

(i,j)∈A fij yij +∑k∈K
∑

(i,j)∈A cij x
k
ij (6.32)

Subject to (6.12)

∑
s∈Sij

ξ ksij = xkij , ∀(i, j) ∈ A , ∀k ∈ K , (6.33)

∑
s∈Sij

sθsij = yij , ∀(i, j) ∈ A , (6.34)

∑
k∈K ξksij ≤ suij θ

s
ij , ∀(i, j) ∈ A , ∀s ∈ Sij , (6.35)

0 ≤ ξksij ≤ dkθsij , ∀(i, j) ∈ A , ∀ k ∈ K , ∀s ∈ Sij , (6.36)

∑
s∈Sij

θ sij ≤ 1, ∀(i, j) ∈ A , (6.37)

θsij ≥ 0, ∀(i, j) ∈ A , ∀s ∈ Sij . (6.38)

It is clear that any optimal solution to this LP model can be mapped into an optimal
solution to the extended relaxation by the trivial identifications

ξksij = xksij , ∀(i, j) ∈ A , ∀ k ∈ K , ∀s ∈ Sij , (6.39)

θsij = ysij , ∀(i, j) ∈ A , ∀s ∈ Sij . (6.40)

Indeed, the constraints are the same in both LP models, with two exceptions.
First, the extended relaxation contains the additional constraints

∑
k∈K xksij ≥

(s − 1)uij ysij , (i, j) ∈ A , s ∈ Sij . Since fij ≥ 0, (i, j) ∈ A , it is easy to see
that an optimal solution to the extended relaxation satisfies

ysij = max

{∑
k∈K xksij

suij
, max
k∈K

{
xksij

bksij

}}

for all (i, j) ∈ A and s ∈ Sij , and one can then verify that the additional constraints
are always satisfied. Second, the extended linking constraints (6.10), along with non-
negativity constraints, imply inequalities (6.36); in turn, the latter, when combined
with (6.35), imply the extended linking constraints.



176 A. Frangioni and B. Gendron

To summarize, we have shown in this section that:

• the SFMND can be cast as a PLCND;
• the Lagrangian dual obtained by relaxing the flow conservation equations in

the standard model for the SFMND (with general integer design variables)
is equivalent to the extended relaxation for the PLCND reformulation of the
problem (with 0-1 design variables).

For solving the SFMND, we propose to exploit its PLCND reformulation, more
specifically to solve its extended relaxation by a column generation method where
the pricing subproblem is the Lagrangian subproblem (6.20)–(6.23) obtained by
relaxing the flow conservation equations. The next section presents a general
framework for such a column generation method, which we call structured Dantzig-
Wolfe decomposition, and its application both to the generic PLCND and to the
SFMND.

3 Structured Dantzig-Wolfe Decomposition for Piecewise
Linear Cost Network Design

We start by briefly recalling the basics of the Dantzig-Wolfe (DW) decomposition
method and of its relationships with Lagrangian duality, as studied in Chap. 3. We
describe the approach in the general setting

min { cx | Ax = b, x ∈ X } .

The Lagrangian relaxation with respect to Ax = b yields the Lagrangian subprob-
lem

v(π) = min { (c − πA)x | x ∈ X } + πb,

where π is the vector of Lagrange multipliers. The Lagrangian dual associated with
this relaxation is maxπ v(π), which can be reformulated as

(P ) min { cx | Ax = b, x ∈ conv(X) } ,

where the set conv(X) is “easy” in the sense that linear optimization over
conv(X) is “significantly easier” than (P ). For the sake of simplicity, we assume
compactness, i.e., X = { x1 , . . . xt } for finite (albeit possibly very large) t . The
DW decomposition approach hinges on considering the DW reformulation of (P )

Minimize
∑t

h=1(cx
h)θh (6.41)

Subject to
∑t

h=1(Ax
h)θh = b, (6.42)



6 Piecewise Linear Cost Network Design 177

∑t
h=1 θ

h = 1, (6.43)

θh ≥ 0, ∀h = 1 , . . . , t. (6.44)

Since the DW reformulation (6.41)–(6.44) typically has far too many variables to be
solved in one blow, the DW decomposition approach constructs the master problem
by restricting the problem to a selected small subset B ⊂ { 1 , . . . , t } of them. The
optimal dual solution π∗ of constraints (6.42) in the master problem is then used to
compute the reduced (or Lagrangian) costs c − π∗A, and linear optimization over
conv(X) (allegedly, an “easy” task) with these costs is performed. This yields a
new point xh; a simple test allows to establish whether adding the point to B may
improve the value of the master problem, in which case this is done and the process
iterates, or prove that the solution to the master problem was already optimal for
(P ), in which case the algorithm terminates. This is well-known to be equivalent to
applying the cutting-plane approach to solving the Lagrangian dual with respect to
the constraints Ax = b, as detailed in Chap. 3.

However, the standard version of the DW decomposition approach assumes that
the “complicating” constraints Ax = b can be written in the original x space,
i.e., that they do not change when new points are added to B. In other words,
they are “few” even if the points needed to characterize X are “many”; this is,
therefore, a standard column generation approach. However, in our application both
the columns and the rows are “many”, and need be generated incrementally. For this
to be possible, X must have a specific structure that allows rows and columns to be
generated simultaneously. We first present a generic treatment that describes which
assumptions must be made on this structure, and then show why these assumptions
are satisfied in our application.

3.1 Structured Dantzig-Wolfe Decomposition

The structured Dantzig-Wolfe (SDW) decomposition method requires the same
underlying assumption as the DW one, i.e., that linear optimization over X is “easy.”
However, besides this, it requires the following three assumptions about the structure
of the set X:

(i) Existence of reformulation: For a finite vector of variables θ and finite matrices
C, Γ and γ of appropriate dimensions, conv(X) = { x = Cθ | Γ θ ≤ γ }.

(ii) Feasibility of zero padding: Let B = (Bc,Br ), where Bc is a subset of the
variables θ (columns of Γ and C) and Br is a subset of the constraints (rows
in Γ and γ ) which impact at least one variable in Bc, and denote by θB , ΓB ,
γB and CB the corresponding restrictions of the data: if ΓB θ̄B ≤ γB and
θ = [ θ̄B , 0

]
, then Γ θ ≤ γ .



178 A. Frangioni and B. Gendron

(iii) Easy extension of the approximation: With

XB = { x = CBθB | ΓBθB ≤ γB } ,

let x be a point such that x ∈ conv(X) \ XB; then, it must be easy to update
B and the associated ΓB , γB and CB to a set B′ ⊃ B that satisfies (ii) such
that there exists B′′ ⊇ B′ with x ∈ XB′′ .

We now comment on the assumptions. The first is inherent to the fact that, being
a generalization of DW, the approach is based on a (“large”) reformulation of the
feasible set. Such a reformulation must be amenable to dynamic variable generation,
i.e., variables fixed to 0 should not impair feasibility of a partial solution, which is
what point (ii) entails. This clearly requires a specific structure on the constraints,
as such a property is not true in general in a linear program, unless one requires that
Br contains all rows which impact (at least one of) the variables in Bc, because
then all relevant constraints are known. Such a requirement may be reasonable
or even obvious in some cases: for instance, in the DW decomposition approach,
there is only one constraint. In general, however, imposing this to hold might cause
Br to grow large very quickly. For instance, in the PLCND, each variable ysij is
involved in “many” extended linking constraints, and generating all of them—as
much as generating all the corresponding flow variables xksij —could be impractical.
The fundamental effect of assumption (ii) is to guarantee that XB ⊆ X. Finally,
point (iii) states that, given a solution x that cannot be expressed by means of a
given B, it must be easy to update the latter in order to “capture a bit more of
x.” This is purposely stated in a rather abstract form, but it is easy to see that this is
possible in many cases, among which, of course, our application. Indeed, any x ∈ X
can be represented by means of some of the variables θ ; if x /∈ XB , it must be easy
to reconstruct which of the necessary variables are missing in Bc, and consequently,
which rows should be added to Br to ensure that (ii) is satisfied. Note that (iii) is
carefully worded as not to require that enough variables are added to Bc so that x
immediately becomes a point of XB; for the algorithm to work, it is only necessary
to insert in B at least one of the “missing” variables. Since the set of variables is
finite, iterating the process will ensure that eventually all the required variables (and
constraints) will be generated.

With these assumptions, the SDW algorithm is easily described. It starts by
solving the master problem

min { cx | Ax = b, x = CBθB, ΓBθB ≤ γB } (6.45)

for an appropriately initialized set B. For simplicity, we assume this meaning
that (6.45) is nonempty (and therefore is has an optimal solution), although standard
“phase 0” tricks can be used to relax this assumption. This provides the optimal
dual solution π∗ associated with Ax = b, which is used to compute the reduced
costs c − π∗A. The Lagrangian subproblem with π = π∗ is then solved, i.e.,
the point x minimizing (c − π∗A)x over X is computed: if x ∈ XB (a property



6 Piecewise Linear Cost Network Design 179

that is easily tested by checking the corresponding optimal value against that of the
master problem), then the algorithm terminates; otherwise, B is updated according
to assumption (iii) and the process is repeated.

It is hardly necessary to mention that the original DW decomposition is a special
case of this approach: indeed, in that case XB is just conv(B) (identifying each
variable θh with the corresponding point xh), which obviously satisfies assumptions
(i) and (ii), and updating B only amounts at adding x to it, and hence assumption
(iii) is satisfied as well. Directly generalizing the standard analysis of the DW
decomposition method, it is easy to prove that the SDW decomposition is correct
and complete as well, i.e., it finitely determines an optimal solution to (P ). However,
this means that SDW decomposition may also suffer from some of the issues that
plague by-the-book implementations of DW decomposition, among which chiefly
instability. As in DW decomposition, this can be tackled by stabilizing the master
problem, adding appropriate constraints and/or terms in the objective function.
Due to the “inherently richer” master problem, this may be less crucial for SDW
decomposition than it is for the original DW decomposition, but it has been shown
to be still quite useful. The technical details being somehow involved, we will not
delve further into this topic.

3.2 Application to Piecewise Linear Cost Network Design

The application of SDW decomposition to the PLCND is based on the Lagrangian
relaxation of the flow conservation equations (6.2) in the basic model (6.1)–
(6.7) with Lagrange multipliers π = (π)k∈K

i∈N . To obtain bounded Lagrangian
subproblems, we add the upper bound constraints (6.18) on the flow variables:
the resulting Lagrangian subproblem decomposes by arc, yielding for each arc
(i, j) ∈ A :

Minimize
∑

s∈Sij
f sij y

s
ij +

∑
s∈Sij

csij x
s
ij +

∑
k∈K (πki − πkj )xkij (6.46)

Subject to 0 ≤ xkij ≤ dk, ∀ k ∈ K , (6.47)

∑
k∈K xkij =

∑
s∈Sij

xsij , (6.48)

es−1
ij ysij ≤ xsij ≤ esij y

s
ij , ∀s ∈ Sij , (6.49)

∑
s∈Sij

ysij ≤ 1, (6.50)

ysij ∈ {0, 1}, ∀s ∈ Sij . (6.51)

This subproblem can be easily solved by considering s(i, j) continuous knapsack
problems, each corresponding to a given segment s ∈ Sij :



180 A. Frangioni and B. Gendron

Minimize vsij =
∑

k∈K (csij + πki − πkj )xkij (6.52)

Subject to 0 ≤ xkij ≤ bksij , ∀ k ∈ K , (6.53)

es−1
ij ≤

∑
k∈K xkij ≤ esij . (6.54)

If mins∈Sij
{f sij + vsij } ≥ 0, then the optimal solution to (6.46)–(6.51) is to set all

variables equal to 0. Otherwise, let s′ = arg mins∈Sij
{f sij+vsij } and xij = (xkij )k∈K

be the optimal solution to the continuous knapsack problem for s′: then, the optimal
solution to (6.46)–(6.51) is given by ys

′
ij = 1, xs

′
ij =

∑
k∈K xkij , xkij = xkij for all

k ∈ K , and all other variables assuming the value 0.
This shows that (6.46)–(6.51) can be reformulated as a linear optimization

problem over a finite union of bounded polyhedra ∪s∈Sij
Ps

ij , each polyhedron Ps
ij

being defined by (6.53)–(6.54). Using the same modeling technique described in
Sect. 2.2, we can then reformulate (6.46)–(6.51) as

Minimize
∑

s∈Sij
f sij θ

s
ij +

∑
s∈Sij

∑
k∈K (csij + πki − πkj )ξksij (6.55)

Subject to 0 ≤ ξksij ≤ bksij θ
s
ij , ∀ k ∈ K , (6.56)

es−1
ij θ sij ≤

∑
k∈K ξksij ≤ esij θ

s
ij , ∀s ∈ Sij , (6.57)

∑
s∈Sij

θ sij ≤ 1, (6.58)

θsij ≥ 0, ∀s ∈ Sij . (6.59)

The variables θsij and ξksij in (6.55)–(6.59) can be linked to those of the basic
model by

∑
s∈Sij

ξ ksij = xkij , ∀k ∈ K , (6.60)

∑
k∈K ξksij = xsij , ∀s ∈ Sij , (6.61)

θsij = ysij , ∀s ∈ Sij . (6.62)

Projecting out the xsij variables using (6.61), this finally yields the primal form of
the Lagrangian dual:

Minimize
∑

(i,j)∈A
∑

s∈Sij
f sij y

s
ij +

∑
(i,j)∈A

∑
s∈Sij

csij ξ
ks
ij (6.63)

Subject to (6.2)
∑

s∈Sij
ξ ksij = xkij , ∀(i, j) ∈ A , ∀k ∈ K , (6.64)

es−1
ij ysij ≤

∑
k∈K ξksij ≤ esij y

s
ij , ∀(i, j) ∈ A , ∀s ∈ Sij , (6.65)



6 Piecewise Linear Cost Network Design 181

0 ≤ ξksij ≤ bksij y
s
ij , ∀(i, j) ∈ A , ∀ k ∈ K , ∀s ∈ Sij , (6.66)

∑
s∈Sij

ysij ≤ 1, ∀(i, j) ∈ A , (6.67)

ysij ≥ 0, ∀(i, j) ∈ A , ∀s ∈ Sij . (6.68)

This is precisely the extended relaxation of the PLCND. Thus, we generalized the
result of Sect. 2.2 for the SFMND: the Lagrangian dual with respect to the relaxation
of the flow conservation equations is equivalent to the extended relaxation.

Exploiting this polyhedral result, we propose to solve the extended relaxation by
a SDW decomposition algorithm. In this setting, the constraints Ax = b correspond
to the flow conservation equations (6.2), while the set X is the feasible domain of
the Lagrangian subproblem. The latter separates by arc and, for each arc (i, j) ∈ A ,
the arc-based MILP model can be solved with an LP reformulation: this means that
we have a complete description of conv(X), as required by assumption (i) of the
SDW decomposition framework. Assumption (ii) is satisfied as well: due to (6.65)
and (6.66), fixing to 0 all variables corresponding to one segment s satisfies all
the constraints in which the variables are involved. Thus, one can identify Bc

as a (possibly, empty) subset of the set of segments for each arc. If a segment s
is present in Bc for some arc (i, j) ∈ A , then the corresponding variable ysij

and some variables ξksij are added to the master problem, and the corresponding
constraints (6.65) and (6.66) are added to Br . Furthermore, whenever a variable
ξksij for some k ∈ K is present in Bc, then also the corresponding xkij and (6.64)
are added to Bc and Br , respectively (if not present there already). Once the
Lagrange multipliers π are fixed, the problem (6.46)–(6.51) can be efficiently solved
as described (which is the fundamental assumption), thus identifying the crucial
segment s′ and the solution xij = (xkij )k∈K . If s′ is not in Bc already, it is added

to it, together with the ξksij necessary to reproduce the xkij > 0; the corresponding
constraints are also added to Br . There can actually be variants of this approach; for
instance, assumption (iii) only requires that one of the missing segments is added
to the corresponding arc, thereby reducing the number of variables and constraints
added at each iteration (but possibly at the cost of more iterations). Conversely, once
a segment s′ is generated, one could generate all the ξksij corresponding to all k ∈ K ,

irrespectively of the fact that xkij > 0, thereby adding more variables (but possibly
reducing the number of iterations). The corresponding trade-offs between master
problem size and iterations count can be optimized via computational experiments,
and we do not add further details here; however, it is easy to see how assumption
(iii) of the SDW decomposition framework is easily satisfied in our application.

The SDW decomposition algorithm for the PLCND applies directly to the
SFMND, with the only difference that the Lagrangian subproblem can be solved
even more efficiently. As we have seen in Sect. 2.2, the arc-based MILP model can
be solved by considering at most two continuous knapsack problems, instead of
Sij in the general case. However, once this is done, the update of Bc and Br can
be performed in the same way. Note that in this case the extended formulation has



182 A. Frangioni and B. Gendron

a pseudo-polynomial size with respect to the size of the original problem, which
means that its dynamic generation via the SDW decomposition approach is clearly
instrumental.

4 Bibliographical Notes

Piecewise linear costs appear in a large number of applications in logistics and
transportation, in particular multimodal transportation, where they can be used to
model economies of scale, as in LTL transportation, or the use of multiple vehicles
on a single lane, as in TL transportation; see, e.g., Balakrishnan and Graves (1989)
and Croxton et al. (2003a). In the context of network flow problems, arc separable
piecewise linear costs are often represented with as many parallel arcs as there
are segments of the cost function. In general, standard fixed-cost network design
problems cannot be obtained in this way, since it is still necessary to add constraints
to ensure that no more than one parallel arc, representing the cost function for any
given arc, is selected. However, when the cost function is concave, such constraints
are not needed, since, in that case, the linear costs csij for each arc (i, j) are
decreasing as s increases and the “right” parallel arc is automatically selected in
an optimal solution. This observation has been made for both single-commodity
(Kim and Pardalos 2000a) and multicommodity problems (Balakrishnan and Graves
1989). In particular, when the concave-cost problem is also uncapacitated, there is
no need to add capacity constraints linking together parallel arcs: the problem then
reduces to the SUFND, in the single-commodity case, or to the MUFND, in the
multicommodity case (see Chap. 2 for definitions of these problems).

Problems with piecewise linear costs are typically modeled using MILP for-
mulation techniques, giving rise to various models, including three “classical”
ones: the convex combination (Manne and Markovitz 1957), incremental (Dantzig
1960) and multiple choice models. Croxton et al. (2003b) shows that the LP
relaxations of the three formulations approximate the convex envelope of the cost
function (see also Keha et al. (2004)). The multiple choice model can be derived
from the model for the union of polyhedra, due to Balas (1979) and studied in
Jeroslow and Lowe (1984). Using the same modeling approach, Vielma et al. (2010)
extended to the non-separable case the different models for piecewise linear costs,
usually restricted to the separable case. Since these different modeling techniques
involve the introduction of auxiliary variables, in the same order as the total
number of segments in all cost functions, a lot of effort has been dedicated in
the last decade to the development of models that preserve the strength of LP
relaxations, while reducing the number of auxiliary variables needed (see, e.g.,
Vielma et al. 2010; Vielma 2018, 2019; Huchette and Vielma 2019). In some
sense, the modeling and algorithmic approaches described in this chapter take a
completely different viewpoint: more auxiliary variables are added to the models
to derive tighter relaxations, through the addition of constraints involving these



6 Piecewise Linear Cost Network Design 183

auxiliary variables. To handle the resulting very large-scale models, column-and-
row generation algorithms are then developed.

The extended model presented in Sect. 2.1 first appeared in Balakrishnan and
Graves (1989), where it is used as a basis for a Lagrangian heuristic for solving
a piecewise linear concave cost multicommodity flow problem. In Croxton et al.
(2007), the extended model is compared to the basic one, as well as to an
intermediate model (called “strong model”) that does not introduce the extended
variables, but rather adds to the basic model the following valid inequalities, which
also generalize the strong linking constraints for the MCFND, but yield a weaker
LP relaxation than the extended formulation:

xkij ≤ dk
∑

s∈Sij
ysij , ∀ (i, j) ∈ A , ∀k ∈ K . (6.69)

The reformulation of the SFMND as a PLCND was studied in Frangioni and
Gendron (2009), where the equivalence between the extended relaxation and the
Lagrangian dual with respect to the relaxation of flow conservation equations
is shown. As a corollary of this equivalence, the extended relaxation is shown
to be equivalent to the LP relaxation of the SFMND with the addition of the
residual capacity inequalities (see Chapter 5). The proof exploits an argument used
in Croxton et al. (2007) to show that the extended relaxation approximates the
objective function by its convex envelope in the space of commodity flows. The
proof based on the model to represent a finite union of bounded polyhedra (Balas
1979) first appeared in Khuong (2013). For the SFMND studied in Sect. 2.2, the
observation that the Lagrangian subproblem resulting from the relaxation of flow
conservation equations reduces to two continuous knapsack problems can be found
in Atamtürk and Rajan (2002), while the interpretation of v(yij ) as the value of a
Benders subproblem (then, necessarily convex) appeared in Gendron (2019).

The SDW decomposition approach outlined in Sect. 3.1 has been proposed, in
the context of the SFMND, in Frangioni and Gendron (2009). Stabilization of the
approach, along some of the many possible lines that have been applied to the
original DW decomposition algorithm (Frangioni 2005, 2020), has been studied
in Frangioni and Gendron (2013) and shown to actually improve the computational
efficiency of the method in practice. Its application to the PLCND, presented in
Sect. 3.2, generalizes the approach applied to the SFMND. For the PLCND, the
equivalence between the extended relaxation and the Lagrangian dual with respect
to the flow conservation equations appeared in Croxton et al. (2007), but the proof
based on the model for a finite union of bounded polyhedra (Balas 1979) is new.

The literature also contains several problems closely related to the PLCND,
including the single-commodity piecewise linear network design problem (Kim and
Pardalos 2000b); the multicommodity piecewise convex network design problem
(Mahey and de Souza 2017); the unsplittable multicommodity piecewise linear
network design problem (Fortz et al. 2017); the multicommodity piecewise linear
network design problem with integer flows (Gendron and Gouveia 2017).



184 A. Frangioni and B. Gendron

5 Conclusions and Perspectives

In this chapter, we studied the piecewise linear cost network design problem
(PLCND). While modeling piecewise linear costs with MILP techniques is a
classical topic, recent research in this area has favored approaches that reduce the
number of auxiliary variables needed. The models that we have presented take a
completely different viewpoint: they increase the number of auxiliary variables to
generate valid inequalities that can then improve the LP relaxations. We rely on the
structured Dantzig-Wolfe decomposition (SDW), which implements column-and-
row generation, to solve the large-scale models that result from the introduction of
auxiliary variables and their associated constraints.

Our developments in Sect. 2.2 show that the single-facility multicommodity
network design problem (SFMND) can be cast as a PLCND. In particular, the
extended relaxation can be shown to be as strong as the LP relaxation of the SFMND
to which we add residual capacity inequalities (see Chap. 5). While the latter can
be separated in linear time, the same can be said about the pricing subproblem
for generating extended variables. The two approaches, a cutting-plane method to
generate residual capacity inequalities and a SDW decomposition approach for the
extended model, have been compared experimentally, showing the advantage of
the latter for problems with a large number of commodities, but further research
is needed. In particular, the development of exact B&P algorithms is a topic of
investigation, as well as the adaptation of the other valid inequalities studied in
Chap. 5 to the 0-1 reformulation of the SFMND. In addition, the multifacility
multicommodity network design problem studied in Chap. 5 can also be cast as a
PLCND, which opens other avenues of research.

The SDW decomposition approach is quite general, but its application has been
limited so far to the extended reformulation for the SFMND. The algorithm is
particularly well-adapted to many other network design problems. In particular,
we might think of models where commodities are initially aggregated (say, by
origins) and gradually disaggregated to introduce additional variables and valid
inequalities. Also, in the context of service network design (see Chap. 12), where
space-time networks are used, we might exploit SDW decomposition to generate
time-discretized flow variables and associated constraints in a dynamic way.

References

Atamtürk, A., & Rajan, D. (2002). On splittable and unsplittable flow capacitated network design
arc-set polyhedra. Mathematical Programming A, 92, 315–333.

Balakrishnan, A., & Graves, S. C. (1989). A composite algorithm for a concave-cost network flow
problem. Networks, 19, 175–202.

Balas, E. (1979). Disjunctive programming. Annals of Discrete Mathematics, 5, 3–51.
Croxton, K. L., Gendron, B., & Magnanti, T. L. (2003a). Models and methods for merge-in-transit

operations. Transportation Science, 37(1), 1–22.



6 Piecewise Linear Cost Network Design 185

Croxton, K. L., Gendron, B., & Magnanti, T. L. (2003b). A comparison of mixed-integer pro-
gramming models for nonconvex piecewise linear cost minimization problems. Management
Science, 49(9), 1268–1273.

Croxton, K. L., Gendron, B., & Magnanti, T. L. (2007). Variable disaggregation in network flow
problems with piecewise linear costs. Operations Research, 55(1), 146–157.

Dantzig, G. B. (1960). On the significance of solving linear programming problems with some
integer variables. Econometrica, 28, 30–44.

Fortz, B., Gouveia, L., & Joyce-Moniz, M. (2017). Models for the piecewise linear unsplittable
multicommodity flow problems. European Journal of Operational Research, 261, 30–42.

Frangioni, A. (2005). About Lagrangian methods in integer optimization. Annals of Operations
Research, 139, 163–193.

Frangioni, A. (2020). Standard bundle methods: untrusted models and duality. In A. M. Bagirov,
M. Gaudioso, N. Karmitsa, M. Mäkelä, & S. Taheri (Eds.), Numerical nonsmooth optimization:
state of the art algorithms (pp. 61–116). Cham: Springer.

Frangioni, A., & Gendron, B. (2009). 0-1 reformulations of the multicommodity capacitated
network design problem. Discrete Applied Mathematics, 157(6), 1229–1241.

Frangioni, A., & Gendron, B. (2013). A stabilized structured Dantzig-Wolfe decomposition
method. Mathematical Programming B, 140, 45–76.

Gendron, B. (2019). Revisiting Lagrangian relaxation for network design. Discrete Applied
Mathematics, 261, 203–218.

Gendron, B., & Gouveia, L. (2017). Reformulations by discretization for piecewise linear integer
multicommodity network flow problems. Transportation Science, 51(2), 629–649.

Huchette, J., & Vielma, J. P. (2019). A geometric way to build strong mixed-integer programming
formulations. Operations Research Letters, 47, 601–606.

Jeroslow, R. G., & Lowe, J. K. (1984). Modeling with integer variables. Mathematical Program-
ming Studies, 22, 167–184.

Keha, A. B., de Farias, I. R., & Nemhauser, G. L. (2004). Models for representing piecewise linear
cost functions. Operations Research Letters, 32, 44–48.

Khuong, P. V. (2013). Lagrangian-informed mixed integer programming reformulations. PhD
thesis, Département d’informatique et recherche opérationnelle, Université de Montréal

Kim, D., & Pardalos, P. (2000a). Dynamic slope scaling and trust interval techniques for solving
concave piecewise linear network flow problems. Networks, 35(3), 216–222.

Kim, D., & Pardalos, P. (2000b). A dynamic domain contraction algorithm for nonconvex
piecewise linear network flow problems. Journal of Global Optimization, 17, 225–234.

Mahey, P., & de Souza, M. C. (2017). Multicommodity network flows with nonconvex arc costs.
Pesquisa Operacional, 37(3), 571–595.

Manne, A. S., & Markovitz, H. M. (1957). On the solution of discrete programming problems.
Econometrica, 25, 84–110.

Vielma, J. P. (2018). Embedding formulations and complexity for unions of polyhedra. Manage-
ment Science, 64(10), 4721–4734.

Vielma, J. P. (2019). Small and strong formulations for unions of convex sets from the cayley
embedding. Mathematical Programming A, 177, 21–53.

Vielma, J. P., Ahmed, S., & Nemhauser, G. L. (2010). Mixed-integer models for nonseparable
piecewise linear optimization: unifying framework and extensions. Operations Research, 58(2),
303–315.



Chapter 7
Topology-Constrained Network Design

Bernard Fortz

1 Introduction

Many network design problems considered in this book aim at optimizing simul-
taneously the decisions on opening links (with an associated fixed cost) and the
capacity to allocate to these links in order to satisfy a set of demands, with a
variable routing cost associated to these demands. However, in certain situations,
the demand is not known in advance, or involves a lot of uncertainty, leading to an
approach in two phases, where the topological design of the network (considering
only fixed cost of opening links) is considered first, and the decisions on routing
and capacity allocation taken in a second (later) stage. This approach is relevant
when the fixed costs are high compared to routing and capacity costs, and/or when
topological decisions do not affect too much capacity decisions. For example, in
telecommunications, fiber optic cables have a virtually unlimited capacity, and the
limitation of capacity arises from equipment placed in the nodes of the network
(routing cards). While decisions to dig a trench to lay a cable are very costly and
must be taken over a long term horizon, increasing capacity by adding or upgrading
equipment into nodes is relatively simple and cheap.

In this chapter, we study models and techniques for long-term planning of the
first phase, i.e., we only deal with topological aspects. Two main issues appear
in the planning process of networks: economy and survivability. Economy refers
to the construction cost, which is expressed as the sum of the edge costs, while
survivability refers to the restoration of services in the event of node or link failure.

B. Fortz (�)
Computer Science Department, Université libre de Bruxelles, Brussels, Belgium

INOCS, INRIA Lille Nord-Europe, Villeneuve-d’Ascq, France
e-mail: bernard.fortz@ulb.ac.be

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_7

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_7&domain=pdf
mailto:bernard.fortz@ulb.ac.be
https://doi.org/10.1007/978-3-030-64018-7_7


188 B. Fortz

The goal is then to determine a set of links connecting all nodes under some
survivability criteria.

For example, in telecommunications, the network is seen as a given set of
nodes and a set of possible fiber links that have to be placed between these nodes
to achieve connectivity and survivability at minimum cost. Until about 25 years
ago, the limited capacity of copper cables resulted in highly diverse routing. The
developments in fiber-optic technology have led to components that are cheap and
reliable, having an almost unlimited capacity. The introduction of such a technology
has made hierarchical routing and bundling of traffic very attractive. This approach
has resulted in sparse, even treelike network topologies with larger amounts of traffic
carried by each link. Trees satisfy the primary goal of minimizing the total cost
while connecting all nodes. However, only one node or edge breakdown causes a
tree network to fail in its main objective of enabling communication between all
pairs of nodes.

This means that some survivability constraints have to be considered while
building the network. Losing end-to-end customer service could lead to dramatic
loss of revenue for commercial service providers. Constructing network topologies
that provide protection against failures has become one of the most important
problems in the field of network design.

The most studied models deal with k-connectivity requirements, i.e., the ability
to restore network service in the event of a failure of at most k − 1 components
of the network. Among them, the minimum-cost two-connected spanning network
problem consists in finding a network with minimal total cost for which two
node-disjoint paths are available between every pair of nodes. This means that
two-connected networks are able to deal with a single link or node failure. Two-
connected networks have been found to provide a sufficient level of survivability in
most cases, and a considerable amount of research has focused on so-called low-
connectivity constrained network design problems, i.e., problems for which each
node j is characterized by a requirement rj ∈ {0, 1, 2} and min{ri, rj } node-disjoint
paths between every pair of nodes i, j are required.

Two-connectivity seems a sufficient level of survivability for most networks,
since the probability of dealing with two simultaneous failures is usually very low
for fiber optics technologies used in telecommunications networks. However, it turns
out that the optimal solution of this problem is often very sparse (in many cases such
as a Hamiltonian cycle). In such a topology, primary routing paths and re-routing
paths in case of failure might become very long. This introduces another difficulty
as it causes large delays in the network.

To avoid this, two kinds of solutions have been proposed in the literature. The
first one imposes a constraint on the length of the paths (in terms of number of links
crossed), the so-called hop-constrained models. The second approach consists of
imposing that each edge belongs to at least one cycle whose length is bounded by
a given constant, which ensures the existence of an alternate short path in case of
failure.

The chapter is organized as follows. After introducing in Sect. 2 the specific
notation and some fundamental definitions used in the chapter, we begin by the



7 Topology-Constrained Network Design 189

simplest but fundamental problem: the design of connected networks (and in
particular the minimum spanning tree problem) is covered in Sect. 3. Next we
turn our attention to networks requiring a higher level of survivability in Sect. 4.
Sections 5 and 6 consider problems in which the length of re-routing paths in case
of failure is limited, by introducing hop constraints and rings of bounded lengths,
respectively. Section 7 provides links to the relevant literature that was used as basis
to this chapter, as well as interesting references to dig further. We conclude in Sect. 8
with some perspectives on future trends in topological network design.

2 Notation and Definitions

Most models considered in this chapter are based on undirected graphs as capacity
is not involved and links are usually bi-directional. Therefore, the given sets of nodes
and possible connections are represented by an undirected graph G = (N,E) where
N is the set of nodes and E is the set of edges that represent the possible pairs of
nodes between which a direct connection can be established. The graph Gmay have
parallel edges but should not contain loops. Throughout this chapter, n = |N | and
m = |E| will denote the number of nodes and edges of G.

Given a subset of nodes S ⊂ N , the edge set

δ(S) = {{i, j} ∈ E | i ∈ S, j ∈ N\S}

is called the cut induced by S. We write δG(S) to make clear—in case of possible
ambiguities—with respect to which graph the cut induced by S is considered. For a
single node i ∈ N , we denote δ(i) = δ({i}). The set

E(S) = {{i, j} ∈ E | i ∈ S, j ∈ S}

is the set of edges having both end nodes in S. We denote by G(S) = (S,E(S)) the
subgraph induced by edges having both end nodes in S. If E(S) is empty, S is an
independent set. G/S is the graph obtained from G by contracting the nodes in S
to a new node w (retaining parallel edges). Given two subsets of nodes S1 and S2,
S1 ∩ S2 = ∅, the subset of edges having one endpoint in each subset is denoted by

[S1 : S2] = {{i, j} ∈ E | i ∈ S1, j ∈ S2}.

We denote by N − z = N\{z} and E − e = E\{e} the subsets obtained by
removing one node or one edge from the set of nodes or edges. G − z denotes
the graph (N − z,E\δ(z)), i.e., the graph obtained by removing a node z and its
incident edges from G. This is extended to a subsetZ ⊂ N of nodes by the notation
G−Z = (N\Z,E\(δ(Z) ∪ E(Z))).

Each edge e = {i, j} ∈ E, has a fixed cost ce = cij representing the cost of
establishing the direct link connection, and a length de = dij = d(i, j). It is



190 B. Fortz

assumed throughout this work that these edge lengths satisfy the triangle inequality,
i.e.,

d(i, j)+ d(j, k) ≥ d(i, k) for all i, j, k ∈ N .

The cost of a network (N,F ) where F ⊆ E is a subset of possible edges is denoted
by c(F ) = ∑

e∈F
ce. The distance between two nodes i and j in this network is

denoted by dF (i, j) and is given by the length of a shortest path linking these two
nodes in F .

Without loss of generality, all costs are assumed to be nonnegative, because an
edge e with a negative cost ce will be contained in any optimum solution.

For any pair of distinct nodes s, t ∈ N , an [s, t]-path P is a sequence of nodes
and edges (v0, e1, v1, e2, . . . , vl−1, el, vl), where each edge ei is incident to the
nodes vi−1 and vi (i = 1, . . . , l), where v0 = s and vl = t , and where no node
or edge appears more than once in P. A collection P1,P2, . . . ,Pk of [s, t]-paths is
called edge-disjoint if no edge appears in more than one path, and is called node-
disjoint if no node (other than s and t) appears in more than one path. A cycle
(containing s and t) is a set of two node-disjoint [s, t]-paths. A Hamiltonian cycle
is a cycle using each node of the network exactly once. A graph G = (N,E) is
k-edge-connected (resp., k-node-connected) if, for each pair s, t of distinct nodes,
G contains at least k edge-disjoint (resp., node-disjoint) [s, t]-paths.

When the type of connectivity is not mentioned, we assume node-connectivity.
The edge connectivity (resp., node-connectivity) of a graph is the maximal k
for which it is k-edge-connected (resp., k-node-connected). A 1-edge-connected
network is also 1-node-connected, and we call it simply connected. A cycle-free
graph is a forest and a connected forest is a tree. A connected component of a graph
is a maximal connected subgraph. If G− e has more connected components than G
for some edge e, we call e a bridge. Similarly, if Z is a node set and G − Z has
more connected components than G, we call Z an articulation set of G. If a single
node forms an articulation set, the node is called articulation point.

Node and edge-disjoint [s, t]-paths are related to cuts and articulation sets by
Menger’s theorem:

Theorem 1 (Menger (1927))

1. In a graph G = (N,E), there is no cut of size k − 1 or less disconnecting two
given nodes s and t , if and only if there exist at least k edge-disjoint [s, t]-paths
in G.

2. Let s and t be two nonadjacent nodes in G. Then there is no articulation set Z
of size k − 1 or less disconnecting s and t , if and only if there exist at least k
node-disjoint [s, t]-paths in G.

In order to formulate network design problems as integer linear programs, we
associate with every subset F ⊆ E an incidence vector yF = (yFe )e∈E ∈ {0, 1}|E|
by setting



7 Topology-Constrained Network Design 191

yFe =
{

1 if e ∈ F ,
0 otherwise .

Conversely, each vector y ∈ {0, 1}|E| induces a subset

F y = {e ∈ E | ye = 1}

of the edge set E. For any subset of edges F ⊆ E we define

y(F ) =
∑

e∈F
ye.

3 Connected Networks

A fundamental constraint in topological network design is to ensure all nodes can
communicate. This translates into the constraint that a path must exist between
any pair of nodes in the graph, or in other terms, the constructed graph must be
connected.

The problem of finding a minimum cost connected network is polynomially
solvable: if costs are non-negative, there exists an optimal solution with the
minimum number n − 1 of edges in a connected graph, hence the problem reduces
to the well-known Minimum Spanning Tree problem. A simple algorithm to solve it
is the greedy algorithm: start with an empty solution; order the edges of G = (N,E)
by increasing costs; iteratively consider each edge in this sorted list and add it to the
solution if it does not form a cycle with the edges already selected.

The property that a spanning tree is a graph with n− 1 edges and without cycles
is the basis of the greedy algorithm described above. This property also leads to
an integer programming formulation of the problem. Let ye be a binary variable
indicating whether edge e ∈ E is part of the spanning tree. Then the minimum
spanning tree problem can be formulated as

Minimize
∑

e∈E
ceye (7.1)

Subject to y(E) = n− 1, (7.2)

y(E(S)) ≤ |S| − 1 ∀∅ 	= S ⊂ N, (7.3)

ye ∈ {0, 1}, ∀ e ∈ E, (7.4)

where constraint (7.2) imposes the cardinality constraint and constraints (7.3) are
subtour elimination constraints that eliminate all possible cycles from the solution.



192 B. Fortz

Although there is an exponential number of subtour elimination constraints, they
can be separated in polynomial time by a simple minimum cut computation.

Primal-dual arguments can be used to show that the linear programming relax-
ation of formulation (7.1)–(7.4) is integer, and its extreme points coincide with the
incidence vectors of spanning trees. Moreover, the same arguments can be used to
prove the correctness of the greedy algorithm.

Another formulation for the minimum spanning tree problem is obtained by
considering a spanning tree as a connected subgraph with n−1 edges. Connectivity
can be imposed by forcing each cut in the graph to contain at least one edge, leading
to the cut-set formulation

Minimize
∑

e∈E
ceye (7.5)

Subject to y(E) = n− 1, (7.6)

y(δ(S)) ≥ 1 ∀∅ 	= S ⊂ N, (7.7)

ye ∈ {0, 1}, ∀ e ∈ E, (7.8)

where subtour elimination constraints have been replaced by cut inequalities (7.7).
In general, the linear relaxation of (7.5)–(7.8) has fractional extreme points and

therefore its polytope strictly contains the polytope induced by (7.1)–(7.4). Cut
inequalities can be generalized: Consider a partition S1,S2, . . . ,Sp of N into p

nonempty subsets. Any spanning tree contains at least p − 1 edges joining the sets
S1,S2, . . . ,Sp, leading to the valid inequality

1

2

p∑

i=1

y(δ(Si )) ≥ p − 1 (7.9)

that is usually called partition inequality or multi-cut inequality. Cut inequalities
(7.7) are a special case of (7.9) with p = 2. Again, it is possible to show that the
polyhedron of the linear relaxation of the formulation given by (7.6), (7.8), and (7.9)
has integer extreme points. Hence the linear relaxations of the multi-cut formulation
and of the subtour formulation are equivalent and both define the convex hull of
incidence vectors of spanning trees.

The subtour and multi-cut formulations are ideal, but are not usable as such
in practice, as they suffer from an exponential number of constraints. However, a
cutting-plane approach can be used, as both classes of inequalities can be separated
in polynomial time.

Another approach is to model the problem with extended formulations, by
introducing new sets of variables but keeping the number of constraints polynomial.
One of these extended formulations makes use of directed flows between an
arbitrarily chosen root node r ∈ N and all the other nodes to impose connectivity.



7 Topology-Constrained Network Design 193

Indeed, the constructed graph is connected if and only if there exists a path from r

to every other node k ∈ N \ {r}. To this aim, let us consider each node k 	= r as
a commodity, where one unit of flow originates at node r and must be delivered to
node k. In order to represent these flows, we define A = {(i, j), (j, i)|{i, j} ∈ E}
as the directed set of arcs obtained by replacing each edge by two arcs in opposite
direction. As in previous chapters, let xkij be the flow of commodity k in arc (i, j).
We can then formulate the minimum spanning tree problem as:

Minimize
∑

e∈E
ceye (7.10)

Subject to
∑

j∈N+i
xkij −

∑

j∈N−i
xkji = wk

i , ∀ i ∈ N,∀ k ∈ N \ {r} (7.11)

xkij + xk
′
j i ≤ ye, ∀ e = {i, j} ∈ E, ∀ k, k′ ∈ N \ {r}, (7.12)

y(E) = n− 1, (7.13)

xkij ≥ 0, ∀ (i, j) ∈ A, ∀ k ∈ N \ {r}, (7.14)

ye ∈ {0, 1}, ∀ e ∈ E, (7.15)

where, for each i ∈ N , we define

N+i = {j ∈ N : (i, j) ∈ A}, N−i = {j ∈ N : (j, i) ∈ A}. (7.16)

Flow balance constraints (7.25) define a path between r and k with

wk
i =

⎧
⎨

⎩

1, if i = r,

−1, if i = k,

0, otherwise.
(7.17)

Each edge is given a natural direction as flows are directed away from the root
r of the tree. Constraints (7.12) ensure that flow is sent only on edges present in
the spanning tree, and always in the same direction. Finaly (7.13) are the usual
cardinality constraints.

This formulation can also be seen as an application of the max flow-min cut
theorem, and again leads to a complete description of the convex hull of incidence
vectors of spanning trees (or to be more precise, the projection of the formulation
on the space of y-variables defines this polyhedron).

Now consider the general case where costs are not restricted to be positive.
Then a minimum cost connected network is not necessarily a tree, as all negative
cost edges should belong to the optimal solution, possibly creating cycles. Hence
the subtour formulation is not valid anymore. However, the multi-cut and the flow
formulations become valid if cardinality constraints (7.6) and (7.13) are removed.



194 B. Fortz

Moreover, the obtained formulations are ideal again in the sense that their linear
relaxation (or its projection) describe the convex hull of incidence vectors of
connected networks.

4 Survivable Networks

The major problem with the models presented above is that the topology tends
to be sparse, as costs are minimized, the most extreme case being the minimum
spanning tree. However, networks are subject to failures. For example, in the context
of telecommunications, a network is seen as a set of gateway nodes (routers or
telephone offices) and (fiber) links that are placed between nodes. If connectivity
is the only constraint imposed on the network, a single link or node failure will
disconnect it, which is clearly not acceptable.

In this context, survivability refers to the restoration of services in the event of
node or link failure, or, in other words, a network is survivable if there exists a
prespecified number of node-disjoint or edge-disjoint paths between any two nodes.
Again, the only costs considered are construction costs, like the cost of digging
trenches and placing a fiber cable into service.

A considerable amount of research has focused on low-connectivity constrained
network design problems. These models can be described informally as follows:
a set of nodes that have to be connected by a network is given. These nodes are
classified according to their importance, namely the

• special nodes, for which a “high” degree of survivability has to be ensured in the
network to be constructed;

• ordinary nodes, which have to be simply connected to the network;
• optional nodes, which may not be part of the network at all.

The pairs of nodes between which a direct transmission link can be placed are
also given, together with the cost of placing the fiber cable and putting it into service.
The problem now consists in determining where to place fiber cables so that the
construction cost, i.e., the sum of the fiber cable costs, is minimized and certain
survivability constraints are ensured. For instance, we may require that

• the destruction of any single link may not disconnect any two special nodes, or
• the destruction of any single node may not disconnect any two special nodes.

These requirements are equivalent to ask that there exist

• at least two edge-disjoint paths, or
• at least two node-disjoint paths

between any two special nodes.
Higher survivability levels may be imposed by requiring the existence of three

or more paths between certain pairs of nodes according to their importance class.



7 Topology-Constrained Network Design 195

However, up to now, low-connectivity requirements have been found to provide a
sufficient level of survivability for telecommunications operators.

In graph-theoretic language, the set of nodes and possible link connections
can be represented again by an undirected graph G = (N,E). The survivability
requirement or importance of a node is modeled by node types. In particular, each
node s ∈ N has an associated nonnegative integer rs , the type of s. Sometimes, we
also write r(s) instead of rs . A network (N,F ), where F ⊆ E is a subset of the
possible links, is said to satisfy the node-connectivity requirements, if, for each pair
s, t ∈ N of distinct nodes, (N,F ) contains at least

r(s, t) = min{rs, rt }

node-disjoint [s, t]-paths.
Similarly, we say that (N,F ) satisfies the edge-connectivity requirements, if,

for each pair s, t ∈ N of distinct nodes, the network contains at least r(s, t) edge-
disjoint [s, t]-paths. If all node types have the same value k, it is equivalent to request
that (N,F ) is k-node-connected or k-edge-connected.

We consider here the low-connectivity requirements, i.e., node types rs ∈
{0, 1, 2}. Using our previous classification of nodes,

• special nodes have type 2,
• ordinary nodes have type 1, and
• optional nodes have type 0.

To shorten notation, we extend the type function r to sets by setting

r(S) = max{rs | s ∈ S} for all S ⊆ N, and
con(S) = max{r(s, t) | s ∈ S, t ∈ N\S}

= min{r(S), r(N\S)} ∀S ⊂ N,∅ 	= S 	= N .

We write conG(S) to make clear with respect to which graph con(S) is considered.
We can now formulate the connectivity constrained network design problem as

the following integer linear program:

Minimize
∑

e∈E
ceye (7.18)

Subject to y(δ(S)) ≥ con(S) ∀S ⊂ N, ∅ 	= S 	= N, (7.19)

y(δG−z(S)) ≥ conG−z(S) ∀ z ∈ N, S ⊂ N\{z},
∅ 	= S 	= N\{z}, (7.20)

ye ∈ {0, 1} ∀ e ∈ E. (7.21)



196 B. Fortz

It follows from Menger’s Theorem that, for any feasible solution y of this
program, the subgraph (N,F y) of G defines a network satisfying the node-
connectivity requirements. Removing (7.20), we obtain an integer linear program
for edge-connectivity requirements. Inequalities (7.19) are called cut inequalities,
while inequalities (7.20) are called node cut inequalities.

The connectivity constrained network design problem is NP-hard in general. In
particular:

• If rs ∈ {0, 1}, ∀s ∈ N , it reduces to the well-known NP-hard Steiner tree
problem in networks.

• If rs = 2, ∀s ∈ N , it consists in determining a minimum cost two-connected
network. This last problem is NP-hard even if the graph is complete and costs
satisfy the triangle inequality, since with an algorithm for this problem, one could
decide whether a graph has a Hamiltonian cycle by associating a cost equal to 1
to all graph edges and cost equal to 2 to all non-graph edges.

However, for some particular connectivity requirements or costs, or when the
underlying graphG is restricted, the problem may become polynomially solvable:

• If rs = 1, ∀s ∈ N , the problem reduces to the minimum cost connected network
problem studied in the previous section.

• If rs = 1 for exactly two nodes of N and rs = 0 for all the other nodes, the
problem becomes a shortest path problem.

• If rs = k, k ≥ 2, for exactly two nodes of N and rs = 0 for all the other nodes,
the problem becomes a k-shortest paths problem.

• If rs ∈ {0, 1}, ∀s ∈ N , the problem reduces to the Steiner tree problem in
networks. This problem is NP-hard in general, but solvable in polynomial time
in the case where either the number of nodes of type 0 or the number of nodes of
type 1 is restricted.

The general formulation described above and many of its special cases received
a lot of attention. Polyhedral results have been obtained for different special cases
of the model (see Sect. 7 for references to surveys on the subject).

An important class of valid inequalities for k-node-connected networks are
obtained by a generalization of partition inequalities (7.9). First, we observe that the
deletion of k−1 nodes from a k-node-connected network leaves a connected graph.
Thus, ifZ ⊆ N is a node set with exactly k− 1 nodes and S1,S2, . . . ,Sp (p ≥ 2)
is a partition of N\Z into p nonempty subsets, the inequality

1

2

p∑

i=1

y(δG−Z(Si )) ≥ p − 1 (7.22)

is valid for the polytope of k-node-connected networks. These inequalities are
called node-partition inequalities, and can be seen as a generalization of node cut
inequalities (7.20).



7 Topology-Constrained Network Design 197

When r(s) = 2 for all s ∈ N , partition inequalities can be generalized further:
consider again a patition S1,S2, . . . ,Sp (p ≥ 2) ofN and let F ⊆ δ(S1) with |F |
odd. The F -partition inequality is defined as

1

2

p∑

i=1

y(δ(Si ))− y(F ) ≥ p −
⌈ |F |

2

⌉

. (7.23)

To show it is valid, simply add valid inequalities

y(δ(Si )) ≥ 2 ∀ i = 2, . . . , p,

−ye ≥ −1 ∀e ∈ F ,
ye ≥ 0 ∀e ∈ δ(S1) \ F ,

divide by 2 and round up to obtain (7.23).
The formulation above is in the space of design variables only, and involves an

exponential number of constraints. As in Sect. 3, it is also possible to obtain valid
polynomial-size models by the introduction of flow variables. We do it here only for
edge-connectivity requirements. Assuming that we want to construct a network in
which there are r(s, t) edge-disjoint paths between nodes s and t , we can define a
set K of commodities where we have one commodity for each node pair s, t such
that r(s, t) > 0, with a flow requirement of r(s, t) where the source and sink of
commodity k are arbitrarily chosen between s and t .

Minimize
∑

e∈E
ceye (7.24)

Subject to
∑

j∈N+i x
k
ij −

∑
j∈N−i x

k
ji = wk

i , ∀ i ∈ N,∀ k ∈ K, (7.25)

xkij + xkji ≤ ye, ∀ e = {i, j} ∈ E, ∀ k ∈ K, (7.26)

xkij ≥ 0, ∀ (i, j) ∈ A, ∀ k ∈ K, (7.27)

ye ∈ {0, 1}, ∀ e ∈ E. (7.28)

Flow balance constraints (7.25) define r(s, t) paths between s and t for each
commodity k ∈ K corresponding to the node pair s, t , with

wk
i =

⎧
⎨

⎩

r(s, t), if i = s,

−r(s, t), if i = t,

0, otherwise,
(7.29)

and (7.26) impose that these paths are edge-disjoint.



198 B. Fortz

Applying simple max-flow/min-cut arguments, it is quite easy to see that the
linear relaxation of the flow formulation is equivalent to the formulation involving
only design variables with an exponential number of constraints.

5 Hop Constraints

The models from the previous section usually lead to designs that are very sparse.
In general, the survivability constraints alone may not be sufficient to guarantee a
cost effective routing with a good quality of service. The reason for this is that the
routing paths may be too long, leading to unacceptable delays. Since in most of the
routing technologies, delay is caused at the nodes, it is usual to measure the delay
in a path in terms of its number of intermediate nodes, or equivalently, its number
of arcs (or hops). Thus, to guarantee the required quality of service, one can impose
a limit on the number of arcs in the routing paths.

Given a graph G = (N,E) with nonnegative edge costs ce, e ∈ E, and a set of
node pairsK (sometimes called commodities), we study the problem of constructing
a minimum cost set of edges so that the induced subgraph contains at least K edge-
disjoint paths with at most L edges between each pair in K .

In theory, we could formulate the limit on the number of hops in a path in the
space of design variables only. This approach was used by several authors (see
Sect. 7) but has a major drawback: it leads to formulations with an exponential
number of constraints, some of which are really hard to interpret and also difficult
to handle numerically (the associated separation problem being NP-hard).

In this chapter, we prefer to use extended formulations, once again based on
multi-commodity flow variables, that allow to model the limit on the path length
more naturally. Moreover, these formulations imply all the valid inequalities known
for formulations in the space of design variables. More precisely, the projection of
the extended formulations presented here on the space of design variables strictly
contains the polyhedron defined by formulations in the space of design variables
presented in the literature so far.

The basic idea is to use a layered representation of graph G to implicitly force
each path to use at most L edges. We model the subproblem associated with each
commodity with a directed graph composed of L+1 layers as illustrated in Fig. 7.1.

Namely, from the original non-directed graph G = (N,E), we create a directed
layered graph Gq = (Nq,Aq) for each commodity q ∈ K , where Nq = Nq

1 ∪
. . .∪Nq

L+1 withNq

1 = {o(q)},Nq

L+1 = {d(q)} andNq
l = N\{o(q)}, l = 2, . . . , L.

Let vql be the copy of v ∈ N in the l-th layer of graph Gq . Then, the arc sets are
defined by Aq = {(iql , jql+1) | {i, j} ∈ E, iql ∈ Nq

l , j
q

l+1 ∈ Nq

l+1, l ∈ {1, . . . , L}} ∪
{d(q)l, d(q)l+1, l ∈ {2, . . . , L}}, see Fig. 7.1. In the sequel, an (undirected) edge in
E with endpoints i and j is denoted {i, j} while a (directed) arc between iql ∈ Nq

l

and jql+1 ∈ Nq

l+1 is denoted by (i, j, l) (the commodity q is omitted in the notation
as it is often clear from the context).



7 Topology-Constrained Network Design 199

Fig. 7.1 Original network (a) and its alternative (or associated) layered representation (b) when
L = 4

Note that each path between o(q) and d(q) in the layered graph Gq is composed
of exactly L arcs (hops), which correspond to a maximum of L edges (hops) in
the original one. In fact this is the main idea of this transformation, since in the
layered graph any path is feasible with respect to the hop-constraints. The usual
multi-commodity flow equations defined in this layered graph yield the following
model:

Minimize
∑

e∈E
ceye (7.30)

Subject to
∑

j∈N+i x
lq
ij −

∑
j∈N−i x

l−1 q
ji =wq

i , ∀ i ∈ Nq, ∀ l∈{2, . . . , L+1}, ∀ q∈K (7.31)

∑L
l=1

(
x
lq
ij + xlqji

)
≤ ye, ∀ e = {i, j} ∈ E, ∀ q ∈ K, (7.32)

x
lq
ij ≥ 0, integer, ∀ (i, j, l) ∈ Aq, ∀ q ∈ K, (7.33)

ye ∈ {0, 1}, ∀ e ∈ E. (7.34)

Flow balance constraints (7.31) define K paths between o(q) and d(q) in the layered
graph Gq with

wk
i =

⎧
⎨

⎩

K, if i = o(q),

−K, if i = d(q),

0, otherwise.
(7.35)



200 B. Fortz

Constraints (7.32) guarantee that paths are edge-disjoint and only use installed
edges.

This model can become very large when the number of commodities and
the size of the network increase, but it can be solved efficiently using Benders
decomposition. It is also interesting to mention that if there is only one commodity,
and with non-negative costs, the linear relaxation of this model is always integral
when L ≤ 3.

6 Rings

As stated before, models from Sect. 4 lead to very sparse designs. In fact, it turns
out that the optimal solution of the two-connected network problem is often a
Hamiltonian cycle. Hence, any edge failure implies that the flow that was routed
on that edge must be rerouted, using all the edges of the network, an obviously
undesirable feature.

It is therefore necessary to add extra constraints to limit the region of influence
of the traffic that it is necessary to reroute if a connection is broken. Hop constraints
presented above are a possible way to achieve this. Another approach presented
in this section is based on the technology of self-healing rings, quite popular in
telecommunications networks. Self-healing rings are cycles in the network equipped
in such a way that any link failure in the ring is automatically detected and the traffic
rerouted by the alternative path in the cycle. It is natural to impose a limited length
of these rings. This is equivalent to set a bound on the length of the shortest cycle
including each edge.

This leads to the problem of designing a minimum cost network with the
following constraints:

1. The constructed network contains at least two node-disjoint paths between every
pair of nodes ( 2-connectivity constraints),
and

2. each edge of the network belongs to at least one cycle whose length is bounded
by a given constant K (ring constraints).

This problem is called the Two-Connected Network with Bounded rings (2CNBR)
problem. The length of an edge can be unitary (i.e., similar to hop constraints), or
can be weighted, to represent for example the physical delay for flowing through a
given edge.

A useful tool to analyze feasible solutions of 2CNBR is the restriction of a graph
to bounded rings. Given a graph G = (N,E) and a constant K > 0, we define for
each subset of edges F ⊆ E its restriction to bounded rings FK as

FK =
{

e ∈ F : e belongs to at least one cycle
of length less than or equal to K in F

}

.



7 Topology-Constrained Network Design 201

The subgraph GK = (N,EK) is the restriction of G to bounded rings. Note that an
edge e ∈ E\EK will never belong to a feasible solution of 2CNBR.

Further we denote by Y the set of incidence vectors of subsets F ⊆ E such
that

1. F is two-connected,
2. F = FK .

Then, the 2CNBR problem consists in

Minimize
∑

e∈E
ceye

Subject to y ∈ Y.

Checking that GK is two-connected, i.e., that Y is nonempty, can be done in
polynomial time. We therefore assume in the remainder of this chapter that there
always exists a feasible solution to the problem.

Since all costs ce, e ∈ E are assumed to be nonnegative, there always exists
an optimal solution of 2CNBR whose induced graph is minimal with respect to
inclusion. More precisely, if FK is two-connected, as F ⊇ FK , F is also two-
connected and the cost of F is greater than or equal to the cost of FK . We can thus
relax the constraints and just require that FK is two-connected for a set of edges F
to be feasible. Hence, 2CNBR can be equivalently formulated as

Minimize
∑

e∈E
ceye

Subject to F y
K is two-connected,

ye ∈ {0, 1}, ∀ e ∈ E.

In order to formulate the problem using only design variables y, observe that if a
subset of edges F ⊆ E is such that (G−F )K is not two-connected, then G−F does
not contain a feasible solution. Therefore each feasible solution contains at least one
edge from F .

As we are only interested in minimal feasible solutions, this is sufficient to
formulate the 2CNBR problem as the following integer linear program:

Minimize
∑

e∈E
ceye (7.36)

Subject to y(F ) ≥ 1, ∀F ⊆ E, (G− F )K is not two-connected, (7.37)

ye ∈ {0, 1}, ∀ e ∈ E. (7.38)

Constraints (7.37) are called subset constraints.



202 B. Fortz

As feasible solutions of 2CNBR are two-connected graphs, valid inequalities
for the design of 2-connected networks are also valid for 2CNBR. In particular,
cut constraints (7.19) and node-partition inequalities (7.22) are very important in
branch-and-cut strategies to solve the problem. However, for general 2-connected
networks, cut constraints are facet-defining under very mild conditions, while in
many cases they do not define facets for 2CNBR. By studying conditions for these
inequalities to define facets, it is possible to strengthen them.

Given a subset of nodes S ⊆ N , ∅ 	= S 	= N , the cut constraint imposes that
there are at least two edges leaving S, i.e.,

y(δ(S)) ≥ 2.

To characterize which cut constraints define facets, it is useful to know, for any pair
of edges e, f ∈ δ(S), if there exists a solution whose incidence vector lies in the
face y(δ(S)) = 2, i.e., if there exists a feasible solution containing e and f but no
other edge of δ(S)). This is the case if and only if

Ce,f = E(S) ∪ E(N\S) ∪ {e, f }

is feasible, i.e., if (Ce,f )K is two-connected.
A useful tool to represent and analyze the vectors belonging to the face defined

by a cut constraint is the ring-cut graph: Given a graph G = (N,E), a constant
K > 0, and a subset of nodes S ⊂ N , ∅ 	= S 	= N , the ring-cut graph RCGS,K =
(δ(S), RCES,K) induced by S is the graph defined by associating one node to each
edge in δ(S) and by the set of edges

RCES,K =
{{e, f } ⊆ δ(S) : (Ce,f )K is two-connected

}
.

With the help of the ring-cut graph, it is possible to characterize which cut
constraints are facet-defining. Moreover, the ring-cut graph can be used to derive
new valid inequalities for 2CNBR. If F ⊆ δ(F ) is an independent subset in the
ring-cut graph RCGS,K , then

y(F )+ 2y(δ(S)\F ) ≥ 3 (7.39)

is a valid inequality for the 2CNBR problem. Inequalities (7.39) are called ring-cut
inequalities, and are also very useful to strengthen formulations of 2CNBR.



7 Topology-Constrained Network Design 203

7 Bibliographical Notes

7.1 Connected Networks

The greedy algorithm for the Minimum Spanning Tree problem is due to Kruskal
(1956). The tree polytope is a special case of the matroid polytope first described
by Edmonds (1971). For a review on polyhedral results for tree related problems,
see Magnanti and Wolsey (1995). Another compact formulation for the minimum
spanning tree problem (not described here) was proposed by Martin (1991).

Grötschel, Monma and Stoer studied in detail network design problems with con-
nectivity constraints. A survey of their work can be found in Grötschel et al. (1995a)
and Stoer (1992). A later survey by Kerivin and Mahjoub (2005) concentrates on
polyhedral aspects for some special cases and presents a general branch-and-cut
algorithm. They also consider problems with bounded rings and hop-constrained
problems.

7.2 Survivable Networks

In their earliest work on the subject, Grötschel and Monma (1990) introduced a
general model mixing edge and node survivability requirements. They examined the
dimension of the associated polytope and proved facet results for cut and node-cut
inequalities.

They also described completely the polytope of the (1-)connected network
problem, based on the work of Cornuéjols et al. (1985), by the introduction of
partition inequalities. The first separation algorithm for these inequalities was
proposed by Cunningham (1985) and requires |E| min-cut computations. Barahona
(1992) reduced this computing time to |N | min-cut computations. F -partition
inequalities were first proposed by Mahjoub (1994).

Low-connectivity constrained network design problems have been introduced
by Monma and Shallcross (1989) and Stoer (1992), who introduced most of the
terminology and models presented in Sect. 4. For high-connectivity requirements,
the reader is referred to Grötschel et al. (1995b) and Stoer (1992).

Directed multi-commodity flow formulations were studied by Magnanti and
Raghavan (2005), and they introduced improved directed flow models that are much
stronger than the cut formulations for some variants of the problem (in particular
when there are many nodes with unitary requirements).

The complexity of the minimum cost two-connected network problem was
established by Eswaran and Tarjan (1976). An in-depth survey of Steiner tree
problems was made by Winter (1987). The algorithm for solving the Steiner tree
problem in polynomial time when either the number of nodes of type 0 or the
number of nodes of type 1 is restricted is due to Lawler (1976). At the time of



204 B. Fortz

writing, the most recent and efficient exact approaches for some variants of the
Steiner tree problem are due to Fischetti et al. (2017).

7.3 Hop Constraints

Hop-constraints were considered by Balakrishnan and Altinkemer (1992) as a
means of generating alternative base solutions for a network design problem. Later
on, Gouveia (1998) presented a layered network flow reformulation whose linear
programming bound proved to be quite tight. This reformulation has, then, been
used in several network design problems with hop-constraints (Pirkul and Soni
2003; Gouveia and Magnanti 2003; Gouveia et al. 2003) and even some hop-
constrained problems involving survivability considerations (more on this below).
It is also interesting to point out that the apparently simple general network design
problem with L = 2 already contains a complex structure (Dahl and Johannessen
2004) who also conduct a computational study of this variation of the problem.

The K-edge-disjoint L-hop-constrained network design problem was first stud-
ied by Huygens et al. (2007) who only considerL ≤ 4 andK = 2. The node-disjoint
variant was studied by Gouveia et al. (2006) and later by Gouveia et al. (2008) who
consider a more complicated version. A summary of these results is also presented in
the survey by Kerivin and Mahjoub (2005). Itaí et al. (1982) and later Bley (2003)
study the complexity of this problem for the node-disjoint and the edge-disjoint
cases. More recently, Bley and Neto (2010) also studied the approximability of the
problem for L = 3 and L = 4.

Some authors focused on the formulation of some variants of the problem in the
space of design variables. For K = 1, Dahl (1999) has provided such a formulation
and shown that it describes the corresponding convex hull for L ≤ 3. Later on,
Dahl et al. (2004) have shown that finding such a description for L ≥ 4 would
be much more complicated. For K ≥ 2 the results are even worse. Huygens et al.
(2004) have extended Dahl’s result for K = 2 and L ≤ 3. For L ≥ 4, the only
interesting result for the moment is the one given by Huygens and Mahjoub (2007)
for L = 4 and K = 2 where a valid formulation has been given. However, in
terms of valid inequalities and with the exception of the well known L-path cut
inequalities, nothing is known for larger values of L. This may also explain why the
only cutting plane method for the more general problem with several sources and
several destinations by Huygens et al. (2007) only considers L ≤ 3.

The extended formulation for the general case presented in Sect. 5 was introduced
by Botton et al. (2013) who also proposed an efficient Benders decomposition
method to solve it. They also applied this algorithm to a generalisation of the
model with so-called reliable edges (Botton et al. 2015). For the single commodity
case, Botton et al. (2018) proposed valid inequalities that completely describe the
polyhedron of incidence vectors of feasible solutions for K = 2 and L = 3 (hence
for arbitrary costs), extending results by Bendali et al. (2010) for non-negative costs.



7 Topology-Constrained Network Design 205

A version of the problem where the hop constraint limit is different in the nominal
graph and in case of failures was introduced by Gouveia and Leitner (2017) and an
efficient branch-and-cut approach for this problem was proposed by Gouveia et al.
(2018).

Another application of extended formulations for hop constrained problems
in the context of distribution networks was proposed by De Boeck and Fortz
(2018), where some preprocessing techniques to reduce the size of the resulting
formulations are also discussed.

Recently, Gouveia et al. (2019) published a survey of layered graph approaches
for hop constrained problem.

7.4 Rings

The Two-Connected Network with Bounded Rings problem was first studied by
Fortz et al. (2000). More polyhedral results can be found in Fortz (2000); Fortz
and Labbé (2002). Fortz and Labbé (2004) studied the particular case of unit edge
lengths. The edge-connectivity version of the problem was studied by Fortz et al.
(2006).

Other network design problems involve the creation of rings of bounded lengths.
Goldschmidt et al. (2003) study the problem of connecting subsets of customers
to a concentrator through a self-healing ring connected to a backbone ring of
concentrators. This problem, called the SONET Ring Assignment Problem (SRAP)
has the drawback that many instances are infeasible. Carroll et al. (2013) studied a
generalization of the SRAP, called the Ring Spur Assignment Problem (RSAP). In
this problem, the objective is to design a set of bounded disjoint local rings that are
interconnected by a backbone ring, like in the SRAP. Since no SRAP solution exist
in some real world instances, locations that have no possible physical route due to
limitations of geography can be connected to local rings by spurs off the local rings.

8 Conclusions and Perspectives

Topological network design is a very important topic, and is often used as first step
of network planning, considering a long-term horizon where demand is not known
in advance. Decoupling the decisions on capacity and routing from the physical
design is possible because technology in telecommunications make these two sets
of decisions independent, as fiber optics cables have almost infinite capacity, but
capacity restrictions arise from equipments that are subsequently added to the nodes.

However, when considering topological design, the simplest model that consists
of building a connected network (and that can be solved in polynomial time), is not
sufficient as survivability and quality of service aspects must be ensured: one must
guarantee that redundancy exists in the network to cover different cases of failures,



206 B. Fortz

and that paths used for connecting demand nodes are not too long. Unfortunately,
as soon as such constraints are added, all problems become NP-hard and more
challenging. Therefore, there is also quite a lot of literature (not covered in this
chapter) dealing with the development of heuristics for the problems presented here.

Concerning exact methods, problems with survivable requirements only (as those
presented in Sect. 4) have been extensively studied from the polyhedral point of
view. The problems are usually modeled in the “natural” space of design variables
and several classes of facet-inducing valid inequalities have been proposed in the
literature, leading to powerful branch-and-cut algorithms able to solve realistic size
instances very efficiently.

As soon as constraints on the length of the paths are added, formulating the
problems in the space of design variables only becomes much more challenging, and
most approaches rely on extended formulations. But, despite the progress of modern
solvers, these formulations quickly become intractable because of their large size,
and decomposition methods like Lagrangian relaxation, Benders decomposition or
branch-and-price are often used.

Interesting open problems involve a better understanding of Benders cuts arising
from Benders decomposition methods for these problems in order to develop more
efficient separation algorithms, as currently most approaches rely on solving linear
programs for the separation. Given that large size instances remain intractable, there
is also a large unexplored research direction in matheuristics, i.e., methods using
structural knowledge from exact methods to derive effective heuristics and provide
a certificate of quality for the solutions obtained. To the best of our knowledge, the
state-of-the-art heuristics are meta-heuristics that do not use any knowledge gained
from exact method development.

On a more managerial side, it would also be interesting to measure more
precisely, on realistic instances, the loss in solution quality due to the separation
of topological design and capacity allocation / routing decisions compared to an
integrated strategy.

References

Balakrishnan, A., & Altinkemer, K. (1992). Using a hop-constrained model to generate alternative
communication network design. ORSA Journal on Computing, 4, 192–205.

Barahona, F. (1992). Separating from the dominant of the spanning tree polytope. Operations
Research Letters, 12, 201–203.

Bendali, F., Diarrassouba, I., Mahjoub, A., & Mailfert, J. (2010). The edge-disjoint 3-hop-
constrained paths polytope. Discrete Optimization, 7(4), 222–233.

Bley, A. (2003). On the complexity of vertex-disjoint length-restricted path problems. Computa-
tional Complexity, 12(3–4), 131–149.

Bley, A., & Neto, J. (2010). Approximability of 3- and 4-hop bounded disjoint paths problems.
In Proceedings of IPCO 2010, Lausanne. Lecture notes in computer science (vol. 6080, pp
205–218). Berlin: Springer.

Botton, Q., Fortz, B., & Gouveia, L. (2015). On the hop-constrained survivable network design
problem with reliable edges. Computers & Operations Research, 64, 159–167.



7 Topology-Constrained Network Design 207

Botton, Q., Fortz, B., & Gouveia, L. (2018). The 2 edge-disjoint 3-paths polyhedron. Annals of
Telecommunications, 73(1), 29–36.

Botton, Q., Fortz, B., Gouveia, L., & Poss, M. (2013). Benders decomposition for the hop-
constrained survivable network design problem. INFORMS Journal on Computing, 25(1),
13–26.

Carroll, P., Fortz, B., Labbé, M., & McGarraghy, S. (2013). A branch-and-cut algorithm for the
ring spur assignment problem. Networks, 61(2), 89–103.

Cornuéjols, G., Fonlupt, F., & Naddef, D. (1985). The traveling salesman problem on a graph and
some related integer polyhedra. Mathematical Programming, 33, 1–27.

Cunningham, W. (1985). Optimal attack and reinforcement of a network. Journal of ACM, 32,
549–561.

Dahl, G. (1999). Notes on polyhedra associated with hop-constrained walk polytopes. Operations
Research Letters, 25, 97–100.

Dahl, G., & Johannessen, B. (2004). The 2-path network problem. Networks, 43, 190–199.
Dahl, G., Foldnes, N., & Gouveia, L. (2004). A note on hop-constrained walk polytopes.

Operations Research Letters, 32(4), 345–349.
De Boeck, J., & Fortz, B. (2018). Extended formulation for hop constrained distribution network

configuration problems. European Journal of Operational Research, 265(2), 488–502.
Edmonds, J. (1971). Matroids and the greedy algorithm. Mathematical Programming, 1(1), 127–

136.
Eswaran, K., & Tarjan, R. (1976). Augmentation problems. SIAM Journal on Computing, 5, 653–

665.
Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., et al. (2017). Thin-

ning out steiner trees: a node-based model for uniform edge costs. Mathematical Programming
Computation, 9(2), 203–229.

Fortz, B. (2000). Design of survivable networks with bounded rings, network theory and
applications (vol 2). Dordrecht: Kluwer Academic Publishers.

Fortz, B., & Labbé, M. (2002). Polyhedral results for two-connected networks with bounded rings.
Mathematical Programming, 93(1), 27–54.

Fortz, B., & Labbé, M. (2004). Two-connected networks with rings of bounded cardinality.
Computational Optimization and Applications, 27(2), 123–148.

Fortz, B., Labbé, M., & Maffioli, F. (2000). Solving the two-connected network with bounded
meshes problem. Operations Research, 48(6), 866–877.

Fortz, B., Mahjoub, A., Mc Cormick, S., & Pesneau, P. (2006). Two-edge connected subgraphs
with bounded rings: polyhedral results and branch-and-cut. Mathematical Programming, 105,
85–111.

Goldschmidt, O., Laugier, A., & Olinick, E. V. (2003). SONET/SDH ring assignment with capacity
constraints. Discrete Applied Mathematics, 129, 99–128.

Gouveia, L. (1998). Using variable redefinition for computing lower bounds for minimum spanning
and steiner trees with hop constraints. INFORMS Journal on Computing, 10, 180–188.

Gouveia, L., Joyce-Moniz, M., & Leitner, M. (2018). Branch-and-cut methods for the network
design problem with vulnerability constraints. Computers & Operations Research, 91, 190–
208.

Gouveia, L., & Leitner, M. (2017). Design of survivable networks with vulnerability constraints.
European Journal of Operational Research, 258(1), 89–103.

Gouveia, L., Leitner, M., & Ruthmair, M. (2019). Layered graph approaches for combinatorial
optimization problems. Computers & Operations Research, 102, 22–38.

Gouveia, L., & Magnanti, T. L. (2003). Network flow models for designing diameter-constrained
minimum-spanning and Steiner trees. Networks, 41(3), 159–173.

Gouveia, L., Patrício, P., & Sousa, A. (2006). Compact models for hop-constrained node survivable
network design. In Telecommunications planning: Innovations in pricing. Network design and
management (pp. 167–180). New York: Springer.

Gouveia, L., Patrício, P., & Sousa, A. (2008). Hop-contrained node survivable network design: An
application to MPLS over WDM. Networks and Spatial Economics, 8(1), 3–21.



208 B. Fortz

Gouveia, L. E., Patrício, P., de Sousa, A., & Valadas, R. (2003). MPLS over WDM network design
with packet level QoS constraints based on ILP Models. In Proceedings of IEEE INFOCOM
(pp. 576–586).

Grötschel, M., & Monma, C. (1990). Integer polyhedra arising from certain design problems with
connectivity constraints. SIAM Journal on Discrete Mathematics, 3, 502–523.

Grötschel, M., Monma, C., & Stoer, M. (1995a). Design of survivable networks. Handbooks in
OR/MS, vol 7 on Network models (chap 10, pp. 617–672). Amsterdam: North-Holland.

Grötschel, M., Monma, C., & Stoer, M. (1995b). Polyhedral and computational investigations for
designing communication networks with high survivability requirements. Operations Research,
43(6), 1012–1024.

Huygens, D., Labbé, M., Mahjoub, A. R., & Pesneau, P. (2007). The two-edge connected hop-
constrained network design problem: Valid inequalities and branch-and-cut. Networks, 49(1),
116–133.

Huygens, D., & Mahjoub, A. R. (2007). Integer programming formulations for the two 4-hop-
constrained paths problem. Networks, 49(2), 135–144.

Huygens, D., Mahjoub, A, & Pesneau, P. (2004). Two edge-disjoint hop-constrained paths and
polyhedra. SIAM Journal on Discrete Mathematics, 18(2), 287–312.

Itaí, A., Perl, Y., & Shiloach, Y. (1982). The complexity of finding maximum disjoint paths with
length constraints. Networks, 2, 277–286.

Kerivin, H., & Mahjoub, A. R. (2005). Design of survivable networks: A survey. Networks, 46(1),
1–21.

Kruskal, J. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7, 48–50.

Lawler, E. (1976). Combinatorial optimization: Networks and matroids. New-York: Holt, Rinehart
and Wilson.

Magnanti, T. L., & Raghavan, S. (2005). Strong formulations for network design problems with
connectivity requirements. Networks, 45(2), 61–79.

Magnanti, T. L., & Wolsey, L. A. (1995). Optimal trees. Handbooks in Operations Research and
Management Science, 7, 503–615.

Mahjoub, A. (1994). Two-edge connected spanning subgraphs and polyhedra. Mathematical
Programming, 64, 199–208.

Martin, R. K. (1991). Using separation algorithms to generate mixed integer model reformulations.
Operations Research Letters, 10(3), 119–128.

Menger, K. (1927). Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10, 96–115.
Monma, C., & Shallcross, D. (1989). Methods for designing communications networks with certain

two-connected survivability constraints. Operations Research, 37(4), 531–541.
Pirkul, H., & Soni, S. (2003). New formulations and solution procedures for the hop constrained

network design problem. European Journal of Operational Research, 148, 126–140.
Stoer, M. (1992). Design of survivable networks. Lecture Notes in Mathematics (vol. 1531). Berlin:

Springer.
Winter, P. (1987). Steiner problems in networks: A survey. Networks, 17, 129–167.



Chapter 8
Network Design with Routing
Requirements

Anantaram Balakrishnan, Thomas L. Magnanti, Prakash Mirchandani,
and Richard T. Wong

In Memory of Randy Magnanti

1 Introduction

The topological design and configuration of a network determines its service
capabilities to transport flows of material, energy, or information effectively. These
capabilities include the network’s ability to route origin-to-destination flows on
paths that meet performance requirements such as maximum permitted route
length, time, transshipments, or likelihood of failure. To account for the interde-
pendence between design and routing decisions, optimization models for network
design jointly decide the network configuration and flow routes. However, due to
economies of scale (e.g., fixed costs) in network design, optimal solutions to a
basic network design model that focuses on cost minimization, without explicitly
imposing routing constraints, may not meet the service requirements. For instance,
when fixed costs are very high, the optimal network configuration will be sparse,
implying that the routes for origin-to-destination flows on the chosen network can
be long. Similarly, since facilities with higher performance capabilities (e.g., faster
transport service) are more expensive, the minimum cost network design may select

A. Balakrishnan (�)
University of Texas at Austin, Austin, TX, USA
e-mail: anantb@mail.utexas.edu

T. L. Magnanti
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: magnanti@mit.edu

P. Mirchandani
University of Pittsburgh, Pittsburgh, PA, USA
e-mail: pmirchan@katz.pitt.edu

R. T. Wong
e-mail: r.t.wong@att.net

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_8

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_8&domain=pdf
mailto:anantb@mail.utexas.edu
mailto:magnanti@mit.edu
mailto:pmirchan@katz.pitt.edu
mailto:r.t.wong@att.net
https://doi.org/10.1007/978-3-030-64018-7_8


210 A. Balakrishnan et al.

cheaper arcs that have poorer routing performance. So, for application contexts in
which providing good or guaranteed end-to-end service performance is important,
we must augment the basic network design model by explicitly incorporating
the desired performance requirements. These requirements often take the form of
constraints on the routes chosen for each origin-to-destination flow. The goals of
this chapter are to explore and understand the structure of network design problems
with additional route performance requirements, and discuss tailored algorithms
to effectively solve the problem. For this purpose, we focus on a core model that
augments the uncapacitated multicommodity, fixed-charge network design model
with constraints on the arc flow variables to capture the routing requirements for
each origin-destination pair. We refer to this model as the Network Design with
Routing Requirements (NDRR) problem. This NP-hard problem encompasses a
broad spectrum of models including the well-known Budget-constrained shortest
path and Hop-constrained network design problems. We discuss modeling and
theoretical issues as well as algorithmic strategies for the NDRR problem (including
valid inequalities and decomposition methods), and relate these issues to prior work
on special cases such as constrained shortest path and hop-constrained network
design problems that can also arise as subproblems of the general NDRR problem.
The simpler and special structure of these problems makes them more amenable
to theoretical analysis, and have led to tailored solution techniques. We discuss
opportunities to extend these results and methods to the NDRR problem and its
capacitated variant. Next, we outline some practical application contexts for the
NDRR model.

The NDRR model and its variants apply to transportation, telecommunication,
electricity distribution, and other network-based service contexts. We briefly outline
selected applications particularly in the transportation sector where route per-
formance requirements can take various forms for different modes of freight or
passenger transport.

• The vehicle routing problem with delivery deadlines (e.g., Desaulniers et al.
2014; Vidal et al. 2013) requires finding minimum-distance vehicle routes to
deliver products from depots to geographically dispersed customers, with each
customer requiring delivery by a specified time. We can view this problem as a
NDRR problem (with additional constraints to ensure that the routes are cyclic)
in which each required delivery corresponds to a commodity to be dispatched
from a depot to a customer location; selecting an arc from i to j corresponds
to routing a truck (carrying orders for multiple customers) between these two
locations at a fixed cost equal to the distance from i to j. The delivery deadline
for each customer imposes an upper limit on the time that the truck assigned
to this customer takes to reach the customer location after departing from the
depot, including the time for intermediate deliveries. Thus, the route performance
requirement for each customer is the total time for the depot-to-customer route.

• Package and less-than-truckload carriers need to decide when to dispatch trailers
(loaded or empty) between various hub or transshipment locations, and how to
route shipments on the chosen services (e.g., Malandraki et al. 2001; Estrada



8 Network Design with Routing Requirements 211

and Robuse 2009). Chapter 12 of this volume on Service Network Design and
Chap. 14 on Motor Carrier Network Design elaborate on the optimization models
that arise in this context. Moving trailers between any pair of hubs incurs fixed
costs that depend both on distance and the frequency of these services. More
frequent movements increase cost, but reduce the waiting (at hub) and/or total
travel time for shipments. Shipments may have different priorities, with some
requiring time-definite deliveries and others having less stringent requirements.
This service design problem can be viewed as a NDRR problem defined on
a time-space network whose arcs represent trailer movements and connections
(including waiting) at hubs, with the additional requirement that shipments must
be routed within their guaranteed origin-to-destination transit times.

• Airline crew scheduling (e.g., Gopalakrishnan and Johnson 2005) entails decid-
ing the pairing or duty cycle for each crew member to ensure that each scheduled
flight has the required complement of crew members while satisfying crew work
rules. The cost of each duty cycle depends on the crew member’s assigned flight
legs, deadheads, and layovers at intermediate locations. Federal regulations and
union rules limit the total duration and possibly the number of layovers in each
duty cycle. In the NDRR framework, the commodities are crew members, and the
routes correspond to deciding the sequence of flight legs for each duty cycle such
that the cycle duration (and number of layovers) does not exceed the permitted
value.

• Service design for freight railroads (e.g., Zhu et al. 2014; see also Chap. 13)
requires, as one of its components, designing an effective blocking network.
This problem entails selecting a limited number of blocks (sequences or paths
of train-service legs, which can be viewed as logical links between yards, on
which groups of railcars travel together) for routing shipments (e.g., Barnhart
et al. 2000; Ahuja et al. 2007). To limit the number of times railcars are re-
classified, i.e., moved from one block to the next block at an intermediate yard,
during their origin-to-destination trip, the number of arcs in each shipment’s trip
plan must not exceed a pre-specified upper limit (that can vary by shipment).

• Liner container shipping companies must decide the cyclic routes for their ships,
the frequency of service on each route, and the movement of containers between
origins and destinations on the chosen services (e.g., Agarwal and Ergun 2008;
see also Chap. 15). The route for each container consists of a sequence of sailing
legs on different services, with transshipment from one service to the other at
intermediate ports. Transshipments are expensive due to cargo damage or loss,
handling, and storage; they also increase the origin-to-destination transit time
because containers have to wait at the intermediate port for the next scheduled
service. So, shipping companies seek to design their service network so that
they can transport cargo subject to restrictions on the transit time and number
of transshipments (e.g., Balakrishnan and Karsten 2017; Karsten et al. 2017).

Analogous applications with route performance requirements are also pervasive
in telecommunications network planning. The performance specifications, often
referred to as Quality of Service (QoS) requirements, stem from the need to



212 A. Balakrishnan et al.

limit the ‘latency’ or end-to-end transmission delay for the many vital and time-
sensitive traffic flows on telecommunication networks, including voice-over-IP,
distributed game playing, transmission of financial information, and emergency
communications. The latency depends on the speeds of the links on the path as
well as the number and speeds of intermediate routers/switches. Moreover, we
must route critical communications over ‘reliable’ paths having low probability of
link failures or packet switching loss. For certain applications such as multicast
broadcast networks, QoS considerations impose additional requirements such as
limiting the number of links or hops on the paths from the root node (typically,
the message source) to every other node (distribution points or destinations).

The problem of deciding the optimal network configuration (or upgrading an
existing network) while ensuring adequate routing performance also arises in
contexts such as energy distribution (e.g., De Boeck and Fortz 2017) and supply
chain networks, and applies to various scheduling problems that we can define
over virtual (versus physical) networks. For instance, we can view the parallel
machine, non-preemptive scheduling problem where jobs have different release
times and deadlines and require sequence-dependent change-over times (or costs)
as the problem of identifying the least cost star network (with as many branches
as the number of machines) that spans all the job nodes, with restrictions on the
maximum time to reach each job node from the root node. Other applications of the
NDRR framework include managing feature addition during a product’s life-cycle
(e.g., Wilhelm et al. 2003) and optimal path configuration for radar avoidance (e.g.,
Zabarankin et al. 2001).

Given such widespread applications of the NDRR problem, we focus on how
to effectively model and solve this problem. Section 2 provides a classification
of network design problems with routing requirements, and formulates the core
version that we will address in the remainder of the chapter. We also discuss the
challenges in solving the problem, and outline some related threads of theoretical
research on the problem’s difficulty. Section 3 outlines a polyhedral approach for
effectively solving the general network design problem with routing requirements
that combines problem reduction, model strengthening, and cutting planes. Sec-
tion 4 addresses two notable special cases of the problem—constrained shortest
path and hop-constrained network design problems—that can arise as subproblems
of the general problem. We also describe illustrative tailored solution approaches
that exploit the special structure of these problems. Section 5 discusses decom-
position methods to solve the general problem, including Lagrangian relaxation,
column generation, and Benders decomposition. We also discuss how the preceding
methods can be extended to the capacitated variant of the problem that imposes
arc capacity constraints in addition to routing requirements. Section 6 provides
Bibliographical Notes on prior literature related to the discussions in the following
sections. Section 7 concludes the paper with a summary of key observations
and learnings about the NDRR problem, and some thoughts on future research
directions.



8 Network Design with Routing Requirements 213

2 Problem Classification and Model Formulation

Network design encompasses a vast array of models that differ in their features and
assumptions depending on the application context. Section 2.1 briefly outlines a
framework to classify network design problems based on their structure and assump-
tions. Section 2.2 elaborates on the types of additional flow constraints (besides
demand, supply, and flow conservation constraints) that routing requirements may
impose. Section 2.3 presents the integer programming formulation for the NDRR
problem that we study, and Sect. 2.4 provides insight into why the problem is
challenging and why even some of its simpler special cases are difficult.

2.1 Model Classification

The two core decisions for network design are: (1) which arcs, from the given
set of candidate arcs, to include in the design, and (2) how to route the origin-
to-destination flows on the chosen arcs so as to satisfy demand. We refer to
the corresponding decision variables as design variables and flow or routing
variables. Two types of constraints are common to all network design models:
flow conservation constraints on the flow variables (including demand and supply
constraints), and forcing constraints to relate the design and routing decisions, i.e.,
to ensure that flow is only routed on arcs that are included in the design. We can
differentiate network design problems along the following four main dimensions,
based on the arc and flow characteristics and requirements.

• Directed arcs that can carry flows only in the arc’s direction versus Undirected
edges that permit flows in both directions. Generally, network design models
(without any additional valid inequalities) over undirected networks tend to have
weaker LP lower bounds than those for directed networks (see, for example,
Balakrishnan et al. 1989).

• Multiple commodities, distinguished by their origins and destinations, costs,
and other characteristics, versus a Single homogeneous commodity that can be
supplied by any source to a destination. With multiple commodities, the origin-
destination demand pattern can be arbitrary or have special structure (e.g., single
source, single destination, or complete demand between every pair of nodes).
For network design, multicommodity formulations can be tighter (e.g., Rardin
and Choe 1979; Vanderbeck and Wolsey 2010).

• Non-bifurcated flows that must be routed on a single path from each com-
modity’s origin to destination versus Bifurcated flows that permit splitting the
required flows among multiple origin-to-destination paths. Ensuring that flows
are non-bifurcated requires defining binary variables to define the path for each
commodity, making the problems more difficult to solve.

• Additional constraints: Network design applications in practice may impose
additional constraints besides the flow conservation and forcing constraints of



214 A. Balakrishnan et al.

the basic uncapacitated model. These constraints fall into two main categories—
configuration constraints and flow restrictions. Configuration or design con-
straints involve only the design variables, and define the permissible configu-
rations. For instance, some applications require the design to be a tree network
(e.g., for multicasting) while others seek a network that is the union of cycles
(e.g., container ship routes, fiber optic ring networks). Flow or routing restrictions
limit the routing options by imposing constraints on the flow variables. We will
discuss these latter constraints in more detail in Sect. 2.2.

Within this framework, the model can accommodate several other variants
such as different objective functions (e.g., maximizing profits with the flexibility
to selectively meet demands, or minimizing the number of transshipments) and
incorporating node attributes (costs, waiting or processing times, other capabilities).
In this chapter, we focus on directed, multicommodity problems with non-bifurcated
flows together with additional constraints that we discuss next to account for service
requirements.

2.2 Routing Requirements

We capture routing and service requirements by constraining the routes on which
commodities can flow. We can broadly classify such constraints as inter-commodity
constraints or intra-commodity constraints. Inter-commodity constraints enforce
joint requirements on the flows of multiple commodities. The most common
example is the arc capacity constraint to ensure that the total flow of all commodities
on an arc does not exceed the arc’s capacity. Other examples include situations
in which using an arc for one (or more) commodity on an arc necessitates either
not routing another commodity (or subset of commodities) or co-routing another
commodity on that arc. For instance, in the rail freight industry, policy and
technological restrictions prohibit transporting certain combinations of commodities
on the same arc. Likewise, in crew scheduling, some organizations favor keeping
crew members from different occupations (commodities) together as a team for
multiple trips. Intra-commodity constraints refer to flow constraints that involve flow
variables from a single commodity. Many of the applications discussed in Sect. 1
fall into this category since they impose performance or service requirements on
each origin-to-destination flow, which in our model corresponds to an individual
commodity. These applications vary in the performance metric they use to ensure
that the solution meets service requirements. Further, the metric is often additive,
i.e., the total value of the metric for a path, which the constraint seeks to limit, is the
sum of the metrics of the arcs and nodes on this path. We next list some common
metrics.

• Time: In transportation applications, the metric for each arc (node) is often the
transportation (transshipment) time. Upper bounds on the transit time from origin
to destination, which is the sum of traversal times of the arcs and nodes on the



8 Network Design with Routing Requirements 215

route, can stem from delivery deadlines, product perishability, or the need to
reduce in-transit inventory.

• Distance: Each arc has an associated distance, and operational or service
considerations may require selecting origin-to-destination routes whose distance
does not exceed a pre-specified value that can vary with the origin-destination
pair.

• Cost: Arcs and nodes may have associated costs or other financial metrics
(different from those in the cost minimization objective function) for using the
arcs or for processing at the nodes. Associated constraints, sometimes called
budget constraints, impose upper limits on the total cost for each origin-to-
destination route.

• Transshipments: Many contexts require limiting the number of intermediate
transshipments on origin-to-destination routes, for instance, to avoid excessive
handling and to regulate the effort and time for processing at nodes. By
associating a metric whose value is one for each arc, the total value for any
origin-to-destination route is the number of hops, i.e., number of arcs on this
route; the service requirement imposes an upper bound on this value.

• Reliability: In contexts where arcs (or nodes) can fail, a natural service require-
ment is that the reliability of any chosen origin-to-destination route, defined as
the likelihood that this route is operational, must exceed a pre-specified threshold
value. Defining the performance metric of each arc (node) as the logarithm of the
probability that the arc (node) will be operational and assuming that arc (and
node) failures are independent, the service requirement imposes a lower bound
on the sum of the arc (node) metrics on any route.

Additional constraints on flow variables may also arise due to operational
restrictions or policies that govern routing decisions. For instance, we can add
constraints to model logical conditions such as the following: if the route contains
arcs from a specified subset, it must not include any arc (or must necessarily include
every arc) from another subset. These constraints arise in transportation contexts
(e.g., shipment routing for different materials on railroads) and also to impose
special configuration requirements such as requiring multiple possible routes for
each commodity (e.g., Grotschel et al. 1995; Balakrishnan et al. 2009).

In each of the above examples, the requirement (e.g., maximum transit time,
maximum permitted number of hops, minimum required reliability) can vary by
origin-destination pair. Further, if we classify traffic flows between an origin and
destination into multiple types based on their priorities or service characteristics,
we can define separate commodities for each flow type, permitting finer-grained
differentiation of routing requirements. Finally, we can readily incorporate perfor-
mance metrics associated with nodes by simply adding the value of each metric
corresponding to a node to the metric of each arc that is incident to (or from) that
node. Next, we present an integer programming formulation for the network design
problem with routing constraints, and discuss some of its special cases.



216 A. Balakrishnan et al.

2.3 Model Formulation

As noted in Sects. 2.1 and 2.2, network design problems with routing restrictions
have many different variants. Our main focus in this chapter is to understand the
effects on problem structure and solution strategies when we impose performance
or service requirements on origin-to-destination routes in network design solutions.
Accordingly, we consider the core multicommodity, fixed charge, uncapacitated
network design problem, requiring non-bifurcated flows for each commodity,
augmented with intra-commodity routing constraints.

We use the following notation to formulate this optimization problem. Let
G = (N ,A ) be the directed graph on which the problem is defined. Node set
N consists of n (= |N |) nodes representing origin, destination, or transshipment
nodes, and arc set A contains arcs that are available for installation and use. Let
K denote the set of commodities. Commodity k ∈ K originates at node O(k) and
terminates at nodeD(k). Commodities may be further distinguished by their routing
and service requirements, i.e., we can have multiple commodities with the same
origin and destination but different routing constraints. Without loss of generality
(since the network is uncapacitated), we scale each commodity’s demand to one but
permit the routing or flow cost to vary by commodity. Define N +

i = {j ∈ N :
(i, j) ∈ A } and N −

i = {j ∈ N : (j, i) ∈ A } as the subsets of downstream and
upstream neighbors for each node i.

The network design problem has two sets of binary decision variables: (1) design
variable yij , for each arc (i, j) ∈ A , that takes the value one if the solution includes
arc (i, j) in the design, and is zero otherwise; and, (2) routing or flow variable xkij ,
for arc (i, j) ∈ A and commodity k ∈ K that equals one if the solution routes
commodity k on arc (i, j). Let fij and ckij respectively denote the non-negative
fixed cost for using arc (i, j) and flow cost for routing commodity k on this arc.
We permit imposing mk different routing constraints for each commodity k, one
corresponding to each performance metric of interest (as discussed in Sect. 2.2). For
each metric m = 1, 2, . . . , mk , let qkmij denote the non-negative coefficient or weight

of the routing variable xkij in the mth constraint, and let Qkm be the weight limit.
Using this notation, we can formulate the Network Design problem with Routing

Requirements (NDRR) as the following integer program, denoted as model [NDRR].

Minimize
∑

(i,j)∈A
(fij yij +

∑

k∈K
ckij x

k
ij ) (8.1)

subject to:

∑
j∈N +

i
xkij −

∑
j∈N −

i
xkji =

⎧
⎨

⎩

1 if i = O(k),

−1 if i = D(k),

0 otherwise,
∀ i ∈ N , (8.2)

xkij ≤ yij , ∀ (i, j) ∈ A , k ∈ K , (8.3)



8 Network Design with Routing Requirements 217

∑
(i,j)∈A qkmij xkij ≤ Qkm, ∀k ∈ K ,m = 1, 2, . . . , mk, (8.4)

xkij = 0 or 1, yij = 0 or 1, ∀ (i, j) ∈ A , k ∈ K . (8.5)

The objective function (8.1) minimizes the total fixed and routing costs. Con-
straints (8.2) impose flow conservation at every node for each commodity. Together
with the integrality constraints (8.5) on the routing variables xkij , the flow conser-
vation equations ensure that the flow solution selects a single origin-to-destination
route for each commodity k. The forcing constraints (8.3) relate the design and
routing decisions; they specify that we can route commodity k on an arc (i, j)

only if the design includes this arc (after incurring its fixed cost). Although it is
possible to represent this condition using fewer ‘aggregate’ forcing constraints of
the form

∑
k∈K xkij ≤ |K |yij , one for each arc, the disaggregate version (8.3)

yields a tighter linear programming (LP) relaxation (see Balakrishnan et al. 1989).
The routing constraints (8.4) require the total weight of commodity k’s route to be
less than or equal to the weight limit, for each metric m = 1, 2, . . . , mk . Finally,
constraints (8.5) require the design and flow variables to be binary. Note that we
have assumed, for notational simplicity, that every commodity can flow on each arc
in the set A . If a commodity is prohibited from flowing on certain arcs (e.g., due
to operational or technological issues), we can eliminate the corresponding flow
variables from the formulation.

The [NDRR] model has two interesting special cases that we will study further
Sect. 4. First, if the set K contains just one commodity, then the problem reduces to
finding the shortest path that satisfies all the routing constraints for this commodity.
This special case, called the Constrained Shortest Path (CSP) problem, is interesting
both because it has direct applications in a variety of practical settings and because
it often arises as a subproblem in decomposition algorithms for the NDRR problem
and other models. Section 4.1 discusses its properties and solution algorithms. In
the second interesting and relevant special class of problems, which we call Hop-
constrained problems, there is only one weight metric, with weight qk1

ij = 1 for
every commodity k and arc (i, j), and the weight limit for commodity k is the max-
imum allowable number of arcs (or hops) on the commodity’s origin-to-destination
route. We refer to this limit as the hop limit. Among such hop-constrained problems,
we consider path and tree versions. For the latter version, we are given a root node
and seek a minimum spanning tree such that none of the nodes are more than a
specified number of hops away from the root node in the chosen tree. This problem,
which we call the Hop-constrained Minimum Spanning Tree (HCMST) problem,
can be modeled as a special case of the NDRR problem in which |K | = n− 1, the
root node is the common origin node for all commodities, and every other node is
a destination. The Hop-constrained Steiner Tree problem generalizes the HCMST
problem by requiring only a subset of nodes to be connected to the root node,
i.e., commodities are defined only for a subset of non-root nodes. As we noted in
Sect. 2.2, hop constraints are common in many practical applications. Section 4.2
discusses properties and solution methods for hop-constrained problems.



218 A. Balakrishnan et al.

We conclude this discussion by noting that model [NDRR] is an arc-flow formu-
lation of the NDRR problem in which the flow variables model each commodity’s
route as a sequence of arcs. As an alternative, we might consider a path-flow
formulation in which the (binary) flow variables represent the choice of origin-
to-destination path for each commodity. By limiting (a priori) the available paths
to those that are feasible, i.e., satisfy all the routing constraints, the model only
requires path selection and forcing constraints. The path-flow formulation has the
advantage of having a tighter LP relaxation, and hence higher LP lower bounds,
than the arc-flow model. However, it also has the significant drawback of requiring
an exponential (in the size of the network) number of path-flow variables. One
approach for overcoming this drawback is to use column generation to solve the
problem; this approach iteratively generates promising paths based on the dual
values for the current solution. However, the subproblem to generate columns is a
CSP problem, which is itself NP-hard. In Sect. 6, we discuss the column generation
approach to solve NDRR problems.

2.4 Challenges in Solving the NDRR Problem

The NDRR problem is challenging to solve (compared to the basic uncapacitated
fixed-charge network design problem) due to the added routing restrictions which
complicate the problem structure and make it difficult to even find feasible solutions.
We next discuss these issues.

Problem Complexity Adding routing requirements to even simple problems can
make them computationally difficult and intractable. For instance, the Shortest Path
problem can be efficiently solved, but if we add just one routing constraint, the
resulting problem, often called the Budget-constrained Shortest Path (BCSP) prob-
lem, is NP-hard (see Garey and Johnson 2002). Similarly, although the Minimum
Spanning Tree problem is polynomially solvable, if we add hop constraints (to limit
the number of arcs on the path from a root node to every other node), we obtain the
HCMST problem, which is NP-hard even if the number of hops is limited to two.
The result follows using a transformation from the uncapacitated facility location
problem (Dahl 1998). Since the BCSP and the HCMST problems are both special
cases of network design with routing requirements, the NDRR problem is also NP-
hard.

Multiple Routing Requirements If a commodity has more than one routing
requirement, then even finding a feasible solution is NP-hard (Balakrishnan et al.
2020, Grandoni et al. 2014). The four-node example shown in Fig. 8.1, with two
routing requirements for a commodity, illustrates this issue. In this example, the
commodity originates at node 1 and terminates at node 4. The numbers next to
each arc show the arc’s cost and its two weights, one for each metric, in the two
routing constraints. The weight limits for both metrics is five. The minimum cost
path from node 1 to node 4 is 1-2-4, but this path does not satisfy either routing



8 Network Design with Routing Requirements 219

(cij; q1
ij, q2

ij)

(0; 3, 5) (0; 3, 1)

(0; 0, 0)

(0; 0, 0)

(4; 5, 3) (4; 1, 3)

1 4

3

2

Fig. 8.1 Example with multiple routing requirements

constraint. If the problem contains only one routing constraint, say, only the first
constraint, we can readily verify if the problem instance is feasible by finding the
shortest “weight” path, using the arc weight for the first metric as the length of
each arc. In this example, the shortest weight path for the first metric is 1-2-3-4,
with a total weight of 4. Hence, the problem instance is feasible with just the first
routing constraint. However, this path does not meet the second routing requirement.
Similarly, the shortest weight path 1-3-2-4 using the second set of weights as arc
lengths satisfies the second routing requirement, but not the first. The paths 1-2-4
and 1-3-4 satisfy neither routing constraint. So, this problem instance is infeasible if
we impose both routing constraints. Observe that we had to examine every origin-
to-destination path to determine that the instance is infeasible, suggesting that, with
multiple routing requirements, even verifying feasibility is difficult.

Worst-Case Integrality Gap As another indicator of the added problem difficulty
when we incorporate a routing constraint, consider again the BCSP problem.
We know that the network flow formulation of the unconstrained Shortest Path
problem has integer extreme points; so, the LP relaxation of this problem has
an integer optimal solution with zero integrality gap. However, when we add a
budget constraint, the integrality property no longer holds. That is, the optimal
solution to the LP relaxation of the BCSP can be fractional, necessitating the explicit
addition of integrality constraints. The fractional LP solution arises because the
solution can satisfy the budget constraint ‘on average’ by routing partial flows on
two different paths—one with low cost but high weight and another with higher
cost but lower weight. With more than one weight constraint, the LP solution
can be a convex combination of more than two paths, none of which satisfy all
the weight constraints. These observations suggest that, for general fixed-charge
network design problems, the gap between the optimal IP and LP values may be
higher when we include routing requirements compared to the gap without these
restrictions.



220 A. Balakrishnan et al.

Finally, note that for the CSP problem (and the more general NDRR problem),
if the problem imposes only one routing requirement for each commodity (as in
the above example), then the original problem is feasible if and only if the LP
relaxation is feasible. Moreover, we can construct a feasible solution from the LP
solution by routing each commodity over its feasible route on which the LP solution
routes a fractional flow, and setting the design variables on all the arcs belonging to
these routes to one. However, these observations do not hold when there are two or
more routing requirements for a commodity. In this case, the LP relaxation may be
feasible even if the original integer program is not. So, we cannot readily construct
a feasible IP solution from the LP solution.

3 Solving the NDRR Problem

As our discussions in the previous sections indicate, adding routing requirements to
fixed-charge network design models makes them more difficult to solve. Therefore,
effectively solving these problems requires exploiting the embedded structure of
these problems to reduce problem size, raise lower bounds, and develop specialized
solution methods to accelerate performance. We focus on methods that can either
solve the problem optimally or provide guarantees of solution quality. We do not
consider the many possible meta-heuristic approaches that solve the NDRR problem
approximately but do not assure near-optimality. This section describes a cutting
plane approach to solve the arc flow formulation of the general NDRR problem
based on the recent paper by Balakrishnan et al. (2017), henceforth abbreviated
as BLM, which is the only paper to date that addresses the general version of
this problem. In Sect. 3.1, we discuss problem reduction methods to eliminate
decision variables and also tighten the NDRR problem formulation. Section 3.2
discusses valid inequalities and outlines polyhedral results that underlie a cutting
plane approach for the NDRR problem. Computational tests using this method,
together with problem reduction and optimization-based heuristics, demonstrated
that this approach can significantly reduce computational time compared to applying
standard solution procedures.

3.1 Problem Reduction

Problem reduction refers to methods that we can apply a priori (before solving
the problem) to fix the values for some decision variables based on feasibility
requirements or properties of optimal solutions. For the NDRR problem, these
techniques entail either eliminating (i.e., fixing at zero) some commodity routing
or design variables, or requiring a commodity to flow through an arc (i.e., fixing
the corresponding commodity flow and design variables to one). Such restrictions
not only reduce the size of the model formulation (by eliminating variables and



8 Network Design with Routing Requirements 221

constraints), but can also tighten the model, i.e., increase the optimal value of the LP
relaxation. We next discuss some intuitive approaches to reduce the NDRR problem.
For this discussion, for any commodity k ∈ K and metricm = 1, 2, . . . , mk , letLkmab
denote the total length of a shortest weight path from node a to node b in the given
graph, using the arc weight qkmij as the length of each arc (i, j).

Eliminating Flows To determine if we can eliminate the flow of commodity k on
an arc (i, j), we check if, for each metric m, the shortest weight path from O(k) to
D(k) containing this arc, consisting of the shortest weight path from O(k) to node
i, arc (i, j), and the shortest weight path from node j to D(k) has total weight not
exceeding the weight limit Qkm. If not, i.e., if:

LkmO(k)i + qkmij + LkmjD(k) > Qkm (8.6)

for at least one metric m = 1, 2, . . . , mk , then arc (i, j) does not belong to
any feasible origin-to-destination path for commodity k, and so we can eliminate
variable xkij and the associated forcing constraint (8.3) from the model formulation.
Further, if the above test eliminates the flow of commodity k on all arcs incident
to (or from) a node i, we can eliminate the flow conservation constraint in (8.2) for
this commodity at node i. Finally, if we find that only one commodity k′ can flow on
an arc (i, j), then we can omit the design variable yij from the formulation, simply
add the fixed cost fij to the routing cost ck

′
ij for this commodity, and eliminate the

corresponding forcing constraint in (8.3).

Fixing Flows For any arc (i, j) and commodity k, let Lkmab (A \(i, j)) denote the
total weight (or length) of a shortest weight path from node a to node b after deleting
arc (i, j) from the given graph, and using the arc weights for metricm as arc lengths.
Then, if

LkmO(k)D(k)(A \(i, j)) > Qkm (8.7)

for at least one metric m = 1, 2, . . . , mk , i.e., the shortest weight path that does not
include arc (i, j) is not feasible for some metric, then commodity k must necessarily
flow on arc (i, j). In this case, we can set xkij = yij = 1 in the formulation, drop
these two variables, and omit all the forcing constraints (8.3) for arc (i, j). Further,
since commodity k can only be routed on an elementary path (without cycles) in
any optimal solution, we impose the restriction that this commodity cannot flow on
any other arc that is incident from node i or to node j . So, we can drop the variables
xk
i′j ′ for all arcs (i′, j ′) with either i′ = i or j ′ = j but not both, and eliminate the

forcing constraints for these variables.

Fixing Routes For any commodity k and any feasible (satisfying routing require-
ments) origin-to-destination path p for this commodity, let C(p) = ∑

(i,j)∈p ckij
and T C(p) =∑(i,j)∈p(fij + ckij ) respectively denote the routing cost and the total

(fixed plus routing) cost of this path. The total cost essentially assigns the fixed



222 A. Balakrishnan et al.

cost of every arc on path p to commodity k. Suppose the problem instance has a
unique feasible O(k)-to-D(k) path p∗ whose total cost T C(p∗) does not exceed
the routing C(p) for any other feasible path p for commodity k. Then, the NDRR
problem has an optimal solution that routes commodity k on path p∗, implying that
we can fix the route for commodity k. To apply this test, we use a CSP algorithm,
with commodity k’s routing requirements as constraints, to identify path p∗ and
the other paths. Specifically, p∗ is the constrained shortest path using the total cost
(fij + ckij ) as the length of each arc (i, j). To find the other paths p, we apply the
following procedure. For every arc (i, j) in p∗, we delete (i, j) from the network,
find the constrained shortest path using routing costs as arc lengths, and choose p′
as the least (routing) cost path among these paths. If T C(p∗) ≤ C(p′), then we can
eliminate commodity k (and all its associated variables and constraints) from the
problem formulation since this commodity must flow on path p∗; in this case, we
fix to one the values of the design variables yij for all arcs (i, j) on p∗, and omit the
forcing constraints for the underlying flow variables.

The above discussion illustrates the two broad approaches to reduce the problem
size by eliminating or fixing variables—based on weight feasibility, such as the
first two conditions for eliminating or fixing flows, or on cost (optimality) such
as the third test for fixing routes. These approaches can greatly improve solution
performance for the overall NDRR problem both by reducing model size (variables
and constraints) and by raising the LP lower bounds. The effectiveness of these
tests depends on the characteristics of the problem instance. The feasibility tests
(for eliminating or fixing flows) are likely to be more effective if the weight limits
in the routing requirements are somewhat stringent (tight), the network is sparse, and
the arcs vary widely in their weights. For instance, for the hop-constrained network
design problem (that requires each commodity to flow on a route that uses no more
than a prespecified number of arcs or hops), if the hop limits are small and the
network is sparse, the test to eliminate flows can be very effective since many arcs
may not belong to any low-hop path from the commodity’s origin to destination. If,
in addition to the hop constraint, the route is also subject to a more general weight
constraint and the distribution of arc weights has wide dispersion, then the problem
instance may permit further reduction. We conclude this discussion by noting that
the first two methods, for eliminating and fixing flow variables, also apply to the
CSP problem.

3.2 Valid Inequalities and Composite Algorithm
for the NDRR Problem

Polyhedral approaches have proven to be very effective to solve several notoriously
difficult integer programming problems, including many variants of network design.
The success of these methods rests on using strong problem formulations (i.e.,
formulations with small gaps between the optimal value of the integer program and



8 Network Design with Routing Requirements 223

its LP relaxation) and on developing tight valid inequalities, preferably facets, that
can be added to cutoff fractional solutions. Often, tailored valid inequalities, that
exploit insights about the polyhedral structure of the underlying problems, are most
effective and yield significant improvements in the LP lower bounds. Previously,
researchers have studied the polyhedral structure and developed tighter formulations
for certain special cases of the NDRR problem such as hop-constrained network
design (see Sect. 4). For the general NDRR problem, we next summarize the work
of Balakrishnan et al. (2017) (BLM) who developed and successfully applied several
classes of valid inequalities to solve the problem’s arc flow formulation [NDRR].

The LP relaxation of model [NDRR] may achieve a much smaller optimal value
than the integer program by splitting the flow of a commodity across multiple origin-
to-destination paths. This flow splitting occurs for two reasons: (1) by splitting
flows, the LP relaxation can select fractional values for the design (yij ) variables,
thus only partially absorbing the arc fixed costs; and (2) the LP solution can
reduce the routing cost component of its objective value by partially routing a
commodity’s flow on paths that have low routing costs but high weights since
it is only required to meet the route restrictions ‘on average’ (as illustrated in
Sect. 2.3). The first reason applies more generally to other fixed-charge problems,
whereas the second reason is specific to the NDRR problem. BLM propose three
broad families of inequalities, called Route Composition, Contingent Routing, and
Multicommodity Design inequalities, to reduce flow splitting, and prove that some
specific versions of these inequalities are facet-defining. The first two inequality
classes focus on reducing (partial) flows on infeasible paths, thus addressing the
second reason above, whereas the last class addresses both reasons. To motivate
these inequalities, provide intuition, and highlight the underlying principles, we
discuss a few illustrative versions of these inequalities; BLM provide a more
comprehensive treatment.

Route Composition inequalities These commodity-specific inequalities impose
the condition that the route for a given commodity must not contain more than a
certain number of arcs from a carefully chosen subset of arcs. Since each routing
requirement resembles the capacity constraint in a knapsack problem, constraints
analogous to the knapsack cover inequality (e.g., Nemhauser and Wolsey 1988) are
a natural starting point for NDRR valid inequalities. Specifically, if A ′ is a subset
of arcs such that

∑
(i,j)∈A ′ qkmij > Qkm for some metric m = 1, 2, . . . , mk , then no

feasible path for commodity k can contain all the arcs in A ′, and so the inequality∑
(i,j)∈A ′ xkmij ≤ |A ′| − 1 is valid. However, this inequality is based solely on the

arc weights and does not take into account a key requirement that governs the choice
of commodity k’s routing variables in the NDRR problem, namely, that the set of
arcs on which commodity k flows must constitute an elementary path from O(k) to
D(k). By exploiting this requirement, we can formulate a cut that is significantly
stronger than the basic cover inequality. To illustrate this opportunity, consider the
flow of commodity k on two arcs (i1, j1) and (i2, j2), and suppose the sum of the
weights of these two arcs is less than the weight limit for every metric m. So, based
solely on their individual weights, we cannot impose the requirement that at most



224 A. Balakrishnan et al.

one of these arcs must be selected for commodity k. However, if we can determine
that the two arcs cannot simultaneously belong to any feasible O(k)-to-D(k) path,
then the inequality xki1j1

+ xki2j2
≤ 1 is valid. For this purpose, we note that any

path that contains both arcs must either traverse arc (i1, j1) first before arc (i2, j2),
or vice versa. For any metric m, the total weight of the shortest weight origin-to-
destination path that contains arc (i1, j1) before arc (i2, j2) is L1km = LkmO(k)i1

+
qkmi1j1
+ Lkmj1i2

+ qkmi2j2
+ Lkmj2D(k)

, whereas the smallest total weight if the order is

reversed isL2km = LkmO(k)i2
+qkmi2j2

+Lkmj2i1
+qkmi1j1

+Lkmj1D(k)
. The smaller of these two

total weights is the weight of the shortest weight O(k)-to-D(k) path that contains
both arcs. Hence, if Min{L1km, L2km} > Qkm for some metric m, we cannot route
commodity k on any path that contains both arcs. In this situation, we say that xki1j1

and xki2j2
are incompatible flows, and the inequality xki1j1

+ xki2j2
≤ 1 is valid. We

can further strengthen this inequality by ‘lifting’ it, i.e., by adding some other flow
variables to the left-hand side. For instance, if A ′ ∈ A is a set of arcs such that the
flow variables xk

i′1j ′1
and xk

i′2j ′2
for all (i′1, j ′1), (i′2, j ′2) ∈ A ′ are pair-wise incompatible

with each other, then the inequality
∑

(i′,j ′)∈A ′ xki′j ′ ≤ 1 is valid.

We can also generalize this inequality. Let r > 1 be an integer, and arc set A ′ ⊆
A with |A ′| ≥ r . If no feasible solution to formulation [NDRR] permits commodity
k to flow over more that (r−1) arcs of A ′, then we say that A ′ is r-arc incompatible.
Given an r-arc incompatible set A ′, let A ′′ ⊆ A \ A ′. If every arc (i, j) ∈ A ′′
is incompatible for commodity k with every arc in A ′ ∪ A ′′, then the inequality∑

(i,j)∈A ′ xkij+(r−1)
∑

(i,j)∈A ′′ xkij ≤ r−1 is valid. This discussion illustrates how
we can jointly exploit the weight constraints and the origin-to-destination routing
requirement to develop tight valid inequalities for the NDRR problem.

Contingent Routing Inequalities This second class of inequalities further extends
this principle of combining the weight constraints and the origin-to-destination
routing requirement. A version of these inequalities, call Lifted Turn constraints,
expresses the requirement that if a commodity flows on any arc in one subset, it must
also flow on an arc of another subset. Consider a node v, where v is neither the origin
nor the destination of commodity k. Let Out(v) ⊆ N +

v be a subset of the outgoing
arcs at node v. If In(v) ⊆ N −

v denotes the maximal subset of incoming arcs (i, v)
into node v such that every arc in In(v) is pair-wise incompatible with every arc
in Out(v), then the inequality

∑
(i,v)∈In(v) xkiv ≤

∑
(v,j)∈N +

v \Out(v) x
k
vj is valid.

Note that the pair-wise incompatibility between arcs in In(v) and arcs in Out(v)

arises because, for some m, L1km = LkmO(k)i + qkmiv + qkmvj + LkmjD(k) > Qkm, for

all (i, v) ∈ In(v) and (v, j) ∈ Out(v). Given the arc set Out(v), we can identify
In(v) in the following way. Let Lkmmin(Out(v)) = min(v,j)∈Out(v)(qkmvj + LkmjD(k))

and Lkmmax(N
+
v \ Out(v)) = max(v,j)∈N +

v \Out(v)(q
km
vj + LkmjD(k)). An arc (i, v)

belongs to In(v) if and only if LkmO(k)i + qkmiv + Lkmmax(N
+
v \ Out(v)) ≤ Qkm and

LkmO(k)i+qkmiv +Lkmmin(Out(v)) > Qkm. BLM discuss an alternate way of identifying



8 Network Design with Routing Requirements 225

the sets In(v) and Out(v), and show that the Lifted Turn inequality is facet defining
under mild conditions. They also discuss a generalization of this inequality obtained
by considering arcs that are incident to and from a subgraph spanning multiple nodes
instead of the single node v.

Multicommodity Design Inequalities Both the previous two classes of inequali-
ties restrict the flows of a single commodity and do not involve the design variables.
The Multicommodity Design (MCD) inequalities impose variable upper bounds
(that depend on the design variables) on the sum of flows of multiple commodities
on various arcs. This very general class of inequalities is particularly effective
in eliminating fractional LP solutions to [NDRR] because it relates the design
and flow variables across multiple commodities and arcs. We first define two
underlying commodity-specific relationships, called OR and IF relationships, that
stem respectively from the Route Composition and Contingent Routing inequalities
(both of which focus on a single commodity):

• an OR(k,A ′, λ) relationship specifies that no feasible path for commodity k can
use more than λ arcs from a set A ′; and,

• an IF (k,A ′,A ′′) relationship specifies that if commodity k flows on an arc of
A ′ ⊂ A , then it must also flow on an arc of A ′′ ⊆ A \A ′.

These two types of inequalities permit us to develop the following broad class
of MCD inequalities. Let Ω = R1, R2, . . . , RQ denote Q relationships such

that relationship q is either an OR(k,A ′, λ) relationship or an IF (k,A ′,A ′′)
relationship. Let IOR and IIF denote the subsets of indices q corresponding to
the OR and IF relationships in the set Ω , and suppose δij is an even number of
relationships in Ω that involve arc (i, j) ∈ A . Adding the inequalities in Ω to the

forcing constraints x
kq
ij ≤ yij , and rounding down the resulting right hand side gives

the following inequality for model [NDRR]:

∑

q∈IOR

∑

(i,j)∈A ′q
x
kq
ij +

∑

q∈IIF

∑

(i,j)∈A ′q
x
kq
ij ≤

∑

(i,j)∈A

δij yij

2
+ �

∑

q∈IOR

λq

2
�. (8.8)

This MCD inequality tightens the [NDRR] if
∑

q∈IOR λq is odd. When the subset
IIF is empty, the MCD inequality has only OR relationships on the left hand side,
and is facet defining under relatively mild conditions.

Composite Algorithm We can solve the NDRR problem by developing a tailored
approach that uses the inequalities discussed above in a cutting plane approach,
blended with an optimization-based heuristic. Since the number of inequalities in
each of the classes is exponential in the input size, BLM use heuristics to identify
inequalities violated by the LP solution. After solving the LP relaxation of this
strong model, they use a LP-based heuristic to identify a feasible solution that fixes
and releases variable values, an approach that is fast and effective for generating
near-optimal solutions for large-scale instances. This method yields solutions that
are within 1% of optimality, significantly outperforming (both in terms of solution



226 A. Balakrishnan et al.

time and solution quality at termination) a standard branch-and-bound procedure
(with built-in general cutting planes) that attempts to solve the base NDRR model
without model strengthening and problem reduction.

3.3 Extension to Capacitated Network Design with Routing
Restrictions

The approach discussed thus far can be extended to the Capacitated Network Design
problem with Routing Restrictions (CNDRR) that not only imposes the routing
constraints with non-bifurcated flow but also incorporates the following arc capacity
constraints. If dk denotes the demand for commodity k and uij is the capacity of arc
(i, j), then we simply add the constraints

∑
k∈K dkxkij ≤ uij yij for all arcs (i, j),

to the [NDRR] formulation to model the CNDRR problem. Observe that, in this
constraint although it suffices to use just the capacity uij as the right-hand side value,
multiplying this value with the design variable yij strengthens the formulation. The
CNDRR problem is more difficult because its LP relaxation can have fractional
flows even when all the design variables are integer-valued and all the fractional
flow paths for each commodity satisfy its routing requirements.

Researchers have developed various families of valid inequalities for the Capac-
itated Network Design (CND) problem (without routing restrictions) or its variant,
the network loading problem (with discrete and modular capacities), to tighten the
model. Such inequalities include the cutset, flow-cutset, partition, residual capacity,
and c-strong inequalities. These inequalities remain valid even for the CNDRR
problem, and so we can add them to the CNDRR formulation to strengthen it.
Conversely, we can add the weight constraints and our NDRR valid inequalities
to the formulation of the capacitated network design problem without routing
constraints.

Interestingly, our commodity routing constraint and the arc capacity constraint
are analogous but ‘orthogonal’ in the following sense. The routing constraint
imposes an upper limit on the total weight of all the arcs on which a given
commodity flows, whereas the arc capacity constraint limits the total flow of all
the commodities that use a given arc. Conceptually, we can think of the routing
constraint as a ‘longitudinal’ requirement along a commodity’s path, whereas the
capacity constraint is a ‘lateral’ requirement across commodities for an arc. We
can exploit this complementary nature of the two requirements to tighten the valid
inequalities for the routing requirements (or to eliminate variables) based on the
capacity constraints and vice versa. We provide below some examples of such
‘integration’ of the two requirements to strengthen the CNDRR model.



8 Network Design with Routing Requirements 227

• Suppose the demand dk for a commodity k exceeds the capacity of an arc (i, j).
In this case, not only can we omit the variable xkij (since commodity k cannot
flow on arc (i, j)), but also delete this arc from the network when computing
the shortest weight paths needed to eliminate or fix flows of commodity k

(see NDRR problem reduction methods in Sect. 3.1). Moreover, eliminating the
arc flow variable xkij can tighten both the Route Composition and Contingent
Routing inequalities discussed in Sect. 3.2. For instance, for the Lifted Turn
inequalities, although arc (i, j) may be compatible (from the perspective of the
routing constraints) with one or more arcs in the set In(v) incident to node
v = i, we can omit this variable from the right-hand side of the inequality,
thereby strengthening it. Conversely, if during problem reduction based on
routing constraints, we discover that commodity k cannot flow an arc (i, j) (since
the length of the shortest weight path through this arc exceeds a weight limit),
then omitting this arc flow from the arc capacity constraint can help tighten any
related CND valid inequalities.

• Consider two commodities k1 and k2 that can individually flow on an arc (i′, j ′),
but cannot simultaneously on this arc due to the arc’s capacity constraint, i.e.,
because dk1 + dk2 > ui′j ′ . Further, suppose there is an arc (i1, j1) (and arc
(i2, j2)) such that, if k1 (respectively, k2) flows on this arc it must necessarily
flow on arc (i′, j ′) to meet the weight limits, i.e., the length of the shortest weight
path that includes arc (i1, j1) (respectively, (i2, j2)) but excludes arc (i′, j ′)
exceeds the weight limit for one or more metrics for commodity k1 (respectively,
k2). In this case, either commodity k1 can flow on arc (i1, j1) or k2 can flow on
(i2, j2), but not both, implying that the inequality xk1

i1,j1
+ xk2

i2,j2
≤ 1 is valid.

We can extend this inequality to subsets of three or more commodities. There
are other such opportunities to develop ‘integrated’ inequalities that are based on
jointly considering the arc capacity and routing requirements.

• We obtained the Multicommodity Design inequalities by aggregating judiciously
chosen Route Composition and Contingent Routing inequalities, and applying
rounding. For the CNDRR problem, we now have additional inequalities based
on arc capacity constraints that we can consider for aggregation. For instance,
based on the demand for different commodities and the capacity of an arc
(i, j), we can impose cover inequalities of the form

∑
k∈K ′ xkij ≤ λ, for an

appropriate subset of commodities K ′. We can now consider combinations of
these inequalities with those obtained using the routing requirements to develop
an even richer set of Multicommodity Design inequalities.

In summary, for the CNDRR problem, we can strengthen the basic model by
directly adding both our NDRR valid inequalities and cuts developed for capacitated
network design problems. However, there are many opportunities to further reduce
problem size and develop integrated inequalities based on the joint consideration of
routing and capacity constraints.



228 A. Balakrishnan et al.

4 NDRR Special Cases: Constrained Shortest Paths and
Hop-Constrained Problems

Unlike the general NDRR problem, two special cases—the Constrained Shortest
Path (CSP) and Hop-constrained Tree problems—have been well-studied in the
literature. This section briefly reviews salient results and methods for these two
special cases since the proposed modeling and solution strategies for these problems
may prove useful for solving the broader NDRR problem. For instance, the CSP
problem arises as a subproblem when solving the NDRR problem using column
generation. The discussion also serves to illustrate approaches to develop and ana-
lyze approximation algorithms for the special cases, possibly pointing to principles
that may extend to the general NDRR problem (for which no such analysis currently
exists). Finally, for certain special cases (e.g., some hop-constrained problems with
low hop limits), researchers have fully characterized the convex hull of feasible
solutions. These results together with a hop-constrained problem formulation based
on layered networks may provide the foundation to develop tighter (extended)
NDRR problem formulations. Section 6 on Bibliographical Notes outlines the
literature related to the topics discussed in this section and the next.

4.1 Constrained Shortest Path (CSP) Problem

The CSP problem is a single-commodity version of the NDRR problem that requires
identifying the least expensive path from a given origin node s to a destination t

whose total weight for each metric m does not exceed the corresponding weight
limit. The literature sometimes refers to the problem containing only one routing
constraint (one metric) as the Budget-constrained Shortest Path (BCSP) problem. To
distinguish this problem from the more general version, we refer to the problem with
a single commodity but multiple metrics and constraints as the Weight-constrained
Shortest Path or WCSP problem. For these special cases, we can simplify the NDRR
problem formulation as follows. Since there is only one commodity, we can omit the
commodity index on the flow variables and weight limits. For the BCSP problem,
since there is only one metric, we also omit the index m. Moreover, with positive
costs, yij = 1 if and only if xij = 1. So, we can omit the design variables yij and
forcing constraints (8.3), and use (fij + cij ) as the flow cost of each arc (i, j) in
the objective function. As noted previously, the CSP problem is NP-hard. We next
discuss some theoretical results on approximation algorithms for the CSP problem,
and later outline two interesting solution approaches that are effective in practice.



8 Network Design with Routing Requirements 229

4.1.1 Approximation Schemes for the CSP Problem

For NP-hard problems such as the CSP problem, there are approximation (heuristic)
algorithms that have provable bounds on solution quality. To facilitate the analysis
of their performance, these algorithms are often simple and run in polynomial
time. (For more complicated schemes such as neighborhood search, it is often not
possible to characterize worst-case performance or even computational complexity.)
Given any input or problem instance, an approximation scheme generates a feasible
solution whose value is guaranteed (a priori) to be within a pre-specified (worst-
case) factor of the optimal solution value. For minimization problems, this guarantee
is expressed in terms of the maximum possible ratio of the cost of the approximate
solution to the optimal value. Common techniques for obtaining these bounds
include methods based on LP relaxation, Lagrangian relaxation, iterative rounding,
randomized rounding, primal-dual methods, greedy heuristics, and scaling and
rounding. The approach used depends on the problem’s underlying structure and
solution characteristics. For some problems, researchers have been able to develop
desirable bounds that are either a constant factor (e.g., for network design special
cases such as the Steiner tree, Traveling Salesman, and Facility Location problems)
or depend on the problem dimensions. For instance, Balakrishnan et al. (1996)
propose a efficient overlay heuristic for the uncapacitated network design problem
and showed that this method yields a solution that is guaranteed to be within a factor
of |K | of the optimal value (this is the first known bound for this problem). In other
situations, the running time depends on the desired (maximum) approximation error
ε > 0. A fully polynomial-time approximation scheme, abbreviated as FPTAS, for
a minimization problem generates a solution that is guaranteed to be within a factor
of (1+ ε) of the optimal solution in running time that is polynomial in 1/ε and the
size of the input.

Since the specialized approximation algorithms rely on a problem’s underlying
structure to characterize worst-case performance, even seemingly minor changes to
the problem affect the methods’ applicability, analysis, and bounds. For instance, for
the Knapsack problem, a slight variation of the greedy algorithm that selects items in
decreasing order of value-to-weight is easy to analyze; it produces a solution value
that is within a factor of 1

2 of the optimal value. Although the BCSP problem has
a knapsack-type constraint, the previous greedy approach is not applicable since
the chosen arcs must also form an origin-to-destination path. The predominant
method used to develop approximation schemes for the CSP problem is scaling-
and-rounding. This approach entails reducing the weights or costs, by scaling and
rounding, to low enough values so that the scaled problem can be solved efficiently.
Although the scaled problem only yields an approximate solution to the original
problem, the method has better time complexity than exact algorithms. The larger
the scaling factor, the quicker the method runs but the solutions may be further from
optimality. By judiciously selecting the scaling method and using other algorithmic
steps (e.g., to determine tight bounds), the algorithm can yield an ε-optimal solution
in polynomial time.



230 A. Balakrishnan et al.

We next outline a FPTAS for the BCSP problem defined over acyclic graphs to
illustrate these ideas. The method is based on a dynamic programming algorithm
to solve the BCSP problem. When applied to the original problem (without any
cost or weight scaling), this algorithm finds the optimal solution in O(|A |Z∗) time,
where Z∗ is the (unknown) optimal value of the problem. We can readily determine
a priori upper bounds on Z∗ (e.g., Z∗ ≤ ∑

(i,j)∈A cij or, better yet, the sum of

the (n − 1) highest arc costs since no simple path can contain more than (n − 1)
arcs). But since these bounds depend on the data (e.g., arc costs), the dynamic
programming method, applied using the original parameters, is pseudo-polynomial.
Now, suppose we can develop lower and upper bounds, LB and UB, on the optimal
value such that UB/LB ≤ 2. Then, for a specified approximation error ε, when
we apply the dynamic program after scaling and rounding the arc cost coefficients
to dij = �cij /(LBε/(n − 1))�, the method runs in polynomial time (O(|A |n/ε))
and generates a solution whose approximation error is at most εLB ≤ εZ∗, i.e., the
solution is ε-optimal. To achieve the appropriate bounds needed for this approach,
we start with LB = 1 and UB = sum of the (n − 1) highest arc costs, and
iteratively apply (in polynomial time) the scaling-and-rounding method to reduce
the UB and raise the LB until UB/LB ≤ 2. The method also extends to BCSP
problems over general graphs. As this discussion illustrates, developing a FPTAS
requires innovative approaches and insights about the problem structure and how to
exploit its properties, with a focus on both characterizing the approximation error
and reducing computational effort.

Unlike the BCSP problem, fewer approximation results are known for the
more general WCSP problem with two or more weight constraints. Approximation
algorithms are also available for a variant of the WCSP problem that allows
bounded violation of the weight constraints. That is, in addition to approximating the
objective function value to within a factor of (1 + ε) (for minimization problems)
these methods also permit relaxing (approximating) the weight constraints. When
the weight limits can be exceeded by the same factor (1 + ε), the approximation
algorithm for the WCSP problem essentially seeks an appropriate solution(s) to a
multiobjective shortest path problem having costs and routing metrics as different
criteria.

4.1.2 CSP Solution Algorithms

We next discuss two interesting solution methods for the CSP problem (with non-
negative arc costs) that exploit its special structure. These methods, although not
polynomial, are effective in practice.



8 Network Design with Routing Requirements 231

4.1.3 Handler and Zang’s Algorithm

For the BCSP problem, Handler and Zang (1980), abbreviated as HZ, consider
the Lagrangian relaxation obtained by dualizing the single weight constraint with
multiplier u, and proposed a novel solution approach to solve the Lagrangian dual
and close the optimality gap. For this scheme, the Lagrangian subproblem:

L(u) = min
∑

(i,j)∈A
(cij + uqij )xij − uQ, subject to (8.2) and (8.5),

is a shortest path problem using arc lengths (cij + uqij ); this path’s length, when
reduced by uQ, represents the optimal value L(u) of the Lagrangian subproblem.
For any u ≥ 0, L(u) is a lower bound on the optimal value of the original
problem. We can solve the Lagrangian dual problem, maximize {L(u):u ≥ 0}, by
iteratively adjusting u using, for instance, a general technique such as sub-gradient
optimization or a more specialized approach. HZ propose a tailored method that
exploits the BCSP problem’s special structure (and the fact that we need to optimize
just one dual multiplier) to solve the Lagrangian dual and reduce any remaining
duality gap. The Lagrangian value L(u) is a piecewise linear, concave function of u,
with each segment of the piecewise function corresponding to the Lagrangian value
for one origin-to-destination path. Starting with two paths (one which minimizes
cost without the budget constraint and one which minimizes budget usage), the dual
solution method iteratively refines an upper (piecewise linear) approximation for the
L(u) function by sequentially generating s-to-t paths and updating the multiplier u.
The method monotonically increases the Lagrangian lower bound, denoted as LB.
If at any iteration, the Lagrangian solution is feasible (i.e., satisfies the budget
constraint), we can also update the upper bound UB if the cost of this new path is
lower than the current best upper bound. When the method terminates, we may still
have a duality gap, i.e., LB may be less than UB. The following approach closes this
gap. For the final value of the dual multiplier u, instead of finding just the shortest
path (as we do to solve the Lagrangian subproblem), suppose we sequentially
identify the rth shortest path (using the Lagrangian costs), for increasing values
of r . Let Lr(u) be the (Lagrangian) cost of the rth shortest path. We update LB as
Lr(u), and can possibly update UB if the rth shortest path is feasible for the BCSP
problem. We increment r and repeat the process until LB equals or is sufficiently
close to UB. Since the network contains only a finite number of (elementary) origin-
to-destination paths, this gap reduction procedure will terminate in a finite number
of iterations.

Node Labeling Approach
Another approach to solve the BCSP problem is by generalizing Dijkstra’s label-
setting shortest path algorithm. The generalization entails associating multiple
labels with each node i, one for each sub-path from node s to i that can potentially
belong to the optimal solution. With one routing constraint, each label contains two
elements, the cost and weight, associated with a path from s to i. We only maintain



232 A. Balakrishnan et al.

labels for paths that are undominated, i.e., if p and p′ are two different paths from
s to i, and path p′ has higher cost than path p, then this path is undominated only
if it has strictly lower weight than path p. We can also omit some labels based on
feasibility requirements: if the path corresponding to a label cannot be extended to
reach node t within the weight limit (i.e., the path is not a sub-path of a feasible route
for the commodity), then we can ignore this path. The method initializes the problem
by assigning the label (0, 0) to node s, and then iteratively chooses the lowest cost
label among all labels that have not been previously chosen. Since each node can
have up to Q (the weight limit) labels (assuming nonnegative integer weights),
the node labeling approach may not be effective when Q is large. Preprocessing
techniques can significantly improve the empirical computational performance of
the node labeling algorithm. These techniques consist of feasibility tests to identify
and delete nodes and arcs that an optimal solution will not use. Using information
from a Lagrangian relaxation of the weight constraint, e.g., to prune node labels,
yields further improvements. In extensive computational tests, the node labeling
algorithm with preprocessing is more effective than scaling techniques (Sect. 4.1.1).
The node labeling approach can be extended to the WCSP problem with multiple
weight constraints.

To conclude, in the context of the NDRR problem, the CSP problem is interesting
and relevant because: (1) it captures the core NDRR feature of finding an origin-
to-destination path for each commodity subject to routing constraints; (2) the
CSP problem has received significant attention in the literature on approximation
algorithms since the single commodity structure makes it more tractable; and (3) the
CSP problem arises as a subproblem when we consider decomposition algorithms
such as Lagrangian relaxation and column generation for solving the general NDRR
problem (see Sect. 5). The CSP approximation algorithms and analysis may provide
leads for analyzing the worst-case performance of approximation methods for the
NDRR problem, although the presence of shared fixed costs, across commodities, in
the NDRR problem may significantly complicate the analysis (possibly accounting
for the lack of analogous results on network design problems, in general). The CSP
algorithms, particularly the node labeling approach, can serve to solve subproblems
quickly in NDRR decomposition approaches. We note that the problem reduction
methods and two classes of valid inequalities—the Route Composition and Route
Coordination inequalities—that BLM developed for the general NDRR problem
also apply to the WCSP problem. With these inequalities, solving the strengthened
WCSP model using state-of-the-art integer programming solvers may also be
competitive. To our knowledge, this approach has not been tested.

4.2 Hop-Constrained Routing and Design Problems

We now consider the special version of the commodity routing requirement in which
all arc weights are equal to one. If Hk denotes commodity k’s weight limit in this
constraint, the routing requirement states that each commodity k must use a path that



8 Network Design with Routing Requirements 233

contains no more thanHk arcs (hops). Therefore, we refer to this restriction as a hop
constraint and to the corresponding weight limit as the hop-limit. (More generally,
if all arcs have the same weight, not necessarily one, we can scale the weights and
scale and round down the weight limit to convert the constraint to a hop constraint.)
We refer to this special case of the NDRR problem with only hop restrictions as the
Hop-constrained Network Design (HCND) problem. Balakrishnan and Altinkemer
(1992) were the first to study the HCND problem; they develop and test a solution
procedure based on Lagrangian relaxation. The literature has largely focused on a
restricted version that we call the Hop-constrained Tree (HCT) problem in which
there is a single source or root node that needs to be connected to other specified
nodes, called terminal nodes, via a tree network, and all routing costs are zero.
The problem is typically defined over an undirected network, and assumes the
same hop-limit H for all commodities. If all nodes of the network, except the root
node, are terminal nodes, then the required configuration is a spanning tree, i.e.,
the problem is a Hop-constrained Minimum Spanning Tree (HCMST). Otherwise,
the design is a tree that spans the root node and all terminal nodes, and optionally
includes non-terminal, i.e., Steiner, nodes. We refer to this latter problem as the Hop-
constrained Steiner Tree problem. This section discusses approximation schemes
for the HCMST problem, a layered network representation of hop-constrained path
and tree problems that yields extended (tighter) model formulations, and some
polyhedral results for these problems.

4.2.1 Approximation Algorithms for the HCMST Problem

Approximation algorithms for constrained tree problems largely focus on the
Diameter Constrained Minimum Spanning Tree (DCMST) problem which, as we
discuss next, is related to the HCMST problem. Given a maximum permitted
diameter D, the DCMST problem seeks a minimum cost spanning tree such that the
number of edges (hops) between any two pairs of nodes is at most D. If the diameter
is even, say, D = 2H , we can solve n HCMST problems, each with a different node
as the root node and hop-limit equal to H , and pick the lowest cost solution among
these n problems as the optimal configuration for the DCMST problem. If D is
odd and equals (2H + 1), then any feasible DCMST solution must have an edge
(i, j) such that every other node is connected to either node i or node j via a path
containing no more than H edges. Thus, if we merge (or contract) nodes i and j ,
the solution is a DCMST with even diameter (D − 1) = 2H (with the merged
node as its center). So, we can solve the original DCMST problem by solving |A |
HCMST problems, each obtained by contracting one edge of the original network.
Conversely, we can also transform a HCMST problem into an equivalent DCMST
problem as follows. Given the root node s and hop-limit H of the HCMST problem,
we augment the network by adding two strings of H nodes, incident from node s,
connected by zero cost arcs. Then, solving a DCMST problem, with diameter limit
D = 2H , over the augmented network yields the HCMST solution rooted at node



234 A. Balakrishnan et al.

s and satisfying the hop-limit. So, given an approximation algorithm with known
performance guarantee for the DCMST problem, we can obtain an approximate
solution with the same guarantee for the HCMST problem. The DCMST problem
is NP-Hard even with D = 4 and with edge costs that are all either one or two
(Garey and Johnson 2002), motivating the exploration of approximation methods.
For instance, for the Diameter Constrained Steiner Tree problem (a generalization
of DCMST in which the solution is only required to span a subset of nodes
called terminal nodes and can optionally span other nodes called Steiner nodes),
an approximation algorithm combining greedy selection and exhaustive search has
a worst-case ratio of O(log(|T |)), where T is the set of terminal nodes.

Interestingly, the HCMST special case with H = 2, which we call the two-
hop HCMST problem, is equivalent to the uncapacitated facility location (UFL)
problem. Given an instance of the UFL problem (with a dummy source node which
is connected to all facility nodes), we can construct an equivalent two-hop HCMST
instance by adding zero cost arcs between the facility nodes. Conversely, we obtain
a UFL instance (with the root node as the dummy source node) corresponding to
any two-hop HCMST instance by defining both a facility and a customer for each
original non-root node, and assigning the cost for each original arc (i, j) to the arc
from plant i to customer j (this cost is zero when i = j ). These transformations
imply that the approximation results for the UFL problem, such as the constant
worst-case bounds based on greedy and cost scaling methods, also apply to the two-
hop HCMST problem with metric costs. Developing a constant bound algorithm for
the general HCMST problem remains an open problem.

4.2.2 Polyhedral Results for Hop-Constrained Path Problems

In Sect. 3, we discussed some polyhedral results for the general NDRR problem. For
NDRR special cases when the underlying flow problem is a hop-constrained path
or tree problem, there are specialized valid inequalities and polyhedral results for
the underlying flow problems (assuming that all origin-to-destination paths must be
elementary).

For the Hop-constrained Shortest Path (HCSP) problem, it is possible to char-
acterize the underlying polytope when the hop-limit H is small and fixed. Since
the HCSP problem has only one commodity, we omit the commodity index k

in the following discussions. For H = 2, the solution can only contain arcs of
the type (s, i) or (i, t) for some node i ∈ N . Therefore, we can set the flow
xij = 0 on all other arcs (i, j) that are not incident at either node s or t . These
equalities, together with the flow conservation constraints for nodes s and t , and
nonnegativity requirements on the xij variables, completely describe the convex
hull of feasible solutions to the HCSP problem with H = 2. For H = 3, the flow
conservation constraints at all nodes, the nonnegativity requirements on the full set
of xij variables, and the inequalities



8 Network Design with Routing Requirements 235

xsi −
∑

j∈N \{s,t}
xij ≥ 0 ∀i ∈ N \{s, t} (8.9)

together give a complete description of the HCSP polytope.
Constraint (8.9) is a special version of a broad class of inequalities called

jump inequalities. The basic jump inequality has the following structure. Let
V1, V2, . . . , VH+2 be pairwise node-disjoint sets that partition the node set N , with
V1 = {s} and VH+2 = {t}. Define jump J = ∪1≤i≤j−2{Vi, Vj }, where {Vi, Vj } is
the set of arcs (a, b) such that a ∈ Vi and b ∈ Vj . If J (s-t, H) denotes the set of all
jumps, then the jump inequality is

∑

(a,b)∈J
yab ≥ 1 ∀J ∈ J (s-t, H) (8.10)

By definition of the jump J , if an s-to-t path does not use any of the arcs in J , then
the path must have at least (H + 1) arcs, and so is not a feasible path for the hop-
constrained problem. Lifted versions of these jump inequalities can define facets for
HCSP problems with higher hop-limits (H > 3).

4.2.3 Layered Networks and Extended Formulations
for Hop-Constrained Problems

When the routing requirement is a hop constraint, defining the commodity flows
over a layered (expanded) network provides a convenient and intuitive represen-
tation of the network design (or shortest path) problem and also yields tighter
formulations. We first discuss the structure and properties of the layered network
for a single commodity (e.g., for the HCSP problem), and then address extensions
to problems with multiple commodities, including hop-constrained tree problems.
An important by-product of these layered network representations is that, using
projection techniques on the associated extended formulations, we can obtain strong
valid inequalities in the original space of design variables.

Layered Network Representation for Hop-Constrained Paths
Suppose a commodity from s to t must be routed on a path containing no more than
H arcs (in the following discussion, we omit this commodity’s index). The original
NDRR problem formulation [NDRR] defines (binary) commodity flow variables xij
on the original network, and imposes the hop constraint as

∑
(i,j)∈A xij ≤ H .

Instead, suppose we define the flow variables over the following expanded network
containing (H + 1) layers, indexed from h = 1 to h = (H + 1). Layer 1 contains
only the source node s, and layer (H + 1) only the sink node t . Each intermediate
layer, h = 2, 3, . . . , H , contains a copy of every node i 	= s , labeled as node <
i, h >. The source node has label < s, 1 >, and sink node in the last layer has label
< t,H + 1 >. If the original graph contains an arc (i, j), in the layered graph we
connect node < i, h > to node < j, h+ 1 >, except when h is H we only consider



236 A. Balakrishnan et al.

Fig. 8.2 Example of layered network for one commodity. (a) Original network. (b) Layered
network with H = 3

j = t . We also add ‘dummy’ arcs, with zero cost, from < t, h > to < t, h + 1 >

for h = 2, 3, . . . , H . Since the hop limit H must be less than the number of nodes
n (assuming that we only permit elementary paths, which holds if all costs are non-
negative), the size (number of nodes and arcs) of the layered network is no more
than n times the size of the original network. Figure 8.2 illustrates this construction.
Figure 8.2a shows the original network with source node s = 1 and sink node t = 5.
Figure 8.2b shows the layered network with hop-limit H = 3.

From this construction, we can readily see that any path from < s, 1 > to <

t,H + 1 > in the layered network satisfies the hop constraint, and conversely every
feasible path in the original network has a corresponding path from < s, 1 > to
< t,H+1 > in the layered network. Therefore, if we define the routing variables as
arc flows over the layered network (instead of the original network), then we do not
need to explicitly impose the hop constraints on the routing variables. Specifically,
instead of using the flow variables xij defined over the original graph, we now define
disaggregated hop-indexed flow variables xhij , for h = 1, 2, . . . , H . The variable

xhij takes the value one if arc (i, j) is the hth hop on the commodity’s route from

origin s to destination t , and is zero otherwise. Equivalently, xhij is the flow from
node < i, h > to node < j, h + 1 > in the layered graph. The flow conservation
constraints are:

∑

j∈N +
i

xhij −
∑

j∈N −
i

xh+1
j i =

⎧
⎨

⎩

1 if i = s,

−1 if i = t,

0 otherwise.
∀h = 1, 2, . . . , H − 1. (8.11)

For the HCSP problem, since any elementary s-to-t path cannot contain an arc
(i, j) on more than one of the H hops, the ‘routing’ cost associated with each
disaggregated flow variable xhij is the same as the routing cost cij on the original
arc (i, j). So, the HCSP problem’s layer-indexed formulation, denoted as [L-HCSP],



8 Network Design with Routing Requirements 237

minimizes
∑

(i,j)∈A
∑H

h=1 cij x
h
ij subject to the flow conservation constraints (8.11)

and integrality requirements xhij = 0 or 1 for all (i, j) ∈ A , h = 1, 2, . . . , H .
This model is the same as the formulation for the (unconstrained) shortest path
problem over the layered network. Indeed, we can relate the HCSP problem’s
interpretation as the shortest path in the layered network to the well-known dynamic
programming recursion: d(j, h) = min{d(j, h−1),mini:(i,j)∈A {d(i, h−1)+cij }},
where d(j, h) denotes the shortest distance from node s to node j using h or fewer
hops, for solving the hop-constrained shortest path problem (e.g., Lawler 1976).
These observations imply that formulation [L-HCSP] is exact, i.e., it completely
describes the HCSP polytope. In contrast, the LP relaxation of the original NDRR
formulation, specialized to the HCSP problem, can have fractional solutions with
non-zero integrality gap. Thus, although the layered formulation contains H (which
is O(n)) times as many variables as the original formulation [NDRR] applied to the
HCSP problem, the use of hop-indexed flow variables serves to strengthen the LP
relaxation and close the integrality gap.

Layered Network and Extended Formulation for Hop-Constrained Trees
As noted earlier, the HCT problem requires designing a minimum cost tree that
connects a root node s to a specified set T of terminal nodes, with a hop-limit of H
on each root-to-terminal path. When T includes all nodes except the root node, the
design is a spanning tree; otherwise, it is a Steiner tree. We can view this problem
as a tree-constrained multicommodity HCND problem containing one commodity
k for each terminal node that originates at the root node s and has node k ∈ T as its
destination. Applying the previous hop-indexed disaggregation to each commodity’s
flow variables, we obtain a formulation that is stronger than the [NDRR] formulation
with added tree constraints.

4.2.4 Extended Formulations for General NDRR Problems

The models based on layered networks and the hop-indexed variables discussed
in the previous section add to the rich history of using disaggregate variables to
improve the effectiveness of formulations. Another related development is the use of
extended formulations, obtained by adding new variables, for various combinatorial
optimization problems. Research on this topic of extended formulations started
mainly as a theoretical tool, but in recent years researchers have also examined
their value for strengthening the LP relaxation when solving difficult integer
programs (see Wolsey 2011). We can interpret the formulations based on the layered
network representation of hop-constrained problems as extended formulations for
the underlying problem.

The layered network concepts and modeling enhancements can also extend to
more general NDRR problems, e.g., with multiple sources and destinations, without
explicit tree configuration requirements, and with general (and multiple) routing
constraints (vs. hop limits). For instance, we can represent problems with a general
weight constraint (with arbitrary positive integer coefficients) in the following way.



238 A. Balakrishnan et al.

Assume, for notational simplicity, that the integer arc weights and weight limits
are the same for all commodities. For a routing constraint with a limit of Q for
commodity k, we have (Q + 1) instead of (H + 1) layers in the layered network
representation. Arcs between layers are not always between adjacent layers as is
the case for the hop-constrained version. Instead, for each arc (i, j) with weight qij
in the original network, the layered network contains an arc from node < i, q >

to node < j, q + qij > for 1 ≤ q ≤ (Q − qij + 1). Corresponding to each

such arc, we define a disaggregated flow variable xkqij , and use flow conservation

constraints analogous to (8.11) and the forcing constraints
∑Q−qij+1

q=1 x
kq
ij ≤ yij .

Further, if the solution is required to be a tree, then we can also disaggregate the
design variables as long as the arc weights and weight limits are the same for all
commodities. Note that the size of the layered network, and hence the number of
variables in the disaggregate formulation, is pseudo-polynomial since it depends
on the weight limit Q. When this limit is very large or if there are multiple routing
constraints, the extended formulation will be too large to solve directly using general
purpose integer programming solvers. To mitigate this difficulty, we can apply an
iterative approach that starts with a small layered network, and increases its size
until we obtain a feasible solution that is sufficiently close to optimal.

If the problem imposes more than one routing constraint for each commodity, we
can develop a ‘multi-dimensional’ layered network that implicitly captures multiple
routing requirements. For instance, suppose there are two routing constraints with
weight limits Q1 and Q2. Then, the multi-dimensional layered network contains
Q1Q2 layers containing nodes of the form < i, q1, q2 >, with 1 ≤ qm ≤ (Qm +
1),m = 1, 2, and arcs from this node to node < j, q1+q1

ij , q
2+q2

ij > for every arc
(i, j) of the original network. Using the flow variables (and design variables, for tree
sub-networks) on this layered network, we can develop an extended formulation for
the NDRR problem.

In summary, for network design problems with hop limits or general weight
constraints, layered network representations permit incorporating these routing
restrictions implicitly by defining appropriate disaggregated decision variables
instead of explicitly adding routing restrictions in the basic NDRR problem.
This approach yields tighter formulations, but at the expense of requiring many
more decision variables. Note that these extended formulations also apply to the
capacitated version of the problem, e.g., the CNDRR problem with hop limits as the
routing restrictions. For this problem, in each arc capacity constraint, we replace
the original arc flow variables with the sum of the corresponding layer-indexed
variables. Moreover, we can also add cuts developed for capacitated network design
(using the sum of disaggregate flow variables in place of original arc flow variables)
to this model to further strengthen the model. Since the layered formulation is
tighter than the previous CNDRR model, it can improve the performance of the
decomposition schemes discussed next.



8 Network Design with Routing Requirements 239

5 Decomposition Strategies for the NDRR Problem

Section 3 discussed BLM’s cutting plane approach to solve the general NDRR
problem, and Sect. 4 outlined an alternate approach, using extended formulations, to
strengthen the problem’s LP relaxation and accelerate integer programming solvers.
This section outlines other possible solution strategies based on decomposition
methods, including Lagrangian relaxation, column generation, and Benders decom-
position.

5.1 Lagrangian Relaxation

Lagrangian relaxation techniques are attractive when the problem contains embed-
ded special structures that can be solved more easily. The NDRR problem has two
such structures, corresponding respectively to uncapacitated network design and
constrained shortest paths. If we dualize the routing constraints (8.4), the resulting
subproblem is an uncapacitated fixed charge network design problem. Although this
problem is NP-hard, Balakrishnan et al. (1989) describe a dual ascent procedure
that is very effective in solving problems of reasonable size. When used as the
procedure to solve Lagrangian subproblems, it may be possible to further accelerate
the procedure by warm-starting it using dual values from the previous iteration.
However, identifying a solution to the original NDRR problem that satisfies all the
routing constraints may be difficult (recall from Sect. 2 that, even if we are given the
network design, finding feasible solutions can be NP-hard when there are multiple
routing constraints).

An alternative Lagrangian relaxation scheme consists of dualizing the forcing
constraints (8.3), resulting in |K | CSP subproblems, one for each commodity
k. CSP solution methods such as the node labeling algorithm (Sect. 4.1.2) are
quite effective and quick. Potentially, when repeatedly solving CSP problems for
a commodity, each of which differ only in the arc cost coefficients (which depend
on the Lagrangian multiplier values), we can modify these methods to improve
their performance (e.g., previous feasible solutions yield upper bounds for the
current problem). Of course, since the computational effort for these pseudo-
polynomial algorithms depends on the weight limits, solving each subproblem can
be time consuming when these limits are large. Also, with a large number of arcs
and commodities, the number of forcing constraints, and hence Lagrangian dual
variables, is very large; so, the convergence of the Lagrangian dual problem may be
slow.

We note that neither subproblem in the above two Lagrangian relaxation schemes
satisfies the integrality property (i.e., the optimal solution to the LP relaxation of the
subproblem may have fractional values). So, the best Lagrangian lower bound can
exceed the LP lower bound, obtained by solving the LP relaxation of the original
NDRR problem formulation (8.1)–(8.5). So, for problem instances where using



240 A. Balakrishnan et al.

either of the above subproblem solution procedures is practical, using Lagrangian
relaxation at intermediate nodes of a branch-and-bound procedure can outperform
standard LP-based branch-and-bound algorithms.

For the CNDRR problem, we have additional choices for the Lagrangian scheme.
For instance, dualizing the arc capacity constraints results in NDRR subproblems,
whereas relaxing the routing restrictions yields capacitated network design subprob-
lems. To further simplify the subproblems, we can dualize additional constraints
such as the forcing constraints or the flow conservation equations to obtain CSP
or knapsack subproblems. In general, capacitated design problems tend to be more
difficult to solve using this technique unless the model is further strengthened with
valid inequalities (such as design inequalities based on arc capacity constraints).

5.2 Column Generation (Dantzig-Wolfe Decomposition)

As noted in Sect. 2, instead of formulating the NDRR problem using arc flow
variables, we can also consider a path selection formulation that uses path flow
variables corresponding to feasible origin-to-destination paths (satisfying the rout-
ing restrictions) for each commodity. We can view this reformulation (from the
arc to path representation) as a change of variables, just as the layered network
representation replaces the original arc flow variables with layer-indexed arc flow
variables. Since the path flow model only considers origin-to-destination paths
that meet the routing constraints, it has a stronger LP relaxation. However, since
the number of such paths is exponential in the network size, we cannot explicitly
solve the full model (except when the number of candidate paths is limited due to
highly restrictive weight or hop limits). Instead, we can apply a column generation
technique that iteratively generates promising paths based on the LP dual solution,
embedded in a branch-and-price procedure to close the integrality gap. Applying
column generation to the general NDRR problem requires iteratively solving a CSP
subproblem for each commodity k in order to find a feasible O(k)-to-D(k) path
with negative reduced cost (not surprisingly, these pricing problems are the same
as the Lagrangian subproblems that we need to solve when we dualize the forcing
constraints of the arc flow model). The restricted master problem (RMP) is a linear
program that chooses the path to be used for each commodity k from among the
paths generated so far. The optimal dual prices of the RMP determine the arc costs
in the CSP subproblems. Branching is needed to reduce the optimality gap between
the LP value and the current best upper bound.

For the NDRR path flow model, the column generation procedure can require
excessive number of iterations to converge because of the huge number of candidate
paths for each commodity. One cause of slow convergence is that, during the initial
iterations, the RMP (with only few columns) may not approximate the full problem
very well and so its solution may not be close to optimality for the full problem.
Consequently, the dual prices at these iterations may not adequately approximate
the optimal dual prices of the full problem, causing the procedure to generate new



8 Network Design with Routing Requirements 241

columns that are not very useful. These columns can cause the RMP solutions to
vary widely from iteration to iteration. Stabilization techniques can improve the
convergence of column generation procedure by mitigating these difficulties. One
successful approach has been to use a pre-chosen stabilization point, and constrain
the RMP solutions to remain “close” to the stabilization point through the use of
penalty functions.

Another technique is to improve the LP bounds of column generation model by
adding cuts to the master problem. This technique, known as branch-and-cut-and-
price, can be useful but care is necessary since the added cuts introduce new dual
variables that change the structure of the pricing operation. If the pricing subproblem
becomes difficult or intractable, then the column generation approach is impractical.
However, for specific types of added cuts known as robust cuts, the basic structure of
the pricing operation is unchanged. For example, in the arc-path approach to column
generation, cuts using only design variables are robust.

The column generation approach also applies to the CNDRR problem, except
that the RMP now also includes the arc capacity constraints (expressed in terms
of the path flow variables). Again, it is important to strengthen the master problem
by adding valid inequalities, preferably using robust cuts so as not to complicate
the subproblems. Column generation has proven to be among the most successful
methods for related capacitated problems such as vehicle routing and Capacitated
Minimum Spanning Tree (CMST) problems. The CMST problem requires find
the minimum cost spanning tree such that the total demand in each subtree of a
designated root node does not exceed the capacity C of the arcs incident from
the root node. For this problem, instead of paths, the columns represent feasible
subtrees (that satisfy the capacity constraint) with degree one at the root node.
Unfortunately, the pricing subproblem is strongly NP-hard and not practical com-
putationally, necessitating some improvements to the branch-and-price approach
such as modifying the column space. Specifically, instead of subtrees, using a set of
arborescence-like structures permits a pseudo-polynomial algorithm (with respect to
C) for the pricing subproblem. We can build upon these methods to solve CNDRR
variants such as CMST with hop or more general routing restrictions. For instance,
we can use a layer-indexed model for the pricing subproblem to capture both the hop
limits and capacity limit for arcs incident to the root node. Such extensions provide
fertile ground for further work.

5.3 Benders Decomposition

Benders decomposition entails fixing a subset of variables in a master problem,
and solving LP subproblems whose dual values induce so-called Benders cuts in
the master problem. Modern implementations of this approach, known as Benders
branch-and-cut, embed the procedure into a branch-and-bound framework, add a
Benders cut at each node in the search tree, and solve the master problem only once.



242 A. Balakrishnan et al.

For the NDRR problem, if we fix the design variables at values yij = yij in the
master problem, the resulting subproblems are CSP problems for each commodity
k over the candidate network formed by A = {a ∈ A |yij = 1}. Unfortunately, the
resulting subproblems are integer programs, and so Benders decomposition is not
directly applicable. However, for the special case when all the routing constraints
(8.4) are hop-limits, by using the disaggregated (hop-indexed) flow variables, the
Benders subproblems are linear programs since they are simply (unconstrained)
shortest path problems over the layered network for each commodity (but only
including arcs chosen by the master problem). The Benders subproblems can,
however, be infeasible because, in the current design chosen by the Benders master
problem, the destination D(k) may not be reachable from the origin O(k) within the
desired hop-limit (i.e., O(k) and D(k) are not connected in the layered network). In
this case, we must generate and add a Benders feasibility cut to the master problem.
In general, it is difficult to generate effective Benders feasibility cuts; this topic is
currently an active area of research. Another possible strategy is to skip adding
an feasibility cut and continue the branching process. This approach trades off
the additional effort required in the search tree with the benefit of not generating
feasibility cuts.

As we noted in Sect. 4.2.4, for NDRR problems with one routing constraint,
having non-unitary coefficients, we can use the pseudo-polynomial layered network
to model the disaggregate flow variables. In this case too, the subproblem of
selecting a feasible path for a given set of design variables is a linear program,
permitting the application of Benders decomposition.

Finally, the Benders approach also extends to CNDRR problems, except that
feasibility of subproblems now depends on both whether the design contains at
least one feasible origin-to-destination path (satisfying routing restrictions) for every
commodity, and also meets arc capacity constraints (across all commodities). We
can potentially improve Benders performance by tightening the LP relaxation of
the design problem formulation in the master problem by adding cuts that only
involve the design variables, such as those obtained using projection techniques
of the capacitated network design problem, or reformulating the problem using
disaggregated variables. Note that adding cuts to the Benders master problem is
analogous to adding robust cuts for column generation. Master problem cuts (robust
cuts) do not complicate the solution of the Benders subproblems (column generation
pricing operation). Adding more general cuts can complicate the efficient solution
of the subproblems just as non-robust cuts complicate the column generation pricing
operation.

6 Bibliographical Notes

Valid Inequalities and Cutting Plane Methods for the General NDRR Problem
Although network design problems have been studied extensively (e.g., Magnanti
and Wong 1984; Balakrishnan et al. 1997; Crainic 2000), little research has been



8 Network Design with Routing Requirements 243

done on the NDRR problem. Barnhart and Schneur (1996), Armacost et al. (2002),
and recently, Yildiz and Savelsbergh (2019) study optimal design for express
delivery using ground and air transportation in order to determine multimodal
time-sensitive origin-destination routes. Other related network design problems that
also have a flavor of network design and/or flow routing with restrictions include
reliable path routing, reliable network design, and survivable network design (e.g.,
Balakrishnan et al. 2009). Balakrishnan et al. (2017) (BLM) is the first paper to
address the general NDRR problem, and develop a tailored cutting plane-based
approach for this problem. The discussion in Sect. 3 is largely based on this paper.
BLM provides a more general framework and treatment of the three classes of
valid inequalities discussed in Sect. 3. Moreover, they describe some sophisticated
lifting procedures, and prove that some versions of these inequalities are facets of
the NDRR polyhedron. They report extensive computational results from applying
the cutting plane procedure (using heuristic separation procedures to iteratively find
violated inequalities) at the root node of a branch-and-bound algorithm, combined
with an optimization-based heuristic method, for a variety of NDRR test problems
containing up to 80 nodes, 320 arcs, and 240 commodities.

Extension to Capacitated NDRR Problems Magnanti et al. (1993, 1995) were
among the first to study the capacitated network design problem where multiple
modular facilities can be installed on the network arcs. They developed the cutset,
residual capacity and 3-partition inequalities, and studied their theoretical and
computational effectiveness. Bienstock and Gunluk (1996) developed several facet-
defining inequalities that extend the cutset and the 3-partition inequalities. Atamturk
and Rajan (2002) study single-arc set relaxations of the problem and show that the
separation problem of the residual capacity inequalities (for the splittable case) can
be solved in linear time while the separation problem for the c-strong inequalities
(developed by Brockmuller et al. (2004) for the unsplittable case) is NP-hard. They
extend the c-strong inequalities and conduct computational experiments to test the
effectiveness of these inequalities. Benhamiche et al. (2016) study the polyhedral
structure of a model where a commodity flow cannot split even across two different
facilities on the same arc. Gendron et al. (1999) provide a survey of multicommodity
capacitated network design models. They also summarize the theoretical strengths
and present a computational comparison of several different relaxations of an arc-
based formulation of the problem.

Approximation Schemes for the Budget-Constrained Shortest Path (BCSP) Prob-
lem Vazirani (2013) and Williamson and Shmoys (2011) provide comprehensive
discussions of approximation schemes for various problem settings. For the BCSP
problem over acyclic graphs, Warburton (1987) was the first to develop a FPTAS.
The complexity of his approximation scheme is O(n3ε−1log(n)�log(UB)�), where
ε is the performance guarantee (i.e., the heuristic solution value is within a
factor of (1 + ε) of the optimal solution value) and UB is an upper bound on
the optimal solution value. Hassin (1992) employs the principles underlying this
method, but uses a constant bound on the ratio of UB to LB to develop an
approximation algorithm with complexity O(|A |n2ε−1log(nε−1)). Section 4.1.1



244 A. Balakrishnan et al.

summarizes this method. Lorenz and Raz (2001) further improve the approximation
scheme, achieving a n-fold reduction in time complexity, by simplifying the method
for obtaining upper and lower bounds, and permitting a larger approximation error
in the first stage. This method runs in O(|A |n(log log n+1/ε)). Ergun et al. (2002)
also improve Hassin’s algorithm but by making the scaling factor adaptive, starting
with a large scaling factor. As the difference between current upper and lower
bounds decreases, the method reduces the scaling factor. This strategy improves
solution quality without adversely affecting the running time, resulting in a FPTAS
with time complexity of O(|A |nε−1).

CSP Solution Algorithms One possible drawback to the Handler-Zang (HZ)
approach for solving BCSP problems is that reducing the gap may require
generating a large number of rth shortest paths. Desrochers and Soumis (1988)
propose solving the BCSP problem by generalizing Dijkstra’s shortest path
algorithm. Dumitrescu and Boland (2003) use preprocessing techniques to
accelerate the node-labeling algorithm, and demonstrate computationally that these
methods can improve performance by an order of magnitude. Feng and Korkmaz
(2015) and Pugliese and Gueriero (2013) provide some suggestions to the reduce the
number of r th shortest paths needed to close the gap. Feng and Korkmaz also discuss
an extension of the HZ method to solve weight-constrained shortest path (WCSP)
problems. Pugliese and Gueriero (2013) review the methodological literature for
WCSP problems with multiple metrics, and even with negative arc costs.

Approximation Algorithms for the Diameter-Constrained and Hop-Constrained
Minimum Spanning Tree (DCMST and HCMST) Problems Kortsarz and Peleg
(1999) analyze the heuristic worst-case performance of a DCMST problem with
maximum diameter of five. Marathe et al. (1998) develop approximation algo-
rithms for a generalization of the Diameter-constrained Minimum Spanning Tree
(DCMST) problem where the weights associated with arcs are not necessarily one.
This generalization requires the total weight of the path connecting any pair of nodes
in the tree to be less than or equal a specified value. The authors’ approach starts with
clusters consisting of single nodes, and sequentially merges these clusters until just
one cluster remains, which is the heuristic solution. Hassin and Levin (2003) study
a problem in which the diameter is not fixed, but rather pairs of nodes have hop
limits that belong to {1, 2,∞}. Assuming metric edge costs, they develop a constant
ratio algorithm. They also consider cases where the graph induced by node-pairs
with hop-limit of one or two is a Hamiltonian graph or a 2-vertex connected graph.
Althaus et al. (2005) develop a randomized algorithm with approximation ratio of
O(log(n)) for the HCMST problem with metric costs.

Polyhedral Results for Hop-Constrained Design Problems For the Hop-constrained
Shortest Path (HCSP) problem, Dahl and Gouveia (2004) provide a complete
characterization of the underlying polytope when the hop limit H is small. Dahl
(1998) originally introduced the jump constraints while Grotschel and Stephan
(2014) propose a systematic way of generating jump constraints as well as other
inequalities via projection of a HCSP problem formulation that uses hop-indexed



8 Network Design with Routing Requirements 245

variables (see Sect. 4.2.3). Although the basic jump inequalities do not necessarily
define facets of the HCSP problem with general hop-limits, Reidl (2017) provides
necessary and sufficient conditions for lifted jump inequalities to be facets of the
HCSP polytope. Stephan (2009) identifies other facets by studying the polyhedral
structure of related combinatorial problems.

Extended Formulations for Hop-Constrained Problems Gouveia (1998) is among
the first researchers to study models with hop-indexed variables for hop-constrained
problems. The variable disaggregation approach also extends to Hop-constrained
Network Design (HCND) problems by defining hop-indexed flow variables for each
commodity. This hop-indexed model is tighter than representing the hop constraints
as routing requirements in formulation [NDRR], but the hop-indexed model does
not fully close the integrality gap for HCND problems (unlike the situation for
the HCSP problem). Researchers have used layered network representations and
successfully applied the associated formulations with disaggregated (hop-indexed)
flow variables to several special cases and variants of hop-constrained network
design including minimum spanning tree problems with diameter constraints (e.g.,
Gouveia and Magnanti 2003; Gouveia et al. 2004, 2006), hub location with
hop constraints (Camargo et al. 2017), and container shipping service selection
with limited transshipments (Balakrishnan and Karsten 2017). The higher LP
lower bounds of the hop-indexed model significantly accelerate branch-and-bound
solution procedures for these problems.

Layered Network and Extended Formulations for Hop-Constrained Tree (HCT)
Problems Gouveia et al. (2011), henceforth abbreviated as GSU, further strengthen
this model by exploiting the problem’s tree configuration requirement. Specifically,
they show how to represent the HCT problem as a Steiner tree problem defined
over a (single) layered network (instead of defining a separate layered network
for each commodity). Effectively, this approach permits disaggregating the design
variables (by hop index). For their equivalent Steiner tree problem, GSU consider
a directed cut formulation (Maculan 1987) that contains only design variables (no
flow variables since they do not consider routing costs), and uses cutset constraints
to ensure connectivity from the root to every terminal node. GSU show that this
model is tighter than the previous HCT formulation with hop-indexed flow variables
defined over separate layered networks for each commodity. The authors also extend
this approach to the DCMST problem. Their computational results demonstrate
that using the stronger model reduces computational time by about two orders
of magnitude compared to earlier methods (e.g., Gouveia and Magnanti 2003;
Gouveia et al. 2004) that solve the model with only disaggregated flow variables. In
Sect. 4.2.4, we discuss an extension of this technique of disaggregating the design
variables to more general types of NDRR problems.

GSU’s idea of disaggregating the design variables also relates to other interesting
work. Ruthmair and Raidl (2011) apply disaggregation to Steiner tree problems
with a single weight constraint for each commodity. To avoid solving the full
extended formulation, they start with a small layered network obtained by deleting



246 A. Balakrishnan et al.

some nodes, removing the outgoing arcs for each deleted node, and redirecting its
incoming arcs to a corresponding node in an earlier (later) layer. Solving the reduced
network provides a valid lower (upper) bound. The approach iteratively increases
the size of the layered network until the upper and lower bounds are sufficiently
close. Boland et al. (2017) developed and applied a similar strategy in the context
of time-space networks (which are related to layered networks).

Another way of reducing the size of the layered network is to apply scaling-and-
rounding (sometimes known as discretization) to the weight constraint to reduce
the size of its coefficients. In the context of time-space networks, the approach of
scaling-and-rounding the time unit does not seem to be as effective computationally
as the methodology described above (Boland et al. 2017, 2019).

Extended Formulations for General NDRR Problems Researchers have recog-
nized the benefits of reformulating various network design problems (e.g., facility
location, Steiner trees, and uncapacitated fixed charge network design) using
disaggregated variables and forcing constraints. For example, for fixed-charge
network design, instead of using one commodity to represent all the flow originating
from a source node, replacing the single commodity with multiple commodities,
each corresponding to one destination served by that source, yields tighter model
formulations and improved solution techniques (see Magnanti and Wong 1984).
For research related to extended formulations, see, for example, Vanderbeck and
Wolsey (2010), Conforti et al. (2010), Conforti et al. (2014), and Fiorini and
Pashkovich (2015). Applying projection techniques (e.g., Conforti et al. 2014) to the
extended formulations (with disaggregated flow or design variables) can yield valid
inequalities and facets for the original problem formulation [NDRR]. For related
work on projection techniques applied to the CSP polyhedron, see Coulard et al.
(1994), and Grotschel and Stephan (2014). Mirchandani (2000) uses projection
for the capacitated network loading problem, and Rardin and Wolsey (1993) use
projection for uncapacitated network design models with multiple sources and sinks
for each commodity. Gouveia et al. (2011) apply projection techniques to the single
layered network model for HCT problems to obtain valid inequalities for the base
model.

Column Generation Branch-and-price, which embeds the column generation tech-
nique within a branch-and-bound tree search framework (Barnhart et al. 1998;
Desrosiers et al. 1995), has proved successful for various types of integer optimiza-
tion problems. Column generation has been very successfully used in crew schedul-
ing and routing problems, with routing requirements that reflect, for instance, time
or distance limits of vehicle routes and work shifts (see Lubbecke and Desrosiers
2005 for an extensive list of references on applications of column generation).

Stabilization and other techniques can be useful in improving the convergence of
column generation. Lubbecke and Desrosiers (2005) and Lemaréchal et al. (1995)
discuss the use of a pre-chosen stabilization point. These general ideas have proven
very successful in the special context of delay-constrained minimum spanning
trees and Steiner trees. Computational tests by Leitner et al. (2012) show that the



8 Network Design with Routing Requirements 247

stabilized version of column generation is about one order of magnitude faster
than the usual column generation procedure for larger problems. The approach
can solve difficult problems for networks with up to 999 nodes and about 10,000
arcs. Stabilized column generation is also at least competitive with state-of-the-
art techniques using branch-and-cut applied to the single layered network model
formulation (Gouveia et al. 2011).

Another convergence difficulty arises when the RMP primal solution is degener-
ate, implying multiple optimal dual prices in the master problem. Holloway (1973)
suggests choosing an optimal dual solution that would benefit the overall conver-
gence of column generation (i.e., choose a set of dual prices that would accurately
reflect the optimal dual prices of the full problem). Such an approach would be
similar in spirit to Magnanti and Wong (1981) (see also Rahmaniani et al. 2017)
who propose exploiting degeneracy in Benders subproblems (whereas Holloway’s
proposal concerns degeneracy in the column generation master problem).

Uchoa et al. (2008) and Costa et al. (2019) discuss innovative branch-and-cut-
and-price approaches to the Capacitated Minimum Spanning Tree (CMST) and
the vehicle routing problems, respectively. Uchoa et al. use a new column space
representation as well as robust cuts (see Poggi de Arago and Uchoa 2003) based on
a new expanded representation of the arc flow variables based on capacity-indexed
arc flows (similar to a layered network representation of arc flows) proposed by
Gouveia and Martins (1999). Costa et al. (2019) give a comprehensive survey of
techniques for improving the performance of column generation for vehicle routing
including robust and non-robust cuts as well various other strategies. Some research
has shown that the careful addition of non-robust cuts can improve the overall
performance of the column generation approach. Thus, the cuts proposed in Sect. 3
(which are non-robust) might be of interest in the context of a column generation
approach.

Benders Decomposition For an introduction to Benders decomposition and a
general treatment of this approach, see, for example, Conforti et al. (2014). Over
the years, researchers have suggested various techniques to improve Benders’
classic approach. See Rahmaniani et al. (2017) for a comprehensive overview. As
mentioned in Sect. 5.3, an active area of research is generating effective Benders
feasibility cuts. See, for instance, Camargo et al. (2017).

Botton et al. (2013) apply Benders decomposition to a Hop-constrained Sur-
vivable Network Design problem. That is, in addition to hop constraints on the
commodity routes, the problem also requires ensuring that each commodity has
as least γ arc-disjoint origin-to-destination paths (which must all satisfy the hop
limit restriction) in the chosen design. The objective is to minimize the total fixed
cost of the chosen design arcs. For the design problem under consideration, at least
one commodity’s subproblem will always be infeasible until the relaxed master
problem generates an optimal solution to the original design problem. The authors
avoid this difficult issue by modifying the Benders branch-and-cut procedure by
only occasionally generating Benders cuts (i.e. solving the subproblems). Thus,
they trade off having a larger search tree for reducing the subproblem computation



248 A. Balakrishnan et al.

time. This modified approach is an order of magnitude faster than the usual Benders
decomposition approach. The decomposition approach can solve medium to large
sized problems with up to 41 nodes and 820 edges and is significantly faster than
solving the original formulation with CPLEX.

As mentioned in Sect. 5, strengthening the LP relaxation of the model for-
mulation can improve the performance of Benders decomposition. Section 6.2
of Rahmaniani et al. (2017) discusses various research work on adding valid
inequalities to the Benders master problem to strengthen the overall formulation.
Magnanti and Wong (1981) discuss a framework for evaluating different model
formulations (having different sets of subproblem variables) in the context of
Benders decomposition based on their LP relaxation strength when the master
problem variables have fixed values. Certain formulations can offer a richer (better)
set of Benders cuts than other ones.

7 Concluding Remarks

In this chapter, we have reviewed various applications of network design with
routing requirements, identified the challenges of solving this problem, and outlined
modeling and solution approaches for the problem. We next summarize the key
observations and learnings, and identify some opportunities for future work.

Applications Route constrained network design problems arise in a broad spectrum
of industries. These include the transportation industry, where the NDRR problem
applications comprise networks on the land, sea, and air. There are also many
applications in telecommunications and other areas such as electricity distribution
and machine scheduling.

Polyhedral Approach Using preprocessing techniques combined with insights
about the problem structure, Balakrishnan et al. (2017) derive and implement com-
putationally effective facets and valid inequalities for the NDRR problem. For the
CNDRR problem, the added capacity constraints make solving the problem more
challenging. So, using tight formulations, with added valid inequalities to strengthen
the formulation, will be key for effective CNDRR solution performance. The ideas
outlined in Sect. 3 to develop integrated inequalities that jointly consider the routing
and capacity restrictions provide interesting and useful research directions to pursue.

Constrained Shortest Path heuristics There is a wide spectrum of creative
approaches including Lagrangian relaxation with path enumeration, generalized
Dijkstra algorithm with preprocessing, and scaling. Different goals (e.g., improving
computational efficiency vs. improving worst-case bounds) result in different types
of heuristic improvements. Can we obtain heuristic worst-case bounds for the
weight-constrained shortest path problem with multiple routing requirements?



8 Network Design with Routing Requirements 249

Worst-Case Analysis Sections 4.1.1 and 4.2.1 discuss the worst-case analysis of
approximation algorithms for some special cases of the NDRR problem. These
theoretical studies are challenging but facilitate our understanding about which
particular problem characteristics make the NDRR problem easier or harder to
solve. Can we build upon these previous studies to develop and analyze the worst-
case performance of heuristics for more general NDRR problems?

Layered Networks The layered network approach uses variable disaggregation
to obtain a tighter LP relaxation for hop-constrained spanning trees. The tighter
formulation improves computational performance. Importantly, removing disaggre-
gated variables in this model via projection constitutes a systematic method for
obtaining polyhedral results in the original problem space (see previous discussion
on extended formulations for general NDRR problems). Adopting and extending
this approach for other problems appears to be promising.

The layered network variable disaggregation technique is different from previous
approaches. Instead of disaggregating a commodity into a finer set of commodities
(as researchers have previously done for facility location and uncapacitated fixed
charge network design), it disaggregates a flow variable into a series of hop-indexed
flow variables (or a design variable into a series of hop-indexed design variables).
Could there be other new variable disaggregation schemes for different types of
network design problems?

Decomposition Techniques Leveraging advances (over the past several decades) in
decomposition techniques (e.g., stabilization, improved column pricing methods),
embedding within a tree search procedure (e.g., branch-and-price or branch-
and-cut) and exploiting the structural properties of the NDRR problem solution
results in useful algorithms for some of its special cases. Further exploitation
of these advances appears to be a promising area for future research. Moreover,
decomposition techniques are more flexible and can address problem variants such
as stochastic or prize-collecting variants more easily than other types of solution
techniques.

Capacitated Network Design with Routing Restrictions Network design problems
become more challenging to solve if we just add routing restrictions or arc capacity
constraints. Even the simplest versions of the combined CNDRR model, which has
both types of constraints are NP-hard, and are likely to be quite difficult to solve.
Our discussion has highlighted the longitudinal (single commodity, multiple arc)
structure versus lateral (single arc, multiple commodity) structure of the routing
and capacity constraints. Developing effective solution methods will require lever-
aging and integrating the principles and approaches developed for the NDRR and
capacitated network design models. For each of the modeling and methodological
approaches (polyhedral methods, extended formulations, Lagrangian relaxation,
column generation, and Benders decomposition) presented in this paper, we have
also discussed possible ways to extend them to the CNDRR problem. Perhaps,
research to solve the CNDRR problem can begin by first addressing its special
cases such as the capacitated minimum spanning tree with hop limits, capacitated



250 A. Balakrishnan et al.

hop-constrained network design, or two-commodity CNDRR before considering
more general routing restrictions. These special cases have the advantage of
providing a wider range of improved modeling options such as the layered network
representation. Since there is little or no literature on the CNDRR problem and since
this problem has considerable practical relevance, investigating and developing
effective solution approaches for this problem is a promising and fruitful avenue
for research.

References

Agarwal, R., & Ergun, O. (2008). Ship scheduling and network design for cargo routing in linear
shipping. Transportation Science, 42, 175–196.

Ahuja, R. K., Jha, K. C., & Liu, J. (2007). Solving real-life railroad blocking problems. Interfaces,
37, 404–419.

Althaus, E., Funke, S., Har-Peled, S., Konemann, J., Ramos, E. A., & Skutella, M. (2005).
Approximating k-hop minimum-spanning trees. Operations Research Letters, 33, 115–120.

Armacost, A. P., Barnhart, C., Ware, K. A. (2002). Composite variable formulations for express
shipment service network design. Transportation Science, 36, 1–20.

Atamtürk, A., & Rajan, D. (2002). On splittable and unsplittable flow capacitated network design
arc-set polyhedra . Mathematical Programming, 92, 315–333.

Balakrishnan A., & Altinkemer, K. (1992). Using a hop-constrained model to generate alternative
communication network designs. INFORMS Journal on Computing, 4, 192–205.

Balakrishnan, A., & Karsten, C. V. (2017). Container shipping service selection and cargo routing
with transshipment limits. European Journal of Operational Research, 263, 652–663.

Balakrishnan, A., Li, G., & Mirchandani, P. (2017). Optimal network design with end-to-end
service requirements. Operations Research, 65, 729–750.

Balakrishnan, A., Magnanti, T. L., & Mirchandani, P. (1996) Heuristics, LPs, and trees on trees:
Network design analyses. Operations Research, 44, 478–496.

Balakrishnan, A., Magnanti, T. L., & Mirchandani, P. (1997). Network design. In M. Dell’Amico,
F. Maffioli, & S. Martello (Eds.), Annotated bibliographies in combinatorial optimization (pp.
311–334). New York: John Wiley and Sons.

Balakrishnan, A., Magnanti, T. L., & Wong, R. T. (1989). A dual-ascent procedure for large-scale
uncapacitated network design. Operations Research, 37, 716–740.

Balakrishnan, A., Mirchandani, P., & Natarajan, H. P. (2009). Connectivity upgrade models for
survivable network design. Operations Research, 57, 170–186.

Balakrishnan, A., Mirchandani, P., & Wong, R. T. (2020). On multi-constrained path, tree, and
network design problems. Working paper

Barnhart, C., Jin, H., & Vance, P. (2000). Railroad blocking: A network design applications.
Operations Research, 48, 603–614.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., & Vance, P. (1998) Branch-and-price:
Column generation for solving huge integer programs. Operations Research, 46, 316–329.

Barnhart, C., & Schneur, R. (1996). Air network design for express shipment service . Operations
Research, 44, 852–863.

Benhamiche, A., Mahjoub, A. R., Perrot, N., & Uchoa, E. (2016). Unsplittable non-additive capac-
itated network design using set functions polyhedra. Computers and Operations Research, 66,
105–115.

Bienstock, D., Günlük, O. (1996). Capacitated network design – Polyhedral structure and
computation. INFORMS Journal on Computing, 8, 243–259.



8 Network Design with Routing Requirements 251

Boland, N., Hewitt, M., Marshall, L., & Savelsbergh, M. (2017). The continuous-time service
network design problem. Operations Research, 65, 1303–1321.

Boland N, Hewitt M, Marshall, L., & Savelsbergh, M. (2019). The price of discretizing time: a
study in service network design. Euro Journal on Transportation and Logistics, 8, 195–216.

Botton, Q., Fortz, B., Gouveia, L., & Poss, M. (2013). Benders decomposition for the hop-
constrained survivable network design problem. INFORMS Journal on Computing, 25, 13–26.

Brockmüller, B., Günlük, O., & Wolsey, L. A. (2004). Designing private line networks: polyhedral
analysis and computation. Transactions on Operational Research, 16, 7–24.

Camargo, R., de Miranda, G., Jr., O’Kelly, M., & Campbell, J. (2017). Formulations and
decomposition methods for the incomplete hub location problem with and without hop-
constraints. Applied Mathematical Modelling, 51, 274–301.

Conforti, M., Cornuejols, G., & Zambelli, G. (2010). Extended formulations in combinatorial
optimization. 4OR: A Quarterly Journal of Operations Research, 8, 1–48.

Conforti, M., Cornuejols, G., & Zambelli, G. (2014). Integer programming. Heidelberg, Springer.
Costa, L., Contardo, C., & Desaulniers, G. (2019). Exact branch-price-and-cut algorithms for

vehicle routing. Transportation Science, 53, 946–985.
Coulard, C., Gamble, B., & Liu, J. (1994). The K-walk polyhedron. In D.-Z. Du & J. Sen (Eds.),

Advances in optimization and approximation. Dordrecht: Kluwer Academic Publishers.
Crainic, T. G. (2000). Service network design in freight transportation. European Journal of

Operational Research, 122, 272–288.
Dahl, G. (1998). The 2-hop spanning tree problem. Operations Research Letters, 23, 21–26.
Dahl, G., & Gouveia, L. (2004). On the directed hop-constrained shortest path problem. Operations

Research Letters, 32, 15–22.
De Boeck, J., & Fortz, B. (2017). Extended formulation for hop constrained distribution network

configuration problems. European Journal of Operational Research, 265, 488–502.
Desaulniers, G., Madsen, O. B., & Ropke, S. (2014). The vehicle routing problem with time

windows. In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods, and applications,
MOS-SIAM series on optimization (Vol. 18, pp. 119–159). Philadelphia: SIAM.

Desrochers, M., & Soumis, F. (1988). A generalized permanent labelling algorithm for the shortest
path problem with time windows. INFOR: Information Systems and Operational Research, 26,
191–212.

Desrosiers, J., Dumas, Y., Solomon, M., & Soumis, F. (1995). Time constrained routing and
scheduling. In M. Ball, T. L. Magnanti, C. Monma, & G. L. Nemhauser (Eds.), Handbooks
in operations research and management science (Vol. 8, pp. 35–139). Amsterdam: Elsevier.

Dumitrescu, I., & Boland, N. (2003). Improved preprocessing, labeling, and scaling algorithms for
the weight-constrained shortest path problem. Networks, 42, 135–153.

Ergun, F., Sinha, R., & Zhang, L. (2002). An improved FPTAS for restricted shortest path.
Information Processing Letters, 83, 287–291.

Estrada, M., & Robuste, F. (2009). Long-Haul shipment optimization for less-than-truckload
carriers. Transportation Research Record: Journal of the Transportation Research Board, 2091,
12–20.

Feng, G., & Korkmaz, T. (2015). Finding multi-constrained multiple shortest paths. IEEE
Transactions on Computers, 64, 2559–2572.

Fiorini, S., & Pashkovich, K. (2015). Uncapacitated flow-based extended formulations. Mathemat-
ical Programming, 153, 117–131.

Garey, M. R., & Johnson, D. S. (2002). Computers and intractability: A guide to the theory of NP
completeness. San Francisco: W. H. Freeman.

Gendron, B., Crainic, T.G., & Frangioni, A. (1999). Multicommodity capacitated network design.
In B. Sansò & P. Soriano (Eds.), Telecommunications network planning (pp. 1–19). Centre for
Research on Transportation. Boston: Springer.

Gopalakrishnan, B., & Johnson, E. L. (2005). Airline crew scheduling: State-of-the-art. Annals of
Operations Research 140, 305–337.

Gouveia, L. (1998). Using variable redefinition for computing lower bounds for minimum spanning
tree and Steiner tree with hop constraints. INFORMS Journal on Computing, 10, 180–188.



252 A. Balakrishnan et al.

Gouveia, L., & Magnanti, T. L. (2003). Network flow models for designing diameter-constrained
spanning and Steiner trees. Networks, 41, 159–173.

Gouveia, L., Magnanti, T. L., & Requejo, C. (2004). A 2-path approach for odd diameter-
constrained minimum spanning and Steiner trees. Networks, 44, 254–265.

Gouveia, L., Magnanti, T. L., & Requejo, C. (2006) An intersecting tree model for odd-iameter-
constrained minimum spanning and Steiner trees. Annals of Operations Research, 146, 19–39.

Gouveia, L., & Martins, P. (1999). The capacitated minimal spanning tree problem: An experiment
with a hop-indexed model. Annals of Operations Research 86, 271–294.

Gouveia, L., Simonetti, L., & Uchoa, E. (2011). Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as Steiner tree problems over layered graphs.
Mathematical Programming, 128, 123–148.

Grandoni, F., Ravi, R., Singh, M., & Zenklusen, R. (2014). New approaches to multi-objective
optimization. Mathematical Programming, 146, 525–554.

Grötschel, M., Monma, C. L., & Stoer, M. (1995). Design of survivable networks. In M. Ball,
T. L. Magnanti, C. Monma, G. L. Nemhauser (Eds.), Handbooks in operations research and
management science (Vol. 7, pp. 617–672). Amsterdam: Elsevier.

Grötschel, M., & Stephan, R. (2014). Characterization of facets of the hop-constrained chain
polytope via dynamic programming. Discrete Applied Mathematics, 162, 229–246.

Handler, G., & Zang, I. (1980). A dual algorithm for the constrained shortest path problem.
Networks, 10, 293–309.

Hassin, R. (1992). Approximation schemes for the restricted shortest path problem. Mathematics
of Operations Research, 17, 36–42.

Hassin, R., & Levin, A. (2003). Minimum spanning tree with hop restrictions. Journal of
Algorithms, 48, 220–238.

Holloway, C. (1973). A generalized approach to Dantzig-Wolfe decomposition for concave
programs. Operations Research, 21, 210–220.

Karsten, C. V., Brouer, B. D., Desaulniers, G., & Pisinger, D. (2017). Time constrained liner
shipping network design. Transportation Research Part E, 105, 152–162.

Kortsarz, G., & Peleg, D. (1999). Approximating the weight of shallow Steiner trees. Discrete
Applied Mathematics, 93, 265–285.

Lawler, E. L. (1976). Combinatorial optimization: Networks and matroids. New York: Courier
Corporation.

Leitner, M., Ruthmair, M., & Raidl, G. (2012). Stabilizing branch-and-price for constrained tree
problems. Networks, 61, 150–170.

Lemaréchal, C., Nemirovskii, A., & Nesterov, Y. (1995). New variants of bundle methods.
Mathematical Programming, 69, 111–147.

Lorenz, D. H., & Raz, D. (2001). A simple efficient approximation scheme for the restricted
shortest path problem. Operations Research Letters, 28, 213–219.

Lübbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations
Research, 53, 1007–1023.

Maculan, N. (1987). The Steiner problem in graphs. Annals of Discrete Mathematics, 31, 185–212.
Magnanti, T. L., Mirchandani, P., & Vachani, R. (1993). The convex hull of two core capacitated

network design problems. Mathematical Programming, 60, 233–250.
Magnanti, T. L., Mirchandani, P., & Vachani, R. (1995). Modeling and solving the two-facility

capacitated network loading problem. Operations Research, 43, 142–157.
Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders decomposition: Algorithmic

enhancement and model selection criteria. Operations Research, 29, 464–484.
Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning: Models and

algorithms. Transportation Science, 18, 1–55.
Malandraki, C., Zaret, D., Perez, J., & Holland, C. (2001). Industrial engineering applications in

transportation. In G. Salvendy (Eds.), Handbook of industrial engineering (3rd ed., pp. 787–
824). New York: John Wiley and Sons.

Marathe, M. V., Ravi, R., Sundaram, R., Ravi, S. S., Rosenkrantz, D. J., & Hunt, H. B. (1998).
Bicriteria network design problems. Journal of Algorithms, 28, 142–171.



8 Network Design with Routing Requirements 253

Mirchandani, P. (2000). Projections of the capacitated network loading problem. European Journal
of Operational Research, 122, 534–560.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York:
Wiley.

Poggi de Arago, M., & Uchoa, E. (2003). Integer program reformulation for robust branch-and-
cut-and-price. In L. Wolsey (Ed.), Annals of Mathematical Programming in Rio (pp. 59–61)

Pugliese, L. D. P., & Guerriero, F. (2013). A survey of resource constrained shortest path problems:
Exact solution approaches. Networks, 62, 183–200.

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decomposition
algorithm: A literature review. European Journal of Operational Research, 259, 801–817.

Rardin, R. L., & Choe, U. (1979). Tighter relaxations of fixed charge network flow problems.
Industrial and Systems Engineering Report J-79-18, Georgia Institute of Technology

Rardin, R. L., & Wolsey, L. A. (1993). Valid inequalities and projecting the multicommodity
extended formulation for uncapacitated fixed charge network flow problems. European Journal
of Operational Research, 71, 95–109.

Reidl, W. (2017). A complete characterization of jump inequalities for the hop-constrained shortest
path problem. Discrete Applied Mathematics, 225, 85–113.

Ruthmair, M., & Raidl, G. (2011). Layered graph model and an adaptive layers framework to solve
delay–constrained minimum tree problems. In O. Gunluk & G. Woeginger (Eds.), IPCO 2011
(pp. 276–288). Berlin Heidelberg, Springer-Verlag.

Stephan, R. (2009). Facets of the (s,t)-path polytope. Discrete Applied Mathematics, 157, 3119–
3132.

Uchoa, E., Fukasawa, F., Lysgaard, J., Pessoa, A., Poggi de Arago, M., & Andrade, D. (2008).
Robust branch-cut-and-price for the capacitated minimum spanning tree problem over a large
extended formulation. Mathematical Programming, 112, 443–472.

Vanderbeck, F., & Wolsey, L. A. (2010). Reformulation and decomposition of integer programs.
In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G.
Rinaldi, & L. A. Wolsey (Eds.), 50 Years of integer programming 1958–2008 (pp. 431–502).
Berlin Heidelberg: Springer-Verlag.

Vazirani, V. V. (2013). Approximation algorithms. New York: Springer Science & Business Media.
Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). Heuristics for multi-attribute vehicle

routing problems: A survey and synthesis. European Journal of Operational Research, 231:1–
21.

Warburton, A. (1987). Approximation of pareto optima in multiple–objective, shortest-path
problems. Operations Research, 35, 70–79.

Wilhelm, W. E., Damodaran, P., & Li, J. (2003). Prescribing the content and timing of product
upgrades. IIE Transactions, 35, 647–663.

Williamson, D. P., & Shmoys, D. B. (2011). The design of approximation algorithms. New York:
Cambridge University Press.

Wolsey, L. (2011). Using extended formulations in practice. Optima, 85, 7–9.
Yildiz, B., & Savelsbergh, M. (2019). Optimizing package express operations in China. Optimiza-

tion Online 6799.
Zabarankin, M., Uryasev, S., & Pardalos, P. (2001). Optimal risk path algorithms. In R. Murphey

& P. Pardalos (Eds.), Cooperative control and optimization (pp. 271–303). Dordrecht: Kluwer.
Zhu, E., Crainic, T. G., & Gendreau, M. (2014). Scheduled service network design for freight rail

transportation. Operations Research, 62, 383–400.



Chapter 9
Bilevel Network Design

Martine Labbé and Patrice Marcotte

1 Introduction

The framework of bilevel programming allows the modelling of hierarchical
situations where a leader anticipates the rational reaction of a non-cooperating
follower whose objective and/or constraints are influenced by the leader’s decisions.
In the context of network design, this paradigm is especially relevant when the
designer of a network does not have a direct control of user flows, who are assigned
according to their own logic. In this chapter, we illustrate, through four distinct
applications, the modelling and algorithmic issues that characterize bilevel network
design problems. Throughout, we assign a broad sense to the term ‘network design’,
meaning any program that involves the determination of variables that impact the
structure of a graph or a network.

2 A Primer on Bilevel Programming

Bilevel programs, of which the well-known Stackelberg game is a particular
instance, involve a leader and a follower acting in a hierarchical fashion. In
our framework, the leader makes decisions embodied into a vector x1 ∈ Rn1 ,

M. Labbé
GOM, Université Libre de Bruxelles, Brussels, Belgium

INRIA, Lille, France
e-mail: mlabbe@ulb.ac.be

P. Marcotte (�)
CIRRELT and DIRO, Université de Montréal, Montréal, QC, Canada
e-mail: marcotte@iro.umontreal.ca

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_9

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_9&domain=pdf
mailto:mlabbe@ulb.ac.be
mailto:marcotte@iro.umontreal.ca
https://doi.org/10.1007/978-3-030-64018-7_9


256 M. Labbé and P. Marcotte

anticipating the reaction x2 ∈ Rn2 of the follower to its design x1. The general
formulation of a bilevel program is as follows:

max
x1,x2

f1(x
1, x2)

subject to (x1, x2) ∈ X1 (9.1)

x2 ∈ S2(x
1) ,

where, for a given design vector x1, S2(x
1) is the set of optimal solutions of the

follower’s problem, i.e.,

S2(x
1) = arg min

y2∈X2(x
1)
f2(x

1, y2) . (9.2)

Under standard assumptions such as compactness or continuity, one can prove the
existence of at least one solution to a bilevel program. What makes the problem
difficult is that, whenever the lower level problem is not trivial, no closed form
solution is available for x2 as a function of x1.

If the set S2(x
1) contains more than one element, the above formulation implies

that the leader is free to select the element that maximizes its objective. This is the
‘optimistic’ case, in contrast with the ‘pessimistic’ case where the leader assumes
that the follower will select the element of S2(x

1) that minimizes the leader’s
objective. Throughout this chapter, we assume that the optimistic case prevails.

Now, for notational convenience, we set

X2(x
1) = {x2 : (x1, x2) ∈ X2}

for some set X2 ⊆ Rn2 and record a bilevel program in the following ‘vertical’
format, which contains all relevant information:

max
x1

f1(x
1, x2)

subject to (x1, x2) ∈ X1

(9.3)

min
x2

f2(x
1, x2)

subject to (x1, x2) ∈ X2 .

It is important to understand that the follower is oblivious to the ‘upper level’
constraint (x1, x2) ∈ X1. Its enforcement is the sole responsibility of the leader,
which must make sure that it is satisfied by the rational reaction of the follower.



9 Bilevel Network Design 257

We now turn our attention to generic algorithmic frameworks. These are mostly
based on reformulations as single-level programs, which can be achieved in a variety
of ways. We introduce the three most common ones.

Value Function
In this formulation, lower level optimality is enforced by specifying that, for a given
design vector x1, x2 must be lower-level feasible, and outperform any alternative
solution. This yields the nonconvex semi-infinite program

max
x1,x2

f1(x
1, x2)

subject to (x1, x2) ∈ X1 ∩X2

f2(x
1, x2) ≤ f2(x

1, y2) ∀y2 ∈ X2(x
1) .

(9.4)

First-Order Conditions
If the function f2 is differentiable and convex with respect to x2, and if the sets
X2(x1) are convex for every feasible x1, one can characterize the set S2(x

1) via
the first-order necessary and sufficient optimality conditions of the lower level
programs. This yields the single-level formulation

max
x1,x2

f1(x
1, x2)

subject to (x1, x2) ∈ X1 ∩X2

〈∇2f2(x
1, x2), x2 − y2〉 ≤ 0 ∀y2 ∈ X2(x

1) ,

(9.5)

where ∇2 represents the gradient of f2 with respect to its second argument x2.

Kuhn-Tucker-Based
If the set X2 is expressed by a set of inequalities

X2 = {(x1, x2) : g2i (x
1, x2) ≤ 0, i = 1, . . . , m2},

for some convex functions g2i , the follower’s objective f2 is convex with respect to
x1, and a regularity condition (constraint qualification) holds, then S2(x

1) can be
replaced by the necessary and sufficient Kuhn-Tucker optimality conditions of the
lower level program. This yields the single-level formulation



258 M. Labbé and P. Marcotte

BILKT :

max
x1,x2

f1(x
1, x2)

subject to (x1, x2) ∈ X1 ∩X2

∇2f2(x
1, x2)+

m2∑

i=1

λi∇g2i (x
1, x2) = 0

λig2i (x
1, x2) = 0 i = 1, . . . , m2

λi ≥ 0 i = 1, . . . , m2 ,

(9.6)
that, in contrast with the preceding two formulations, involves but a finite number of
constraints. Note that BILKT, which might be the most frequently used in practice,
exhibits the combinatorial nature of the problem through the complementarity
between the vector of Lagrange multipliers λ and the inequality constraints defined
by the convex functions g2i’s. A convenient shortcut for the complementarity system
formed by the last two constraints of BILKT is

λ ≥ 0 ⊥ g2(x
1, x2) ≤ 0,

which stresses the relationship between bilevel programming and the class of
problems known as Mathematical Programs with Equilibrium Constraints, or
MPEC’s.

Common to all three formulations is that their constraints do not satisfy any con-
straint qualification generically, hence standard techniques of nonlinear (nonconvex)
programming may fail to produce even stationary points. It follows that efficient
algorithms must explicitly deal with the twin continuous-combinatorial nature of
the problem, and frequently adapt to the specific nature of the application under
consideration.

Equilibrium Constraints
In several applications of interest, a population of players reacts to the leader’s
decision by achieving an equilibrium. This occurs for instance in n-player games,
where a Nash equilibrium is reached when no player can increase its objective by
acting alone. Another important application involves selfish users that strive for
minimum travel time in a congested network. A Wardrop equilibrium of this non-
atomic game corresponds to a multicommodity flow vector x such that, for every
origin-destination pair, flow is only assigned to paths that are shortest with respect
to the delays induced by the leader’s decision x1.

In general, an equilibrium is not naturally the solution of an optimization
problem. Rather, the set of lower-level equilibria corresponding to an upper-level



9 Bilevel Network Design 259

vector x1 can be characterized as the solution of a variational inequality involving a
mapping F2 : Rn2 → Rn2 , i.e.,

S2(x
1) = {x2 ∈ X2(x

1) : 〈F2(x
1, x2), x2 − y2〉 ≤ 0 ∀y2 ∈ X2(x

1)}.

If F2 happens to be the gradient of some convex function f2, then the solutions of
the above variational inequality are simply the vectors that satisfy the necessary and
sufficient first-order optimality conditions of the associated lower level program.
The added generality occurs when this is not the case, i.e., for a continuously
differentiable mapping F2, when its Jacobian matrix fails to be symmetric. The
equivalent of the Kuhn-Tucker formulation is then obtained by substituting F2 to
∇2 in BILKT.

Solution Algorithms
In their generality, bilevel programs are akin to unstructured global optimization
problems, and their feasible space may even be disconnected in the presence of
upper level constraints involving the vector x2. Actually, their strong NP-hardness
has been proved in the ‘simple’ case where all functions and constraints are linear.

Most algorithms rely on a single-level reformulation and, for tractability, assume
that the lower level problem is relatively easy to solve. Initiated with a relaxed
problem where the leader controls both x1 and x2, formulations (9.4) and (9.5)
suggest a cutting-plane approach that only generates ‘optimality’ or ‘variational’
constraints as required. At each iteration, and for a given upper level vector x1, the
most violated constraint is appended to the relaxed problem. For the value function
formulation, this amounts to solving the lower level problem

min
y2∈X2(x

1)
f2(x

1, y2)

while, for the ‘first-order’ formulation, one solves

min
y2∈X2(x

1)
〈∇2f2(x

1, x2), y2〉,

which reduces to a standard linear program if the lower level constraints are linear.
Note that, in both cases, the relaxed problems are highly nonlinear and nonconvex.

Formulation BILKT might be the most interesting from an algorithmic point of
view, the main issue being the treatment of its complementarity constraints. Indeed,
their presence makes the problem ‘irregular’, i.e., constraint qualifications that are
the basis of convergence analysis are not generically satisfied. This difficulty can be
sidestepped by appending a multiple of the complementarity term into the objective.
Under weak assumptions, the resulting penalty is ‘exact’, i.e., a global solution of
the penalized problem involving a large but finite multiplier is a global solution of
the original bilevel program. Unfortunately, this result might fail to hold for local
solutions. Alternatively, one may smooth the complementarity term, for instance



260 M. Labbé and P. Marcotte

λig2i (x
1, x2) ≤ ε

for some small scalar ε. A third approach, which highlights the combinatorial
nature of the complementarity constraints, consists in replacing the complementarity
constraint λig2i (x

1, x2) = 0 by the more tractable triple

λi ≤ Mui

g2i (x
1, x2) ≤ M(1− ui)

ui ∈ {0, 1},

for some ‘large’ constant M . When the constraints are linear and the objectives are
linear (respectively quadratic), the resulting mixed integer program can be solved to
global optimality by a dedicated software. Also noteworthy is that, when the vector
of binary variables is fixed, the resulting program possesses a structure (a network
structure for instance) that can be exploited.

Another approach, fruitful in nonlinear programming, is to approximate the
original program by a related model. Inspired by the trust region framework, one
can rely on an approximation involving linear or quadratic functions, which can be
solved for a global optimum. Alternatively, one can design an approximation that
exploits the problem’s structure, as we will observe in the next sections.

Finally, various heuristics can be applied. These can be either of a generic nature,
or based on the key features of the problem under investigation. On the generic front,
meta-heuristics that have been proposed for combinatorial problems (simulated
annealing, tabu search, genetic algorithms, etc.) can exploit the presence of the
binary variables ui’s, as well as the relative ease with which the program associated
with fixed u-values can be solved.

3 The Continuous Network Design Problem

Consider the problem that consists in improving a subset of links of an urban trans-
portation network, with the aim of minimizing the weighted sum of transportation
and investment costs. Since users minimize their individual cost, their objective
is not aligned with that of the network builder. More precisely, for a given link
improvement vector z ∈ Z, the arc flow vector x achieves a Wardrop equilibrium
that satisfies the variational inequality

〈F(z, x), x − y〉 ≤ 0 ∀y ∈ X,

where x is the link-flow vector, F the associated cost (delay) mapping, and X

represents the set of feasible arc flows. In this realm, the designer of the network
faces the bilevel problem (an MPEC to be precise)



9 Bilevel Network Design 261

min
z,x

〈F(z, x), x〉 + c(z)

subject to z ∈ Z
x ∈ X
〈F(z, x), x − y〉 ≤ 0 ∀y ∈ X,

(9.7)

where c(z) denotes the cost of implementing the design z.
We now focus on the case where z is only constrained to be nonnegative, and

where the delay and investment functions are link-separable, thus are gradient
mappings. Letting A denote the index set of arcs, this yields the bilevel program

min
z

∑

a∈A
[Fa(za, xa)xa + ca(za)]

subject to za ≥ 0 a ∈ A

min
x

∑

a∈A

∫ xa

0
Fa(za, t) dt

subject to x ∈ X .

(9.8)

Furthermore, we assume that the link delay functions Fa are of the form

Fa(za, xa) = Fa(xa/za),

for some nonnegative, convex and increasing functions Fa .
From the theoretical point of view, the problem is NP-hard. However, in the view

that the leader and follower’s objectives are not at odds (the leader’s objective
involves total transportation costs, versus marginal costs for the follower), it is
tempting to let the leader control both the design and flow variables, yielding a
design vector z̄ and the corresponding equilibrium flow x̄. More specifically, let us
consider the system-optimal problem

min
z≥0,x∈X

∑

a∈A
[Fa(xa/za)xa + ca(za)]. (9.9)

For a given flow vector x, the problem becomes separable in z, with za(xa) being
the unique solution of the parameterized equation

− (xa/za)2F ′a(xa/za)+ c′a(za) = 0, (9.10)

obtained by setting to zero the gradient of the leader’s objective. One then solves
the mathematical program



262 M. Labbé and P. Marcotte

min
x∈X

∑

a∈A
[Fa(xa/za(xa))xa + ca(za(xa))], (9.11)

to obtain a system-optimal flow x̃, together with z̄ = z(x̃). A feasible solution is
then easily recovered by setting the flow vector to the equilibrium x̄ corresponding
to the vector z̄. This simple heuristic procedure will be denoted H1.

We now restrict our attention to polynomial delay and investment functions, i.e.,

Fa(xa/za) = αa + βa(xa/za)p

and

ca(za) = laz
m
a ,

for some scalars p ≥ 1, m ≥ 0 and la ≥ 0. According to these assumptions, the
root of Eq. (9.10) can be obtained in closed form. Furthermore, if the cost functions
ca are convex (respectively concave), then problem (9.11) is convex (respectively
concave). The concave situation occurs when m < 1, and yields an extremal flow
solution. In the particular case where functions ca’s are linear, (9.11) reduces to
a linear multicommodity flow problem that can be easily solved by shortest path
computations.

Another heuristic approach to the problem, denoted H2, consists in iteratively
solving Eq. (9.11) for fixed z-vector, and then performing an equilibrium assign-
ment, for fixed design vector z. Whenever this cobweb process converges, it will
do so at a couple (x, z) where Eq. (9.10) is satisfied, while x is in equilibrium with
respect to z.

A third heuristic strategy (H3) consists in finding a capacity vector that is
consistent with the system-optimal flows x̃ provided by Heuristic H1. Algorithms
H2 and H3 are actually subsumed by a more general scheme H4 where one solves
the single-level program

min
z≥0,x∈X

∑

a∈A

[∫ xa

0
Fa(t, za) dt + ξaca(za)

]

(9.12)

for some set of nonnegative weights ξa’s. It is clear that any solution to that program
yields equilibrium flows with respect to z. Moreover, it can be shown that there
exists a set of weights ξa such that an optimal solution of (9.12) is also optimal
for the original bilevel program. While determining such weights is theoretically as
hard as solving the continuous network design problem in the first place, educated
guesses, such as setting ξ to the vector of ones, may prove of interest. Actually, in
the view that (9.12) can be solved quickly, one might solve (9.12) over a range of
weight vectors with identical values ξ̄ for instance. Setting all parameters ξa’s to
1/(p + 1) yields H2, while setting them to p + 1 yields H3.



9 Bilevel Network Design 263

An interesting feature of the model is that information about worst-case bounds
of the heuristics can be derived with respect to key parameters of the problem,
namely the respective degrees p and m of the delay and cost polynomials. Let us
denote, for a given heuristic H (H1, H2, H3 or H4), by ρH(m, p) the worst-case
ratio of the cost of the heuristic solution value over that of the unknown optimal
value, i.e.,

ρH(m, p) = sup
cost of heuristic solution

cost of optimal solution
, (9.13)

where the supremum is taken over all possible values of the remaining parameters
and network configurations. We have the following results:

• lim
p→∞ ρ

H1(p, 1) ≥ 2

• ρH2(p, 1) = p + 1

• ρH3(p,m) = m(p + 1)

m+ p + p

(m+ p)(p + 1)m/p

• 1+ p

ξ(p + 1)
≤ ρH4(p,m) ≤ ξp/p+1

(p + 1)1/p+1

[
1+ p

ξ(p + 1)

]2
.

It is worth noting that, for p = m = 1, the worst-case bound of heuristic H3 is equal
to 5/4, which is less than the price of anarchy (the worst-case ratio between the
true delay associated with an equilibrium and the system-optimal delay) for affine
latency functions, whose value is 4/3. This bound can also be improved to 49/41 ≈
1.195 by computing the best solution provided by H3 and a closely related method,
a result that was extended to a larger class of delay functions than polynomials.
Worst-case results indicate that Heuristic H3 outperforms both H1 and H2. However,
computational results tend to show that H1 and H2 perform much better in practice.

A straightforward extension is concerned with the improvement of existing
networks. Let us denote by z0 the vector of initial link capacities. This more general
model is subsumed by the ‘standard’ model if one sets the investment cost to the
nondifferentiable function ca max{0, za−z0

a}. While the latter can be approximated
as closely as desired by a differentiable function, allowing the implementation of
previously described heuristics, the worst-case results do not hold any more.

4 A Competitive Location-Queuing Model

Besides its intrinsic interest, this topic provides an opportunity to analyze algo-
rithmic techniques for addressing complex mathematical programs involving both
discrete and continuous variables. In the model considered, a firm makes decisions
concerning the location and service levels of facilities, with the aim of attracting



264 M. Labbé and P. Marcotte

the maximum number of customers. At the lower level, customers minimize their
individual disutility.

Before providing a mathematical description of the model, we broadly describe
the supply-demand setting. Facilities fall into two categories, namely those owned
by the leader and its competitors, respectively. Each open facility is characterized
by its location vertex and service level, which are the decision variables of the
leader firm. Service is exponentially distributed, and queue length limited to a
predetermined capacity. Whenever the capacity is exceeded, balking occurs, i.e.,
customers are denied service. A consequence of this phenomenon is that the model
makes sense even if arrival rates exceed service rates. Throughout, we assume that
the location and service rates of the competition are fixed and known.

The demand side is characterized by Poisson processes associated with nodes
of the network. For given facility locations and service levels, users are assigned
to the facilities according to a discrete choice (logit) model where random utilities
are linear combinations of travel time to facilities, queueing delays, probability of
not accessing service, and a random term that makes for unobserved features. In
this framework, the objective of the leader is to maximize the number of customers
served at its facilities, subject to a budget constraint.

Let us now focus on the assignment part. We denote by di the demand rate
originating from node i, by λj the arrival rate at facility j , and by Kj the capacity
of facility j . We assume that users are rational and minimize a disutility expressed
as a positive linear combination

uij = tij + αwj + βpKj
+ ε

of travel time tij , waiting time wj , probability pKj
of not accessing facility j , plus

a random Gumbel term ε with cumulative distribution function exp(− exp(x/θ)).
This yields a closed form expression for the assignment of users to facilities:

xij = di
e−θuij
∑

l∈J ∗
e−θuil

, (9.14)

where J ∗ represents the set of open facilities. Classical queueing theory results then
lead to the closed form expressions

wj = 1

μj

(

Kj + Kj

(λj /μj )
Kj − 1

− 1

(λj /μj )− 1

)

and

pKj
= λj

μj
· 1− (λj /μj )

1− (λj /μj )Kj+1
.



9 Bilevel Network Design 265

If the process intensity λj/μj is equal to 1, the above expressions are replaced by
their limits, which are finite.

Let J1 denote the index set of the leader’s facilities. The aim of the leader is to
maximize the number of customers that access its facilities, i.e.,

∑

j∈J1

λj (1− pKj
),

through the control of the service rates μj (j ∈ J1) and location decisions,
represented by binary variables yj set to 1 if a facility is located at node j of the

network, and to 0 otherwise. Denoting by cfj the fixed cost of opening a facility at
node j , by cj the cost of providing a unit of service level at node j , and by B the
total budget constraint, the problem can be formulated as the mathematical program

LEADER: max
y,μ

∑

j∈J1

λj (1− pKj
)

subject to
∑

j∈J1

c
f
j yj +

∑

j∈J1

cjμj ≤ B

μj ≤ Myj j ∈ J1

yj ∈ {0, 1} j ∈ J1

USERS: xij = diyj
e
−θ
(
tij+αwj+βpKj

)

∑

l∈J ∗
e−θ

(
til+αwl+βpKl

) i ∈ I, j ∈ J

λj =
∑

i∈I
xij j ∈ J

wj = 1

μj

(

Kj + Kj

(λj /μj )
Kj − 1

− 1

(λj /μj )− 1

)

j ∈ J

pKj
= (λj /μj )

Kj
1− (λj /μj )

1− (λj /μj )Kj+1
j ∈ J

where the main decision variables y and μ have been emphasized under the ‘max’
operator, and M is a suitably large ‘big-M’ constant. In the limiting case θ = ∞,
the first user equation reduces to the complementarity system (Wardrop principle)

tij + αwj (x, μ)+ βpKj (x, μ)
⎧
⎨

⎩

= ξi, if xij > 0

≥ ξi, if xij = 0.
(9.15)

While the above looks like a standard optimization program, its main difficulty
resides in the highly nonlinear constraints that define the user flows. Indeed, since
the quantities wj and pKj

both depend on xij , it follows that the first user constraint



266 M. Labbé and P. Marcotte

is actually a fixed point equation that is not trivial to solve in its own right. To cast
the problem into a more convenient framework, we first note that any solution of
the following optimization program, which is convex in the user variables, yields an
equilibrium solution:

min
x

∑

i∈I

∑

j∈J ∗

(
1

θ
xij ln xij + tij xij

)

+ α
∑

j∈J ∗

∫ λj

0
wj (λ, μj )dλ

+ β
∑

j∈J ∗

∫ λj

0
pKj (λ, μj )dλ (9.16)

subject to
∑

j∈J ∗
xij = di i ∈ I

xij ≥ 0 i ∈ I, j ∈ J ∗

λj =
∑

i∈I
xij j ∈ J ∗.

When θ = ∞, the first term simply disappears, and users are assigned to shortest
paths.

Upon replacing the fixed point equation by the above program, one obtains a
bilevel program involving a structure that can be exploited algorithmically. For
instance, the first term of the lower level objective is convex, while the second
is jointly pseudo-convex in λ and μ. Furthermore, in the important case when no
balking occurs (Kj = ∞ for all leader facilities), the third term is jointly convex in
λ and μ.

Let us first consider the no-balking situation. In this case, pKj
= 0 and, in order

that the problem be meaningful, the total service rate must exceed total demand. This
can be already satisfied by the competing facilities, or enforced through additional
bound constraints on service levels. This suggests the following strategy for solving
the bilevel location problem:

• Approximate the lower level objective by a (convex) piecewise linear function.
• Express the approximate lower level program as a linear program.
• Replace the linear program by its primal-dual optimality conditions. This yields

linear constraints, with the exception of primal-dual complementarity.
• With the help of binary variables, linearize the complementarity constraints to

obtain a mixed integer program (MIP).
• Let y∗ and μ∗ be the partial solution of the MIP.
• Compute the equilibrium flows x∗ compatible with y∗ and μ∗.

One can show that, as the mesh of the piecewise linear approximation decreases, the
solution of the MIP converges to a solution of the original problem. More important,
it was observed that a coarse mesh was actually sufficient to yield high quality
solutions. If the parameters Kj are finite, the situation becomes more complex,
and one has to introduce additional binary variables to linearize both the upper



9 Bilevel Network Design 267

and lower level objectives. Nevertheless, the same algorithmic strategy can still be
implemented.

Since the curse of dimensionality hits very early for such complex bilevel
programs, it warrants looking for alternative algorithmic strategies. One such
approach consists, as has been proposed for the continuous version of the network
design problem considered in the previous section, to replace the bilevel program
by a single level proxy. In this regard, an equivalent to H1 would be to let the leader
control all decision variables. However, this yields a poor approximation, whose
trivial solution is to first build a single facility (the one with least fixed cost), to
spend the residual budget on its service level, and to direct the maximal amount of
customers to this facility, without regards for the competition. A better alternative
is, similar to H2, to minimize a proxy program that yields equilibrium flow patterns,
for instance

min
y,μ,x

∑

i∈I

∑

j∈J ∗

(
1

θ
xij ln xij + tij xij

)

+ α
∑

j∈J ∗

∫ λj

0
wj(λ, μj )dλ

+ β
∑

j∈J ∗

∫ λj

0
pKj (λ, μj )dλ

s.t.
∑

j∈J
xij = di i ∈ I

∑

j∈J1

c
f
j yj +

∑

j∈J1

cjμj ≤ B

λj =
∑

i∈I
xij j ∈ J

yj ∈ {0, 1} j ∈ J
xij ≥ 0 i ∈ I, j ∈ J.

(9.17)

In the spirit of H4 introduced in the previous section, the objective can be
generalized by adding a term that depends on the service level vector μ, yielding:

min
y,μ,x

∑

i∈I

∑

j∈J ∗

(
1

θ
xij ln(xij )+ tij xij

)

+ α
∑

j∈J ∗

∫ λj

0
wj(λ, μj )dλ

+ β
∑

j∈J ∗

∫ λj

0
pKj (λ, μj )dλ+

∑

j∈J1

ξjμj ,

(9.18)
subject to the same constraints. Note that, in the important situation where K = ∞
(no balking), this yields a simple convex program. Otherwise, a nonconvex piece-
wise linear approximation of its objective results in a mixed integer formulation that
can be solved to global optimality.



268 M. Labbé and P. Marcotte

While it can be proved that there exists an assignment of the ξj variables that
yields an optimal solution of the original problem, finding such assignment is
theoretically as difficult as solving the original problem. Nevertheless, based on the
intuition that it makes sense for the leader to favor facilities located close to high
demand nodes, the educated guess

ξj = di/tij

has been proposed. If a demand node coincides with a facility location, a small
number can be added to the denominator, to avoid dividing by zero. The formula
can also be enhanced to take into account the fixed costs cfj , for instance,

ξj = −di/(cfj tij ).

5 Network Pricing

Pricing offers a rich area for applications of bilevel programming. This section
discusses such problems involving an underlying network structure. More precisely,
we consider the problem that consists in setting tolls on a subset of arcs of a
multicommodity transportation network, with the aim of maximizing profit. In this
context, the toll manager anticipates the flows that result from its toll policy, i.e.,
users are assigned to paths that minimize their respective disutility, taking into
account constant transportation costs, as well as out-of-pocket costs.

As an example, consider the network depicted in Fig. 9.1, that involves two toll
arcs (dotted) and a single user that travels from node 1 to node 5. The cost (equal
to 22) of the toll free path from node 1 to node 5 provides an upper bound on the
maximum amount the user agrees to pay for its trip. Further the transportation cost
is at least 6, which corresponds to the cost of a shortest path when both tolls are set
to zero. This yields an upper bound of 22 − 6 = 16 on the revenue. Interestingly,
this bound cannot be reached since the optimal solution is obtained by setting the
toll on arc (2, 3) to 5 and the toll on arc (4, 5) to 10.

1 2 3 4 5
2 2+toll 2 0+toll

9

10 12

Fig. 9.1 A toll pricing network and its arc costs



9 Bilevel Network Design 269

In general, the multicommodity transportation network is characterized by a
graph G with node set N and arc set A . Each arc a ∈ A is endowed with a
cost ca . The set of arcs A is partitioned into two subsets A1 and A2, the former
containing the arcs controlled by the toll manager and the latter the so-called ‘toll
free’ arcs. The commodities k ∈ K represent groups of users willing to travel from
the same origin ok ∈ N to the same destination dk ∈ N . For commodity k, its
demand is denoted by ηk and its nonnegative transportation cost on arc a by cka .

The Network Pricing Problem (NPP) can be formulated as the following bilevel
program that involves bilinear objectives and linear constraints:

NPP:

max
t

∑

k∈K
ηk

∑

a∈A1

tax
k
a

subject to t ∈ T
min
x

∑

k∈K
(
∑

a∈A1

(cka + ta)xka +
∑

a∈A2

ckax
k
a)

subject to xk ∈ Xk k ∈ K ,

(9.19)

where Xk denotes the polyhedron of feasible flows for commodity k, and T imposes
constraints, such as bounds, on the set of feasible tolls. In order that the profit
be bounded, there must exist at least one toll free path, i.e., containing only arcs
belonging to A2, for each origin-destination pair (commodity). In other words, the
removal of toll arcs must leave all origin-destination pairs connected.

In our variant of the network pricing problem, we assume that the set T consists
of all nonnegative toll values. Note that variants involving unrestricted or upper
bounded tolls have also been considered in the literature. In addition, Xk represents
the set of feasible paths associated with commodity k, that is characterized by the
following flow conservation constraints on variables xka :

∑

a∈δ(i)+
xka −

∑

a∈δ(i)−
xka = bki i ∈ N (9.20)

xka ≥ 0 a ∈ A , (9.21)

where bki = +1 if i = ok, bki = −1 if i = dk , and bki = 0 otherwise. Further, δ(i)+
(resp. δ(i)−) denotes the set of arcs having node i (resp. j ) as tail (resp. head).

From the complexity point of view, it has been shown that NPP is strongly NP-
hard, and actually APX-hard, even in the single commodity case. Alternatively,
consider an instance of NPP that involves but one toll arc (see Fig. 9.2). A
commodity k uses the toll arc only if its value is not larger than the difference, say
Mk , between the value of the shortest path not using the toll arc and the value of the
shortest path with the toll set to zero. It is easy to see that the optimal toll value will



270 M. Labbé and P. Marcotte

0
toll

revenue

(η
1 +

η
2 +

η
3 +

η
4 +

η
5 )
× t

ol
l

(η
1 +

η
2 +

η
3 +

η
4 )
× t

ol
l

(η
1 +

η
2 +

η
3 )×

tol
l

(η
1 +η2 )

× toll

η1 × toll

0× toll

M5 M4 M3 M2 M1

Fig. 9.2 Revenue function (in bold) for a single toll arc and 5 origin-destination pairs ( |K | = 5).
The function is piecewise linear and continuous from the left. A local maximum is achieved at each
‘critical’ value Mk . In this instance, the optimum revenue is achieved when the toll is equal to M4

be equal to some Mk , which are in polynomial number. If commodities are ranked
in decreasing values of theMk , the corresponding revenue is obtained, for each such
Mk , by multiplying Mk by

∑
k′≤k ηk

′
. This yields a polynomial algorithm.

A closer look at the bilevel formulation of NPP shows that the lower level
problem decomposes into shortest path problems, one for each commodity, that can
be formulated as linear programs, since costs have been assumed nonnegative. To
obtain a single level reformulation, one may replace the lower level problem of each
commodity by its primal and dual constraints, together with a constraint imposing
the equality of the primal and dual objective functions. This approach is the linear
programming version of the Kuhn-Tucker-based formulation (see Sect. 2), and
yields the following mixed integer linear formulation, in which the dual variables
λki correspond to constraints (9.20):

MILP:

max
t,x,λ

∑

k∈K
ηk

∑

a∈A1

tax
k
a

subject to ta ≥ 0 a ∈ A1
∑

a∈δ(i)+
xka −

∑

a∈δ(i)−
xka = bki i ∈ N , k ∈ K

xka ≥ 0 a ∈ A



9 Bilevel Network Design 271

λki − λkj ≤ cka + ta a = (i, j) ∈ A1, k ∈ K

λki − λkj ≤ cka a = (i, j) ∈ A2, k ∈ K

∑

a∈A1

(cka + ta)xka +
∑

a∈A2

ckax
k
a = λk

ok
− λk

dk
k ∈ K .

This model involves bilinear terms taxka in the objective and in some constraints.
These terms can be linearized by using the standard technique consisting in
substituting them by new variables, say pka and appending the following new
constraints, for all a in ∈ A1 and k in K :

pk ≤ Mk
ax

k
a

ta − pka ≤ Na(1− xka)
pka ≤ ta

tka ≥ 0

xka ∈ {0, 1}.

(9.22)

Note that binary constraints regarding variables xka are required in order to ensure
the validity of the linearization. This is consistent with the fact that these variables
characterize shortest paths. The MILP formulation can be improved by tightening
the values of the big-M constants Mk

a and Na , yielding an improved linear
relaxation.

Next, one may replace the original graph by an equivalent and usually smaller
one, based on the observation that shortest paths are composed of alternating
shortest subpaths containing only toll arcs or only toll free arcs. Finally, criteria
have been proposed to eliminate some provably irrelevant variables xka .

Despite these improvements, the size of instances for which solvers can address
MILP is limited, thus prompting the development of (meta) heuristics, many of
which iterate between path and toll phases. In this context, it is instructive to study
the so-called inverse problem which consists in determining tolls maximizing the
leader’s revenue, under the assumption that the followers’ paths are known. MILP
then boils down to a network-structured linear program involving only toll variables.
When there is only one follower (a single origin or a single destination), the inverse
problem reduces to a shortest path problem on a modified graph.

The Clique Pricing Problem (CPP) is an NP-hard special case of NPP in which
each commodity uses at most one toll arc. This framework fits the realm of a
highway where the toll depends only on the entry and exit nodes used by the
commodities, and re-entry is forbidden. The underlying network is then based on
the complete graph whose vertices are the highway entry and exit nodes, and whose
arcs a ∈ A1 represent all subpaths of the original highway path (see Fig. 9.3).



272 M. Labbé and P. Marcotte

OD clique

toll-free arcs

toll arcs

entry-exit clique

intermediate links

Fig. 9.3 Clique representation. All arcs are double-ended

The arcs of the OD clique represent shortest toll free paths between origins and
destinations. For origin-destination pair (commodity) k, their cost is denoted by
ckod . The coefficient cka of an arc a ∈ A1 is the sum of three terms: the minimum
cost from ok to the tail node of a, the minimum cost from the head node of a to dk

(dashes arcs), and the cost for traversing arc a. It follows that, for each commodity,
the only relevant arc of A2 is (ok, dk). The k-th objective function of the lower level
problem (9.19) then simplifies to

min
x∈Xk

∑

a∈A1

(cka + ta)xka + ckodxkod

and the set Xk to

∑

a∈A1

xka + xkod = 1 k ∈ K

xka ≥ 0 a ∈ A1 ∪A2, k ∈ K .

This simple structure of Xk allows to reformulate CPP as a single level problem by
stating explicitly that the objective function of the k-th commodity is less than or
equal to the total cost corresponding to each arc a of the highway, i.e.,

∑

a∈A1

(cka + ta)xka + ckodxkod ≤ ckb + tb b ∈ A1, k ∈ K



9 Bilevel Network Design 273

∑

a∈A1

(cka + ta)xka + ckodxkod ≤ ckod k ∈ K , (9.23)

which corresponds to the value function formulation (9.4). A mixed binary linear
formulation is obtained by substituting the bilinear terms taxka with variables pka ,
and appending constraints (9.22) to the model.

For all b ∈ A1 and for all S ⊂ A1 \ {b}, the inequality

∑

a∈A1

(ckax
k
a + pka)+ ckodxkod ≤ tb + ckb +

∑

a∈S
(pka + (cka − ckb)xka)

holds. Indeed, remembering that xka = 0 implies that pka = 0, the inequality reduces
to (9.23) if

∑

a∈S
xka = 0. If not, there must be exactly one arc, say b′, such that

xk
b′ = 1, and the inequality reads ck

b′ + pk
b′ ≤ tb + pk

b′ + ck
b′ , which is obviously

satisfied.
The inclusion of these inequalities in MILP provides an ideal formulation in

the (polynomial) case of a single commodity, i.e., its linear relaxation yields an
optimal solution. In the general case involving several commodities, the inequalities
strengthen significantly the formulation and can be separated in polynomial time.

Interestingly, CPP is equivalent to the classical product pricing problem in
economics. In this problem the price of products a ∈ A1 must be determined in
order to maximize revenue. Each customer k ∈ K is endowed with a reservation
priceRk

a for each product a and buys the product a that maximizes Rk
a−ta , provided

that this ‘utility’ is nonnegative. The equivalence of the two problems is obtained by
setting Rk

a = ckod − cka .
When products constitute bundles or subsets of items it may be sensible to

impose monotonicity and triangle inequality constraints. Monotonicity constraints
specify that if the item set of product a is included in the item set product b, then
pa ≤ pb, and triangle inequality constraints stipulate that pc ≤ pa + pb if the
item set of c is the union of the item sets of a and b, which are disjoint. These type
of constraints make particular sense for the clique pricing problem since a toll arc
represents a subpath of the highway, i.e., a particular subset of its arcs. The inclusion
of monotonicity and triangle inequalities into CPP results in a significant increase
in the integrality gap, and consequently makes more challenging its numerical
resolution.

We conclude this section by mentioning other variants of NPP. The first three
address more complex models of user behaviour. The first variant integrates elastic
demand at the lower level, which allows to dispense with the existence of toll
free paths. In the multiclass model, the relative utility of delays and out-of-pocket
costs varies across the population while, in the discrete choice model, a random
term is added to the costs ca and da . In those two cases, algorithms that rely
on approximations that can be formulated as mixed integer programs have been
proposed.



274 M. Labbé and P. Marcotte

The fourth variant involves lower level transshipment problem. In the modified
formulation of NPP, the commodity index k is dropped, and link capacities are
introduced. Unfortunately, since it cannot be assumed that origin-destination flows
are assigned to a unique path, the bilinear taxa cannot be linearized as previously,
and one may have to resort to unary or binary expansions of the flow variables xa .

The fifth variant arises when the design of the network must be decided together
with the tolls. In this case, new binary variables ya stating whether an arc a is
installed or not are introduced, and the upper level problem becomes

max
y,t

∑

k∈K
ηk

∑

a∈A1

tax
k
a −

∑

a∈A1

faya

where fa represent the fixed cost for opening arc a. For the sake of consistency, the
constraints

xka ≤ ya a ∈ A1, k ∈ K (9.24)

must be appended to (9.20) and (9.21) in the definition of the sets Xk .
This joint design and pricing problem presents an unusual property for a bilevel

optimization problem: constraints (9.24) can be moved to the first level. Intuitively,
this is due to the fact that it is in the leader’s interest to adjust its price levels such that
the capacity constraints are never active. In technical terms, the dual variable of a
capacity constraint will always be null, even if the constraint is tight. This property
of the program allows to significantly reduce the number of dual variables in the
formulation, and preserves the shortest path structure of the lower level problem.

6 Bilevel Network Interdiction

Interdiction games play an important role in military and drug enforcement appli-
cations. In both cases, the goal is to disrupt elements of a transportation network
in order to reduce as much as possible the enemy’s movements on the network. A
network interdiction problem (NIP) involves two actors whose goals are antagonis-
tic. The interdictor or attacker acts first by disrupting some elements of the network.
Next, the enemy or defender reacts after having observed the functioning state of
the network. In this bilevel setting, the interdictor (leader) anticipates the rational
reaction of the defender (follower).

If the game is played only once and the enemy has perfect knowledge of the
interdictor’s action, both players have no advantage in randomizing their actions
(strategies). In other contexts, for instance if the game is repeated or the follower is
not perfectly rational, it makes sense to consider mixed strategies, i.e., strategies
that assign a probability to each feasible action. This is especially relevant in
drug enforcement and terror prevention applications. From now on, we focus on



9 Bilevel Network Design 275

interdiction problems that involve either shortest path or maximum flow lower level
problems. The structure of the first variant of path interdiction, which consists in
maximizing the shortest path length, makes randomization irrelevant. This is not
the case of the second variant, where it may be in the leader’s interest to implement
mixed strategies.

Throughout, we will make use of the following notation, which is common to
the three applications presented in the remainder of this section: given a graph G =
(N ,A ), we define the set of feasible interdictions as

Y = {ya ∈ {0, 1}, a ∈ A :
∑

a∈A
faya ≤ B},

where fa denotes the interdiction cost and B the interdictor’s budget.

The Shortest Path Interdiction Problem (SPIP)
In SPIP, one associates the traversal cost ca , as well the additional cost da of
traversing an interdicted arc. Within its budget limit, the leader selects a subset of
interdicted arcs with the aim of maximizing the length of the follower’s shortest
path from source s to sink t consistent with the leader’s design. The formulation of
SPIP is:

max
y∈Y min

x

∑

a∈A
(ca + daya)xa

subject to
∑

a∈δ(i)+
xa −

∑

a∈δ(i)−
xa = bi i ∈ N (9.25)

xa ≥ 0 a ∈ A (9.26)

xa ∈ {0, 1} a ∈ A , (9.27)

where the constant bi is equal to +1 if n = s, −1 if n = t , and 0 otherwise. This
‘max-min’ formulation is clearly a particular case of a bilevel program.

The set of feasible solutions of the lower level does not depend on the first level
decisions. This can be exploited to develop a single level reformulation based on
the value functions (see Sect. 2) as well as an iterative method to solve SPIP. Let X
represent the set of binary vectors corresponding to simple paths from s to t and let
X ⊆ X. We define a master problem associated to X as

MP(X):

max
y∈Y z

subject to z ≤
∑

a∈A
(cax̄a + dax̄aya), x̄ ∈ X.



276 M. Labbé and P. Marcotte

Problem MP(X) is a valid formulation for SPIP and MP(X̄) is a relaxation for any
X ⊂ X that provides an upper bound on the optimal value of SPIP. On the other
hand, given a leader’s solution x ∈ X, solving the follower’s shortest path problem
yields a lower bound on the optimal value of SPIP. Further, if this path has a smaller
value than the master problem for x̄, this new path should be added to X. Hence,
SPIP can be solved by alternating between solving the master and the follower’s
problem.

Upon replacing the lower level linear program of SPIP by its dual, one obtains
the single level formulation

max
y∈Y,π πt − πs

subject to πj − πi − daya ≤ ca a = (i, j) ∈ A .

It is interesting to note that the iterative procedure described above to solve SPIP
amounts to applying Benders decomposition to this last formulation.

A Path Interdiction Problem Involving Mixed Strategies (PIMS)
In this problem, the leader maximizes the probability of catching a follower (evader)
whose objective is to travel from a given origin s to a given destination t . The
pure strategies of the evader consist in all simple paths from s to t . These can
be represented by binary vectors x satisfying (9.25) and (9.26). A mixed strategy
for the evader is a convex combination of such vectors. Given that the linear
system defined by (9.25) and (9.26) is totally unimodular, all extreme points of
the associated polytope are integer-valued and correspond precisely to these simple
paths. It follows that the set of the evader’s mixed strategies is X = {xa, a ∈ A :
(9.25) and (9.26)}.

The pure strategies of the interdictor consist in subsets of arcs to inspect. If an
arc a is inspected by the interdictor and belongs to the path used by the evader, the
interdictor catches it with probability pa . The goal of the inspector is to determine
the mixed strategy that maximizes the probability to catch the evader. A mixed
strategy for the inspector consists in assigning a probability to each pure strategy.

Note that, in this game, players possess incomplete information regarding their
competitor’s behaviour. They know their competitor mixed strategy values but, on a
given day, ignore which pure strategy will be played.

First, assume that the interdictor can inspect only one arc a at a time, and that pa
represents the probability that it detects the evader if the latter traverses this arc. Its
set of mixed strategies is Y = {ya, a ∈ A :∑a∈A ya = 1, ya ≥ 0}.

The value of the game is given by the probability that the interdictor detects the
evader, and PIMS can be formulated as the bilevel program:

min
x∈X max

y∈Y
∑

a∈A
paxaya.



9 Bilevel Network Design 277

The game is actually a zero-sum matrix game and, according to von Neumann’s
theorem, an equivalent program is obtained by permuting the min and max
operators. Upon introduction of v, the value of the game, and taking the dual of
the inner problem, it can alternatively be formulated as

min
ν,x

ν

subject to (9.25), (9.26)

ν ≥ paxa, a ∈ A ,

which means that the follower searches for a path minimizing its maximum regret
given by the arc with the highest probability of being caught.

In our context, the above problem possesses an interesting structure. Consider the
maximum value φ∗ of a flow φ∗a , a ∈ A in the graph G with capacities 1/pa . By the
max flow-min cut theorem of Ford and Fulkerson, φ∗ =∑a∈C ∗ 1/pa , where C ∗ is
a minimum capacity cut separating s from t . Given that this cut remains minimum
if all capacities are multiplied by ν, there exists a flow of value 1 in G as long as ν
exceeds 1/φ∗. Hence the optimal solution of PIMS is ν∗ = 1/φ∗ and x∗a = φ∗a/φ∗.
To retrieve the mixed strategy, i.e., the probability associated to each s − t path, it
suffices to use any (polynomial) algorithm that decomposes a flow into a sum of
flows on simple s − t paths and cycles. There will be no cycles in our application.

Intuitively, the optimal mixed strategy of the interdictor will only assign positive
probabilities to the arcs of the minimum cut C ∗. One can verify that the solution
y∗a = 1/(paφ∗) for a ∈ C ∗, and ya = 0 otherwise, belongs to Y . Thus,∑

a∈A p∗axay∗a = ν∗ = 1/φ∗, and this solution is optimal.
A natural extension of PIMS involves m independent interdictors. In a pure

strategy, several interdictors can be assigned to the same arc. Then, the optimal
solution is obtained by multiplying each y∗a by m, and the evader’s solution x∗ is
unchanged. If, on the contrary, at most one interdictor can be assigned to an arc
in a pure strategy, then the set Y must be modified, and the above interpretation
in terms of maximum flow does not hold anymore. However, the problem remains
polynomial and can be solved as a linear program.

The Maximum Flow Interdiction Problem (MFIP)
In MFIP, the leader wants to minimize the maximum flow from a source s to a sink t
in a capacitated network. Assuming that arc ā = (s, t) has an unlimited capacity and
that the other arcs a 	= ā have capacity ua , the flow from s to t can be seen as a
circulation, leading to the following formulation of MFIP:

min
y∈Y max

x
xā

subject to
∑

a∈δ(i)+
xa −

∑

a∈δ(i)−
xa = 0, i ∈ N

xa ≤ ua(1− ya) a ∈ A \ {ā}



278 M. Labbé and P. Marcotte

xka ≥ 0 a ∈ A .

In contrast with SPIP, the feasible solutions of MFIP depend on the upper level
variables, hence the Benders decomposition framework does not apply.

Strong duality for the second level problem can again be used to derive a single
mixed integer nonlinear formulation:

min
y∈Y,α,β

∑

a∈A \{ā}
ua(1− ya)βa

subject to αi − αj + βa ≥ 0 a = (i, j) ∈ A \ {ā} (9.28)

αt − αs ≥ 1 (9.29)

αi, βa ∈ {0, 1} i ∈ N , a ∈ A \ {ā}, (9.30)

whose objective is to separate s from t by a cut whose capacity is minimal with
respect to the interdicted arcs. Since there exists an optimal solution in which all
interdicted arcs belong to the cut, one can rewrite MFIP as

min
y∈Y,α,β

∑

a∈A \{ā}
ua βa −

∑

a∈A \{ā}
uaya

subject to (9.28)-( 9.30)

ya ≤ βa a ∈ A \ {ā},

which is amenable to a branch-and-cut approach. Indeed, the knapsack structure of
the set Y , together with the cut configuration can be exploited to derive strong valid
inequalities.

7 Bibliographical Notes

Bilevel programming is now almost a mature field, with a few monographs and
surveys devoted to the area: Luo et al. (1996); Dempe (2002, 2003); Colson et al.
(2007). Among the various methods that do not guarantee a global solution, we
mention the approximation scheme of Colson et al. (2005), as well as the book
edited by Talbi (2013), where metaheuristics are addressed.

Introduced by Abdulaal and LeBlanc (1979), who proposed for its solution
exploratory methods, the continuous version of the network design problem has
been further studied by Marcotte (1986), who analyzed the worst-case behaviour of
a class of heuristics. In Gairing et al. (2017), the authors proved NP-hardship of the
problem, and refined a worst-case bound obtained in Marcotte (1986). The model
that considers improvements to an existing network has been studied by Marcotte



9 Bilevel Network Design 279

and Marquis (1992). One of the first mentions of the discrete variant of the problem
is due to LeBlanc and Boyce (1986), who addressed it within a branch-and-bound
framework.

Among the limited literature devoted to location within a user-optimized envi-
ronment, we mention the works of Marianov et al. (2008), Zhang et al. (2010) and
Abouee-Mehrizi et al. (2011), whose models are closely related to the one presented
in this chapter (Dan and Marcotte 2019). It is also interesting to relate these
models to the literature on rational queues, that studies the performance of queueing
systems when the agents involved do not (fully) cooperate. A comprehensive survey
concerning this topic is available in the monograph by Hassin (2016).

The Network Pricing Problem was first considered by Labbé et al. (1998), who
proposed single level reformulations and discussed polynomial special cases. Roch
et al. (2005) and Joret (2011) studied the complexity of NPP, while (Dewez et al.
2008) proposed valid inequalities and a branch-and-cut algorithm, determining
in the process tight values for the big-M constants that enter formulation MILP.
Van Hoesel (2008) developed a branch-and-bound algorithm based on the auxiliary
graph introduced by Bouhtou et al. (2007). Brotcorne et al. (2001), relying on
a single-level formulation involving both primal and dual variables, proposed a
heuristic algorithm that iterates between primal and dual problems.

The description of the clique pricing problem is based on Heilporn et al. (2010b)
and Heilporn et al. (2011). Product pricing is discussed in Dobson and Kalish (1988)
and the parallel with CP is established in Heilporn et al. (2010a). Information
concerning the first three variants can be found in Kuiteing et al. (2016), Gilbert
et al. (2015) and Marcotte et al. (2013), and concerning the next two in Brotcorne
et al. (2000) and Brotcorne et al. (2008). An application of bilevel network pricing
worth mentioning involves the transportation of hazardous material, as considered,
among others, by Kara and Verter (2004) and Marcotte et al. (2009).

Interdiction problems date from antiquity: see Wood (2011) for a historical
perspective. The shortest path interdiction problem has been shown to be NP-hard
by Ball et al. (1989) and the Benders decomposition method for solving it has been
proposed in Israeli and Wood (2002). The interpretation of the path interdiction
problem based on mixed strategies is due to Washburn and Wood (1995), who also
investigated variants of the basic problem. Our presentation of the maximum flow
interdiction problem is based on Wood (1993) in which the problem is shown to be
strongly NP-hard and a branch-and-cut algorithm is considered.

8 Conclusions and Perspectives

A large number of optimization problems involving networks lend themselves
naturally to bilevel formulations. One can actually argue that this is the case of
all design problems involving users of the network that are not under the direct
control of the designer. Although generic algorithms may provide valuable insights,
they are unlikely to scale well, which warrants the development of heuristics well



280 M. Labbé and P. Marcotte

suited to the underlying network structure. In parallel, one may look forward to
alternative approaches inspired by new developments in artificial intelligence, and
more specifically by the techniques of machine learning applied to combinatorial
optimization (see Bengio et al. (2018) for instance).

Acknowledgments The research of M. Labbé was partially supported by Fonds de la Recherche
Scientifique—FNRS (grant PDR T0098.18). The research of P. Marcotte was partially supported
by the National Sciences and Engineering Research Council of Canada RGPIN grant 05073.

References

Abdulaal, M., & LeBlanc, J. L. (1979). Continuous equilibrium network design models. Trans-
portation Research Part B: Methodological, 13(1), 19–32.

Abouee-Mehrizi, H., Babri, S., Berman, O., & Shavandi, H. (2011). Optimizing capacity, pricing
and location decisions on a congested network with balking. Mathematical Methods of
Operations Research, 74(2), 233–255.

Ball, M. O., Golden, B. L., & Vohra, R. V. (1989). Finding the most vital arcs in a network.
Operations Research Letters, 8(2), 73–76.

Bengio, Y., Lodi, A., & Prouvost, A. (2018). Machine learning for Combinatorial Optimization: A
Methodological Tour d’Horizon. arXiv:1811.06128.

Bouhtou, M., van Hoesel, S., van der Kraaij, A. F., & Lutton, J. L. (2007). Tariff optimization in
networks. INFORMS Journal on Computing, 19(3), 458–469.

Brotcorne, L., Labbé, M., Marcotte, P., & Savard, G. (2000). A bilevel model and solution
algorithm for a freight tariff-setting problem. Transportation Science, 34(3), 289–302.

Brotcorne, L., Labbé, M., Marcotte, P., & Savard, G. (2001). A bilevel model for toll optimization
on a multicommodity transportation network. Transportation Science, 35(4), 345–358.

Brotcorne, L., Labbé, M., Marcotte, P., & Savard, G. (2008). Joint design and pricing on a network.
Operations Research, 56(5), 1104–1115.

Colson, B., Marcotte, P., & Savard, G. (2005). A trust-region method for nonlinear bilevel
programming: Algorithm and computational experience. Computational Optimization and
Applications, 30(3), 211–227.

Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of
Operations Research, 153(1), 235–256.

Dan, T., & Marcotte, P. (2019). Competitive facility location with selfish users and queues.
Operations Research, 67(2), 479–497.

Dempe, S. (2002). Foundations of bilevel programming. Berlin: Springer.
Dempe, S. (2003). Annotated bibliography on bilevel programming and mathematical programs

with equilibrium constraints. Optimization, 52(3), 333–359.
Dewez, S., Labbé, M., Marcotte, P., & Savard, G. (2008). New formulations and valid inequalities

for a bilevel pricing problem. Operations Research Letters, 36(2), 141–149.
Dobson, G., & Kalish, S. (1988). Positioning and pricing a product line. Marketing Science, 7(2),

107–125.
Gairing, M., Harks, T., & Klimm, M. (2017). Complexity and approximation of the continuous

network design problem. SIAM Journal on Optimization, 27(3), 1554–1582.
Gilbert, F., Marcotte, P., & Savard, G. (2015). A numerical study of the logit network pricing

problem. Transportation Science, 49(3), 706–719.
Hassin, R. (2016). Rational queueing. New York: CRC Press.
Heilporn, G., Labbé, M., Marcotte, P., & Savard, G. (2010a). A parallel between two classes of

pricing problems in transportation and marketing. Journal of Revenue and Pricing Manage-
ment, 9(1–2), 110–125.



9 Bilevel Network Design 281

Heilporn, G., Labbé, M., Marcotte, P., & Savard, G. (2010b). A polyhedral study of the network
pricing problem with connected toll arcs. Networks, 55(3), 234–246.

Heilporn, G., Labbé, M., Marcotte, P., & Savard, G. (2011). Valid inequalities and branch-and-cut
for the clique pricing problem. Discrete Optimization, 8(3), 393–410.

Israeli, E., & Wood, R. K. (2002). Shortest-path network interdiction. Networks, 40(2), 97–111.
Joret, G. (2011). Stackelberg network pricing is hard to approximate. Networks, 57(2), 117–120.
Kara, Y. B., & Verter, V. (2004). Designing a road network for hazardous materials transportation.

Transportation Science, 38(2), 188–196.
Kuiteing, A. K., Marcotte, P., & Savard, G. (2016). Network pricing of congestion-free networks:

The elastic and linear demand case. Transportation Science, 51(3), 791–806.
Labbé, M., Marcotte, P., & Savard, G. (1998). A bilevel model of taxation and its application to

optimal highway pricing. Management Science, 44(12-Part-1), 1608–1622.
LeBlanc, J. L., & Boyce, E. D. (1986). A bilevel programming algorithm for exact solution

of the network design problem with user-optimal flows. Transportation Research Part B:
Methodological, 20(3), 259–265.

Luo, Z. Q., Pang, J. S., & Ralph, D. (1996). Mathematical programs with equilibrium constraints.
Cambridge: Cambridge University.

Marcotte, P. (1986). Network design problem with congestion effects: A case of bilevel program-
ming. Mathematical Programming, 34(2), 142–162.

Marcotte, P., & Marquis, G. (1992). Efficient implementation of heuristics for the continuous
network design problem. Annals of Operations Research, 34(1), 163–176.

Marcotte, P., Mercier, A., Savard, G., & Verter, V. (2009). Toll policies for mitigating hazardous
materials transport risk. Transportation Science, 43(2), 228–243.

Marcotte, P., Savard, G., & Schoeb, A. (2013). A hybrid approach to the solution of a pricing
model with continuous demand segmentation. EURO Journal on Computational Optimization,
1(1–2), 117–142.

Marianov, V., Ríos, M., & Icaza, M. J. (2008). Facility location for market capture when users
rank facilities by shorter travel and waiting times. European Journal of Operational Research,
191(1), 32–44.

Roch, S., Savard, G., & Marcotte, P. (2005). An approximation algorithm for Stackelberg network
pricing. Networks, 46(1), 57–67.

Talbi, E. G. E. (2013). Metaheuristics for Bi-level optimization. Berlin: Springer.
Van Hoesel, S. (2008). An overview of Stackelberg pricing in networks. European Journal of

Operational Research, 189(3), 1393–1402.
Washburn, A., & Wood, K. (1995). Two-person zero-sum games for network interdiction.

Operations Research, 43(2), 243–251.
Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer Modelling,

17(2), 1–18.
Wood, R. K. (2011). Bilevel network interdiction models: Formulations and solutions. In Wiley

Encyclopedia of operations research and management science.
Zhang, Y., Berman, O., Marcotte, P., & Verter, V. (2010). A bilevel model for preventive healthcare

facility network design with congestion. IIE Transactions, 42(12), 865–880.



Chapter 10
Stochastic Network Design

Mike Hewitt, Walter Rei, and Stein W. Wallace

1 Introduction

As clearly shown in this book, network design models have been successfully used
in a wide variety of optimization contexts. For example, service network design
methodologies are applied to efficiently solve various planning problems appearing
in freight transportation applications. In these cases, the network design models aim
to first select a subset of logistical services that fix an organization’s capabilities to
perform transportation and storage operations in different geographical areas and
over varying time horizons. These services are then used to move various types of
freight from a series of origins to a series of destinations.

Considering the general nature of such models and their wide applicability, there
has been a steady stream of research conducted on them over the years. The vast
majority of this research has focused on deterministic variants of these models,
i.e., methodological developments assuming that all information (or parameters)
required to define the optimization models are readily available and not subject to
uncertainty. However, in the planning processes in which these problems appear,

M. Hewitt
Information Systems and Supply Chain Management Department, Quinlan School of Business,
Loyola University Chicago, Chicago, IL, USA
e-mail: mhewitt3@luc.edu

W. Rei (�)
CIRRELT and Département d’Analytique, Opérations et Technologies de l’Information, École
des Sciences de la Gestion, Université du Québec à Montréal, Montreal, QC, Canada
e-mail: rei.walter@uqam.ca

S. W. Wallace
Department of Business and Management Science, NHH Norwegain School of Economics,
Bergen, Norway
e-mail: stein.wallace@nhh.no

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_10

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_10&domain=pdf
mailto:mhewitt3@luc.edu
mailto:rei.walter@uqam.ca
mailto:stein.wallace@nhh.no
https://doi.org/10.1007/978-3-030-64018-7_10


284 M. Hewitt et al.

there is always a time delay between the moment when the design decisions
are made (i.e., selection of the services) and when the designed network is then
used (i.e., moving the freight). As a consequence, there are various sources of
uncertainty which affect the informational context (i.e., the parameters) that define
the optimization models. In addition, even after operations start, many parameters
(particularly demand) is unpredictable from one day to the next.

But why do we care about uncertainty? Isn’t a deterministic model (where,
for example, all random variables are replaced by their means) a reasonable
approximation of the true stochastic setting? The answer is no, and it is important to
understand why that is the case. From finance we know options, which we may view
as investments in flexibility. They could be financial—the right, but not the duty, to
buy stocks at a certain price at a certain time—or they could be real (physical)—
the right, but not the duty, to rent a truck at a certain price at a certain time. Option
theory tells us how to value the options. It is impossible to value an option in a model
that does not contain uncertainty (random variables). We need to let the model figure
out: Will I exercise the option or not?

In the context where network design models are used, there are also real options
(as well as financial ones, but we exclude them here). They could be such as: send
a truck on different routes depending on the demand of the day; rent trucks from a
competitor; spend some extra time at depots to pick up freight that has been slightly
delayed; set up routes that are more flexible with respect to the rerouting of goods.
These can all be seen as options, they come at a cost, but they are not quite as
simple to value as the ones from options theory. These costs may be linked to the
fact that drivers require additional pay if they are to be willing to be rerouted on the
day (or they will quit more often, leading to higher training and hiring costs), you
may have to pay a fee to have the right to rent a truck, extra time spent at a depot
wastes transportation resources, and maybe the more flexible routes cost a bit more.
This kind of options cannot be valued using classical options theory as they are not
explicit.

Now, let us consider an optimization model. Specifically, assume you have a
deterministic model with flexible decisions involved, such as the right to rent a
truck or the possibility to reroute them. Or even simpler: the right to buy insurance
to protect against an undesirable random occurrence. Would the solution to a
deterministic model suggest you do any of this? The answer is a clear NO, unless the
options come for free—which they normally don’t. And why? Because flexibility
has no value (and meaning) in a deterministic world. If you know that your house
will burn, you would like to buy insurance, but nobody would sell it to you. If you
know it will not burn, you will not buy insurance, but many would like to sell it
to you. Therefore, by solving a deterministic model the obtained solution will not
prescribe to pay anything for flexibility because the term has no meaning (or value
in this context); you will never pay something for nothing.

So a stochastic model is needed to find flexible solutions. This is obvious for
explicit options like the right to rent a truck (presumably more important than simply
renting a truck), or, the opportunity to spend extra time at the depot. But this also
applies to implicit options like a more flexible schedule. Why pay for flexibility



10 Stochastic Network Design 285

when you (know that you) will not need it? This points to the final difference
between options theory and stochastic optimization: options theory can only be used
to value explicitly defined options, it cannot be used to find them. Solving stochastic
programs produces options as output, while options theory take them as input.

As it has been observed by numerous researchers in the field, sources of
uncertainty that affect the informational context in which network design models
appear can be classified in different ways. One such classification, that is readily
used, categorizes these sources of uncertainty in three general groups: randomness,
hazards and deep uncertainty.

Randomness refers to sources of uncertainty that are both foreseeable and that
regularly occur: e.g., seasonal changes in the demands for given products, market
value fluctuations under normal conditions, etc. For network design applications,
such uncertainty is often associated with changes observed in either the costs of
designing or using the networks, e.g., the transportation costs varying according to
the congestion levels in the network; or in the needs that have to be met by using the
network, e.g., the volume of freight to be transported from specific origins to given
destinations that vary according to changes in the demands of clients.

Hazards are instead random events that occur more rarely but have a big impact
on the considered problem settings. In the context of network design, such events
often take the form of disruptive incidents that interfere with the use of the designed
network, e.g., pipe failures occurring in a water distribution network that affect
operational reliability (i.e., the network’s capacity to meet the water demands of
a given population).

Finally, deep uncertainty are events that have both profound impacts on the
problem settings (impacts that oftentimes cannot even be properly evaluated) and are
extremely hard to predict. Such uncertainty is usually associated with catastrophic
random events that shape the problems in a radical and hard to assess way. The
occurrence of a natural disaster that then requires the deployment of logistics
services to provide humanitarian aid is a clear example of this type of uncertainty.

Although each source of uncertainty poses specific challenges when developing
efficient network design methodologies, the present chapter will focus on the first
two sources. Considering the increasingly large and diversified databases that are
now accessible to organizations, by statistically analyzing such databases, it is now
within reach to derive more accurate probabilistic models for the random phenom-
ena that can be expected (i.e., randomness and hazards). Stochastic optimization
then leverages such probabilistic models to define more efficient methodologies to
solve optimization problems that involve uncertainty. Therefore, the overall goal of
this chapter is to present how stochastic optimization is applied in the context of
network design problems.

Towards this aim we will begin by presenting the different paradigms that
can be used to formulate stochastic network design problems (i.e., Sect. 2). This
presentation will be done by illustrating the paradigms on a specific problem,
namely the stochastic fixed-charge capacitated multicommodity network design
problem. We will then describe how scenario generation is applied to approximate
the random distributions used to model the stochastic parameters in network design



286 M. Hewitt et al.

models (i.e., Sect. 3). We will next present the general solution approaches (both
exact and heuristics) that can be applied to solve stochastic network design models.
Specifically, our main focus will be to detail how decomposition strategies are
applied to produce more efficient solution processes for the considered models (i.e.,
Sect. 4). Finally, we will conclude by providing some perspectives regarding the
future research in the field of stochastic network design (i.e., Sect. 5).

2 Stochastic Models

In this section, we review how the stochastic optimization modelling paradigms
are applied in the context of network design problems. There are two such
modelling paradigms: (1) stochastic programming with recourse and (2) stochastic
programming with probabilistic constraints. In the first paradigm, a problem is
formulated by first establishing what are the stages that define the problem’s
informational context. These stages determine the process by which the stochastic
parameters become known (i.e., the specific moments in time when the values of
the stochastic parameters are observed). Decisions are then defined based on these
stages, thus reacting to what information is known and what information remains
uncertain. Therefore, one refers to a priori decisions as those that need to be
made before any of the stochastic parameters are observed (i.e., the first stage).
As for recourse decisions, they refer to the adjustments that are made once more
information becomes available (i.e., decisions made from the second stage and
onward when stochastic parameters are observed).

Based on these definitions, stochastic programs with recourse are referred to as
either two-stage or multi-stage models. In addition to the a priori decisions occurring
at the first stage, a two stage-model assumes that all recourse decisions involve
a single stage (i.e., the second stage at which point all the stochastic parameters
become known). In a multi-stage model, recourse decisions are instead made over
multiple stages based on the stochastic parameters being gradually revealed. In all
cases, stochastic programming with recourse aims to find solutions that, at each
decisional stage, will maximize (or minimize) an expected utility (or cost) function
that is either defined over the full random distributions of the stochastic parameters
(e.g., the Expected Value), or, over specific occurrences that may define risky events
(e.g., the Conditional Value at Risk).

As opposed to stochastic programming with recourse that produces a detailed
formulation over different stages, stochastic programming with probabilistic con-
straints (also referred to as chance constraints), which is the second modelling
paradigm, enables problems that involve stochastic parameters to be formulated
without the need to explicitly define recourse actions and assess their impact. In such
programs, a subset of the constraints, or part of the objective, are instead defined as
probabilistic statements based on the a priori decisions to be made. Therefore, for
example, the reliability of a priori decisions can be assessed in probabilistic terms.
In such a case, the program would aim to find an a priori solution that is reliable



10 Stochastic Network Design 287

to perform given tasks, or operations, for specific probabilities with respect to the
random changes that may occur in the stochastic parameters considered.

The rest of this section is divided as follows. In Sect. 2.1, we discuss how network
design problems can be formulated as stochastic programs with recourse by fixing
how decisions, that are either related to the design of the network or usage of it, are
defined according to the stages in the informational context. In Sect. 2.2, we explore
how probabilistic constraints are applied in the case of network design, mainly to
enforce quality of service requirements for the networks designed in the presence of
uncertainty.

2.1 Stochastic Programs with Recourse

Before describing the general formulations, an important point to emphasize is the
distinction between the concepts of stages and periods when applying stochastic
programming with recourse to network design problems. In network design appli-
cations, decisions can often be made over multiple periods of time. When service
network design is applied in the context of freight transportation, one finds that
the selection and use of logistic services can occur at different points in time and
be performed over multiple time periods, e.g., a maritime transportation service
between two ports can thus be scheduled on different days (i.e., periods) and requires
multiple days of travel time to be performed. Therefore, multiple time periods
may be required to define both the design and use decisions in such cases. Stages
are instead related to the informational context of the considered problem (i.e., a
stage is defined based on what parameters are known and what parameters remain
uncertain). As a result, a specific stage may include decisions over multiple time
periods that all need to be made based on the same level of contextual information.

We will now use as an illustrative example the stochastic fixed-charge capacitated
multicommodity network design problem to present how stochastic programming
with recourse can be applied in this case. Let us recall that G = (N ,A ) defines
a directed graph, where N and A are the sets of nodes and arcs, respectively, and
K defines the set of commodities. Each k ∈ K entails that a certain volume of
the commodity needs to be transported from an origin o(k) ∈ N to a destination
s(k) ∈ N . There are two types of decision variables in fixed-charge capacitated
multicommodity network design models: (1) the design variables, which fix the
configuration of the network, and (2) the flow variables, which determine how the
commodities are transported from their respective origins to their destinations using
the designed network. Therefore, let the design variables be defined as yij ∈ {0, 1},
if the arc (i, j) ∈ A is included in the network (or not), and the flow variables be

defined as xkij ≥ 0, the quantity of commodity k ∈ K that transits through arc

(i, j) ∈ A . In the following, we will refer to y and x as the vectors of design and
flow variables, respectively.



288 M. Hewitt et al.

The present modelling paradigm will be demonstrated using the two-stage sto-
chastic version, which is quite versatile and has been successfully applied on a
wide gamut of applications. Considering that such models are particularly useful
to formulate tactical and strategic planning problems that occur when managing
complex systems (i.e., supply chains, transportation systems, smart grids, etc.), it is
often considered that the a priori decisions are the design variables (i.e., deciding on
tactical or strategic plans that fix the structure of the system) and that the recourse
decisions involve the flow variables (i.e., determining how the system is then used
to perform regular operations).

Therefore, to formulate the problem as a two-stage stochastic model, one first
needs to clearly describe how the sequence of decisions occur. Let us first state
that the various sources of uncertainty are expressed here in terms of random
experiments defined on a probability space for which the outcomes are defined as
ω ∈ Ω , where Ω is the set of all possible outcomes, and where P is a function
defining the probabilities associated with the possible outcomes. We further define
ξ to be a random vector that contains the various stochastic parameters that are
present in the problem. Once the random experiments have occurred, the specific
values of the stochastic parameters can be observed and we denote these values
by the vector ξ(ω). The sequence of decisions that define the problem can then be
represented as the process illustrated in Fig. 10.1. In this case, the flow variables,
which represent the recourse, are defined according to the specific outcome ω that
is observed following the random experiments. These decisions will also depend on
the specific network that is designed in the first stage.

The second step in producing the two-stage stochastic model is to determine
what are the stochastic parameters present in the problem. Considering the fact that,
in this case, the second stage decisions are related to how the network is used to
route the commodities, there are three types of stochastic parameters that can be
present: (1) flow costs, (2) commodity volumes and (3) arc capacities. The flow
costs can randomly change based on sources of uncertainty affecting either the arcs
(e.g., congestion on a given road) or the commodities (e.g., handling costs for given
products that randomly change). Therefore, we define ckij (ω) ∈ �+, ∀(i, j) ∈ A ,
k ∈ K , as the values of the commodity flow costs if the outcome ω ∈ Ω is
observed.

As for the commodities k ∈ K , as previously stated, they are defined using
three parameters: (1) the origin node o(k), (2) the destination node s(k) and (3)
the volume to be transported. In network design applications, such commodities are
usually associated with regular operations to be performed within the network, e.g.,
the supply of a specific plant from a given supplier in a supply chain or the volume
of information that is exchanged between clients in a telecommunication network.

First Stage Random Experiments Second Stage
yij ∈ {0, 1},∀(i, j) ∈ A → ξ(ω) → xkij (ω) ≥ 0,∀k ∈ K .

Fig. 10.1 Two-stage decision sequence



10 Stochastic Network Design 289

Therefore, the origin and destination nodes tend to be known in advance and fixed.
However, the volumes can be expected to randomly change, e.g., supply volumes
for plants will fluctuate based on random variations affecting product demands in a
supply chain. We thus define, ∀k ∈ K and i ∈ N , the following stochastic demand
parameters:

dki (ω) =

⎧
⎪⎪⎨

⎪⎪⎩

vk(ω) if i = o(k),

−vk(ω) if i = s(k),

0 otherwise,

where vk(ω) ∈ �+ defines the volume of commodity k that needs to be transported
between o(k) and s(k), if the outcome ω ∈ Ω is observed.

The capacities, associated with selected arcs, define the last type of stochastic
parameters that can be present in the introduced two-stage stochastic model. The
design decisions that are made in the first stage define the configuration of the
network, i.e., the overall paths that connect the nodes and the capacities that are
available along these paths to then flow the commodities. However, in various
applications, hazards may occur that prevent the capacity associated with selected
arcs to be fully available in the second stage, e.g., a mechanical problem preventing
a truck to be used in a scheduled long-haul transportation service. Therefore, we
define uij (ω) ∈ �+, ∀(i, j) ∈ A , as the capacity values of the arcs if the outcome
ω ∈ Ω is observed.

Assuming that there is a fixed cost associated with the selection of each available
arc, i.e., the values fij ∈ �+, ∀(i, j) ∈ A , then the two-stage stochastic fixed-
charge capacitated multicommodity network design model can be formulated as
follows:

min
∑

(i,j)∈A
fij yij + Eξ [Q(y, ξ(ω))] (10.1)

s.t. yij ∈ {0, 1},∀(i, j) ∈ A (10.2)

where, Q(y, ξ(ω)) defines the total multicommodity flow cost considering that the
designed network y is used when the outcome ω occurs and the values of the
stochastic parameters are fixed to ξ(ω). The function Eξ [·] defines the expectation
computed over the random vector ξ , and is often referred to as the expected recourse
function (or the expected recourse cost). The purpose of such a function is usually
to assess the cost (or the value) of repeatedly using the designed network under
various contextual settings. In the present case, the variations that can be observed
with regards to the contextual settings are captured through the support that is
associated with the random vector ξ . Therefore, the model aims to find a network
that minimizes the sum of the fixed costs that are incurred by the selected arcs
and the expected multicommodity flow cost associated with the designed network,
i.e., the objective function (10.1). As for the constraint set, one needs to impose the
integrality requirements on the binary variables defining the selection decisions, i.e.,
constraints (10.2).



290 M. Hewitt et al.

As for Q(y, ξ(ω)), it is defined as follows:

Q(y, ξ(ω))= min
∑

k∈K

∑

(i,j)∈A
ckij (ω)x

k
ij (ω) (10.3)

s.t.
∑

j∈N +(i)
xkij (ω)−

∑

j∈N −(i)
xkji (ω)=dki (ω), ∀i ∈N , k ∈K (10.4)

∑

k∈K
xkij (ω) ≤ uij (ω)yij , ∀(i, j) ∈ A (10.5)

xkij (ω) ≥ 0, ∀(i, j) ∈ A , ∀k ∈K . (10.6)

The objective function is to minimize the total multicommodity flow cost (10.3),
while enforcing the flow conservation constraints (10.4), the available capacities on
the arcs that restrict the quantity of flow that can transit through them (10.5) and the
non-negativity constraints on the flow variables (10.6).

Finally, the previous model assumes a two-stage decision sequence. This being
said, there may be cases where decision-makers are interested in formulating net-
work design problems where the information regarding the stochastic parameters are
divulged over multiple stages and where decisions, either related to the network’s
characteristics or the flow of the commodities, are made according to these stages.
In such cases, the sequence represented in Fig. 10.1 would be repeated a number
of times, thus defining a multi-stage decision process. Each stage is defined here
by a specific level of available information, i.e., a set of observed and stochastic
parameters, as well as a set of decisions to be made (i.e., design or flow). The overall
model is then obtained by linking the different stages through the inclusion of
recourse cost functions (i.e., conditional expected value functions) defined over the
decision variables and the level of information (i.e., the observed and the stochastic
parameters) that establish the stages.

Although such stochastic multi-stage models can be applicable in different
contexts, there has been very little research done on proposing methodologies to
solve them directly. Therefore, we will not explicitly present such formulations.
Nonetheless, we will mention that such problems can be approximated through a
sequence of two-stage network design models, in which the multi-stage process is
relaxed. Specifically, all stochastic parameters are assumed to be revealed at the
same time.

Such approximations can be appropriate in various decision-making contexts.
For example, when solving strategic (or tactical) planning problems, decision
makers are often, principally interested in fixing the decisions that need to be
made a priori. In the case of stochastic network design, these decisions involve the
configuration of the network, which is then used over multiple periods that possibly
involve multiple stages. In this context, the recourse decisions are mainly used to
assess the expected future costs of the strategic (or tactical) decisions. Therefore, in
such cases, relaxing the multi-stage process may still provide enough accuracy to
serve this purpose efficiently.



10 Stochastic Network Design 291

2.2 Stochastic Programming with Probabilistic Constraints

As previously mentioned, the use of probabilistic constraints enable a stochastic
problem to be formulated without the need to explicitly define detailed recourse
actions. In the present case, such formulations can be used to model reliability
issues when designing networks in the presence of stochastic parameters. The
concept of reliability refers here to the capacity of a network to efficiently
perform required tasks, or operations, when random changes occur in the stochastic
parameters. Before presenting specific formulations using the stochastic fixed-
charge capacitated multicommodity network design problem, let us revisit how the
flow component of the problem is expressed.

In all generality, one can consider that additional resources, that are outside of
the designed network (i.e., outsourcing services, renting additional equipment or
manpower, etc.), can be employed to perform the necessary operations (i.e., flow
the different commodities from their origins to their destinations). In addition, one
can assume that, in certain cases, an organization may opt to either delay, or refuse,
part of the commodities to be transported (provided that a penalty is applied). To
formulate these options, we redefine the arc set as follows A = A A ∪A D , where
set A A represents the design arcs (i.e., arcs that can be used to design the network)
and A D is a set of dummy arcs associated with the commodities. Specifically, for
each considered commodity, set A D includes an arc that directly connects the origin
to the destination, i.e., A D = {(

o(k), s(k)
) | ∀k ∈ K

}
. Considering that these

dummy arcs are associated with either additional resources being used, or, a part of
the commodities not being fulfilled, there are no capacity restrictions imposed on
them. Simply, when they are used, a higher unit price (or penalty) is applicable. It
should be noted that the inclusion of these additional dummy arcs in the previously
defined stochastic program with recourse (10.1)–(10.2) would provide the relatively
complete recourse property to the model.

The reliability of a network can now be defined on the basis of either how many
additional resources are required to transport the commodities or how much of the
commodities are unfulfilled. For example, a designed network considered reliable
could be defined as one that ensures that the probability of observing a total amount
of flow on the dummy arcs that is more than a threshold (i.e., value α ∈ �+) be at
most a specified upper bound (i.e., value β ∈ [0, 1]). Therefore, for a given threshold
α, the lower the specified value of the upper bound β, the more reliable the designed
network will be.

To illustrate this modelling approach, let us consider a simpler setting for the
problem, where the stochastic parameters are the demands (i.e., the commodity
volumes), i.e., ξ = [d], where d is a vector containing the stochastic demands
whose elements dki may take the possible values dki (ω), ∀k ∈ K , i ∈ N and
ω ∈ Ω . Furthermore, let functions f ki (x,d), ∀i ∈ N , k ∈ K , be defined as



292 M. Hewitt et al.

f ki (x,d) =
( ∑

j∈N +(i)
xkij −

∑

j∈N −(i)
xkji

)

− dki

a stochastic programming with a probabilistic constraints, that expresses the
previously defined network reliability property, can then be formulated as follows:

min
∑

(i,j)∈A A

fij yij + ∑

(i,j)∈A
∑

k∈K
ckij x

k
ij (10.7)

s.t. P

({
d | ∑

(i,j)∈A D

∑

k∈K
xkij ≥ α, f k

i (x, d) = 0, ∀i ∈N , k ∈K
})

≤ β (10.8)

∑

k∈K
xkij ≤ uij yij , ∀(i, j) ∈ A A (10.9)

yij ∈ {0, 1}, ∀(i, j) ∈ A A (10.10)

xkij ≥ 0, ∀(i, j) ∈ A , k ∈K . (10.11)

In this case, the objective function (10.7) is to minimize the total cost, which
includes both the fixed costs associated with the design decisions and the flow costs
overall all considered arcs (i.e., both the design and the dummy arcs). Constraint
(10.8) is the probabilistic statement that defines the reliability requirements that are
imposed on the designed network. Specifically, the upper bound β is imposed on
the probability of observing demand values d such that the feasible flow throughout
the considered network (i.e., f k

i (x,d) = 0,∀i ∈ N , k ∈ K ) is such that the use of
the dummy arcs is at least the threshold beyond which the reliability requirements
would not be enforced (i.e.,

∑

(i,j)∈A D

∑

k∈K
xkij ≥ α). Constraints (10.9), once again

define the capacity that is available to flow the commodities over the selected arcs.
Finally, constraints (10.10) and (10.11), impose the necessary integrality and non-
negativity requirements on the decision variables.

Considering that capacity uncertainty with respect to the design arcs can also
greatly influence the reliability of the network, one may want to include such
sources of uncertainty in the previous model. To do so, one would define the
stochastic parameters as follows: ξ = [d,u]. Therefore, in addition to the stochastic
demand vector d, vector u, which contains the stochastic capacity parameters whose
elements uij may take the possible values uij (ω), ∀(i, j) ∈ A A and ω ∈ Ω , is also
included in ξ . By defining the functions fij (y, x,u), ∀(i, j) ∈ A A, as

fij (y, x,u) =
∑

k∈K
xkij − uij yij

the reliability requirement can then be formulated as the following probabilistic
constraint



10 Stochastic Network Design 293

P

({
ξ |

∑

(i,j)∈A D

∑

k∈K
xkij ≥ α, f k

i (x,d) = 0,∀i ∈ N , k ∈ K ,

fij (y, x,u) ≤ 0,∀(i, j) ∈ A A
})

≤ β. (10.12)

In this case, both (1) the flow conservation constraints imposed on the nodes of the
network (i.e., f ki (x,d) = 0,∀i ∈ N , k ∈ K ) and (2) the capacity limits imposed
on the design arcs (i.e., fij (y, x,u) ≤ 0,∀(i, j) ∈ A A) are used to define the
conditions on which the probabilistic constraint is based.

3 Scenario Generation for Stochastic Network Design

By scenario generation we mean how to construct discrete distributions that can
be used to solve the optimization models presented earlier. We would argue that,
even if scenarios are not your main interest, or not your interest at all, there are
some important issues to think about. The most important challenge is that the
scenarios represent the underlying uncertainty, but how can you know that they
do? In some contexts, such as specific games in a casino, there is a chance that
the scenarios really are the uncertainty. In such examples, the stochastic parameters
take the form of discrete random variables with finite support and the set of possible
outcomes can be enumerated. But for network design, this is not the case. Here, the
scenarios represent an approximation of the true uncertainty. Such approximations
are a necessary requirement to obtain solvable models for the considered stochastic
optimization problems.

Therefore, in the present section, we discuss some of the important points to
consider when generating scenarios in stochastic network design settings. It should
be noted that our presentation does not cover specific sampling methods. Such
methods are part of a broad scientific domain, i.e. probability theory and statistics,
that is well beyond the focus of the present chapter (nonetheless we provide some
important references on this subject in the bibliographical notes of the chapter).
Instead, we present how network design models are formulated when using a
scenario set to approximate the stochastic parameters considered (Sect. 3.1), define
some of the stability tests that can be easily conducted to assess the value of the
obtained scenarios for decision-making in network design (Sect. 3.2) and discuss
some of the important data challenges that may arise when attempting to generate
scenarios in this context (Sect. 3.3).



294 M. Hewitt et al.

3.1 Scenario-Based Network Design Models

Let us first consider the case where a recourse program is formulated. A scenario-
based approximation can be obtained for this program when a finite set of
representative scenarios S is generated for the random vector ξ . Specifically, for
s ∈ S, we define the vectors ξ s and the values ps ≥ 0 (such that

∑
s∈S ps = 1),

as the possible realizations of the random vector ξ in the considered scenario set
and their probability of occurence, respectively. An approximation of the original
stochastic network design model can then be obtained by assuming that ξ will be
fixed to one of the possible realizations ξ s , s ∈ S. As previously defined, the flow
decisions set the recourse actions that are applied when the values of the stochastic
parameters become known. The use of the scenario set S entails that the random
vector ξ will be fixed to one of the ξ s , for s ∈ S. Therefore, the following decision
vectors can be defined: xs , i.e., xksij ≥ 0, ∀k ∈ K , (i, j) ∈ A and s ∈ S. These
vectors establish how the commodities are flowed through the designed network if
the vector ξ s is observed. Assuming that ξ s = [ds, us, cs], ∀s ∈ S, where ds , us

and cs are the vectors whose values are the scenario demands, i.e., dksi , ∀k ∈ K and
i ∈ N , the scenario capacities, i.e., usij , ∀(i, j) ∈ A , and the scenario flow costs,

i.e., cksij , ∀(i, j) ∈ A , k ∈ K , respectively, then the scenario-based network design
model with recourse can be formulated as follows:

min
∑

(i,j)∈A
fij yij + ∑

s∈S
∑

k∈K
∑

(i,j)∈A
psc

ks
ij x

ks
ij (10.13)

s.t.
∑

j∈N +(i)
xksij −

∑

j∈N −(i)
xksji = dksi , ∀i ∈ N , k ∈ K , s ∈ S (10.14)

∑

k∈K
xksij ≤ usij yij , ∀(i, j) ∈ A , s ∈ S (10.15)

yij ∈ {0, 1}, xksij ≥ 0, ∀(i, j) ∈ A , k ∈ K , s ∈ S. (10.16)

Model (10.13)–(10.16) takes the form of a large-scale deterministic linear program,
in which all considered recourse decisions are explicitly defined via the use of the
scenario set.

We now present how a scenario-based network design program with probabilistic
constraints can be formulated using the set of representative scenarios S. Let us
consider the variant where demands and capacities are the stochastic parameters.
In this case, for each scenario s ∈ S, one has the vector ξ s = [ds, us]. Let
us recall that the original probabilistic constraint is defined here as (10.12). The
vectors ξ s , for s ∈ S, are then used to approximate the probability associated
to the random event on which this constraint is based. Specifically, considering a
designed network, which we define as yij = yij , ∀(i, j) ∈ A (i.e., vector y),
and its associated commodity flows xkij = xkij , ∀(i, j) ∈ A , k ∈ K (i.e., vector

x), then one seeks to identify the set S(y, x) = {s ∈ S | ∑

(i,j)∈A D

∑

k∈K
xkij ≥



10 Stochastic Network Design 295

α, f k
i (x, d

s) = 0,∀i ∈ N , k ∈ K , fij (y, x, u
s) ≤ 0,∀(i, j) ∈ A A}. Therefore,

if the following inequality is verified:
∑

s∈S(y,x)
ps ≤ β, then the solution (y, x) is

considered to be feasible with respect to the probabilistic constraint. Otherwise,
(y, x) should be discarded as infeasible.

To introduce these feasibility conditions within the network design program, we
first need to define the following variables: let zs ∈ {0, 1}, ∀s ∈ S, which indicate
whether or not the scenarios enforce the condition on which the probabilistic
constraint is defined. Specifically, these variables express the following relations:

zs =

⎧
⎪⎨

⎪⎩

1, If
∑

(i,j)∈A D

∑

k∈K
xkij ≥ α

0, Otherwise.

Therefore, the scenario-based probabilistic network design program can be defined
as follows:

min
∑

(i,j)∈A A

fij yij + ∑

(i,j)∈A
∑

k∈K
ckij x

k
ij (10.17)

s.t.
∑

(i,j)∈A D

∑

k∈K
xkij ≥ αzs, ∀s ∈ S (10.18)

f k
i (x, d

s) = 0, ∀i ∈N , k ∈K , s ∈ S (10.19)

fij (y, x, u
s) ≤ 0, ∀(i, j) ∈ A A, s ∈ S (10.20)

∑

s∈S
psz

s ≤ β (10.21)

yij ∈ {0, 1}, zs ∈ {0, 1}, xkij ≥ 0, ∀(i, j) ∈ A , k ∈K , s ∈ S. (10.22)

The network reliability feasible conditions defined over the considered scenario
set are obtained through the constraints (10.18) and (10.21). By including them
in (10.17)–(10.22), the resulting model again takes the form of a large-scale
deterministic linear program.

3.2 Stability Testing

Let us start with the extremely simplifying assumption that a distribution for
the stochastic parameters is actually available (this assumption will be relaxed
shortly). This could be an analytical distribution, e.g., a multi-dimensional log-
normal distribution, an empirical distribution, e.g., a historical data set, or the
output from repeated runs of a simulator. Regardless, let us assume that this is
the distribution a decision-maker is interested in using to formulate the considered
model but, for numerical reasons, this is not possible (e.g., analytical distributions



296 M. Hewitt et al.

cannot be handled or the number of possible values in the empirical distribution is
too large). In such a case, a sample of scenarios would have to be chosen from the
distribution (to be challenged shortly) to obtain a solvable model. At this point, one
would ask what is the appropriate size for this sample?

In an effort to provide an answer to this important question, we suggest
the following systematic approach (which we illustrate using the scenario-based
recourse program). First, let us define function F(y, S) = ∑

(i,j)∈A
fij yij +

∑

s∈S
∑

k∈K
∑

(i,j)∈A
psc

ks
ij x

ks
ij and set Y = {yij ∈ {0, 1},∀(i, j) ∈ A | ∃xksij ≥

0,∀(i, j) ∈ A , k ∈ K , s ∈ S, (10.14), (10.15)}. Using this function and decision
set, model (10.13)–(10.16) can be redefined as:

min
y∈Y F (y, S).

Assume that a specific sample is chosen for a predefined number of scenarios
(i.e., n). Of course, the value n would be chosen to obtain a scenario-based recourse
program that is solvable in a reasonable amount of time. Furthermore, suppose that
the chosen number of scenarios n is sampled a given number of times, say ten. Now
solve your model ten times, one time with each scenario set. Do you, more or less,
get the same optimal objective function value ten times? Specifically, consider two
specific scenario samples S′ and S′′. We define y′ and y′′ as the optimal solutions
(i.e., networks) when the scenario-based recourse program is solved using S′ and
S′′, respectively. Therefore, the following condition is assessed:

F(y′, S′) ≈ F(y′′, S′′). (10.23)

If condition (10.23) is verified overall scenario sets then you have what is referred
to as in-sample stability.

If this condition is not observed, then a larger scenario set is required. In this
case, value n should be increased until the optimal objective value stabilizes at
which point, any of the ten scenario sets would work. Since objective functions in
stochastic programs tend to be very flat, and because we do not want to worry about
lack of uniqueness of optimal solutions, we here refer to the objective function, not
the solution being stable. Of course, if the optimal objective function value is very
stable with your first choice of n, you may try again with a lower number. After
all, fewer scenarios is a numerical advantage. Eventually, you will hopefully find a
precision that suits you, and you can handle numerically.

Another test that can be conducted is the out-of-sample stability. To do so,
one first needs to sample a larger scenario set Ŝ (e.g., | Ŝ |= 10,000). The ten
previously found networks are then evaluated using set Ŝ. Normally, this is a simpler
task to perform considering that the designs are fixed and only the second-stage
problems are solved for the scenarios in Ŝ. This process provides a more accurate
approximation of the true value of those ten solutions. One may then evaluate how
much the true objective values vary. Specifically, the following condition is assessed:



10 Stochastic Network Design 297

F(y′, Ŝ) ≈ F(y′′, Ŝ). (10.24)

If condition (10.24) is verified overall obtained networks then out-of-sample
stability is verified.

But, why do we care about stability? Presumably, if what we face is a real
application, where people put real money on the design, we do not want to advise
them on a design that is optimal for the chosen scenarios, but not for the true
distribution. After all, it is the true distribution the investor will face. So stability
will guarantee that the problem that is solved is very close to the one that should be
solved, but cannot.

3.3 Data Challenges in Scenario Generation

It is common practice in algorithmic work to randomly generate problem instances.
Of course, also for stochastic network design that may indeed be necessary. But
there are some challenges here that one may not be used to. These challenges are
mostly connected to the handling of stochastic dependence. It will be typical that
demands from customers are dependent. Consider the distribution of beer in a city,
then it can be expected that good weather will result in increased beer sales in all
restaurants and shops, leading to positive correlations. On the other hand, a company
may have customers with rather stable total supply, but one may not quite know
which factory the materials come from on a given day. That will lead to negative
correlations. When there is historical data that can be analyzed, correlations can be
more easily identified and quantified. However, when relevant data is more limited,
this may entail important challenges.

Let us recall that stochastic optimization requires a complete probabilistic model
to be available to formulate the considered stochastic parameters. Thus, multi-
dimensional distributions need to be applied. Implicitly, this also entails that a
correlation matrix (and often a bit more) is available. A correlation matrix has a
certain structure. It has 1’s on the main diagonal, it is symmetric, and each entry
shows the correlation between a pair of variables. Although creating such a matrix
may sound easy, it is not. The correlation matrix needs to be positive semi-definite,
that is, all eigenvalues must be non-negative. Although it is easy to check if a matrix
is positive semi-definite (there are numerous procedures available to do just that),
one may find that many matrices that appear to be correct, in fact, are not. And if the
obtained matrix is not a correlation matrix, then you don’t have a distribution and
you certainly cannot sample; you have nothing to sample from. Although, there are
methods to turn any matrix into a positive semi-definite one, using such methods
may lead to problems in terms of how stochastic parameters are formulated (e.g.,
undesirable correlations may appear).

Here is a simple approach that often leads to a proper correlation matrix. We
will use here the stochastic demands case. Put your customers into two groups



298 M. Hewitt et al.

(systematically or randomly). Let all correlations within a group be positive, say
0.5, and between groups be negative, say−0.4. Check to see if the matrix is positive
semi-definite. There are many codes from numerical linear algebra that can do that.
If the matrix is not positive semi-definite, then slightly adjust the correlations. Most
likely you will find something you can use. And once you have a distribution, the
situation is like the one we described above where we assumed we had one. The
issue is stability and how many scenarios we need. The number will depend on how
we create the scenarios from the distribution, and can be found by using the stability
tests described earlier.

4 Solution Methods

In this section, we review the general solution approaches (both exact and heuristic)
that have been proposed for stochastic network design models. Our presentation
starts from the point of view where a finite set of representative scenarios S

has been generated for the random vector ξ . However, because the literature has
focused on problem variants wherein flow costs do not vary by scenario (i.e.
cksij = cks

′
ij ,∀s, s′ ∈ S), we present these methods for that variant. Thus, in this

section, when referring to model (10.13)–(10.16), we refer to a model with the
objective function

∑

(i,j)∈A
fij yij + ∑

s∈S
∑

k∈K
∑

(i,j)∈A
psc

k
ij x

ks
ij .

As detailed previously, scenarios enable the stochastic problems to be formulated
as large-scaled deterministic mixed-integer linear programs. In turn, these programs
are amenable to be solved by applying specialized decomposition methods. In
this section, we review the two main methods that have been applied to solve
stochastic network design models: the Benders decomposition method, which is
referred to as the L-Shaped method when applied in the context of stochastic
optimization (i.e., Sect. 4.1) and the progressive hedging method, which applies a
scenario decomposition strategy (i.e., Sect. 4.2).

4.1 Benders Decomposition

Benders decomposition is an algorithmic strategy that can be viewed from different
perspectives and applied to a wide variety of problem classes. While initially
proposed as a solution method for large-scale deterministic linear programs, it has
often been successfully applied to stochastic programs formulated as deterministic
linear and/or mixed integer linear programs. In those applications it is often referred
to as the L-Shaped Algorithm.

Regardless of the class of optimization problem, Benders is an iterative procedure
that, at an iteration, first solves a Master problem to determine the values of a subset
of decision variables present in the original problem. Then, given the values of



10 Stochastic Network Design 299

variables prescribed by the solution to the Master problem, subproblems are solved
to prescribe values for the remaining decision variables, as well as to determine
whether solutions to the subproblems can be combined with the Master problem
solution to construct a provably (near-)optimal solution to the original problem.
When they cannot, relevant information from the subproblems is embedded in the
Master problem and the procedure continues.

When the subproblems are linear programs, information embedded in the Master
problem takes the form of constraints that are derived from the dual polyhedra
associated with subproblems. In these cases, Benders can be viewed as a Cutting
plane or Delayed constraint generation method. Relatedly, when the original
optimization problem is a MILP, the choice of variables to include in the Master
problem is often driven by the desire to leave subproblems that are linear programs.

Thus, most applications of Benders to the model (10.13)–(10.16) (or related
variants), solve a Master problem that determines the values for the design variables,
y. We refer to those values as ȳ. Then, given the values ȳ, most applications of
Benders continue by solving one or more subproblems to determine the values of
the flow variables, x, in each scenario. Note that when the constraint y = ȳ is added
to model (10.13)–(10.16), it reduces to a set of capacitated multicommodity network
flow problems (i.e. linear programs), one problem for each scenario.

Thus, a question that must be answered when implementing Benders for this (and
other stochastic programs) is whether a single subproblem should be solved that
considers all scenarios, or, a subproblem should be solved for each scenario. The
former strategy (sometimes referred to as Single-cut) generates, at each iteration,
an individual cut that bounds the overall recourse cost for the associated solution
to the Master problem. The former strategy (sometimes referred to as Multi-
cut), generates, at each iteration, a series of cuts that bound the recourse cost
for the associated Master solution for each scenario subproblem separately. By
disaggregating the cuts that express the recourse cost values of the solutions
obtained, the Multi-cut strategy enables the Master’s formulation to be strengthened
more rapidly. Albeit, this is done at the cost of obtaining a Master problem that
iteratively becomes harder to solve when compared to one generated using the
Single-cut strategy. The question of which strategy to use is typically answered
computationally. However, many recent Benders applications (to this and other
stochastic programs) employ the Multi-cut strategy. Thus, we will next describe
Benders in detail in the context of that strategy.

We will first present the subproblem that is solved for each scenario given values
ȳ for the design variables. Then, by taking the dual of that subproblem, we will
present a reformulation of model (10.13)–(10.16) that involves the extreme points
and extreme rays of the dual polyhedra associated with each scenario’s subproblem.
This reformulated problem is the basis of the Master problem solved by Benders,
although at each iteration it is (usually) based on subsets of extreme points and/or
rays.

Thus, given the values ȳ, the sub-problem, SP (y)s , solved for scenario s ∈ S to
derive the commodity flows x̄s is as follows:



300 M. Hewitt et al.

min
∑

k∈K
∑

(i,j)∈A
ckij x

k
ij (10.25)

s.t.
∑

j∈N +(i)
xksij −

∑

j∈N −(i)
xksji = dksi , ∀i ∈ N , k ∈ K (10.26)

∑

k∈K
xksij ≤ usij ȳij , ∀(i, j) ∈ A (10.27)

xksij ≥ 0, ∀(i, j) ∈ A , k ∈ K . (10.28)

As ȳ is data, the right-hand-sides of constraints (10.27) reduce to data, and SP (y)s
is a linear program. More generally, given that ȳij ∈ {0, 1}, the subproblem SP (y)s
reduces to a capacitated multicommodity network flow problem tasked with routing
the demand of each commodity in scenario s over the subset of arcs in A that are
prescribed by ȳ.

To take the dual of SP (y)s , one associates dual variables αik (un-restricted in
sign) with constraints (10.26) and dual variables βij (≤ 0) with constraints (10.27).
With these dual variables, the dual, DSP(y)s, of SP (y)s can be written as:

max
∑

k∈K
∑

i∈N
dksi αik + ∑

(i,j)∈A
usij ȳij βij (10.29)

s.t. αik − αjk + βij ≤ ckij , ∀(i, j) ∈ A , k ∈ K (10.30)

αik free ,∀i ∈ N , k ∈ K , βij ≤ 0,∀(i, j) ∈ A . (10.31)

Note that ȳ does not appear in constraints (10.30) or (10.31). In other words,
the polyhedron, Q, defined by the constraints (10.30)–(10.31) of DSP(y)s is
independent of y. This independence will enable us to embed in the Benders Master
problem cuts that are based on extreme points and rays of Q.

As is typically done, we assume Q 	= ∅. Thus, it possesses a set of extreme
points P and a set of extreme rays Q. We denote dual decision variable values
associated with the pth extreme point in P as αpik and βpij , respectively. We denote

dual decision variable values associated with the qth extreme ray in Q in a similar
fashion. Given these extreme points and rays, the following, which we refer to as
MP(Q,P), is a valid reformulation of (10.13)–(10.16):

min
∑

(i,j)∈A
fij yij + ∑

s∈S
pszs (10.32)

∑
k∈K

∑
i∈N dksi α

q
ik +

∑
(i,j)∈A usij yij β

q
ij ≤ 0, ∀q ∈ Q, s ∈ S (10.33)

s.t.
∑

k∈K
∑

i∈N dksi α
p
ik +

∑
(i,j)∈A usij yij β

p
ij ≤ zs, ∀p ∈P, s ∈ S (10.34)

yij ∈ {0, 1}, ∀(i, j) ∈ A , zs ≥ 0, ∀s ∈ S. (10.35)

The validity of this reformulation, both for stochastic network design problems
and stochastic programs in general, is based on Duality theory. Constraints (10.33)



10 Stochastic Network Design 301

ensure that for each scenario s, the design, ȳ, induces a feasible subproblem SP (ȳ)s .

Given the assumption that the dual polyhedron, Q, is non-empty, duality theory
implies that when SP (ȳ)s is infeasible, its dual must be unbounded. To prevent this,
constraints (10.33) ensure that the Master problem does not prescribe values ȳ that
form a direction of unboundedness with any extreme rays of Q. Thus, constraints
(10.33) are often referred to as Feasibility cuts.

The decision variables zs represent an estimate of the optimal cost of SP (y)s .
Given the presence of the Feasibility cuts, we can presume that every design vector,
ȳ, will induce a feasible subproblem SP (ȳ)s for each scenario s. Weak duality
implies that the optimal value of the scenario s subproblem is no less than the
quantity

∑
k∈K

∑
i∈N dksi α

p
ik +

∑
(i,j)∈A usij ȳij β

p
ij ,∀p ∈ P , as P contains

extreme points and hence feasible solutions to the dual of the subproblem. Strong
duality implies that the optimal value is exactly equal to that quantity for at least one
extreme point. Thus, constraints (10.34) are often referred to as Optimality cuts.

Formulating and solving MP(Q,P) requires enumerating the extreme points
and rays of the dual polyhedron, Q, which is computationally prohibitive. As a
result, Benders considers subsets of Q and P , respectively denoted by Q and
P. As considering subsets of extreme points and rays is equivalent to removing
constraints from MP(Q,P), MP(Q,P) is a relaxation of the reformulation and
the original model (10.13)–(10.16).

Thus, at each iteration, Benders solves MP(Q,P) to generate a lower bound,
v, on the optimal value of model (10.13)–(10.16), a set of scenario subproblem
cost estimates, z̄s , and a vector of design variable values, ȳ. It then solves each
subproblem SP (ȳ)s to determine whether it is feasible, and if it is, to derive its
optimal value v̄s .When SP (ȳ)s is infeasible, the dual extreme ray that is a certificate
of its infeasibility is extracted and used to generate a cut of the form (10.33).
Alternately, when SP (ȳ)s is feasible, but z̄s < v̄s , we have that the estimate of the
flow costs associated with scenario s given the design ȳ is too low. More precisely,
we have that the set of extreme points used to construct MP(Q,P) is insufficient,
and thus the extreme point associated with the optimal solution to the dual of SP (ȳ)s
is used to generate a cut of the form (10.34).

Formally, the basic Benders algorithm proceeds as described in Algorithm 1
below.

While Algorithm 1 is correct, there are many enhancements that have been
proposed to Benders, both when solving general optimization problems and when
solving models like (10.13)–(10.16). We will first discuss enhancements proposed
for general problems, albeit in the context of solving stochastic network design
models. First, note that Algorithm 1 builds and solves MP(Q,P), a MILP. In
general, there can be computational overhead incurred when building such a MILP.
Relatedly, note thatMP(Q,P) is a relaxation that is strengthened at each iteration.
Thus, when MP(Q,P) is solved by a Branch-and-Bound-based method, search
decisions such as pruning nodes from the branch-and-bound tree remain valid from
one iteration of Algorithm 1 to the next.

As a result, many implementations of Benders are not iterative as presented in
Algorithm 1. Instead, these implementations solve a single MILP with a Branch-



302 M. Hewitt et al.

Algorithm 1 Benders decomposition for stochastic network design
1: Initialization:
2: Set Q =P = ∅,
3: while stopping criterion not met do
4: Solve MP(Q,P) for lower bound, v, scenario cost estimates, z̄s , and design vector ȳ
5: for s ∈ S do
6: Solve SP (ȳ)s for cost v̄s and flow variables x̄s

7: if infeasible then
8: Determine dual extreme ray q̄ from set Q that is certificate of infeasibility of

SP (ȳ)s
9: Set Q = Q ∪ q̄

10: else
11: if z̄s < v̄s then
12: Determine dual extreme point p̄ that is optimal for dual of SP (ȳ)s
13: Set P =P ∪ p̄
14: if No extreme rays or points added to MP(Q,P) then
15: Stop. Solution composed of (ȳ, x̄1, . . . , x̄|S|) is optimal and optimal objective function

value is v.

and-Bound-based method, and, in the course of searching the Branch-and-Bound
tree, dynamically generate Benders Feasibility and/or Optimality cuts. This style of
implementation is in line with the view of Benders as a Cutting plane method. In
this type of implementation, the search for violated Benders cuts is typically done
at nodes in the branch-and-bound tree wherein feasible solutions to the MILP are
discovered. However, it has also been observed that fractional designs prescribed
by solving the linear relaxation of MP(Q,P) can be used to generate Benders
cuts that are valid for model (10.32)–(10.35). Thus, an implementation could
instead generate Benders cuts at every node within the Branch-and-Bound tree. This
observation is the inspiration for another enhancement, which is to first solve the
linear relaxation of model (10.32)–(10.35) with Benders, collect the Benders cuts
generated when doing so, and then solve model (10.32)–(10.35), albeit with those
cuts added to the formulation.

Other, general, enhancements focus on the process of generating Benders cuts.
Some enhancements have focused on speeding up that process. For example, solving
the DSP(ȳ)s has been observed to provide many computational advantages. This is
in part because the feasible region of the dual does not vary by scenario. Thus, for a
given ȳ, the optimal basis found when solving DSP(ȳ)s for scenario s can be used
to warm-start the solution process of solving DSP(ȳ)s′ for scenario s′. Similarly,
the feasible region of the dual subproblem does not depend on ȳ. This provides
additional opportunities for re-using solution information from one subproblem
solve to another.

Other enhancements have focused on generating Benders cuts that are likely to
enable the overall algorithm to converge more quickly. This is in part due to the fact
that the subproblem SP (ȳ)s is often highly degenerate, and thus multiple optimal
solutions to its dual exist. As such, the same design ȳ may be used to generate
multiple cuts, with some, often referred to as Pareto-optimal cuts guiding Benders



10 Stochastic Network Design 303

towards a provably optimal solution much quicker than others. One method for
generating such cuts is to solve an additional dual subproblem.

We next focus on enhancements proposed for solving stochastic network design
problems. One of the weaknesses of the basic Benders method is that the reformu-
lation (10.32)–(10.35) omits much of the structure that is inherent to this class of
problem. Thus, some enhancements have focused on re-introducing that structure
into the Master problem through valid inequalities that only involve the design
variables, y. For example, as each commodity must depart its origin, any optimal
design must include arcs that enable such flow. Based on this reasoning, the
valid inequality

∑
(i,j)∈A :i=o(k) yij ≥ 1 can be added to (10.32)–(10.35). This

inequality can be strengthened by recognizing the total demand originating at a
node and computing the minimum number of arcs, L, that must be included in the
design to carry that flow. When L > 1, the valid inequality can be strengthened
by replacing the right-hand-side with L. Analogous inequalities can be added to
(10.32)–(10.35) based on the destinations of commodities. This line of reasoning
can be generalized to cut-set-type inequalities, which are similar in spirit to the
inequalities just described, but consider subsets of nodes.

A more direct way to retain structure in (10.32)–(10.35) is to use what has
been referred to as a Partial Benders Decomposition. In this approach, variables
and constraints from scenarios are retained in the Master problem. As an example,
consider a partition of the scenario set S into two sets, SR, SP . A Partial Benders
Decomposition-based approach would solve the following Master problem:

min
∑

(i,j)∈A
fij yij + ∑

s∈SR

∑

k∈K
∑

(i,j)∈A
psc

k
ij x

ks
ij +

∑
s∈SP pszs (10.36)

s.t.
∑

j∈N +(i)
xksij −

∑

j∈N −(i)
xksji = dksi , ∀i ∈N , k ∈K , s ∈ SR (10.37)

∑

k∈K
xksij ≤ usij yij , ∀(i, j) ∈ A , s ∈ SR (10.38)

∑
k∈K

∑
i∈N dksi α

q
ik +

∑
(i,j)∈A usij yij β

q
ij ≤ 0, ∀q ∈ Q, s ∈ SP (10.39)

s.t.
∑

k∈K
∑

i∈N dksi α
p
ik +

∑
(i,j)∈A usij yij β

p
ij ≤ zs, ∀p ∈P, s ∈ SP (10.40)

yij ∈ {0, 1}, ∀(i, j) ∈ A , (10.41)

xksij ≥ 0, ∀(i, j) ∈ A , k ∈K , s ∈ SR, (10.42)

zs ≥ 0, ∀s ∈ SP . (10.43)

While the idea of retaining explicit scenario information in the Master problem
is general, it is particularly effective for classes of problems like network design
wherein valid inequalities based on problem structure have been developed and
implemented in off-the-shelf solvers. In addition to implying the commodity
origin/destination-based valid inequalities discussed above, it has been shown that
retaining well-chosen scenarios can completely eliminate the need to generate
Benders Feasibility cuts. In addition, the Master problem can be strengthened with
artificial scenarios that are appropriately constructed based on scenarios in S.



304 M. Hewitt et al.

4.2 Progressive Hedging

Another solution approach that has been applied to efficiently solve model (10.13)–
(10.16) is the progressive hedging method. This solution method also relies on
the use of a decomposition strategy to separate the stochastic network design
model into a series of subproblems that are both smaller and easier to solve.
Specifically, model (10.13)–(10.16) is decomposed to produce a subproblem for
each scenario that is included in set S, by relaxing the non-anticipativity constraints.
The non-anticipativity constraints ensure that the two-stage structure of the model
is followed. Specifically, these constraints enforce the fact that one cannot wait
for the stochastic parameters to be observed to tailor the a priori decisions to the
specific scenario that occurs. Thus, as specified in (10.13)–(10.16), a single network
is designed in the first stage, represented by variables yij ,∀(i, j) ∈ A , which is
then used in the second stage regardless of the scenario that is observed.

If one is to relax the non-anticipativity constraints, then these constraints must
first be explicitly formulated in the model. To do so, we start by duplicating for
each s ∈ S, a set of design decisions ysij ∈ {0, 1},∀(i, j) ∈ A , thus enabling
a specific network to be fixed for each scenario that is considered. We further let
ys define the vector of all design decisions associated with the scenario s ∈ S.
The non-anticipativity requirements can then be imposed by adding the following
constraints:

ysij = ys
′
ij ∀s, s′ ∈ S, s 	= s′, (i, j) ∈ A .

The number of such constraints is quite high, i.e., for each possible arc a constraint
is imposed to state that the selection decision made on this arc must be equal for
all pairs of distinct scenarios. A more compact version of these contraints can be
obtained by defining, in addition to ysij ,∀(i, j) ∈ A , a set of design decisions that
will represent an overall network, i.e., yij ∈ {0, 1},∀(i, j) ∈ A . We again define y
as the vector containing all of the overall design decisions. Using the overall network
design variables, the non-anticipativity constraints can be expressed as follows:

ysij = yij ∀s ∈ S, (i, j) ∈ A .

By forcing all scenario networks to be equal to the overall network will again
reinforce the non-anticipativity constraints.

An equivalent reformulation of (10.13)–(10.16) can now be obtained by explic-
itly adding the non-anticipativity constraints to the model:

min
∑

s∈S
ps

(
∑

(i,j)∈A
fij y

s
ij +

∑

k∈K
∑

(i,j)∈A
ckij x

ks
ij

)

(10.44)

s.t.
∑

j∈N +(i)
xksij −

∑

j∈N −(i)
xksji = dksi ∀i ∈N , k ∈K , s ∈ S (10.45)



10 Stochastic Network Design 305

∑

k∈K
xksij ≤ usij y

s
ij ∀(i, j) ∈ A , s ∈ S (10.46)

ysij = yij ∀(i, j) ∈ A , s ∈ S, (10.47)

yij ∈ {0, 1}, ysij ∈ {0, 1} ∀(i, j) ∈ A , s ∈ S (10.48)

xksij ≥0 ∀(i, j) ∈ A , k ∈K , s∈S. (10.49)

The decomposition steps are then applied as follows. First, constraints (10.47) are
relaxed through an augmented Lagrange strategy. We thus obtain the following
objective function for the relaxed stochastic network design model:

min (10.44)+ ∑
s∈S

ps
(

∑

(i,j)∈A
λsij (y

s
ij − yij )+ 1

2

∑

(i,j)∈A
ρ(ysij − yij )2

)

, (10.50)

where λsij , ∀(i, j) ∈ A and s ∈ S, define the Lagrange multipliers associated
with the relaxed constraints (10.47) (we also set λ as the vector containing these
multipliers) and ρ is the penalty value associated with the augmented term.

Considering the binary requirements of the first stage decision variables, the
relaxed model can be simplified as follows:

min
∑

s∈S
ps
(

∑

(i,j)∈A

(
fij + λsij − ρyij + ρ

2

)
ysij +

∑

(i,j)∈A
∑

k∈K
ckij x

ks
ij

)

−∑
s∈S

∑

(i,j)∈A
psλsij yij +

∑

(i,j)∈A
1
2ρyij

s.t. (10.45), (10.46), (10.48), (10.49).

Regarding this model, an important observation to make is that if the overall design
is set (i.e., if the variables yij , ∀(i, j) ∈ A are fixed) then the model becomes
scenario separable. In such a case, a series of deterministic (or single scenario)
subproblems are obtained. Specifically, for each s ∈ S, we define:

min
∑

(i,j)∈A

(
fij + λsij − ρyij + ρ

2

)
ysij +

∑

(i,j)∈A
∑

k∈K
ckij x

ks
ij

s.t. (10.45), (10.46), (10.48), (10.49).

It should be highlighted that, through the present relaxation strategy, it is the
fixed costs associated with the design decisions that are adjusted (by updating
the Lagrange multipliers λ and the penalty ρ) to reinforce the non-anticipativity
constraints.

The overall search process then proceeds by iteratively performing the following
three-step approach: Step 1: solve each scenario subproblem separately, thus
producing a specific (and possibly different) network (i.e., the networks ys,∀s ∈



306 M. Hewitt et al.

S); Step 2: using these networks derive an aggregate solution that represents the
level of design consensus among the different scenario solutions obtained (i.e., the
solution y); Step 3: in each scenario subproblem, adjust the fixed costs associated
with the design decisions to promote network consensus (i.e., all solutions to
the subproblems converging to an identical network and thus enforcing the non-
anticipativity constraints).

As indicated in Step 2, an aggregate solution needs to be obtained from the
scenario networks. As was originally proposed, when the progressive hedging
method was first introduced, the expectation can be used to derive this aggregation
solution. Thus, one defines the following overall solution:

yij =
∑

s∈S
psy

s
ij , ∀(i, j) ∈ A . (10.51)

Considering the binary requirements imposed on the design decisions, by applying
(10.51), one may fail to produce a feasible network and the overall solution process
may not even converge. This being said, a feasible network can always be obtained
as follows:

yMν
ij =

∨

s∈S
ysνij , ∀(i, j) ∈ A , (10.52)

which would be referred to as the Max design (let yMν denote the vector containing
the max design variables at iteration ν), obtained by selecting the arcs that appear
in at least one scenario solution. From solution (10.52), an upper bound can be
derived for the overall model and this bound can be iteratively updated. However,
such a solution is not necessarily appropriate to be used as the aggregate solution.
Specifically, it may bias the search towards finding unduly large networks.

As for the value yij , they indicate the level of consensus between the scenario
networks with respect to the inclusion, or exclusion, of arc (i, j) ∈ A . Specifically,
for a given (i, j) ∈ A , considering the scenario networks that were obtained
ys,∀s ∈ S, by applying (10.51) then one of the following cases will be observed:

yij =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ysij = 0,∀s ∈ S,
1 if ysij = 1,∀s ∈ S,
0 < yij < 1 otherwise ysij = 1,∀s ∈ Sand ys

′
ij = 0,∀s′ ∈ S \ S.

The first two cases indicate that consensus is reached among the scenario networks
to either exclude, or include, the specific arc that is considered. The third case shows
that consensus has not yet been reached. In this case, the specific value to which yij
is fixed provides the general trend that is observed among the scenario designs. If
yij ≈ 1 then there is a general trend to include the arc in the overall network, while
yij ≈ 0 indicates instead a general trend to exclude the arc. The level of consensus
is lowest in the case where yij ≈ 0.5, where an overall trend cannot be deduced.



10 Stochastic Network Design 307

Therefore, the general idea behind Step 3 is to adjust the fixed costs associated with
each scenario subproblem to gradually incentivize consensus.

Let us consider a specific iteration of the progressive hedging method that is
performed. We denote this iteration by the counting index ν. As soon as Step 1 is
completed, a series of scenario networks is obtained for the current iteration, i.e.,
ysν,∀s ∈ S. By then applying Step 2, the current aggregate solution is derived,
i.e., yν = ∑

s∈S psysν . Step 3 then looks to adjust the fixed costs defined in the
scenario subproblems to promote consensus. Let value f sνij define the modified fixed
cost of arc (i, j) ∈ A in the objective function of the subproblem associated with
scenario s ∈ S at the current iteration ν. To determine how f sνij should be modified,
the difference between the scenario design decision regarding arc (i, j) should be
compared to the associated decision in the aggregate solution. Specifically, if either
yνij = 0 or yνij = 1, then consensus is reached overall scenario networks and f sν

ij

should remain unchanged. In the case where 0 < yνij < 1, then the following
disjunction applies:

ysνij < yνij

∨
ysνij > yνij .

If ysνij < yνij , then one can deduce that ysνij = 0 while yνij > 0. In this
case, the value of f sν

ij should be decreased considering that the aggregate decision
regarding the arc (i, j) indicates that there may be value (at least in some scenario
networks) to include the arc (i.e., value f sνij is thus decreased to incentivize
inclusion). Furthermore, a more pronounced decrease should be applied if yij ≈ 1,
whereas a much milder decrease is warranted when yij ≈ 0. On the other hand,
if ysνij > yνij , then one can deduce that ysνij = 1 while yνij < 1. In this case,
the logic is reversed, the value of f sν

ij should be increased considering that the
aggregate decision regarding the arc (i, j) indicates that there may be value (at least
in some scenario networks) to exclude the arc (i.e., value f sν

ij is thus increased to
incentivize exclusion). Once again, the extent to which the increase should be set
needs to reflect the trend that is observed. Therefore, a higher increase is applied if
yij ≈ 0, whereas a much smaller increase is applicable when yij ≈ 1. These are the
general guidelines that are applied when adjusting the fixed costs within the scenario
subproblems. Based on these guidelines, different strategies can be defined.

A first such strategy is directly defined via the augmented Lagrange method that
is applied. Therefore, at iteration ν, the modified fixed costs are defined as f sν

ij =
fij + λsν−1

ij − ρν−1yν−1
ij + ρν−1

2 , ∀(i, j) ∈ A , s ∈ S. The fixed cost values are
then adjusted by updating the Lagrange multipliers and the penalty value of the
augmented term as follows:

λsν+1
ij ← λsνij + ρν(ysν+1

ij − yνij ),∀(i, j) ∈ A , (10.53)

ρν+1 ← αρν, (10.54)



308 M. Hewitt et al.

where α > 1 is a given constant that is fixed a priori and ρ0 is defined as a positive
value such that ρν →∞ as the number of iterations ν increases. When setting these
values it is important to consider that one seeks to obtain a solution process that
will reach consensus in a gradual manner (i.e., if the solution differences are overly
penalized too quickly, then this may lead to forcing consensus on a sub-optimal
solution).

Another strategy can be defined using heuristic search principles. Specifically, a
set of global adjustments can first be made based on the overall trend that is observed
regarding the inclusion or exclusion of the arcs at a given iteration ν. This is done
by first defining clow and chigh as thresholds indicating whether or not the value of
yνij shows a strong trend to exclude or include the arc (i, j) ∈ A , respectively. The
global adjustments can then be defined as follows:

f ν+1
ij =

⎧
⎪⎪⎨

⎪⎪⎩

βf ν
ij if yνij < clow,

1
β
f ν
ij if yνij > chigh,

f ν
ij otherwise.

(10.55)

It should be noted that the following conditions are applied on the values of the
different parameters used in the previous strategy: β > 1, 0 < clow < 0.5, and
0.5 < chigh < 1. Furthermore, in this case, f νij represents the modified fixed cost
of arc (i, j) for all scenarios s ∈ S.

A second set of adjustments, referred to as local, can be performed at the level of
the scenario subproblems to penalize the differences observed between the scenario
networks and the overall solution. By defining cfar as the threshold at which point a
modification of the fixed costs are applied, then the following local adjustments are
defined:

f sν+1
ij =

⎧
⎪⎪⎨

⎪⎪⎩

βf νij if |ysνij − yνij | ≥ cf ar and ysνij = 1,
1
β
f νij if |ysνij − yνij | ≥ cf ar and ysνij = 0,

f νij otherwise.

(10.56)

Again, the following conditions are applicable on the parameters used in this
strategy: β > 1 and 0.5 < cfar < 1. In this case, f sν

ij represents the modified
fixed cost of arc (i, j) in the scenario subproblem s at iteration ν.

This general idea of applying local adjustments can also be used to further
restrict the scenario subproblems to promote solution consensus. Specifically, if
|ysνij − yνij | ≤ cnear, given a consensus threshold 0 < cnear < 0.5, then one may

apply the following restriction: ysν+1
ij = ysνij , thus fixing the status of this arc for the

next iteration. In turn, this will yield a smaller (and simpler) scenario subproblem to
be solved.

It should be noted that, even when applying these various strategies, the solution
process may fail to converge to a feasible network. Therefore, the progressive



10 Stochastic Network Design 309

hedging method, when applied to solve model (10.13)–(10.16), is implemented by
performing two general search phases. In the first phase, the model is decomposed
into scenario subproblems and the search for a single network is performed through
the iterative three-step approach of solving the scenario subproblems, finding
the aggregated solution and adjusting the scenario subproblems to incentivize
consensus. This phase is performed until the process either converges to a single
feasible network, or, a stopping criteria is reached (e.g., maximum allotted time,
maximum number of iterations without improvements, etc.).

If the first phase fails to produce a consensus network, then considering the last
aggregate solution obtained, let us denote it by yend

ij ,∀(i, j) ∈ A , there exists a set

A ⊂ A such that A = {(i, j) ∈ A | yend
ij = 0 ∨ yend

ij = 1}. Set A includes
the arcs for which consensus was reached as to their status (either selected or not)
in the overall network. Therefore, to produce a feasible solution, a second search
phase is applied to establish the status on the arcs for which consensus was not
reach, i.e., the search is performed on the space defined by the decision variables
yij ∈ {0, 1}, ∀(i, j) ∈ A \ A . Specifically, the following constraints are added
to model (10.13)–(10.16): yij = yend

ij , ∀(i, j) ∈ A , and the resulting restriction

is solved directly to obtain a network yend, where the status of the remaining non-
consensus arcs ∀(i, j) ∈ A \A are fixed.

The progressive hedging method is summarized in Algorithm 2, where the L
or H are two predicates indicating whether or not the Lagrange or heuristic fixed
cost adjustment strategies are used, respectively, to solve model (10.13)–(10.16). On
lines 1 to 10, the method initializes the parameters and evaluates the first aggregated
solution. The first phase of the progressive hedging method is then performed on
the lines 11–29. Finally, if consensus overall arcs could not be reached at the end of
the first phase, then the second phase of the method is applied on the lines 30–35.
Throughout the solution process, BestSolution stores the best found network.

An important point to highlight regarding the progressive hedging method is
that it enables algorithmic innovations that were developed to solve deterministic
network design models to be leveraged to solve their stochastic counterparts. As it
was clearly illustrated previously, the decomposition strategy that is applied here
enables model (10.44)–(10.49) to be decomposed according to the scenarios s ∈ S,
thus producing |S| deterministic network design models. These are the scenario
subproblems being solved each time line 24 is performed in Algorithm 2. Therefore,
any method (e.g., exact, heuristic, matheuristic, etc.) that is available to solve
the deterministic fixed-charge capacitated multicommodity network design model
can be applied here to perform these resolutions (thus allowing for deterministic
optimization innovations to be directly used in the stochastic settings).

Finally, it should be noted that the only modifications that are being made
iteratively to these deterministic models are the adjustments to the fixed costs
associated with the arcs, which are applied using either the L or H strategy. In this
case, with the exception of the restrictions defined on lines 21–23 (which effectively
reduce the size of the feasible regions of the scenario subproblems), the constraint
sets of the deterministic models do not change throughout the progressive hedging



310 M. Hewitt et al.

Algorithm 2 The progressive hedging method with fixed cost adjustment L or H
1: Initialization:
2: ν ← 0;
3: if L = TRUE then
4: λsνij ← 0, ∀(i, j) ∈ A,∀s ∈ S;

5: ρν ← ρ0;
6: for s ∈ S do
7: f sν

ij ← fij ,∀(i, j) ∈ A ;
8: Solve the corresponding scenario subproblem;
9: yνij ←

∑

s∈S
psysνij , ∀(i, j) ∈ A ;

10: BestSolution← yMν ;
11: First Phase:
12: while stopping criterion not met do
13: ν ← ν + 1;
14: if H = TRUE then
15: Apply the global adjustments f ν

ij ,∀(i, j) ∈ A using equation (10.55);

16: for s ∈ S do
17: if L = TRUE then
18: f sν

ij ← fij + λsν−1
ij − ρν−1yν−1

ij + ρν−1

2 , ∀(i, j) ∈ A ;

19: if H = TRUE then
20: Apply the local adjustments f sν

ij , ∀(i, j) ∈ A using equation (10.56);

21: for (i, j) ∈ A do
22: if |ysν−1

ij − yν−1
ij | ≤ cnear then

23: Add the constraint ysij = ysν−1
ij to the corresponding scenario subproblem;

24: Solve the corresponding scenario subproblem;
25: yνij ←

∑

s∈S
psysνij , ∀(i, j) ∈ A ;

26: if L = TRUE then
27: λsνij ← λsν−1

ij + ρν−1(ysνij − yν−1
ij ), ∀(i, j) ∈ A ;

28: ρν ← αρν−1;
29: Update BestSolution← yMν if appropriate;
30: Second Phase:
31: if A 	= ∅ then
32: for (i, j) ∈ A do
33: Add the constraint yij = yend

ij to (10.13)–(10.16);

34: Solve the restricted (10.13)–(10.16) and obtain the solution yend;
35: Update BestSolution← yend if appropriate.

search process. Therefore, at a given iteration ν, a method that is applied to solve
the deterministic network design model associated with a scenario s ∈ S can easily
be enhanced by using the information generated through the solution processes that
were applied to solve the model in the first ν − 1 iterations. Thus, one can warm
start the search process applied at the current iteration by using solutions, valid
inequalities, or any other useful information generated in the previous steps.



10 Stochastic Network Design 311

5 Conclusions and Perspectives

The network design problem is a general and classical optimization problem that
has been used to inform strategic, tactical, and operational planning processes in
many industries. Two industries that have inspired a great deal of research on
network design are freight transportation and telecommunications. However, in
these industries (and others), all information regarding the operational contexts in
which a plan (e.g. a design) will be executed are rarely known with certainty. This
chapter presented a primer on how to incorporate such uncertainty into optimization
models for network design.

The chapter began by introducing two of the most commonly-used paradigms
for explicitly recognizing uncertainty in an optimization model, and illustrated
the use of those paradigms on a specific problem, the stochastic fixed-charge
capacitated multicommodity network design problem. The first paradigm, stochastic
programming with recourse, enables the modeler to define what decisions are made
before information is revealed as well as what decisions can be made after to
best adapt to that revealed information (i.e. recourse decisions). However, in some
contexts, a modeler may not want to define such recourse actions. Instead, the goal
is to produce a design for which the probabilities of meeting some performance
standards meet or exceed some thresholds. Such a setting can be addressed with the
second paradigm, stochastic programming with probabilistic constraints.

Having presented these paradigms for how to recognize uncertainty in network
design problems, the chapter then focused on how to represent uncertainty in the
optimization models. Both paradigms are often implemented by approximating
probability distributions with sets of discrete scenarios. In these implementations,
some model parameters are seen as random variables, and a given scenario
represents a realization of those random variables. This chapter illustrated the
implementation of each paradigm given such a set of scenarios. Such an imple-
mentation necessitates the generation of a set of scenarios. As much of the
literature on scenario generation is not specific to network design, the chapter did
not discuss specific methods for generating scenarios. Instead, it discussed some
important considerations when generating scenarios, including knowing when a set
of scenarios sufficiently represents a distribution and challenges that can arise when
collecting sufficient data to generate a sufficiently representative set of scenarios.

The chapter then presented two solution strategies commonly used for solving
scenario-based optimization models. While the strategies are general, each has
shown promise at solving instances of stochastic network design-type models. The
first, Benders decomposition, is the basis of an exact method, in that it is guaranteed
to yield an optimal solution and a certificate of that solution’s optimality. The
second, progressive hedging, is only the basis of an exact method for certain classes
of models (e.g. stochastic linear programs). However, as most network design
problems do not fall into one of those classes, a progressive hedging-based strategy
is effectively a heuristic. In addition to presenting the base strategies, the chapter
also presented some of the most effective enhancements that have been proposed
for solving instances of stochastic network design models.



312 M. Hewitt et al.

While stochastic network design as a general research topic has received a great
deal of attention, and the state of the art has advanced tremendously, there is still
much work to be done. Typically, networks are designed to support the routing of
some form of demand. Much of the literature on stochastic network design has
focused on models that only recognize uncertainty in those demands. However,
in many settings, the designed network involves arcs that have capacities. Far less
literature has considered models that recognize uncertainty in the capacity that is
established when an arc is installed. Such uncertainty is particularly prevalent when
an organization is designing a network that leverages assets that are shared with
other organizations. In such situations, the capacity available to one organization is
partly a function of the capacity used by another, which likely will not be known at
the time of design. Of course, in such settings there would likely be uncertainty in
both capacities and demands.

Relatedly, most stochastic programming-based approaches proposed in the liter-
ature have considered two stage models. In such models, the design is established
in the first stage, information (usually regarding demands) is revealed, and then
demands are routed. However, in reality, designs are often altered, and at potentially
regular intervals, with some arcs removed from the network and others added. A
common reason for periodically altering a design is seasonality in demand patterns.
However, in such a setting, treating each season as a separate two stage problem
would allow the network to completely change from one season to the next. In many
settings, such a dramatic change in operations would not be desirable, and may not
even be feasible. In those settings, a multi-stage model would be more appropriate,
as it would allow the model to explicitly constrain the difference in the network from
one season to the next. Such a model has received little attention in the literature.

Turning to solution methods, there are still many industrial-sized stochastic
network design problems that can not be solved to optimality in run-times that are
reasonable for practical planning. This is typically due to instance size. In some
settings, the instance of the deterministic equivalent of the problem itself may be
too large. However, the nature of scenario-based formulations can be a root cause of
large model instances. While scenario aggregation-based approaches have shown
promise, there is more work to be done, particularly with respect to stochastic
network design. Relatedly, decomposition schemes that are similar in spirit, albeit
different, than what is used in one of the two basic strategies (Benders, Progressive
hedging) have shown promise. However, these strategies are often static in nature.
Namely, the decomposition is determined when the algorithm begins, and then
the algorithm proceeds. Dynamically changing the decomposition during algorithm
execution is a promising avenue for future research.

Lastly, a barrier to optimization models impacting practice is that decision-
makers are often wary to implement suggestions from a “black box.” Such reticence
may be even more prevalent when an optimization model explicitly recognizes
uncertainty, as the model can recognize the impact of a decision across multiple
scenarios much better than a human can. Stochastic network design models have
a greater chance of impacting practice if there are mechanisms for identifying and
communicating why such a model would prescribe flexibility in some form. There



10 Stochastic Network Design 313

have been studies dedicated to understanding the differences that are observed
between networks designed by solving a deterministic model versus networks
designed by solving a stochastic model. Such efforts have been helpful to assess
how uncertainty affects the decision-making in network design. However, there is
still a lot to be done on this important issue.

6 Bibliographical Notes

The number of studies dedicated to how uncertainty should be addressed in
the context of designing networks has been steadily growing. A comprehensive
literature review on this subject was produced by Klibi et al (2010), in which the
previously mentioned three-group classification of the sources of uncertainty that
affect network design was presented. One can now find in the literature an abundant
number of specific studies, where stochastic network design methodologies (that
apply the presented modelling paradigms) are developed for a variety of applications
in logistics, transportation and telecommunications, to name a few.

In the context of logistics, Alonso-Ayuso et al (2003) and Santoso et al (2005)
were among the first to propose comprehensive methods to solve stochastic supply
chain network design models. Since these original works, a steady stream of
research has produced stochastic optimization methods to solve logistics plan-
ning problems in a variety of settings, e.g., reverse logistics, see Trochu et al
(2020), maintenance planning, see Schrotenboer et al (2020), medical supply
chain management, see Pishvaeea et al (2014), humanitarian relief distribution, see
Noyan et al (2016), and many other cases. The use of stochastic network design
methods has also been prevalent in the context of solving transportation planning
problems. For example, two-stage stochastic models have been successfully applied
to tackle scheduled service network design problems relevant to the planning
of transportation operations when acquiring and managing resources, see Hewitt
et al (2019), in the context of operating two-tiered freight distribution systems,
see Crainic et al (2016a) and to conduct freight transportation when rerouting is
considered as part of the recourse actions, see Bai et al (2014). Telecommunication
applications have also been the source of many studies conducted on applying
stochastic optimization to solve network design problems, the reader is referred to
Gaivoronski (2006) for a general overview of this field.

As for how two-stage models can be used in the context of solving multi-stage
stochastic network design problems, we refer the reader to Cadarso et al (2018) for
a specific example of this. Within a multi-stage model used to formulate a strategic
rail network design problem, the authors imbed a series of two-stage scenario trees
to approximate the operations that are conducted within the network. In addition,
Powell (2014) provides a clear overview of how two-stage formulations can be
applied to perform broader sequential decision processes that involve uncertainty.

Regarding the scenario generation methods, as previously stated, there is a vast
literature on the subject. Nonetheless, we can refer the reader to Kaut et al (2012)



314 M. Hewitt et al.

for thorough introduction to the field. Furthermore, the stability assessment methods
to verify the quality of samples were developed and clearly presented in Kaut and
Wallace (2007).

As for the solution methods that were presented in this chapter, the reader will
find a thorough review of the Benders decomposition algorithm in Rahmaniani et al
(2017). Furthermore, a specialized version of the Benders algorithm was developed
for the stochastic demand variant of the fixed-charge capacitated multicommodity
network design problem in Rahmaniani et al (2018). The partial Benders decom-
position strategy was developed in Crainic et al (2021) and applied to the more
general variant of the problem (i.e., where both the demands and the capacities
are stochastic). The progressive hedging method for the fixed-charge capacitated
multicommodity network design problem with stochastic demands was introduced
in Crainic et al (2011). A follow-up on this original work, that improved the
scenario decomposition strategy that is applied to implement the solution method
(i.e., creating multi-scenario subproblems that enable a more efficient search for a
good consensus solution), was performed by Crainic et al (2014).

Finally, we can highlight some of the studies that have been performed to under-
stand the differences that occur in the characteristics of the networks obtained when
solving stochastic optimization models when compared to solving deterministic
ones. A first such study is due to Lium et al (2009), where the authors illustrated
how, when solving stochastic network design models, consolidation strategies
applied on multiple paths connecting the origins and destinations of commodities
enabled more efficient networks to be obtained. This being said, networks obtained
by solving deterministic and stochastic models can share common characteristics,
see Thapalia et al (2012b), Thapalia et al (2012a) and Wang et al (2018). Consider-
ing that this observations can actually be generalized to other problem settings, see
Maggioni and Wallace (2012), pursuing this type of study appears to be a fruitful
avenue of research.

References

Alonso-Ayuso, A., Escudero, L. F., Garin, A., Ortuno, M. T., & Perez, G. (2003). An approach
for strategic supply chain planning under uncertainty based on stochastic 0–1 programming.
Journal of Global Optimization, 26(1), 97–124.

Bai, R., Wallace, S. W., Li, J., & Chong, A. Y. (2014). Stochastic service network design with
rerouting. Transportation Research B: Methodological, 60, 50–65.

Cadarso, L., Escudero, L. F., & Marìn, A. (2018). On strategic multistage operational two-stage
stochastic 0–1 optimization for the rapid transit network design problem. European Journal of
Operational Research, 271(2), 577–593.

Crainic, T. G., Errico, F., Rei, W., & Ricciardi, N. (2016a). Modeling demand uncertainty in two-
tier city logistics tactical planning. Transportation Science, 50(2), 559–578.

Crainic, T. G., Fu, X., Gendreau, M., Rei, W., & Wallace, S. W. (2011). Progressive hedging-based
metaheuristics for stochastic network design. Networks, 58(2), 114–124.

Crainic, T. G., Hewitt, M., Maggioni, F., & Rei, W. (2021). Partial Benders Decomposition:
General Methodology and Application to Stochastic Network Design. Transportation Science,
55(2), 414–435.



10 Stochastic Network Design 315

Crainic, T. G., Hewitt, M., & Rei, W. (2014). Scenario grouping in a progressive hedging-based
meta-heuristic for stochastic network design. Computers & Operations Research, 43, 90–99.

Gaivoronski, A. A. (2006). Stochastic optimization in telecommunications. In M. C. Resende, & P.
M. Pardalos (Eds.), Handbook of optimization in telecommunications (pp. 761–799). Boston,
MA, USA: Springer.

Hewitt, M., Crainic, T. G., Nowak, M., & Rei, W. (2019). Scheduled service network design
with resource acquisition and management under uncertainty. Transportation Research Part
B: Methodological, 128, 324–343.

Kaut, M., King, A. J., & Wallace, S. W. (2012). Scenario-tree generation. In Modeling with
stochastic programming. New York, NY: Springer.

Kaut, M., & Wallace, S. W. (2007). Evaluation of scenario-generation methods for stochastic
programming. Pacific Journal of Optimization, 3(2), 257–271.

Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply chain
networks: A critical review. European Journal of Operational Research, 203(2), 283–293.

Lium, A. G., Crainic, T. G., & Wallace, S. W. (2009). A study of demand stochasticity in service
network design. Transportation Science, 43(2), 144–157.

Maggioni, F., & Wallace, S. W. (2012). Analyzing the quality of the expected value solution in
stochastic programming. Annals of Operations Research, 200(1), 37–54.

Noyan, N., Balcik, B., & Atakan, S. (2016). A stochastic optimization model for designing last
mile relief networks. Transportation Science, 50(3), 1092–1113.

Pishvaeea, M. S., Razmib, J., & Torabi, S. A. (2014). An accelerated Benders decomposition
algorithm for sustainable supply chain network design under uncertainty: A case study of
medical needle and syringe supply chain. Transportation Research Part E: Logistics and
Transportation Review, 67, 14–38.

Powell, W. B. (2014). Clearing the jungle of stochastic optimization. In INFORMS TutORials in
operations research (pp. 109–137). Catonsville, MD, USA: Informs.

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decomposition
algorithm: A literature review. European Journal of Operational Research, 259(3), 801–817.

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2018). Accelerating the Benders
decomposition method: Application to stochastic network design problems. SIAM Journal on
Optimization, 28(1), 875–903.

Santoso, S., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming
approach for supply chain network design under uncertainty. European Journal of Operational
Research, 16(1), 96–115.

Schrotenboer, A. H., Ursavas, E., & Vis, I. F. (2020). Mixed integer programming models for
planning maintenance at offshore wind farms under uncertainty. Transportation Research Part
C: Emerging Technologies, 112, 180–202.

Thapalia, B. K., Kaut, M., Crainic, T. G., & Wallace, S. W. (2012a). Single-commodity network
design with random edge capacities. European Journal of Operational Research, 220(2),
394–403.

Thapalia, B. K., Wallace, S. W., Kaut, M., & Crainic, T. G. (2012b). Single source single-
commodity stochastic network design. Computational Management Science, 9(1), 139–160.

Trochu, J., Chaabane, A., & Ouhimmou, M. (2020). A carbon-constrained stochastic model
for eco-efficient reverse logistics network design under environmental regulations in the crd
industry. Journal of Cleaner Production, 245(1), 1–16.

Wang, X., Crainic, T. G., & Wallace, S. W. (2018). Stochastic network design for planning
scheduled transportation services: The value of deterministic solutions. INFORMS Journal on
Computing, 31(1), 153–170.



Chapter 11
Robust Network Design

Arie M. C. A. Koster and Daniel R. Schmidt

1 Introduction

Designing a network is usually done on the basis of a forecast of the future/expected
demand. Such a forecast will by definition not be an accurate representation of
the reality. If the design process involves long-term and/or strategic decisions, the
quality of the forecast determines the feasibility of the network design for its future
purpose. Where an increase of the forecast values might be a simple solution to
this problem, it is obvious that such a line of action might be too rough and hence
unnecessary costly. Robust optimization offers a more informed alternative in such
cases.

In the following, we first introduce the basics of robust optimization. Next, we
survey its application to single- and multicommodity network design. At appropriate
times, extensions of the basic idea of robust optimization are also introduced.

A. M. C. A. Koster (�)
Lehrstuhl II für Mathematik, RWTH Aachen University, Aachen, Germany
e-mail: koster@math2.rwth-aachen.de

D. R. Schmidt
Institute for Computer Science V, University of Bonn, Bonn, Germany
e-mail: daniel.schmidt@uni-bonn.de

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_11

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_11&domain=pdf
mailto:koster@math2.rwth-aachen.de
mailto:daniel.schmidt@uni-bonn.de
https://doi.org/10.1007/978-3-030-64018-7_11


318 A. M. C. A. Koster and D. R. Schmidt

2 Robust Optimization

2.1 What Is Robust Optimization?

According to a text book by Ben-Tal et al. (2009), robust optimization is a
“methodology for handling optimization problems with uncertain data”. We extend
this notion of robustness and say that a solution to an optimization problem is robust
if it is feasible for a prescribed range of scenarios rather than in a single situation.
Let us illustrate this concept with an example. Suppose we are to plan a network for
an internet provider. We are provided with forecasts for the planning period and as a
first step, we convert the forecasts into hard numbers for our problem input. This step
will almost certainly introduce rounding errors and is prone to rule out potentially
useful solutions. After this “rounding” step, we run an exact optimization algorithm
– but only after we introduced errors and inaccuracies! How can we make sure that
this solution is even feasible for the real (unknown) network requirements? There
is another problem with our approach. We might be planning a network that sees
different usage scenarios throughout the day, and while classical optimization can
find a network for each scenario, it lacks the methodology to find a network that
works in all of them. The methodology in this chapter gives us the ability to find
solutions that are robust against imprecisions in the input and shifting use cases.
Among other things, it will let us cope with inprecise numbers and lets us plan
a network that can support different traffic peaks without requiring that all peaks
can be handled simultaneously. Throughout, our approach will be as follows. First,
we need to identify a set of possible network configurations or scenarios. This set
is called the uncertainty set. Then, we will look for worst-case robust solutions,
i.e. solutions that are feasible no matter which scenario occurs. The challenge here
is to carefully select an appropriate uncertainty set: The broader the set, the more
expensive our solution becomes. Still, if we were to accept that some solution is
not feasible in all scenarios, we would accept that in some scenarios we violate our
side constraints. Thus, a worst-case model is appropriate if in the application, safety
is critical and a failure of the optimized system is not permitted or more expensive
than guarding against it. If we are sure that all parameters realizations will occur
eventually or if the probability distribution of the realizations is not known, then
worst-case robustness is a good modeling choice as well (if only for the lack of
alternatives).

2.2 Chance-Constrained Model

Robust optimization can be viewed as a specialization of chance-constrained
optimization. As it is often impossible to map all possible inputs onto the uncertainty
set, there remains a (hopefully small) chance that a robust solution is infeasible.
Stated otherwise, a chance-constrained optimization model can be reformulated as



11 Robust Network Design 319

a robust optimization model by determining an uncertainty set guaranteeing that
solutions to the robust optimization model satisfy the original constraints with high
probability. More formally, assuming uncertainties in the constraint matrix of an
arbitrary linear program min{cTx | Ax ≥ b, x ≥ 0} only, a chance-constrained
optimization program in its general form is:

Minimize
n∑

j=1
cixi (11.1)

Subject to Pr

(
n∑

j=1
aij xj ≥ bi

)

≥ 1− εi ∀ i = 1, . . . , m (11.2)

xj ≥ 0 ∀ j = 1, . . . , n. (11.3)

Here, εi > 0 is the maximum probability of violating the i-th constraint and the
matrix entries aij are no longer deterministic values, but random variables following
a (possibly unknown) distribution. Alternatively, all constraints can be considered
jointly in a single chance constraint:

Pr

⎛

⎝
n∑

j=1

aij xj ≥ bi ∀ i = 1, . . . , m

⎞

⎠ ≥ 1− ε (11.4)

In this case, a single value ε > 0 specifies the maximum probability that a chance-
constrained solution is infeasible.

Chance-constrained models are often difficult to solve, in particular if informa-
tion on the probability distribution is not (or only limitedly) available. Tractability
is further restricted by dependencies between the random variables. In the context
of network design, we refer to Pascali (2009) for a chance-constrained approach. In
the context of broadband wireless networks, we are aware of another work reducing
the model to a deterministic problem in case of independent random variables, see
Claßen et al. (2014). Alternatively, by following a robust optimization approach,
we sometimes can guarantee that the solution satisfies the inequalities with high
probability, either in theory, or in practice (by evaluating historical data). Therefore,
we next describe a number of commonly used uncertainty sets.

2.3 Interval Uncertainty

In many cases, parts of the constraint matrix are based on physical measurements
or forecasts and are thus not known with arbitrary precision. To capture this kind of
uncertain input, assume that each coefficient aij of A has a nominal value āij (the
value that was measured or predicted) and that the true value for aij can deviate
by at most âij ≥ 0 from our nominal choice. We define an uncertainty set UI that



320 A. M. C. A. Koster and D. R. Schmidt

consists of all matrices A with coefficients aij ∈ [āij − âij , āij + âij ]:

UI :=
{
(aij )

m,n
i,j=1 ∈ Rm×n

∣
∣
∣ aij ∈ [āij − âij , āij + âij ] ∀ i, j

}
. (11.5)

Since there is no coupling between the individual coefficients, the worst-case
scenario occurs when all coefficients deviate in the worst possible way. This happens
when aij is set to āij−âij for all i, j (assuming a system of typeAx ≥ b) and results
in the following program.

Minimize
n∑

j=1

cixi (11.6)

Subject to
n∑

j=1
(āij − âij )xj ≥ bi ∀ i = 1, . . . , m (11.7)

xj ≥ 0 ∀ j = 1, . . . , n. (11.8)

This is a classical result by Soyster (1973). As an example, suppose that our input
numbers were measured with an accuracy of 1%. Then, we set āij to the value that
was measured and let âij = 0.01 · āij for all i, j .

2.4 Budget Uncertainty

In a practical setting, it is unlikely that all coefficients deviate in the worst possible
way at the same time. In consequence, solutions from the interval uncertainty model
tend to be unnecessarily costly. To obtain a less conservative model, we assume an
uncertainty budget that limits the total deviation. Changing the budget will allow us
to control the conservatism of the model.

In order to control the level of robustness, let us introduce a parameter vector
Γ ∈ Zm

≥0 whose i-th entry Γi decides how many coefficients of the i-th constraint

may deviate from their nominal value at the same time.1 We define the following set
of uncertain matrices based on the choice of Γ .

1The model can be extended to choose a fractional Γ ∈ Rm
≥0 with the interpretation that �Γi�

coefficients of constraint i deviate maximally and a single coefficient aij of constraint i deviates
by the remaining amount (Γi − �Γi�)âij . The extension is straight-forward, yet omitting it makes
the exposition significantly easier. For the full model, see Bertsimas and Sim (2004).



11 Robust Network Design 321

UB(Γ ) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a)
m,n
i,j=1 ∈ Rm×n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S1, . . . , Sm ⊆ {1, . . . , n}
|Si | ≤ Γi ∀ i = 1, . . . , m

aij ∈ [āij − âij , āij + âij ], if j ∈ Si
aij = āij , otherwise

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

We say that a solution is Γ -robust if it is feasible for all A ∈ UB(Γ ). By increasing
some Γi , we increase the robustness as well as the cost of the solution; this is what
we call the price of robustness. In this way, solving the model for different values of
Γ allows us to find a good trade-off between robustness and cost; the extreme cases
being the interval model (set Γi = n for all i = 1, . . . , m) or a non-robust model
(set Γi = 0 for all i = 1, . . . , m). We have the following program with respect to
UB(Γ ).

Minimize
n∑

j=1

cj xj (11.9)

Subject to
n∑

j=1
āij xj − max

S⊆{1,...,n}
|S|≤Γi

∑

j∈S
âij xj ≥ bi ∀ i = 1, . . . , m (11.10)

xj ≥ 0 ∀ j = 1, . . . , n (11.11)

If we fix a selection S of deviating coefficients in any constraint i of (11.9)–(11.11),
then this constraint is most restrictive if aij deviates to the lower bound āij − âij
for all j ∈ S, as xj ≥ 0. This is modeled by the reformulated constraint (11.10).
Program (11.9)–(11.11) can be casted into a linear program by replacing the inner
optimization problem by its dual; a method that we shall see in more detail in
Sect. 5.3.

The budget uncertainty model has nice theoretical properties with respect to
chance-constrained optimization: Let Ã result by randomly (but symmetrically)
perturbing the coefficients of the original matrix A while obeying the maximum
deviations. Then, the probability that a Γ -robust solution violates the i-th constraint
of Ãx ≥ b is bounded by exp(−Γ 2

i /2n); independently of the distribution of the
perturbation.2

2A tighter, but more involved bound can be shown; see Bertsimas and Sim (2004).



322 A. M. C. A. Koster and D. R. Schmidt

2.5 Polyhedral Uncertainty and the Robust Counterpart

To model interval and budget uncertainty, we have collected all possible realizations
of the constraint matrixA in an uncertainty set U ⊆ Rm×n and looked for a solution
x ≥ 0 that is robust feasible, i.e., one that satisfies Ax ≥ b for all choices of
A ∈ U . In general, we can choose any closed, bounded set U as our uncertainty set.
Furthermore, we can always replace U by its convex hull conv U without changing
the feasible region of the uncertain program. In fact, we shall assume that U is
a polytope in the following. Given an arbitrary linear program min{cTx | Ax ≥
b, x ≥ 0} and a polytope U , we call the system

Minimize
n∑

j=1

cj xj (11.12)

Subject to
n∑

j=1
aij xj ≥ bi ∀ i = 1, . . . , m, ∀ (aij )m,ni,j=1 ∈ U (11.13)

xj ≥ 0 ∀ j = 1, . . . , n (11.14)

the robust counterpart of our original linear program. In order to model an uncertain
right-hand side b of a linear program as well, we can introduce a fixed auxiliary
variable and move b to the constraint matrix.

Polynomial time optimization over the feasible region of (11.12)–(11.14) is
equivalent to having a polynomial time separation algorithm for the feasible region.
This is an algorithm that decides whether a given point x ∈ Rn

≥0 is feasible
for (11.12)–(11.14) and if not, yields a scenario A ∈ U and an index i ∈ 1, . . . , m
such that rowi (A)

Tx < bi , where rowi (A) denotes the i-th row of A. Such a
separation algorithm for the robust counterpart exists if a separation oracle for U
exists; indeed, to separate x∗ from the feasible region of (11.12)–(11.14), it suffices
to solve

b∗i := min
{
rowi (A)

Tx∗
∣
∣ A ∈ U

}
(11.15)

for all i = 1, . . . , m. If for some i we have b∗i < bi , then there is a separating
inequality rowi (A)

Tx ≥ bi . Yet, solving (11.15) is possible in polynomial time if
and only if there is a polynomial time separation algorithm for U .

Theorem 1 (Ben-Tal and Nemirovski (1999)) Let U ⊆ Rm×n and let b ∈ Rm.
Then the robust counterpart

min
{
cTx

∣
∣ Ax ≥ b, x ≥ 0, ∀ A ∈ U

}



11 Robust Network Design 323

is solvable in time polynomial in m and n if there is separation algorithm for U
with a running time polynomial in m and n. "#
Thus, we can solve worst-case robust linear programs polynomially if we can
separate polynomially over the uncertainty set.

If the uncertainty polytope is given in its vertex description U =
conv{A1, . . . , Ak} then separation is always possible in time polynomial in n,m

and k (although k may be exponentially large in m or n). We say that U is a discrete
set in this case.

If the uncertainty polytope is described by a system of linear inequalities, a
dualization approach similar to the budget uncertainty case can be applied.

2.6 Multi-stage Robustness

In the classical worst-case robust model, we take all the decisions in a single stage
before we know the realization of the uncertain parameters. This modelling is not
always desirable: We could instead imagine fixing some variables here-and-now
while adjusting other variables once (part of) the uncertain parameters have realized.
As an example in the network design context, we might decide on the capacities
in a first stage (without knowing the realizations of the uncertain demands) and
postpone the routing of the traffic to a point in time where the demands are known
with certainty. Or, we might conservatively buy parts of the network in advance
and rent additional capacity as needed. Depending on fewer uncertain parameters,
such multi-stage models allow for less expensive solutions without sacrificing
their robustness. The price for the additional flexibility is a computionally harder
model, as even models with two stages of robustness tend to be NP-hard to solve.
A middle ground is achieved by assuming a tractable dependence between the
uncertain parameters and the adjustable, later stage variables. Models with affine
robustness assume that the adjustable variables can be computed as affine functions
from the uncertain data. Recoverable robustness more generally asks for a tractable
algorithm that computes feasible values for all adjustable variables given the first
stage decisions and the parameter realization.

3 Robust Network Designs

In the sequel, we will apply the robust optimization approach to network design. As
opposed to the introductory Chap. 2, we suppose that G = (N ,E ) is an undirected
graph with a node set N and a set of potential edges E ⊆ (N

2

)
. To emphasize

the difference, we use the notation {i, j} to distinguish an undirected edge between
i, j ∈ N from the directed arcs (i, j) and (j, i). Then, a flow f on G assigns a flow
value fij and fji to both possible orientations of each edge {i, j} and a capacity



324 A. M. C. A. Koster and D. R. Schmidt

vector u ∈ RE admits a flow f if fij +fji ≤ uij . Following the robust optimization
paradigm, we consider a setting where the supplies / demands of the nodes in the
graph are uncertain. The robust network design problem is the task to select a
capacity uij ≥ 0 for each edge {i, j} such that all possible demand realizations
can be satisfied while minimizing the total costs for installing the capacities.

Exactly how the demands are satisfied will vary throughout the chapter. We
will first consider some single-commodity models and then generalize to multiple
commodities. Given that we optimize over multiple scenarios, another modeling
choice arises: Do we need to fix the routing of the demands before we know which
scenario will realize or are we allowed to select a suitable routing once we know the
scenario realization? In the former case, we need to compute a routing template, i.e.
[0, 1]-valued flow. Given an arc (i, j), we interpret the template flow fij ∈ [0, 1] as
the percentage of the demand that is routed along (i, j). In the terms of the previous
section, this yields a single-stage optimization problem and we say that we model a
static routing in this case. If in the latter case, we are allowed to choose the routing
after a scenario has realized, we perform a two-stage optimization. This is known
as a dynamic routing. In general, dynamic routings offer more flexibility and thus,
cheaper solutions. They are, however, much harder to compute and do not fit all
practical applications. Models in between static and dynamic routing exist; see for
instance Poss and Raack (2013).

4 Single-Commodity Formulations

In Chap. 2, Sect. 2, we defined a deterministic (i.e., non-robust) single-commodity
flow by saying that every node has a demand wi of the single commodity. We
generalize this notion by introducing an uncertainty set U ⊆ RN such that any
scenario w ∈ U defines a demand wi for each node. As before, we say that i ∈ N
has a supply of the single commodity in the scenariow ifwi > 0, we say that i has a
demand of the commodity in scenariow ifwi < 0 and that i is a transshipment node
in scenario w if wi = 0. It is possible for nodes to a have a supply in one scenario
and a demand in another which means that our partitioning of the nodes into origin
nodes N o

w , destination nodes N d
w and transshipment nodes N t

w now depends on the
scenario w ∈ U . As before, we assume that the supplies and demands are balanced
in all scenarios in U and observe that if

∑
i∈N wi 	= 0 for some w ∈ U , then no

flow can satisfy the supplies and demands simultaneously and the problem instance
is infeasible.

Given G , an edge-cost vector c ∈ RN≥0 and an uncertainty set U ⊆ RN , the
Single-Commodity Capacitated Robust Network Design Problem (SSCCRND) is
the task to find an integral minimum-cost capacity vector u ∈ ZE that admits a
feasible flow for each w ∈ U while minimizing the capacity installation costs∑
{i,j}∈E cij uij . I.e., it is a two-stage robust optimization problem. The capacity



11 Robust Network Design 325

vector u has to be determined before the realization of the demand vector w is
known, but the flow can be scenario-specific.

The SSCCRND problem is NP-hard, even if U is a discrete uncertainty set with
three scenarios that only use demands wi ∈ {−1, 0, 1} and that agree on a common
origin node. The deterministic variant of the problem (i.e., |U | = 1) is polynomial
time solvable as a minimum-cost flow problem, however, which is in contrast to the
deterministic SCFND in Chap. 2, Sect. 2. It is currently unknown if the SSCCRND
problem with two scenarios is NP-hard.

4.1 A Flow-Based Formulation

The general problem admits a flow-based formulation of the SSCCRND problem
that is similar to the flow-based formulation in Chap. 2, Sect. 2. It has an integer
capacity variable uij for each edge {i, j} ∈ E and two continuous arc-flow variables
f w
ij , f

w
ji for each edge {i, j} ∈ E and each scenario w ∈ U (modeling the flow on

{i, j} in scenario w).

Minimize
∑

{i,j}∈E
cij uij (11.16)

Subject to
∑

{i,j}∈E

(
f wij − f wji

) = wi ∀ i ∈ N ,∀ w ∈ U (11.17)

f wij + f wji ≤ uij ∀ {i, j} ∈ E ,∀ w ∈ U (11.18)

f w
ij , f

w
ji ≥ 0 ∀ {i, j} ∈ E ,∀ w ∈ U (11.19)

uij ∈ ZE≥0 ∀ {i, j} ∈ E (11.20)

This formulation is known as the flow-based formulation and matches the definition
of SSCCRND exactly; any feasible solution defines a feasible flow f w for all
scenarios w ∈ U along with minimum integer capacities that support the flows.
The constraint matrix of formulation (11.16)–(11.20) is not totally unimodular and
thus the integrality requirement for the capacity variables is necessary. Given integer
values for u, however, we can always find a feasible f that is integer as well
(provided w is integer), even though integrality of the scenario flows is not required
in the definition of the SSCCRND problem.

Formulation (11.16)–(11.20) potentially has an infinite number of variables.
Assuming U is a polytope, to make it a finite formulation, we can equivalently
replace U by the set of its vertices. Still, not only may the number of vertices of U
be large, if U is given in a linear description, it is non-trivial to compute all vertices
of U efficiently.



326 A. M. C. A. Koster and D. R. Schmidt

4.2 A Cut-Set-Based Formulation

We obtain a formulation of finite size by projecting out the flow variables in (11.16)–
(11.20). The result is a cut-set-based formulation that has an integer capacity
variable uij for each edge {i, j}. Before we introduce the formulation itself,
let us define a robust cut-set-based inequality for the SSCCRND problem as a
generalization of the cut-set-based inequalities (2.16) in Chap. 2. Consider any cut
S ⊆ N and some scenario w ∈ U . Any feasible choice of capacities u must
satisfy

∑
{i,j}∈(S ,S̄ )

uij ≥ WS (w), where WS (w) := |∑i∈S wi | is defined

analogously to Chap. 2, Sect. 2.1. This is true for all w ∈ U and thus, it is necessary
that u satisfies

∑

{i,j}∈(S ,S̄ )

uij ≥ max
w∈U

WS (w). (11.21)

Inequality (11.21) is a robust cut-set-based inequality for the SSCCRND problem.
It turns out that a capacity vector u is feasible if it satisfies the robust cut-set-

based inequality (11.21) for all S ⊆ N . This yields the following cut-set-based
formulation for the SSCCRND problem.

Minimize
∑

{i,j}∈E
cij uij (11.22)

Subject to
∑

{i,j}∈(S ,S̄ )

uij ≥ max
w∈U
| ∑
i∈S

wi | ∀S ⊆ N (11.23)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.24)

The cut-set-based formulation is equivalent to the flow-based formulation (11.16)–
(11.20) in the sense that the (fractional) solutions of the projection of (11.16)–
(11.20) onto the u-space are exactly those defined by (11.23)–(11.24). The linear
programming bounds obtained from the relaxations of the flow-based formulation
and the cut-set-based formulation are hence the same. A cut-set-based inequal-
ity (11.23) for a set S with maxw∈U

∑
i∈S wi > 0 defines a facet of the

feasible region of (11.23)–(11.24) if both S and the complement set S̄ induce a
connected subgraph of G . The non-negativity constraint (11.24) for uij , {i, j} ∈ E
is dominated by a cut-set-based inequality if removing {i, j} disconnects G into two
partitions with non-zero total balance. In all other cases, the constraint defines a
facet of the feasible region of the cut-set-based formulation.



11 Robust Network Design 327

4.3 Separating Robust Cut-Set-Based Inequalities

The size of the cut-set-based formulation is independent of U . However, the number
of constraints in the formulation is exponential in the size of G . Whether these
constraints can be separated with sufficient efficiency depends on the uncertainty
set; for general uncertainty sets, the separation is NP-hard. In this case, applying
the generic transformation of the robust counterpart from Sect. 2.5 leads to a linear
program with exponentially many constraints and variables. Neither a separation
nor a pricing algorithm is known for this program. Alternatively, the problem can
be reformulated as a non-convex quadratic program.

There are known tractable special cases, however. The first tractable case occurs
when the vertices of U can be enumerated efficiently (for instance, because U is
a discrete uncertainty set). Then, the separation requires one run of a minimum s-t-
cut algorithm per vertex of U . We discuss two other tractable special case in more
detail below.

4.3.1 The Single-Commodity Hose Uncertainty Set

Hose uncertainty corresponds to the interval robustness model in the previous
section, with the additional constraint that all scenarios must induce balanced
supplies and demands. For each node i ∈ N , we define a lower bound wmin

i ∈ Z
and an upper boundwmax

i ∈ Z on the demand at i and consider any fluctuation of the
demands that lies within these bounds and defines a balanced scenario. This results
in the following uncertainty set.

UH (w
min, wmax) :=

{
w ∈ RV

∣
∣
∣ wi ∈ [wmin

i , wmax
i ]∀ i ∈ N ∧

∑

i∈N
wi = 0

}
.

(11.25)

The SSCCRND problem with Hose uncertainties remains NP-hard, as does the
separation problem for the robust cut-set-based inequalities. However, the separa-
tion problem can be reformulated as a mixed integer linear program (MILP) in the
following way. The MILP computes a cut S and the value of the right-hand side
of the corresponding cut-set-based inequality. For each node i ∈ N , we introduce
a variable πi indicating if i ∈ S and a binary decision variable ρij indicating
if {i, j} ∈ (S , S̄ ). An additional continuous variable W holds the right-hand side
value of the cut-set-based inequality corresponding to S . The MIP minimizes the
slack of the cut-set-based inequality induced by S = {i ∈ N | πi = 1}.

Minimize
∑

{i,j}∈E
u∗ij ρij −W (11.26)



328 A. M. C. A. Koster and D. R. Schmidt

Subject to W ≤ ∑

i∈N
πiw

max
i (11.27)

W ≤ − ∑

i∈N
(1− πi)wmin

i (11.28)

πi − πj ≤ ρij ∀ {i, j} ∈ E (11.29)

πj − πi ≤ ρij ∀ {i, j} ∈ E (11.30)

πi ∈ {0, 1} ∀ i ∈ N (11.31)

ρij ∈ {0, 1} ∀ {i, j} ∈ E (11.32)

Here, the essential insight is that we can assume without loss of generality that
the minimum slack is attained by a cut-set-based inequality for a set S where
maxw∈UH

∑
i∈S wi is non-negative (otherwise, replace S by the complement S̄ ).

This observation implies that the right-hand side of the inequality simplifies to

max
w∈UH

∣
∣
∣
∑

i∈S
wi

∣
∣
∣ = max

{∑

i∈S
wmax
i ,−

∑

i∈S̄
wmin
i

}
, (11.33)

which is modeled by the constraints (11.27) and (11.28). Computational experi-
ments show that this MILP is solvable for reasonable instance sizes.

4.3.2 Network Containment

The network containment uncertainty polytope defines another tractable special case
of the SSCCRND problem. In this model, the demand is not defined directly at each
node, but through demand requests: For each pair of nodes i, j ∈ N , we define
a minimum and a maximum amount rmin

ij , rmax
ij , respectively, of the global single

commodity that j can request from i. We then project the demand requests down
onto node demands by writing the corresponding uncertainty polytope as

UC :=
{
(
∑

j∈N
(rij − rji))i∈N ∈ RN

∣
∣ rmin

ij ≤ rij ≤ rmax
ij ∀ i, j ∈ N

}
(11.34)

Thus, for any choice of demand requests r , we obtain a scenario w where the
demand wi at node i is exactly the total amount

∑
j∈N rij of the commodity

requested from i minus the total amount
∑

j∈N rij of the commodity requested
by i. In contrast to the Hose model, the scenarios defined in this way are always
balanced even without an explicit balancing constraint. The definition also implies
that at any node i, the demand request rij may be satisfied by any node j ′ (i.e., in
general, we may have j ′ 	= j ) as long as i receives or sends the correct amount of the
commodity. The cut-set separation problem for the network containment uncertainty
polytope can be solved by a mixed integer linear program similarly to the Hose
polytope.



11 Robust Network Design 329

4.4 Strengthening the Formulations

The feasible regions of the flow-based and of the cut-set-based formulation admit
a project-and-lift cut generation procedure that works by contracting edges in an
SSCCRND instance. To contract any edge {i, j} ∈ E, we merge i and j into a super
node i′. All nodes that were previously adjacent to i or j are now adjacent to i′ and
we delete all resulting parallel edges. In all scenarios w ∈ U , we set the demand
of i′ to be wi + wj . By applying this procedure repeatedly, we can project any
SSCCRND instance I into an instance I ′ with fewer nodes and edges. This smaller
instance has nice properties: Any valid inequality for I ′ can be turned into a valid
inequality for I by appropriately lifting the coefficients and moreover, the lifting
procedure ensures that facet-defining inequalities for I ′ remain facet-defining for I .

To find valid inequalities for I ′, we can repeatedly contract edges until we obtain
an instance of constant size. We then apply the target cut approach that finds facet-
defining inequalities by solving a linear program that has an inequality for each
vertex of the feasible region of I ′. In the special case where I ′ is a triangle graph, its
three super-nodes define a partitioning of the node set into three disjoint sets S1 ∪
S2 ∪S3 = N . This partitioning gives rise to the class of 3-partition inequalities:

∑

{i,j}∈(S1:S2)

uij +
∑

{i,j}∈(S1:S3)

uij +
∑

{i,j}∈(S2:S3)

uij ≥
⌈
WS1 +WS2 +WS3

2

⌉

.

(11.35)

Here, for any S ,S ′ ∈ N , we define (S : S ′) := {{i, j} ∈ E | i ∈ S ∧ j ∈ S ′}
to be the set of edges with one endpoint in S and one endpoint in S ′. Further,
we let WS := maxw∈U WS (w)| be the right-hand side value of the cut-set-
based inequality induced by S . The 3-partition inequalities are facet-defining
for the feasible region defined by the cut-set-based formulation (11.22)–(11.24)
if WS1 + WS2 + WS3 > 0 is odd and each of the sets S1,S2,S3 induces
a connected subgraph. The 3-partition inequality corresponding to S1,S2 and
S3 can be generated as a {0, 1

2 }-Chvátal-Gomory cuts from the cut-set-based
inequalities corresponding to S1, S2 and S1 ∪S2.

4.5 Variants of the Problem

It is straight-forward to rewrite (11.22)–(11.24) for a setting where opening an edge
{i, j} incurs a fixed-cost of cij , but provides a fixed capacity uij . The variant with
fixed costs and uncapacitated edges can then be seen as the special case where
the fixed capacities are set to the sum W = ∑i∈N maxw∈U |wi | of the maximum
demands. If U is described by a system of inequalities, this value can be obtained by
solving a linear program for each node i ∈ N . Transportation costs (in the worst-
case) can be added to the objective function of the flow-based formulation (11.16)–



330 A. M. C. A. Koster and D. R. Schmidt

(11.20). Neither variants with fixed costs, transportation costs, nor uncapacitated
variants have been considered in the literature so far, to the best of our knowledge.

5 Multicommodity Formulations

If the traffic between different pairs of nodes in our network has to be distinguished,
then the multicommodity flow model is an appropriate modeling choice. Analo-
gously to Chap. 2, Sect. 3 we assume that each commodity k ∈ K is given as an
origin-destination pair (O(k),D(k)) ∈ N ×N . To model the uncertain demands,
we consider an uncertainty polytope U ⊆ RK . Any scenario d ∈ U specifies a
demand dk for commodity k ∈ K . As before, we can re-write the demands as flow
balances by setting

w
k,d
i :=

⎧
⎪⎪⎨

⎪⎪⎩

dk, if i = O(k)

−dk, if i = D(k)

0, otherwise

∀ d ∈ U ,∀ k ∈ K ,∀ i ∈ N . (11.36)

Here, however, the uncertainty polytope introduces a dependence of w on the sce-
nario d. Given an undirected graph G = (N ,E ) with commodities (O(k),D(k))
for k ∈ K , a scenario polytope U ⊆ RK , and an installation cost cij for each edge
e ∈ E , the MSCCRND problem is to find an integer capacity uij for each edge {i, j}
such that

∑
{i,j}∈E cij uij is minimum and all demands in U can be routed. In the

dynamic routing case, the demands must be routed with a multicommodity flow. In
the case of static routing, the demands are routed with a routing template as briefly
described in Sect. 3.

5.1 Standard Uncertainty Sets

Consider the application of the budget uncertainty approach to multicommodity
network design (cf. Sect. 2.4). We denote by d̄k a nominal value for the demand
of each commodity k ∈ K and we suppose that the true demand of the commodity
can deviate from its nominal value by at most d̂k . Additionally, there can be at most
Γ ∈ Z≥0 deviations at the same time. We define the resulting uncertainty set as the
Γ -robustness polytope for the MSCCRND.



11 Robust Network Design 331

UB(d̄, d̂, Γ ) := conv

⎧
⎪⎪⎨

⎪⎪⎩
d ∈ RK≥0

∣
∣
∣
∣
∣
∣
∣
∣

dk ∈ [d̄k − d̂k, d̄k + d̂k], if k ∈ S
dk = d̄k, otherwise

∀ S ⊆ K with |S| ≤ Γ

⎫
⎪⎪⎬

⎪⎪⎭
.

(11.37)

Defining S(Γ ) := {σ ∈ [0, 1]K |∑k∈K σk ≤ Γ } as the set of possible deviations,
we can rewrite the Γ -robustness polytope equivalently as the following set.

UB(d̄, d̂, Γ ) = d̄ + {(σ kd̂k)k∈K ∈ RK≥0

∣
∣ σ ∈ S(Γ )}. (11.38)

An alternative to the budget uncertainty set was proposed by Fingerhut et al. (1997)
and Duffield et al. (1999) independently. In the Hose model, we only assume that
we know the maximum incoming traffic d in

i and the maximum outgoing traffic dout
i

at each node i ∈ V . We then define a commodity (s, t) with demand dst for all pairs
of nodes s, t ∈ N and consider any demand vector d that adheres to the traffic
bounds. We call the resulting uncertainty set

UH (d
in, dout) :=

{
d ∈ RN ×N

≥0

∣
∣
∣
∑

t∈N
dit ≤ dout

i ∧
∑

s∈N
dsi ≤ d in

i ∀ i ∈ N
}

(11.39)

the (multicommodity) Hose polytope. We speak of the symmetric Hose polytope if
d in
i = dout

i for all nodes i ∈ N .
For this uncertainty model, we only need to estimate Θ(|N |) parameters (as

opposed to a worst case of Θ(|N |2) in the budget uncertainty case). Additionally,
these parameters are easier to predict and can even be known exactly if they stem
from technical specifications or legal contracts.

5.2 The VPN Problem

The MSCCRND problem with Hose uncertainties and static routing is known as
the Virtual Private Network (VPN) design problem. The problem is NP-hard in
general, but can be solved efficiently if the Hose polytope is symmetric in the above
sense and if we force the flow to be unsplittable. In that case, there is always an
optimum routing template that forms a tree and optimum tree routing templates for
unsplittable flows can be found in polynomial time. We will see in the following
section how the general VPN problem can be solved with ILP methods.



332 A. M. C. A. Koster and D. R. Schmidt

5.3 Static Routing: Arc-Flow Based Formulations

In the static routing case, the flow formulation does not need a set of arc-flow
variables for every scenario: As we use the same routing template in all scenarios,
a single set is sufficient. Here, for all commodities k ∈ K and all edges {i, j} ∈ E ,
the routing template variables f k

ij and f kji denote the fraction of the demand of
the commodity k that is routed via the arcs (i, j) and (j, i), respectively, in each
scenario d ∈ U . As before, we use an integer variable uij to model the capacity of
the edge {i, j}, for all {i, j} ∈ E .

Minimize
∑

{i,j}∈E
cij uij (11.40)

Subject to
∑

{i,j}∈E
f kij − f kji =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = O(k)

−1, if i = D(k)

0, otherwise

∀ k ∈ K

∀ i ∈ N
(11.41)

∑

k∈K
dk · (f k

ij + f k
ji

) ≤ uij
∀ {i, j} ∈ E

∀ d ∈ U
(11.42)

f k
ij , f

k
ji ∈ [0, 1] ∀ {i, j} ∈ E

∀ k ∈ K
(11.43)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.44)

Again, it is sufficient to include the constraints (11.42) for the vertices of U . Forcing
that f is binary leads to a variant where the template for each commodity uses a
unique path and thus, a routing template for an unsplittable flow.

Let us now robustify the arc-flow formulation (11.40)–(11.44) with the Γ -
robustness model.

Minimize
∑

{i,j}∈E
cij uij (11.45)

Subject to

∑

{i,j}∈E
f k
ij − f k

ji =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = O(k)

−1, if i = D(k)

0, otherwise

∀ k ∈ K

∀ i ∈ V (11.46)

∑

k∈K
d̄k(f kij + f k

ji)+ max
σ∈UB(Γ )

∑

k∈K
σkd̂

k
(
f k
ij + f k

ji

) ≤ uij ∀ {i, j} ∈ E (11.47)



11 Robust Network Design 333

f kij , f
k
ji ∈ [0, 1] ∀ {i, j} ∈ E

∀ k ∈ K
(11.48)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.49)

The constraint (11.47) contains an optimization problem in itself so that the formula-
tion is a two level program. We would like to collapse the program into a single level.
Unfortunately, in the inner level inside of the constraint (11.47), we seek to maximize∑

k∈K σkd̂
k(f k

ij +f k
ji) over UB(Γ ) while the outer level (11.45)–(11.48) strives to

minimize this value. If we could rewrite the maximization as an equivalent mini-
mization problem, we could collapse the two levels as desired. Given fixed template
flows f k , this can be achieved by modeling maxσ inUB(Γ )

∑
k∈K σkd̂

k
(
f k
ij +f k

ji

)
as

a linear program and replacing it by its dual

Minimize γij · Γ +
∑

k∈K
τ kij (11.50)

Subject to γij + τ kij ≥ d̂k(f kij + f kji) ∀ k ∈ K (11.51)

τ kij ≥ 0 ∀ k ∈ K (11.52)

γij ≥ 0 (11.53)

for all edges {i, j} ∈ E . The result is a compact mixed-integer linear program with
Θ(|N |2|E |) variables and Θ(|N |3 + |N |2|E |) constraints.

Minimize
∑

{i,j}∈E
cij uij (11.54)

Subject to
∑

{i,j}∈E
f k
ij
− f k

ji
=

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = O(k)

−1, if i = D(k)

0, otherwise

∀ k ∈ K

∀ i ∈ N
(11.55)

∑

k∈K
d̄k(f k

ij
+ f k

ji
)+ γij · Γ +

∑

k∈K
τk
ij
≤ uij ∀ {i, j} ∈ E (11.56)

γij + τkij − d̂k(f kij + f kji) ≥ 0
∀ k ∈ K

∀ {i, j} ∈ E
(11.57)

τk
ij
≥ 0

∀ k ∈ K

∀ {i, j} ∈ E
(11.58)

γij ≥ 0 ∀ {i, j} ∈ E (11.59)



334 A. M. C. A. Koster and D. R. Schmidt

f k
ij
, f k

ji
∈ [0, 1]

∀ k ∈ K

∀ {i, j} ∈ E
(11.60)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.61)

As the objective function makes sure that the left-hand side of constraint (11.56) is
minimized, we can omit the explicit minimization without inserting complementary
slackness conditions.

Alternatively, we can solve the separation problem for the constraints (11.47).
Given fixed f and u, the problem amounts to finding a deviation σ ∈ UB(Γ ) and
an edge {i, j} ∈ E such that

∑

k∈K
d̄k(f k

ij + f kji)+
∑

k∈K
σkd̂k

(
f kij + f k

ji

)
> uij (11.62)

or to decide that none such combination of a deviation and an edge exists. The
problem can be solved separately for each fixed edge {i, j} ∈ E . Then, it amounts
to solving

max
σ∈UB(Γ )

∑

k∈K
σkd̂k

(
f kij + f kji

)
. (11.63)

If the optimum value of (11.63) is larger than uij − ∑k∈K d̄k(f k
ij + f k

ji), then
we found a violated inequality; otherwise, no violated inequality involving the
edge {i, j} exists. To solve (11.63), we can sort the values d̂k(f kij + f kji) for
k ∈ K in non-increasing order. Then, the first Γ commodities determine a worst-
case deviation. This approach yields a program that initially has Θ(|K ||N |)
constraints and Θ(|K ||E |) variables. To solve the linear programming relaxation
of the problem, we need to solve Θ(|E |) separation problems per iteration of the
separation algorithm.

To combine the arc-flow formulation with the Hose polytope, we can equivalently
replace constraint (11.42) by the optimization

uij = max
∑

s,t∈V
dst (f stij + f st

j i ) (11.64)

Subject to
∑

t∈V
dst ≤ dout

s ∀ s ∈ V (11.65)

∑

s∈V
dst ≤ d in

t ∀ t ∈ V (11.66)

dst ≥ 0 ∀ s, t ∈ V (11.67)

for all {i, j} ∈ E . For fixed f , this gives us a bounded, feasible linear program
for each edge {i, j} ∈ E. Again, we now replace these programs by their dual.
In the linear program for edge {i, j}, denote by ω

ij
s and υ

ij
t the dual variables



11 Robust Network Design 335

corresponding to the constraints (11.65) and (11.66), respectively. This yields the
following dual for each edge {i, j} ∈ E .

Minimize
∑

s∈N
dout
s ω

ij
s +

∑

t∈N
d in
t υ

ij
t (11.68)

Subject to ω
ij
s + υijt ≥ f stij + f stj i ∀ s, t ∈ V (11.69)

ω
ij
s ≥ 0 ∀ s ∈ V (11.70)

υ
ij
t ≥ 0 ∀ t ∈ V (11.71)

This program is linear, even for a non-fixed f . We insert it into formulation (11.40)–
(11.44), replacing constraint (11.41).

Minimize
∑

{i,j}∈E
cij uij (11.72)

Subject to
∑

{i,j}∈E
f stij − f st

j i =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = s

−1, if i = t

0, otherwise

∀ s, t ∈ N

∀ i ∈ N
(11.73)

∑

s∈N
dout
s ω

ij
s + ∑

t∈N
d in
s υ

ij
s ≤ uij ∀ {i, j} ∈ E (11.74)

ω
ij
s + υijt ≥ f st

ij + f stj i
∀{i, j} ∈ E

∀ s, t ∈ N
(11.75)

ω
ij
s , υ

ij
s ≥ 0

∀ {i, j} ∈ E

∀ s ∈ N
(11.76)

f stij , f
st
j i ∈ [0, 1] ∀ {i, j} ∈ E

∀ s, t ∈ N
(11.77)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.78)

In this way, we directly obtain a single level mixed integer linear program and
do not need any further linearization. Solving the program gives us minimum cost
integer capacities for MSCCRND with static routing over the Hose polytope. The
program has Θ(|N |2|E |) variables and Θ(|N |3+|N |2|E |) constraints. A similar
approach for a problem variant with multiple facilities was given by Altin et al.
(2011). Requiring that f is integral yields an MIP formulation for the VPN problem.



336 A. M. C. A. Koster and D. R. Schmidt

5.4 Static Routing: Path Based Formulations

In the static routing case, the MSCCRND problem with an arbitrary uncertainty
set U can be cast into a path-formulation. In this formulation, we additionally
assume that there is an upper bound ūij on the capacity uij of edge {i, j} ∈ E
so that the feasible region is bounded. If these bounds are not desired, they can be
replaced by a sufficiently large number (for instance, we can set the upper bound to∑

i∈N
∑

k∈K maxd∈U dki for all edges). For ease of notation, we let Pk be the set
of all paths between the origin O(k) of the k-th commodity and its destination D(k),
for all k ∈ K . As before, let P = ∪k∈K Pk . We use a continuous path variable
xp for each p ∈P .

Minimize
∑

{i,j}∈E
cij uij (11.79)

Subject to
∑

p∈Pk

xp = 1 ∀ k ∈ K (11.80)

∑

k∈K
∑

p∈Pk :{i,j}∈p
dkxp ≤ uij

∀ {i, j} ∈ E

∀ d ∈ U
(11.81)

xp ∈ [0, 1] ∀ p ∈P (11.82)

uij ∈ {0, . . . , ūij } ∀ {i, j} ∈ E (11.83)

To model unsplittable routing it suffices to turn the path-flow variables x in
program (11.79)–(11.83) into binary variables.

We now decompose the path formulation (11.79)–(11.83) into a master and two
satellite problems. The master problem consists of a variant of the path formulation.
It maintains a set P̄ ⊆ P of relevant paths as well as a set of relevant scenarios
Ū ⊆ U . Both sets are initially empty.

Minimize
∑

{i,j}∈E
cij uij (11.84)

Subject to
∑

p∈ ¯cP k

xp ≥ 1 ∀ k ∈ K (11.85)

∑

p∈Pk :{i,j}∈p
xp ≤ f k

ij ∀ k ∈ K , ∀ {i, j} ∈ E (11.86)

∑

k∈K
f kij d

k ≤ uij ∀ {i, j} ∈ E ∀ (dst )s,t∈V ∈ Ū (11.87)



11 Robust Network Design 337

uij ≤ ūij ∀ {i, j} ∈ E (11.88)

xp ∈ [0, 1] ∀ p ∈ P̄ (11.89)

f k
ij ∈ [0, 1] ∀ k ∈ K , ∀ {i, j} ∈ E (11.90)

The master problem (11.84)–(11.90) is bounded. Suppose for the moment that it
is feasible as well and let u∗ be an optimum solution for the problem. In order to
guarantee that u∗ is globally optimum, we need to make sure that adding additional
paths to P̄ cannot improve the value of u∗. Moreover, u∗ must be globally feasible,
i.e., the capacities must be sufficient to route all scenarios in U (and not only those
in Ū ). For the former problem, we solve a path satellite problem.

It consists of computing a shortest path between all origin-destination pairs with
respect to the dual variables π and ρ of the constraints (11.85) and (11.86). Indeed,
one can argue that if

∑
{i,j}∈p ρkij < πk for some O(k)-D(k)-path p 	∈ P̄ , then

p will improve the current solution u∗. In this case, we add the path p to P̄ . To
ensure global feasibility on the other hand, we separate inequalities of type (11.87)
in a demand satellite problem. Given fixed routing variables f and fixed capacities u
from an optimum solution of (11.84)–(11.90), it suffices to solve the linear program

umax
ij := max

∑

k∈K
f k
ij d

k (11.91)

Subject to d ∈ U (11.92)

for all edges {i, j} ∈ E. Notice that here, we optimize over the entire scenario set.
If for some edge {i, j} ∈ E we find that umax

ij > uij , then the inequality

∑

k∈K
f kij d

k ≤ uij (11.93)

is violated by (f, u). We add the corresponding optimum solution of (11.91)–(11.92)
to Ū , thus adding the violated inequality (11.93) to the master problem.

To solve the master problem to global optimality, it now suffices to iteratively
call the path satellite, the demand satellite and the master problem itself until neither
new paths nor new scenarios are found. If at some point during the computation the
master problem becomes infeasible, we call the path satellite and if no improving
paths can be found, then the problem instance must be globally infeasible (i.e., the
upper bounds for the capacities are too restrictive to route all scenarios in U ).

5.5 Dynamic Routing: Arc-Flow Based Formulations

The robustification of the capacitated multicommodity network design problem
works analogously to the SSCCRND case. For the arc-flow formulation, we



338 A. M. C. A. Koster and D. R. Schmidt

introduce one set of arc-flow variables for each scenario d ∈ U and each
commodity k ∈ {1, . . . , K}. This gives us a robustified version of the classical arc-
flow formulation.

Minimize
∑

{i,j}∈E
cij uij (11.94)

Subject to
∑

{i,j}∈E
f
k,d
ij − f k,d

ji = w
k,d
i , ∀ i ∈ V,∀ d ∈ U , ∀ k ∈ K (11.95)

∑

k∈K
f
k,d
ij + f k,d

ji ≤ uij , ∀ {i, j} ∈ E , ∀ d ∈ U , (11.96)

f
k,d
ij , f

k,d
ji ≥ 0, ∀ k ∈ K , ∀ d ∈U , ∀ {i,j} ∈E (11.97)

uij ∈ ZE≥0, ∀ {i, j} ∈ E (11.98)

Featuring 2|K ||E | flow-variables for each scenario d ∈ U and Θ(|E |) con-
straints (11.96) for all d ∈ U , this formulation is of infinite size. Again, if U is
a polytope, we can replace U by the set of its vertices to obtain a finite (although
potentially inpractical) formulation.

5.6 Dynamic Routing: Formulations Without Flow Variables

As also can be observed for deterministic multi-commodity network design prob-
lems, Gale’s cut condition is not sufficient for the existence of a multi-commodity
flow and thus, these problems cannot be cast into a cut-set based formulation in
general. There is, however, a generalization of Gale’s condition, called the Japanese
Theorem, by Onaga and Kakusho (1971) that enables us to formulate the problem
with capacity variables only. Let M ⊆ RN ×N

≥0 be the metric cone, i.e., set of

all real metrics on N . Given capacities u ∈ RE≥0, a feasible multicommodity flow
exists if and only if

∑

{i,j}∈E
μijuij ≥

∑

k∈K
dk · distμ(O(k),D(k)) ∀ metrics μ ∈M , (11.99)

where distμ(s, t) denotes the shortest path distance from s ∈ N to t ∈ N with
respect to μ. To see why the condition is necessary, observe the following: Let μ ∈
M be any metric and let us interpretμ as edge weights. Then, the network has a total
weighted capacity of U := ∑

{i,j}∈E μijuij . Sending one unit of flow from O(k)

to D(k) along a path p ∈ Pk “consumes” a weighted capacity of
∑
{i,j}∈p μijuij

and there exists a feasible multicommodity flow if all demands can be sent while
consuming at most the total weighted capacity U . But how much weighted capacity



11 Robust Network Design 339

do we need to consume at least in order to send all the demands? The best we
can do is to send dk units along a shortest O(k)-D(k)-path for all k ∈ K and
this consumes a weighted capacity of exactly

∑
k∈K dk distμ(O(k),D(k)). Thus, if

∑
{i,j}∈E μijuij <

∑
k∈K dk distμ(O(k),D(k)) for any metric μ, then no feasible

multicommodity flow can exist under our choice of u. A rigorous proof of both the
sufficiency and the necessity of the condition follows from applying Farkas’ Lemma
to the path formulation (2.32)–(2.36) in Chap. 2, Sect. 3.

The Japanese Theorem directly leads to the following capacity formulation for
the MSCCRND problem with dynamic routing.

Minimize
∑

{i,j}∈E
cij uij (11.100)

Subject to

∑

{i,j}∈E
μijuij ≥ max

d∈U
∑

k∈K
dk · distμ(O(k),D(k)) ∀ μ ∈M (11.101)

uij ∈ Z≥0 ∀ {i, j} ∈ E (11.102)

The inequalities (11.101) are called metric inequalities and while there is an infinite
number of metrics μ ∈ M , it is sufficient to include metric inequalities only for
the (finitely many) extreme rays of the metric cone M . The result is a finite integer
linear program, but to make it practically viable, we need a separation algorithm.
The only known separation algorithm for the metric inequalities so far is to write
the separation problem as a bi-level (continuous) linear program and to then apply
a standard transformation to turn it into a single-level quadratic program with
complementary slackness conditions. This program can then be linearized; however,
the linearization requires additional integer variables and big-M constraints.

For static routing and budget uncertainty set UB(d̄, d̂, Γ ), a straight-forward
generalization of the metric inequalities is not sufficient. In Claßen et al. (2015)
the correct right hand side of (11.101) for this case is derived alongside with a
polynomial time separation algorithm.

5.7 Strengthening the Formulations

The correctness of all the above formulations does not imply that the linear
relaxation is close to an optimal integer solution. To improve the performance
of branch-and-bound based solvers, the formulations can be strengthened with
(facet-defining) valid inequalities. For this, the metric inequalities (11.101) are
of particular interest. These inequalities are valid for the earlier formulations and
connect capacities of different edges. Let us define the cut-metric



340 A. M. C. A. Koster and D. R. Schmidt

μij :=
{

1, if i ∈ S and j ∈ S̄

0, otherwise
(11.103)

for some cut-set S ⊆ V , i.e., the edges between S and S̄ have length 1 whereas
all other edges have length 0. Clearly, the cut-metric is a metric, and hence the robust
cut-set inequality

∑

{i,j}∈(S ,S̄ )

uij ≥
⎡

⎢
⎢
⎢

max
d∈U

⎛

⎝
∑

k∈K :O(k)∈S ,D(k)∈S̄
dk +

∑

k∈K :O(k)∈S̄ ,D(k)∈S
dk

⎞

⎠

⎤

⎥
⎥
⎥

(11.104)

is a valid inequality (since the left hand side is integer-valued, the right hand side can
be rounded up to the next integer). For budget uncertainty, the right hand side can be
computed by selecting the Γ largest deviations among those commodities crossing
the cut (in addition to the nominal values). In fact, in this case the robust cut-set
inequality (11.104) define a facet if both S and S̄ induce connected subgraphs and
actual rounding is performed.

Further valid inequalities can be derived by considering k-partitions of the
node set (cf. Sect. 4.4) or considering a single edge capacity constraint (11.47)
(generalizing the so-called arc-residual capacity constraints, cf. Kutschka (2013)).

6 Bibliographical Notes

Robust optimization is an emerging field of research. Probably the earliest work in
the field was reported by Soyster (1973). In the context of discrete optimization,
several contribution were made by Kouvelis and Yu (1997). The budget uncertainty
set was introduced by Bertsimas and Sim (2003, 2004) and is probably the most
successful approach to date. A generalization of the budget uncertainty model
to be used in the context of network design has been introduced by Büsing
and D’Andreagiovanni (2012). We refer to Ben-Tal et al. (2009) for a robust
optimization in continuous optimization. Multi-stage robustness was proposed
by Ben-Tal et al. (2004). See Liebchen et al. (2009) for an introduction to
recoverable robustness.

The first works for the single-commodity case of robust network design discuss
the case where the uncertainty set is a finite list of scenarios. This case was first
studied by Minoux (1989) and by Sanità (2009). Buchheim et al. (2011) propose the
arc-flow-based formulation. Target cuts are due to Buchheim et al. (2008). Álvarez-
Miranda et al. (2012) introduce the cut-set-based formulation with a separation
algorithm for discrete scenario sets. The separation for cut-set inequalities under
Hose uncertainty is due to Cacchiani et al. (2016). The 3-partition inequalities and
their facet-defining properties were studied by Magnanti et al. (1993), Agarwal
(2006), Cacchiani et al. (2016), and Schmidt (2014). Pesenti et al. (2004) study
the network containment problem.



11 Robust Network Design 341

In the context of multicommodity network design, robust optimization was
merely applied to communication networks. Belotti et al. (2008) consider network
engineering. Altin et al. (2011) study network design with under the Hose uncer-
tainty model and we refer to Koster et al. (2013) for network design under budget
uncertainty.

The arc-flow based formulation for the MSCCRND problem with static routing
and budget uncertainty is due to Koster et al. (2013); this includes the reformulation
as a linear program and the separation algorithm. Altin et al. (2007) robustify the
arc-flow formulation with Hose uncertainties. The path-flow formulation together
with the solution algorithm was proposed by Ben-Ameur and Kerivin (2005).

The separation of robust metric inequalities for dynamic routing is due to Mattia
(2013). Claßen et al. (2015) derive robust metric inequalities for static routing; the
derivation of robust cutset inequalities as Chvátal-Gomory cuts is due to Koster et al.
(2013).

The polynomial time algorithm for optimum tree routing templates for the VPN
problem with unsplittable flows was given by Gupta et al. (2001). Goyal et al. (2008)
prove that the VPN problem with unsplittable flows always has an optimum tree
routing template.

For multi-stage robustness and affine recourse models in network design we refer
to Atamtürk and Zhang (2007), Ben-Ameur (2007), and Poss and Raack (2013).

Instances of robust network design can be found at SNDlib Orlowski et al.
(2010).

7 Conclusions and Perspectives

In recent years, network design has been on the one hand a fruitful application area
for the emerging field of robust optimization. But, on the other hand, the robust
network design has also been stimulating the further development of the robust
optimization methodology. It can be expected that both these developments will
continue in the years to come. In particular, multi-stage robustness concepts are still
in their development and different applications will require new angles of view to
arrive at suitable solutions. The increasing complexity by robustness concepts in
general, and multi-stage concepts in particular, will force the development of new
algorithmic ideas to deal with them.

References

Agarwal, Y. K. (2006). k-Partition-based facets of the network design problem. Networks, 47(3),
123–139.

Altin, A., Amaldi, E., Belotti, P., & Pinar, M. Ç. (2007). Provisioning virtual private networks
under traffic uncertainty. Networks, 49(1), 100–155.



342 A. M. C. A. Koster and D. R. Schmidt

Altin, A., Yaman, H., & Pinar, M. (2011). The robust network loading problem under hose
demand uncertainty: formulation, polyhedral analysis, and computations. INFORMS Journal
on Computing, 23(1), 75–89.

Álvarez-Miranda, E., Cacchiani, V., Dorneth, T., Jünger, M., Liers, F., Lodi, A., et al. (2012).
Models and algorithms for robust network design with several traffic scenarios. In A. Ridha
Mahjoub, V. Markakis, I. Milis, & V. T. Paschos (Eds.), ISCO 2012, Revised Selected Papers.
Lecture notes in computer science (vol. 7422, pp. 261–272). Springer.

Atamtürk, A., & Zhang, M. (2007). Two-stage robust network flow and design under demand
uncertainty. Operations Research, 55(4), 662–673.

Belotti, P., Capone, A., Carello, G., & Malucelli, F. (2008). Multi-layer mpls network design: The
impact of statistical multiplexing. Computer Networks, 52(6), 1291–1307.

Ben-Ameur, W. (2007). Between fully dynamic routing and robust stable routing. In 6th Interna-
tional Workshop on Design of Reliable Communication Networks, 2007, DRCN 2007 (pp. 1–6).
IEEE

Ben-Ameur, W., & Kerivin, H. (2005). Routing of uncertain demands. Optimization and Engineer-
ing, 3, 283–313.

Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations
Research Letters, 25(1), 1–13.

Ben-Tal, A., Goryashko, A., Guslitzer, E., & Nemirovski, A. (2004). Adjustable robust solutions
of uncertain linear programs. Mathematical Programming, 99(2), 351–376.

Ben-Tal, A., Ghaoui, L. E., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton
University Press

Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows. Mathematical
Programming, 98(1), 49–71.

Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.
Buchheim, C., Liers, F., & Oswald, M. (2008). Local cuts revisited. Operations Research Letters,

36(4), 430–433.
Buchheim, C., Liers, F., & Sanità, L. (2011). An exact algorithm for robust network design. In J.

Pahl, T. Reiners, & S. Voß (Eds.) Proceedings of the INOC, INOC’11 (pp. 7–17). Springer.
Büsing, C., & D’Andreagiovanni, F. (2012). New results about multi-band uncertainty in robust

optimization. In Proceedings Experimental Algorithms - 11th International Symposium, SEA
2012, Bordeaux, France, June 7–9, 2012, pp. 63–74.

Cacchiani, V., Jünger, M., Liers, F., Lodi, A., & Schmidt, D. R. (2016). Single-commodity robust
network design with finite and Hose demand sets. Mathematical Programming, 157(1), 297–
342.

Claßen, G., Koster, A. M. C. A., Coudert, D., & Nepomuceno, N. (2014). Chance-constrained
optimization of reliable fixed broadband wireless neworks. INFORMS Journal on Computing,
26(4), 893–909.

Claßen, G., Koster, A. M. C. A., Kutschka, M., & Tahiri, I. (2015). Robust metric inequalities
for network loading under demand uncertainty. Asia-Pacific Journal of Operational Research,
32(5), 1550038, 1–27

Duffield, N. G., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K. K., & van der Merwe, J. E.
(1999). A flexible model for resource management in virtual private networks. In Proceedings
of the Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’99 (pp. 95–108). ACM Press.

Fingerhut, J. A., Suri, S., & Turner, J. S. (1997). Designing least-cost nonblocking broadband
networks. Journal of Algorithms, 24(2), 287–309.

Goyal, N., Olver, N., & Shepherd, B. (2008). The VPN conjecture is true. Proceedings of the
STOC, 443–450.

Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., & Yener, B. (2001). Provisioning a virtual private
network: a network design problem for multicommodity flow. In Proceedings of the Thirty-
Third Annual ACM Symposium on Theory of Computing, STOC ’01 (pp. 389–398). ACM.

Koster, A. M. C. A., Kutschka, M., & Raack, C. (2013). Robust network design: Formulations,
valid inequalities, and computations. Networks, 61(2), 128–149.



11 Robust Network Design 343

Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. Norwell, MA:
Kluwer Academics Publishers.

Kutschka, M. (2013). Robustness concepts for knapsack and network design problems under data
uncertainty. Ph.D. thesis, RWTH Aachen University, https://cuvillier.de/de/shop/publications/
6558.

Liebchen, C., Lübbecke, M., Möhring, R., & Stiller, S. (2009). The concept of recoverable
robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R. H.
Möhring, & C. D. Zaroliagis (Eds.) Robust and online large-scale optimization: models and
techniques for transportation systems (pp 1–27). Springer.

Magnanti, T. L., Mirchandani, P., & Vachani, R. (1993). The convex hull of two core capacitated
network design problems. Mathematical Programming, 60(1–3), 233–250.

Mattia, S. (2013). The robust network loading problem with dynamic routing. Computational
Optimization and Applications, 54, 619–643.

Minoux, M. (1989). Networks synthesis and optimum network design problems: Models, solution
methods and applications. Networks, 19(3), 313–360.

Onaga, K., & Kakusho, O. (1971), On feasibility conditions of multicommodity flows in networks.
Transactions on Circuit Theory, 18(4), 425–429.

Orlowski, S., Wessäly, R., Pióro, M., & Tomaszewski, A. (2010). SNDlib 1.0–survivable network
design library. Networks, 55(3), 276–286.

Pascali, F. (2009). Chance constrained network design. Ph.D. thesis, University of Pisa. https://etd.
adm.unipi.it/t/etd-11262009-005543/.

Pesenti, R., Rinaldi, F., & Ukovich, W. (2004). An exact algorithm for the min-cost network
containment problem. Networks, 43(2), 87–102.

Poss, M., & Raack, C. (2013). Affine recourse for the robust network design problem: Between
static and dynamic routing. Networks, 61(2), 150–155.

Sanità, L. (2009). Robust network design. Ph.D. thesis, Università La Sapienza, Roma.
Schmidt, D. R. (2014). Robust design of single-commodity networks. Ph.D. thesis, Universtität zu

Köln.
Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to

inexact linear programming. Operations Research, 21, 1154–1157.

https://cuvillier.de/de/shop/publications/ 6558
https://cuvillier.de/de/shop/publications/ 6558
https://etd.adm.unipi.it/t/etd-11262009-005543/
https://etd.adm.unipi.it/t/etd-11262009-005543/


Part III
Applications in Transportation and

Logistics



Chapter 12
Service Network Design

Teodor Gabriel Crainic and Mike Hewitt

1 Introduction

The term Service Network Design (SND) is generally used to designate a set
of issues and decisions aimed to plan the activities and resources of the supply
side of a transportation system, in order to satisfy a given or estimated demand
efficiently, profitably, and within the quality standards agreed upon with the
customers generating this demand. Service is then understood as operating a vehicle,
or a convoy, e.g., a railroad train, between two stations/terminals in the network,
with or without intermediary stops, to transport a single or a group of people or
freight loads. The service follows a given route on the appropriate infrastructure, and
displays a number of physical, e.g., vehicle type and capacity, and operational, e.g.,
departure time, total trip duration and cost, characteristics. While all transportation
systems and carriers offer “services” to their customers, SND occurs mainly in the
context of consolidation-based transportation, an umbrella term for companies and
systems, the carriers, which group and transport within the same vehicle several
people who contracted the trip separately or several freight loads of different
customers. In all cases, the alternative of a dedicated, direct transport is not
economically justifiable or even feasible. Public-transport carriers in urban areas,
by bus, light rail, and collective taxi, and those providing interurban transport by
coach, train or airplane “consolidate” passengers who do not want or can move by

T. G. Crainic (�)
CIRRELT and AOTI, Université du Québec à Montréal, Montréal, QC, Canada
e-mail: TeodorGabriel.Crainic@cirrelt.net

M. Hewitt
Information Systems and Supply Chain Management Department, Quinlan School of Business,
Loyola University Chicago, Chicago, IL, USA
e-mail: mhewitt3@luc.edu

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_12

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_12&domain=pdf
mailto:TeodorGabriel.Crainic@cirrelt.net
mailto:mhewitt3@luc.edu
https://doi.org/10.1007/978-3-030-64018-7_12


348 T. G. Crainic and M. Hewitt

a dedicated vehicle between their respective origins and destinations. Postal and
small-package transportation companies, less-than-truckload (LTL) motor carriers,
railroads, ocean/maritime liner navigation companies, and land- and water (coastal,
river, etc)-based intermodal carriers perform similar services for freight. Noticeable
are the “new” transportation-system types introduced for urban, e.g., City Logistics,
and interurban, e.g., Physical Internet and truck platooning, settings, which are
heavily based on consolidation and resource sharing. Carriers may be publicly or
privately owned/operated, while groups of carriers, operating under some form of
cooperation agreement, may also be involved.

Carriers need to be profitable, while consolidation raises two challenges. First,
that the vehicle movements, that is, the services offered, cannot be planned to
address the demand of individual potential customers, but must satisfy as closely
as possible the requirements of as many potential customers as possible (while
probably not satisfying any of them entirely; contrasting taxi and public-transport
services illustrates the point). This has implications for the service network,
including on topology, i.e, where to propose and operate services, timelines, i.e.,
when to operate services, and performance measures, e.g., cost, efficiency, and
quality of service. Second, that operations need to be efficient from the point of view
of using the carrier’s material and human resources. Indeed, one observes, on the one
hand, a continuous increase in the size of vehicles on long-haul routes, e.g., mega
container ships (capacity exceeding 20,000 twenty-foot equivalent containers), 120
to 130-car long trains running on the North American rail networks, and large
passenger aircraft types. One also notices, on the other hand, that the cost of
operating a service is greatly dependent upon the costs of vehicles and power units
used for transport. System efficiency and cost reductions may then be achieved
through economies of scale capacity utilization, obtained by assigning the most
appropriate vehicles, and other associated resources (power units, people, etc.), to
each movement, filling them well with the passengers or freight requiring transport,
and routing them through multi-service itineraries and inter-service transfers at
terminals. The availability of resources constrains the range of alternatives, however,
while multi-service itineraries may imply additional costs and delays at terminals.

Trade-offs must thus be achieved in planning the service network, to balance
customer demand for faster and cheaper transportation, on the one hand, and the
pursuit of economies of scale and profitable and efficient carrier activities, on the
other hand. Trade-offs must also be achieved among the various components of
the carrier transportation system and operations as improving one aspect often
has negative implications for other aspects, e.g., increasing the number of times
a service is operated during a certain time interval improves customer service but
may decrease the availability of resources for other services as well as increase
congestion in terminals, thus deteriorating customer service. Service Network
Design aim to address these issues network-wide and determine the services and
itineraries to operate.

SND is closely related to network design. We emphasize these relations in
this chapter, as well as the particular characteristics applications bring to SND.
Several chapters in this book address SND in the context of such applications,



12 Service Network Design 349

namely, public transport (Chap. 17), motor carriers (Chap. 14), railroads (Chap. 13),
navigation (Chap. 15), and City Logistics (Chap. 16). The goal of this chapter is
to present a comprehensive overview of the general SND methodology, in terms
of models, solution methods and utilization, that cuts across application fields. To
focus the presentation, however, we will use in the following the vocabulary of
consolidation-based freight carrier planning.

The chapter is organized as follows. Section 2 recalls the structure and main
components of the physical and service networks of consolidation-based freight
carriers, as well as the associated tactical planning issues, and the main Service
Network Design (SND) formulation classes with their utilization within the
carrier-planning processes. Section 3 is dedicated to the static problem setting and
formulations, while Sect. 4 introduces the explicit representation of time and time-
related attributes in the basic SND models. Section 5 broadens the scope of SND
methodology to integrate the management of the resources required to operate
the selected services. Addressing uncertainty within SND is the topic of Sect. 6.
Section 7 proposes an historical view of the field, in terms of the models and main
solutions methods specifically developed for various SND settings. We conclude in
Sect. 8 with a number of research issues we deem important and challenging.

2 Problem Settings

We initiate this section with a brief description of the physical and service networks
typical of consolidation-based freight carriers. We then proceed to discuss the
associated planning of operations and introduce the main classes of service network
design models proposed to address them.

2.1 Consolidation-Based Freight Carriers

Carriers providing consolidation-based services operate on an infrastructure net-
work made up of terminals connected by physical, e.g., highways and rail tracks,
or conceptual, e.g., maritime and air corridors, links. Terminals come in several
designs and sizes, targeting particular transportation modes, e.g., rail marshal-
ing/consolidation yards and stations, LTL motor-carrier breakbulk and regional
terminals, and maritime and river ports. Terminals may be owned/managed by and
dedicated to the carrier, e.g., railroad yards and LTL breakbulk terminals, or may be
shared by several carriers irrespective of ownership and management, e.g., maritime
ports and terminals, intermodal terminals, passenger airports, etc. Inter-terminal
links may also be proprietary (but may still be used by other carriers for a fee),
e.g., rail tracks in North America, or shared, e.g., rail tracks in Europe and roads
and highways mostly everywhere.



350 T. G. Crainic and M. Hewitt

Carriers operate single or multi-modal networks on the infrastructure. LTL motor
carriers and railroads operating exclusively trucks and trains, respectively, are
usually identified as single-mode. Postal/express-courier services, City Logistics
systems, and container intermodal transportation often involve more than one
transportation mode, the transfer of loads from one to the next taking place at
intermodal terminals. Notice, however, that many carriers traditionally classified as
single mode actually operate multi or intermodal networks, the latter occurring when
freight packaged at origin, e.g., in containers, is not handled before it is unpacked
at destination. Railroads, owning LTL motor carriers, and maritime shipping
companies, owning railroads or motor carriers, illustrate this case when they plan
services and freight movements on the entire network. Moreover, particular vehicle
and convoy configurations (in terms of power, speed, capacity, etc.) are also often
identified for planning purposes as “modes” with their own tariffs, due to their
different performances in terms of costs and travel time. We therefore address multi-
modal networks in this chapter, each service being of a particular “mode” according
to the infrastructure, vehicle and convoy configuration, speed and priority, etc .

Consolidation transportation carriers are organized into so-called hub-and-spoke
networks. One identifies two main categories of nodes in such a network. The largest
category consists of local/regional terminals where most of the demand from the
corresponding regions is brought in to be transported by the system, and where the
demand flows terminate their trips before being distributed to their final destinations.
Rail stations, LTL regional terminal, most deep-sea and river/canal ports belong
to this type. The hubs make up the second category. One finds in this category
LTL breakbulks, major classification/blocking railroad yards, and major maritime
ports for intermodal (container-based) traffic such as Hong Kong, Singapore, and
Rotterdam. While these terminals play the same role as the regional terminals for
their hinterlands, their main role is to consolidate the flows in and out of their
associated regional terminals for efficient long-haul transportation and economies
of scale.

Carriers offer service between origin and destination (OD) points corresponding
to their terminals. The volume (or value or both) of most of the OD demands,
identified in the following as commodities to recall that each may concern a specific
product with specific transportation requirements, is too low, however, to justify
a profitable direct service with reasonable service quality. Thus, for example,
when the volume is too low with respect to the capacity of the usual vehicle for
the corresponding distance, the cost of the transportation would yield tariffs few
customers are willing to pay. Alternatively, waiting to fill up the vehicle with other
demands to the same destination generally requires delays customers are not ready
to accept. The combination of such phenomena gave rise to consolidation-based
transportation, for freight and people, the number of commodities (OD demands)
being significantly larger than the number of direct, origin to destination services
operated by the carrier, which aims for economies of scale. Carriers thus first move
low-volume loads available at a regional terminal to a hub, through what is known
as feeder services. At hubs, loads are sorted (classified is the term used in several
settings, e.g., freight railroads) and consolidated into larger flows, which are routed



12 Service Network Design 351

to other hubs by high-frequency, high-capacity services. Loads may thus go through
more than one intermediary hub before reaching the regional-terminal destination,
being transferred from one service to another or undergoing re-classification and
re-consolidation. Notice that, when the level or value of demand justifies it, high-
frequency, high-capacity services may be run between a hub and a regional terminal
or between two regional terminals. Notice also that, more than one service, of
possibly different modes, may be operated between consolidation and regional
terminals.

A service follows a route through the physical network. It may be direct, without
intermediary stops from the origin of the service to its destination, or it may include
stops at one or several terminals to drop and pick up loads and, eventually, vehicles,
e.g., car and blocks for railroads and trailers for LTL motor carriers operating multi-
trailer road trains. The route may also include stops that serve purposes other than
consolidation. As an example, governmental highway safety regulations often limit
the number of hours a driver may drive before resting. Yet a transportation service
may be longer, in terms of drive-time, than that limit. Thus, if one driver executes
the service, the duration of the service would have to reflect the driver’s need to rest
while en route. To reduce the service’s duration, the vehicle could instead stop at an
intermediate location, wherein an exchange of drivers occurs. Note this intermediate
location need not be a terminal in the physical network. Instead, the driver exchange
could occur at a rest stop on a highway.

The set of services the carrier selects to operate makes up the service network,
which will be used to respond to the demand of customers who require their loads
to be transported between particular origins and destinations. In most planning
problems addressed with SND methodology, these locations are assumed to be the
regional or hub terminals, planning processes not targeting the local pick up and
delivery activities to bring loads to origin terminals to initiate transportation and to
distribute them at destination. We follow this approach in this chapter.

Demand is thus multi-commodity, each commodity being defined by its specific
origin (carrier terminal), destination (a different terminal), as well as commodity
(product) related physical characteristics (e.g., weight and volume) and service
requirements in terms of delivery conditions, type of vehicle (e.g., refrigerated,
multi-platform for containers or vehicles, etc.), and so on. Two additional attributes
are usually associated to each commodity. First, a unit profit or (transportation) cost,
the latter often related to the vehicle type used. Second, time-related requirements,
i.e., a date when it is delivered to the origin terminal, as well as a due date (or time
interval) to be delivered at destination. The latter is often linked to the level of
service quality required; a unit penalty cost for late delivery or a unit cost for the
total delivery time or delay is generally associated to this service-quality level.

Carriers respond to demand by offering a network with more or less scheduled
services. Demand itineraries will move the corresponding loads through this service
network, each itinerary being defined by the sequence of services used and the
operations to be performed (e.g., transfer or re-classification and consolidation) and
intermediary terminals. The service schedule could simply be a certain frequency
of service or number of departures, i.e., the number of times the “same” service



352 T. G. Crainic and M. Hewitt

is run during the length of time the carrier uses to define its recurring operations
(e.g., 1 day for LTL motor carriers, 1 week for railroads, longer for containership
liners), also called schedule length in the following. A more precise service schedule
gives the departure time from the origin terminal, arrival and departure times at each
intermediary terminal, and the arrival time at destination. This information may
be strict, as for most European and Canadian railroads and regular containership
liners, or more of an “indicative” nature, the schedule being eventually modified
to account for particular events (e.g., the need to pass a direct service for an
important customer) or how much freight is already loaded. Often independent of
its precision, a schedule is effective for a certain period of time, often related to
seasonal variations in demand and operation conditions. We use in this chapter the
term season, often found in the literature, to refer to this period of time during which
the schedule and the services it contains are repeatedly performed.

2.2 Planning and Service Network Design Models

The planning activities consolidation-based carriers undertake may be broadly
classified into three levels, similarly to most complex systems. Strategic planning
involves long-term decisions on system design, operation strategies, and acquisition
of major resources. Tactical planning is dedicated to building an efficient service
network and schedule. Short term planning involves monitoring activities and
performance, adjusting plans, managing resources and operations.

We focus on tactical planning in this chapter, as it involves the arguably strongest
connection to network design, through the service network design modeling frame-
work. We discuss at the end of this section the utilization of SND in varied contexts,
including the other levels of planning.

A hub-and-spoke network concentrates the multi-commodity flows and allows
a much higher frequency of service for the consolidated demand loads, while
providing a more efficient utilization of resources, economies of scale for the carrier,
and lower tariffs for the customers. The drawbacks of this type of organization
are possibly increased delays for demand due to longer routes and more time
spent going through terminals, which play a major role within consolidation-based
transportation systems. This role is significantly broader than the loading and
unloading of freight. Vehicle and freight sorting and consolidation, convoy make up
and break down, and vehicle transfer between services are all time and resource-
consuming operations performed in terminals. Indeed, if not planned properly,
these additional activities and delays may cancel the benefits of the hub-and-spoke
strategy.

Tactical planning aims to build a transportation plan and schedule to mitigate
the drawbacks of consolidation, satisfy customer demand and service-quality
requirements, and operate profitably and efficiently. It addresses the system-wide
planning of operations to decide the selection and scheduling of services, the
transfer and consolidation activities in terminals (as well as the convoy makeup



12 Service Network Design 353

and dismantling for railroads, and road and barge trains), the assignment and
management of resources to support the selected services, and the routing of freight
of each particular demand through the resulting service network. The goal is cost-
efficient operation together with timely and reliable delivery of demand according
to customer specifications and the service-quality targets of the carrier.

Such planning problems are difficult due to the strong interactions among system
components and decisions and the corresponding trade-offs between operating costs
and service levels that need to be achieved. Consider, for example, strategies based
on re-consolidation and routing through intermediate terminals, which could be
more efficient when direct services are offered rarely due to low levels of traffic
demand. Such strategies would then probably result in higher equipment utilization
and lower waiting times at the original terminals; hence, in a more rapid service
for the customer. The same strategies would also result, however, in additional
unloading, consolidation, and loading operations, creating larger delays and higher
congestion levels at terminals, as well as a decrease in the delivery reliability of
the shipment. Alternatively, offering more direct and frequent services would imply
faster and more reliable service for the corresponding traffic and a decrease in the
level of congestion at some terminals, but at the expense of additional resources,
thus increasing the costs of the system.

Service network design is the methodology of choice to support tactical planning
of consolidation-based carriers. A SND model integrates the issues discussed above
and addresses them jointly at a network-wide level. It assumes a given physical
system, infrastructure, resources, operation strategies, and it optimizes for an
estimation for the season of the regular demand (e.g., 75–80% of the pick demand
on a normal operating day). It integrates two major sets of decisions, the selection of
the service network, that is, the routes—origin and destination terminals, physical
route and intermediate stops—and schedules, or frequencies, on which services will
be operated, and the itineraries, sequences of services, terminals, and operations,
used to move the freight of each demand. Operating rules specifying, for example,
how resources may be assigned and handled and how cargo and vehicles may be
sorted and consolidated, are often specified as part of the service network. The SND
model yields a transportation plan specifying operations for the given schedule
length, to be repetitively applied for the next season.

Static problem settings, Sect. 3, assume that neither demand, nor any other prob-
lem characteristic varies during the schedule length considered. Time-dependent
problem settings, Sect. 4, include an explicit representation of demand and activities
in time and target the selection of scheduled services to support decisions related
to when services leave and arrive at terminals on their routes. In all cases, the
minimization of the total operating costs is the primary optimization criterion,
reflecting the traditional objectives of freight carriers and expectations of customers
to “get there fast at lowest possible cost”. Increasingly, however, customers not
only expect low rates, but also high-quality service, measured by speed, flexibility,
and reliability. Service performance measures reflecting these expectations and
modeled, in most cases, by delays incurred by freight and vehicles or by the respect
of predefined performance targets are then added to the objective function of the



354 T. G. Crainic and M. Hewitt

network optimization formulation. The resulting generalized cost function thus
captures the trade-offs between operating costs and service quality.

The two sections that follow detail the issues and models associated to the two
major problem settings for service network design described above (static and time-
dependent). We then turn to problem settings and SND models addressing the needs
and challenges of integrating resource-management concerns into tactical planning
(Sect. 5). Section 6 continues this discussion addressing the issue of the explicit
representation of the uncertainty inherent to any system and human endeavor.

We conclude this general presentation with a short discussion on the utilization of
tactical planning SND methodology. One first must recognize that there are different
contexts and mindsets with respect to service network design, from proposing a
new plan yearly or twice a year (alternating between Summer and Winter) by
railroads and shipping companies, to much shorter seasons of 3–4 months, or even
solving a model weekly, as is typically performed by LTL motor carriers. The same
model may then be used for a much shorter period, weekly (e.g., railroads) and
daily (e.g., LTL trucking and City Logistics) to re-optimize and adjust the plan
and operations to current conditions. What may be adjusted depends strongly on
the application context. For example, while LTL motor carriers may quite freely
cancel and add truck departures, such strategies are normally much more difficult
for railroads, which will rather update the actual demands assigned to blocks and
trains. Obviously, the scope of the SND model may be more focused when in plan-
adjustment mode, parts of the system which should not be modified being fixed.

A different class of problem settings calls upon SND models to yield plans to
be applied once only. Consider, for example, the case of City Logistics when one
has little or no restrictions on calling up for duty on very short notice facilities,
vehicles, and people. The planning of such systems is better performed close to
operation-time. The so-called day-before SSND models, similar to those presented
in this chapter, are then used before each operation period based on updated data.
Note that, in this context, there are no impacts of today’s decisions on the system
status and capability for the next days. When this is not the case, e.g., when transport
or storage activities require several periods, the time-dependent SND models may
be used in a rolling-horizon approach. Then, the SND yields decisions for “now”
(a somewhat limited number of periods) and for a number of following periods.
The latter are not to be implemented, but bring to the model an evaluation of
the consequences of today’s actions on future capabilities. Then, today’s proposed
actions are implemented, time is advanced, information is updated, and the process
repeats.

SND models may also be used as policy and performance-evaluation tools for
strategic scenarios. Operational details need to be abstracted in such cases as well
as, according to the planning horizon contemplated, the demand and cost figures.
Governmental institutions and funding or control organizations, such as the World
or Asian Development banks, may also use SND models as a simulation tool
in the context of cost-benefit analyses, with appropriate approximation of carrier
and shipper characteristics. Finally, generalized service network design models



12 Service Network Design 355

may be built to answer strategic-level decisions such as the number, locations,
and characteristics of terminals to build, rent or use, the construction of dedicated
infrastructure, the types of vehicles to use and the dimensions of the fleets, etc.

3 Static SND

Let G PH = (N PH,A PH) represent the physical infrastructure network, where N PH

stands for the set of facilities, hubs and regional terminals, connected by the the
physical or conceptual links of set A PH. The goal of such models is to select from
a set of potential services Σ = {σ } either the service network only or the services
and their frequencies to satisfy the demand for transportation of a set K of origin-
destination (OD) commodities, each k ∈ K requiring to move a quantity of freight
dk between its origin O(k) to its destination D(k).

A static SND model is built on a network G = (N ,A ) that is defined in the
static case on the physical nodes of the system, i.e., N = N PH. With respect
to the arc set A , its composition depends on whether the potential services are
single-leg, with no intermediary stop between the origin and destination terminals,
or multi-leg. In the former case, A = Σ . In the latter, A = L = ⋃

σ∈Σ L (σ ),
where each multi-leg service is defined by a sequence of n service legs, collected
in set L (σ ) = {li (σ ) | i = 1, . . . , n}, each service leg being a path in the physical
network connecting two consecutive terminals on the route of service σ . We let
σa ∈ Σ denote the service associated with arc a ∈ A .

Associated with service σ is a capacity u(σ), which can be leg specific u(li(σ )),
li (σ ) ∈ L (σ ), representing the total volume of freight the service may load and
haul, as well as the cost fσ incurred when doing so. In terms of arcs a ∈ A ,

the attribute ua takes the value u(li(σ )) associated with the service leg, li (σ ),
modeled by that arc. Note that capacity may be measured in volume, tonnage, length
(particularly for railroads), and number of units (e.g., containers for intermodal
navigation and rail), that more than one capacity measure may be active in any
given problem setting, and that particular capacities for particular products can also
be imposed. To simplify the presentation and if not otherwise indicated, however,
we continue with a single capacity restriction in this chapter.

Note that with both single-leg and multi-leg services, A may contain multiple
arcs that have the same origin and destination, but differ in one of these attributes.
In a single-leg setting, the carrier may choose from a market of third party carriers
for the execution of the same service, with each carrier offering a different cost and
capacity. In a multi-leg setting, two services may involve different sequences of legs,
but those sequences may overlap.

In applications wherein a service can be executed multiple times, the SND
models the frequency with which a service is executed with the non-negative integer
variable yσ ∈ Z+, σ ∈ Σ . When the decision is whether a service should be
executed, binary variables yσ ∈ {0, 1}, σ ∈ Σ are used. We note that adapting
the SND to applications wherein vehicle capacity is measured along multiple
dimensions (e.g., weight and volume) is straightforward.



356 T. G. Crainic and M. Hewitt

The arc a = (i, j) ∈ A also models the opportunity to transport a commodity on
the transportation leg (i, j), which incurs a per-unit cost ca. In some applications,
this cost can depend on the commodity being transported, and thus the cost
parameter is also indexed by the commodity, k, yielding cka. We can consider
different types of flow variables to model the routing of commodities on such arcs.
The first type of variable is of the form xka ≥ 0, a ∈ A , k ∈ K , and prescribes the
amount of commodity k that travels on arc a ∈ A . The second is named similarly,
but is instead defined over the range [0, 1], and models the percentage of commodity
k′s demand that flows on arc (i, j). Modifying the SND to accommodate one type
of flow variable instead of another is an exercise in ensuring the model correctly
calculates the total flow on each arc. Both sets of flow variables allow a commodity
to be split, and then routed along multiple paths from its origin to its destination.

In settings wherein this is inappropriate or undesirable (e.g., breaking down a
sealed pallet is not allowed), the model must restrict a commodity to travel on a
single path from its origin to its destination. This can be done by restricting the xka
variables to be binary, wherein they model whether commodity k travels on arc a.
In this chapter, we focus on the first form of flow variable, which represents the
amount of a commodity that flows on a leg.

As noted in the description of the problem setting, shipments travel on itineraries,
which in the context of our network G = (N ,A ) can be represented by paths. As a
result, flow variables can be defined in terms of paths. The same options (continuous,
fractional, binary) for the domains of path-based flow variables exist as for arc-
based flow variables with each option having an analogous modeling implication.
The formulation we present next can be modified to prescribe decisions in terms of
paths, similar to what was presented in Chap. 2.

Formally, the SND seeks to

Minimize
∑

σ∈Σ
fσ yσ +

∑

k∈K

∑

a∈A
ckax

k
a (12.1)

Subject to

∑
a∈A +

i
xka −

∑
a∈A −

i
xka =

⎧
⎪⎨

⎪⎩

dk, if i = O(k),

−dk, if i = D(k),

0, otherwise,

∀i ∈ N , ∀k ∈ K , (12.2)

∑
k∈K xka ≤ uayσa , ∀a ∈ A , (12.3)

yσ ∈ Z+, ∀σ ∈ Σ, (12.4)

xka ≥ 0, ∀a ∈ A , ∀k ∈ K . (12.5)

where for each i ∈ N we define the sets A +i = {(i′, j) ∈ A : i′ = i} and
A −i = {(j, i′) ∈ A : i′ = i}.

The objective of the SND is to minimize the sum of the fixed costs associated
with selecting and executing transportation services (the first term in (12.1)) and
the variable costs associated with transporting commodities on legs associated with



12 Service Network Design 357

those services (the second term in (12.1)). Constraints (12.2) are often referred to as
flow-balance constraints and ensure that all of a commodity’s demand departs from
its origin (the first case), arrives at its destination (the second case), and departs
any other locations at which it arrives (the third case). The expression on the left-
hand side of the linking constraints (12.3) computes the total amount of demand
that travels on arc a ∈ A , whereas the expression on the right-hand side computes
the total amount of capacity on that arc that is provided by the selected services.
Thus, the constraint ensures that sufficient capacity is paid for. Constraints (12.4)
define the domain of variables that indicate how often services are executed, while
constraints (12.5) define the commodity routing decision variables, as well as their
domains. .

Variants of the SND use commodity flow variables that represent the percentage
(not the portion) of a commodity’s demand that flows on an arc. This necessitates
changing constraints (12.5) to require that xka ∈ [0, 1], replacing the expression
on the left-hand-side of constraints (12.3) with

∑
k∈K dkxka , dividing the right-

hand-sides of constraints (12.2) by dk , and multiplying the second expression in
the objective (12.1) by dk. Alternately, modeling a problem wherein the demand of
each commodity flows along a single path necessitates changing Constraints (12.5)
to instead require that xka ∈ {0, 1}, in addition to the other changes noted above.
Finally, for variants of the SND wherein the decision is whether a service should be
executed, and not how many times it should be executed, constraints (12.4) should
be changed to yσ ∈ {0, 1}.

4 Time-Dependent SND

In time-dependent problem settings, demand k ∈ K is further characterized by
an availability time o(k) at origin O(k) and a due date d(k) at destination D(k).
Services are also characterized not only by their origin O(σ), destination D(σ),
and set of legs L (σ ) = {li (σ ) | i = 1, . . . , n}, but also by a schedule indicating
the departure and arrival times, o(li(σ )) and d(li(σ )), at the origin and destination
terminals, respectively, of each of its legs li (σ ) ∈ L (σ ). Services are further
characterized by a total duration τ(σ ), that includes the time spent in terminals and
the moving time associated to each leg τ(li(σ )).

To capture these time-related characteristics of demand and service, SND models
are generally defined on a time-space network G = (N ,A ), that is typically built
by extending the network (N PH,A PH) along the dimension of time for the fixed
duration of the schedule length. The selected service network specifies in this case
the movements through space and time of the vehicles and convoys of the various
modes considered, while itineraries perform the same role for the transportation of
time-dependent demand. When formulated on such a network, the SND is often
referred to as a Scheduled Service Network Design (SSND) model.

The time-space network is built by partitioning the schedule length into non-
overlapping periods of time, wherein all activities at terminals during a period will



358 T. G. Crainic and M. Hewitt

be modeled as occurring at the same time. Often, these periods are of the same
length. As an example, a planning horizon consisting of seven 24-h days may be
partitioned into 14 half day (of 12 h each when the terminal operate continuously)
or 168 one hour time periods. Then, demand that arrives at a terminal during a
period, e.g., between 04:01 and 05:00, is modeled as being there by the end of the
preiod, e.g., 05:00, and hence can be consolidated and loaded on services that leave
the terminal in the same or following periods.

The time periods represented at one terminal may differ, however, from those
represented at another terminal. This is often due to different terminals serving
different purposes within a network. For example, some terminals may primarily
serve as the interface between customers and the transportation network. For these
terminals, it may be sufficient to only represent the time periods during which
shipments become available or are due. Other terminals may primarily serve as
consolidation centers. At these terminals vehicles may arrive and depart throughout
the day, and thus more time periods may need to be modeled. Similarly, the length
of a time period modeled at a node may depend on both the physical terminal and
the start of the time period itself.

More formally, for each terminal i ∈ N PH, the network is based on a set, Ti =
{t i1, t i2, . . . , t imi

} of periods of time during which activities may occur at that terminal.
We let T = ∪i∈N PH Ti denote the set of all such time periods. The node set N then
consists of nodes of the form (i, t ip), i ∈ N PH, t ip ∈ Ti , that represent a terminal
during a period in time.

The arc set A consists of multiple types of arcs. The first represents the execution
of the service legs. Specifically, for service σ ∈ Σ and leg (i, j) ∈ L (σ ), A will
contain an arc of the form a = ((i, t ip), (j, t

j
q )), which represents the departure of

that service leg from terminal i at time t ip to arrive at location j at time tjq . As with
the SND, we denote the underlying service associated with arc a by σa. The time
point t ip is usually chosen so that t ip ≤ o(li(σ )). Namely the arc models that the

leg departs no later than its scheduled departure time. Similarly, the time point tjq
is usually chosen so that tjq ≥ d(li(σ )). Namely, the arc models that the service
arrives no earlier than its scheduled arrival time. As with the SND, associated with
a service, its legs, and the corresponding arcs are capacity and cost attributes.

Recall that we focus on a time-expanded network that enables the SSND to
prescribe a plan that is repeatable. This is done by modeling activities (e.g.,
transportation) that would end after the end of the scheduling period as instead
ending after the beginning. This is done by making the relevant arcs of A wrap-
around. To be more precise, consider when the departure of service leg (i, j) at
time t ip would imply arriving at j at a time period that is later than the last time

period, tjmj
, modeled for terminal j. To model that the schedule is assumed to be

repeated, an arc a = ((i, t ip), (j, t
j
q )) is then created wherein tjq < tip. For example,

consider a schedule length that is a business week and time periods that correspond
to days. If service leg (i, j) has a 2 day duration, then a Friday departure from i



12 Service Network Design 359

could be modeled with an arc that arrives at the node that models terminal j on
Tuesday.

The second type of arc, often referred to as a holding arc, is of the form
a = ((i, t ip), (i, t

i
p+1)) and represents the opportunity to hold goods or a resource

at terminal i from period t ip to period t ip+1. As with transportation arcs, wrap-

around arcs of the form a = ((i, t imi
), (i, 1)) are created to represent holding a

shipment (or allowing a resource to idle) from one schedule period to the next.
The attribute ua of a holding arc can be used to model the capacity terminal i has
for holding goods. Similarly, the variable cost attribute ca may be used to model
the cost associated with holding goods for a period at terminal i (which may also
depend on the commodity, k). The fixed cost attribute, fa , may be used to model
the cost associated with a resource idling at a location from one period to the next.
However, we only consider variable costs in the model presented below.

Like the SND, the SSND considers two sets of decision variables. The first
type of decision variable, yσ ∈ Z+, σ ∈ Σ , models the number of times the
transportation service, σ , is executed, which in turn implies the number of times
its scheduled legs, L (σ ), are executed. Selection-type decision variables are not
typically associated with holding arcs in A . However, situations wherein storage
capacity at a location for a fixed period of time is paid for in fixed lot sizes (e.g., a
storage cage) could be modeled with similarly-defined y variables. Like the SND,
the domain of these variables, either service or holding, can be binary.

The second, xka ≥ 0, a ∈ A , k ∈ K , represents the amount of commodity
k’s demand that travels on arc a ∈ A . Note that these commodity flow variables
are defined over both types of arcs, those that represent transportation services, and
those that represent the commodity being held at a terminal. As in the SND, these x
variables can also be restricted to take on binary values. Alternately, and again like
the SND, these x variables can instead be used to model the fraction, of k’s demand
that travels on the arc.

Thus, the SSND seeks to

Minimize
∑

σ∈Σ
fσ yσ +

∑

k∈K

∑

a∈A
ckax

k
a (12.6)

Subject to

∑

a∈A +
(i,tip)

xka −
∑

a∈A −
(i,tip)

xka =

⎧
⎪⎨

⎪⎩

dk, if i = O(k), t ip = o(k),

−dk, if i = D(k), t ip = d(k)

0, otherwise,

∀(i, t ip) ∈ N ,∀k ∈ K , (12.7)
∑

k∈K
xka ≤ uayσa , ∀ a ∈ A , (12.8)



360 T. G. Crainic and M. Hewitt

yσ ∈ Z+, ∀σ ∈ Σ, (12.9)

xka ≥ 0, ∀a ∈ A ,∀k ∈ K , (12.10)

where for each (i, t ip) ∈ N we define the sets A +
(i,t ip)
= {

a = ((
i′, t i′p

)
,
(
j, t

j
q

)) ∈
A : i′ = i, t i

′
p = t ip

}
and A −

(i,t ip)
= {a = ((j, tjq

)
,
(
i′, t i′q

)) ∈ A : i′ = i, t i
′
p = t ip

}
.

Each constraint set in the SSND has a direct analog in the SND. Note that the
right-hand-side values of the flow balance equations (12.7) depend on the available
and due times for the commodity. Also, note that constraints (12.8) and (12.9) are
only defined for arcs in A that correspond to transportation services.

We complete this introduction to SSND models recalling that the time-space
networks are a modeling tool and cannot capture all the temporal aspects of the
problem. A continuous-time representation of the schedule length and associated
events and decisions may be contemplated. It its most general setting, the SND
model appears very complicated, however, as the time attributes of each service
(and, thus, each itinerary) becomes part of the decision variable, including when
several occurrences of the service are looked for (as in the model of this section).
Such a model would also require a significant amount of constraints governing
arrivals, departures, and activity synchronization at terminals. Moreover, such an
approach does not fit well the applications where schedules are not strict and one
only search for a number of departures within a given time interval.

Discretization of time, as described in this section, is thus the preferred methodol-
ogy in time-dependent settings. Then, the question is what discretization granularity
should one use. On the one hand, a fine granularity, yielding short time periods,
provides the means to a detailed representation of time and time-related activities.
But, it makes for huge time-space networks with dire consequences on the problem-
solving capabilities of the current exact and metaheuristic methods, even when
mathematical techniques and the restrictions of the application are used to reduce
the network. A coarser granularity alleviates partially this problem, but may result
in a poorer representation of decisions and operations in time. In most cases
reported in the literature, the granularity is decided based on the application at
hand, the experience of the researcher, and the power of the solver and computer
available. We present in Sect. 7 the Dynamic Discretization Discovery, a new and
very promising algorithmic strategy introduced recently to address this issue by an
iterative generation the time-space network.

5 Broadening the Scope of SND: Integrating Resource
Management

A number of additional considerations may characterize the carrier transportation
system and its planning, enriching and challenging service network design method-
ology. Several such issues are particularly relevant for specific transportation modes



12 Service Network Design 361

(rail, trucking, navigation, public transport) or problem settings (City Logistics) and
are discussed in the associated chapters. In this section, we focus on an important
issue of general relevance, namely, the integration resource-management concerns
into SND models for tactical planning.

Carriers need resources to execute services, including equipment and manpower.
For example, even though automation is becoming more and more prevalent
in terminals, human resources are still needed to load/unload freight into/from
outbound/inbound vehicles or containers, as well as handle and classify freight,
vehicles or containers. Transportation activities also require resources. All modes
require some type of power unit (tractors or trucks in trucking, locomotive engines
in rail, planes in air, and vessels in maritime), one or several carrying units (trailers
for trucking, rail cars for rail), an operator (truck driver, railroad engineer also
called engine or train driver outside North America, air pilot, and ship captain),
and sometimes a whole crew (particularly in air and sea).

These resources are generally scarce. There are several reasons for this fact.
First, carriers aim continuously to control and hopefully reduce their operating costs
to improve their market share and profitability. Consequently, the number of the
power units and vehicles a carrier maintains has been drastically reduced to fit
the forecast level of activity. There are precious few units available in most air,
rail, trucking, and navigation carrier systems in case “something happens”. Most
resources are also expensive to acquire (e.g., power units), or there are few available
for renting or acquisition, the shortage of truck drivers in North America being a
perfect illustration. Leasing the appropriate number of the “right” type of intermodal
rail cars is also an increasingly serious issue, at least in North America.

A second phenomenon impacting the availability of resources where and when
needed is the unbalance inherent in trade. Indeed, the very nature of why trade is
initiated (the desire for something available somewhere else), makes the commercial
exchanges among countries, regions, and cities unbalanced not only in monetary
value, but also in the type and quantity of products exchanged. This results in
an unbalanced resource distribution among the terminals of the system. Power
units and vehicles at destination and unloaded, become empty and available for
the next operation. Yet, very often, these vehicles are not of the appropriate type
or not available at the appropriate moment to load the outgoing freight. There is
therefore a shortage of the appropriate vehicles, while those on location are needed
somewhere else. Moving power units and vehicles “empty” to re-balance the system
is called repositioning (deadheading for crews, especially in the air industry), and
may represent a significant cost item for the carrier.

Not surprisingly, carriers have always aimed to minimize such operations and
costs. Traditionally, however, the literature identified this problem as operational
and addressed it, through more or less sophisticate network flow models, over
rather short planning horizons, given the tactical plan. A somewhat more integrative
approach computed an origin-destination matrix of empty vehicles, based on the
OD-demand matrices, and distributed over the network jointly with the regular
demand. None of these approaches works directly on the design of the service
network.



362 T. G. Crainic and M. Hewitt

The first integrative approaches focused on the most expensive resources, planes,
ships, and rail engines. It assumed one unit of resource for each service and required
that the number of selected services entering a terminal equals the number exiting
the terminal. The corresponding design-balanced SND formulations extends the
previous models by adding the set of node-degree constraints

∑

(i,j)∈A +i
yij −

∑

(j,i)∈A −i
yji = 0, ∀ i ∈ N . (12.11)

Notice that, adding design-balanced constraints to SND formulations greatly
complicates the search for high-quality solutions as, for example, even finding an
initial solution is no longer straightforward (the rounding of the linear relaxation
no longer guarantees a feasible solution). Moreover, the size of the formulation is
increased, as is the computational effort to address arc-based models. On the other
hand, note that such constraints naturally imply that resources move on cycles.
The cycles may be of different time lengths (controlling cycle duration requires
appropriate constraints) and may start at different periods during the schedule
length. They are all, however, anchored at the terminal to which the resource is
assigned. Cycle-based formulations thus appear natural.

Let Θ = {θ} stand for the set of feasible cycles the units of the resource
considered may perform, fθ the “fixed” cost of selecting and operating the resource
cycle θ ∈ Θ , and δσθ the cycle-to-service assignment indicator, where δσθ = 1 if
the resource performing cycle θ ∈ Θ may support service σ ∈ Σ , and 0 otherwise.
Define the binary decision variable yθ = 1, if cycle θ ∈ Θ is selected, and 0
otherwise,. The SSND with single resource management then becomes (to simplify
the presentation, we display the formulation for the single-leg service case):

Minimize
∑

σ∈Σ
fσ yσ +

∑

θ∈Θ
fθyθ +

∑

k∈K

∑

a∈A
ckax

k
a (12.12)

subject to constraints (12.7)–(12.9) enriched with

yσ ≤
∑

θ∈Θ
δσθ yθ , ∀σ ∈ Σ, (12.13)

yθ ∈ Z+, ∀θ ∈ Θ, (12.14)

where the objective function aims to minimize the selection and operation costs of
services and resources, plus the cost of moving the demand flows, while constraints
(12.13) link the existence of services and the resources required to operate them.

A more general Scheduled Service Network Design with Resource Acquisi-
tion and Management, SSND-RAM, problem includes not only several types of
resources, but also integrates tactical, service network design-related decisions,
and strategic, resource-acquisition and allocation decisions. In the SSND-RAM
model presented herein, resources are differentiated by relevant characteristics, e.g.,



12 Service Network Design 363

capacity, traction power, speed, energy and emission, scheduling rules, etc. The
model also considers the additional “resource” of executing a service by a third
party rather than by a resource owned or leased. Calling on such a resource incurs
costs that are greater than executing the service with an owned resource, but may
be valuable when, for example, moving a resource into and out of a somewhat
remote region is costly. Moreover, the carrier does not have to worry about how
the utilization of the third-party resource outside the execution of the designated
service. Tactical planning is thus selecting services with costs and capacities that can
be influenced by the type of resource supporting them, including the outsourcing
possibility. To simplify the presentation, services in the following model require
one unit of resource only to operate. Resources, on the other hand, are assigned to
specific terminals and must return to their home terminals at least once during the
tactical planning horizon.

The model also addresses strategic decisions related to fleet acquisition and
management, e.g., how many resources of each type should be acquired (or rented,
depending on the resource type and supplier), to what terminal new resources should
be assigned, and between which terminals currently existing resources should be
reassigned. Costs associated with these strategic decisions include, e.g., the unit
purchase or renting cost, the additional salary or signing bonus associated with
hiring the required personnel to operate the resource, and the transportation costs
associated with re-allocating a resource from a home terminal to another.

The problem and decisions may be represented schematically as in Fig. 12.1.
An integrated SSND-RAM formulation captures those decisions through a two-
layer time-space network, illustrated in Fig. 12.2 for the decisions related to a single
resource type. The SSND layer, on the right of the figure, corresponds to the tactical-
planning decisions on service choice and commodity transportation. It is similar to
the SSND models of the previous sections. The resource acquisition and allocation
decisions are modeled on the strategic RAM layer, on the left of the figure.

Resource 
suppliers

Resource 
types

Allocate new 
and existing 
resources Design service network

Acquire 
new 

resources

Fig. 12.1 Network model of SSND-RAM strategic and tactical decisions



364 T. G. Crainic and M. Hewitt

T1

T2

T3

T4

Acquisition 
node

Resource acquisition 
and (re-)allocation layer Service network design layer

Fig. 12.2 SSND-RAM network model of strategic and tactical decisions

The SSND layer and notation is mostly similar to that of Sect. 4, adjusted for
multiple resources. Let R stand for the set of available resources, f r

i the fixed
cost (salaries, maintenance, etc.) of operating a unit of resource of type r ∈ R
that is assigned to terminal i ∈ N PH, and I ri the quantity of resources of type
r initially assigned to terminal i. Let also Θr

i be the set of potential cycles a
resource of type r assigned to terminal i can execute, Θr = ∪i∈N Θr

i and Θ =
∪r∈RΘr . The cycle-to-service assignment indicator δσθ , links services and resources
as previously. When service costs and capacities vary according to the assigned
resource, the notation becomes f rσ and u(σ, r), σ ∈ Σ, r ∈ R, respectively. Notice
that a resource-independent fixed service selection cost, fσ , may still be associated
to a service modeling, e.g., the salaries of the officers of a liner ship. Finally, F r

σ

represents the fixed cost of operating service σ with a third party-owned resource of
type r .

The RAM layer adds a few nodes, N ′, and arcs, A ′, to the time-space network,
together with associated parameters and decision variables. There are two types of
nodes in this layer, which are (1) symbolically defined at period 0, before the first
period of the schedule length, and (2) connected to all first representations of the
terminal nodes in the SSND layer. To simplify the presentation, and without loss of
generality, we do not indicate the period 0, unless necessary.

A unique node, A, represents the acquisition of new resources. The corre-
sponding arcs (A, i, t i1), (i, t

i
1) ∈ N , represent the allocation of newly acquired

resources to terminal i at the first period of activity at that terminal. Let hri be the
total cost of acquiring a new unit of resource r ∈ R and allocating it to terminal
i ∈ N PH.

The second type of node is used to model the re-allocation of existing
resources. A node i′ is added at period 0 for each terminal i ∈ N PH, the arcs
(i′, (j, t

j

1 )), (j, t
j

1 ) ∈ N , connecting that node to each terminal representing
the re-allocation of the resources initially at terminal i to terminal j ∈ N PH.



12 Service Network Design 365

The corresponding cost of repositioning a unit of resource r ∈ R from terminal
i′ ∈ N PH to terminal j ∈ N PH is noted hr

i′j (with hr
i′j = 0 for i′ = j ).

The cycle definition is extended over the RAM layer to capture the acquisition
and re-allocation activities within the resource-routing decisions. Cycles are thus
associated to nodes in N ′ and include the arcs of A ′, yielding the set Θr

i′ of
potential cycles a resource of type r can execute out of each respective terminal.

The decision variables of the SSND, yσ , σ ∈ Σ , and xka ≥ 0, a ∈ A , k ∈ K ,

are also defined for the SSND-RAM. Define the additional decision variables

yrσ = 1 if service σ ∈ Σ is operated with a third party-owned resource r ∈ R
and 0, otherwise;

zrθ = 1 if cycle θ ∈ Θr, r ∈ R, is selected and 0, otherwise;
wr
i : The number of new units of resource r ∈ R acquired and assigned to

terminal i ∈ N PH;
wr
i′j The number of units of resource r ∈ R positioned from terminal (i′ ∈

N PH to terminal j ∈ N PH.

The Scheduled Service Network Design with Resource Acquisition and Manage-
ment formulation for the single-leg-service case may be then written as follows:

Minimize
∑

r∈R

⎛

⎝
∑

i∈N
hri w

r
i +

∑

i′∈N

∑

j∈N
hri′jw

r
i′j

⎞

⎠+ (12.15)

+
∑

σ∈Σ

⎛

⎝fσ yσ +
∑

r∈R
f rσ

∑

θ∈Θr

δσθ z
r
θ

⎞

⎠+
∑

σ∈Σ

∑

r∈R
F r
σ y

r
σ

+
∑

r∈R

∑

i∈N
f r
i

∑

θ∈Θr

zrθ +
∑

k∈K

∑

a∈A
ckax

k
a

Subject to

∑

i′∈N ′
wr
i′j = I ri , ∀r ∈ R, ∀(j, tj1 ) ∈ N , (12.16)

∑

θ∈Θr
i′

zrθ ≤
∑

(j,t
j
1 )∈N

hri′j , ∀r ∈ R, ∀i′ ∈ N ′, (12.17)

∑

a∈A +
(i,tip)

xka −
∑

a∈A −
(i,tip)

xka = dk, ∀(i, t ip) ∈ N , ∀k ∈ K , (12.18)

∑

k∈K
xka ≤

∑

r∈R
u(σ, r)

(
∑

θ∈Θr

δσθ z
r
θ + yrσ

)

, ∀a ∈ A , (12.19)



366 T. G. Crainic and M. Hewitt

yσ ≤
∑

r∈R

∑

θ∈Θr

δσθ z
r
θ , ∀σ ∈ Σ, (12.20)

yσ + yrσ ≤ 1, ∀σ ∈ Σ, (12.21)

wr
i , w

r
i′j ∈ Z

+, ∀r ∈ R, i ∈ N ′, (12.22)

zrθ ∈ {0, 1}, ∀r ∈ R, ∀θ ∈ Θr, (12.23)

yrσ ∈ {0, 1}, r ∈ R, ∀σ ∈ Σ, (12.24)

xka ≥ 0, ∀a ∈ A , ∀k ∈ K . (12.25)

The objective minimizes the total cost of the system. The first term models
the cost of acquiring new and re-allocating existing resources. The second term
computes the cost of selecting services and operating them with owned resources
on particular cyclic routes. The third term models the costs incurred to secure
third-party resources. The fourth term represents the costs associated with putting a
resource into use, while the fifth and last term models shipment transportation costs.

Constraints (12.16) ensure that all resources of type r that are initially allocated
to terminal i are either left at i or re-allocated. Constraints (12.17) link the
strategic resource acquisition and allocation/re-allocation decisions that determine
the number of resources available at each terminal with the tactical decision of
how many resources from that terminal are to be used to execute services. Note
the summation over N ′ in constraint s(12.17) enables the use of resources that are
newly acquired.

Constraints (12.18) and (12.19) enforce classical network design relations. The
former are commodity-specific flow conservation constraints. The latter link the
existence of flow on owned or outsourced services to the corresponding service-
selection decision. Constraints (12.20) indicate that at most one resources is used
for each owned service, while constraints (12.21) specify that each service cannot be
selected more than once, either supported by the carrier’s resources or outsourced.
Finally, constraints (12.22)–(12.25), define the domains of the variables in the
formulation.

6 Managing Uncertainty

The SND and SSND are parameterized mathematical models of consolidation-
based transportation systems. Using the methodology for planing and management
purposes requires not only the model to accurately represent the system, but also the
values of the model parameters to adequately predict the variations in the state of the
system over the contemplated planning horizon. Of course, in reality, the validity of
this assumption is rarely certain. Accounting explicitly for uncertainty in SND and
SSND models aims to address this issue. An in-depth discussion of uncertainty and



12 Service Network Design 367

network design may be found in Chap. 9. We briefly recall the fundamental concepts
in this section, focusing on their application to service network design.

In general, researchers have classified uncertainty into one of three types based
upon their likelihood and impact. The first type, randomness, refers to events whose
likelihood can be described and is reasonably high, but whose impacts can usually
be mitigated within normal operations. The classic example of such uncertainty in
SND contexts is fluctuations in the shipment volume between a given origin and
destination. The second type, hazards, refers to events whose likelihood can be
described, but are quite rare. An example in SND contexts is vehicle failure. The
third type, deep uncertainty, refers to events whose likelihood can not be described
and is extremely impactful. An example in SND contexts is a maritime port closing
down due to a threat of terrorist attack.

Much (if not all) of the research on SND problems has focused on the first type of
uncertainty, randomness, and specifically uncertainty with respect to model param-
eter values. This uncertainty is modeled by extending one of these deterministic
models to a two-stage stochastic program . Such an optimization model presumes
that some decisions must be made and implemented at a time when information
regarding instance parameter values is incomplete. Specifically, that some decisions
must be made at a time when only statistical distributions are known for the values of
some parameters. In the context of a two-stage stochastic program, these decisions
are referred to as first stage decisions. Then, at some point after the first stage
decisions are implemented, the realizations of the uncertain parameter values is
revealed. At that point, the remaining decisions can be made, in light of both the
realized parameter values and the first stage decisions. These remaining decisions
are often referred to as second stage, or, recourse decisions. As the second stage
decisions are functions of random variables, they are random variables as well.
Thus, the objective of such a model is to minimize the sum of the costs associated
with the first stage decisions and the expected costs associated with second stage
decisions.

In the context of service network design, most stochastic models prescribe the
selection of services in the first stage and the routing of commodities, given those
services and the realized parameter values, in the second stage. It is important
to note that with two-stage stochastic programs in general, as well as those for
service network design, the presumption behind these models is that from a practical
planning perspective only the first stage decisions must be determined. The second
stage decisions are not expected to be implemented. They may be used as guidelines
(e.g., the itineraries and terminals for the main demand flows) when repeatedly
applying the plan during the planning horizon. They primarily serve, however,as
a means of approximating the impact of the first stage decisions on the performance
of the system over the planning horizon. Specifically, the second stage approximates
the expected cost of transporting demand loads given a network design.

To that effect, much of the research involving stochastic service network design
models includes in the second stage the option to outsource all, or a part of,
the delivery of a commodity from its origin to its destination, wherein the cost
of outsourcing is proportional to the amount of the commodity’s demand that is



368 T. G. Crainic and M. Hewitt

outsourced. Outsourcing may mean calling on an external service provider, or using
an owned service which is not within the scope of the current problem and SND
model. Thus, e.g., empty and loaded container-dedicated rail cars that cannot be
accommodated on intermodal train services when the intermodal SND is being built,
can be moved by general trains not in the scope of the planning problem. Then,
by outsourcing a commodity, its delivery does not require the carrier designing a
transportation plan to execute transportation services. Thus, in total, the stochastic
SND formulation seeks to minimize the cost of executing services together with the
expected cost of routing commodities and calling on external resources.

In addition, most research involving stochastic service network design models
presumes that the joint probability distribution for uncertain parameter values can
be approximated with a finite set of scenarios, wherein each scenario contains a
realization of each uncertain parameter value and has a probability of occurring.
With these scenarios, the expectation in the objective function can be expressed as
a linear function, and the stochastic program can be formulated as a deterministic
mixed integer program. In this section, we first focus on what types of stochastic
programs have received the most attention for the SND. Namely, models that
explicitly recognize uncertainty in shipment volumes due to randomness. We then
discuss other potential sources and types of uncertainties that can be modeled.

6.1 Uncertainty in Shipment Volumes

The most commonly modeled source of uncertainty is demand. This is in part
because it is the most prevalent in practice. Fundamentally, the SND and SSND
presume that the size of a commodity is known and constant over the planning hori-
zon during which the transportation plan prescribed by the model is implemented.
In many logistics settings, a commodity models the orders of some customer (or
the aggregation of multiple customers’ orders). Thus, one source of uncertainty
in commodity demand is due to variation in customer orders during that horizon.
Another source of uncertainty has to do with the actual amount of vehicle capacity
required by a customer order. The commodity demand value derived from a
customer order is often just an estimate that is based on physical dimensions that
are communicated by the customer to the transportation carrier. Thus, the actual
amount of vehicle capacity required by an order may not be known with certainty
until the order is picked up. We next present a stochastic programming variant of
the SND above that is based on the premise that there is uncertainty in shipment
volumes.

Uncertainty in shipment volumes is typically represented by treating the demand
quantities, dk, as random variables. A joint probability distribution for those random
variables is presumed known, and is represented with a finite set of scenarios, S .

Each scenario s ∈ S represents a realization of the values, dks, of each of the
random variables dk . In addition, associated with scenario s is a probability, ps,
that it occurs.



12 Service Network Design 369

The service network design under uncertainty (SND-U) problem is typically
formulated on the same network, G = (N ,A ), as the SND and considers the
same set of services, Σ. As service selection is determined in the first stage,
before demand information is completely known, the SND-U involves the same y
variables, yσ , σ ∈ Σ, as the SND. Like the SND, the domains of these yσ variables
are usually either binary or integer numbers.

The SND-U models that commodity routing decisions occur after demand
information has been fully revealed and design decisions are made. As a result,
these decisions may depend on the scenario observed, and are modeled by indexing
commodity flow variables by scenario, xksa . Like the service selection variables, yσ ,
these variables have the same possible domains as in the SND. Thus, the SND-U
seeks to

Minimize
∑

σ∈Σ
fσ yσ +

∑

s∈S
ps

∑

k∈K

∑

a∈A
ckax

ks
a (12.26)

Subject to

∑

a∈A +i
xksa −

∑

a∈A −i
xksa =

⎧
⎨

⎩

dks, if i = O(k),

−dks, if i = D(k), ∀i ∈ N ,∀k ∈ K ,∀s ∈ S ,

0, otherwise,
(12.27)

∑

k∈K
xksa ≤ uayσa , ∀a ∈ A , s ∈ S , (12.28)

yσ ∈ Z+, ∀ σ ∈ Σ. (12.29)

xksa ≥ 0, ∀a ∈ A ,∀k ∈ K ,∀s ∈ S . (12.30)

The objective of the SND-U seeks to minimize the cost associated with executing
services along with the expected cost of routing commodities given the services
selected. As the SND-U models commodity routing decisions that vary by scenario,
constraints (12.27)–(12.30) enforce the same logical conditions as constraints
(12.2)–(12.5) of the SND, albeit with a set of constraints for each scenario and
demands that depend on the scenario. However, note that the right-hand side of
constraints (12.28) represents that the same design is used to route commodities in
each scenario.

As noted above, the SND-U is sometimes formulated under the assumption
that the transportation of a commodity from its origin to its destination may be
outsourced, and at a cost that is proportional to the amount outsourced. This is often
modeled by adding the arc (O(k),D(k)) to A for each k ∈ K . For these arcs, the
cost cka represents the outsourcing costs. As the transportation options modeled by
these arcs do not involve a service executed by the carrier, constraints (12.28) are
not formulated for such arcs.



370 T. G. Crainic and M. Hewitt

6.2 Other Uncertainties in SND

We next discuss models that recognize other uncertainties that can be present in
service network design. However, we note that many of these models have received
little academic attention and some none at all. On the supply side, there can be
uncertainty regarding the capacity to route commodities provided by a service that
first stage decisions indicate should be executed. In practice, there are two sources
for this uncertainty. In the first, unforeseen events (i.e., hazards) such as equipment
failures can prevent the execution of a service that the first stage decisions prescribe.
Thus, the capacity of the service effectively becomes zero. The second is similar,
in that the capacity is different from what was anticipated in the first stage of
the model, but less dramatic. Such uncertainty can occur, e.g., when a service is
executed by a third party transportation carrier and the capacity provided by that
service is shared with other carriers. As a result, when other carriers use more
capacity than anticipated, the capacity available to the organization solving the SND
is reduced. Such a drop in capacity may occur even with owned resources, such as
partial equipment failure, e.g., cars on trains or compartments on liner ships.

Both sources can be modeled by treating the quantities ua as random variables.
However, the distributions used to model the two different sources are likely
different. Regardless, given a set of scenarios to approximate the joint distribution
of arc capacities (and potentially other random variables such as commodity
demands), a SND-U similar to the one presented above can be formulated wherein
usa represents the capacity of arc a in scenario s. Then, the right-hand-side of
constraints (12.28) is replaced with the term usayσa .

There can also be uncertainty related to the costs incurred, either when routing a
commodity or executing a service. Regarding routing a commodity, the SND may
model the opportunity to use services that are executed by a third-party carrier
that charges on a per-unit-of-demand basis (e.g., per pallet). In such a situation,
there may be variability in the variable costs due to market forces. Modeling such
variability can be done by treating the quantities ca as random variables, which can
be easily done as the variables associated with those cost coefficients are already
in the second stage. By again presuming a set of scenarios representing the joint
distribution of random variables, and csa representing the variable cost on arc a

in scenario s, a SND-U similar to the one above can be formulated, albeit with a
slightly modified second term in the objective.

Regarding executing a service, as the associated cost is generally a function of
transportation, variability from what was estimated can be driven by variability in
the resources needed for transportation (e.g., fuel). Alternately, when a service is
executed by a third party that provides transportation services to multiple customers,
but charges on a per-service basis, variability may be driven by market forces.
Such variability can be modeled by treating the costs fij as random variables.
As these coefficients are associated with first stage decisions, calculating the total,
expected fixed cost is not as straightforward as treating the variable costs ca as
random variables. No known research considers models that recognize this source
of uncertainty.



12 Service Network Design 371

Finally, and specific to the SSND, there may be uncertainty in the timings of
activities. For example, there may be uncertainty related to the time, ek , at which a
commodity is available or to the time, lk , at which it is due for delivery. In constraints
(12.7), the SSND presumes these times are known with certainty, when in fact both
may vary from what is expected. Issues with a manufacturing process may mean
that goods to be transported are not always available by the time ek. Alternately, a
customer may sometimes need to rush an order, requiring the goods to be delivered
before the time lk. The SSND can be easily extended to a stochastic program
that models both these uncertainties. Specifically, the right-hand-side values of
constraints (12.7) can be modeled as random variables, dit , with a distribution that
is approximated by scenario. Then, in each scenario s, there must be a single t such
that the dsO(k)t = dk, a single t ′ such that ds

D(k)t ′ = −dk, and for all other i, t ′′,
ds
it ′′ = 0.

Lastly, there may be uncertainty in the departure and arrival times of services.
Note that time-dependent service travel times may be accommodated in the
construction of the time-expanded network, GT .Variability in service departure and
arrival times may occur due to traffic congestion, weather conditions, or unforeseen
events in terminal operations. Recently, there has been research that seeks to design
transportation networks that meet a “service quality” target, wherein service quality
refers to the probability of a commodity reaching its destination on time.

7 Bibliographical Notes

There is a broad and extensive literature on the Service Network Design problem.
General surveys of the literature can be found in Crainic and Laporte (1997);
Crainic (2000, 2003) and Wieberneit (2008). There are also surveys that focus on
the use of SND models in specific contexts. Examples include intermodal freight
transportation (Crainic and Kim 2007; Bektaş and Crainic 2008), City Logistics
(Bektaş et al. 2017), and several chapters of this book. In the remainder of this
section we review some of the most significant contributions to the literature. As this
chapter was focused primarily on modeling up to now, we pay particular attention
to solution approaches. Many ideas proposed for more general network design
problems have been successfully adapted or applied to service network design
problems. However, we focus our discussion on ideas that were primarily proposed
in the context of service network design.

Some of the earliest work, both in terms of modeling and algorithmic devel-
opment, can be found in Crainic et al. (1984); Crainic and Rousseau (1986) and
Crainic and Roy (1988). The static path-based SND formulation minimizes a non-
linear generalized objective function combining operating and time-related costs
for services and shipments, as well as penalty costs for non compliance with
service targets (e.g., market-specific delivery times) or the capacity limitations of
terminals and services. The latter are cast as quadratic functions of the excess flow
or duration. Moreover, the duration of terminal activities is modeled through convex



372 T. G. Crainic and M. Hewitt

approximations of average (and standard deviation) delays derived from queuing
models accounting for the capacity and operation characteristics of the terminal. A
similar approach is used for inter-terminal travel times when vehicles are captive of
the infrastructure (e.g., rail and barges) or congestion phenomena are considered.

Many of the early solution methods proposed for SND problems are iterative
local improvement heuristics. Examples of such methods can be found in the
previous papers as well as in Powell (1986); Farvolden and Powell (1994). These
methods search for an improving solution at an iteration by first adding or dropping
services from the current network, and then routing the flows on the resulting
network. Adding/dropping services from a network in the context of searching for
an improving solution continues to be an effective algorithm strategy (Pedersen et al.
2009).

Kim et al. (1999) study a service network design problem in the context of
express package delivery via a transportation network that connects ground and
air movements. They leverage the structure of this transportation network and
the nature of potential vehicle routes to derive a reduced time-space network on
which they formulate an integer programming based on service and package flow
route variables. Due in part to the scale of the delivery operation they solve this
reduced formulation with column and row generation techniques. This exact, integer
programming-based method is also used as the basis of a computationally effective
heuristic. Armacost et al. (2002) study a similar problem and also approach the
problem with integer programming methodology. However, motivated in part by
the notoriously weak linear programming relaxations of service network design
problems, they propose a formulation that does not model package flows directly.
Instead, they propose a formulation based solely on design variables that represent
aircraft routes, and show that with the right constraint set such a formulation can
ensure sufficient capacity to transport all package demands, even though those
demands are not explicitly modeled. They further strengthen the formulation by
defining a specific type of design variable called a composite variable, which
encodes the selection of multiple aircraft routes.

Jarrah et al. (2009) studies the service network design problem in the context of
the less-than-truckload freight transportation industry. They leverage the single-path
per shipment policy desired by carriers to propose a new formulation to the problem.
Specifically, because the paths for shipments destined for the same terminal must
induce a directed in-tree rooted at that terminal, the problem can be formulated
with variables that represent flows on such trees. The proposed solution approach
generates destination in-trees in a column generation-fashion in the context of a
heuristic scheme. This in-tree structure was also exploited in Erera et al. (2013) in
the context of a matheuristic scheme which at each iteration chooses a destination
terminal and then solved an integer program to route freight destined for that
terminal, holding fixed the routes for freight destined for other terminals.

Crainic et al. (1984); Crainic and Rousseau (1986); Crainic and Roy (1988);
Powell (1986); Armacost et al. (2002); Jarrah et al. (2009), and Erera et al. (2013),
to name but a few, consider models wherein the need to reposition empty vehicles
is explicitly modeled. This has also been more generally referred to as asset



12 Service Network Design 373

management or design-balance (Andersen et al. 2009b,a; Pedersen et al. 2009;
Chouman and Crainic 2015; Vu et al. 2013). Generally speaking, these models seek
to ensure that the number of services that arrive at a node in a network equal the
number of services that depart. This requirement introduces a challenge to linear
programming-based heuristics for the SND as rounding up a fractional solution
to the linear programming relaxation is no longer guaranteed to yield a feasible
solution to the original problem. However, it also induces a structure to solutions.
Specifically, that a design can be decomposed into cycles. Andersen et al. (2011)
exploit this structure in a branch-and-price-based scheme for the problem wherein
vehicles flow on cycles and commodities flow on paths, with both cycles and paths
generated dynamically via column generation.

Many of the earliest service network design models do not consider assets at all.
They seek to ensure there is sufficient capacity dispatched to transport shipments.
Models that incorporate asset management constraints recognize that resources are
needed to transport shipments and thus may have to move empty to be positioned
for future moves. However, these models do not recognize that there may be a fixed
fleet of resources, or that resources may need to periodically return to a specific
“home” terminal. These types of issues are studied in models that incorporate
resource management considerations (Crainic et al. 2014, 2018; Hewitt et al. 2019).
The solution methods proposed in these papers combine a column generation
scheme for generating resource cycles with another scheme for choosing cycles and
routing shipments given the capacity created by those cycles. Crainic et al. (2018);
Hewitt et al. (2019) also consider resource acquisition, allocation, and re-allocation
decisions. Unlike the papers discussed so far, Hewitt et al. (2019) considers a model
that explicitly recognizes uncertainty. Specifically, shipment volumes are presumed
to be uncertain and resource and service network design decisions are made before
complete demand information is known.

SND and SSND problems that recognize uncertainty have been studied. Lium
et al. (2007, 2009) analyze the value of recognizing uncertainty in such models
as well as how doing so leads to different structures in solutions. Both papers
consider models that recognize uncertainty in shipment volumes, with the first
focusing specifically on situations where there are correlations between those
volumes. Turning to algorithms for such problems, Hoff et al. (2010) proposes a
metaheuristic for a SND problem wherein there is uncertainty in shipment volumes.
Wang et al. (2019) consider a different algorithmic approach to stochastic service
network design problems and instead focus on the potential of creating a solution to
a stochastic SND from a solution to its deterministic counterpart.

Stochastic programming-based approaches to SND that recognize uncertainty
typically prescribe design decisions in the first stage and shipment flow decisions
in the second. Thus, most of these models presume that the design remains
unchanged after demands are revealed. Some (e.g., Crainic et al. 2016; Hewitt et al.
2019) model the opportunity to slightly adjust, in departure times, for example, or
augment the chosen design after demands are revealed. Bai et al. (2014) model
the opportunity to instead change the design (albeit at a penalty). Lastly, we note
that while the vast majority of stochastic service network design models presume



374 T. G. Crainic and M. Hewitt

that statistical distributions exist for demands, robust optimization-based approaches
have recently been proposed (Wang and Qi 2019, 2020).

Other sources of uncertainty have received attention as well. Specifically, Lanza
et al. (2018, 2021) study a model wherein there is uncertainty in travel times. Such
uncertainty introduces an additional component to the objective of the model that
measures quality of service. Namely, the objective incorporates penalty factors
based upon the total expected lateness of services and shipments. Demir et al.
(2016) also study a model that recognizes uncertainty in travel times. Instead of
general SND, they focus on intermodal transportation wherein fluctuations in travel
times can interfere with the need to synchronize different transportation modes. One
source of variability in travel times is the potential for vehicles and shipments to be
delayed at a terminal. Estimating the lengths of these delays has received some
attention (Crainic and Gendreau 1986).

Most SNDs consider a single level of consolidation. Namely, the consolidation
of shipments into a container that is transported by a vehicle. However, some modes
of transportation (e.g., rail, sea liners, and intermodal barges) necessitate multiple
levels of consolidation as a vehicle may transport many containers, vehicles may be
grouped into so-called blocks or convoys (rail and barge trains), or both. Such multi-
layer models are considered in Kazemzadeh et al. (2019) and Zhu et al. (2014). We
defer a deeper discussion of this topic to Chap. 12 of this book that focuses on rail
network design. However, we note that a similar phenomenon has been considered
in papers on SND that model motor-carrier platooning for long-haul movements
(Albinski et al. 2020), and autonomous vehicles that can only travel autonomously
in certain geographic regions (Scherr et al. 2018, 2019). The autonomous vehicles
instead have to be pulled (called platooning) by a manned vehicle to such regions
wherein they can then operate autonomously.

One of the computational challenges associated with solving instances of SSND
models inspired by real-world operations is that the time-space networks on which
these instances are based end up being very large. As a result, the numbers of
variables that model shipments and vehicles moving through that network in those
instances are very large as well, leaving mathematical programs that are too large
to be solved in reasonable run-times. The network reduction techniques proposed
in Kim et al. (1999) leveraged the specifics of that logistics context in an attempt
to mitigate this issue. However, the size of these networks is due in part to the
enumerative nature in which they are created and the process by which they are
used.

First, the node set of such a network is created by enumerating each physical
location at every time point when operations can occur at that location. Second,
one portion of the arc set is created by enumerating each physical transportation
move (the service) at every time point when it can depart. The other portion of the
arc set consists of arcs that connect two nodes that represent the same location at
different time points. Then, the instance is formulated on this network and solved.
In such a static approach, much of the network that is created may not be needed by
high-quality solutions.



12 Service Network Design 375

Motivated by this observation, Boland et al. (2017) propose a different algorith-
mic strategy, named Dynamic Discretization Discovery (DDD), for using time-space
networks in the context of SSND models. Specifically, they propose an iterative
approach that begins with a time-space network wherein each location is represented
at a small subset of the time points wherein operations may occur. Similarly, each
physical transportation move is represented at a small subset of the time points at
which it may depart. Boland et al. (2017) refer to such a network as a partially
time-expanded network and formulate it in such a way that a SSND formulated on
such a network is a relaxation of the SSND formulated on the time-space network
derived from complete enumeration. To ensure that it is a relaxation given that not
all locations are represented at all potential times, the network may need to contain
arcs that underestimate actual travel times.

Thus, at an iteration of DDD, a SSND is solved on the current partially time-
expanded network and the solution is examined to see if it can be converted to an
optimal solution to the SSND formulated on a time-space network derived from
complete enumeration. If it can be converted, the algorithm stops. If it can not,
the current partially time-expanded network is refined and the algorithm continues.
While Boland et al. (2017) present DDD for general SSNDs, it has also been
adapted to other SSND-related problems. Medina et al. (2019) and He et al. (2019)
propose adaptations of the algorithm to SSND problems that also determine local
delivery routes. Hewitt (2019) proposes speed-up techniques for DDD when used to
solve instances of SSNDs inspired by the less-than-truckload freight transportation
industry. Marshall et al. (2021) propose a variant of DDD based on a differently-
formed partially time-expanded network.

Another computational challenge that is often encountered when solving either
SNDs or SSNDs inspired by real-world operations is that the number of shipments
to be transported can be very large. This in turn can yield a large number of
shipment flow variables and a mathematical program that is too large to be solved
in reasonable run-times. One way to mitigate this issue is by defining shipment
flows on paths instead of arcs (e.g., Crainic and Rousseau 1986; Crainic et al. 2009;
Andersen et al. 2011; Hewitt et al. 2019). The downside to this approach is that it
typically necessitates a scheme for dynamically generating paths as there are usually
far too many to enumerate a priori. Another approach is a Benders decomposition-
based method, wherein design decisions are made by a master problem based on
estimates of the resulting shipment routing costs. These estimates are reflected
in a constraint set present in the master problem that is iteratively added to as
new designs are discovered. The downside of this type of approach is that these
estimates are typically very poor in the early stages of the algorithm. As a result,
Belieres et al. (2020) propose strengthening the master problem with the need
to route a single, aggregated, super-product. Fontaine et al. (2016, 2021) take
advantage of the problem structure to propose a different Benders decomposition,
which includes tailored partial-decomposition technique for deterministic mixed-
integer linear-programming formulations and specialized valid inequalities. In this
approach, the master problem selects the services to generate a lower bound, while
the slave problem solves a multiple knapsack problem with precedence constraints.



376 T. G. Crainic and M. Hewitt

8 Conclusions and Perspectives

The chapter presented an overview and synthesis of the main classes of Service
Network Design models aimed at supporting decision-making in planning the
activities and managing the resources of consolidation-based freight carriers and
systems. Applications of SND models and associated solution methods to particular
transportation modes and system organizations are described in many chapters of
this book, notably Chaps. 12–17. The chapter focused rather on issues and model
structures of general interest and relevance. We continue this approach in identifying
a number of challenging research perspectives of importance for both service
network design and its applications and the broader network design field.

Extending the scope of SND, and the related modeling challenges, makes up a
first research field. The aim is (1) to enhance the representation power and relevance
of our models and solution methods, and (2) to extend the applicability of SND
methodology beyond planning, to the short-term adjustment of plans to today’s or
this week’s environment in terms of demand, state of the physical network, weather,
and so on and so forth. Identifying the relevant issues and modeling them adequately
requires a significant research effort, similar to the ones evoked in the following.

We have discussed the integration of resource-management concerns in Sect. 5,
but many challenges remain. Different services and resources have different require-
ments and limitation. Thus, for example, North American trains are generally long
and heavy and require traction power which can be provided only by combining two
or three engines. Several such combinations are possible and each engine type has
particular operational, maintenance, and fleet-size characteristics. Human resources
also come with particular qualifications and work rules, including limitations on
working hours and the types of vehicle individuals are authorized to operate.
And, irrespective of mode and setting, transportation services require resources of
several types, governed by particular compatibility rules to operate. Integrating the
management of several heterogeneous interlinked resources into SND and SSND
formulations challenges modeling and solution-method development alike.

Similar challenges characterize a better, more refined representation of terminal
activities within tactical and strategic-level formulations. Most contributions so far
model terminals through “simple” single node or arc representations and associated
unit cost measures. Global capacity and unit time-related measures are appended
to the node or arc representation in some cases. Yet, most terminals are complex
infrastructures performing several operations on vehicles, power units, and loads in
various parallel or sequential activity and waiting/queuing combinations. Average
node or arc measures per unit of flow or service do not adequately represent this
complexity. Obviously, one cannot integrate into a network-wide tactical or strategic
model the full detailed representation of an operating terminal through, e.g., a
network of queues. A few authors explored more detailed terminal representations
replacing the node or arc with a small network capturing the main activities and
waiting times of the terminal (e.g., Andersen et al. 2009b; Pedersen and Crainic
2007). These models provided more accurate estimations of the performance of the
terminal, in terms of time and cost.



12 Service Network Design 377

Explicitly addressing time and delay-related issues enlarges and refines the scope
of SND models while raising significant modeling and algorithmic challenges.
Consider, for example, the congestion one frequently observes in terminals and the
resulting delays to vehicles and freight, which have to, first, enter the terminal and,
then, go through the sequence of operations. These congestion conditions and delays
are the result of high volumes of vehicles and freight “competing” for the terminal
resources, i.e., its “capacity”, within more or less the same time interval. As briefly
mentioned above, the first challenge is to adequately represent these delays in terms
both of model representativity and algorithmic efficiency. Working with a more
refined terminal representation is part of the response to this challenge. Then, there
is the issue of approximating the delays with linear or non-linear, ideally convex,
functions. The former makes for an easier algorithm development, while the latter
offers a more refined and adequate representation.

Adopting a non-linear formulation provides opportunities for modeling a broader
range of issues and criteria compared to linear formulations with fixed capacities.
Two cases to illustrate the point. First, representing infrastructure or service capacity
in tactical-planning models through traditional constraints ignores the flexibility of
translating plans into daily operations and of adjusting the former to the reality
of the second. Thus, depending on the mode and carrier, extra freight one cannot
load on a service either waits for the next departure or forces the dispatch of an
extra vehicle. Both actions come at a cost best represented through a non-linear
penalty, which may increase with the volume waiting, the length of the delay, etc.
Consider, second, the quality targets carriers set and often publicize, e.g., A to B in X
days. One may refine the selection of services and freight itineraries by representing
potential deviations from target in the SND objective function. Non-linear penalties
accounting for deviations from schedule for services and from due dates for
commodity paths model such situations and guide the SND solution method.
Standard deviations of activity, waiting, and travel times may also be included
in computing the penalties, as well as the generally unpublicized percentage of
error in attaining the targets the carrier allows for itself. Research is needed into
SND formulations with non-linear objective functions and the associated solution
methods (e.g., Bektaş et al. 2010).

Addressing uncertainty in SND models and methods for transportation and
logistics planning constitutes a broad and important research area, challenging
modeling and algorithmic development alike. As discussed in Sects. 6 and 7, SND
models and solution models have already been proposed to address a number of
uncertainty-related issues. One may state, however, that research in this area is
still in its infancy. Research is still required in adequately representing demand
uncertainty in the various problem settings evoked in this chapter and the other
chapters of the book. Almost totally overlooked, although of great operational and
economic importance, is the uncertainty in travel and terminal-activity times. The
solution often adopted in practice of adding large buffers to the planned delivery
times is not only scientifically unsatisfactory, but also less and less economically
viable and impracticable in many cases (City Logistics to name but one example).
Moreover, one should not overlook that both demand and time uncertainty (and



378 T. G. Crainic and M. Hewitt

heavy correlations) characterize operations and their simultaneous presence, and
interactions, should be reflected in the planning models proposed. Research on this
challenging topic is needed.

The previous issues, the discussion and the model of Sect. 6 refer to what
is known as business-as-usual cases, when uncertainty can be somewhat easily
represented with probability distributions. Other sources of uncertainty exist,
however, and should be studied. Reliability and robustness are two such issues, as
is resilience, i.e., the capability to rebound following an incident, and the operation
plans to perform the recovery and return to a desired state of system and operation
behavior. Advancing in this direction would also lead to a broader exploration of
information-revelation mechanisms and multi-stage formulations.

We complete this “modeling” discussion noticing that most SND models,
including those discussed in this chapter, assume that the behavior of customers,
that is, of demand, is known with respect to economic, e.g., tariffs, and service-
level criteria. This is true even when uncertainty in these elements is explicitly
represented. Simply put, customers react to tariffs and quality-of-service levels and,
consequently, so is the demand the carrier will ultimately service and the revenues it
can potentially earn. Extending the SND to address such issues requires considering
not only a profit-maximizing objective, but also modeling in mathematical terms the
behavioral relations between tariffs, service-quality levels, and the willingness of
customers to give a carrier their business. The revenue management literature is the
starting point of this line of research noticing, however, that most of it targets people-
servicing industries and that one cannot simply transpose those results to the freight
transport environment (Bilegan et al. 2021). Bi-level SND programming, modeling
the interactions between the carrier setting of tariffs and service levels and its self-
interested customers, appears promising for a strategic-type of decision making
on service level and pricing. Equally promising are the developments related to
aggregated but accurate customer-behavior representations that could be integrated
into carrier system-optimization SND models. An initial approach could define
the response, through weights or probabilities, of customer types (e.g., regular,
occasional, ad-hoc) to the carrier’s discriminative service and tariff classes. The
approximations, and their consequence in terms of demand volumes and revenues,
would then become part of deterministic or stochastic SND formulations.

Addressing large SND models, particularly when several layers of design deci-
sions are present and scheduling is involved, makes up another important research
area. A first research direction in this area concerns the Dynamic Discretization
Discovery (DDD) approach, which has shown its value when applied to standard
SSND settings. More research is required, however, to refine and accelerate the
method. We also need to extend it to the cases involving particular scheduling rules
and patterns for some or all services according to, e.g., operation practices, modes
or geographic/administrative zones. Another important extension, including for the
DDD, concerns the problem settings with several design layers as one encounters
when management of resources is considered or when, as in the case of railroads
where one consolidates freight into cars, cars into blocks, and blocks into trains,
each with potentially different temporal characteristics.



12 Service Network Design 379

A second algorithmic research direction focuses on the dynamic generation of
services (paths), resource work assignments (cycles), blocks (paths), and demand-
flow itineraries (paths). With a few exceptions for resource management, this area
has received little attention so far. Recall that, as illustrated in the models of this
chapter, services are selected out of a set of potential services; the same discussion
is relevant for the other system components as well. Authors rarely elaborate on
the construction of the potential set. Obviously, it may correspond to all possible
services, of all possible types, at all possible time instances. Two main issues
with building a priori such a set. First, it would be of dimensions one could not
address in most practical cases. Moreover, many of the potential services would
be totally useless. But, which ones? How to avoid “bad” ones? The research on
crew scheduling has clearly demonstrated that ad-hoc rules are not appropriate even
when based on a company’s own policies. The second issue is that, in practice, such
a set would mean that the complete service structure and schedule of the carrier
is to be built from scratch each time. This is generally not the case. Indeed, the
demand structure of the next season is not totally different in most cases from the
one at the last similar (e.g., Summer or Winter) season. Carriers then aim to update
their previous schedule to adapt it to changes in demand patterns without imposing
dramatic changes to their customers. Part of the service network is thus more or
less fixed and a set of potential services must be built to reflect the changes in
demand. The same question as previously stated arises with respect to building such
a set. Research efforts have thus to be dedicated to extending the column-generation
methodology to the SND and SSND cases with simultaneous generation of several
types of paths and cycles.

With respect to solution-method approaches, recall that network design problems
are NP-Hard in most cases of interest, and service network design ones are not
different. Consequently, heuristic-type solution methods must be constructed. Yet,
the research in this area is still not sufficiently developed. Particularly promising,
and challenging, are matheuristics combining exact and meta-heuristic solution
principles, ideally coupled with parallel optimization strategies, such as the Inte-
grative Cooperative Search (Crainic 2019).

The development of efficient solution methods for stochastic SND and SSND
is particularly challenging, even for the two-stage formulations of business-as-
usual demand uncertainty case, which has been studied the most. The adequate
representation of the “future”, through sets of scenarios for example, is one the
aspects contributing to this challenge. It raises issues regarding, the required
number of scenarios, the purpose of scenario generation (represent the solution
space or the optimal-solution neighborhood?), and how to generate the scenarios
to serve this purpose. These questions are even more challenging when correlations
and uncertainty in several problem parameters are considered. A scenario-based
representation generally yields deterministic formulations of very large dimensions,
very challenging to address as discussed above. The contributions mentioned in
Sect. 6 and Chap. 9 make up the starting point of what should be a significant
research effort on exact and matheuristic solution methods for stochastic service
network design.



380 T. G. Crainic and M. Hewitt

References

Albinski, S., Crainic, T. G., & Minner, S. (2020). The day-before truck platooning planning
problem and the value of autonomous driving. Publication CIRRELT-2020-04, Centre interuni-
versitaire de recherche sur les réseaux d’entreprise, la logistique et les transports, Université de
Montréal, Montréal, QC, Canada.

Andersen, J., Crainic, T. G., & Christiansen, M. (2009a). Service network design with asset man-
agement: formulations and comparative analyzes. Transportation Research Part C: Emerging
Technologies, 17(2), 197–207.

Andersen, J., Crainic, T. G., & Christiansen, M. (2009b). Service network design with management
and coordination of multiple fleets. European Journal of Operational Research, 193(2), 377–
389.

Andersen, J., Christiansen, M., Crainic, T. G., & Grønhaug, R. (2011). Branch-and-price for service
network design with asset management constraints. Transportation Science, 46(1), 33–49.

Armacost, A. P., Barnhart, C., & Ware, K. A. (2002). Composite variable formulations for express
shipment service network design. Transportation science, 36(1), 1–20.

Bai, R., Wallace, S. W., Li, J., & Chong, A. Y. L. (2014). Stochastic service network design with
rerouting. Transportation Research Part B: Methodological, 60, 50–65.

Bektaş, T., & Crainic, T. G. (2008). A brief overview of intermodal transportation. In G. D. Taylor
(Ed.). Logistics engineering handbook, chap 28 (pp. 1–16). Boca Raton, FL: Taylor and Francis
Group.

Bektaş, T., Chouman, M., & Crainic, T. G. (2010). Lagrangean-based decomposition algorithms
for multicommodity network design with penalized constraintsm. Networks, 55(3), 272–280.

Bektaş, T., Crainic, T. G., & Van Woensel, T. (2017). From managing urban freight to smart city
logistics networks. In K. Gakis, & P. Pardalos (Eds.), Networks design and optimization for
smart cities, series on computers and operations research (Vol. 8, pp. 143–188). Singapore:
World Scientific Publishing.

Belieres, S., Hewitt, M., Jozefowiez, N., Semet, F., & Van Woensel, T. (2020). A Benders
decomposition-based approach for logistics service network design. European Journal of
Operational Research, 286(2), 523–537.

Bilegan, I. C., Crainic, T. G., & Wang, Y. (2021). Scheduled service network design with revenue
management considerations for intermodal barge transportation. Publication CIRRELT-2021-
23, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le
transport, Université de Montréal.

Boland, N., Hewitt, M., Marshall, L., & Savelsbergh, M. W. F. (2017). The continuous-time service
network design problem. Operations Research, 65(5), 1303–1321.

Chouman, M., & Crainic, T. G. (2015). Cutting-plane matheuristic for service network design with
design-balanced requirements. Transportation Science, 49(1), 99–113.

Crainic, T. G. (2000). Network design in freight transportation. European Journal of Operational
Research, 122(2), 272–288.

Crainic, T. G. (2003). Long-haul freight transportation. In R. W. Hall (Ed.), Handbook of
transportation science (2nd ed., pp. 451–516). Norwell, MA: Kluwer Academic Publishers.

Crainic, T. G. (2019). Parallel metaheuristics and cooperative search. In M. Gendreau, & J.-Y.
Potvin (Eds.), Handbook of metaheuristics (3rd ed., pp. 419–451). Berlin: Springer

Crainic, T. G., & Gendreau, M. (1986). Approximate formulas for the computation of connection
delays under capacity restrictions in rail freight transportation. In Research for Tomorrow’s
Transport Requirements, Fourth World Conference on Transport Research (Vol. 2, pp.
1142–1155). Vancouver.

Crainic, T. G., & Kim, K. H. (2007). Intermodal transportation. In C. Barnhart, & G. Laporte
(Eds.), Transportation, Handbooks in Operations Research and Management Science, chap 8
(Vol. 14, pp. 467–537). Amsterdam: North-Holland.

Crainic, T. G., & Laporte, G. (1997). Planning models for freight Transportation. European Journal
of Operational Research, 97(3), 409–438.



12 Service Network Design 381

Crainic, T. G., & Rousseau, J. M. (1986). Multicommodity, multimode freight transportation:
A general modeling and algorithmic framework for the service network design problem.
Transportation Research Part B: Methodological, 20, 225–242.

Crainic, T. G., & Roy, J. (1988). O.R. tools for tactical freight transportation planning. European
Journal of Operational Research, 33(3), 290–297.

Crainic, T. G., Ferland, J. A., & Rousseau, J. M. (1984). A tactical planning model for rail freight
transportation. Transportation Science, 18(2), 165–184.

Crainic, T. G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city logistics
transportation systems. Transportation Science, 43(4), 432–454.

Crainic, T. G., Hewitt, M., Toulouse, M., & Vu, D. M. (2014). Service network design with
resource constraints. Transportation Science, 50(4), 1380–1393.

Crainic, T. G., Errico, F., Rei, W., & Ricciardi, N. (2016). Modeling demand uncertainty in two-tier
city logistics tactical planning. Transportation Science, 50(2), 559–578.

Crainic, T. G., Hewitt, M., Toulouse, M., & Vu, D. M. (2018). Scheduled service network design
with resource acquisition and management. EURO Journal on Transportation and Logistics,
7(3):277–309

Demir, E., Burgholzer, W., Hrušovskỳ, M., Arıkan, E., Jammernegg, W., & Van Woensel, T.
(2016). A green intermodal service network design problem with travel time uncertainty.
Transportation Research Part B: Methodological, 93, 789–807.

Erera, A., Hewitt, M., Savelsbergh, M., & Zhang, Y. (2013). Improved load plan design through
integer programming based local search. Transportation Science, 47(3), 412–427.

Farvolden, J. M., & Powell, W. B. (1994). Subgradient methods for the service network design
problem. Transportation Science, 28(3), 256–272.

Fontaine, P., Crainic, T. G., Jabali, O., & Rei, W. (2016). The impact of combining inbound
and outbound demand in city logistics systems. In 41st IEEE Annual Computer Software and
Applications Conference (COMPSAC) (Vol. 2, pp. 766–770). Piscataway, NJ: IEEE.

Fontaine, P., Crainic, T. G., Jabali, O., & Rei, W. (2021). Scheduled service network design with
resource management for two-tier multimodal city logistics. European Journal of Operational
Research, 294(2), 558–570.

He, Y., Péton, O., Lehuédé, F., Hewitt, M., Medina, J. (2019) A continuous-time service network
design and routing problem. In Program ROADEF 2019. On-line at: roadef2019.univ-lehavre.
fr/programme/ROADEF2019_submissions/ROADEF2019_paper_195.pdf

Hewitt, M. (2019). Enhanced dynamic discretization discovery for the continuous-time load plan
design problem. Transportation Science, 53(6), 1731–1750.

Hewitt, M., Crainic, T. G., Nowak, M., & Rei, W. (2019). Scheduled service network design
with resource acquisition and management under uncertainty. Transportation Research Part
B: Methodological 128, 324–343.

Hoff, A., Lium, A. G., Løkketangen, A., & Crainic, T. G. (2010). A metaheuristic for stochastic
service network design. Journal of Heuristics, 16(1), 653–679.

Jarrah, A. I., Johnson, E., & Neubert, L. C. (2009). Large-scale, less-than-truckload service
network design. Operations Research, 57(3), 609–625.

Kazemzadeh, M. R. A., Crainic, T. G., & Gendron, B. (2019). A survey and taxonomy of multilayer
network design. Publication CIRRELT-2019-11, Centre interuniversitaire de recherche sur
les réseaux d’entreprise, la logistique et le transport, Université de Montréal, Montréal, QC,
Canada.

Kim, D., Barnhart, C., Ware, K., & Reinhardt, G. (1999). Multimodal express package delivery: A
service network design application. Transportation Science 33(4), 391–407.

Lanza, G., Crainic, T. G., Rei, W., & Ricciardi, N. (2018). A study on travel time stochasticity in
service network design with quality targets. Lecture Notes in Computer Science, 11184, 401–
416.

Lanza, G., Crainic, T. G., Rei, W., & Ricciardi, N. (2021). Service network design problem with
quality targets and stochastic travel times. European Journal of Operational Research, 288(1),
30–46.

roadef2019.univ-lehavre.fr/programme/ROADEF2019_submissions/ROADEF2019_paper_195.pdf
roadef2019.univ-lehavre.fr/programme/ROADEF2019_submissions/ROADEF2019_paper_195.pdf


382 T. G. Crainic and M. Hewitt

Lium, A. G., Crainic, T. G., & Wallace, S. W. (2007). Correlations in stochastic programming:
A case from stochastic service network design. Asia-Pacific Journal of Operational Research
24(2), 161–179.

Lium, A. G., Crainic, T. G., & Wallace, S. W. (2009). A study of demand stochasticity in service
network design. Transportation Science, 43(2), 144–157.

Marshall, L., Boland, N., Savelsbergh, M., & Hewitt, M. (2021). Interval-based dynamic discretiza-
tion discovery for solving the continuous-time service network design problem. Transportation
Science 55(1), 29–51.

Medina, J., Hewitt, M., Lehuédé, F., & Péton, O. (2019). Integrating long-haul and local
transportation planning: The service network design and routing problem. EURO Journal on
Transportation and Logistics, 8(2), 119–145.

Pedersen, M. B., & Crainic, T. G. (2007). Optimization of intermodal freight service schedules
on train canals. Publication CIRRELT-2007-51, Centre interuniversitaire de recherche sur les
réseaux d’entreprise, la logistique et le transport, Montréal, QC, Canada.

Pedersen, M. B., Crainic, T. G., & Madsen, O. B. G. (2009). Models and Tabu search meta-
heuristics for service network design with asset-balance requirements. Transportation Science,
43(2), 158–177.

Powell, W. B. (1986) A local improvement heuristic for the design of less-than-truckload motor
carrier networks. Transportation Science, 20(4), 246–257.

Scherr, Y. O., Neumann-Saavedra, B. A., Hewitt, M., & Mattfeld, D. C. (2018) Service network
design for same day delivery with mixed autonomous fleets. Transportation Research Procedia,
30, 23–32.

Scherr, Y. O., Saavedra, B. A. N., Hewitt, M., & Mattfeld, D. C. (2019). Service network design
with mixed autonomous fleets. Transportation Research Part E: Logistics and Transportation
Review, 124, 40–55.

Minh, V., Crainic, T., & Toulouse, M. (2013). A three-stage matheuristic for the capacitated multi-
commodity fixed-cost network design with design-balance constraints. Journal of Heuristics,
19, 757–795.

Wang, X., Crainic, T. G., & Wallace, S. W. (2019). Stochastic network design for planning
scheduled transportation services: The value of deterministic solutions. INFORMS Journal on
Computing, 31(1), 153–170.

Wang, Z., & Qi, M. (2019). Service network design considering multiple types of seervices.
Transportation Research Part E, 126, 1–14.

Wang, Z., & Qi, M. (2020) Robust service network design under demand uncertainty. Transporta-
tion Science, 54(32), 676–689.

Wieberneit, N. (2008). Service network design for freight transportation: A review. OR Spectrum
30(1), 77–112.

Zhu, E., Crainic, T. G., & Gendreau, M. (2014) Scheduled service network design for freight rail
transportations. Operations Research, 62(2), 383–400.



Chapter 13
Freight Railroad Service Network Design

Mervat Chouman and Teodor Gabriel Crainic

1 Introduction

Rail transportation supports our social and economic life, providing economically-
priced, environmentally-friendly, and timely transportation services for people and
freight at the urban, regional, national, and international levels. A freight train, cargo
train, or goods train is a group of freight cars (US) or goods wagons (International
Union of Railways) hauled by one or more locomotives on a railway infrastructure
network, transporting cargo all or some of the way between the shipper and the
consignee. Railroads move large quantities of products, bulk materials (e.g., grains.
minerals, petroleum and chemical products), intermodal containers and trailers
loaded on flat cars, general freight, or specialized freight (e.g., automobiles and
heavy machinery) in purpose-designed cars. Railroads are particularly efficient
for long-haul movements in terms of per ton-km monetary, energy-consumption,
and pollutant-emission costs. They are faster and more direct than ocean freight,
which lead to setting up transcontinental land bridges, e.g., the North-American
Landbridge linking the West and East coasts, and the Eurasian Landbridge between
China and Western Europe. We focus on freight rail transportation in this chapter,
while passenger rail transportation is discussed in Chap. 17.

Freight rail transport makes up an essential link in intermodal transportation
and supply chains, supporting national and international trade. The efficiency of
railroads, in terms of cost and reliable on-time delivery, thus directly impacts the

M. Chouman
Effat University, Jeddah, Saudi Arabia
e-mail: mchuman@effatuniversity.edu.sa

T. G. Crainic (�)
CIRRELT and AOTI, Université du Québec à Montréal, Montréal, QC, Canada
e-mail: TeodorGabriel.Crainic@cirrelt.net

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_13

383

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_13&domain=pdf
mailto:mchuman@effatuniversity.edu.sa
mailto:TeodorGabriel.Crainic@cirrelt.net
https://doi.org/10.1007/978-3-030-64018-7_13


384 M. Chouman and T. G. Crainic

availability and cost of goods for the final customer, be it a private citizen, an
institution, or a company. To achieve this efficiency, railroads operate mostly as
consolidation-based carriers, similarly to less-than-truckload trucking (Chap. 14),
liner shipping (Chap. 15), and city logistics (Chap. 16), for example.

The fundamental idea of consolidation is to take advantage of economies of scale
and reduced handling in terminals, by grouping loads from different shippers, with
possibly different origins and destinations, and loading them into the same vehicles
for efficient long-haul transportation. Railroads generally implement a more com-
plex double consolidation policy, however, as cars are grouped into blocks, which
are then grouped into trains. Thus, loaded and empty cars, with different origins
and destinations, being present simultaneously in the same terminal, are sorted and
grouped into a block, which is then moved as a single unit by a series of trains
until its destination, where it is broken down, the cars being either delivered to
their final consignees or sorted for inclusion into new blocks. The performance
and profitability of such a system depend on an offer of services meeting the cost
and quality criteria of its potential customers, but also, for a large part, on efficient
and coordinated terminal and long-haul transport operations.

Tactical, medium-term, planning for freight rail carriers aims to address this
challenge at the network and system-wide level, through a transportation plan
specifying the train services to operate over the contemplated schedule length (e.g.,
the week), together with their frequencies or schedules (timetables), the blocks that
will make up each train, the blocks to be built in each terminal, and the routing of
the cars, empty and loaded with the customers’ freight, using these services, blocks,
and terminal operations. As detailed in Sect. 2, tactical planning makes up a very
complex problem, with many facets and decisions linked in a web of economic,
resource utilization, and time-performance objectives, limitations, and trade-offs.
Operations Research provides the Service Network Design (SND) methodology
to build the railroad tactical plan making the most efficient use of the railroad’s
resources to achieve its economic and customer-service performance objectives.
The chapter reflects this important relation between railroad planning and network
design. It focuses on SND models for railroad tactical planning, both for particular
activities, e.g., car blocking and train makeup, and for integrated planning processes.

The chapter is organized as follows. Section 2 briefly describes the rail trans-
portation system, the associated tactical planning issues and the utilization of
tactical-planning SND models, and concluding with the general notation used in
the chapter. Section 3 is dedicated to SND formulations, which do not integrate
the time dimension explicitly, for three problem settings: service selection and
train makeup (Sect. 3.1), car classification and blocking (Sect. 3.2), and integrated
planning (Sect. 3.3). Section 4 focuses on the case where the time characteristics of
the problem components and decisions are explicitly addressed, and introduces the
Scheduled Service Network Design (SSND) problem and model for the integrated
planning of freight railroads. The SSND modeling framework is extended in Sect. 5
to account for existing schedules, the container-to-car loading rules of intermodal
traffic, and resource management. Bibliographical notes are presented in Sect. 6 and
we conclude with a number of research directions in Sect. 7.



13 Freight Railroad Service Network Design 385

2 Rail Transportation System and Planning

We initiate the section with a brief description of freight rail transportation, with its
main objectives, system components, operations, and decision and planning chal-
lenges. Tactical planning issues and their complex interactions are discussed next,
introducing the Service Network Design (SND) methodology generally proposed to
address them and which is the object of this chapter. We conclude with a discussion
on the various utilization modes of SND models, and the general notation used
throughout the chapter.

2.1 Rail Transportation System

Railroads are complex transportation systems where several major components
interact and compete for resources. The infrastructure of the system is made up of
a large number of terminals and rail tracks linking them. Most of these terminals
are stations where demand originates and terminates. A much smaller number
are denoted yards and are specially equipped to handle large quantities of cars,
sorting and grouping them for long-haul transportation, as well as to make up and
disassemble trains. The term classification (marshaling is also found) yard is used
to emphasize the major car-handling role of these facilities. Terminals are linked by
a physical network of tracks. The backbone component of this network is made up
of main lines connecting the yards of the system. The network is completed by a
large number of secondary, branch lines connecting most stations to the backbone
network. Even when stations are located on a main line, the movements of loaded
and empty cars between stations and their respective designated yards are generally
performed by local, so-called feeder trains.

Customer demand takes the form of a number of cars (the special case of
intermodal transportation is discussed later in this section), of a type appropriate
to the commodity that needs to be moved, to be shipped from an origin station to
a destination one. The appropriate number of empty cars is delivered for loading
by the railroad to the customer site, assuming it is connected to the rail network,
or to a designated station, otherwise. The empty cars are generally delivered from
a designated yard by a feeder train. Once loaded, the cars are moved back to the
same yard or to a different one as appropriate for the long-haul movement on the
main-line network toward the destination. Since the scheduling of feeder trains is
usually not within the scope of the network-wide tactical planning process designing
the long-haul service network, we assume in this chapter that demands are defined
among origin and destination yards. Each demand is also characterized by a volume
in terms of number of loaded cars of given physical and operational attributes, as
well as by an availability time (and date) at the origin yard and a due time at the
destination yard.



386 M. Chouman and T. G. Crainic

Trade is unbalanced among countries and regions and, consequently, so is the
demand for particular car types in the case of railroads. Moving empty cars is
costly and railroads aim to minimize such balancing flows. Yet, they cannot be
entirely avoided and, thus, empty cars are often part of train composition. These
movements must be accounted for when planning services and resources, to avoid
underestimating traffic, resource utilization, and costs. Origin-destination “empty-
car” volumes are thus often part of the demand definition.

Movements of freight on the rail network are performed by train services. A train
is composed of one or more locomotives providing power and a series of cars (which
may be loaded or empty; sometimes, locomotives are repositioned in the network
and are part of a train without providing power). Each train has a particular origin
yard where it is made up and a destination yard where it completes its journey,
delivers all the cars currently hauled, and liberates the locomotives. The route may
encompass a number of intermediary stops where the train delivers or picks up
cars, eventually grouped into blocks as described below (locomotives and crews
may also be changed, added and dropped off, at intermediary yards). Other than
its route, the train service or, simply, the service, is also characterized by time-
related information. In its simplest version, this information takes the form of a
frequency of service, i.e., the number of times the “same” train is run during the
length of time the railroad uses to define its recurring operations (e.g., 1 week),
also called schedule length. A more precise definition is given by a service schedule
indicating the departure time from the origin yard, arrival and departure times at
each intermediary yard, and the arrival time at destination. This information may be
strict, as for most European, Canadian, and a few U.S. Class 1 railroads, or relative
(e.g., most U.S. Class 1 railroads), indicating time intervals for their departures
which may be modified to account for particular events, e.g., the need to pass a
direct train for an important customer. (Note that, there are still railroads around
the world with schedules of an “indicative” nature, the train leaving when full and
ready.) The railroad may operate a single type of service, e.g., dedicated intermodal
shuttle trains between main yards. Alternatively, services of different types, e.g.,
general cargo, bulk, intermodal, may be defined and operated, often on the same
infrastructure. Priority with respect to the other service types (often linked to the
speed and capacity allowed on each section of track) is often used to define the
service type.

Railroads aim to maximize revenue, which often translates into achieving the
best balance between the operational cost of operating resources and services, on
the one hand, and the quality of the service according to the customer expectations
in terms of tariffs, speed, flexibility, and reliability, on the other hand. Dedicated and
direct non-stop services from origins to destinations (so-called “unit” trains) would
achieve high customer satisfaction, reducing delivery time and the risk of delay
(providing train congestion on rail tracks is avoided), and eliminating the risk of
damage related to car handling at intermediate yards. This would also, however,
imply high operational costs, particularly for the very large numbers of origin-
destination demands with low and medium numbers of car to move. Railroads
therefore operate direct trains only for particularly important customers or when



13 Freight Railroad Service Network Design 387

1

2 3
4

5

6

7

89

A

B

C

Main train service

Unit train service

Yard

Yard

Yard

Stations

Feeder trains

Main train service with
intermediary stops

Fig. 13.1 Hub-and-spoke rail service network

the volume of demand between two stations is significant (i.e., the equivalent of at
least a full train) and regular. Railroads rather aim for economies of scale for most
of their operations through consolidation of freight from different demands, that is,
cars with different origins and destinations, into blocks and blocks into trains.

Schematically, cars at their origin yard are sorted, classified is the term generally
used, to be then grouped with other cars, with potentially different origins and
destinations, into particular blocks. The block is then handled as a single unit from
its origin yard, where it is formed, to its destination yard, where it is taken apart, its
cars at their final destination being delivered to the respective consignees, the others
being reclassified and blocked with other cars present at the yard for the next part of
their trip. This classification and blocking operation contributes significantly to the
economy-of-scale provided by rail transportation. Trains are thus made up of blocks
and, when appropriate, it is blocks that are picked up and delivered at intermediate
stops. Blocks may thus be transferred (switched) from one train to another.

Figure 13.1 illustrates this hub-and-spoke service organization for a network with
three yards and nine stations. Dotted lines indicate feeder services moving cars
and, eventually, blocks, between stations and main yards. The dash line illustrates
a direct-train service between two stations, while the solid and dash-dotted lines
represent the non-stop and one-intermediary-stop, respectively, long-haul train
services moving on the main line network between yards.

Demand is moved along itineraries. Each itinerary for a particular demand
specifies the sequence of blocks and trains, and thus the sequence of classification
and transfer activities, between its origin and destination yards. The volume of
freight of certain demands must be moved together, while for others, it can be split
among several itineraries, as agreed between the railroad and the customer. From
the railroad perspective, the possibility to split demand flows allows to better fill up
blocks and trains, increasing the economies-of-scale, but requires additional care in
monitoring the flows and making sure everything arrives in time to the final yard,
for on-time delivery of the complete shipment. From an optimization perspective,



388 M. Chouman and T. G. Crainic

the model must include integer-valued flow variables when demand cannot be split,
which increases the algorithmic challenge. To simplify the presentation, we assume
in this chapter that flows may be split for all demands.

Operations are constrained by the physical characteristics of the infrastructure
and the operational policies of the railroad and, thus, “capacity” is a multi-facet
concept in rail transport. Consider, for example that, the car classification capacity
of a yard, for a given time period, may be defined in terms of the maximum numbers
of cars that may be handled, blocks that may be built (number and length of tracks
on which the blocks are composed), trains that may be made up or serviced, and
so on. Similarly, the capacity of the rail tracks limits operations with respect to
the number of trains that may operate “simultaneously” on a given track segment
(meeting or overtaking), as well as to the total weight, length or both a train may
haul on the track. The length and weight of trains are thus limited and translate
into lower and upper limits on the length and weight of blocks. Representing the
operational characteristics and limits at a level appropriate for the network-wide
nature of system and planning is one of the challenges of developing Operations
Research-based methods for railroad freight transportation.

We conclude this section with a short discussion of an important and growing
component of rail transportation, namely, intermodal traffic and operations. In its
general sense, intermodality means that different transport modes are combined
to seamlessly move containerized freight from a point of origin to a point of
destination. A sequence involving a truck or rail (or a sequence of both) movement
to a port, ocean navigation to another port, and a truck or rail sequence to destination
is typical of intermodal transport and makes up the backbone of international trade.
Rail plays a major role in this context as illustrated by the European Commission
policy on intermodality, the new rail services being set up between China and
Europe, and the intermodal-rail divisions of North American railroads linking the
continental ports to the industrial and heavily populated regions of the continent.

Intermodal traffic is often handled separately from the general one, being moved
on dedicated intermodal trains (attaching intermodal traffic to regular main-line
trains may be viewed as a recourse operation to mitigate variations in forecast
demand). Moreover, even when intermodal and regular cars and trains are handled
in the same yards, the classification of intermodal cars is performed separately.

The most important difference, however, concerns the loading and unloading
operations of intermodal traffic, which is actually taking place in particular zones of
the railroad’s yards. There is a large variety of container types, e.g., 20-, 40- and 53-
feet long, and railroads use fleets of cars of various types, each with one or several
platforms and slots on the platforms. Single- and double-stack platforms have one
and two slots, respectively. The containers are delivered at yards (or maritime port
facilities) and the railroad must determine the matching/loading of containers to
available cars and types. This is an important but complex issue since not all
combinations are legal or suitable, a very large number of loading alternatives exist,
and decisions taken at any given yard impact the availability of cars at later periods
at the yard and the other yards, as well as the performance of the railroad operations.



13 Freight Railroad Service Network Design 389

The double consolidation organization of freight railroads provides the sought-
after economies of scale in operation costs and resource utilization, reduces car
handling activities at yards, and fosters a timely service for markets (origin-
destination pairs of cities or regions) with low traffic volumes. It also implies more
complex operations in terminals, with potentially higher possibilities for delays and
incidents. Which translate into more complex decision-making problem settings.
The complexity is even larger for intermodal transportation which implies a third
consolidation operation, of containers on multi-platform cars.

Network design-based models and methods are proposed to address these
challenges and support decision making at various levels of planning. We now
briefly recall these planning issues and the links to network design.

2.2 Tactical Planning and Network Design

The planning activities undertaken by railroads may be broadly classified into three
levels, similarly to most other consolidation-based transportation systems. Strategic
planning involves long-term decisions on system design, operation strategies, and
acquisition of major resources (e.g., buy or rent locomotives or cars and enhance
track or yard capabilities). Tactical planning is dedicated to building an efficient
service and resource-utilization network and schedule. Short term planning, mon-
itoring, and adjustment of operations make up the so-called operational planning
(e.g., running the trains, crew and locomotive scheduling, repositioning crews,
locomotives and cars for the next operations, and maintenance of infrastructure and
rolling stock). We focus on tactical planning in this chapter, as it involves arguably
the strongest connection to network design. We discuss at the end of this section the
utilization of the related network design methodology in varied contexts, including
the other levels of planning. Section 6 points to general references addressing
railroad challenging planning activities and problems at the three levels.

Tactical planning is performed over a medium-term planning horizon, e.g., 6
months, called season in the following. Planning generally takes place some time
before the beginning of the season. It aims to select and schedule services, together
with the demand itineraries used to move the freight from origins to destinations
using the resulting service network. Determining strategies for managing important
resources supporting the selected services, as well as activity profiles for terminals,
in terms of car, block, and train-handling policy for example, is also increasingly
part of tactical planning. The goal is to satisfy the forecast regular demand in the
most efficient way possible with respect to costs (profits) and resource-utilization,
while satisfying the service-quality levels set by the carrier to answer customer
requirements. Notice that, even though some part of demand, e.g., long-term
contracts with customers, may be known at planning time, most is forecast using
history, customer-relation representatives knowledge, and customer input, among
other data sources. The service network and plan is determined for a rather short
schedule length and it is repeatedly applied over the season.



390 M. Chouman and T. G. Crainic

Services (Trains)

BlocksEngines
People

Cars(Loaded)Cars(Empty)

Schedule
(frequencies)

Cars

Demand =
Freight

Blocking
(Classification)

Make up

Resource
Management

(Scheduled) Service Network Design

General Rail

Services (Trains)

BlocksEngines
People

Cars(Loaded)Cars(Empty)

Schedule

Cars

Demand =
Containers

Blocking
(Classification)

Make up

Resource
Management

(Scheduled) Service Network Design

Intermodal Rail

Container-to-Car
Loading

Fig. 13.2 Main activities and tactical planning decisions

A number of main decisions/issues make up the tactical planning process and are
addressed through SND models and methods. These problems and their relations
are briefly defined in this section and schematically illustrated in Fig. 13.2 for the
general and the intermodal cases.

Service selection is concerned with choosing among a set of possible services
the ones to operate the next season to service demand efficiently, profitably, and
on time. The set of possibilities could represent a complete yard-to-yard network
with intermediate stops for all service types, or the last-season network enriched
with additional potential services to address changes in demand profile and railroad
policies. The resulting service network specifies the movements through space and
time of trains and cars, demand itineraries corresponding to paths in this network.
The problem is defined as static when one assumes that neither demand nor the
other problem characteristics vary during the schedule length considered. The time
dimension of the service network is then implicitly considered through the definition
of services and the inter-service operations at terminals, and one generally addresses
the issue of service frequency assuming a more or less uniform distribution of
departures over the schedule length. Time-dependent problem settings and formula-
tions address the cases when the moments demands become available and are due
at destinations are explicitly considered, which implies an explicit representation
of demand and activities in time. Time-dependent formulations thus usually target
the planning of schedules to support decisions related to when services and freight
(demand itineraries) arrive at and leave from yards.

The blocking and classification problem addresses the issue of how cars are
grouped in yards yielding the blocks to be moved by trains. It encompasses several
strongly interrelated decisions: (1) select the blocks to build at each yard; (2)
specify for each block its origin and destination terminals, the path through the



13 Freight Railroad Service Network Design 391

infrastructure network, the sequence of intermediate yards on the path where it
will be transferred from one train to another (when relevant), the sequence of train
services performing the transportation; and (3) define how cars, empty and loaded,
are classified and assigned to blocks at their origin and at the intermediary (when
brought in by blocks being dismantled at destination) yards on their journeys. The
decisions concerning the empty cars are generally linked to car-fleet management
concerns about providing the appropriate cars to yards given the particular associ-
ated demand. Loaded-car assignment to blocks, on the other hand, is related to the
freight-routing objective of delivering shipments efficiently and on time.

The problem includes an additional dimension for intermodal services, namely,
the assignment and consolidation of containers of various types and dimensions to
multi-platform cars of different types and dimensions. The first challenge is how
to reflect the differentiation of the many types of containers, cars, and loading
rules, and how to represent the container-to-car assignment and loading in a
way appropriate for the level of aggregation proper of tactical planning models
and solution methods. Second, the containers-to-car consolidation adds a third
combinatorial dimension and design decision to the blocking problem, yielding
different SND formulations harder to address than for the regular-traffic case. This
difference in illustrated in Fig. 13.2 by including the demand loading component in
the intermodal-rail box on the right of the figure.

Train makeup yields the list of blocks, and cars of particular origin-destination
demands, each train service hauls out of its origin yard, it drops and picks up at
intermediary stops, and delivers at its destination yard.

Freight routing determines the itinerary, or itineraries when splitting of demand
is allowed, used to transport the cars of each particular demand from its origin to is
destination through the selected service network.

Resources, e.g., locomotives and cars, are required to operate services. Resource
management addresses the issue of, on the one hand, assigning the appropriate
resources to services to support the planned activities while, on the other hand,
determining the general rules dictating the economically and operationally-efficient
resource movements over the schedule length. Resource management is generally
considered an operational-level managerial activity and its impact on tactical-level
decisions was often limited to the somewhat simple case of accounting for the need
to reposition empty cars for the next cycle of operations. The situation is evolving,
however, and more comprehensive problem settings are detailed later in the chapter.

These problems may be, and have often been, addressed individually echoing a
tactical-planning process decomposed into a series of sequential decisions. Increas-
ingly, however, the strong interconnections among decisions, in particular in their
cost and service quality consequences, lead to integrated approaches addressing
several of the problems identified above jointly. Such approaches do not make
problems easier, however, as planning must be performed network-wide aiming for
the best trade off among the not necessarily convergent operational and economic
characteristics of the individual problems and decisions. Thus, for example, one
could increase the level of service by increasing the frequency of services, but this
could result in higher levels of congestion in yards and on the tracks, resulting in
increased delays and, thus, lower quality service (increased costs as well, of course).



392 M. Chouman and T. G. Crainic

Service network design (SND) models are generally proposed to address freight
railroad planning problems. SND models take the form of fixed cost, capacitated,
multicommodity network design formulations. Minimization of the total operating
costs is the primary optimization criterion in most cases, reflecting the traditional
objectives of railroads and expectations of customers to “get at destination fast but
at the lowest possible cost”. As customer expectations for high-quality service and
environmental concerns rise, however, service performance measures are increas-
ingly included in tactical planning and SND formulations. Service performance
measures are generally modeled through delays incurred by freight and resources
or the amplitude of violation of predefined performance targets (e.g., delivery
within a given time length). Constraints may then be imposed on the values of the
service-performance measures, or one may add them as costs and penalties to the
objective function of the SND optimization formulation. The resulting generalized
cost function then captures the trade offs between operating costs and service
quality. The sections that follow present the main classes of railroad service network
design models proposed, in increasing degree of problem and decision integration.

We conclude this general presentation with a short discussion on the utilization
of SND methodology developed for tactical planning. To start, notice that, although
network design models may be built to address strategic-planning issues, SND
formulations may be used to evaluate the impact of strategic scenarios, relative, for
example, to economic (e.g., fuel prices or changing production and consumption
levels of certain goods) and regulatory (trade restrictions or speed and weight
limits when carrying hazardous goods ) variations on operations, resources, and
system performance. One may thus use SND as a simulation tool in the context
of cost-benefit analyzes, with appropriate approximation of railroad and demand
characteristics. Clearly, generalized service network design models may be built to
answer strategic-level decisions such as the number of each resource type to buy or
rent, and the capital-intensive enhancement of infrastructure.

The service network design formulations may also be used to review, weekly
for example, the tactical plan built for the season. One would then re-optimize
and adjust the plan and operations to current conditions. What may be adjusted
depends strongly on the railroad application context. Canceling or adding services
on a short notice is not easily performed by railroads and SND models may
assist in selecting the best alternative and determining the network-wide impacts.
Updating the actual demands or resources, or both, assigned to blocks and trains is
taking place quite often within railroad management and, again, SND models are
appropriate. Obviously, the scope of the SND model has to be more focused when
in plan-adjustment mode, parts of the system which should not be modified being
fixed.



13 Freight Railroad Service Network Design 393

2.3 Notation

This section is dedicated to the definitions and general notation used throughout the
chapter. It is summed up in Table 13.1 (together with notation proper to particular
problem settings and defined in the next sections).

Let G PH = (N PH,A PH) represent the physical network on which the railroad
operates, where N PH stands for the set of terminals (yards and, possibly, main
stations), connected by the physical track arcs of set A PH = {(ηi, ηj ), ηi, ηj ∈
N PH}.

Yards η ∈ N PH are characterized by several capacity measures, defined for
a given time period (which can be the schedule length or shorter for multi-
period, time-dependent formulations), namely, the classification capacity uC

η , for
the number of cars that can be sorted and assigned to blocks, the blocking capacity
uB
η , for the number of blocks which can be built, the block-transferring capacity uT

η,
for the number of block which may be transferred from one service to another, and
uM
η , for the number of trains which can be made up at the yard during the period.

Train services run on this network to answer demand. Following the general
Service Network Design (Chap. 12) and rail-planning literature, SND models
select these services out of a set of potential services Σ , given an estimated
regular demand for transportation represented by set K of origin-destination (OD)
commodities, each commodity k ∈ K standing for the request to move a quantity
dk of freight from its origin terminal O(k) to its destination terminal D(k).

Each service σ ∈ Σ is characterized by a path in the physical network between
its origin and destination yards, O(σ) and D(σ), respectively. Single-leg services
operate non-stop between their respective origins and destinations, while multi-leg
services stop at one or several yards on their routes to drop and pick up blocks and
cars. Let N PH(σ ) = {O(σ) = η0, η1, η2, .., ηn−1,D(σ) = ηn(σ)} be the sequence
of yards visited by service σ ∈ Σ , and L PH(σ ) = {li (σ ) = (ηi−1, ηi) | i =
1, . . . , n(σ )} be the sequence of service legs of the service, with n(σ) = 1 for
single-leg services. Let L PH = ⋃

σ∈Σ L PH(σ ). Several “cost” and “capacity”
measures may be associated to services depending on the particular problem
addressed. In almost all cases, however, one finds the fixed cost to select the service,
fσ , the leg unit transportation costs ckli (σ ), and the leg-service capacity uli (σ ).

Each of the SND tactical planning models described in the following sections
is defined on a network G = (N ,A ) built out of the physical network and the
set of potential services, enriched to address problem-specific characteristics, the
modeling of time, in particular. Static SND problem settings, discussed in Sect. 3,
do not include an explicit representation of time and, thus, G has N = N PH and
A = L PH in those cases.

Scheduled service network design, SSND, targets time-dependent problem set-
tings, where time and service schedules are explicitly considered. SSND formula-
tions are built on time-space networks G = (N ,A ), using a discrete or continuous
representation of the schedule length T. Let t stand for a time instant within the
schedule length, i.e., 0 ≤ t ≤ T. A discrete representation of the schedule length is



394 M. Chouman and T. G. Crainic

Table 13.1 SND and SSND main notation

G PH = (N PH,A PH) Physical network

N PH = {η} Set of terminals (yards and main stations)

A PH = {(ηi , ηj )} Set of rail-track arcs

G = (N ,A ) Potential (service) network for the SND formulations

N , A Set of terminals and arcs in G

H = {(ηt , ηt+1)} Set of holding arcs

ua Capacity of arc a ∈ A

Σ = {σ } Set of potential services

O(σ),D(σ) Origin and destination terminals of service σ ∈ Σ
L PH(σ ) = {li (σ )} Set of legs of service σ ∈ Σ
fσ Fixed selection cost for service σ ∈ Σ
ckli (σ )

Unit transportation cost for commodity k ∈ K on leg li (σ ) ∈ L PH(σ )

of service σ ∈ Σ
uli (σ ) Capacity of service σ ∈ Σ on its leg li (σ ) ∈ L PH(σ )

o(li (σ )) Scheduled departure time of service σ ∈ Σ from the origin of its leg
li (σ ) ∈ L PH(σ )

d(li (σ )) Scheduled arrival time of service σ ∈ Σ at the destination of its leg
li (σ ) ∈ L PH(σ )

K = {k} Set of origin-destination demands

dk Quantity of demand k ∈ K

O(k) Origin terminal of demand k ∈ K

D(k) Destination terminal of demand k ∈ K

o(k) Availability time of demand k ∈ K at its origin terminal

d(k) Due date of demand k ∈ K at its destination terminal

Pk Set of itineraries in the service network for demand k ∈ K

ck Unit service-quality cost, per unit of time, for demand k ∈ K

uC
η Classification capacity, in number of cars, at yard η ∈ N

uB
η Blocking capacity, in number of blocks, at yard η ∈ N

uT
η Block-transfer capacity, in number of blocks, at yard η ∈ N

uM
η Service make-up capacity, in number of services starting at yard

η ∈ N

τ C
η Expected delay to transfer a car at yard η ∈ N

cT
η Unit car-transfer cost at yard η ∈ N

cC
η Unit car-classification cost at yard η ∈ N

fb Fixed building, transferring, and dismantling cost of block b ∈ B

ckb Unit transport cost for commodity k ∈ K on block b ∈ B

B = {b} Set of blocks

O(b), D(b) Origin and destination yards of block b ∈ B

N (b) ⊆ N Sequence of yards making up the route of block b ∈ B

L (b) Sequence of service legs making up the route of block b ∈ B

ub Capacity of block b ∈ B

B(li (σ )) Set of blocks assigned to service leg li (σ ) ∈ L PH(σ ),∀σ ∈ Σ
Θ = {θ} Set of resource cycles

uR Quantity of resources available in the railroad system

L (θ) Set of service legs of the resource cycle θ ∈ Θ
fθ Fixed cost of selecting and operating resources on cycle θ ∈ Θ
T; T Schedule length; Set of discrete time periods



13 Freight Railroad Service Network Design 395

obtained by defining a sequence of time instances t = 0, . . . ,T, grouped in set T .
The time period t in this representation corresponds to the length of time between
instances t and t+1, t = 0, . . . ,T−1, grouped in set T . N = {ηt , η ∈ N PH, t =
0, . . . ,T − 1} includes copies of all the yards in the physical network at all the
time periods defined. This definition may be specific to each yard. To simplify the
presentation, however, and without loss of generality, we assume the same time
definition for all yards in this chapter, and time periods of equal length.

Each SSND potential service σ ∈ Σ is defined on the time-space network G . It is
characterized by a schedule indicating arrival and departure times at the yards where
it originates, stops, and terminates. The sets of yards and service legs identifying
the service then become N (σ ) and L (σ ) (with L = ⋃σ∈Σ L (σ )), respectively,
with departure time from origin, o(li(σ )), and arrival time at destination, d(li(σ )),
for each service leg li (σ ) ∈ L (σ ). Note that, the schedule may also be described in
terms of arrival and departure times at the yards in N (σ ). Similarly, each demand
k ∈ K is characterized by an availability time o(k) at origin O(k) and a due date
d(k) at destination D(k).

The network is completed by the set of arcs A , which includes moving and
holding arcs. The former correspond to the legs of the potential services L , an
arc being defined for each service leg, while the latter are arcs connecting two time-
consecutive representations of each terminal in N . The attributes of the moving
arcs a ∈ A , the capacity ua and the unit commodity-transportation cost cka , inherit
the values of the corresponding service legs for both SND and SSND cases. Holding
arcs H = {(ηt , ηt+1), ηt , ηt+1 ∈ N } represent the possibility for equipment and
freight to wait at a terminal for a time period.

Several measures are used in the industry and the literature for the amplitude
of demand and the capacity of the system components, e.g., number of cars,
number of containers, tonnage, and length. Moreover, more than one may be used
simultaneously to constrain decisions and operations. Thus, the characteristics of a
track segment may limit both the total tonnage a train may haul on the track, its total
length (and this, independently of the locomotive power assigned to the train). To
simplify the presentation, but with no loss of generality, we use a single and same
unit to measure demand and service capacity, the latter being specific for each of the
legs of the service.

3 Static SND

The section is dedicated to static service network design formulations. The general
hypothesis of this class of planning problems and SND formulations is that neither
demand nor the other problem characteristics vary during the schedule length
and, thus, they do not integrate the time dimension explicitly. Time may still be
accounted, however, through the selection of services. Instead of a simple yes or no
decision, the formulations may select a service and its frequency of operation over



396 M. Chouman and T. G. Crainic

the schedule length. In the literature, one generally assumes that frequencies are
uniformly distributed over the schedule length. We follow this trend in this chapter.

Models addressing particular components of tactical planning are presented in
the first two subsections. Models integrating several tactical decisions are discussed
in the third. We complete this part with a general discussion on the issue of
generating the sets of potential services and blocks.

3.1 Service Selection and Train Makeup

The problem of selecting services and determining the cars their will haul arises
when there is no blocking performed at yards (e.g., in most European railroads),
or blocking is performed once the main service network is decided (see, e.g.,
the intermodal case described in Sect. 5). Given the set of possible services, the
problem aims to (1) select the services to run and their frequencies over the planning
period, and (2) assign cars to trains and determine the associated freight routing to
accommodate all demand at minimum cost.

As in all problem settings considered in this chapter, freight routing may involve
single-train itineraries from origin to destination and itineraries with service-to-
service transfers at intermediary yards. Car transfers require time and resources.
They generate costs and may cause delays related to many factors, including but not
limited to, the number of cars to be transferred, the number of trains involved in
transfers, and the capacity of the yard. Such delays not only increase the costs of the
system, but may also decrease the service quality to customers.

The Service Selection and Train Make-up Network Design (SMND) problem
thus aims to address these issues and decisions by minimizing the total operating
cost, including penalties Φ(·, ·) representing the interplay among delays and service
quality standards. The model is built on a static network with N = N PH

representing the physical yards of the system, and A = L PH = ⋃
σ∈Σ L PH(σ )

standing for the legs of the potential service set. Time is implicitly considered
through (1) the possibility to define services with different travel times between
the same pairs of yards, (2) the frequencies of the selected services, and (3) the
cost-penalty associated to the delays.

Let us define the decision variables

• yσ ∈ Z+: Frequency of service σ ∈ Σ ;
• xka ≥ 0: Flow of commodity k ∈ K traveling on arc a ∈ A , with xkli (σ ) = xka ,

for a = li (σ ), li(σ ) ∈ L PH(σ ), σ ∈ Σ ;
• zkη = 1 if commodity k ∈ K is transferred at yard η ∈ N PH(σ ), σ ∈ Σ , and 0,

otherwise.

Let A +η = {a = (η, j) ∈ A , j ∈ N } and A −η = {a = (j, η) ∈ A , j ∈ N }
be the sets of outward and inward arcs (service legs) of node η ∈ N . The SMND
is then formulated as



13 Freight Railroad Service Network Design 397

Minimize
∑

σ∈Σ
fσ yσ+

∑

k∈K

∑

σ∈Σ

∑

li (σ )∈L PH(σ )

ckli (σ )x
k
li (σ )

+
∑

k∈K

∑

σ∈Σ

∑

η∈N PH(σ )

∑

a∈A +η
Φ(xka , z

k
η) (13.1)

Subject to

∑

a∈A +η
xka −

∑

a∈A −η
xka =

⎧
⎪⎨

⎪⎩

dk, if η = O(k),

−dk, if η = D(k), ∀η ∈ N , k ∈ K ,

0, otherwise,
(13.2)

∑

k∈K
xkli (σ )

≤ uli (σ )yσ , ∀li (σ ) ∈ L PH(σ ), σ ∈ Σ, (13.3)

xkli (σ )
− xkli (σ )n ≤ dkzkηi ,

k ∈ K , i = 1, . . . , n(σ )− 1, li (σ ) = (ηi−1, ηi) ∈ L PH(σ ), σ ∈ Σ, (13.4)

yσ ∈ Z+, ∀σ ∈ Σ, (13.5)

xkli (σ )
= xka ≥ 0, ∀k ∈ K , a ∈ A , (13.6)

zkη ∈ {0, 1}, ∀k ∈ K , η ∈ N PH(σ ), σ ∈ Σ. (13.7)

Constraints (13.2) represent the usual flow conservation and demand satisfaction
requirements. Linking constraints (13.3) ensure that the total load on any service leg
cannot exceed the capacity of the service on that leg, provided the service is selected.
Constraints (13.4) make sure that the transfer (and classification, eventually) costs
are paid whenever such an operation is performed, by setting the transfer variable zkη
to 1 whenever the flow of commodity k is transferred from service σ to a different
at node η, except at the origin and destination of the demand.

The objective function (13.1) represents the total cost of the system computed
as the sum of selecting, i.e., making up, operating, and dismantling, services at
determined frequencies, and moving demand shipments on the selected services,
plus a monetary evaluation of customer-service satisfaction. The later is captured
through a penalty termΦ(xka , z

k
η), which is application specific and may take various

forms.
To illustrate, consider that transfers not only require time and resources, gener-

ating costs and delays, but also increase the possibility of missed connections and
late arrival at destination of certain demand flows. Railroads thus aim to reduce the
number of transfers and may also pay particular attention to commercially sensitive
customers. Let cT

η be the unit car-transfer cost at yard η ∈ N , and τ C
η the expected

delay to transfer a car at the same yard. (τ C
η may be defined to account for congestion

in the yard and for the type of rail car or commodity involved, but, for simplicity of
presentation, we use a linear term here.) Let also ck be the service-quality cost per
unit of time for demand k ∈ K . We may then define for each arc (service leg)



398 M. Chouman and T. G. Crainic

Φ(xka , z
k
η) = Φ(xkli (σ ), z

k
η) = (cT

η + ck)τ C
η x

k
li (σ )

zkη, (13.8)

which captures the yard and demand-specific costs of transferring cargo between
services and potential loss of service quality. This modeling approach yields non-
linear objective functions, however, increasing the computational challenges.

3.2 Car Classification and Blocking

As described in Sect. 2, car classification and grouping into blocks is central to
aiming for the goal of efficiency and revenue maximization railroads. Recall that,
cars with possibly different origins and destinations are classified and grouped into
blocks; blocks are moved by trains and are handled as single unit from their origins
to their destinations, where they are broken up. On the other hand, cars at their
origin yard may follow itineraries where they are classified and assigned to a block
which brings them to their destination yard, from where they are to be delivered
to their consignees. Alternative itineraries may also be used where the initial block
brings cars to an intermediate yard, where they are reclassified into new blocks, and
continue their trip towards the final destination or another intermediate yard and
reclassification. More than one reclassification may make up the itinerary.

The objective is to minimize cost. Decisions are highly constrained by the
operating policies of the railroad (e.g., what blocks may be put on particular
services), as well as by the resource and physical limitations of the yards in terms
of, e.g., yard type and layout, numbers and characteristics of the yard equipment
such as yard locomotives, personnel, and number and length of the classification
tracks to which sorted cars are directed and where blocks are built. This translates,
for each yard η ∈ N , into unit car classification cost, cC

η , as well as limits on the
total number of cars which may be classified and blocked during a certain period of
time, uC

η , the total number of blocks one may build, uB
η , or transfer, uT

η, during the
same time, the number of trains one may make up, uM

η , etc.
Two approaches have been proposed to address this challenging car classification

and blocking problem: (1) Develop the block plan first, then devise the set of train
services (and schedule, possibly) to accommodate the blocks; (2) Select first the set
of services and, second, build the block plan on the resulting service network. Both
problems are challenging and SND formulations have been proposed to address
them. Notice that, although it is the former which is mainly found in the literature,
there is no methodological difference between the two in a static setting, except for
the network on which the SND model is built, physical or service, respectively. We
present the blocking problem in the block-first context in this subsection, together
with a general formulation. The second case, often encountered when intermodal
services are planned, is further detailed in Sect. 5.

The problem setting considers the physical (first case above) or the designed
service network (second case). It is defined on a network G = (N ,A ), with N =



13 Freight Railroad Service Network Design 399

Fig. 13.3 Blocking SND
network

A B

C

�3

D

�1

�2

�3

�2

�1

N PH, A = B, the set of potential blocks linking the yards in N , and the OD
demand represented by set K .

Similarly to the service definition, let N (b) ⊆ N be the sequence of yards
where the block b ∈ B is formed (origin O(b)), is dismantled (destination D(b)),
and transferred from one service to a different one. Then, let L (b) be the sequence
of service legs, li (σ ) ∈ L PH, transporting the block from its origin to its destination,
through the transfer yards, when relevant. Let δbσ = 1, if at least a service leg of
service σ ∈ Σ moves block b ∈ B, and 0, otherwise, and let B(li(σ )) be the set
of blocks assigned to service leg li (σ ) ∈ L PH,∀σ ∈ Σ . Finally, let fb be the block
(fixed) building, transferring, and dismantling cost, ckb the unit cost of transporting
commodity k ∈ K from the origin to the destination of the block, and ub the block
capacity, measured in the same units used for services.

To illustrate, consider the simple four-yard network displayed in Fig. 13.3, with
four directed rail tracks, three OD commodities, and eight potential blocks b1 =
(A,B), b2 = (A,C), b3 = (A,B,C), b4 = (A,C,D), b5 = (A,B,C,D), b6 =
(B,C), b7 = (B,C,D), b8 = (C,D), the intermediate yard labels identifying
the block route not transfers. The possible commodity itineraries are: three for
k1: b2, b3, and (b1, b6) with reclassification at B; two for k2: b7, (b6, b8) with
reclassification at C; and six for k3: two direct, blocks b4 and b5, or with
reclassification at yards B or C, or both, via the block paths (b1, b6, b8), (b1, b7),
(b2, b8), and (b3, b8), respectively.

The goal is to select the blocks to build from within B, and to assign OD demand
commodities to them, at minimum total cost, computed as the sum of the fixed cost
of building, transferring, and dismantling the blocks, the cost of car classification,
and the car transportation cost. Notice that, even though A = B, we write the
formulation in terms of B to emphasize the classification and blocking scope of the
model. Define the decision variables

• yb = 1, if block b ∈ B is built, and 0, otherwise;
• xkb , continuous flow variable representing the volume of commodity k ∈ K

assigned to block b ∈ B.

The car classification and blocking service network design formulation takes then
the following form:



400 M. Chouman and T. G. Crainic

Minimize
∑

b∈B
fbyb +

∑

k∈K

∑

b∈B
ckbx

k
b +

∑

k∈K

∑

η∈N

∑

b∈B+η
cC
ηx

k
b (13.9)

Subject to

∑

b∈B+η
xkb −

∑

b∈B−η
xkb =

⎧
⎨

⎩

dk, if η = O(k),

−dk, if η = D(k), ∀ η ∈ N , k ∈ K ,

0, otherwise,
(13.10)

∑

k∈K
xkb ≤ ubyb, ∀ b ∈ B, (13.11)

∑

k∈K

∑

b∈B+η
xkb ≤ uC

η, ∀ η ∈ N , (13.12)

∑

b∈B+η
yb ≤ uB

η, ∀ η ∈ N , (13.13)

yb ∈ {0, 1}, ∀ b ∈ B, (13.14)

xkb ≥ 0, ∀ b ∈ B, k ∈ K , (13.15)

where B+η = {b = (η, j) ∈ B, j ∈ N } and B−η = {b = (j, η) ∈ B, j ∈ N } are
the sets of outward and inward arcs of node η ∈ N .

The objective function (13.9) represents the total cost measured as the total fixed
cost of building, transferring, and dismantling blocks, total cost of moving cars on
blocks, and total car classification cost at yards. Constraints (13.10) and (13.11)
are the classical flow conservation and block linking and capacity constraints,
respectively. Constraints (13.12) and (13.13) enforce the yard capacity limits in
terms of the number of cars that can be classified and the number of blocks that
can be built during the planning period. Decision-variable ranges are defined by
constraints (13.14) and (13.15).

3.3 Integrated Planning SND

Sections 3.1 and 3.2 addressed the issues of selecting and making-up trains, and
classifying cars and building blocks separately. Yet, the solution to one problem
is affecting the planning and solution of the other, no matter which problem is
considered first. To emphasize the strong relations among these issues, consider,
on the one hand, that the availability and frequency of a service determine the
possibility of building and transporting blocks using that service while, on the other
hand, the usefulness of a train service depends on the amount of traffic, in terms
of blocks and cars, the train may service. Integrated-planning SND formulations
address these issues simultaneously to select the service and the block networks and,



13 Freight Railroad Service Network Design 401

thus, define the classification strategy, as well as to determine the demand itineraries,
establishing how freight is to be routed through the service and block network.

We start with the arc and path formulations of the SND model for this problem in
Sects. 3.3.1 and 3.3.2, respectively. Section 3.3.3 presents a path formulation when
one extends the SND model to account for more advanced features such as non-
additive costs/tariffs and congestion phenomena. We conclude the section with a
short discussion of service and block generation issues in Sect. 3.4.

3.3.1 Arc-Based Integrated SND

The integrated SND model is built on the network G of potential services. Then,
N = N PH and A = L PH. The components and notation of Sects. 3.1 and 3.2
apply directly to the integrated context, in particular the yard, service, and block
definitions and characteristics. We recall the decision-variable definitions allowing
the formulation to address simultaneously the selection of services with their
frequencies, the selection of blocks to build at each yard, and the itineraries of
demand determining the routing of the flows within the service and block networks
and, thus, the classification strategy at each yard:

• yσ ∈ Z+: Frequency of service σ ∈ Σ ;
• yb = 1, if block b ∈ B is built, and 0, otherwise;
• xkb ≥ 0, continuous flow variable representing the volume of commodity k ∈ K

assigned to block b ∈ B; as the cars grouped within a block are the same over
all the route of the block, that is, on all the service legs of the services carrying
it, xkb = xkli (σ )

, li (σ ) ∈ L PH(σ ), σ ∈ Σ (and equal to xka as a = li (σ )).

The integrated service and block selection with classification model is formulated
as mixed integer SND:

Minimize
∑

σ∈Σ
fσ yσ +

∑

b∈B
fbyb +

∑

k∈K

∑

b∈B
ckbx

k
b +

∑

k∈K

∑

η∈N

∑

b∈B+η
cC
ηx

k
b

(13.16)
Subject to constraints (13.5), (13.10)–(13.15), and

yb ≤ yσ , ∀b ∈ B(li(σ )), li(σ ) ∈ L PH(σ ), σ ∈ Σ, (13.17)

∑

k∈K

∑

b∈B(li (σ ))

xkb ≤ uli (σ )yσ , ∀li (σ ) ∈ L PH(σ ), σ ∈ Σ, (13.18)

where the objective function (13.16) computes the total system cost of selecting
and operating services, building and hauling blocks and cars, and classifying cars.
(Note that the costs related to car handling in yards captured by Φ(xka , z

k
η) in the

service-selection case, Sect. 3.1, are included in the classification and blocking



402 M. Chouman and T. G. Crainic

costs.) Constraints (13.17) link the building of blocks to the selection of the services
which move them, while constraints (13.18) enforce the service capacity limits in
terms of cars hauled on each service leg given the blocks that can be moved on
that leg.

3.3.2 Path-Based Integrated SND

It is well-known that one may write network design models in arc and path forms
(see, e.g., Chap. 2), each with its own pros and cons. For example, path formulations
generally involve a huge number of variables, but are amenable to decomposition
and the utilization of solution techniques based on column generation. For service
network design, services are paths in the physical network. The same is true for
blocks in the freight railroad SND case. Hence the “arc” or “path” qualification in
this context refers generally to the representation of the freight flows on the service
network, that is, to the modeling of the demand itineraries.

We define, for the path-version of the model of Sect. 3.3.1, the set Pk of
itineraries, paths through the service network G = (N PH,L PH), with potential
set of blocks B, which may be used to transport all or some part of the volume of
demand k ∈ K . Indicators detail the definition of each itinerary, linking the arc
and path flow variables on blocks and at classification yards. Let δpη = 1 when the
cars following the itinerary p ∈Pk (re-)classify at yard η ∈ N , and 0, otherwise.
Similarly, let δpli (σ ) and δpb to equal 1 when the itinerary p includes the service leg
li (σ ) ∈ L PH and the block b ∈ B, respectively, and 0, otherwise.

Let us assume that the unit itinerary (path) cost may be computed as the sum of
the unit transportation and classification costs associated to the services and yard
classification activities making it up. This is a wide-spread hypothesis in the litera-
ture and practice and it does correspond to many actual problem settings. The unit
cost of itinerary p ∈ Pk then becomes ckp =

∑
σ∈Σ

∑
li (σ )∈L PH(σ ) c

k
li (σ )

δ
p

li (σ )
+

∑
η∈N cC

ηδ
p
η .

With respect to decision variables, the service and block selection variables
defined previously are also part of this model. Flow variables, however, are defined
as hkp, standing for the quantity of commodity k ∈ K assigned to its itinerary
p ∈ Pk . The path formulation of the integrated service design & block selection
with classification model may be written as:

Minimize
∑

σ∈Σ
fσ yσ +

∑

b∈B
fbyb +

∑

k∈K

∑

p∈Pk

ckph
k
p (13.19)

Subject to constraints (13.5), (13.11)–(13.15), (13.17)–(13.18), and

∑

p∈Pk

hkp = dk, ∀k ∈ K , (13.20)



13 Freight Railroad Service Network Design 403

hkp ≥ 0, ∀p ∈Pk, k ∈ K , (13.21)

xkb =
∑

p∈Pk

δ
p
b h

k
p, ∀b ∈ B, k ∈ K . (13.22)

Constraints (13.20) ensure all demand is moved to its final destination (and enforces
the flow conservation at the nodes of the network), while constraints (13.21) define
the domain of the path flow variables. Finally, relations (13.22) are definitional
constraints linking the arc and path flow variables on blocks.

3.3.3 Advanced Path-Based Integrated SND

Most planning models in the literature and this chapter, including the previous
path-based one, assume strict capacity restrictions, no waiting due to congestion,
additive path characteristics with the composing arcs and nodes, and linear cost
(and time) functions in the decision-variable values. While reasonable in many
cases, and making solving somewhat easier, such hypotheses limit the scope of
the planning models. We discuss these limitations in the following, together with
a modeling framework addressing them. Although presented for the static SND
case, the discussion and modeling framework are general, including for the time-
dependent case.

Capacity constraints are ubiquitous in practice and OR models. They obviously
apply at operation time. One cannot load more containers on a car than it can
physically accommodate. At the tactical planning however, one is generally less
concerned with how the capacity of each individual car, train or yard is filled up,
and much more interested in identifying the service network and flow distribution
for an optimal usage of those resources and capacities. Thus, the assignment of some
quantity of freight to a particular service resulting in exceeding its capacity may
indicate either that the frequency of the service should be increased, or that some less
important (in terms of priority or delay costs) traffic should pass to another service.
The formulation of strict capacity constraints would prevent, however, the detection
and handling of such a situation by the solution method. Moreover, it is also known
that assigning more flow to a service or a yard does not result in stopping the system
activities. It rather translates, in practice, either in delays for the respective freight,
which will wait for the next departure, or in additional resources being brought on
line. Increased costs and, possibly, delays, occur in both cases.

Treating such limits as utilization targets rather than strict constraints, and
including in the objective function penalties for the over utilization of the capacity,
addresses these issues. Consider, to illustrate, the service-leg capacity constraints
(13.18). Let ασ be the unit penalty cost of overloading service σ ∈ Σ . A rather
simple utilization-target penalty may be written for each service leg of the service
as



404 M. Chouman and T. G. Crainic

Ψli(σ )(yσ )=ασ
⎛

⎝max

⎧
⎨

⎩
0,
∑

k∈K

∑

b∈B(li (σ ))

xkb−uli (σ )yσ
⎫
⎬

⎭

⎞

⎠

n

, ∀li (σ ) ∈ L PH(σ ), σ ∈Σ,

(13.23)

where n represents a certain degree of unwillingness of letting the tactical plan
overloading the resource too much.

A similar approach may be used to model resource availability limitations with
respect, e.g., to locomotives or railroad cars of particular types. Global limits
for the network or targeted by yard may be handled in this way. Service-quality
targets for demand, specifying, for example, the total duration of the origin to
destination activity chain, may also be addressed in this way. Such targets may have
been publicized or promised to specific customers only. Delay (time) measures are
associated in such problem settings to the yard and long-haul movement activities
and, thus, to services and itineraries. A capacity-like constraints may then be
imposed on the itinerary duration with respect to the service target. But, again,
such a constraint would provide the opportunity to trade off a penalty on some ODs
against a more significant reduction in costs in other regions, generated by a more
cost-or time-efficient deployment of resources. An itinerary-specific penalty may
then be computed as the difference between the itinerary duration and the service
target, weighted by a demand-specific penalty cost, which may represent the penalty
the railroad must pay when delivering late or an estimation of the potential market-
share loss.

Penalties defined according to (13.23) represent a rather strict translation of
the capacity and target constraints, which does not account for the well-known
fact that getting close to the capacity limits is not suitable in several cases.
Consider, for example, yard classification capacities. Trains bring cars in batches,
each according to its more or less followed schedule. These cars are then handled
by a limited number of resources, with varying characteristics and performance
measures, proper to the yard type. Queuing phenomena and congestion are a direct
consequence of such situations, which may be observed for various yard activities
(e.g., classification, container loading/unloading, and interservice block transfer),
as well as for long-haul movements when several freight and, possibly, passenger
trains share a single or double-track with restricted capacity (due, e.g., to too
few or too short sidings). Models based on queuing theory have been proposed
in the literature to account for these phenomena. Queuing models or networks
of queues were proposed and used mostly to simulate operations. Such models
are very detailed, however, and generally yield non-continuously differentiable
functions, which is very hard to handle, particularly for large-scale formulations.
Consequently, continuous non-linear functions were proposed to approximate such
congestion behavior within network-wide SND formulations addressing tactical-
planning issues.

Let the decision-variable vectors y and h indicate a given level of service in Σ

and flow distribution in P , respectively. Let then



13 Freight Railroad Service Network Design 405

Fσ (y,h): Total (fixed) cost of operating service σ ∈ Σ ;
Fb(y,h): Total (fixed) cost of building, hauling, and dismantling block b ∈ B;
Ck
p(y,h): Total unit cost for itinerary p ∈Pk;

Ψ (y,h)): Penalty terms capturing various relations and restrictions, such as the
limited service capacity.

The objective function of the path-based integrated SND formulation may then
be written in a general form

Minimize
∑

σ∈Σ
Fσ (y,h)yσ +

∑

b∈B
Fb(y,h)yb +

∑

k∈K

∑

p∈Pk

Ck
p(y,h)hkp + Ψ (y,h),

(13.24)

where costs depend on the complete status of the network as given by the y and
h vectors at the corresponding iteration of the solution method. It may be very
difficult, in practice, to develop and calibrate such general functions for railroads
of realistic dimensions and complexity. The impact of distant activities on a given
service, block, or yard may be hard to evaluate and might not be very important.
Consequently, most models adopting this approach consider nearby interactions
only, within each individual yard, for example.

Notice that service-quality targets and time-related measures open a number of
possibilities for more flexible modeling and accounting for the cost of time, even
in a so-called static formulation. Thus, one may model frequency (or connection)
delays encountered when one must transfer between two services with different
frequencies and, thus, with differences in their presence at the same yard. One
may also define time-related costs for services and demands, and use them to
weight the total time required to go from origin to destination through the various
system activities. The delay cost for demand usually represents the penalties in
case of late delivery. It may also be used to model priorities, the time sensitiveness
for certain commodities, and customer-service classes, a higher cost pushing the
corresponding demand flows more rapidly through the system. For services, these
costs may represent depreciation values and inventory costs as well as, according to
the railroad’s accounting practices manpower or energy-consumption costs.

The objective function thus computes a generalized cost, in the sense that it may
include a broad range of productivity measures related to terminal and transportation
operations, in terms of time, cost, and quality and reliability of the service offered.
This enhances modeling refinement and flexibility, providing the opportunity for
enhanced trade-off analyses among cost and service-quality objectives, as well as
among the impact and value of activities and resource utilization. The gains come,
however, at the price, the SND formulations taking the form of nonlinear integer
multicommodity network design problems.



406 M. Chouman and T. G. Crainic

3.4 Service & Block Generation and SND Models

The static and time-dependent models described in this chapter proceed as most
network design models do, by selecting from a set of candidate, potential, arcs.
More precisely, for the railroad case, from potential sets of services Σ and blocks
B. How these sets are generated is a valid question, which is relevant for most
SND applications (see, e.g., Chap. 12), and more so for railroad transport with its
several levels of consolidation and combinatorial complexity. We briefly discuss the
topic in the context of static SND, but everything applies to time-dependent settings
too. In fact, the latter case presents even greater challenges, the time dimension of
the problem setting exacerbating the combinatorial multiplication of the number of
potential services and blocks.

The cardinality of these sets may be very large. Consider, for example, that a
service may, in theory, be defined between every pair or yards in the network,
on every possible physical path, with every possible combination of stops at the
yards on that physical path, as well as for every type of service in terms of
power, capacity, speed, priority, and so on and so forth. Blocks may then be
defined similarly but on the network made up of all those potential service legs.
Obviously, full enumeration of all potential services and blocks is not more realistic
for railroads than for the other modes or other situations of a similar nature, e.g.,
crew scheduling in passenger and freight transportation. On the one hand, full
enumeration yields problem dimensions extremely difficult to manipulate and solve,
even when stringent feasibility checks are enforced. On the other hand, trying to
generate “good” services and blocks only, with respect to limits on costs and time,
for example, generally eliminates elements contributing to very good or optimal
solutions. Hence, a systematic service and block generation procedure tightly linked
to or part of SND formulations is needed.

Partial targeted enumeration is appropriate in many practical cases when the
plan for the next season is based on the previous one, adjusted for the trends
and predictions in demand, prices, and the regulatory environment identified by
management. The past service and block networks are then enriched with a number
of additional possibilities reflecting these trends and predictions. Yet, even in such
situations, one faces the problem of missing elements required for very good
solutions, and a more systematic procedure is required.

The goal is thus to include the generation of the service and block sets into SND
formulations. We illustrate the difficulty of arc-based formulations focusing on the
case when one starts with the set of potential services, the blocks are to be generated
together with the tactical plan, at most one block is created for each pair of yards.

The problem description and notation of Sect. 3.3.1 (and previous ones) apply
except for the block definition, which is reduced to the origin and destination yards,
O(b) and D(b), respectively, of block b ∈ B. The path in the service network L PH

is thus not part of the input, but is an output of the optimization problem. Thus,
at most |B| = |N PH|2 − |N PH|, which is relatively small. This gain in problem
dimensions and number of integer block-selection variables is paid for, however, in
increasing numbers and complexity of constraints, as shown in the following.



13 Freight Railroad Service Network Design 407

Given the updated definition of B, the fixed cost fb includes only the cost
relative to building the bloc at the origin yard and dismantling it at destination.
The inter-service transfer costs must be identified and, then, computed separately.
We model this through a function Φ, which can be of any form but accounts for
the characteristics and operating policies of the yard and the number of blocks to
transfer. Other than the yσ , σ ∈ Σ , yb, b ∈ B, and xkb , b ∈ B, k ∈ K , decision
variables of Sect. 3.3.1, we define

• ybli (σ ) = 1 if block b ∈ B is moving on service leg li (σ ) ∈ L PH(σ ), σ ∈ Σ , and
0 otherwise;

• zbη = 1 if block b ∈ B is transferred at yard η ∈ N PH from one service to
another, and 0 otherwise.

The SND formulation with block generation minimizes the total system cost
(13.25), computed as the service- and bloc-selection costs, plus the cost of moving
cars on blocks given the service leg used to haul the block, the car classification cost
at yards where blocks are generated, and the cost of transferring blocks between
services.

Minimize
∑

σ∈Σ
fσ yσ +

∑

b∈B
fbyb +

∑

k∈K

∑

b∈B

∑

li (σ )∈L PH

ckli (σ )x
k
bybli (σ )

+
∑

k∈K

∑

η∈N

∑

b∈B+(η)
cC
ηx

k
b +

∑

η∈N

∑

b∈B
Φ(zbη) (13.25)

Subject to (13.10)–(13.13), and

∑

σ∈Σ

∑

li (σ )∈A+
η

ybli (σ )−
∑

σ∈Σ

∑

li (σ )∈A−
η

ybli (σ ) =

⎧
⎪⎨

⎪⎩

yb, if η = O(b),

−yb, if η = D(b),

0, otherwise, ∀ η ∈ N , b ∈ B,

(13.26)

ybli (σ ) − ybli+1(σ ) ≤ zbηi ,

∀b ∈ B, i = 1, . . . , n(σ )− 1, li (σ ) = (ηi−1, ηi) ∈ L PH(σ ), σ ∈ Σ, (13.27)
∑

k∈K

∑

b∈B
xkbybli (σ ) ≤ uli (σ )yσ , ∀li (σ ) ∈ L PH, σ ∈ Σ, (13.28)

ybli (σ ) ∈ {0, 1}, ∀ b ∈ B, li (σ ) ∈ L PH, σ ∈ Σ, (13.29)

yσ ∈ Z+, ∀ σ ∈ Σ, (13.30)

yb ∈ {0, 1}, ∀ b ∈ B, (13.31)

zbη ∈ {0, 1}, ∀ b ∈ B, η ∈ N , (13.32)

xkb ≥ 0, ∀ b ∈ B, k ∈ K . (13.33)



408 M. Chouman and T. G. Crainic

Constraints (13.26) and (13.27) enforce the building of blocks conditions. The
former are the block-building constraints ensuring that a single path is selected in
L PH for each block from its origin to its destination. The latter, (13.27), are linking
relations ensuring that block transfers are accounted for, and that the corresponding
costs will be paid, by setting the transfer decision variable zbη to 1 whenever block
b is transferred from a service to a different one at yard η, except at the origin
and destination of the block. Constraints (13.28) are the flow-service linking and
capacity constraints, given the service legs moving the block transporting the cars.
Restrictions on the decision variables are enforced by constraints (13.29)–(13.33).

It is noteworthy that a sleeker set B and, thus, fewer yb selection variables,
translates into a large number of constraints, namely (13.26) and (13.27), and
decision variables, ybli (σ ), required to build the blocks out of service legs and
transfers. It is also worth noticing that both the objective function (13.25) and
constraints (13.28) are non linear. This is not surprising and the issue can be
addressed, but it does not make the problem dimensions smaller nor the formulation
easier to address. These observations are not unique to railroad planning, but
have been made in many other settings, e.g., crew scheduling and vehicle routing.
Dynamic path generation techniques, based on Column Generation techniques, have
been applied in such settings and appear promising for service network design and
railroad tactical planning. Most work has still to be undertaken in this field, which
constitutes a challenging but interesting research direction, particularly when the
time dimension is explicitly considered as in the models of the following sections.

4 Time-Dependent SND and Integrated Planning

We now turn to time-dependent SND formulations, also known as Scheduled Service
Network Design (SSND) models. As discussed in Sect. 2.3, SSND targets time-
dependent problem settings, explicitly representing the time-related characteristics
of demand, in terms of availability time at origin and due time at destination. To
answer the requirements of time-dependent demand, the time characteristics of the
service the railroad offers is also explicitly represented, in terms of a schedule stating
the departure and arrival times at each of the yards on the route of each individual
service. The aim is thus not only to select the service network, but also the schedule
of the selected services to address the time-dependent demand.

Most SSND models address a broader set of planning issues than selecting
services only, and are generally qualified as integrated-planning methods. The
general SSND modeling framework presented herein for the integrated freight-
railroad planning problem addresses the main tactical-planning issues: service
selection and scheduling, blocking and classification, train makeup, and freight
routing. The goal is to minimize the total cost of the system, while satisfying demand
with the available resources. The framework is extended in Sect. 5 to address exiting
schedules, intermodal traffic, and resource management at the tactical planning
level.



13 Freight Railroad Service Network Design 409

Most of the notation is introduced in Sect. 2.3 and Table 13.1. It is briefly
recalled and completed in the following. SSND formulations are built on time-space
networks, defined over the total duration of the schedule length, most of them using
a discrete representation of time. The mixed-integer network design formulation
presented in this section follows this classical approach, adapted for the multiple
interrelated decisions involved in the problem setting. The model is thus built on
a multi-layer time-space network G = (N ,A ), using a discrete representation of
the schedule length T. The nodes are representations of the physical nodes (yards,
mainly) at all time periods. Two nodes, ηIN

t , η
OUT
t ∈ N , are created for each yard

η ∈ N PH and time period t ∈ T , to capture all the traffic coming into the node and
going out of the node, respectively.

Arcs represent movement on service legs and holding activities at nodes.
Recalling that the scheduled service plan is to be applied repeatedly over the tactical-
planning horizon, G takes on a cyclic nature. The network thus reflects the fact that
activities and decisions do not stop with the end of the schedule length, but rather
involve the next application of the scheduled plan. Thus, for example, when building
a week-long schedule, a service may start on Friday and arrive at destination the
following Tuesday. We model these situations by having the corresponding arcs
wrap around. In modeling terms, this means that the destination for an arc with
origin at time t and a duration which would make it arrive at a time > T is defined
at a time t ′ < t through a modulo computation.

We present the SSND model on a three-layer time-space network, schematically
illustrated in Fig. 13.4. Multi-layer networks make up a general methodology
with applications in transport and telecommunications. Integrated railroad planning
offers a very good illustration. Each layer represents the activities and decisions
which focus on the particular type of flow, cars, blocks, and services. The arcs

IN

OUTCar
Layer

IN

OUT
Block
Layer

Service
Layer IN

OUT

Demand in Demand out

Wrap-around arc
Cars sorted, block ready at origin

Blocked/unblocked
Classification
Wait

Start/connect
Transfer
Build/wait

Stop
Ready
Make up/down

Block at destination; cars to classify or leave

Block attached to service Block detached from service at destination or transfer

Stop
Ready
Make up/down

Fig. 13.4 Three-layer time-space SSND network



410 M. Chouman and T. G. Crainic

in each layer stand for the operations taking place in terminals, impacting prin-
cipally the corresponding flows. The inter-layer arcs model the assignment and
consolidation/de-consolidation of these flows, from cars to blocks to services and
vice-versa, the classification, transfer, and makeup activities being modeled within
each layer. Each layer is thus a “complete” time-space network. In the model we
present in this chapter, the time and schedule length definitions are the same for all
layers. Consequently, the node set N is the union of the node sets in all layers.
Similarly, the arc set A is the union of all arcs, movement and holding, in all layers,
plus the inter-layer arcs supporting the flow movements between layers. To simplify
the presentation, we do not detail the notation based on layers, except when needed
to avoid confusion (Sect. 6 points to literature with detailed notations).

Cars, loaded and empty, enter the network through an IN node within the car
layer. They exit the network through an OUT node in the same layer. Section 5
adds a container loading/unloading layer within the context of intermodal rail
transportation. The holding arcs between IN nodes represent the waiting time for
classification. In this formulation, the yard classification capacity is defined by
time period and is associated to the classification links. The interplay between
this limit and the flow of cars requiring classification determines for how long
(given by the number of waiting links) cars have to wait before being sorted.
The blocked/unblocked links capture the time waiting, once classified, on the
appropriate block track for the appropriate number of cars to accumulate and the
block to be ready. They also represent the possible waiting at the final destination
when arrived too early. The car layer illustration also shows a wrapped-around
(blocked/unblocked) arc (for clarity of illustration we do not show such arcs on
the other layers).

The car and the block layers are linked through two types of arcs. The first moves
the sorted and blocked cars, i.e., the block, to the block origin in the block layer.
Symmetrically, block-to-car arcs move the cars on a block at destination back to the
car layer, to be either re-classified (not at their destination, yet) and put on a new
block, or to exit the yard for final distribution (cars at their final destination).

The block layer focuses on selecting the blocks, the block-to-service assignment,
and the associated operations of attaching a block to a train or detaching the
block from a train. The attach-to-train operation involves the new blocks at
their origins, and blocks transferring at intermediary yards. The detach-from-train
operation applies to blocks at their destinations, and blocks requiring transfer to
a different train. The build/wait arcs in the block layer capture the blocks ready
to be attached/transferred, while the start/connect arcs capture the waiting for the
departure service. Transfer arcs stand for the physical operations of moving blocks
to or between trains and may model limited capacity and force waiting.

Block-to-service and service-to-block arcs link the block and service layers. The
former connect OUT nodes in the block layer to IN nodes in the service layer and
represent adding the blocks, new or transferred, to trains at the given period. The
latter connect IN service nodes to IN block nodes, taking the blocks off their current
services for transfer or dismantling (when at destination).



13 Freight Railroad Service Network Design 411

Arcs in the service layer represent service selection, schedules, and operations
(Sect. 2.3). Services start from an OUT node at the specified starting time period.
Direct services terminate their routes at an IN node at the period specified in its
schedule. Multi-stop services, arrive at the first stop at an IN node, stop at the yard
for the specified number of periods, leave from the corresponding OUT node, move
to the IN node of the next stop, and so on and so forth until the final destination.
Differently from the two previous layers, the service layer thus includes explicitly
moving arcs representing the service legs of the potential services according to their
schedules. Two such arcs only are sketched in Fig. 13.4. The figure also shows the
make up/down arcs on which trains stay while taking out blocks at destination or
being transferred or taking in blocks for the outbound move. The stop arcs complete
the stop length until the departing service leg. The ready arcs complete the modeling
of the service yard activity and may be used to model yard capacity limitations.

A few notes before introducing the SSND formulation. A demand itinerary is
then a path in the three-layer time-space network between the IN and OUT nodes
in the car layer representing the corresponding origin and destination yards at the
availability and due dates, respectively. When the cars are delivered before the due
date, they wait on the blocked/unblocked arcs (the model may be easily modified
to account for late deliveries and penalties). The itinerary then includes the wait
arcs, a classification arc, reaching an OUT node, where they wait for accumulation
of cars on blocked/unblocked arcs. Once the block is formed, the traffic goes up to
the block layer, where the block journeys to its destination yard, where the block is
dismantled and the cars return down to the car layer at an IN node for final delivery
or re-classification. The journey continues as described in the latter case until the
final destination of the demand.

A block journey may be similarly described, from an IN node in the block layer,
through build/wait arcs, a transfer arc, and start/connect arcs until the OUT node
when the block is ready to be put on the train through an inter-layer arc. Once in
the service layer, the block journeys through a sequence of service legs interspersed
with movements down to the block layer, the arcs involved in the transfer operation,
and then back up to the service layer and the next segment on the block route.

It is noteworthy that “moving arcs” may be shown in the car layer by projecting
on it the appropriate blocks making up each itinerary. Similarly, moving arcs in
the block layer are obtained by projecting the corresponding service legs. Notice,
finally, that parallel arcs may exist in the service layer standing either for train
movements following different physical routes between the two yards with the same
departure and transit times, or for services of different types (e.g., regular cargo and
intermodal) sharing the same infrastructure.

The parameter and decision-variable definitions follow the pattern of all other
models in this chapter, with the provision that, all service, block, and itinerary sets
follow the time-space network definition with IN and OUT nodes for each yard.
Thus



412 M. Chouman and T. G. Crainic

• fσ : Fixed selection cost for service σ ∈ Σ ;
• yσ ∈ Z+: Frequency of service σ ∈ Σ . The selection decision and its fixed

cost concern, as usual, the complete service definition in the service layer. For
representation purposes, they may be associated to the moving arc of the first leg
of the service;

• fb: Fixed cost of building and moving block b ∈ B;
• yb = 1, if block b ∈ B is built, and 0, otherwise. Similarly to service selection,

block-selection decision and fixed cost apply to the complete block definition in
the block and service layers. For representation purposes, they may be associated
to the arc out of the O(b) IN node on the block layer;

• xka ≥ 0, continuous flow variable representing the volume of commodity k ∈ K
on arcs a ∈ A , becoming xkb , when a = b ∈ B, and xkli (σ ), when a = li (σ ) ∈
L , σ ∈ Σ ;

• cka : Hauling and time unit cost for commodity k ∈ K on the service legs, i.e., on
the moving arcs of the service layer; the handling cost on car-classification (car
layer) and block-transfer (block layer) arcs; and the time cost on the holding arcs
of the car, block and service layers;

• ua : Capacity of classification (uC
η , car layer) and transfer arcs (uB

η , block layer).

The integrated scheduled service network design model may be formulated as:

Minimize
∑

σ∈Σ
fσ yσ +

∑

b∈B
fbyb +

∑

k∈K

∑

a∈A
ckax

k
a (13.34)

Subject to

∑

a∈A +η
xka −

∑

a∈A −η
xka =

⎧
⎨

⎩

dk, if η = O(k),

−dk, if η = D(k),

0, otherwise, ∀η ∈ N , k ∈ K ,

(13.35)

∑

k∈K
xkb ≤ ubyb, ∀ b ∈ B, (13.36)

∑

k∈K

∑

b∈B(li (σ ))

xkb ≤ uli (σ )yσ , ∀li (σ ) ∈ L , σ ∈ Σ, (13.37)

∑

k∈K
xka ≤ uC

a , ∀a ∈ classification arcs ⊂ A , (13.38)

yb ≤ δbσ yσ , ∀b ∈ B, σ ∈ Σ, (13.39)
∑

b∈B
yb ≤ uT

a, ∀a ∈ transfer arcs ⊂ A , (13.40)

∑

b∈B | O(b)=η
yb ≤ uB

η, ∀η ∈ in nodes on block layer ⊂ N , (13.41)



13 Freight Railroad Service Network Design 413

∑

σ∈Σ | O(σ)=η
yσ ≤ uM

η , ∀η ∈ in nodes on service layer ⊂ N , (13.42)

yσ ∈ Z+, ∀σ ∈ Σ, (13.43)

yb ∈ {0, 1}, ∀b ∈ B, (13.44)

xka ≥ 0, ∀a ∈ A , k ∈ K , (13.45)

where the objective function (13.34) computes the total cost of selecting and oper-
ating services, building, transferring, and hauling blocks, and classifying, blocking,
transferring, and hauling cars. Constraints (13.35) enforce flow conservation at all
nodes on all layers. Constraints (13.36) and (13.37) limit the loads of blocks and
service legs in terms of cars hauled, respectively, while constraints (13.38) perform
the same task on the yard classification arcs on the car layer. Constraints (13.39) link
the building of blocks to the selection of the services moving them, while constraints
(13.40) limit the number of blocks which can transfer simultaneously at a yard on
the block layer. Finally, constraints (13.41) and (13.42) limit the number of blocks
and trains, respectively, which can be built at each yard during the schedule length
(extending the formulation to enforce capacities by time periods is straightforward).

5 Extending the SSND

The previous model is general and may be extended to account for additional
railroad features and planning issues. It may be extended, for example, to path-
based models, integrating the handling of non-additive characteristics and penalty
or congestion representations of capacity limits. We focus in this section on
three extensions, the first handling given service schedules and continuous-time
representation, the second addressing the intermodal railroad case, while the third
is concerned with the integration of resource-management concerns into tactical
SSND.

It is not unusual for tactical railroad planning to be performed by two different
teams within the railroad, one focusing on the service design, with somewhat rough
blocking concerns, the other starting from the service network selected and focusing
on the detailed classification, blocking, and final train makeup decisions. This case is
particularly observed when intermodal traffic is concerned. The service design still
addresses the entire system and all traffic classes, while only the services dedicated
to intermodal freight are within the scope of classification and blocking planning.

A given service network and schedule induces a continuous time discretization
of the schedule length, corresponding to the departure and arrival time instants of
each service at each of the yards in its route. Figure 13.5 illustrates the service
layer of a multi-layer SSND, at a particular yard, for two services stopping at that
yard for different lengths of time. The network is greatly simplified, as the only IN

and OUT nodes in the layer correspond to the arrival and departure time instances,



414 M. Chouman and T. G. Crainic

IN

OUT
Stop & Handle arc

Block attached to service

Block detached from service at destination or transfer

��(�)

��(�̕)

�(�)

��(�̕)

��+1(�̕)
��+1(�)

Fig. 13.5 Service layer with given SSND service schedule

respectively, of each service. The block-to-train attach and detach activities are
concentrated in the IN and OUT nodes of the service. This defines the time instances
in all the other layers. The network is further simplified as the activities related to
each service while in the yard are associated to a unique Stop & Handle service-
specific arc, the arcs in the other layers being simplified in a similar way. Note that
holding arcs capturing waiting periods on the car or block layer are not eliminated.
The duration and costs of the inter- and intra-layer arcs may be adjusted to account
for this discretization. Thus, for example, when the availability time of demand
k ∈ K is before the first node defined in the network, o(k) is set to the time
instance of that node and the waiting cost and time of the demand are adjusted
accordingly. The resulting SSND still presents the same degree of complexity as
the general network design problems. The simplification of the network provides
the means, however, to address much larger problem dimensions with commercial
mixed-integer software, corresponding, for example, to the cases of several North
American railroads.

Intermodal traffic and operations are the topic of the second extension of the
SSND we discuss (to simplify the presentation, car classification activities are not
included). As already indicated, intermodal demand must be loaded onto cars at
the origin terminal and must be unloaded at destination. This major difference with
regular traffic, induces an additional layer to the SSND network. The container layer
corresponds to the entry and exit of container OD demand into and out of the railroad
system. Holding arcs capturing waiting prior to blocking or prior to final delivery at
destination are part of the container layer. Inter-layer arcs between the container and
car layers support the container-to-car assignment and loading, in one direction, and
the container unloading, in the opposite direction (when the service network and
schedule is given, as above, the time instance of those arcs correspond to a possible
block for the cars, which corresponds to a possible service for the block.)

Representing the many types of containers and container-compatible cars, as
well as the large number of rules governing the loading of containers on railroad
cars is a major challenge for tactical (and strategic) modeling. Indeed, one cannot
explicitly include the huge number of feasible loading patterns into aggregated



13 Freight Railroad Service Network Design 415

service network design formulations. This is still a challenging research issue.
We present an approximation procedure, which proved appropriate for tactical
planning in the North American context, where double-stacking is largely used (the
approximation may be easily adapted for the simple case of single staking). Double
stack means that two containers may be loaded one on top of the other, following
very stringent rules, e.g., a 53-feet long container may be positioned on top of a
40-feet container or two 20-feet containers, but the opposite patterns are generally
not allowed.

The approximation is based on the observations that (1) cars built to haul
containers (also called Well cars) come in several multi-platform configurations,
a platform providing two slots, one on the bottom and one on top, for containers of
a given length; (2) 40-feet and 53-feet are the two main container types, the former
world wide (with the 20-feet ones, which can be approximated as two 20s= one 40),
the latter mainly in North America (43-feet and 45-feet may be modeled through the
53s), and correspond to the main platform-loading capability of cars; (3) cars able
to carry 53-feet containers are more expensive (to rent and operate) than the other,
more regular, cars and one therefore aims to use not more than necessary; (4) length
is a major constraining feature for trains and blocks both in terminals and when put
on trains. Then, given that the length of a car is determined for the most part by
the number of platforms it provides, the approximation makes use of the platform,
of a given type, as a loading unit, and considers 40- and 53-feet long container and
platform types.

Consider the basic loading rules for these container and platform types:

• 40-feet platform: (1) single 40-feet container in the bottom slot; (2) two 40-feet
containers in the two slots; (3) one 40-feet container in the bottom slot and one
53-feet in the top slot; 4) empty;

• 53-feet platform: (1) all the configurations of a 40-feet platform; (2) single 53-
feet container in bottom slot; (3) two 53-feet containers in the two slots.

The procedure aims to “maximize” the number of forty-feet platforms per unit of
train length. Consequently, when the number of 53-feet containers (nb53) is greater
than or equal to the number of 40-feet containers (nb40), the 40s should be placed in
bottom slots and the 53s on top, as much as possible. The numbers of 53-feet (nbp53)
and 40-feet (nbp40) platforms are given by (13.46) and (13.47), respectively. These
four parameters are then the basis for decision-variable definitions for the numbers
of containers and platforms, of each type, assigned to each block. The values of these
variables are governed by constraints implementing relations (13.46) and (13.47),
and are used to compute costs and enforce capacities.

nbp53 = max {0, �(nb53 − nb40)/2�} , (13.46)

nbp40 = �(nb53 + nb40)/2)� − nbp53. (13.47)

Similar to any other transportation mode (Chap. 12), rail services require
resources to operate, people, cars, and locomotives, in particular. While a rich



416 M. Chouman and T. G. Crainic

literature addresses resources-management issues (Sect. 6), most research and
contributions target operational planning issues, in which the service network and
schedule are given. Multicommodity network flow optimization (linear formulations
with integer flow variables) is the methodology of choice in those cases. Given
the scope and length limits of this book, we do not detail this methodology. We
rather focus on the challenge of representing resource-management concerns at the
level of tactical planning and within SSND models. The goal is not to integrate
the details of scheduling and managing resources, but rather to capture the main
impacts of resource management on the tactical plan. This is a broad and largely
unexplored research area, which needs significant work, not only for railroads, but
for consolidation-based transportation in general.

The initial and current developments focus mainly on the availability and routing
of material resources (also sometimes called “assets”). They follow from the
operational needs and developments aimed at balancing assets, as well as from the
growing requirements of efficiently running a scheduled railroad without a level of
resources higher than what is strictly needed. With respect to the first aspect, recall
that trade and, thus, demand flows are unbalanced, different products and quantities
flowing, say, from West to East than vice-versa. This results in vehicles, cars and
locomotives, of certain types, becoming available after providing service at yards
where they are not needed for the next cycle of operations but missing at others.
Empty cars and locomotives must therefore be moved, repositioned, for the next
cycle. So-called “full-asset utilization” policies illustrate the second aspect, where
resources are ideally expected to circulate continuously in the network (accounting
for the maintenance requirements, of course) supporting the scheduled services.

The basic translation of the previous discussion into a mathematical formulation
are the design-balancing constraints

∑

a∈A +η

∑

σ∈Σ
δaσ yσ −

∑

a∈A −η

∑

σ∈Σ
δaσ yσ = 0, ∀η ∈ N , (13.48)

where δaσ = 1 if service σ ∈ Σ operates on arc a ∈ A (i.e., one of its legs defines
arc a, which terminates or initiates at node η), and 0, otherwise.

The design-balancing constraints (13.48) state that the number of resources
brought into a yard by all incoming services equals the number of resources taken
out of the yard by the selected outgoing services. The constraints assume that one
unit of resource is required by each occurrence of each service (recall that yσ ∈ Z+),
where the unit may represent a locomotive, a group of locomotives, a car, a group of
cars, or a crew. In this sense, resources are assimilated to services. The formulation
is still rich, however. Several resource types may be defined, with the corresponding
design-balancing constraints. Moreover, the δaσ parameters may be refined and
tailored for particular resources and restrictions of services or yards. On the other
hand, it is difficult to represent cost and utilization characteristics of particular
resource types, such as the assignment of resources to particular home yards, which



13 Freight Railroad Service Network Design 417

is a regular feature of transportation systems, and the maximum duration before
returning home for maintenance.

A path-based formulation provides the modeling tool to address these shortcom-
ings. The idea is to explicitly define the sequence of tasks a resource has to undertake
as a cycle θ of service legs, and holding arcs in time-dependent formulations. Let
Θ represent the set of resource cycles, and uR the quantity of resources available in
the system. Let L (θ) be the set of service legs li (σ ) ∈ L (σ ), σ ∈ Σ , the resource
cycle θ ∈ Θ supports in sequence, with the definitional parameter δθli (σ ) = 1 if
service leg li (σ ) ∈ L (σ ), σ ∈ Σ , is supported by resource cycle θ ∈ Θ , and 0,
otherwise. Let fθ represent the fixed cost of selecting and operating resources on
cycle θ ∈ Θ , and let us define the resource selection decision variable yθ ∈ Z+ as
the number of resources executing cycle θ ∈ Θ .

The total resource cost
∑

θ∈Θ fθyθ is then added to the objective function of

the SSND model. Constraints (13.49) are added to the formulation to connect the
selection of the sufficient number of resources and the requirements of the selected
services.

∑

θ∈Θ
δθli (σ )yθ = yσ , ∀li (σ ) ∈ L (σ ), σ ∈ Σ, (13.49)

∑

θ∈Θ
yθ ≤ uR, ∀η ∈ N . (13.50)

Notice that constraints (13.50), limiting the number of resources selected to the
availability of resources, is not needed as stated, the resource cost driving the
number of selected resources to the minimum required to run the system. The
constraints may be refined, however, to represent resource availability at each yard,
when cycles (i.e., the resources executing them) are linked to a home yard as its
respective domicile, from where it originates and where it returns at the end. Notice
also that the attributes of resource cycles may be controlled during generation, e.g.,
one may forbid generating cycles longer than permitted by the rules governing the
resource type and its home yard (see also the discussion of Sect. 3.4). As discussed
in Chap. 12, this approach is extremely promising for linking resource management
and service network design for tactical planning, but much more research is required
on modeling the various cases and objectives and on developing efficient solution
methods for large problem instances.

6 Bibliographical Notes

The literature on railroads and railroad planning goes many years back, generally
presenting application-based contributions and reflecting often industry practice.
Several survey papers synthesize the story and contributions of operations research,
including network design methodology, to railroad planning, e.g., Assad (1980b);



418 M. Chouman and T. G. Crainic

Dejax and Crainic (1987); Crainic (1988); Crainic and Laporte (1997); Cordeau
et al. (1998); Crainic (2000); Newman et al. (2002); Crainic (2003); Ahuja et al.
(2005a); Crainic and Kim (2007); Bektaş and Crainic (2008); Crainic (2009);
Yaghini and Akhavan (2012).

Early contributions focus on single problems or combinations of a limited
number of issues. These include the pioneering service selection, routing and
makeup model of Assad (1980a), the train routing and the scheduling model of
Morlok and Peterson (1970). Huntley et al. (1995) developed a computerized
routing and scheduling system for CSX Transportation, while Ireland et al. (2004)
developed a planning system for Canadian Pacific Railway that brought together
several separate procedures without building a comprehensive model.

Blocking has often been addressed as a separate problem to be solved before
the selection of services. Bodin et al. (1980) proposed one of the first such models,
a non-linear mixed-integer formulation, blocking delays being dependent on the
number of cars assigned to each block. Newton (1996); Newton et al. (1998);
Barnhart et al. (2000) formulates the blocking problem as a network design model,
arcs representing candidate blocks among classification yards. No fixed costs are
associated to blocks, the number of blocks which can be build at each yard being
limited through budget constraints. A path-formulation and a branch-and-price
algorithm (Barnhart et al. 1998) are proposed in the first two contributions, while a
dual-based Lagrangian relaxation is used in the latter to decompose the problem into
easier-to-address subproblems, namely a continuous multicommodity flow problem
and an integer block formulation that selects blocks satisfying yard capacity
constraints (addressed by a branch-and-cut algorithm). Ahuja et al. (2007) follows
the same approach in an arc-based formulation, proposing a large neighborhood
search algorithm aimed at addressing large problem instances. Jha et al. (2008)
then proposes arc and path-based time-space formulations for the block-to-train
assignment problem. The latter formulation proved the most flexible and amenable
to be efficiently solved either with an a priori set of paths, or a dynamic-path
generation procedure. Metaheuristics for the arc or path-based formulations are
proposed by, e.g., Yaghini et al. (2011, 2012); Yue et al. (2011). Uncertainty
has been rarely addressed in models targeting freight railroad planning. A few
contributions addressing blocking problems have been proposed (e.g., Yang et al.
2011; Hasany and Shafahi 2017), but much more research is required in this area.

Service selection was also often treated separately of the other planning problems
(Assad 1980a; Morlok and Peterson 1970; Martinelli and Teng 1996; Yaghini et al.
2014). It has also been addressed in two steps, service routes and frequencies being
determined first (e.g., Marín and Salmerón 1996a,b; Goossens et al. 2004), the
schedule being constructed in a second step, based on the routing patterns yielded
by the first step (e.g., Nozick and Morlok 1997; Brännlund et al. 1998; Caprara et al.
2002, 2006; Cacchiani et al. 2010; Cacchiani and Toth 2012).

Models aiming for integration of tactical planning issues were proposed simul-
taneously with those targeting individual issues described above. Crainic et al.
(1984) presents what is probably the first service network design model addressing



13 Freight Railroad Service Network Design 419

simultaneously the selection of services and their frequencies, car classification
and blocking, train makeup, and freight routing. It is noteworthy that the model
integrates the distribution of empty cars through one or several origin-destination
demand matrices (generated through demand-distribution models from the surplus
and penury levels at yards, which were derived from the loaded car demand).
These matrices become commodities to be handled simultaneously with all other
OD commodities in the problem. The model takes the form of a static path-based,
nonlinear network design formulation accounting for congestion and accumulation-
delay phenomena in yards and on rail tracks, service-quality targets, and trade-offs
between operating and time-related costs. Block fixed costs were not included;
they were approximated through the accumulation-delay costs and the limits on
yard-specific block dimensions. A heuristic solution method was used to address
realistically-sized problem instances derived from the case of a large North-
American railroad.

Crainic and Rousseau (1986) generalizes the model for the tactical planning
of consolidation-based multicommodity multimode freight transportation systems.
Bektaş et al. (2010) later studied Lagrangean-based relaxation and decomposition
algorithms. The authors show that, first, non-linearities may be handled efficiently
through decomposition and, second, that the relaxation of the flow constraints,
which yields an arc decomposition, has computationally better convergence prop-
erties than the dualization of the capacity constraints. These results are very
encouraging for this demanding but important research topic.

A number of contributions followed toward the end of the 80; and during the
90’s. Haghani (1989) presents a model which attempts to combine train routing and
scheduling, make-up, as well as empty car distribution on a space-time network
with fixed travel times and pre-specified traffic rules. A heuristic is used to address
a somewhat simplified version of the model and illustrate the interest of integrated
planning. The model proposed by Keaton (1989, 1992) aims to determine the pairs
of yards to connect by direct services, and whether to offer more than one train a day,
as well as the routing of freight and the blocking of rail cars. The service network is
made up of one network for each pair of yards in the system with positive demand.
Arcs represent trains and connections in yards, as well as a priori determined
blocking alternatives. Gorman (1998) starts from the previous model aiming to
design a scheduled operating plan that followed as much as possible the particular
operation rules of a given railroad. An innovative tabu-enhanced genetic search
metaheuristic is used to generate candidate train schedules, which are evaluated
on their economic, service, and operational performances. On relatively small but
realistic problems, the metaheuristic performed well and was used for strategic
scenario analysis for a major North-American railroad. All these contributions
model blocking through classification costs, rather than explicit blocking decision
variables.

Zhu et al. (2014) propose a cyclic multi-layer time-space SSND model, which
appears to be the first comprehensive formulation to select the train services and
schedules to operate for a given schedule length, the car classification policies,



420 M. Chouman and T. G. Crainic

the blocks to build in each terminal with their routes within the service network,
the train makeup, and the demand itineraries using these services and blocks.
The authors also introduce a matheuristic solution methodology combining slope
scaling, a dynamic block-generation mechanism, long-term memory-based pertur-
bation strategies, and an ellipsoidal search, i.e., a new intensification mechanism to
thoroughly explore very large neighborhoods of elite solutions in an efficient way
using information from the history of the search. Experimental results show that the
proposed solution method is efficient and robust, yielding high-quality solutions for
realistically-sized problem instances. The model of Sect. 4 is based on this work.

As already mentioned, the management of resources, or assets, has a long history
of research and applications, yielding a rich corpus of literature, starting with
the pioneering work on empty cars and containers (Bomberault and White 1966;
White 1968; White and Bomberault 1969; White 1972) and locomotives (Florian
et al. 1976). Dejax and Crainic (1987); Cordeau et al. (1998); Piu and Speranza
(2014) present detailed surveys and syntheses of the literature until the end of
the 80’s. Most of this literature and developments address operational planning
issues, e.g., distribution and routing. Network flow optimization is the methodology
of choice in this field, evolving from the initial transportation problem models to
the contemporary integer-flow time-space multicommodity formulations integrating
various practical rules and constraints (e.g., Ahuja et al. 2005b; Vaidyanathan et al.
2008b,a; Balakrishnan et al. 2016; Bouzaïene-Ayari et al. 2016; Piu et al. 2015;
Ortiz-Astorquiza et al. 2021; Miranda et al. 2020).

Few contributions aimed until rather recently to integrate resource management
concerns into tactical planning service network design models. We mentioned the
modeling of empty cars as an additional demand proposed by Crainic et al. (1984).
Close to the network design methodology, Joborn et al. (2004) proposes a time-
space formulation to select kernel paths to move groups of empty cars between
pairs of yards by using the residual capacity of a given set of scheduled services.
A kernel path corresponds to a sequence of services, which can move the group of
cars between its origin and destination, plus waiting and inventory arcs. A particular
characteristic of the formulation is that fixed costs and capacity constraints are not
associated to the design arcs of the network (services), but rather to the kernel path,
that is, to a set of design arcs, which increases the difficulty to solve it. A tabu search
metaheuristic was proposed to efficiently address the problem and to show that the
proposed model achieves the looked-for economies of scale.

Resource-management considerations were integrated into service network
design models through the contributions of Andersen et al. (2009a,b); Pedersen
and Crainic (2007); Pedersen et al. (2009) (see also Andersen and Christiansen
2009, where the modeling framework of Crainic et al. (1984) is used for the
strategic analysis of a new intermodal service in Europe). Pedersen and Crainic
(2007); Pedersen et al. (2009) focus on the management of one asset type, namely,
locomotives. The authors introduce the concept of design-balanced SND and present
a tabu search metaheuristic to address it (see also Vu et al. 2013; Chouman and
Crainic 2015, for metaheuristics targeting the same problem). Andersen et al.
(2009a,b) enlarges the scope of the models to include resource cycles, cyclic



13 Freight Railroad Service Network Design 421

schedules and the coordination/synchronization of several railroads and navigation
services at particular junction points. The authors also show that cycle-based
formulations provided more modeling flexibility and computational efficiency. A
branch-and-price algorithm is proposed by Andersen et al. (2011) for the cycle-
based SSND formulation. It is also noteworthy that the papers mentioned in this
paragraph also offer insights into modeling tightly time-constrained systems, as
well as rail and rail-road intermodal terminals. Car classification and blocking
issues were not addressed, however, nor the train makeup problem, or the case
of multiple resource types with complex resource-to-service assignment rules.
Integrating resource management and service network design for tactical and
strategic planning is still a very active, important, and challenging research area.

We complete this brief literature survey with the case of planning intermodal
railroad transport. As indicated previously, intermodality presents additional chal-
lenges. In particular, the assignment and loading of containers to cars must be
explicitly integrated into the planning methods, while accounting for the multiple
and complex loading rules (see, e.g., Mantovani et al. 2017, for a detailed descrip-
tion of the complex rules governing the loading of containers on rail cars of diverse
characteristics, particularly when double stacking is performed). An additional layer
to the SSND time-space network illustrates this additional complexity. Yet, one finds
few contributions targeting rail intermodal transport. Newman and Yano (2000)
proposes a day-of-week uncapacitated (in the number of trains one may make up in a
yard and operate on a line) train scheduling model, to determine whether intermodal
OD demand should be moved by a direct or indirect, through a main yard, service.
A decomposition method yielding simpler problem settings provides encouraging
results. Morganti et al. (2020) proposes a blocking SSND model for intermodal
services, when the service network and schedule are given, which determines
container-to-car assignments and loading, blocking, service makeup, and demand
itineraries. The model of Sect. 5 is inspired by this paper. Very good experimental
results data from a large North American railroad were obtained using a well-known
commercial software. Much research work is still needed in this area. Two directions
in particular. First, integrate resource management concerns (see Kienzle et al. 2021,
for very encouraging developments) and service selection decisions. Second, similar
to all the other facets of research on railroad planning, algorithmic developments are
needed to address efficiently large problem instances.

7 Conclusions and Perspectives

Rail transportation is very important in economic and environmental terms. Its
many benefits follow, however, from a complex organization with several levels
of consolidation, e.g., freight into cars, cars into blocks, and blocks into trains.
Network design, through its service network design formulations with or without
explicit schedules, offers models and methods to address these challenges and
efficiently support the planning of freight railroad operations to achieve economic



422 M. Chouman and T. G. Crainic

and service-quality objectives. Rail is actually more complex than most other
consolidation-based transportation modes and, thus, challenges both the modeling
and algorithmic facets of operations research, in general, and network design, in
particular.

This chapter presents these issues, challenges, and contributions. It illustrates
the long and successful history of the connections between rail tactical planning
and operations research development. This is a vibrant research area, in continuous
development based on the mutually beneficial interactions between new realities in
the field and new methodological developments.

Many research perspectives have been identified during the presentation, partic-
ularly in Sect. 6. We do not repeat them here. We recall the challenges of continuing
to study the integration of the main components of railroad planning at the tactical
level, from scheduled service selection to resource management. Among the other
interesting and challenging research directions, we single out two. First, the study
and explicit integration of uncertainty into the planning models. Uncertainty may
be found in demand (e.g., volume, realization of temporal characteristics, etc.)
as well as supply in terms of travel and yard-activity times. How one predicts
these elements, both at the level of day-to-day operation and as more rare but
disturbing incidents, and how one integrates them, and the options to alleviate their
negative effects, into SSND models constitutes a significant research challenge.
Second, revenue management starts to interest freight railroads. There is still little
literature on revenue management in freight transportation (air cargo is somewhat
of an exception) and even less when rail is concerned. Research is needed in the
revenue mechanisms as applied to rail transport, as well as in the interaction between
planning and these mechanisms.

We conclude recalling the challenge of efficient solution methods for large
problem instances. Algorithms are required for multi-layer time-space networks, in
both their linear and non-linear incarnations. Decomposition methods and parallel
optimization offer one interesting avenue for development. Dynamic generation
of paths – services, blocks, demand itineraries, resource cycles –, or of the time-
space network, or a combination of both, offer an equally interesting complimentary
avenue.

References

Ahuja, R. K., Cunha, C. B., & Şahin, G. (2005a). Network models in railroad planning and
scheduling. In Tutorials in Operations Research INFORMS 2005, INFORMS (pp. 54–101),
Published online: 14 Oct 2014.

Ahuja, R. K., Jha, K. C., & Liu, J. (2007). Solving real-life railroad blocking problems. Interfaces,
37, 404–419.

Ahuja, R. K., Liu, J., Orlin, J. B., Sharma, L. A., & Dand, S. (2005b). Solving real-life locomotive-
scheduling problems. Transportation Science, 39(4), 503–517.

Andersen, J., & Christiansen, M. (2009) Designing new European rail freight services. Journal of
the Operational Research Society, 60, 348–360.



13 Freight Railroad Service Network Design 423

Andersen, J., Crainic, T. G., & Christiansen, M. (2009a). Service network design with asset man-
agement: Formulations and comparative analyzes. Transportation Research Part C: Emerging
Technologies, 17(2), 197–207.

Andersen, J., Christiansen, M., Crainic, T. G., & Grønhaug, R. (2011). Branch-and-price for service
network design with asset management constraints. Transportation Science, 46(1), 33–49.

Andersen, J., Crainic, T. G., & Christiansen, M. (2009b). Service network design with management
and coordination of multiple fleets. European Journal of Operational Research, 193(2),
377–389.

Assad, A. A. (1980a). Modelling of rail networks: toward a routing/makeup model. Transportation
Research Part B: Methodological, 14, 101–114.

Assad, A. A. (1980b). Models for rail transportation. Transportation Research Part A: Policy and
Practice, 14, 205–220.

Balakrishnan, A., Kuo, A., & Si, X. (2016). Real-time decision support for crew assignment in
double-ended districts for U.S. freight railways. Transportation Science, 50(4), 1139–1393.

Barnhart, C., Jin, H., & Vance, P. H. (2000). Railroad blocking: A network design application.
Operations Research, 48(4), 603–614.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. F., & Vance, P. H. (1998).
Branch-and-price: column generation for solving huge integer programs. Operations Research,
46(3), 316–329.

Bektaş, T., Chouman, M., & Crainic, T. G. (2010). Lagrangean-based decomposition algorithms
for multicommodity network design with penalized constraintsm. Networks, 55(3), 272–280.

Bektaş, T., & Crainic, T. G. (2008). A brief overview of intermodal transportation. In G. D.
Taylor (Ed.), Logistics engineering handbook (Chap. 28, pp. 1–16). Boca Raton, FL: Taylor
and Francis Group.

Bodin, L. D., Golden, B. L., Schuster, A. D., & Romig, W. (1980). A model for the blocking of
trains. Transportation Research Part B: Methodological, 14(1), 115–120.

Bomberault, A. M., & White, W. W. (1966). Scheduling empty box cars. Technical Report. IBM
New York Scientific Center, Hawthorne, N.Y.

Bouzaïene-Ayari, B., Cheng, C., Das, S., Fiorillo, R., & Powell, W. B. (2016). From single
commodity to multiattribute models for locomotive optimization: A comparison of optimal
integer programming and approximate dynamic programming. Transportation Science, 50(2),
366–389.

Brännlund, U., Lindberg, P. O., Nõu, A., & Nielsson, J. E. (1998). Railway timetabling using
lagrangian relaxation. Transportation Science, 32(4), 358–369.

Cacchiani, V., Caprara, A., & Toth, P. (2010). Scheduling extra freight trains on railway networks.
Transportation Research Part B: Methodological, 44(2), 215–231.

Caprara, A., Fischetti, M., & Toth, P. (2002). Modeling and solving the train timetabling problem.
Operations Research, 50(5), 851–861.

Caprara, A., Monaci, M., Toth, P., & Guida, P. L. (2006). A Lagrangian heuristic algorithm for a
real-world train timetabling problem. Discrete Applied Mathematics 154, 738–753.

Cacchiani, V. & Toth, P. (2012). Nominal and robust train timetabling problems. European Journal
of Operational Research, 2019, 727–737.

Chouman, M., & Crainic, T. G. (2015). Cutting-plane matheuristic for service network design with
design-balanced requirements. Transportation Science, 49(1), 99–113.

Cordeau, J. F., Toth, P., & Vigo, D. (1998). A survey of optimization models for train routing and
scheduling. Transportation Science, 32(4), 380–404.

Crainic, T. G. (1988). Rail tactical planning: issues, models and tools. In L. Bianco & A. La Bella
(Eds.) Freight Transport Planning and Logistics (pp. 463–509). Berlin: Springer.

Crainic, T. G. (2000). Network design in freight transportation. European Journal of Operational
Research, 122(2), 272–288.

Crainic, T. G. (2003). Long-Haul freight transportation. In R. W. Hall (Ed.), Handbook of
Transportation Science (2nd edn., pp. 451–516). Norwell, MA: Kluwer Academic Publishers.



424 M. Chouman and T. G. Crainic

Crainic, T. G. (2009) Service design models for rail intermodal transportation. In L. Bertazzi, M.
G. Speranza, & J. A. E. E. van Nunen (Eds.), Lecture Notes in Economics and Mathematical
Systems (Vol. 619, pp. 53–67). Berlin: Springer.

Crainic, T. G., Ferland, J. A., & Rousseau, J. M. (1984). A tactical planning model for rail freight
transportation. Transportation Science, 18(2), 165–184.

Crainic, T. G., Kim, K. H. (2007). Intermodal transportation. In C. Barnhart & G. Laporte
(Eds.), Transportation, Handbooks in Operations Research and Management Science (Vol. 14,
Chap. 8, pp 467–537). Amsterdam: North-Holland.

Crainic, T. G., & Laporte, G. (1997). Planning models for freight transportation. European Journal
of Operational Research, 97(3), 409–438.

Crainic, T. G., & Rousseau, J. M. (1986). Multicommodity, multimode freight transportation:
A general modeling and algorithmic framework for the service network design problem.
Transportation Research Part B: Methodological, 20, 225–242.

Dejax, P. J., & Crainic, T. G. (1987). A review of empty flows and fleet management models in
freight transportation. Transportation Science, 21(4), 227–247.

Florian, M., Bushell, G., Ferland, J., Guertin, G., & Nastansky, L. (1976). The engine scheduling
problem in a railway network. INFOR, 14, 121–138.

Goossens, J. W., van Hoesel, S., & Kroon, L. (2004). A branch-and-cut approach for solving
railway line-planning problems. Transportation Science, 38(3), 379–393.

Gorman, M. F. (1998). An application of genetic and tabu searches to the freight railroad operating
plan problem. Annals of Operations Research 78, 51–69.

Haghani, A. E. (1989). Formulation and solution of combined train routing and makeup, and empty
car distribution model. Transportation Research Part B: Methodological, 23(6), 433–452.

Hasany, R. M., & Shafahi, Y. (2017). Two-stage stochastic programming for the railroad blocking
problem with uncertain demand and supply resources. Computers & Industrial Engineering,
106, 275–286.

Huntley, C. L., Brown, D. E., Sappington, D. E., & Markowicz, B. P. (1995). Freight routing and
scheduling at CSX transportation. Interfaces, 25(3), 58–71.

Ireland, P., Case, R., Fallis, J., Van Dyke, C., Kuehn, J., & Meketon, M. (2004). The Canadian
Pacific Railway transforms operations by using models to develop its operating plans.
Interfaces, 34(1), 5–14.

Jha, K. C., Ahuja, R. K., & Şahin, G. (2008). New approaches for solving the block-to-train
assignment problem. Networks, 51(1), 48–62.

Joborn, M., Crainic, T. G., Gendreau, M., Holmberg, K., & Lundgren, J. T. (2004). Economies
of scale in empty freight car distribution in scheduled railways. Transportation Science, 38(2),
459–464.

Keaton, M. H. (1989). Designing optimal railroad operating plans: lagrangian relaxation and
heuristic approaches. Transportation Research Part B: Methodological, 23(6), 415–431.

Keaton, M. H. (1992). The impact of train timetables on average car time in rail classification
Yards. Journal of the Transportation Research Forum, 32(2), 345–354.

Kienzle, J., Crainic, T. G., Frejinger, E., & Bisaillon, S. (2021). The intermodal railroad blocking
& railcar fleet management planning problem. Technical Report. CIRRELT-2021, Centre
interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et les transports,
Université de Montréal, Montréal, QC, Canada

Mantovani, S., Morganti, G., Umang, N., Crainic, T. G., Frejinger, E., & Larsen, E. (2017). The
load planning problem for double-stack intermodal trains. European Journal of Operational
Research, 267(1), 107–119.

Marín, A., & Salmerón, J. (1996a). Tactical planning of rail freight networks. Part I: Exact and
heuristic methods. European Journal of Operational Research, 90, 26–44.

Marín, A., & Salmerón, J. (1996b). Tactical planning of rail freight networks. Part II: local search
methods with statistical analysis. European Journal of Operational Research, 94, 43–53.

Martinelli, D. R., & Teng, H. (1996). Optimization of railway operations using neural networks.
Transportation Research Part C: Emerging Technologies, 4C(1), 33–49.



13 Freight Railroad Service Network Design 425

Miranda, P., Cordeau, J. F., & Frejinger, E. (2020). A time-space formulation for the locomotive
routing problem at the Canadian National Railways. Technical Report. CIRRELT-2020-19,
Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et les transports,
Université de Montréal, Montréal, QC, Canada

Morganti, G., Crainic, T. G., Frejinger, E., & Ricciardi, N. (2020). Block planning for intermodal
rail: methodology and case study. Transportation Research Procedia, 47, 19–26.

Morlok, E. K., & Peterson, R. B. (1970). A final report on a development of a geographic
transportation network generation and evaluation model. In Proceedings of the Eleventh Annual
Meeting, Transportation Research Forum (pp. 99–103)

Newman, A. M., Nozick, L. K., & Yano, C. A. (2002). Optimization in the rail industry. In P. M.
Pardalos & M. G. C. Resende (Eds.), Handbook of Applied Optimization (pp. 704–718), New
York, NY: Oxford University Press.

Newman, A. M., & Yano, C. A. (2000). Centralized and decentralized train scheduling for
intermodal operations. IIE Transactions, 32(1), 743–754.

Newton, H. N. (1996). Network design under budget constraints with application to the railroad
blocking problem. Ph.D. Thesis. Industrial and Systems Engineering, Auburn University,
Auburn, Alabama, U.S.A.

Newton, H. N., Barnhart, C., & Vance, P. H. (1998). Constructing railroad blocking plans to
minimize handling costs. Transportation Science, 32(4), 330–345.

Nozick, L. K., & Morlok, E. K. (1997). A model for medium-term operations planning in an
intermodal rail-truck service. Transportation Research Part A: Policy and Practice, 31(2), 91–
108.

Ortiz-Astorquiza, C., Cordeau, J. F., & Frejinger, E. (2021). The locomotive assignment problem
with distributed power at the Canadian National Railway Company. Transportation Science,
55(2), 510–531.

Pedersen, M. B., & Crainic, T. G. (2007). Optimization of intermodal freight service schedules
on train canals. Publication CIRRELT-2007-51, Centre interuniversitaire de recherche sur les
réseaux d’entreprise, la logistique et le transport, Montréal, QC, Canada.

Pedersen, M. B., Crainic, T. G., & Madsen, O. B. G. (2009). Models and tabu search meta-
heuristics for service network design with asset-balance requirements. Transportation Science,
43(2), 158–177.

Piu, F., Première Kumar, V., Bierlaire, M., & Speranza, M. G. (2015). Introducing a preliminary
consists selection in the locomotive assignment problem. Transportation Research Part E:
Logistics and Transportation Review, 82, 214–237.

Piu, F., & Speranza, M. G. (2014). The locomotive assignment problem: A survey on optimization
models. International Transactions in Operational Research, 21(3), 327–352.

Vaidyanathan, B., Ahuja, R. K., Liu, J., & Shughart, L. A. (2008a). Real-life locomotive planning:
new formulations and computational results. Transportation Research Part B: Methodological,
42(2), 147–168.

Vaidyanathan, B., Ahuja, R. K., & Orlin, J. B. (2008b). The locomotive routing problem.
Transportation Science, 42(4), 492–507.

Vu, D. M., Crainic, T. G., & Toulouse, M. (2013). A three-stage matheuristic for the capaci-
tated multi-commodity fixed-cost network design with design-balance constraints. Journal of
Heuristics, 19, 757–795.

White, W. W. (1968). A program for empty freight car allocation. Technical Report. 360D.29.002,
IBM Contributed Program Library, IBM Corporation, Program Information Department,
Hawthorne, N.Y.

White, W. W. (1972). Dynamic transshipment networks: an algorithm and its application to the
distribution of empty containers. Networks, 2(3), 211–236.

White, W. W., & Bomberault, A. M. (1969). A network algorithm for empty freight car allocation.
IBM Systems Journal, 8(2), 147–171.

Yaghini, M., & Akhavan, R. (2012). Multicommodity network design problem in rail freight
transportation planning. Procedia Social and Behavioral Sciences, 43, 728–739.



426 M. Chouman and T. G. Crainic

Yaghini, M., Momeni, M., & Sarmadi, M. (2014). Solving train formation problem using simulated
annealing algorithm in a simplex framework. Journal of Advanced Transportation, 48, 402–
416.

Yaghini, M., Seyedabadi, M., & Khoshraftar, M. M. (2011). Solving railroad blocking problem
using ant colony optimization algorithm. Applied Mathematical Modelling, 35(12), 5579–5591.

Yaghini, M., Seyedabadi, M., & Khoshraftar, M. M. (2012). A population-based algorithm for the
railroad blocking problem. Journal of Industrial Engineering International, 8(8), 1–11.

Yang, L., Gao, Z., & Li, K. (2011). Railway freight transportation planning with mixed uncertainty
of randomness and fuzziness. Applied Soft Computing 11, 778–792.

Yue, Y., Zhou, L., Yue, Q., & Fan, Z. (2011). Multi-route railroad blocking problem by improved
model and ant colony algorithm in real world. Computers & Industrial Engineering, 60, 34–42.

Zhu, E., Crainic, T. G., & Gendreau, M. (2014). Scheduled service network design for freight rail
transportations. Operations Research 62(2), 383–400.



Chapter 14
Motor Carrier Service Network Design

Ilke Bakir, Alan Erera, and Martin Savelsbergh

1 Introduction

The trucking, or motor freight, industry provides ground freight transportation
services to shippers using road trucks. Motor carriers provide multiple types of
services, differentiated to serve shipments with different characteristics. Truckload
services are offered to shippers who move dedicated trailers or containers each
directly from an origin location to a destination location. Truckload services are
provided both by large firms with thousands of tractors and trailers but also by
small companies that may sometimes operate fleets with only a few vehicles. In
contrast, consolidation trucking carriers operate both a network of freight transfer
terminals and also a fleet of vehicles to provide a schedule of transportation services
for shippers moving smaller quantities. There are two primary consolidation service
types. Less-than-truckload (LTL), or freight, services provide shippers with the
capability to send smaller shipments that do not require an entire trailer; an LTL
carrier consolidates shipments into truckload movements between terminals to
provide cost-effective service. Package services serve shippers seeking to move the
smallest shipments, typically letters, small parcels, and boxes.

Truck transportation in most countries is currently the dominant land transporta-
tion mode, accounting for the largest fraction of revenue and moving the most
tons. For example, in the United States in 2016 trucking accounted for 63% of

I. Bakir
Department of Operations, Faculty of Economics and Business, University of Groningen,
Groningen, Netherlands
e-mail: i.bakir@rug.nl

A. Erera (�) · M. Savelsbergh
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, USA
e-mail: alan.erera@isye.gatech.edu; martin.savelsbergh@isye.gatech.edu

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_14

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_14&domain=pdf
mailto:i.bakir@rug.nl
mailto:alan.erera@isye.gatech.edu
mailto:martin.savelsbergh@isye.gatech.edu
https://doi.org/10.1007/978-3-030-64018-7_14


428 I. Bakir et al.

the total tonnage moved and 62% of the total value of all shipments (Bureau of
Transportation Statistics 2018); in the European Union and in Asia, motor freight
is similarly important. Trucking services provide fast transit times to shippers with
only air freight able to provide shorter times. Transit time is a primary measure
of customer service level in shipping, and many modern freight services guarantee
transit times to shippers.

This chapter focuses on service network design for consolidation trucking
carriers. Optimization models and solution approaches for the core network design
problems, which include flow and load planning, will be covered in detail. Other
related operations design problems will be discussed more briefly. The goal is to
provide a thorough introduction to these problems and methods and to focus the
discussion on ideas that have had an impact on practice. The chapter will also
highlight some of the newest work in this area and help guide researchers beginning
work in this field.

The remainder of the chapter is organized as follows. Section 2 provides an
overview of trucking operations, focusing specifically on the structure of the
networks operated by consolidation trucking carriers. Section 3 introduces models
for trucking network flow planning and describes exact and heuristic approaches for
building solutions to these models. Section 4 then describes integrated flow and
load planning models that rely on time-expanded networks and describes large-
scale local search heuristics for their solution. Section 5 briefly describes key
developments in the trucking service network design literature. Finally, Sect. 6
provides some perspective on the current state of this research area and discusses
a number of ongoing research trends that hold promise for this field.

2 Consolidation Trucking Operations

Consolidation trucking carriers plan and operate service networks to provide freight
transportation services directly to shippers seeking to move less-than-truckload
or package freight. Carriers establish a geographic region within which they will
operate, and more specifically determine origin and destination pairs between which
they will provide service and for which categories (or classes) of freight. Each
service offering for an origin-destination pair also includes a price (or freight rate)
and a transit time. In some cases, transit times provide only a rough estimate of
the number of days required for the execution of the transportation service, while
in other cases time-definite offerings specify precisely how long a shipment will
require and when it will arrive (for example, 2-day or next-morning).

Given a set of service offerings, a consolidation trucking carrier must build and
operate a service network to satisfy customer demand feasibly and cost-effectively.
To do so, a medium to large carrier operates a network of transfer terminals.
Trucking terminals have facilities for truck loading and unloading; these docks
enable rear-loading trucks to park with the trailer deck at the same level of the
terminal floor. In LTL operations, the truck trailers that are used to make pickups



14 Motor Carrier Service Network Design 429

and deliveries at customer locations are similar or identical to those used for the long
distance terminal-to-terminal movements. In package operations, smaller delivery
vans are used when visiting customers, and terminals therefore may have different
loading areas for different truck types.

All terminals have the capability to sort freight shipments to be loaded into
different outbound truck trailers or containers. Cross-dock sorting, or cross-docking,
is a sorting system where larger shipments (often on pallets or within intermediate
containers) are moved from unloading trailers to loading trailers by forklift or pallet
jack. The name cross-docking refers to the fact that shipments are moved directly
“across the dock” and are not stored in any intermediate locations. Cross-docking
is the primary sorting operation used by LTL carriers. Since parcel shipments are
smaller, terminals operated by package carriers typically include automated and/or
manual piece-sorting equipment. Examples of piece-sorting equipment include
cross-belt sorters or manual sorting cabinets. Smaller packages, parcels, and letters
may be consolidated into bags or other types of intermediate containers before they
are loaded into trailers. Package carriers may also use conveyor belt systems and
additional belt sorters to enable movement of parcels through the terminal as well
as to facilitate cross-docking of larger parcels, bags, and intermediate containers.

Thus, the primary role of terminals in trucking networks is consolidation of
smaller shipments into truckloads and the related transfer of shipments between
inbound and outbound trailers and containers. Consolidation and transfer allows a
trucking carrier to provide cost-effective service between large numbers of origins
and destinations. For example, a carrier that operates n terminals with direct service
between all pairs would need to move trailers on n(n − 1) service lanes, but if one
of the central locations were used as a transfer hub this number could be reduced
to as few as 2(n − 1) lanes. Individual truckload dispatches in a well-designed
consolidation network will have higher trailer utilization and the total required
trailer-miles required to move freight from origins to destinations should decrease.
However, each individual shipment may travel farther (thus increasing system ton-
miles) and may be sorted one or more times at intermediate transfer terminals.

A typical consolidation terminal network is depicted in Fig. 14.1, in this case
for an LTL carrier. Carriers typically operate two types of terminals. An end-of-
line, or satellite, terminal is a smaller facility that only enables transfer of freight
between the pickup-and-delivery operation and the linehaul operation. A hub, or
breakbulk, terminal is a larger facility that provides both the functionality of an end-
of-line terminal while also providing transfer opportunities between terminals in
the linehaul network. Each end-of-line terminal may be connected with dispatches
to and from only a small set of hub terminals, while hub terminals may provide
dispatches to and from a large number of end-of-line terminals and other hubs.
Package networks have similar designs.

Effective freight transfer also requires timed coordination of unloading, sorting,
and loading activities at transfer terminals. For this reason many carriers divide each
operating day into distinct sorting periods or, more simply, sorts. Trailers arriving
for a sort are unloaded and the freight shipments are sorted into outbound trailers for
dispatch by the conclusion of the sort. It is quite common for terminals to operate a



430 I. Bakir et al.

b1 b2

b3

b4

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15 e16

e17

e18

e19

e20

e21

e22

c1

c2
c3

c4

c5
c6

c7

c8

Customer

End-of-Line

Breakbulkorigin

destination

Fig. 14.1 A network of an LTL trucking carrier, serving customer locations using end-of-line and
breakbulk cross-dock terminals

morning sort and an evening sort, while larger transfer terminals may also operate
additional overnight and midday sorting periods.

Given a network of terminals, a consolidation trucking carrier will operate
a pickup-and-delivery operation and linehaul operation. The pickup-and-delivery
operation is used to collect freight from customers and transport it to an origin
consolidation terminal and to distribute freight for the last-mile from the final
terminal to destinations. In package systems, the vehicles used for pickup and
delivery are usually smaller delivery vans while LTL carriers often use short or
medium length trailers. Pickup and delivery operations require the execution of
multi-stop routes with significant time constraints; customer facilities have time
windows when they can send or receive shipments, and the carrier has deadlines
when freight must leave from or arrive to a terminal in order to meet the service
expectation of the customer. It should be noted that high-volume shippers often
interface with consolidation carriers by using drop shipping or by supplying
dedicated customer trailer equipment. In these scenarios, the shipper or the carrier
may move truckloads of shipments directly into the linehaul network at a carrier
terminal thus skipping the traditional pickup process.

A carrier linehaul network operation provides transportation of truck trailers and
containers between its transfer terminals. A load in an LTL or package network
refers to a trailer or a container that is loaded and dispatched from an origin
terminal and headed for unloading at a destination terminal. For LTL carriers, loads
are most frequently moved by company truck drivers using either long trailers or
trains of two or three short trailers. Short trailers, such as 28-foot pups in the US,
provide the carrier with the ability to have single drivers move multiple loads with
smaller individual volumes simultaneously. Linehaul movements of loads between
terminals, or dispatches, tend to be short to allow drivers to return to their home
terminals within a single operating day. When loads are created between distant
terminals, they frequently are not moved directly by a single driver. Instead, the
load may be transferred using two or more movements, where each movement is



14 Motor Carrier Service Network Design 431

executed either by a company driver or by an outside contractor. The intermediate
stops in these sequences of movements are typically called relays, and they may
occur at terminals or at dedicated relay facilities; operating in this way can both
speed the movement of long distance loads while also eliminating the need for some
intermediate sorting. For certain long distance loads, freight railroads may be used
to move trailers or rail-compatible containers in an outsourcing arrangement; such
rail intermodal movements are less costly but require longer travel times and may
introduce more travel time uncertainty.

2.1 Trucking Service Network Design Problems

In consolidation trucking systems, we refer to the service network as the set of
transportation and supporting activities operated by a trucking carrier in order
to provide transportation services to shippers. If we think of a network using
its general definition as a set of interacting components, then a service network
operated by a trucking firm refers to truck transportation movements and associated
loading, sorting, and unloading activities. Service network design problems in truck
transportation focus on building designs and operational plans for these networks;
see Crainic (2000) for a comprehensive review of earlier work in all areas of freight
transportation. Typically, physical network design questions such as determining
the type, number, and size of terminal facilities to operate are not considered service
network design problems. There is a significant body of literature in facility location
(see e.g., Love et al. 1988; Mirchandani and Francis 1990; Drezner and Hamacher
2001; Snyder 2006; Daskin 2011) and a subset that focuses specifically on the
location of truck transportation terminals known as hub location problems (see e.g.,
O’Kelly 1986; Campbell 1994; Alumur and Kara 2008; Farahani et al. 2013), and
thus we will ignore these problems in this chapter.

Since trucking service networks can be complex and require many design and
planning decisions, a large number of problems could be classified as service
network design problems including:

• flow planning problems;
• load planning, routing, and dispatch problems;
• driver and equipment fleet management problems; and
• vehicle routing and scheduling problems.

Flow planning, or freight routing, problems seek to determine how shipments
should flow, or be routed, through a terminal network en route from origin to
destination. A freight route for an individual shipment specifies the sequence of
terminals where the shipment will be transferred via cross-docking or other sorting
methods; in most cases, a shipment is unloaded from one truck and reloaded onto
another at each of these terminal stops. While it is possible to dynamically determine
a freight route for each contracted shipment, it is much more common for carriers
to establish a fixed flow plan that specifies a route for each shipment given its



432 I. Bakir et al.

origin and destination terminals and its service requirements. This chapter will focus
primarily on flow planning problems since they are in some sense the core service
network design problem in trucking. Other problems will be considered when they
also include some flow planning component, as we describe now.

Load planning, routing, and dispatch problems seek to determine how to build
consolidated freight loads from shipments and time their dispatch. For trucking
carriers, a load will be a trailerload or a containerload. Load planning problems can
be tactical or operational. At the tactical level, a consolidation carrier would like
to determine how many loads (of potentially different sizes) need to be dispatched
between terminals, and at what times, in order to feasibly serve the demands induced
at the flow planning step. When a load is planned between more distant terminals, it
is also necessary to determine a movement path for the trailer through the network
if it is not to be dispatched directly from its origin to destination terminal. This
load routing step determines the sequence of relay points visited by the load and the
transportation mode used for each connecting movement leg. When carriers dispatch
trains of short trailers, like two pup combinations, it is also necessary to determine
which loads to pair up into combinations when routing loads. At the operational
level, loads need to be constructed from actual available shipments; often, loads
may be cancelled or added on the day of operations, or shipments shifted onto
alternate freight routes, to serve demands and utilize transportation capacity most
cost-effectively. Modern service network design approaches often integrate flow and
load planning rather than treat the problems sequentially; in such models, freight
routing decisions and timed load dispatching decisions are made simultaneously.
Additionally, operational models for load planning and dispatching may also allow
limited flow replanning choices.

It is useful to note here that LTL and package express carriers are not the
only firms that need to solve flow and load planning problems. Large shippers
and 3PL companies often face flow and load planning problems when designing
consolidation operations for distribution networks. Less-than-truckload shipments
for such companies can be consolidated and routed through cross-docking facilities
or pool points to avoid outsourcing to LTL carriers. Given a network design,
such companies use truckload carriers to provide the trucking movements. It is
also somewhat common in these cases for shippers to use multi-stop truckload
movements referred to as “milk runs”. In this scenario, a shipper loads a truckload
trailer at a single origin to be delivered to a sequence of partial load drop-off
locations (or alternately might load at multiple pickup locations before moving the
trailer to a single final destination for unloading).

Driver and equipment fleet management problems focus on building plans
and schedules that enable trucking loads to be executed. Planned loads must be
loaded into appropriate equipment, typically trailers or containers that have specific
capabilities. Empty equipment repositioning problems are used to ensure that empty
trailers and containers of the required equipment types are available over time
where needed, and models for flow and load planning are more frequently now
including constraints on equipment balance and availability. All trucking loads are
moved at some point during their journeys by one or more truck drivers. Truck



14 Motor Carrier Service Network Design 433

drivers must be managed to not violate government work regulations and sometimes
are also subject to employee union restrictions. Consolidation carriers typically
operate driver schedules that also must be planned in advance. Incorporating driver
management decisions into flow and load planning models is often a difficult
challenge because of the complicated nature of driver constraints.

Finally, vehicle routing and scheduling problems may also be considered service
network design problems. For example, the classical capacitated vehicle routing
can be described as a one-to-many load planning problem with vehicle resources
that must operate on customer-disjoint cycles from a single depot; given this setup,
the unique flow decision for each depot-to-customer shipment is to move from the
depot along the route serving the customer, visiting intermediate stops as necessary
before arriving to the destination. Consolidation carriers operate last-mile pickup
and delivery operations that bring shipments from customer origin locations into
first-level terminals at the beginning of trips and then distribute them at the end of
trips, and thus they face specific vehicle routing and scheduling problems. Since
the literature on last-mile truck vehicle routing and scheduling problems is vast,
we will not cover it in this chapter. The reader is instead referred to excellent recent
survey papers covering the area (see e.g., Golden et al. 2008; Cattaruzza et al. 2017;
Braekers et al. 2016; Savelsbergh and van Woensel 2016; Psaraftis et al. 2016).

3 Network Design Models for Flow Planning

We begin with flow planning problems, the core service network design problems
faced by LTL and package trucking carriers. The goal of flow planning problems
is to determine a plan for consolidation of shipments into flows between transfer
terminals to take advantage of certain cost scale economies in transportation. As
an introduction, we begin by describing the components of network design mixed-
integer programs for flow planning. To do so, we start with a base model of
geographic consolidation.

Given a terminal set N , the freight carrier faces the problem of deciding how
to transfer freight that originates at some terminal o ∈ N and is destined for
another terminal d ∈ N . We use the term commodity to describe such freight, and
we let K be the set of all commodities to be moved by the carrier. Suppose that
commodity k originates at terminal ok and is destined for terminal dk , and let qk be
a measure of the volume (or flow) of freight to be transferred. Note that a commodity
represents the aggregation of shipments for many customers, and qk measures this
aggregated volume. Furthermore, suppose for now that at most one commodity is
defined with the same origin-destination pair (o, d); this is possible, for example,
when all shipments moving from ok to dk are promised the same transit time. Note
here that volume or flow is a rate: a quantity moving (or to be moved) per time.

Typical units of measure for freight flow in trucking are pounds per day or tons
per week, but it is important for flow planning models to know how this freight
flow converts to the number of truck trailerloads necessary to move the volume.



434 I. Bakir et al.

During operations, detailed information about the size and weight of each shipment
is used when determining how to pack and load trailers feasibly and effectively but
this information is not known with certainty at the planning stage. For simplicity,
it is common instead to convert estimated freight flows into an equivalent number
of trailers by using simple factors (for example, with units of trailers per pound). It
may be reasonably accurate to use a network-wide conversion factor for this task,
however, the mix of freight shipment types (and their associated weight per cubic
volume densities) may vary on different origin-destination lanes and thus it may be
necessary to use different conversion factors on different lanes.

A flow plan is a set of decisions that specifies jointly how all commodities should
be transferred from origins to destinations cost-effectively while meeting customer
service requirements, the most important of which is the transit time. The simplest
flow planning decision for a commodity is to move it in direct trailers or containers,
loaded at the origin terminal ok and unloaded at the destination dk . We refer to
this decision as a direct route for commodity k. Note that the use of the word
“direct” in this context refers to the fact that the freight for this commodity will
not be unloaded, sorted, and reloaded at any intermediate hub terminals. However,
a direct trailer or container from terminal i to j may certainly be transported by a
sequence of movements, by multiple drivers through relay points, or even by using
multiple modes of transportation. A trivial and likely expensive flow plan would
be to move all commodities along direct routes; note that given enough driver and
trailer resources, this direct route flow plan should also be service feasible since
there is no faster way to transfer freight between origins and destinations.

Consider then the non-trivial case where some commodities will not be assigned
to direct freight routes. Let A be a set of directed arcs where (i, j) ∈ A models a
lane where trailers (or containers) can be loaded at terminal i ∈ N and moved to
terminal j ∈ N for unloading. In a physical network with hub (NH ) and end-of-line
(NE) terminals, such load arcs (i, j) should exist between all pairs of hub terminals
in NH . On the other hand, when i or j is an end-of-line in NE , it may be possible
to reduce the number of arcs in a network by restricting the generation of direct
loads to or from a limited set of terminals. Care should be exercised when doing so,
however, since it may be more sensible to allow a model to decide where to build
loads. Recall again that a direct load (i, j) does not imply that trailers are moved
from i to j with a single driver or by a single movement.

Given A, let pk be a possible freight route (or path) from ok to dk . Using
the typical definitions from mathematical networks, each pk is a simple path: a
connected sequence of arcs in A beginning at node ok and ending at node dk with
no cycles. For convenience, pk may also be used to refer to a sequence of nodes
in N where the initial node is ok , the final node is dk , and an arc a ∈ A exists
between each pair of adjacent nodes in the sequence. Let Pk be the set of all freight
paths in A that connect ok to dk . Using these ideas, the primary decisions in every
flow planning problem are to assign commodity flow to one or more feasible paths
pk ∈ Pk for each commodity k ∈ K to minimize logistics costs while meeting
service requirements. Referring again to Fig. 14.1, a path from one of the end-of-
line terminals on the left to one on the right, e.g., c2 → c1 → e3 → b1 → b2 →



14 Motor Carrier Service Network Design 435

b4 → e20 → c5 → c6, represents a freight path for that commodity, where a
cross-dock transfer occurs at the head node of each arc in the path.

The remainder of this section will develop flow planning optimization for-
mulations using flat network models, which we distinguish from time-space or
time-expanded networks which model both geographic locations and explicit
decision timing. Flat network models have the advantage that they lead to smaller
integer programming instances, but they provide a relatively coarse approximation
of trucking operations that is most useful for tactical planning. The input demands
qk represent average flow rates per time (e.g., tons or pallets or equivalent trailers per
week) and the output freight and equipment decision variables also will represent
flow rates per time. For this reason, it is natural to refer to such models as rate-based.

3.1 Arc-Based Flow Planning Model for Consolidation
Trucking

To build a flow planning model, we make a few assumptions. Suppose that all
shipments using truck movement lane (i, j) ∈ A are loaded into a trailer or container
at i and unloaded and sorted at j , and furthermore that the costs of transportation
are separable by lane and the costs of sorting are separable by terminal. Finally,
suppose that commodity flow rates qk are roughly constant over time, and that any
timing issues regarding consolidation can be safely ignored. Let xkij be a decision
variable representing the flow of commodity k moving on lane (i, j) ∈ A, measured
in the same units as qk . A generic mathematical programming formulation for flow
planning is then:

minimize
∑

(i,j)∈A
f Tij (xij )+

∑

i∈N
fHi (xi∗) (14.1)

subject to

∑

(i,j)∈A
xkij −

∑

(j,i)∈A
xkji =

⎧
⎪⎪⎨

⎪⎪⎩

qk if i = ok

−qk if i = dk

0 otherwise

∀ k ∈ K, ∀ i ∈ N (14.2)

xij =
∑

k∈K
xkij ∀ (i, j) ∈ A (14.3)

xi∗ =
∑

k∈K | ok 	=i

∑

(i,j)∈A
xij ∀ i ∈ N (14.4)

xkij ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A (14.5)



436 I. Bakir et al.

Constraints (14.2) and (14.5) define a simple (uncapacitated) case of the linear
multi-commodity flow polytope, and this formulation allows freight flow to be split
across many paths for each commodity. The objective function here is specified
generically, where transportation costs are separable by lane (i, j) and handling
costs are separable by terminal i. We now discuss how typical objective functions
lead to network design mixed-integer programs.

First, it is most common in flow planning models for trucking terminal handling
costs to be modeled as linear in throughput,

f H
i (xi∗) = hixi∗, (14.6)

where hi is the handling cost rate per flow unit and xi∗ is the total freight volume
handled at terminal i. Handling in flow planning refers to the transfer of freight
either via cross-docking of larger shipments or piece sorting in parcel operations. It
is reasonable to assume that sorting labor cost or equipment operating cost grows
roughly linearly with freight volume in flow planning models. Including handling
costs in flow planning models explores a tradeoff with transportation costs; thus,
it is quite common to estimate handling cost rates (which can be hard to measure
precisely) to strike a reasonable balance with truck transportation costs.

Second, the truck transportation cost function on each arc should exhibit some

cost economies scale in flow, i.e., the average cost
f Tij (x)

x
should be decreasing for

at least some values of x to encourage consolidation. Note that with linear handling
costs and linear transportation costs cij xij , the flow planning problem can be solved
simply by finding a minimum cost path for a unit flow from ok to dk for each
commodity and then moving all flow qk along this path.

A reasonable approach for estimating truck transportation costs might be to
assume a fixed cost dij for the dispatch of each unit trailerload (or containerload) on
lane (i, j). Suppose all trailers have the same capacity, i.e., once a trailer containsQ
units of flow an additional trailer is needed. Then, f T

ij is the following step function:

f T
ij (x) = dij

⌈
x

Q

⌉

, (14.7)

where the ceiling function rounds the value of x up to the next unit load. In practice,
it is common to simply measure qk in fractional trailers and to set Q = 1. Since the
width of each step is alwaysQ units and the height is always dij , it is straightforward
to use an integer variable τij to model this step function by simply forcing τij ≥ xij

Q
.

It is important to make note of a few ideas when modeling transportation costs
with per trailer lane costs dij . To estimate dij accurately requires that we know the
movement (relay) path for the load from i to j in advance; it is common to use the
most frequently used such path. Furthermore, since LTL and package carriers often
dispatch trains of two short trailers together, this approach also is most accurate for
carriers where dispatches almost never move short trailers alone; in such scenarios,
dij represents one-half of the cost of moving a two-trailer train from i to j .



14 Motor Carrier Service Network Design 437

It may also be useful to model some transportation cost beyond the fixed cost
per trailer that accrues linearly with flow, for example to account for fuel and
maintenance costs that may increase with transported load size. In this case, define
a linear arc flow cost as

f L
ij (x) = cij x = (hi + cTij )x,

and now define the flow planning problem as the following mixed integer linear
programming problem:

minimize
∑

k∈K

∑

(i,j)∈A
cij x

k
ij +

∑

(i,j)∈A
dij τij −

∑

i∈N

∑

k∈K | ok=i
hiqk (14.8)

subject to

∑

(i,j)∈A
xkij −

∑

(j,i)∈A
xkji =

⎧
⎪⎪⎨

⎪⎪⎩

qk if i = ok

−qk if i = dk

0 otherwise

∀ k ∈ K, ∀ i ∈ N (14.9)

xij =
∑

k∈K
xkij ∀ (i, j) ∈ A (14.10)

xij ≤ Qτij ∀ (i, j) ∈ A (14.11)

xkij ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A (14.12)

τij ≥ 0 and integer ∀ (i, j) ∈ A (14.13)

The non-negative integer variable τij measures the minimum required trailers on
lane (i, j) when (14.11) is matched with the positive objective function coefficient
dij , thus properly modeling the lane step function dispatch costs given by (14.7).
Note also that the objective function subtracts off a constant to avoid paying
handling costs at terminals where freight originates; of course, including this
constant or any other in the objective function does not affect the flow plan, only
its computed cost. In the following subsections, we will no longer include such
objective function constants in the flow planning formulations.

This generic arc-based flow planning model is a multi-commodity capacitated
fixed-charge network design (MCND) problem. Solving this mixed-integer pro-
gramming problem exactly can be difficult in practice for consolidation trucking
networks of larger size. To understand the likely size of the optimization problems,
consider an LTL carrier operating in North America with 100 terminals. If freight
demand exists between half of the origin-destination terminal pairs (which is likely
an underestimate), the result is a model with roughly 5000 commodities. Suppose
further that 30 terminals are hubs and 70 are smaller end-of-lines; then, we should
expect at least roughly 900 directed arcs between hub pairs that might be used by



438 I. Bakir et al.

any commodity, and an additional few hundred arcs connecting out of or into end-
of-lines that can be used only by commodities originating or destined for those
terminals. For a network of this size, the number of commodity flow variables xkij
is large. If each directed arc connecting two hubs serves all 5000 commodities, and
if each directed arc connected to an end-of-line serves approximately 50 inbound or
outbound commodities, the model may have more than 4 million commodity flow
variables and over 150,000 flow balance constraints of type (14.9). Thus, the linear
relaxation of (14.8)–(14.13) is a very large linear program. Integer load counting
variables τij are defined for each arc, so there are at least 1000 of these variables
and perhaps more. It can be important in practice to attempt to limit the number of
xkij variables by restricting which commodities might ever use specific hubs.

To date, exact approaches for solving these problems rely on using cutting
planes to strengthen the mixed-integer programming formulation; results have been
reported for instances with up to 100 nodes, 400 arcs, and 200 commodities, still too
small for application to many real-world consolidation trucking networks. A simple
yet effective cutting-plane algorithm for the flow planning MCND problem works
as follows. Define strong inequalities for all commodities k and lanes (i, j) by:

xkij ≤ qkτij . (14.14)

The strong inequalities are clearly valid, and it has been shown that they are facet-
defining for the convex hull of the so-called single-arc design relaxation of the
MCND. Intuitively, the benefit of the strong inequalities should be clear when
each individual commodity demand is small compared to the capacity of a single
trailer Q: we can interpret the inequality as forcing the solution to allocate at least
a partial single trailer on any lane where commodity k moves, and at least one
trailer if all commodity k flow moves on the lane. Although strong inequalities are
helpful, it is likely impractical to introduce them all to the formulation given the
number of commodity flow variables. Separation of these inequalities, however, is
simple because they can be checked directly for each lane and commodity. Thus,
a reasonable exact solution approach for the flow planning MCND problem is to
solve the linear programming relaxation at the root, and then to iterate introducing
violated strong inequalities and resolving until no violations remain. The resulting
linear programming formulation, extended with the identified subset of strong
inequalities, is then solved by reintroducing the integrality constraints (14.13) and
calling a MIP solver.

3.2 Single-Path and In-Tree Flow Planning Models

In addition to being difficult to solve in its generic form, the flow planning model
(14.8)–(14.13) also has a number of drawbacks that limit its usefulness in practice.
One deficiency is that flow for each commodity k can be split across potentially
many paths connecting ok to dk , and the fraction of commodity moved on any such



14 Motor Carrier Service Network Design 439

path may be arbitrarily small. When developing a flow plan for consolidation, LTL
and package trucking carriers seek both realism and simplicity. During operations,
the actual freight shipments (and total flow volume) for any commodity may differ
from the expected flow used for planning so it is at best not clear when to choose one
path for a particular shipment versus another. While we believe that it is appropriate
that such models ignore the details of individual shipments and model demand as
continuous commodity flows, it is at the same time likely necessary to exercise some
control over flow splitting during this planning phase. Of course, in practice carriers
may divert shipments during operations onto alternative transfer paths through
different cross-dock terminals.

A simple but restrictive way to eliminate commodity flow splitting is to enforce
a single path constraint when building a flow planning model. Here, all commodity
k flow is directed to a single transfer path from ok to dk in the plan. Consider the
following formulation that embeds this restriction. Suppose we also introduce a new
mechanism to model commodity flow where variables ykij now measure the fraction
of commodity k demand volume that is transferred directly from terminal i to j .
Using this redefinition, xkij = qky

k
ij . Now, if we restrict the y variables to be binary,

we can easily enforce a single-path restriction:

minimize
∑

(i,j)∈A
(dij τij + cij xij ) (14.15)

subject to

∑

(i,j)∈A
ykij −

∑

(j,i)∈A
ykji =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = ok

−1 if i = dk

0 otherwise

∀ k ∈ K, ∀ i ∈ N (14.16)

xij ≤ Qτij ∀ (i, j) ∈ A (14.17)

xij =
∑

k∈K
qky

k
ij ∀ (i, j) ∈ A (14.18)

ykij ∈ {0, 1} ∀ k ∈ K, ∀ (i, j) ∈ A (14.19)

τij ≥ 0 and integer ∀ (i, j) ∈ A (14.20)

Constraints (14.18) convert commodity flows into total flow on direct lanes, and
thus the objective function and trailer counting constraints can remain as in the
initial model. Constraints 14.16 ensure that all commodity k demand is transferred
from ok to dk . Furthermore, when the y variables are restricted to take binary values,
these constraints ensure that the yk variables identify a single path from ok to dk .
It is again possible to introduce strong inequalities to this formulation of the form
ykij ≤ τij to strengthen the linear programming relaxation.



440 I. Bakir et al.

This single-path flow planning formulation can be referred to as an unsplittable
flow capacitated network design problem (see e.g., Atamtürk and Rajan, 2002).
Note that the original splittable formulation can also be modeled with y variables
by relaxing (14.19) to ykij ∈ [0, 1]; the original formulation can be recovered by

substituting xkij = qky
k
ij in this case.

Practical models for truck flow planning are often even more restricted. Consider
the sort operations at a trucking terminal i. Arriving trucks are unloaded, and
shipments that must be transferred (since they have not arrived at their final
destination) are sorted for loading into outbound trailers. In typical operations,
each outbound trailer is destined for a single next terminal j where it will be
unloaded entirely. Technology is certainly available today for each shipment to have
a customized sorting plan; at terminals with appropriate technology, a shipment
can be scanned and then sorted for loading onto an appropriate outbound trailer
(by a terminal worker or by automated sorting equipment). However, carriers often
operate simpler plans that specify rules that guide how groups of shipments are
to be sorted. One option still used in many LTL and package express systems
is to determine the next terminal for each unloaded shipment using only its final
destination.

Suppose that a consolidation plan is such that all freight shipments unloaded at
terminal i with the same final destination d (i 	= d) are transferred to a single next
terminal j . We will call such a design an in-tree flow plan because the directed
graph induced by the union of paths for commodities Kd ⊆ K that share a common
destination d is a directed in-tree on (a subset of) the terminal nodes N .

In-tree plans are a subset of the feasible single-path plans, and we can modify the
formulation to handle this restriction. To do so with the simplest formulation, we
introduce and make use of a common redefinition of commodities that is frequently
used in network design. It is well known that some multi-commodity network design
problems can be formulated where each commodity represents all shipment flow to
a common destination (or alternately, all shipment flow from a common origin);
these redefined commodities are referred to as aggregated commodities. In the
destination variant of aggregated commodities, let D be the set of destinations
d that have positive inbound freight flow. If we begin with our original origin-
destination commodity definition, then we can define aggregated commodities for
each destination d with the following net supply of flow:

bdi =

⎧
⎪⎪⎨

⎪⎪⎩

qk if i = ok for some k ∈ Kd

−∑k∈Kd
qk if i = d

0 otherwise

∀ d ∈ D, ∀ i ∈ N. (14.21)

It is descriptive to refer to this type of aggregation as a many-to-one commodity
into terminal d. Aggregated commodities have the obvious benefit of reducing
problem size. If the number of terminals |N | = n, then the number of possible flow
decisions for each arc is O(n) instead of O(n2) and the number of flow balance



14 Motor Carrier Service Network Design 441

constraints is also reduced by O(n). However, aggregated commodities may not be
useful when there is the need to explicitly model specific origin-destination flow
path requirements, for example path duration or cardinality constraints. It is also
not possible to use aggregated commodities to model a single-path flow planning
problem unless the paths inbound to every destination d are constrained also to
form a directed in-tree.

Consider now an in-tree flow planning model with many-to-one commodities.
Let binary decision variable ydij be used to indicate whether freight flow for
commodity d (with final destination d) that originates or transfers at terminal i is
transferred next to terminal j . Let continuous variable xdij measure freight flow for
commodity d moving on truck trailers from i to j , as usual. Consider the following
formulation:

minimize
∑

(i,j)∈A
(dij τij + cij xij ) (14.22)

subject to

∑

(i,j)∈A
xdij −

∑

(j,i)∈A
xdji = bdi ∀ d ∈ D, ∀ i ∈ N (14.23)

∑

(i,j)∈A
ydij ≤ 1 ∀ d ∈ D, ∀ i ∈ N (14.24)

xdij ≤
⎛

⎝
∑

k∈Kd

qk

⎞

⎠ ydij ∀ d ∈ D, ∀ (i, j) ∈ A (14.25)

xij ≤ Qτij ∀ (i, j) ∈ A (14.26)

xij =
∑

d∈D
xdij ∀ (i, j) ∈ A (14.27)

ydij ∈ {0, 1} ∀ d ∈ D, ∀ (i, j) ∈ A (14.28)

τij ≥ 0 and integer ∀ (i, j) ∈ A (14.29)

The in-tree model includes constraint (14.24) to ensure that the freight flow paths
for destination d form a directed in-tree to d by allowing only one outbound direct
transfer arc (i, j) to be selected from terminal i for that freight. Constraint (14.25)
ensures that freight destined for d can only be dispatched on lanes included in the
selected in-tree, where the capacity coefficient for ydij is the smallest big-M value
that yields a valid formulation. Again, valid inequalities can be introduced to this
formulation. For example, replacing ydij with τij in (14.25) yields a version of the

strong inequalities. Inequalities ydij ≤ τij are also valid for all d ∈ D and (i, j) ∈ A.



442 I. Bakir et al.

3.3 Path-Based Models for Flow Planning

Each of the flow planning formulations presented thus far has been an arc-based
network design model. For parsimony, such models use arc flow decision variables
of the form xka and xa to represent respectively the fractional freight flow for
commodity k and all commodities moved via truck dispatch arc a. When many
possible feasible paths exist for routing commodity k freight from ok to dk , this
modeling decision has merit since it may reduce the number of required decision
variables (and this remains true even for the single-path and in-tree models that
select only a single path for each such pair).

In many truck transportation applications, however, it is better to use a path-
based network design model because of the flexibility these models provide in
representing specific restrictions that may arise in practice. Such models replace the
variables xka with path-flow variables xkp, where p represents some path in Pk for
commodity k. We can then modify the generic arc-based model into the following
generic path-based model:

minimize
∑

(i,j)∈A
(dij τij + cij xij ) (14.30)

subject to

∑

p∈Pk
xkp = qk ∀ k ∈ K (14.31)

xij ≤ Qτij ∀ (i, j) ∈ A (14.32)

xij =
∑

k∈K

∑

p∈Pk | (i,j)∈p
xkp ∀ (i, j) ∈ A (14.33)

xkp ≥ 0 ∀ k ∈ K, ∀p ∈ Pk (14.34)

τij ≥ 0 and integer ∀ (i, j) ∈ A (14.35)

Since all paths in Pk provide connectivity from ok to dk , flow balance constraints are
no longer required and instead are replaced by (14.31) which partitions commodity
demand flow across the available paths in Pk . Constraints (14.33) aggregate all
commodity flow on direct movement arc (i, j) by finding all flow on paths for all
commodities where the arc (i, j) is included in the path. Note also that although
(14.30) does not include a linear cost term for the path flow variables, adding one
is possible; in practice, such terms can be used to model freight handling costs at
intermediate cross-dock transfer terminals rather than using a cost linear in the total
arc flow xij .

The primary benefit of such a formulation is that the model explicitly defines the
sets of allowed transfer paths Pk for each commodity. This feature makes it easy to



14 Motor Carrier Service Network Design 443

model a number of real-world restrictions. Most importantly, suppose that a service
requirement requires that the duration of the transfer path for commodity k from ok
to dk (travel time plus terminal cross-dock time) is limited by an upper bound. Then,
only paths that meet this duration requirement can be included in Pk . Similarly, it
may also be desirable to limit the number of terminal transfers for commodity k. For
example, when ok and dk are nearby perhaps only one transfer should be considered
in any path, but for more distant terminals two or three transfers might be acceptable;
again, only acceptable paths need be included in Pk .

Building path sets Pk given ok and dk is usually conducted by using a graph
search algorithm, like breadth-first or depth-first search, from ok using the direct
arcs (i, j) ∈ A. Constraints on allowable paths can be used to truncate the search
tree. For many problems, enumerating the complete feasible path set Pk for each
commodity k would create too many decision variables and very large instances.
Column generation approaches for solving linear programming relaxations (either
at the root node of a branch-and-bound tree or at all nodes in a branch-and-price
scheme) can be used in these cases. Heuristics that only enumerate reasonably-
sized subsets of the path pools for each commodity may also find good solutions
in practice.

To use a path-based model while enforcing an in-tree flow plan structure, we
can again add binary arc selection variables ydij to the formulation and selection
constraints (14.24). Suppose furthermore that the commodity set K is partitioned
into subsets K(d), where commodity k is included in K(d) if its freight destination
dk = d. To ensure that the set of all paths used for commodities in K(d) forms a
directed in-tree into d, the following compatibility constraints can be used:

∑

p∈P(k) | a∈p
xkp ≤ qky

dk
a ∀ k ∈ K, a ∈ A (14.36)

Note that these aggregated forcing constraints are stronger than those disaggregated
by path, yielding a stronger linear relaxation formulation. The disaggregated
constraints have the simpler form xkp ≤ qky

dk
a and are defined for all k, p ∈ P(k),

and a ∈ p; it is easy to see that there are feasible solutions to the disaggregated
constraints system when the variables are continuous that are not feasible for the
aggregated constraint. Of course, in-tree constraints will force all commodity k flow
onto a single path p ∈ P(k) into dk for integer values of y. It is thus possible to
redefine xkp in this case to be a binary selection variable, and to modify constraints
(14.31) into assignment constraints with right-hand side values of one. After this
modification, the aggregated forcing constraints take the form

∑
p∈P(k) | a∈p xkp ≤

y
dk
a for all k and a. Finally, there are some terminals in consolidation trucking

systems that cannot be used to transfer inbound freight from other terminals; most
end-of-line terminals in LTL systems operate this way. When binary path selection
variables are used, it is not necessary to include tree selection variables yda for arcs
a departing such terminals since originating flow destined for d will automatically
be forced onto a single path and no transfer freight exists.



444 I. Bakir et al.

3.4 Balancing Resources in Flow Planning

The model of transportation costs discussed in Sect. 3.1 assumes that trailer
movements τij and their associated costs are determined only by one-way loaded
flows and thus ignores the important fact that trailer and container resources are
reused over time. Empty trailers must be available at load origins before loads
can be created and moved, and the problem of empty repositioning of equipment
is critically important in most freight transportation settings. When empty reposi-
tioning is ignored during flow planning, opportunities to use empty trailer capacity
to move freight may be overlooked. Flow planning models that explicitly include
empty resource flows and their associated costs seek to address this shortcoming.

To show how planned flow costs may be reduced by integrating empty reposi-
tioning decisions in flow planning when compared to the sequential deployment of
a flow planning model followed by an empty trailer balancing problem, consider
a simple example with 3 terminals as illustrated in Figs. 14.2 and 14.3. Suppose 1

2
trailerloads of demand exists from a to b and from a to c and one trailerload from b

to c. Suppose that the distance from a to b or c is 2
3 and the distance from b to c is

one. In the absence of empty balance, the optimal solution is to move full trailerloads
on lanes (a, b), (a, c), and (b, c); doing so creates imbalance and two trailers should
be returned on leg (c, a). The total trailer distance in this solution is 11

3 , but the
loaded trailer distance is only 7

3 . If empties were balanced simultaneously, it is better
to load the a to b freight via terminal c. This creates loaded trailers on (a, c), (b, c),
and (c, b) and total loaded trailer distance of 8

3 . However, empty balance can be
achieved by only sending one empty on (c, a) and thus the total trailer distance is 10

3 .
Up to this point, the set A of arcs a = (i, j) has been used to represent

opportunities to move loaded trailers from terminal i to terminal j ; note that
loading of the trailer occurs at terminal i and unloading at terminal j . It is certainly
possible to limit empty trailer movements to the arcs in A. There are some cases,
however, when empty trailers might move between terminals where there is never

a

b

c

Fig. 14.2 Flow plan without empty balancing (Loaded distance = 7
3 , totaltrailer distance = 11

3 )



14 Motor Carrier Service Network Design 445

a

b

c

Fig. 14.3 Flow plan with empty balancing (Loaded distance = 8
3 , totaltrailer distance = 10

3 )

a trailer loaded at i to be unloaded at j . Examples that have been encountered in
practice include pairs of hubs in large metropolitan areas, nearby pairs of end-of-line
terminals, or connections between large customer facilities (another type of end-of-
line). To model terminal-to-terminal physical movements of trailers more explicitly,
let AD be a set of dispatch lanes for a trucking company that includes A but may
also include additional connections where empties may be moved: A ⊆ AD . It is
also common in practice for AD to have an important property: a directed path of
dispatch lanes in AD should exist from j to i, for each (i, j) ∈ A. The existence
of the reverse path is a sufficient (but not necessary) condition to ensure that empty
resources can return to load origins for reuse. If the reverse path does not exist for
each (i, j) ∈ A, which is unlikely in practice, then it is important to guarantee that
empty trailers can be balanced using a different mechanism.

Suppose now that empty trailers and containers can be moved on any dispatch
lane (i, j) ∈ AD . Let ηij count the number of empty unit loads moving on dispatch
lane (i, j), measured in the same units as τij . We can enforce equipment balance
then at each terminal i by adding the following constraint to any of the flow planning
formulations presented thus far:

∑

(i,j)∈A
τij +

∑

(i,j)∈AD

ηij −
∑

(j,i)∈A
τji −

∑

(j,i)∈AD

ηji = 0 ∀ i ∈ N (14.37)

Given this balance constraint, flow plans can be determined by including an
appropriate cost for moving empty trailers in the objective function. If dEij is the
cost of moving an empty unit load on dispatch lane (i, j), then we can add the
term

∑
(i,j)∈AD dEij ηij to any of the objective functions to capture empty costs.

Doing so is likely to lead to changes in the optimal flow plans and empty trailer
balance plans that would result from solving the problems sequentially: some freight
will be assigned optimally into natural empty backhaul corridors, and balancing
backhaul trailer movements may deviate from the most direct (cheapest) paths to
attract freight.



446 I. Bakir et al.

3.5 Slope-Scaling Heuristics for Flow Planning

Flow planning optimization models are important in practice for the design of
consolidation transportation networks, but exact optimization can be difficult for
instances of realistic size. One heuristic approach to solving these problems is
to simply limit the number of decision variables that are defined to a tractable
number; this idea is easiest to implement with path-based models as we described
earlier, but it is also possible with arc-based approaches. Slope scaling is a
different heuristic idea and can be useful for problems that have difficult non-
linear objective functions that, when linearized, lead to optimization problems that
can be solved efficiently. We will now describe how slope scaling can be used to
solve flow planning problems, and how the linearized subproblems decompose into
shortest-path problems for both the base model and the single-path model (whose
slope-scaling solutions are therefore equivalent). Furthermore, the intree model can
also be solved by a shortest-path decomposition (and is therefore equivalent to
the base and single-path models) when the objective function cost coefficients are
independent of commodity k.

Slope scaling heuristics are useful for problems with difficult non-linear objective
functions but with linear constraints and decision variables. The generic model
(14.1)–(14.5) has this form, since its constraints are separable by commodity k

and, when separated, describe the minimum-cost path polytope since all commodity
k flow has a single origin (as well as a single destination) and arc flows are
uncapacitated. We now show how to use slope scaling to find solutions first for
model (14.8)-(14.13). Note that we can eliminate the integer dispatch variables τij
by rewriting the objective function recognizing that cost-minimizing values for τij
follow directly from the flow variables since it is non-decreasing in τ . Thus, we can
define:

τij =
⌈∑

k∈K xkij

Q

⌉

, (14.38)

and the optimization model can be rewritten as minimizing the objective function:

∑

k∈K

∑

(i,j)∈A
cij x

k
ij +

∑

(i,j)∈A
dij

⌈∑
k∈K xkij

Q

⌉

−
∑

i∈N

∑

k∈K | ok=i
hiqk (14.39)

subject to (14.9) and (14.12).
To solve with a slope-scaling approach, we linearize the objective function by

replacing the ceiling function:

∑

k∈K

∑

(i,j)∈A
cij x

k
ij +

∑

(i,j)∈A
ρij (t)

∑

k∈K
xkij −

∑

i∈N

∑

k∈K | ok=i
hiqk, (14.40)



14 Motor Carrier Service Network Design 447

where ρij (t) is the slope coefficient in iteration t . Rearranging terms yields:

∑

k∈K

∑

(i,j)∈A

(
cij + ρij (t)

)
xkij −

∑

i∈N

∑

k∈K | ok=i
hiqk, (14.41)

A slope scaling heuristic finds each solution to the flow planning problem by
selecting a fixed vector ρij (t), then determining xkij that minimize (14.41) subject to
(14.9) and (14.12), and then finally specifying trailer flow variables using (14.38).
It should be clear that the minimization problem for ρij (t) is a linear program
that is separable by commodity k. Moreover, each separable subproblem is to find
a minimum-cost path from ok to dk for commodity k given arc cost coefficients
cij + ρij (t). Since this solution is a single flow path for each commodity k, it also
follows that the solution to any slope scaling subproblem will also be a single-path
flow plan; thus, solving (14.8)–(14.13) is equivalent to solving (14.15)–(14.20) by
slope scaling. Furthermore, note also that the objective coefficients on commodity
arc flow in (14.41) are independent of commodity k. If we consider all commodities
k that share a common destination dk = d, we can find a joint set of minimum-
cost paths given arc costs cij + ρij (t) using an algorithm that produces an in-tree
to destination d, like Dijkstra’s Algorithm. Thus, a solution found during any slope-
scaling iteration for an in-tree flow planning problem is also optimal for the base
or single-path problems with the same linearization multipliers ρij (t). If instead the
commodity arc flow cost coefficients had the more general form ckij+ρij (t), separate
shortest path problems would be necessary for each commodity for the base and
single-path slope scaling problems. Furthermore, the slope scaling problem for the
in-tree flow planning model would require solving mixed-integer program for each
destination d to enforce the tree structure on the joint set of paths.

Consider then the following slope scaling approach for solving the base, single-
path, or in-tree flow planning problem. We initialize the slope coefficients using a
lower-bounding approximation: ρij (1) = dij

Q
for each arc. Then, for each iteration t ,

we minimize (14.41) subject to (14.9) and (14.12) by first finding a shortest-path in-
tree to each destination d using arc costs cij+ρij (t), then assigning commodity flow
qk along the identified shortest path from ok to dk for each k ∈ K yielding xkij (t), and
finally determining arc trailer flows τij (t) using (14.38). The true objective function
cost of this solution is C(t), determined using (14.8). If C(t) is the lowest objective
function cost found so far, it is recorded and the best solution is updated. If the
solution xkij (t) remains unchanged from the prior iteration t − 1, then we terminate
and return the best found solution. Otherwise, we adjust the slope coefficients as
follows and move on to iteration t + 1:

ρij (t + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

ρij (t) if
∑

k∈K xkij (t) = 0

dij

⌈∑
k∈K xk

ij
(t)

Q

⌉

∑
k∈K xkij (t)

if
∑

k∈K xkij (t) > 0

(14.42)

Note finally that it may also be reasonable to terminate a slope-scaling search after
a maximum number of iterations to avoid excessive computation time.



448 I. Bakir et al.

3.6 A Local Search Heuristic for Flow Planning

Local search and metaheuristic extensions of local search are important heuristic
approaches for solving flow planning problems. Most heuristics of this type take
advantage of the fact that minimum cost path algorithms can frequently be used,
with modifications to arc costs or network structure, to decide on new freight flow
paths for commodities during search iterations. We now describe the core ideas
of a local search approach that for many years was used as a key component in
linehaul network design for LTL carriers; see Sect. 5 for more background. The
ideas presented here will closely follow those developed initially in Powell (1986)
for what was then referred to as the load planning problem for LTL carriers; in the
terminology of this chapter, the problem considered is a flow planning problem.

The base problem considered is to create an in-tree flow plan of the type
described by constraints (14.23)–(14.28), however we will assume only non-
negative trailer flow τij as described below. The LTL flow planning problem will
be to decide τij on direct movement lanes (i, j) ∈ A and freight flows xdij for
each aggregated destination commodity d ∈ D. However, this planning problem
considers a simpler transportation cost function f Tij (xij ) given total freight flow xij
on lane (i, j) measured in fractional trailerloads. If any flow is assigned to the lane,
we incur a fixed cost equivalent to dispatching a minimum flow of trailers Mij at
cost dijMij . Once the capacity of this minimum flow is exceeded, we approximate
additional trailer dispatching cost with a linear term dij xij . If we use (14.22) as
the flow planning objective function, then we represent this cost approximation by
determining the trailer flows τij as follows:

τij =

⎧
⎪⎪⎨

⎪⎪⎩

0 if xij = 0

Mij if 0 < xij ≤ Mij

xij if Mij < xij

(14.43)

Note that the objective function cost term dij τij exhibits cost scale economies in xij
for the first Mij units of freight flow to encourage consolidation. If Mij were one for
all (i, j), this trailer counting function is a lower bound for the trailer step function
introduced earlier in model (14.8)–(14.12). If qk measures weekly rates of demand,
then Mij = 5 would indicate that at least one trailer should be sent each weekday
on dispatch lane (i, j) if any flow is assigned to that lane. Minimum dispatch
frequencies can be used to ensure that reasonable service levels are provided to
commodities that use this lane in their (ok, dk) path.

We now describe a two-tier local search heuristic for finding solutions to this
model. The first tier heuristic selects a subset AS ⊆ A of direct service lanes (i, j)
to make available for use; including lane (i, j) in AS implies that a minimum of
Mij trailers will flow on the lane. A feasible first-tier solution is one where at
least one freight path exists between ok and dk for each (disaggregated) commodity
k ∈ K using only arcs in AS . Given such a feasible AS , the second tier heuristic



14 Motor Carrier Service Network Design 449

determines a freight flow path for each k ∈ K to minimize the value of the objective
function. The flow qk for commodity k is assigned to each arc (i, j) in its path, thus
determining the total arc flows xij and trailer flows tij and the concomitant objective
function value. Note that the joint set of freight flow paths into each d ∈ D must
form a directed in-tree.

We begin with the second tier problem, referred to in the literature as the routing
subproblem. First, note that this minimization problem is on its own a piecewise-
linear convex multi-commodity flow problem with a relatively simple cost structure.
If we rewrite the objective function as

min
∑

(i,j)∈AS

(Dij + cij xij ), (14.44)

we can replace the trailer flow variables with Dij by adding the following
constraints:

Dij ≥ dijMij ∀ (i, j) ∈ AS (14.45)

Dij ≥ dij xij ∀ (i, j) ∈ AS (14.46)

and we can solve a mixed-integer programming problem with constraints (14.23)–
(14.25) and (14.27) and (14.28). Note that the in-tree structure is what makes this
optimization problem difficult since it is otherwise a linear program. A reasonable
solution approach might be to only introduce tree selection variables and constraints
for nodes i and destinations d when violations occur when they are ignored.

Another idea is to solve the second tier routing subproblem by local search. To
do so, note that a feasible set of in-tree paths for each destination d can be found by
solving a shortest-path problem with arc costs dij + cij . By moving all qk flow for
commodity k along this shortest path, it should also be clear that the total cost of the
resulting arc flows xij ,

∑

(i,j)∈AS

(
dij + cij

)
xij , (14.47)

is a lower bound on the objective function value for the routing subproblem. In fact,
if xij ≥ Mij for all arcs, this solution is optimal. Thus, the only way to improve a
solution is to find arcs where xij < Mij and determine whether any commodities
can be re-routed to use them and reduce cost. To do so, let an override indicate when
a specific value ydij is forced equal to one by the heuristic; the goal of setting an
override will be to force a shortest-path algorithm to include arc (i, j) surely in the
in-tree to destination d. Given a set of overrides, it is easy to modify an algorithm,
like Dijkstra’s, to find a shortest-path in-tree to d conditional on including all arcs
where ydij = 1. The idea is simple: when extending labels from j to upstream nodes
k along arcs (k, j), we only update the cost label (dual) at k if its cost improves and
either ydkj = 1 or no override is set outbound from node k.



450 I. Bakir et al.

Thus, a core component of a heuristic for the routing subproblem will be to
determine commodity flows xdij and arc flows xij by building shortest-path in-trees

to each destination d ∈ D modified by current overrides ydij . Given this solution,

we can seek to reduce its cost by attracting flow to arcs where xij < Mij . Let yd

indicate the current in-trees selected for this solution. One approach to attracting
flow to (i, j), described originally in Powell (1986) as IFOL-0, is to consider all
destinations s ∈ D where ysij = 0 and some flow quantity qs(i) has accumulated at
i for transfer onward to s. Note that qs(i) may include both originating flow at i and
also the sum of flows from upstream origin terminals k such that the path from k to s
on the tree arcs a where ysa = 1 includes terminal i. If we were to change the in-tree
for s such that (i, j) were included in the in-tree (by setting override ysij = 1), then
the new path for this flow would include arc (i, j) and then follow the tree arcs from
j to s. In the original IFOL-0 approach, the destinations s are sorted by decreasing
estimated savings from diversion onto (i, j) computed by qs(i) multiplied by the
marginal cost of the new path (where an arc marginal cost is zero if its flow is less
than Ma , and ca otherwise), and then processed in order of estimated savings where
commodity s is diverted onto (i, j) only if it generates actual cost savings.

Given an approach for the second tier routing subproblem, it remains to discuss a
heuristic approach for selecting the arc subsetAS . This first tier problem, or network
design master problem, can be addressed with a simple local search heuristic.
Consider an LTL trucking network that currently dispatches loads on a set of lanes
AS . Reasonable local search neighborhoods modify AS by dropping a single arc or
adding a single arc each iteration, generating a new routing subproblem solution and
moving to the new solution generated only if total cost is reduced. When dropping
an arc a = (i, j), a set of destinations Da where ysa = 1 for s ∈ Da is disrupted and
a new in-tree needs to be constructed for each s to create a feasible solution. On the
other hand, adding an arc a creates an opportunity to re-route flow to reduce cost
and a procedure like IFOL-0 can be used to see which flow should be attracted to a.
One approach to structuring such a heuristic would be to consider dropping all arcs
from AS first one-by-one, focusing first on those connecting breakbulk terminals to
end-of-lines and vice versa and then moving to those connecting two breakbulks.
After considering all such drops, a set of arcs could be considered for adding to the
network. Several passes over a drop-add sequence should be conducted.

4 Network Design Models for Flow and Load Planning

Load planning in consolidation trucking is a more detailed task than flow planning
and is at its core a scheduling activity. Given a flow plan, a trucking company needs
to provide adequate transportation capacity between terminal pairs to support the
flows over time. Generally a schedule is constructed for a time horizon, like a week
or a month, to provide this capacity. This schedule typically includes loads, empties,
movements or dispatches, and drivers. A load is planned to be built at some origin



14 Motor Carrier Service Network Design 451

terminal at some time, and then dispatched to a destination terminal to arrive by
some time. A load also specifies a planned type of trailer or container equipment to
be used (and its size). Empty loads (or empties) are planned both to recirculate
equipment back to load origins but also, in some cases, to move drivers back
to their home terminals. Movements, or dispatches, refer to terminal-to-terminal
movements by drivers or outsourced transportation modes with one or more loads.
The movement and driver schedule required to execute planned loads and empties
is typically not considered part of the load planning problem.

Rate-based flat network service network design models are still useful for flow
planning, and path-based variants in particular can model some important timing
considerations for commodities. However, they have a few important drawbacks.
Flat network models are not particularly useful for detailed flow and load planning
primarily because they do not accurately model the timing of consolidation activities
at transfer terminals or details about when equipment is available for dispatch. For
this reason, flat network models are not usually deployed for load planning problems
that seek to explicitly create plans for timed dispatches of trucks during an operating
day. We now introduce time-expanded network models for such service network
design problems. In this section, we will use the term flow and load planning
models to refer to those that both create capacity and plan shipment flows through
a consolidation network while simultaneously planning loaded and empty trailer
dispatches during a planning horizon.

4.1 A Time-Expanded Model for LTL Flow Planning

Before we explore models for joint flow and load planning, we introduce an
important time-expanded network model for LTL flow planning; the model and
solution approach in this section were first described in Jarrah et al. (2009).
Consider a time-expanded network where N and A represent the set of time-
space (terminal, time) nodes and time-space arcs (denoting the timed trailer dispatch
lanes), respectively. To model the network over time, suppose that each geographic
terminal in N is replicated once for each of the five weekdays to yield the nodes
in N . Similarly, each geographic load dispatch lane in A is also replicated for
each weekday to yield the arcs in A . Note that load lanes that take more than a
single travel day to reach their destination are connected forward to the appropriate
destination node in N . The arcs in A also now include holding arcs forward one
time period (weekday) for each terminal node in N . Since carriers actually dispatch
loads at more than a single time per day, this model is best described as one of
tactical flow planning rather than a detailed load planning and dispatch model.

Given this time-expanded network structure, each commodity demand now
specifies a timed origin node and timed destination node, both in N . Using this
structure, the volume of freight moving between geographic terminals can be
modeled to vary by day-of-week. Furthermore, the transit time requirement for



452 I. Bakir et al.

each origin-destination pair can be modeled (at the level of days) by choosing an
appropriate timed destination node.

If the goal is to produce an in-tree flow plan for each terminal destination d ∈ N ,
it is possible to formulate the flow planning problem with binary in-tree selection
variables. To do so, it is possible to modify a path-based flow planning model
like (14.30)–(14.36) to one where the primary binary decision variables are wd

� ,
indicating whether or not complete in-tree � is selected for destination d ∈ N . This
approach assumes that the same in-trees will be used each operating day of the
week in the flow plan. In such a formulation, each in-tree is comprised of time-
expanded paths from origin terminals into d, replicated for each operating day and
consistent with the in-tree property that only a single outbound terminal j ∈ N can
be selected for flow outbound from i ∈ N for destination d. In fact, since the model
also includes holding arcs, the in-tree property is extended in this case to holding: if
any freight at (i, t) destined for d is held to (i, t + 1), then all such freight must be
held.

A feature of such an in-tree model is that a unique time-expanded path connects
each timed origin to a timed copy of d. Thus, if a specific tree � is selected for d, a
precise mapping of commodity freight volumes destined to d to time-expanded arcs
is known; in this way, a set of tree selection decisions implies freight volumes on
all time-expanded arcs which in turn specifies load counts and fixed transportation
costs. Additionally, empty trailer balancing constraints are included in this model
and are a straightforward extension of constraints (14.37) to the case with time-
expanded nodes and arcs.

Specifying a flow planning model with tree variables is convenient, but the
drawback in practice is that there are far too many feasible in-trees for each
destination to enumerate. A heuristic approach to solve this integer programming
model is to use a slope-scaling heuristic to linearize the fixed costs, and then to use
column generation to solve the resulting linear programs without enumerating all
feasible in-trees. The slope-scaling approach proposed here is very similar to the
generic approach presented in Sect. 3.5.

Given a set of slope-scaling linearization factors, it can be shown that the
empty balancing problem is independent of the tree selection variables. Thus, the
slope-scaling linear programming problem can be decomposed into a simple linear
subproblem for empty balancing (with fractional empties) and another for selecting
in-trees for each destination. The empty problem needs only to be solved once.
The in-tree selection linear subproblem is also simple, and in fact can be solved
by inspection by choosing for each destination the tree with the smallest cost
coefficient; thus, the in-tree selection problem results in integer solutions.

All of these observations motivate the following approach for solving the slope-
scaling LP for a given set of linearization factors. Given an initial set of possible
in-trees � with at least one per destination, the in-tree selection LP is solved
(by inspection). The resulting dual variables associated with the tree selection
constraints are used by an integer program that is solved for each destination d

that seeks to find (if possible) a new in-tree with negative reduced cost. This in-tree
selection integer program will not be described in more detail here, but it should be



14 Motor Carrier Service Network Design 453

noted that it is based on enumerating sets of possible time-expanded paths into the
timed node copies of destination d in N and using binary variables to select a joint
set that satisfies the in-tree property. Once the LP is solved to optimality via this
column generation procedure, the slope scaling multipliers are updated using the
approach described in this chapter and the LP is solved iteratively until a stopping
criterion is met.

This time-expanded flow planning approach was implemented in practice for a
major US LTL carrier. The carrier at the time operated nearly 150 terminals, and
thus needed to solve large-scale instances with up to 725 time-expanded nodes,
30,000 arcs, and 680 time-space destination commodities. Computational results
demonstrate that the algorithm was able to find improvements of 4–5% in flow plan
costs when compared to the carrier’s base flow plan.

4.2 Time-Expanded Models for LTL Flow and Load Planning

Modern LTL operators often provide services between many origin-destination
terminal pairs with rapid transit times, often as short as overnight or 2 days. Even
with such tight time constraints, it still may make sense to transfer freight multiple
times at intermediate hubs. In such situations, the timing of consolidation is critical:
will the cross-docking occur in the overnight hours, or during the day, or in the
evening with freight picked up that day from the local operations? Models that
attempt to determine flows and build a schedule of loads need detailed timing to
make these decisions accurately.

Consider then a modeling framework for flow and load planning problems that
includes the following features: (1) detailed time-space network modeling, where
nodes denote (terminal, time) pairs and arcs denote timed movements, with fine
time discretization (with multiple decision epochs in a day for each terminal)
representing a single week of activity, (2) integrated consideration of loaded and
empty trailer movements, and (3) support for flexible plans that use an in-tree flow
plan structure but do not require the same trees or schedule of loads every day of the
week.

We now specify a path-based flow and load planning model with these features.
Each commodity k now specifies an origin and destination terminal as usual but
additionally is associated with a specific day-of-week and a latest delivery day and
time at the destination; since originating freight arrives primarily from the pickup-
and-delivery operation, it is assumed that it all becomes available simultaneously in
the evening of each day (for example, 7 p.m.). Paths for each such commodity are
now sequences of load dispatches and terminal holding arcs that denote waiting at
terminals. In-tree structure is enforced for terminal nodes regardless of the time-of-
day of individual dispatches. It is not difficult to allow a different in-tree structure for
destination d at different times during the planning horizon (for example, a new in-
tree can be specified for each day-of-week separately). For simplicity of exposition,
in this chapter we present the model where a single in-tree per destination terminal



454 I. Bakir et al.

d is specified that persists for the entire planning horizon; the extension where the
tree arc choices can vary by day-of-week is not very different.

For the time-expanded network formulation, let N and A again represent the
set of time-space (terminal, time) nodes and time-space arcs (denoting the timed
trailer dispatch lanes), respectively. The set of time-space arcs also includes freight
holding arcs between consecutive nodes at the same terminal. Note that since loads
and empties are now planned at specific times (denoted with decision variables
τa), this becomes a load planning model. Commodity demand qk is measured
in fractional trailers, and the set of time-space paths of commodity k is denoted
with P(k). Consistently with the notation used throughout, N and A refer to the
geographic terminal locations and the geographic direct lanes connecting terminals,
respectively. Each commodity is required to follow a single time-space path from
origin to destination. Since in-tree variables are defined on the geographic network,
it could be possible to have multiple paths for the same commodity that satisfy
the in-tree requirement but this is prevented with the single-path constraints. The
translation function l(a) maps a time-space dispatch arc a ∈ A to its direct
geographic lane l(a) ∈ A. Finally, Δ+(u) is the set of all direct lanes (u, j) ∈ A.
Then, we have the following time-space formulation for the path-based flow and
load planning problem, which we denote PFLP-TS:

minimize
∑

a∈A
daτa +

∑

k∈K

∑

p∈P(k)

hpqkx
k
p (14.48)

subject to

∑

p∈P(k)

xkp = 1 ∀k ∈ K (14.49)

∑

l∈Δ+(u)
ydl ≤ 1 ∀u ∈ N, ∀d ∈ N (14.50)

∑

p∈P(k):a∈p
xkp ≤ yd

k

l(a) ∀k ∈ K,∀a ∈ A (14.51)

∑

k∈K

∑

p∈P(k):a∈p
qkx

k
p ≤ τa ∀a ∈ A (14.52)

∑

a∈δ+(i)
τa −

∑

a∈δ−(i)
τa = 0 ∀i ∈ N (14.53)

xkp ∈ {0, 1} ∀k ∈ K, ∀p ∈P(k) (14.54)

ydl ∈ {0, 1} ∀d ∈ N, ∀l ∈ Δ+(u), u ∈ N (14.55)

τa ∈ Z+ ∀a ∈ A (14.56)



14 Motor Carrier Service Network Design 455

Solving formulation PFLP-TS exactly, or its extension when in-trees are allowed to
differ over time, is generally not possible for planning instances typically found in
practice. Smaller regional LTL carriers with just a handful of terminals may lead to
instances that can be solved by modern integer programming software, especially if
care is taken to manage the number of feasible time-space paths for each commodity
included in the sets P(k).

Larger carriers with hundreds of terminals can easily lead to instances with
500,000 time-space arcs, 50,000 commodities, and millions of feasible time-space
commodity paths. Rather than trying to solve these integer programs exactly, then,
we instead present integer-programming-based local search heuristics for finding
solutions. In these approaches, all neighbors in the local search neighborhood are
identified by feasible solutions to a smaller integer program, and the search for an
improving solution is performed by solving that integer program.

In local search, we begin with a feasible incumbent solution (in this case, a set
of feasible decision variables x, y, and τ ) and search for a neighboring solution
(or simply neighbor) whose cost is less than the cost of the incumbent. If such a
solution is found, it becomes the new incumbent and we continue the search. The
search can be terminated when a certain number of iterations has been performed, a
time limit has been reached, or no additional improving neighbors can be found.

For this flow and load planning problem, let us first consider neighbors that are
defined by reoptimizing the in-tree for each single specific destination terminal
(or terminal-delivery day) d. If the in-tree plan selection variables y for all other
destinations are fixed at their current values along with the timed dispatch paths for
commodities inbound to those locations specified by x, a restricted IP can be solved
to search for new values only for variables yd and xk for commodities k where
dk = d; each such solution is considered a neighbor. Trailer flow variables τ are
never fixed in this approach. Note that one idea used to direct to the search toward
promising destinations d is to only consider destination terminals for which a large
amount of freight is destined; other approaches can be considered that prioritize the
reoptimization of larger terminals more frequently.

More specifically, given a current feasible solution (x̄, ȳ, τ̄ ) at some iteration of
the search algorithm, PFLP−T S(d) is defined by adding fixing constraints (14.57)
and (14.58) to the original formulation (14.48)–(14.56):

yul = ȳul ∀u ∈ N : u 	= d (14.57)

xkp = x̄kp ∀k ∈ K : dk 	= d (14.58)

Erera et al. (2013a) uses this time-expanded network model and solution technique
to study flexible flow and load plan designs, including (1) a day-differentiated plan,
where an in-tree structure is preserved but the trees are not required to be the same
each day of the week, (2) a same-path plan, where the tree requirement is dropped
but the freight between two terminals has to follow the same sequence of terminals
every day, and (3) an unrestricted plan, where freight is routed without the tree



456 I. Bakir et al.

restriction or the same path requirement. Computational experiments demonstrate
that high-quality solutions to large-scale problem instances, which represent actual
freight volumes transported by the super-regional LTL carrier Saia, can be obtained
when limiting the restricted neighborhood search IPs to a solution time limit of
90 s. The study reports cost savings (relative to the initial load plan provided by the
carrier) of approximately 4% for traditional load plans and approximately 6.5% for
day-differentiated load plans by running the local search for 6 h.

Other IP-based local search neighborhoods may be promising for this problem.
One idea is to use an integer program to attempt to attract flow to a specific lane
l ∈ A or to drive flow off of l. Such lane-based neighborhoods may benefit from
the fact that they can adjust the in-trees for multiple destinations during a single
search iteration; this may be especially important when in-trees for multiple nearby
terminals all need to be adjusted simultaneously to remove enough flow from certain
time-space dispatch arcs to reduce cost. Another potentially useful idea is to not
include the trailer balance constraints (14.53) when solving the neighborhood search
integer programs; when the time-space networks are large, there are large numbers
of these constraints which can slow the search IP significantly. Instead, we might
specify lower bounds on the number of trailers dispatched on some time-space arcs
when they have been identified in earlier iterations as useful backhaul lanes for
returning empties to outbound-heavy terminals.

Consider an alternative IP-based search approach for solving PFLP-TS where at
each iteration, the type of neighborhood (attract or reduce freight) is chosen as well
as a specific geographic lane l ∈ A. Given a lane and a neighborhood type, a set of
destination terminals D′ is identified whose in-trees may be affected by attracting
or removing flow from lane l. For each of these destinations d ∈ D′, a new in-
tree is determined via a heuristic as an option to replace the current in-tree to d.
The NewOrOldTree IP is then solved to search the neighborhood, where for each
d ∈ D′ a decision is made to leave its tree unchanged or to adopt the new tree while
also choosing new commodity time-space paths compatible with the selections. All
in-trees and commodity paths for destinations d /∈ D′ are fixed and thus remain
unchanged.

The success of this approach clearly depends also on the methods used to gen-
erate new in-trees. One method useful for the attract neighborhood is similar to the
IFOL-0 procedure of Powell (1986) described earlier in this chapter. Determining
new trees for the reduce neighborhood is more complicated, since determining an
appropriate new in-tree for d that excludes lane l requires selecting from potentially
many feasible choices.

We now describe the NewOrOldTree IP, given as follows:

minimize F +
∑

a∈A ′
caτa +

∑

k∈K ′

∑

p∈P ′(k)
hpqkx

k
p (14.59)



14 Motor Carrier Service Network Design 457

subject to

∑
p∈P ′(k) xkp = 1 ∀k ∈ K ′ (14.60)

xkp ≤ 1− zdk ∀k ∈ K ′, ∀p ∈P ′(k,OldT ree(dk)) (14.61)

xkp ≤ zdk ∀k ∈ K ′, ∀p ∈P ′(k,NewT ree(dk)) (14.62)

∑
k∈K ′

∑
p∈P ′(k):a∈p qkxkp +fa ≤ τa ∀a ∈ A ′ (14.63)

zdk ∈ {0, 1} ∀k ∈ K ′ (14.64)

xkp ∈ {0, 1} ∀k ∈ K ′, ∀p ∈P ′ (14.65)

τa ≥ MTa ∀a ∈ A ′ (14.66)

τa ∈ Z+ ∀a ∈ A ′ (14.67)

Note that the search formulation (14.59)–(14.67) is no longer simply a restriction of
the original integer program. For each destination d ∈ D′, binary decision variable
zd is used to select the new in-tree or old (current) in-tree to d. Time-space paths
are (potentially) changed only for some commodities k ∈ K ′, where K ′ denotes all
commodities destined for a terminal in D′; note that the current time-space path for
some such commodity k remains feasible if the old in-tree is selected, but it may
or may not be feasible if the new in-tree is selected for dk . Let A ′ be the subset of
time-space dispatch arcs whose trailer flow might change given D′ and the specified
in-trees. Let F denote all costs associated with trailer movement on arcs a ∈ A \A ′
and handling for commodities k ∈ K \ K ′. Constraints (14.61) and (14.62) ensure
compatibility of path selection with the new/old tree selections. Constraint (14.63)
ensures that enough trailers move along an arc a to carry the freight assigned to
the paths passing through a. Here, fa denotes the sum of the fractional freight for
commodities k ∈ K \K ′ that will remain moving on dispatch arc a.

Finally, this local search approach uses a different method to model the impact
of empty trailer flows on the flow and load plan. Let MTa be the current minimum
number of trailers that must move on arc a in order to guarantee flow balance;
this quantity is determined by periodically solving an empty trailer repositioning
minimum cost network flow (MCNF) formulation given the current x and y solution,
and then setting MTa = τa for any arc a on which empty trailers are planned. The
idea here is that the best times and locations to move empty trailers are dictated
largely by the underlying freight demand and thus do not need to change frequently,
so lower bounds can be used to create useful backhaul opportunities that can be



458 I. Bakir et al.

exploited when selecting the flow plan and specific loaded dispatches. Of course,
it is also necessary to solve the empty balancing problem at the end of the final
iteration to ensure that the final trailer load plan is balanced.

This heuristic is tested in Lindsey et al. (2016) on large-scale problem instances
with numerous algorithmic configurations, where a configuration is defined by the
rules used in each iteration to (1) decide whether to search an attract or a reduce
neighborhood, and (2) choose the lane l to be used to generate the neighborhood.
Computational experiments demonstrate that the approach is effective at generating
high-quality solutions in reasonable computation times. Cost reductions from the
base flow and load plan of the partner LTL carrier were found in the range of 6–7%.

4.3 Dynamic Discretization Discovery

Solving flow and load planning models that use time-expanded networks to within
reasonable provable optimality gaps for the large-scale instances found in practice
has been beyond reach for a long time.

However, a novel paradigm, dynamic discretization discovery, has emerged
recently as a way to effectively and efficiently find optimal or near-optimal
solutions to models using time-expanded networks (Boland et al. 2017). Dynamic
discretization discovery allows the solution of such models on a fine discretization
without ever fully constructing it. The paradigm has three main components:

• The design of time-indexed IP models based on a partial discretization of time,
that are efficiently solvable in practice and that yield lower bounds, upper bounds,
or exact solutions;

• The design of algorithms that dynamically discover partial discretizations, i.e.,
algorithms that can “refine” a partial discretization of time in order to strengthen
the quality of a time-indexed IP model; and

• The design of algorithms that efficiently solve time-indexed IP models.

The latter is stated for completeness sake. In many situations, the use of a
standard (commercial or open source) IP solver suffices.

A partially time-expanded network DT = (NT ,AT ) is derived from subsets of
the time points that could be modeled at each terminal node. Specifically, we denote
the collection of modeled time points as T = {Ti}i∈N, with Ti = {t i1, . . . , t ini } ⊆{1, . . . , T } representing the time points modeled at terminal node i and T denoting
the planning horizon. Given T , the timed node set NT then has a node (i, t) for
each i ∈ N and t ∈ Ti .

The timed arc set of a partially time-expanded network consists of arcs of the
form ((i, t), (j, t̄)) where (i, j) ∈ A, t ∈ Ti , and t̄ ∈ Tj . Note that arc ((i, t), (j, t̄))
does not have to satisfy t̄ = t + tij , where tij is the travel time from terminal node
i to terminal node j . In fact, the flexibility to introduce arcs ((i, t), (j, t̄)) with a
travel time that is different from the actual travel time tij is an essential feature of
the partially time-expanded networks, and provides a mechanism to control both the



14 Motor Carrier Service Network Design 459

size of the time-expanded network and the approximation properties of the IP model
based on it.

Now consider a partially time-expanded version of the generic model presented
in Sect. 3.1, i.e.,

minimize
∑

k∈K

∑

a∈AT

cax
k
a +

∑

a∈AT

daτa −
∑

i∈N

∑

k∈K | ok=i
hiqk (14.68)

subject to

∑

a=((i,t),(j,t̄))∈AT

xka−
∑

a=((j,t̄),(i,t))∈AT

xka=

⎧
⎪⎪⎨

⎪⎪⎩

qk if i = ok, t = ek

−qk if i = dk, t = lk

0 otherwise

∀ k ∈ K, ∀i ∈ N

(14.69)

xa =
∑

k∈K
xka ∀ a ∈ AT (14.70)

xa ≤ Qτa ∀ a ∈ AT (14.71)

xka ≥ 0 ∀ k ∈ K, ∀ a ∈ AT (14.72)

τa ≥ 0 and integer ∀ a ∈ AT (14.73)

Observe that if the time discretization is complete, i.e., Ti = {1, . . . , T } for i ∈
N , and AT consists of all arcs ((i, t), (j, t̄)) with t̄ = t + tij for i, j ∈ N and
t = 1, . . . , T − tij , together with all arcs ((i, t), (i, t + 1)) for i ∈ N and t =
1, . . . , T − 1, representing the possibility to wait at terminal node i, then the time-
expanded network is acyclic and the above formulation is an exact formulation for
the flow planning model.

By choosing NT and AT carefully, the model may be guaranteed to provide
either a lower or an upper bound on the optimal value of flow planning model.

To obtain a lower bound, the concept of a “short” arc is helpful: ((i, t), (j, t̄)) ∈
AT is short if t̄ ≤ t+ tij . Three conditions, together, guarantee a lower bound from
the IP: (i) (ok, ek) ∈ NT and (dk, lk) ∈ NT for all k ∈ K , (ii) for all (i, t) ∈ NT
and all j ∈ N with t + tij ≤ lj , there exists a t̄ with ((i, t), (j, t̄)) ∈ AT , and
(iii) every arc in AT is short. Note that if the time discretization at terminal node
j is quite coarse, it may be that t̄ is less than t , suggesting travel backwards in
time! Nevertheless, good lower bounds can result. It can be proved that the best
such lower bound is obtained by setting t̄ = max{t ′ : t ′ ≤ t + tij , (j, t

′) ∈ NT },
and permitting no other arc from (i, t) to j to be included in AT . A partially time-
expanded network created in this way has the longest-arc property.

A condition that guarantees an upper bound from the IP, provided the IP is
feasible, is that all arcs are “long”: ((i, t), (j, t̄)) ∈ AT is long if t̄ ≥ t + tij .



460 I. Bakir et al.

The fundamental idea underlying the dynamic discretization discovery paradigm
is to always work with a partial discretization of time so as to ensure that the
resulting models can be solved efficiently, but to guarantee that, upon termination of
the algorithm, an optimal (continuous-time) solution is (or can be) produced. That
is, the idea is to solve a sequence of small IPs, rather than a single large IP.

Thus, whenever the lower-bound IP model does not generate a feasible (and
hence optimal) solution, its solution uses some timed arc that is too short. By
refining the discretization at the terminals node at the head of that arc, the timed
arc that is too short can be made to “disappear”, i.e., not be present in the network
associated with the refined partial discretization. If the longest-arc property is
enforced for the partially time-expanded network constructed at each iteration, the
timed arc that is too short, ((i, t), (j, t)) say, can be removed simply by adding t̂ to
Tj for any t̂ satisfying t < t̂ ≤ t + τij . The effect will be to lengthen the timed arc,
to ((i, t), (j, t̂)). The natural choice is to take t̂ = t + tij .

Excellent computational results for medium-sized instances of the flow and load
planning model have been obtained with an interval-based variant of the dynamic
discretization discovery algorithm outlined above (Marshall et al. 2020); instances
derived from the western operations of a US carrier with about 15 terminals, about
100 load arcs connecting terminals, and about 450 commodities are solved to within
1% of (proven) optimality in about 10 min.

5 Bibliographical Notes

In this section, we provide more detail about specific important papers in con-
solidation trucking service network design. First, we will discuss some important
papers focusing on exact solution approaches useful for flow planning models. Next,
we review important papers in the chronology of flow planning for consolidation
trucking. We then review papers on flow and load planning and related network
design papers that use time-expanded networks. Finally, some discussion of prob-
lems downstream from load planning will also be reviewed. These notes are not
meant to be a complete and comprehensive chronology, but should provide the
reader with a useful initial overview of some of the more important papers in the
literature.

The generic arc-based trucking network flow planning model is a multi-
commodity capacitated fixed-charge network design (MCND) problem (see e.g.,
Crainic, 2000). Early work describes Lagrangian approaches for computing lower
bounds for cases when the capacity that can be installed on each arc is bounded (see
e.g., Crainic et al., 2001). Recently, Chouman et al. (2017) provides an excellent
summary of recent exact approaches for this problem class, including those
described in Frangioni and Gendron (2009) and Raack et al. (2011). Furthermore,
the paper outlines the components of effective cutting plane algorithms for the
problem, including one that relies on introducing violated strong inequalities of the



14 Motor Carrier Service Network Design 461

form xkij ≤ qkτij to improve lower bounds. Evidence is provided that cutting plane
algorithms work better with disaggregated commodity representations. Problems
solved to optimality or to small gaps are those with at most 100 nodes, 700 arcs,
and 400 commodities. Atamtürk and Gunluk (2017) provides a useful review of
approaches for the construction of useful classes of valid inequalities for capacitated
network design problems, including earlier work in Atamtürk (2002) and Atamtürk
and Rajan (2002). Slope-scaling heuristics for these design problems are introduced
in Crainic et al. (2004).

An early and important stream of research on flow planning for LTL trucking
consolidation networks was initiated in Powell and Sheffi (1983) and Powell (1986);
related work using similar flat network models is also covered in Powell and
Sheffi (1989) and Powell and Koskosidis (1992). It is important to note here that
the work was described as load planning (for example, in the title of the 1983
paper), but in the context of these definitions used in this chapter it is best to
classify this work as focused on flow planning. Powell (1986) introduces the in-
tree flow planning problem for LTL carriers and develops a detailed local search
solution heuristic for the problem. Follow-on work in Powell and Koskosidis (1992)
constrains plans further by clustering EOL terminals to a primary breakbulk and
aligning their flow plans. This paper also presents refined solution approaches to the
routing subproblem, including a gradient-based approach for finding primal feasible
solutions and subgradient optimization and dual ascent approaches that produce
lower bounds and enable estimations of optimality gaps.

The heuristic developed in these papers was implemented originally for flow
planning at the U.S. LTL carrier Ryder Truck Lines in an interactive planning
system known as APOLLO (Advanced Planner Of LTL Operations). Development
continued at Yellow Freight within a system known as SYSNET; Bell et al. (2003)
reports that SYSNET was still in use, in an updated version, at Yellow Freight over
a decade later. The ideas in these systems were then sold broadly to LTL carriers
by the Princeton Transportation Consulting Group (and later Manhattan Associates)
within the SuperSPIN system. The software was reportedly used by every major
national and regional U.S. LTL carrier in the 1990s and remained in use for nearly
25 years afterwards. Braklow et al. (1992) describes a case study where the software
was successfully implemented at Yellow Freight System, and a reduction in number
of end-of-line terminals resulted in higher freight density and therefore reduced
handling costs and improved service level.

Other authors in this time period developed LTL flow planning models. Roy
and Delorme (1989) introduces NETPLAN, a nonlinear mixed-integer network opti-
mization model that simultaneously considers flow planning and empty rebalancing
using a path-based model. The objective function minimizes the total transportation
and consolidation costs, with penalties for overutilization of trailer capacity and
failure to meet service standards. An iterative solution methodology (introduced in
Crainic and Rousseau 1986) is used to solve the problem. This study, along with
Crainic and Roy (1988) and Roy and Crainic (1992), tests the approaches using



462 I. Bakir et al.

data from two large Canadian LTL companies and shows that both service offerings
could be expanded reliably while also reducing total operating costs.

More recently, Meuffels et al. (2009) addressed a ground transportation con-
solidation problem for the express package industry using similar network design
ideas. This work was conducted for TNT Express, and it is part of a larger
group of operations research projects described in Fleuren et al. (2013). In the
paper, relatively small tactical express networks are considered for consolidation
optimization using flat networks. Additionally, time-feasible schedules for the
vehicle fleet are also determined given the consolidation plan.

Time-expanded network models for trucking service network design do not
appear in the literature until the 2000s. Prior to this work, some use of models of this
type was documented for express package service providers that typically use air and
truck movements. Work in this area is described in Barnhart and Schneur (1996),
Kim et al. (1999), Barnhart et al. (2002), and Armacost et al. (2002). Decisions
in these models include the timed routes of aircraft from (potentially) different
fleet types and ground truck transfer decisions to enable service-feasible transfer
of packages from origins to destinations. In these papers, integer programming
optimization models that use path variables are developed and solved, often relying
on column generation for solving large-scale linear programming relaxations.

With increasing demand for faster and time-definite freight transfer due to
changing customer service expectations driven in part by the package express
industry, LTL carriers now need to plan networks with tighter service guarantees.
Jarrah et al. (2009) is the first to consider LTL flow planning with a time-expanded
network that allows modeling of explicit service commitments (measured in transit
days) to customers that is solved with a slope-scaling approach. The path-based
model creates an in-tree flow plan with empty trailer balancing by considering a
planning week with a single time-space node on each weekday; in this way, it is not
a detailed load dispatch planning model and may still overestimate consolidation
opportunities.

Erera et al. (2013a) and Lindsey et al. (2016) model large-scale detailed flow
and load planning problems for LTL carriers, following advice from Powell (1986):
“Ideally the problem should be formulated as a detailed scheduling problem where
the scheduled departure of each tractor would reflect not only a decision that
balanced transportation and handling costs but also the actual level of service
constraints for each shipment being carried.” Both papers introduce integrated flow
and load planning integer programming models that use a path-based formulation
on a time-space network, and both solve the models using different IP-based
local search techniques. Erera et al. (2013a) defines the local search neighborhood
by restricting the base integer program to only change flow plan and freight
routing variables for a single destination d each iteration, while Lindsey et al.
(2016) considers neighborhoods defined by adjusting many in-trees simultaneously
(and associated time-space freight paths) to add or remove flow from individual
geographic lanes each iteration.

The most modern flow and load planning work in the research literature has
focused on developing better approaches for determining the discretization of time-



14 Motor Carrier Service Network Design 463

expanded networks. An important new idea is dynamic discretization discovery,
where iterative techniques are used to expand the size of a time-expanded network
representation of a consolidation trucking network for flow and load planning.
A dynamic discretization discovery algorithm for the load plan design problem,
which enforces path selection from a set of candidate paths and an in-tree structure,
is presented in Hewitt (2019). Follow-on research is developed in Marshall et al.
(2020), and unpublished research in this area focuses on adapting principles of
dynamic discretization discovery to pragmatic heuristic solution approaches that
are often required by large-scale carrier instances.

Other research papers have focused on service network design problems in
trucking that lie downstream of flow planning and load planning. One example is
the load and dispatch problem considered in Cohn et al. (2007) and Root and Cohn
(2008). These papers consider ground package trucking operations for a large carrier
given a fixed flow plan. The goal is to build loads and trailer dispatches that meet
service requirements, considering both single-trailer and double-trailer combination
dispatches using 28-foot pup trailers. Set partitioning models with composite
variables that define complete paths for one or more trailers are developed.

Crainic and Roy (1992) focuses on driver scheduling and presents a modeling
framework for generating regular driver routes for LTL carriers, given a flow
and load plan. The model takes into consideration operational aspects of driver
route generation, such as cyclic routes, regular and overtime costs, and maximum
permitted duty and working times. The model is solved in three stages: segment
generation, route generation, and route selection. Segments are used as the main
elements in a set covering model, and a column generation approach is developed.
More recently, Erera et al. (2013b) also investigates driver scheduling given a flow
and load plan. The paper first introduces the load plan scheduling problem, which
develops a detailed operational schedule (timed schedule of trailer, tractor, and
driver dispatches) required to operate a plan. The approach can be used either with
a flow plan only that specifies a geographic transfer sequence of freight for each
commodity, or with a flow and load plan where timed trailer dispatches have already
been planned. When only a flow plan is given, a detailed load plan is first constructed
using a heuristic that sequentially assigns commodities to time-space paths of loads
by minimizing path marginal cost within a GRASP framework (greedy randomized
adaptive search procedure). A key insight in this paper is that some constructed
trailer dispatches can be shifted in time in order to improve the driver schedule and
its cost, when doing so does not impact the feasibility of the consolidation plan.
A novel linear programming formulation is presented to maximize the total width
of all trailer dispatch time windows such that the load plan remains feasible. Then,
using these adjusted time windows, driver tours are constructed serving each trailer
dispatch within its newly-expanded time window using a set covering model and a
column generation heuristic.



464 I. Bakir et al.

6 Concluding Remarks and Research Directions

Operations research and service network design models have been used quite
effectively for improving motor freight consolidation planning over the past 35
years. Initial successes with frequency-based flat network models for flow planning
have now been augmented significantly with flow and load planning models that use
detailed time-expanded networks and integrate loaded and empty dispatch planning.

Going forward, there are a number of areas that the field can continue to address
to improve service network design for trucking. For example, there is a clear need
to better integrate driver and trailer resource planning with flow and load planning.
Since driver schedules are highly constrained, it would be best to build plans that
recognize that all (or most) dispatches will be covered by driver tours. Crainic
et al. (2016) develops initial ideas for effective approaches, and work such as that
presented in Hewitt et al. (2019) has developed heuristic approaches that may enable
these approaches to be deployed on real-world problems of practical scale.

Another important area for investigation is the set of dynamic planning problems
that seek to manage and mitigate uncertainty in both customer demand and supply
conditions. Early work in Zhang (2010) focuses on initial ideas for dynamic load
planning given updated demand information. Recently, UPS has begun investigation
of dynamic load building given primary and alternate freight routing paths for its
LTL freight division; fast heuristic approaches are developed in Ridouane et al.
(2020) for allocating inbound shipments to scheduled trailer capacity in an effort
focused on successfully transferring freight to meet service requirements while also
identifying potential scheduled trailerloads for cancellation and cost savings.

Finally, it is also important to extend trucking service network design models
to incorporate uncertainty in freight demand. Given that the deterministic planning
problems are already very difficult to solve, this is a particular challenge. Early
important work in this direction is presented in Lium et al. (2009), and this paper
shows using small generic examples that the structure of service designs identified
when explicitly modeling uncertainty can be quite different from the designs that
result from deterministic models. Baubaid et al. (2018) has more recently considered
the stochastic planning problem of setting primary and alternate flow plan paths
specifically for LTL freight networks; the paper defines the p-alt planning problem
under demand uncertainty, p limits the number of outbound terminals that freight
destined to d can flow to next. A 1-alt design represents a standard in-tree flow
plan. The approach uses sample average approximation to find p-alt plans that
minimize (an approximation of) expected costs (including failure penalties when
capacity is not available). Unfortunately, adding multiple scenarios and linking
constraints to the already-difficult multi-commodity fixed-charge network design
problem severely limits the size of the problems that can currently be addressed
by this approach. It may be necessary to develop service network design problems
for trucking networks that rely on simpler, approximate problem representations
when planning under uncertainty and then to test and refine those designs with more
detailed models.



14 Motor Carrier Service Network Design 465

References

Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European
Journal of Operational Research, 190(1), 1–21.

Armacost, A. P., Barnhart, C., & Ware, K. A. (2002). Composite variable formulations for express
shipment service network design. Transportation Science, 36(1), 1–20.

Atamtürk, A. (2002). On capacitated network design cut-set polyhedra. Mathematical Program-
ming, 92(3), 425–437.

Atamtürk, A., & Gunluk, O. (2017). Multi-commodity multi-facility network design.
www.1707.03810.

Atamtürk, A., & Rajan, D. (2002). On splittable and unsplittable flow capacitated network design
arc–set polyhedra. Mathematical Programming, 92(2), 315–333.

Barnhart, C., & Schneur, R. R. (1996). Air network design for express shipment service.
Operations Research, 44(6), 852–863.

Barnhart, C., Krishnan, N., Kim, D, & Ware, K. (2002). Network design for express shipment
delivery. Computational Optimization and Applications, 21(3), 239–262.

Baubaid, A., Boland, N., & Savelsbergh, M. (2018). Dealing with demand uncertainty in service
network and load plan design. In W. J. van Hoeve (Ed.), Integration of constraint programming,
artificial intelligence, and operations research. CPAIOR 2018. Lecture notes in computer
science (vol. 10848, pp. 63–71). Berlin: Springer.

Bell, P. C., Anderson, C. K., & Kaiser, S. P. (2003). Strategic operations research and the Edelman
prize finalist applications 1989–1998. Operations Research, 51(1), 17–31.

Boland, N., Hewitt, M., Marshall, L., & Savelsbergh, M. (2017). The continuous-time service
network design problem. Operations Research, 65(5), 1303–1321.

Braekers, K., Ramaekers, K., & van Nieuwenhuyse, I. (2016). The vehicle routing problem: State
of the art classification and review. Computers and Industrial Engineering, 99, 300–313.

Braklow, J. W., Graham, W. W., Hassler, S. M., Peck, K. E., & Powell, W. B. (1992). Interactive
optimization improves service at Yellow Freight System. Interfaces, 22(1), 147–172.

Bureau of Transportation Statistics. (2018). Transportation statistics annual report 2018. Tech.
Rep., United States Department of Transportation. Washington, D.C. https://doi.org/10.21949/
1502596

Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems.
European Journal of Operational Research, 72(2), 387–405.

Cattaruzza, D., Absi, N., Feillet, D, & González-Feliu, J. (2017). Vehicle routing problems for city
logistics. EURO Journal on Transportation and Logistics, 6(1), 51–79.

Chouman, M., Crainic, T. G., & Gendron, B. (2017). Commodity representations and cut-set-based
inequalities for multicommodity capacitated fixed-charge network design. Transportation
Science, 51(2), 650–667.

Cohn, A., Root, S., Wang, A., & Mohr, D. (2007). Integration of the load-matching and routing
problem with equipment balancing for small package carriers. Transportation Science, 41(2),
238–252.

Crainic, T. G., Frangioni, A., & Gendron, B. (2001). Bundle-based relaxation methods for
multicommodity capacitated fixed charge network design. Discrete Applied Mathematics, 112,
73–99.

Crainic, T. G. (2000). Service network design in freight transportation. European Journal of
Operational Research, 122(2), 272–288.

Crainic, T. G., & Rousseau, J. M. (1986). Multicommodity, multimode freight transportation:
A general modeling and algorithmic framework for the service network design problem.
Transportation Research Part B, 20B(3), 225–242.

Crainic, T. G., & Roy, J. (1988). OR tools for tactical freight transportation planning. European
Journal of Operational Research, 33(3), 290–297.

Crainic, T. G., & Roy, J. (1992). Design of regular intercity driver routes for the LTL motor carrier
industry. Transportation Science, 26(4), 280–295.

https://doi.org/10.21949/1502596
https://doi.org/10.21949/1502596


466 I. Bakir et al.

Crainic, T. G., Gendron, B., & Hernu, G. (2004). A slope scaling/Lagrangean perturbation heuristic
with long-term memory for multicommodity capacitated fixed-charge network design. Journal
of Heuristics, 10(5), 525–545.

Crainic, T. G., Hewitt, M., Toulouse, M., & Vu, D. M. (2016). Service network design with resource
constraints. Transportation Science, 50(4), 1380–1393.

Daskin, M. S. (2011). Network and discrete location: Models, algorithms, and applications.
Hoboken: Wiley.

Drezner, Z., & Hamacher, H. W. (2001). Facility location: Applications and theory. Berlin:
Springer.

Erera, A., Hewitt, M., Savelsbergh, M., & Zhang, Y. (2013a). Improved load plan design through
integer programming based local search. Transportation Science, 47(3), 412–427.

Erera, A. L., Hewitt, M., Savelsbergh, M. W., & Zhang, Y. (2013b). Creating schedules and
computing operating costs for LTL load plans. Computers and Operations Research, 40(3),
691–702.

Farahani, R. Z., Hekmatfar, M., Arabani, A. B., & Nikbakhsh, E. (2013). Hub location problems: A
review of models, classification, solution techniques, and applications. Computers & Industrial
Engineering, 64(4), 1096–1109.

Fleuren, H., Goossens, C., Hendriks, M., Lombard, M., Meuffels, I., & Poppelaars, J. (2013).
Supply chain-wide optimization at TNT express. Interfaces, 43(1), 5–20.

Frangioni, A., & Gendron, B. (2009). 0–1 reformulations of the multicommodity capacitated
network design problem. Discrete Applied Mathematics, 157(6), 1229–1241.

Golden, B. L., Raghavan, S., & Wasil, E. A. (2008). The vehicle routing problem: Latest advances
and new challenges (vol. 43). Berlin: Springer.

Hewitt, M. (2019). Enhanced dynamic discretization discovery for the continuous time load plan
design problem. Transportation Science, 53(6), 1731–1750.

Hewitt, M., Crainic, T. G., Nowak, M., & Rei, W. (2019). Scheduled service network design
with resource acquisition and management under uncertainty. Transportation Research Part
B: Methodological, 128, 324–343.

Jarrah, A. I., Johnson, E., & Neubert, L. C. (2009). Large-scale, less-than-truckload service
network design. Operations Research, 57(3), 609–625.

Kim, D., Barnhart, C., Ware, K., & Reinhardt, G. (1999). Multimodal express package delivery: A
service network design application. Transportation Science, 33(4), 391–407.

Lindsey, K., Erera, A., & Savelsbergh, M. (2016). Improved integer programming-based neigh-
borhood search for less-than-truckload load plan design. Transportation Science, 50(4),
1360–1379.

Lium, A. G., Crainic, T. G., & Wallace, S. W. (2009). A study of demand stochasticity in service
network design. Transportation Science, 43(2), 144–157.

Love, R. F., Morris, J. G., & Wesolowsky, G. O. (1988). Facilities location. New York: Elsevier.
Marshall, L., Boland,. N., Savelsbergh, M., & Hewitt, M. (2021). Interval-based dynamic

discretization discovery for solving the continuous-time service network design problem.
Transportation Science, 55(1), 29–51.

Meuffels, I., Fleuren, H., Cruijssen, F., & Dam, E. (2009). Enriching the tactical network
design of express service carriers with fleet scheduling characteristics. Flexible Services and
Manufacturing Journal, 22, 3–35.

Mirchandani, P., & Francis, R. (1990). Discrete location theory. Wiley-Interscience series in
discrete mathematics and optimization. Hoboken: Wiley.

O’Kelly, M. E. (1986). The location of interacting hub facilities. Transportation Science, 20, 92–
106.

Powell, W. B. (1986). A local improvement heuristic for the design of less-than-truckload motor
carrier networks. Transportation Science, 20(4), 246–257.

Powell, W. B., & Koskosidis, I. A. (1992). Shipment routing algorithms with tree constraints.
Transportation Science, 26(3), 230–245.



14 Motor Carrier Service Network Design 467

Powell, W. B., & Sheffi, Y. (1983). The load planning problem of motor carriers: Problem
description and a proposed solution approach. Transportation Research Part A: General, 17(6),
471–480.

Powell, W. B., & Sheffi, Y. (1989). Design and implementation of an interactive optimization
system for network design in the motor carrier industry. Operations Research, 37(1), 12–29.

Psaraftis, H. N., Wen, M., & Kontovas, C. A. (2016). Dynamic vehicle routing problems: Three
decades and counting. Networks, 67(1), 3–31.

Raack, C., Koster, A. M., Orlowski, S., & Wessäly, R. (2011). On cut-based inequalities for
capacitated network design polyhedra. Networks, 57(2), 141–156.

Ridouane, Y., Herszterg, I., Boland, N., Erera, A., & Savelsbergh, M. (2020). Near real-
time loadplan adjustments for less-than-truckload carriers. Optimization Online. http://www.
optimization-online.org/DB_HTML/2020/01/7565.html

Root, S., & Cohn, A. (2008). A novel modeling approach for express package carrier planning.
Naval Research Logistics, 55, 670–683.

Roy, J., & Crainic, T. G. (1992). Improving intercity freight routing with a tactical planning model.
Interfaces, 22(3), 31–44.

Roy, J., & Delorme, L. (1989). NETPLAN: A network optimization model for tactical planning in
the less-than-truckload motor-carrier industry. INFOR Journal, 27(1), 22–35.

Savelsbergh, M., & van Woensel, T. (2016). 50th anniversary invited article–city logistics:
Challenges and opportunities. Transportation Science, 50(2), 579–590.

Snyder, L. V. (2006). Facility location under uncertainty: A review. IIE Transactions, 38(7),
547–564.

Zhang, Y. (2010). Advances in LTL load plan design. Ph.D. Thesis, Georgia Institute of
Technology.

http://www.optimization-online.org/DB_HTML/2020/01/7565.html
http://www.optimization-online.org/DB_HTML/2020/01/7565.html


Chapter 15
Liner Shipping Network Design

Marielle Christiansen, Erik Hellsten, David Pisinger, David Sacramento,
and Charlotte Vilhelmsen

1 Introduction

Maritime transportation enables transportation of large volumes at relatively low
costs and is therefore a fundamental part of the world trade. It is estimated that
around 90% of world trade today is carried by the international shipping industry.
Additionally, efficient port structures make it possible to combine sea transportation
with land-based modes of transportation.

Roughly speaking, liner shipping is the service of transporting large volumes
of cargo by means of high-capacity vessels that follow regular routes on fixed
schedules. Within this type of shipping service, the variety of vessel types can be
split into vessels designed for Lift-on/Lift-off (LoLo) operations, and Roll-on/Roll-
off (RoRo) operations. In LoLo operations, quay cranes located on the docks are
used to load and unload the vessels’ cargo, while RoRo vessels are designed to
carry cargo that can be rolled on and off the vessels.

In this chapter, we mainly focus on containerised liner shipping network design,
i.e., networks using LoLo operations, though we also briefly introduce network
design for RoRo liner shipping. Although we have tried to cover most of the relevant
models and algorithms dealing with containerised liner shipping network design, we
have chosen to focus on those that seem to be applicable in practice.

This chapter is organised as follows: In Sect. 2 we give a brief introduction to
containerised liner shipping, RoRo liner shipping, and network design. We also

M. Christiansen
Department of Industrial Economics and Technology Management, Norwegian University of
Science and Technology, Trondheim, Norway
e-mail: mc@ntnu.no

E. Hellsten · D. Pisinger (�) · D. Sacramento · C. Vilhelmsen
DTU Management, Technical University of Denmark, Lyngby, Denmark
e-mail: erohe@dtu.dk; dapi@dtu.dk; dsle@dtu.dk; chaan@dtu.dk

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_15

469

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_15&domain=pdf
mailto:mc@ntnu.no
mailto:erohe@dtu.dk
mailto:dapi@dtu.dk
mailto:dsle@dtu.dk
mailto:chaan@dtu.dk
https://doi.org/10.1007/978-3-030-64018-7_15


470 M. Christiansen et al.

introduce the LINER-LIB test instances for network design in containerised liner
shipping. The following sections are focused on containerised liner shipping. In
Sect. 3 we discuss the challenges in designing a liner shipping network, and give
an introduction to the models and algorithms, which will be presented in the
following sections. In Sect. 4 we give an overview of integrated Mixed Integer
Programming (MIP) models, while Sect. 5 studies two-stage algorithms where
the service generation and the flowing of containers are separated in two steps.
Section 6 presents the bibliographical notes of the topics addressed in this chapter.
The chapter is concluded in Sect. 7 with a short discussion of future trends and
challenges. Finally, an overview of the notation used throughout the chapter is found
in Appendix 8. Some parts of this chapter are based on the authors’ previous survey
work presented in Hellsten et al. (2019) and Christiansen et al. (2020).

2 Overview of Liner Shipping and Liner Shipping Network
Design

Maritime transportation is a cost-effective means of transportation, as it offers the
transport of large volumes of cargo all around the world. The cargo vessels in
the maritime industry are generally divided into the following major categories:
general cargo ships, bulk cargo carriers, tankers, container ships and RoRo ships.
This section presents the network design for containerised liner shipping, which are
based on LoLo operations, as well as a brief description of RoRo liner shipping.

2.1 Containerised Liner Shipping

The liner shipping industry is a vital part of the global economy, constituting one
of the cheapest modes of cargo transportation. During the last three decades, the
volume of containerised cargo has grown by more than 8% per year, and more than
5200 container vessels were in operation worldwide in 2019. Standard containers
come in two different sizes, twenty and forty feet, which have given rise to the
standard measures of containerised cargo, twenty foot equivalent units (TEU) and
forty foot equivalent units (FFE). The largest vessels carry more than 20,000 TEU
and during 2016, a container volume of around 140,000,000 TEU was estimated
to pass through the vast liner shipping network (Unctad 2018, 2019). Clearly, any
improvement in the network design in the liner shipping industry will correspond to
enormous savings.

The liner shipping industry is built up by so called services. A service is a
fixed cyclic itinerary, sailed by a number of similar vessels. Services usually have
weekly or biweekly departures to add consistency and regularity for the customers.
The vessels are operated by shipping companies called carriers, where the largest



15 Liner Shipping Network Design 471

Fig. 15.1 Estimated cost per 1000 container miles for different vessel sizes. The vessels are
assumed to sail at 19 knots and the bunker fuel price is estimated as 750 $/tonne. We see that bunker
represents the largest cost and that transporting containers on larger vessels requires significantly
less fuel. Data has been obtained from Germanische Lloyd (2017)

carriers operate over 600 vessels. The trend is to build ever larger vessels, as
they are significantly more energy efficient, see Fig. 15.1. To efficiently utilise
those tremendous liner vessels, each region typically has a few larger ports, called
hubs, where the liner vessels pick up and deliver containers. From the hubs, the
containers are then transported to other ports by smaller, more flexible, so called
feeder vessels. The transfer of a container, from one vessel to another in a port,
is called a transshipment. Transshipments occur both between larger vessels and
smaller vessels, but also between larger vessels when no suitable service connects
the origin and destination hub. While transshipments add flexibility, they tend to
be costly, as the cargo needs to be unloaded, stored until the arrival of the new
vessel and then reloaded again. Finally, to protect the national trade business, many
countries forbid foreign carriers to ship cargo between two ports within the country.
This is called cabotage rules.

The major costs for the carriers are vessel acquirement and bunker fuel. However,
other costs, like canal fees, port costs, and transshipment costs, are also highly
significant. The fuel consumption is frequently estimated as a cubic function of the
speed, as seen in Fig. 15.2. As the speed has such an impact on the fuel consumption,
slow steaming is often used to reduce the consumption. Especially after the financial
crisis in 2008, maritime shipping companies implemented slow steaming policies
for cost-cutting purposes. The obvious drawback of slow steaming is that more
vessels are required to transport the same amount of cargo and also, that transit
times become longer, yielding a lower level of service for the customers. In general,
services have two directions, head- and back-haul, where most of the cargo is
transported in the head haul direction. A good example of this is the trade between



472 M. Christiansen et al.

17 18 19 20 21 22 23 24 25

Speed [knots]

0

50

100

150

200

250

300

350

400

F
ue

l c
on

su
m

pt
io

n 
[to

nn
es

 p
er

 d
ay

]
Fuel consumption for different vessel sizes and speeds

4000-5000
5.000-6.000
7.000-8.000
8.000-9.000
9.000-10.000
10.000+

Vessel size [TEU]

Fig. 15.2 Estimated fuel consumption as a function of steaming speed and vessel size. Data has
been obtained from Notteboom and Vernimmen (2009).

Asia and Europe, where most of the goods are delivered from Asia to Europe. In
this case, vessels are slow steaming in the back-haul direction where less customers
are affected by the increased transit time.

2.2 Containerised Liner Shipping Network Design

The Liner Shipping Network Design Problem (LSNDP) can be defined as follows:
Given a collection of ports, a fleet of container vessels and a group of origin-
destination demands. A set of services is constructed for the container vessels such
that the overall operational expenses are minimised, while ensuring that all demands
can be routed through the resulting network from their origin to their destination,
respecting the capacity of the vessels.

In the following, we present some notation of the LSNDP that will be used
throughout the chapter, introducing the necessary notation when required. A table
of notation can be found in Table 15.2 in the Appendix.

The set of ports is denoted by N and represents the set of physical ports in the
problem. The set of arcs A represents all possible sailings between ports. The set of
commodities is denoted K and for each commodity k ∈ K , there is an origin port
ok , a destination port dk , as well as a quantity qk measured in TEU. Furthermore, the
corresponding unit-cost for transporting a unit of commodity k through arc (i, j) ∈
A is defined as ckij . Finally, the set V denotes the set of vessel classes. For each



15 Liner Shipping Network Design 473

v ∈ V there is a corresponding cargo capacity uv in number of TEUs, an available
fleet quantitymv , and additional speed limitations and fuel consumption parameters.
Furthermore, for convenience, the demand of the commodities in each port i ∈ N is
defined as:

ξki =

⎧
⎪⎪⎨

⎪⎪⎩

qk if port i is the origin port of commodity k

−qk if port i is the destination port of commodity k

0 otherwise.

(15.1)

There is a limited fleet of container vessels, but not all vessels need to be used.
The deployment of a vessel v ∈ V has an associated charter cost cv . Additionally,
there are other costs related with the resulting network, such as the sailing cost cvij
associated with each vessel and each arc, which is given as a combination of the
port call cost and the fuel consumption for the corresponding arc. When containers
of commodity k ∈ K are transferred from one vessel to another in port i ∈ N , there
is a transshipment cost cT

ik for each container. Furthermore, there is an associated
sailing time tvij for each container vessel v sailing between ports i and j , which is
given as a combination of its design speed and the corresponding distance between
the ports. Moreover, each port i ∈ N has an associated berthing time bi .

One of the main traits of the liner shipping industry is the regular operation of
services under a pre-established schedule. Sometimes it is possible to define the set
of candidate services in advance. In these cases, let S be the set of feasible services
in the model. Notice that S can be exponentially large. Each service s ∈ S has
an associated operational cost cs . As the set of services is defined beforehand, the
operational cost is given as a combination of the sailing cost of the arcs on the
service route and the corresponding port-call costs. Moreover, it is required that all
services should have weekly operations, meaning that if a round trip takes 8 weeks
to complete, then eight similar vessels need to be deployed to the service in order
to ensure that each port is visited once a week. Therefore, the required number of
vessels from vessel class v to maintain the weekly frequency is defined as ms

v . The
structure of the service can be divided into several types according to the number
of times a port is visited during the service. A simple service or a circular service
visits each port in the service exactly once. However, a service is often allowed to
be non-simple, meaning that a port can be visited several times, as this may improve
transit times. Nodes (or ports in the sequence) that are visited several times in the
service are denoted butterfly nodes and a service containing a single butterfly node
defines a butterfly service. Another common service type is the pendulum service,
in which each port is visited twice, once in each direction. Examples of the different
type of services for some European ports are illustrated in Figs. 15.3, 15.4 and 15.5.
Moreover, in some cases, the structure of the service can naturally be defined by
the geographical distribution of the ports. For instance, if the ports are located
along the coastline, it can be convenient to define services following an outbound-
inbound principle. Such services are similar to pendulum services; however, they



474 M. Christiansen et al.

Fig. 15.3 Example of a simple service, where each port is visited exactly once

Fig. 15.4 Example of a butterfly service, where Aarhus is the butterfly node

may be asymmetric, as some ports can be omitted in each direction, as illustrated in
Fig. 15.6.

When designing a shipping network, different variants of the LSNDP can be
considered, varying mainly in the following four respects:



15 Liner Shipping Network Design 475

Fig. 15.5 Example of a pendulum service, where each port can be visited both on the head-haul
and back-haul trip

Fig. 15.6 Example of an asymmetric service with five ports with the outbound-inbound principle

• Transit time constraints. The demands may be subject to transit times and hence
have an associated time limit that must be respected. If the transit time is not
respected, perishable goods may become spoiled.

• Transshipment costs. The costs of transshipments are a significant part of the
operational costs, so it is generally important to represent these costs in the
model.

• Rejected demands. Although the standard formulation of LSNDP states that all
demands must be flowed through the network, many models allow rejection of
demands by imposing a penalty.

• Speed optimisation. There are three main approaches to model speed optimisa-
tion: Models which have constant speed for all services, models which choose a
speed for each service, and models which choose a speed on each individual leg
in each service. As the fuel consumption depends non-linearly on the speed, it is
common to choose between a number of discrete speed alternatives, each with a
corresponding cost.



476 M. Christiansen et al.

Most models for LSNDP design the network without a specific schedule. Hence
the service for each vessel is defined, but not the exact day of arrival/departure.
This is typically done in a later step, where port availabilities are negotiated and
transshipment times at ports are adjusted.

2.3 RoRo Network Design

RoRo shipping is an important segment within liner shipping. The RoRo ships are
vessels designed to carry wheeled cargo, such as cars, trucks, semi-trailer trucks,
and railroad cars, that can be driven on and off the ship on their own wheels. In
addition, RoRo ships may carry complex cargo that is placed on trolleys and rolled
on and off the ships, such as boats, helicopters, and heavy plant equipment. RoRo
shipping is often the only viable method of ocean freight transportation for these
oversized vehicles, as they may not fit in standard containers. There exist various
types of RoRo ships, such as ferries, cruise ferries, cargo ships, and barges. In
this subsection, we consider the RoRo ships used for transporting cars, trucks and
complex general cargo across oceans known as Pure Car Carriers (PCC), Pure Truck
& Car Carriers (PCTC) and general RoRo ships, respectively. A typical PCTC has
a carrying capacity in the range of 5500 to 8000 RT43. Here, RT43 is a capacity
measure in the RoRo business and corresponds to the size of a 1966 Toyota Corona.
In 2016, the world fleet of RoRo ships consists of around 5000 ships with a total
capacity of more than 24 million deadweight tons (ISL 2016).

The trades to be serviced in RoRo shipping are usually designed based on a
large number of contracts for transportation of cargo between the different port pairs
along a trade route. Hence, trade routes are defined as transportation arrangements
from one geographical region to another, where the world is divided into a number
of geographical regions. Each trade route has a number of loading ports in one
region and a number of discharging ports in the other. In Fig. 15.7, two trade routes
are illustrated by solid lines and the ports are shown as filled circles. These trade
routes are similar to the services in container network design. As seen in Fig. 15.7,
the trade routes are not traditionally circular. After a ship has sailed one voyage
on a trade route it often needs to reposition to start on the next one due to trade
imbalances. This repositioning means ballast sailing, i.e., sailing without cargo,
which of course should be reduced as much as possible. The ballast sailing between
the two trade routes in Fig. 15.7 is illustrated by a dashed line. Differences in
contractual requirements and variety in the types of cargo transported on the various
trade routes may restrict which vessels can be assigned to a particular trade route,
regarding both capacity and vessel type.

Each trade route is sailed regularly, for example weekly, fortnightly, 3 times per
months, depending on demand and contractual obligations. Each sailing on a trade



15 Liner Shipping Network Design 477

Fig. 15.7 Illustration of two trade routes sailed in sequence, Oceania to Europe and North to South
America, with associated ballast sailing from Europe to North America. World map by San Jose
under a CC-BY-SA-3.0 license

route is called a voyage, and normally there is a time window to start sailing a
voyage. Due to contractual obligations, these voyages are mandatory and must be
covered either by a ship in the RoRo shipping company’s own fleet or by a chartered
ship. A RoRo shipping company owns and operates a heterogeneous fleet of ships
having different cargo capacities, sailing speed ranges, and bunker consumption
profiles, and serves a given set of trade routes.

The operations within RoRo shipping deviates from container shipping in several
ways as well as in the cargo and ships. In container shipping, each ship is normally
assigned to a single route, while in RoRo shipping a ship may sail several trade
routes during a planning horizon. Ship types, instead of individual ships, are often
considered in container shipping, while in RoRo shipping a route for each ship is
determined. This also means that in RoRo shipping each trade route may be serviced
by different ship types. Furthermore, there is a great variation in when to start each
voyage, as well as when and how often to visit each port along the trade. Therefore,
existing studies within fleet deployment in RoRo shipping have used time windows
for when each voyage along each trade should start. This flexibility is in contrast to
container shipping, as each service is usually served on a strict weekly basis, and
each voyage along the trade visits all ports in the same order. Finally, transshipment
rarely exist in RoRo shipping in contrast to container shipping. This makes the
network design easier.



478 M. Christiansen et al.

Table 15.1 The seven test instances included in LINER-LIB with indication of the number of
ports (|N |), the number of origin-destination pairs (|K|), the number of vessel classes (|V |), the
minimum (min v) and maximum number of vessels (max v) in each class

Instance Category |N | |K| |V | min v max v

Baltic Single-hub 12 22 2 5 7

WestAfrica Single-hub 19 38 2 33 51

Mediterranean Multi-hub 39 369 3 15 25

Pacific Trade-Lane 45 722 4 81 119

AsiaEurope Trade-Lane 111 4000 6 140 212

WorldSmall Multi-hub 47 1764 6 209 317

WorldLarge Multi-hub 197 9630 6 401 601

2.4 The LINER-LIB Test Instances

In order to make it easier to compare algorithms for LoLo liner shipping network
design, Brouer et al. (2014a) introduced the LINER-LIB benchmark suite. The test
instances in LINER-LIB are based on real-life data from leading shipping com-
panies along with several other industry and public stakeholders. The benchmark
suite contains data on ports including port call cost, cargo handling cost and draft
restrictions, distances between ports considering draft and canal traversal, vessel
related data for capacity, cost, speed interval and bunker consumption, and finally a
commodity set with quantities, revenue, and maximal transit time. The commodity
data is intended to reflect the differentiated revenue associated with the current
imbalance of world trade.

The LINER-LIB benchmark suite consists of seven instances described in Brouer
et al. (2014a) and is available at http://www.linerlib.org. The instances range from
smaller networks suitable for being solved by exact solution methods to large scale
instances spanning the globe. Table 15.1 gives an overview of these instances.

Each of the instances can be used in a low, base, and high capacity case depending
on the fleet of the instance. For the low capacity case, the fleet quantity and the
weekly vessel costs are adjusted to fewer vessels with a higher vessel cost. For the
high capacity case the adjustments are reversed.

Currently, most papers only report results for the base capacity case. Further-
more, most often only the six first instances are considered, with Krogsgaard et al.
(2018) being the only paper to report results for the WorldLarge instance.

3 Overview of Models and Algorithms

Designing a liner shipping network is a difficult task, embracing several decisions:
Not only do we need to construct the individual services, but we should also deploy
vessels of the right size to each service and ensure that there is sufficient capacity

http://www.linerlib.org


15 Liner Shipping Network Design 479

in the network to transport all containers from their origin to their destination.
Designing the individual services is an NP -hard problem. Furthermore, routing the
containers through a given network subject to time constraints for each container,
can be recognised as a time-constrained multicommodity flow problem, which is
also NP -hard.

The problem is further complicated by the fact that ports are often visited several
times in the same service. This allows containers to quickly be transshipped to other
services, and it frees up capacity. However, formulating the problem with multiple
visits to a port as a MIP model becomes more difficult.

Finally, one should notice that transshipment costs represent the majority of
the cost of routing the containers through the network according to Psaraftis and
Kontovas (2015). It is therefore important to carefully model which containers might
be transshipped and at which costs. This adds further complexity to the problem, and
makes a graph formulation huge and difficult to solve.

First, we will focus on how the problem can be modeled. Generally speaking,
models for liner shipping network design can roughly be divided into the following
two groups:

• Service selection models. The idea behind these models is to use a large set
of promising candidate services and then select a subset of them to create a
network. The set of promising candidate services can both incorporate services
designed by experienced planners as well as services internally generated by an
algorithm. Many shipping companies and customers do not want the network
to be completely restructured, in which case proposing small variations to each
service may be a sensible method.

• Arc formulation models. These unified MIP models design services and flow
containers through the resulting network. In order to handle this task, two sets
of variables are needed: Binary variables to select edges in a service, and integer
variables to denote the flow on each edge. If multiple visits to a node are allowed
(butterfly nodes) then an additional index is needed to indicate the visit number
at each node.

Many of the MIP models can in principle solve the LSNDP to optimality. However,
due to the intrinsic complexity, only small instances can be solved to proven
optimality within a reasonable time. The service selection based models more easily
solve the problem to optimality given that only the proposed candidate services are
valid. In practice, however, there may be an exponential number of valid services,
and we cannot expect to get all services as input. Hence, the found solution will
often be sub-optimal.

Large real world problems, in most cases, cannot be solved directly as MIP
models. Therefore, it is required to use specialised algorithms to design the liner
shipping network. Within this category, one of the most commonly used algorithms
are the two-stages algorithms, which benefit from the decomposition of the original
problem into two tightly related problems: the vessel service network design and the
container flow problem. These algorithms can be roughly divided into the following
two groups:



480 M. Christiansen et al.

• Service-first and flow-second algorithms. As the name suggests, these algorithms
model and solve the problem in two steps: Designing the services, and flowing
containers through the resulting network. Frequently, these algorithms contain a
feed-back mechanism, where output from the second-stage flow model is used as
input to improve the services in the first stage.

• Backbone flow algorithms. It can be difficult to design the individual services
without knowing how the containers will flow through the network. Hence,
another approach is to reverse the order of the sub-problems in the two-stage
algorithms, and start by finding an initial flow (a so-called backbone network)
where cargo is flowed through a complete network with all connections between
ports available. The connections are priced such that they are expensive at
low loads and cheap at high loads, in order to make the cargo gather at few
connections. The initial flow can be seen as an accomplishment of the physical
internet (Montreuil 2011) where point-to-point transport has been replaced by
multi-segment intermodal transport.

In liner shipping network design problems, each stage corresponds to a single
layer of decision: service selection decisions for the network design problem and
continuous decisions for the container flow problem. It is important to notice that
the two-stage algorithms are both heuristics, since they first solve one stage, and
then optimise the second stage with the first-stage decisions fixed. However, this
decomposition by stages make the problem more tractable for larger instances.

Most of the MIP models solve the network design problem by dealing simultane-
ously with the two layers of decisions. On the other hand, the two-stage algorithms,
and most of the heuristic approaches, separate these layers when designing the
shipping network. The way in which the two layers interact is what defines the
core of the algorithm. For example, when container flow decisions are postponed
to the second-stage, the service selection decisions of the first-stage can be made
based on estimates for serving the ports. At each iteration of the algorithm, the
estimates can be updated based on the current configuration of the resulting network
after flowing the containers. In other cases, such as for models or algorithms
based on Column Generation, new services can be iteratively constructed using the
information obtained from the dual variables of a restricted problem.

4 Models for the LSNDP

In this section we present graph-based models to define the LSNDP. Different
formulations are briefly introduced to model the network design problem in liner
shipping and a summary of the main mathematical formulations proposed in the
literature is presented under different assumptions.



15 Liner Shipping Network Design 481

4.1 Service Selection Formulations

This section introduces service flow formulations for the LSNDP, where the set of
all feasible services is defined in advance for the model. This reduces the network
design to the selection of feasible services.

Let us begin with introducing a basic service formulation. We use the termi-
nology presented in Sect. 2.2 with the addition of the following definitions: Let
G = (N,A) be a directed graph. Define for each service s and for each arc (i, j),
the associated capacity usij , which is given by the maximum cargo capacity of the

corresponding vessel class assigned to the service. Finally, let xksij be a continuous
variable denoting the amount of commodity k transported in service s on arc (i, j),
and ys a binary variable for the selection of service s in the network. Now, the
service formulation of the LSNDP can be expressed as:

min
∑

s∈S
csys +

∑

k∈K

∑

(i,j)∈A
ckij

∑

s∈S
xksij (15.2a)

s.t.
∑

s∈S

∑

j :(i,j)∈A
xksij −

∑

s∈S

∑

j :(j,i)∈A
xksji = ξki i ∈ N, k ∈ K (15.2b)

∑

k∈K
xksij ≤ usij ys s ∈ S, (i, j) ∈ A (15.2c)

∑

s∈S
ms
vys ≤ mv v ∈ V (15.2d)

xksij ≥ 0 (i, j) ∈ A, k ∈ K, s ∈ S (15.2e)

ys ∈ {0, 1} s ∈ S. (15.2f)

The objective function (15.2a) minimises the total operational cost of the net-
work. The first term accounts for the fixed cost of the selected services, whereas the
second term constitutes the sailing cost of shipping the demand. Constraints (15.2b)
are the flow conservation constraints, and the flow of commodities on the arcs has to
respect the capacity of the vessel deployed in the selected service s as formulated in
constraints (15.2c). For each vessel class v ∈ V , constraints (15.2d) ensure that the
number of deployed vessels on the selected services using vessel class v does not
exceed the maximum availability mv . Finally, the domain of the variables is defined
in constraints (15.2e) and (15.2f).

For a better utilisation of the capacity of the deployed vessels, the model can also
allow the rejection of cargo by incurring a penalty. Hence, extra continuous variables
can be defined to account for the demand that is rejected by the liner company.

As stated, the model requires all demand to be served, but cargo rejection can be
included by adding additional variables. Finally, to account for transshipment costs,
additional variables f ksi could be added, denoting the transshipment of commodity
k at port i from service s, with a corresponding term in the objective function. The



482 M. Christiansen et al.

following constraints (15.3) could be used to enforce the sought behaviour, though
only if we consider simple services.

f ks
i ≥

∑

j∈N
j 	=i

xksj i − xksij , i ∈ N \ {ok, dk}, k ∈ K, s ∈ S. (15.3)

This formulation allows designing networks considering only a subset of promis-
ing candidate services. It can easily be seen that, as the size of the problem increases,
the number of feasible services grows exponentially, making the model intractable
to solve. One possible approach to solve this problem for large instances is to apply
a Column Generation algorithm.

4.1.1 A Sub-path Service Formulation with Limited Transshipments

In the previous model, the flow of each commodity, on each sailing arc, is modelled
explicitly. This leads to a compact formulation, but it turns out to be difficult to
add transshipments together with complex service structures. Another approach,
which allows limiting the number of transshipments for each commodity, while
still permitting complex structures, is to use sub-paths. A sub-path is defined as
the section of a service travelled by a group of containers. If this section spans the
arcs from port i to port j on service s, the sub-path is denoted 〈i, j, s〉. The set Hs

denotes the full set of sub-paths for service s, i.e., the set contains one sub-path
〈i, j, s〉 for each combination of ports i and j included in service s, and us denotes
the capacity of service s.

Now, these sub-paths are used to introduce an augmented multicommodity flow
network. The augmented network contains one node for each port and one link for
each sub-path of each service. The sub-path structure also extends to more complex
services, e.g., butterfly services. Let As

ij denote the set of sailing arcs of service
s included in sub-path 〈i, j, s〉. The cost of routing one container of commodity
k on sub-path 〈i, j, s〉 is denoted ckijs . Finally, rk denotes the maximum allowed
number of sub-paths on which commodity k can travel. By limiting the maximum
number of sub-paths allowed for a commodity, we also implicitly limit the number
of transshipments.

We now present a multicommodity model based on flows along sub-paths in the
augmented network. The binary variable ys is equal to 1 if service s ∈ S is selected,
and 0 otherwise. The flow of commodity k using sub-path 〈i, j, s〉 as the hth stage is
defined by the variable xhkijs for s ∈ S, 〈i, j, s〉 ∈ As , and h = 1, 2, . . . , rk . Finally,
zk is equal to the unmet demand (number of containers) for commodity k ∈ K .

The sub-path service formulation can then be written as:

min
∑

s∈S
csys +

∑

k∈K

∑

s∈S

∑

〈i,j,s〉∈As

rk∑

h=1

ckijsx
hk
ijs +

∑

k∈K
cRk zk (15.4a)



15 Liner Shipping Network Design 483

s.t.
∑

s∈S

∑

〈ok,j,s〉∈Hs

x1k
okjs
+ zk = qk ∀k ∈ K, (15.4b)

rk∑

h=1

∑

s∈S

∑

〈j,dk,s〉∈Hs

xhkjdks
+ zk = qk ∀k ∈ K, (15.4c)

∑

s∈S

∑

i:〈i,j,s〉∈Hs

xhkijs −
∑

s∈S

∑

l:〈j,l,s〉∈Hs

x
h+1,k
j ls

= 0 ∀k ∈ K, j ∈ N \ {ok, dk},

h = 1, . . . , rk − 1, (15.4d)

∑

k∈K

rk∑

h=1

∑

〈i,j,s〉∈Hs :a∈As
ij

xhkijs ≤ uays ∀s ∈ S, a ∈ As (15.4e)

∑

s∈S
ms
vys ≤ mv ∀v ∈ V, (15.4f)

xhkijs ≥ 0 ∀k ∈ K, s ∈ S, 〈i, j, s ∈ Hs〉
h = 1, . . . , rk, (15.4g)

zk ≥ 0 ∀k ∈ K, (15.4h)

ys ∈ {0, 1} ∀s ∈ S. (15.4i)

The objective function (15.4a) minimises the total cost comprised of fixed costs
for the selected services, the cost of transporting commodities along each sub-
path, and finally the penalties incurred for rejected demand. By including penalties,
the problem is formulated as a cost minimisation problem as opposed to a
profit maximisation problem where ckR would instead represent the revenue for
transporting one unit of commodity k.

Constraints (15.4b) and (15.4c) ensure that the flow of each commodity k is
assigned to sub-paths incident to the corresponding origin port ok and the destination
port dk . They also ensure that the flow out of the origin port in combination with
the unmet demand for commodity k adds up to the total demand for commodity k.
Constraints (15.4d) are flow-balancing constraints for intermediate ports. Together
with constraints (15.4b) and (15.4c) these constraints ensure that for each com-
modity k, the demand, minus any unmet demand, will arrive at the destination port
using at most rk sub-paths, i.e., fulfilling the constraint on a maximum number of
transshipments.

Constraints (15.4e) impose capacity constraints on the sailing arcs and ensure
that only sub-paths from the selected services are used. Constraints (15.4f) ensure
that no more than the available vessels are used. Finally, constraints (15.4g)–(15.4i)
impose non-negativity and binary restrictions on the respective decision variables.



484 M. Christiansen et al.

The model formulation is flexible enough to allow incorporation of several practi-
cal container routing issues such as cabotage rules, regional policies and embargoes.
The incorporation of many of these constraints can be handled during preprocessing
simply by removing sub-paths that are no longer permitted. Balakrishnan and
Karsten (2017) show that the problem is NP -hard.

4.2 Arc Formulations

The main problem with a service-based formulation is that generating all services
S is prohibitive, due to the high number of combinatorial possibilities. Therefore,
an alternative compact formulation is introduced in this section, which is based on
an arc formulation. The set of predefined services S is no longer considered in the
model, but the services are designed as the problem is solved.

We first present a basic mathematical model based on an arc formulation. For
this we again use the notation presented in Sect. 2.2 with small extensions. Let G =
(N,A) be a directed graph. Moreover, let Sv be an index set for the services for
vessel class v, indexed by s. Let xksij be a continuous variable denoting the flow of
commodity k on arc (i, j) by service s, and ysij a binary variable for the selection
of arc (i, j) in service s operated by vessel class v. The binary variable γ si is equal
to 1 if port i is the hub port in service S. Moreover, we define τ si as a continuous
variable for the time in service s of vessel class v departing from port i, and ws as
an integer variable indicating the number of vessels from class v needed to maintain
the weekly frequency in service s. Then, the arc formulation of the LSNDP can be
expressed as follows:

min
∑

v∈V

∑

s∈Sv
cvws +

∑

v∈V

∑

s∈Sv

∑

(i,j)∈A
cvij y

s
ij +

∑

k∈K

∑

(i,j)∈A
ckij

∑

v∈V

∑

s∈Sv
xksij

(15.5a)

s.t.
∑

v∈V

∑

s∈Sv

∑

j :(i,j)∈A
xksij −

∑

v∈V

∑

s∈Sv

∑

j :(j,i)∈A
xksji = ξki i ∈ N, k ∈ K (15.5b)

∑

j :(i,j)∈A
ysij −

∑

j :(j,i)∈A
ysji = 0 i ∈ N, v ∈ V, s ∈ Sv (15.5c)

∑

i∈N
γ si = 1 v ∈ V, s ∈ Sv (15.5d)

∑

k∈K
xksij ≤ uvy

s
ij (i, j) ∈ A, v ∈ V, s ∈ Sv (15.5e)

τ sj ≥ (τ si + tvij + bj )(1− γ sj )ysij i, j ∈ N, v ∈ V, s ∈ Sv (15.5f)



15 Liner Shipping Network Design 485

∑

(i,j)∈A
(tsij + bj )ysij ≤ 24 · 7 · ws v ∈ V, s ∈ Sv (15.5g)

∑

s∈Sv
ws ≤ mv v ∈ V (15.5h)

xksij ≥ 0 (i, j) ∈ A, k ∈ K,
v ∈ V, s ∈ Sv (15.5i)

ysij ∈ {0, 1} (i, j) ∈ A, v ∈ V, s ∈ Sv (15.5j)

ws ∈ Z
+ v ∈ V, s ∈ Sv (15.5k)

τ si ≥ 0 i ∈ N, v ∈ V, s ∈ Sv. (15.5l)

The objective function (15.5a) minimises the cost of deploying the vessels and
designing the services, and the cost of transporting the demand quantities through
the network. The flow conservation constraints for the cargo variables are given
by constraints (15.5b), whereas the flow conservation constraints for the routing
variables are given by constraints (15.5c). Constraints (15.5d) ensure that there is
only a single hub port for each service. The flow of cargo on an edge (i, j) cannot
exceed the capacity uv of a vessel class, as expressed in (15.5e). If the service does
not use a given edge in the graph, i.e., ysij = 0, then the capacity is zero. The
time schedule constraints for the routing variables are given by the time variables
in constraints (15.5f). Note that it is necessary to linearise these constraints, as
they are non-linear. Moreover, these constraints also ensure the elimination of sub-
tours when designing the liner network, and prevents non-simple services. The
weekly frequency of the services and the deployment of the fleet are expressed by
constraints (15.5g). The availability of the fleet is limited by constraints (15.5h).
Finally, the domain of the variables is defined by constraints (15.5i)–(15.5l).

Furthermore, the arc formulation may also include the rejection of cargo by
defining continuous variables that account for the overall demand that is not flowed.
Moreover, as this formulation only allows simple services, constraints (15.3) can
also be included to account for transshipments.

This model is a simple representation of the arc formulation for the LSNDP,
but it can be extended to incorporate the various constraints and considerations
encountered in liner shipping. One of the main drawbacks with the formulation
is that only simple services can be modelled. Next, we present an extended MIP
model based on an arc-flow formulation which incorporates the network design and
fleet assignment and accounts correctly for the transshipment cost in intermediate
ports. Moreover, the model can handle the inclusion of butterfly services, where it
is allowed to visit a single port at most twice during the service, and the capacity of
the services dependent on the time horizon and the service length.

Let G = (N,A) be a directed graph. Define the set V as the set of vessels,
instead of the set of vessel classes. We consider each vessel v to belong to its own
vessel class. Let tmax be the length of the time horizon. The design of the network is
modelled with the binary variables yvij for the utilisation of an arc (i, j) in the service



486 M. Christiansen et al.

for vessel v. Similarly, as proposed by Miller et al. (1960), positive integer variables
evij are defined for enumerating the arcs used in the vessel service and avoid subtours
in services. As the model allows the definition of butterfly services, the binary
variables γ vi and zvij are required to, respectively, identify the unique center-point,
i.e., the hub port in the vessel service, and to allow the possibility of identifying
the first and last arc visiting the hub port. These variables are used for modelling
the transshipment of cargo in hub ports. The routing of containers through the
network is modelled with continuous variables xkvij , and extra continuous variables
are defined to count the amount of the transshipped containers in intermediate ports
within the same service. Let the continuous variables f kvj define the amount of
commodity k transshipped by vessel v at port j , while the continuous variables
f kv
jih denote the amount of commodity k, arriving at port i through arc (j, i), in

vessel v, and not leaving in arc (i, h). Furthermore, the model also considers the
fleet deployment. The problem is defined for a heterogeneous fleet and the service
capacities depend on the deployed vessels as well as the frequency at which they
sail. The deployment of a vessel is controlled by the binary variable λv , whereas the
continuous variables τv limit the service length of the vessels. Then, the arc-flow
model can be defined as:

min
∑

k∈K

∑

(i,j)∈A
ckij

∑

v∈V
xkvij +

∑

k∈k

∑

i∈N
cT
ik

∑

v∈V
f kvi +

∑

v∈V
cvλv (15.6a)

s.t.
∑

v∈V

∑

j :(i,j)∈A
xkvij −

∑

v∈V

∑

j :(j,i)∈A
xkvji = ξki i ∈ N, k ∈ K (15.6b)

f kvi ≥
∑

j :(i,j)∈A
xkij −

∑

j :(j,i)∈A
xkji k ∈ K, i ∈ N, v ∈ V

(15.6c)

f kvi ≥
∑

j,h∈N

∑

v∈V
f kvjih −M1(1− γ vi ) k ∈ K, i ∈ N, v ∈ V

(15.6d)

fjih ≥ xkvji − xkvih −M2(2− yvji − yvih + zvji + zvih) k ∈ K, j, i, h ∈ N, v ∈ V
(15.6e)

fjih ≥ xkvji − xkvih −M3(4− zvji − zvih − yvji − yvih) k ∈ K, j, i, h ∈ N, v ∈ V
(15.6f)

∑

i∈N
γ vi = 1 v ∈ V (15.6g)

∑

(i,j)∈A
zvij = 2 v ∈ V (15.6h)



15 Liner Shipping Network Design 487

γ vi −
∑

j :(i,j)∈A
zvij ≤ 0 i ∈ N, v ∈ V (15.6i)

γ vi −
∑

j :(j,i)∈A
zvji ≤ 0 i ∈ N, v ∈ V (15.6j)

∑

j :(i,j)∈A
yvij −

∑

j :(j,i)∈A
yvji = 0 i ∈ N, v ∈ V (15.6k)

∑

j :(i,j)∈A
yvij − γ vi ≤ 1 i ∈ N, v ∈ V (15.6l)

evji − evih +M4(y
v
ih + yvji − 2− zvji − zvih) ≤ −1 i, j, h ∈ N, v ∈ V

(15.6m)

yvij − λv ≤ 0 (i, j) ∈ A, v ∈ V
(15.6n)

τv ≤ tmax v ∈ V (15.6o)

τv =
∑

(i,j)∈A
yvij (t

v
ij + bj ) v ∈ V (15.6p)

tmax

τv
uvy

v
ij ≥

∑

k∈K
xkvij (i, j) ∈ A, v ∈ V

(15.6q)

zvij , y
v
ij ∈ {0, 1} (i, j) ∈ A, v ∈ V

(15.6r)

f kvjih ≥ 0 k ∈ K, j, i, h ∈ N, v ∈ V
(15.6s)

f kvj ≥ 0 k ∈ K, j ∈ N, v ∈ V
(15.6t)

evij ∈ Z
+ i, j ∈ N, v ∈ V

(15.6u)

xkvij ≥ 0 (i, j) ∈ A, k ∈ K, v ∈ V
(15.6v)

γ vi ∈ {0, 1} i ∈ N, v ∈ V
(15.6w)

λv ∈ {0, 1} v ∈ V (15.6x)

τv ≥ 0 v ∈ V. (15.6y)



488 M. Christiansen et al.

The objective function (15.6a) minimises the total cost of transporting the cargo
through the network, the transshipment costs of the demand in hub ports, and
the associated cost for deploying the vessels. Furthermore, the flow conservation
constraints (15.6b) ensure that all demand is satisfied. Constraints (15.6c) account
for the amount of containers transshipped in intermediate ports; however, if the
corresponding service is non-simple, the model requires constraints (15.6d)–(15.6f)
for updating the commodities transshipped by the same vessel in butterfly services.
Constraints (15.6g)–(15.6j) are used to handle butterfly services. Constraints (15.6g)
identify the unique butterfly node for the vessel service and constraints (15.6h)–
(15.6j) find the adjacent arcs corresponding to the first or last visit to the butterfly
node of the vessel service. Moreover, constraints (15.6k) are the flow conservation
constraints for the network design of the vessel service, and constraints (15.6l)
control the number of times a vessel visits the hub port in a service. In addition,
constraints (15.6m) use the previous information for correctly enumerating the
order in which the vessel traverses the arcs in the vessel service. Additionally,
the fleet deployment is controlled by constraints (15.6n), and the corresponding
service length is computed in constraints (15.6o) and (15.6p). It can also be seen
that the service length is included in the capacity constraints (15.6q), as was first
introduced in Agarwal and Ergun (2008). However, the model does not require
weekly departures for all ports. The inclusion of time for the service in the
calculation of the capacity results in a non-linear model. Therefore, it is necessary
to linearise the corresponding constraints (15.6q) together with (15.6o)–(15.6p) in
order to obtain a MIP formulation. Finally, constraints (15.6r)–(15.6y) define the
domain of the decision variables.

The high number of details in the model allows the representation of a fairly
realistic problem, making it possible to design efficient services reducing the overall
operational costs. Nonetheless, it can easily be observed that the compact model
is computationally hard to solve. The model presents several “big-M” constraints,
which produce a very weak relaxation, and Branch-and-Bound techniques provide
large integrality gaps and poor bounds. One proposed method to solve this problem
is Branch-and-Cut, as it has presented good results to the VRP and other transporta-
tion network design problems. The idea is to solve the relaxed problem without the
transshipment constraints, (15.6d)–(15.6f), and the connectivity constraints (15.6h)–
(15.6j) and (15.6m) in butterfly nodes and then, gradually add cuts to the formulation
when those constraints are violated. This was used by Reinhardt and Pisinger
(2012), to solve instances of up to 10 ports to proven optimality.

4.3 Considering Non-simple Services in the Formulation

The majority of models for LSNDP are defined using an arc formulation. These
formulations are suitable when the structure of the services can be assumed to be
simple. However, these formulations become problematic when formulating non-
simple services, as it requires the inclusion of many extra variables in the model.



15 Liner Shipping Network Design 489

In this section, we present different modelling approaches that can be used when
studying the design of more complex services.

4.3.1 Port-Call Formulations

The general idea of this formulation is to define services as sequences of port-calls,
instead of by the arcs that connect the physical ports in the graph, as presented in
Sect. 4.1. The formulation keeps track of the order in which the ports are visited
during a service, which makes it possible to distinguish between multiple visits to a
port by the same service. This, in turn, allows the inclusion of non-simple services,
which better reflects how services are designed in practice.

The port-call formulation defines service flow variables to model how containers
are transported within and between services. Therefore, the transshipment of cargo
can then be modelled by the service flows. Hence, not only can this approach capture
the cost of transshipment between different services, but also within the same
service. Furthermore, the model can also account for the demand that is rejected
by considering the cargo that is not flowed in the services.

Nevertheless, the decision variables of this formulation must be extended with an
extra sequence index to identify the corresponding physical port visited at certain
port-call by the service. Since the complexity of the problem increases with the
addition of the extra index, it is common to impose a maximum number of port-
calls within a service.

4.3.2 Layer-Networks for Complex Services Structures

One way of managing the difficulty of handling complex service structures together
with transshipment restrictions, is by using a graph network with multiple nodes for
each port.

The graph network is modelled with multiple layers, where each layer is a
complete sub-graph, containing exactly one copy of each port. This way, each visit
to a port is considered a separate node, and the maximum number of visits to each
port is limited by the number of nodes representing that port. The layers are only
connected between nodes representing the same port so that it is possible to switch
layers at any given point. A graphical representation of the network can be seen
in Fig. 15.8. The key is that, by separating the different visits to a port, complex
services can be modelled, together with transshipment costs for transshipments
within the same service.

However, the drawback with this modelling approach is that it is significantly
more complex. In addition to using more nodes and edges, symmetries can easily
arise, as a service could swap layers more or less arbitrarily without changing
the represented solution. Some of this can be counteracted by symmetry breaking
constraints, but to this day, only smaller instances of up to around 15 ports have
been solved with modelling approach. Additionally, to keep down the complexity, it



490 M. Christiansen et al.

Fig. 15.8 Visual representation of the layer-network with four ports and L layers

can be beneficial to impose a limitation of two layers in the defined graph network.
This is a quite realistic limitation, as a service seldom visits a port more than twice.
Hence, the problem allows the creation of simple, butterfly and pendulum services.

4.3.3 Time-Space Models

The LSNDP can also be represented by a time-space graph. The key of this
modelling approach is to include the temporal aspects into the graph structure.
Therefore, this graph structure not only allows the representation of any type of
service, but also integrates the vessel scheduling into the modelling.

Let H be the set of time-units after discretising the weekly planning horizon into
uniform time steps. This discretisation is used to define the graph structure of the
problem. Define G = (Ñ, A) as a directed graph, where Ñ and A are the set of
nodes and arcs, respectively.

The set of nodes contains a copy of each port for each of the time steps. Hence,
each node (i, h) ∈ Ñ represents the departure time of a vessel from port i ∈ N

at a specific time h ∈ H . The set of arcs A is composed by two set of arcs;
the set of sailing arcs AS and the set of transshipment arcs AT . Each sailing arc
a ∈ AS connects the departure of a vessel from two different port-nodes, i.e.,
connects two nodes (i1, h1) and (i2, h2) such as i1 	= i2. Note that, due to the weekly
frequency of the services, the times should be computed modulo 7 days, and hence,
services are modelled as closed cycles in the graph. Moreover, each transshipment
arc a ∈ AT represents the cargo transshipment between two services at the same
port, i.e., the arc connects two nodes (i1, h1) and (i2, h2) such as i1 = i2. As an
example, Fig. 15.9 illustrates a time-space graph for four ports with two services.



15 Liner Shipping Network Design 491

Fig. 15.9 Example of a time-space graph G with four ports with a planning horizon discretised by
the days of the week. The graph depicts two services, where Service 1 visits port B twice during
the same rotation. Transshipment arcs are represented by dashed arcs, connecting the nodes for the
same port

The transshipment of cargo between services can be carried out at ports B and C.
Moreover, port B is visited twice by Service 1, allowing cargo to be transshipped
within the same service.

One of the main advantages with the time-space models, is that in addition to
generating the routes for the services, they also generate the schedule. They also
make it handy to model more complex operations, such as speed optimisation and
transshipment times. Furthermore, if we disallow services to visit the same port
twice at the same time slot, we get the same benefits as the layered networks in
terms of handling transshipment together with complex services. This, however,
again comes at the price of having significantly more nodes and edges in the graph.

An important design choice, when working with time-space graphs is the time
discretisation granularity. By defining small time steps, the model can better reflect
the aforementioned operations; however, the graph would require a large number
of nodes, which increase the overall complexity of the problem. On the other hand,
large time steps may be too restrictive, and the model may not capture the additional
constraints as accurately.

5 Two-Stage Algorithms

The LSNDP consists of two tightly interrelated problems—the vessel service
network design and the container flow problem. One of the most successful



492 M. Christiansen et al.

approaches so far for finding good solutions to the LSNDP, has been to use heuristics
exploiting this two-tier structure.

In general, the two stage algorithms can be divided into two categories: service
first and flow first. In service first, the service generation is the leading procedure,
and the containers are then flowed, given the generated services. It is then common
to use information from the container flow to update the services. This way a
feedback loop is created, iteratively improving the services and solving the container
flow.

In flow first, the containers are instead first flowed without any information
regarding the services, and the services are subsequently created to match that flow.
The key concept is to try to aggregate the container flows onto a small subset of the
arcs, to facilitate the ensuing service generation.

5.1 The Container Flow Problem

Before going into the full two-stage algorithms, let us briefly discuss the container
flow problem, which is the lower tier problem in the LSNDP two-tier structure.
In general, for a given set of services, the container flow problem reduces to a
multicommodity flow problem (MCFP) with fractional flows allowed.

In addition to the notation defined in Sect. 2.2, we need an additional parameter;
to each arc (i, j) ∈ A define its corresponding flow capacity, uij . The arc set A
and its corresponding costs ckij and capacities uij are defined by the vessel services,

designed in the upper-tier problem. Also, let xkij be a continuous variable denoting
the flow of commodity k through arc (i, j). The MCFP can then be expressed as:

min
∑

(i,j)∈A

∑

k∈K
ckij x

k
ij (15.7a)

s.t.
∑

j∈N :(i,j)∈A
xkij −

∑

j∈N :(j,i)∈A
xkji = ξki i ∈ N, k ∈ K (15.7b)

∑

k∈K
xkij ≤ uij (i, j) ∈ A (15.7c)

xkij ≥ 0 (i, j) ∈ A, k ∈ K. (15.7d)

Here, the objective, (15.7a), is to minimise the total cost. Constraints (15.7b) are the
flow conservation constraints, constraints (15.7c) are the capacity constraints, and
constraints (15.7d) define the domain of the variables xkij .

When fractional flows are allowed, the MCFP is solvable in polynomial time.
For larger instances it is, however, still computationally demanding. As the model
generally has to be solved a multitude of times in the presented two-tier solutions to
the LSNDP, efficient solution methods to the MCFP are essential.



15 Liner Shipping Network Design 493

One of the most common solution approaches is to exploit its block-angular
constraints matrix and apply Dantzig-Wolfe Decomposition (Ahuja et al. 1993). The
problem should first be reformulated as a path flow formulation, where the goal is to
allocate the commodities to a number of flow paths from the commodities’ origins
to their destinations, while respecting the capacity constraints on the arcs. Let P k

be the set of all paths for commodity k ∈ K , from ok to dk , and let P k
a be the set of

paths for commodity k, which uses arc a. Then we define

Pa =
⋃

k∈K
P k
a ,

to be the set of all paths going through arc a ∈ A. For each path, p, for commodity
k ∈ K , define its cost ckp =

∑
a∈A:p∈P k

a
cka , and a corresponding decision variable

f k
p , deciding the flow through path p. The path flow formulation can then be

expressed as:

min
∑

k∈K

∑

p∈P k

ckpf
k
p (15.8a)

s.t.
∑

p∈P k

f kp = ξkok k ∈ K (15.8b)

∑

p∈Pa
f kp ≤ ua a ∈ A (15.8c)

f k
p ≥ 0 k ∈ K,p ∈ P k. (15.8d)

The objective function, (15.8a), minimises the cost. Constraints (15.8b) ensure that
all commodities are delivered and constraints (15.8c) assert that the arc capacity
cannot be exceeded. Lastly, constraints (15.8d) define the domain for the variables.

The path formulation has a very large number of variables, but generally, only
a few of them are needed for the optimal solution. Using column generation, the
problem can be restricted to only consider a limited amount of paths for each
commodity and new paths can then be generated dynamically. In this way, the
path formulation can generally be solved faster than the arc formulation, described
earlier. The path formulation makes it relatively easy to implement transit time
constraints as they can be handled in the pricing problem.

5.2 Service First Methods

While the lower-tier container flow problem is solvable in polynomial time (when
no transit time constraints are imposed), the upper-tier service selection problem
is NP -hard, and just calculating the objective value of a given solution, requires



494 M. Christiansen et al.

solving the container flow problem. This makes the service selection problem
difficult to solve to optimality and instead several matheuristics have been developed
to find good solutions to larger instances. A matheuristic is a method that employs
heuristics together with methods from linear and integer programming. In the case
of the LSNDP, the most common procedure is to use linear programming tools to
solve the MCFP and then various heuristics to update the vessel services.

Typically, we keep a set of services S, each with a designated speed and
vessel class, and sufficient vessels to keep the weekly frequency. When solving
the container flow for those services, we can see which services are under or over
utilised and change the speed and vessel classes of the services accordingly. Looking
at the dual variables for the capacity constraints, such as constraints (15.7c), we get
information about which arcs would need more capacity to lower the costs. This can
then be used to modify or create new services. Then, based on this information, we
gradually modify the services, most commonly within a tabu-search framework.

An alternative approach is to instead use linear programming for updating the
services. When modifying a service, the evaluation of the resulting change in time
and revenue require the full solution of the commodity flow problem. This is
generally too expensive, if we would like to compare multiple modifications, and the
idea is therefore to instead work with estimates of those changes. We will iteratively
update the services one by one, and for each service we find a set of potential ports
to either include or exclude from the service. The key is then to, for each of those
ports, estimate the change in revenue for the problem and the change in time for the
service, if this port would be included or excluded. Where in the services to insert
new ports is decided using a greedy heuristic. Estimating the change in service time
is straightforward, but for estimating the change in revenue, we need an estimate of
how the cargo flow would be affected. For this we solve a shortest path problem for
each affected commodity to evaluate the approximate cost of routing it through the
resulting network.

With the estimates in place, we can then define an integer program to optimise
the service changes. In addition to the notation from the Sect. 2.2, let τs be the time
length of a service s, let ΔR+

is (ΔR−
is ) be the estimated revenue change, and ΔT+

is

(ΔT−
is ) be the estimated duration change from including (excluding) port i ∈ N

in (from) service s ∈ S. Also, let η+s (η+s ) be the maximum number of inclusions
(removals) allowed and let N̄s denote the set of ports which can be included. Let m̂v

denote the number of free vessels of class v, such that

m̂v = mv −
∑

s∈S
ms
v.

Lastly, let us define the binary variables x+is and x−is , which control the inclusion and
removal, respectively, of port i from service s, and the integer variables ζs , which
denote the number of vessels to add to/subtract from service s. For each service
s ∈ S, with corresponding vessel class v, we can then define the following integer
program:



15 Liner Shipping Network Design 495

max
∑

i∈Ns

ΔR+
is x+is +

∑

i∈N̄s

ΔR−
is x−is − cvζs (15.9a)

s.t. τs +
∑

i∈Ns

ΔT+
is x
+
is +

∑

i∈N̄s

ΔT−
is x
−
is ≤ 24 · 7 · (ms

v + ζs) (15.9b)

ζs ≤ m̂v (15.9c)
∑

i∈N̄s

x+is ≤ η+s (15.9d)

∑

i∈Ns

x−is ≤ η−s (15.9e)

∑

j∈L+i
x−js ≤ |L+i |(1− x+is ) i ∈ N̄s (15.9f)

∑

j∈L−i
x−js ≤ |L−i |(1− x−is ) i ∈ Ns (15.9g)

x+is ∈ {0, 1} i ∈ N̄s (15.9h)

x−is ∈ {0, 1} i ∈ Ns (15.9i)

ζs ∈ Z. (15.9j)

Here, the objective (15.9a) is to maximise the increase in revenue. Constraint (15.9b)
ensures that there is enough vessels assigned to keep the weekly frequency, and
constraint (15.9c) says that no more than the number of free vessels can be added to
the service. Constraints (15.9d) and (15.9e) set a limit on the number of insertions
and removals, while (15.9f) and (15.9g) prevent certain combinations of insertions
and removals. The sets L+i are defined such that if a port i is to be inserted, then no
port in L+i is allowed to be removed. If instead a port i is removed, then every port
in L−i must remain. If a new port call is inserted in between two ports, then neither
of those are allowed to be removed, and if inserting a new port means that a new
commodity is transported, then the origin and destination nodes of this commodity
are not allowed to be removed. Constraints (15.9d)–(15.9g) are defined to limit the
amount of changes which can be applied, as the revenue and time change estimates
are made for one or a few changes and deteriorates rapidly when multiple changes
are applied. Lastly, (15.9h)–(15.9j) define the domain of the variables.

The algorithm works such that each service, one by one, is updated according to
the solution of the above defined mixed integer problem. Then the MCFP is solved
to update the total revenue and the effect of new changes is once again estimated
with the shortest path procedure. To diversify the solutions, in every tenth iteration
the services with lowest utilisation are removed and new services are created using
the greedy creation heuristic. A more thorough description of the algorithm can be



496 M. Christiansen et al.

seen in Brouer et al. (2015). They also use the algorithm to find good solution to all
the LINERLIB instances, except for World Large.

5.3 Backbone Flow

The main idea in backbone flow algorithms is to reverse the order of two-phase
algorithms by first flowing the containers, and then constructing services that cover
the flow.

For the first step in the backbone flow algorithms, which flow the containers,
a directed graph G = (N,A) is used. There are no capacities associated with
the edges, as there are no services designed at this stage. To design a backbone
flow, which can later be effectively covered by a set of services, it is important to
aggregate the flows onto a few arcs. This can be achieved by using for example a
fixed charge cost. Another way would be to use a concave edge cost function c(x)
of the flow x, reflecting the economy of scale for flowing more containers. There is
a large cost associated with opening an arc (i.e., deploying a vessel), while the cost
per container decreases as the flow (and hence vessel size) increases. See Fig. 15.1
for an illustration of the costs.

Let xkij denote the flow of commodity k on edge (i, j). Then the backbone flow
problem becomes a non-linear MCFP as given by

min
∑

(i,j)∈A
c(
∑

k∈K
xkij ) (15.10a)

s.t.
∑

(i,j)∈A
xkij −

∑

(j,i)∈A
xkji = ξki i ∈ N, k ∈ K (15.10b)

xkij ≥ 0 (i, j) ∈ A, k ∈ K. (15.10c)

As before, the objective, (15.10a), is to minimise the total cost, and con-
straints (15.10b) are the flow conservation constraints. Constraints (15.10c) define
the domain of the variables.

Since the model is non-linear and non-convex, many of the classic optimisation
techniques are not applicable. Instead, it is commonplace to use various heuristics
and approximation methods, such as, for example, dual ascent methods or tabu
search. One classic method is to use successive linearisation of the cost function,
where the concave cost function is estimated with a linear function. Typically, this
would be done by iteratively routing some or all containers, by solving a number
of shortest path problems, based on the current arc costs, and then update the costs
according to the new solution. If the arc costs are updated before all containers are
routed, generally, the first containers to be routed are more decisive for which arcs
are used in the final solution. To circumvent this, the algorithm is run several times,



15 Liner Shipping Network Design 497

Fig. 15.10 Typical backbone flow for the WorldSmall instance. Data from Krogsgaard et al. (2018)
and World map by San Jose under a CC-BY-SA-3.0 license

with a random order of the containers, to achieve a reasonable average picture of the
backbone flow.

An example of running ten iterations for the demand matrix of the WorldSmall
instance gives the average arc loads shown in Fig. 15.10. The figure clearly shows
that only a fraction of the possible arcs is used in the solution.

5.3.1 From Backbone Flow to Network Design

Having found a backbone flow, the goal is to design services which satisfies
it. This becomes a kind of arc-covering problem, but with the addition that the
commodities have to be assigned to the different services for the purpose of
modelling transshipments and handling capacity constraints. Alternatively, if the
aim is to just create a decent initial solution, the service generation can be split in
two parts: one where the routes are generated, trying to cover as much as possible
of the flow, and one where the containers are assigned to the services, trying to
minimise the transshipments while satisfying the capacity constraints. Due to the
rather limited amount of arcs, on which containers flow, the pure arc-covering
problem can be solved rather effectively using greedy construction heuristics. The
idea is to create services by greedily inserting arcs one at a time, until the maximum
service time is reached.

In a computational study by Krogsgaard et al. (2018), it is shown that usable
solutions can be found in relatively short time. Using the WorldSmall instance, the
authors generate 20 different sets of services by running the above algorithm where
the containers are flown in random order. This can be done in about 80 s, and results
in a profitable network, although the resulting network is far from optimal.

While it is unlikely that the backbone flow perfectly matches the structure of
the service network, this methodology can be used to quickly generate good initial



498 M. Christiansen et al.

solutions. The container paths can then be updated to better fit the services, which
could be the starting step in a continued two-stage algorithm.

6 Bibliographic Notes

A good introduction to the liner-shipping business along with a description of its
main assets and infrastructure can be found in Brouer et al. (2014a). This paper also
presents in details a complete model for the LSNDP with all side-constraints and
introduces the LINER-LIB test instances. For a detailed review of the research on
liner shipping optimisation problems, see the survey papers Ronen (1983, 1993),
Christiansen et al. (2004), Christiansen et al. (2013), Meng et al. (2014), Tran and
Haasis (2015), Brouer et al. (2016, 2017), and Lee and Song (2017).

Planning problems within RoRo shipping are far less studied in the OR liter-
ature compared to container shipping. As far as we know, there is no literature
contribution considering RoRo network design. However, other strategic planning
issues involving decisions regarding fleet size and mix can be found in Pantuso
et al. (2015). On the tactical planning level, the fleet deployment problem consists
of assigning ships in the fleet to voyages that must be performed repeatedly on
given trade routes. In addition to the ship-voyage assignment, the results from fleet
deployment are sailing routes for the ships in the fleet. Deployment models for RoRo
shipping are presented by Fagerholt et al. (2009) and Andersson et al. (2015).

In Sect. 4.1, the service formulation for the LSNDP has been used by Álvarez
(2009) and Balakrishnan and Karsten (2017). Álvarez (2009) studied the LSNDP
at the tactical level, considering the joint routing and deployment of container
vessels. The formulation presented in the paper is based on the set of all feasible
services, which are given as a combination of vessel class, operating speed and route
structure. Moreover, the idea of selecting a subset of sailing services from a pool of
candidate services was originally proposed by Balakrishnan and Karsten (2017),
who also presented the multicommodity model based on flows along sub-paths in
the augmented network.

The arc formulation model, in Sect. 4.2, was originally presented by Reinhardt
and Pisinger (2012), in which network design and fleet assignment were combined.
The authors were among the first to study exact methods for the network design
problem in liner shipping with transshipment operations and butterfly services. They
developed a branch-and-cut algorithm and reported results for instances up to 15
ports.



15 Liner Shipping Network Design 499

In Sect. 4.3, different approaches for modelling complex-services are presented.
The port-call formulation for the LSNDP is based on Plum et al. (2014). The model
proposed in this paper has been used to solve the two smallest LINER-LIB instances
using CPLEX. The authors reported promising solutions for these instances, but
optimal solutions were not achieved due to the large number of constraints and
decision variables. The layer-network for complex services structures is based on
Thun et al. (2017). The problem is solved to integer optimality using a branch-and-
price algorithm, reporting results for small instances of between 5 and 7 ports with
up to 14 demands. Finally, the time-space graph is based on Koza et al. (2020). The
authors developed a column generation matheuristic and reported very good results
for LINER-LIB instances of up to 45 ports.

Section 5 is dedicated to two-stage algorithms, where column generation and
Benders’ decomposition have been used by Agarwal and Ergun (2008), and various
matheuristics have been used by Álvarez (2009), Brouer et al. (2014b) and Karsten
et al. (2017). A good introduction to the transit time constrained multicommodity
flow problem can be found in Karsten et al. (2015).

The general service-first method, in Sect. 5.2, is inspired by Álvarez (2009) and
the model (15.9a)–(15.9h) is based on Brouer et al. (2015). The authors report
satisfactory solutions for 6 out of 7 LINER-LIB instances for the case with transit
time requirements for the commodities.

In Sect. 5.3 the main idea of backbone flow was presented by Krogsgaard
et al. (2018). Sun and Zheng (2016) also use a concave function to optimise the
container flow. Moreover, the greedy heuristic for generating services presented
in the same Sect. 5.3.1 was also presented in Krogsgaard et al. (2018). Promising
computational results are reported for all LINER-LIB instances without the transit
time requirements, where the best results are achieved for 4 out of the 7 instances,
namely WestAfrica, Pacific, WorldSmall and WorldLarge.

7 Concluding Remarks and Future Challenges

Liner shipping is the backbone of international trade, hence it is important to
develop decision support tools that can help design more cost-efficient services, and
balance several objectives. This includes finding the right trade-off between speed,
transportation times, number of transshipments, and operational costs.

Slow steaming together with larger vessels has proven to be an efficient tool
for reducing energy consumption. However, slow steaming decreases the capacity
of vessels, since they cannot transport as much cargo per time unit as before.
Hence, more vessels are needed in order to maintain the same capacity, straining
the environment. Bigger vessels tend to be more energy efficient per container, but
the increased capacity results in longer port stays, making it necessary to speed



500 M. Christiansen et al.

up between the port stays. It is therefore necessary to design services such that
fewer transshipments are needed, while still ensuring a good utilisation of the mega
vessels.

Although liner shipping generally is one of the most energy-efficient modes
of transportation per kilometer, the shipping industry emits large quantities of
SOx and NOx. In the future, we will see container vessels operating with new,
greener, propulsion types. Electric vessels may operate shorter services, while liquid
natural gas (LNG) may be used for operating longer services. The new propulsion
types will make it necessary to completely rethink service network design, since
refueling/recharging will be more complicated, and vessels will have a more limited
range of operation.

The introduction of autonomous vessels in the container shipping industry may
also significantly change the way a network is designed and operated. In particular
for feeder-lines we will see more smaller vessels sailing on-demand, depending on
the cargo. This will turn the network design process into a dynamic routing problem.
It would also be interesting to investigate whether fuel savings are achievable if
autonomous vessels are sailing in convoys close to each other. If this is the case, the
network design should take these convoys into account.

Nearly every vessel will be delayed in one or more ports during a round trip.
Instead of just speeding up (and hence using more energy) advanced disruption
management tools need to be developed that can ensure timely arrival to the end
customer with the lowest possible energy consumption. Some studies along this
path include Brouer et al. (2014a) but much more work needs to be done in this
area.

Vessel sharing agreements are an important tool for making it possible to operate
larger and more energy-efficient vessels. In a vessel sharing agreement two or more
companies share the capacity of a vessel throughout the full rotation or on certain
legs. Vessel sharing agreements, however, substantially increase the complexity of
designing a network, since some legs and capacities are locked according to the
agreement.

8 Notation Used in This Chapter

We have tried to use an uniform mathematical notation throughout the chapter,
although each section needs some additional symbols. The notation has been
gathered and presented in the Tables 15.2, 15.3, 15.4, 15.5, 15.6, 15.7, 15.8, 15.9,
and 15.10. First, the general notation presented in the introduction to be commonly
used in the mathematical models of the chapter is presented. Next, the extra notation
needed to define the models of each specific section is presented.



15 Liner Shipping Network Design 501

Table 15.2 General notation from the introduction

Sets

N := set of ports

A := set of sailing arcs

K := set of commodities

V := set of vessel classes

S := set of services

Parameters

ok := origin port for commodity k ∈ K
dk := destination port for commodity k ∈ K
qk := quantity of commodity k ∈ K
uv := cargo capacity for vessel class v ∈ V
mv := available fleet quantity of vessel class v ∈ V

ξki :=

⎧
⎪⎨

⎪⎩

qk if port i ∈ N is the origin port of demand k ∈ K
−qk if port i ∈ N is the destination port of demand k ∈ K

0 otherwise.

ckij := unit-cost for transporting a unit of commodity k ∈ K through arc (i, j) ∈ A
cv := cost for deployment of a vessel from vessel class v ∈ V
cvij := sailing cost for vessel class v ∈ V traversing arc (i, j) ∈ A
cT
ik := cost per unit of commodity k ∈ K transshipped in port i ∈ N
tvij := sailing time for vessel class v ∈ V traversing arc (i, j) ∈ A
bi := berthing time for the port call i ∈ N
cs := cost for operation service s ∈ S.

ms
v := required number of vessels from vessel class v ∈ V to maintain the weekly

frequency in service s ∈ S

Table 15.3 Additional notation for Sect. 4.1

Parameters

usij := capacity for service s ∈ S along arc (i, j) ∈ A
Decision variables

xksij ∈ R
+ := amount of commodity k ∈ K transported in service s ∈ S along arc (i, j) ∈ A

ys ∈ {0, 1} := equal to 1 if service s ∈ S is selected in the network, and 0 otherwise



502 M. Christiansen et al.

Table 15.4 Additional notation for Sect. 4.1.1 (Balakrishnan and Karsten 2017)

Sets

As := set of sailing arcs for service s ∈ S
Hs := full set of sub-paths for service s ∈ S (a sub-path is a part of a route in which the

container travels on a single service and is denoted 〈i, j, s〉)
As
ij := set of sailing arcs of service s ∈ S included in sub-path 〈i, j, s〉

Parameters

ua := capacity for arc a ∈ As

cRk := penalty cost per container for rejected demand of commodity k ∈ K
ckijs := cost of routing one container of commodity k ∈ K on sub-path 〈i, j, s〉
hk := maximum allowed number of sub-paths on which commodity k ∈ K can travel

Decision variables

ys ∈ {0, 1} := equal to 1 if service s ∈ S is selected, and 0 otherwise

xhkijs ∈ R
+ := flow of commodity k ∈ K using sub-path 〈i, j, s〉 as the hth stage for s ∈ S,
〈i, j, s〉 ∈ As , and h = 1, 2, . . . , hk

zk ∈ R
+ := unmet demand (number of containers) for commodity k ∈ K

Table 15.5 Additional notation for Sect. 4.2

Sets

Sv := set of maximum number of services for vessel class v ∈ V
Decision variables

xksij ∈ R
+ := amount of commodity k ∈ K transported in service s ∈ Sv along arc (i, j) ∈ A

τsi ∈ R
+ := departure time from port i ∈ N of the vessel operating service s ∈ Sv

ws ∈ Z
+ := number of deployed vessels to maintain a weekly frequency in service s ∈ Sv

γ si ∈ {0, 1} := equal to 1 if port i ∈ N is the hub port in the service s ∈ Sv , and 0 otherwise

ysij ∈ {0, 1} := equal to 1 if arc (i, j) ∈ A is selected on the service s ∈ Sv , and 0 otherwise

Table 15.6 Additional notation for Sect. 4.2 (Reinhardt and Pisinger (2012))

Parameters

tmax := length of the time horizon

Decision variables

xkvij ∈ R
+ := amount of commodity k ∈ K transported by vessel v ∈ V along arc (i, j) ∈ A

f kv
j ∈ R

+ := amount of commodity k ∈ K transshipped at port j ∈ N by vessel v ∈ V
f kvjih ∈ R

+ := amount of commodity k ∈ K arriving at port i ∈ N through arc (j, i) ∈ A and
not leaving in arc (i, h) ∈ A by vessel v ∈ V

evij ∈ Z
+ := position of arc (i, j) ∈ A in the service of vessel v ∈ V

τv ∈ R
+ := route length of the service operated by vessel v ∈ V

yvij ∈ {0, 1} := equal to 1 if arc (i, j) ∈ A is selected in the service for vessel v ∈ V , and 0
otherwise

zvij ∈ {0, 1} := equal to 1 if arc (i, j) ∈ A is either the first or the last arc in the service for
vessel v ∈ V , and 0 otherwise

γ vi ∈ {0, 1} := equal to 1 if port i ∈ N is the hub port in the service for vessel v ∈ V , and 0
otherwise

λv ∈ {0, 1} := equal to 1 if vessel v ∈ V is deployed for operating a service, and 0 otherwise



15 Liner Shipping Network Design 503

Table 15.7 Additional notation for Sect. 4.3

Sets

H := set of time-units after discretising the weekly planning horizon

Ñ := set nodes in the time-space graph

AS := set of sailing arcs in the time-space graph

AT := set of transshipment arcs in the time-space graph

Table 15.8 Additional notation for Sect. 5.1

Sets

P k := set of paths for commodity k ∈ K
Pa := set of paths using arc a ∈ A
Parameters

uij /ua := flow capacity through arch a = (i, j) ∈ A
ckp := unit flow cost of commodity k ∈ K through path p ∈ Pk
Decision variables

xkij ∈ R
+ := flow of commodity k ∈ K through arc (i, j) ∈ A

f k
p ∈ R

+ := flow of commodity k ∈ K through path p ∈ Pk

Table 15.9 Additional notation for Sect. 5.2

Sets

Ns := set of ports in service s ∈ S
N̄s := set of ports available for inclusion into service s ∈ S
Li := lockset containing the ports which are forbidden to remove, if port i ∈ Ns ∪ N̄s

is included (removed)

Parameters

ΔR+
is := estimated revenue change from including port i ∈ N̄s into service s ∈ S

ΔR−
is := estimated revenue change from removing port i ∈ Ns from service s ∈ S

ΔT+
is := estimated duration change from including port i ∈ N̄s into service s ∈ S

ΔT−
is := estimated duration change from removing port i ∈ Ns from service s ∈ S

m̂v := number of free vessels of vessel class v ∈ V
τs := round trip time for service s ∈ S
η+s := maximum number of inclusions into service s ∈ S
η−s := maximum number of removals into service s ∈ S
Decision variables

x+is ∈ {0, 1} := equal to 1 if port i ∈ N̄s is included into service s ∈ S, and 0 otherwise

x−is ∈ {0, 1} := equal to 1 if port i ∈ Ns is removed from service s ∈ S, and 0 otherwise

ζs ∈ Z := change in number of vessels in service s ∈ S



504 M. Christiansen et al.

Table 15.10 Additional notation for Sect. 5.3

Parameters

c(x) := concave cost function of using an edge (i, j) ∈ A for the flow x

Decision variables

xkij ∈ R
+ := flow of commodity k ∈ K on edge (i, j) ∈ A

Acknowledgments Marielle Christiansen was partially funded by the Research Council of
Norway via the Axiom project. Erik Hellsten, David Pisinger, and David Sacramento were partially
funded by the Danish Maritime Fund via the FutureFeed project.

References

Agarwal, R., & Ergun, O. (2008). Ship scheduling and network design for cargo routing in liner
shipping. Transportation Science, 42(2), 175–196.

Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows: theory, algorithms, and applications.
Upper Saddle River: Prentice Hall.

Álvarez, J. (2009). Joint routing and deployment of a fleet of container vessels. Maritime
Economics & Logistics, 11(2), 186–208.

Andersson, H., Fagerholt, K., & Hobbesland, K. (2015). Integrated maritime fleet deployment
RoRo shipping. Computers & Operations Research, 55, 233–240.

Balakrishnan, A., & Karsten, C. (2017). Container shipping service selection and cargo routing
with transshipment limits. European Journal of Operational Research, 263(2), 652–663.

Brouer, B., Álvarez, J., Plum, C., Pisinger, D., & Sigurd, M. (2014a). A base integer programming
model and benchmark suite for liner-shipping network design. Transportation Science, 48(2),
281–312.

Brouer, B., Desaulniers, G., Karsten, C., & Pisinger, D. (2015). A matheuristic for the liner
shipping network design problem with transit time restrictions. In F. Corman, S. Voß, & R.
Negenborn (Eds.), Computational logistics (pp. 195–208). Berlin: Springer.

Brouer, B., Desaulniers, G., & Pisinger, D. (2014b). A matheuristic for the liner shipping network
design problem. Transportation Research Part E: Logistics and Transportation Review, 72,
42–59.

Brouer, B., Karsten, C., & Pisinger, D. (2016). Big data optimization in maritime logistics. In A.
Emrouznejad (Ed.), Big data optimization: recent developments and challenges, studies in big
data (Vol. 18, pp. 319–344). New York City: Springer International Publishing.

Brouer, B., Karsten, C., & Pisinger, D. (2017). Optimization in liner shipping. 4OR, 15(1), 1–35.
Christiansen, M., Fagerholt, K., Nygreen, B., & Ronen, D. (2013). Ship routing and scheduling in

the new millennium. European Journal of Operational Research, 228(3), 467–483.
Christiansen, M., Fagerholt, K., & Ronen, D. (2004). Ship routing and scheduling: Status and

perspectives. Transportation Science, 38(1), 1–18.
Christiansen, M., Hellsten, E., Pisinger, D., Sacramento, D., & Vilhelmsen, C. (2020). Liner

shipping network design. European Journal of Operational Research, 286(1), 1–20.
Fagerholt, K., Johnsen, T., & Lindstad, H. (2009). Fleet deployment in liner shipping: A case study.

Maritime Policy & Management, 36(5), 397–409.
Germanische Lloyd. (2017). http://www.balkanlloyd.com/news/96-germanischer-lloyd-has-

conducted-research-showing-that-new-and-efficient-4-500-teu-panamax [Online; accessed
February 20, 2017]

Hellsten, E., Pisinger, D., Sacramento, D., & Vilhelmsen, C. (2019). Green liner shipping network
design. In Sustainable shipping (pp. 307–337). Berlin: Springer.

http://www.balkanlloyd.com/news/96-germanischer-lloyd-has-conducted-research-showing-that-new-and-efficient-4-500-teu-panamax
http://www.balkanlloyd.com/news/96-germanischer-lloyd-has-conducted-research-showing-that-new-and-efficient-4-500-teu-panamax


15 Liner Shipping Network Design 505

ISL. (2016). Shipping statistics and market review. Technical Report. Institute of Shipping
Economics and Logistics

Karsten, C., Brouer, B., Desaulniers, G., & Pisinger, D. (2017). Time constrained liner shipping
network design. Transportation Research Part E: Logistics and Transportation Review, 105,
152–162.

Karsten, C., Pisinger, D., Røpke, S., & Brouer, B. (2015). The time constrained multi-commodity
network flow problem and its application to liner shipping network design. Transportation
Research Part E: Logistics and Transportation Review, 76, 122–138.

Koza, D., Desaulniers, G., & Ropke, S. (2020). Integrated liner shipping network design and
scheduling. Transportation Science, 54(2), 512–533.

Krogsgaard, A., Pisinger, D., & Thorsen, J. (2018). A flow-first route-next heuristic for liner
shipping network design. Networks, 72(3), 358–381.

Lee, C., & Song, D. (2017). Ocean container transport in global supply chains: Overview and
research opportunities. Transportation Research Part B: Methodological, 95, 442–474.

Meng, Q., Wang, S., Andersson, H., & Thun, K. (2014). Containership routing and scheduling in
liner shipping: overview and future research directions. Transportation Science, 48, 265–280.

Miller, C., Tucker, A., & Zemlin, R. (1960). Integer programming formulation of traveling
salesman problems. Journal of the ACM (JACM), 7(4), 326–329.

Montreuil, B. (2011). Towards a physical internet: meeting the global logisitcs sustainability grand
challenge. Logistics Research, 3, 71–87.

Notteboom, T., & Vernimmen, B. (2009). The effect of high fuel costs on liner service configuration
in container shipping. Journal of Transport Geography 17(5), 325–337.

Pantuso, G., Fagerholt, K., & Wallace, S. (2015). Uncertainty in fleet renewal: A case from
maritime transportation. Transportation Science, 50(2), 390–407

Plum, C., Pisinger, D., & Sigurd, M. (2014). A service flow model for the liner shipping network
design problem. European Journal of Operational Research, 235(2), 378–386.

Psaraftis, H., & Kontovas, C. (2015). Slow steaming in maritime transportation: Fundamentals,
trade-offs, and decision models. In C. Lee & Q. Meng (Eds.), Handbook of ocean container
transport logistics: making global supply chains effective (pp. 315–358). New York: Springer
International Publishing.

Reinhardt, L., & Pisinger, D. (2012). A branch and cut algorithm for the container shipping network
design problem. Flexible Services and Manufacturing Journal, 24(3), 349–374.

Ronen, D. (1983). Cargo ships routing and scheduling: Survey of models and problems. European
Journal of Operational Research, 12(2), 119–126.

Ronen, D. (1993). Ship scheduling: The last decade. European Journal of Operational Research,
71(3), 325–333.

Sun, Z., & Zheng, J. (2016). Finding potential hub locations for liner shipping. Transportation
Research Part B: Methodological, 93, 750–761.

Thun, K., Andersson, H., & Christiansen, M. (2017). Analyzing complex service structures in liner
shipping network design. Flexible Services and Manufacturing Journal, 29(3–4), 535–552.

Tran, N., & Haasis, H. (2015). Literature survey of network optimization in container liner
shipping. Flexible Services and Manufacturing Journal, 27, 139–179.

Unctad. (2018). Review of maritime transport. Technical Report. United Nations Conference on
Trade and Development

Unctad. (2019). UnctadSTAT. https://unctadstat.unctad.org/wds/ReportFolders/reportFolders.aspx,
[Online; accessed December 9, 2019]

https://unctadstat.unctad.org/wds/ReportFolders/reportFolders.aspx


Chapter 16
City Logistics

Teodor Gabriel Crainic, Guido Perboli, and Nicoletta Ricciardi

1 Introduction

The political, economic, and social evolution of society challenges transportation
and logistics with new objectives, challenges, and constraints. Efficiency of opera-
tions, consistently bringing freight at the designated destination, within the agreed
upon time, at the lowest possible cost and with the highest possible quality of
service is still, of course, a major goal, as are the profitability of the firms and the
economic development of the cities, regions, and countries involved. Increasingly,
however, the long-term sustainability of the industry and the society it supports is
challenged by citizens and governments alike, bringing into focus the need to reduce
the negative externalities of transportation and logistics, in particular, the high levels
of congestion in many cities and regions of the world, the environmental damage
through emissions and consumption of fossil fuels, and the safety and security of
the people. A number of new organization and business models have been proposed
to address these issues and aim to conciliate, better still, to jointly “optimize”
the economic and social goals of transportation and logistics. City Logistics, the
Physical Internet, and their recent combination into Hyperconnected City Logistics,
belong to this group. They also share a number of fundamental characteristics,

T. G. Crainic (�)
CIRRELT and AOTI, Université du Québec à Montréal, Montréal, QC, Canada
e-mail: TeodorGabriel.Crainic@cirrelt.net

G. Perboli
CIRRELT and Department of Management and Production Engineering, Politecnico di Torino,
Turin, Italy
e-mail: Guido.Perboli@polito.it

N. Ricciardi
CIRRELT and Department of Statistical Sciences, Sapienza Università di Roma, Rome, Italy
e-mail: nicoletta.ricciardi@uniroma1.it

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_16

507

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_16&domain=pdf
mailto:TeodorGabriel.Crainic@cirrelt.net
mailto:Guido.Perboli@polito.it
mailto:nicoletta.ricciardi@uniroma1.it
https://doi.org/10.1007/978-3-030-64018-7_16


508 T. G. Crainic et al.

including multi and intermodality, cooperation among stakeholders, consolidation,
synchronization of operations, resource sharing, and the separation of commercial
transactions generating cargo movements from the planning and execution of the
corresponding activities, the degree and way of inclusion of each defining variants
and applications.

We focus on City Logistics in this chapter, as it has a history going back to
the 1990s and has generated a good number of studies, implementations, and
discussions on success and failure factors. In fact, even though not all proposals
and implementations were successful, the City Logistics concepts and proposals
are influencing the development and deployment of urban freight transportation and
logistics systems. It influences national policy in several countries in Europe and
Asia, brings new systems to several cities around the world, and is the source of
new forms of private distribution networks (e.g., last-mile service providers, express
couriers, and large retail chains).

In its most fundamental meaning, City Logistics aims to reduce the externalities
and nuisances, e.g., emissions and, more generally, the environmental footprint,
associated to the transportation of freight within urban areas, while sustaining the
social and economic development of the organizations and cities involved. City
Logistics encompasses several dimensions, and may target demand estimation or the
design and organization of the supply activities servicing it. City Logistics studies
may focus on a single organization or on several organizations interacting in a city.

The operations research-based research and development of models and methods
to support the planning and management of City Logistics systems really got started
in the first years of the millennium and it is steadily growing ever since. Network
design is one the main methodologies used in this context, the particular settings
and characteristics of City Logistics systems bringing modeling challenges and
conducting to new formulations, e.g., several layers of facilities and operations,
time-dependency of demand and activities, synchronization of fleets at terminals,
integration of private and public transportation and logistic means, and combining
network design and vehicle routing, to name but a few. It appears that network
design models for City Logistics are mainly directed at the strategic and tactical
planning of the system. This chapter aims to capture these characteristics and
present the network design methodology currently available.

The chapter is organized as follows. Section 2 recalls the two-tier City Logistics
setting we use this chapter to describe issues and models, together with the tactical
and strategic planning issues that call for network design methodologies. Section 3
proposes a general scheduled service network design modeling framework for
strategic and tactical planning of City Logistics systems. Section 4 then focuses
on how one may use the modeling framework, as well as a number of important
problem and model variants, including the connection to multi-echelon routing,
the representation of delivery and pickup operations and costs, the selection of
particular corridors or infrastructures, and the explicit consideration of uncertainty.
Bibliographical notes are the topic of Sect. 5, recalling the historic developments
and the main contributions to the field. We discuss perspectives for other new trans-



16 City Logistics 509

portation concepts proposed, identify a number of challenging research avenues,
and conclude in Sect. 6

2 City Logistics, Planning, and Design

We describe a “general” Two-Tier City Logistics, 2T-CL, system setting in Sect. 2.1,
which includes the most important characteristics found in literature and practice,
even though not all characteristics are currently found within the same systems. We
use the 2T-CL setting to illustrate City Logistics planning issues and models.

Two-tier systems have been proposed both for single organizations and for
multiple organizations, e.g., carriers and other service providers, operating in (parts
of) cities under some form of cooperation and resource sharing. We therefore
assume in this chapter that the 2T-CL system is planned and managed by a single
manager/decision maker, even though resources may be provided and operated by
several private and public stakeholders involved in some form of cost/profit/risk-
sharing collaboration. We discuss a number of possible modeling consequences of
such collaborations in Sect. 5.

2T-CL are consolidation-based systems involving multiple resources in complex
interactions, and thus require advanced planning methods, particularly at the tactical
and strategic levels where system-wide decisions are made for medium to long-term
planning horizons. These planning issues are recalled in Sect. 2.2.

2.1 A Two-Tier Setting

Figure 16.1 illustrates the structure of a 2T-CL system that, similar to any transporta-
tion system, 2T-CL has a demand and a supply component. The latter, composed of
facilities and the transportation modes and services moving freight among them and
customers, is designed and planned to answer the requests of the former according to
some performance criteria. In particular, a 2T-CL system aims to satisfy demand and
contribute to the sustainable development of the city, that is, to deliver goods from
origins to destinations, on time, economically in monetary terms, and efficiently
from the societal point of view of the impact on the city. This impact accounts for
the street or neighborhood characteristics, e.g., touristic, residential, social (schools,
hospitals, leisure, culture, etc.), administrative, etc., and can be defined in terms
of emissions, noise, visual degradation, contribution to congestion, and so on. The
particular measures considered, as well as their estimation processes, are application
specific. While multi-objective optimization may be used to reflect these different
measures, economic and impact measures are often combined for planning purposes
into a transportation or city-infrastructure-utilization cost associated to the network
representation used in the model. This is the approached used in this chapter.



510 T. G. Crainic et al.

Fig. 16.1 Two-tier city logistics structure

In all generality, the customers of a City Logistics system are all the firms,
organizations, institutions, and private citizens that ship or receive freight through
the system. For planning purposes, particularly at tactical and strategic levels, the
many possible external origins and destinations of such shipments are aggregated
into a number of external zones (large disks in Fig. 16.1), connected to the city
by various transportation modes. Similarly, locations within the city are aggregated
into customer-demand zones, referred to as customer zones in the following and
represented by small disks in Fig. 16.1.

The demand side of the system thus consists of a set of freight loads that need
to be moved between particular pairs of customer and external zones. Three types
of demand may be identified. Inbound demand is to be delivered from external-
zone origins to customers in the city. Symmetrically, outbound demand is to be
picked up at customers in the city, and then be shipped to specified external-zone
destinations. Local demand is to be picked up from a customer within the city and
delivered to another customer within the city. Each individual origin-destination
(OD) demand is characterized by a volume to be moved and time-related features,
e.g., its availability time representing when the demand would enter the system and
could start to be handled, as well as delivery and pick-up time windows at customers
(locations within the city). More than one physical product is generally handled.
To simplify the presentation, but without loss of generality, we assume that the 2T-
CL system makes use of smart containers, as those developed within the Physical
Internet initiatives, which can be loaded together irrespective of their content; such
boxes are referred to as π -containers (Montreuil 2011). In modeling terms, this
yields problems that are single product, the loading container, but multicommodity
in the OD demand treated.



16 City Logistics 511

The supply side of a 2T-CL system consists of two layers of terminals and
the transportation means linking them and the customer and external zones. City
distribution centers (CDCs) are generally located at the border of the city, close
to main interurban transportation infrastructures or intermodal facilities. Inbound
and outbound loads are sorted and consolidated at CDCs for distribution into
the city or long-haul transportation to external zones destinations. Consolidated
inbound demand is shipped, using urban vehicles, to intermediary facilities called
satellites located close to the parts of the city where traffic is controlled and certain
vehicle types, e.g., large trucks, are not allowed to penetrate. It is at satellites,
illustrated through triangles in Fig. 16.1, that the junction between first and second-
tier vehicles takes place, freight being generally transferred between synchronized
vehicles according to transdock principles, with little or no temporary storage. City
freighters, second-tier vehicles, bring inbound freight from satellites to customers,
and pick up outbound and local freight at customers delivering it to satellites and
destination customers, respectively. The outbound loads brought to a satellite at the
“same” time by several city freighters are loaded into urban vehicles to be moved to
the appropriate CDC from where the goods are shipped to their final external zones.
First and second-tier vehicles carrying inbound or outbound cargo could thus be
present simultaneously at a satellite, competing for the capacity it offers for vehicle
docking, parking, and cargo transfer.

Several modes and vehicles types make up the multi/intermodal transportation
system (π -containers make the system intermodal) connecting the facilities and
the customers. City freighters, operating at the second tier, may be small vans,
eco-friendly electric or hydrogen small vans, traditional or cargo bikes, canal
or river barges, individuals using their own cars, etc. The spectrum of possible
modes is even larger on the first tier as, increasingly, the utilization of what
may be described as massive-flow modes and vehicles, e.g., regular and light
rail, is contemplated or tested. We distinguish between line-based and no-line
transportation modes and services. The latter include the various trucks and barges
for which one may define services along any path within their admissible network
(e.g., a city “trucking network” is often defined to restrict circulation). Line-based
modes are often captive of particular infrastructure, such as passenger buses, which
are “captive” of their predefined lines, regular and light rail (tramways, subways,
etc.) captive of their tracks, and trolleybuses captive of their aerial power lines.
This characteristic restricts the definition of line-based services to the network of
the corresponding infrastructure, but not necessarily to the service lines and stops
operated for passengers. Two main approaches for line-based services are being
contemplated within City Logistics projects around the world. On the one hand,
regular vehicles may be equipped with special compartments for the transportation
of goods while, on the other hand, freight-dedicated vehicles may be operated on
the same infrastructure, either independently or as parts of regular convoys.

When different demand types, inbound, outbound, local, may be loaded into
urban vehicles and city freighters, loading/unloading rules must be defined. To
keep the presentation simple, we assume in the following a pseudo-backhaul policy,
which means that a vehicle completes the current type of activity before initiating



512 T. G. Crainic et al.

a different one. Thus, for example, a vehicle may leave the depot, perform a
sequence of pickup and delivery activity for local demand, and then move to a
satellite to synchronize with arriving first-tier urban vehicles and load for a delivery
phase of inbound demand. This policy is based on the idea that operations at
satellites and customers should be streamlined. Indeed, capacity, time-window, and
synchronization restrictions and requirements, as well as the goal of reducing the
presence of vehicles in the city, implies efficient vehicle unloading and loading
activities, which makes searching for and resorting of loads undesirable.

2.2 Planning and Design

City Logistics belongs to the important class of consolidation-based transportation
systems that include rail and less-than-truckload carriers, high-sea navigation lines,
intermodal systems, postal services, and so on. Such complex systems require
planning at all levels. We briefly recall the issues associated to tactical and strategic
planning, as this is where the interactions with network design are the strongest.

Tactical planning for consolidation freight carriers aims to select and schedule
services, together with the itineraries used to move freight flows from origins to
destinations in the resulting service network. The goal is to satisfy the regular
demand in the most cost- and resource-utilization efficient way possible, while satis-
fying the service-quality levels set by the carrier to answer customer requirements.
The tactical plan is thus also generally yielding activity profiles of terminals and
the resources required to support the selected services. The service network and
plan is determined for a rather short period called schedule length, e.g., a day or
a week, and it is then repeatedly applied over a certain medium-term planning
horizon, the season, e.g., 6 months. Note that this decision process assumes that
the major elements of the plan, the demand, selected scheduled services, and main
resource assignments to services and terminals, will not be modified during regular
operations for the length of the planning horizon. Adjustments of the plan to actual
demand are then mostly performed through modifications to the routing of demand
flows at operation time.

In City Logistics terms, tactical planning targets the regular demand and is about
selecting the services and resources that will be operated regularly and repeatedly.
In this sense, first-tier service operations should be more stable, particularly for
line-based services, as they move larger loads between CDCs and satellites. With
this regularity comes the regularity in using the terminal facilities and assigning
customers to satellites, while the actual routing may vary from day to day according
to the particular demand. The goal is to determine the most cost-effective plan to
satisfy forecast demands with the available resources, where the generalized trans-
portation costs account for operations-related costs and city-impact considerations.
With such a plan, material and human resources can be allocated for the duration of
the planning horizon, which makes management easier and lowers costs.



16 City Logistics 513

Strategic planning generally addresses longer-term decisions than tactical ones,
with impacts normally valid for years. Setting up a City Logistics system within a
given city or part thereof is certainly strategic in nature, as well as the associated
decisions on zones covered, partnerships, network and service type (e.g., single or
two-tier), legal and financial framework, etc. Most of these issues are generally not
of an Operations Research type. Yet, they may be, and hopefully are supported
by Operations Research models providing quantitative evaluations and analyses
of contemplated systems and policies. Network design is at the core of such
methodologies. On the one hand, tactical-planning models provide performance-
evaluation tools for contemplated or existing City Logistics system and policy
designs. On the other hand, network design models may be built to answer strategic-
level decisions such as the number, locations, and characteristics of facilities, CDCs
and satellites to built or select, the construction of dedicated infrastructure or the
connection of the City Logistics facilities to public transport infrastructure and
services, the types of vehicles to use and the dimensions of the fleets, etc.

In the next section, we present a general scheduled service network design
model, incorporating the main tactical-planning issues previously discussed. We
then discuss specializations and extensions able to address particular settings of the
tactical and strategic planning problems.

3 A General SSND Modeling Framework

Scheduled service network design (SSND) formulations defined over time-space
networks are generally used to model tactical planning problems for consolidation-
based freight carriers (Chap. 12). We present in this section a general SSND model
for the tactical planning of the 2T-CL system described in Sect. 2.1, addressing the
activities at both tiers and their synchronization at satellites, for a time-dependent
demand. This path-based SSND formulation thus addresses the main issues of
(1) selecting a subset of scheduled services out of the set of possible line- and
no-line-based multimodal services; (2) building the multi-tour routes of the second-
tier city freighters, (3) determining the itineraries of each demand through the
selected City Logistics service network, including the assignment to a CDC and
a satellite for inbound and outbound demands; and (4) managing the terminals
and the multimodal fleets of urban vehicles and city freighters, which connect
and synchronize at satellites. The optimization is performed for a given schedule
length, City Logistics infrastructure, potential first and second-tier services, and a
deterministic estimation of demand, travel times, and activity times at facilities and
customers. The formulation thus combines characteristics of classical SSND models
(Chap. 12) and multi-attribute vehicle routing formulations. The goal is to minimize
a total generalized cost, reflecting both the economics of operating the system and
the potential impact on the city, while satisfying demand. The resulting service plan
is supposed to be used repeatedly over a certain planning horizon (Sect. 4).



514 T. G. Crainic et al.

In a City Logistics context, the schedule length is relatively short, from a few
hours to half a day and, thus, each of its t = 1, . . . , T periods is also relatively
short. To simplify the presentation, we assume that the length of any activity,
vehicle movement or terminal operation, is an integer number of periods. The
external and customer zones defining demand, as well as the CDC and satellite
locations are modeled as nodes connected through modal arcs within a physical
network representing the 2T-CL system. The scheduled service network design
model is built on a time-space network, where the physical nodes are duplicated
at all relevant time periods (customer-related nodes are not represented outside the
corresponding temporal attributes). This yields the set of nodes N encompassing
the sets E (external zones), C (customer zones), F (CDCs), and Z (satellites). A
set of links A = {a = (i, j)} representing the modal transportation and terminal-
holding activities connecting these nodes completes the network representation
G = (A ,N ).

Movements are performed by vehicles of different types and modes. Let M be
the set of transportation modes and Tm and Vm the sets of urban-vehicle and city-
freighter types, respectively, for mode m ∈M ; the respective vehicle capacities are
uτ , τ ∈ Tm and uν, ν ∈ Vm. Let nf τ be the fleet size of urban-vehicle type τ at
CDC f ∈ F , and nν the fleet size of city-freighter type ν at the second tier garage.

In most cases, city distribution centers are large facilities, where capacity issues
are not critical and sufficient space is available for vehicles to wait for loading
and unloading activities. This is, however, not the case for satellites, where the
space available for transferring goods limits the number of urban vehicles and city
freighters which can be present simultaneously. Furthermore, there is generally no
space available for storing goods at satellites, nor for vehicles to wait. The satellite
capacity may also be time dependent, due to either opening hours or operations on
a shared infrastructure. For example, a passenger tramway cannot wait longer than
“normal” at a station because of unloading or loading activities of another tramway
with freight somewhere down the line. Several capacity measures account for these
limitations for each satellite z and must be enforced at each period: 1) uT

z for the
total number of urban vehicles it may accommodate, with uT

zτ for the number of
urban vehicles of type τ of mode m it may accommodate; for no-line modes, this is
the actual number of vehicles, while for line-based modes (e.g., tramways) it is the
number of available tracks (but could also be the number of cars in a convoy); 2)
uV
z for the total number of city freighters it may accommodate; 3) uK

z for the total
volume of goods the satellite may handle.

Inbound, outbound, and local requests for transportation make up the demand of
the system. When the same customer location is both the origin and the destination
of demand, separate nodes are created, the respective demands being then treated
individually within the model. Each customer demand k ∈ K is defined between
a pair (O(k),D(k)) of origin—destination nodes in N , where (O(k) ∈ E and
D(k) ∈ C ) for inbound demand, (O(k) ∈ C and D(k) ∈ E ) for outbound, and
(O(k), D(k) ∈ C ) for local. A volume d(k) is to be moved between these nodes.
Time attributes specify when the volume is available at origin, [a(O(k)), b(O(k))]
and must be delivered at destination [a(D(k)), b(D(k))] (some time windows might



16 City Logistics 515

not be bidding). External zones, the out-of-city origins and destinations, are linked
by various transportation modes to the city and the CDCs. The CDC to be used by
each demand is to be selected by the model. Let F (k) ⊆ F be the set of potential
CDCs that may be used for demand k, and cf t (k) the cost of assigning demand k to
CDC f ∈ F (d) at time t (it could account, e.g., for using another CDC rather than
the closest one, using inter-CDC transportation or short-term storage).

Let Σ = {σ } be the set of potential urban-vehicle services. Service σ operates
a vehicle of type τ(σ ), originates at CDC O(σ), travels to one or several satellites
Z (σ ), and returns to CDC D(σ), possibly different from O(σ) (this may be the
case even for line-based modes, when the line connects two CDCs). The urban-
vehicle route is thus composed of a series of legs, from the CDC to the first satellite,
from the latter to the second one, until the last leg from the last satellite to the
destination CDC. Let L (σ ) be the set of these legs. The schedule of service σ is
given by t (σ ), the departure time from O(σ), as well as by the arrival and departure
times at all the satellites in Z (σ ), which account for the travel time along the arcs
of the specific mode as well as the loading and unloading times at satellites. The
cost associated to operating service σ ∈ Σ is denoted c(σ ). The cost captures not
only the monetary expenses of operating the service, but also the city-infrastructure-
utilization cost reflecting the “nuisance” factors related to the presence of the urban
vehicle in the city at the particular time of the service.

The second-tier pickup and delivery activities between satellites and customer
zones are performed by city freighters operating multi-tour synchronized routes
called work assignments. A city-freighter work assignment h ∈ H operates a city
freighter of type ν(h) over a sequence of work segments w ∈ W (h), separated by
returns to the garage, each segment being made up of visits to satellites to load
and unload freight and one or several pickup (outbound demand), delivery (inbound
demand), and pickup-and-delivery (local demand) activity phases. The schedule of
a work segment starts at period t (w) at the first satellite or customer on its route, and
continues with the arrival and departure times at the visited satellites and customers.
The cost of operating city-freighter work assignment h, c(h), includes the costs of
its segments, those associated to the garage (back and forth movements, idles time,
etc.), a vehicle fixed cost, and the city-infrastructure-utilization cost reflecting the
“nuisance” factors related to the presence of the city freighter in the city at the
particular time of the service.

Freight is moved from the origin to the destination of demand via itineraries that
include the facilities and the first and-second tier services used. Inbound-demand
itineraries are thus made up of the movement from the external zone to a CDC,
an urban-vehicle movement, a transshipment operation at a satellite, and the final
distribution by a city-freighter work segment. Outbound-demand itineraries involve
the same operations in reverse order. Local-demand itineraries are simpler as they
involve the work segment performing the pickup and delivery only. Let I (k) stand
for the set of itineraries that may be used to satisfy customer demand k, with
itinerary i ∈ I (k) being defined by its selected CDC f (i), urban-vehicle service
σ(i), satellite z(i), and work segment wh(i) of work assignment h(i).



516 T. G. Crainic et al.

Three sets of decision variables are defined to select urban-vehicle services, city-
freighter work assignments, and demand itineraries, respectively:

• y(σ ) = 1, if the urban-vehicle service σ ∈ Σ is selected, 0, otherwise;
• ϕ(h) = 1, if the work assignment h ∈H is selected, 0, otherwise;
• ξ(i) = 1, if itinerary i ∈ I (k) of demand k ∈ K is used, 0, otherwise.

The goal of the SSND formulation is to minimize the number, cost and impact of
vehicles in the city, while satisfying demand requirements and capacity limitations.
The formulation when no splitting of demand is allowed then becomes:

Minimize
∑

σ∈Σ
c(σ )y(σ )+

∑

h∈H
c(h)ϕ(h) (16.1)

Subject to
∑

i∈I (k)

ξ(i) = 1, ∀k ∈ K , (16.2)

∑

k∈K (σ l)

∑

i∈I (k)|σ(i)=σ
d(k)ξ(i) ≤ uτ(σ)y(σ ), ∀l ∈ L (σ ),∀σ ∈ Σ, (16.3)

∑

k∈K (w(h)t)

∑

i∈I (k)|h(i)=h
d(k)ξ(i) ≤ uν(h)ϕ(h)

∀w ∈ W (h), ∀h ∈H , t = 1, . . . , T , (16.4)
∑

σ∈Σ(z,t)

y(σ ) ≤ uT
z , ∀z ∈ Z , t = 1, . . . , T , (16.5)

∑

σ∈Σ(z,t,τ )

y(σ ) ≤ uT
zτ ,∀z ∈ Z ,∀τ ∈ Tm,∀m ∈M , t = 1, . . . , T , (16.6)

∑

h∈H (z,t)

ϕ(h) ≤ uV
z , ∀z ∈ Z , t = 1, . . . , T , (16.7)

∑

i∈I (z,t)

d(k)ξ(i) ≤ uK
z , ∀z ∈ Z , t = 1, . . . , T , (16.8)

∑

σ∈Σ(f,t,τ )

y(σ ) ≤ nf τ ,∀f ∈ F , ∀τ ∈ Tm,∀m ∈M , t = 1, . . . , T , (16.9)

∑

h∈H (ν)

ϕ(h) ≤ nν, ∀ν ∈ Vm,∀ m ∈M , (16.10)

y(σ ) ∈ {0, 1}, ∀σ ∈ Σ, (16.11)

ϕ(h) ∈ {0, 1}, ∀h ∈H , (16.12)

ξ(i) ∈ {0, 1}, ∀i ∈ I (k), ∀k ∈ K . (16.13)



16 City Logistics 517

The objective function (16.1) computes the total generalized cost of the system
(operations and negative impact on the city) as the sum of the costs of the selected
urban-vehicle services and city-freighter work assignments. Constraints (16.2)
indicate that each demand must be satisfied by a single itinerary. The formulation
may be easily modified to account for the case when demand may be split by
(1) using continuous itinerary flow variables instead of the selection ones, and
(2) imposing in constraints (16.2) that the sum of these flows equals the demand
volume.

Let K (σ l) be the set of all demands k that may use leg l of urban-vehicle
service σ (i.e., there is at least an itinerary of k that includes leg l). Similarly, let
K (w(h)t) be the set of all demands k that may use segment w of city-freighter
work assignment h at time t . Then, constraints (16.3) enforce the urban-vehicle
capacity restrictions for each leg of the vehicle route. Similarly, constraints (16.4)
enforce city-freighter capacity restrictions at all time for each segment of a work
assignment. These last two groups of relations are the linking constraints of network
design formulations.

Define, (1) Σ(z, t) (Σ(z, t, τ )) and H (z, t), the sets of urban-vehicle services
(of type τ ) and city-freighter work assignments, respectively, stopping at satellite z
at period t ; (2) Σ(f, t, τ ), the set of services initiated at or before period t that
are still active at period t ; and (3) I (z, t), the set of demand itineraries using
satellite z at period t to load or unload freight. Then, constraints (16.5)–(16.8)
enforce the satellite capacity restrictions in terms of total numbers of urban vehicles
(services) (16.5), mode-specific urban vehicles (16.6), city freighters (16.7), and
freight handled (16.8). Note that the coherence of the respective numbers of urban
vehicles and city freighters present simultaneously at satellites is provided by the
flow of freight imposed by the demand itineraries. Constraints (16.9) limit the
number of services of each type operated out of each CDC at period t to the available
fleet at the respective CDC. Constraints (16.10) perform the same role for the city
freighters (work assignments) of each type. Constraints (16.11)–(16.13) define the
range of the decision variables.

4 Using the Modeling Framework

The previous SSND formulation constitutes a modeling framework that can be
adapted and extended to address a rather broad range of planning issues. We discuss
a number of those in this section.

Recall that problem definitions and the corresponding models must account
not only for the particular system setup and the planning issues addressed, and
also the operation and management policies involved. Two aspects of the latter
have a particular impact on the design of SSND formulations, the estimation of
major exogenous factors, e.g., demand, travel and service times, and costs of
goods and services, and the degree of freedom in managing resources. Indeed,
tactical planning assumes a certain level of look-ahead capability and the inclusion



518 T. G. Crainic et al.

of an evaluation of future events and their consequences into today’s decision
processes, through forecasts for the planning horizon considered. Tactical planning
also implicitly assumes managerial capabilities to assign and schedule resources
in a way that matches the requirements of the tactical plan. The choice of an
appropriate modeling/methodological approach is then related to the magnitude
of the variability of those factors, the confidence one has in the forecasts, and
the amplitude of the managerial capabilities. A rather broad spectrum of problem
settings and formulations is thus possible.

Consider, to illustrate, the case of high variability of demand, combined to a low
or no confidence in the possibility to adequately forecast it and a high capability
to manage resources, generally implies that no advanced planning of operations
is possible. The system then reacts to new or varying demand by assigning and
dispatching resources to service it. Such a dynamic mode of operations is not,
however, within the scope of the problem settings and methodology considered in
this chapter. At the other end of the spectrum, deterministic models, e.g., Sects. 3
and 4.1, are appropriate in cases of high confidence in forecasts or estimated
low-variability for the duration of the planning horizon. Between these cases, one
finds problem settings where one represents the future through some probability
distribution.

The literature is very sparse regarding the explicit integration of uncertainty
in tactical-planning models and methods for City Logistics. To the best of our
knowledge, duration and cost uncertainty, in particular, has not been addressed to
any significant extent, a few contributions targeting demand uncertainty. The impact
of demand uncertainty on the tactical plan is then generally accounted for through
two-stage stochastic programs (Chap. 10), the design decisions selecting the service
network appearing in the first stage, while routing is decided in the second. We
illustrate such a formulation in Sect. 4.2.

Relative to the management environment and constraints, planning closely to
operation-time is beneficial when one has little or no restrictions on mustering
facilities and people on very short notice. The so-called day-before planning
problem class and formulation of Sect. 3 corresponds to this situation. In most
cases, however, management is significantly more constrained. Labor contracts
often restrict the possible modifications to schedules. The inclusion of massive
transportation means, particularly when related to passenger transportation, also
involves strict scheduling of operations and advanced planning. The tactical plan-
ning formulation of Sect. 4.1 address these cases.

We conclude the section with a few comments on the longer-term planning of
two-tier City Logistics systems in Sect. 4.3.

4.1 Tactical Planning for Medium-Term Horizons

Tactical planning is often concerned with structuring service, and the required
resource assignment, to be repeatedly operated over a planning horizon several



16 City Logistics 519

months long. Then, as discussed previously, including the precise routing of second-
tier vehicles in the tactical plan appears less appropriate than for the day-before
situation described in Sect. 3. One cannot neglect second-tier activities and costs,
however, as they impact first-tier decisions, e.g., the freight itineraries and the
synchronization with first-tier vehicles at satellites, and the global performance of
the City Logistics system. The model described in this section then represents city-
freighter routing through an approximated cost of servicing a customer zone out of
each satellite to which it may be connected.

The inbound and outbound flows are thus captured together with the selection
of the satellites which will service each customer zone, and the estimation of
the dimensions of the city-freighter fleets required to satisfy demand, and the
corresponding utilization of satellite capacity and city freighters. To simplify the
presentation, the SSND tactical planning model bellow assumes, without loss of
generality, a single city-freighter fleet and the same routing costs for inbound and
outbound demand. As for the first-tier decisions, they are the same as before,
namely, select the scheduled services to operate out of the set of possible line- and
no-line-based multimodal services; determine the itineraries of each inbound and
outbound demand, including the assignment to a CDC, a satellite, and a service with,
possibly, a compartment; manage the multimodal fleets and terminals. For sake of
simplicity, we do not repeat the notation in common with the model of Sect. 3 (see
Table 16.1), and present only the new notation and modifications to the existing one.

The multicommodity demand K includes the inbound and outbound com-
ponents, noted K I and K O , respectively. Notice that the local demand is not
considered in this model as it does not impact the design of the first-tier service
network. All the characteristics defined in Sect. 3 are still valid. Similarly, the set of
potential first-tier urban-vehicle services defined previously is also considered here,
together with their characteristics, modes, types, and costs.

As indicated previously, the second tier is represented through an approximated
cost of servicing customers out of satellites (delivery out of satellites to receiving
customer zones and pick up at shipping customer zones to deliver at satellites and
then CDCs) . To streamline the network representation and the model, however,
no explicit satellite-customer arcs are added. Rather, the corresponding cost is
added to the cost of the service carrying the flow of the particular demand into
or out of the satellite. Let Z (k) be the set of satellites that may service demand
k, and c(k, z, σ ) the approximated satellite-customer transportation cost of demand
k moved in or out of satellite z ∈ Z (k) by a service σ (which could service the
demand in time). Similar to all other costs defined in this chapter, the assignment
costs c(k, z, σ ) represent not only the transport, unloading, and loading costs, but
also city-disturbance factors related to these activities.

With respect to vehicles and modes, the previous definitions hold. We take the
opportunity of this tactical planning SSND model, however, to introduce the notion
of compartment. Several vehicle types have more than one cargo-holding space, as
illustrated by the multiple cargo bays of river barges and several proposed cargo
tramways, as well as the (vertical or horizontal) separators that may be used within
motor vehicles. This definition may be broaden to a partition of a cargo-holding



520 T. G. Crainic et al.

Table 16.1 Main notation of the SSND model

G = (N ,A ) Time-space network for a schedule length of T periods

E = {e}; C = {c} Sets of external and customer zones

F = {f }; Z = {z} Sets of facilities, CDCs and satellites

M = {m} Set of transportation modes

Tm = {τ };Vm = {ν} Sets of urban vehicles and city-freighter types of mode m ∈M

uτ Capacity of urban vehicle type τ ∈ Tm, m ∈M

nf τ Fleet size of urban-vehicle type τ ∈ Tm, m ∈M , at CDC f ∈ F

uν Capacity of city-freighter type ν ∈ Vm, m ∈M

nν Fleet size of city-freighter type ν ∈ Vm, m ∈M at the second tier
garage

uT
z Satellite z total capacity in number of urban vehicles of all types

uT
zτ Satellite z capacity in number of urban vehicles/tracks of type τ

uV
z Satellite z capacity in number of city freighters

uK
z Satellite z capacity in volume of goods it may handle

K = {k} Set of origin-destination demands

O(k); D(k); d(k) Origin, destination, and quantity of demand k ∈ K

[a(O(k)), b(O(k))] Availability time interval of demand k ∈ K at its origin

[a(D(k)), b(D(k))] Due date interval of demand k ∈ K at its destination

F (k) ⊆ F Set of potential CDCs for demand k ∈ K

cf t (k) Cost of assigning demand k ∈ K to CDC f ∈ F (d) at time t

Σ = {σ } Set of potential urban-vehicle services

O(σ); D(σ) Origin and destination CDCs of service σ ∈ Σ
Z (σ ); L (σ ) Sets of satellites and legs of service σ ∈ Σ
t(σ) Departure time of service σ ∈ Σ from its origin

c(σ ) Cost (fixed) of service σ ∈ Σ
H = {h} Set of city-freighter work assignments

W (h) Set of work segments of city-freighter work assignment h ∈ H

c(h) Cost of city-freighter work assignment h ∈ H

I (k) = {i} Set of itineraries, customer demand k ∈ K

space (for, e.g., pallets or assemblies of smart π -containers), for as long as each
compartment so defined may be accessed independently of the others. Moreover,
the pseudo-backhaul policy assumed for loading and unloading vehicles implies that
one can start loading outbound demand in a compartment only once all inbound
freight present in the compartment has been unloaded. Such a policy facilitates
streamlining operations at satellites, which is beneficial when capacities are tight
as in City Logistics. We introduce compartments into the service definition through
the set of compartment services B(σ ) of service σ . To simplify the presentation, we
assume all compartments of a given urban-vehicle type τ have the same capacity uB

τ .
Obviously, all compartment services are selected when the corresponding service is
selected, and |B(σ )| = 1 for single-compartment services.

Freight itineraries in the present context of approximated second-tier routing
may be defined straightforwardly based on the service used. To illustrate, consider



16 City Logistics 521

the itinerary of an inbound demand. It starts at the external-zone of origin from
where the goods are received at the selected CDC, where the goods are loaded
into an urban-vehicle (and compartment) of the selected service. The goods are
then transported to the selected satellite by the selected service (with possibly
intermediary stops but no work on the goods considered here), from where they
are to be delivered to the final customer zone. It is noteworthy that the selection of
a service (and compartment) provides all the necessary decision information, i.e.,
the CDC, the satellite, and the relevant time stamps, i.e., departure from CDC and
arrival to satellite for delivery to the customer zone that, implicitly, takes care of the
synchronization issue. Let then c(k, b, σ, z) be the unit cost of moving freight of
demand k ∈ K in compartment b ∈ B(σ ) of service σ ∈ Σ among its external
and customer zones through satellite z ∈ Z (k).

One may therefore write an arc-based SSND formulation based on service and
compartment selections and assignments to demands. The decisions variables are:

• y(σ ) = 1, if the urban-vehicle service σ ∈ Σ is selected, 0, otherwise;
• x(b, σ, z, k) = 1, if demand k ∈ K is assigned to compartment service b ∈

B(σ ) and satellite z ∈ Z (k) (visited by service σ ∈ Σ), 0 otherwise.

The arc-based formulation of the SSND problem then becomes

Minimize
∑

σ∈Σ
c(σ )y(σ ) (16.14)

+
∑

k∈K

∑

σ∈Σ

∑

b∈B(σ )

∑

z∈Z (k)

(c(k, b, σ, z)+ c(k, z, σ )) d(k)x(b, σ, z, k)

Subject to
∑

σ∈Σ

∑

b∈B(σ )

∑

z∈Z (k)

x(b, σ, z, k) = 1, k ∈ K , (16.15)

x(b, σ, z1, k1)+ x(b, σ, z2, k2) ≤ 1, b ∈ B(σ ), σ ∈ Σ, k1 ∈ K I ,

k2 ∈ K O, z1, z2 ∈ Z (k), z1 ≥ z2,

(16.16)

∑

k∈K I

∑

z∈Z (k)

d(k)x(b, σ, z, k) ≤ uB
τ (σ )y(σ ), σ ∈ Σ, (16.17)

∑

k∈K O

∑

z∈Z (k)

d(k)x(b, σ, z, k) ≤ uB
τ (σ )y(σ ), σ ∈ Σ, (16.18)

∑

t=1,...,T

∑

σ∈Σ(f,t,τ )

y(σ ) ≤ nf τ , f ∈ F , τ ∈ Tm, m ∈M , (16.19)



522 T. G. Crainic et al.

∑

σ∈Σ(z,t)

y(σ ) ≤ uT
z , z ∈ Z , t = 1, . . . , T , (16.20)

∑

σ∈Σ(z,t,τ )

y(σ ) ≤ uT
zτ , z ∈ Z , τ ∈ Tm, m ∈M , t = 1, . . . , T , (16.21)

∑

σ∈Σ(z,t)

∑

k∈K
d(k)x(b, σ, z, k) ≤ uK

z , z ∈ Z , t = 1, . . . , T , (16.22)

y(σ ) ∈ {0, 1}, σ ∈ Σ (16.23)

x(b, σ, z, k) ∈ {0, 1}, k ∈ K , σ ∈ Σ, z ∈ Z (k) (16.24)

The objective function (16.14) minimizes the total generalized cost of selecting
and operating services that move inbound and outbound demand flows, distributing
demands from satellites and bringing outbound demands to satellites, as well as
selecting a CDC for each demand.

Constraints (16.15) ensure that each item is assigned exactly to one compartment,
while constraints (16.16) ensure that outbound demand is only assigned to a com-
partment after the inbound demand is unloaded and the compartment is empty. The
compartment capacities for inbound and outbound traffic are enforced by the linking
constraints (16.17) and (16.18). These constraints combined with constraints (16.16)
enforce the capacity restriction for the entire service. Then, constraints (16.19)
ensure that the maximum number of vehicles of each type assigned to a city
distribution center is never exceeded. Constraints (16.20) and (16.21) limit the
number of urban vehicles present at a satellite at each period in total and per
transportation mode, respectively. Finally, constraints (16.22) limit the amount of
demand that can be unloaded or loaded at a satellite at each period.

4.2 Demand Uncertainty in Tactical Planning for City
Logistics

We now present a stochastic scheduled service network design formulation for the
tactical planning of two-tier City Logistics systems when the uncertainty on demand
is explicitly taken into account. As discussed above, such formulations are required
when major resources must be allocated and their utilization must be planned for
the length of the planning horizon, well before the actual operations take place,
while simultaneously acknowledging the strategies that are used during operations
to adjust the plan to the observed demand. The tactical plan, which is built prior
to the beginning of the season, then aims to determine the main structure of the
service network and major resource allocation that will be executed regularly at
each period of the planning horizon, but without fixing all the operational details that
will be address at execution time. The goal is to optimize the overall cost (operations



16 City Logistics 523

and environmental impact) of the system in terms of service selection and resource
allocation plus an estimation of the costs involved in adjusting the plan and operating
accordingly over the contemplated planning horizon. One thus expects that the
explicit flexibility introduced into the tactical plan translates into the capability of
the selected service network to accommodate a certain range of demand variability
with no or little modification to the activities of the major resources involved. Such a
priori optimization approaches are generally addressed through two-stage stochastic
programming formulations with recourse, the latter corresponding to the strategies
used to adjust the plan to given realizations of demand (Chap. 10).

In the two-stage stochastic SSND formulation with recourse described in this
section, the plan is the object of the first stage and it concerns the selection of
the first-tier services and schedules together with the associated demand itineraries
between external zones and satellites. The later implies the allocation of customers
to particular (satellite, period) combinations, the so-called rendez-vous points,
providing strong indications on the satellite workloads and the dimensions of
the city-freighter fleets required. City-freighter routing decisions are to be taken
at each period the system operates, once the actual demand has been observed.
They are thus the object of the second stage, and only an approximation of the
corresponding costs and operations is integrated in the first-stage formulation. In this
sense, the first-stage urban-vehicle service network design model is quite similar to
the deterministic SSND model of Sect. 4.1. The output of this model includes the
selection of services, customer-demand itineraries down to the (satellite, period)
rendez-vous points (including the type of city freighter), and the customer-satellite
allocations. It is this information that guides and constrains the second-stage
recourse strategies, which address the city-freighter routing, determine the extra
service capacity required, if any, and, eventually, slightly modify the service
network.

We focus in this chapter on strategies that allow slight adjustments to the service
network selected in the first stage and which, consequently, involve network-design
formulations. Such a strategy aims to increase service flexibility, by fixing the
“backbone” of the urban-vehicle service design identified by the first stage, while
permitting to modify the corresponding urban-vehicle departure times. This may be
viewed as a combined dispatching-routing decision to let the urban vehicles leave
somewhat earlier or later than the planed schedule while determining the routing of
the “regular” and “extra” city freighters. The presentation of the stochastic SSND
model follows the deterministic path-based framework introduced in Sect. 3.

Let Ω = {ω} be the sample space of the random event. Let K (ω) = {k(ω)} be
the set of customer-demand realizations (0 demand corresponds to the no-demand
case) for ω ∈ Ω , K = {K (ω)|ω ∈ Ω}, and d(k, ω) the volume associated
with demand k given ω ∈ Ω . Let d̂(k) be the point forecast of the volume of
customer demand k ∈ K used in the first stage of the formulation. Usually, d̂(k)
corresponds to the “best” estimate used in deterministic SSND, representing the
“regular” demand one expects to see on a “normal” day (e.g., 80% of the maximum
expected demand; no particular value is assumed for the formulation). One then
desires the planned resource allocation and scheduling to be able to address this
demand or, in other words, to provide at least this level of service in all cases.



524 T. G. Crainic et al.

The definition of the service network does not change but, as extra city
freighters may be required and city-freighter routing is part of the second stage,
reduced first-stage demand itineraries, I R(k), have to be defined. These include
the itineraries corresponding to the possibility of CDC↔customer services through
extra city-freighters (“artificial” arcs ). Then, as the first-stage problem considers an
approximation of routing activities and costs only, through customer-to-satellites
allocations (for each city freighter type, mode, and period), regular first-stage
demand itineraries include satellite↔customer links only, rather than actual city-
freighter work segments. Let c̃(k, i) be the cost of itinerary i ∈ I R(k) corre-
sponding to these decisions, i.e., the extra city freighter usage or satellite↔customer
allocation, respectively (the cost of services is captured in the corresponding term of
the objective function). Similarly to the definition of all other costs, c̃(k, i) reflects
the handling and moving freight, as well as a measure of the “nuisance” factors
related to the presence of city freighters in the city at the particular time of the
delivery.

Two sets of decision variables are defined to select urban-vehicle services and
first-stage demand itineraries:

y(σ ) = 1, if urban-vehicle service σ ∈ Σ is selected, 0, otherwise;
ξ(i) = 1, if itinerary i ∈ I R(k) of demand k is used, 0, otherwise.

An a priori plan then specifies:

• A set of urban-vehicle services Σ(y1) to be operated, and a set of first-stage
itineraries I R(y1, ζ 1) = {i(y1, ζ 1, k), k ∈ K } bringing the load of each
customer demand k in time to its appointed satellite;

• A set of active rendez-vous points (satellite, period), (z, t) ∈ R(y1, ζ 1), where
urban vehicles and city freighters meet and freight is transferred; Customer-to-
satellite assignments are associated to each rendez-vous point.

The notation (y1, ζ 1) used in this section emphasizes that the second stage
optimization problem is constrained by the decisions of the first stage. The Dispatch
and Route recourse strategy assumes y1, ζ 1 fixed, focusing on possibly changing
the departure times of the selected services, as well as on optimizing the second-tier
routing to service inbound and outbound customer demands.

Let [a(zt), b(zt)] be the time window of satellite z at rendez-vous point (z, t),
such that customers serviced by vehicles starting/finishing their routes within the
interval will be serviced (delivery or pick up) on time. Let [a(σ ), b(σ )] be the
opportunity time window around the departure time of service σ ∈ Σ(y1), derived
from the satellite time windows and the travel times between satellites and CDCs.
Let Σ(y1, σ ) be the set of possible departures in the opportunity window of service
σ ∈ Σ(y1) among which one selects to instantiate the plan to the observed demand.

The movements of freight by city freighters at the second tier of the system is
restricted to the service network and satellite utilization specified in the a priori plan.
Given the possibility of extra city freighters visiting CDCs to move excess demand,
the definition of a work segment is enlarged to encompass CDCs as the first or
last stop on its route. The notation of the city-freighter work assignments and work



16 City Logistics 525

segments then becomes H (y1, ζ 1) and W (y1, ζ 1, h), respectively. Similarly, the
demand itineraries restricted to the first-stage service design, and the possibility of
CDC-related work segments, are indicated by i ∈ I (y1, ζ 1, k(ω)) ⊂ I (k).

The decision variables defined for the second stage then are:

y2(k(ω), σ 2) = 1, if urban-vehicle service σ ∈ Σ(y1) is selected, 0, otherwise;
ϕ2(k(ω), h) = 1, if work assignment h ∈H (y1, ζ 1) is selected, 0, otherwise;
ζ 2(k(ω), i) = 1, if itinerary i ∈ I (y1, ζ 1, k(ω)) of demand k(ω) ∈ K (ω) is

selected, 0, otherwise.

The two-stage SSND formulation minimizing the expected generalized cost of
the system over the planning horizon may then be written as

Minimize
∑

σ∈Σ
c(σ )y(σ ) (16.25)

+
∑

k∈K

∑

i∈I R(k)

c̃(k, i)d̂(k)ξ(i)+ EK

[
QRP (y1, ζ 1,K (ω))

]

Subject to
∑

i∈I R(k)

ξ(i) = 1, k ∈ K , (16.26)

∑

k∈K (σ l)

∑

i∈I R(k)|σ(i)=σ
d̂(k)ξ(i) ≤ uτ(σ)y(σ ), l ∈ L (σ ), σ ∈ Σ, (16.27)

∑

σ∈Σ(z,t)

y(σ ) ≤ uT
z , z ∈ Z , t = 1, . . . , T , (16.28)

∑

σ∈Σ(z,t)

y(σ ) ≤ uT
zτ , z ∈ Z , τ ∈ Tm, m ∈M , t = 1, . . . , T , (16.29)

∑

ν∈V

⎡

⎣
∑

k∈K

∑

i∈I R(k,ν,t)

d̂(k)ξ(i)

⎤

⎦ /uν ≤ uV
z z ∈ Z , t = 1, . . . , T , (16.30)

∑

ν∈V

⎡

⎣
∑

k∈K

∑

i∈I R(k,ν,t)

d̂(k)ξ(i)

⎤

⎦ ≤ uK
z , z ∈ Z , t = 1, . . . , T , (16.31)

∑

σ∈Σ(f,t,τ )

y(σ ) ≤ nf τ , f ∈ F , τ ∈ Tm, m ∈M , t = 1, . . . , T , (16.32)

y(σ ) ∈ {0, 1}, σ ∈ Σ, (16.33)

ξ(i) ∈ {0, 1} i ∈ I R(k), k ∈ K , (16.34)



526 T. G. Crainic et al.

with

QRP (y1, ζ 1,K (ω)) = (16.35)

Minimize
∑

σ∈Σ(y1)

c(σ )
∑

σ 2∈Σ(y1,σ )

y2(k(ω), σ 2)+
∑

h∈H (y1,ζ 1)

c(h)ϕ2(k(ω), h)

Subject to
∑

i∈I (y1,ζ 1,k(ω))

ζ 2(k(ω), i) = 1, k(ω) ∈ K (ω), (16.36)

∑

σ 2∈Σ(y1,σ )

y2(k(ω), σ 2) = 1, σ ∈ Σ(y1), (16.37)

∑

k(ω)∈K (ω)

∑

i∈I (y1,ζ 1,k(ω),σ )

d(k, ω)ζ 2(k(ω), i) ≤ uτ y
2(k(ω), σ 2), (16.38)

σ 2 ∈ Σ(y1, σ ), σ ∈ Σ(y1),

∑

k(ω)∈K (w(h)t)

∑

i∈I (y1,ζ 1,k(ω))|h(i)=h
d(k, ω)ζ 2(k(ω), i) ≤ uνϕ

2(k(ω), h)

(16.39)

w ∈ W (y1, ζ 1, h), h ∈H (y1, ζ 1), t = 1, . . . , T ,

∑

σ∈Σ(y1)

∑

σ 2∈Σ(y1,σ,z,t)

y2(k(ω), σ 2) ≤ uT
z , (16.40)

(z, t) ∈ R(y1, ζ 1), z ∈ Z , t = 1, . . . , T ,

∑

σ∈Σ(y1)|τ(σ )=τ

∑

σ 2∈Σ(y1,σ,z,t)

y2(k(ω), σ 2) ≤ uT
zτ , (16.41)

(z, t) ∈ R(y1, ζ 1), z ∈ Z , τ ∈ Tm, m ∈M , t = 1, . . . , T ,

∑

h∈H (y1,ζ 1)

ϕ2(k(ω), h) ≤ uV
z , (z, t) ∈ R(y1, ζ 1), z ∈ Z , t = 1, . . . , T ,

(16.42)∑

i∈I (y1,ζ 1,k(ω))

d(k)ξ(i) ≤ uK
z , z ∈ Z , t = 1, . . . , T , (16.43)



16 City Logistics 527

∑

h∈H (y1,ζ 1)

ϕ2(k(ω), h) ≤ n+ν , ν ∈ Vm, m ∈M , (16.44)

y2(k(ω), σ 2) ∈ {0, 1}, σ ∈ Σ(y1), (16.45)

ϕ2(k(ω), h) ∈ {0, 1}, h ∈H (y1, ζ 1), (16.46)

ζ 2(k(ω), i) ∈ {0, 1}, i ∈ I (y1, ζ 1, k(ω)), k(ω) ∈ K (ω). (16.47)

The first-stage objective function (16.25) minimizes the total generalized cost
computed as the cost of selecting and operating urban-vehicle services to move the
point-forecast demand between external zones and satellites, plus the approximated
cost of assigning customers to satellites and moving demand between them, plus
the expected cost of the recourse over the planning period, i.e., the cost of
operating the system according to the a priori plan x(y1, ζ 1) adjusted, instantiated,
for the realized demand K (ω) by applying the recourse policy RP with cost
QRP (x(y1, ζ 1),K (ω)).

The first-stage constraints (16.26)–(16.34) correspond to constraints (16.2), (16.3),
(16.5)–(16.9), (16.11), and (16.13), where the numbers of second-tier city freighters
in constraints (16.30) are derived from the total volume of demand leaving the
satellite at period t on city freighters of all types, where I R(k, ν, t) stands for the
corresponding itineraries of demand k. (Constraints (16.4), (16.10), (16.12) are not
needed in the first-stage formulation.)

The objective function of the second-stage formulation (16.35) computes the
total cost of operating the selected urban-vehicle services, with possibly new
departure times, and the normal and extra city-freighter work assignments. Equa-
tions (16.36) indicate that each demand must be satisfied by a single itinerary,
while constraints (16.37) state that exactly one departure must be selected for
each opportunity window. Constraints (16.38) enforce the urban-vehicle capacity
restrictions, where I (y1, ζ 1, k(ω), σ ) stands for the set of itineraries of customer
demand k being moved on service σ . Constraints (16.39) enforce the capacity
of city freighters on all work segments of both regular and extra city-freighter
work assignments. Constraints (16.40) and (16.41) enforce the satellite capacity
restrictions in terms of urban vehicles, total and by mode, respectively. The
satellite capacity in terms of city freighters and freight volume are enforced by
constraints (16.42) and (16.43), respectively. Constraints (16.44) limit the number
city freighters (work assignments) of each type used to the available fleet augmented
with the cardinality of the extra fleet. Finally, constraints (16.45)–(16.47) define the
feasible region of the second-stage formulation.



528 T. G. Crainic et al.

4.3 Designing the City Logistics Network: Strategic Planning

The previous SSND formulations yield “best” (optimal, when solved exactly)
tactical plans and two-tier scheduled service networks in terms of the generalized
cost of the system given the forecast demand, the 2T-CL system layout, composition,
and attributes, as well as current regulations and operation policies. The models may
be used not only for drawing tactical plans, however, but also as an analysis and
evaluation tool for a broad range of longer-term issues (Sect. 2.2). Scenarios related
to the structure, environment or policies of a (two-tier) City Logistics system may be
evaluated using the model framework described in this chapter appropriate for the
case. To illustrate, the complete formulations (Sects. 3 and 4.2) are appropriate to
evaluate the impact on system performance of vehicle fleet deployment including
number and dimension of fleets at both tiers, assignment to CDCs or satellites,
vehicle characteristics, etc. On the other hand, models approximating the second-tier
routing (Sects. 4.1 and 4.2 with approximated routing cost) appear more appropriate
to evaluate longer-term scenarios implying a certain level of imprecision in the
demand data, such as different system layouts in terms of number, location, and
capacity of facilities.

The SSND models may also be used to study different cooperation rules
when several service providers (public and private carriers, terminals, etc.) share
infrastructure and jointly perform the City Logistics activities under joint planning
and operations-management mechanism (e.g., an arm-length information-sharing
and decision platform). Such rules may specify, e.g., how costs or vehicle utilization,
or both have to be distributed among the participants to reflect their contractual
commitment (in terms of type and size of the fleet, territory covered, financial
and risk share, etc.). Not much research has been dedicated yet on how to extend
SSND models to account for these issues. To illustrate a first step in this direction,
consider a group C of first-tier collaborating carriers, each with a weight ()“share”)
αc, c ∈ C , representing the target for its level of activity or cost it incurs. Let
[α−c , α+c ] represent the interval of variation acceptable for the next planning cycle,
and c(σ, c) the cost of service σ ∈ Σ performed by carrier c ∈ C . Defining
y(σ, c) = 1, if the urban-vehicle service σ ∈ Σ is selected to be operated by carrier
c ∈ C , and 0, otherwise, the total service-selection cost in the SSND objective
function becomes

∑

σ∈Σ

∑

c∈C
c(σ, c)y(σ, c), (16.48)

the share of that cost borne by each carrier in the coalition being controlled by

α−c
∑

σ∈Σ

∑

c∈C
c(σ, c)y(σ, c) ≤

∑

σ∈Σ
c(σ, c)y(σ, c) ≤ α+c

∑

σ∈Σ

∑

c∈C
c(σ, c)y(σ, c)

(16.49)



16 City Logistics 529

Similar constraints may be added on the operations performed to limit the resource
utilization (measured, e.g., in time, km, or weight-km) by the respective carriers.
Penalties may also be added to the objective function to add flexibility to the solution
methods. This constitutes an interesting research avenue.

The SSND models may also be generalized for a direct utilization as decision-
support tools for strategic decisions such as the location/selection of facilities, CDCs
and satellites, the design of freight-dedicated corridors throughout the city (particu-
larly between external zones and CDCs and between the latter and the satellites)
or the introduction of new/upgraded infrastructure and services. Continuing the
previous discussion, he long-term nature of strategic decisions suggest that second-
tier routing should be approximated in such “strategic” SSND models, which would
include design decision variables on the selection of the contemplated facilities or
infrastructure structures, as well as the corresponding commodity-flow variables and
the capacity and linking constraints. Budget constraints come naturally to mind as
well.

To illustrate, consider the 2T-CL case where one aims to select satellites given
selection costs and budget. These costs could represent the renting or utilization
of facilities for the next planning period, which corresponds to a tactical planning
decision, or actual longer-term strategic acquisition or securing costs. Let c(z), z ∈
Z , the selection cost of satellite z ∈ Z and B the total budget available for
satellite selection and utilization. The medium-term SSND formulation of Sect. 4.1
may then be extended with the additional decision variables ζ(z) = 1, is satellite
z ∈ Z is selected, and 0, otherwise, and the corresponding total selection cost∑

z∈Z c(z)ζ(z) added to the objective function (16.14). The right hand side of con-
straints (16.20)–(16.22) is multiplied by the satellite-selection variable (e.g., uT

zτ ζ(z)

for the latter constraint) to transform them from capacity to linking constraints. The
flow-related linking constraints (16.50) and budget constraints (16.51) must also be
added.

x(b, σ, z, k) ≤ ζ(z)ζ(z), k ∈ K , σ ∈ Σ, z ∈ Z (k) (16.50)

∑

z∈Z
c(z)ζ(z) ≤ B (16.51)

5 Bibliographical Notes

We aim with this section to give a brief historical survey of and appropriate credit
for the developments related to network design and the planning of City Logistics,
two-tier systems in particular. General descriptive papers and surveys regarding
City Logistics and related operations research developments may be found in, e.g.,
Taniguchi et al. (2001); Benjelloun and Crainic (2009); Gonzalez-Feliu et al. (2014);
Taniguchi (2014); Cattaruzza et al. (2017); Crainic (2008); Bektaş et al. (2017);



530 T. G. Crainic et al.

Savelsbergh and Van Woensel (2016), while Holguín-Veras et al. (2020a,b) review
CL initiatives from the point of view of urban freight management.

Most contributions in the literature addressing the design of City Logistics
systems focus on the location of facilities only and proposed location-routing
models (mentioned bellow). A few different approaches were proposed. Taniguchi
et al. (1999) combines a facility-selection-dimensioning model and a nonlinear
traffic-equilibrium formulation to reflect the user (truck drivers) choices; Crainic
et al. (2004) introduced a general two-tier city logistics system concept (see also
Gragnani et al. 2004), together with a location-allocation methodology for the
strategic decision issue of determining the satellite structure of the system. The
authors consider inbound demand and single motor-carrier modes and fleets for each
of the two tiers of the system; Baldi et al. (2012) address the same problem setting
with stochastic costs for the paths from CDC to satellite to customer zone; Gianessi
et al. (2016, see also Gianessi (2014)) propose a location-routing formulation
integrating decisions related to the design of a ring structure connecting the CDCs,
inbound and outbound demands, and routing of inter-CDC flows onto the ring
structure to avoid excessive travel through the city and on the highways around;
Guerrero-Lorente et al. (2020) propose a location-routing model for a Cl postal
network with approximated routing costs; Hu et al. (2020) present a bi-objective
location-allocation model to study an underground 2T-CL system for in Beijing,
China.

Crainic et al. (2009) proposed the first modeling framework for the short
to medium-term planning of inbound-demand, single-mode 2T-CL systems with
the possibility of different vehicle types and specific product-to-vehicle assign-
ment rules. The authors also introduced to the City Logistics literature the time-
dependency of demand and the corresponding issue of scheduling and synchroniz-
ing first-tier urban-vehicle services and second-tier city-freighter multi-tour work
assignments. They proposed a path-based formulation for the day-before planning
problem, when planning is performed shortly (“the day before”) before operations
when the demand is known. The SSND modeling framework of Sect. 3 starts from
this work.

Crainic et al. (2009) also introduced formulations for the first-tier scheduled ser-
vice network design and the second-tier synchronized, scheduled, non-substituable
origin-destination (OD) demand, multi-depot, multi-tour, heterogeneous vehicle
routing problem with time windows (SSOD-MDMTH-VRPTW) problems (see, e.g.,
Nguyen et al. 2013; Crainic et al. 2016b; Nguyen et al. 2017; Bettinelli et al.
2019, for developments on the latter problem). The paper discusses solution-method
avenues for all formulations, introducing a meta-heuristic structure for the full
model based on decomposing it along tiers, without actually solving the problem.

Two additional observations were made in Crainic et al. (2009). First, that one
could view the service selection on the first tier as a particular case of a vehicle
routing problem, yielding a two-tier, or, in VRP terminology, a two-echelon SSOD-
MDMTH-VRPTW. Several publications followed focusing on two-echelon vehicle
routing (e.g., Perboli et al. 2011; Hemmelmayr et al. 2012; Contardo et al. 2012;
Mancini et al. 2014; Masson et al. 2017; Grangier et al. 2015; Breunig et al.



16 City Logistics 531

2016, 2019; Dellaert et al. 2019) and location-routing problems with facilities being
selected on a single tier (e.g., Guyon et al. 2012; Gianessi et al. 2016; Winkenbach
et al. 2016; Boccia et al. 2017) or, more rarely, on both tiers (e.g., Boccia et al.
2010, 2011). It is noteworthy that most of these contributions do not include the
full range of attributes defined above; thus, OD demand, multiple demand types,
time-dependency, multiple tours, and synchronization are quite often missing..

The second observation of Crainic et al. (2009) is that for longer-term plan-
ning, e.g., mid-term tactical planning and the evaluation of long-term strategic
alternatives, the second-tier routing problem could be approximated and added
to the first-tier formulation through appropriately-defined service costs on links
connecting satellites and customer-zone. Crainic and Sgalambro (2014) adopted this
idea and focused on the modeling of the first-tier service network design within the
day-before planning problem, studying the impact of a number of system parameters
on the final design. This line of work was significantly extended by Fontaine et al.
(2021) while addressing a richer problem setting than in previous literature.

Fontaine et al. (2021) address a 2T-CL setting which integrates inbound and
outbound demands (see Crainic et al. 2012, for an initial discussion on the impact
of integrating several types of demand into City Logistics planning), decisions on
the assignment of customers to consolidation distribution centers and satellites,
multiple satellite capacity measures in terms of freight volume and numbers of
first and second-tier vehicles, several heterogeneous limited-size fleets of partic-
ular transportation modes. The intermodal transportation aspect brings together
traditional, road-based, carriers and massive-flow carriers and vehicles captive of
their routes or infrastructure, e.g., buses, trolleybuses, tramways, subways, and
regular rail bringing flows from CDCs to satellites located within downtown train
stations (Trentini and Mahléné 2010; Freemark 2011; Riemann 2019; Lindholm
and Behrends 2012; Masson et al. 2017). As several vehicle types have more
than one cargo-holding space, as illustrated by the multiple cargo bays of several
proposed cargo tramways and the (vertical or horizontal) separators that may
be used within trucks, the authors also introduced multi-compartment vehicles.
Fontaine et al. (2021) propose an arc-based SSND formulation for the tactical
planning of such extended systems, where the customer service cost through
pickup or delivery routing is approximated on corresponding customer-satellite
arcs. They also proposed an efficient Benders decomposition algorithm (Crainic
et al. 2021), which includes specialized valid inequalities and an innovative partial
decomposition strategy based on the use of aggregation techniques for deterministic
problems. The numerical results show the efficiency of the proposed algorithm
compared to a well-known commercial solver, as well as the benefits of considering
several transportation modes and demand types. The model of Sect. 3 includes a
number of elements of this work.

One finds very few contributions addressing the uncertainty inherent to the
City Logistics system. To the best of our knowledge, travel and service time
uncertainty has not been addressed in the context of optimization for city logistics
planning, although the issue is mentioned by several authors. A limited number
of contributions addressed time-dependent travel times (e.g., Liu et al. 2020) but
focused on routing issues only and no uncertainty was considered. Contributions



532 T. G. Crainic et al.

were made with respect to developing appropriate data for these problems (e.g.
Ehmke et al. 2012; Maggioni et al. 2014), but were not included into tactical
planning models.

With respect to demand uncertainty, Crainic et al. (2016a) propose a two-stage
stochastic-programming formulation for a 2T-CL tactical planning model aimed
at the system setting defined in Crainic et al. (2009). The first stage corresponds
to the selection of the first-tier services and the determination of the partial
demand itineraries up to the selected satellites, as well as the satellite utilization
in terms of customer assignments. The second stage models the selection of ad-
hoc additional city freighters and the routing-based strategy to adjust the plan once
demand is realized. The authors used the meta-heuristic of Crainic et al. (2009)
as the basis of a Monte-Carlo evaluation procedure of several recourse strategies
with increasing degrees of flexibility in routing and customer assignments. Not
surprisingly, increased flexibility in resource allocation and system management
displayed the best performances. This is an encouraging first step in what constitutes
a major research issue.

Another rich research challenge corresponds to address the case multiple orga-
nizations, public and private carriers and other service providers operating in
(parts of) cities under some form of cooperation/coalition and resource sharing
agreements (e.g., Morana et al. 2014). A few policy and simulation-based studies
may be found in the literature, but we know of only one paper at this time
representing some of these rules within a tactical planning model (Crainic et al.
2020, used in the discussion of Section 4.3). The authors introduced penalty costs
and constraints limiting the utilization of certain resources according to the shares
of participating carriers into a simplified version of the Fontaine et al. (2021) SSND
formulation. Experimental results show the impact of such conditions, not only
on the computational burden, but also on the distribution of resources and the
performance of the system.

6 Conclusions and Perspectives

The transportation and logistics industry is continuously evolving with the evolution
of society, politics, and technology. City Logistics constitutes one of the paths
of this evolution, echoing and interacting with similar developments in new
business and organizational models such as Physical Internet and synchromodality.
Operation Research and analytics accompany and sometimes precede this evolution
by providing methods and decision-support instruments for the analysis, planning
and management of transportation and logistics systems, from potentiality to
deployment and operations or abandon. The impact is a two-way street, however.
as changes in social and industrial behavior and in technology challenge the field
and spur modeling and algorithmic development.

This chapter presented the main outcomes of this interaction from the point of
view of network design. The formulations target tactical and strategic planning-level



16 City Logistics 533

issues and reflect the novel characteristics proper to City Logistics, in particular,
several layers (tiers) of facilities and operations, multimodality, multiple heteroge-
neous fleets, collaboration of private and public service providers, time-dependency
of demand and operations, interaction of somewhat regular transport services and
local pickup and delivery activities, and synchronization of fleet operations on the
two tiers at the intermediary facilities, to name but a few.

Many challenges are still facing the field and new ones are emerging, yielding
a rich set of exciting research avenues for Operations Research and Transportation
Science. We conclude the chapter briefly discussing a number of those, focusing on
modeling and algorithmic challenges from a network-design perspective.

Modeling issues are many and of the utmost interest. We already mentioned in
previous sections a number of important and challenging research directions not
only for City Logistics but also for (service) network design in general: (1) the
integration into SSND formulations inbound, outbound, and local demand into a
seamless and comprehensive operation, which requires integrating and synchro-
nizing SSND and time- and OD-dependent multi-tour heterogeneous pickup and
delivery routing; (2) the development of SSND methodology for various cases of
collaborating and capacity-sharing stakeholder consortia, operating a unified system
of private and public resources under various profit-cost-risk-resource utilization
sharing rules; (3) the explicit representation and integration of the uncertainty
regarding the demand as well as travel and service times at facilities and customer
locations.

It is noteworthy that methodological and application challenges emerge, on the
one hand, from the particular political, social, and entrepreneurial characteristics
of each city and country, which impact directly how technology is accepted and
used, how information and traffic flows are ruled, and how people and institutions
are allowed to behave. They also follow, on the other hand, from new technology
and changing social behavior (see, e.g., Oliveira et al. 2020; Snoeck et al. 2020;
Taniguchi et al. 2020). The former includes a very broad range of issues, from the
Internet of Things, the Smart City concepts, and the movement towards a numeric
and automated transportation and logistics 4.0 industry, to the drones, delivery
robots, lockers, and crowd-based logistics which are increasingly part of local
delivery. The latter group of issues is equally broad, from the continuously stronger
trend of on-line shopping combined to customer requirements for very fast and very
cheap delivery, to the increasing variety of time and cost-defined customer-service
classes, to revenue management strategies.* How each of these issues is represented
individually and when several are jointly present in the problem setting makes for
particularly challenging issues. The challenge is increased considering that one
needs coherent representations at operational and tactical-strategic levels, and that
one aims for objective function and constraint formulations that are amenable to
efficient solving.

Worthy of notice is the modeling and algorithmic challenge of combining and
synchronizing network design and vehicle routing in an unique formulation. On the
one hand, this raises the issue of the adequate modeling of routing into tactic and
strategic formulations, and the related efficient and representative approximations



534 T. G. Crainic et al.

of costs and times. On the other hand, one observes that there is not as yet any
solution method, neither exact nor meta-heuristic, able to provide consistently high-
quality solutions to integrated SSND formulations with synchronization. Moreover,
the algorithmic challenge increases significantly with the dimensions of the system
in numbers of facilities, customers, fleets, time periods. It is further compounded
when uncertainty is explicitly considered.

Research is thus required on high-performance solution methods for determinis-
tic and stochastic network design with explicit or approximated routing models for
City Logistics. We mention some very promising avenues, which could, probably
should, be combined into efficient solution frameworks: (1) decomposition methods
of path and arc-based formulations with novel projections of the synchronization
relations on tier-specific subproblems; (2) dynamic generation of first-tier services
and second-tier pickup and delivery routes; it is noteworthy that one may address
a service route as a vehicle route with particular characteristics and restrictions,
opening the way for a unified solution methodology; (3) the dynamic generation
of the time-space network delivered very good performances on particular SSND
problem settings and is being extended for routing; extending it further to rich
SSND with pickup and delivery routing problem settings is particularly fascinating
and promising; (4) parallel exact methods and collaborative-search matheuristics
for efficiently addressing deterministic and stochastic formulations of realistic
dimensions.

References

Baldi, M. M., Ghirardi, M., Perboli, G., & Tadei, R. (2012). The capacitated transshipment location
problem under uncertainty: A computational study. Procedia - Social and Behavioral Sciences,
39, 424–436.

Bektaş, T., Crainic, T. G., & Van Woensel, T. (2017). From managing urban freight to smart city
logistics networks. In K. Gakis, & P. Pardalos (Eds.), Networks design and optimization for
smart cities, series on computers and operations research (Vol. 8, pp. 143–188). Singapore:
World Scientific Publishing.

Benjelloun, A., & Crainic, T. G. (2009). Trends, challenges, and perspectives in city logistics.
Buletinul AGIR, 4, 45–51.

Bettinelli, A., Cacchiani, V., Crainic, T. G., & Vigo, D. (2019). A branch-and-cut-and-price
algorithm for the multi-trip separate pickup and delivery problem with time windows at
customers and facilities. European Journal of Operational Research, 279, 824–839.

Boccia, M., Crainic, T. G., Sforza, A., & Sterle, C. (2010). A metaheuristic for a two-echelon
location-routing problem. In P. Festa (Ed.), Experimental algorithms, lecture notes in computer
science/programming and software (vol. 6049, pp. 288–301). Berlin: Springer.

Boccia, M., Crainic, T. G., Sforza, A., & Sterle, C. (2011). Location-routing models for designing
a two-echelon freight distribution system. Publication CIRRELT-2011-40, Centre interuniver-
sitaire de recherche sur les réseaux d’entreprise, la logistique et le transport, Université de
Montréal, Montréal, QC, Canada.

Boccia, M., Crainic, T. G., Sforza, A., & Sterle, C. (2017) Multi-commodity location-routing: flow
intercepting formulation and branch-and-cut algorithm. Computers & Operations Research, 89,
94–112.



16 City Logistics 535

Breunig, U., Schmid, V., Hartl, R. F., & Vidal, T. (2016). A large neighbourhood based heuristic
for two-echelon routing problems. Computers & Operations Research, 76, 208–225.

Breunig, U., Baldacci, R., Hartl, R. F., & Vidal, T. (2019). The electric two-echelon routing
problem. Computers & Operations Research, 103, 198–210.

Cattaruzza, D., Absi, N., Feillet, D., & González-Feliu, J. (2017). Vehicle routing problems for city
logistics. EURO Journal on Transportation and Logistics, 6, 51–79.

Contardo, C., Hemmelmayr, V., & Crainic, T. G. (2012). Lower and upper bounds for the two-
echelon capacitated vehicle routing problem. Computers & Operations Research, 39(12),
3185–3199.

Crainic, T. G. (2008). City logistics: Advanced urban freight transportation systems. In Z. L. Chen,
S. Raghavan (Eds.), Tutorials in Operations Research 2008, State-of-the-art decision making
tools in the information-intensive age. Series on computers and operations research (pp. 181–
212). INFORMS.

Crainic, T. G., & Sgalambro, A. (2014). Service network design models for two-tier city logistics.
Optimization Letters, 8(4), 1375–1387.

Crainic, T. G., Ricciardi, N., & Storchi, G. (2004). Advanced freight transportation systems for
congested urban areas. Transportation Research Part C: Emerging Technologies, 12(2), 119–
137.

Crainic, T. G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city logistics
transportation systems. Transportation Science, 43(4), 432–454.

Crainic, T. G., Errico, F., Rei, W., & Ricciardi, N. (2012). Integrating c2e and c2c traffic into
city logistics planning. In E. Taniguchi, & R. G. Thompson (Eds.), Seventh International
Conference on City Logistics (Procedia—social and behavioral sciences) June 7–11, 2011 (Vol.
39, pp. 47–60) Mallorca, Spain: Elsevier.

Crainic, T. G., Errico, F., Rei, W., & Ricciardi, N. (2016a). Modeling demand uncertainty in two-
tier city logistics tactical planning. Transportation Science, 50(2), 559–578.

Crainic, T. G., Nguyen, P. K., & Toulouse, M. (2016b). Synchronized multi-trip multi-traffic pickup
and delivery problem in city logistics. Transportation Research Procedia, 12, 26–39.

Crainic, T. G., Gendreau, M., & Jemai, L. (2020). Planning hyperconnected, urban logistics
systems. Transportation Research Procedia, 47, 19–26.

Crainic, T. G., Rei, W., Hewitt, M., & Maggioni, F. (2021). Partial Benders decomposition: General
methodology and application to stochastic network design. Transportation Science, 55(2), 414–
435.

Dellaert, N., Dashty Saridarq, F., Van Woensel, T., & Crainic, T. G. (2019). Branch & price based
algorithms for the two-echelon vehicle routing problem with time windows. Transportation
Science, 53, 463–479.

Ehmke, J. F., Meisel, S., & Mattfeld, D. C. (2012). Floating car based travel times for city logistics.
Transportation Research Part C: Emerging Technologies, 21, 338–352

Fontaine, P., Crainic, T. G., Jabali, O., & Rei, W. (2021). Scheduled service network design with
resource management for two-tier multimodal city logistics. European Journal of Operational
Research, 294(2), 558–570.

Freemark, Y. (2011). Opportunities abound for transporting goods by tram—if properly
coordinated. Retrieved April 27, 2020 from http://www.thetransportpolitic.com/2011/10/23/
opportunities-abound-for-transporting-goods-by-tram-if-properly-coordinated/

Gianessi, P. (2014). Solving strategic and tactical optimization problems in city logistics. (PhD
Thesis, Université Paris 13, France).

Gianessi, P., Alfandari, L., Létocart, L., & Calvo, R. W. (2016). The multicommodity-ring location
routing problem. Transportation Science, 50(2), 541–558.

Gonzalez-Feliu, J., Semet, F., & Routhier, J. L. (Eds.) (2014). Sustainable urban logistics:
Concepts, methods and information systems. Berlin: Springer.

Gragnani, S., Valenti, G., & Valentini, M. P. (2004). City logistics in Italy: A national project. In
E. Taniguchi, & R. G. Thompson (Eds.), Logistics systems for sustainable cities (pp. 279–293).
Amsterdam: Elsevier.

http://www.thetransportpolitic.com/2011/10/23/opportunities-abound-for-transporting-goods-by-tram-if-properly-coordinated/
http://www.thetransportpolitic.com/2011/10/23/opportunities-abound-for-transporting-goods-by-tram-if-properly-coordinated/


536 T. G. Crainic et al.

Grangier, P., Gendreau, M., Lehuédé, F., & Rousseau, L. M. (2015). An adaptive large neigh-
borhood search for the two-echelon multiple-trip vehicle routing problem with satellite
synchronization. European Journal of Operational Research, 254(1), 80–91.

Guerrero-Lorente, J., Gabor, A. F., & Ponce-Cueto, E. (2020). Omnichannel logistics network
design with integrated customer preference for deliveries and returns. Computers & Industrial
Engineering, 144, 106433.

Guyon, O., Absi, N., Feillet, D., & Garaix, T. (2012). A modeling approach for locating logistics
platforms for fast parcels delivery in urban areas. In E. Taniguchi, & R. G. Thompson (Eds.),
Seventh International Conference on City Logistics (Procedia - social and behavioral sciences)
June 7–11, 2011 (Vol. 39, pp. 360–368). Mallorca, Spain: Elsevier.

Hemmelmayr, V. C., Cordeau, J. F., & Crainic, T. G. (2012). An adaptive large neighborhood
for two-echelon vehicle routing problems arising in city logistics. Computers & Operations
Research, 39(12), 3215–3228

Holguín-Veras, J., Leal, J. A., Sánchez-Diaz, I., Browne, M., & Wojtowicz, J. (2020a). State of the
art and practice of urban freight management part I: Infrastructure, vehicle-related, and traffic
operations. Transportation Research Part A: Policy and Practice, 137, 360–382.

Holguín-Veras, J., Leal, J. A., Sánchez-Diaz, I., Browne, M., & Wojtowicz, J. (2020b). State of
the art and practice of urban freight management part II: Financial approaches, logistics, and
demand management. Transportation Research Part A: Policy and Practice, 137, 383–410.

Hu, W., Dong, J., Hwang, B. G., Ren, R., & Chen, Z. (2020). Hybrid optimization procedures
applying for two-echelon urban underground logistics network planning: A case study of
Beijing. Computers & Industrial Engineering, 144, 106452.

Lindholm, M., & Behrends, S. (2012). Challenges in urban freight transport planning—a review in
the baltic sea region. Journal of Transport Geography, 22, 129–136.

Liu, C., Kou, G., Zhou, X., Peng, Y., Sheng, H., & Alsaadi, F. E. (2020). Time-dependent vehicle
routing problem with time windows of city logistics with a congestion avoidance approach.
Knowledge-Based Systems, 188, 104813.

Maggioni, F., Perboli, G., & Tadei, R. (2014). The multi-path traveling salesman problem with
stochastic travel costs: building realistic instances for city logistics applications. Transportation
Research Procedia, 3, 528–536.

Mancini, S., Gonzalez-Feliu, J., & Crainic, T. G. (2014). Planning and optimization methods for
advanced urban logistics systems at tactical level. In J. Gonzalez-Feliu, F. Semet, J.-L. Routhier
(Eds.), Sustainable Urban Logistics: Concepts, Methods and Information Systems (pp. 145–
164). Berlin: Springer, .

Masson, R., Trentini, A., Lehuédé, F., Malhéné, N., Péton, O., & Tlahig, H. (2017). Optimization
of a city logistics transportation system with mixed passengers and goods. EURO Journal on
Transportation and Logistics, 6(1), 81–109.

Montreuil, B. (2011). Towards a physical internet: meeting the global logistics sustainability grand
challenge. Logistics Research, 3(2–3), 71–87.

Morana, J., Gonzalez-Feliu, J., & Semet, F. (2014). Urban consolidation and logistics pooling—
planning, management and scenario assessment issues. In J. Gonzalez-Feliu, F. Semet, J. L.
Routhier (Eds.), Sustainable urban logistics: Concepts, methods and information systems (pp.
187–210). Berlin: Springer.

Nguyen, P. K., Crainic, T. G., & Toulouse, M. (2013). A Tabu search for time-dependent multi-
zone multi-trip vehicle routing problem with time windows. European Journal of Operational
Research, 231(1), 43–56.

Nguyen, P. K., Crainic, T. G., & Toulouse, M. (2017). Multi-trip pickup and delivery problem with
time windows and synchronization. Annals of Operations Research, 253(2), 899–934.

Oliveira, B., Ramos, A. G., & de Sousa, J. P. (2020). A classification of two-tier distribution
systems based on mobile depots. Transportation Research Procedia, 47, 115–122.

Perboli, G., Tadei, R., & Vigo, D. (2011). The two-echelon capacitated vehicle routing problem:
Models and math-based heuristics. Transportation Science, 45(3), 364–380.

Riemann, H. (2019). Logistiktram project. Retrieved April 27, 2020 from http://logistiktram.de/

http://logistiktram.de/


16 City Logistics 537

Savelsbergh, M., & Van Woensel, T. (2016) 50th anniversary invited article—city logistics:
Challenges and opportunities. Transportation Science, 50(2), 579–590.

Snoeck, A., Merchán, D., & Winkenbach, M. (2020). Revenue management in last-mile delivery:
State-of-the-art and future research directions. Transportation Research Procedia, 46, 109–116.

Taniguchi, E. (2014). Concepts of city logistics for sustainable and liveable cities. Procedia - Social
and Behavioral Sciences, 151, 310–151.

Taniguchi, E., Noritake, M., Yamada, T., & Izumitani, T. (1999). Optimal size and location
planning of public logistics terminals. Transportation Research Part E: Logistics and Trans-
portation Review, 35(3), 207–222.

Taniguchi, E., Thompson, R. G., Yamada, T., & van Duin, J. H. R. (2001). City logistics: Network
modelling and intelligent transport systems. Amsterdam: Pergamon.

Taniguchi, E., Thompson, R. G., & Qureshi, A. G. (2020). Modelling city logistics using recent
innovative technologies. Transportstion Research Procedia, 46, 3–12.

Trentini, A., & Mahléné, N. (2010). Toward a shared urban transport system ensuring passengers
& goods cohabitation. Tema Journal of Land Use, Mobility and Environment, 3(2), 37–46.

Winkenbach, M., Kleindorfer, P. R., & Spinler, S. (2016). Enabling urban logistics services at La
Poste through multi-echelon location-routing. Transportation Science 50(2), 520–540.



Chapter 17
Public Transportation

Antonio Mauttone, Héctor Cancela, and María E. Urquhart

1 Introduction

Public Transportation (PT) refers to shared transportation services (Teodorovic and
Janic 2016) which operate using infrastructure like roads or rails, and vehicles
like buses or trains. Usually, it includes urban public transit and intercity public
transportation, both characterized by fixed routes and schedules which are available
for use by all persons who pay the established fare (Vuchic 2007). PT has been
gaining importance since sustainability is increasingly identified as one of the pri-
mary goals of the society. When compared against other motorized transport modes,
PT exhibits higher efficiency rates in terms of energy consumption, greenhouse
emissions, noise pollution and usage of public space. However, both setting and
operating of PT systems involve very large expenditures. Moreover, the performance
of these systems from the viewpoint of the users is a key aspect in order to offer a
successful service, which reveals the need for effective planning methodologies.

The planning of PT systems offers various opportunities for optimization. The
whole process can be decomposed into several planning stages which define
a sequence of hierarchical decisions, namely, network design, frequency and
timetable determination, and fleet and crew scheduling (Ceder and Wilson 1986;
Goosens et al. 2004). According to this approach, network design plays a very
relevant role within the overall planning process since it impacts in every subsequent
stage, and therefore in every component cost of the system. In that context, the
meaning of the term public transport network depends on the specific mode. For
systems based on buses which share the street with regular vehicles (i.e., cars) there
is no cost of infrastructure building, or it can be negligible. On the other hand, rapid

A. Mauttone (�) · H. Cancela · M. E. Urquhart
Department of Operations Research, Universidad de la República, Montevideo, Uruguay
e-mail: mauttone@fing.edu.uy; cancela@fing.edu.uy; urquhart@fing.edu.uy

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_17

539

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_17&domain=pdf
mailto:mauttone@fing.edu.uy
mailto:cancela@fing.edu.uy
mailto:urquhart@fing.edu.uy
https://doi.org/10.1007/978-3-030-64018-7_17


540 A. Mauttone et al.

transit, rail and metro systems involve large investments due to building of exclusive
corridors, railways and tunnels; we refer to these elements as the physical network.
In addition, in PT systems there is a second network level which is defined by the
services that operate over the street network for classical bus systems and over the
physical network for rapid transit, rail and metro systems: the routes followed by the
vehicles. This level is referred as the route network. The operation of these routes
determines a relevant component of the operating cost of the system, in the form
of vehicle and personnel cost per distance and time unit respectively. Also, both
topological structure and frequency (vehicles passing per time unit) of the routes
determine largely the level of service offered to the users in terms of overall travel
time, which includes time spent walking (from origin and to destination stops or
stations), waiting, and on-board the vehicle.

When approached as a network design problem, models of both physical and
route networks represent stops and stations as network nodes, and street and rail
sections as network links. Usually, the nodes are fixed and decisions are related to
inclusion or exclusion of the links in the solution. In the most general case, each
link has attributes like building cost, travel time and capacity. A first approach for
PT network design is the general fixed charge network design model described in
Chap. 2, where each commodity represents a specific group of people traveling
from some origin node to another destination node. However, there are distinctive
characteristics of PT systems which add particular difficulties. When modeling the
design of routes, decisions are not related to single links, instead they refer to a
sequence of links. Moreover, the system is composed by several routes which may
overlap, i.e., they can share common links. Also, the performance evaluation of the
system from the viewpoint of the users entails modeling their behavior with respect
to the set of enabled links or routes. This is a very particular characteristic of PT
network design models, since users behave by themselves and their interests can
be conflicting with the interests of the operator, which entails considering special
features in the corresponding network design models.

This chapter presents concepts, models and solution methods for PT network
design. In order to precise the scope, we consider only models that include topolog-
ical variables (Farahani et al. 2013), i.e., variables which represent decisions about
nodes and links. However, we also consider models that include non-topological
variables like frequency or vehicle size, when they represent decisions which are
taken simultaneously with topological ones. These non-topological variables have
great influence on PT network design, although they do not define directly its
structure.

Regarding chapter organization, Sect. 2 states the main concepts and notation
whereas Sect. 3 presents several models for PT network design including several
problem aspects. Section 4 presents relevant solution methods, both for the models
presented at Sect. 3 as for other models whose solution approaches exhibit key
algorithmic concepts. Section 5 presents a compilation of the main bibliography
in chronological order, whereas Sect. 6 offers perspectives for future research in the
topic.



17 Public Transportation 541

2 Background

2.1 Basic Concepts and Notation

The physical structure of PT systems suggests a direct network representation. The
elements of the network have attributes which represent parameters of the users
(people who use the services), the operators (companies or agencies which offer the
services) and the whole society (typically related to infrastructure building).

Let G be a directed graph with corresponding set of nodes N which represents
junctions, stops or stations and set of arcs A which represents sections of streets or
rails between nodes. There are several ways to build the graph model G from real
data; the international community has not agreed in a single standard one (Heyken
Soares et al. 2019). Given that in many cases PT systems exhibit a symmetric pattern
of services, we also consider an undirected variant of G with corresponding sets of
vertices V and edges E . An arc a ∈ A (edge e ∈ E ) can be identified by its
corresponding ordered (unordered) pair of endpoint nodes (i, j) (vertices [i, j ]).
Also, for each arc a ∈ A we define user cost cua ≥ 0 which represents the cost
(usually travel time) experienced by the user when traversing a, and operator cost
coa ≥ 0 which represents the cost incurred by the operator due to offering a service
which traverses a (usually travel time or distance). Undirected versions of both user
and operator cost are defined for edges e ∈ E , namely, cue and coe respectively. In
general terms, each arc a ∈ A has capacity ua ≥ 0 which states the maximum
flow that can traverse a per time unit. The entities which flow over arcs can be
either persons (mostly referred as users or passengers) or vehicles (buses, trains),
depending on the specific context. Thus, if an arc represents a physical element
(street or rail section), the flow is measured in terms of vehicles and its magnitude
is directly proportional to the frequencies of the services which operate over the arc.
On the other hand, if an arc represents a route section, the flow is measured in terms
of passengers and its magnitude is directly proportional to the demand attracted by
the route, i.e., the passengers traveling on-board the vehicles operating the route.
The passenger demand for PT is modeled as a set of commodities K . Each element
k ∈ K has origin and destination nodes O(k) and D(k), respectively, and demand
(passengers per time unit in a given time horizon) dk > 0 between O(k) ∈ N and
D(k) ∈ N . In the context of PT systems, K defines an origin-destination (OD)
matrix and each element k ∈ K is called OD pair. These commodities share the
same network, therefore, when applicable, they are collectively constrained by arc
capacities. The demand corresponding to OD pair k ∈ K is said to be covered
if O(k) and D(k) are connected by the PT network, independent on its capacity.
Moreover, if the network capacity allows flowing the whole amount dk , the demand
is also said to be satisfied.

A PT route is defined as a sequence of adjacent nodes or vertices in G and it has
a cyclic pattern. When defined in terms of undirected edges, it is assumed that it
operates in both directions. On the other hand, directed routes should be defined as
cycles in G . Let R be the set of all routes in G according to this definition. In the



542 A. Mauttone et al.

most general case, a route stops at every node where it passes. Therefore, passengers
can access the corresponding service (either to board or to alight) in all those nodes.
Each route r ∈ R has frequency fr ≥ 0 which expresses the number of vehicles
per time unit operating the route. The special case fr = 0 is sometimes used to state
that route r is disabled. A route with its frequency is sometimes referred as a line.

The operation cost of routes depends on both distance and time. Assuming a
constant average speed, the distance component of the variable cost of a route
r ∈ R is proportional to its cycle time

∑
a∈r coa . Moreover, the time component

is proportional to its frequency fr . A combined measure of the variable cost can
be defined as fr

∑
a∈r coa , which stands for the number of vehicles that operate

simultaneously in r . In the most general case, this measure is taken as a proxy for
operation cost.

Regarding user cost, the PT network determines one of its main attributes: travel
time. For OD pair k ∈ K , it is assumed without loss of generality that users travel
along the shortest path defined by the enabled arcs, which can be formulated as

Minimize
∑

a∈A
cuaxa (17.1)

Subject to
∑

a∈A +n xa −∑a∈A −n xa = wnk, ∀ n ∈ N , (17.2)

0 ≤ xa ≤ ua, ∀ a ∈ A , (17.3)

where sets A +n ⊆ A and A −n ⊆ A denote outgoing and incoming arcs respectively
of node n ∈ N and wnk is equal to dk if n = O(k), −dk if n = D(k) and 0
otherwise.

Formulation (17.1)–(17.3) denotes a minimum cost flow problem (Ahuja et al.
1993), where decision variable xa represents the flow of passengers over arc a.
Moreover, the value ua defines a capacity constraint for arc a ∈ A . Thus, if a
is enabled because its corresponding physical link is built and there is a line which
operates over it, a sufficiently large value of ua will allow the entire demand dk
to flow over a. This is the case in which all passengers follow the same (shortest)
path from O(k) to D(k). But if ua values are not large enough, some passengers
are forced to take other paths with larger cost due to insufficient capacity in the
shortest path, which gives rise to a capacitated user equilibrium with constant arc
cost (Correa et al. 2004). This is a variation of the classical equilibrium in private car
networks where the cost of each arc depends on its flow, therefore all different paths
followed by the demand corresponding to the same OD pair have the same cost
(Sheffi 1985). Typically, arc capacities in PT networks are defined by the capacity
of the infrastructure (allowable speed, number of lanes) and the services (route
frequency and vehicle capacity). In PT network design models, these elements can
be either fixed parameters as well as decision variables. In any case, let Pk ∈ A
(E in the undirected version) denote the set of arcs (edges) with flow greater than
zero in the optimal solution of (17.1)–(17.3). If capacities allow the whole demand



17 Public Transportation 543

dk to flow over the same path, then Pk denotes the shortest path between O(k) and
D(k). Otherwise, it denotes the set of arcs corresponding to all the paths followed
by the demand. Any of these paths can represent either direct trips (using a single
line) or trips with transfers (using two or more lines), depending on the modeling of
the network and the hypothesis assumed regarding passenger behavior.

So far, formulation (17.1)–(17.3) represents reasonably the passenger behavior
taking into account only the on-board travel time. Walking time can also be
modeled using this formulation, by including specific nodes that represent trip
origins and destinations (e.g., nodes representing geographical zones) and walking
arcs connecting these nodes with the stops and stations. However, in some cases
the waiting time should also be considered, either as an attribute for shortest path
calculations or as a parameter for evaluating system performance. The waiting
time at the stop is non-linearly related to the frequency of the line or set of lines
which lead to destination. This phenomenon entails more complex formulations.
Moreover, the effect of capacity over the waiting time and the flow distribution on
lines leads to even more complex formulations with respect to passenger behavior.

2.2 Problem Nomenclature, General Formulation and Solution
Approach for Public Transportation Network Design

Public transportation network design involves managing several levels of networks.
In this context, we denote as PND (Physical Network Design) the problem of
designing the physical network, i.e., decisions related to building dedicated bus
lanes, rail or metro lines. Moreover, we denote as RND (Route Network Design)
the problem of designing the routes over an existing physical network. This may
comprise the design of a single route with a particular goal or the design of a
complete set of routes to satisfy the whole demand of a given scenario.

In order to formulate a general optimization model for public transportation
network design, firstly we can identify topological and non-topological decision
variables (Farahani et al. 2013), namely, Xt and Xn respectively. In the first group
there are decisions related to nodes and arcs of G , e.g., station location, rail
building or route structure. Relevant non-topological decision variables include
route frequency and vehicle capacity. Moreover, in PT network design models
we need variables that represent the behavior of passengers, namely, Xb. These
variables are not controlled directly by the planner, however, they depend on his
decisions regarding infrastructure building and service provision. For that reason,
usually they are modeled explicitly since they determine a relevant component of
system performance.

The objective function expresses the goal of the planner, which may take several
forms. It can be either a direct formulation of the interests of both users and
operators, or it can represent a more general system goal. Very often, the planner
is forced to manage opposite interests. For instance, a high number of routes with



544 A. Mauttone et al.

high frequencies contribute to increase the level of service from the viewpoint of
the user, but it causes high operation costs as well, which might not be sustainable
in the economic sense. This leads to consider multiobjective formulations (Ehrgott
2005).

The modeling of passenger behavior entails considering a hierarchical process
where the planner makes a decision (e.g., regarding routes) and the passengers
choose their routing over those services, producing flow values which are necessary
for the planner in order to fully compute its measure of system performance. Despite
the fact that this hierarchical process in some cases can be modeled properly as a
standard optimization problem, its most general formulation entails a multiple-level
(more specifically, two-level or bilevel) formulation (Bard 1998).

Finally, the constraints can be of several types, ranging from criteria of the
planners (which may include performance indicators of users, operators and the
overall system) to physical constraints regarding route structure, infrastructure and
vehicle capacity. Budgetary constraints imposed over infrastructure building and
service operation are often included as well.

A generic formulation for the public transportation network design problem
can be defined as (17.4)–(17.7). For m > 1 the objective function is a vector
which represents several goals which should be taken into account simultaneously.
Constraint (17.5) may take standard forms like equalities or inequalities. Con-
straint (17.6) states that passenger behavior variables Xb should take the optimal
value of an additional optimization problem, where X̄b are decision variables and
H states the criterion of the users for traveling over the network set by the planner
through fixed values Xt and Xn, constrained by function Z. An example of this
second level optimization problem is the shortest path routing stated by (17.1)–
(17.3).

Minimize [F1(X
t ,Xn,Xb), . . . Fm(X

t ,Xn,Xb)] (17.4)

Subject to G(Xt ,Xn,Xb) ≤ 0, (17.5)

Xb = argmin H(Xt ,Xn, X̄b), (17.6)

Subject to Z(Xt ,Xn, X̄b) ≤ 0. (17.7)

Both PND and RND addressed as optimization problems, exhibit several sources
of complexity. The underlying network design problem already has a combinatorial
structure which entails high computational complexity (Johnson et al. 1978). The
feasible space of topological variables of RND is huge, given the size of the set R
of all possible routes. Passenger behavior sub-models usually included as the second
level problem in (17.4)–(17.7) add complexity to the overall formulation, especially
when the more complex variants of (17.1)–(17.3) are considered. The multiobjective
and multilevel structure poses the need for specific resolution methods, which can



17 Public Transportation 545

be either exact or heuristic. In general terms, exact methods always rely over an
explicit mathematical programming formulation. Conversely, these formulations
are often used to implement heuristic methods instead of exact ones. The RND
problem is approached by two different strategies in order to determine the values
of topological variables Xt : (1) generating a pool of many good candidate routes
(which we call route generation) and then selecting the optimal subset (route
selection) and (2) generating a set of routes which constitutes a feasible solution,
which may be improved in a further stage (route set generation and improvement).
Moreover, heuristic and metaheuristic methods for RND often decouple the sub-
problems of determining the optimal values for non-topological variables Xn

and passenger behavior variables Xb. The resolution of these sub-problems are
coded into specific sub-routines which are called appropriately during the overall
optimization process.

3 Models for Public Transportation Network Optimization

In this section we present several models for both PND and RND problems. The
passenger behavior appears explicitly on RND, since a full characterization of
the public transportation services (lines) is modeled. For that reason Sects. 3.1–
3.4 focus on RND, assuming a physical network already established. The models
presented apply to different PT modes, which share common elements in the context
of strategic and tactical planning, namely, networks, lines, passengers, vehicles,
capacities and budgetary constraints. Differences among the general hypotheses
assumed in the models presented, are mainly due to the specific transport mode
under discussion. Thus, in models for intercity railway line planning (Sect. 3.1),
the underlying network is sparse and the passengers are assumed to schedule their
arrival to the station according to the timetable. In models for bus line planning
(Sect. 3.2) the underlying network (streets) is assumed to be dense. In bus based
systems including services with different characteristics regarding frequency and
regularity, the modeling of waiting time is relevant (Sect. 3.3). Whenever line
capacity comes into play (Sect. 3.4), the services should be designed taking into
account the reaction of the users. The issue of transfers between lines appears in
almost every medium to large sized scenario. Transfers have a great impact on both
users (perceived level of service) and operators (number of lines, which influences
operations cost), and its modeling is not straightforward.

Table 17.1 provides a list of main symbols used in this section. Moreover, the
nonnegative real variable x is used to denote flow, either over arcs a, routes r and
paths p, also indexed by commodity k. Similarly, the binary variable y is used to
denote the decision of including a route r or line l into the solution.



546 A. Mauttone et al.

Table 17.1 Definitions of main symbols

Symbol Definition

G Graph representing the underlying network

N (V ) Nodes (vertices) of the graph

A (E ) Directed arcs (undirected edges) of the graph

A +n (A −n ) Incoming (outgoing) arcs to (from) node n

cua (cue ) User cost of arc a (edge e)

coa (coe ) Operator cost of arc a (edge e)

ua Capacity of arc a

K Set of commodities (OD pairs)

O(k) (D(k)) Origin (destination) node of commodity k

dk Demand of commodity k

wnk Equal to dk if n = O(k), −dk if n = D(k) and 0 otherwise

R Set of all routes defined over G

R0 Pool of candidate routes

fr Frequency of route r

3.1 User and Operator Oriented Models with Fixed Passenger
Behavior

In railway systems it is reasonable to assume that services will be provided along
shortest paths from passenger viewpoint over the physical network. This allows
introducing the system-split hypothesis, which states that passengers always travel
along shortest paths in G (with respect to cost cua ) independently of the routes.
Consequently, the passenger behavior can be fixed, thus simplifying the models by
solving a priori problem (17.1)–(17.3) for each commodity k ∈ K and loading the
corresponding flows over the network links.

Model (17.8)–(17.13) selects an optimal subset of routes with their correspond-
ing frequencies, from a given pool R0 ⊆ R of routes defined over the physical
network (Bussieck et al. 1997). The model adopts the undirected versions of both
G and R, and takes into account demand data given as an OD matrix. The system
performance is represented by the amount of direct demand satisfied, denoted by
xrk for route r ∈ R0 and OD pair k ∈ K .

Constraint (17.9) bounds the passenger flow (thus preventing infinite values) by
the demand of each OD pair, while constraint (17.10) links passenger flow with
the capacity of each route r , which is defined as the product of the train capacity
C and the route frequency fr . Finally, constraint (17.11) states that the sum of the
frequencies of all routes passing by edge e must be equal to the load of that edge
(te, resulting from the fixed system-split flows computed a priori) divided by the
train capacity. This last constraint prevents unnecessary high frequencies by setting
values which ensure route capacity. The routes included in the solution are those r
such that fr > 0.



17 Public Transportation 547

Maximize
∑

r∈R0

∑

k∈K ,Pk⊆r
xrk (17.8)

Subject to
∑

r∈R0,Pk⊆r xrk ≤ dk, ∀ k ∈ K , (17.9)
∑

k∈K ,e∈Pk⊆r xrk ≤ Cfr, ∀ e ∈ E , r ∈ R0, (17.10)
∑

r∈R0,e∈r fr = �te/C�, ∀ e ∈ E , (17.11)

xrk ≥ 0, ∀ r ∈ R0, k ∈ K , (17.12)

fr ∈ Z+, ∀ r ∈ R0. (17.13)

Note that depending on the routes included in the pool R0, the whole demand
dk,∀k ∈ K will be satisfied (either directly or indirectly) or not. If for each k ∈ K ,
the pool R0 includes at least one route comprising both O(k) and D(k), the whole
demand is likely to be satisfied directly. This kind of solution does not take into
account explicitly the interest of the operator, since there is not an explicit upper
bound on the number of lines. For this reason, formulation (17.8)–(17.13) is referred
as user oriented.

On the other hand, operator oriented models usually seek to minimize operation
costs (Goosens et al. 2004). We use the concept of line to define set R̂0 = R0 ×
F × S , where F ⊂ Z+ denotes possible values of frequencies and S ⊂ Z+
denotes possible values for number of carriages, both corresponding to each route
r ∈ R0. Each element l ∈ R̂0 has route rl , frequency fl and number of carriages sl .
Model (17.14)–(17.18) also assumes an a priori system-split loading of OD flows
to each edge e of the network, which determines the required frequency fe and
number of carriages se. Parameter kl states the line cost (including fixed and variable
components per train and carriage), while yl is a binary decision variable which
states whether or not to include line l ∈ R̂0 in the solution.

Minimize
∑

l∈R̂0

klyl (17.14)

Subject to
∑

l∈R̂0(e)
flyl ≥ fe, ∀ e ∈ E , (17.15)

∑
l∈R̂0(e)

flslyl ≥ ce, ∀ e ∈ E , (17.16)
∑

l∈R0,rl=r yl ≤ 1, ∀ r ∈ R0, (17.17)

yl ∈ {0, 1}, ∀ l ∈ R̂0. (17.18)

Constraints (17.15) and (17.16) ensure capacity fulfillment by setting appropriate
values of frequency and number of carriages, where R̂0(e) = {l ∈ R̂0/e ∈ rl}.



548 A. Mauttone et al.

Constraint (17.17) ensures that for each route r ∈ R0, at most one line from R̂0 is
selected.

Note that formulation (17.14)–(17.18) minimizes operation costs, while passen-
gers’ interest is taken into account by the system-split hypothesis and the constraints
which ensure sufficient capacities in the selected lines.

3.2 Explicit Modeling of Passenger Behavior

If the physical network is dense, there are many possibilities for defining routes.
This is the case of bus based systems, where the physical network is defined in
terms of the streets. In this scenario, the system-split approach is not a reasonable
assumption. Therefore, since the demand flows cannot be fixed a priori, the
passenger behavior is represented explicitly by means of specific decision variables
(Borndörfer et al. 2007). For route r ∈ R, let yr be a binary (topological) variable
which states whether or not r is included in the solution and let fr be a real
(non-topological) variable which represents its frequency. While routes are defined
over the undirected version of G , passenger paths are defined over its directed
counterpart. Let P be the set of all directed passenger paths in G and let P(k) ⊆P
be the set of paths from O(k) to D(k). The path-based formulation is defined
by (17.19)–(17.25), where the behavioral variable xp stands for the amount of flow
over path p.

Minimize
∑

p∈P

∑

a∈p
cuaxp +

∑

r∈R

(
k
f
r yr + kvr fr

)
(17.19)

Subject to
∑

p∈P(k) xp = dk, ∀ k ∈ K , (17.20)
∑

p∈P/a∈p xp ≤
∑

r∈R/a∈r C
p
r fr , ∀ a ∈ A , (17.21)

∑
r∈R(e) fr ≤ Cv

e , ∀ e ∈ E , (17.22)

fr ≤ Fyr, ∀ r ∈ R, (17.23)

yr ∈ {0, 1}, fr ≥ 0, ∀ r ∈ R, (17.24)

xp ≥ 0, ∀p ∈P. (17.25)

Unlike the models presented in Sect. 3.1, objective function (17.19) represents
simultaneously the interest of both users and operators. The first term accounts
for total travel time of users while the second one groups both fixed and variable
operator cost, using parameters k

f
r and kvr respectively for route r ∈ R. Con-

straint (17.20) imposes flow conservation for passenger demand over paths. Line
capacity is ensured by constraint (17.21), where parameterCp

r stands for the number



17 Public Transportation 549

of places in vehicles performing route r . Similarly, constraint (17.22) ensures that
lines passing by edge e (street section) do not surpass collectively its capacity
(measured in terms of vehicles per time unit), stated by parameter Cv

e . Finally,
constraint (17.23) states that the frequency of route r can be greater than zero only if
r is part of the solution, where F is a parameter whose value should be sufficiently
high.

Formulation (17.19)–(17.25) denotes a multicommodity flow problem with
capacities imposed to both route frequencies and passenger flows. The first term
of the objective function ensures that passengers follow the shortest path over the
network resulting from the enabled routes. Moreover, two issues are worth to be
mentioned. First, due to constraint (17.21), the flow of a given OD pair k ∈ K
may be split into several paths with different cost due to insufficient capacity on
the shortest path (capacitated user equilibrium). Second, transfers between lines are
ignored, since the flow over a specific path is enabled by constraint (17.21) if each of
its arcs belongs to at least one route enabled by constraint (17.23). This means that
in the optimal solution, passengers may be forced to perform an arbitrary number
of transfers between routes. The first issue is further discussed in Sect. 3.4 while
the second one may be approached by using the expanded network Ĝ (R0) shown
in Fig. 17.1, where each node of G is replicated for each r ∈ R0 ⊆ R. Each arc is
also replicated for each route, which allows to model different costs for different
lines passing by the same arc. Transfer arcs are added to connect nodes which
represent the same stop or station for different lines. Finally, boarding and alighting
arcs are added to connect origins and destinations with stops or stations. By using
this expanded network, transfers between routes can be weighted and counted in the
optimization models.

3.3 Including Waiting Time

In public transportation systems, waiting time is recognized as one of the most
onerous components of the user total travel time. In some cases, ignoring waiting
time in the modeling may be justified reasonably. For instance, users of intercity
services with low frequency can schedule their arrivals to the stop or station,
assuming that timetable information is available and reliable. Moreover, users of
metro or rapid transit systems may experience low waiting time due to availability
of high frequency services. However, in other systems like most of bus based ones,
modeling of waiting time is relevant in order to state a realistic scenario.

To do that, an expanded network as shown in Fig. 17.1 (without transfer arcs) is
used (Cancela et al. 2015), where A b ⊂ A denotes the set of boarding arcs.

Over this network, we can formulate the problem of selecting the optimal subset
of routes from a provided pool R0 and setting the frequency for each selected
route, taken from a discrete set of values F = {F1, . . . Fm} indexed by q. This
discretization of frequencies is introduced to obtain a linear formulation. Each
element of F (therefore, each possible value of frequency) has its own boarding



550 A. Mauttone et al.

Fig. 17.1 Expanded network
comprising two routes
passing by two common
stations

Station node Route node

Travel arc Transfer arc

Boarding arc Alighting arc

arc in the network. Let yr be a binary topological variable which expresses whether
route r ∈ R0 is selected and frq be a non-topological binary variable which states
that frequency Fq is assigned to route r . Moreover, let xak be the amount of demand
corresponding to OD pair k which flows over arc a and let znk be the waiting time
multiplied by the flow of OD pair k at node n (both x and z are behavioral variables).
The maximum number of available vehicles is denoted by parameter B.

Minimize
∑

k∈K

⎛

⎝
∑

a∈A
cuaxak +

∑

n∈N
znk

⎞

⎠ (17.26)

Subject to
∑

r∈R0
2
∑

q∈F Fqfrq
∑

e∈r coe ≤ B, ∀ k ∈ K , (17.27)
∑

a∈A+
n
xak −∑a∈A−

n
xak = wnk, ∀ n ∈ N , k ∈ K , (17.28)

xak ≤ F (a)znk, ∀ a ∈ A b+, n ∈ N , k ∈ K , (17.29)

xak ≤ dkyR0(a), ∀ a ∈ A , k ∈ K , (17.30)

xak ≤ dkfR0(a)F(a), ∀ a ∈ A b, k ∈ K , (17.31)
∑

q∈F frq = yr ∀ r ∈ R0, (17.32)

xak ≥ 0, ∀ a ∈ A , k ∈ K , (17.33)

znk ≥ 0, ∀ n ∈ N , k ∈ K , (17.34)

yr ∈ {0, 1}, ∀ r ∈ R0, (17.35)

frq ∈ {0, 1}, ∀ r ∈ R0, q ∈ F . (17.36)

Formulation (17.26)–(17.36) minimizes user total travel time, including on-board
and waiting components. Constraint (17.27) imposes a limit on the number of
vehicles used, thus representing the interest of the operator, while constraint (17.28)



17 Public Transportation 551

is a typical flow conservation condition. Activation constraint (17.30) states that
demand can flow only over arcs of enabled routes, while a similar activation
constraint (17.31) states that demand can flow only over arcs corresponding to the
frequency assigned to each route. In these expressions, R0(a) and F (a) denote
the route from R0 and the frequency of F respectively, corresponding to arc
a ∈ A . Constraint (17.32) states that only one value of frequency from F can
be assigned to each route. Finally, constraint (17.29) models the fact that passengers
corresponding to OD pair k waiting at node n are distributed among the set of most
convenient lines (in the sense of overall expected travel time) that lead to their
destination. For fixed values of variables y and f , the result corresponds to the
optimal strategies passenger behavior model (Spiess and Florian 1989). That model
assumes that: (1) users seek to minimize the expected total travel time along the
network, (2) the waiting time is inversely proportional to the sum of the frequencies
of lines which lead to destination, and (3) the distribution of demand among these
lines is proportional to their frequencies. A direct formulation of these assumptions
followed by a series of algebraic transformations (Spiess and Florian 1989) allow
to observe that the formulation of this passenger behavior model corresponds to a
variation of the shortest path problem (17.1)–(17.3), where the waiting time term is
added in the objective function and the flow-splitting constraint (17.29) distributes
the demand flow among different routes passing by the same stop.

3.4 Multiple Objectives and Levels of Decisions

The models presented in previous sections consider decisions of different stake-
holders within a single formulation having a standard structure. In some cases this
can be a reasonable modeling approach, however, there are situations where a more
structured formulation is needed in order to model properly particular characteristics
of the problem, namely:

• Different stakeholders may have conflicting objectives, therefore it is impossible
to arrive to the best solution from a single point of view. In public transportation
systems we can observe this interplay between users and operators, which
reveals the multiobjective nature of the problem (Ehrgott 2005). The models
presented in Sect. 3.1 are biased by definition towards some of these specific
objectives. The models of Sects. 3.2 and 3.3 formulate implicitly multiobjective
problems and allow for exploring different compromise solutions by weighting
and constraining objectives.

• Some stakeholders may require to know the reaction of subordinate ones, in
order to fully determine their decisions. Since most public transportation network
design models are conceived to support decisions of the planners, the way
in which passengers use the routes should be modeled in order to know its
consequence over the system performance. This modeling requires considering
different levels of decisions, where there is a leader (the planner) who restrains



552 A. Mauttone et al.

decisions of a follower (the passengers), in order to arrive to an optimal solution
for the whole system. This characteristic of many passenger transportation
problems entails formulating a two-level (bilevel) optimization problem (Bard
1998). The models presented in Sects. 3.2 and 3.3 include variables which
represent decisions of the planner (y and f ) and the passengers (x and z), which
are pushed jointly towards the same direction by the objective functions and
constraints.

Model (17.37)–(17.43) optimizes simultaneously the objectives of users and
operators while ensuring sufficient capacity in the lines that passengers decide to
use (Goerigk and Schmidt 2017). Lines are taken from a provided set R0. Let Co

r

be the operation cost (e.g., length) of route r ∈ R0 and C ∈ N be the capacity of
vehicles, expressed in number of passengers. The remaining symbols are defined as
in previous sections.

The existence of two objective functions implies that the optimal solution is
the set of all efficient (or Pareto optimal) solutions, instead of a single optimal
solution. That set represents the whole range of optimal trade-off levels (in terms of
routes and frequencies) between both objectives of vector (17.37). The lower-level
problem (17.40)–(17.43) states that passengers move along the shortest path defined
by the routes enabled by the upper-level, i.e., those with fr > 0. Equation (17.40)
states that variable xak of the upper-level must take optimal values from its lower-
level counterpart x̄ak . Constraint (17.38) determines frequencies in order to allow
passengers moving along shortest paths with sufficient capacity. This means that
passengers perceive unlimited capacity in routes, therefore, for each OD pair
k ∈ K the demand dk is not split. Note that by eliminating objective (17.40) and
moving constraints (17.41)–(17.43) to the upper-level, we would obtain a (single
level) relaxation of the original problem where the routing of passengers follows a
capacitated user equilibrium.

Minimize [
∑

k∈K

∑

a∈A
cuaxak,

∑

r∈R0

frC
o
r ] (17.37)

Subject to
∑

k∈K xak ≤ fR0(a)C, ∀ a ∈ A , (17.38)

fr ∈ N, ∀ r ∈ R0, (17.39)

xak ∈ argmin
∑

a∈A cua x̄ak, (17.40)

Subject to
∑

a∈A+
n
x̄ak −∑a∈A−

n
x̄ak = wnk, ∀ n ∈ N , k ∈ K , (17.41)

x̄ak ≤ dkfR0(a), ∀ a ∈ A , k ∈ K , (17.42)

x̄ak ∈ N, ∀ a ∈ A , k ∈ K . (17.43)



17 Public Transportation 553

3.5 Other Relevant Models

The problem of route design in bus rapid transit systems exhibits particular charac-
teristics. First, routes are defined over predefined corridors with linear structure,
unlike the mesh-like structure of the street network used by regular bus based
systems. Moreover, for a given corridor comprising n stations or stops, the number
of possible routes is 2n since limited-stop services are under consideration in order
to reduce travel time. Thus, several parallel routes can be defined over the same
corridor, each of them having a different set of stops. To model this feature, an
expanded network similar to the one shown in Fig. 17.1 can be used, where each
station is replicated for each route (Walteros et al. 2015). Both on-board (travel)
and walking arcs are considered, including arcs which model access to the stations,
walking inside the stations and changing of routes at the same station. Whenever
a route skips a station, the travel time between its previous and next stations must
fulfil the triangular inequality, thus modeling the fact that there is no delay due
to skipping intermediate stations. The domain of topological variables is defined
by all possible routes over all corridors. Typical constraints include arc capacity
given by the capacity of the stations and the lines. Also, frequencies can be included
as decision variables, which are bounded by a total number of available vehicles
(Schmid 2014).

The PND problem involves decisions regarding infrastructure building of metro
and rapid transit systems, namely, the construction of stations and tracks or
corridors. Even though decisions regarding routes is not a primary concern in the
context of this problem, they are taken into account due to their relevance regarding
system performance. A typical way of addressing this problem is to choose a small
number of routes, maximizing the coverage of a given demand between a set of
fixed points, subject to a maximum available construction budget (Laporte et al.
2007). The binary variables srv and yre state whether route r uses station v ∈ V and
edge e ∈ E respectively. The passenger behavior is modeled with binary variables
zk and xek which state whether OD pair k ∈ K uses the public transportation
network and whether it employs edge e ∈ E from that network, respectively. The
formulation aims at the maximization of trips attracted to the public network, where
the demand is split according to parameters which express the user cost of traversing
each edge by using the public mode or the private one (typically, the car mode). An
extension to this model considers the incremental building of the network across a
set T of given periods (Marín and Jaramillo 2008). In this context, some problem
data depend on the specific period t ∈ T , namely, the OD matrix, construction
costs, available budget and user cost within the public network. Clearly, in order to
support multistage long-term planning, the dimensionality of the model is increased.

A different modeling approach for incremental building of the physical network
proposes the design of single routes, which can be used as building block for
obtaining a complete system made by different routes (Dufourd et al. 1996). In
this case, decisions are the location of a single route, while maximizing population
coverage under constraints of number of stations and inter-station spacing. A route is



554 A. Mauttone et al.

defined as a sequence of potential stations s ∈ S taken from a grid which represents
a discretization of the study region. Each potential station s has coordinates in
the Euclidean space, which are used to estimate its population catchment based
in concentric geometrical shapes and the distance between the station and squares
of the grid which intersect with the shape. This is a variation of covering-path like
problems, which results in a non-linear integer mathematical program. Moreover,
variations of this model consider the coverage of origin-destination trips instead of
the maximization of population catchment (Laporte et al. 2005). This is done by
replacing the original objective function by an expression which relates coverage
areas of pairs of stations. Furthermore, this value is multiplied by a logit factor in
order to determine the share of demand that is attracted by the public network, which
is assumed to compete against a private mode. Construction costs are represented in
these models by constraints on maximum route length and number of stations.

4 Solution Approaches

In this section, we present an overview of solution methods for public transportation
network design problems, either related to models of Sect. 3 or to other ones
which exhibit relevant algorithmic ideas. In a first level, methods are classified into
mathematical programming and heuristic based ones, depending on whether they
are based on an explicit mathematical formulation.

4.1 Mathematical Programming Based Methods

Several problems related to PT network design are formulated as mathematical
programs, usually mixed integer linear ones (MILP). In most cases, small problem
instances can be solved by using commercial MILP software developed by third
parties. However, for larger instances some solution methods involve specific algo-
rithmic developments. These methods are strongly determined by the mathematical
formulation, since they exploit its properties. They can be classified into branch-
and-bound-and-cut and decomposition methods.

4.1.1 Branch-and-Bound-and-Cut Methods

Problem (17.8)–(17.13) is solved by using branch and bound with three problem
specific improvements: a relaxation obtained by aggregating variables xrk across
all routes r ∈ R0, cutting planes induced by constraints (17.10) and (17.11) in the
relaxed problem, and upper and lower bounds derived by using the relaxed problem.
It is worth noting that solutions of the relaxed problem ensure demand satisfaction



17 Public Transportation 555

by all lines collectively but they disregard the capacities of individual lines, therefore
they cannot be easily transformed into feasible solutions of the original problem.

Moreover, problem (17.14)–(17.18) is solved firstly by applying a formulation
strengthening through preprocessing, which involves coefficient reduction, variable
reduction linked to the coefficient reduction and constraint reduction using dom-
inance rules. Next, the branch and bound is enriched with cutting planes derived
from constraints (17.15) and (17.16), several branching rules and a primal heuristic
which builds a solution based in the resolution of the linear relaxation.

In order to find the set of efficient solutions for the multiobjective prob-
lem (17.37)–(17.43) the ε-constraint method is applied with respect to the second
objective. This means that the second component of vector (17.37) is transformed
into a constraint, which enables to find efficient solutions by varying its right-hand
side. Moreover, the bilevel structure of the problem is eliminated by substitution of
the lower-problem (17.40)–(17.43) by its optimality conditions. This can be done by
combining duality, specific properties of the shortest-path problem and linearization
techniques.

4.1.2 Decomposition Methods

Problem (17.19)–(17.25) is solved by a column generation approach, given the
super-polynomial number of variables. In a first step, the linear relaxation is solved
by iteratively pricing passenger and line path variables until no improvement is
found. The pricing of passenger variables is a polynomial-time solvable shortest
path problem. On the other hand, the pricing of line variables is a NP-hard maximum
weighted path problem. In a second step, the algorithm builds an integer solution
from the set of routes having nonzero frequencies in the optimal solution of the
linear relaxation. This is done by a greedy procedure which deletes routes as long
as all OD pairs are covered and the objective value decreases.

The PND problem of choosing a small number of routes while maximizing
demand coverage can be solved by applying the Benders decomposition (Marín
and Jaramillo 2009). The problem is partitioned into the master (which involves
variables related to infrastructure building) and the sub-problem (which deals with
passenger behavior). At each iteration of the algorithm, dual variables of the sub-
problem define optimality or feasibility cuts which are added to the constraints
of the master problem. Moreover, several extensions are introduced in order to
improve the performance of the method, namely, separation of the sub-problem by
OD pair, elimination of inactive cuts and specific shortest path algorithms to solve
the sub-problem. These improvements allow for solving realistic size instances of
the problem.



556 A. Mauttone et al.

4.2 Heuristic Based Methods

We refer as heuristic methods for PT network design to those which are not driven
by an explicit mathematical programming formulation. The algorithms presented
apply to variants of models presented in Sect. 3. The objectives to be optimized can
be, among others: user benefit maximization, operator cost minimization or total
welfare maximization (Kepaptsoglou and Karlaftis 2009). Moreover, the heuristic
methods for RND are classified into: (1) route generation and route selection,
and (2) route set generation and improvement. The first approach considers the
generation of single routes (route generation), which also can be used to compose a
pool of candidate routes from which an optimal subset will be then selected (route
selection). The second approach generates a complete solution in a first stage (route
set generation), which can be then improved (route set improvement).

4.2.1 Route Generation and Selection

In the context of RND, the route generation and selection approach entails generat-
ing firstly a pool of many good candidate routes, from which the optimal (or best
possible) subset is selected in a second stage. When generating the pool, usually
the following criteria are taken into consideration: (1) the candidate routes should
be good, both for users and operators, (2) each element of the pool has to fulfil
some constraints which can be verified at route level individually, e.g., route length,
duration and circuity, overlapping with existing routes, (3) a compromise between
a small pool concentrated in few routes and a larger pool which provides more
diversity should be managed. The usual way for generating candidate routes is
based on shortest paths between node pairs of G , which can include origins and
destinations of OD pairs given by set K or all possible node pairs taken from
N × N . These routes are expected to provide a good level of service in terms
of travel time from the users viewpoint. But since this pool could be very restrictive,
additional routes are usually generated. To do this, different ideas can be applied:
(1) taking a route generated from a shortest path P and generating additional similar
routes by successively eliminating each edge from P and recomputing the shortest
path, (2) generating k-shortest paths for every node pair of G (as we increase the
value of k, a larger and more diverse pool can be obtained). Since routes generated
from shortest paths could be biased towards the interest of users, alternative ways
of generating routes biased towards operator’s interest are taken into consideration,
for instance, including in the pool routes generated by analyzing the concentration
of demand flow in the arcs of G (Cipriani et al. 2012). To do that, a system-split like
procedure is first run, which produces the aggregated flow from all OD pairs k ∈ K
over each arc a ∈ A . Then, routes are generated by selecting highly loaded arcs and
adding links until specific termination criteria involving route constraints are met.
So far, the candidate routes generated by these methods do not collectively ensure
the fulfilment of global constraints at the route selection level, like demand coverage



17 Public Transportation 557

(in the topological sense) and demand satisfaction (in terms of capacity). This issue
can be addressed by a model based pool generation (over minimal spanning trees)
which ensures capacity fulfilment (Gattermann et al. 2016).

Heuristics based on route generation and selection involve a second phase where
the best possible subset of routes is selected from the pool of candidate routes. This
entails solving a set covering like problem, with a large number of variables. We
identify two approaches to solve this problem heuristically for RND: (1) genetic
algorithms based search, and (2) neighborhood based search. In the first group,
usually the route identifiers are coded into a chromosome which can be of either
fixed or variable length, thus allowing solutions with different number of routes. The
individuals (sets of routes, i.e., solutions to RND) are then evolved using classical
genetic operators like one point or two point crossover, and mutation. Note that
crossing two individuals entails exchanging routes between solutions. Regarding
neighborhood based search, a set of neighbors of a given solution to RND can be
defined by replacing each route by one of its contiguous (similar) elements in the
pool. Note that the structure of the routes defined during the pool generation does
not change due to the search process. Moreover, since the pool does not necessary
guarantee demand coverage of all demand OD pairs, the unsatisfied demand can be
included in the objective function to penalize this fact.

4.2.2 Route Set Generation and Improvement

The route set generation approach produces a complete solution for RND. Usually,
feasibility at both route and solution level is ensured. Most algorithms perform
an incremental construction, which can be either biased or unbiased. In the first
group, the main idea is to build some skeleton routes which are then enlarged by
inserting nodes until the whole demand given by set K is covered. Skeletons are
built by connecting high demand OD pairs, either enumerating and selecting the
best sequence of intermediate nodes or computing shortest paths. Then, additional
demand is covered by inserting nodes into the initial skeletons. However, the
node insertion should discard cases where the resulting route becomes too large,
circuitous or overloaded. The solutions generated by these methods are expected to
be good by construction, however, they can be improved in a further stage. On the
other hand, the unbiased approach aims at generating initial solutions which need to
be improved in a second stage. In this case, the route set generation method should
ensure diversity, while the route set improvement should ensure a comprehensive
exploration of the search space. Usually, the construction is performed by selecting
randomly an initial node and then adding randomly additional nodes. The solution
should guarantee minimal levels of demand coverage and connectivity. To do that,
usually all nodes of G should be reached by routes, and a reasonable number of
route intersections (which enable transfers) should be ensured.

The route set improvement entails either modifying existing routes or generating
new ones. We again identify two different approaches depending on the adoption
of genetic or neighborhood search. In the first group, problem specific genetic



558 A. Mauttone et al.

operators can be applied to the initial solution, namely, add/delete arc, route merge,
route break, route sprout and route crossover. Regarding neighborhood search,
a typical approach applies simple arc add/delete operators to each route of the
solution. A more complex neighborhood structure involves exploring alternative
deviating paths from an initial one, which can be modified at given points (Zhao and
Zeng 2008). It is worth noting that whatever the neighborhood structure is adopted,
any method for escaping from local optima can be used, e.g., simulated annealing
or tabu search.

A related methodology which falls within this category is the generation and
improvement of a single route in the context of PND. This is done by considering the
grid-based set of potential nodes and constructing either a random walk along one of
the two diagonals of the square grid (Dufourd et al. 1996) or a greedy biased initial
solution (Bruno et al. 2002). Then, local search is applied, where the neighborhood
of the solution is obtained by moving one of its stations to a contiguous position in
the grid.

4.2.3 Handling Specific Problem Features

Heuristic methods for PT network design often have to deal with two distinctive
problem characteristics: (1) the multiobjective structure due to existence of conflict-
ing objectives, and (2) the bilevel structure resulting from the passenger behavior
model.

The treatment of multiple objectives is sometimes performed implicitly, where
algorithms are conceived to balance the different objectives during solution con-
struction (Baaj and Mahmassani 1995; Mauttone and Urquhart 2009a). In this case,
the output is a single solution but, by changing appropriately some parameters,
different trade-off solutions can be obtained. A different approach consists of
solving heuristically a model which weights the different objectives into a single
function (Pattnaik et al. 1998). By changing the weights, different trade-off solutions
can be obtained. Finally, some other algorithms produce in a single run, an entire
set of trade-off solutions (Israeli and Ceder 1995; Mauttone and Urquhart 2009b;
Oliveira and Barbieri 2015). This is attained by means of specific operators and
parameter settings.

In the context of heuristics, whenever a solution is changed due to local
move or genetic operator, usually the passenger behavior model should be run
in order to evaluate the system performance under the new conditions. This
entails solving variants of the shortest path problem (17.1)–(17.3). In absence of
capacity constraints, the computation is equivalent to solving |K | independent
shortest path problems. But, if passengers are restrained by vehicle capacity, the
resulting multicommodity flow problem is more difficult to solve. In this case,
specific accelerating techniques can help to reduce computation time (Walteros et
al. 2015). Although more complex and detailed passenger behavior models exist
in the literature (Desaulniers and Hickman 2007), their complexity in PT network
optimization models and algorithms must be kept bounded, given the strategic and



17 Public Transportation 559

tactical characteristics of the problems involved. In any case, the computational
effort spent by calling the passenger behavior model is significant with respect to
the overall execution time of PT network design algorithms.

5 Bibliographical Notes

Some relevant surveys are worth to be mentioned before discussing the specific
literature on public transportation network design. In Schöbel (2012), the RND
problem is discussed from a mathematical programming perspective, providing
formalization for several concepts including the notion of user and operator oriented
models. Kepaptsoglou and Karlaftis (2009) review models and algorithms for
RND, proposing the classification of solution approaches into (1) candidate route
generation and route configuration and (2) route construction and improvement.
Laporte and Mesa (2015) review methodologies for PND, including the location of
stations, design of a single route and of the entire network. In Farahani et al. (2013),
an overview of methodologies for several urban transportation network design
problems is provided, including both private and public modes. The study focuses
in models and algorithms dealing with topological variables, presents a general
bilevel formulation for the problems and identifies problem instances reported in
the literature up to the year of publication. More recently, Iliopoulou et al. (2019)
review metaheuristic approaches to RND, identifying relevant algorithmic aspects
like route representation, repair and recombination.

Early work in public transportation network optimization consists of heuristics
and it can be traced from Lampkin and Saalmans (1967), where the heuristic for
route set construction based in skeletons and further node insertion is proposed.
This method was later extended by Silman et al. (1974), who include a route deletion
procedure and consider transfers between routes when computing demand coverage
and travel time. Dubois et al. (1979) tackle both PND and RND problems for bus
systems. Actually, the PND does not entail infrastructure building, instead it refers
to selecting the set of streets which will be used by the bus routes, which reduces
the size of the underlying network used as input in the RND problem. Unlike the
methods mentioned above, which allow for generating a route set from an empty
solution, the concept of route set improvement is developed by Mandl (1980). That
author proposes a method that applies insertion and deletion of nodes in routes and
interchange of parts between routes of an already existing solution. The route set
construction based on skeletons is resumed by Baaj and Mahmassani (1995), who
enrich the procedure for node selection and insertion. Also, these authors propose
the idea of building skeletons based on k-shortest paths instead of the shortest one,
in order to diversify the search during construction. Mauttone and Urquhart (2009a)
modify the node insertion procedure by proposing a pair insertion which seeks to
cover high demand OD pairs directly. More recently, Islam et al. (2019) propose
a greedy algorithm inspired by the work of Baaj and Mahmassani (1995), which



560 A. Mauttone et al.

builds routes between high demand OD pairs by appending shortest route segments
that consider both travel cost and demand coverage.

The first studies which apply metaheuristics to RND consist of genetic algo-
rithms. Pattnaik et al. (1998) solve the route selection problem by encoding the
identifiers of routes taken from a predefined pool, into a chromosome which can
be of either fixed or variable length. Further developments propose extensions to
include frequency encoding (Tom and Mohan 2003) and parallel implementations
(Agrawal and Tom 2004). Another relevant application of metaheuristics to route
selection in the context of RND is due to Fan and Machemehl (2006), who apply
simulated annealing to select the best subset of routes from a predefined pool of
candidates. Fan and Mumford (2010) apply simulated annealing for searching on
the space of route structure. A different application of genetic algorithms to RND is
proposed by Ngamchai and Lovell (2003) for the route set improvement problem,
implementing several problem specific operators which modify the structure of the
routes of the initial solution. More recent applications of metaheuristics involve the
use of ant and bee colony optimization (Nikolic and Teodorovic 2014; Szeto and
Jiang 2014; Yu et al. 2012) and particle swarm optimization (Kechagiopoulos and
Beligiannis 2014), either for construction or for improvement of solutions.

Mathematical programming approaches are more recent and they were firstly
applied to passenger rail transportation. Regarding RND, Bussieck et al. (1997)
proposed the user oriented model and the corresponding solution method based
in relaxations, cutting planes and bounds. The operator oriented model is due to
Claessens et al. (1998), who also present complexity results and a solution method
based in reformulation and lower bounding. Their work is resumed by Goosens
et al. (2004), who propose a solution method based on formulation strengthening
and branch and cut. Goosens et al. (2006) extend the model to allow lines with
different stopping patterns. While the studies mentioned above consider fixed
passenger behavior, Borndörfer et al. (2007) introduce a path-based model which
generates the routes. They also present complexity results and a solution method
based on column generation. Other formulations which include explicit modeling
of passenger behavior have been proposed by Guan et al. (2006) and Cancela et
al. (2015). Finally, other relevant work include the study of Schöbel and Scholl
(2006), who proposed the expanded network to account for transfers, previously
adopted by Spiess and Florian (1989) and later improved by Goerigk and Schmidt
(2017). Regarding PND problems, Laporte et al. (2007) propose a base formulation,
which is then extended by Marín and Jaramillo (2008). The single route location
problem is due to Dufourd et al. (1996), then extended by Laporte et al. (2005).
Latest developments in this line are due to Gutiérrez-Jarpa et al. (2017).

We should mention several studies which are relevant due to the treatment of
particular aspects of public transportation network design problems. Lee and Vuchic
(2005) model elastic demand by allowing a variable share of public transportation
demand from a given fixed overall demand and they study the influence of several
parameters over the resulting networks. Szeto and Jiang (2014) use information
from the mathematical formulation to reduce the number of calls to the passenger
behavior model in the context of a metaheuristic solving method. Bagloee and Ceder



17 Public Transportation 561

(2011) handle large size networks comprising up to 13,487 nodes, 52,742 arcs and
142,041 OD pairs. Mumford (2013) makes an effort to establish a set of benchmark
instances for public transportation network optimization.

Finally, it is worth noting the existence of a complementary stream of publi-
cations dealing with public transportation network design from a structural point
of view. Laporte et al. (2000) identify several network structures (star, cartwheel,
triangle and grid) and evaluate their effectiveness according to indexes that represent
the interest of passengers. In this line, more recently Fielbaum et al. (2018) apply
some of the models discussed in this chapter to cities with different structures
(monocentric, polycentric and dispersed) paying attention to the role of transfers,
thus, filling the gap between the different streams of research on the same topic.

6 Conclusions and Perspectives

Public transportation network design problems have been studied since more than
five decades ago. Several problem aspects are well explained by the existing models.
Moreover, several solution methods have been tested and documented, constituting a
rich basis for developing new ones. In the following, we identify current challenges
and future perspectives of this area of research.

Mathematical programming approaches face the challenge of solving huge mixed
integer linear problems (MILP). The small city used as test case for RND in
(Borndörfer et al. 2007) seems to establish the limit on the size of solvable instances
using this approach. Newer MILP solvers should be evaluated regarding exact
resolution, even considering formulations which incorporate additional problem
features like transfers (Schöbel and Scholl 2006), waiting time (Cancela et al. 2015)
and capacities (Goerigk and Schmidt 2017).

Metaheuristics have shown to be the most effective methods for solving medium
and large-sized problem instances. Nevertheless, they face the main challenge of
minimizing the calls to the passenger behavior model, which is the most critical
algorithmic component of the overall solution methods. Techniques like the one
proposed by Szeto and Jiang (2014), which attempts to discard unnecessary solution
evaluations should be explored. Regarding experimental evaluation of accuracy
of metaheuristics, the lack of a well established set of benchmark instances with
reference values is a weakness of the field. This situation needs to be addressed,
a remarkable contribution in this sense is the work of Mumford (2013). Recent
works have shown progress on the field (Iliopoulou et al. 2019), mainly in the
computational aspect of the methods that tackle the combinatorial complexity of the
problem, where more elaborated experiments are conducted regarding parameter
tuning, benchmark and reproducibility.

The modeling of passenger behavior under vehicle capacity constraints is a very
relevant aspect of public transportation network design models. The capacitated
user equilibrium modeled in Borndörfer et al. (2007) assumes that some users
are willing to choose longer paths with respect to other users traveling from the



562 A. Mauttone et al.

same origin to the same destination. This could be questionable in the context
of real systems. A different approach is adopted in the bilevel model of Goerigk
and Schmidt (2017), which ensures sufficient capacity for all users. However,
this entails taking into account two other issues: (1) solving the more complex
bilevel formulation, and (2) discussing whether real systems are able to implement
these solutions, mainly due to high frequency requirements. While the design of
uncongested public transportation systems can be a reasonable goal, sometimes
it is necessary to recognize that congestion plays a role in network design due to
limitations on the available resources. The effect of congestion over passengers
(especially over waiting time and route choice) leads to complex models (Gendreau
1984) which have been successfully addressed at the descriptive level (Cepeda et al.
2006), i.e., models that represent passenger behavior given a fixed set of routes.
However, normative models for congested public transportation network design
are much more difficult to solve, since they turn into mathematical programs with
equilibrium constraints (Colson et al. 2007).

Finally, other aspects of public transportation network design like stochastic
demand (An and Lo 2016) and integration of stages (Canca et al. 2017) also deserve
attention, due to their relevance at the practical level as for the challenge they pose
at both modeling and algorithmic levels. In fact, these issues have been recently
approached by the research community, as part of the effort to build models which
are able to better represent real life systems.

References

Agrawal, J., & Tom, V. M. (2004). Transit route network design using parallel genetic algorithm.
Journal of Computing in Civil Engineering, 18(3), 248–256.

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and
applications. Englewood Cliffs: Prentice-Hall

An, K., & Lo, H. K. (2016). Two-phase stochastic program for transit network design under
demand uncertainty. Transportation Research Part B: Methodological, 84, 157–181.

Baaj, M. H., & Mahmassani, H. S. (1995). Hybrid route generation heuristic algorithm for the
design of transit networks. Transportation Research Part C: Emerging Technologies, 3(1), 31–
50.

Bagloee, S. A., & Ceder, A. (2011). Transit-network design methodology for actual-size road
networks. Transportation Research Part B: Methodological, 45(10), 1787–1804.

Bard, J. F. (1998). Practical bilevel optimization, algorithms and applications. Berlin: Springer.
Borndörfer, R., Grötschel, M., & Pfetsch, M. E. (2007). Column-generation approach to line

planning in public transport. Transportation Science, 41(1), 123–132.
Bruno, G., Gendreau, M., & Laporte, G. (2002). A heuristic for the location of a rapid transit line.

Computers and Operations Research, 29(1), 1–12.
Bussieck, M. R., Kreuzer, P., & Zimmermann, U. T. (1997). Optimal lines for railway systems.

European Journal of Operational Research, 96(1), 54–63.
Canca, D., De-Los-Santos, A., Laporte, G., & Mesa, J. A. (2017). An adaptive neighborhood search

metaheuristic for the integrated railway rapid transit network design and line planning problem.
Computers and Operations Research, 78, 1–14.

Cancela, H., Mauttone, A., & Urquhart, M. E. (2015). Mathematical programming formulations
for transit network design. Transportation Research Part B: Methodological, 77, 17–37.



17 Public Transportation 563

Ceder, A., & Wilson, N. H. M. (1986). Bus network design. Transportation Research Part B:
Methodological, 20(4), 331–344.

Cepeda, M., Cominetti, R., & Florian, M. (2006). A frequency-based assignment model for
congested transit networks with strict capacity constraints: Characterization and computation
of equilibria. Transportation Research Part B: Methodological, 40(6), 437–459.

Cipriani, E., Gori, S., & Petrelli, M. (2012). Transit network design: A procedure and an application
to a large urban area. Transportation Research Part C: Emerging Technologies, 20(1), 3–14.

Claessens, M. T., van Dijk, N. M., & Zwaneveld, P. J. (1998). Cost optimal allocation of rail
passenger lines. European Journal of Operational Research, 110(3), 474–489.

Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of
Operations Research, 153(1), 235–256.

Correa, J. R., Schulz, A. S., & Stier-Moses, N. E. (2004). Selfish routing in capacitated networks.
Mathematics of Operations Research, 29(4), 961–976.

Desaulniers, G., & Hickman, M. D. (2007). Public transit. In G. Laporte & C. Barnhart (Eds.),
Transportation, handbooks in operations research and management science (Vol. 14, pp. 69–
127). Amsterdam: Elsevier

Dubois, D., Bel, G., & Llibre, M. (1979). A set of methods in transportation network synthesis and
analysis. Journal of the Operational Research Society, 30(9), 797–808.

Dufourd, H., Gendreau, M., & Laporte, G. (1996). Locating a transit line using tabu search.
Location Science, 4(12), 1–19.

Ehrgott, M. (2005). Multicriteria optimization. Berlin: Springer.
Fan, W., & Machemehl, R. B. (2006). Using a simulated annealing algorithm to solve the transit

route network design problem. Journal of Transportation Engineering, 132(2), 122–132.
Fan, L., & Mumford, C. (2010). A metaheuristic approach to the urban transit routing problem.

Journal of Heuristics, 16(3), 353–372.
Farahani, R., Miandoabchi, E., Szeto, W. Y., & Rashidi, H. (2013). A review of urban transportation

network design problems. European Journal of Operational Research, 229(2), 281–302.
Fielbaum, A., Jara-Díaz, S., & Gschwender, A. (2018). Transit line structures in a general

parametric city: The role of heuristics. Transportation Science, 52(5), 1092–1105.
Gattermann, P., Harbering, J., & Schöbel, A. (2016). Line pool generation. Public Transport, 9(1),

7–32.
Gendreau, M. (1984). Etude approfondie d’un modèle d’équilibre pour l’afectation de passagers

dans les réseaux de transports en commun. Ph.d. thesis, Université de Montréal, Publication
CRT-384.

Goerigk, M., & Schmidt, M. (2017). Line planning with user-optimal route choice. European
Journal of Operational Research, 259(2), 424–436.

Goossens, J.-W., van Hoesel, S., & Kroon, L. (2004). A branch-and-cut approach for solving
railway line-planning problems. Transportation Science, 38(3), 379–393.

Goossens, J.-W., van Hoesel, S., & Kroon, L. (2006). On solving multi-type railway line planning
problems. European Journal of Operational Research, 168(2), 403–424.

Guan, F., Yang, H., & Wirasinghe, S. C. (2006). Simultaneous optimization of transit line
configuration and passenger line assignment. Transportation Research Part B: Methodological,
40(10), 885–902.

Gutiérrez-Jarpa, G., Laporte, G., Marianov, V., & Moccia, L. (2017). Multi-objective rapid transit
network design with modal competition: The case of Concepción, Chile. Computers and
Operations Research, 78, 27–43.

Heyken Soares, P., Mumford, C., Amponsah, K., & Mao, Y. (2019). An adaptive scaled network
for public transport route optimisation. Public Transport, 11, 379–412.

Iliopoulou, C., Kepaptsoglou, K., & Vlahogianni, E. (2019). Metaheuristics for the transit route
network design problem: A review and comparative analysis. Public Transport, 11, 487–521.

Islam, K., Moosa, I., Mobin, J., Nayeem, M., & Rahman, M. (2019). A heuristic aided Stochastic
Beam Search algorithm for solving the transit network design problem. Swarm and Evolution-
ary Computation, 46, 154–170.



564 A. Mauttone et al.

Israeli, Y., & Ceder, A. (1995). Transit route design using scheduling and multiobjective pro-
gramming techniques. In J. Daduna, I. Branco, & J. P. Paixão (Eds.), Computer-Aided Transit
Scheduling: Proceedings of the Sixth International Workshop on Computer-Aided Scheduling of
Public Transport. Lecture Notes in Economics and Mathematical Systems (pp. 56–75). Berlin:
Springer.

Johnson, D. S., Lenstra, J. K., & Kan, A. H. G. R. (1978). The complexity of the network design
problem. Networks, 8, 279–285.

Kechagiopoulos, P., & Beligiannis, G. (2014). Solving the urban transit routing problem using a
particle swarm optimization based algorithm. Applied Soft Computing, 21, 654–676.

Kepaptsoglou, K., & Karlaftis, M. (2009). Transit route network design problem: Review. Journal
of Transportation Engineering, 135(8), 491–505.

Lampkin, W., & Saalmans, P. D. (1967). The design of routes, service frequencies, and schedules
for a municipal bus undertaking: A case study. Operational Research Quarterly, 18(4), 375–
397.

Laporte, G., Marín, A., Mesa, J. A., & Ortega, F. (2007). An integrated methodology for the
Rapid Transit Network Design Problem. In F. Geraets, L. Kroon, A. Schöbel, D. Wagner, & C.
Zaroliagis (Eds.), International Dagstuhl Workshop, Dagstuhl Castle, Germany, June 20-25,
2004, 4th International Workshop, ATMOS 2004, Bergen, Norway, September 16–17, 2004,
Revised Selected Papers (pp. 187–199). Berlin: Springer.

Laporte, G., & Mesa, J. A. (2015). The design of rapid transit networks. In G. Laporte, S. Nickel,
& F. Saldanha da Gama (Eds.), Location science (pp. 581–594). Cham: Springer.

Laporte, G., Mesa, J. A., & Ortega, F. (2000). Optimization methods for the planning of rapid
transit systems. European Journal of Operational Research, 122(1), 1–10.

Laporte, G., Ortega, F., Mesa, J. A., & Sevillano, I. (2005). Maximizing trip coverage in the
location of a single rapid transit alignment. Annals of Operations Research, 136, 49–63.

Lee, Y. J., & Vuchic, V. (2005). Transit network design with variable demand. Journal of
Transportation Engineering, 131(1), 1–10.

Mandl, C. E. (1980). Evaluation and optimization of urban public transportation networks.
European Journal of Operational Research, 5(6), 396–404.

Marín, A., & Jaramillo, P. (2008). Urban rapid transit network capacity expansion. European
Journal of Operational Research, 191(1), 45–60.

Marín, A., & Jaramillo, P. (2009). Urban rapid transit network design: Accelerated Benders
decomposition. Annals of Operations Research, 169(1), 35–53.

Mauttone, A., & Urquhart, M. E. (2009a). A route set construction algorithm for the transit network
design problem. Computers and Operations Research, 36(8), 2440–2449.

Mauttone, A., & Urquhart, M. E. (2009b). A multi-objective metaheuristic approach for the transit
network design problem. Public Transport, 1(4), 253–273.

Mumford, C. (2013). New heuristic and evolutionary operators for the multi-objective urban transit
routing problem. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (pp.
939–946).

Ngamchai, S., & Lovell, D. (2003). Optimal time transfer in bus transit route network design using
a genetic algorithm. Journal of Transportation Engineering, 129(5), 510–521.

Nikolic, M., & Teodorovic, D. (2014). A simultaneous transit network design and frequency
setting: Computing with bees. Expert Systems with Applications, 41(16), 7200–7209.

Oliveira, R., & Barbieri, C. (2015). Efficient transit network design and frequencies setting multi-
objective optimization by alternating objective genetic algorithm. Transportation Research Part
B: Methodological, 81(2), 355–376.

Pattnaik, S. B., Mohan, S., & Tom, V. M. (1998). Urban bus transit route network design using
genetic algorithm. Journal of Transportation Engineering, 124(4), 368–375.

Schmid, V. (2014). Hybrid large neighborhood search for the bus rapid transit route design
problem. European Journal of Operational Research, 238(2), 427–437.

Schöbel, A. (2012). Line planning in public transportation: Models and methods. OR Spectrum,
34(3), 491–510.



17 Public Transportation 565

Schöbel, A., & Scholl, S. (2006). Line planning with minimal traveling time. In L. G. Kroon &
R. H. Möhring (Eds.), 5th Workshop on Algorithmic Methods and Models for Optimization of
Railways (ATMOS’05). Wadern: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

Sheffi, Y. (1985). Urban transportation networks: Equilibrium Analysis With Mathematical
Programming Methods. Englewood Cliffs: Prentice-Hall

Silman, L. A., Barziliy, Z., & Passy, U. (1974). Planning the route system for urban buses.
Computers and Operations Research, 1(2), 201–211.

Spiess, H., & Florian, M. (1989). Optimal strategies: A new assignment model for transit networks.
Transportation Research Part B: Methodological, 23(2), 83–102.

Szeto, W. Y., & Jiang, Y. (2014). Transit route and frequency design: Bi-level modeling and hybrid
artificial bee colony algorithm approach. Transportation Research Part B: Methodological, 67,
235–263.

Teodorovic, D., & Janic, M. (2016). Transportation engineering, theory, practice and modeling.
Oxford: Butterworth-Heinemann

Tom, V. M., & Mohan, S. (2003). Transit route network design using frequency coded genetic
algorithm. Journal of Transportation Engineering, 129(2), 186–195.

Vuchic, V. R. (2007). Urban transit, systems and technology. New York: Wiley.
Walteros, J. L., Medaglia, A. L., & Riaño, G. (2015). Hybrid algorithm for route design on bus

rapid transit systems. Transportation Science, 49(1), 66–84.
Yu, B., Yang, Z.-Z., Jin, P.-H., Wu, S.-H., & Yao, B.-Z. (2012). Transit route network design-

maximizing direct and transfer demand density. Transportation Research Part C: Emerging
Technologies, 22, 58–75.

Zhao, F., & Zeng, X. (2008). Optimization of transit route network, vehicle headways and
timetables for large-scale transit networks. European Journal of Operational Research, 186(2),
841–855.



Chapter 18
Hub Network Design

Ivan Contreras

1 Introduction

Hub networks are frequently employed in many transportation, telecommunication
and computer systems to efficiently route commodities between many origins and
destinations. A distinguishing feature of hub networks is the use of transshipment,
consolidation, or sorting points for commodities, called hub facilities, to connect a
large number of origin/destination (O/D) pairs by using a small number of links.
Commodities having the same origin but different destinations are consolidated
when routed to the hubs and are then combined with other commodities having
different origins but the same destination. The use of hub facilities helps centralize
commodity handling and sorting operations, reduce set-up costs, and achieve
economies of scale on routing costs through the consolidation of flows. Hub
networks can be seen as hierarchical networks which, in their most basic form,
contain two levels: an access-level network connecting O/D nodes to hubs, and a
hub-level network connecting hub nodes between them. The design of hub networks
involves selecting nodes to place hub facilities, determining the arcs to connect O/D
nodes and hubs, and selecting the paths to route commodities.

Hub network design problems (HNDPs) lie at the heart of network design
planning in transportation and telecommunication systems. Application areas of
HNDPs in transportation include air freight and passenger travel, postal delivery,
express package delivery, trucking, liner shipping, public transportation, and rapid
transit systems. Demand corresponds to passengers, mail, express packages, or
goods carried by airplanes, trucks, trains, or vessels moved on physical networks
such as roads and railways or through the air or water. Hub facilities are sorting

I. Contreras (�)
Concordia University and Interuniversity Research Centre on Enterprise Networks,
Logistics and Transportation (CIRRELT), Montreal, QC, Canada
e-mail: icontrer@encs.concordia.ca; ivan.contreras@concordia.ca

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_18

567

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_18&domain=pdf
mailto:icontrer@encs.concordia.ca
mailto:ivan.contreras@concordia.ca
https://doi.org/10.1007/978-3-030-64018-7_18


568 I. Contreras

centers or transportation terminals in which one or more transportation modes
interact. Hubs are used as intermediate facilities to consolidate flows, perform an
activity to commodities (i.e., sort, assemble, label), or transfer them to other modes
of transportation. Consolidation of flows at hubs enables economies of scale on
transportation costs, not only on the routing of flows between hubs but also between
O/D nodes and hubs. Sometimes hubs are required route commodities. Some other
times hubs are not required but desirable for economical reasons.

Applications of HNDPs in telecommunications arise in the design of distributed
data networks, where commodities correspond to electronic data that are routed
over a variety of physical links such as co-axial cables and fiber optic links or
through the air via satellite channels and microwave links. Hub facilities correspond
to hardware such as switches, concentrators, and multiplexors which help to provide
efficient connections between tributary and backbone networks. Large set-up costs
for hub facilities and communication links, in combination with economies of scale
in data transmissions and network utilization, motivate the use of hub-and-spoke
architectures.

HNDPs constitute a challenging class of network optimization problems involv-
ing two types of design decisions: (1) the location of hub facilities at nodes of an
underlying network, and (2) the activation of various classes of links to connect
origin, destinations, and hubs. Given the inherent complexity of the interaction
between these two types of decisions, HNDPs were first studied from a facility
location perspective. In particular, the so-called hub location problems (HLPs) focus
on the interaction between hub facilities and consider the location of hubs as the key
decision. Most HLPs use a set of assumptions that simplify the design and routing
decisions to the point of being completely determined by the allocation decisions
of O/D nodes to hubs. When such simplifying assumptions are relaxed, HNDPs are
more closely related to multicommodity network design problems (MNDPs). In fact,
HNDPs are a particular class of MNDPs in which node selection decisions are taken
into account. A specific class of such general HNPDs, denoted as hub arc location
problems (HALPs), have also been studied in which a set of hub arcs, and their
associated hub nodes, need to be selected. In this case, the modeling of O/D paths
become more involved as the allocation of nodes to hubs does no longer determine
the routing of flow through the hub network. HALPs retain some assumptions of
HLPs, specially the ones regarding the design of the access-level network. The
rich variety of applications has also given rise to HNDPs with specific hub network
topologies and to more general models involving design decisions on both hub and
access levels as well as additional node selection decisions.

This chapter studies HNPDs from a network design perspective. We focus
on the role network design and routing decisions play in the formulation and
solution of various classes of HNDPs. Section 2 starts with some preliminaries,
including the key features of hub networks, the types of decisions that can be taken
into account, and how these decisions interact between them. We also describe
commonly considered assumptions and properties of HNDPs and how these impact
their formulation. In particular, Sect. 3 introduces different formulations for various
classes of HLPs problems considering three allocation patterns: multiple, single, and



18 Hub Network Design 569

r-allocation. Section 4 presents more complex HNDPs such as HALPs and other
problems with specific hub network topologies such as tree-star, start-star, ring-star,
and hub line networks. For all these classes of problems, we highlight their most
relevant applications and describe some formulations which have been developed
and exploited in combination with decomposition methods to solve them. Section 5
provides a historical review of key references on HNDPs together with some of
the most significant milestones in the field. Conclusions and perspectives follow in
Sect. 6.

2 Preliminaries

A generic hub network design problem can be described as follows. Consider a
complete graph G = (N ,E ), where N is the set of nodes representing the origins
and destinations of flows as well as the set of potential hub locations, and E is
the set of edges. For each node pair (i, j), let Wij ≥ 0 and dij ≥ 0 denote the
amount of flow to be routed and the distance, respectively, from the origin i ∈
N to the destination j ∈ N . For each node i ∈ N , fi is the fixed set-up cost
for locating a hub, whereas for each e ∈ E , ge denotes the fixed set-up cost for
activating an (undirected) hub arc. A hub arc e = (i, j) ∈ E connects two different
hub nodes i and j and has a unit flow cost of αdij . The parameter α (0 ≤ α ≤ 1)
is used as a discount factor to provide reduced unit flow costs on hub arcs to reflect
economies of scale resulting from consolidation of flows between hubs. The unit
flow cost between O/D pairs is given by the length of the path between the origin
and destination nodes in the solution network. Each O/D path has a collection leg
from the origin node to the first hub, possibly a transfer leg between the first and
the last hubs, and a distribution leg from the last hub to the destination node.

Depending on the assumptions and considered application, the solution network
of a HNDP consists of up to four types of arcs: (1) hub arcs connecting two hubs
with a discounted flow cost, (2) bridge arcs connecting also two hub nodes but
without benefiting from the reduced unit flow cost of a hub arc, (3) access arcs
connecting non-hub nodes and hubs, and (4) direct arcs connecting two non-hub
nodes. A generic HNDP consists of locating a set of hub facilities, activating a set
of arcs, and of determining the routing of flows through the hub network, with the
objective of minimizing the total set-up and flow cost.

HLPs are a class of HNDPs which have been most studied in the literature. They
focus on the location of a set of hub facilities and the assignment of O/D nodes to
these facilities. Arc selection and routing decisions are mainly determined by the
assumptions made on the cost structure and the assignment pattern. In particular,
there are four assumptions underlying most HLPs: (1) commodities have to be
routed via a set of hubs, (2) hub, access and bridge arcs have no set-up cost, (3)
the discount factor α is the same for all hub arcs and does not depend on the amount
of flow routed on each hub arc, (4) distances dij satisfy the triangle inequality. The
following properties are a direct consequence of these assumptions:



570 I. Contreras

• O/D paths with hubs: Assumption 1 prohibits direct connections between O/D
nodes that are not hubs and hence, O/D paths must include at least one hub node.
Note that this assumption is rather mild, as it is always possible to add a dummy
hub and associated flow costs to represent direct connections between non-hub
nodes.

• Fully-interconnected hubs: Assumption 2 allows hubs to be interconnected at
no extra cost and, together with Assumptions 3 and 4, an important resulting
property is that the set of hub arcs define a complete subgraph on the set of hub
nodes. As a consequence, hub arc selection decisions become trivial once the
location of hub nodes is known.

• one-hub-arc O/D paths: Another important property obtained when combining
all assumptions is that O/D paths contain at least one and at most two hubs.
However, it is important to note that whenever Assumption 2 or 4 are not
satisfied, paths may contain more than two hubs and more than one hub arc.

The above properties do not only simplify the network design decisions in HLPs,
as they are completely determined by the location and assignment decisions, but
most importantly, they significantly reduce the number of O/D paths that need
to be considered on a hub network. In HLPs, O/D paths include either a single
hub node and no hub arc, or two hub nodes and a single hub arc. Moreover,
because of Assumptions 2 and 4, each collection and distribution leg, if present,
contains only one access arc. O/D paths are thus of the form (i, k,m, j), where
(k,m) ∈ N × N is the ordered pair of hubs to which i and j are allocated,
respectively. The flow cost of routing Wij along the path (i, k,m, j) is then given
by Wij

(
χdik + αdkm + δdmj

)
, where χ, α, and δ represent the collection, transfer

and distribution costs along the path. To reflect economies of scale between hubs,
we assume that α < χ and α < δ. Note that these paths contain one, two or at
most three arcs, depending on the number of visited hubs and on the function of
origins and destinations (i.e., hub or non-hub nodes). As a consequence, there are
only O(n2) paths for each O/D pair. As we will show in Sect. 3, this allows the
development of tight path-based formulations with O(n4) variables that explicitly
consider all these paths and for some allocation patterns, they do not even require
the use of flow conservation constraints.

In the case of more general HNDPs that do not satisfy some of the above
mentioned assumptions, the modeling of O/D paths becomes more involved given
that hub nodes are not necessarily fully interconnected and due to the presence
of bridge arcs. O/D paths may contain more than three arcs and visit more than
two hub nodes. The transfer leg can use several bridge and hub arcs, depending
on whether additional assumptions on the structure of O/D paths are considered
or not. This means that a much larger number of O/D paths exist. In fact, for the
case of a complete graph the number of paths between all pairs of nodes is given
by

∑n−2
i=0 (n − 2)!/(n − 2 − i)! As a consequence, path-based formulations for

HNDP would have up to O(nn−2) variables. Flow conservation constraints are now
needed when extending arc-based formulations of HLPs which contain only O(n4)



18 Hub Network Design 571

1

5

2 3

4

6

7

8 9

10(A)

1

2 3

4

6

7

8 9

10

5

(B)

Fig. 18.1 Solution network of a hub location problem (a) and a hub network design problem (b)

variables. In Sect. 4, we highlight the added complexity in formulating and solving
HNDPs where non-trivial arc selection and routing decisions need to be made.

Figure 18.1a shows an example of a solution network of a HLP in which different
structures on O/D paths arise (squares represent hub nodes and circles represent
non-hub nodes). The path (5, 8, 3, 4) is a two-hub path formed by the access arcs
(5, 8), (4, 3) and the hub arc (8, 3). The path (9, 9, 2, 1) is also a two-hub path but
containing only the access arc (1, 2) and the hub arc (2, 9). The path (3, 3, 9, 9) is
yet another two-hub path formed only by the hub arc (3, 9). The path (4, 3, 3, 6) is a
one-hub path containing only the access arcs (4, 3) and (6, 3). The path (5, 8, 8, 8)
is also a one-hub path containing the single access arc (5, 8).

Figure 18.1b shows an example of a solution network of a more general HNDP in
which different structures on O/D paths arise (dashed lines represent bridge arcs).
The path (5, 8, 9, 6) is a three-hub path formed by the bridge arc (5, 8), the hub
arc (8, 9), and the access arc (9, 6). The path (1, 2, 8, 9, 3, 4) is a four-hub path
containing the access arcs (1, 2), (4, 3) and the hub arcs (2, 8), (8, 9), and (9, 3).

3 Hub Location Problems

HLPs focus on the location of hub facilities and the assignment of O/D nodes to
open hubs. At the hub-level network, hub arc selection decisions are completely
determined by the location of the hubs, given that they are full-interconnected
with hub arcs. At the access-level network, arc selection decisions are given by
the allocation of O/D nodes to hubs. There are three possible allocation strategies:
multiple assignments, single assignments, and r-allocation. In the case of HLPs in
which there is no set-up cost for the activation of access arcs, once the hub locations
are known, the flow cost is minimized by finding a shortest path on the network
induced by the selected hubs for each O/D pair, resulting in a multiple allocation
pattern of O/D nodes to hubs. That is, a O/D node may be directly connected to
more than one hub facility. A multiple assignment pattern simplifies the routing
decisions and provides greater flexibility on hub networks, allowing lower flow cost



572 I. Contreras

solutions. However, they may considerably increase the network design cost as a
larger number of access links must be activated. Applications in which it would
be reasonable to consider multiple assignments arise mainly in transportation, in
particular in air freight and passenger travel, public transportation, and rapid transit
systems. In these cases, access arcs either do not correspond to physical links or
they are associated with existing physical infrastructure (i.e., roads or highways)
and hence, there is no set-up cost associated with them.

In a single assignments strategy, each O/D node must be connected to exactly
one hub facility. All commodities with the same origin (or destination) are thus
routed via the same access arc. Applications of a single assignment strategy arise
in telecommunications, where access arcs correspond to physical links having
significant set-up costs which need to be installed to provide connection and com-
munication services to terminal nodes. Other applications arise in transportation, in
particular in express package and postal delivery where commodities are usually
consolidated at O/D nodes to be sent to the same sorting facility. Finally, in an r-
allocation strategy each O/D node can be connected to at most r hubs. This strategy
generalizes both single and multiple assignment strategies and, at the same time,
provides the flexibility of allowing nodes to be allocated to two or more hubs while
keeping some control on the number of access arcs on the solution network. In
what follows, we describe the most relevant formulations that have been introduced
to model each of the allocation strategies. We also point out to the most relevant
solution algorithms developed for each of these classes of problems.

3.1 Multiple Assignments

We can use the so-called flow-based formulations to model HLPs with multiple
assignments. They use continuous variables to determine the amount of flow routed
on a particular arc originated at a given node. In the case of multiple assignments, we
need three sets of flow variables to model the collection, transfer, and distribution
legs in an O/D path. In particular, for the collection leg we define the continuous
variables Uik , i, k ∈ N , equal to the amount of flow from origin node i sent directly
to hub k via access arc (i, k). For the transfer leg, let Yikm, i, j, k ∈ N , be equal
to the amount of flow originated at node i and passing through hub arc (k,m).
Finally, for the distribution leg let Xijm, i, j,m ∈ N , be equal to the amount of
flow from origin i sent from hub m directly to destination j via access arc (m, j).
We also define binary location variables zi , i ∈ N , equal to 1 if and only if a hub
is located at node i. Using these sets of decision variables, we can formulate HLPs
with multiple assignments as follows:

minimize
∑

k∈N
fkzk +

∑

i,k∈N
χdikUik +

∑

i,k,m∈N
αdkmYikm +

∑

i,j,m∈N
δdmjXijm



18 Hub Network Design 573

subject to
∑

k∈N
Uik = Oi i ∈ N (18.1)

∑

m∈N
Xijm = Wij i, j ∈ N (18.2)

Uik +
∑

m∈N
Yimk =

∑

m∈N
Yikm +

∑

j∈N
Xijk i, k ∈ N (18.3)

Uik ≤ Oizk i, k ∈ N (18.4)

Xijm ≤ Wij zm i, j,m ∈ N (18.5)

Uik, Yijk, Xijk ≥ 0 i, j, k ∈ N (18.6)

zk ∈ {0, 1} k ∈ N . (18.7)

Constraints (18.1)–(18.3) correspond to the flow conservation equations for a
network flow problem for each origin node i. In particular, for each node i ∈ N
there is a network with 2n + 1 nodes. The first node is the source with a supply
of Oi and then, there are n transshipment nodes, one for each possible hub node
k ∈ N . Finally, the demand at each of the n destination nodes j is given
as Wij . Constraints (18.4)–(18.5) ensure that flows are routed via open hubs. The
above formulation contains O(n3) variables and O(n3) constraints. If the flow
requirements are symmetric, i.e., Wij = Wji , ∀i, j ∈ N , and if the collection
and distribution cots are equal (χ = δ), then the Uik variables can be eliminated
from the formulation by using:

Uik =
∑

j∈N
Xjik ∀i, k ∈ N .

Arc-based formulations can also be adapted for the case of HLPs with multiple
assignments. For each i, j, k,m ∈ N , we define binary variables xijkm equal to 1
if and only if the flow originated at i and destination j is routed via hub arc (k,m).
Using the same set of location variables zi in combination with the arc variables
xijkm, the problem can be stated as follows:

minimize
∑

k∈N
fkzk +

∑

i,j,k,m∈N
Wij

(
χdik + αdkm + δdmj

)
xijkm

subject to
∑

k,m∈N
xijkm = 1 i, j ∈ N (18.8)

∑

m∈N
xijkm +

∑

m∈N \{k}
xijmk ≤ zk i, j, k ∈ N (18.9)

xijkm ≥ 0 i, j, k,m ∈ N (18.10)

zk ∈ {0, 1} k ∈ N . (18.11)



574 I. Contreras

Constraints (18.8) state that exactly one hub arc must be selected to route the flow
from origin i to destination j . Constraints (18.9) ensure that O/D paths (i, k,m, j)
use only open hubs. This formulation has O(n4) variables and O(n3) constraints
and usually provides tight LP bounds. In addition, we note that this arc-based
formulation is equivalent to a path-based formulation given that all O/D paths are
completely characterized by the arc variables xijkm.

Given that O/D nodes can be connected to more than one hub facility, we
can exploit some properties on the structure of O/D paths to do preprocessing in
order to significantly reduce the number of required variables in the formulation.
In particular, it is known that every flow uses at most one direction of a hub arc,
the one with lower flow cost. We thus define an undirected flow cost Fije for each
e = (k,m) ∈ E and i, j ∈ N as Fije = min{Fijkm, Fijmk}. The number of
variables can be further reduced by defining a set of candidate hub arcs Eij for each
O/D pair. This is done by using the property that no flow will be routed through a
hub arc containing two hubs whenever it is cheaper to route it through only one of
them.

The xijkm can be projected out from the arc-based formulation via Benders
decomposition to obtain a valid formulation in the space of the binary variables zi .
The Benders reformulation of the arc-based formulation is:

minimize
∑

k∈N
fkzk + η

subject to
∑

k∈N
zk ≥ 1 (18.12)

η ≥
∑

i∈N
ari zi r = 1, . . . , |QD|, (18.13)

zk ∈ {0, 1} k ∈ N , (18.14)

where QD is the set of extreme points of the dual subproblem associated with
constraints (18.8)–(18.9). Non-dominated Benders cuts (18.13) can be efficiently
generated with ad hoc algorithms that resort on the solution of linear and network
flow problems.

3.2 Single Assignments

Flow-based formulations can also be adapted to model HLPs with single assign-
ments. Similarly to the case of multiple assignments, we use continuous variables
to compute the amount of flow routed on a particular arc originated at a given node.
However, in the case of single assignments, we only need to use the set of flow
variables associated with the hub arcs (Yikm). For each pair i, k ∈ N , we also
define binary location/allocation variables zik , equal to one if and only if node i is
assigned to hub k. When i = k, variable zkk represents the establishment or not of a



18 Hub Network Design 575

hub at node k. HLPs with single assignments can be formulated as follows:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,k,m∈N
αdkmYikm

subject to
∑

m∈N
Yimk +Oizik =

∑

j∈N
Wij zjk +

∑

m∈N
Yikm i, k ∈N (18.15)

∑

k∈N
zik = 1 i ∈N (18.16)

zik ≤ zkk i, k ∈N (18.17)

zik ∈ {0, 1} i, k ∈N (18.18)

Yikm ≥ 0 i, k,m ∈N . (18.19)

Constraints (18.15) state that the flow entering to hub k either directly from
node i or via other hubs m has to be equal to the flow leaving to either other
hubs m or to destination nodes j . Constraints (18.16) ensure that each O/D node is
assigned to exactly one hub node. Finally, constraints (18.17) guarantee O/D nodes
are assigned to open hubs. The above formulation contains O(n3) variables and
O(n2) constraints.

HLPs with single assignments are closely related to classical discrete location
problems. In fact, they can be modeled as facility location problems with additional
quadratic costs associated with the interaction of O/D nodes. HLPs with single
assignments can be stated as the following quadratic binary integer program:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,j,k,m∈N
αWij dkmzikzjm (18.20)

subject to (18.16)–(18.18).

Note that constraints (18.16)–(18.18) define the set of feasible solutions to the so-
called uncapacitated facility location problem (UFLP). In fact, when the quadratic
term of the objective (18.20) is removed, the HLP with single assignments reduces
to the UFLP. However, contrary to the UFLP, integrality conditions on the allocation
variables zik need to be explicitly stated to have a valid formulation. This is mainly
due to the fact that objective (18.20) is non-convex.

We now discuss different approaches that have been considered to handle the
quadratic term of the objective (18.20). The first one is to use the reformulation
linearization technique of Adams and Sherali (1990), to obtain the following linear
MIP formulation:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,j,k,m∈N
αWijdkmxijkm



576 I. Contreras

subject to (18.16)–(18.18)
∑

m∈N
xijkm = zik i, j, k ∈ N (18.21)

∑

k∈N
xijkm = zjm i, j,m ∈ N (18.22)

xijkm ≥ 0 i, j, k,m ∈ N . (18.23)

where xijkm, i, j, k,m ∈ N , are variables equal to 1 if and only if the flow
originated at i and destination j transits via hub arc (k,m). This formulation can
be seen as an arc-based formulation in which constraints (18.21)–(18.22) are flow
conservation equations for n2 networks, each of which associated with an O/D pair
(i, j). In addition, it contains O(n4) variables and O(n3) constraints and is known
to provide tight LP bounds. Moreover, constraints (18.16) can be replaced by

∑

k,m∈N
xijkm = 1 ∀i, j ∈ N , (18.24)

to obtain an alternative valid formulation. This highlights that, due to the particular
structure of a fully interconnected hub-level network, this formulation can also
be seen as a path-based formulation given that it uses path variables xijkm to
characterize all O/D paths visiting either one or two hub nodes. In this case,
constraints (18.24) correspond to the convexity constraints associated with O/D
pairs. These arc/path-based formulations have been used in combination with
decomposition methods to develop adhoc solution algorithms for efficiently solving
various HLPs with single assignments (see, Sect. 5).

It is possible to use projection methods to eliminate the path variables xijkm of
arc-based formulations to obtain MIP formulations with fewer variables. The first
one is a direct method used in Mirchandani (2000) to project out flow variables for
network loading problems. The second one is an indirect method used in Rardin
and Wolsey (1993) for uncapacitated fixed charge network flow problems. Labbé
and Yaman (2004) apply the direct projection method on an arc-based formulation
and analyze the strength and dominance of these projection inequalities. The
authors prove that a subset of these projection inequalities are facet-defining and
that some others, are dominated by other families of facet-defining inequalities.
Labbé et al. (2005) show that the projection inequalities defined by a subset of the
extreme rays of the projection cone are sufficient to provide a valid formulation for
HLPs with single assignments. In particular, HLPs with single assignments can be
formulated as

minimize
∑

k∈N
fkZk +

∑

i,k∈N
(χOi + δDi)dikzik +

∑

k,m∈N
αdkmykm

subject to (18.16)–(18.18)



18 Hub Network Design 577

ykm ≥
∑

(i,j)∈K
Wij

(
zik + zjm − 1

)
k,m ∈ N ,K ⊆ N ×N (18.25)

ykm ≥ 0 k,m ∈ N , (18.26)

where ykm, k,m ∈ N are an additional set of continuous variables equal to the
amount of flow routed on hub arc (k,m). For each arc (k,m), constraints (18.25)
and (18.26) imply

ykm = max
K⊆N ×N

∑

(i,j)∈K
Wij

(
zik + zjm − 1

) =
∑

(i,j)∈Kkm

Wij

(
zik + zjm − 1

)
,

where Kkm is the set of all demands which are routed on hub arc (k,m). This
formulation contains onlyO(n2) variables but an exponential number of constraints.
Constraints (18.25) are a particular case of a more general class of facet defining
inequalities which can be separated in polynomial time.

An alternative to project out the path variables xijkm is by using Benders
decomposition (BD) to obtain a valid reformulation in the space of the original zik
variables. In particular, the Benders reformulation of the arc-based formulation is:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi)dikzik + η

subject to (18.16)–(18.18)
∑

k∈N
zkk ≥ 1 (18.27)

η ≥
∑

i,k∈N
arikzik r = 1, . . . , |PD|, (18.28)

where PD is the set of extreme points of the dual subproblem associated with
constraints (18.21)–(18.22). Even though there is an exponential number of con-
straints (18.28), non-dominated cuts can be efficiently separated with ad hoc
algorithms that resort on the solution of linear and network flow problems.

3.3 r-Allocation

The r-allocation strategy provides flexibility in the design of hub networks without
explicitly considering set-up costs on access arcs. It has as particular cases both
single and multiple assignment strategies. Flow-based and arc-based formulations
can also be adapted to model HLPs with r-allocation.

In the case of the flow-based formulation, we combine the location/allocation
variables zik from the single assignments variant with the flow variables Uik , Yikm,
and Xijm from the multiple assignments variant to model the collection, transfer,



578 I. Contreras

and distribution legs, respectively. Similarly to the multiple assignments strategy,
we also need the Uik variables for the collection leg, as it is no longer possible to
model it using the allocation variables zik . Using these sets of variables, we obtain
the following flow-based formulation:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
χdikUik +

∑

i,k,m∈N
αdkmYikm +

∑

i,j,m∈N
δdmjXijm

subject to (18.1)–(18.3), (18.6), (18.17)–(18.18)
∑

k∈N
zik ≤ r i ∈ N (18.29)

Uik ≤ Oizik i, k ∈ N (18.30)

Xijm ≤ Wij zjm i, j,m ∈ N . (18.31)

Constraints (18.29) ensure that each O/D node is allocated to at most r hub
facilities, whereas constraints (18.30) and (18.31) state that flow can be routed
on access arcs (i, k) and (j,m) only if they have been activated, respectively.
These constraints are equivalent to constraints (18.4) and (18.5) from the multiple
assignment variant but yield stronger bounds. Note that in order to model HLPs
considering an r-allocation strategy, it is needed to combine not only the set of
variables but also the set of constraints (18.1)–(18.3), (18.6) from the multiple
assignments variant with constraints (18.17)–(18.18) from the single assignments
variant.

In the case of the arc-based formulation, the location/allocation zik variables and
the routing variables xijkm from the single assignments variant are enough to model
the problem. The formulation is as follows:

minimize
∑

k∈N
fkzkk +

∑

i,j,k,m∈N
Wij

(
χdik + αdkm + δdmj

)
xijkm

subject to (18.17)–(18.18), (18.29)
∑

k∈N

∑

m∈N
xijkm = 1 ∀ i, j ∈ N (18.32)

∑

m∈N
xijkm ≤ zik i, j, k ∈ N (18.33)

∑

k∈N
xijkm ≤ zjm i, j,m ∈ N (18.34)

xijkm ≥ 0 i, j, k,m ∈ N . (18.35)

Constraints (18.32) state that the flow associated with each node pair must be
routed using one O/D path. Constraints (18.33) and (18.34) state that only O/D
paths associated with active access arcs can be used to route commodities.



18 Hub Network Design 579

As expected, these formulations considering such flexible allocation strategies
tend to be more difficult to solve as compared to the best formulations presented in
Sects. 3.1 and 3.2 for specific multiple and single allocation variants.

4 Hub Network Design Problems

Full interconnection between hub nodes may be prohibitive in applications where
there is a considerable set-up cost associated with the hub arcs. To overcome this
drawback of standard HLPs, several problems considering incomplete hub networks
have been studied. Formulating and solving more general HNDPs represent a bigger
challenge as compared to standard HLPs. This is due to the fact that HNDPs
involve additional design decisions such as link activation of hub, access and
bridge arcs as well as non-trivial routing decisions. It is no longer possible to
state HNDPs as quadratic extensions of facility location problems but rather as
extensions of MNDPs in which node selection (i.e., location) decisions need to be
taken into account. HNDPs are a class of network optimization problems known to
be significantly more difficult to solve in practice as compared to facility location
problems. One of the main reasons is that O/D paths may contain more than three
arcs and visit more than two hubs. As a consequence, they cannot longer be mainly
determined by the allocation decisions. Flow conservation constraints and additional
design variables for arc selection decisions are now needed to explicitly model O/D
paths in both flow and arc-based formulations. This has a negative impact in the
quality of the LP bounds associated with these formulations when compared to the
LP bounds obtained with standard HLPs.

In the first part of this section we concentrate on a particular class of HNLPs,
referred to as hub arc location problems (HALPs), which have as key decisions the
location of hub arcs. These problems retain some of the assumptions used in hub
location models, specially the ones that relate to the cost structure and allocation
patterns to simplify the design decisions at the access level network and to focus on
the design decisions at the hub level network. In the second part we study HALPs
that consider specific hub network topologies arising from various applications and
highlight how these topologies impact the routing decisions.

4.1 Hub Arc Location Problems

A fundamental difference between HALPs and HLPs is that solution networks may
not longer have a fully interconnected hub-level network. HALPs explicitly consider
link activation decisions in hub and bridge arcs. Additional restrictions may be
imposed on the topology of hub-level networks. However, an important simplifying
assumption that is retained from HLPs, as compared with more general HNDPs, is
that they do not involve non-trivial link activation decision on access arcs. That is,



580 I. Contreras

similar to HLPs, assignment patterns determine the design decisions in the access-
level network. As a result, both single, multiple, and r-allocation HALPs variants
can be considered.

In HALPs hubs are not necessarily fully interconnected due to the set up cost on
the hub arcs or because additional conditions on the network topology are imposed.
This causes O/D paths to become more involved, since they may use more than three
arcs and visit more than two hubs. Similar to HLPs, because of Assumptions 2 and
4, each collection and distribution leg, if present, employs either one access arc or
one bridge arc. However, the transfer leg can now use several bridge and hub arcs,
depending on the particular assumptions considered on the structure of O/D paths.

To simplify the added complexity of the routing decisions in HALPs an
additional assumption, referred to as the one-hub-arc O/D path assumption, can
be considered. It states that O/D paths must contain at most one hub arc on the
transfer leg. In turn, this limits paths to have at most three arcs, being the first and
last ones either access or bridge arcs and the intermediate arc, if it exists, a hub
arc. This assumption is used to duplicate the level of service obtained in HLPs
and is also consistent with practice. In air transportation, for example, it ensures
that a passenger will never have to change flights more than twice. In ground
transportation, it is convenient to restrict the number of break-bulk terminals that
each commodity has to pass through so as to reduce handling and congestion at
terminals and to provide a form of performance guarantee. O/D paths are once
more of the form (i, k,m, j), and we can thus define their associated flow costs
as Wij

(
χdik + αdkm + δdmj

)
.

In what follows we first describe some HALPs that consider the one-hub-arc
assumption. We then discuss other more general HALPs that do not consider any
assumption on the structure of O/D paths. In particular, we show how the routing
the decisions become more involved given that it is needed to determine whether a
discount is perceived between two hub nodes or not.

4.1.1 Models with One-Hub-Arc O/D Paths

These problems do not consider set-up costs on the activation of hub nodes and hub
arcs. Instead, they considered a cardinality constraint on the number of hub arcs in
the solution network. The selected hub arcs induce a set of hub nodes, but there is no
limit on the number of activated hubs. These HALPs consider multiple assignments
and the goal is to minimize the total flow cost.

Given that in this case bridge arcs can only exist in the collection or distribution
legs, a flow-based formulation can be obtained by using the same set of flow
variablesUik , Yikm, andXijm used in HLPs to model flows passing on the collection,
transfer, and distribution legs, respectively. In addition, for (k,m) ∈ E , we define
binary variables ykm equal to one if and only if hub arc (k,m) is selected. Using
these sets of variables, we can formulate the problem as follows:



18 Hub Network Design 581

minimize
∑

i,k∈N
χdikUik +

∑

i,k,m∈N
αdkmYikm +

∑

i,j,m∈N
δdmjXijm

subject to (18.1)–(18.2), (18.4)–(18.7)
∑

(k,m)∈E
ykm = q (18.36)

zk ≤
∑

(k,m)∈E
ykm k ∈ N (18.37)

Uik =
∑

m∈N
Yikm i, k ∈ N (18.38)

∑

m∈N
Yimk =

∑

j∈N
Xijk i, k ∈ N (18.39)

Yikk ≤ Oizk i, k ∈ N (18.40)

Yikm + Yimk ≤ Mikmykm i ∈ N , (k,m) ∈ E (18.41)

ykm ∈ {0, 1} (k,m) ∈ E , (18.42)

where Mikm ≤ Oi is an upper bound on the amount of flow originated at i that can
be routed via hub arc (k,m). Constraints (18.36) force the number of selected hub
arcs to be equal to q, whereas constraints (18.37) ensure that a location variable zk is
activated only if there exist at least one hub arc incident to node k. These constraints,
in combination with (18.4)–(18.7), and (18.40), ensure that flow variables Uik , Yikm,
and Xijm are used only at open hubs. Constraints (18.41) guarantee that flow is
routed via two different hub nodes with a discounted cost only if the associated
hub arc is selected. Finally, constraints (18.38) and (18.39) are flow conservation
constraints for each node i and each potential hub k. This formulation contains
O(n3) variables and O(n3) constraints.

A more general class of HALPs with multiple assignments has also been studied.
In particular, these problems contain both set-up costs and cardinality constraints on
hub arcs and hub nodes. For each e ∈ E , ge denotes the set-up cost for selecting hub
arc e. This class of HALPs consist of locating a set of at most q hub arcs (q ≥ 1),
that induce a set of at most p hub nodes (p ≥ 2), and of determining the routing
of commodities through the hub network, with the objective of minimizing the total
set-up and flow cost.

Taking into account the one-hub-arc assumption, we define the cost for routing

Wij when using hub arc e = (k,m) as, Feij = Wk min
{
F 1
eij , F

2
eij , F

3
eij , F

4
eij

}
,

where

F 1
eij = χdik+αdkm + δdmj ; F 2

eij = χdim + αdmk + δdjk;



582 I. Contreras

F 3
eij = χdik +δdkj ; F 4

eij = χdim + δdmj .

Note that the definition of Feij uses some properties of the considered multiple
assignments pattern and cost structure. First, every commodity uses at most one
direction of a hub arc, the one with lower flow cost. It is thus possible to know a
priori how the end hub nodes of a given hub arc e would be connected with origin
i and destination j , in case such commodity is routed via hub arc e. Second, no
commodity will be routed through a hub arc whenever it is cheaper to route it
through only one of its hub nodes. Therefore, some O/D paths may not contain a
transfer leg (i.e., a hub arc).

For each i, j ∈ N and e ∈ E we define (undirected) routing variables xeij
equal to 1 if and only if demand originated at i and destination j is routed via hub
arc e. Using these variables, an arc-based formulation for this class of HALPs can
be obtained as follows:

minimize
∑

i∈N
fizi +

∑

e∈E
geye +

∑

i,j∈N

∑

e∈E
Feij xije

subject to
∑

e∈E
ye ≤ p (18.43)

∑

i∈N
zi ≤ q (18.44)

∑

e∈E
xije = 1 ∀i, j ∈ N (18.45)

xije ≤ ye ∀e ∈ E , i, j ∈ N (18.46)

ye ≤ zk ∀e = (k,m) ∈ E (18.47)

ye ≤ zm ∀e = (k,m) ∈ E (18.48)

ye, zi ∈ {0, 1} ∀e ∈ E , i ∈ N (18.49)

xije ≥ ∀e ∈ E , i, j ∈ N . (18.50)

Constraints (18.43) and (18.44) state the maximum cardinality constraint on
the hub arcs and hub nodes, respectively. Constraints (18.45) guarantee that every
commodity is assigned to exactly one hub arc, whereas (18.46) allow commodities
to be routed only via selected hub arcs. Constraints (18.47) and (18.48) ensure that
the end nodes of hub arcs are open hub nodes. This formulation has O(n4) variables
and O(n4) constraints.

This general class of HALPs can be stated as the minimization of a real-
valued supermodular set function. This fundamental property, which is also known
for other types of facility location problems (Wolsey 1983), can be exploited to
develop formulations. In particular, using supermodular properties, it is possible to
completely eliminate the routing variables xijkm from the above formulation. For



18 Hub Network Design 583

each i, j ∈ N , we order the elements of E by non-decreasing values of their
coefficients Fije, and we denote erk to the r-th element according to that ordering.
That is, Fije1 ≤ Fije2 ≤ · · · ≤ Fije|E | ≤ Fije|E |+1 , where Fije|E |+1 = Fije∗
is the cost for the fictitious edge e∗ such that (1) Fije∗ > maxe∈E Fije, for all
i, j ∈ N ; and (2)

∑
i,j∈N Fije∗ > maxe∈E (fe +

∑
i,j∈N Fije). This assumption

guarantees that at least one hub variable ye is at value one in any optimal solution.
A formulation for this class of HALPs is as follows:

minimize
∑

i∈N
fizi +

∑

e∈E
geye +

∑

i,j∈N
ηij

subject to (18.43)–(18.44), (18.47)–(18.49)

ηij ≥ Fijer +
∑

e∈E
(Fije − Fijer )̄ ye r = 1, . . . , |E | + 1, i, j ∈ N ,

(18.51)

where ηij are continuous decision variables used to evaluate the flow cost of O/D
pair (i, j) and (x)̄ = min {0, x}. Constraints (18.51) are the so-called supermodular
constraints computing the flow cost for each O/D pair by only taking into account
the set of open hub arcs. This formulation has only O(n2) variables and O(n4)

constraints.

4.1.2 Models with Arbitrary O/D Paths

We now focus on a general class of HALPs that relax the one-hub-arc O/D path
assumption and allow paths to contain more than one hub/bridge arc on the transfer
leg. A flow-based formulation can be obtained by using the same set of flow
variables Uik , Yikm, and Xijm as before plus an additional set of flow variables Bikm,
i, j, k ∈ N , equal to the amount of flow originated at node i and passing through
bridge arc (k,m). Let β denote the unit flow cost of bridge arcs, where β > α. A
flow-based formulation can be stated as follows:

minimize
∑

i,k∈N
χdikUik +

∑

i,k,m∈N
dkm (αYikm + βBikm)+

∑

i,j,m∈N
δdmjXijm

subject to (18.1)–(18.2), (18.4)–(18.7), (18.36), (18.37), (18.40), (18.41)

Uik +
∑

m∈N
(Yimk + Bimk)

=
∑

m∈N
(Yikm + Bikm)+

∑

j∈N
Xijk i, k ∈ N (18.52)

Bikm ≤ Mikmzk i, k,m ∈ N (18.53)

Bikm ≤ Mikmzm i, k,m ∈ N (18.54)



584 I. Contreras

Bikm ≥ 0 i, k,m ∈ N .

Constraints (18.52) correspond to the flow conservation equations for each origin
i and potential hub node k. Note that the flow entering into a hub can come either
directly from the origin i or from other hub nodes via hub arcs or bridge arcs.
Similarly, the flow leaving the node can go either directly to destination nodes j
or to other hub nodes via hub arcs and bridge arcs. Constraints (18.53) and (18.54)
ensure that bridge arcs are used only between open hub nodes. This formulation
contains O(n3) variables and O(n3) constraints.

Arc-based formulations can also be adapted for this class of HALPs. Given that
O/D paths cannot longer be characterized by using only the routing variables xijkm,
as it is the case in HLPs with multiple assignments and HALPs with one-hub-arc
O/D paths, we need to combine them with other variables to properly model O/D
paths. In particular, we use the Uik and Xijm variables used in previous flow-based
formulations to model the collection and distribution legs, respectively, together
with the routing variables xijkm that state whether the hub arc (k,m), and its
associated discounted cost, is used to route the demand associated with node pair
i, j . In addition, we define the (non discounted) routing variables bijkm equal to
one if and only if the flow originated at i and destination j uses bridge arc (k,m).
Note that both xijkm and bijkm are required to properly model the transfer leg. An
arc-based formulation can be stated as follows:

minimize
∑

i,j∈N
Wij

⎛

⎝
∑

k∈N
χdikUijk +

∑

k,m∈N
dkm

(
αxijkm + βbijkm

)+
∑

m∈N
δdmjXijm

⎞

⎠

subject to (18.7), (18.36) and (18.37)
∑

k∈N
Uijk = 1 i, j ∈ N (18.55)

∑

m

Xijm = 1 i, j ∈ N (18.56)

Uijk +
∑

m∈N

(
xijmk + bijmk

)

=
∑

m∈N

(
xijkm + bijkm

)+
∑

j∈N
Xijk i, j, k ∈ N (18.57)

Uijk ≤ zk i, j, k ∈ N (18.58)

Xijm ≤ zm i, j,m ∈ N (18.59)

xijkm + xijmk ≤ ykm i, j ∈ N , (k,m) ∈ E (18.60)
∑

m∈N
bijkm ≤ zk i, j, k ∈ N (18.61)

∑

k∈N
bijkm ≤ zm i, j,m ∈ N (18.62)

Uijk, Yijk ≥ 0 i, j, k ∈ N .



18 Hub Network Design 585

xijkm, bijkm ≥ 0 i, j, k,m ∈ N .

Constraints (18.55)–(18.57) correspond to the flow conservation equations for each
node pair and potential hub. Constraints (18.58)–(18.59) forces the flow on the
access arcs to be routed via open hubs. Constraints (18.60) ensure that discounted
costs are perceived on the transfer leg only for the selected hub arcs, whereas (18.61)
and (18.62) allow bridge arcs to be used only between open hub nodes. This
formulation has O(n4) variables and O(n4) constraints.

Note that in none of the HLPs and HALPs discussed until now, there has been a
need to add flow conservation constraints for the case of arc-based formulations. All
previous formulations exploited in one way or the other the property (or assumption)
that O/D paths can be characterized by the hubs to which origins and destinations
are assigned to. Note that not only the required number variables has doubled, but
also several additional constraints are need to model feasible O/D paths.

4.2 Specific Hub Network Topologies

We now focus on HNDPs that consider specific hub network topologies emerging
from various applications in transportation and telecommunications. In particular,
we study four topologies: star-start hub networks, tree-start hub networks, cycle-star
hub networks, and hub line networks. We describe the main applications associated
with these topologies and provide formulations that exploit their structure.

4.2.1 Star-Star Hub Networks

A start-start hub network consists of a set of hub nodes directly connected to a
central hub node (i.e., a hub-level network is a star). Each O/D node is connected
to a hub node, creating a set of stars at the access-level network (see Fig. 18.2a).
Applications of such networks arise in the design of satellite communication
networks (Helme and Magnanti 1989), where homing stations (hub facilities)
containing an earth station and a local switch are used in combination with terrestrial
and satellite links to connect node pairs. Nodes connected to the same homing
station communicate through the local switch, whereas nodes connected to different
homing stations use their assigned earth stations and the satellite. Other applications
of start-start hub networks arise in the area of cargo delivery. Yaman (2008) provides
a concrete application associated with one of the largest cargo delivery companies
in Turkey, in which a star-star hub network with central hub located in Ankara is
used. Commodities originated at a city are sent to a single hub. At the hub, cargo
arriving from different cities are collected and sorted. If the destination is served by
the same hub, the cargo is routed directly to its destination. Otherwise, the cargo is
sent to a central hub facility where it is further routed to the hub of the destination



586 I. Contreras

1

5

2 3

4

6

7

8 9

10(B)

1

5

2 3

4

6

7

8 9

10(C)

1

5

2 3

4

6

7

8 9

10(A)

1

5

2 3

4

6

7

8 9

10(D)

Fig. 18.2 Structure of (a) cycle-star, (b) star-star, (c) tree-star, and (d) line hub network

and eventually to its destination. Hub arcs are served with higher capacity trucks or
cargo airplanes.

Let 0 denote the central hub which has already been located and let dk0 denote
the unit flow cost between hub k and node 0. Assuming a star structure at the hub-
level network simplifies, to some extent, the hub arc selection and routing decisions.
For instance, arc selection decisions are determined by the location decisions—if a
hub is located at node k, the hub arc (k, 0) will be activated. Moreover, exactly two
possible paths exist to connect node pairs. On the one side, if two nodes i and j are
assigned to the same hub k, then the flow from node i to node j will follow the path
(i, k, j), containing only two access arcs and no hub arcs. On the other side, if node
i is assigned to hub k and node j is assigned to hub m 	= k, then the flow from i

to j will follow the path (i, k, 0,m, j). That is, it will contain two access arcs and
two hub arcs. This means that in order to compute the flow cost for each O/D pair
we only need to know which type of path will be used. It is possible to exploit this
feature to model star-star hub networks as follows. For each k ∈ N and i, j ∈ N ,
i 	= j , we define the variable uijk equal to one if and only if one of the nodes i
and j is assigned to hub k. That is, when uijk is equal to one that means that flows
between nodes i and j (in both directions) are routed on the hub arc (k, 0). Using
these variables in combination with the location/allocation variables zik we obtain
the following formulation:



18 Hub Network Design 587

minimize
∑

k∈N
fkzkk+

∑

i,k∈N
(χOi+δDi)dikzik+

∑

k∈N

∑

i,j∈N :i 	=j

(
Wij+Wji

)
αdk0uijk

subject to (18.16)–(18.18)

uijk ≥ zik − zjk k ∈ N , i, jN , i 	= j (18.63)

uijk ≥ zjk − zik k ∈ N , i, jN , i 	= j. (18.64)

Note that constraints (18.63)–(18.64) are used to model the nonlinear term uijk =
|zik − zjk| that makes uijk variables equal to one whenever two O/D nodes are
assigned to different hubs. This formulation contains O(n3) variables and O(n3)

constraints.
An alternative formulation can be obtained by using projection inequalities

similar to the ones introduced in Sect. 3.2 for HLPs with single assignments. In
particular, for each j ∈ N we define continuous variables yk equal to the amount
of flow routed on hub arc (k, 0). We can then formulate this problem as:

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi)dikzik +

∑

k∈N
αdk0yk

subject to (18.16)–(18.18)

yk ≥
∑

(i,j)∈K

(
Wij +Wji

) (
zik − zjk

)
k ∈ N ,K ⊆ N ×N , (18.65)

were constraints (18.65) have the same interpretation as (18.25), i.e., to compute the
amount of flow routed on hub arc (k, 0). This formulation has only O(n2) variables
but an exponential number of constraints.

4.2.2 Tree-Star Hub Networks

A tree-star hub network consists of a set of hub nodes connected via a spanning
tree (i.e., hub-level network is a tree). Each O/D node is assigned to exactly
one hub, creating a set of stars at the access-level network (see Fig. 18.2b).
Potential applications of such networks arise in the design of digital data service
networks (Lee et al. 1996), where private service networks are constructed for
individual organizations by connecting customer sites to digital switching offices
(hub facilities) with bridging capabilities. These hubs are connected with fiber
optic links and given that there is a very high set-up cost associated with these
links, service providers usually consider tree topologies to minimize the number
of required links to provide connection services between customer sites. Other
applications of tree-star hub networks arise in the design of rapid transit systems.
Contreras et al. (2010) give a concrete example in the design of the high-speed train
network in Spain, which has been designed with a tree structure and it is intended
that, when finished, each city (O/D node) with more than 10,000 inhabitants will be
within 50 km of some high-speed train station (hub facilities). Kim and Tcha (1992)



588 I. Contreras

provides additional applications of tree-star networks in the design of community
access television systems (CATV).

Contrary to star-star topologies, arc selection and routing decisions become more
involved in the case of tree-star topologies as these cannot be determined by the
location/allocation decisions. In fact, even if the location of hubs and allocation
of O/D nodes to hubs is given, the problem is still NP-hard as it reduces to the
well-known optimum communication spanning tree problem (Hu 1974; Zetina et
al. 2019). Before discussing formulations, we define the graph of flows GF =
(N ,EF ), as the undirected graph with node set N and an edge associated with
each pair (i, j) ∈ N × N such that Wij + Wji > 0. We assume that GF is
made up of a single connected component since otherwise the problem can be
decomposed into several independent ones, one for each connected component in
GF . Whenever a particular application requires a single tree and the graph of flows
contains more than one connected component, we can replace the flows of value
zero with Wij = ε > 0 sufficiently small.

Hub arc variables ykm used in HALPs can also be employed to construct the
tree of hubs. Moreover, flow conservation constraints are explicitly included in
formulations to model O/D paths. A flow-based formulation for the design of tree-
star hub networks can be stated as follows:

minimize
∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,k,m∈N
αdkmYikm

subject to (18.15)–(18.19), (18.41)–(18.42)
∑

k∈N
zkk = p (18.66)

∑

(k,m)∈E
ykm = p − 1 (18.67)

zkm + ykm ≤ zmm (k,m) ∈ E (18.68)

zmk + ykm ≤ zkk (k,m) ∈ E . (18.69)

Constraints (18.66) and (18.67) ensure that exactly p hub nodes and p − 1
hub arcs are selected, respectively, which in combination with flow conservation
constraints (18.15) guarantee that the selected p − 1 hub arcs define a single
connected component associated with the p selected hubs, i.e., a tree spanning all
hubs. Constraints (18.68) and (18.69) are a stronger version of the standard linking
constraints (18.47) and (18.48). Finally, note that the assumption that the graph of
flows GF contains a single connected component, together with (18.66), (18.67)
and (18.15), eliminates the need for subtour elimination constraints. However,
when direct connections are allowed between non-hub nodes the following set of
constraints need to be included to obtain a valid formulation.



18 Hub Network Design 589

∑

(k,m)∈S×S
ykm ≤

∑

k∈S\{s}
zk ∀S ⊆ N , s ∈ S. (18.70)

An arc-based formulation can also be used to design tree-star hub networks:

minimize
∑

i,k∈N
(χOi + δDi)dikzik +

∑

i,j,k,m∈N
αWijdkmxijkm

subject to (18.16)–(18.18), (18.66)–(18.69)

zik +
∑

m∈N
xijmk =

∑

m∈N
xijkm + zjk i, j, k ∈ N . (18.71)

Constraints (18.71) are the flow conservation equations stating that for each node
pair (i, j) and potential hub k, the flow from i to j may enter node k either directly
from its origin via access arc (i, k) or through another hub via a hub arc (m, k).
Similarly, the flow may exit node k either directly to its destination via access arc
(m, j) or through another hub via a hub arc (k,m).

4.2.3 Cycle-Star Hub Networks

A cycle-star hub network consists of a set of hub nodes connected with a set of hub
arcs by means of a cycle. Each O/D node must be connected to exactly one hub
node, creating a set of stars at the access-level network (see Fig. 18.2c). Potential
applications of cycle-star hub networks arise in the design of telecommunication
networks (Lee et al. 1993; Xu et al. 1999) where a number of tributary networks
are connected to a backbone network via a set of hubs. Given the large set-up costs
associated with the installation of a set of links, network planners usually consider
the design of a network containing the minimum number of links. Although tree-star
and line-star topologies are attractive network topologies for this goal, these may not
be appropriate for telecommunications networks where there are requirements for
the backbone network to guarantee the existence of at least one path between O/D
nodes in case a backbone link fails. A cycle-star hub network ensures connectivity of
the network in such disruptive scenario while minimizing the set-up cost. Additional
applications arise in the design of rapid transit systems. Network planners may be
interested in the extension of public transportation networks in a metropolitan areas
by installing a circular rapid transit line, such as a subway, a tram or an express lane.
Examples of circular lines are the Moscow Underground, the Melbourne Circular
Tram Line, and some of the Montreal bus lines (e.g., 33, 55, and 470). In some
situations, a cycle is desirable not only due to reliability requirements but also
because it offers an alternative path which can considerably reduce the travel time
between node pairs.

Similar to tree-star topologies, arc selection and routing decisions are more
involved as these cannot be determined by location/allocation decisions. In fact,



590 I. Contreras

even if the location of hubs and allocation of O/D nodes is given, the problem is still
NP-hard as it reduces to the so-called minimum flow cost Hamiltonian cycle problem
(Ortiz-Astorquiza et al. 2015). Given that hub arcs are undirected and uncapacitated,
for each pair of hub nodes there exist exactly two possible paths on the cycle and the
flows associated with the O/D nodes allocated to such hubs will be routed through
the least cost path containing an undetermined number of hub arcs. A flow-based
formulation for the design of cycle-star hub networks can be stated as follows:

minimize
∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,k,m∈N
αdkmYikm

subject to (18.15)–(18.19), (18.41)–(18.42), (18.68)–(18.69)
∑

k∈N
zkk = p (18.72)

∑

(k,m)∈E
ykm = p (18.73)

∑

(k,m)∈E
ykm = 2zk k ∈ N . (18.74)

Constraints (18.72)–(18.74) together with flow conservation equations (18.15)
guarantee that the set of selected hub arcs form a cycle of hubs. Similar to tree-star
hub networks, subtour elimination constraints (18.70) need to be incorporated when
considering direct connections between non-hub nodes to obtain a valid formulation.

An arc-based formulation can be stated as follows:

minimize
∑

i,k∈N
(χOi + δDi)dikzik +

∑

i,j,k,m∈N
αWijdkmxijkm

subject to (18.16)–(18.18), (18.71), (18.68)–(18.69), (18.72)–(18.74).

4.2.4 Hub Line Networks

A hub line network consists of a set of hub nodes connected by means of a path (or
line). In this case, each O/D node can be assigned to more than one hub node, i.e.,
a multiple allocation pattern (see Fig. 18.2d). Potential applications for hub lines
arise in public transportation planning, in particular in the design of rapid transit
systems and highway networks (Martins de Sá et al. 2015). Network planners may
consider the expansion of an existing network in a metropolitan region to improve
users’ travel time by installing a rapid transit line, such as a subway, tram, or light
rail line or an express bus lane. Hubs correspond to central stations such as subway,
tram, bus or train stations. The aim is to minimize the total travel time between
node pairs. Additional applications of hub line topologies appear in the design of
road networks, where network planners may be interested in extending current road



18 Hub Network Design 591

network in urban, suburban, or rural regions when constructing a new path-shaped
highway or express lane. Hub nodes can be seen as a set of interchanges between
highways and other existing roads (Lari et al. 2008).

Similar to tree-star and cycle-star hub networks, arc selection and routing
decisions are not determined by the location decisions. Hub arc variables ykm are
needed to construct the (undirected) line of hubs. Also, flow variables Uijk and Xijk

used in HALPs are required to model the routing at the access-level network. An
arc-based formulation for the design of hub line networks is as follows:

minimize
∑

i,j

Wij

⎛

⎝
∑

k∈N
χdikUijk +

∑

k,m∈N
dkmαxijkm +

∑

m∈N
δdmjXijm

⎞

⎠

subject to (18.7), (18.55)–(18.56), (18.58)–(18.60)
∑

k∈N
zk = p (18.75)

∑

(k,m)∈E
ykm = p − 1 (18.76)

∑

(k,m)∈E
ykm ≤ 2zk k ∈ N (18.77)

Uijk +
∑

m∈N
xijmk =

∑

m∈N
xijkm +Xijk i, j, k ∈ N . (18.78)

Constraints (18.75)–(18.77) limit the number of hub nodes, hub arcs and degree
of each hub node to at most two, respectively. Constraints (18.78) are the flow
conservation equation which properly account for flows whenever a hub k is used.
All these constraints together ensure that the hub-level is connected, forming a
hub line. Similar to tree-star and cycle-star hub networks subtour elimination
constraints (18.70) need to be added when considering direct connections between
non-hub nodes to obtain a valid formulation.

5 Bibliographical Notes

The study of HLPs began with the pioneering work of O’Kelly (1986a), for
continuous models, and O’Kelly (1986b), for discrete models. Campbell (1994a),
Klincewicz (1998), and Bryan and O’Kelly (1999) provide early reviews and
focus on classification schemes, fundamentals, and models with applications in the
areas of telecommunications and air transportation. Campbell et al. (2001) wrote a
comprehensive survey in which the location of hubs is the key decision. Alumur and
Kara (2008) provided a classification scheme and review of the growing literature on
network hub location models before 2008. Campbell and O’Kelly (2012) provided



592 I. Contreras

an insight into early motivations for analyzing hub location models and highlighted
recent research directions. Contreras and O’Kelly (2019) wrote a concise overview
of the main developments and most recent trends in hub location such as flow
dependent discounted costs, capacitated models, uncertainty, dynamic and multi-
modal models, and competition and collaboration.

In what follows, we highlight some of the most relevant references with respect
to the development of mathematical models and solution algorithms for solving hub
location and hub network design problems.

5.1 Hub Location Problems

O’Kelly (1987) provided the first formulation for a hub location problem with single
assignments. O’Kelly formulated this problem as a discrete location problem with
additional quadratic costs associated with the interaction of O/D nodes. The study
of hub location models with multiple assignments originated in Campbell (1992),
in which various formulations for this class of problems were presented.

The work of Skorin-Kapov et al. (1997) and Ernst and Krishnamoorthy (1996,
1998b) presented the first generation of tight arc-based formulations and useful
flow-based formulations for single and multiple allocation variants of HLPs.
However, the tightest arc-based formulation known so far for multiple assignment
variants is the one independently introduced by Hamacher et al. (2004) and Marín
(2005a). The former obtains this formulation by lifting facet-defining inequalities of
the well-known uncapacitated facility location problem whereas the latter obtains
the same set of facet-defining constraints as well as other facets by reformulating
the problem as a set packing problem and identifying maximum cliques in an
auxiliary graph. Boland et al. (2004) presented preprocessing procedures to reduce
the number of variables and constraints for flow-based formulations, as well as some
valid inequalities that improve LP relaxation bounds of capacitated variants.

Contreras et al. (2009b) used the Benders reformulation of Sect. 3.1 to develop
and exact algorithm for uncapacitated HLPs with multiple assignments that, in
combination with other algorithmic features such as preprocessing, a heuristic, and
elimination tests, provided solutions for large-scale instances with up to 500 nodes.
This Benders reformulation has also been extended to solve multi-level capacitated
instances with up to 300 nodes (Contreras et al. 2012), and stochastic problems
dealing with uncertainties in both demand flows and transportation costs (Contreras
et al. 2011a).

Arc-based formulations have also been used to develop ad hoc solution algo-
rithms for various HLPs with single assignments. Pirkul and Schilling (1998) use
a Lagrangean relaxation (LR) in which constraints (18.16), (18.21)–(18.22) are
relaxed to approximately solve p-hub median problems with single assignments.
Contreras et al. (2009a) and Elhedhli and Wu (2010) use LRs in which con-
straints (18.21)–(18.22) are relaxed to solve capacitated HLP variants. Contreras
et al. (2011b) use the LR of Contreras et al. (2009a) to solve integer restricted



18 Hub Network Design 593

master problems containing a small subset of the xijkm variables and generating
more if needed with a column generation procedure. This lower bounding procedure
is embedded within a branch-and-price algorithm to solve capacitated instances with
up to 200 nodes. Contreras et al. (2010, 2017) presented some families of extended
cut-set inequalities that can help improve the LP bounds associated with flow-based
formulations. Labbé et al. (2005) developed a branch-and-cut algorithm that uses
several families of projection inequalities to solve quadratic capacitated variants
with up to 50 nodes.

Camargo and Miranda (2012) and Camargo et al. (2011) were the first works to
introduce Benders reformulations for solving HLPs with single assignments. The
authors use a hybrid outer-approximation / Benders decomposition algorithm for
dealing with the nonlinearity caused by functions used to represent congestion at
hubs. Contreras et al. (2021) recently used a Benders reformulation within a branch-
and-cut framework to optimally solve uncapacitated and capacitated instances with
up to 900 nodes.

5.2 Hub Network Design Problems

O’Kelly and Miller (1994) is the first work discussing the need of including addi-
tional design decisions in hub location models. The authors provide a classification
of hub network topologies based on protocols that consider the allocation pattern of
O/D nodes, the interconnection between hub nodes, and the possibility of allowing
direct connections between O/D nodes.

Campbell et al. (2005a) introduced HALPs and provided a classification scheme
for them that accounts for assumptions on hub-level network decisions, access-level
network decisions, and O/D path decisions. In a follow-up paper, Campbell et al.
(2005b) presented an exact enumeration-based algorithm to solve instances with up
to 25 nodes and q = 6 for several classes of HALPs. Contreras and Fernández
(2014) showed how a general class of HALPs can be stated as the minimization of
a real-valued supermodular set function and developed a branch-and-cut algorithm
using supermodular cuts to solve various particular cases of HALPs for instances
with up to 125 nodes.

More complex HALPs have been studied where additional features need to be
taken into account. In the context of air passenger transportation, Sasaki et al.
(2014) study competitive HALPs with multiple assignments in a Stackelberg frame-
work. Gelareh et al. (2010) deals with another competitive HALP with multiple
assignments arising in liner shipping. The authors extend path-based formulations
for this variant and present a LR algorithm to obtain bounds for instances with
up to 20 nodes. Tanash et al. (2017) focus on HALPs with single assignments in
which flow dependent costs are considered. The authors propose a branch-and-
bound algorithm that uses an arc-based formulation to solve instances with up
to 50 nodes. Gelareh and Nickel (2011) study HALPs with multiple assignments
arising in urban transport and liner shipping. A Benders decomposition algorithm is



594 I. Contreras

proposed to solve the considered problem. A multi-period extension of this problem
is presented in Gelareh et al. (2015), where a Benders decomposition is also used to
solve it. Rothenbcher et al. (2016) deals with HALPs with multiple assignments in
which there exist capacities on hub arcs. A branch-and-price algorithm that uses
a path-based formulation is developed to solve the problem. The pricing of the
path variables is NP-hard as it corresponds to solving a shortest path problem
with resource constraints. Camargo et al. (2017) focus on HALPs with multiple
assignments in which flow-dependent discounted flow costs and hop-constraints
are considered. The authors present a Benders reformulation and a branch-and-
cut algorithm to solve it. After a number of algorithmic features are employed to
generate non-dominated cuts, instances with up to 80 nodes can be optimally solved.

In the case of star-star hub network topologies, Labbé and Yaman (2008)
performed a polyhedral analysis and show that inequalities (18.63)–(18.65) are
facet-defining. Using a LR algorithm based on the above formulation, the authors
solved instances with up to 150 nodes. Tree-start hub networks seem to be more
challenging to solve. Martins de Sá et al. (2013) presented a Benders decomposition
algorithm that uses the arc-based formulation to optimally solve instances with up to
100 nodes. Contreras et al. (2017) developed a branch-and-cut algorithm for HNDPs
with a cycle-star topology using a flow-based formulation in combination with a
general class of mixed-dicut inequalities to solve instances with up to 100 nodes. In
the case of hub lines, Martins de Sá et al. (2015) introduced a Benders reformulation
based on an arc-based formulation and developed a branch-and-cut algorithm to
solve instances with up to 100 nodes.

6 Conclusions and Perspectives

We have provided an overview of hub network design problems in which both
location and arc selection are key decisions. We focused on the role network
design and routing decisions play in the formulation and solution of various classes
of hub network design problems of increasing complexity. We pointed out how
the assumptions and properties presented in Sect. 2 simplify the network design
decisions, giving rise to a first generation of hub location models dealing mostly
with the location of hubs and the assignment of O/D nodes to open hubs. We
have also highlighted how network design decisions become more involved when
removing some of these assumptions, leading to the study of a second generation
of models sharing more features to the more complex multi-commodity network
design problems than to discrete facility location problems.

Although substantial progress has been made by researchers and practitioners
in the area of hub network design, there is still significant work ahead. In many
practical applications additional design and tactical decisions need to be taken into
account to accurately model the associated systems. For instance, some applications
require the design of more complex access networks that are no longer determined
by an assignment pattern of O/D nodes to hubs. Klincewicz (1998) reviews various



18 Hub Network Design 595

models arising in the design of telecommunications networks in which tributary
trees are used. Yaman et al. (2007) considers a concrete application in cargo delivery
systems in which multi-stop access paths visiting more than one O/D node in the
way to a hub node are used to route commodities. Camargo et al. (2013), Rodríguez-
Martín et al. (2014), Cardoso Lopes et al. (2016), and Kartal et al. (2017) among
others, study models arising in freight transportation and express delivery in which
collection, transfer or distribution tours have to be designed. The formulation and
solution of such complex problems is far more challenging as compared to standard
HLPS and even to HALPs.

Other applications, such as in airline and ground transportation, require addi-
tional design decisions associated with the nodes and served commodities (Alibeyg
et al. 2016, 2018). For example, in the case of airline companies network planners
have to design their network when entering into the market, or may have to
modify already established networks through alliances, merges and acquisitions.
The decisions are to determine the cities that will be part of their network and which
O/D flights to activate in order to offer air travel services to passengers between
cities so as to maximize the profit.

Finally, another interesting facet of hub networks which has been rarely studied
is the integration of network design with scheduling decisions. Yaman et al. (2012)
studies a concrete application arising in cargo delivery systems for next-day delivery
in which the goal is to simultaneously design a hub network and to decide on the
release times of trucks from each demand center so that the total cargo guaranteed
to be delivered by the next day is above a threshold while minimizing the flow cost.
Masaeli et al. (2018) study another model arising in parcel delivery systems in which
the number of dispatches to operate on the hub network as well as the time period
of dispatching each vehicle from a hub are taken into account while designing the
hub network.

References

Adams, W. P., & Sherali, H. D. (1990). Linearization strategies for a class of zero-one mixed
integer programming problems. Operations Research, 38, 217–226.

Alibeyg, A., Contreras, I., & Fernández, E. (2016). Hub network design with profits. Transporta-
tion Research Part E: Logistics and Transportation Review 96, 40–59.

Alibeyg, A., Contreras, I., & Fernández, E. (2018). Exact solution of hub network design problems
with profits. European Journal of Operational Research, 266, 57–71.

Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European
Journal of Operational Research, 190, 1–21.

Boland, N., Krishnamoorthy, M., Ernst, A. T., & Ebery, J. (2004). Preprocessing and cutting for
multiple allocation hub location problems. European Journal of Operational Research, 155,
638–653.

Bryan, D. L., & O’Kelly, M. E. (1999). Hub-and-spoke networks in air transportation: An analytical
review. Journal of Regional Science, 39, 275–295.

Camargo, R. S., & Miranda, Jr G. (2012). Single allocation hub location problem under congestion:
Network owner and user perspectives. Expert Systems with Applications, 39, 3385–3391.



596 I. Contreras

Camargo, R. S., Miranda, Jr G., & Ferreira, R. P. M. (2011). A hybrid outer-approximation/Benders
decomposition algorithm for the single allocation hub location problem under congestion.
Operations Research Letters, 39, 329–337.

Camargo, R. S., Miranda, Jr G., & Lokketagen, A. (2013). A new formulation and an exact
approach for the many-to-many hub location-routing problem. Applied Mathematical Mod-
elling, 37, 12–13.

Camargo, R. S., Miranda, Jr G., O’Kelly, M., & Campbell, J. F. (2017). Formulations and
decomposition methods for the incomplete hub location problem with and without hop-
constraints. Applied Mathematical Modelling, 51, 274–301.

Campbell, J. F. (1992). Location and allocation for distribution systems with transshipments and
transportation economies of scale. Annals of Operations Research, 40, 77–99.

Campbell, J. F. (1994a). A survey of network hub location. Studies in Locational Analysis, 6,
31–43.

Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2001). Hub location problems. In: Z.
Drezner, & H. W. Hamacher (Eds.), Facility location. Applications and Theory (pp. 373–408).
Heidelberg: Springer.

Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2005a). Hub arc location problems: Part I
Introduction and results. Management Science, 51, 1540–55.

Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2005b). Hub arc location problems: Part II
formulations and optimal algorithms. Management Science, 51, 1556–71.

Campbell, J. F., & O’Kelly, M. E. (2012). Twenty-five years of hub location research. Transporta-
tion Science, 46, 153–169.

Cardoso Lopes, M., Eduardo de Andrade, C. E., Alves de Queiroz, T., Resende, M. G. C., &
Miyazawa, F. K. (2016). Heuristics for a hub location-routing problem. Networks, 68, 54–90.

Contreras, I., Cordeau, J.-F., & Laporte, G. (2011a). Stochastic uncapacitated hub location.
European Journal of Operational Research, 212, 518–528.

Contreras, I., Cordeau, J.-F., & Laporte, G. (2012). Exact solution of large-scale hub location
problems with multiple capacity levels. Transportation Science, 46, 439–459.

Contreras, I., Díaz, J. A., & Fernández, E. (2009a). Lagrangean relaxation for the capacitated hub
location problem with single assignment. OR Spectrum, 31, 483–505.

Contreras, I., Díaz, J. A., & Fernández, E. (2011b). Branch and price for large-scale capacitated
hub location problems with single assignment. INFORMS Journal on Computing, 23, 41–55.

Contreras, I., & Fernández, E. (2014). Hub location as the minimization of a supermodular set
function. Operations Research, 62, 557–570.

Contreras, I., Fernández, E., & Marín, A. (2009b). Tight bounds from a path based formulation for
the tree of hubs location problem. Computers & Operations Research, 36, 3117–3127.

Contreras, I., Fernández, E., & Marín, A. (2010). The tree of hubs location problem. European
Journal of Operational Research, 202, 390–400.

Contreras, I., O’Kelly, M. E. (2019). Hub location problems. In G. Laporte, S. Nickel & F. Saldanha
da Gama (Eds.), Location science. Heidelberg: Springer.

Contreras, I., Tanash, M., & Vidyarthi, N. (2017). Exact and heuristic approaches for the cycle hub
location problem. Annals of Operations Research, 258, 655–677.

Contreras, I., Zetina, C., Jayawasal, S., & Vidyarthi, N. (2021). An exact algorithm for large-scale
non-convex quadratic capacitated facility location. Submitted.

Elhedhli, S., & Wu, H. (2010). A Lagrangean heuristic for hub-and-spoke system design with
capacity selection and congestion. INFORMS Journal on Computing, 22, 282–296.

Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single
allocation p-hub median problem. Location Science, 4, 139–154.

Ernst, A. T., & Krishnamoorthy, M. (1998b). Exact and heuristic algorithms for the uncapacitated
multiple allocation p-hub median problems. European Journal of Operational Research, 104,
100–112.

Gelareh, S., Monemi, R. N., & Nickel, S. (2015). Multi-period hub location problems in
transportation. Transportation Research Part E: Logistics and Transportation Review, 75,
67–94.



18 Hub Network Design 597

Gelareh, S., & Nickel, S. (2011). Hub location in transportation networks. Transportation Research
Part E: Logistics and Transportation Review, 47, 1092–1111.

Gelareh, S., Nickel, S., Pisinger, D. (2010). Liner shipping hub network design in a competi-
tive environment.Transportation Research Part E: Logistics and Transportation Review, 46,
991–1004.

Hamacher, H. W., Labbé, M., Nickel, S., & Sonneborn, T. (2004). Adapting polyhedral properties
from facility to hub location problems. Discrete Applied Mathematics, 145, 104–116.

Helme, M. P., & Magnanti, T. L. (1989). Designing satellite communication networks by zero-one
quadratic programming. Networks, 19, 427–450.

Hu, T. C. (1974). Optimum communication spanning trees. SIAM Journal on Computing, 3,
188–195.

Kartal, Z., Hasgul, S., & Ernst, A. T. (2017). Single allocation p-hub median location and routing
problem with simultaneous pick-up and delivery. Transportation Research Part E: Logistics
and Transportation Review, 108, 141–159.

Kim, J.-G., & Tcha, D.-W. (1992). Optimal design of a two-level hierarchical network with tree-
star configuration. Computers & Industrial Engineering, 22, 273–281.

Klincewicz, J. G. (1998). Hub location in backbone/tributary network design: A review. Location
Science, 6, 307–335.

Labbé, M., & Yaman, H. (2004). Projecting the flow variables for hub location problems. Networks,
44, 84–93.

Labbé, M., & Yaman, H. (2008). Solving the hub location problem in a start-start network.
Networks, 51, 19–33.

Labbé, M., Yaman, H., & Gourdin, É. (2005). A branch and cut algorithm for hub location
problems with single assignment. Mathematical Programming, 102, 371–405.

Lari, I., Ricca, F., & Scozzari, A. (2008). Comparing different metaheuristic approaches for the
median path problem with bounded length. European Journal of Operational Research, 20,
625–637.

Lee, C.-H., Ro, H.-B., & Tcha, D.-W. (1993). Topological design of a two-level network with
ring-star configuration. Computers & Operations Research 20, 625–637.

Lee, Y., Lim, B. L., & Park, J. S. (1996). A hub location problem in designing digital data service
networks: Lagrangian relaxation approach. Location Science, 4, 185–194.

Marín, A. (2005a). Uncapacitated Euclidean hub location: Strengthened formulation, new facets
and a relax-and-cut algorithm. Journal of Global Optimization, 33, 393–422.

Martins de Sá, E., Contreras, I., Cordeau, J.-F., de Camargo, R. S., & de Miranda, R. (2015). The
hub line location problem. Transportation Science, 49, 500–518.

Martins de Sá, E., de Camargo, R. S., & de Miranda, R. (2013). An improved Benders decom-
position algorithm for the tree of hubs location problem. European Journal of Operational
Research, 226, 185–202.

Masaeli, M., Alumur, S. A., & Bookbinder, J. H. (2018). Shipment scheduling in hub location
problems. Transportation Research Part B: Methodological, 115, 126–142.

Mirchandani, P. (2000). Projections of the capacitated network loading problem. European Journal
of Operational Research, 122, 534–560.

O’Kelly, M. E. (1986a). The location of interacting hub facilities. Transportation Science, 20, 92–
106.

O’Kelly, M. E. (1986b). Activity levels at hub facilities in interacting networks. Geographical
Analysis, 18, 343–356.

O’Kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities.
European Journal of Operational Research, 32, 393–404.

O’Kelly, M. E., & Miller, H. J. (1994). The hub network design problem: A review and synthesis.
Journal of Transport Geography, 2, 31–40.

Ortiz-Astorquiza, C., Contreras, I., & Laporte, G. (2015). The minimum flow cost Hamiltonian
cycle problem: a comparison of formulations. Discrete Applied Mathematics, 187, 140–154.

Pirkul, H., & Schilling, D. A. (1998). An efficient procedure for designing single allocation hub
and spoke systems. Management Science, 44, 235–242.



598 I. Contreras

Rardin, R. L., & Wolsey, L. A. (1993). Valid inequalities and projecting the multicommodity
extended formulation for uncapacitated fixed charge network flow problems. European Journal
of Operational Research, 71, 95–109.

Rodríguez-Martín, I., Salazar-González, J. J., & Yaman, H. (2014). A branch-and-cut algorithm
for the hub location and routing problem. Computers & Operations Research, 50,161–174.

Rothenbcher, A.-K., Drexl, M., & Irnich, S. (2016). Branch-and-price-and-cut for a service
network design and hub location problem. European Journal of Operational Research, 255,
935–947.

Sasaki, M., Campbell, J. F., Krishnamoorthy, M., & Ernst, A. T. (2014). A Stackelberg hub arc
location model for a competitive environment. Computers & Operations Research, 47, 27–41.

Skorin-Kapov, D., Skorin-Kapov, J., & O’Kelly, M. E. (1997). Tight linear programming relax-
ations of uncapacitated p-hub median problems. European Journal of Operational Research,
94, 582–593.

Tanash, M., Contreras, I., & Vidyarthi, N. (2017). An exact algorithm for the modular hub location
problem with single assignments. Computers & Operations Research, 85, 32–44.

Xu, J., Chiu, S. Y., & Glover, F. (1999). Optimizing a ring-based private line telecommunication
network using tabu search. Management Science, 45, 330–345.

Wolsey, L. A. (1983). Fundamental properties of certain discrete location problems. In J. F. Thisse,
& H. G. Zoller (Eds.), Locational analysis of public facilities (pp. 331–355). Amsterdam:
North-Holland.

Yaman, H. (2008). Star p-hub median problem with modular arc capacities. Computers &
Operations Research, 35, 3009–3019.

Yaman, H., Kara, B. Y., & Tansel, B. Ç. (2007). The latest arrival hub location problem for cargo
delivery systems with stopovers. Transportation Research Part B: Methodological, 41, 906–
919.

Yaman, H., Karasan, O. E., & Kara, B. Y. (2012). Release time scheduling and hub location for
next-day delivery. Operations Research, 60, 906–917.

Zetina, C., Contreras, I., Fernández, E., & Luna-Mota, C. (2019). Solving the optimum communi-
cation spanning tree problem. European Journal of Operational Research, 273, 108–117.



Chapter 19
Logistics Network Design

Jean-François Cordeau, Walid Klibi, and Stefan Nickel

1 Introduction

The design of logistics networks is one of the most important areas of applica-
tion for multicommodity network design models. Logistics networks (or supply
chains) connect suppliers, manufacturing plants, warehouses, distribution centers
and customers to coordinate the acquisition of raw materials and components,
their transformation into finished products and the delivery of these products to
the customers. The design of these networks is complex and involves making a
large number of interdependent decisions concerning the selection of suppliers, the
location of production and distribution facilities, the assignment of products to the
facilities, the selection of transportation modes, and the determination of the flows
of raw materials, components and finished products in the network. Figure 19.1
illustrates the structure of a classical logistics network with suppliers providing
raw materials to production plants which, in turn, deliver finished products to
warehouses. Finally, these warehouses are responsible for serving the demand of
the customers. Nodes that are not connected to others represent potential facilities
that are not currently part of the network.

Logistics network design is of course strategic in nature and concerns the long
term. However, it is essential when designing a network to take into account the

J.-F. Cordeau (�)
HEC Montréal and CIRRELT, Montréal, QC, Canada
e-mail: jean-francois.cordeau@hec.ca

W. Klibi
Kedge Business School, Talence, France
e-mail: walid.klibi@kedgebs.com

S. Nickel
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: stefan.nickel@kit.edu

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_19

599

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_19&domain=pdf
mailto:jean-francois.cordeau@hec.ca
mailto:walid.klibi@kedgebs.com
mailto:stefan.nickel@kit.edu
https://doi.org/10.1007/978-3-030-64018-7_19


600 J.-F. Cordeau et al.

Suppliers Plants Warehouses Customers

Fig. 19.1 Example of a three-echelon logistics network

tactical and operational repercussions of the strategic decisions. For instance, the
selection of proper locations and capacity levels for production plants depends to a
large extent on the selection of suppliers, on the choice of which products will be
made in each plant, on the transportation modes used to connect the various nodes
in the network, and even on the amount of flow circulating on the arcs. Of course,
tactical and operational decisions will be revised more frequently as demand and
other parameters change in the environment of the firm.

In addition to combining multiple types of intertwined decisions, logistics
network design problems usually involve several categories of costs: fixed costs
associated with facility locations, acquisition costs for raw materials and com-
ponents, production costs, transportation costs, inventory holding costs, etc. Not
surprisingly, several studies have shown that very important savings can be achieved
by taking the design decisions in an integrated way (see, e.g. Arntzen et al. 1995;
Fleischmann et al. 2006; Ulstein et al. 2006). Companies often benefit from the
re-optimization of their logistics networks following changes in their business
environment: new market opportunities, changes in production or transportation
costs, new technologies, changes in trade regulations, etc. Mergers and acquisitions
also often create the need for a firm to revise the structure of its logistics network.
Accordingly, logistics networks are rarely designed from scratch and optimization
models usually aim at finding the best way to adapt an existing network to new
market conditions.

Over the last 40 years, the realism of logistics network design models has greatly
improved and efficient solution methods have been developed to solve these models.
There is now a vast literature on the topic with a very large number of models
addressing the many problem variants encountered in practice (see, e.g. Melo et al.



19 Logistics Network Design 601

2009; Martel and Klibi 2016). The purpose of this chapter is to provide a general
modeling framework that can be used to express many of these variants and to give a
brief overview of the main solution methodologies. We also devote attention to two
important and recent trends: the treatment of risk and uncertainty in the design of
logistics networks and the incorporation of environmental, sustainability and reverse
logistics aspects.

The rest of the chapter is organized as follows. Section 2 introduces the modeling
framework and discusses various extensions. This is followed by a discussion of
risk and uncertainty concepts in Sect. 3 and of reverse logistics, environmental and
sustainability aspects in Sect. 4. Section 5 is devoted to solution methods. Finally,
Sect. 6 provides bibliographic notes and Sect. 7 concludes the chapter.

2 A General Modeling Framework for Logistics Network
Design

The purpose of this section is to introduce a general formulation that captures the
fundamental aspects of logistics network design and can also serve as a basis to
incorporate various extensions that are often required in practical applications. This
formulation is itself based on the model proposed by Cordeau et al. (2006) but it
has been generalized to consider multiple time periods as well as arbitrary network
structures and bills of materials.

2.1 Notation

We denote by K be the set of all item types circulating in the logistics network. This
set can be partitioned into a subset R of raw materials, a subset A of assemblies
and a subset F of finished products such that K = R ∪A ∪F . We assume here
that raw materials are acquired from external suppliers whereas finished products
are delivered to customers. Assemblies are intermediate components that are made
either from raw materials or from other assemblies. For every item k ∈ A ∪F , let
Bk ⊆ R ∪A denote the subset of items that are needed to make item k. Similarly,
for every raw material or assembly � ∈ R ∪ A , let K� ⊆ A ∪ F denote the
assemblies and finished products that require item �. For every k ∈ K and � ∈ Bk ,
we denote by bk� the amount of item � required for the production of one unit of
item k. The set Bk and values bk� define the bill of materials for item k.

The set of potential suppliers is denoted by S and, for every raw material r ∈ R,
we let S r ⊆ S represent the subset of suppliers that may provide r . We also let P
and W denote the sets of potential locations for plants and warehouses, respectively.
For every item k ∈ K , we let Pk denote the subset of plants where item k can be
produced or used in the production of other items. Similarly, W k represents the



602 J.-F. Cordeau et al.

warehouses where item k can be stored. Finally, we denote by C the set of customer
locations. In most applications, a customer c would not represent an individual
customer or a specific company but rather an aggregation of the demand of a given
region.

To simplify the writing of the model, we let O = S ∪P ∪ W and D = P ∪
W ∪ C denote the sets of possible origins and destinations for the items circulating
in the network. For every k ∈ K , we also define Ok ⊆ O and Dk ⊆ D as the sets
of possible origins and destinations for item k, respectively. For any node i ∈ O , let
also Ki = {k ∈ K |i ∈ Ok ∪ Dk} be the set of items which may originate from or
be destined to node i.

The planning horizon is divided into a set of consecutive time periods denoted
by T . For every c ∈ C , f ∈ F and t ∈ T , let df tc be the demand of customer c
for finished product f in period t .

The model uses three types of binary variables to represent decisions related to
the selection of nodes in the network and the assignment of items to these nodes.
For every node i ∈ O , we define a binary variable yi equal to 1 if and only if the
node is selected, and we let ci be the fixed cost of selecting this node. For every
item k ∈ K and every node i ∈ Ok , let also vki be a binary variable, with cost cki ,
taking value 1 if and only if item k is assigned to node i. These variables represent
the decisions to acquire raw materials from certain suppliers or to make and store
products in certain plants and warehouses. Finally, for every k ∈ K , i ∈ Ok and
j ∈ Dk , let wk

ij be a binary variable, with cost ckij , equal to 1 if and only if origin i
provides item k to destination j .

For every node i ∈ O , let qi be the output capacity of this node, and for every
k ∈ Ki , let uki be the amount of capacity required by one unit of item k at node i.
For every k ∈ K and i ∈ Ok , let also qki be the capacity of node i for item k and
qkij be the maximum that can be provided to destination j ∈ Dk .

We assume that a set Mij of potential transportation modes is associated to every
origin-destination pair (i, j) ∈ O ×D . For every m ∈Mij , we then define a binary
variable zmij equal to 1 if and only if transportation mode m is used between origin i
and destination j . We use the notation cmij to represent the fixed cost of using mode

m and let qmij be its capacity in each time period. For every k ∈ K , i ∈ Ok and

j ∈ Dk , M k
ij ⊆Mij is the subset of feasible transportation modes between i and j

for item k, and ukm is the unit capacity consumption for item k in mode m.
Finally, the model uses two types of continuous variables to represent acquisition,

production, storage and transportation decisions. For every m ∈M k
ij and t ∈ T , we

define a non-negative variable xkmtij , with cost ckmtij , representing the number of units

of item k transported from i to j using mode m in period t . Unit costs ckmtij should
include not only transportation expenses but also relevant acquisition, production
and handling costs at the origin node i. This does not cause any loss of generality
since the total flow going through a node can be computed as the sum of the flows
on the arcs leaving that node. For every item k ∈ K and every node w ∈ W k , we
also let I ktw denote the inventory of item k in node w at the end of period t and we let



19 Logistics Network Design 603

Table 19.1 Summary of notation for sets

A Set of assemblies

Bk Set of items needed to make item k

C Set of customers

C f Set of customers that require product f

D Set of destinations

Dk Set of potential destinations for item k

F Set of finished products

K Set of all items

K � Set of items that require item �

Ki Set of items that may originate or be destined to i

Mij Set of transportation modes between i and j

M k
ij Set of transportation modes between i and j for item k

O Set of origins

Ok Set of potential origins for item k

P Set of potential plant locations

Pk Set of plant locations where item k can be produced or used

R Set of raw materials

S Set of potential suppliers

S � Set of potential suppliers providing raw material �

T Set of time periods

W Set of potential warehouse locations

W k Set of warehouse locations where item k can be stored

gktw be the cost of holding one unit of item k at node w in period t . We assume here
that inventory is held only at warehouse nodes. If a plant possesses storage areas
for assemblies or finished products, it can be modeled by multiple nodes connected
among themselves and representing the various functions of the plant.

Tables 19.1, 19.2 and 19.3 provide a summary of the notation.

2.2 Formulation

The logistics network design problem (LNDP) consists in minimizing the following
objective function, which comprises all the fixed costs associated with the binary
design variables and unit costs associated with the flow and inventory variables:

Minimize
∑

i∈O

⎡

⎣ciyi +
∑

j∈D

∑

m∈Mij

cmij z
m
ij

⎤

⎦+



604 J.-F. Cordeau et al.

Table 19.2 Summary of notation for parameters

bk� Amount of item � needed in one unit of item k

ci Fixed cost of selecting origin i

cki Fixed cost of assigning item k to origin i

ckij Fixed cost of providing item k to destination j from origin i

cmij Fixed cost of using transportation mode m between i and j

ckmtij Unit cost for providing item k to j from i with mode m in period t

d
f t
c Demand of customer c for product f in period t

gktw Cost of holding one unit of item k at node w during period t

qi Capacity of node i in equivalent units

qmij Capacity of mode m between i and j in equivalent units

qki Upper limit on the amount of item k shipped from node i

qkij Upper limit on the amount of item k shipped from i to j

uki Amount of capacity required by one unit of item k at node i

ukm Amount of capacity required by one unit of item k in mode m

Table 19.3 Summary of notation for variables

I ktw Inventory of item k in location w at the end of period t

xkmtij Amount of item k shipped from i to j with mode m in period t

yi = 1 if node i is selected

vki = 1 if item k is assigned to origin i

wk
ij = 1 if node i provides item k to destination j

zmij = 1 if mode m is selected between i and j

∑

k∈K

∑

i∈Ok

⎡

⎢
⎣c

k
i v

k
i +

∑

j∈Dk

⎡

⎢
⎣c

k
ijw

k
ij +

∑

m∈Mk
ij

∑

t∈T
ckmtij xkmtij

⎤

⎥
⎦

⎤

⎥
⎦+

∑

k∈K

∑

w∈W k

∑

t∈T
gktw I

kt
w .

(19.1)

The first group of constraints comprises equations related to the flow of items in
the network:

∑

i∈O�

∑

m∈M �
ip

x�mtip −
∑

k∈K �

∑

j∈Dk

∑

m∈M k
pj

bk�xkmtpj =0 � ∈ R ∪A ;p∈P�; t∈T

(19.2)
∑

i∈Ok

∑

m∈M k
iw

xkmtiw −
∑

j∈Dk

∑

m∈M k
wj

xkmtwj +Ik,t−1
w −Iktw =0 k ∈ K ;w ∈ W k; t ∈ T

(19.3)



19 Logistics Network Design 605

∑

i∈Of

∑

m∈M f
ic

x
fmt
ic
= d

f t
c f ∈ F ; c ∈ C f ; t ∈ T .

(19.4)

Constraints (19.2) force the amount of raw material or assembly � shipped to
plant p in period t to be equal to the amount required by all assemblies and finished
products made at this plant during the same period. Constraints (19.3) ensure that the
amount of item k entering warehouse w during period t plus the inventory available
at the beginning of period t is equal to the amount leaving the warehouse during
that period plus the amount available at the end of the period. To ensure consistent
inventory levels, the last period in the horizon can be connected to the first one,
which has the effect of forcing the inventory level at the end of the last period to be
equal to the inventory level at the beginning of the first one. Demand constraints are
imposed by Eqs. (19.4).

The second group of constraints comprises inequalities related to the capacity of
the nodes and arcs in the network:

∑

k∈K

∑

j∈Dk

∑

m∈M k
ij

uki x
kmt
ij − qiyi ≤ 0 i ∈ O; t ∈ T (19.5)

∑

j∈Dk

∑

m∈M k
ij

xkmtij − qki vki ≤ 0 k ∈ K ; i ∈ Ok; t ∈ T (19.6)

∑

m∈M k
ij

xkmtij − qkijwk
ij ≤ 0 k ∈ K ; i ∈ Ok; j ∈ Dk; t ∈ T (19.7)

∑

k∈K
ukmxkmtij − qmij zmij ≤ 0 i ∈ O; j ∈ D;m ∈Mij ; t ∈ T . (19.8)

Constraints (19.5) impose aggregate capacity limits on suppliers, plants and
warehouses, whereas limits for individual items are enforced through (19.6).
Constraints (19.7) force node i to be selected if units of item k are transported
from i to j . Finally, capacity constraints for individual transportation modes are
represented by (19.8).

It should be noted that single-sourcing for item k at destination j can be imposed
with the constraint

∑

i∈Ok

wk
ij ≤ 1. (19.9)

Furthermore, the following constraint can impose a single-assignment rule to ensure
that all units of an item k come from the same origin:



606 J.-F. Cordeau et al.

∑

i∈Ok

vki ≤ 1. (19.10)

2.3 Extensions

The above formulation captures the essential aspects of the LNDP but it can also be
generalized to address a variety of practical situations. For the sake of clarity, each
extension is presented separately although the different extensions can obviously be
combined.

2.3.1 Lower Bounds and Capacity Alternatives

Lower limits on acquisition, production, storage and transportation activities can be
imposed by using constraints similar to (19.5)–(19.8) but reversing the inequality
sign. In particular, lower bounds can be used to model quantity discounts or any
other situation where a minimal volume is necessary for a given unit cost to be
applicable. The combined use of lower and upper bounds can also serve to model
situations where several capacity alternatives, with different operating costs, exist
for the configuration of a node in the network. This also applies to different layouts
or configurations of facilities.

2.3.2 Multi-Period Design Decisions

The above model assumes that all binary decisions are made at the beginning of the
planning horizon and that the network structure thus remains the same throughout
this horizon. However, facility location decisions are usually highly dependent on
the value of some parameters such as the fixed costs of the facilities and the customer
demand. If these parameters are expected to vary over time, it may be desirable to
plan in advance for future adjustments in the number and location of facilities and
in other related decisions. In this case, locating a set of facilities becomes a question
not only of “where” but also of “when”. This can be achieved by associating a time
index to the binary design decisions and by adapting constraints (19.5)–(19.8) to
reflect the fact that network configuration and facility capacity evolve over time.
In particular, let yit indicate whether the facility at node i is open and operating
in period t . Simply adding the time index would allow for frequent opening and
closing of facilities, which does not adequately reflect an implementable evolution
of a real-world supply chain network. To depict the network evolution of a growing
enterprise, constraints (19.11) ensure that facilities that have once been openend
remain open throughout the planning horizon:



19 Logistics Network Design 607

yi,t−1 − yit ≤ 0 i ∈ I ; t ∈ T \ {1}. (19.11)

When planning the optimal evolution of an existing supply chain network, the
successive closing of existing facilities becomes important. In such phase-in/phase-
out models the set of nodes I can be partitioned into two subsets: I C , the set of
locations where existing facilities can be removed, and I O , the set of locations
where new facilities can be installed. To ensure consistency in the resulting network
configuration constraints (19.11) are replaced with constraints (19.12) and (19.13):

yi,t−1 − yit ≤ 0 i ∈ I O; t ∈ T \ {1} (19.12)

yit − yi,t−1 ≤ 0 i ∈ I C; t ∈ T \ {1}. (19.13)

The explicit consideration of opening and closing costs for facilities in this context
was first introduced by Wesolowsky and Truscott (1975).
Multi-period models are sometimes called dynamic (location) models in the liter-
ature. Note that this is somewhat misleading because design decisions can only
be made at specific moments, namely at the beginning of each indexed period.
Some models go even further and, mostly in an attempt to reduce complexity,
divide the set of periods T into strategic and tactical periods, whereby changes
in the network configuration are restricted to the strategic periods. A multi-period
modeling framework involves one extra dimension in the decision space: the timing.
Hence, the resulting models tend to be large and harder to solve, even for instances
of moderate size. Accordingly, one may ask whether it is worth considering this
extra dimension instead of making static decisions even though costs, demands and
other parameters may vary over time. An answer to this question can be given by
the value of the multi-period solution, a concept first introduced by Alumur et al.
(2012) in the context of a multi-period reverse logistics network design problem.
The value of the multi-period solution compares the optimal value of the multi-
period problem and the value of a solution found by solving a static counterpart. We
refer the interested reader to Nickel and Saldanha-da-Gama (2015) for an in-depth
discussion of multi-period facility location models and for details on the value of
the multi-period solution.

2.3.3 Inventory Level Constraints

Lower and upper bounds on inventory levels in warehouses can be added to the
model by introducing constraints on the I ktw variables. In particular, an upper bound
q̂ktw on the amount of item k held in inventory in warehouse w at the end of period t
can be imposed with the following constraint:

I ktw ≤ q̂ktw v
k
w. (19.14)



608 J.-F. Cordeau et al.

Similarly, an upper bound q̂tw on the total amount of inventory held in warehouse w
at the end of period t can be imposed with the following constraint:

∑

k∈K
ukwI

kt
w ≤ q̂twyw. (19.15)

Because the LNDP is a strategic planning problem defined over a long planning
horizon, the length of the time periods usually does not allow for a detailed
representation of operational inventory decisions. Nevertheless, constraints can be
imposed on expected safety stocks and cyclic (replenishment) inventory levels by
relying on turnover ratios. Let ρktw denote the expected turnover ratio for item k at
warehouse w in period t . A lower bound on the total inventory level at the end of
period t can be imposed as follows:

I ktw ≥
∑

d∈Dk

∑

m∈M k
wd

1

ρktw
xkmtwd . (19.16)

The actual inventory level can of course be larger than the lower bound when
fluctuations in demand make it beneficial to accumulate inventory in some periods
to be used in later ones. It is well known in inventory control that, because of
pooling effects, the amount of safety stock needed increases less than linearly
with the amount of demand served by a warehouse. To capture this non-linear
relationship between demand volume and operational inventory levels, one may
define several copies of the same warehouse with different turnover ratios for
the given product. Better approximations of the concave relationship between
throughput and inventory levels can be obtained by using a continuous piece-wise
linear function specified as a set of base levels (the equivalent of a fixed cost) and
unit rates of increase (the equivalent of a unit cost). Mathematically, this relationship
can be imposed by using the constraint

I ktw ≥ αktw +
∑

d∈Dk

∑

m∈M k
wd

βktw x
kmt
wd , (19.17)

where αktw represents the base level and βktw is the unit increase rate. This will lead
to the type of approximation represented in Fig. 19.2.

It should be observed that by setting αktw = 0 for every segment, one obtains the
first approximation (19.16) based only on turnover ratios. Furthermore, if a single
segment is used, the value of βktw should correspond to the inverse of the expected
turnover ratio. If this value is estimated with respect to the maximum possible
throughput, one will obtain the approximation illustrated in Fig. 19.3.

We refer to Martel (2005) for a detailed treatment of inventory representation in
LNDPs.



19 Logistics Network Design 609

2500 5000 10000

1000

1414

2000

Inventory

Demand

Fig. 19.2 Inventory levels with piece-wise linear segments

Fig. 19.3 Inventory levels
with a single segment

10000

2000

Inventory

Demand

2.3.4 Profit Maximization

The traditional focus in logistics network design is to minimize costs while
satisfying an exogenous demand. In a value-creation paradigm, however, it may be
more appropriate to consider a profit maximization objective function that captures
both costs and revenues. Model (1)–(8) can be modified in different ways to account
for profit maximization. A common approach is to consider the demand as a decision



610 J.-F. Cordeau et al.

variable. This can be accomplished by associating a unit revenue rfc with product
f and customer c and by replacing equality constraints (19.4) with two inequalities
imposing minimum and maximum demand levels to be served in each market as
follows:

∑

i∈Of

∑

m∈M f
ic

x
fmt
ic ≥ d̄

f t
c f ∈ F ; c ∈ C f ; t ∈ T (19.18)

∑

i∈Of

∑

m∈M f
ic

x
fmt
ic ≤ d̂

f t
c f ∈ F ; c ∈ C f ; t ∈ T . (19.19)

Here, d̄f tc and d̂f tc represent, respectively, the minimum amount of demand to be
served and the maximum potential demand of customer c for product f in period
t . Setting both parameters to the same value corresponds to imposing the equality
constraints (19.4). The following term should be added to the objective function to
measure total revenue:

∑

t∈T

∑

c∈C

∑

f∈F

∑

i∈Of

∑

m∈M f
ic

r
f
c x

fmt
ic .

The latter expression assumes that unit revenue is constant, which makes the
objective function linear and preserves model tractability. However, if demand is
assumed to depend on price and price is itself treated as a decision variable, then the
objective function becomes non-linear and makes the problem harder to solve. The
above approach also assumes that demand is independent of the network design.
In practice, sales are often affected not only by price but also by the design of the
logistics network itself because it has an impact on various aspects of service such as
response time, i.e., the time it takes to deliver a product to the customer. Figure 19.4
illustrates how, for a given price, the revenues (RS) and costs (CS) may depend on
the response time S provided by the logistics network and, consequently, how the
economic value added by the network can be expressed as the difference between
revenue and cost. It also shows that beyond a given response time Smax revenues
can decline abruptly.

This suggests another approach to address profit maximization: one can perform
a sensitivity analysis based on the price and response time variations. For given
values of price and response time, the demand can be estimated and the revenues
calculated a priori. Then, the cost minimization model can be solved after removing
from the model the variables that correspond to customer assignments that would
violate the target response time S. Varying the price and response time allows one
to approximate the two curves shown in Fig. 19.4 and to identify the value of S for
which the difference PS between RS and CS is maximized.

Finally, a more sophisticated approach to treat profit maximization is to model the
set of potential market policies offered by a company through binary policy selection
variables. A market policy specifies the price, desired response time and other



19 Logistics Network Design 611

Fig. 19.4 Economic value added for a given logistics network design

attributes, and is characterised by a fixed implementation cost, service constraints
and demand bounds. This approach is explained in more detail by Martel and Klibi
(2016).

2.3.5 International Aspects

Some aspects related to international operations can easily be taken into consid-
eration with this model. For example, exchange rates should be used to convert
monetary values into a unique, common currency. In addition, tariffs and duties for
products that cross a border can be added directly to the cost of the corresponding
arcs. Local content rules can often be enforced in the form of lower bounds on
a sum of arc flow variables. However, more complex questions such as transfer
pricing and taxation require the introduction of additional variables and constraints.
In particular, transfer pricing usually leads to non-linear formulations because of the
need to determine both costs and flows simultaneously on some arcs of the networks.
A detailed treatment of international aspects is beyond the scope of this chapter and
we instead refer to Arntzen et al. (1995), Martel (2005) and to Martel and Klibi
(2016).



612 J.-F. Cordeau et al.

3 Risk and Uncertainty

Because logistics network design decisions concern the long term, several of
the input parameters are often subject to risk and uncertainty. Several modeling
approaches can be considered to take this uncertainty into account. In this section,
we explain how two of these approaches, stochastic programming and robust
optimization, can be applied to the LNDP.

3.1 Stochastic Programming

Stochastic programming is a well-known optimization technique to address mathe-
matical programs in which some of the data are random variables. It assumes that
the probability distributions of the random parameters are known a priori. One
can distinguish between two main types of models: (1) stochastic programs with
recourse that explicitly model recourse decisions to hedge against uncertainty, and
(2) chance-constrained programs that impose restrictions on the probability that a
constraint is violated due to stochasticity. Here, we limit ourselves to the case of
stochastic programming with recourse, which is the most common approach in the
context of logistics network design.

Referring to formulation (1)–(8) of the LNDP, the aim is to incorporate notions
of cost, demand and capacity uncertainty in the model. When all design decisions
are made at once, the problem can be formulated as a two-stage stochastic program
with recourse. When several design periods are considered, one obtains a multi-
stage program, which is more difficult to solve. Under a two-stage setting, some
decisions are made in the first stage before the uncertain information is known. In
the second stage, the values of the random variables become known and the recourse
actions are taken. In our context, the first stage could, for example, correspond to
fixing all of the binary design variables. The second stage would consist in choosing
the flows and resulting inventory levels in the network and also in choosing the
short-term actions required to match supply and demand (i.e., use of additional
capacity, subcontracting, or overtime). Uncertainty should thus be restricted to
parameters that affect only the flow variables in connection with demand, unit costs
and capacities. However, fixed costs associated with the binary variables should be
deterministic. Structural information such as bills of materials should also be known
with certainty. As a basic rule of thumb, one may consider that information that
varies from period to period in the deterministic model can be considered random
in the stochastic program, while information that is not period-dependent should be
deterministic.

Let H denote the set of possible scenarios and, for each scenario h ∈ H ,
denote by ph the probability of scenario h being realized. Each scenario represents
a realization of the vector of uncertain parameters. When continuous probability
distributions are considered, the set H is implicitly infinite. However, a subset of



19 Logistics Network Design 613

scenarios can be generated by a sampling method. The main modification required
to the demand, cost, and capacity parameters is the addition of a scenario index
h. For every scenario h, let xkmthij and I kthw denote the flows and inventory levels
under scenario h. Using this notation, the generic LNDP model (19.1)–(19.8) can
be transformed into the following two-stage stochastic program with recourse:

Minimize
∑

i∈O

⎡

⎣ciyi +
∑

j∈D

∑

m∈Mij

cmij z
m
ij

⎤

⎦+
∑

k∈K

∑

i∈Ok

⎡

⎣cki v
k
i +

∑

j∈Dk

ckijw
k
ij

⎤

⎦+

EH [Q(y, z, v,w, h)] , (19.20)

where Q(y, z, v,w, h) is the optimal value of the second-stage program and EH [·]
denotes the expectation with respect to the scenario set H . For a given scenario h
and given values ȳ, z̄, v̄, w̄ of the first-stage decisions, the second-stage problem can
be expressed as follows:

Minimize
∑

t∈T

∑

k∈K

⎡

⎢
⎣
∑

i∈Ok

∑

j∈Dk

∑

m∈Mk
ij

ckmthij xkmthij +
∑

w∈W k

gkthw I kthw

⎤

⎥
⎦ (19.21)

subject to

∑

i∈O�

∑

m∈M�
ip

x�mthip −
∑

k∈K �

∑

j∈Dk

∑

m∈Mk
pj

bk�xkmthpj = 0 � ∈ R ∪A ;p ∈P�; t ∈ T (19.22)

∑

i∈Ok

∑

m∈Mk
iw

xkmthiw −
∑

j∈Dk

∑

m∈Mk
wj

xkmthwj + I k,t−1,h
w − I kthw = 0 k ∈ K ;w ∈ W k; t ∈ T

(19.23)∑

i∈Of

∑

m∈Mf
ic

x
fmth
ic = d

f th
c f ∈ F ; c ∈ C f ; t ∈ T (19.24)

∑

k∈K

∑

j∈Dk

∑

m∈M k
ij

uki x
kmth
ij − qhi ȳi ≤ 0 i ∈ O; t ∈ T (19.25)

∑

j∈Dk

∑

m∈M k
ij

xkmthij − qkhi v̄ki ≤ 0 k ∈ K ; i ∈ Ok; t ∈ T (19.26)

∑

m∈M k
ij

xkmthij − qkhij w̄k
ij ≤ 0 k ∈ K ; i ∈ Ok; j ∈ Dk; t ∈ T

(19.27)



614 J.-F. Cordeau et al.

∑

k∈K
ukmxkmthij − qmhij z̄mij ≤ 0 i ∈ O; j ∈ D;m ∈Mij ; t ∈ T .

(19.28)

In the presence of uncertainty, it may not be possible to fully satisfy the customer
demand under every scenario. To ensure that the second stage problem is always
feasible, one may introduce in the demand constraints (19.24) recourse variables
a
f th
c representing the amount of demand not satisfied for customer c and product
f in period t under scenario h. These variables can be appended to the objective
function with a recourse cost of ef thc per unit to represent the cost of the recourse
needed when demand cannot be fully satisfied. Alternatively, one may introduce
recourse variables in the capacity constraints if the demand should always be
satisfied in full but possible recourse actions consist in acquiring extra capacity
through subcontracting, overtime or any other means.

3.2 Robust Optimization

The above approach can be used to deal with general forms of uncertainty concern-
ing demand, cost and capacity parameters. It assumes, however, that information is
available on the likelihood of each scenario and that planners are risk-neutral. Under
these assumptions, minimizing the expected cost is perfectly reasonable. In practice,
however, decision-makers are often risk-averse and they may care more about the
worst-case cost than the expected cost. In addition, rare events such as natural
disasters or terrorist attacks do not have well-defined probabilities of occurrence.
Even if they do, the probabilities are usually very small and will not have any real
impact on the optimal solution to the problem although the corresponding events
may have dramatic consequences.

One way to overcome these limitations of stochastic programming is to use
robust optimization. In classical robust optimization, one is interested in finding
a solution that minimizes the cost under the worst possible scenario. This leads
to a min-max objective function, which is often seen as too pessimistic because
it assumes that all uncertain parameters can take their worst possible value at the
same time. An interesting alternative to worst-case optimization is the “budget-of-
uncertainty” approach of Bertsimas and Sim (2004). This approach assumes that
the number of uncertain parameters that can deviate from their nominal value or the
sum of these deviations is bounded from above by a value known as the budget of
uncertainty. This approach generally leads to more balanced solutions that are less
sensitive to extreme scenarios. However, it still puts the focus on the worst-case at
the expense of average performance.

A possibly more appropriate approach in practice is to combine the idea of
average cost optimization with some notion of robust optimization in the same
model. For example, risk aversion can be taken into account by adding to the



19 Logistics Network Design 615

objective function of the two-stage stochastic program an extra term measuring the
worst-case cost with respect to the different possible scenarios. The problem then
becomes parametric because one must define the relative weight of this extra term
in the objective function.

Let DH [C(y, z, v,w, h)] denote a risk measure that the decision-makers want to
consider in the selection process of robust solutions. Shapiro et al. (2009) identified a
set of coherent risk measures that satisfy a number of convexity, monotonicity, trans-
lation equivalence, and positive homogeneity properties in stochastic programming.
For instance the mean absolute upper semi-deviation from the mean is a common
downside risk measure which can be written as follows:

DH [C(y, z, v,w, h)] = EH [(C(y, z, v,w, h)− EH [C(y, z, v,w, h)])+],
(19.29)

where (x)+ = max{0, x}. Alternatively, a worst case measure is given by the
maximum upper semi-deviation:

DH [C(y, z, v,w, h)] = maxH [(C(y, z, v,w, h)− EH [C(y, z, v,w, h)])+].
(19.30)

With either of these measures, one can transform the objective function (19.21)
into the following weighted sum:

Minimize EH [C(y, z, v,w, h)]+ ωDH [C(y, z, v,w, h)] , (19.31)

where ω ≥ 0 is a scaling parameter.
Finally, one can also use the risk measures (19.29) or (19.30) to impose a

constraint on risk inside a stochastic program. This is achieved by adding the
constraint

DH [C(y, z, v,w, h)] ≤ ω0, (19.32)

where ω0 corresponds to the upper bound on risk tolerance.

4 Reverse Logistics, Environmental Aspects and
Sustainability

While traditional logistics network design has focused on forward logistics, i.e., the
movement of goods from suppliers to end customers, there is a growing interest
in both the scientific literature and the industry for the design of reverse logistics
networks to manage upstream flows from end customers back to the plants and
even to the suppliers. The logistics network for recovery and revalorization of used
products can take several forms, depending on the industrial context. This could be a
network composed by a second-hand market independent of the original equipment



616 J.-F. Cordeau et al.

manufacturer (OEM) or an internal network based on demand for parts or used
products by the OEM’s manufacturing or remanufacturing activities. We note that
when forward and reverse flows are coupled the resulting problem is referred to as
a closed-loop logistics network design problem (Akçalı et al. 2009; Easwaran and
Uster 2010).

The decisions related to the design of a reverse logistics network may involve
the determination of the optimal locations and capacities of collection centers,
inspection centers, remanufacturing facilities, and recycling plants in addition to
the optimal shipment strategies between these facilities. There usually are various
options available including repair, refurbishing, and recycling of products as well
as alternatives such as inspection, disassembly, disposal, or selling to suppliers,
to the secondary market or to external remanufacturing facilities. Different actors
and facilities are also involved in reverse logistics networks, e.g., disposers, re-
manufacturers, and the secondary market. Moreover, unlike forward networks,
which are mostly driven by economic considerations, there are further factors
motivating the establishment of reverse logistics networks such as environmental
laws and regulations (Mota et al. 2014). Finally, uncertainty is also prevalent
because the supply of returned products is often highly unpredictable. Hence,
reverse LNDPs are usually quite complex.

Items that are shipped in a reverse logistics network include used, repaired, or
refurbished products, as well as components or raw materials of such products. The
set of items K must thus account for different states (used, repaired, refurbished)
of the same product. The transitions between the stages of products at nodes
of the network as well as the reverse bills of materials need to be considered
when modeling these problems. The most important type of constraints in reverse
logistics network design models is the flow balance constraints. Flow balance
needs to account for the total amount of products recovered at a location as well
as the transition between different states of the product through various recovery
options. For example, a used product may turn into a refurbished product at
a remanufacturing facility. Another important issue to consider within the flow
balance constraints of a reverse logistics network design model is the reverse bills
of materials. A product may be decomposed into its components at a disassembly
facility. Let δ�k denote the amount of item k obtained by recovering one unit of item
�. One needs to define a new decision variable rktp representing the amount of item
k recovered at location p in period t . Assuming that recovery takes one period of
time, the flow conservation constraint for item k at recovery plant p in period t can
then be formulated as follows:

∑

i∈Ok

∑

m∈M k
ip

xkmtip −
∑

j∈Dk

∑

m∈M k
pj

xkmtpj +
∑

�∈K
δ�kr�,t−1

p − rktp = 0. (19.33)

As noted above, the major driving forces in reverse logistics networks include
not only economic factors, but also legislation and environmental consciousness.



19 Logistics Network Design 617

Hence, there can be constraints associated with recovery targets. An example of
such a constraint would be:

∑

p∈P

t∑

τ=1

rkτp ≥ RT kt k ∈ K ; t ∈ T , (19.34)

where RT kt denotes the recovery target of item k up until the end of period t . This
constraint forces the recovery target of each item to be met by the end of each period.

In terms of the objective function, it is common to consider profit maximization
in reverse LNDPs rather than cost minimization. As noted in Alumur et al. (2012), a
company could fully outsource its reverse logistics operations if the only motivation
is to satisfy legislation or regulations. Moreover, there are usually multiple actors
involved in the design and operation of a reverse logistics network in addition to
those involved in a forward network. These multiple stakeholders include producers,
distributors, third-party logistics providers, disposers, and municipalities. Multiple
actors may obviously lead to multi-objective decision problems.

In practice, the estimation of greenhouse gas (GHG) emissions may be difficult
because they cover upstream and downstream activities that are not under the
control of a single company. For GHG, the common measure is the CO2-equivalent
emissions (in kgCO2e/unit load) that could apply to inbound flows associated to
suppliers and to outbound flows to include transportation emissions to customers.
Accordingly, there is a growing preoccupation for the incorporation of environmen-
tal constraints in the design of forward and reverse logistics networks (Mota et al.
2014). Certain types of constraints can be imposed easily in the LNDP. For example,
a limit on CO2 emissions can be treated by imposing aggregate constraints on the
sum of flows in the network. If eki and ekmij denote the emissions produced by the flow
(e.g., the production or storage) of one unit of item k at node i and the transportation
of one unit of item k from node i to node j with mode m, then an upper bound Et

on total emissions in period t can be imposed with the following constraint:

∑

i∈O

∑

j∈D

∑

k∈K

∑

m∈M k
ij

(eki + ekmij )xkmtij ≤ Et . (19.35)

In addition to environmental efficiency, there is a growing focus on social
sustainability (Tang and Zhou 2012; Giusti et al. 2019). However, characterizing
and measuring social well-being in logistics is still in its infancy. Employment is
often cited as the main social indicator in connection with regional development
(Mota et al. 2014). Other social objectives can take the form of an equity concern
related to space, returns, or production factors and can be expressed in the LNDP as
equity constraints in terms of lower and upper bounds.



618 J.-F. Cordeau et al.

5 Solution Methods

Because the LNDP is usually formulated as a mixed-integer program (MIP), it is
often solved by general-purpose branch-and-bound or branch-and-cut solvers. How-
ever, the formulations are sometimes very large and solving them to near-optimality
can be a challenge, even for state-of-the-art solvers. Hence, decomposition methods
are often used to separate the problem into smaller and more tractable components.
Several heuristic algorithms have also been developed to identify good solutions in
reasonable time. This section provides an overview of the main solution methods.

5.1 Exact Algorithms

MIP formulations such as the one provided in Sect. 2.2 can be solved successfully
by branch-and-cut for moderate size instances. However, like many network design
problems, these formulations tend to have large integrality gaps caused by the
presence of fixed costs associated with the binary design decisions. When facilities
or arcs in the network are capacitated, linear programming (LP) solutions tend to
be very fractional and a significant amount of branching is required to reach an
optimal integer solution. The performance of branch-and-bound algorithms can
be improved by strengthening the LP relaxations through the addition of valid
inequalities, either directly in the formulation, or in the form of cuts in a branch-
and-cut algorithm. General families of inequalities, such as cutset inequalities, can
often be used directly or can be adapted to the special network structure considered.
For example, the simple inequalities vki ≤ yi, ∀i ∈ O , have been shown to
considerably strengthen the LP relaxation of formulation (1)–(8). Cordeau et al.
(2006) provide several other families of valid inequalities. Even with the addition of
valid inequalities, large-scale instances of the LNDP can remain formidably difficult
to solve. Hence, several authors have turned to decomposition methods.

5.1.1 Lagrangian Relaxation

If one relaxes demand and flow conservations (2)–(4), the resulting subproblem
becomes separable by origin node. This relaxation has been successfully exploited
by some authors. For example, Pirkul and Jayaraman (1998) observed that by
relaxing the demand constraints and the flow conservation constraints at the
warehouses, their formulation decomposed into a set of independent continuous
knapsack problems, one for each warehouse and each plant. In the same way,
Hinojosa et al. (2008) relaxed the demand and flow conservations constraints
connecting the distribution levels in a two-echelon warehouse location model
with multiple commodities. The resulting subproblem decomposes by echelon, by
facility and by time period. More recently, Pimentel et al. (2013) used a Lagrangian



19 Logistics Network Design 619

heuristic procedure to solve a stochastic LNDP, whereas Badri et al. (2013) used
Lagrangian relaxation for a deterministic variant. In general, the weakness of these
approaches is that they rarely provide feasible integer solutions. Hence, Lagrangian
heuristics are usually necessary to produce good feasible solutions.

5.1.2 Benders Decomposition

The most popular decomposition approach for the LNDP is Benders decomposition.
By keeping all binary design decisions in the master problem, one obtains a
linear and continuous subproblem which usually takes the form of a capacitated
multicommodity network flow problem. Although this problem is not separable by
commodity, it is nevertheless much easier to solve than the original formulation.
When the number of binary design decisions is small but the number of arcs in the
network and the number of commodities is large, this decomposition can be very
beneficial. The use of Benders decomposition to solve variants of the LNDP was
investigated, among others, by Dogan and Goetschalckx (1999) and by Cordeau
et al. (2006). Santoso et al. (2005) considered several acceleration techniques to
solve a stochastic variant of the LNDP within a sample average approximation
(SAA) framework. In particular, the use of a trust region for the master problem
together with knapsack inequalities, cut strengthening and cut disaggregation was
shown to improve performance. More recently, Mariel and Minner (2017) also
used Benders decomposition in a heuristic way to solve a problem with a bilinear
objective function arising in the context of supply chain design under NAFTA local
content requirements. It is worth noting that in a scenario-based formulation of the
LNPD, the decomposition scheme can decompose the subproblem by scenario and
allow the use of parallelism.

5.2 Heuristic Algorithms

Several authors have observed that the LP relaxation solution sometimes contains
many location variables that naturally take value 0 or 1. This has led to the idea of
gradually rounding the LP solution into an integer one. For example, Thanh et al.
(2010) solve a sequence of LPs by fixing some binary decisions at each step until all
binary variables are integer or the remaining MIP can be solved to optimality. The
idea of rounding the LP solution was also used by Melo et al. (2014), who proposed
four rounding strategies followed by a local search algorithm to repair infeasibility
or improve the resulting integer solution.

An interesting idea when designing heuristics for LNDPs is to explore the space
of the integer design variables while relying on a general-purpose LP solver to
set the values of the continuous variables to their optimal values. This idea was
exploited, for example, by Melo et al. (2012) who use tabu search for a dynamic
facility location problem. Their heuristic explores the space of the binary facility



620 J.-F. Cordeau et al.

location variables while the remaining (continuous) variables are set by solving
an LP. A rounding procedure is used to compute an initial solution and infeasible
solutions that violate the budget constraints are allowed during the search. The
neighborhood considered consists of solutions obtained by changing the status of a
single facility at a time. The idea was also used by Carle et al. (2012) who described
an agent-based metaheuristic for multi-period LNDPs with an explicit calculation of
inventory levels. This metaheuristic combines tabu search procedures with iterated
local search and mixed-integer programming to separately and iteratively optimize
different components of the problem. Cordeau et al. (2008) devised an iterated
local search heuristic for a special case of the problem with single assignment.
Under single assignment constraints, the problem becomes purely combinatorial
in nature and it can be stated directly with just the binary variables. Hence, the
impact of opening or closing a facility or of changing the product assignment can
be easily computed, which allows a fast exploration of a solution’s neighborhood.
Finally, an interesting approach is to take advantage of the strategic-tactical structure
of the LNDP model to devise a hierarchical or nested heuristic approach. This
allows decoupling the location and allocation decisions from the product flows and
inventory decisions, and solving the corresponding parts of the problem with an
appropriate exact or heuristic algorithm (see, for instance, You and Grossmann 2008
and Klibi et al. 2010a).

6 Bibliographical Notes

The design of logistics networks is rooted in discrete facility location (Daskin 2011;
Laporte et al. 2016) and most early models were direct extensions of capacitated
or uncapacitated facility location problems with fixed costs (Aikens 1985; ReVelle
and Eiselt 2005). One of the first papers addressing the design of multicommodity
distribution networks is that of Geoffrion and Graves (1974). Over the years,
many models have been introduced with a focus on improving the realism and
comprehensiveness of the problem setting. In particular, several models have been
introduced to combine production and distribution decisions (Cohen and Lee 1989;
Vidal and Goetschalckx 1997; Elhedhli and Goffin 2005).

An important area of research concerns the incorporation of international aspects
in supply chain design. Arntzen et al. (1995) introduced a formulation capturing
duties, duty drawback, local content rules and offset requirements. This was
followed by Vidal and Goetschalckx (2001) and Goetschalckx et al. (2002) who
took into account issues of transfer pricing. More recently, Mariel and Minner
(2017) have modeled the problem of locating plants and planning production and
distribution under the North American Free Trade Agreement local content rules.

The most comprehensive and realistic modeling framework described to date in
the scientific literature is probably that of Martel (2005). The objective function
aims to maximize after tax net revenue by taking into account the impact of delivery
times on demand. Complex product structures with arbitrary bills of materials are



19 Logistics Network Design 621

considered along with facility layout and capacity options. A detailed representation
of inventory levels is embedded in the formulation as well as a rather rich cost
structure. Finally, many aspects of transfer prices, taxes, tariffs and duties are taken
into account. The resulting formulation contains nonlinear terms in the objective
function but it can be solved iteratively by using piecewise linear approximations of
these terms that are updated each time the problem is solved.

Another important stream of literature concerns the dynamic location of facilities
over a multiple-period planning horizon. Multi-period models were proposed,
among others, by Martel (2005), Melo et al. (2006), Thanh et al. (2008), Hinojosa
et al. (2008), and Jena et al. (2015). Melo et al. (2006) have introduced a general
framework that not only supports facility relocation or shutdown but also capacity
expansion and reduction under a budget constraint in each time period. This
framework is mostly targeted at distribution network design as it does not consider
supplier selection or the transformation of raw materials into finished products.
Another multi-period model for supply chain design was introduced by Thanh et al.
(2008). Facilities can be opened and closed during the planning horizon and modular
capacities are considered for each facility. They also consider both seasonal and
cyclic stocks. Finally, the work of Klibi and Martel (2013) provides a modeling
framework for logistics network design under uncertainty. The problem is cast as
a two-level organizational decision (strategic–operational) and is characterized by
multiple design cycles and multiple planning periods.

Beside time aspects, the treatment of risk and uncertainty related to logistics
networks is of inherent importance for realistic models (Dunke et al. 2018).
Surprisingly the literature lacks a clear distinction between the notion of risk and
uncertainty. An in-depth study of the notion of supply chain risk can be found in
Heckmann et al. (2015). An approach for modelling risk and for the generation
of scenarios in the LNDP can be found in Klibi and Martel (2012). Finally, in
Heckmann and Nickel (2017) a more general discussion of common flaws in supply
chain risk analysis is presented.

The application of robust optimization techniques to LNDPs is still a relatively
new area of research. An interesting comparison and application of different
formulations to a case study can be found in Govindan and Fattahi (2017). Robust
optimization approaches were proposed to deal with simple location problems
(Snyder and Daskin 2006). We refer to Klibi et al. (2010b) for a broader discussion
of robustness issues in the design of logistics networks. With respect to uncertainty,
Santoso et al. (2005) and Schutz et al. (2009) proposed to apply the sample
average approximation (SAA) method coupled with Benders decomposition and
dual decomposition, respectively, to solve stochastic LNDPs. For more details and
background on stochastic programming in the context of logistics network design
the reader is referred to Correia and Saldanha-da-Gama (2015), Fan et al. (2017),
and to Govindan et al. (2017).

There is a quickly growing literature on green logistics network design and the
incorporation of sustainability objectives and constraints. Two classes of problems
can be distinguished: reverse logistics network and closed-loop logistics network
design problems. The recent work of Mota et al. (2014) is linked to the former class



622 J.-F. Cordeau et al.

with the establishment of reverse logistics networks including environmental laws
and regulations. The work of Chaabane et al. (2012) considers life cycle assessment
principles and emission trading schemes to design sustainable logistics network.
The work of Akçalı et al. (2009) and Easwaran and Uster (2010) is oriented towards
closed-loop network design problems. We also refer to Tang and Zhou (2012) for a
discussion of social sustainability and to Garcia and You (2015) for the inclusion of
sustainability issues in multi-objective optimization of LNDPs.

7 Conclusions and Perspectives

Logistics network design problems are challenging combinatorial optimization
problems with widespread applications and a high potential for impact in terms
of cost reduction and performance improvement for companies involved in the
manufacturing and distribution of goods. The field has attracted a lot of attention
in the operations research community and the models and algorithms currently
available can solve instances of reasonable size with a sufficient degree of realism.
Nevertheless, there still exist many opportunities for improvement.

One of the main challenges is the treatment of uncertainty. Although it is
easy to formulate two-stage or multi-stage versions of the LNDP, solving these
models remains extremely difficult. Because the problems involve a large number of
uncertain parameters, one must consider large sets of scenarios to obtain a sufficient
degree of precision in the representation of uncertainty. Decomposition methods
such as Benders decomposition can be used to obtain some form of separability but
convergence to an optimal solution is usually very slow.

Another area that could largely benefit from additional research is the integration
of forward and reverse logistics network design decisions into so-called “closed-
loop” supply chains. With environmental regulations becoming more stringent in
most countries, there is a growing need to design forward networks that can also
handle reverse flows in an effective way from the start. The resulting problems are
again highly complex and difficult to solve.

Finally, we would like to point out that the growing importance of on-line
commerce is slowly changing the way logistics networks are designed. The focus
is now placed less on cost minimization through economies of scale and more on
revenue maximization through improved quality of service to the end customers.
The reorganization of distribution, in the retail sector in particular, gives rise to
multi-channel distribution network structures and to a mix between fulfillment and
storage strategies.



19 Logistics Network Design 623

References

Aikens, C. (1985). Facility location models for distribution planning. European Journal of
Operational Research, 22, 263–279.

Akçalı, E., Çetinkaya, S., & Uster, H. (2009). Network design for reverse and closed-loop supply
chains: An annotated bibliography of models and solution approaches. Networks, 53(3), 231–
248.

Alumur, S. A., Nickel, S., Saldanha-da-Gama, F., & Verter, V. (2012). Multi-period reverse logistics
network design. European Journal of Operational Research, 220, 67–78.

Arntzen, B., Brown, G., Harrison, T., & Trafton, L. (1995). Global supply chain management at
Digital Equipment Corporation. Interfaces, 25(1), 69–93.

Badri, H., Bashiri, M., & Hejazia, T. (2013). Integrated strategic and tactical planning in a supply
chain network design with a heuristic solution method. Computers & Operations Research,
40(4), 1143–1154.

Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.
Carle, M. A., Martel, A., & Zufferey, N. (2012). The CAT metaheuristic for the solution of

multi-period activity-based supply chain network design problems. International Journal of
Production Economics, 139(2), 664–677.

Chaabane, A., Ramudhin, A., & Paquet, M. (2012). Design of sustainable supply chains under the
emission trading scheme. International Journal of Production Economics, 135, 37–49.

Cohen, M., & Lee, H. (1989). Resource deployment analysis of global manufacturing and
distribution networks. Journal of Manufacturing and Operations Management, 2, 81–104.

Cordeau, J. F., Laporte, G., & Pasin, F. (2008). An iterated local search heuristic for the
logistics network design problem with single assignment. International Journal of Production
Economics, 113(2), 626–640.

Cordeau, J. F., Pasin, F., & Solomon, M. (2006). An integrated model for logistics network design.
Annals of Operations Research, 144, 59–82.

Correia, I., & Saldanha-da-Gama, F. (2015). Facility location und uncertainty. In G. Laporte, S.
Nickel, & F. Saldanha-da-Gama (Eds.), Location science (pp. 177–203). Berlin: Springer.

Daskin, M. S. (2011). Network and discrete location: Models, algorithms, and applications. New
York: Wiley.

Dogan, K., & Goetschalckx, M. (1999). A primal decomposition method for the integrated design
of multi-period production-distribution systems. IIE Transactions, 31, 1027–1036.

Dunke, F., Heckmann, I., Nickel, S., & Saldanha-da-Gama, F. (2018). Time traps in supply chains:
Is optimal still good enough? European Journal of Operational Research, 264, 813–829.

Easwaran, G., Uster, H. (2010). A closed-loop supply chain network design problem with
integrated forward and reverse channel decisions. IIE Transactions, 42, 779–792.

Elhedhli, S., & Goffin, J. L. (2005). Efficient production-distribution system design. Management
Science, 51(7), 1151–1164.

Fan, Y., Schwartz, F., Voß, S., & Woodruff, D. L. (2017). Stochastic programming for flexible
global supply chain planning. Flexible Services and Manufacturing Journal, 29, 601–633.

Fleischmann, B., Ferber, S., & Henrich, P. (2006). Strategic planning of BMW’s global production
network. Interfaces, 36, 194–208.

Garcia, D. J., & You, F. (2015). Supply chain design and optimization: Challenges and opportuni-
ties. Computers & Chemical Engineering, 81, 153–170.

Geoffrion, A., & Graves, G. (1974). Multicommodity distribution system design by Benders
decomposition. Management Science, 20, 822–844.

Giusti, R., Iorfida, C., Li, Y., Manerba, D., Musso, S., Perboli, G., et al. (2019). Sustainable and
de-stressed international supply-chains through the synchro-net approach. Sustainability, 11(4),
1083.

Goetschalckx, M., Vidal, C., & Dogan, K. (2002). Modeling and design of global logistics systems:
A review of integrated strategic and tactical models and design algorithms. European Journal
of Operational Research, 143, 1–18.



624 J.-F. Cordeau et al.

Govindan, K., & Fattahi, M. (2017). Investigating risk and robustness measures for supply chain
network design under demand uncertainty: A case study of glass supply chain. International
Journal of Production Economics, 183, 680–699.

Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under
uncertainty: A comprehensive review and future research directions. European Journal of
Operational Research, 263, 108–141.

Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk–definition,
measure and modeling. Omega, 52,119–132.

Heckmann, I., & Nickel, S. (2017). Rethinking supply chain risk analysis – common flaws & main
elements. Supply Chain Forum, 18, 84–95.

Hinojosa, Y., Kalcsics, J., Nickel, S., Puerto, J., & Velten, S. (2008). Dynamic supply chain design
with inventory. Computers & Operations Research, 35(2), 373–391.

Jena, S. D., Cordeau, J. F., & Gendron, B. (2015). Dynamic facility location with generalized
modular capacities. Transportation Science, 49(3), 484–499.

Klibi, W., Lasalle, F., Martel, A., & Ichoua, S. (2010a). The stochastic multiperiod location
transportation problem. Transportation Science, 44(2), 221–237.

Klibi, W., & Martel, A. (2012). Scenario-based supply chain network risk modeling. European
Journal of Operational Research, 223, 644–658.

Klibi, W., & Martel, A. (2013). The design of robust value-creating supply chain networks. OR
Spectrum, 35(4), 867–903.

Klibi, W., Martel, A., & Guitouni, A. (2010b). The design of robust value-creating supply chain
networks: a critical review. European Journal of Operational Research, 203(2), 283–293.

Laporte, G., Nickel, S., & Saldanha da Gama, F. (2016). Location science. New York: Springer.
Mariel, K., & Minner, S. (2017). Benders decomposition for a strategic network design problem

under NAFTA local content requirements. Omega, 68, 62–75.
Martel, A. (2005). The design of production-distribution networks: A mathematical programming

approach. In J. Geunes, & P. Pardalos (Eds.), Supply chain optimization. New York: Springer.
Martel, A., & Klibi, W. (2016). Designing value-creating supply chain networks. New York:

Springer.
Melo, M., Nickel, S., & Saldanha-da-Gama, F. (2006). Dynamic multi-commodity capacitated

facility location: a mathematical modeling framework for strategic supply chain planning.
Computers & Operations Research, 33(1), 181–208.

Melo, M., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain
management – A review. European Journal of Operational Research, 196(2), 401–412.

Melo, M., Nickel, S., & Saldanha-da-Gama, F. (2012). A tabu search heuristic for redesigning
a multi-echelon supply chain network over a planning horizon. International Journal of
Production Economics,136(1), 218–230.

Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2014). An efficient heuristic approach for a
multi-period logistics network redesign problem. TOP, 22(1), 80–108.

Mota, B., Gomes, M., Carvalho, A., & Barbosa-Povoa, A. (2014). Towards supply chain
sustainability: Economic, environmental and social design and planning. Journal of Cleaner
Production, 105, 14–27.

Nickel, S., & Saldanha-da-Gama, F. (2015). Multi-period facility location. In G. Laporte, S. Nickel,
& F. Saldanha-da-Gama (Eds.), Location science (pp. 289–310). Berlin: Springer.

Pimentel, B. S., Mateus, G. R., & Almeida, F. A. (2013). Stochastic capacity planning and dynamic
network design. International Journal of Production Economics, 145, 139–149.

Pirkul, H., & Jayaraman, V. (1998). A multi-commodity, multi-plant, capacitated facility location
problem: Formulation and efficient heuristic solution. Computers & Operations Research, 25,
869–878.

ReVelle, C. S., & Eiselt, H. A. (2005). Location analysis: A synthesis and survey. European Journal
of Operational Research, 165, 1–19.

Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming
approach for supply chain network design under uncertainty. European Journal of Operational
Research, 167, 96–115.



19 Logistics Network Design 625

Schutz, P., Tomasgard, A., & Ahmed, S. (2009). Supply chain design under uncertainty using
sample average approximation and dual decomposition. European Journal of Operational
Research, 199, 409–419.

Shapiro, A., Dentcheva, D., & Ruszczynski, A. (2009). Lectures on stochastic programming. New
York, USA: SIAM and MPS, USA.

Snyder, L., & Daskin, M. (2006). Stochastic p-robust location problems. IIE Transactions, 38(11),
971–985.

Tang, C., & Zhou, S. (2012). Research advances in environmentally and socially sustainable
operations. European Journal of Operational Research, 223, 585–594.

Thanh, P. N., Bostel, N., & Peton, O. (2008). A dynamic model for facility location in the design
of complex supply chains. International Journal of Production Economics, 113(2), 678–693.

Thanh, P. N., Peton, O., & Bostel, N. (2010). A linear relaxation-based heuristic approach for
logistics network design. Computers & Industrial Engineering, 59(4), 964–975.

Ulstein, N., Christiansen, M., Grønhaug, R., Magnussen, N., & Solomon, M. (2006). Elkem uses
optimization in redesigning its supply chain. Interfaces, 36, 314–325.

Vidal, C., & Goetschalckx, M. (1997). Strategic production-distribution models: A critical review
with emphasis on global supply chain models. European Journal of Operational Research, 98,
1–18.

Vidal, C., & Goetschalckx, M. (2001). A global supply chain model with transfer pricing and
transportation cost allocation. European Journal of Operational Research, 129, 134–158.

Wesolowsky, G., & Truscott, W. (1975). The multi-period location-allocation problem with
relocation of facilities. Management Science, 22, 57–66.

You, F., & Grossmann, I. E. (2008). Design of responsive supply chains under demand uncertainty.
Computers & Chemical Engineering, 32, 3090–3111.



Chapter 20
Collaboration in Transport and Logistics
Networks

Behzad Hezarkhani, Marco Slikker, and Tom Van Woensel

1 Introduction

Transport and logistics companies invested substantially to increase the efficiency
of their individual operations. Research has also been fruitful in finding ways to
optimize problems of planning routes, scheduling deliveries, designing networks,
and deploying resources. It is generally well-understood that economy of scale in
transportation and logistics plays a crucial role in increasing efficiency. Yet, efforts
towards internal optimization cannot always increase the economies of scale for
organizations beyond their operational scope. This is problematic as the logistics
and transportation sector is fragmented and many operators of different sizes are
present. It is no wonder then that the logistics sector suffers from low overall
efficiency—for example, more than 20% for all truck movements in Europe is
completely empty and the remainder is hardly ever full.

The success of new network design approaches, building on concepts, models
and methodologies such as the Physical Internet, City Logistics, synchromodal
networks, etc., is also to a large part depending upon the ability to successfully
collaborate and agree on these cost-and-benefit sharing mechanisms. Collaboration
is a way to open possibilities for achieving these important economies of scale
needed for a successful implementation any Physical Internet or City Logistics
solution. In fact, collaboration may positively affect many aspects. For example, by
consolidating their loads, carriers can increase their service level and reduce their

B. Hezarkhani
Brunel Business School, Brunel University, London, UK
e-mail: Behzad.Hezarkhani@brunel.ac.uk

M. Slikker · T. Van Woensel (�)
School of Industrial Engineering, Eindhoven University of Technology, Eindhoven,
The Netherlands
e-mail: M.Slikker@tue.nl

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7_20

627

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64018-7_20&domain=pdf
mailto:Behzad.Hezarkhani@brunel.ac.uk
mailto:M.Slikker@tue.nl
https://doi.org/10.1007/978-3-030-64018-7_20


628 B. Hezarkhani et al.

total costs. Carriers could increase the utilization rate of their assets when combining
their delivery demands. Finally, as a result of consolidated cargo and combined trips,
the socio-environmental problems of transport and logistics can also be mitigated.

Despite the clear advantages of collaborative logistics, in practice, cooperation
and collaboration among organizations are exceptions. Collaboration among carriers
is often hampered by their competitive positions and by the risks of divulging
information and losing customers. Shippers, on the other hand, may hesitate to
collaborate as they might not have a clear understanding of collaborative mecha-
nisms employed and whether or not they receive a fair share out of collaborative
operations. Finally, designing a fair cost sharing scheme is a major impediment for
collaboration.

This type of collaboration problems falls in the area of cooperative game
theory, where coalitions and their respective cost sharing issues are researched. The
intention of this chapter is not to give an exhaustive review of cost sharing problems,
but to provide an overview of relevant approaches in dealing with cost sharing
problems for collaboration in the setting of logistics network design problems.

By abstracting a cooperative situation into a cooperative game, consisting of a
player set and a function that determines the cost of different groups of players,
cooperative game theory studies solutions that satisfy collections of logically
desirable properties expressed in relation to such an abstraction. The players in
these situations require or provide transportation-based logistics services. The cost
of groups of players is obtained via a network design optimization problem. The
specific features of cooperative situations under study provide grounds for refining
well-known solutions in cooperative game theory or develop new ones that are
appropriate for special situations.

Important to note is that cooperative games are build on stylized situations.
A situation is a description of the real-life problem to handle (e.g., network
optimization or service network design). However, for these situations, we need
to obtain the exact value of possible coalitions (e.g., players working together).
From an Operations Research perspective, many of these underlying situations
are combinatorial problems, leading to significant calculation times to obtain the
relevant (optimal) values. That is why a large body of cooperative game theory
literature is build around stylized models. Clearly, solutions in cooperative game
context can prove to be unsatisfactory in more complex situations.

This chapter is build around three parts. In the first part, we discuss the most
important components around cooperation within a transport and logistics network
setting. In the second part, we discuss cost-sharing problems in some basic and
stylized network design models. The simplicity of underlying situations in this
category allows for adoption of well-known game theoretic solutions such as the
core (Shapley 1955) and the Shapley value (Shapley 1953). The search for the
core of cooperative games in network situations has motivated a large body of
literature, and implementation of the Shapley value is suggested by a host of
research in collaborative logistics. In the third part, we look at more operational
problems in collaborative logistics and overview the cooperative truckload delivery
situations where logistics providers jointly devise plans for their daily pick-



20 Collaboration in Transport and Logistics Networks 629

up/transport/deliver operations. We discuss desirable properties for allocations rules
in these situations and introduce an appropriate one for these situations.

This chapter is organized as follows. Section 2 discusses the key concepts
revolving around collaboration in transport and logistics networks. Section 3
provides some background and preliminaries on cooperative game theory and the
relevant main concepts. In Section 4, we discuss the cost sharing problem in stylized
cooperative network design problems, in particular, minimum cost spanning tree,
facility location, and hub location. In Section 5, we turn our attention to designing
logistics service networks and focus on cooperative truckload delivery situations.
Section 6 concludes the chapter.

2 Key Collaboration Concepts in Transport and Logistics
Networks

Transport and Logistics networks collaboration involves different aspects: Commu-
nication, Coordination, and Consolidation. Many different actors are involved in
Transport and Logistics activities. One way of reducing costs is to consolidate activ-
ities, e.g. freight consolidation or capacity consolidation, as such reducing empty
mileage or under-filled resources. But, these stakeholders hardly communicate with
each other, let alone that there is a form of coordination.

Over the past years, more and more different types of collaboration emerged.
Vertical collaboration, getting popular in the 90s, involves collaboration within
the supply chain, i.e. connecting the upstream and downstream partners. This
lead to concepts like Vendor Managed Inventory (VMI), factory gate pricing,
Collaborative Planning Forecasting and Replenishment (CPFR), and Efficient
Consumer Response (ECR). At this moment, these concepts were mainly focused
on costs efficiency in the different key supply chain decision areas like inventory,
transportation, forecasting, etc. Early 200, next to costs efficiency, companies also
started to consider other drivers like sustainability and greenhouse gas emissions.
Also in transport and logistics, continued observations on low vehicle utilisations,
and a large number of empty running vehicles, lead to strong understanding that
collaboration could be a solution towards costs reductions but also to significant
reductions in the environmental pressure.

Next to vertical collaboration, horizontal collaboration started to gain momen-
tum over the past 10 years. Here, collaboration in distribution and coordination
among similar stakeholders, e.g. logistics service providers or shippers, is the focus.
The rationale is that bundling of physical good flows into (urban) areas, results in
fewer negative impacts (decongestion, less negative externalities in cities). Clearly,
Transport and Logistics networks are large constructs of multiple many-to-many
interconnected stakeholders, active in both horizontal and vertical relations.

Cruijssen et al. (2007) investigated the opportunities and obstacles carriers face
in horizontal collaborations. They organized a spectrum of collaboration types from



630 B. Hezarkhani et al.

basically no collaboration (i.e. “arms length”) to a full integration, which is similar
to a merger of companies. In between these two extremes, three different levels
(denoted as Type I, II and III) are distinguished. Type I consists of partners who
know and trust each other. They coordinate their activities and planning on a limited
basis. The collaboration partnership may be short-term and a single division of each
company may focus on one single activity. Type II collaboration maintains a longer
collaborative relationship. The scope of collaboration for the participants is not only
to coordinate, but also to integrate part of their business planning. The horizon is of
a long though finite length and multiple divisions or functions of the companies
are involved. Type III collaboration refers to those organizations which have a
significant level of integration, and each company treat others as an extension of
its own business unit. There is no end date for this kind of collaboration.

Other collaboration (Communication, Coordination, and Consolidation) con-
cepts also arise in other Transport and Logistics networks fields. Again aiming to
reduce vehicle movements and/or increase utilization, crowd logistics is a sharing
economy concept. Unorganized individuals (the crowd) offer their services (e.g.
movement or capacity) to the platform. In this setup, transportation is outsourced to
the crowd or crowdsourced. Efficient use of different transportation modes, enabled
by the use of standardized containers, presents a challenge. Synchro-modality as
structured, efficient and synchronic combination of two or more transportation
modes also brings interesting collaboration issues, as it also involves multiple
stakeholders (i.e. modalities). In these concepts, issues around pricing, revenue and
cost sharing are abundantly around.

These logistics processes can also be transformed to the Physical Internet
(PI) paradigm. This PI acts as an autonomously managed network with nodes
(locations where freight is collected, transferred or delivered) and flows (transport
movements). For each request, a specific path from the origin to the destination
through the network is determined, using standardized transport unit (e.g. contain-
ers). A number of prerequisites for successful Physical Internet implementations
are real-time monitoring within dispatching systems, integrated in an information-
sharing platform, high-level advanced predictions of the future supply of transport
movements and advanced collaborative decision support systems, including pain-
and-gain sharing mechanisms.

3 Cost Sharing: Preliminaries

Consider a situation wherein a set of players (partners) collaborate among them-
selves to improve upon their joint costs. The cost sharing problem in a situation
entails finding ways to allocate the joint costs among the players. A solution to a
cost sharing problem indicates appropriate ways to do the latter.

We distinguish between two alternative approaches to solve cost sharing prob-
lems. The first approach (α) defines a cooperative game associated with the situation
and uses cooperative game theory to come up with allocations and/or cost-shares. A



20 Collaboration in Transport and Logistics Networks 631

cooperative game among a set of players is defined by the joint costs of collaboration
among the grand coalition as well as all sub-coalitions. The second approach
(β) deals directly with the situation at hand and obtains cost-shares using the
information contained in the situation. In this approach, the solution often relies
on the underlying optimization problems.

Situations can be either more succinct or more expressive than their associated
games. Cooperative games explicitly describe the costs of every sub-coalition, while
these costs do not appear explicitly in the underlying situation. In this regard, a
situation may present relevant justifications for a certain solution that cannot be
devised just by focusing on costs of sub-coalitions. However, as the game theoretical
solutions abstract away the details of underlying situations, they provide a generic
framework to tackle cost sharing problems. In the remainder of this section, we
introduce some 5 notions from cooperative game theory. Figure 20.1 illustrates the
two approaches possible to cost sharing problems.

3.1 Cooperative Cost Games

A cooperative game is a pair (N, c) consisting of a player set N = {1, . . . , n} and
a characteristic cost function c which assigns to every group of players S ⊆ N ,
hereafter a coalition, the cost c(S) ∈ R. For the empty set we fix c(∅) = 0.

The cooperative game (N, c) is subadditive if for every two disjoint coalitions
S and T , i.e., S, T ⊆ N with S ∩ T = ∅, we have

c(S ∪ T ) ≤ c(S)+ c(T ).

If a game is subadditive, then the cost of a combination of disjoint coalitions are
always at most as much as the sum of their stand-alone costs so cooperation among
players could be beneficial. We focus our attention in this chapter on subadditive
games.

The cooperative game (N, c) is concave if for every S and T with S ⊂ T ⊂ N

and every i ∈ N \ T we have

Fig. 20.1 A situation Γ , its
associated game (N, cΓ ), and
two approaches to cost
sharing



632 B. Hezarkhani et al.

c(S ∪ {i})− c(S) ≥ c(T ∪ {i})− c(T ).

Concavity of a game implies that the marginal cost of adding a new player to a larger
coalition is non-increasing.

Example 1 Consider a cooperative game among three players, N = {1, 2, 3}. The
costs for various coalitions are as follows. For S ⊆ N we have: c(S) = 10 if |S| = 1,
c(S) = 19 if |S| = 2, and c(S) = 24 if |S| = 3. Compared to the sum of their stand-
alone costs, two-player coalitions save one and the grand coalition saves a total of
6. The game is sub-additive. It is also concave—for instance, the marginal cost of
adding player 1 to player 2 is 9 units and the marginal cost of adding player 1 to the
coalition of players 2 and 3 is 5 units.

The example above motivates an alternative approach in defining cooperative
games. For every cooperative cost game (N, c) there exists a dual cost-savings
game (N, v) where for every S ⊆ N : v(S) =∑i∈S c({i})−c(S). The characteristic
function in a savings game gives the amount of savings that can be made in
coalitions compared to the stand-alone costs of the players involved.

Let ai ∈ R be the cost-share of player i ∈ N . An allocation a = (ai)i∈N is a
vector of cost-shares for all players. A basic set of properties can be defined to reflect
appropriate conditions that allocations should satisfy. Let (N, c) be an arbitrary but
fixed game for the rest of this section.

An allocation a satisfies the Efficiency property if
∑

i∈N ai = c(N). With an
efficient allocation, the entire cost of the grand coalition is shared among the players
so that no excess or shortage occurs.

An allocation a satisfies the Individual Rationality property if for every i ∈
N we have ai ≤ c({i}). If an allocation fails to satisfy the individual rationality
property, then some players would be better off not collaborating.

Two players i, j ∈ N are substitutable if c(S ∪ {i}) = c(S ∪ {j}) for all S ⊆
N \ {i, j}. An allocation a satisfies the Symmetry property if for every pair of
substitutable players i, j ∈ N it holds that ai = aj . This property reflects a basic
fairness feature, that is, for two players that are identical in contributions to costs,
their cost-shares must be equal as well.

Example 2 In Example 1, both allocations a = (8, 8, 8) and (6, 9, 10) satisfy
efficiency, and individually rationality. Only the former allocation satisfies the
symmetry property.

3.2 Solutions for Cooperative Cost Games

Let G be the set of all cooperative cost games. Let G ′ ⊆ G be a subset of all
cooperative cost games. A (game) solution on G ′ is a set-valued function β that
determines a set of allocations for every cooperative cost game in G ′. A solution



20 Collaboration in Transport and Logistics Networks 633

β on G ′ is called single-valued if |β(N, c)| = 1 for every (N, c) ∈ G ′. For any
single-valued solution β on G ′ we refer to the function that assigns to any game
(N, c) ∈ G ′ the unique element in β(N, c) as an allocation rule.

We introduce some of the well-known solutions for cooperative games.

3.2.1 Core

The individual rationality property can be extended over all coalitions of players
by requiring that the sum of cost-shares of players in every coalition be at most as
much as the characteristic cost of that coalition. An allocation a is stable for the
game (N, c) ∈ G if for every S ⊆ N we have

∑
i∈S ai ≤ c(S). The core of game

(N, c) ∈ G is the set of all efficient and stable allocations. That is,

C (N, c) =
{

a ∈ R
n
∣
∣
∣
∑

i∈N
ai = c(N) and

∑

i∈S
ai ≤ c(S),∀S ⊆ N

}

.

Given a game (N, c), consider the following linear program:

max
∑

i∈N
ai

s.t.
∑

i∈S
ai ≤ c(S) ∀S ⊆ N

The core of (N, c) is non-empty if and only if at optimality the objective function
of the above program is c(N), that is, an optimal solution to the above program a∗
satisfies

∑
i∈N a∗i = c(N). If the latter holds, then every optimal solution to the

program above is an allocation in the core and vice versa. Consider the dual to the
program above:

min
∑

S⊆N
δSc(S)

s.t.
∑

S⊆N,S'i
δS = 1 ∀i ∈ N

By the strong duality theorem, the core of the game (N, c) is non-empty if and only
if the optimal value of the objective function in the dual formulation is also c(N).
Bondareva (1963) and Shapley (1967) provide a related condition for non-emptiness
of the core of a game. A map κ : 2N \ {∅} → [0, 1] is a balanced map if for all
i ∈ N we have



634 B. Hezarkhani et al.

∑

S⊆N,S'i
κ(S) = 1.

The game (N, c) is a balanced game if for every balanced map κ it holds that

∑

S∈2N\{∅}
κ(S)c(S) ≥ c(N).

Bondareva (1963) and Shapley (1967) show independently that the core of a
game is non-empty if and only if it is a balanced game.

Example 3 Let N = {1, 2, 3} and consider the game (N, c). An example of a
balanced map in this case is κ(S) = 0.5 if S ⊂ N and |S| = 2 and κ(S) = 0
for all other S ⊆ N . A necessary, but not sufficient, condition for the game to have
a non-empty core is to have 0.5c({1, 2})+ 0.5c({1, 3})+ 0.5c({2, 3}) ≥ c(N), i.e.,
c({1, 2}) + c({1, 3}) + c({2, 3}) ≥ 2c(N). Hence whenever the latter condition is
violated the core of (N, c) would be empty.

The following example shows that the core of a game can be empty.

Example 4 Consider the game (N, c) with N = {1, 2, 3}. The costs for various
coalitions of players are as follows. For S ⊆ N we have: c(S) = 11 if |S| = 1,
c(S) = 17 if |S| = 2, c(S) = 28 if |S| = 3. Note that c({1, 2}) + c({1, 3}) +
c({2, 3}) = 17 + 17 + 17 = 51 < 56 = 2c(N). By the condition established in
Example 3 we conclude that C (N, c) = ∅.

3.2.2 Shapley Value

The Shapley value is a single-valued solution, i.e. for every game it results in a set
with a single element (a singleton). To describe the allocation rule leading to this
element, to which we refer as the Shapley value as well, let σ : N → N be a
bijection of players in N . σ can represent the order in which players join in. Denote
the set of all such permutations with Π(N). For a given permutation σ , let σ(i)
be the position of player i in the order and Pσ

i = {j ∈ N |σ(j) ≤ σ(i)} be the
set of players that come before i, including i itself, in σ . We define the marginal
contribution of a player in an order as the cost that the player adds to the coalition of
players joining before him. Given the game (N, c) ∈ G , the marginal contribution
of player i in σ is

mσ
i (N, c) = c(P σ

i )− c(P σ
i \ {i})

Let mσ (N, c) = (
mσ
i (N, c)

)
i∈N be the vector of marginal contributions of all

players in σ . The Shapley value of a game (N, c) is defined as



20 Collaboration in Transport and Logistics Networks 635

Φ(N, c) = 1

n!
∑

σ∈Π(N)

mσ (N, c).

The Shapley value divides the total cost of the grand coalition according to the
average marginal contributions of players in all different orders that they can join
the cooperative game. Note that there are exactly n! of such orders. An alternative
formulation of the Shapley value is

Φ(N, c) =
⎛

⎝
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |! [c(S)− c(S \ {i})]

⎞

⎠

i∈N
.

Example 5 In Examples 1 and 3 the corresponding Shapley values are (8, 8, 8) and
(9, 9, 9) respectively.

Shapley (1971) shows that if (N, c) is a concave game then we have Φ(N, c) ∈
C (N, c), i.e., the Shapley value is in the core. For ease of comparison we refer to
the set containing Φ(N, c) as SH(N, c), that is, SH(N, c) = {Φ(N, c)} for every
(N, c) ∈ G .

3.2.3 Least-Core

The intuitive appeal of the stability concept and the possibility of having empty
cores motivates alternative solutions that address the stability-related issues. An
allocation a for the game (N, c) ∈ G is ε-stable if

∑
i∈S ai − ε ≤ c(S) for all

S ⊆ N . The set of all ε-stable allocations of the game associated with a situation
comprises the ε-core (Shapley and Shubik 1966).

The least-core of a game (Maschler et al. 1979) is the intersection of all non-
empty ε-cores of it. Accordingly, the least-core of a game (N, c) ∈ G is defined
as:

L C (N, c) =
{

a ∈ R
N

∣
∣
∣
∣
∣

∑

i∈N
ai = c(N) and

∑

i∈S
ai − εmin ≤ c(S),∀S ⊂ N

}

.

where

εmin(N, c) = min

{

ε ∈ R

∣
∣
∣
∣
∣

∑

i∈N
ai = c(N) and

∑

i∈S
ai − ε ≤ c(S),∀S ⊂ N

}

.

Considering the definition of ε-core, it can be observed that when the core is
not empty, then the least-core is a subset of the core. Also, for every game one can
always find values of ε such that the corresponding ε-core is non-empty.



636 B. Hezarkhani et al.

3.2.4 Nucleolus

The nucleolus (Schmeidler 1969) is another well-studied solution for cooperative
games. Let (N, c) ∈ G be a given cooperative cost game. Define the imputation set
of (N, c) as

I (N, c) =
{

a ∈ R
N

∣
∣
∣
∣
∣

∑

i∈N
ai = c(N) and ai ≤ c({i}),∀i ∈ N

}

.

Observe that if (N, c) is a subadditive game, then the imputation set of the game is
non-empty. Consider an allocation a ∈ R

N . Define the coalitional unhappiness of
every coalition S ⊆ N as

θ̄S(a) =
∑

i∈S
ai − c(S).

Let θ(a) contain the elements (θ̄S(a))S⊂N in a non-increasing order. For two vectors
θ, θ ′ ∈ R

m, the lexicographical order θ ≤L θ ′ implies that either θ = θ ′, or there
is 1 ≤ t ≤ m such that θi = θ ′i for 1 ≤ j < t and θt < θ ′t . The nucleolus of
the game (N, c), i.e. η(N, c), is the set of imputations whose associated vectors of
unhappiness are lexicographically minimal:

η(N, c) = {a ∈ I (N, c) ∣∣θ(a) ≤L θ(a′),∀a′ ∈ I (N, c)} .

The nucleolus of a game has the least maximum unhappiness over all coalitions in
a lexicographical manner. For every subadditive cooperative game, the nucleolus
is always non-empty, unique, and is contained in the least-core (Schmeidler 1969).
We remark that the allocation rule leading to the unique element of the nucleolus is
often times referred to as the nucleolus as well.

3.2.5 Comparing Solutions

We present some desirable properties for solutions and compare the aforementioned
ones across these properties.

A solution β on G ′ satisfies the non-emptiness property if for every (N, c) ∈ G ′
it holds that β(N, c) 	= ∅. The non-emptiness of a solution assures that it can suggest
ways for cost sharing in all games.

As we saw in Examples 1 and 2, the core can include many allocations or no
allocation at all. The least-unstability property is the next best thing to maintain
if stability is not achievable. A solution β on G ′ satisfies the least-unstability
property if for every (N, c) ∈ G ′ and every a ∈ β(N, c) we have

∑
i∈S ai − ε∗ ≤

c(S) for every S ⊂ N where



20 Collaboration in Transport and Logistics Networks 637

Table 20.1 Comparing
solutions on subadditive
games; NE: non-emptiness,
SV: single-value, LU:
least-unstability, S: stability

Allocation rule NE SV LU S

Core C × × � �
Shapley value SH � � × ×
Least-core L C � × � ×
Nucleolus η � � � ×

ε∗(N, c) = min

{

ε ∈ R+

∣
∣
∣
∣
∣

∑

i∈N
ai = c(N) and

∑

i∈S
ai − ε ≤ c(S),∀S ⊂ N

}

.

If the latter holds while ε∗ = 0, we say that the solution is stable.
Table 20.1 compares core, Shapley value, least-core and nucleolus on the class

of subadditive games along these properties. As can be seen from this table, there is
no perfect solution that can satisfy all these properties. The core is the only solution
that guarantees stability. However, the core can be empty. The Shapley value is a
single-valued solution but it may fail to be stable—or least-unstable when the core
is empty. The least-core and nucleolus are both least-unstable (they are stable if the
core is not empty). Furthermore, the nucleolus is a single-valued solution, that is, it
always obtains a unique allocation.

3.3 Solutions for Situations

As mentioned earlier, a collaborative situation is a succinct description of relevant
information necessary to analyze the context. Formally, we denote a collaborative
situation with Γ . The set of all situations with player set N is also denoted with T .
The joint cost of collaboration among all players in N in situation Γ ∈ T is cΓ (N).

Let T ′ be a subset of all situations. A (situation) solution on T ′ is a set-valued
function α that determines a set of allocations for every situation Γ ∈ T ′. In line
with solutions for cooperative cost games we can consider single-valued solutions
and allocation rules for situations as well.

If a situation allows for explicit calculation of joint costs for all sub-coalitions,
then one can construct a cooperative cost game associated with the situation. Given
such a situation Γ the associated game is denoted with (N, cΓ ). In this case, a
situation solution α on T ′ can be defined by drawing upon a game solution β

on G ′, that is, α(Γ ) = β(N, cΓ ), if for every Γ ∈ T ′ we have (N, cΓ ) ∈ G ′.
Accordingly, one can redefine the properties defined for game solutions in the
previous sub-section to situation solutions by requiring the properties to hold in the
associated games. The advantage of using situation solutions over game solutions is
their ability to incorporate more details from situations that allows for formalizing
properties which cannot otherwise be defined over associated games. We elaborate
further on this issue in next sections.



638 B. Hezarkhani et al.

4 Cost Sharing in Logistics Network Situations

In this section, we discuss cost sharing in some of the stylized logistics network
design situations. We particularly focus on possibilities for having a non-empty core
in the games associated with these situations.

4.1 Minimum Cost Spanning Tree (mcst) Games

The minimum cost spanning tree (mcst) problem is a well-studied problem in
operations research. An mcst problem consists of a set of nodes including a special
node called “source”. The costs of establishing links among all nodes are known.
Subsequently, a minimum cost spanning tree is a set of links between the nodes that
connects all nodes to the source and has the lowest total cost of establishing links
among all possibilities to do so.

The cooperative version of an mcst problem represents the situation where each
node, except the source, corresponds to a player and the players collaborate to
establish a network of paths to reach the source at the lowest total cost. In the
context of logistics, players on nodes can represent a set of suppliers who want
to establish transportation channels to a customer. The issue of sharing the cost of
an mcst among the players is critical in such contexts.

Formally, let N = {1, . . . , n} be a set of players each corresponding to a node
and denote the source node with 0. The set of all nodes is denoted with N+ =
{0, 1, . . . , n}. The set of links that can be established in the network is denoted with
L+ = {{i, j}|i, j ∈ N+, i 	= j}. The connection cost function w : L+ → R+
gives the cost that needs to be incurred in order to establish a link between any
pair of nodes in the network. For convenience we refer to w({i, j}) as wij for every
{i, j} ∈ L+. A minimum cost spanning tree (mcst) situation can be represented with
the tuple:

Γ = (N+, w).

For every coalition S ⊆ N , let ES be a set of links constituting a minimum cost
spanning tree for players in S using the nodes in S+ only. The cooperative mcst
game associated with situation Γ is the pair (N, cΓ ) where for every S ⊆ N we
have cΓ (S) =∑ij∈ES wij .

Example 6 Figure 20.2 illustrates a network with four nodes that corresponds to
an mcst situation Γ with three players. The connection costs along all links are
presented in the figure. The mcst for the grand coalition is indicated with bold lines.
Observe that cΓ (N) = 27, while cΓ ({1}) = 6, cΓ ({2}) = 17, cΓ ({3}) = 18,
cΓ ({1}) = 6, cΓ ({1, 2}) = 23, cΓ ({1, 3}) = 19, and cΓ ({2, 3}) = 25. Note that
c({1, 3})− c({3}) = 1, that is, the contribution of player 1 when he joins player 3 is
1. However, we have c({1, 2, 3})− c({2, 3}) = 2. Therefore, player 1’s contribution



20 Collaboration in Transport and Logistics Networks 639

Fig. 20.2 An mcst example
(Norde et al. 2004)

to costs increases when joining coalition of players 2 and 3. Thus, the game is not
concave.

The fundamental result regarding cores of mcst games is as follows.

Theorem 1 The core of an mcst game is non-empty.

The first proof for non-emptiness of the core of an mcst game is given by Bird
(1976). Tamir (1991) shows that the characteristic function of an mcst game can
be represented with a mixed-integer linear program and that allocations in the core
can be obtained via solutions to the dual of the integer relaxation of such program.
Nevertheless, an interesting feature of mcst games is that one can obtain allocations
in the core without solving a linear program and directly from the situation. This was
shown by Bird (1976) using the Prim (1957) algorithm for solving an mcst problem.

The Prim’s algorithm for finding an mcst over a given network starts by
establishing a link between the source and the node such that the cost of this link is
the lowest among all. It continues by establishing another link between a connected
node and an unconnected node with the lowest connection cost. By repeating the last
step the algorithm connects all nodes to the source. The solution for mcst situations
that obtains by requiring newly connected players to pay their connection costs is
called Bird’s solution. The literature often referred to this solution as Bird’s rule.

Bird’s Solution Given situation Γ = (N+, w), let EP
N be an mcst obtained from

Prim’s algorithm. For every player i ∈ N , find j ∈ N+ such that i is directly
connected to j in EP

N on the path toward the source. Let aBi (Γ ) = wij . Bird’s
solution αB(Γ ) is the set of all allocations that are obtained in this manner.

Let σ ∗ be an ordering of nodes as they are connected to the source using Prim’s
algorithm. The ordering is such that if σ ∗(i) < σ ∗(j) for any i, j ∈ N , then i is
on the path from j to the source. Then the allocation to player i ∈ N obtained by
Bird’s solution with respect to σ ∗ is exactly his marginal contribution, that is

aBi (Γ ) = c(P σ ∗
i )− c(P σ ∗

i \ {i}).



640 B. Hezarkhani et al.

Fig. 20.3 The mcst situation
in Example 7

Bird’s solution always obtains allocations in the core, as implied by the theorem
below.

Theorem 2 For every mcst situation Γ we have αB(Γ ) ⊆ C (N, cΓ ).

It should be noted that Prim’s algorithm does not necessarily produce unique mcsts
thus the allocations obtained from Bird’s solution need not be unique. We remark
that convex combinations of allocations obtained via Bird’s solution also generate
allocations in the core (Curiel 1997).

Bird’s solution provides a straightforward approach to obtain allocations in the
core of these games. This solution directly builds upon the situation and thus one
does not need to obtain the costs of all sub-coalitions or solve a linear program
for finding core allocations. But is this solution always satisfactory? Consider the
following example.

Example 7 Consider an mcst situation Γ with two players (see Fig. 20.3). Let M be
a large number and ε a small number. Bird’s solution obtains the unique allocation
aB(Γ ) = (M, 2ε) which is in the core. In this example, both players are at a long
distance from the source although player 2 is slightly further away, i.e. cΓ ({2}) =
cΓ ({1}) + ε. Still, Bird’s solution requires player 1 to pay the entire cost of its
connection while player 2 pays almost nothing. One would argue that this is not
fair—especially when there are other allocations in the core. The core of the game
is C (N, cΓ ) = {(x,M+2ε−x)|ε ≤ x ≤ M}. Notice that in the allocation (M, 2ε)
players 1 and 2 are paying respectively the maximum and minimum amounts that
they could pay in any core allocation.

The issue observed in Example 7 concerning Bird’s solution is not coincidental.
In fact, Bird’s solution always gives extreme points in the cores of mcst games
(Granot and Huberman 1981). Subsequently, Bird’s solution always makes every
group of players who are directly connected to the source collectively pay their
stand-alone costs. The players that join such coalitions only pay their marginal cost
of connection and thus enjoy the benefits of collaboration the most. A closer look at
Bird’s solution reveals some other shortcomings. We present an example.

Example 8 Consider again the situation Γ in Fig. 20.2. The highlighted mcst is
indeed the one obtained by Prim’s algorithm. We have aB(Γ ) = (6, 8, 13) which is
in the core of the game. It can be verified that in coalition {2, 3} player 3 is allocated
with 8 according to Bird’s solution which is less than what that player pays in the
grand coalition, i.e. 13.



20 Collaboration in Transport and Logistics Networks 641

As seen in Example 8, Bird’s solution may result in some players being allocated
with higher costs in larger coalitions. If this is the case, then such players might
object to the inclusion of more players to the game despite the fact that the grand
coalition can benefit from having more players (due to subaditivity). Accordingly,
Bird’s solution does not satisfy the population monotonicity property (Sprumont
1990).

An alternative approach for obtaining the allocations in the core of mcst games
without recourse to the characteristic function is proposed by Norde et al. (2004)
which is closely related to the Kruskal (1956) algorithm for obtaining mcsts. This
solution is slightly less straightforward to obtain than Bird’s solution. However, it
has the additional advantage of producing allocations that ensure players in smaller
coalitions would never be worse off by the addition of new players to the coalition
(and thus satisfies the population monotonicity property).

There are several extensions of mcst games in the literature. We discuss two of
such extensions briefly in this section.

Extension 1 Recall that in the original mcst game the cost of sub-coalitions are
defined with regard to the mcsts that connect their members to the source drawing
upon the nodes in their corresponding network only. That is, members of S ⊂ N

cannot use nodes involving players not in S for connecting to the source. The first
extension of mcst games relaxes this assumption, that is, coalitions of players can
construct their connection to the source using the nodes corresponding to other
players. For instance, suppose the players in a coalition correspond to factories in
different cities who would like to construct a network of pipelines to a supplier
of water. Then the factories can indeed construct the network through the cities
where other factories are located at. Given the mcst situation Γ , in the associated
monotone mcst game (Granot and Huberman 1981), (N, c̄Γ ), for every S ⊆ N we
have

c̄Γ (S) = min
S⊆T⊆N c

Γ (T ).

Theorem 3 The core of a monotone mcst game is non-empty. Bird’s solution gives
extreme points of the cores of monotone mcst games.

Extension 2 In the previous extension, we allowed sub-coalitions to use outsiders’
nodes to construct their path to the source. Still, the grand coalition of players
constituted all available nodes except the source node. Another extension of mcst
games allows for additional nodes in the network, i.e. nodes that correspond to no
players in N . Let

Γ = (V ,N,w)

be a situation with a set of nodes V that includes the source node, the set of players
N ⊂ V , and the connection cost function w defined over pairs of nodes in V . In the
Steiner Tree game (Megiddo 1978; Sharkey 1995) associated with Γ , (N, ¯̄cΓ ), the



642 B. Hezarkhani et al.

Fig. 20.4 An extended mcst
example (Sharkey 1995)

0

v

i

vi iv

1 2

3

ii iii

cost of each coalition S ⊆ N is the cost of mcst that connects players in S to the
source while using any nodes in V . The following example shows that the core of
these games can be empty.

Example 9 An extended mcst situation is depicted in Fig. 20.4. The node set
includes six locations in addition to the source. There are three players in the
grand coalition. The cost of connection on all links are 1. Observe that ¯̄cΓ (S) = 2
whenever |S| = 1, ¯̄cΓ (S) = 3 whenever |S| = 2, and ¯̄cΓ (N) = 5. Note that
¯̄cΓ ({1, 2}) + ¯̄cΓ ({1, 3}) + ¯̄cΓ ({2, 3}) = 9 < 2 ¯̄cΓ (N) = 10. By the condition
established in Example 3 we conclude that the core of the game is empty.

4.2 Facility Location Games

In facility location games, players collaborate to jointly open facilities as well as
to establish connections to their locations. The basic facility location situation can
be formulated as follows. Let V be a set of nodes. The player set is a subset of
the nodes, that is N ⊆ V . A flow function f : N → R+ gives the requirement
of demand for each player. Let E ⊆ {{i, j}|i, j ∈ V } be the link set representing
feasible connections between the nodes. A connection cost function w : E → R+
gives the cost of providing one unit of service across each link. We let wii = 0 for
all i ∈ N . The function t : V → R+ gives the total investment needed to establish
facilities at different nodes (fixed costs). A facility location situation is thus

Γ = (V ,N, f,E,w, t).

Given the facility location situation Γ , the associated cooperative cost games is the
pair (N, cΓ ) where for every S ⊆ N we have:



20 Collaboration in Transport and Logistics Networks 643

cΓ (S) = min
∑

i∈S,k∈V :{i,k}∈E
fiwikxik +

∑

k∈V
tkyk (20.1)

s.t.
∑

k∈V :{i,k}∈E
xik = 1 ∀i ∈ S (20.2)

yk − xik ≥ 0 ∀i ∈ S,∀k ∈ V : {i, k} ∈ E
(20.3)

xik, yk ∈ {0, 1} ∀i ∈ S,∀k ∈ V : {i, k} ∈ E
(20.4)

The program above minimizes the total cost of flow as well as opening facilities.
The optimal solution satisfies the following constraints. First, all players in a
coalition must be connected to a facility. Second, a facility should be established
if there is a link to a player. Finally, integrality constraints ensure the feasibility of
solution. The dual program associated with the relaxation of program (20.1)–(20.4)
for N is

c̄Γ (N) = max
∑

i∈N
ai (20.5)

s.t. ai − μik ≤ fiwik ∀k ∈ V,∀i ∈ N : {i, k} ∈ E (20.6)
∑

i∈N :{i,k}∈E
μik ≤ tk ∀k ∈ V (20.7)

μik ≥ 0 ∀i ∈ N,∀k ∈ V : {i, k} ∈ E (20.8)

The solutions of the primal and the dual programs can be used to provide insights
regarding non-emptiness of the core. Kolen (1983), Chardaire (1998), and Goemans
and Skutella (2004) show that the dual program above is exactly the same as the
program for obtaining the core of the game. Therefore, non-emptiness of the core
can be guaranteed when the optimal objective function of the dual equals that of the
original (un-relaxed) program. In other words, the core is non-empty if the duality
gap is zero.

Theorem 4 Let Γ = (V ,N, f,E,w, t) be a facility location situation. The core of
the associated game (N, cΓ ) is non-empty if and only if c(N) = c̄(N), that is, there
is no integrality gap between the primal and dual (of the relaxation) programs for
the grand coalition.

As implied by the result above, an integrality gap renders the core of a facility
location game empty. The example below shows that facility location games can
have empty cores.

Example 10 The network of a facility location situation is depicted in Fig. 20.5. All
nodes are situated on a circle and require a unit flow. The distance between every



644 B. Hezarkhani et al.

Fig. 20.5 A facility location
situation on a circle
(Goemans and Skutella 2004)

iii

V

ii

i

vi iv

1 2

3

pair of adjacent nodes, which constitute the link set, is one and the cost of flow
equals the distance. There are three players,N = {1, 2, 3}, located at nodes i, iii, and
v respectively. The cost of opening a facility on nodes ii, iv, and vi is two and for the
other nodes the cost is a large number. In the associated cooperative game individual
players each need one facility adjacent to them thus cΓ (S) = 2+1 = 3 for |S| = 1.
In two-player coalitions one facility can serve both players so cΓ (S) = 2+1+1 = 4
for |S| = 2. Finally, in the grand coalition the best option is to open two facilities
thus cΓ (N) = 2+2+1+1+1 = 7. Note that cΓ ({1, 2})+cΓ ({1, 3})+cΓ ({2, 3}) =
12 < 14 = 2cΓ (N). By the condition established in Example 3 we conclude that
the core of the game is empty.

There are several special situations where the zero duality gap between the primal
and dual programs, and subsequently non-emptiness of the core, can be proven to
always hold. For instance, suppose that the underlying graph of the situation (V ,E)
is a tree—i.e. there is exactly one path between any two nodes—and that the costs
of connection between any pair of nodes correspond to the metric distance between
those nodes on the corresponding planar graph. In this case, the original program
can be re-written in the following way. For each player i ∈ N , let 0 = ri1 ≤ ri2 ≤
. . . ≤ ri|V | be the ordered sequence of distances between player i’s node and all
other nodes. Also let riV+1 = M where M is a sufficiently large number. Define
the variables zij such that zij = 1 if player i is not connected to an open facility
which is situated at the distance less than or equal to rij , and zij = 0 otherwise.

Also, define ujik such that ujik = 1 if cik ≤ rij and ukij = 0 otherwise. Then we have
(see Kolen 1983):

cΓ (S) = min
∑

i∈S,j∈V
fi(rij+1 − rij )zij +

∑

k∈V
tkyk (20.9)

s.t.
∑

k∈V :{i,k}∈E
u
j
ikyk + zij ≥ 1 ∀i ∈ S,∀j ∈ V (20.10)

zij , yk ∈ {0, 1} ∀i ∈ S,∀k ∈ V (20.11)



20 Collaboration in Transport and Logistics Networks 645

1 2 3

iii viiii viv

Fig. 20.6 A facility location situation on a line

Constraint (20.10) ensures that whenever there is no open facility within the range
rij from i, then zij = 1. Kolen (1983) show that the constraint coefficient matrix in
the program above has a special feature which guarantees a zero duality gap. Thus,
in this class of situations the core is always non-empty.

Example 11 A facility location situation Γ
′

is depicted in Fig. 20.6. The only
difference between this situation and the one in Example 10 is that the nodes are now
situated on a line. In the cooperative game associated with this situation individual

players each need one facility adjacent to them thus cΓ
′
(S) = 2 + 1 = 3 for

|S| = 1. In two-player coalitions {1, 2} and {2, 3} one facility can serve both players

so cΓ
′
(S) = 2 + 1 + 1 = 4 for S = {{1, 2}, {1, 3}}. However, for coalition {1, 3}

we have cΓ
′
({1, 3}) = 2 + 2 + 1 + 1 = 6. Finally, in the grand coalition the best

option is again to open two facilities thus cΓ
′
(N) = 2+ 2+ 1+ 1+ 1 = 7. Notice

that allocation a = (2, 2, 3) is in the core.

4.3 Hub Location Games

Another class of collaborative situations related to logistical problems pertains to
finding the locations of logistical hubs, i.e., points of consolidation in a network,
which allows for more efficient dispatching of vehicles. The basic hub location
situation encompass hub-spoke structures where the transport costs in between hubs
are cheaper due to the use of more efficient means of movement. Accordingly,
in these collaborative situations players jointly establish hubs and connections to
reduce the cost of their aggregated network.

Let V be a set of nodes in a network and let the player set N be situated amongst
the nodes, i.e., N ⊆ V . Each player is positioned on a node and has transportation
requirements from his node to other nodes. Let the requirement function f : N ×
V → R+ represent the latter. Define the link cost function w : V × V → R+
and hub cost function t : V → R+. The cost of direct movements between nodes
are sufficiently high so that it is beneficial that flows of goods between two nodes
always pass through hubs. The link costs satisfy the triangular inequalities which
ensure that transports between any two nodes does not need more than two hubs
involved. Finally, let the coefficient λ ∈ [0, 1] be the discount factor for movements
between hubs. This means, if there are two hubs established at nodes i and j , then
the unit cost of transportation from i to j drops from wij to λwij . A hub location
situation is a tuple



646 B. Hezarkhani et al.

Γ = (V ,N, f,w, t, λ).

The players collectively decide to open hubs at some nodes in order to satisfy the
flow requirements with the minimum cost. Skorin-Kapov (1998) gives a formulation
of the optimal cost for the grand coalition as

c(N) = min
∑

i∈N;j,k,m∈V
fij (wik + λwkm + wmj )xijkm +

∑

k∈V
tkykk (20.12)

s.t.
∑

k∈V
yik = 1 ∀i ∈ N (20.13)

ykk − yik ≥ 0 ∀i, k ∈ V (20.14)
∑

m∈V
xijkm = yik ∀i ∈ N,∀j, k ∈ V

(20.15)
∑

k∈V
xijkm = yjm ∀i ∈ N,∀j,m ∈ V

(20.16)

xijkm ≥ 0 ∀i ∈ N,∀k, j,m ∈ V
(20.17)

yik ∈ {0, 1} ∀i, k ∈ V (20.18)

The program above minimizes the total cost of movements between nodes and
through hubs, plus the cost of establishing the hubs. Each player must be connected
to a hub. The variable xijkm represents the fraction of flow from i’s node to j that
passes through hubs k and m. The zero-one variable y = (yij )i,j∈V also indicates
the connections between nodes and hubs with yii indicating the establishment of a
hub at node i. The constraint (20.15) (respectively constraint (20.16)) indicates that
the entire flow from a player i’s node to destination j will be routed via link ik (link
mj ) if and only if i is allocated to hub k (j is allocated to hub m) independently of
the destination (source). Let (x∗, y∗) be an optimal solution to the above problem.

There are different possibilities for defining cooperative games associated with
hub locations situations based on how the cost of sub-coalitions are defined. In
the basic hub location game (Skorin-Kapov 1998) the cost of sub-coalitions are
calculated on the network which is optimal for the grand coalition. Let y∗Sk = 1
whenever there is i ∈ S such that x∗ijkm > 0 or x∗ijmk > 0, that is, y∗Sk = 1 if
a member of S uses the hub k. Then, the basic hub-location game associated with
situation Γ is (N, cΓ ) where c(N) is defined above and for S ⊂ N we have

c(S) =
∑

i∈S
j,k,m∈V

fij (wik + λwkm + wmj )x
∗
ijkm +

∑

k∈V
tky
∗S
kk (20.19)



20 Collaboration in Transport and Logistics Networks 647

Therefore, the cost of a sub-coalition S is the total transportation cost of movements
on the optimal network plus the cost of establishing the hubs that S uses on the
optimal network.

Theorem 5 Let Γ = (V ,N, f,w, t, λ) be a hub location situation. The core of the
basic hub location game associated with Γ is non-empty.

4.4 Delivery Consolidation Games

With the increasing attention to reducing the negative side effects of transportation
such as congestion and pollution, Urban Consolidation Centers (UCC) became an
important new logistical initiative. Through a UCC, logistics providers can combine
their LTL cargo and collaboratively dispatch FTL trucks to urban areas. However,
the cost of joint dispatches must be shared among the users. In this section we
overview a cost sharing game associated with UCCs introduced in Hezarkhani et al.
(2019). The carriers (players) have deliveries that are destined for the same area.
Instead of individually driving to their destinations, the players can arrive at the
consolidation center and bundle their cargo into full-truck loads. The deliveries are
time-sensitive and the amounts of savings that the carriers obtain are dependent on
their dispatch times.

The network V consists of only two nodes: a consolidation center and a common
destination and the players in N can drive the distance between the two nodes either
individually or jointly. We call ri the arrival time of delivery i to UCC and assume
that deliveries have non-identical arrival times and that N is arranged by increasing
order of arrival times, i.e., r1 < r2 < . . . < rn. Let pi ≥ 0 be the waiting
penalty rate for player i, that is the cost that he incurs when his cargo sits in the
consolidation center for a unit of time. Thus, the cost to player i if dispatched from
the consolidation center at time di ≥ ri is pi(di − ri). The cost of dispatching
a truck from the consolidation center to the common destination is W ≥ 0. We
assume players have small yet time sensitive cargo and the capacity of a truck is not
a restriction. Accordingly, a Dispatch Consolidation (DC) situation can be defined
by the tuple Γ = (V ,N, r,p,W).

The consolidation center decides a collection of dispatches, representing consol-
idated subsets of players, and their associated dispatch times. The objective of the
UCC is to minimize the sum of waiting and dispatching costs for all players. One can
verify that the optimal time for the dispatch of a fixed group of players in T ⊆ N ,
is the arrival time of the last player in T . Denote the first and last arriving delivery
in T with b(T ) and e(T ), respectively. Since the players are ordered by their arrival
times, b(T ) and e(T ) also represent respectively the smallest and largest elements
in T . The cost function f for a group of players T ⊆ N is

fT =
∑

i∈T

[
pi
(
re(T ) − ri

)]+W.



648 B. Hezarkhani et al.

We can construct the optimization problem as a set packing formulation and define
the associated dispatch consolidation (DC) game by letting c(S) to be

cΓ (S) = min
∑

T⊆S
xT fT

s.t.
∑

T⊆S:S'i
xT ≥ 1 ∀i ∈ S

xT ∈ {0, 1} ∀T ⊆ S

DC games are special instances of the class of set packing games (Deng et al. 1999).
The general characterization of the conditions for non-emptiness of the cores of set
packing games gives us the following result; The core of a DC game is non-empty
if and only if the integer relaxation of the program above for N does not affect
optimality.

Using the results of Barany et al. (1986) regarding zero duality gap of set packing
problems on trees via their sub-trees, Hezarkhani et al. (2019) show that integer
relaxation of the program above in DC games does not affect optimality. Therefore,
the core of any DC games is non-empty.

The extension of DC games to incorporate restrictive capacities of the trucks is
also considered by Hezarkhani et al. (2019). With restrictive capacities, DC games
might have an empty core. In this case, Hezarkhani et al. (2019) introduce the notion
of component-wise core as an alternative notion of stability and prove that DC
games with restrictive capacities have non-empty component-wise cores.

5 Cost Sharing in Cooperative Truck-Load Delivery
Situations

The logistical situations studied in the previous section were all concerned with
establishing the physical network which is comprised of links, facilities, and hubs.
The corresponding decisions are at the strategic level and as such necessitate a long
term cooperation time line. However, there are other opportunities for cooperative
logistics which deal with day-to-day activities of participating players and target
operational decisions. In these service logistics situations, the nature of cost sharing
problems can be different. In this section, we discuss the Cooperative Truck-Load
Delivery (CTLD) situations, introduced by Hezarkhani et al. (2016), that arise in
service network design and explain how an appropriate allocation rule for these
situations can be devised.

CTLD situations are comprised of a number of logistics providers and their
individual resources—e.g. depots, trucks, drivers, equipment, etc. Players have
delivery requirements. A delivery requirement is simplified as an order for picking



20 Collaboration in Transport and Logistics Networks 649

up cargo at some location and transporting it to another location. In practice,
delivery requirements can be more complex and involve time windows, special
equipment and personnel, and other constraints. The delivery requirements must
be fulfilled by vehicles in feasible trips. In this context, the players seek to
collaboratively design their service network at the tactical as well as operational
levels.

Formally, let V be a set of nodes corresponding to spatial locations, and w :
V × V → R

+ be a distance function which satisfies the triangular inequalities.
We assume hereafter that cost and distance are equivalent. A set of delivery
requirements {d1, . . . , dm} is given. A delivery requirement dk corresponds to an
arc (ik, jk), consisting of the corresponding pickup location ik ∈ V and delivery
location jk ∈ V , ik 	= jk . The fulfillment of the delivery requirement dk corresponds
to a single traverse of the arc (ik, jk) for requirement k. A non-empty set of depots
{o1, . . . , oh} ⊆ V is available. The depots station vehicles that fulfill the delivery
requirements. Delivery requirements must be fulfilled in trips. A trip is a sequence
of deliveries that start and ends at a particular depot. Thus a trip l can be defined
as a tuple (ol,Dl, σ l) where ol is the origin/destination, Dl is a subset of deliveries
that are fulfilled in l, and σ l is an ordering of deliveries in Dl which represents the
sequence of fulfillments in trip l. Let L be the set of all such trips. Let L ⊆ L be
the feasible trip set. The feasibility of a trip can depend on the number and type of
deliveries it fulfills, specific depots and equipment that must be employed, and other
details.

The cost of a feasible trip l, wl , is the sum of costs of the arcs traversed in trip l.
The full kilometers cost of a trip is independent of both the choice of the trip’s depot
and the sequence of fulfillments:

wl
F =

∑

k:dk∈Dl

w
(
ik, j k

)
.

The second part of a trip’s cost, i.e. empty kilometers cost, is the cost associated with
the distance travelled from/to the depot and among different fulfillments:

wl
E = w

(
ol, iσ

l
1

)
+
|Dl |−1∑

k=1

w
(
jσ

l
k , iσ

l
k+1

)
+ w

(

j
σ l|Dl | , ol

)

.

where the shorthand notation σ lk represents the index of the delivery requirement that
is fulfilled after all the k − 1 deliveries preceding it in σ l are fulfilled. By |Dl | we
denote the number of deliveries inDl . The cost of trip l is defined bywl = wl

F+wl
E .

A fulfillment plan P from O to D is a collection of feasible trips in L(O,D) that
fulfills all deliveries in D exactly once. The deliveries fulfilled in the trips of the
plan P partition the corresponding set of delivery requirements, i.e.

⋃
l∈P Dl = D

and Dl∩Dk = ∅ for all k, l ∈ P with l 	= k. The cost of the fulfillment plan P is the



650 B. Hezarkhani et al.

total cost of its trips, i.e. w(P ) = ∑
l∈P wl . Accordingly, w(P ) is decomposable

into full and empty movements:

w(P ) = wF (P )+ wE(P ),

where wF (P ) = ∑
l∈P wl

F and wE(P ) = ∑
l∈P wl

E are the total costs of full and
empty kilometers of P respectively. Let P(O,D) be the set of feasible plans from
O to D. The cost of optimal plan from O to D is

w∗(O,D) = min
P∈P(O,D)

w(P ).

Consider a non-empty set N = {1, . . . , n} of players. Each player i ∈ N

possesses a set of delivery requirements Di = {d1
i , . . . , d

mi

i } and a non-empty set

of depots Oi = {o1
i , . . . , o

hi
i } such that ∪i∈NDi = {d1, . . . , dm} and ∪i∈NOi =

{o1, . . . , oh}. Let OS = ∪i∈SOi and DS = ∪i∈SDi denote the combined set of
depots and delivery requirements of players in coalition S ⊆ N . The set L(OS,DS)

contains all feasible trips that coalition S ⊆ N can use to fulfill its combined
delivery requirements. Combining all this, a CTLD situation is a tuple:

Γ = (N, V,w, (Di)i∈N, (Oi)i∈N,L).

Let T ′ be the set of all CTLD situations. By joint planning of fulfillments, a
coalition in a CTLD situation could reduce the cost of its empty kilometers. The
cost saving generated by a coalition can be due to utilization of a larger pool of
depots for constructing trips or combining fulfillments together more efficiently in
trips, or both. It can be verified that shrinking the set of delivery requirements cannot
increase the minimum cost of delivery, and augmenting the set of depots cannot
increase the minimum cost of delivery. Also, there is a subadditive effect with regard
to the minimum costs of fulfillment that results from aggregated planning of delivery
requirements (see Hezarkhani et al. 2016).

We refer to the cost games associated with CTLD situations as the CTLD games.
The characteristic function in CTLD game (N, cΓ ) associated with situation Γ

assigns to coalition S ⊆ N the cost

cΓ (S) = w∗(OS,DS).

Although there are special CTLD situations where the core is always non-empty
(see Özener and Ergun 2008 and Hezarkhani et al. 2014), in general, CTLD games
can have empty cores, as shown in the example below.

Example 12 Consider the CTLD situation Γ depicted in Fig. 20.7. There are three
players N = {1, 2, 3} each having a depot and a delivery requirement. The distance
between the pickup and delivery locations for all delivery requirements is two and
the distance from the depots to any pickup/delivery point is one. The set of feasible



20 Collaboration in Transport and Logistics Networks 651

Fig. 20.7 A CTLD situation
where players have different
competitive positions

trips includes all trips which fulfill no more than two delivery requirements, i.e.
L = {

l ∈ L
∣
∣|Dl | ≤ 2

}
(only two deliveries can be fulfilled sequentially during

a day). For S ⊆ N we have cΓ (S) = 4 if |S| = 1, cΓ (S) = 6 if |S| = 2, and
cΓ (N) = 10. Applying the condition in Example 3, we obtain that the core of this
game is empty.

5.1 Desirable Properties for CTLD Solutions

In order to find solutions for CTLD situations, i.e., solutions defined over the set of
all CTLD situations T ′, we define a set of properties that could be considered as
desirable in these situations.

The notion of stability is a critical concept in many cooperative situations,
including CTLD situations. Given the possibility of having empty cores, we seek
for the best possible outcomes in terms of instability of allocations. Thus the first
desirable property for CTLD solutions is that of least-unstability. A solution α on
T ′ satisfies the least-unstability property if for every Γ ∈ T ′ and every a ∈ α(Γ )
we have

∑
i∈S ai − ε∗ ≤ cΓ (S) for every S ⊂ N where ε∗ is defined in the same

way as in Sect. 3.2.5 for the associated game (N, cΓ ).
The highly competitive nature of logistics markets as well as the limited number

of potential participants necessitate solutions that are capable of incorporating
the notion of competitiveness among the logistics providers. The two properties
discussed in the remainder of this section are specific to CTLD situations and
address issues concerning the competitive positions of the players and the scope
beyond which the network of deliveries of a player should be ignored by the
solution. We start by introducing two special classes of delivery requirements in
CTLD situations. Let Γ ∈ T ′ be a CTLD situation with player set N . D ⊆ Di is a
separable delivery set (SDS) of player i if

w∗(Oi,D)+ w∗(ON,DN \D) = w∗(ON,DN). (20.20)

Let SDSi(Γ ) be the set of separable delivery sets of i. The stand-alone cost of
fulfilling a separable delivery set of a player is additive to the cost of fulfilling



652 B. Hezarkhani et al.

Fig. 20.8 Separable and
irrelevant deliveries

the remaining deliveries in the grand coalition. Therefore, a player can individually
fulfill a separable delivery set of itself without disrupting the optimality of delivery
plans in the grand coalition. Let Γ ∈ T ′ be a CTLD situation with player set N .
D ⊆ Di is an irrelevant delivery set (IDS) of i if for all D′ ⊆ D, all S ⊆ N with
i ∈ S, and all D′′ ⊆ DS \D it holds that

w∗(Oi,D
′)+ w∗(OS,D

′′) = w∗(OS,D
′ ∪D′′). (20.21)

Let IDSi(Γ ) be the set of irrelevant delivery sets of i. The cost of fulfilling any
subsets of irrelevant deliveries of a player is additive to any subset of the set of
remaining deliveries in any coalition that includes that player, so the player can ful-
fill such deliveries separately in any possible combination with other deliveries. The
following example elaborates on the notion of separable and irrelevant deliveries.

Example 13 Figure 20.8 depicts a CTLD situation Γ with two players N = {1, 2}.
It is easy to see that player 1 can individually fulfill the delivery requirement
{d1

1 }. Also, player 1 can take out either {d2
1 , d

3
1 } or {d4

1 } (but not both sets!)
from the grand coalition’s delivery requirements and fulfill them separately such
that the total cost of fulfillment does not increase. Thus, we have SDS1(Γ ) ={{d1

1 }, {d2
1 , d

3
1 }, {d4

1 }, {d1
1 , d

2
1 , d

3
1 }, {d1

1 , d
4
1 }
}

and IDS1 =
{{d1

1 }
}
.

Given D′i ⊆ Di , let Γ \ D′i be a CTLD situation that coincides with Γ except
for the delivery set of i which is replaced by Di \ D′i . Define the independence of
irrelevant deliveries property as the insensitivity of a solution to the exclusion of
irrelevant deliveries of the players. A solution for CTLD situations α satisfies the
independence of irrelevant deliveries property if for every Γ ∈ T ′, every a ∈
α(Γ ), and every a′ ∈ α(Γ \ D) it holds for every i ∈ N and every D ∈ IDSi(Γ )
that ai = a′i + w∗(Oi,D) and aj = a′j for every j ∈ N \ {i}.

The last property addresses the competitive aspect of solutions in CTLD
situations.

We define the average cost of fulfillment from O to D 	= ∅ as

z(O,D) = w∗(O,D)
wF (D)

(20.22)



20 Collaboration in Transport and Logistics Networks 653

Fig. 20.9 A CTLD situation
where players have different
competitive positions

where wF (D) is the cost of full kilometers needed to be traversed to fulfill D.
The average cost of fulfillment z(O,D) represents the average distance (cost) that
need to be traveled (incurred) in D in order to fulfill a unit distance of delivery
requirement.

The average cost of fulfillment provides a basis for calculating unit delivery
prices in logistics markets. However, it can also be utilized as a measure of
comparison among the players. This idea is motivated by the observation that a
lower average cost of fulfillment of a logistics player compared to that of another
logistics player allows the former to charge a lower unit price for its delivery
services while remaining profitable. Therefore, if for two players i and j it holds
that z(Oi,Di) < z(Oj ,Dj ), it can be stated that prior to cooperation, i is in a
better competitive position than j . The definition of average cost of fulfillment can
be naturally extended to incorporate the savings allocated to the players after the
cooperation. Given an allocation a and player i ∈ N , Di 	= ∅, define the average
cost of fulfillment of a player i under a as

zai (Oi,Di) = ai

wF (Di)
(20.23)

We are now ready to present a competitiveness property defined over a restricted
set of CTLD situations. Let T̂ ′ be the set of all CTLD situations Γ ∈ T ′ with
player set N such that SDSi(Γ ) = {∅} for all i ∈ N . A CTLD solution satisfies
the restricted competitiveness property if for every situation Γ with player set
N = {1, 2} and any a ∈ α(Γ ) it holds that

za1(O1,D1)z(O2,D2) = za2(O2,D2)z(O1,D1). (20.24)

Example 14 Figure 20.9 represents a CTLD situation with two players N = {1, 2}.
Assuming that the distance between any two locations is 1, we get z(O1,D1) = 1.5
and z(O2,D2) = 2. The cooperation in this case results in cΓ (N) = 3, i.e., 2
units of saving compared to individual fulfillments cΓ ({1}) = 3 and cΓ ({2}) = 2.
Observe that the allocation a = (1.8, 1.2) preserves the competitive positions of
players 1 and 2 before and after the cooperation, resulting in za1(O1,D1) = 0.9 and
za2(O2,D2) = 1.2.



654 B. Hezarkhani et al.

5.2 A Solution for CTLD Situations

The proposed CTLD solution is constructed in two steps. In the first step, we
introduce a proportional allocation, aP , which incorporates the notions of compet-
itiveness and scope defined in the previous section. In the second step, we use the
latter proportional allocation to construct a least-unstable solution, αP , for CTLD
situations.

Let Γ ∈ T ′ be a CTLD situation with player set N . D ⊆ Di is a minimal
essential delivery set (MEDS) of player i if

w∗(Oi,Di \D)+ w∗(ON,DN\i ∪D) = w∗(ON,DN). (20.25)

and for every D′ ⊂ D, D 	= ∅:

w∗(Oi,Di \D′)+ w∗(ON,DN\i ∪D′) > w∗(ON,DN) (20.26)

and w∗(Oi,D) ≤ w∗(Oi,D
′) for any D

′
that satisfy the above two conditions.

Fix Γ , let Dm
i ∈ MEDSi(Γ ), and define

a
p
i (Γ )=w∗(Oi,Di)− w∗(Oi,D

m
i )∑

j∈N w∗(Oj ,D
m
j )

⎛

⎝
∑

j∈N
w∗(Oj ,Dj )−w∗(ON,DN)

⎞

⎠

(20.27)

The allocation aP obtains a unique efficient allocation that divides the savings
obtained in the grand coalition of CTLD situation Γ among players with non-
empty essential delivery sets proportional to the stand-alone cost of their minimal
essential deliveries. The above formulation assumes that the essential delivery set
of all players are non-empty. See Hezarkhani et al. (2016) for the treatment of the
other case. The allocation aP completely preserves the competitive positions of the
players with regard to their minimal essential delivery sets. This means that for every
pair of players i, j ∈ N with non-empty essential delivery sets we have

z
aP (Γ )
i (Oi,D

m
i )

zi(Oi,D
m
i )

= z
aP (Γ )
j (Oj ,D

m
j )

zj (Oj ,D
m
j )

.

The allocation aP , however, does not necessarily obtain a least-unstable alloca-
tion. In order to achieve this, we present our CTLD solution αP :



20 Collaboration in Transport and Logistics Networks 655

αP (Γ ) = arg min
a∈RN

∑

i∈N
(aPi (Γ )− ai)2 (20.28)

s.t.
∑

i∈S
ai − ε∗ ≤ w∗(OS,DS) ∀S ⊂ N (20.29)

∑

i∈N
ai = w∗(ON,DN) (20.30)

where ε∗ is defined in Sect. 3.2.3. Given the situation Γ , αP (Γ ) gives the set of all
ε∗-stable allocations that have the shortest distance from the proportional allocation
aP (Γ ). The following result is proven by Hezarkhani et al. (2016).

Theorem 6 αP satisfies the nonemptiness, uniqueness, least-unstability, indepen-
dence of irrelevant deliveries, and restricted competitiveness properties for all
CTLD situations.

6 Bibliographical Notes

We split this section in two parts: literature on collaborations and literature on the
relevant game theorical background.

6.1 Collaborations

Quak and Tavasszy (2011) report that among more than 100 initiatives in urban
logistics collaborations, more than half of them fail during implementation. There
are several underlying reasons for this (Vanovermeire et al. 2014), e.g. collaboration
among carriers is often hampered by their competitive positions and by the risks
of divulging information and losing customers. Shippers, on the other hand, may
hesitate to collaborate as they might not have a clear understanding of collaborative
mechanisms employed and whether or not they receive a fair share out of collabo-
rative operations. In a survey based on a large number of logistics service providers
(LSPs) in Belgium, Cruijssen et al. (2007) observe that despite the obvious benefits
of cooperation, designing a fair cost sharing scheme is a major impediment for
collaboration among LSPs. For more information on the fill rates of vehicles refer
to (Eurostat 2018).

Good examples of such cost sharing reviews already exist in the literature (see
e.g. Deng and Fang 2008; Marinakis et al. 2008). Although the literature often
associates the definition of the core to Gillies (1959), it was Shapley who first
defined the core in its current form (Zhao 2018).

In their review paper, Gansterer and Hartl (2018) distinguish between centralized
versus decentralized planning in cooperation. Having perfect information with



656 B. Hezarkhani et al.

regards to all requests (central planning) leads to profit sharing approaches, usually
based on game-theoretical principles. In decentralized planning, imperfect infor-
mation to no request information is assumed. Most research is circulating around
horizontal collaboration and cost sharing concepts. Early research on horizontal
collaboration considering independent freight carriers is discussed in Kopfer and
Pankratz (1998), researching a groupage system, and coining the term Collaborative
Transport Planning (CTP). One fair allocation of the savings can be done via the
Shapley value introduced by Shapley (1953) that uniquely distributes the savings
among the participants.

Cruijssen, and Salomon (2004) showed that order sharing potentially leads to
remarkable savings up to 15%. In a follow up paper, Cruijssen et al. (2007) inves-
tigated the opportunities and obstacles carriers face in horizontal collaborations.
Topics such as a fair allocation of the savings, carrier differentiation, trust and the
extent of cooperation are important drivers for success or failure (see also Pomponi
et al. (2015)).

Krajewska and Kopfer (2006) introduced an exchange mechanism build around
three phases: preprocessing, exchange mechanism, and profit sharing. These coop-
eration mechanisms are applied to the pickup and delivery problem with time
windows (PDPTW) in Krajewska and Kopfer (2006) and Krajewska et al. (2008).
This problem is extended with transshipment points for the collaborating carriers
by Vornhusen et al. (2014). Wang et al. (2017) investigated the capacitated VRP.
Cuervo et al. (2016) did simulations on the effects of partner characteristics. Larger
order portfolios lead to larger gains through collaborative coalitions.

Berger and Bierwirth (2010) focused on the exchange mechanism in cooperation
for the traveling salesman problem with pickup and delivery. The auctioning of
request bundles is an NP–hard combinatorial auctioning problem (CAP). Wang and
Kopfer (2014) showed potential cost savings of on average 18.2% up to 64.8%.
Wang et al. (2017) applied a route—based bidding mechanism to the PDPTW. Li et
al. (2015) formulated a single request exchange approach. Jacob and Buer (2018)
investigated the effects of non-truthful bidding and showed that is individually
rational but not collectively rational, resulting into a variant of the famous prisoner’s
dilemma.

Gansterer and Hartl (2016) investigated several request evaluation strategies
building on Berger and Bierwirth (2010). Using heuristics, they solve larger
instances for the TSP with precedence constraints. Gansterer and Hartl (2018)
showed that attractive subsets of predefined bundles can be effectively identified,
reducing the computation complexity. More recently, Gansterer et al. (2020) showed
the advantage to bundle requests rather than individual requests. Karels et al. (2020)
investigate an auction mechanism to facilitate collaboration amongst carriers while
maintaining autonomy for the individual carriers, based on a traditional vehicle
routing problem.



20 Collaboration in Transport and Logistics Networks 657

6.2 Game Theoretical Concepts

Lloyd Shapley introduced two of the most well-known game theoretic solutions,
i.e., the core (Shapley 1955), and the Shapley value (Shapley 1953). Although the
literature often associates the definition of the core to Gillies (1959), it was Shapley
who first defined the core in its current form (Zhao 2018). The search for the core
of cooperative games in network situations has motivated a large body of literature
(e.g. Borm et al. 2001; Curiel 2008), and implementation of the Shapley value has
been suggested by a host of research in collaborative logistics (e.g. Krajewska et al.
2008).

The Nucleolus was first developed by Schmeidler (1969). The unhappiness
function used in the definition of the nucleolus can be defined in other ways as
well. See Tijs and Driessen (1986) for a review of alternative definitions. Alternative
approaches for proving non-emptiness of the cores of mcst games have been
proposed in the literature, (e.g., Bird 1976, Granot 1986, Granot and Huberman
1981, and Tamir 1991). Although the basic mcst situation presented here deals with
undirected graphs, similar results also hold for the more general situations with
directed graphs. The proof in Tamir (1991) is for directed situations. The proof
of Theorem 2 is given in Granot and Huberman (1981). Other solutions for mcst
situations have been discussed, among others, by Aarts and Driessen (1993) and
Bogomolnaia and Moulin (2010) via the concept of the irreducible core, which
gives subsets of core allocations. It is worth mentioning that the Shapley value in
mcst games is also studied in Kar (2002) who provides an axiomatization of this
allocation rule for the class of mcst games. Interested readers can refer to Granot
and Huberman (1981) for the proof of Theorem 3.

Further extensions of the facility location game are studied in the literature, see
for instance Mallozzi (2011) and Xu and Du (2006).

The proof of Theorem 5 is given by Skorin-Kapov (1998) where he also considers
other variations of hub location games. Further extensions of hub locations games
are discussed in Matsubayashi et al. (2005) and Skorin-Kapov (2001).

6.3 Other Classes of Stylized Situations Related to Cooperative
Network Design Problems

There are several other classes of stylized situations related to cooperative network
design problems for which the cost sharing problems have been studied in the
literature. In traveling salesman situations, the goal is to construct cycles with
minimum total cost from a source through a set of given nodes representing the
players. Accordingly, in traveling salesman games players in a coalition cooperate
to establish such cycles among themselves and the source. The main difference
between the traveling salesman and mcst situations is that of cycles versus trees
in constructing solutions respectively. It has been proven that all traveling salesman



658 B. Hezarkhani et al.

games with five or less players have non-empty cores (Potters et al. 1992; Tamir
1989; Kuipers 1993). However, for games with six players and above the core can
be empty (Tamir 1989; Faigle et al. 1998). In vehicle routing situations, the players
would have demands with specific sizes that must be satisfied with vehicles with
limited capacity via tours from an origin node. As the class of vehicle routing
situations contains the traveling salesman situations as a special instance, the
negative results regarding the emptiness of the cores of associated games holds as
well. However, Göthe-Lundgren et al. (1996) casts the vehicle routing situations as
set partitioning problems and show that non-emptiness of the core can be guaranteed
whenever the duality gap for the corresponding linear relaxation is zero. Interested
readers are also referred to Chinese-Postman Games (Hamers et al. 1999; Platz
and Hamers 2013), Delivery Scheduling Games (Hezarkhani 2016), and Delivery
Consolidation Games (Hezarkhani et al. 2019).

7 Conclusions and Perspectives

In this chapter, we looked into the role of cooperation within Transport and Logistics
networks. The success concepts like the Physical Internet, urban hubs, or crowd-
sourcing, depends heavily on managing the pain-and-gain sharing mechanisms.
Clearly, having multiple stakeholders involved in the transportation processes,
leads to important cooperation issues. The drivers for cooperation are mainly
related to resource utilization optimizations, leading to e.g. less empty mileage or
increase truckloads. Game theory helps us to model, understand and optimize these
collaborations from a cost sharing perspective. Cooperative game theory provides a
set of tools and techniques to address such problems.

Most discussed Transport and Logistics applications (including the network
design models) involve very complex situations, as their underlying models are
not easy to solve to optimality in a tractable way. This poses a serious problem
in adoption of available solutions originating from cooperative game theory. Hence,
finding appropriate cost shares is challenging for the Operations Research-based
network design models, and we have to revert to the more basic and stylized network
design models.

In these highly stylized situations, it might be possible to directly use well-known
solutions. Accordingly, one might be able to devise solutions that obtain appropriate
cost shares, e.g. allocations in the core, directly from the underlying optimization
problems. Specifically, in a collaborative network design situation, there might be a
straightforward connection between the optimization program and the appropriate
cost shares.

However, classical approaches in cooperative game theory alone are not able
to satisfactorily solve cost-sharing problems in the more complex network design
situations. On the one hand, the core of games associated with these simulations
might be empty—even in relatively simple situations. On the other hand, inherent



20 Collaboration in Transport and Logistics Networks 659

difficulties in solving the underlying optimization problem can render these solu-
tions too complex (or time consuming).

Despite the theoretical appeal of basic problems discussed in the previous
sections, collaborative situations in practice are often complicated by many factors
and constraints. Solutions might need to satisfy properties that are specific to
a collaborative situations and cannot be captured by standard game-theoretic
solutions.

All this motivates research on situation-specific solutions for more advanced
network design models. In developing reasonable solutions for these situations, one
can formulate practical requirements in terms of desirable properties. We argue that
on exactly on this interface of cooperative game theory and network design models,
investigating the desirable properties of these solutions and their formal definition
ex-ante is needed to obtain more meaningful results, rather than using standard game
theoretical solutions.

References

Aarts, H., & Driessen, T. (1993). The irreducible core of a minimum cost spanning tree game.
Mathematical Methods of Operations Research, 38(2), 163–174.

Barany, I., Edmonds, J., & Wolsey, L. A. (1986). Packing and covering a tree by subtrees.
Combinatorica, 6(3), 221–233.

Berger, S., & Bierwirth, C. (2010). Solutions to the request reassignment problem in collaborative
carrier networks. Transportation Research Part E: Logistics and Transportation Review, 46,
627–638.

Bird, C. G. (1976). On cost allocation for a spanning tree: a game theoretic approach. Networks,
6(4), 335–350.

Bogomolnaia, A., & Moulin, H. (2010). Sharing a minimal cost spanning tree: Beyond the folk
solution. Games and Economic Behavior, 69(2), 238–248.

Bondareva, O. N. (1963). Some applications of linear programming methods to the theory of
cooperative games. Problemy kibernetiki, 10, 119–139 (In Russian).

Borm, P., Hamers, H., & Hendrickx, R. (2001). Operations research games: A survey. Discussion
Paper 45, Tilburg University, Center for Economic Research.

Chardaire, P. (1998). Facility location optimization and cooperative games. (PhD thesis, University
of East Anglia, 1998).

Cruijssen, F., & Salomon, M. (2004). Empirical study: Order sharing between transportation
companies may result in cost reductions between 5 to 15 percent. CentER Discussion Paper,
(2004-80).

Cruijssen, F., Cools, M., & Dullaert, W. (2007). Horizontal cooperation in logistics: Opportunities
and impediments. Transportation Research Part E, 43(2), 129–142.

Cuervo, D. P., Vanovermeire, C., & Sörensen, K. (2016). Determining collaborative profits in
coalitions formed by two partners with varying characteristics. Transportation Research Part
C: Emerging Technologies, 70, 171–184.

Curiel, I. (1997). Minimum cost spanning tree games. In Cooperative game theory and applica-
tions (pp. 129–148). Berlin: Springer.

Curiel, I. (2008). Cooperative combinatorial games. In Pareto optimality, game theory and
equilibria (pp. 131–157). Berlin: Springer.

Deng, X., & Fang, Q. (2008). Algorithmic cooperative game theory. Pareto Optimality, Game
Theory And Equilibria, 17, 159–185.



660 B. Hezarkhani et al.

Deng, X., Ibaraki, T., & Nagamochi, H. (1999). Algorithmic aspects of the core of combinatorial
optimization games. Mathematics of Operations Research, 24(3), 751–766.

Eurostat. (2018). Annual road freight transport vehicle movements, loaded and empty, by reporting
country. http://epp.eurostat.ec.europa.eu/portal/page/portal/transport/data/database

Faigle, U., Fekete, S. P., Hochstättler, W., & Kern, W. (1998). On approximately fair cost allocation
in Euclidean TSP games. OR Spectrum, 20(1), 29–37.

Gansterer, M., & Hartl, R. F. (2016). Request evaluation strategies for carriers in auction-based
collaborations. OR Spectrum, 38, 3–23.

Gansterer, M., & Hartl, R. (2018). Centralized bundle generation in auction-based collaborative
transportation OR Spectrum, 40, 613–635.

Gansterer, M., Hartl, R. F., & Sörensen, K. (2020). Pushing frontiers in auction-based transport
collaborations. Omega, 94, 102042.

Gillies, D. B. (1959). Solutions to general non-zero-sum games. Contributions to the Theory of
Games, 4, 47–85.

Goemans, M. X., & Skutella, M. (2004). Cooperative facility location games. Journal of
Algorithms, 50(2), 194–214.

Göthe-Lundgren, M., Jörnsten, K., Värbrand, P. (1996). On the nucleolus of the basic vehicle
routing game. Mathematical Programming, 72(1), 83–100.

Granot, D. (1986). A generalized linear production model: A unifying model. Mathematical
Programming, 34(2), 212–222.

Granot, D., & Huberman, G. (1981). Minimum cost spanning tree games. Mathematical Program-
ming, 21(1), 1–18.

Hamers, H., Borm, P., van de Leensel, R., & Tijs, S. (1999). Cost allocation in the Chinese postman
problem. European Journal of Operational Research, 118(1), 153–163.

Hezarkhani, B. (2016). Pairwise mergers in bipartite matching games with an application in
collaborative logistics. Operations Research Letters, 44(6), 818–822.

Hezarkhani, B., Slikker, M., & Van Woensel, T. (2014). On characterization of the core of lane
covering games via dual solutions. Operations Research Letters, 42(8), 505–508.

Hezarkhani, B., Slikker, M., & Van Woensel, T. (2016). A competitive solution for cooperative
truckload delivery. OR Spectrum, 38(1), 51–80.

Hezarkhani, B., Slikker, M., & Van Woensel, T. (2019). Gain-sharing in urban consolidation
centers. European Journal of Operational Research, 279(2), 380–392.

Jacob, J., & Buer, T. (2018). Impact of non-truthful bidding on transport coalition profits.
Operations Research Proceedings 2016, 84, 203–208.

Kar, A. (2002). Axiomatization of the Shapley value on minimum cost spanning tree games. Games
and Economic Behavior, 38(2), 265–277.

Karels, V. C., Veelenturf, L. P., & Van Woensel, T. (2020). An auction for collaborative vehicle
routing: Models and algorithms. EURO Journal on Transportation and Logistics, 9(2), 100009.

Kolen, A. (1983). Solving covering problems and the uncapacitated plant location problem on
trees. European Journal of Operational Research, 12(3), 266–278.

Kopfer, H., & Pankratz, G. (1998). Das Groupage-Problem kooperierender Verkehrsträger. In
Operations Research Proceedings (pp. 453–462). Berlin: Springer.

Krajewska, M.A., & Kopfer, H. (2006). Collaborating freight forwarding enterprises. OR Spec-
trum, 28(3), 301–317 (2006)

Krajewska, M. A., Kopfer, H., Laporte, G., Ropke, S., & Zaccour, G. (2008). Horizontal coop-
eration among freight carriers: request allocation and profit sharing. Journal of Operational
Research Society, 59(11), 1483–1491.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1), 48–50.

Kuipers, J. (1993). A note on the 5-person traveling salesman game. Mathematical Methods of
Operations Research, 38(2), 131–139.

Li, J., Rong, G., & Feng, Y. (2015). Request selection and exchange approach for carrier
collaboration based on auction of a single request. Transportation Research Part E: Logistics
and Transportation Review, 84, 23–39.

http://epp.eurostat.ec.europa.eu/portal/page/portal/transport/ data/database


20 Collaboration in Transport and Logistics Networks 661

Mallozzi, L. (2011). Cooperative games in facility location situations with regional fixed costs.
Optimization Letters, 5(1), 173–181.

Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2008). Cost allocation in combinatorial optimiza-
tion games. In Pareto optimality, game theory and equilibria (pp. 217–247). Berlin: Springer

Maschler, M., Peleg, B., & Shapley, L. S. (1979). Geometric properties of the kernel, nucleolus,
and related solution concepts. Mathematics of Operations Research, 4(4), 303–338.

Matsubayashi, N., Umezawa, M., Masuda, Y., & Nishino, H. (2005). A cost allocation problem
arising in hub–spoke network systems. European Journal of Operational Research, 160(3),
821–838.

Megiddo, N. (1978). Cost allocation for Steiner trees. Networks, 8(1), 1–6.
Norde, H., Moretti, S., & Tijs, S. (2004). Minimum cost spanning tree games and population

monotonic allocation schemes. European Journal of Operational Research, 154(1), 84–97.
ISSN 0377-2217.

Özener, O. Ö., Ergun, Ö. (2008). Allocating costs in a collaborative transportation procurement
network. Transportation Science, 42(2), 146–165.

Platz, T., & Hamers, H. (2013). On games arising from multi-depot Chinese postman problems.
Technical report, Tilburg University, Center for Economic Research.

Pomponi, F., Fratocchi, L., Tafuri, S. R. (2015). Trust development and horizontal collaboration
in logistics: A theory based evolutionary framework. Supply Chain Management: An Interna-
tional Journal, 20(1):83–97.

Potters, J. A. M., Curiel, I. J., & Tijs, S. H. (1992). Traveling salesman games. Mathematical
Programming, 53(1), 199–211.

Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell Labs Technical
Journal, 36(6), 1389–1401.

Quak, H., Tavasszy, L. (2011). Customized solutions for sustainable city logistics: The viability of
urban freight consolidation centres. In Transitions towards sustainable mobility (pp. 213–233).
Berlin: Springer.

Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM Journal on Applied
Mathematics, 17(6), 1163–1170.

Shapley, L. (1953). A value for n-person games, volume II, chapter Contributions to the Theory of
Games (pp. 307–317). Princeton, NJ: Princeton University Press.

Shapley, L. (1971). Cores of convex games. International Journal of Game Theory, 1(1), 11–26.
Shapley, L., & Shubik, M. (1966). Quasi-cores in a monetary economy with nonconvex prefer-

ences. Econometrica: Journal of the Econometric Society, 34(4), 805–827.
Shapley, L. S. (1955). Markets as cooperative games. Technical report, Rand Corporation Paper

P-629.
Shapley, L. S. (1967). On balanced sets and cores. Naval Research Logistics, 14(4), 453–460.
Sharkey, W. W. (1995). Handbooks in Operations Research and Management Science, (Vol. 8, pp.

713–765), chapter Network models in economics. Network routing. Amsterdam: Elsevier.
Skorin-Kapov, D. (1998). Hub network games. Networks, 31(4), 293–302.
Skorin-Kapov, D. (2001). On cost allocation in hub-like networks. Annals of Operations Research,

106(1), 63–78.
Sprumont, Y. (1990). Population monotonic allocation schemes for cooperative games with

transferable utility. Games and Economic Behavior, 2(4), 378–394.
A. Tamir. (1989). On the core of a traveling salesman cost allocation game. Operations Research

Letters, 8(1), 31–34.
Tamir, A. (1991). On the core of network synthesis games. Mathematical Programming, 50(1),

123–135.
Tijs, S. H., & Driessen, T. S. H. (1986). Game theory and cost allocation problems. Management

Science, 32(8), 1015–1028.



662 B. Hezarkhani et al.

Vanovermeire, C., Sörensen, K., Van Breedam, A., Vannieuwenhuyse, B., & Verstrepen, S. (2014).
Horizontal logistics collaboration: Decreasing costs through flexibility and an adequate cost
allocation strategy. International Journal of Logistics Research and Applications, 17(4), 339–
355.

Vornhusen, B., Wang, X., & Kopfer, H. (2014). Vehicle Routing under Consideration of Tranship-
ment in Horizontal Coalitions of Freight Carriers. Procedia CIRP, 19(1), 117–122.

Wang, X., & Kopfer, H. (2014). Collaborative transportation planning of less-than-truckload
freight. OR Spectrum, 36, 357–380.

Wang, Y., Ma, X., Li, Z., Liu, Y., Xu, M., & Wang, Y. (2017). Profit distribution in collaborative
multiple centers vehicle routing problem. Journal of Cleaner Production, 144, 203–219.

Xu, D., & Du, D. (2006). The k-level facility location game. Operations Research Letters, 34(4),
421–426.

Zhao, J. (2018). Three little-known and yet still significant contributions of Lloyd Shapley. Games
and Economic Behavior, 108, 592–599.



Index

A
Add-drop neighborhood (procedure), 94, 100,

117
Affine robustness, 323
Aggregated commodity, 143, 149, 440, 441
Approximated routing costs, 528, 534, 560
Approximation algorithms, 7, 228–230,

232–234, 243, 244, 249
Arc-based formulation (model), 17, 19, 20,

23, 26, 115, 116, 406, 418, 521, 534,
570, 573, 574, 576–579, 582, 584, 585,
589–594

Arc flow formulation, 218, 220, 223, 332, 334,
337, 341, 486

Assignment mode, 8, 72, 262, 264, 268, 353,
391, 403, 416, 418, 498, 512, 517–521,
528, 530, 569, 571, 574–577, 580–584,
592, 593, 602, 605, 620

Availability time, 357, 385, 394, 395, 408, 414,
510, 520

B
Backbone flow, 480, 496–499
Barge transportation, 372, 374, 476, 511, 519
Benders decomposition (BD) (reformulation),

4, 19, 30, 39–41, 45, 59–63, 68, 69,
71–73, 75, 78, 79, 81, 82, 84, 173, 200,
204, 206, 212, 239, 241–242, 247, 248,
249, 276, 278, 279, 298–303, 311, 314,
375, 499, 531, 555, 574, 577, 593, 594,
619, 621, 622

Bilevel programming, 7, 255–260, 268, 278
Branch-and-bound (B&B), 7, 30, 48–54, 66,

67, 73, 75, 78, 80, 82–84, 226, 240,

241, 243, 245, 246, 279, 301, 302, 339,
443, 488, 554–555, 618

Branch-and-cut (B&C), 30, 45, 47, 48, 54–62,
64, 67, 73, 75, 79–81, 164, 202, 203,
205, 206, 241, 247, 278, 279, 418, 488,
498, 593, 594, 618

Branch-and-price, 30, 49, 51, 63–68, 82, 206,
240, 241, 246, 249, 373, 418, 421, 443,
593, 594

Branch-and-price-and-cut, 30, 49, 51, 63–68,
82, 206, 240, 241, 246, 249, 373, 418,
421, 443, 593, 594

Budget uncertainty, 320–323, 330, 331,
339–341

Budget-constrained shortest path problem,
210, 218, 243

Bundle methods, 68, 78, 82
Bus rapid transit, 553

C
Capacitated minimum spanning tree (CMST)

problem, 241, 247, 249
Capacitated network design (CND), 121, 216,

226–227, 229, 238, 240, 242, 243, 249,
440, 461

Capacitated user equilibrium, 542, 549, 552,
561

CDCs, see City distribution center (CDCs)
Chance constraints, 286, 318–319, 321, 612
City distribution center (CDCs), 511–515, 517,

519–522, 524, 525, 528–5231
City freighter, 511, 513–515, 517, 519, 520,

523, 524, 527, 530, 532

© The Author(s) 2021
T. G. Crainic et al. (eds.), Network Design with Applications to Transportation and
Logistics, https://doi.org/10.1007/978-3-030-64018-7

663

https://doi.org/10.1007/978-3-030-64018-7


664 Index

City logistics, 8, 9, 11, 348–350, 354, 361,
371, 377, 384, 507–534, 627

Classical heuristics, 91, 96–99
CMST problem, see Capacitated minimum

spanning tree (CMST) problem
CND, see Capacitated network design (CND)
Coastal navigation, 348
Column generation, 16, 48, 49, 64–68, 75, 78,

82, 83, 103, 104, 117, 176, 177, 212,
218, 228, 232, 239–242, 246, 247, 249,
372, 373, 379, 402, 408, 443, 452, 453,
462, 463, 480, 482, 493, 499, 555, 560,
593

Column-and-row generation, 28, 67, 83
Connectivity, 6, 19, 25, 27, 42, 44, 45, 54,

60–62, 67, 188, 190, 192, 194–197,
200, 203, 205, 245, 442, 488, 557, 589

Consolidation, 8–10, 314, 347–353, 358, 366,
374, 376, 384, 387, 389, 391, 406, 410,
416, 419, 421, 422, 427–433, 435–440,
443, 446, 448, 450, 451, 453, 460–464,
508, 509, 512, 513, 531, 567–569, 629,
630, 645, 647–648, 658

trucking, 427–433, 435–438, 443, 450,
460, 463

Constrained shortest path problem, 237,
248

Constructive heuristics, 97
Container vessels, 470, 472, 473, 498, 500
Continuous knapsack set, 153
Cooperative game theory, 11, 628–631, 658,

659
Cooperative search, 121–123, 125, 127, 129,

131–133, 379
Cooperative truck-load delivery (CTLD), 648,

650–655
Cost sharing, 11, 628–638, 647–658
Cover inequalities (cuts), 45–47, 55, 56, 62,

68, 79, 81, 83, 84, 116, 118, 152–153,
163, 223, 227

c-strong inequalities (cuts), 151–153, 162, 226,
243

CTLD, see Cooperative truck-load delivery
(CTLD)

Customer demand, 348, 352, 385, 428, 464,
510, 514, 515, 520, 523, 524, 527, 606,
614

Customer zones, 510, 514, 515, 519–521, 530,
531

Cut-set-based formulation (model), 18, 19, 25,
27, 326, 327, 329, 340

Cut-set-based inequalities (cuts), 5, 19, 24–27,
42, 44, 46, 55, 57, 58, 60, 62, 79,
326–329

Cutting-plane procedure (algorithm, method),
54, 55, 61, 79–81

D
Dantzig-Wolfe decomposition (reformulation),

75, 169, 176–182, 184, 240–241, 493
Delivery consolidation games, 647–648, 658
Delivery due date, 351, 411
Demand itinerary, 351, 389, 390, 401, 402,

411, 420–422, 515–517, 523–525, 532
Disaggregated commodity, 149, 448, 461
Disjoint paths, 7, 188, 194, 197, 198, 200
Dynamic discretization discovery, 360, 375,

378, 458–460, 463
Dynamic routing, 324, 330, 337–339, 341, 500

E
EAs, see Evolutionary algorithms (EAs)
Economies of scale, 10, 144, 168, 182, 209,

348, 350, 352, 384, 387, 389, 420,
567–570, 622, 627

Empty repositioning, 444
Environment, 8, 10, 123, 279, 376, 378, 383,

392, 406, 421, 499, 507, 508, 518, 523,
528, 600–601, 615–617, 622, 628, 629

Evolutionary algorithms (EAs), 107–110, 108
Expected recourse cost, 289
Express package delivery, 142, 162, 372, 567
Extended formulation (model), 181, 183, 192,

198, 204–206, 235–239, 245, 246, 249

F
Facet, 47, 81, 147, 150–153, 158, 161–163,

202, 203, 206, 223, 225, 235, 243, 245,
246, 248, 326, 329, 339, 340, 384, 422,
438, 576, 577, 592, 594, 595

Facility location games, 642–645, 657
FCTP, see Fixed-charge transportation problem

(FCTP)
Fixed-charge network design, 4–7, 15–84,

91–133, 163, 170, 210, 218–220, 246,
437, 460, 464

Fixed-charge transportation problem (FCTP),
19–20, 26, 35, 36, 49, 78–83, 93, 94,
96–99, 101, 109, 128, 129

Flow cover inequalities (FCI) (cuts), 47, 56,
57, 79, 81, 84, 118, 163

Flow-cut-set inequalities (cuts), 155–157, 159,
163

Flow pack inequalities (cuts), 45, 47–48, 55,
56, 58, 62, 68, 79, 81, 118



Index 665

Flow planning, 9, 428, 431–453, 459, 460–464
Freight transportation, 5, 8–10, 283, 287, 311,

313, 371, 372, 375, 378, 388, 406, 419,
422, 427, 428, 431, 444, 476, 508, 595

G
GAs, see Genetic algorithms (GAs)
Genetic algorithms (GAs), 108–110, 127–129,

132, 260, 557, 560
Greedy algorithms, 191, 192, 203, 229, 559

H
HCMST problem, see Hop-constrained

minimum spanning tree (HCMST)
problem

Heuristics, 5–7, 12, 51, 68–74, 76, 77, 80–84,
91–133, 206, 225, 229, 248, 249, 260,
263, 271, 278, 279, 372, 443, 446–448,
455, 461, 480, 492, 494, 496, 557–559,
619, 656

Hop-constrained minimum spanning tree
(HCMST) problem, 217, 218, 233–234,
244

Hop constraints, 7, 189, 198–200, 204–205,
217, 218, 222, 233, 235, 236, 245, 247,
594

Horizontal collaboration, 629, 656
Hose uncertainty, 327–328, 331, 340, 341
Hub arc location, 568, 579–585
Hub facilities, 10, 567–569, 571, 572, 574,

578, 585, 587
Hub location, 245, 431, 568, 569, 571–592,

594, 629, 645–647
games, 645–647, 657

Hub-and-spoke networks, 350, 352
Hybrid method (algorithm), 99, 105

I
In-sample stability, 296
Inbound demand, 510–512, 514, 515, 521, 522,

530
Integer programming, 9, 73, 115, 191, 213,

215, 222, 232, 238, 239, 372, 435, 437,
438, 449, 452, 455, 462, 470, 494, 620

Intercity public transportation, 539
Intermodal transportation, 8, 350, 374, 383,

385, 388, 389, 421, 480, 511, 531
Inventory, 215, 405, 420, 600, 602–605,

607–609, 612, 613, 620, 621, 629
Inverse optimization, 271, 551, 608

K
K-shortest paths, 196, 556, 559

L
L-shaped algorithm, 73, 298
Lagrangian heuristics, 51, 69–72, 83, 183, 619
Lagrangian relaxation (decomposition), 30–39,

49, 51, 69, 70, 75, 78, 80, 83, 171, 173,
176, 179, 206, 212, 219, 229, 231–233,
239–240, 248, 249, 418, 618–619

Large neighborhood search (LNS), 418
Layered network, 204, 228, 233, 235–238,

240, 242, 245–247, 249, 250, 491
LB, see Local branching (LB)
Less-than-truckload (LTL) motor carriers, 8,

167, 168, 182, 210, 348–352, 354, 372,
375, 384, 427–430, 432, 433, 436, 437,
439, 440, 443, 448, 450–453, 455, 456,
458, 461–464, 512, 647

Lift-and-project, 329, 469
Liner services, 9, 211, 348, 352, 364, 370,

384, 469–473, 478–485, 489, 491, 496,
497–500

Liner shipping, 9, 384, 469–504, 567, 593
network design, 9, 469–504

LNS, see Large neighborhood search (LNS)
Load planning, 9, 428, 431–433, 448, 450–464
Local branching (LB), 82, 115, 117, 118, 129,

230, 231, 243
Local search (LS), 6, 58, 94, 97–100, 106, 107,

113, 121 125, 128, 131, 428, 448–450,
455–457, 461, 462, 558, 619, 620

Location logistics, 4, 374, 510, 513, 514, 522,
530, 533, 599–611, 616, 620, 621, 629,
645

LS, see Local search (LS)

M
Maritime optimization, 287, 348–350, 361,

367, 388, 469, 470, 471
Mathematical optimization with equilibrium

constraints, 258, 562
Matheuristics, 6, 12, 68, 92, 99, 100, 105,

115–119, 122, 126, 129–131, 133, 206,
309, 372, 379, 420, 494, 499, 534

MCFND, see Multicommodity capacitated
fixed-charge network design (MCFND)

MCFP, see Multicommodity flow problem
(MCFP)

Metaheuristics, 3–6, 12, 58, 68, 91–133, 278,
360, 373, 418–420, 448, 545, 559–561,
620



666 Index

Metric inequalities (cuts), 6, 58, 60, 81, 142,
145–146, 159–163, 339, 341

Minimum cost spanning tree (mcst) games,
233, 241, 629, 638–642, 657

MIP, see Mixed-integer programming (MIP)
Mixed-integer programming (MIP), 9, 115,

116, 118, 122, 130, 133, 266, 327, 335,
436–438, 447, 449, 470, 479, 480, 485,
488, 575, 576, 618–620

Mixed-integer rounding inequalities (cuts), 147
MUFND, see Multicommodity uncapacitated

fixed-charge network design (MUFND)
Multicommodity capacitated fixed-charge

network design (MCFND), 6, 21, 29,
96, 102, 109–118, 129, 170, 460

Multicommodity capacitated network design,
6, 21, 29, 96, 102–105, 109–118, 129,
170, 460

Multicommodity flow problem (MCFP), 62,
162, 183, 262, 418, 479, 492–494, 496,
499, 549, 558

Multicommodity flows, 21, 24, 27, 44, 62, 82,
84, 102, 103, 142, 144, 145, 156, 162,
183, 258, 262, 289, 290, 330, 338, 339,
418, 479, 482, 492, 499, 549, 558

Multicommodity network design, 6–8, 10, 26,
39, 60, 79, 81, 83, 141, 148, 153, 154,
169, 172, 184, 285, 287, 289, 291, 309,
311, 314, 317, 330, 337, 341, 392, 405,
568, 599

Multicommodity uncapacitated fixed-charge
network design (MUFND), 24–26, 44,
45, 61–63, 78–81, 182

Multicommodity uncapacitated network
design, 24, 26

Multi-level optimization, 125, 132, 592
Multi-objective optimization, 509, 617, 622
Multi-stage robustness, 323, 340, 341

N
Navigation, 9, 348, 349, 355, 361, 388, 421,

512
Neighborhood, 5, 6, 92, 94–95, 98–108, 110,

111, 114–119, 121, 122, 124–126,
128–131, 133, 229, 379, 418, 420, 450,
455, 456, 458, 462, 509, 557, 558, 620

Neighborhood-based metaheuristics (search),
6, 92, 94, 99–107, 110, 125, 129

Network containment, 328, 340
Network design, 3, 15, 29, 91, 141, 167, 187,

209, 255, 283, 317, 347, 384, 428, 469,
508, 539, 567, 599, 627

Network design-routing, 6, 132, 141, 187, 209,
284, 323, 348, 384, 431, 479, 508, 544,
567, 656,

Network games, 11, 255, 258, 274, 276, 277,
293, 628–651, 655–659

Network interdiction, 7, 274–278
Network pricing, 7, 268–274, 279
Non-anticipativity constraints, 304, 305
Nonlinear programming, 260

O
Optimal strategies, 551
Outbound demand, 510, 513, 515, 519, 520,

522, 530, 531
Out-of-sample stability, 296, 297

P
Package express, 432, 440, 462
Parallel algorithm (computing), 5, 74–77, 83
Partial Benders decomposition, 303, 314
Partition inequalities (cuts), 79, 146–147,

159–161, 163, 192, 196, 197, 202, 203,
243, 329, 340

Path-based formulation (model), 17, 18,
20, 22, 23, 103, 104, 116, 117, 417,
418, 462, 530, 548, 570, 574, 576,
593, 594

Path flow formulation, 103, 218, 341, 493
Path relinking (PR), 107, 110–113, 125, 126,

128, 130
Physical internet, 11, 348, 480, 507, 510, 532,

627, 630, 658
Physical network design (PND), 431, 543–545,

553, 555, 558–560
Pick up and delivery, 351, 471
Piecewise linear cost network design

(PLCND), 6, 167–184
PLCND, see Piecewise linear cost network

design (PLCND)
PND, see Physical network design (PND)
Polyhedral analysis, 594
Population-based metaheuristics, 6, 92, 95,

107–114, 119, 126, 128, 129
Postal delivery, 567, 572
PR, see Path relinking (PR)
Pricing subproblem, 64–68, 176, 184, 241
Progressive hedging method, 298, 304–312,

314
Projection, 30, 39–45, 78, 121, 175, 193, 194,

198, 235, 242, 244, 246, 249, 326, 534,
576, 587, 593

PT, see Public transportation (PT)



Index 667

Public transportation (PT), 9, 10, 347–349,
361, 508, 513, 539–562, 567, 572, 589,
590

network optimization, 543–554, 559–562,
589

R
Railroads, 8, 9, 211, 215, 347–355, 361, 378,

383–422, 431, 476
Rail transportation, 8, 383–395, 410, 421, 560
Rapid transit systems, 540, 549, 553, 567, 572,

587, 589, 590
Recoverable robustness, 323, 340
Residual capacity inequalities (cuts), 149, 150,

154, 156, 162, 183, 184, 243
Resource management, 354, 360–366, 373,

376, 379, 384, 391, 408, 413, 416, 417,
420–422

Reverse logistics, 10, 313, 601, 607, 615–617,
621, 622

Risk, 10, 11, 286, 386, 509, 528, 533, 601,
612–615, 621, 628, 655

RND, see Route network design (RND)
Robust counterpart, 322–323, 327
Robust network design, 7, 317–341
Robust optimization, 7, 8, 317–324, 340, 341,

374, 612, 614–615, 621
Route generation, 10, 463, 545, 556–557, 559
Route network design (RND), 543–545, 556,

557, 559–561
Route selection, 10, 463, 545, 556, 560
Route set generation and improvement, 10,

545, 556–558
Routing constraints, 7, 209, 215–219, 226–228,

231, 232, 237–240, 242
Routing template, 324, 330–332, 341

S
SA, see Simulated annealing (SA)
Satellite, 336, 337, 428, 511–515, 517,

519–524, 527–532, 568, 585
Scatter search (SS), 107, 112–114, 120, 126,

128, 130
Scenario-based network design, 294–295
Scenario generation, 7, 285, 293–298, 311,

313, 379
Scenario polytope, 330
SCFND, see Single-commodity capacitated

fixed-charge network design (SCFND)
Scheduled service network design (SSND),

313, 354, 357–360, 362–366, 365, 368,
371, 373–376, 378, 379, 384, 393–395,

408, 409, 411–417, 419, 421, 422, 508,
513–517, 519–523, 525, 528–534

Scheduling, 141, 162, 211, 212, 214, 246, 248,
352, 358, 363, 378, 379, 385, 389, 406,
408, 416, 418, 419, 421, 431, 433, 450,
462, 463, 490, 518, 523, 530, 539, 595,
627, 658

Separation, 54–57, 61, 67, 68, 118–128, 146,
150, 151, 153, 156, 162, 164, 198, 203,
206, 243, 322, 323, 327, 328, 334,
339–341, 438, 508, 555

problem (heuristics), 54, 56, 61, 67, 68,
151, 198, 243, 327, 328, 334, 339

Service network design (SND), 6, 8, 9, 14, 141,
211, 283, 287, 313, 347–379, 383–422,
427–464, 479, 492, 500, 508, 513, 514,
523, 530, 531, 533, 628, 648

Service requirements, 209, 214–216, 287, 351,
432, 434, 443, 463, 464

Service selection, 245, 364, 369, 384, 390,
396–398, 401, 408, 411, 412, 418, 421,
422, 479–484, 494, 523, 528, 530

Shapley value, 628, 634–635, 637, 656, 657
Simulated annealing (SA), 99, 105–106, 117,

128, 260, 477, 497, 558, 560
Single-commodity capacitated fixed-charge

network design (SCFND), 17–20,
25–33, 35, 41, 42, 49, 52, 53, 60, 79,
80, 325

Single-commodity capacitated network design,
17, 324

Single-commodity network design, 26, 45
Single-commodity uncapacitated network

design, 18
Slope scaling, 69–72, 82, 83, 131, 420,

446–447, 452, 453, 461, 462
SND, see Service network design (SND)
Spanning tree, 6, 98, 101, 109, 129, 189,

191–194, 203, 217, 218, 233, 237, 241,
244, 245–247, 249, 557, 587, 588, 629,
638–642

Splittable flow, 25, 141, 148–150, 162
SS, see Scatter search (SS)
SSND, see Scheduled service network design

(SSND)
Stabilization, 63, 68, 75, 81, 84, 183, 241, 246,

249
Stackelberg game, 255
Static routing, 324, 330–337, 339, 341
Stochastic programs with recourse, 286–290,

612
Strategic planning, 288, 352, 389, 392, 421,

498, 508, 512, 513, 528–529, 532, 608



668 Index

Structured Dantzig-Wolfe decomposition, 169,
176–182, 184

Supply chain, 4, 6, 10, 11, 141, 212, 288, 289,
313, 383, 599, 606, 607, 619–622, 629

Survivable network, 6, 142, 194–198, 203–204,
243, 247

Sustainability, 10, 507, 539, 601, 615–617,
621, 622, 629

Synchronization, 9, 12, 119, 122, 123, 132,
360, 421, 508, 512, 513, 519, 521, 531,
533, 534

System-split, 546–548, 556

T
Tabu search (TS), 99–105, 111–114, 118,

124–132, 260, 420, 454–456, 494, 496,
558, 619, 620

Tactical planning, 8–10, 290, 349, 352–354,
361, 363, 377, 384, 385, 389–393, 396,
403, 408, 415–420, 422, 435, 498, 508,
512, 513, 517–527, 529, 531, 532, 545

Telecommunications, 4, 6, 10, 141, 142, 162,
167, 187, 188, 194, 195, 200, 205,
210–212, 248, 288, 311, 313, 409, 567,
568, 572, 585, 589, 591, 595

Time-dependent problem, 9, 353, 357, 390,
393

Time-dependent service network design, 8
Time-space network, 127, 211, 246, 357, 360,

363, 364, 372, 374, 375, 393, 395, 409,
410, 411, 421, 422, 453, 456, 462, 513,
514, 520, 534

Topological design, 187, 205, 206, 209
Transit capacity constraint, 214, 493, 494
Transit frequency optimization, 211, 473, 539,

540, 549
Transit infrastructure, 411, 539, 553, 572
Transit network congestion, 285, 288, 348,

353, 371, 372, 377, 386, 391, 397, 403,
404, 413, 419, 507, 562, 580, 593, 647

Transit network design, 211, 214, 215, 287,
428, 433, 451, 462, 472, 473, 475, 478,
494, 499, 540, 567, 572, 587, 616

Transit passenger behavior, 10, 543–549, 551,
553, 555, 558–562

Transit route network design, 543–545, 556,
557, 559–561

Transshipments, 10, 16, 209–211, 214–216,
245, 270, 324, 471, 473, 475–477, 479,
481–486, 488–491, 497–500, 503, 515,
567, 573, 656

Trucking, 9, 354, 361, 384, 427–433, 435–440,
443, 445, 450, 460–464, 511, 567

TS, see Tabu search (TS)
Two echelon location-routing (2E-LRP), 530,

531
Two echelon vehicle routing (2E-VRP), 488,

530, 656
Two-stage algorithm, 470, 480, 492–499
Two-stage stochastic fixed-charge capacitated

multicommodity network design, 7,
285, 287, 311, 314

Two-tier city logistics (2T-CL), 508–510, 518,
522, 528, 530

U
Uncertainty, 7, 8, 10, 12, 187, 283–285, 287,

288, 292, 293, 311–313, 318–325,
327–328, 330–331, 340, 341, 349, 354,
366–371, 373, 374, 377–379, 418, 422,
431, 464, 508, 518, 522–527, 531–534,
592, 601, 612–616, 621, 622

Unsplittable flow, 141, 149–153, 162, 331,
332, 341, 440

Urban delivery, 10, 508, 512, 515, 521, 524,
647–648, 658

Urban public transit, 539
Urban vehicle, 511–517, 519–525, 527, 528,

530

V
Valid inequalities, 6, 7, 19, 23, 25, 28, 30,

38, 45–48, 54–56, 61, 62, 68, 73, 79,
81, 116–118, 142, 145, 147–164, 171,
183, 184, 192, 196–198, 202, 204, 206,
210, 213, 220, 222–227, 232, 234, 235,
240–243, 246, 248, 278, 279, 303, 310,
329, 339–340, 375, 441, 461, 531, 592,
618

Variable neighborhood search (VNS), 99, 107,
128, 129

Variational inequalities, 259, 260
Vertical collaboration, 629
Very large neighborhood search (VLNS), 420
VLNS, see Very large neighborhood search

(VLNS)
VNS, see Variable neighborhood search (VNS)
VPN problem, 331, 335, 341

W
Weight constraints, 219, 222, 224, 226,

228, 230–232, 237, 238, 244–246,
248

Work assignment, 379, 515–517, 520, 524,
525, 527, 530



Index 669

Work segment, 515, 520, 524, 525, 527
Worst-case analysis, 249
Worst-case robustness, 318, 323

Z
Zero-half cuts, 104, 156, 157, 159, 233, 234,

269, 370, 450, 549, 555, 646, 648


	Contents
	1 A Book About Network Design
	1 Introduction
	2 Contents of the Book
	2.1 Part I: Basic Problems and Models
	2.2 Part II: Advanced Problems and Models
	2.3 Part III: Applications in Transportation and Logistics

	3 Bibliographical Notes
	4 Conclusions and Perspectives
	References

	Part I Basic Design Problems
	2 Fixed-Charge Network Design Problems
	1 Introduction
	2 Single-Commodity Formulations
	2.1 Cut-Set-Based Formulation
	2.2 The Uncapacitated Variant of the Problem
	2.3 Fixed-Charge Transportation Problem

	3 Multicommodity Formulations
	3.1 The Uncapacitated Variant of the Problem
	3.2 Cut-Set-Based Inequalities

	4 Bibliographical Notes
	5 Conclusions and Perspectives
	References

	3 Exact Methods for Fixed-Charge Network Design
	1 Introduction
	Part I: Relaxations
	2 Lagrangian Relaxations and Dantzig–Wolfe Reformulations
	2.1 A Primer on Lagrangian Relaxation
	2.2 Relaxing Linking Constraints
	2.3 Relaxing Flow Conservation Constraints
	2.4 Other Lagrangian Relaxations

	3 Relaxations by Projection and Benders Reformulations
	3.1 A Primer on Benders Decomposition
	3.2 Single-Commodity Formulations
	3.3 Multicommodity Formulations

	4 Valid Inequalities
	4.1 Cover Inequalities
	4.2 Flow Cover and Flow Pack Inequalities

	Part II: Enumeration Algorithms
	5 Branch-and-Bound Algorithms
	5.1 Relaxations
	5.2 Branching
	5.3 Filtering

	6 Branch-and-Cut Algorithms
	6.1 Separation and Lifting
	6.2 Computational Issues

	7 Benders Decomposition
	7.1 Linear Programming Relaxation
	7.2 Branch-and-Benders-Cut Algorithms
	7.3 Computational Issues

	8 Branch-and-Price Algorithms
	8.1 Pricing Subproblems
	8.2 Branching and Filtering
	8.3 Computational Issues

	Part III: Solution of Large-Scale Instances
	9 Connections with Heuristic Methods
	9.1 Slope Scaling Heuristics
	9.2 Lagrangian Heuristics
	9.3 Benders Decomposition and Heuristics
	9.4 Enumeration Algorithms and Heuristics

	10 Parallel Algorithms
	10.1 Node-Based Parallelism
	10.2 Single-Tree Parallelism
	10.3 Multiple-Tree Parallelism

	11 Bibliographical Notes
	12 Conclusions and Perspectives
	References

	4 Heuristics and Metaheuristics for Fixed-Charge Network Design
	1 Introduction
	2 Basic Concepts
	2.1 Search Space
	2.2 Neighborhoods
	2.3 Populations
	2.4 Evaluating the Performance of Heuristics and Metaheuristics

	3 Classical Heuristics
	3.1 Constructive Heuristics
	3.2 Improvement Methods (Local Search)
	3.2.1 Basic Local Search
	3.2.2 A Local Approach Search for the Fixed-Charge Transportation Problem


	4 Neighborhood-Based Metaheuristics
	4.1 Tabu Search
	4.1.1 Tabu Search for the Fixed-Charge Transportation Problem
	4.1.2 Tabu Search for the Multicommodity Capacitated Fixed-Charge Network Design Problem

	4.2 Other Neighborhood-Based Metaheuristics
	4.2.1 Simulated Annealing
	4.2.2 Iterated Local Search
	4.2.3 Greedy Randomized Adaptive Search Procedure
	4.2.4 Variable Neighborhood Search


	5 Population-Based Metaheuristics
	5.1 Genetic Algorithms/Evolutionary Algorithms
	5.1.1 A Genetic Algorithm for the Fixed-Charge Transportation Problem
	5.1.2 A Genetic Algorithm for the Multicommodity Capacitated Fixed-Charge Network Design Problem

	5.2 Path Relinking
	5.2.1 Path Relinking for the Multicommodity Capacitated Fixed-Charge Network Design Problem

	5.3 Scatter Search
	5.3.1 Scatter Search for the Multicommodity Capacitated Fixed-Charge Network Design Problem
	5.3.2 An Improved Scatter Search-Evolutionary Algorithm for the Multicommodity Capacitated Fixed-Charge Network Design Problem


	6 Matheuristics
	6.1 A Local Branching Matheuristic for the Multicommodity Capacitated Fixed-Charge Network Design Problem
	6.2 A Matheuristic Combining Exact and Heuristic Approaches for the Multicommodity Capacitated Fixed-Charge Network Design Problem
	6.3 A Hybrid Simulated Annealing-Column Generation Matheuristic for the Multicommodity Capacitated Fixed-Charge Network Design Problem
	6.4 A Cutting-Plane Based Matheuristic for the Multicommodity Capacitated Fixed-Charge Network Design Problem

	7 Parallel Metaheuristics
	7.1 Functional Parallel Strategies
	7.2 Search-Space Separation: Domain-Decomposition Strategies
	7.3 Search-Space Separation: Multi-Search Strategies

	8 Bibliographical Notes
	9 Conclusions and Perspectives
	References


	Part II Advanced Problems and Models
	5 Multicommodity Multifacility Network Design
	1 Introduction
	2 Problem Formulation
	3 Preliminaries
	3.1 Metric Inequalities
	3.2 Node Partition Inequalities
	3.3 MIR Inequalities

	4 Valid Inequalities from Arc Sets
	4.1 Splittable-Flow Arc Set
	4.2 Unsplittable-Flow Arc Set
	4.2.1 c-strong inequalities
	4.2.2 k-split c-strong Inequalities
	4.2.3 Lifted Knapsack Cover Inequalities

	4.3 Multifacility Arc Set

	5 Valid Inequalities from Cut Sets
	5.1 Single-Facility Case
	5.2 Multifacility Case

	6 Partition Inequalities
	7 Bibliographical Notes
	7.1 Introduction 
	7.2 Problem Formulation and Preliminaries 
	7.3 Valid Inequalities from Arc Sets
	7.4 Valid Inequalities from Cut Sets
	7.5 Partition Inequalities

	8 Conclusions and Perspectives
	References

	6 Piecewise Linear Cost Network Design
	1 Introduction
	2 Formulations with Piecewise Linear Costs
	2.1 Generic Piecewise Linear Cost Network Design Formulation
	2.2 Piecewise Linear Cost Model of the Single-Facility Problem

	3 Structured Dantzig-Wolfe Decomposition for Piecewise Linear Cost Network Design
	3.1 Structured Dantzig-Wolfe Decomposition
	3.2 Application to Piecewise Linear Cost Network Design

	4 Bibliographical Notes
	5 Conclusions and Perspectives
	References

	7 Topology-Constrained Network Design
	1 Introduction
	2 Notation and Definitions
	3 Connected Networks
	4 Survivable Networks
	5 Hop Constraints
	6 Rings
	7 Bibliographical Notes
	7.1 Connected Networks
	7.2 Survivable Networks
	7.3 Hop Constraints
	7.4 Rings

	8 Conclusions and Perspectives
	References

	8 Network Design with Routing Requirements
	1 Introduction
	2 Problem Classification and Model Formulation
	2.1 Model Classification
	2.2 Routing Requirements
	2.3 Model Formulation
	2.4 Challenges in Solving the NDRR Problem

	3 Solving the NDRR Problem
	3.1 Problem Reduction
	3.2 Valid Inequalities and Composite Algorithm for the NDRR Problem
	3.3 Extension to Capacitated Network Design with Routing Restrictions

	4 NDRR Special Cases: Constrained Shortest Paths and Hop-Constrained Problems
	4.1 Constrained Shortest Path (CSP) Problem
	4.1.1 Approximation Schemes for the CSP Problem
	4.1.2 CSP Solution Algorithms
	4.1.3 Handler and Zang's Algorithm

	4.2 Hop-Constrained Routing and Design Problems
	4.2.1 Approximation Algorithms for the HCMST Problem
	4.2.2 Polyhedral Results for Hop-Constrained Path Problems
	4.2.3 Layered Networks and Extended Formulations for Hop-Constrained Problems
	4.2.4 Extended Formulations for General NDRR Problems


	5 Decomposition Strategies for the NDRR Problem
	5.1 Lagrangian Relaxation
	5.2 Column Generation (Dantzig-Wolfe Decomposition)
	5.3 Benders Decomposition

	6 Bibliographical Notes
	7 Concluding Remarks
	References

	9 Bilevel Network Design
	1 Introduction
	2  A Primer on Bilevel Programming
	3 The Continuous Network Design Problem
	4 A Competitive Location-Queuing Model
	5 Network Pricing
	6 Bilevel Network Interdiction
	7 Bibliographical Notes
	8  Conclusions and Perspectives
	References

	10 Stochastic Network Design
	1 Introduction
	2 Stochastic Models
	2.1 Stochastic Programs with Recourse
	2.2 Stochastic Programming with Probabilistic Constraints

	3 Scenario Generation for Stochastic Network Design
	3.1 Scenario-Based Network Design Models
	3.2 Stability Testing
	3.3 Data Challenges in Scenario Generation

	4 Solution Methods
	4.1 Benders Decomposition
	4.2 Progressive Hedging

	5 Conclusions and Perspectives
	6 Bibliographical Notes
	References

	11 Robust Network Design
	1 Introduction
	2 Robust Optimization
	2.1 What Is Robust Optimization?
	2.2 Chance-Constrained Model
	2.3 Interval Uncertainty
	2.4 Budget Uncertainty
	2.5 Polyhedral Uncertainty and the Robust Counterpart
	2.6 Multi-stage Robustness

	3 Robust Network Designs
	4 Single-Commodity Formulations
	4.1 A Flow-Based Formulation
	4.2 A Cut-Set-Based Formulation
	4.3 Separating Robust Cut-Set-Based Inequalities
	4.3.1 The Single-Commodity Hose Uncertainty Set
	4.3.2 Network Containment

	4.4 Strengthening the Formulations
	4.5 Variants of the Problem

	5 Multicommodity Formulations
	5.1 Standard Uncertainty Sets
	5.2 The VPN Problem
	5.3 Static Routing: Arc-Flow Based Formulations
	5.4 Static Routing: Path Based Formulations
	5.5 Dynamic Routing: Arc-Flow Based Formulations
	5.6 Dynamic Routing: Formulations Without Flow Variables
	5.7 Strengthening the Formulations

	6 Bibliographical Notes
	7 Conclusions and Perspectives
	References


	Part III Applications in Transportation and Logistics
	12 Service Network Design
	1 Introduction
	2 Problem Settings
	2.1 Consolidation-Based Freight Carriers
	2.2 Planning and Service Network Design Models

	3 Static SND
	4 Time-Dependent SND
	5 Broadening the Scope of SND: Integrating Resource Management
	6 Managing Uncertainty
	6.1 Uncertainty in Shipment Volumes
	6.2 Other Uncertainties in SND

	7 Bibliographical Notes
	8 Conclusions and Perspectives
	References

	13 Freight Railroad Service Network Design
	1 Introduction
	2 Rail Transportation System and Planning
	2.1 Rail Transportation System
	2.2 Tactical Planning and Network Design
	2.3 Notation

	3 Static SND
	3.1 Service Selection and Train Makeup
	3.2 Car Classification and Blocking
	3.3 Integrated Planning SND
	3.3.1 Arc-Based Integrated SND
	3.3.2 Path-Based Integrated SND
	3.3.3 Advanced Path-Based Integrated SND

	3.4 Service & Block Generation and SND Models

	4 Time-Dependent SND and Integrated Planning
	5 Extending the SSND
	6 Bibliographical Notes
	7 Conclusions and Perspectives
	References

	14 Motor Carrier Service Network Design
	1 Introduction
	2 Consolidation Trucking Operations
	2.1 Trucking Service Network Design Problems

	3 Network Design Models for Flow Planning
	3.1 Arc-Based Flow Planning Model for Consolidation Trucking
	3.2 Single-Path and In-Tree Flow Planning Models
	3.3 Path-Based Models for Flow Planning
	3.4 Balancing Resources in Flow Planning
	3.5 Slope-Scaling Heuristics for Flow Planning
	3.6 A Local Search Heuristic for Flow Planning

	4 Network Design Models for Flow and Load Planning
	4.1 A Time-Expanded Model for LTL Flow Planning
	4.2 Time-Expanded Models for LTL Flow and Load Planning
	4.3 Dynamic Discretization Discovery

	5 Bibliographical Notes
	6 Concluding Remarks and Research Directions
	References

	15 Liner Shipping Network Design
	1 Introduction
	2 Overview of Liner Shipping and Liner Shipping Network Design
	2.1 Containerised Liner Shipping
	2.2 Containerised Liner Shipping Network Design
	2.3 RoRo Network Design
	2.4 The LINER-LIB Test Instances

	3 Overview of Models and Algorithms
	4 Models for the LSNDP
	4.1 Service Selection Formulations
	4.1.1 A Sub-path Service Formulation with Limited Transshipments

	4.2 Arc Formulations
	4.3 Considering Non-simple Services in the Formulation
	4.3.1 Port-Call Formulations
	4.3.2 Layer-Networks for Complex Services Structures
	4.3.3 Time-Space Models


	5 Two-Stage Algorithms
	5.1 The Container Flow Problem
	5.2 Service First Methods
	5.3 Backbone Flow
	5.3.1 From Backbone Flow to Network Design


	6 Bibliographic Notes
	7 Concluding Remarks and Future Challenges
	8 Notation Used in This Chapter
	References

	16 City Logistics
	1 Introduction
	2 City Logistics, Planning, and Design
	2.1 A Two-Tier Setting
	2.2 Planning and Design

	3 A General SSND Modeling Framework
	4 Using the Modeling Framework
	4.1 Tactical Planning for Medium-Term Horizons
	4.2 Demand Uncertainty in Tactical Planning for City Logistics
	4.3 Designing the City Logistics Network: Strategic Planning

	5 Bibliographical Notes
	6 Conclusions and Perspectives
	References

	17 Public Transportation
	1 Introduction
	2 Background
	2.1 Basic Concepts and Notation
	2.2 Problem Nomenclature, General Formulation and Solution Approach for Public Transportation Network Design

	3 Models for Public Transportation Network Optimization
	3.1 User and Operator Oriented Models with Fixed Passenger Behavior
	3.2 Explicit Modeling of Passenger Behavior
	3.3 Including Waiting Time
	3.4 Multiple Objectives and Levels of Decisions
	3.5 Other Relevant Models

	4 Solution Approaches
	4.1 Mathematical Programming Based Methods
	4.1.1 Branch-and-Bound-and-Cut Methods
	4.1.2 Decomposition Methods

	4.2 Heuristic Based Methods
	4.2.1 Route Generation and Selection
	4.2.2 Route Set Generation and Improvement
	4.2.3 Handling Specific Problem Features


	5 Bibliographical Notes
	6 Conclusions and Perspectives
	References

	18 Hub Network Design
	1 Introduction
	2 Preliminaries
	3 Hub Location Problems
	3.1 Multiple Assignments
	3.2 Single Assignments
	3.3 r-Allocation

	4 Hub Network Design Problems
	4.1 Hub Arc Location Problems
	4.1.1 Models with One-Hub-Arc O/D Paths
	4.1.2 Models with Arbitrary O/D Paths

	4.2 Specific Hub Network Topologies
	4.2.1 Star-Star Hub Networks
	4.2.2 Tree-Star Hub Networks
	4.2.3 Cycle-Star Hub Networks
	4.2.4 Hub Line Networks


	5 Bibliographical Notes
	5.1 Hub Location Problems
	5.2 Hub Network Design Problems

	6 Conclusions and Perspectives
	References

	19 Logistics Network Design
	1 Introduction
	2 A General Modeling Framework for Logistics Network Design
	2.1 Notation
	2.2 Formulation
	2.3 Extensions
	2.3.1 Lower Bounds and Capacity Alternatives
	2.3.2 Multi-Period Design Decisions
	2.3.3 Inventory Level Constraints
	2.3.4 Profit Maximization
	2.3.5 International Aspects


	3 Risk and Uncertainty
	3.1 Stochastic Programming
	3.2 Robust Optimization

	4 Reverse Logistics, Environmental Aspects and Sustainability
	5 Solution Methods
	5.1 Exact Algorithms
	5.1.1 Lagrangian Relaxation
	5.1.2 Benders Decomposition

	5.2 Heuristic Algorithms

	6 Bibliographical Notes
	7 Conclusions and Perspectives
	References

	20 Collaboration in Transport and Logistics Networks
	1 Introduction
	2 Key Collaboration Concepts in Transport and Logistics Networks
	3 Cost Sharing: Preliminaries
	3.1 Cooperative Cost Games
	3.2 Solutions for Cooperative Cost Games
	3.2.1 Core
	3.2.2 Shapley Value
	3.2.3 Least-Core
	3.2.4 Nucleolus
	3.2.5 Comparing Solutions

	3.3 Solutions for Situations

	4 Cost Sharing in Logistics Network Situations
	4.1 Minimum Cost Spanning Tree (mcst) Games
	4.2 Facility Location Games
	4.3 Hub Location Games
	4.4 Delivery Consolidation Games

	5 Cost Sharing in Cooperative Truck-Load Delivery Situations
	5.1 Desirable Properties for CTLD Solutions
	5.2 A Solution for CTLD Situations

	6 Bibliographical Notes
	6.1 Collaborations
	6.2 Game Theoretical Concepts
	6.3 Other Classes of Stylized Situations Related to Cooperative Network Design Problems

	7 Conclusions and Perspectives
	References


	Index

