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Abstract. In order to improve the accuracy of coal mine gas safety evaluation
results, a gas safety evaluation model based on D-S evidence theory data fusion
is proposed, and multi-sensor fusion of gas safety evaluation is realized. First, the
prediction results of the weighted least squares support vector machine are used
as the input of D-S evidence theory, and the basic probability assignment function
of each sensor is calculated by using the posterior probability modeling method,
and the similarity measure is introduced for optimization. Secondly, aiming at
the problem of fusion failure in D-S evidence theory when fusing high-conflict
evidence, the idea of assigning weights is used to allocate the importance of each
evidence to weaken the impact of conflicting evidence on the evaluation results.
In order to prevent the loss of the effective information of the original evidence
after modifying the evidence source, a conflict allocation coefficient is introduced
on the basis of fusion rules. Finally, a gas safety evaluation example analysis is
carried out on the evaluation model established in this paper. The results show
that the introduction of similarity measures can effectively eliminate high-conflict
evidence sources; the accuracy of D-S evidence theory based on improved fusion
rules is improved by 2.8% and 15.7% respectively compared to D-S evidence
theory based on modified evidence sources and D-S evidence theory; as more
sensors are fused, the accuracy of the evaluation results is higher; the multi-sensor
data evaluation results are improved by 63.5% compared with the single sensor
evaluation results.
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1 Introduction

Coal mine gas safety evaluation has always been an important means of coal mine safety
management. Through the monitoring of environmental data in the coal mine and the
correct identification of the gas safety, gas accumulation, outburst, and explosion can
be effectively avoided, which has important theoretical significance and practical value
for suppressing the occurrence of gas disasters and promoting the safe and sustainable
development of the coal industry [1].
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At present, the commonly used safety evaluation methods are probabilistic risk eval-
uation [2–4], and the use of computer technology and databases to establish disas-
ter databases for casualties. However, in actual evaluation, the structure, indexes and
parameters of each evaluation model are very different. The commonly used evaluation
methods in China mainly focus on fuzzy comprehensive evaluation [5], gray clustering
[6–8], neural network [9–11] and game analysis evaluation based on data mining [12].
Although the qualitative evaluation process is simple, the differences in the professional
background and operational capabilities of different participants may lead to differences
in accident risk evaluation. The existing gas safety evaluation system only stores infor-
mation in the database, and does not realize the correlation between the monitoring data
of multiple sensors, therefore, a complete and coordinated operating system has not
been formed in practice. At the same time, in the analysis of the coal mine gas safety
influencing factor system, more studies have magnified the role of people and machines,
while neglecting the occurrence of gas accidents mostly is the unfavorable monitoring
of environmental factors, the lack of evaluation systems and the insufficient accuracy.

The gas safety evaluation model used in this paper divides the gas safety status into
different safety levels. Then, using the various sensor monitoring data collected by the
working face monitoring station, the predicted data is obtained based on weighted least
squares support vector machine. Finally, multi-sensor data fusion is carried out to realize
the evaluation of the gas safety state of the working face at the next moment, so as to
realize the early warning of the gas safety state.

2 Weighted Least Squares Support Vector Machine

Suykens [13] proposed a weighted least squares support vector machine (WLSSVM)
based on the least squares support vector machine (LSSVM). The Lagrange function of
its optimization problem can be described as:

L(w, b, ξ, α) = 1
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In Eq. (1), w is the weight coefficient vector; ϕ(xi) is the mapping input to the high-
dimensional space; C is the regularization parameter; b is the threshold; xi represents
the Lagrange multiplier. According to the KKT (Karush-Khun-Tucker) condition, the
function eliminate w, ξi, and get Eq. (2):
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]T. Equation (2) can be obtained b and α, inputing test samples to
get WLSSVM model as follows:
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The weight calculation formula is as follows:
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In Eq. (4), the values of s1 and s2 are 2.5 and 3.0 respectively; s
∧

is the standard
estimated deviation of the error sequence, and its calculation function is as follows:

s
∧ = IQR

2 × 0.6745
(5)

In Eq. (5), IQR is the difference between the third quartile and the first quartile in
the sequence of errors ξi from small to large.

3 D-S Evidence Theory

3.1 Basic Principles of D-S Evidence Theory

For the reasoning of uncertain problems, Dempster-Shafer (D-S) evidence theory has
strong adaptability, and the reasoning process is simpler. Among them, the distribution
of belief functions and the fusion of evidence are the basic knowledge of D-S evidence
theory. The uncertainty of events can be expressed through the recognition framework
and basic belief distribution functions.

Recognition Framework
The recognition framework represents a set X of possible situations of the event, and
the elements it contains represent the degree of evaluation of the event status. In the
gas safety evaluation system, every possible state is called a hypothesis, and all possible
categories constitute a recognition framework. Therefore, the recognition framework
contains all possible results of a particular problem. The recognition framework can be
expressed in Eq. (6):

X = {X1,X2,X3, . . . , �} (6)

In Eq. (6), Xi is called a possible result of the event, and the uncertainty represented
by �.

Basic Probability Assignment Function (BPA)
Suppose X is a recognition framework, 2X is a power set on X, if m: 2X → [0, 1], and
satisfy Eq. (7).

∑
A∈2X m(A) = 1,m(�) = 0 (7)

In Eq. (7), m is called the BPA of the recognition frame X, it also known as the mass
function, A is the element in the recognition frame. For ∀A ⊆ X , thenm(A) is the basic
belief, which indicates the degree of trust in proposition A.
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Belief Function
If there are A ∈ P(X ) and B ∈ A, then define the function Bel as follows:

Bel(A) =
∑

B∈A m(B) (8)

In Eq. (8), Bel represents the belief function, and the Eq. (8) represents the sum of
the possibilities of all the subsets of A, which represents the overall degree of trust in A,
so that it can be inferred that Bel(�) = 0 and Bel(X) = 1. The belief function represents
the degree of trust of a certain thing. It is incomplete and untrustworthy to only use the
belief function to describe the possibility of an event.

Likelihood Function
In D-S evidence theory, the likelihood function is ameasure used to express the degree of
distrust of an event. Definition: Assuming that X is a recognition framework, m: 2X →
[0, 1] is represented as the basic probability assignment on X. If there are A ∈ P(X ), B
∈ A, then define the function Pl: 2X → [0, 1] as follows:

Pl(A) = 1 − Bel
(
A
) =

∑
B∩A�=�

m(B) (9)

In Eq. (9), Pl(A) represents that event A is true uncertainty, and Bel
(
A
)
represents

the trust degree of event A. The degree of mistrust Pl(A) of A can be calculated by the
Eq. (9).

The minimum degree of trust of evidence theory for event A is Bel(A), the potential
degree of trust in event A is expressed as Pl(A), the support interval of event A can
be expressed as [0, Bel(A)], the likelihood interval of event A can be expressed as
[0, Pl(A)]. When the evidence neither confirms nor denies the occurrence of event A,
for this uncertain phenomenon, a trust interval can be used to represent the probability
of event A.

3.2 Improved D-S Evidence Theory

D-S evidence theory has strong applicability in data fusion, but in the actual fusion
process, there are still some deficiencies in dealing with uncertain problems. It is mainly
manifested in the explosive problem, the limited problem of recognition framework, the
independent problem between the evidences and the problem of conflicting evidence
fusion. In this paper, the improvement of D-S evidence theory is mainly used to solve
the problem of conflicting evidence sources.

Evidence-Based Improvements
Modifying the evidence source can reduce the influence of interference factors on the
fusion evaluation results and improve the accuracy of the evaluation results. In this paper,
the idea of assigning weights is used to allocate the importance of each evidence, which
can increase the reliability of the evidence on the decision result and weaken the impact
of conflicting evidence. For the method of evidence-based improvement, this paper is
called D-S-1 evidence theory.
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For an uncertain event, there are n evidences, the corresponding recognition frame
X contains N focal elements, and mi represents the evidence set composed of the basic
probability assignment function corresponding to the evidence under each focal element.

mi = [mi(A1),mi(A2), . . . ,mi(An)]
T , i = 1, 2, . . . , n (10)

Equation (11) is used to calculate the distance between mi and mj, dij represents
the distance of mi and mj. This distance function has a better reflection in describing
the focal element and the reliability between evidences, and can better characterize the
conflict between evidences.

dij = d
(
mi,mj

) =
√
1

2

[
‖mi‖2 + ∥∥mj

∥∥2 − 2
(
mi,mj

)]
(11)

The similarity function is further derived from the Eq. (11). The similarity between
mi and mj can be expressed as Sij. The expression of Sij is as follows:

Sij = 1 − dij (12)

The smaller the distance between the evidences, the greater the mutual support. The
degree of support for evidence can be expressed by the sum of other evidences, then the
degree of support for evidence mi can be expressed as:

T (mi) =
∑n

j=1,j �=i
Sij, i = 1, 2, .., n (13)

In this paper, the distance similaritymatrix between evidences is used to give different
weights to each sensor, so as to achieve the purpose of modifying the evidence source. In
order to prevent the revised evidence source from being too conservative and losing the
advantages of the original evidence, this paper adopts to retain the original set of more
correct evidence to ensure the effect of data fusion. Based on the above ideas, according
to the ratio of the degree of support of the evidence, under the condition of retaining a
good set of evidence sources, the weight β of the evidence is calculated according to the
degree of support. The specific formula is as follows:

β(mi) = T (mi)

max(T (mi))
(14)

After assigning weights, the modified basic probability assignment function corre-
sponding to the evidence can be expressed as follows:

m′
i(i) = β(mi) · mi

m′
i(�) = β(mi) · mi + (1 − β(mi)) (15)

Improvements Based on Fusion Rules
In this paper, the time series prediction value of the monitoring data of each sensor is
used to calculate the basic probability assignment value. After the value of each sensor
is fused, the mine gas safety status is judged. The fusion rules of D-S evidence theory
are as follows:
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Based on two independent evidencesM1,M2, the focal elements of the two evidences
are Bi and Cj(i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . ,m), the basic probability assignment
function value after their fusion is m(A):

{
m(A) = M1 ⊕ M2 = 1

1−K

∑
Bi∩Cj=A m1(Bi)m2

(
Cj

)

K(M1,M2) = ∑
Bi∩Cj=� m1(Bi)m2

(
Cj

) (16)

In Eq. (16), K(M1,M2) is called the conflict coefficient, which represents the degree
of conflict between the two evidences M1,M2. When the conflict coefficient is 0, there
is no conflict between the two evidences; when it is close to 1, the greater the conflict
between the two evidences, there is a complete conflict.

Many scholars believe that the fusion rules of evidence theory are imperfect in the
processing of evidence, so the reasonable modification of fusion rules can also improve
the accuracy of fusion. After modifying the evidence source, simply modifying the
evidence source data to prevent high conflicts between the evidences may cause the
revised evidence to lose the effective information of the original evidence. The conflict
allocation coefficient is introduced on the basis of the fusion rules to improve the accuracy
of the decision stage. For the method of modifying the fusion rule, this paper is called
D-S-2 evidence theory.

The conflict allocation coefficient ω(Ai) can be defined as follows:

ω(Ai) =
∑n

i=1 m
′
i

(
Aij

)
∑n

i=1
∑p

j=1 m
′
i

(
Aij

) (17)

The improved formula of D-S evidence theory fusion rule is defined as follows:

m(A) =
∑

Bi∩Cj=A
m1(Bi)m2

(
Cj

) + K · ω(Ai) (18)

In Eq. (17): set A represents the intersection of focal element Bi and focal element
Cj.

4 Construction of Gas Safety Evaluation Model

4.1 Construction of Recognition Framework

From the perspective of D-S evidence theory, the “gas safety state” can be regarded as
a judgmental problem, and the summary of hypothetical results can be described as a
recognition framework.According to the coalmine safety regulations and the value range
of characteristic parameters under specific conditions, the gas safety state is divided into
five states: no danger, mild danger, moderate danger, serious danger, and uncertain [14].
No danger indicates that the working face of the coal mine is in a good environment;
mild danger indicates that the working face has a certain risk, and this danger value is
within the acceptable range; moderate danger indicates that the working face is unsafe,
and the indicates value has exceeded the accepted, this danger requires staff to conduct
on-site inspection; serious danger indicates that the working face is very bad, and the
staff should be evacuated. So the recognition framework of D-S evidence theory can be
described as X= {X1 (no danger), X2 (mild danger), X3 (moderate danger), X4 (serious
danger)}.
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4.2 Construction of Basic Probability Assignment Function

This paper uses the posterior probability modeling method to find the basic probability
assignment function, and introduces the similarity degree to modify the evidence source.
Thebasic probability assignment function characterizes the support degree of each sensor
to the safety status ofmine gas. In this paper, a time series predictionmodel is constructed
through the WLSSVM, and the prediction model is established with each influence
factor as an input to obtain the prediction value of each sensor. The posterior probability
modeling method calculates the basic probability assignment function of each sensor.

Taking a single sensor as an example, the basic probability assignment function value
obtained by the posterior probability modeling method is y, the recognition framework
is X = {X1,X2,X3,X4}. The distance between X and y can be expressed as follows:

di(Xi, y) = |Xi − y| (19)

The correlation coefficient between the evidence and Xi can be expressed as follows:

ci = 1/di∑4
i=1(1/di)

(20)

Introducing Eq. (20), the basic probability assignment function m(i) and the
uncertainty m(�) of the corresponding evidence can be expressed as follows:

m(i) = ci∑
ci + E

m(�) = E∑
ci + E

E = 1

2
|y − x|2 (21)

In Eq. (21), y is the predicted value of the time series prediction model, and x is the
expected output value of the prediction model.

4.3 Construction of Gas Safety Evaluation Model

Five classification indicators of gas safety status can be obtained through Sect. 4.1.
The construction process of data fusion model based on D-S evidence theory mainly
includes three parts: time series prediction of each sensor, construction of basic proba-
bility assignment function, fusion between evidences and decision-making. First, each
sensor obtains the predicted value through the time series prediction model. The basic
probability assignment function is obtained through the posterior probability modeling
method. The similarity degree is introduced to modify the evidence source to obtain
the basic probability assignment function. In order to improve the accuracy of decision-
making, multi-sensor data fusion was carried out according to the fusion rules. The coal
mine gas safety evaluation model based on D-S evidence theory data fusion is shown in
Fig. 1.
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Fig. 1. Gas safety evaluation model

5 Case Analysis

5.1 Data Sources

The data in this paper comes from the gas concentration at the upper corner (No. A02),
the gas concentration at the working face 10 m (No. A01), the wind speed (No. A09),
the dust (No. A11), the return air 15 m temperature (No. A07), the return air 15 m gas
concentration (No. A08) of the a coal mine. The original data sampling interval is 1 min,
and the data distribution has obvious jagged characteristics. Therefore, this paper uses
5 min as the sampling interval to obtain 1500 groups of samples, select the first 1400
samples for model training, and the remaining samples for model testing. Some data is
shown in Table 1.

Table 1. Sample set of monitoring data.

No. A02/(%) A01/(%) A09/(m/s) A11/(mg/m3) A07/(°C) A08/(%)

1 0.224 0.262 1.952 0.02 21.332 0.35

2 0.226 0.26 1.992 0.014 21.3 0.342

3 0.218 0.26 1.97 0.08 21.306 0.342

4 0.218 0.27 1.98 0.082 21.3 0.342

5 0.212 0.276 2.016 0.068 21.304 0.34

. . . . . . .

. . . . . . .

1497 0.368 0.408 1.926 0.086 22.026 0.502

1498 0.37 0.406 1.916 0.084 22 0.518

1499 0.362 0.4 1.944 0.076 22 0.496

1500 0.352 0.396 1.944 0.074 22 0.482
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5.2 The Predicted Results of the Time Series Prediction Model

This paper uses the multivariable WLSSVM time series prediction model introduced in
Sect. 2 to predict the monitoring value of each sensor at the next moment. This paper
uses the target sensor as the output and other sensors as the input for model training.
SPSS software was used to analyze the Pearson correlation of A02, A01, A09, A11, A07
and A08 monitoring points. The analysis results are shown in Table 2.

Table 2. Correlation analysis results of various influencing factors

A02 A01 A09 A11 A07 A08

A08 0.572 0.910 0.668 0.324 0.788 1

It can be seen fromTable 2 that the correlation coefficients are all greater than 0.3, and
it is reasonable for each other sensor to be the input of the target sensor. The prediction
results are shown in Table 3.

Table 3. Predicted results of various sensors

A02 A01 A09 A11 A07 A08

Predicted results 0.380 0.422 1.912 0.094 22.086 0.504

5.3 Experimental Results and Analysis

Contrast Analysis of Conflict Degree
This paper uses the posterior probability modeling method introduced in Sect. 3.2 to
calculate the basic probability assignment function of each sensor. The BPA of each
sensor is shown in Table 4.

Table 4. Basic probability assignment functions

A09 A07 A11 A02 A01 A08

X1 0.0646 0.2057 0.4939 0.5551 0.5664 0.5954

X2 0.8079 0.2160 0.2358 0.2150 0.2106 0.1979

X3 0.0557 0.2273 0.1549 0.1333 0.1294 0.1187

X4 0.0288 0.2399 0.1153 0.0966 0.0934 0.0848

� 0.0431 0.1111 0.0000 0.0000 0.0002 0.0032
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It can be seen from Table 2 that the results of single sensor recognition are A09
m(X2) = 0.8079, A07 m(X4) = 0.2399, A11 m(X1) = 0.4939, A02 m(X1) = 0.5551,
A01 m(X1) = 0.5664 and A08 m(X1) = 0.5954. Obviously, A09 and A07 have a great
conflict with other sensors. Using a single sensor evaluation result can not accurately
evaluate the safety status of coal mine gas. Therefore, it is necessary to modify the
evidence source before fusion.

This paper adopts the improved method of evidence source introduced in Sect. 4.2,
redistributes the weights for each sensor according to the BPA in Table 4, the revised
BPA is shown in Table 5.

Table 5. Basic probability assignment function after modifying the evidence source

A09 A07 A11 A02 A01 A08

X1 0.0369 0.1712 0.4914 0.5551 0.5643 0.5801

X2 0.4622 0.1797 0.2357 0.2150 0.2098 0.1929

X3 0.0318 0.1892 0.1541 0.1333 0.1298 0.1157

X4 0.0165 0.1997 0.1148 0.0966 0.0930 0.0826

� 0.4526 0.2602 0.0051 0.0000 0.0040 0.0287

It can be seen from Table 5 that A09 is revised from m(X2) = 0.8079 to m(X2) =
0.4622, and A07 is revised fromm(X4) = 0.2399 tom(X4) = 0.1997. The conflict is sig-
nificantly reduced, indicating that themethod ofmodify the source of evidence is feasible
and retains the excellent evidence of A02. At the same time, the Table 5 shows that only
using sensorsA09 andA07as evaluation evidencewill lead to failure of decision-making,
and only usingA11, A02, A01 andA08 as evaluation evidence has low recognition accu-
racy and makes decision reliability low. Therefore, it is not reliable to use only a single
sensor to evaluate the safety status of coal mine gas.

Comparative Analysis of Evaluation Results
Through the comparative analysis of the degree of conflict above, we can see that data
fusion plays an important role in the decision-making results. Sensors A09, A07, A11,
A02, A01, A08 are recorded as evidence e1, e2, e3, e4, e5, e6. The fusion process of
multi-sensors is the fusion process of two sensors in sequence. The comparison results
of the multi-sensor fusion of the three methods are shown in Table 6, 7, 8, 9 and 10.

Table 6. Comparative analysis of e1e2 fusion results

m(X1) m(X2) m(X3) m(X4) m(�) Identify result Safety status

D-S 0.0822 0.7668 0.0803 0.0573 0.0000 X2 X1

D-S-1 0.1346 0.4103 0.1440 0.1412 0.0000 X2 X1

D-S-2 0.1023 0.4022 0.1084 0.1026 0.5199 � X1
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Table 7. Comparative analysis of e1e2e3 fusion results

m(X1) m(X2) m(X3) m(X4) m(�) Identify result Safety status

D-S 0.1688 0.7520 0.0517 0.0275 0.0000 X2 X1

D-S-1 0.3259 0.4798 0.1118 0.0826 0.0000 X2 X1

D-S-2 0.3930 0.3813 0.1262 0.0923 0.0125 X1 X1

Table 8. Comparative analysis of e1e2e3e4 fusion results

m(X1) m(X2) m(X3) m(X4) m(�) Identify result Safety status

D-S 0.3537 0.6103 0.0260 0.0100 0.0000 X2 X1

D-S-1 0.5894 0.3361 0.0486 0.0260 0.0000 X1 X1

D-S-2 0.6680 0.2511 0.0526 0.0282 0.0000 X1 X1

Table 9. Comparative analysis of e1e2e3e4e5 fusion results

m(X1) m(X2) m(X3) m(X4) m(�) Identify result Safety status

D-S 0.6012 0.3859 0.0101 0.0028 0.0000 X1 X1

D-S-1 0.8056 0.1728 0.0155 0.0061 0.0000 X1 X1

D-S-2 0.8578 0.1205 0.0156 0.0061 0.0000 X1 X1

Table 10. Comparative analysis of e1e2e3e4e5e6 fusion results

m(X1) m(X2) m(X3) m(X4) m(�) Identify result Safety status

D-S 0.8198 0.1768 0.0028 0.0006 0.0000 X1 X1

D-S-1 0.9225 0.0720 0.0042 0.0013 0.0000 X1 X1

D-S-2 0.9485 0.0466 0.0038 0.0011 0.0000 X1 X1

As shown in Table 6 above, the fusion evidence sources e1 and e2 are all highly con-
flicting evidences, so the decision results of D-S evidence theory and D-S-1 evidence
theory are invalidated, and the recognition results ofD-S-2 evidence theory are uncertain.
After introducing the evidence source e3 in Table 7, the recognition results of the D-S
evidence theory and D-S-1 evidence theory are wrong, and the D-S-2 evidence theory
recognition results are accurate, which proves that the improved fusion rule in this paper
is effective, and retains the revised evidence source. Effective information in Table 8,
e1e2e3e4 fusion, D-S evidence theory recognition result is wrong, D-S-1 evidence the-
ory and D-S-2 evidence theory recognition results are accurate, which proves that the
modified method of the evidence source improved in this paper is correct, eliminating
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the inter-evidence Highly conflicting. Tables 9 and 10 show that the D-S-2 evidence
theory method for the modification of evidence source and fusion rules in this paper is
reasonable. The recognition accuracy of D-S-2 evidence theory is higher than that of D-S
evidence theory and D-S-1 evidence theory. The accuracy rate of mine gas safety status
recognition has been improved. At the same time, the fusion rule satisfies the exchange
law, and it can be concluded that as the evidence increases during the fusion process,
the accuracy of the identification in the decision stage is higher. The problem that the
single sensor is difficult to accurately characterize the gas safety state is solved.

Through the above analysis, it can be concluded that the multi-sensor data fusion gas
safety status evaluation system proposed in this section has high practical value in field
applications, and has important theoretical significance for suppressing the occurrence of
gas disasters and promoting the safe and sustainable development of the coal industry.
In Table 10, the accuracy of D-S evidence theory based on improved fusion rules is
improved by 2.8% and 15.7% respectively compared to D-S evidence theory based on
modified evidence sources and D-S evidence theory, as more sensors are fused, the
accuracy of the evaluation results is higher; the multi-sensor data evaluation results are
improved by 63.5% compared with the single sensor evaluation results.

Model Uncertainty Measure
This paper uses Shannon entropy to measure the uncertainty of the above three D-S
evidence theories. Let n signal sources make up the signal X = {x1, x2, x3 . . . , xn}, the
probability that each signal source provides corresponding information for an event is
P = {p(x1), p(x2), p(x3), . . . , p(xn)}, then the system structure S of the signal can be
expressed as:

S =
(
X
P

)
=

(
x1

p(x1)
x2

p(x2)
. . .

. . .

xn
p(xn)

)
(22)

Therefore, the Shannon entropy of the signal is expressed as follows:

H (x) = −
∑n

i=1
p(xi) ln p(xi) (23)

The uncertainty of D-S evidence theory fusion is:

− 0.8198 ∗ ln 0.8198 − 0.1768 ∗ ln 0.1768 − 0.0028 ∗ ln 0.0028

− 0.0006 ∗ ln 0.0006 = 0.4901

The uncertainty of D-S-1 evidence theory fusion is:

− 0.9225 ∗ ln 0.9225 − 0.0720 ∗ ln 0.0720 − 0.0042 ∗ ln 0.0042

− 0.0013 ∗ ln 0.0013 = 0.2955

The uncertainty of D-S-2 evidence theory fusion is:

− 0.9485 ∗ ln 0.9485 − 0.0466 ∗ ln 0.0466 − 0.0038 ∗ ln 0.0038

− 0.0011 ∗ ln 0.0011 = 0.2217

From the comparison of the above results (Fig. 2), we can see that the improved D-
S-2 evidence theory has lower uncertainty than D-S evidence theory and D-S-1 evidence
theory, and can better evaluate the safety of coal mine gas.
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Fig. 2. Uncertainty for three types of D-S evidence theory

6 Conclusion

(1) According to the characteristics of coal mine monitoring data, an index system is
constructed. By acquiring the predicted values of each sensor, the basic probability
assignment function of each sensor is calculated using the posterior probability
modeling method.

(2) A safe evaluation model of coal mine gas status is constructed, and multi-sensor
data fusion is realized. As more sensors are fused, the evaluation results are more
accurate. The model in this paper effectively solves the problem that it is difficult
for a single sensor to accurately characterize the gas safety state.

(3) Aiming at the problem of evidence fusion failure caused by high conflict data,
this paper introduces the similarity to modify the evidence source of conflict data,
which effectively reduces the conflict between the evidence. At the same time, in
order to prevent distortion of evidence sources, the conflict allocation coefficients
are introduced to improve the fusion rules, and the accuracy of evaluation results is
improved. It proves that the improved D-S evidence theory has higher accuracy and
better generalization ability for coal mine gas safety evaluation, which can provide
theoretical basis for gas disaster accident prevention.

References

1. Sun, Q.G.: Current situation of coal mine gas disasters in China and countermeasures. China
Coal 40(3), 116–119 (2014)

2. Pejic, L.M., Torrent, J.G., Querol, E., Lebecki, K.: A new simple methodology for evaluation
of explosion risk in underground coal mines. J. Loss Prev. Process Ind. 26, 1524–1529 (2013)

3. Ghasemi, E., Ataei, M., Shahriar, K., Sereshki, F., Jalali, S.E., Ramazanzadeeh, A.: Assess-
ment of roof fall risk during retreat mining in room and pillar coal mines. Int. J. Rock Mech.
Min. Sci. 54, 80–89 (2012)



522 Z. Sun et al.

4. Hu, L., Hong, G.J., Lin, G., Na, Z.: A polygeneration system for methanol and power pro-
duction based on coke oven gas and coal gas with CO2 recovery. Energy 74(2), 143–149
(2014)

5. Sun, X.D.: Research on coal mine safety risk evaluation based on fuzzy information, 4. China
University of Mining and Technology, Beijing (2010)

6. Wang, D., Liu, L., Zhang, X.M.: The improvement and application of the grey correlation
degree method in the evaluation of coal mine intrinsic safety. China Saf. Prod. Sci. Technol.
9(1), 151–154 (2013)

7. Gao, S., Zhong, Y., Li, W.: Random weighting method for multi-sensor data fusion. IEEE
Sens. J. 11(9), 1955–1961 (2011)

8. Si, L., Wang, Z.B., Tan, C., Liu, X.H.: A novel approach for coal seam terrain predic-
tion through information fusion of improved D-S evidence theory and neural network.
Measurement 54, 140–151 (2014)

9. He, R.J., Zhang, L., Pang, C., Chen, X.: Application of ant colony neural network in coal
mine safety evaluation. Coal Mine Saf. 43(4), 178–180 (2012)

10. Zhang, J.N., Li,W.J.,Guan,Y.L.:Application of improvedFNN in coalmine safety production
warning system. Coal Eng. 8, 168–171 (2013)

11. Li, X., Li, N.W., Yang, Z.: Coal mine safety evaluation model based on quantum genetic
algorithm. Comput. Syst. Appl. 21(7), 101–105 (2012)

12. Li, P.L., Duan, J.: Game model of coal mine safety production. J. Xi’an Univ. Sci. Technol.
33(1), 72–76 (2013)

13. Suykens, J.A.K., Brabante, J.D.E., Lukas, L., Vandewalle, J.: Weighted least squares sup-
port vector machines: robustness and sparse approximation. Neurocomputing 48(1), 85–105
(2002)

14. Bao, Y.: Application of Multi-Sensor Information Fusion in Coal Mine Environmental
Monitoring System. China University of Mining and Technology Library, Xuzhou (2007)


	Research on Coal Mine Gas Safety Evaluation Based on D-S Evidence Theory Data Fusion
	1 Introduction
	2 Weighted Least Squares Support Vector Machine
	3 D-S Evidence Theory
	3.1 Basic Principles of D-S Evidence Theory
	3.2 Improved D-S Evidence Theory

	4 Construction of Gas Safety Evaluation Model
	4.1 Construction of Recognition Framework
	4.2 Construction of Basic Probability Assignment Function
	4.3 Construction of Gas Safety Evaluation Model

	5 Case Analysis
	5.1 Data Sources
	5.2 The Predicted Results of the Time Series Prediction Model
	5.3 Experimental Results and Analysis

	6 Conclusion
	References




