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Abstract. Clustering analysis has been widely used in many areas. In
many cases, the number of clusters is required to been assigned artifi-
cially, while inappropriate assignments affect analysis negatively. Many
solutions have been proposed to estimate the optimal number of clusters.
However, the accuracy of those solutions drop severely on overlapping
data sets. To handle the accuracy problem, we propose a fast estimation
solution based on the cluster centers selected in a static way. In the solu-
tion, each data point is assigned with one score calculated according to a
density-distance model. The score of each data point does not change any
more once it is generated. The solution takes the top k data points with
the highest scores as the centers of k clusters. It utilizes the significant
change of the minimal distance between cluster centers to identify the
optimal number of the clusters in overlapping data sets. The experiment
results verify the usefulness and effectiveness of our solution.
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1 Introduction

Clustering analysis is one of the ways to perform unsupervised analysis [1]. It is
dedicated to dividing data into clusters with the goal of the similarity between
data within the cluster and minimizing the similarity between data between clus-
ters [2]. It has been widely used in many areas such as image processing, bioinfor-
matics, in-depth learning, pattern recognition and so on. Clustering analysis can
be classified into partition-based clustering, density-based clustering [3], grid-
based clustering, hierarchical clustering [4] and so on [5,6]. However, in many
cases, the number of clusters must be assigned artificially, while inappropriate
assignments affect analysis results negatively. If the number of clusters is much
larger than the actual number of clusters, the resulting clustering results will
be very complicated and the characteristics of the data cannot be analyzed.
If the number of clusters is much smaller than the actual number of clusters,
some valuable information will be lost in the clustering results. The loss of this
information leads to the inability to obtain valuable information in later data
mining.
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Therefore, many solutions have been proposed to determine the optimal num-
ber of clusters. Some solutions utilize cluster validity Indexes, e.g., DB Index [7],
I Index [8] and Xie-Beni Index [9], to determine the optimal number. Some solu-
tions exploit heuristics to deduce the number. For example, the solution of Laio
et al. [10] is one of those solutions. It estimates the optimal number according
to density and distance (the density of data and the distance between). How-
ever, the heuristic still needs to input the number of clusters artificially, and
cannot fully cluster automatically. Recently, Gupta et al. [11] propose a solution
to identify the optimal number according to the last leap and the last major
leap of the minimal distances between cluster centers. However, when running
on overlapping data sets, the accuracy of most of those solutions drops severely.

In order to solve the problem of poor estimation of cluster numbers on over-
lapping data sets, we propose an algorithm that focuses on cluster number esti-
mation on overlapping data sets. And this method has a very fast speed. The
solution selects cluster centers in a static way. It generates a score for each data
point according to a density-distance model. The score of each data point does
not change any more once it is generated. The solution takes the top k data
points with the highest scores as the centers of k clusters. It utilizes the sig-
nificant change of the minimal distance between cluster centers to identify the
optimal number of the clusters in overlapping data sets.

The rest of this paper is organized as follows: we review the relevant published
work in Sect. 2. After analyzing the estimation problem of the number of the
clusters in overlapping data sets in Sect. 3, we elaborate our solution in Sect. 4.
The experimental results are discussed in Sect. 5. Finally, the paper concludes
in Sect. 6.

2 Related Work

It is very important to determine the number of clusters which data points are
grouped into, especially for partition-based clustering solutions. However, it is
not easy to estimate the optimal value of the number. Fortunately, cluster valid-
ity Indexes [12–16] provide a useful tool for the estimation. Davies and Bouldin
[7] proposed DBI index based on inter-cluster similarities to obtain the best clus-
ter number. Xie and Beni [9] put forward Xie-Beni Index based on intra cluster
compactness and inter cluster separation, and utilize the index to determine the
optimal number. Bensaid [17] and Ren et al. [18] improve the solution of Xie
and Beni to enhance the reliability and robustness of that solution, respectively.
Some other validity Indexes [19], e.g., Bayesian Information Criterion (BIC) [20],
diversity [21], intra-cluster coefficient and inter-cluster coefficient [22], are also
exploited to estimate the number of clusters. To obtain better estimation, some
solutions even apply multiple indexes in the estimation [5].

In addition to cluster validity indexes, some other factors are also utilized for
the estimation. The solutions proposed by Wang et al. [23] and Laio et al. [10]
perform the estimation according to the factors related to density. Concretely,
the solution of Laio et al. calculates a produce of density and distance for each
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data point and estimations the number of clusters based on those products.
Because the user is required to input the number of clusters according to the
visualization. Therefore, it is impossible to process data in batches. Recently,
Gupta et al. [11] observed that the last significant drop of the distance between
cluster centers indicated the natural number of clusters. Based on the obser-
vation, they proposed the Last Leap solution (LL) and the Last Major Leap
solution (LML) to estimate the natural number of clusters.

Many algorithms already have a very high accuracy for determining the num-
ber of clusters in some simple data sets. However, when running on the data sets
with overlapping clusters, the accuracy of those solutions drops severely. Here,
the overlapping data set refers to a data set with no obvious boundary between
clusters. For example, Fig. 1 shows a non-overlapping two-dimensional data set,
and Fig. 2 shows an overlapping two-dimensional data set. At the same time, a
detailed explanation of the notions mentioned below is shown in Table 1.

Fig. 1. Non-overlapping Fig. 2. Overlapping

3 Motivation

Given a data set-P , P = {p1, p2, . . . , pm}, where (∀pi)pi ∈ R
d, partition-based

solutions try to divide P into k subsets noted as C1, C2, . . ., Ck. Each of those
subsets is known as a cluster and identified by a cluster center. Partition-based
solutions require users to offer the number of clusters, i.e., the number of k,
which indicates that users are involved in the procedure of clustering somehow.
To make sure that clustering is truly unsupervised, clustering solutions should
be equipped with the ability of estimating the optimal number of clusters. The
objective of this work is to search for the optimal number from a set-K =
{ki|ki ∈ N∗and ki < kmax and kmax =

√
m}.

Gupta et al. observed that the last significant drop of the minimal distances
between cluster centers indicates the optimal number of clusters. Based on the
observation, they proposed the Last Leap solution (LL) and the Last Major Leap
solution (LML). LL and LML work well on the data sets in which the clusters are



360 X. Zhang et al.

Table 1. Notions.

Notions Description

P Data set

C Center set

M Data set size

K Number of clusters

kmax Maximum number of clusters

Weight Density weight

Ph
pi

Relative high-density point set

dist Density-bound minimum distance

scored·d Density-distance score

cls Cluster center closeness

kbreak The break value describes the minimum value of k which satisfies that cls(k) > 1

f Calculate the change of minimum distance between center points

ρ Density mean of the dataset

ki The number of clusters is i

well-separated and have equal sizes and variances. They even do better than most
solutions. However, they encounter severe accuracy degradation on overlapping
data sets. Many other solutions also have the same problem on overlapping data
sets. In this work, we focus on the accuracy problem on overlapping data sets,
and try to find a solution for that problem.

4 A Fast Estimation Solution

In this section, we elaborate a fast estimation solution for the number of clusters
in overlapping data sets. The minimum distance between the center points is
used to measure the change in the degree of separation between clusters. The
solution exploits a density-distance model to select cluster centers in a static
way. In order to realize the automatic determination of the number of clusters,
it is necessary to use the formula to determine the degree of change in distance.
However, when the value of k is greater than the optimal value, the following
situations are likely to occur. On the whole, the distance between the center
points has not changed much at this time. But from a local perspective, it is a
big change. This leads to misjudgment. Therefore, we use the tightness of the
center point to narrow the K value range to avoid the distance between the center
points being too small. Finally, we take the number satisfying the constraint of
the minimum distances as the optimal number of clusters.

4.1 Selecting Cluster Centers

Density-based clustering solutions have the ability of selecting global optimal
points as cluster centers without iterations. In order to the performance of clus-
tering, Laio et al. proposed a fast clustering algorithm based on the cluster cen-
ters selected based on the products of the density and distance of each data point.
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Here, the distance of a data point represents the minimum distance between that
point and any other point which has higher density than that point. The algo-
rithm has the ability which can select proper cluster centers in non-sphere and
strongly overlapping data sets.

In order to avoid the influence of outliers on judging the change in minimum
distance between the center points, we introduce the density-distance model
designed based on density weight. Density weight is defined to measure the
importance of the density of a data point.

Definition 1. Density weight. (∀pi)pi ∈ P , the density weight of pi describe
the importance of ρ(pi) in deciding whether to accept pi as a cluster center. It
is calculated by Function 1.

weight(pi) =
ρ(pi)

ρ
(1)

Definition 2. Relative high-density point set. (∀pi)pi ∈ P , the relative
high-density point set of pi consists of the points which have a higher density
than pi. It is noted as Ph

pi
, and described as

Ph
pi

= {pj |∃(pj ∈ P and ρ(pj) > ρ(pi))}.
Definition 3. Density-bound minimum distance. (∀pi)pi ∈ P , the density-
bound minimum distance represents the minimum distance from pi to any point
with higher density. It is denoted as distmin·ρ(pi), and calculated by Function 2,
where dist(pi, pk) = (pi − pk)2.

distmin·ρ(pi) = min(pk∈Ph
pi

)dist(pi, pk) (2)

Definition 4. Density-distance score. (∀pi)pi ∈ P , the density-distance
score of pi is defined to measure whether pi is suitable for a cluster center.
It is denoted as scored·d(pi).

The density-distance score is calculated by a density-distance model.
The score can be calculated according to Function 3. Considering Function 1,

Function 3 can be transformed into function 4.

scored·d(pi) = ρ(pi) · weight(pi) · dist(min·ρ)(pi) (3)

scored·d(pi) =
ρ(pi)2

ρ
· distmin·ρ(pi) (4)

The Points with high density-distance scores are more suitable for being
cluster centers than the points with low scores. Therefore, the interference of
outliers is reduced by assigning lower scores.

To select cluster centers quickly, our approach calculates a density-distance
score for each data point, and sorts all these data points in the descending orders
of density-distance scores. (∀ki)ki ∈ K, it takes the top ki data points as the
centers of ki clusters.
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4.2 Adjusting the Search Space of the Optimal Number

The aim of our solution is to find the optimal number of the clusters in an over-
lapping data set from a search space described by S = {1, 2, . . . , kmax}. The size
of the search space is decided by kmax. If kmax is much larger than the optimal
number of clusters, some relatively close data points are probably selected as
cluster centers. Those data points lead to the misjudgement on the significant
changes of the minimum distances between cluster centers. This results in the
erroneous estimation of the optimal number of clusters. Furthermore, the too
large value of kmax increases additional search cost.

To avoid the erroneous estimation and the additional search cost, we intro-
duce the definition of cluster center closeness. Cluster center closeness is intro-
duced to assist the proper assignment of kmax. It describes the tightness among
cluster centers. The lower value of the closeness indicates the sparser distribution
of the cluster centers, and vice versa.

Definition 5. Cluster center closeness. The cluster center closeness of k
clusters describes the adjacency of those centers. It is noted as cls(k) and calcu-
lated by Function 5.

cls(k) =
distm·f ·c(dist, countρ<ρ)

min
ci∈Ck,cj∈Ck and i�=j

dist(ci, cj)
(5)

In Function 5, distm·f ·c(dist, countρ<ρ) describes the minimum distance of
the centers. It is calculated by Function 6, where countρ<ρ denotes the total
number of points of which the densities are smaller than the average density.

distm·f ·c(dist, countρ<ρ) =
dist · countρ<ρ

m
(6)

The case that cls(ki) exceeds 1 indicates that some centers of the ki clusters
from the same cluster. This means that ki overpasses the optimal number of
clusters. In this situation, it is unnecessary to search the optimal number from
ki to kmax. Here, we define break value to describe ki in this situation.

Definition 6. Break value. The break value describes the minimum value of k
which satisfies that cls(k) > 1. It is denoted as kbreak and calculated by Function 7

kbreak = min
ki∈Kand cls(ki)>1

ki (7)

To improve performance and avoid misjudgement, it is necessary to exclude
the values from kbreak to kmax from the search space for the optimal number
of clusters. The new search space is described as S′ = {ki | ki ∈ N∗and ki <
kbreak}. Consequently, the cluster center set is also adjusted to be consistent
with the change of the search space. Actually, it is narrowed to only include
(kbreak − 1) points with the highest density-distance scores.
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4.3 Identifying the Optimal Number of Clusters

Cluster centers are selected only according to density-distance scores. Concretely,
The top k data points with the highest scores are taken as the centers of k
clusters, while the top k + 1 data points with the highest scores are taken as
the centers of k + 1 clusters. Therefore, cluster centers can be selected ahead.
Correspondingly, the minimum distance between cluster centers is fixed for a
given number of clusters.

Based on the observation of Gupta et al., the significant change of the mini-
mum distance between cluster centers is exploited to identify the optimal number
of clusters. Furthermore, the optimal number is identified according to the last
significant change. Here, we utilize Function 8 to discover any significant change.

f(Ck, Ck+1) =
min

ci∈Ck,cj∈Ck and i�=j
dist(ci, cj)

min
ci∈Ck+1,cj∈Ck+1 and i�=j

dist(ci, cj)
(8)

If f(Ck, Ck+1) reaches up to or overpass a predefined threshold, the significant
change of the minimum distances occurs when k increases to (k + 1). All the
significant changes of the minimum distances can be discovered by calculating
the values of f(Ck, Ck+1) when the number of cluster increases from 1 to kbreak.
The number related to the last significant change of the minimum distances is
taken as the optimal number of clusters.

The framework to estimate the optimal number of clusters is described as
following:

Step 1. kmax ← √
m;

Step 2. Calculate a density-distance score for each data point according to
Function 4;

Step 3. Select the top Kmax points with the highest density-distance scores as
centers of Kmax clusters;

Step 4. Calculate a cls(k) for each k from 1 to kmax according to Function 5;

Step 5. Calculate kbreak, and reconstruct the search space of the optimal number
as S′;

Step 6. Calculate all the significant change of the minimum distances between
cluster centers according to S′ and Function 8;

Step 7. Take the element related to the last significant change of the minimum
distances in S′ as the optimal number.

5 Experiments and Discussion

In this section, we present extensive experiments on artificial data sets and real
data sets to evaluate our approach. In the experiments, we compare our approach
with ten different solutions. Before going into details, we introduce the data sets
and performance metrics used in the experiments.
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5.1 Data Sets and Metrics

To evaluate our approach, we carried out extensive experiments on thirteen data
sets. This includes nine overlapping data sets and four non-overlapping data sets.
The overlapping data sets are SM2, Flame, SM5, SM6, SM8, Wine, Seeds, Iris
and Ionoshpere. Five of those data sets are artificial data sets and the rest of
the data sets are real data sets. There are also four non-overlapping data sets,
namely A-N-O-1, A-N-O-2, A-N-O-3 and A-N-O-4. The details of these data sets
are described in Table 2. Nine artificial data sets are shown in Fig. 3.

(a) SM2 (b) Flame (c) SM4

(d) SM5 (e) SM8 (f) A-N-O-1

(g) A-N-O-2 (h) A-N-O-3 (i) A-N-O-4

Fig. 3. Distribution of data sets

Accuracy and execution time are adopted as two metrics used to evaluate
our approach. Accuracy is exploited to measure the effectiveness of our approach
while execution time is utilized to measure the performance.
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Table 2. Details of dataset.

Number Dataset Features Clusters Instances

1 SM2 2 2 403

2 Flame 2 2 240

3 SM4 2 4 3200

4 SM5 2 5 2600

5 SM8 2 8 4400

6 Iris 4 3 150

7 Seeds 7 3 210

8 Wine 13 3 178

9 Ionoshpere 34 2 351

10 A-N-O-1 2 7 264

11 A-N-O-2 2 5 306

12 A-N-O-3 2 3 280

13 A-N-O-4 2 2 1100

In evaluation, our approach is compared with ten different approaches showed
in Table 3. All those approaches are executed 20 times on all of the data sets
and all the results discussed in the rest of this section are the average results of
the 20 executions.

Table 3. Approaches to be compared with ours

Approaches Selection criteria for k Min no. of clusters

PC [28] max 2

ZXF [30] Knee 2

LL max & 1 1

LML max & 1 1

I Index [8] max 2

BIC max 2

CH Index [24] max 2

CE [25] min 2

FHV [26] min 1

Jump [27] max 2

Our approach max & 1 1
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5.2 Experiment Results and Analysis

We track the 20 executions of each approach on the overlapping data sets and
record the estimated number of clusters in Table 4. If an approach gets two
different numbers of clusters in a data set during 20 executions, the results are
record as the two number separated by a slash. If an approach obtains multiple
numbers of clusters, the results are described as two numbers connected by a
dash. One of the two number is the obtained minimal number, and the other is
the obtained maximal number.

According to the Table 4, LML estimates the number of clusters correctly
only on the Iris data set. BIC does better than LML. It obtains the correct esti-
mation on SM2 and SM8 data sets. Jump and I also exhibit relatively high accu-

Table 4. Estimation of the optimal number of clusters in overlapping data sets

Approaches Iris Seeds Wine Ionoshpere SM2 Flame SM4 SM5 SM8

PC 2 2 2 2 2 2 2 2 2

ZXF 6 6 6 4–7 6 4 10/11 11–14 9/11

LL 2 2 2 1–9 1 4 1/2 2 8

LML 3 2 2 1–9 1 4 3/55 2 8–12

I 3 3 7 2 2 4 3 3 2

BIC 8–12 14 13 15–18 2 4 3 3/15 8

CH 3 3 13 2 2 8 2 2 8

CE 2 2 2 2 2 2 2 2 2

FHV 2 1 1 1 1 1 1 1 2

Jump 3 3 10–13 2 12–18 4 2–56 2–50 8

Our approach 3 3 3 2 2 2 4 5 8

Table 5. Estimate of the optimal number of clusters in non-overlapping data sets

Approaches A-N-O-1 A-N-O-2 A-N-O-3 A-N-O-4

PC 7 5 3 2

ZXF 7 5 3 10/11

LL 7 5 3 2

LML 7 5 3 2–32

I 7 5 3 2

BIC 7 11 8 2

CH 7 11/12 4 2

CE 7 5 3 2

FHV 7 5 3 2

Jump 7 5 3 2

Our approach 7 5 3 2
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Fig. 4. The correct number of each method on the overlapping data set and the non-
overlapping data set.

Table 6. Execution time of approaches

Approaches A-N-O-1A-N-O-2A-N-O-3A-N-O-4Iris Seed WineIonoshpereSM2 FlameSM4 SM5 SM8

PC 2.23 2.40 2.47 18.16 1.37 2.05 1.58 4.17 13.492.26 145.4491.73279.05

ZXF 2.22 2.30 2.50 18.21 1.37 2.03 1.57 4.13 13.632.24 148.9 92.75259.20

LL 2.25 2.29 2.44 18.11 1.36 2.04 1.61 3.98 13.792.26 151.7592.85260.87

LML 2.22 2.29 2.44 18.14 1.40 2.04 1.58 3.98 13.672.34 152.1093.35260.65

I 2.23 2.30 2.45 18.14 1.37 2.13 1.58 4.06 13.742.25 153.1294.22261.63

BIC 2.23 2.28 2.42 18.17 1.35 2.02 1.57 3.96 13.792.41 143.8192.52261.83

CH 2.21 2.28 2.44 18.15 1.35 2.04 1.56 3.94 13.442.41 143.9193.85263.74

CE 2.18 2.23 2.39 18.21 1.32 1.99 1.53 3.99 13.722.39 144.7593.40262.61

FHV 2.23 2.29 2.44 18.28 1.40 2.09 1.62 4.06 13.762.29 143.8393.84272.38

Jump 2.28 2.34 2.48 18.27 1.39 2.08 1.60 4.05 13.582.26 143.1992.83269.28

Our approach0.027 0.033 0.028 0.20 0.0150.0330.0320.066 0.0490.034 1.03 0.7241.70

*Each execution time is measured in second.

racy. They estimate the number of clusters correctly on 4 overlapping datasets.
They are followed by CE, and PC which estimate the number of clusters cor-
rectly on 3 data sets. CH can correctly estimate the number of clusters on the
five data sets. Among those solutions, our approach does best. It estimates the
number of clusters correctly on all the overlapping data sets.

We also evaluate the accuracy of our approach on non-overlapping data sets,
and describe the results in Table 5. According to the table, BIC and CH estimate
the number of clusters correctly on two data sets, while LML and ZXF do better.
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They correctly estimate the number of clusters on three data sets. PC, LL, I,
FHV, CE, Jump and our approach does best. They obtain the results consistent
with the natural number of clusters on each of the non-overlapping data sets.

Figure 4 shows the accuracy of each method on overlapping and non-
overlapping data sets. Based on the estimation on both overlapping data sets
and non-overlapping data sets, our approach exhibit highest accuracy than all
of the other solutions.

In addition to effectiveness, we also evaluate the performance of our approach
on all of the data sets. Concretely, we calculated the average execution time of
all the approaches and depict the results in Table 6. According to the Table,
our approach spends less time on each of the data sets than each of the other
approaches does. Our approach spends 0.015 s to 1.7 s on those data sets, while
other approaches take 1.32 s to 279.05 s.

Our approach estimates the number of clusters with higher performance than
other solutions do. All the other solutions exhibit the similar performance on the
same data set.

Our approach exhibits highest performance in all the approaches for two
reasons. The first reason is that our approach selects cluster centers in a static
way. It calculates a score for each data points. Once a score is calculated, it will
not change any more. Our approach takes the top k data points with the highest
scores as the centers for k clusters. The other way to choose a cluster center is
through iteration. When certain conditions are met, the iteration will stop and
the center point will be obtained. The second reason is that our approach narrow
the search space of the optimal number of cluster, and hence degrading search
cost.

6 Conclusion

In this work, we focused on the problem to estimate the optimal number of clus-
ters in overlapping data sets. To deal with the problem, we proposed a fast esti-
mation approach. The approach selects cluster centers in a static way according
to density and distance. It utilizes the significant change of the minimal distance
between cluster centers to identify the optimal number of clusters. The experi-
mental result demonstrated the usefulness and effectiveness of our approach. In
the future, we will conduct research on estimating the optimal number of the
clusters in more complex data sets.
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