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Abstract. Pulse transit time (PTT) provides a cuffless method to mea-
sure and predict blood pressure, which is essential in long term car-
diac activity monitoring. Photoplethysmography (PPG) sensors provide
a low-cost and wearable approach to obtain PTT measurements. The
current approach to calculating PTT relies on quasi-periodic pulse event
extractions based on PPG local signal characteristics. However, due to
inherent noise in PPG, especially at uncontrolled settings, this approach
leads to significant errors and even missing potential pulse events. In this
paper, we propose a novel approach where global features (all samples)
of the time-series data are used to develop a machine learning model
to extract local pulse events. Specifically, we contribute 1) a new noise
resilient machine learning model to extract events from PPG and 2)
results from a study showing accuracy over state of the art (e.g. HeartPy)
and 3) we show that MLPTT outperforms HeartPy peak detection, espe-
cially for noisy photoplethysmography data.

Keywords: Pulse transit time · Pulse Arrival Time · Blood pressure ·
Medical · Data analysis · Machine learning

1 Introduction

Continuous monitoring of blood pressure over long periods is essential to prevent
critical cardiovascular events that can cause irreversible health damages and even
death. The classical approach to measuring blood pressure uses pressure cuffs,
requiring mechanical apparatuses which are undesired in long-term monitoring.
Researchers have proposed alternative methods to measure blood pressure using
pulse transit time (PTT), which does not need mechanical cuffs [1–7]. An exten-
sive review of blood pressure monitoring theory and practice using PTT can be
found in [8]. Researchers also found a strong correlation among PTT, the mea-
surement of respiratory effort [9] and the detection of microarousals [9]. Other
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applications included the indication of cardiovascular changes during obstetric
spinal anesthesia [10], myocardial performance [11], respiratory events [12] and
hypertension detection [13,14].

PTT is the duration that it takes for a pulse wave (PW) to travel between
two arterial points [13]. It can be measured with different methods, such as
arterial probes [15], electrocardiogram (ECG) or contactless photoplethysmog-
raphy (PPG). ECG electrically records a graph of voltage versus time, which is
typically acquired from electrodes attached to the chest or limbs whereas PPG
optically records blood volume changes vs time.

While ECG may have suffered from measurement artefacts [16] such as elec-
tromagnetic interference or loose leads, it was still considered the gold standard
for continuous heart rate monitoring [17]. Despite the high signal quality, its
usability was limited by the requirement of leads attached to the skin. In com-
parison, optical PPG sensors were found to be the least invasive and therefore
overall desirable. However, they were also sensitive to sensor pressure and arte-
facts caused by motion [18]. Pulse transit times can also be measured between
different physical locations and temporal parts of the cardiac cycle. The cardiac
cycle is a repeating series of pressure changes within the heart of living organ-
isms and was often described to have several peaks, particularly the P wave, QRS
complex and T wave [19]. No standardised PTT definition had been established
due to various measurement possibilities regarding

(i) different sensor types
(ii) sensor or lead locations and
(iii) temporal reference points.

Van Velzen, et al. identified 43 different methods to determine PTT [20]
between an ECG R-peak and a PPG signal [21–25]. A PTT for ECG-PPG
measurements is called Pulse Arrival Time (PAT). All reviewed methods [20]
used anchor points to calculate the PAT (Fig. 1A).

Fig. 1. A: Existing PAT definitions, B: Proposed MLPTT PAT measurement

These anchor points could be the foot (or onset), peak or a percentage (e.g.
50%, 25%, etc.) of the pulse wave. PAT could be calculated by

PATpeak−peak = tPPGpeak
(n) − tECGR−peak

(n), (1)
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PATpeak−50%peak = tPPG50%peak
(n) − tECGR−peak

(n), (2)

PATpeak−foot = tPPGfoot
(n) − tECGR−peak

(n), (3)

where n was the individual heartbeat. Many PPG sensor signal quality-related
challenges were identified in previous research. Their readings were found to
contain artefacts [18,26] or malformed segments induced by sensor motion or
attachment pressure variations [20]. To compensate for undesired signal anoma-
lies, at least 19 of the 43 previously reviewed methods [20] used signal filtering
for PTT calculated from anchor points. Although PTT is the duration that it
takes for a pulse wave to travel between two arterial points, it was so far consid-
ered as the time between two selected points on two curves, with PATpeak−foot

and PATpeak−peak most widely used. Table 1 provides a summary of previously
used anchor points in literature.

Table 1. Anchor point prevalence in the literature [20].

Anchor point Foot Onset Upstroke 5% peak 25% peak 50% 90% Peak

Count 15 6 7 1 4 6 1 8

Machine learning and particularly neural networks had shown great potential
at extracting spatial information from data [27]. We hypothesized that while
filtering had refined PTT measurements, accuracy could be improved further by
not considering an individual point on the curve but the shift of the shape of
the curve using all points. We therefore propose Machine Learned Pulse Transit
Time (MLPTT), which was trained on a sliding frame to detect curve properties
relative to a virtual anchor point (Fig. 1B). The proposed PAT measurement
could be defined with the following equation

PATpeak−MLPTT = tPPGvirtual anchor
(n) − tECGR−peak

(n), (4)

where n was an individual heartbeat. PAT is a particular type of PTT and was
used to validate the proposed method by comparing the predicted PAT with PAT
calculated by HeartPy, a toolkit that was designed to handle (noisy) PPG data
[28,29]. While the advantages of PAT are that R-peaks of the cardiovascular QRS
complex can be detected with numerous algorithms [30] such as Pan-Tompkins
[31], it requires conductive electrodes attached to the skin in selected locations
and is, therefore, more disruptive than PPG, which measures optically. Gao et al.
compared the pulse transit time estimates of PAT and PPG-PTT with invasive
I-PTT using arterial probes as a reference [32]. They concluded that PPG-PTT
correlated well with all blood pressure levels. To validate MLPTT, the PAT of
three BIDMC PPG and Respiration Dataset [33] patients was calculated with
HeartPy and MLPTT. Both methods provided independent results from each
other, the overall validation workflow is shown in Fig. 2.

Contribution: We propose a machine learning based PTT calculation method
and show it is more accurate than the existing signal processing approaches. The
specific contributions can be summarized as follows:
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Fig. 2. End-to-end PTT validation workflow (1: ECG, 2: finger PPG).

a) We propose a new noise resilient machine learning model to extract events
from PPG and demonstrate it particularly on PAT extraction.

b) Results from a study showing accuracy over state of the art (i.e. HeartPy)
with statistical significance.

c) We show that MLPTT outperforms HeartPy peak detection especially for
noisy photoplethysmogram data.

d) We discuss and evaluate the results.

2 Design

Pulse transit time was previously measured between two anchor points on ECG,
PPT or arterial probe pressure signals [32]. Since all these signals are quasi-
periodic, we hypothesized that PTT can be considered signal phase shift per
heartbeat period. While phase shift can be calculated between the same anchor
point on different signals, we propose to use machine learning to consider all
points on the signal to estimate phase shift and therefore PTT.

2.1 Machine Learned Pulse Transit Time

The idea to consider all points on the signal was implemented in MLPTT.
MLPTT consisted of a sequence of 4 processes: frame segmentation, waveform
binary classifier, frame segmentation, anchor point classifier (Fig. 3: 3, 4, 7, 8).

MLPTT Frame Segmentation for Binary Classification. PPG and ECG
data were loaded from a dataset (Fig. 3: 1, 2). To avoid discontinuities in the time
series data, 70% training and 30% test ratio were used for all patients instead
of k-fold verification. The first two MLPTT processes (Fig. 3: 3 and 4) aimed
at finding a periodic pattern in the PPG signal. This was achieved by using
the known periods from ECG signals R-peaks, detected with the Pan-Tompkins
algorithm (Fig. 3: 5 and [31]), as virtual anchor point labels. Frames of 60 samples



Machine Learned Pulse Transit Time Measurements from PPG 53

peak-peakPAT

Fig. 3. MLPTT and HeartPy process diagram

each were created by shifting the frame in increments of one sample. In the case
of the BIDMC dataset sampled 125 Hz, one sample was 8ms long. Each frame
was labelled respective containing a virtual anchor or not.

Waveform Binary Classifier. The segmented and by anchor points labelled
frames were subsequently used as training input for the ML waveform binary
classifier (Fig. 4A: 4).

Fig. 4. A Binary waveform classifier. B Virtual anchor multilabel anchor position
classifier.

The goal of this step was to train a classifier that could detect quasi-periodic
waveforms in longer PPG time series which contained one virtual anchor. This
could also be considered a heart rate classification based on PPG data, with the
detected consecutive virtual anchors manifested as one heartbeat each. Settings
for Python Scikit-learn 0.22.1 KNN, SVC, Gaussian process, decision tree, ran-
dom forest, MLP, AdaBoost and Gaussian process Näıve Bayes classifiers were
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grid searched with Gaussian Näıve Bayes achieving the highest classification
accuracy with default settings. The trained classifier model was then used for
binary prediction of all frames, either containing a virtual anchor or not.

Frame Segmentation for Anchor Point Classification. The frames pre-
dicted to contain virtual anchors were then automatically selected for a second
classifier (Fig. 3: 7). Frames predicted to contain no virtual anchors were not
evaluated further.

Multilabel Anchor Position Classifier. As the final step of the proposed
MLPTT method, the anchor position in the selected frames was predicted. This
classifier was trained on ECG derived peaks for PPG training data. In addi-
tion to the classifiers evaluated for the binary classification, a 5-layer sequential
TensorFlow model was developed. The model consisted of 120 neurons for the
input layer and 60 for the output. After grid searching hyperparameters for this
model, it outperformed the baseline Scikit-learn MLP mode and was used for the
prediction results in the following chapters. The trained MLPTT was then used
to predict PAT (MLPTT )peak−virtual anchor by predicting the virtual anchors
for test data extracted from the BIDMC dataset, which were then downsampled
to one anchor per period.

2.2 HeartPy Pulse Transit Time

HeartPy is a toolkit designed to handle noisy PPG data and was used to detect
peaks in PPG signals. For three out of four tested PAT definitions, Rajala et
al. reported the smallest relative error for PATpeak−peak [34] and this defini-
tion was found to be the second most widely used in a literature review of 43
published papers [20]. Therefore, PAT (HeartPy)peak−peak was calculated by
HeartPy. As ECG reference, the same Pan-Tompkins detected peaks were used
as for MLPTT. PPG peaks were detected with HeartPy using following settings:
sample rate = 125, hampel correct = False, high precision fs = 1000.

3 Analysis

In this section, we show how the proposed method was compared to the estab-
lished toolkit.

3.1 Methods

For PTT and PAT, there is no ground truth readily available. We therefore ini-
tially compared MLPTT PAT with HeartPy PAT as a reference, to disprove
the null hypothesis that their correlation is not statistically relevant. PAT was
used instead of PPG PTT because ECG R-peak detection accuracy was found
to be higher than for PPG, ECG R-peak detection has been standard practice
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and for some populations, comparatively better signal to noise ratios had been
observed [35] as well as lower morphological variance [36]. Because our eventual
goal was to measure PTT and therefore phase shift between signals, we consid-
ered only the AC component of the time series PTT estimations for comparison.
Accordingly, the PAT of 196–240 ECG-detected heartbeats was calculated for 5
patients with HeartPy and MLPTT.

We then disproved that there is no statistically significant correlation between
both curves. If the following relationship was true

n∑

k=0

MLPTTPAT (hbk) �=
n∑

k=0

HeartPyPAT (hbk), (5)

where hbk were the heartbeats of each patient from the beginning of the test
data (k = 0) to the last heartbeat (k = n), MLPTT PAT and HeartPy PAT were
not correlated. If they were linearly correlated, plotting x = MLPTTPAT (hbk)
and y = HeartPyPAT (hbk) would have formed a straight line. The correlation
was to be proven with Pearson correlation and its respective p-value <0.05.

4 Results

We measured performance by showing a linear relation between our proposed
method PAT results and HeartPy PAT results and plotted resulting PAT curves
plotted on top of each other with the respective difference filled (Fig. 5).

Fig. 5. HeartPy and MLPTT AC components, difference filled in red. (Color figure
online)
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Out of 5 tested patients (BIDMC patients 2, 6, 8, 42, 53), HeartPy failed to
detect exactly one PPG peak per ECG period for patients 2 and 53, in some
instances detecting 0 and in some instances 2. These patients were removed and
only patients 6, 8 and 42 used for comparison. The Pearson correlation between
HeartPy PAT and MLPTT PAT was the following (Table 2).

Table 2. MLPTT PAT - HeartPy PAT Pearson correlation and p-value.

BIDMC patient Test set heartbeats Pearson correlation coefficient Pearson p-value

2 219 −0.0093 0.89

6 196 0.87 4.20E−60

8 240 0.83 1.20E−62

42 201 0.85 2.50E−56

53 222 −0.67 0.32

F1 score and RMSE were calculated between the ECG signals R-peaks and
the MLPTT detected virtual anchor from PPG. The predicted R-peak from PPG
data was used as a reference to benchmark the stability of the method, but it
should not be considered as ground truth, which is indeterminable for PPG with
current methods and can only be approximated intravenously [32]. For patients
2–42 the F1 score was in the range of 0.15–0.30 with RMSE extending between
3.83 and 8.01 samples (Table 3). Patient 53 showed the lowest accuracy with
an F1 score of 0.04 and a RMSE of 15.66 samples. Support was the number of
analysed samples in the time series, 11661 to 13278 samples for patient 2–42 and
9014 for patient 53.

Table 3. MLPTT PAT - HeartPy PAT F1 score, RMSE and support.

BIDMC patient F1 score RMSE [samples] Support

2 0.15 8.01 11661

6 0.30 3.83 11335

8 0.20 5.54 13278

42 0.21 5.88 11645

53 0.04 15.66 9014

4.1 BIDMC Patient 6 Drilldown

These were the MLPTT subprocess results sampled from one out of the 3/5
BIDMC patients of whom HeartPy detected all PPG peaks.
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HeartPy and MLPTT PAT Patient 6 Pearson Correlation. A scatterplot
with HeartPy calculated PAT on the x-axis and MLPTT PAT on the y-axis
was produced (Fig. 6). A histogram on top of each axis showed the respective
PAT distribution. The Pearson correlation coefficient p was listed for all tested
patients in Table 2.

Fig. 6. HeartPy MLPTT Pearson correlation.

Waveform Binary Classifier. The waveform binary classifier achieved at an
overall anchor prediction accuracy of 97% for 17977 frames of 60 samples each.
Precision, recall, f-1 score and support were listed in Table 4. Precision was
the ratio of correctly positively predicted virtual anchors to all positive virtual
anchors (Precision = TP/TP + FP , where TP was True Positive and FP was
False Positive). The calculated precision was 0.92 for frames without anchors
and 0.99 for frames with anchors. Recall, the ratio of correctly predicted virtual
anchors to all virtual anchors in the class was 0.99 for frames without anchor and
0.95 for frames containing a virtual anchor (Recall = TP/TP + FN , where TP
was True Positive and FN False Negative). Support was the number of samples
in the respective class (Table 4).

Table 4. Waveform binary classifier results for BIDMC patient 6.

Precision Recall F1 score Support

Anchor = 0 0.92 0.99 0.95 6253

Anchor = 1 0.99 0.95 0.97 11724

Accuracy 0.97 17977
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Multilabel Anchor Position Classifier. The multilabel anchor position clas-
sifier achieved an overall prediction accuracy of 30% (Table 3), with most pre-
dictions scattered closely around a confusion matrix diagonal.

5 Discussion

PTT is an important measure that can be used in many clinical applications
and many researchers tried to measure it precisely. The goal of this study was to
assess if the accuracy of established PAT and PTT methods that relied on signal
filtering and fixed specific points can be matched and potentially exceeded. We
addressed this challenge by creating a novel approach that used machine learning
to find quasi-periodic patterns in PPG signals based on a series of samples.

For five tested BIDMC dataset patients, HeartPy did not detect one PPG
peak for every ECG peak. MLPTT was more robust and correctly classified the
presence of a quasi-periodic waveform in 97% of all frames for patient 6. Since
the frame was shifted in increments of one sample through the entire signal, the
classifier would predict 125 frames for one heartbeat at a heart rate of 60bpm and
a sample rate 125 Hz. We expected the increased accuracy to be driven by at least
three factors, the first was MLPTT’s ability to learn malformed PPG shapes of
any form as long as they were contained in the training sequence. This could be
particularly helpful for PPG-PPG PTT where it is desired to measure the signal
phase shift accurately. The second factor was that previous PTT measurements
were dependent on high signal quality at a specific location during each period.
For example when measuring the peak-foot PAT, a pronounced foot would have
to occur in the PPG signal which could be corrupted by motion artefacts or other
noise. If the peak was still in its true position for a period with a corrupted foot,
HeartPy would not benefit while MLPTT could learn and still predict the correct
virtual anchor point. The third expected reason was that MLPTT was stepping
through the entire signal in frames of 1 sample interval. Therefore, the multilabel
classifier had the chance to predict every virtual anchor point for the number of
intervals in one frame, 60 times in our implementation.

The calculated HeartPy- and MLPTT PAT correlated with statistical signifi-
cance for in total 637 tested heartbeats of BIDMC patients 6, 8 and 42. Although
PAT for patients 2 and 53 could not be compared due to HeartPy’s PPG peak
detection inconsistencies compared to ECG, the MLPTT PAT prediction did not
show any significant variations in the AC component that could have been caused
by anchor point misdetection. MLPTT showed a pronounced confusion matrix
diagonal for the prediction of virtual anchors. Overall, MLPTT correlated with
HeartPy with statistical significance for the tested dataset, required no adjust-
ments for individual patients and showed more robust PAT measurements for
patients with noisy measurements.

5.1 Limitations

Despite the strong Pearson correlation with HeartPy PAT measurements, the
method and current implementation are not without limitations. The behaviour
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for medically relevant outliers was not tested and patients’ background was not
investigated. Some BIDMC signals also showed apparent sawtooth and poten-
tially sine type noise. Lin et al. reported a sawtooth pattern in a different PPG
dataset [37], which indicates that this type of noise may be prevalent in PPG
recordings of medical equipment. Furthermore, despite our attempts to find the
ideal parameters for HeartPy, HeartPy could offer additional built-in signal filters
that we did not use. These might have improved HeartPy performance further.
No custom filtering was applied for MLPTT for different patients.

Theoretical limitations included that the tested implementation with a frame
length of 0...60 samples allowed for a maximum of 125bpm heart rate. Exceeding
this heart rate would have led to more than one period per frame, which the
implementation was not designed to handle in its first revision. This could be
addressed in further revisions. Another theoretical limitation were edge cases
in which the virtual anchor point is at either edge of the frame. It can be
expected that these frames were more difficult to classify, which resulted in
a slight decrease in classification accuracy for the outermost classes. This could
be mitigated in further revisions by not considering those frames and only pro-
cessing frames with a predicted minimum distance from the outer frame limits.
Foremost, although both tested methods showed a statistically significant corre-
lation, there were no readily available ground truth measurements for PAT and
PTT. Invasive arterial probe measurements were found to produce the smallest
errors for blood pressure prediction [32] and can be considered to be more reli-
able due to measuring the arterial pressure directly. Testing PPG-PTT against
I-PTT would be more meaningful, but no dataset was available at the time of
writing. We recognize the risks that incorrect PTT measurements may cause if
used in clinical applications. All PTT measurements based on the new method
should be revalidated against methods such as I-PTT with statistical significance
before clinical deployment.

6 Conclusion

The key contribution of this paper is to provide a novel approach where global
features (all samples) of the time-series data are used to develop a machine
learning model to extract local pulse events. We evaluated the performance of
MLPTT for more than 50000 samples of a reference dataset and validated the
performance in comparison to a reference method for over 1000 heartbeats of 5
patients. The analyses show that MLPTT copes significantly better with inher-
ently noisy PPG data than the reference method. The proposed technique is
suitable for analysis of other medical recordings and for application in many
other domains that rely on time series data.
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