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Abstract. The classification of action intention understanding based on
EEG signals is very important for human-robot and social interaction
studies. In order to classify the action intention understanding brain sig-
nals efficiently, we first use three kinds of phase synchronization indices,
phase locking value (PLV), phase lag index (PLI) and weight phase lag
index (WPLI), to construct functional connectivity matrices in multiple
micro time windows, and then extract the sum of significant edge values
of each time window matrix as the classification feature, finally apply
support vector machine (SVM) classifier to implement action intention
understanding data classification task. Classification result shows that
new method performs well on three datasets (alpha, beta and fusion fre-
quency bands), and brain network statistical analysis demonstrates that
many significant edges appear on the alpha frequency band. We con-
clude that the phase synchronization indices are extremely useful for the
classification task, the sum of significant edge values is an effective classi-
fication feature, and the action intention understanding closely correlates
with the alpha frequency band.

Keywords: Phase synchronization · Classification · Action intention
understanding

1 Introduction

In recent years, the study of action intention understanding has attracted exten-
sive attention [1–6]. The classification of action intention understanding based
on EEG signals is one of the most important branches of the study, which is
viewed as a key factor for human-robot interaction [1,7–9]. Many researchers
carried out a lot of experiments on the action intention understanding classifi-
cation by different methods [1,5,9]. However, the classification accuracy is often
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unsatisfactory. This is due to two important reasons: (1) it is difficult to extract
the most useful classification features, (2) it is hard to collect a large number of
training samples. As for the former question, some researchers use different brain
signal collection techniques to solve it [1,9], and some other researchers mainly
focus on extracting further feature [5]. Due to the popularity of deep learning,
many people begin to consider using neural network (e.g., convolution neural
network (CNN) and recurrent neural network (RNN)) technique to extract fea-
tures. As for the latter question, people usually spend much time and money to
recruit subjects and collect a certain amount of neural information data.

Brain network is an efficient tool to study neuroscience, which has some com-
prehensive merits (e.g., feature extraction, brain region position) [1,5]. There are
a lot of algorithms to construct the brain network [10]. The synchronous oscilla-
tion of a neural network is the main potential mechanism of brain information
integration and processing, and the synchronization of multiband signals is the
key feature of information exchange between different brain regions [11]. In the
EEG synchronization analysis algorithms, the phase synchronization analysis
method can directly separate the signal phase information in a given frequency
range from the amplitude of nonstationary information. Then, the signal phase
information can be used for the synchronization analysis of EEG narrowband
signals, such as mu rhythm [11–13]. It is noteworthy that some previous studies
point out the action intention understanding correlates with the alpha and beta
rhythms [14,15]. The advantage of phase synchronization is that it has nothing
to do with the amplitudes of two neural oscillatory activities, but only with the
phases.

Considering that, we first use three phase synchronization indices, phase
locking value (PLV) [11], phase lag index (PLI) [12] and weighted phase lag
index (WPLI) [13], to construct brain networks in this study, then apply these
brain networks to solve the former two problems (feature extraction and sample
collection). As for the first problem (feature extraction), we adopt t-test and
FDR correction to select the edges of a functional connectivity matrix and sum
for these edges as a feature. And as for the second problem (sample collection),
inspired by the literature [16], we use an idea that one divides into three to
model more samples. Each subject has three kinds of brain networks that are
calculated by the PLI, WPLI and PLV under a certain stimulus condition. We
view the different brain networks as different samples. Because our final goal is
to classify action intention understanding, the sample model method is feasible.
More details about how to solve these two problems are presented out in next
section.

The main contribution of this study is that we design a novel method which
can effectively solve the problem in feature selection for classifying action inten-
tion understanding EEG signals. Many other neural information data classi-
fication studies (e.g., epilepsy, emotion, and mathematical genius classification
tasks) also can draw lessons from the novel feature extraction method. The train-
ing sample collection idea based on the phase synchronization indices shows its
advantage under the condition of limited manual sampling. With the analyses of
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signals classification and brain network statistical test, we found that the alpha
frequency band easily obtains significant achievements in experiments, which
further supports the conclusion that action intention understanding closely cor-
relates with the alpha frequency band in some previous studies [5,14,15].

2 Materials and Method

2.1 Subjects

After deleting 5 subjects of which EEG data were seriously noised (e.g., someone
has abnormal channels that there were no signals in them), we totally retained 25
healthy subjects (17 males, 8 females; aged 19–25 years, mean ± SD: 22.96 ± 1.54;
right-handed). This research was approved by the Academic Committee of the
School of Biological Sciences and Medical Engineering, Southeast University,
China.

2.2 Experimental Paradigm

In the progress of EEG data acquisition, all subjects were asked to see three
kinds of hand-cup interaction pictures that were performed by an actor. They
only needed to judge the actor’s intention, but not to implement any concrete
operations. The three action intentions were drinking water (Ug), moving the cup
(Tg) and simply contact the cup (Sc). Figure 1 shows the experimental stimuli
and procedure. This design comes from Ortigue et al.’s experimental paradigm
[17].

2.3 Data Collection and Preprocessing

In this study, we use 64 AgCl electrodes that were arranged with the international
10–20 system to record the EEG signals. The sampling rate was set to 500 Hz,
and the reference electrode was set as M1 that was placed on the left mastoid.
All the data collection tasks were completed with the Neuroscan 4.3.

In order to obtain useful data, we clean the raw EEG signals by Neuroscan
4.3 and EEGLAB 14.0 [18]. In the light of some previous data preprocessing
experiences, it can’t efficiently clear noises of the raw EEG data by independent
component analysis (ICA). We adopted ocular processing in the Neuroscan to
replace the ICA in the EEGLAB. Mastoid reference is efficient in somatosensory
evoked potentials, which correlates with action behaviors. Thereupon, we trans-
formed the unilateral mastoid reference (M1) into bilateral mastoid (M1, M2)
re-reference. Both the ocular processing and re-reference are completed with the
Neuroscan.

When completed the ocular processing and re-reference, we used the
EEGLAB to select 60 scalp electrodes that cover frontal, partial, central, occip-
ital and temporal areas. Then, we adopted the Basic FIR filter in the EEGLAB
to extract the 1–30 Hz data. And then, we segmented the data with event types
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Fig. 1. Experimental stimuli. (A) An example of stimulus materials. Ug (use grip),
Tg (transport grip), and Sc (simple contact) denote that the actor grasps the cup for
drinking water, moving it, and touching it without any clear intention, respectively.
(B) An example of the experimental procedure in a trial. In the stimuli, a symbol
‘+’ was first presented on the screen with 150 ms. Then, a cup was shown for 500 ms
to keep consistent sense. The formal action intention stimulus that was denoted by
a hand-cup interaction picture starts after 650 ms, which was sustained for 2000 ms.
When the hand-cup interaction stimulus appears, the subjects need to guess what the
actor want to do immediately. Before the next trial, the ‘+’ was presented again with
a random time that varied from 1000 to 2000 ms.

in a time window (−0.65 s to 2.5 s) and removed the baseline by setting the
baseline at −0.65 s. In the end, we deleted artifacts with a threshold range that
varied from −75 to 75µV. A total of 679 trials were removed and an average
of 267 trials were kept for each subject. It is noteworthy that the alpha and
beta frequency sub-bands used in this study were extracted by low resolution
electromagnetic tomography (LORETA) in the source space.

2.4 Phase Synchronization Indices

The advantage of phase synchronization is that it has nothing to do with the
amplitudes of any two neural oscillatory activities, but only with the phases.
Considering that, we use three phase synchronization indices to construct the
functional connectivity matrices. Before giving out the concrete formulas of the
three indices, it needs to explain two important concepts in this study. One is that
each brain network is represented by a functional connectivity matrix. Another
is that the node in the brain network is defined by the region of interest (RIO) in
the source space, i.e., each node corresponds to a RIO. Our experiments mainly
based on the whole brain, which has 84 RIOs that are defined in the LORETA.
The preprocessed 60 channels EEG data were converted into 84 RIO time series
with the LORETA. Hence, the size of a functional connectivity matrix (brain
network) is 84 × 84. The mathematical expressions of the three algorithms that
are used to construct the functional connectivity matrices are defined as follows:
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• Phase locking value (PLV)
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N
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where t is the time point, N is the total number of sample points, Φn,x(t) and
Φn,y(t) are two instantaneous phases that come from channel x and channel y
at the nth time point respectively. The instantaneous phases are computed by
Hilbert transform.

• Phase lag index (PLI)
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where �Θ is also the instantaneous phase difference that is between the time
series x(t) and y(t) at the nth sample time point as demonstrated in the Eq. (1).

• Weight phase lag index (WPLI)

WPLIxy =
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where S̃(w) denotes the imaginary component of cross-spectrum between time
series x(t) and y(t). The symbols 〈·〉, |·| and function sign denote mean, absolute,
signum function, respectively.

After obtaining the functional connectivity matrices that are calculated by
PLV, PLI and WPLI, we first use paired t-test and false discovery rate (FDR)
correction (p < 0.05) to find the positions of which edges are significantly differ-
ent between two kinds of action intention understandings (Ug-vs-Tg, Ug-vs-Sc
and Tg-vs-Sc). The final positions are determined by the edges that are all signif-
icantly different on the three paired comparisons. Then, we use the final positions
to select the weighted edges in each time window. Finally, we use the sum of the
selected edges in each time window as the classification feature, i.e., each time
window matrix is corresponding to one feature. Because there are 63 dynamical
time windows in this study (We divide the full-length time series into 63 sub
time series, each has a length of 50 ms.), hence, it totally has 63 features for a
single frequency band dataset. Figure 2 shows out the flow chart of our novel
method. It is important to note that the feature selection is completed on the
condition of 5-fold cross validation.

As for the problem of increasing data samples that is mentioned in the intro-
duction, we let the feature vectors which are from the three functional connectiv-
ity matrices (PLV, PLI and WPLI) of one subject be three samples. Therefore,
we can make 75 data samples for the original 25 subjects on one kind of action
intention stimulus. A total of 225 data samples (Ug, Tg, and Sc all have 75
samples) are collected in this experiment.
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Fig. 2. The flow chart of new method.

3 Results

The experimental results mainly include two parts: action intention understand-
ing classification and brain network statistics. In the following, we give out the
demonstrations of the results.

3.1 Action Intention Understanding Classification

The classification pattern is one-versus-one, i.e., Ug-vs-Tg, Ug-vs-Sc and Tg-vs-
Sc. The classifier is the classical support vector machine (SVM), of which kernel
function and order number parameters are set as polynomial, 1, respectively.
We use three datasets, alpha, beta and fusion, to carry out the action intention
understanding classification. That is to say, the action intention understanding
based on EEG signals come from the alpha, beta frequency sub-bands. Fusion
dataset is constructed by merging the features of alpha and beta datasets into
a big dataset. The classification tasks based on the group level, not a single
subject. In order to avoid random factors, we implemented 1000 times 5-fold
cross validation and calculated the mean of these 1000 times experiments as the
final classification accuracy.

Figure 3 shows the average classification accuracies on the alpha, beta and
fusion datasets. We can see that the lowest accuracy is over 65%, while the
highest accuracy is even over 95%. The classification accuracies on the Ug-vs-Tg
are all more than 85%, which performs the best compared with the other two
one-versus-one patterns. Among the three datasets, beta performs the worst and
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Fig. 3. Average classification accuracies on three datasets. The red stick denotes the
standard deviation. The alpha, beta and fusion are three different datasets, which come
from the alpha, beta and fusion frequency bands, respectively. (Color figure online)

fusion performs the best. Especially, the average classification accuracies on the
fusion dataset are all greater than or equal to 80%. Table 1 displays the details
of four classification estimation metrics under different conditions. We can see
that most of the numerical values of mean (average classification accuracy),
sensitivity and specificity are very high, while the numerical values of standard
deviation are very low.

3.2 Brain Network Statistics

In this part, we give out the edge value differences of the average brain network
that is based on 63 dynamical time windows. Each functional connectivity edge
is tested by serious t-test and FDR correction. The statistics are carried out on
the three one-versus-one patterns.

Figure 4 shows the statistical results on the alpha and beta frequency sub-
bands. We can see that there are many significant connectivity edges in the
alpha band, while the beta band is very sparse, especial in both Ug-vs-Sc and
Tg-vs-Sc. Additionally, we also can see that many important nodes appear in
the temporal, frontal and occipital lobes. The positions of the important nodes
are uncommon on different frequency bands and one-versus-one patterns.
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Table 1. Classification estimation metrics. The mean denotes the average classification
accuracy.

Condition Estimation metrics

Frequency band Pattern Mean Standard deviation Sensitivity Specificity

Alpha Ug-vs-Tg 94.00 2.79 93.33 94.67

Ug-vs-Sc 82.67 5.96 76.00 89.33

Tg-vs-Sc 76.00 7.23 61.33 90.67

Beta Ug-vs-Tg 85.33 6.06 89.33 81.33

Ug-vs-Sc 74.67 3.8 66.67 82.67

Tg-vs-Sc 68.00 4.47 44.00 92.00

Fusion Ug-vs-Tg 96.67 2.36 98.67 94.67

Ug-vs-Sc 88.67 6.50 81.33 96.00

Tg-vs-Sc 80.00 6.24 64.00 96.00

4 Discussion

From the experimental results of action intention understanding classification
and brain network statistics, we have some important findings. In this section,
we present out the elaborations of these findings.

The results of classification accuracies display the novel method performs
well on the alpha, beta and fusion datasets (see Fig. 3 and Table 1), which sug-
gest that the feature extraction and sample collection that are dealt with by the
phase synchronization indices are effective and satisfactory. Some previous stud-
ies [1,5] which use a single index of phase synchronization (PLV, PLI or WPLI)
to decode action intention understanding point out that the phase synchroniza-
tion is a useful tool. The experimental results based on multiple indices of phase
synchronization (PLV, PLI and WPLI) further prove the previous viewpoint.
Both the alpha and beta frequency sub-bands show extremely high classification
accuracies, which indicate that the action intention understanding brain activ-
ities easily occur at these two bands. These are consistent with some previous
studies [5,15]. Figure 3 demonstrates that the fusion dataset obtains the best
classification accuracy. Because the fusion dataset contains twice the classifi-
cation features compared with a single alpha or beta dataset (both alpha and
beta have 63 features, fusion has 126 features), it more easily obtains a better
result. Another feasible explanation is that the fusion dataset not only captures
the alpha but also contains the beta frequency band information, therefore, the
fusion dataset can take the advantages of both frequency bands at the same
time. Briefly speaking, feature fusion is an effective method for classification. It
is noteworthy that when compared with the previous studies about action inten-
tion understanding classification [1,5,9], our novel method obtains more higher
classification accuracies.

In the Fig. 4, many functional connective edges are still retained after
serious FDR correction (p < 0.05). Because the difference brain networks are
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Fig. 4. Difference brain network. Each edge is determined by T-test and FDR cor-
rection (p < 0.05). The red, yellow, green, cyan, blue and purple-red nodes are from
the temporal lobe, limbic lobe, frontal lobe, occipital lobe, sub-lobar and parietal lobe,
respectively. The size of the node denotes the degree, the larger the size is, the higher
the degree is. (Color figure online)
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constructed by the mean of the 63 sub brain networks, hence, we conclude that
the dynamical network effectively catches the difference information of action
intention understanding brain activities in each microstate (50 ms). The alpha
frequency band displays more significant edges than the beta frequency band,
which suggests that the action intention understanding brain activities more
easily occur at the alpha band [5,16]. The classification accuracies in the alpha
dataset are better than the results in the beta dataset (see Fig. 3) also support the
viewpoint that action intention understanding brain activities closely correlate
with the alpha frequency band [5]. Some big size nodes appear at the temporal,
partial, frontal and occipital lobes, which indicate that different action intention
stimuli easily lead to different extents brain activities in these areas. These are
consistent with some previous studies [6,16,17,19]. According to distribution of
the big size nodes in both alpha and beta frequency bands, we conclude that
human beings need the cooperation of multiple brain regions to complete the
correct understanding of action intention. If one big size node were destroyed,
the structure of brain network were destroyed, then the corresponding function
will be changed. This is why some people with brain injuries can not understand
other people’s intention perfectively, e.g., can not understand others’ language
and gesture.

Although the novel method obtains very high classification accuracies, there
are still some limitations in this study. For instance, the classifications are imple-
mented on the group level (we view each subject from one stimulus condition,
Ug, Tg or Sc, as a classification sample), while the number of raw subjects is
only 25. Hence, it still needs to expand the sample size in the future. Addi-
tionally, the classification accuracy based on integral level, i.e., the classification
accuracy is equal to the number of correctly classified samples divided by the
total number of samples in the test set. For the prediction of a real sample with
unknown stimulus condition, the integral level calculate strategy can not com-
plete effectively. The reason is that the classification task is carried out under
the 5-fold cross validation condition, which easily leads the sample labels to be
confused. Of course, we have a satisfactory way to solve this problem. With the
idea of Leave-One-Out (LOO) cross validation, we can use the real sample to be
predicted as the test set and all other samples as the training set. Because the
real sample is divided into three (they come from PLV, PLI and WPLI, respec-
tively), hence, it needs to predict three sample labels. When the labels of the
three indices are consistent, then we can get the predict class of the real sample.

5 Conclusion

In summary, the novel method improves the classification accuracies of action
intention understanding based on EEG signals effectively. It has some merits
of generality, e.g., it can be applied in other state-of-the-art neuro informatics
data recording technologies, such as MRI, fMRI, MEG, NIRS and so on, mean-
while, it also can be introduced into other neuroscience study fields, such as
emotion, motor imagery, Alzheimer’s disease, epilepsy, autism, alcohol addic-
tion, etc. When adopt the LOO cross validation strategy, the novel method will
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have some potential practical application values for the human-robot interaction.
In the future, we will try our best to weaken the deficiencies in the novel method
so as to obtain more satisfactory classification results and decode more complex
neural mechanisms about the action intention understanding brain signals.
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