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Preface

This book is a part of the five-volume proceedings of the 27th International Conference
on Neural Information Processing (ICONIP 2020), held during November 18–22,
2020. The conference aims to provide a leading international forum for researchers,
scientists, and industry professionals who are working in neuroscience, neural net-
works, deep learning, and related fields to share their new ideas, progresses, and
achievements. Due to the outbreak of COVID-19, this year’s conference, which was
supposed to be held in Bangkok, Thailand, was organized as fully virtual conference.

The research program of this year’s edition consists of four main categories, Theory
and Algorithms, Computational and Cognitive Neurosciences, Human-Centered
Computing, and Applications, for refereed research papers with nine special sessions
and one workshop. The research tracks attracted submissions from 1,083 distinct
authors from 44 countries. All the submissions were rigorously reviewed by the con-
ference Program Committee (PC) comprising 84 senior PC members and 367 PC
members. A total of 1,351 reviews were provided, with each submission receiving at
least 2 reviews, and some papers receiving 3 or more reviews. This year, we also
provided rebuttals for authors to address the errors that exist in the review comments.
Meta-reviews were provided with consideration of both authors’ rebuttal and review-
ers’ comments. Finally, we accepted 187 (30.25%) of the 618 full papers that were sent
out for review in three volumes of Springer’s series of Lecture Notes in Computer
Science (LNCS) and 189 (30.58%) of the 618 in two volumes of Springer’s series of
Communications in Computer and Information Science (CCIS).

We would like to take this opportunity to thank all the authors for submitting their
papers to our conference, and the senior PC members, PC members, as well as all the
Organizing Committee members for their hard work. We hope you enjoyed the
research program at the conference.

November 2020 Haiqin Yang
Kitsuchart Pasupa
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Abstract. Neuroblastoma is the most common cancer in young children
accounting for over 15% of deaths in children due to cancer. Identification
of the class of neuroblastoma is dependent on histopathological classifica-
tion performed by pathologists which are considered the gold standard.
However, due to the heterogeneous nature of neuroblast tumours, the
human eye can miss critical visual features in histopathology. Hence, the
use of computer-based models can assist pathologists in classification
through mathematical analysis. There is no publicly available dataset
containing neuroblastoma histopathological images. So, this study uses
dataset gathered from The Tumour Bank at Kids Research at The Chil-
dren’s Hospital at Westmead, which has been used in previous research.
Previous work on this dataset has shown maximum accuracy of 84%. One
main issue that previous research fails to address is the class imbalance
problem that exists in the dataset as one class represents over 50% of
the samples. This study explores a range of feature extraction and data
undersampling and over-sampling techniques to improve classification
accuracy. Using these methods, this study was able to achieve accuracy
of over 90% in the dataset. Moreover, significant improvements observed
in this study were in the minority classes where previous work failed to
achieve high level of classification accuracy. In doing so, this study shows
importance of effective management of available data for any application
of machine learning.

1 Introduction

Neuroblastoma is the most common cancer diagnosed in children in the first year
of life and accounts for nearly 15% of deaths in children due to cancer [1,2]. Neu-
roblast tumours evolve from immature neuroblasts in the sympathetic nervous
system during the embryonic, fetal or postnatal stage in children. The disease
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spreads typically through bone, bone marrow and the liver, and the tumour
can be spotted as mass lesions in areas like neck, chest, abdomen and pelvis
[1,2]. Cellular heterogeneity is one of the distinctive features of neuroblastoma
[3]. As a result of this feature, neuroblastic tumours show unexpected clinical
behaviour, which includes spontaneous regression and aggressive progression. As
such, it is common to see genetic materials achieve gains and loss rapidly when
neuroblastoma is evolving.

Pathologists use the Shimada system to classify whether a tumour is
favourable or unfavourable, which is considered the gold standard in neuroblas-
toma classification [3]. The Shimada system considers three key factors, which
are: age of the patient, the category of the Neuroblast tumour and the Mitosis-
Karyorrhexis index (MKI) [3]. To categorise neuroblast tumours, pathologists
examine thin tissues using optical microscopes in different magnifications. While
identifying the category of tumours, pathologists use several morphological fea-
tures such as the presence of neuropil, cellularity, nuclear size and shape [3]. How-
ever, due to the complex and heterogeneous nature of neuroblastoma, pathol-
ogists can get misleading results. The use of machine learning techniques for
feature extraction can reveal information and relationships not visible to the
human eye. Moreover, the use of Computer-Aided Design (CAD) systems in the
health sector offer benefits such as improvement of the overall speed and qual-
ity of the diagnosis process by eliminating human fatigue, acting as a tool for
the second opinion and assisting with the shortage of medical experts [3]. These
benefits are especially significant for neuroblastoma as the age of a patient at
the time of diagnosis is vital for the prognosis outcome.

There is a lack of significant exploration of the use of machine learning tech-
niques in for classification of Nuroblastoma types. One of the recent work was
done by S. Gheisari et al. [5–7] who classified neuroblastoma histopathological
images into five categories which were: undifferentiated neuroblastoma, gan-
glioneuroblastoma, ganglioneuroma, poorly-differentiated neuroblastoma, and
differentiating neuroblastoma. A range of low level and high-level feature extrac-
tion techniques were used in previous research to achieve accuracy of around 84%.
From a medical perspective, more accurate results would be desirable to increase
confidence and improve the chances of computer-based systems being used to
assist experts. Furthermore, [5–7] also identified that there was a high degree of
misclassification between poorly-differentiated and differentiating neuroblastoma
classes. From a biological perspective, these misclassifications are significant as
they can result in patients being overtreated or undertreated. Hence there is
keen interest in improving existing methods.

This paper aims to improve the previous work performed by S. Gheisari
et al. [5–7], where neuroblastoma images were successfully classified into five
categories. The dataset used for this work is the same as used in [5–7] which was
gathered from The Tumour Bank at Kids Research at The Children’s Hospital
at Westmead. Through the exploration of previously used feature extraction
methods and existing data optimisation techniques, this study aims to improve
the overall accuracy metrics achieved in previous neuroblastoma research. The
contributions made by this study is summarised below:
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1. Explored the impact of different feature extraction and machine learning tech-
niques on the performance for classification of neuroblastoma histopatholog-
ical images.

2. Evaluated the effects of combining outcomes from different feature extraction
techniques on performance metrics.

3. Explored the effects of data engineering techniques such as resampling the
given dataset on the overall performance.

4. Improved overall accuracy metrics through the use of these techniques

The rest of the paper is as follows: Sect. 2 discusses the methodology used.
Section 3 shows the results. Section 4 presents the discussion and Sect. 5 provides
a conclusion.

2 Methodology

To effectively conduct the intended research, this work follows a structure com-
monly used for the application of machine learning in the medical informatics
domain. The first step involves relevant data needs to be collected, or exist-
ing dataset needs to be selected to conduct the experiments. Collecting medical
image is a complex process which involves taking tissue samples from high resolu-
tion microscopes. It would also require expert medical professionals to categorize
the data so that models can be trained. So, the collection of raw data was con-
sidered out of scope, and an existing neuroblastoma dataset was used to conduct
the experiments. The next step involves feature engineering, where the aim is to
extract relevant features from available image data. Multiple feature and data
engineering techniques are explored in work conducted. Then machine learning
classification algorithms are implemented for classification. In this study, SVM
classification is used for uniform comparison as a greater focus on the feature
extraction and data engineering methods. Finally, the designed models are tested
and evaluated using 5-fold cross-validation, accuracy, precision, recall and F-1
score.

2.1 Dataset

The dataset used for this study is the same as used by S. Gheisari et al. in [5–7].
The dataset was gathered from The Tumour Bank at Kids Research at The Chil-
dren’s Hospital at Westmead and is the most comprehensive available dataset
for research in neuroblastoma. There is no publicly available dataset for neu-
roblastoma research, so the authors granted access to this dataset. The dataset
contains 1043 images gathered from stained tissue biopsy slides of 125 patients.
The tissue slides were scanned by using a software called Imagescope under 40x
magnification. Each image was cropped to include 300 by 300 pixels to provide
a balance between achieving a reasonable computational time and preserving
critical information in each image. It was also ensured that each cropped image
contained areas that best represent each category of neuroblastoma. This is a
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slight limitation of the dataset because it does not directly mimic a real-world
scenario where data can have noise points. Expert pathologists classified images
in the dataset according to the Shimada System where the categories included:
poorly differentiated neuroblastoma, differentiating neuroblastoma, undifferen-
tiating neuroblastoma, ganglioneuroma and ganglioneuroblastoma.

Fig. 1. Example of intra-class variance in neuroblastoma

As discussed previously, neuroblastoma has a high degree of intra-class vari-
ance. The extent of intra-class variance in the available dataset can be seen in
Fig. 1. Both (a) and (b) in the figure belong to the same class of neuroblastoma
(differentiating neuroblastoma). However, as the blue circled section in the image
indicates, they have neuroblast cells of differing sizes. This is a prominent fea-
ture of neuroblast tumours and has been extensively captured in the dataset.
The overall dataset used for the experimental setup can be summarised in Table
1. The table shows data distribution for each class and the number of patients
from whom the images were gathered. It can be seen that overall, there are 1043
data samples from 125 patients. It can also be seen that there is a high degree of
imbalance in the used dataset. The most common class is poorly-differentiated
neuroblastoma as it represents over 50% of the data with 571 samples. For the
least common class (ganglioneuroblastoma), there are only 46 samples available
which represents less than 5% of the dataset and is gathered from 8 out of 125
patients.

2.2 Experimental Setup

The study explored a range of experimental approaches around feature extrac-
tion and data undersampling and oversampling to determine the effects they
have in the given dataset. These experimental setups are explained below. To
evaluate the setups, k-fold stratified k-fold cross validation was used. A stratified
k-fold cross validation ensures that for each split in k, the original distribution
of dataset is maintained. Accuracy, precision, recall and F1-score were used as
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Table 1. Dataset used in the study

Neuroblastoma tumour class No. cropped images No. patients

Poorly differentiated 571 77

Differentiating 187 12

Undifferentiated 155 10

Ganglioneuroma 84 28

Ganglioneuroblastoma 46 8

Total 1043 125

metrics used for comparison of the different approaches and are presented in the
results section.

Setup 1 – Scale Invariant Feature Transform (SIFT) + Bag of Visual
Words (BOVW) + SVM

SIFT: SIFT feature extractor was introduced by [8] and is used to extract dis-
tinctive features that are invariant to scale rotation and illumination. The SIFT
method finds the keypoints in an image by executing four key steps: detect
scale-space extrema, localise keypoints, assignment orientation and descriptor
representation. For any given image, the SIFT algorithm returns two key com-
ponents. A set of keypoints and a descriptor for each keypoint. SIFT has three
key parameters which are the width of the gaussian for scale-space extrema
detection, contrast threshold for the elimination of low contrast keypoints and
edge threshold for the elimination of edges. These parameters have been tuned
according to the recommendations from [7]. The width of the gaussian was set
to 1.7; the contrast threshold was set to 0.04 and edge threshold was set to 11.

BOVW: SIFT extracts thousands of feature points from each image, each of
which is described by 128 element vectors. BOVW is a commonly used tech-
nique to encode features in image processing that is adapted from the Bag of
Words algorithm used in Natural Language Processing (NLP) [9]. The BOVW
algorithm takes the SIFT features extracted in the previous step and performs
clustering over the data. Each cluster identified in this process acts as a visual
vocabulary which describes the image. Once the visual vocabulary is established,
for each image, a frequency histogram is created to count the occurrence of each
feature. Clustering for BOVW is implemented using the k-means clustering algo-
rithm. The number of clusters defines the size of the codebook, and according
to the parameter tuning of [7], the cluster size has been set to 500. A visual
representation of BOWV can been seen in Fig. 2.

Classification: For classification, Support Vector Machines (SVM) was used.
Other common classifiers such as K-Nearest Kenghbours and Naive Bayes were
not considered because [7] had already established that SVM was the opti-
mal classifier for the given dataset. As the study focused on feature extrac-
tion and data resampling techniques, exploration of classification algorithms was
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Fig. 2. Illustration of BOVW

considered out of scope for this research. So, for all the experimental setups dis-
cussed in this study, the SVM model was used. The SVM model used in the
study, was setup with a RBF kernel with the kernel parameter set to 0.004.
The SVM kernel and parameters were kept consistent for all other experimental
setups used in the study.

Setup 2: SURF + Bag of Visual Words (BOVW) + SVM

The second experimental setup is similar to the first with the only alteration
made to the feature extraction technique used. SURF is used as a feature extrac-
tor rather than SIFT in this setup. SIFT is quite effective but is generally more
computationally expensive. SURF was developed to improve the speed of SIFT
and can be up to three times faster while still providing features invariant to
scale, illumination, blur and rotation. H. Bay et al. [10] has also shown that the
SURF feature extraction method can outperform SIFT on multiple occasions.
SURF has one key parameter – hessian threshold, which is used for keypoint
detection. For this study, this parameter was set to 600 as used in [10]. However,
[10,11] indicate that SURF can outperform SIFT in multiple scenarios. Also,
each feature in SURF is described by a 64-dimensional vector as opposed to 128
vector descriptors of SIFT. This means that the BOVW will need parameter
tuning. So, the cluster size of 100, 200 and 300 was considered for construction
of codebook in BOVW. For classification, SVM classifier with RBF kernel was
used.

Setup 3: Combining SIFT and SURF Features

The third experimental setup involves combining SURF and SITF feature
extractors. A similar approach was previously implemented by L. Lenc and
P. Král [12] for facial recognition, where results showed that combining SIFT
and SURF can outperform state of the art in facial recognition. However, this
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approach has not been explored in the feature extraction of neuroblastoma
tumours. It is expected using this approach of combining keypoint locations
and descriptors from two algorithms will provide features that are more robust
as compared to using them individually. The process of combining features from
SIFT and SURF is as follows: (1) Extract interest points using SIFT extractor;
(2) Extract interest points using SURF extractor; (3) Gather descriptors from
SIFT extractor; (4) Gather descriptors from SURF extractor (5) Concatenate
both descriptors to create a combined descriptor.

Setup 4: Subsampled Features

The experimental setups explored in the previous sections only consider
different feature extraction approaches. However, the class imbalance issue
remained unanswered. This issue was also not addressed in previous work on
neuroblastoma classification by S. Gheisari et al. in [5–7].

Standard techniques used to manage the class imbalance problem are data
sampling methods such as oversampling and undersampling [13,14]. Oversam-
pling through image augmentation is a common approach used in research but
is not suitable for this work because SIFT and SURF are robust to scale, blur,
rotation and illumination. Hence this setups looked at undersampling to the rep-
resentation numbers of the majority classes. While this method might appear
suitable for the given problem, it has one severe limitation. As discussed in [15]
merely removing data samples from the majority class can result in loss of vital
information. Thus, the approach of removing image samples from the available
dataset would not be a suitable approach for the given problem. Instead, an app-
roach similar to that suggested in [13,15] appeared more feasible. So, features
extracted from the images will be undersampled. This method will ensure that
the most relevant features from each class is preserved.

As performed in previous experimental setups, a feature extraction method
is first used to extract robust features from all the images in the training set.
For this setup SIFT extractor with preciously set parameters (Gaussian width
= 1.7, contrast threshold = 0.04 and edge threshold = 11) is used. After com-
puting the feature points and corresponding descriptors, these descriptors are
ordered based on the class they represent. For each class, the set of descriptors
are then sorted based on relevance. Once vectors are organised by class and
sorted, undersampling is performed to reduce the number of feature vectors in
the majority classes. To do this, the number of feature vectors in the lowest class
is taken as a limit for the number of features for each class. In the case of the
dataset used, the minimum number of features would always be gathered from
the ganglioneuroblastoma class. After the undersampling step, as before BOVW
and SVM is used. For the BOVW, cluster sizes of 100, 200, and 300 were tested
for parameter tuning.

Setup 5: Resampling for classification

The resampling method proposed in the previous setup only addresses the
class imbalance for BOVW where clustering was used. It fails to address the
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class imbalance issue for classification for SVM. Thus, this experimental setup
aims to address this imbalance by exploring oversampling and undersampling
techniques before performing classification.

To oversample the minority classes for classification, a method known Syn-
thetic Minority Oversampling Technique (SMOTE) is used in this experiment.
This method was introduced by N. V. Chawla et al. [13], where additional sam-
ples for the minority class is generated synthetically by observing existing exam-
ples. SMOTE generates new data for the minority class by considering the near-
est neighbours of existing samples. Another technique that can be applied for
resampling is known as near-miss. This method is an undersampling approach
where instances of the majority class are removed if they are too close to each
other. In this method, first distances between all samples in the majority class
and the minority class are calculated.

A combined approach of using SMOTE to oversample the minority classes
and then using near-miss to undersample on the majority class (poorly differ-
entiated neuroblastoma) is also explored in this experimental setup. First SIFT
is used for feature extraction. Then the undersampling method, as discussed in
setup 4, is used. The undersampled feature points are then fed through BOVW
for feature encoding. After this, oversampling and undersampling methods are
used for the available training data and then finally SVM classifier is used for
classification.

3 Results

This section presents the results achieved with the multiple experimental setups
used. Table 2 summaries the key metrics of accuracy, precision, recall and F-1
score achieved from different experimental methods discussed in the previous
section. The results table include a summary of the achieved metrics using a
stratified 5-fold cross validation. For the sake of comparison, the train-test split
in dataset remained consistent throughout the different experimental setups.
The results presented in table shows that the final setup generated the best out-
come for accuracy, precision, recall F-1 scores. The final setup used the selective
undersampling approach for SIFT and SMOTE for classification. The achieved
result, provides evidence that the proposed data manipulation techniques in this
paper provided significant improvements in the neuroblastoma dataset. The dra-
matic improvements in the overall metrics become even more evident when Fig.
3 is observed. This figure shows comparison between results achieved in previ-
ous study and the best results achieved in this study (setup 5) in a class level
breakdown. It can be seen that overall, the proposed data sampling approaches
provide significant improvements in classification of minority classes such as gan-
glioneuroblastoma and ganglioneuroma. It also addresses some issues identified
in previous work such as the tendency of human experts and machine learning
models to misclassify between differentiating and poorly differentiated classes.
Overall, the results demonstrate the improvements achieved by this study as
compared to previous work on the same dataset.
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Table 2. Results achieved by the experimental setups

Method Accuracy Precision Recall F-1 Score

Setup 1: Sift for feature extraction 0.8304 0.8573 0.6978 0.7483

Setup 2: SURF + BOVW + SVM 0.7969 0.8081 0.6619 0.7035

Setup 3: Combining SIFT and SURF 0.8477 0.8619 0.7373 0.7801

Setup 4: Subsampled SIFT features 0.8822 0.9151 0.8192 0.8530

Setup 5: Resampling for classification 0.9003 0.9060 0.8730 0.8868

Fig. 3. Class level breakdown and comparison between results achieved with and with-
out sampling approaches

4 Discussion

The work was conducted with the overarching aim of improving classification
accuracy in neuroblastoma histopathological images in a given dataset. Due to
the complex texture of neuro-blast tumours, machine learning-based classifica-
tion can be considered beneficial as they can extract features based on mathemat-
ical feature extraction techniques. Experimental setups were designed to address
the aims of exploring different feature extraction techniques and analaysing the
impacts of data engineering techniques such as oversampling and undersampling.

Both SIFT and SURF extract features that are robust to these properties, so
their performance were evaluated. Comparing, the results achieved for SIFT and
SURF, it was evident that SURF performed poorly compared to SIFT for all the
classes. While both SIFT and SURF extract features that are robust to features
like, scale and rotation, the mathematical approach taken in these approaches are
significantly different. While SIFT uses convolutions of Difference of Gaussian
to determine the scale space, SURF uses Laplacian of Gaussian approach with
boxed filters to approximate the Difference of Gaussians for scale space detection.
As a result of this, features extracted by SIFT are more robust to scale variations
compared to SURF. Thus, SURF performed poorly because there is high intra-
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class scale variance in neuroblast tumours which SIFT was more accurately able
to capture.

A combined SIFT and SURF feature extraction method was used to evaluate
the effects of combining different feature extraction techniques. Results showed
that this approach provided only a slight improvement in overall classification
performance. The approach only achieved an improvement of 1.5% as the accu-
racy of 84.5% was recorded. The only class affected was the undifferentiated
neuroblastoma class which saw an improvement of around 7%.

The results achieved by SURF and a combination of SIFT and SURF pro-
vided very negligible improvements in performance. The improvements were min-
imal because these methods did not address the class imbalance issue existing in
the dataset. Thus, the class imbalance issue was addressed by using both under-
sampling and oversampling approaches in the experimental setups as described
elsewhere [16,17]. By addressing the imbalance issue through these methods, sig-
nificant improvements in the results were observed. More specifically the overall
accuracy improved to over 90% as opposed to the 83% accuracy achieved in the
initial model.

Results achieved when the dataset was resampled showed that the applied
techniques create a more robust model which can classify all classes with higher
accuracy (recall). This improved performance compared to the previous model
can be seen in Fig. 2 which provides a comparison between initially replicated
work and the resampling method developed in this work. In the figure, it can
also be seen that the two most improved classes are ganglioneuroblastoma and
ganglioneuroma classes where recall score increased by over 30%. Not surpris-
ingly, these two categories were also the two least common class in the dataset.
The use of sampling techniques did reduce the accuracy of the poorly differenti-
ated class by 3%, but this is a worthy tradeoff as it is preferable to have higher
accuracy overall classes than for just one class. Differentiating neuroblastoma
was also identified as a problematic class in previous research because expert
pathologists struggled with classification between poorly differentiated and dif-
ferentiating class. However, the current approach was able to improve the recall
of differentiating neuroblastoma class by over 12%. There is also significant med-
ical significance of these improvements in addition to the statistical significance.
Treatment plans for patients are dependent on the category of neuroblastoma
they have. So, a more accurate model translates to lower possibilities of patients
receiving inadequate treatment.

While the study improves on previous work there are few limitations that
can be addressed for future work. This work only looked at the classification of
neuroblastoma images using low-level feature extraction combined with a range
of data sampling techniques. While results achieved show useful improvements
to existing methods, the use of high-level feature extraction techniques can pro-
vide even more significant improvements. Use of techniques such as deep neural
networks have the potential to extract even more robust and useful features
and need to be explored thoroughly in the future. Furthermore, the work only
focuses on the classification of patched 300× 300 stained tissue images into dif-
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ferent categories of neuroblastoma. Additionally, the images are carefully curated
by expert pathologists and only contain areas that best represent each class. In,
a practical scenario, pathologists examine whole tissue images under different
magnifications. So, the proposed techniques need to be evaluated with whole
slide tissue images under different magnifications.

5 Conclusion

This study began with the objective of improving existing approaches in the
histopathological classification of early childhood tumour called neuroblastoma.
To improve the results, the study looked at two main approaches. The first app-
roach was to explore alternative low-level feature extraction techniques which
could extract more relevant features and improve accuracy. However, this app-
roach did not provide any significant improvements to existing approaches in
neuroblastoma. This was because the main problem associated with the dataset
was the class imbalance problem. To address the class imbalance in the dataset,
both undersampling and oversampling approaches were thoroughly explored.
The use of these approaches improved the accuracy of the models to over 90% in
the given dataset. More importantly, these methods improved the classification
of the minority classes by up to 35%. Such improvements have a high signif-
icance in the medical domain because the classification of the neuroblastoma
types determine the treatments that patients receive. Pathologist classification
using the Shimada system is still considered the gold standard in neuroblastoma
and this work only intends to show role computer-based approaches can have to
support decision making and act a tool for second reference. Further research is
required to classify whole tissue images under different magnifications and pre-
dict patient outcomes for practical applications of computer-based approaches
in neuroblastoma.
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Abstract. Genomic experiments produce large sets of data, many of
which are publicly available. Investigating these datasets using bioinfor-
matics data mining techniques may reveal novel biological knowledge.
We developed a bioinformatics pipeline to investigate Chip-seq DNA
binding proteins datasets for HepG2 liver cancer cell line downloaded
from ENCODE project. Of 276 datasets, 175 passed our proposed quan-
tity control testing. A pair-wise DNA co-location analysis tool developed
by us revealed a cluster of 19 proteins significantly collocating on DNA
binding regions. The results were confirmed by tools from other labs.
Narrowing down our bioinformatics analysis showed a strong enrichment
of DNA-binding protein SIN3A to activator (H3K79me2) and repressor
(H3K27me3) indicating SIN3A plays has an important regulatory role in
vital liver functions. Whether increased enrichment varies in liver infec-
tion we compared histone modification between HepG2 and HepG2.2.15
cells (HepG2 derived hepatitis B virus (HBV) expressing stable cells) and
observed an increase SIN3A enrichment in promoter regions (H3K4me3)
confirming a known biological phenotype. The mechanistic role of SIN3A
protein in case of liver injury or insult during liver infection warrants fur-
ther dry and wet lab investigations.

Keywords: Cancer · HepG2 · Transcription factor binding sites ·
Bioinformatics · ENCODE

1 Introduction

Many cellular functions are mediated by sequence-specific DNA-binding proteins
commonly known as transcription factors (TF). Transcription factor binding to
DNA, either alone or as part of a complex with other proteins, is influenced by
epigenetic modifications and small sequence variations or single nucleotide poly-
morphisms. Perturbation of transcription factor binding plays a role in many
diseases, including but not limited to cancer. Therefore, the characterisation
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of transcription factor bind-ing sites (TFBS), or otherwise known as transcrip-
tion factor binding regions (TFBR) across the genome using next-generation
technologies has been a focus of research in recent years [8,11,18,22,23]. Much
of these data are now available in public repositories but is under-utilized. In
this study, we aim to develop a workflow to effectively collate, query, and mine
publicly available next-generation sequencing (ChIP-seq) datasets to discover
novel and biologically relevant insight. Liver cancer is one of the leading cause of
cancer-related death worldwide [6]. In this study, we aimed to investigate human
liver cancer by sourcing data about HepG2 cells (cell line derived from human
hepatoblastoma of a 15-year-old male [15]) from the National Human Genome
Research Institute’s ENCODE project [3].

2 Methods

A total of 276 publicly available ChIP-seq datasets for the HepG2 cell line were
downloaded. Datasets in other formats were converted to FASTQ format using
the sratoolkit. The quality metrics of all datasets were extracted using FastQC
(v0.11.3) [1]. Datasets with less than 10,000,000 reads with a minimum average
Phred quality score of 20 were removed. The control of remaining datasets were
checked and im-proved using Cutadapt (v1.9.dev4) [16]. Reads were trimmed
using a quality thresh-old of 20 and reads which were shorter than 25bp after
trimming were removed. The processed sequencing reads were then mapped to
the human genome (GRCh38) with Bowtie (v1.1.2) [13]. Subsequently, dupli-
cated reads were removed using PicardTools’ MarkDuplicates tool.

Peak calling on all datasets were performed with MACS (2.1.0) using a q-
value cutoff of 0.05 and the nomodel parameter to prevent downscaling of the
dataset in accordance with its controls [25]. In addition to this, all histone mark
datasets used the broad parameter with a cutoff of 0.1. The following MACS2
parameters for his-tone mark datasets “-g 3.0e9 -q 0.05 –nomodel –broad –broad-
cutoff 0.1” and “-g 3.0e9 -q 0.05 –nomodel” were used for transcription factor
binding site (TFBS).

To merge biological replicates, Irreproducibility Discovery Rate (IDR) anal-
ysis was performed and all overlapping peaks were kept with no threshold
applied [14]. The number of peak overlaps between pair-wise datasets was deter-
mined using bedtools’ intersectBed [17]. To minimise artefacts due to sequenc-
ing depth, only datasets with more than 15,000,000 aligned reads and more
than 5,000 peaks were compared (ref. intersect filtered peaks.xlsx). A pair-wise
comparison of all transcription factor binding sites was performed using Geno-
metriCorr [4]. The Jaccard measure was used to quantify the correlation between
pairwise binding sites. From these results, a heatmap was generated using R’s
gplots package. In addition the clustered heatmap was generated for all tran-
scription factors using Overlap Correlation Value (OCV) calculated below. A
prox-imity ratio pr is calculated using the following Eq. 1:

pr =
2l + 2d + r

L
(1)
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Where l is the length of the query region (Fig. 1), d is the distance between the
query region and the reference region of length r and L is the total chromosome
length under observation. In Eq. 1 Length l and distance d are multiplied by 2 to
consider the binding locations on both sides of the reference region. In the Fig. 2
query DNA C is closest to the reference DNA B, whereas, C’ region is shown as
a possible location of B keeping the same distance d apart from the reference.
From Eq. 1 we can see the bigger the l and d the closer the value of pr will be
to 1. Hence lower the pr, more significant of this proximity. We considered all
values lower than 0.05 as significant. The OCV is calculated as:

OCV =
n

q
(2)

Where n is the number of regions in query dataset having pr values less than
0.05 and q is the total number of regions in query dataset. Using EpiMINE’s
Enrich tool [7], a graphical depiction illustrating the presence and absence of
preferential en-richment of selected transcription factor binding sites on each
histone mark was generated.

Fig. 1. An example of query region C in a close proximity of a reference region B

ChIP-seq data of HepG2.2. 15 cells (stably expressing HBV) were also
obtained for comparison of any differences in the histone modification H3K4me3
between the infected and non-infected cells [20]. To allow for comparison without
sequencing depth bias, the HBV ChIP-seq data was downsampled to approxi-
mately 10,000,000 reads to match the non-infected H3K4me3 data.

3 Results

The number of aligned reads after quality trimming of the sequencing data was
rec-orded and analysed. Out of 241 ChIP-seq datasets targeting transcription
factor bind-ing sites, 166 (68.88%) of the datasets met the guideline of 10,000,000
uniquely mapped reads as suggested by ENCODE in 2012 [12]. For this study, a
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Fig. 2. Distribution of aligned reads for histone marks and transcription factor binding
sits. Of 35 histone marks 25 datasets below cut-off, whereas, of 241 transcription factors
80 datasets below the cut-off, hence removed.

threshold of 15,000,000 uniquely mapped reads was used, and so 140 (66.66%)
datasets were retained.

Of 35 histone mark datasets, only 6 (23.1%) datasets passed the guideline
of 20,000,000 uniquely mapped reads as suggested by ENCODE [12] and used
thresh-old to filter for quality (Fig. 2).

3.1 Co-location of TFBS Analysis

The Jaccard measure was used to quantify pairwise correlation of all combi-
nations of transcription factors and identify possible binding site similarities.
Figure 3 shows the distribution of Jaccard values for all pair-wise combina-
tions. Since the data is skewed toward the positive direction, the colour key
was adjusted to show more contrast around the mean. The resulting matrix was
used as input in gplots’ heatmapping function.

Figure 4 heat map reveals a cluster at lower-most/left-most dendogram
branch of 21 transcription factors (TBP, ELF1, YY1, SIN3A, MXI1, MAZ,
CHD2, TAF1, CEBPD, MAX, HCFC1, SIN3B, ZHX2, GABPA, ZNF143,
TBL1XR1, CUX1, RCOR1, FOS, RFX5, ZBTB7A) significantly collocating and
showing a strong cor-relation. This subset was further visualised as a separate
heatmap as shown in the Fig. 5.

A second correlation heatmap was then generated using BiSA OCV (Fig. 6).
This heatmap revealed a cluster of 29 factors of which 19 were the same as
that of previous Jaccard analysis. Only MAX and ZNF143 were not present in
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Fig. 3. Density plot showing distribution of Jaccard values for all transcription factor
combinations (n = 2211)

Fig. 4. Correlation heatmap between all transcription factor binding sites, quantified
using a Jaccard measure.
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Fig. 5. Correlation heatmap between a subset of strongly correlated transcription fac-
tor binding sites, quantified using a Jaccard measure.

this cluster. This confirmed the presence of a strong 19 TFs cluster in HepG2.
Enrichment of this subset transcription factors on histone marks was quantified
and visualised using EpiMINE’s Enrich tool (Fig. 7).

SIN3A showed a strong histone enrichment in high population activator
(H3K79me2) and repressor (H3K27me3) regions (Fig. 8). To further understand
how differing histone regions affect a transcription factor’s binding to the DNA,
the inter-section of SIN3A and H3K79me2 and the intersection of SIN3A and
H3K27me3 was calculated. Motif analysis was performed for each intersecting
set.

Motif Analysis of SIN3A Overlapping Regions. Motif analysis of over-
lapping regions with activator (H3K79me2) and repressor (H3k27me3) regions
were performed using HOMER tool and top 4 most significant results ranked
based on the p-value are shown in the Table 1. The forkhead box pro-teins (FOX)
known to play key roles in regulating the gene expression and involved in cell
growth, proliferation, differentiation, and longevity. Whereas HNF4A is known
to be involved in liver development and liver tissue recovery. Therefore the signif-
icance presence of FOX and HNF4A motifs in the common regions of activator
marker (H3K79me2) identify the possibility of key role of SIN3A in the func-
tioning of liver.
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Fig. 6. Correlation heatmap between all transcription factor binding sites, quantified
using BiSA OCV.

3.2 HBV-transfection Effect on Histone Modification

In this section we validated our bioinformatics colocation analysis by compari-
son with known biological knowledge. HBV infection is a known risk factor for
liver cancer [6,19,24]. As histone modification H3K4me3 (trimethylation of His-
tone H3 lysine K4) is known to be associated with gene activation, cell division
and usually referred as promoter regions, we analysed HBV infection effects in
the expression of H3K4me3 markers. H3K4me3 dataset for stably expressing
HBV cells ‘HepG2.2. 15’ was sourced from Tropberger et al. [20] while two non-
infected datasets where sourced from ENCODE project. The dataset from Broad
Institute was labelled as H3K4m3 (Broad) and the dataset from University of
Washington was labelled as H3K4me3 (UW) as shown in the Fig. 3. There were
significantly H3K4me3 en-richment observed across the HBV genome in sta-
bly expressing HBV cells ‘HepG2.2. 15’ when compared to the control HepG2
cells. The H3K4me3 dataset from the HepG2.2. 15 had around 80,000 unique
peaks (77.5% and 78.5%) when overlapped with the two HepG2 control datasets
(Fig. 9).
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Table 1. Motif Analysis of SIN3A overlapping region with activator (H3K79me2) and
repressor (H3k27me3) regions.

Transcription factor (p-value)

SIN3A ∩ H3K79me2 SIN3A ∩ H3K27me3

ZFX (1e–24) ELK4 (1e–81)

FOXP1 (1e–20) FLI1 (1e–75)

FOXA2 (1e–18) ELK1 (1e–71)

HNF4a (1e–16) ELF1 (1e–56)

Fig. 7. Preferential enrichment of selected transcription factor binding sites on histone
marks.

4 Discussion

Bioinformatics tools and methods has helped predict many genomic functions [2,
26]. Previously we have provided detailed insight on how estrogen receptors (ER)
and progestin receptor (PR) binding on DNA converge on certain locations in
breast cancer [10]. In this study, we focused on analysis of DNA-binding proteins
and his-tone modifications in liver cancer cell line ‘HepG2’.

Pair-wise correlations among the datasets were measure using Jaccard coef-
ficient. The data clustered into three disjoint groups having similar correlation
values be-tween them. There was a strong positive clustering in lower left cor-
ner. The coloca-tion significance was also studied by BiSA and visualized by
a heatmap which con-firmed the similar 3-set clustering pattern seen in the
earlier heatmap based on the Jaccard index. There were 19 DNA-binding pro-
teins namely, TBP, ELF1, YY1, SIN3A, MXI1, MAZ, CHD2, TAF1, CEBPD,
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Fig. 8. Overlap of Sin3A with histone marks. A) Nearly 35% Sin3A regions overlap with
H3K27me3 repressor regions. Nearly 26% of Sin3A regions overlap with K3K79me2
activa-tor regions..

HCFC1, SIN3B, ZHX2, GABPA, TBL1XR1, CUX1, RCOR1, FOS, RFX5 and
ZBTB7A, appeared in both BiSA and Jaccard based clustering.

Fig. 9. Venn diagrams of the number of peaks from H3K4me3 in stably expressing
HBV cells ‘HepG2.2. 15’ (blue) and non-infected HepG2 cells (red, Broad Institute and
University of Washington datasets). (Color figure online)

The enrichment of above 19 factors in histone modification was studied using
ENRICH plot which gives an indication of histone coverage among transcrip-
tion factors. SIN3A shown a strong enrichment in most histone marks. Over-
lap of SIN3A was studied against the histone dataset with largest number of
peaks for activator regions and repressor regions. SIN3A’s 35% (12,272) DNA-
binding regions were found overlapping with H3K27me3 repressor regions and
26% (9,363) regions were overlapping with activator H3K79me2.

Motif analysis is the tool to find known and unknown DNA sequences where
pro-teins could bind (References). Motif analysis was performed on SIN3A’s
intersect-ing regions with H3K27me3 and H3K79me2. Similarly, in the activator
region over-laps, we found the presence of FOX and HNF4a protein motifs.
FOX protein is a member of the forkhead family of transcription factors, known
to bind and reconfig-ure condensed chromatin and enable the binding of other



24 M. Khushi et al.

transcription factors. While HNF4a is known to be involved in liver development
and liver tissue recovery [5,9]. Our data therefore indicates that SIN3A has a role
to play in the processes relat-ed to normal liver functioning and repair. Previous
literature has detailed SIN3A’s role in maintaining skin tissue homeostasis in
mice (References), it is likely that the transcription factor may have a similar
role in liver response to the pathological conditions based on enrichment results.

A known biological phenomenon was observed to validate this bioinfor-
matics colocation analysis. Analysis of the histone marker H3K4me3 between
‘HepG2.2. 15’ (stably expressing HBV) cells and the control ‘HepG2 cells’ showed
over 80,000 unique peaks in ‘HepG2.2. 15’ cells. H3K4me3 is associated with
transcriptional activation; significantly greater peaks suggest greater transcrip-
tional activation dur-ing HBV infection. Our results agree with previous liter-
ature suggesting that the expression of DNA methyltransferase genes is signifi-
cantly upregulated in response to HBV which leads to methylation of host CpG
islands [21]. Functional and gene enrichment of these unique peaks could pos-
sibly reveal genes that are upregulated during HBV-infection and perhaps ones
that lead to chronic HBV and hepatocellular carcinoma.
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Abstract. Diabetic retinopathy (DR) is the most common eye threaten-
ing micro-vascular complication of diabetes. It develops and grows with-
out arbitrary symptoms and can ultimately lead to blindness. However,
90% of the DR-attributed blindness is preventable but needs prompt
diagnosis and appropriate treatment. Presently, DR detection is time
and resource-consuming, i.e., required qualified ophthalmologist techni-
cian to examine the retina colour fundus for investigating the existence
of vascular anomaly associated lesions. Nevertheless, an automatic DR
scanning with specialised deep learning algorithms can overcome this
challenge. In this paper, we present an automatic detection of DR using
Multi-layer Neural Networks and Split Attention with Focal Loss. Our
method outperformed state-of-the-art (SOTA) networks in early-stage
detection and achieved 85.9% accuracy in DR classification. Because of
high performance, it is believed that the results obtained in this paper are
of great importance to the medical and the relevant research community.

Keywords: Diabetic Retinopathy · Deep learning · Computer-aided
diagnosis · ResNet · Split attention · Ophthalmoscopy

1 Introduction

The occurrence of vision impairment owing to Diabetic Retinopathy (DR) is on
the rise, and such incidences are projected to hit epidemic levels worldwide in
the next few decades. DR still had been the primary cause of adult blindness.
Globally, there were 425 million diabetes patients in 2017, with its projected rise
to around 642 million by the end of 2040 [2]. DR develops and grows without
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arbitrary symptoms and can ultimately lead to blindness. Such an unprecedented
rise in the number of DR patients’ needs prompt identification to cure its lethal
consequences as blindness.

DR classification includes the weighting of various characteristics and posi-
tion of retina colour fundus image. Its identification is typically time and
resource-consuming. This is based upon a trained ophthalmologist examination
of the patient’s retina colour fundus image to ascertain the existence of lesions
consistent with the vascular anomaly. However, developments and advancements
in AI technologies have created massive opportunities to promote DR identifica-
tion on time. Deep learning (DL) subset, i.e., the algorithms of the Convolution
Neural Network (CNN) have an excellent rationale for using image recognition
and representation, which include medical imaging as well such as pathology,
dermatology, and radiology [5].

Customizability and accessibility of CNNs algorithm such as rectified lin-
ear units (ReLU), drop-out implementation, and high computational capability
graphical processing units (GPUs) are powerful tools in swift identification of
DR. The consistency and timing of DR diagnosis using this technique is criti-
cal for cost-effectiveness and defectiveness; the simpler it is to treat, the sooner
it is found. In this paper, we proposed the transfer learning methodology and
an automatic method using single human fundus imaging for the DR identifi-
cation. This approach learns useful features from noisy and limited data sets,
which would be used to detect and track various DR phases. Moreover, due to
the worldwide proliferation of both associated retinal diseases and DR, the auto-
matic DR detection and tracking should be able to keep pace with rising demand
for screening. The findings reported in this article are of considerable significance
for the scientific industry and in particular to the biomedical community.

The remainder of this paper is structured as follows: Sect. 2 presents related
work. Section 3 explains proposed methodology, the experimental results and
discussion are presented in Sect. 4, and Sect. 6 summarizes the conclusion.

2 Related Work

Many research efforts have been devoted to the problem of early DR detection.
First, researchers have attempted to use traditional computer vision and machine
learning approaches to provide an effective solution to this problem. For instance,
Priya et al. [21] Presented an approach focused on computer vision for the iden-
tification of DR stages using colour fundus images. They managed to extract fea-
tures from the raw image by using image processing and passed them to the SVM
for binary classification and got a sensitivity of 98%, specificity 96%, and accu-
racy of 97.6% on a testing set of 250 images. Quellec et al. [22] used a traditional
KNN algorithm with optimal filters on two classes to achieve an AUC of 0.927.
Also, Sinthanayothin et al. [25] proposed an automated DR detection system on
morphological features using the KNN algorithm and obtained sensitivity and
specificity of 80.21% and 70.66%, respectively. Larsen et al. [12] demonstrated
an automatic diagnosis of DR in fundus photographs with a visibility threshold.
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They reported accuracy of 90.1% for true cases detection and 81.3% for the
detection of the false case.

DL algorithms have become popular and applied to various areas in the last
few years [9,10,15–18]. Pratt et al. [14,20] Built a CNN-architecture And data
augmentation capable of identifying the complex features involved in the clas-
sification process, such as micro-aneurysms, exudates and retina haemorrhages,
and thus delivering a diagnosis automatically and without user input. There also
some research work has been carried out based on pre-trained CNN models. Since
the pre-trained CNN based models are previously trained with datasets such as
ImageNet, they are well suited for this kind of image classification task. Also,
some of the models provide variation in architecture which benefits in many cases
to solve different image classification problems. Marıa A. Bravo and Pablo A.
Arbelaez worked in such a similar way to detect DR [1]. They used both VGG-
16 and Inception-V4 pre-trained models and developed classifiers with both of
these. Shaohua et al. have developed classifiers with multiple CNN models [30].
Different developments in deep CNNs further improved the prediction accuracy
for the tasks of efficient image detection/classification. CNN pretrained models
have dramatically strengthened the next annual challenges, including ImageNet
Large-scale Visual Recognition Competition (ILSVRC). Many pre-trained mod-
els were introduced, such as VGG-16, VGG-19 [13], GoogleNet [27], ResNet [6],
Xception [3], Inception-V3 [29] and DenseNet [7] highly reliable and effective to
train if they have shorter interactions between input and output layers.

Previous studies had mostly focused on the binary classification of DR, which
restricted the scope of DR Detection studies. The purpose of this work was to
predict the severity level of DR fundus photography images. The purpose of
this work was to predict the severity level of DR fundus photography images
among five classes-No DR, Mild DR, Moderate DR, Severe DR, and Proliferative
DR. In this study, we have used multi-layer neural network with split attention
with the focal loss for DR classification. Our network trained on APTOS2019
Kaggle’s dataset outperformed other SOTA networks in early-stage detection
and achieved 85.9% accuracy.

3 Methodology

3.1 Proposed Approach

In this paper, we propose a classification architecture by a modified ResNet50
architecture. We choose ResNet50 as the backbone network for deep feature
extraction. This architecture is made up of three distinct components; Outer
structure in which ResNet50 architecture is used followed by Intermediate struc-
ture where ResNeXt architecture is used and finally Inner structure where split
Attention architecture is used. ResNeXt and split-attention widened our net-
work architectures by using multi-channel parallel extraction and channel-wide
re-weighting. Besides these components, we also enhance the accuracy of DR
classification by using focal loss in our model. To achieve this, we implement
active re-weighting to solve the problem of imbalanced distribution. The dia-
gram of the framework proposed is given in the Fig. 1.
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Fig. 1. Illustration of the proposed network architecture

The results of our model is evaluated with the VGG, ResNet50, ResNet50
with self and split attention. We also compared the results of our proposed model
with previous studies conducted on DR classification. The proposed framework
of the architectures chosen is as follows:

Outer Structure (ResNet50): Deep-residual learning network (ResNet)
presents the idea of a residual block. The residual blocks are constructed to
provide a relation between the first block input and the second block output.
This process of adding lets the residual block learn about the residual function
and prevents outburst of parameters. ResNet50 structure is a 50-layer residual
block composed of a convolutionary layer, 48 residual blocks, and a 1×1 and 3×3
classification layer with small filters. This model won the classification challenge
for ILSVRC 2015 and obtained excellent results on ImageNet and MS-COCO
object detection competitions.

Intermediate Structure (ResNext): Xie et al. [32] proposed a variant of
ResNet that is codenamed ResNeXt with the following building block:

As shown in Fig. 3 ResNeXt Applies several channels but preserves the car-
dinality of the system (the size of the set of transformations), reduces the design
complexity and improves the scalability. ResNext can extract parallel features
from the input during the procedure, while all paths have the same system design
and filter scale. It is quite identical to the Inception module of [28], both adopt
the concept of split-transform-merge, but in this version, the outputs of separate
paths are combined by adding them combined, whereas in [28] they are concate-
nated with depth. Another distinction is that each path in [28] is unique from
one another (1×1, 3×3, and 5×5 convolution), whereas in this design all paths
share the identical architecture (Fig. 2).
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Fig. 2. Architecture of ResNeXt

Inner Structure (Split Attention for Channel-Wide Reweighting). We
used split attention which allows channel-wide re-weighing and effectively adjust-
ing the filter in multiple channels allowing the network to accommodate the
accepting field size.

When humans looks at objects of various sizes and distances, the scale of the
visual cortical neuronal receptive field is changed according the stimulus. Thus,
in general, the size of the convolution kernel for a particular model for a specific
task is calculated for the CNN-based network, so it is possible to construct a
method that enables the network to adjust the size of the acceptance field as per
multiple input scales.

Such design is basically divided into three parts of operation: Break, Fuse,
and Pick. Split refers to a complete convolution operation with different kernel
sizes on the input (including effective grouped/depth-wise convolutions, batch
normalisation, ReLU function). Fuse component is a global average pooling pro-
cess and the Select operation refers to the size, and Select uses two weight matrix
sets to conduct a weighting action and then the aggregate to get the final output.

As shown in Fig. 1, our overall deep model is the integrated use of emerging
DL techniques including ResNet, ResNeXt and Split Attention. This design can
be seen as architecture of a tripartite scale, where:

– Outer architecture: utilizing cross-layer connections to build deep and stable
multi-layer networks.

– Intermediate architecture: utilizing multiple parallel paths to better extract
features while maintaining the cardinality.
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Fig. 3. Utilization of split attention for channel-wide re-weighting

– Inner architecture: utilizing Split-Attention, which enables channel-wide
reweighing and actively change the filters in different channels that allow
the network to adjust the size of the acceptance field adaptively.

– Finally, utilizing focal loss to solve image class imbalance problem and imple-
menting data pre-processing and augmentation for better training efficiency
and performance.

3.2 Dataset

The dataset utilized in this study is provided by the Asia Pacific Tele-
Ophthalmology Society’s APTOS 2019 competition on DR classification. The
purpose of this competition is to build ML techniques to screen fundus images
automatically for early classification of DR in rural regions where medical exami-
nation is edious and hard to carry out. The dataset contains a total of 3662 retina
images obtained from various labs utilizing fundus photography, under a range
of imaging conditions. The fundus images given in this dataset are divided into
five categories. Class distribution of dataset used is given in Table 1.

Table 1. Distribution of DR datasets

DR Grade Grade name # Train set # Test set Total

0 No DR 1625 180 1805

1 Mild DR 333 37 370

2 Moderate DR 899 100 999

3 Severe DR 174 19 193

4 Proliferative DR 265 30 295

3.3 Data Pre-processing

The fundus images of the given dataset were gathered with different cameras
from various clinics. The input images that have been acquired differ consider-
ably in image intensity. So we conducted various methods of pre-processing to
simplify the training phase.



32 U. Naseem et al.

Fig. 4. Examples of actual fundus images (upper row), and associated images processed
(bottom row)

– Resizing: With regard to the dimensional variations of the actual images, we
resampled images to 819 × 614 depending on the aspect rate, cropped from
the middle to the final resolution of the 600 × 600 pixels utilising bicubic
interpolation to make sure that each retinal circle is located at the centre of
the image.

– Min-pooling: To improve the clarity of the blood vessels and regions of lesion,
we used Graham’s technique. As per this technique, the black pixels are first
excluded from the background, and then the process of image normalisation is
carried out on the basis of the min-pooling filtering. Figure 4 displays actual
image examples and the matching image pre-processed by using min pooling
filtering technique.

– Image normalization: The cross-channel strength amount of images were nor-
malised from [0, 255] to [−1, 1]. This aids eliminate bias from the features and
maintain a consistent distribution throughout the dataset. Further, ImageNet
was used to standardise the images using ImageNet as a pre-processing stage
means subtraction.

3.4 Metrics for Performance Evaluation

We conduct a series of experiments to analyze the performance of our proposed
framework and is assessed and compared based on evaluation metrics, namely,
accuracy. These measures are mathematically expressed as follows, provided the
number of true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN):

Accuracy =
TP + TN

TP + FP + FN + TN
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Table 2. Comparison of proposed model with others

Model Accuracy

CNNa 0.740

CNN [20] 0.750

CNN [4] 0.770

GoogleNet [24] 0.450

AlexNet [31] 0.374

VGG16 [31] 0.500

InceptionNet V3 [31] 0.632

CNNbaseline [11] 0.745

DenseNetbaseline
b 0.764

VGG [19] 0.820

GNN [23] 0.793

Xception [8] 0.795

InceptionV3 [8] 0.787

MobileNet [8] 0.790

ResNet50 [8] 0.746

Modified Xception [8] 0.746

ResNet [26] 0.850

Proposed Model 0.859
ahttps://www.kaggle.com/
kmader/inceptionv3-for-
retinopathy-gpu-hr
bhttps://dragonlong.github.io/
publications/automatic-image-
grading.pdf

4 Experimental Results and Discussion

The computations were done on Kaggle kernel having 4 CPU cores with 17 GB
RAM and 2 CPU cores with 14 GB RAM. Several cutting-edge methodologies
and their published results are extensively compared to assess the performance
of our model; published results being obtained from each of their original pub-
lications. Results are given in Table 2 which confirms that the proposed model
beats all peers and attains the highest DR classification accuracy. Referring to
Table 2, we note that the model proposed provided high precision (85.90%).
Also, loss and accuracy curves were plotted to keep track of the performance of
the model concerning the number of epochs and confusion matrix, to describe
the performance of a classification model by comparing the true labels with the
predicted labels are presented in Fig. 5.

https://www.kaggle.com/kmader/inceptionv3-for-retinopathy-gpu-hr
https://www.kaggle.com/kmader/inceptionv3-for-retinopathy-gpu-hr
https://www.kaggle.com/kmader/inceptionv3-for-retinopathy-gpu-hr
https://dragonlong.github.io/publications/automatic-image-grading.pdf
https://dragonlong.github.io/publications/automatic-image-grading.pdf
https://dragonlong.github.io/publications/automatic-image-grading.pdf
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Fig. 5. Proposed model: (a) Training loss v/s Test loss, (b) Training accuracy v/s Test
accuracy and (c) Confusion Matrix

Table 3. Comparison of proposed architecture with others

Model Accuracy

ResNet50 0.746

ResNet50+ Self Attention (Layer 2) 0.763

ResNet50+ Self Attention (Layer 3) 0.787

ResNet50+ Self Attention (Layer 4) 0.752

ResNet50+ Split Attention 0.818

Proposed Model 0.859

5 Analysis

To support the effectiveness of the proposed model, it tests and contrasts the
performance of ResNet50, ResNext, and split attention models with our pro-
posed algorithm. As shown in Table 3, the performance of our method increases
ResNet50 up to 11.3%, ResNet+ Self attention at layer 2 up to 9.6%, ResNet+
Self attention at layer 3 up to 7.2%, ResNet+ Self attention at layer 4 up to 7.2%
and ResNet+ Split attention up to 4.1% in terms of accuracy when compared
to our proposed model which is a significant improvement.

Fig. 6. Confusion Matrix: (a) ResNet, (b) ResNet+ Self Attention at Layer 2 and (c) ResNet+ Self
Attention at Layer 3
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Moreover, the ResNet50 architecture, when used with self-attention at differ-
ent layers gives a better performance at layer 2 when compared to the original
architecture of ResNet50 and other variants tested in our study. Also, accuracy is
improved when self-attention is replaced with split attention which highlights the
importance of split attention. The classifier with lowest performance is ResNet50
with an accuracy of 74.6%. The results obtained shows that the combination of
these models together plays a vital role and increases accuracy. Confusion matrix,
train and test loss and accuracy are shown in Fig. 6 and Fig. 7, respectively.

Fig. 7. Comparison of loss and accuracy of tested models

6 Conclusion

In this research, we proposed a new framework based on a modified ResNet50.
We presented a three-layer model which is composed of ResNET50, ResNext
and split attention for classification of severity DR. The proposed model can
significantly fuse feature maps of varying depths and provide an effective and
highly inexpensive methodology for classifying DR severity. Pre-processing min-
pooling is used to enhance input image colour contrast. In addition, address-
ing the strongly imbalanced groups in the dataset, we used focal, which fur-
ther improved the performance of our model for DR classification. The modified
ResNet50 deep extractor accomplished substantially better results compared to
the original ResNet50 and other variants tested in our study and a few other
SOTA algorithms on the APTOS dataset. We demonstrated that the concate-
nation of ResNet50 components and the ResNext with split attention contribute
to impressive results despite the insufficient number of training images.
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Abstract. Identification of enhancers and their strength prediction
plays an important role in gene expression regulation and currently
an active area of research. However, its identification specifically
through experimental approaches is extremely time consuming and
labor-intensive task. Several machine learning methodologies have been
proposed to accurately discriminate enhancers from regulatory elements
and to estimate their strength. Existing approaches utilise different sta-
tistical measures for feature encoding which mainly capture residue spe-
cific physico-chemical properties upto certain extent but ignore semantic
and positional information of residues. This paper presents “Enhancer-
DSNet”, a two-layer precisely deep neural network which makes use
of a novel k-mer based sequence representation scheme prepared by
fusing associations between k-mer positions and sequence type. Pro-
posed Enhancer-DSNet methodology is evaluated on a publicly available
benchmark dataset and independent test set. Experimental results over
benchmark independent test set indicate that proposed Enhancer-DSNet
methodology outshines the performance of most recent predictor by the
figure of 2%, 1%, 2%, and 5% in terms of accuracy, specificity, sensitiv-
ity and matthews correlation coefficient for enhancer identification task
and by the figure of 15%, 21%, and 39% in terms of accuracy, specificity,
and matthews correlation coefficient for strong/weak enhancer prediction
task.
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1 Introduction

Enhancers are functional cis elements which belong to diverse subgroups (e.g.
strong enhancer, weak enhancers, poised enhancers, and inactive enhancers),
where each type of enhancer is associated with multifarious biological activities
[13]. Mainly, in gene expression regulation, enhancers play an indispensable role
for the generation of proteins and RNA [19] and ensure very close relationship
between biological processes [12]. Enhancers impact cell growth, cell differentia-
tion, cell carcinogenesis, virus activity, and tissue specificity through enhancing
genes transcription [12]. Enhancer may be located in separate chromosome or
20 kb far away from genes [15] as compared to promoters which are usually
located around start transcriptional sites of genes. Building on these locational
differences, identifying enhancers is widely considered far more challenging than
promoters. Discriminating enhancers from regulatory elements, estimating their
location and overall strength are few most promising tasks which can facilitate
deeper comprehension of eukaryotic spatiotemporal gene regulation and evolu-
tion of diseases [15].

Initially, enhancers were discovered through typical experimental approaches
[3,11]. Former approach used to identify enhancers by utilizing their associa-
tion with transcriptional factor [22], whereas, latter approach leveraged DNase-
I hypersensitivity. While former approach under detected enhancers [6] as
all enhancers are not occupied by transcription factors, latter approach over
detected as it classified even DNA segments or non-enhancers as enhancers
[15,17]. Although subsequent methodologies of genome wide mapping of his-
tone modifications [7,8,20] decently alleviated high false positive and false neg-
ative rate of initial experimental techniques for the discovery of promoters
and enhancers. However, these approaches are rigorously expensive, time, and
resource consuming. Due to these shortcomings and with the influx of high
throughput biological data related to enhancers, demand of robust computa-
tional methodologies capable to differentiate enhancers from regulatory elements
and estimate their strength got significantly rocketed.

Up to this date, several computational methodologies have been proposed
to discriminate enhancers from non-enhancers in genome such as CSI-ANN [9],
RFECS [20], EnhancerFinder [8], EnhancerDBN [5], and BiRen [24]. Proposed
predictors differ in terms of feature encoding and classifier. For example, CS1-
ANN [9] utilized data transformation approach for samples formulation and
Artificial Neural Network (ANN) for classification. Likewise, EnhancerFinder
[8] incorporates evolutionary conservation knowledge into sample formulation
and a combination of several kernel learning approaches for classification.
EnhancerDBN [5] makes use of deep belief network (DBN), RFEC [20] uti-
lizes random forest classifier [4], whereas BiRen [24] leverages deep learning
approaches to accelerate predictive performance. These approaches only capa-
ble to discriminate enhancers from regulatory elements in genome. There-
fore, robust enhancer determinant and strength prediction approaches are still
scarce. iEnhancer-2L [15] is the very first tool developed to discover enhancer
along with their strength using solely sequence information and it has been
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extensively utilized for genome analysis. To further improve the performance at
both layers, more computational methodologies have been developed afterward
which have improved iEnhancer-2L [15] methodology further by using the com-
bination of statistical measures to better represent physico-chemical properties
such as EnhancerPred [12], iEnhancer-PsedeKNC [15] iEnhancer-EL [16], Tan
et al. Enhancer [21], and EnhancerPred2.0 [10]. Up to date, only one recently
proposed approach namely “iEnhancer-5Step” [14] makes use of SVM classifier
and unsupervisedly prepared neural k-mer embeddings to better capture local
patterns for the task of enhancer determinant and strength prediction.

Nevertheless, still a lot of improvement in performance is required as these
approaches produce confined performance especially in distinguishing strong
enhancers from weak enhancers. To develop an optimal machine learning model
for enhancer identification and strength prediction task, most crucial step is
to encode biomedical sequence into fixed-size low dimensional vectors. In this
context, few sequence encoding approaches including Local Descriptor, Conjoint
Triad (CT), Auto Covariance (AC), and PSE-KNC [16] have been utilized where
residual oriented physico-chemical properties are taken into account. But, the
major downfalls for such manually curated feature vectors are, these approaches
fail to take semantic information of residues into account (such as residues order)
in sequences and also neglect noteworthy information from large number of un-
labelled biomedical sequences that can assist the classifier to better identify class
boundaries. To overcome these shortcomings upto certain extent, Le et al. [14]
have recently employed neural word embeddings prepared in an unsupervised
manner. Although unsupervised k-mer embeddings capture semantic informa-
tion of k-mers, however they still lack to associate inherent k-mer relationships
with sequence type keeping within low-dimensional vector space. To fully reap
the benefits of neural word embeddings for creating an optimal representation of
k-mers present in sequences, we present a novel k-mer based sequence represen-
tation scheme which prepares the sequence embeddings in a supervised manner
where we fuse the alliance of k-mers with sequence type. To evaluate the effective-
ness of presented enriched sequence representation, we present a two-layer clas-
sification methodology (Enhancer-DSNet) based on linear classifier and perform
experimentation over a publicly available benchmark dataset and independent
test set for the task of enhancer determinant and strength prediction task. We
have obtained excellent predictive accuracy, outperformed various combinations
of machine learning algorithms, commonly-used sequence encoding schemes, and
unsupervisedly prepared k-mer embeddings with significant margins.

2 Materials and Methods

This section discusses proposed two-layer classification methodology “Enhancer-
DSNet”, benchmark dataset and independent test set used for experimentation,
and evaluation measures.
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3 Proposed Enhancer-DSNet Methodology

With the huge success of pre-trained neural word embeddings over diversified
NLP tasks [1], biomedical researchers have extensively utilized distributed rep-
resentations in different biomedical tasks [23]. These embeddings are usually
prepared in an unsupervised manner by training a shallow neural network on
gigantic sequence corpora. Pre-trained neural k-mer embeddings are semanti-
cally meaningful low dimensional dense representation of k-mers present in the
sequences. Although neural k-mer embeddings prepared in an unsupervised man-
ner create proximal representation of highly similar k-mer groups in embedding
space and have shown good performance in different biomedical tasks such as
sequences structural similarity estimation [2], and transmembrane prediction
[18]. However, these embeddings still lack to associate class information with
distinct arrangements of nucleotides present in sequences, a phenomena that
can significantly raise the classifier performance [23].

Considering relationships between distinct k-mers largely depend on k-mer
size and sequence type, we have generated k-mer embeddings in a supervised
manner. Unlike trivial neural k-mer embeddings, here, we improve k-mer repre-
sentation by creating associations between k-mers positions and sequence type
(Fig. 1).

Fig. 1. Supervisedly prepared neural k-mer embeddings

To generate sequence embeddings, k-mer embeddings are concatenated
through summation. In this manner, we are accurately capturing semantic
information and local patterns present in sequences. Also, we are comput-
ing sequences similarity correctly within low dimensional space revealing func-
tional relationship, while making sure that computation relies on set of features
pertinent to hand on problem. Architecture of proposed two-layer Enhancer-
DSNet approach is illustrated in Fig. 2. Where firstly, overlapped k-mers of each
sequence is generated by sliding a window across the sequence with stride size
of 1. Afterward, overlapped k-mers of sequences are passed to embedding layer,
where 100 dimensional vectors are generated for each overlapped k-mers. All
k-mer vectors are then aggregated to generate 100 dimensional vector for the
whole sequence. In order to avoid over fitting the model, a dropout layer with
dropout rate of 0.5% is utilized. After dropout layer, softmax classifier is used
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to incorporate label information into the sequence vectors by updating model
parameters. In this manner, we ensure that, on independent test set, model is
able to extract meaningful patterns through which classifier will better discrim-
inate the sequences at both layers.

Fig. 2. Architecture of proposed two-layer classification methodology “Enhancer-
DSNet”

4 Benchmark Dataset

To evaluate the integrity of proposed Enhancer-DSNet approach, experimenta-
tion is performed on a publicly available benchmark dataset and independent
test set [15]. These resources have been utilized in previous studies to evalu-
ate enhancer determinant and strength prediction approaches [10,12,15,16,21].
Enhancer and non-Enhancer discrimination benchmark dataset has 2968 sam-
ples, out of which 1484 samples are enhancers and 1484 samples are non-
enhancers. Out of 1484 enhancer samples, 742 samples are strong enhancers and
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remaining 742 samples are weak enhancers. While enhancer/non-enhance dataset
is used to discriminate enhancers from non-enhancers, strong/weak enhancer
subset formulated using enhancer samples is further used to estimate the strength
of enhancers. Besides benchmark dataset, an independent test set is also publicly
available which contain 400 samples, out of which 200 samples are enhancers and
remaining 200 samples are non-enhancers. From 200 enhancer samples, 100 sam-
ples are strong enhancers and remaining 100 samples are weak enhancers. Just
like benchmark dataset, enhancer/non-enhancer independent test set is used to
for enhancer/non-enhancer prediction task, whereas strong/weak enhancer sub-
set formulated using enhancer samples of independent test is used to estimate
the strength of enhancers. Detailed formulation of benchmark and independent
test set have been clearly elaborated in Liu et al. [16] work, hence there in no
need to repeat here.

5 Evaluation Metrics

Following evaluation criteria of previous studies related to the classification
of enhancer and other regulatory elements, and estimating the strength of
enhancers [10,12,15,16,21], here we have used 4 different evaluation measures
(sensitivity, specificity, accuracy, and matthews correlation coefficient) to per-
form a fair performance comparison of proposed approach with state-of-the-art
approaches. As these measures are briefly described in previous studies [12,15]
so here we just give a short description. To provide intuitive understanding
for readers, evaluation metrics along with mathematical expressions are briefly
described below:

f(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Accuracy (ACC) = 1 − (O+
− + (O−

+ )/(O+ + O−) 0 ≤ Acc ≤ 1

Specificity (SP) = 1 − (O−
+/O−) 0 ≤ SP ≤ 1

Sensitivity (SN) = 1 − −(O+
−/O+) 0 ≤ SN ≤ 1

MCC = 1 − (O+
−/O+ + O−

+/O−)/
√

(1 + O−
+ − O+

−/O+)(1 + O+
− − O−

+/O− −1 ≤ MCC ≤ 1

(1)
Here, O+ infers total positive class observations investigated, O− represents

total negative class observations investigated. While, number of positive class
observations predicted correctly and are negative class observations predicted
correctly. Whereas, represent positive class observation incorrectly predicted as
negative and are negative class observations mis-classified as positive.

6 Experimental Setup and Results

This section illustrates experimental details and briefly describes Results of pro-
posed Enhancer-DSNet approach.

To generate sequence embeddings of benchmark dataset in a supervised man-
ner, and to perform experimentation over benchmark dataset and independent
test set, we have used Pytorch API. To generate supervised sequence vectors,
we have trained the newly developed skip-gram model for 30 epochs with 0.008
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learning rate and adam optimizer. Experimentation for both enhancer identifi-
cation and strength prediction tasks is performed using 7-mer enriched sequence
vectors.

6.1 Results

Here, we briefly describe and compare the performance of proposed Enhancer-
DSNet methodology with state-of-the-art Enhancer determinant and strength
prediction approaches using cross validation and benchmark independent test
set.

Cross-validation. In order to better evaluate the performance of a classifier by
eliminating biasness towards the split of dataset, most widely used re-sampling
approach is called cross-validation. In k-fold cross validation, one can split a
dataset into k number of groups, for example, 5-fold cross validation will segre-
gate entire dataset into 5 groups where each group will be splitted into train,
and test sets to train and test the model. In this manner, each group of limited
data samples take part in training and testing processes. Another similar unbi-
ased performance estimator is jackknife test where training is performed over
entire dataset except one observation of a dataset which is iteratively used to
test the model. In comparison to cross-validation, jackknife test is quite expen-
sive to compute especially for large datasets and it has also high variance as
datasets used to estimate classifier performance are quite similar. Hence, k-fold
cross validation is widely considered a better estimator of bias and variance as
it is a well compromise among computational requirements and impartiality.
Existing enhancer and non-enhancer discriminator and enhancer strength pre-
dictor approaches (EnhancerPred [12], iEnhancer-PsedeKNC [15] iEnhancer-EL
[16], EnhancerPred2.0 [10]) utilized jackknife test to evaluate the performance of
their models on a benchmark dataset. However, most recent Tan et al. predictor
[21] performance is evaluated using 5 fold cross validation. Following Tan et al.
[21] work, in our experimentation, we have also used 5-fold cross validation on
a benchmark dataset. So here, using 5-fold cross validation, we perform per-
formance comparison of Enhancer-DSNet with most recent Tan et al. predictor
[21].

Figures 3a and b illustrate the performance of Enhancer-DSNet across 5-folds
on a benchmark dataset of enhancer/non-enhancer and strong/weak enhancer
prediction task. To sum up, performance of Enhancer-DSNet remains consistent
across 5-folds when evaluated in terms of 4 distinct evaluation metrics.

Table 1 reports the average of performance figures produced by 5-fold
cross validation at layer 1 and 2 in terms of accuracy, specificity, sensitivity
and matthews correlation coefficient (mcc). As is indicated by the Table 1,
for enhancer/non-enhancer prediction task (layer-1), proposed Enhancer-DSNet
outshines Tan et al. Enhancer [21] by the figure of 3% in terms of sensitivity, 2%
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(a) Enhancer/Non-Enhancer Prediction (b) Strong/Weak Enhancer Prediction

Fig. 3. Performance of Enhancer-DSNet produced over 5-folds for layer 1 and 2 in
terms of accuracy, specificity, sensitivity, and MCC

Table 1. Performance comparison of Enhancer-DSNet with most recent Tan et al.
Enhancer [21] using 5-fold cross validation for enhancer/non-enhancer and strong/weak
enhancer prediction task

Classifiers Sensitivity Specificity Accuracy MCC

1st layer (enhancer/non-enhancer)

Enhancer-DSNet 0.76 0.76 0.76 0.52

Tan et al. Enhancer [21] 0.73 0.76 0.74 0.50

2nd layer (strong enhancer/weak enhancer)

Enhancer-DSNet 0.63 0.67 0.63 0.26

Tan et al. Enhancer [21] 0.80 0.38 0.59 0.20

in terms of accuracy and 2% in terms of matthews correlation coefficient. How-
ever, for strong/weak enhancer prediction task (layer-2), proposed Enhancer-
DSNet outperforms Tan et al. Enhancer [21] with a huge margin across 4 dif-
ferent evaluation metrics. Enhancer-DSNet significantly superior performance
overshadows most recent Tan et al. Enhancer [21] performance by the figure of
17% in terms of sensitivity, 29% in terms of specificity, 4% in terms of accuracy,
and 6% in terms of mcc.

Performance over Benchmark Independent Test Set. Table 2 reports
the performance of proposed Enhancer-DSNet and existing predictors produced
over independent test set for enhancer/non-enhancer and independent subset for
strong/weak enhancer prediction tasks in terms of accuracy, specificity, sensitiv-
ity, and matthews correlation coefficient. According to the Table 2, at layer-1,
among all existing predictors excluding most recent Tan et al. Enhancer [21],
and -iEnhancer-EL [16] mark better performance across most evaluation metrics.
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Here, proposed Enhancer-DSNet outperforms most recent Tan et al. Enhancer
[21] by the figure of 2%, 1%, 2%, and 5% in terms of sensitivity, specificity, accu-
racy, and mcc and second best performing -iEnhancer-EL [16] by the figure of 7%,
3%, and 6% in terms of sensitivity, accuracy, and mcc. Whereas, at layer-2, once
again proposed Enhancer-DSNet outshines most recent Tan et al. Enhancer [21]
by the promising figure of 21% in terms of specificity, 15% in terms of accuracy,
and 39% in terms of mcc, and second best performing predictor -iEnhancer-EL
[16] by the figure of 29% in term of sensitivity, 22% in terms of accuracy, and
48% in terms of mcc.

Table 2. Performance comparison of Enhancer-DSNet with existing enhancer/non-
enhancer and strong/weak enhancer predictors over independent test set

Classifiers Sensitivity Specificity Accuracy MCC

1st layer (enhancer/non-enhancer)

Enhancer-DSNet 0.78 0.77 0.78 0.56

Tan et al. Enhancer [21] 0.76 0.76 0.76 0.51

iEnhancer-EL [16] 0.71 0.79 0.75 0.50

iEnhancer-2L [15] 0.71 0.75 0.73 0.46

EnhancerPred [12] 0.74 0.75 0.74 0.48

2nd layer (strong enhancer/weak enhancer)

Enhancer-DSNet 0.83 0.67 0.83 0.70

Tan et al. Enhancer [21] 0.83 0.46 68.49 0.31

iEnhancer-EL [16] 0.54 0.68 0.61 0.22

iEnhancer-2L [15] 0.47 0.74 0.61 0.22

EnhancerPred [12] 0.45 0.65 0.55 0.10

Results Reproduce Ability Issue. It is important to mention that recent
enhancer determinant and strength prediction approach namely “i-Enhancer-
5Step” is given by Lee et al. [14]. Authors have utilized unsupervisedly prepared
sequence embeddings by treating each nucleotide as word and entire sequence as
sentence. Then, these embeddings are passed to SVM classifier. To re-produce
reported results [14], we have performed rigorous experimentation using all men-
tioned parameters [14], but the performance figures we attained are reasonably
low than the reported ones [14]. Also authors of most recent predictor namely
iEnhancer-EL [16] did not compare their performance figures with Lee et al.
i-Enhancer-5Step [14]. Building on this, we consider the results reported in Lee
et al. [14] work are fraudulent. Therefore, similar to iEnhancer-EL [16], we also
do not compare the performance of proposed Enhancer-DSNet with Lee et al.
i-Enhancer-5Step [14].
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7 Conclusion

In the marathon of improving the performance of Enhancer identification and
their strength prediction, researchers have predominantly employed physico-
chemical properties based, bag-of-words based and unsupervisedly prepared k-
mer embeddings with different classifiers. Considering these approaches fail to
utilize association of inherent sequence relationships with sequence type, we have
fused such association by generating sequence embeddings in a supervised fash-
ion which are later fed to a two-layer classification methodology Enhancer-DSNet
based on linear classifier. Over a benchmark dataset, proposed Enhancer-DSNet
approach outperforms most recent predictor by the figure of 2%, 3%, 2% in
terms of accuracy, sensitivity and mcc for enhancer identification task and by the
figure of 29%, 4%, 6% in terms of accuracy, specificity, and mcc for strong/weak
enhancer prediction task. This studly findings has opened new doors of further
research where biomedical researchers can utilize supervisedly prepared sequence
embeddings to enhance the performance of multifarious biomedical tasks.
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Abstract. Pulse transit time (PTT) provides a cuffless method to mea-
sure and predict blood pressure, which is essential in long term car-
diac activity monitoring. Photoplethysmography (PPG) sensors provide
a low-cost and wearable approach to obtain PTT measurements. The
current approach to calculating PTT relies on quasi-periodic pulse event
extractions based on PPG local signal characteristics. However, due to
inherent noise in PPG, especially at uncontrolled settings, this approach
leads to significant errors and even missing potential pulse events. In this
paper, we propose a novel approach where global features (all samples)
of the time-series data are used to develop a machine learning model
to extract local pulse events. Specifically, we contribute 1) a new noise
resilient machine learning model to extract events from PPG and 2)
results from a study showing accuracy over state of the art (e.g. HeartPy)
and 3) we show that MLPTT outperforms HeartPy peak detection, espe-
cially for noisy photoplethysmography data.

Keywords: Pulse transit time · Pulse Arrival Time · Blood pressure ·
Medical · Data analysis · Machine learning

1 Introduction

Continuous monitoring of blood pressure over long periods is essential to prevent
critical cardiovascular events that can cause irreversible health damages and even
death. The classical approach to measuring blood pressure uses pressure cuffs,
requiring mechanical apparatuses which are undesired in long-term monitoring.
Researchers have proposed alternative methods to measure blood pressure using
pulse transit time (PTT), which does not need mechanical cuffs [1–7]. An exten-
sive review of blood pressure monitoring theory and practice using PTT can be
found in [8]. Researchers also found a strong correlation among PTT, the mea-
surement of respiratory effort [9] and the detection of microarousals [9]. Other
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applications included the indication of cardiovascular changes during obstetric
spinal anesthesia [10], myocardial performance [11], respiratory events [12] and
hypertension detection [13,14].

PTT is the duration that it takes for a pulse wave (PW) to travel between
two arterial points [13]. It can be measured with different methods, such as
arterial probes [15], electrocardiogram (ECG) or contactless photoplethysmog-
raphy (PPG). ECG electrically records a graph of voltage versus time, which is
typically acquired from electrodes attached to the chest or limbs whereas PPG
optically records blood volume changes vs time.

While ECG may have suffered from measurement artefacts [16] such as elec-
tromagnetic interference or loose leads, it was still considered the gold standard
for continuous heart rate monitoring [17]. Despite the high signal quality, its
usability was limited by the requirement of leads attached to the skin. In com-
parison, optical PPG sensors were found to be the least invasive and therefore
overall desirable. However, they were also sensitive to sensor pressure and arte-
facts caused by motion [18]. Pulse transit times can also be measured between
different physical locations and temporal parts of the cardiac cycle. The cardiac
cycle is a repeating series of pressure changes within the heart of living organ-
isms and was often described to have several peaks, particularly the P wave, QRS
complex and T wave [19]. No standardised PTT definition had been established
due to various measurement possibilities regarding

(i) different sensor types
(ii) sensor or lead locations and
(iii) temporal reference points.

Van Velzen, et al. identified 43 different methods to determine PTT [20]
between an ECG R-peak and a PPG signal [21–25]. A PTT for ECG-PPG
measurements is called Pulse Arrival Time (PAT). All reviewed methods [20]
used anchor points to calculate the PAT (Fig. 1A).

Fig. 1. A: Existing PAT definitions, B: Proposed MLPTT PAT measurement

These anchor points could be the foot (or onset), peak or a percentage (e.g.
50%, 25%, etc.) of the pulse wave. PAT could be calculated by

PATpeak−peak = tPPGpeak
(n) − tECGR−peak

(n), (1)
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PATpeak−50%peak = tPPG50%peak
(n) − tECGR−peak

(n), (2)

PATpeak−foot = tPPGfoot
(n) − tECGR−peak

(n), (3)

where n was the individual heartbeat. Many PPG sensor signal quality-related
challenges were identified in previous research. Their readings were found to
contain artefacts [18,26] or malformed segments induced by sensor motion or
attachment pressure variations [20]. To compensate for undesired signal anoma-
lies, at least 19 of the 43 previously reviewed methods [20] used signal filtering
for PTT calculated from anchor points. Although PTT is the duration that it
takes for a pulse wave to travel between two arterial points, it was so far consid-
ered as the time between two selected points on two curves, with PATpeak−foot

and PATpeak−peak most widely used. Table 1 provides a summary of previously
used anchor points in literature.

Table 1. Anchor point prevalence in the literature [20].

Anchor point Foot Onset Upstroke 5% peak 25% peak 50% 90% Peak

Count 15 6 7 1 4 6 1 8

Machine learning and particularly neural networks had shown great potential
at extracting spatial information from data [27]. We hypothesized that while
filtering had refined PTT measurements, accuracy could be improved further by
not considering an individual point on the curve but the shift of the shape of
the curve using all points. We therefore propose Machine Learned Pulse Transit
Time (MLPTT), which was trained on a sliding frame to detect curve properties
relative to a virtual anchor point (Fig. 1B). The proposed PAT measurement
could be defined with the following equation

PATpeak−MLPTT = tPPGvirtual anchor
(n) − tECGR−peak

(n), (4)

where n was an individual heartbeat. PAT is a particular type of PTT and was
used to validate the proposed method by comparing the predicted PAT with PAT
calculated by HeartPy, a toolkit that was designed to handle (noisy) PPG data
[28,29]. While the advantages of PAT are that R-peaks of the cardiovascular QRS
complex can be detected with numerous algorithms [30] such as Pan-Tompkins
[31], it requires conductive electrodes attached to the skin in selected locations
and is, therefore, more disruptive than PPG, which measures optically. Gao et al.
compared the pulse transit time estimates of PAT and PPG-PTT with invasive
I-PTT using arterial probes as a reference [32]. They concluded that PPG-PTT
correlated well with all blood pressure levels. To validate MLPTT, the PAT of
three BIDMC PPG and Respiration Dataset [33] patients was calculated with
HeartPy and MLPTT. Both methods provided independent results from each
other, the overall validation workflow is shown in Fig. 2.

Contribution: We propose a machine learning based PTT calculation method
and show it is more accurate than the existing signal processing approaches. The
specific contributions can be summarized as follows:
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Fig. 2. End-to-end PTT validation workflow (1: ECG, 2: finger PPG).

a) We propose a new noise resilient machine learning model to extract events
from PPG and demonstrate it particularly on PAT extraction.

b) Results from a study showing accuracy over state of the art (i.e. HeartPy)
with statistical significance.

c) We show that MLPTT outperforms HeartPy peak detection especially for
noisy photoplethysmogram data.

d) We discuss and evaluate the results.

2 Design

Pulse transit time was previously measured between two anchor points on ECG,
PPT or arterial probe pressure signals [32]. Since all these signals are quasi-
periodic, we hypothesized that PTT can be considered signal phase shift per
heartbeat period. While phase shift can be calculated between the same anchor
point on different signals, we propose to use machine learning to consider all
points on the signal to estimate phase shift and therefore PTT.

2.1 Machine Learned Pulse Transit Time

The idea to consider all points on the signal was implemented in MLPTT.
MLPTT consisted of a sequence of 4 processes: frame segmentation, waveform
binary classifier, frame segmentation, anchor point classifier (Fig. 3: 3, 4, 7, 8).

MLPTT Frame Segmentation for Binary Classification. PPG and ECG
data were loaded from a dataset (Fig. 3: 1, 2). To avoid discontinuities in the time
series data, 70% training and 30% test ratio were used for all patients instead
of k-fold verification. The first two MLPTT processes (Fig. 3: 3 and 4) aimed
at finding a periodic pattern in the PPG signal. This was achieved by using
the known periods from ECG signals R-peaks, detected with the Pan-Tompkins
algorithm (Fig. 3: 5 and [31]), as virtual anchor point labels. Frames of 60 samples
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peak-peakPAT

Fig. 3. MLPTT and HeartPy process diagram

each were created by shifting the frame in increments of one sample. In the case
of the BIDMC dataset sampled 125 Hz, one sample was 8ms long. Each frame
was labelled respective containing a virtual anchor or not.

Waveform Binary Classifier. The segmented and by anchor points labelled
frames were subsequently used as training input for the ML waveform binary
classifier (Fig. 4A: 4).

Fig. 4. A Binary waveform classifier. B Virtual anchor multilabel anchor position
classifier.

The goal of this step was to train a classifier that could detect quasi-periodic
waveforms in longer PPG time series which contained one virtual anchor. This
could also be considered a heart rate classification based on PPG data, with the
detected consecutive virtual anchors manifested as one heartbeat each. Settings
for Python Scikit-learn 0.22.1 KNN, SVC, Gaussian process, decision tree, ran-
dom forest, MLP, AdaBoost and Gaussian process Näıve Bayes classifiers were
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grid searched with Gaussian Näıve Bayes achieving the highest classification
accuracy with default settings. The trained classifier model was then used for
binary prediction of all frames, either containing a virtual anchor or not.

Frame Segmentation for Anchor Point Classification. The frames pre-
dicted to contain virtual anchors were then automatically selected for a second
classifier (Fig. 3: 7). Frames predicted to contain no virtual anchors were not
evaluated further.

Multilabel Anchor Position Classifier. As the final step of the proposed
MLPTT method, the anchor position in the selected frames was predicted. This
classifier was trained on ECG derived peaks for PPG training data. In addi-
tion to the classifiers evaluated for the binary classification, a 5-layer sequential
TensorFlow model was developed. The model consisted of 120 neurons for the
input layer and 60 for the output. After grid searching hyperparameters for this
model, it outperformed the baseline Scikit-learn MLP mode and was used for the
prediction results in the following chapters. The trained MLPTT was then used
to predict PAT (MLPTT )peak−virtual anchor by predicting the virtual anchors
for test data extracted from the BIDMC dataset, which were then downsampled
to one anchor per period.

2.2 HeartPy Pulse Transit Time

HeartPy is a toolkit designed to handle noisy PPG data and was used to detect
peaks in PPG signals. For three out of four tested PAT definitions, Rajala et
al. reported the smallest relative error for PATpeak−peak [34] and this defini-
tion was found to be the second most widely used in a literature review of 43
published papers [20]. Therefore, PAT (HeartPy)peak−peak was calculated by
HeartPy. As ECG reference, the same Pan-Tompkins detected peaks were used
as for MLPTT. PPG peaks were detected with HeartPy using following settings:
sample rate = 125, hampel correct = False, high precision fs = 1000.

3 Analysis

In this section, we show how the proposed method was compared to the estab-
lished toolkit.

3.1 Methods

For PTT and PAT, there is no ground truth readily available. We therefore ini-
tially compared MLPTT PAT with HeartPy PAT as a reference, to disprove
the null hypothesis that their correlation is not statistically relevant. PAT was
used instead of PPG PTT because ECG R-peak detection accuracy was found
to be higher than for PPG, ECG R-peak detection has been standard practice
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and for some populations, comparatively better signal to noise ratios had been
observed [35] as well as lower morphological variance [36]. Because our eventual
goal was to measure PTT and therefore phase shift between signals, we consid-
ered only the AC component of the time series PTT estimations for comparison.
Accordingly, the PAT of 196–240 ECG-detected heartbeats was calculated for 5
patients with HeartPy and MLPTT.

We then disproved that there is no statistically significant correlation between
both curves. If the following relationship was true

n∑

k=0

MLPTTPAT (hbk) �=
n∑

k=0

HeartPyPAT (hbk), (5)

where hbk were the heartbeats of each patient from the beginning of the test
data (k = 0) to the last heartbeat (k = n), MLPTT PAT and HeartPy PAT were
not correlated. If they were linearly correlated, plotting x = MLPTTPAT (hbk)
and y = HeartPyPAT (hbk) would have formed a straight line. The correlation
was to be proven with Pearson correlation and its respective p-value <0.05.

4 Results

We measured performance by showing a linear relation between our proposed
method PAT results and HeartPy PAT results and plotted resulting PAT curves
plotted on top of each other with the respective difference filled (Fig. 5).

Fig. 5. HeartPy and MLPTT AC components, difference filled in red. (Color figure
online)
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Out of 5 tested patients (BIDMC patients 2, 6, 8, 42, 53), HeartPy failed to
detect exactly one PPG peak per ECG period for patients 2 and 53, in some
instances detecting 0 and in some instances 2. These patients were removed and
only patients 6, 8 and 42 used for comparison. The Pearson correlation between
HeartPy PAT and MLPTT PAT was the following (Table 2).

Table 2. MLPTT PAT - HeartPy PAT Pearson correlation and p-value.

BIDMC patient Test set heartbeats Pearson correlation coefficient Pearson p-value

2 219 −0.0093 0.89

6 196 0.87 4.20E−60

8 240 0.83 1.20E−62

42 201 0.85 2.50E−56

53 222 −0.67 0.32

F1 score and RMSE were calculated between the ECG signals R-peaks and
the MLPTT detected virtual anchor from PPG. The predicted R-peak from PPG
data was used as a reference to benchmark the stability of the method, but it
should not be considered as ground truth, which is indeterminable for PPG with
current methods and can only be approximated intravenously [32]. For patients
2–42 the F1 score was in the range of 0.15–0.30 with RMSE extending between
3.83 and 8.01 samples (Table 3). Patient 53 showed the lowest accuracy with
an F1 score of 0.04 and a RMSE of 15.66 samples. Support was the number of
analysed samples in the time series, 11661 to 13278 samples for patient 2–42 and
9014 for patient 53.

Table 3. MLPTT PAT - HeartPy PAT F1 score, RMSE and support.

BIDMC patient F1 score RMSE [samples] Support

2 0.15 8.01 11661

6 0.30 3.83 11335

8 0.20 5.54 13278

42 0.21 5.88 11645

53 0.04 15.66 9014

4.1 BIDMC Patient 6 Drilldown

These were the MLPTT subprocess results sampled from one out of the 3/5
BIDMC patients of whom HeartPy detected all PPG peaks.
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HeartPy and MLPTT PAT Patient 6 Pearson Correlation. A scatterplot
with HeartPy calculated PAT on the x-axis and MLPTT PAT on the y-axis
was produced (Fig. 6). A histogram on top of each axis showed the respective
PAT distribution. The Pearson correlation coefficient p was listed for all tested
patients in Table 2.

Fig. 6. HeartPy MLPTT Pearson correlation.

Waveform Binary Classifier. The waveform binary classifier achieved at an
overall anchor prediction accuracy of 97% for 17977 frames of 60 samples each.
Precision, recall, f-1 score and support were listed in Table 4. Precision was
the ratio of correctly positively predicted virtual anchors to all positive virtual
anchors (Precision = TP/TP + FP , where TP was True Positive and FP was
False Positive). The calculated precision was 0.92 for frames without anchors
and 0.99 for frames with anchors. Recall, the ratio of correctly predicted virtual
anchors to all virtual anchors in the class was 0.99 for frames without anchor and
0.95 for frames containing a virtual anchor (Recall = TP/TP + FN , where TP
was True Positive and FN False Negative). Support was the number of samples
in the respective class (Table 4).

Table 4. Waveform binary classifier results for BIDMC patient 6.

Precision Recall F1 score Support

Anchor = 0 0.92 0.99 0.95 6253

Anchor = 1 0.99 0.95 0.97 11724

Accuracy 0.97 17977
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Multilabel Anchor Position Classifier. The multilabel anchor position clas-
sifier achieved an overall prediction accuracy of 30% (Table 3), with most pre-
dictions scattered closely around a confusion matrix diagonal.

5 Discussion

PTT is an important measure that can be used in many clinical applications
and many researchers tried to measure it precisely. The goal of this study was to
assess if the accuracy of established PAT and PTT methods that relied on signal
filtering and fixed specific points can be matched and potentially exceeded. We
addressed this challenge by creating a novel approach that used machine learning
to find quasi-periodic patterns in PPG signals based on a series of samples.

For five tested BIDMC dataset patients, HeartPy did not detect one PPG
peak for every ECG peak. MLPTT was more robust and correctly classified the
presence of a quasi-periodic waveform in 97% of all frames for patient 6. Since
the frame was shifted in increments of one sample through the entire signal, the
classifier would predict 125 frames for one heartbeat at a heart rate of 60bpm and
a sample rate 125 Hz. We expected the increased accuracy to be driven by at least
three factors, the first was MLPTT’s ability to learn malformed PPG shapes of
any form as long as they were contained in the training sequence. This could be
particularly helpful for PPG-PPG PTT where it is desired to measure the signal
phase shift accurately. The second factor was that previous PTT measurements
were dependent on high signal quality at a specific location during each period.
For example when measuring the peak-foot PAT, a pronounced foot would have
to occur in the PPG signal which could be corrupted by motion artefacts or other
noise. If the peak was still in its true position for a period with a corrupted foot,
HeartPy would not benefit while MLPTT could learn and still predict the correct
virtual anchor point. The third expected reason was that MLPTT was stepping
through the entire signal in frames of 1 sample interval. Therefore, the multilabel
classifier had the chance to predict every virtual anchor point for the number of
intervals in one frame, 60 times in our implementation.

The calculated HeartPy- and MLPTT PAT correlated with statistical signifi-
cance for in total 637 tested heartbeats of BIDMC patients 6, 8 and 42. Although
PAT for patients 2 and 53 could not be compared due to HeartPy’s PPG peak
detection inconsistencies compared to ECG, the MLPTT PAT prediction did not
show any significant variations in the AC component that could have been caused
by anchor point misdetection. MLPTT showed a pronounced confusion matrix
diagonal for the prediction of virtual anchors. Overall, MLPTT correlated with
HeartPy with statistical significance for the tested dataset, required no adjust-
ments for individual patients and showed more robust PAT measurements for
patients with noisy measurements.

5.1 Limitations

Despite the strong Pearson correlation with HeartPy PAT measurements, the
method and current implementation are not without limitations. The behaviour
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for medically relevant outliers was not tested and patients’ background was not
investigated. Some BIDMC signals also showed apparent sawtooth and poten-
tially sine type noise. Lin et al. reported a sawtooth pattern in a different PPG
dataset [37], which indicates that this type of noise may be prevalent in PPG
recordings of medical equipment. Furthermore, despite our attempts to find the
ideal parameters for HeartPy, HeartPy could offer additional built-in signal filters
that we did not use. These might have improved HeartPy performance further.
No custom filtering was applied for MLPTT for different patients.

Theoretical limitations included that the tested implementation with a frame
length of 0...60 samples allowed for a maximum of 125bpm heart rate. Exceeding
this heart rate would have led to more than one period per frame, which the
implementation was not designed to handle in its first revision. This could be
addressed in further revisions. Another theoretical limitation were edge cases
in which the virtual anchor point is at either edge of the frame. It can be
expected that these frames were more difficult to classify, which resulted in
a slight decrease in classification accuracy for the outermost classes. This could
be mitigated in further revisions by not considering those frames and only pro-
cessing frames with a predicted minimum distance from the outer frame limits.
Foremost, although both tested methods showed a statistically significant corre-
lation, there were no readily available ground truth measurements for PAT and
PTT. Invasive arterial probe measurements were found to produce the smallest
errors for blood pressure prediction [32] and can be considered to be more reli-
able due to measuring the arterial pressure directly. Testing PPG-PTT against
I-PTT would be more meaningful, but no dataset was available at the time of
writing. We recognize the risks that incorrect PTT measurements may cause if
used in clinical applications. All PTT measurements based on the new method
should be revalidated against methods such as I-PTT with statistical significance
before clinical deployment.

6 Conclusion

The key contribution of this paper is to provide a novel approach where global
features (all samples) of the time-series data are used to develop a machine
learning model to extract local pulse events. We evaluated the performance of
MLPTT for more than 50000 samples of a reference dataset and validated the
performance in comparison to a reference method for over 1000 heartbeats of 5
patients. The analyses show that MLPTT copes significantly better with inher-
ently noisy PPG data than the reference method. The proposed technique is
suitable for analysis of other medical recordings and for application in many
other domains that rely on time series data.
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Abstract. Lexical Answer Type (LAT) prediction is an essential part of
question classification. It aims to assign certain lexical answer type to the
questions to narrow down the search space and improve the classifier’s
performance. LAT prediction is a challenge in the biomedical domain
since it is more of a multi-label classification question, which means each
question has more than one label. In this paper, we employ the Label
Powerset method to transform multi-label classification problems into
multi-classification problems. Afterwards we introduced a random forest
based mechanism to partition the features into used (important) and
unused (unimportant) sets with corresponding weights. Furthermore, by
assuming that the unimportant features are not useless, we employ prin-
cipal components analysis to get the information from the unused feature
set. By combing these two types of features, the experimental study on
the BioMedLAT dataset has demonstrated our method’s potential.

Keywords: Biomedical question classification · Lexical answer type
prediction · Random forest · PCA · Feature weight

1 Introduction

With the development of biomedical techniques, biomedical scientific literature
has been exploded rapidly. The researchers have met a challenge in seeking infor-
mation given a certain problem to avoid repeated experiments [9]. To overcome
this problem, a lot of approaches have been proposed, and question answering
(QA) system has gained widespread attention in the community [12].

A QA system normally consists of three components, i.e., question process-
ing, candidate retrieval, and answer processing. Question classification is a fun-
damental step of question processing and one of its challenges is to determine
the Lexical Answer Type (LAT) of the question [11]. LAT prediction is to mark
c© Springer Nature Switzerland AG 2020
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expected biomedical entities to a question, thereby narrowing the search space in
the answer processing step. For instance, for the question “How many genes are
imprinted in the human genome?”, LAT label Quantity will be assigned to this
question, it can detect the relevance of questions and answers and then improve
the overall performance.

Nowadays, many researchers have done a lot of work on LAT prediction and
have achieved great success in the general QA systems, while in the biomedi-
cal field it is still a challenging task. This is mainly because unlike in the open
domain, biomedical questions generally correspond to more than one biomedical
term, hence the LAT prediction problem is more of a multi-label classification
problem than a multi-class classification problem [19]. Meanwhile, in the biomed-
ical field, the scale of data is far less than that of the open domain applications,
as such it is more difficult to conduct large-scale training as in the other domains.

One of the most widely employed methods for multi-label classification is data
transformation [25], which transforms multi-label data to single-label data [20],
thereby converting complex multi-label classification into a multi-class problem
or multiple binary problems. Among the popular data transformation methods,
Label Powerset [4] has been attracted much attention as it does not ignore the
relevance between labels since it treats multiple labels existed in one instance as
one label by considering the relevance between labels.

Label Powerset based methods have proven the effectiveness in biomedical
LAT prediction [21]. In such approaches, there is a critical challenge in select-
ing proper features. Conventional methods relied on choosing the features that
can improve the performance one by one and the features related to the focus
word. This kind of mechanism is easy to be implemented, while the influence
of different features on the final prediction performance is not fully investigated
to some extent. Therefore it is interesting to ask if we can effectively select the
most important features with corresponding weights in the LAT prediction. To
this end, in this research, we proposed a random forests based feature parti-
tion mechanism to solve this problem since it is tolerant of noise and robust
to overfitting [8]. All features are firstly partitioned into used (important) and
unused (unimportant) categories. Furthermore, it is also interesting to ask if the
unselected features are really useless. There might be still implicit information
among them. As such we further employ Principal Component Analysis (PCA)
[1] to extract information from unselected features as a set of new orthogonal
variables.

The contribution of this research is two folders: 1) we use random forests
to divide the features into selected and unselected parts with corresponding
weights. 2) we developed a PCA based unselected feature information extraction
mechanism to enrich inputs of LAT prediction process. The experimental study
has shown the potential of this framework.

2 Related Work

Inspired by the challenge BioASQ, the QA systems have been extensively studied
in the biomedical domain [14]. As an essential part of the QA system, question
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classification has been attached much attention in the community and it consists
of two challenges, i.e., question type classification and lexical answer type pre-
diction (LAT) [7]. Question type classification aims to categorize the submitted
questions into several pre-defined types [18]. For example, Sarrouti et al. cate-
gorize questions into three types questions (Yes/No, Factoid and Summary) by
using a syntactic and rule based approach [15], and the system achieves high
accuracy in 1433 Biomedical Questions from BioASQ challenges [18]. Besides
question type classification, recently the lexical answer type prediction has also
received much attention. In the general QA applications, Ferrucci et al. [5] ana-
lyzed a random sample of 20,000 questions extracting the LATs, and found that
the most frequent 200 explicit LATs cover less than 50% of the data while it can
improve 20% accuracy. Similarly Alfio et al. [6] used the unsupervised method
based on PRISMATIC to produce results for 504 cases out of 813 test questions,
and it achieves high accuracy for Coarse-Grained Evaluation.

Inspired by the LAT prediction in general QA systems, the biomedical field
has also begun to use LAT prediction to improve the performance of the bioQA
system. Weissenborn et al. [22] argued that the phrase containing the LAT was
found directly after the question word (what/which), or after the question word
followed by a form of “be”. They proposed to use the dependency parse to process
the question and used the pattern to find the LAT. However, they found that
most of LAT will not appear in the questions, thereby not working well in most
questions. Later on Yang et al. [23] introduced two additional answer types, i.e.,
CHOICE and QUANTITY besides the UMLS semantic types to improve the
performance. Zhang et al. [13] tried to automatically classify the LATs into six
types, i.e., disease, drug, gene/protein, mutation, number and choice. HPI system
[16] used machine learning to predict LAT for a limited number of biomedical
semantic types, while it only has a LAT term as the expected answer.

Neves and Kraus [11] annotated the headword and assigned UMLS semantic
types to 643 factoid/list questions from BioASQ dataset. They extracted the
excepted LAT by defining headword and assigned one or more semantic types to
the identified headword. Then in the paper of Wasim et al. [21], they argued that
most biomedical questions have more than one label, while most data have only
one label in the BioMedLAT corpus annotated by Neves et al. [11]. Hence, based
on the BioMedLAT corpus, Wasim et al. developed a multi-label biomedical
LAT corpus. They reduced the number of features through feature engineering
and used the method Label Powerset with logistic regression to train the LAT
prediction system, which achieved better performance than OAQA.

3 Methodology

Figure 1 is the proposed LAT prediction process. Firstly we will process the
questions to abandon some irrelevant information. Afterwards we will extract the
features from the processed questions by using the Random Forests to select the
most important features and get the feature weights and assign the information
of feature weights to the used (important) and unused (unimportant) features.
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Fig. 1. Pipeline: based on random forest and PCA neural network framework

Next, we will apply PCA on the unused features to further filter some implicit
information. Finally, the multi-label classification task is conducted1.

Here we need to obtain the LAT terms for each input question. The
dataset is defined as D = {Q ,L}, Q is a question dataset defined as
Q = {q1, q2, ...qi, ..., qm}, where the qi denotes the i -th question and L is the
LAT labels set defined as L = {ls1, ls2, ..., lsi, ..., lsm} where lsi represent the
LAT labels set of the i-th question, the form of lsi is {l1 , l2 , ....} where li denotes
the i-th LAT label. We need to use the question set Q to obtain the correspond-
ing label set L.

3.1 Pre-processing

Following Wasim et al.’s work [21], we input our dataset Q = {q1, q2, ...qi, ..., qm}
to ClearNLP2 to perform lemmatization. In addition, the questions are pro-
cessed by POS tagger, parser and ClearNLP Bioinformatics model, and then
we get the new dataset Q1 = {qn1, qn2, ...qni, ..., qnm}. Afterwards we extract
features from the new dataset Q1 using OAQA system [23]. Now we get the
feature set F = {f1, f2, ...fi, ..., fp} where fi denotes the i -th feature. Mean-
while for the i-th question, we get the values of all the features as the form
vi = {vi1, vi2, ...vii, ..., vip}. After extracting features from questions, we use data
transformation to process the data. We use the Label Powerset technique to

1 Our source code is available at https://github.com/Romainpkq/LATPrediction.
2 https://github.com/clir/clearnlp.

https://github.com/Romainpkq/LATPrediction
https://github.com/clir/clearnlp
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Fig. 2. The result of label powerset

transform the multi-label classification problem to the multi-class classification
problem in order to make use of multiple techniques of multi-class classification.
Here is an example to explain the processing, as shown in Fig. 2.

Label Powerset regards the labels per-instance as one label and it considers
the relationship between labels. We use that method to process the L and get
the new label set L1 defined as L1 = {ln1, ln2, ...lni, ...} where lni represent the
i-th new label. We will train and test the classifier using these new labels.

3.2 Feature Selection

After extracting features from the questions and considering not all features are
equally important for the LAT prediction, here we propose three techniques to
process the features to get the most useful information.

1) Select important features based on random forest

In this research, we use the random forest to distinguish between important
and unimportant features. Random forests are a combination of tree predictors
such that each tree depends on the values of a random vector sampled indepen-
dently and with the same distribution for all trees in the forest [2]. It can capture
the relation between features and labels, and can reduce the correlation between
tree models by generating different training sets. Meanwhile, it uses the bagging
method to train multiple trees, each tree will produce a classification result and
finally, it produces the final result through the majority vote. The random forest
can measure the weights of features by Gini index, which is defined as:

Gini(p) =
n∑

i=1

pi ∗ (1 − pi) (1)

where i represents the i -th class, and pi denotes represents the sample weight
of class i . We use the random forests to get the importance of all the features,
and judge the most important ones from them.

2) Add features weights to feature vector

After using the random forests, we get all features’ importance weights, which
have important information that can reflect the impact of different features on
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the classifier. We use them to highlight the differences between features. On the
other hand, we cannot let the feature weights to damage the information of the
features. We add the information of weights through the formula:

fnew(x) = fold ∗ (1 + n ∗ w) (2)

where fnew represents the new feature vector after adding the weights, fold rep-
resents the old feature vector. w denotes the feature weights and n is a multiple
that we choose.

Now we get the important feature set Fimp = {fimp1 , fimp2 , ..., fimpq
}, the

unused feature set Fun = {funq+1 , funq+2 , ..., funp
}. Therefore for the i -th ques-

tion, we get the important features values viimp
= {viimp1

, viimp2
, ..., viimpq

}, the
unused features values viun

= {viunq+1
, viunq+2

, ..., viunp
}.

3) Obtain information from unused features based on PCA

Though we have chosen the most important features, we still have a lot of
feature information not used. In order to use the information in the unused
features, we firstly select some unused (unimportant) features according to the
weights obtained from random forest, and then use PCA to process them and get
the covariance matrix. Afterwards the PCA uses Singular Value Decomposition
(SVD) to calculate the eigenvectors and eigenvalues of the covariance matrix,
which is defined as follows:

Am∗n = Um∗m ∗ Dm∗n ∗ V T
n∗n (3)

where Am∗n denotes the data matrix, Um∗m and Vn∗n are orthogonal matrices,
Dm∗n represents a diagonal matrix. After SVD, we will get the matrix Dm∗n ,
and then we get the most important eigenvectors and project the data into
the space of the eigenvectors. After PCA, for the i -th question, we transform
the selected unused features values viun

= {viunq+1
, viunq+2

, ..., viuno
} to the new

features values vinun
= {vinun1

, vinun2
, ..., vinunr

}.

3.3 LAT Prediction

Here we employed a neural network structure in supervised learning to predict
the LAT terms. The model has two inputs. For the i-th question, one of them is
the feature vector viimp

obtained through the random forest, while the other one
is obtained from the unused features vinun

through PCA. Meanwhile, we use the
dropout technique to the input layers to avoid overfitting. We get the hidden
representation h1 (x ), h2 (x ) through the forward propagation:

h1(x) = f(W1 ∗ x1 + b1) (4)

h2(x) = f(W2 ∗ x2 + b2) (5)

where x1 denotes the feature vector obtained through the random forest, x2
denotes the other input, f(x) = max(0, x) denotes the Rectified Linear Unit
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(ReLU) [10], W1 and W2 are weight matrices, b1 and b2 are the bias. The
ReLU activation function can better avoid the vanishing gradient problem than
sigmoid and tanh function [17]. Because the importance of the two inputs is
different, we set the dimension of the first hidden layer higher.

We then concatenate the two vectors h1 (x ), h2 (x ) and get a combined vector
h3 (x ) whose dimension is the sum of the two vectors:

h3(x) = concatenate(h1(x), h2(x)) (6)

Finally, the hidden vector h3 (x ) are mapped to the output vector o(t) using
transformation:

o(x) = g(W ′h(x) + b′) (7)

where the activation function g(xi) = exi
∑n

j=1 exj is the Softmax function, W ′ is

weight matrix, and b′ is the bias. The output of the model is in the form of
label powerset, and then we restore the output to the form of L. We use the
categorical cross entropy loss function as the cost function. This function can
well present the similarity between the predicted value and the real value:

Cost = − 1
n

n∑

i=1

[yi log ŷi + (1 − yi) log(1 − ŷi)] (8)

where ŷi is the predicted result and yi is the label of the instance i, n is the
number of the instances. Here we use Adam to optimise the back propagation.

4 Experimental Study

4.1 Dataset and Experiment Configuration

Here we use MLBioLAT corpus3 as the dataset [21], which has 780 instances.
In this research, we use 10-fold cross validation and split the dataset as the
CrossValidation class does in Meka tool to test the model, and the number of
the labels is 85. The number of questions for each label is shown in Fig. 3 [21].

During the random forest, it is configured with 101 estimators, and its ran-
dom state is 1. We choose the most important 1500 features as the first input
and also use the 900 most important features among the unused features to the
PCA model and set the number of PCA components to 50. Because the weights
of the used features and unused features are different, we add weights of different
multiples to these two feature vectors. For the used feature vector, we set the
multiple equal 2. For the unused feature vector the multiple is 1. In the LAT
predication process, we use a neural network model with a 1500-dimension input
layer and a 50-dimension input layer, and there is a 512-dimension hidden layer
for the first input and a 32-dimension hidden layer for the second one. We adopt
10 epochs and 20 instances per batch to train the model.

3 https://github.com/wasimbhalli/Multi-label-Biomedical-QC-Corpus.

https://github.com/wasimbhalli/Multi-label-Biomedical-QC-Corpus
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Fig. 3. Dataset: number of questions in each label class [21]

4.2 Evaluation Metrics and Baseline

In the multi-label classification problem, the prediction of a classifier can be
more than one label. Following [21], the micro F1 [24] score is used to evaluate
the performance of the classifier. For the micro F1 score, there are four categories
for each label. For i-th label, tpi , fpi , fni and tni represent True Positives, False
Positives, False Negatives and True Negatives [3]. The micro F1 score is defined:

precisionmi =
∑N

i=1 tpi∑N
i=1 tpi +

∑N
i=1 fpi

(9)

recallmi =
∑N

i=1 tpi∑N
i=1 tpi +

∑N
i=1 fni

(10)

F1scoremi = 2 ∗ recallmi ∗ precisionmi

recallmi + precisionmi
(11)

In this paper, we compare our methods against the previous methods, espe-
cially the STOA methods proposed by Wasim et al. [21], and also three more
methods, i.e., Label Powerset with logistic regression (LPLR), Structured SVM
(SSVM) and Restricted Boltzmann Machine (RBM). We also compared our
methods against the method proposed in OAQA system [23], which is used Copy
Transformation based logistic regression (CLR).

4.3 Results and Discussion

The overall comparison of the proposed model against the baseline methods is
displayed in Table 1. It is found that the proposed model outperforms the base-
line methods. Our model can better capture the relationship between features
and labels to achieve better performance. To illustrate the effectiveness of the
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Table 1. Micro F1 Score: (RF: Random Forest, FW: Feature Weights, PCA: Principal
Component Analysis)

Method Micro F1 score

RBM (Restricted Boltzmann Machine) 0.28

SSVM (structured support vector machine) 0.42

CLR (Copy Logistic Regression) 0.43

LPLR (Label Powerset Logistic Regression) 0.47

LPLR + FDFS (feature-driven semantic features) 0.50

Our Framework (with RF) 0.497

Our Framework (RF + FW) 0.499

Our Framework (RF + PCA) 0.510

Our Framework (RF + PCA + FW) 0.515

0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 4. Weights of the 20 most important features obtained through random forest

weighted feature, we also present the feature weights obtained by Random Forest
in Fig. 4, it is observed that different features have different weights.

Besides, to evaluate the effect of weights and also PCA on the final LAT
predication task, we further perform some tests, as shown in Tables 2 and 3. In
Table 2, we get the best performance when we choose 1500 as the used (impor-
tant) features through the random forest method, and adding weights features
can improve the performance of the model. The experiments in Table 3 follows
the test in Table 2 with 1500 selected as used features, while we do not add the
weights into feature vectors since we just want to prove the PCA’s effectiveness.
We further choose several unused features according to their weights and employ
PCA to improve the performance of the classifier. We also present the influence
of PCA in Fig. 5. It is found that the samples in the same labels have similar
feature values, which means that PCA can help predict the LAT terms.

Comparing with other baseline methods, we find the proposed model gained
better performance. There are three main reasons. 1) From the Table 2, we can
notice that not all the features are useful, and even some features may harmful.
We need to filter features to get the most important ones. 2) At the same time,
when we filter the features, different features should have different weights to the
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Table 2. F1 scores for different number of features selected from random forest

Used features number (random forest) Add weights Micro F1 score

4189 (All feature selected) No 0.488

4189 (All feature selected) Yes 0.489

3000 No 0.494

3000 Yes 0.495

2500 No 0.489

2500 Yes 0.497

2000 No 0.491

2000 Yes 0.496

1500 No 0.496

1500 Yes 0.499

1000 No 0.489

1000 Yes 0.490

Table 3. F1 scores for different number of unused features from random forest (not
add feature weights)

Unused number (random forest) PCA (Components) Micro F1 score

2689 (All unused feature selected) No 0.488

2689 (All unused feature selected) Yes (50) 0.501

1500 No 0.488

1500 Yes (50) 0.506

1000 No 0.489

1000 Yes (50) 0.506

900 No 0.491

900 Yes (50) 0.510

500 No 0.487

500 Yes (50) 0.494

classifier as Fig. 4 suggests. Here we add the weights to achieve this distinction;
3) After we select the most important features, there is still a lot of information
in the unused features, the PCA method can extract information well and avoid
overfitting in the neural network based predication process.



Weight Aware Feature Enriched Biomedical Lexical Answer Type Prediction 73

Fig. 5. Visualization of the relation between components of PCA and labels (Compo-
nent1, Component2: the Most Two Important Components; Label1, Label2, Label3:
three Labels After Label Powerset)

5 Conclusion and Future Work

In this paper, we have studied the lexical answer type (LAT) prediction problem
in the biomedical domain. As the LAT problem is more of a multi-label classifi-
cation problem than a multi-class classification problem, we adopt a multi-label
classification technique to this problem. The conventional Copy data transfor-
mation technique used in the OAQA system is an effective method to treat the
multi-label data, but it does not grab the relationship between labels. In our
research, we use Label Powerset to obtain the relationship between labels and
we use a neural network to better capture the relationship between features and
labels. During this research, we observe that not all the features are useful and
the feature weight is helpful. Therefore, we use the random forest to filter features
and add the weights information obtained through the random forest. On the
other hand, we argue that unused features may also contain some useful infor-
mation and they can help to determine the Lexical Answer Type. To this end,
the PCA method is used to extract implicit information from this feature set.
Finally, we develop a neural network model as a classifier to make use of these
filtered features. The experimental result has shown the method’s potential.

Although the proposed methods have achieved promising performance in the
experimental study, there are also some limitations that deserve further investi-
gation. As shown in the experiment, our research does not consider the imbalance
of data, while in the dataset some labels have only one or two instances. It will
seriously affect the accuracy of the classification. In future work, it is important
to solve the problem of data imbalance and to find a more effective method to
well represent the questions without information perturbation.
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3 Procter & Gamble, International Operations SA Singapore Branch,

Singapore, Singapore

Abstract. Investigating the functional modular organisation of the
brain provides a deeper insight into the complex network phenomena
that govern cognitive processes like olfactory perception. In recent years,
understanding the neural mechanisms associated with this unique sen-
sory modality has been gaining traction, due to increasing applications
in various clinical and non-clinical research areas. Anatomically distinct,
but functionally interconnected brain regions, organized as communities
(or functional modules) enable high-order cognitive processes by provid-
ing support for the integration of several localized, highly specialized
processing functions. In this work, to understand the elicited neuronal
communication pathways in response to fragrance stimuli of varying pos-
itive valence, graph theoretical network metrics were calculated to quan-
tify differences in brain’s functional networks modular organization esti-
mated from source localised EEG signals. We found that inter-modular
connectivity differences in neural responses to olfactory stimuli of dif-
ferent pleasantness levels may be linked to inhibitory processes in the
frontal and central-occipital regions. Moreover, our results indicate that
significant intra-modular connectivity changes may be linked to emo-
tional processing of fragrance stimuli of varying pleasantness.

Keywords: Olfaction · Graph theory · Brain networks · Functional
modularity

1 Introduction

The brain is the most complex organ in the human body, operating through
interconnected neuronal ensembles (or functional modules) that collaborate to
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achieve high-order cognitive function [1]. It is for this reason that the func-
tional network paradigm and network modularity have become popular tools
in understanding the functioning of the brain, especially in the area of sensory
perception [2,3]. The investigation of sensory encoding has numerous applica-
tions ranging from clinical to consumer research. Out of the five sensory modal-
ities, vision, audition and somatosensation have been studied in great detail and
previous studies have investigated the brain networks responsible for their pro-
cessing [4–6]. However, the neuronal pathways related to olfactory processing,
and particularly their interplay with other cognitive pathways, still remain to be
understood. This is partly owing to the fact that the olfactory pathway is the
only sensory pathway which bypasses the thalamus to reach the neorcortex [7]
and partly because of its complex intrinsic interconnections with emotion, mem-
ory and reward processing pathways [8].

As seen from previous fMRI literature, several regions in the cortex as well as
sub-cortical entities participate in olfactory decoding. The olfactory bulb, upon
receipt of an odor stimulus, initiates a signal pathway which cascades down-
stream to cortical entities like the piriform cortex, amygdala, and entorhinal
cortex. These regions have been previously associated with emotion and mem-
ory processing, alluding to the fact that tertiary encoding of olfactory stimuli
predominantly involves high-order cognitive processes [8,9]. Literature evidence
points that olfaction can modulate mood and emotion and that the strength
of olfaction-dependent brain evoked responses is linked to recollection memory
processing [10].

Despite relatively well documented findings in primary olfactory processing,
olfactory encoding research has mostly focused on characterizing and discrimi-
nating between the response to positively and negatively-valenced (pleasant and
unpleasant) odour stimuli [11–13]. However, how does the human brain differ-
entiate between fragrances that induce varying responses on the finer-graded
positively-valenced scale (“loving” vs “liking”) remains obscure. For this pur-
pose, the main objective of this study is to investigate the changes in the func-
tional modular organisation of the brain while perceiving fragrances of different
levels of pleasantness, which enables us to account for the interplay with other
functional processes, such as the emotion-related component of olfaction.

Traditionally, power spectrum analysis has been the most widely used EEG
decoding methodology [14,15]. However, the use of functional connectivity net-
work paradigm, which enables investigating the functional interplay between
brain regions in order to achieve high-order cognitive function, is becoming an
essential approach in neuroscience research [1]. In this context, understanding the
modular organisation of the brain functional connectivity networks have revealed
that the formation of densely-connected cohesive modules also known as “commu-
nities” [1,16]. Thus, the underlying functional segregation can be well-understood
due to topological modularity that reflects the dynamic and adaptive brain net-
works [16]. The unique mediation between segregation (localized function) and
integration (distributed function) of the functionally connected brain regions give
a deeper insight into the brain function, particularly when investigating cognitive
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processing [1,16,17]. In this study, our hypothesis was that the functional mod-
ular organization resulting in response to positively-valenced fragrance stimuli of
various pleasantness levels, reveals differences both in terms of localized (intra-
modular) and distributed (inter-modular) functional connectivity.

This work is a continuation of our previous work studying olfactory percep-
tion using power spectrum density analysis methods [18]. However, in this study,
we aim to identify the neuronal ensembles (functional modules) and how they
interact with each other in response to fragrance stimuli. To this goal, we have
used weighted-Phase Lag Index (wPLI) to analyse the phase-synchronisation
and information flow between brain regions in both alpha and gamma fre-
quency bands, which have been previously implicated in olfactory, emotional
and memory-related processing [19,20].

2 Methodology

2.1 Recruitment of Participants

For this study, thirty-two female subjects between the ages of 21 to 45 were
recruited. Exclusion criteria encompassed any respiratory dysfunctions, neuro-
logical disorders or presence of any metallic implants that could affect the data
acquisition procedure. The research has been approved by the Institution Review
Board (IRB) of the National University of Singapore. The participants were pro-
vided with monetary remuneration at the end of their participation.

2.2 Experimental Protocol

Four pleasant fragrances (pleasantness was monitored through behavioural ques-
tionnaires) have been used as olfactory stimuli in our study. The subjects were
blindfolded during the experiment to avoid influence of any visual stimuli while
the experiment was conducted in an isolated laboratory room to avoid noise and
other confounding stimuli to affect the data acquisition. During the experiment,
the subjects underwent a sequence of trials (10 for each fragrance), where each
trial lasted for about 8 s, following which the subjects were asked to instantly
rate on a scale of 0–10 the pleasantness and intensity of the fragrance. Odour
masking was avoided by briefly presenting coffee beans to the subjects after the
trial and the inter-trial interval was kept as 2 min. During the beginning (1st
trial), middle (5th trial) and end (10th trial) of each fragrance, the subjects
were asked two additional questions regarding the self-evaluated emotion level
and the fragrance characteristics. In this work, we have considered for further
analysis the trials corresponding to the most loved (sample with highest pleas-
antness ratings) and the least-liked fragrances (sample with lowest pleasantness
rating), as determined from the self-reported behavioural ratings.
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2.3 EEG Data Acquisition and Preprocessing

EEG recording was performed using a standard 64-channel ANT- Neuro cap
at a sampling rate of 512 Hz. Ag/AgCl electrodes were used and a conductive
electrolyte gel was applied between the scalp and the electrodes to lower the
impedance (<=5 k ohms). The raw and continuous data was pre-processed on
EEGLAB [21]. At first, the data was downsampled 256 Hz and then band-pass
filtered from 0.3 Hz to 40 Hz. Automatic artifact rejection (AAR) was performed
to remove artifacts from blinks and other eye movements as well as muscle
activity that could affect the EEG recording [22]. The data was epoched in
accordance with the trials (8 s from start of stimuli) and Independent Component
Analysis (ICA) was performed to remove any remaining elements that might not
be arising from the cortex.

Source localisation was performed using standardised-Low Resolution Elec-
tromagnetic Tomography (s-LORETA) to estimate the current source density at
the cortical level in the brain [23]. The s-LORETA software was used to extract
voxel-based activation information from the brain and this data was further par-
cellated into established anatomical regions (116 ROIs) based on the Automatic
Anatomical Labeling (AAL) atlas. Twenty six cerebellar and ten sub-cortical
regions were removed from further analysis.

Weighted Phase lag index (wPLI) was employed to investigate the functional
connectivity using phase-synchronisation of the current source density values,
yielding adjacency matrices [24]. wPLI was followed up with thresholding using
the Orthogonal Minimum Spanning Tree (OMST) method to obtain orthogonal
trees [25]. This approach ensures filtering the connectivity matrix by prioritiz-
ing topological criteria, while accounting for optimization between the global
efficiency of the network and the cost of preserving its connections.

2.4 EEG Data Analysis - Community Detection

The Louvain algorithm [26] was performed on the adjacency matrices corre-
sponding to the functional connectivity networks to estimate community (func-
tional modularity) partitions at each epoch. This algorithm is based on the
maximization of a modularity index

Q = 1/2m
∑

i,j

[Wi,j − γ(kikj)/2m]δ(ci, cj) (1)

where Wi,j is the edge weight between node i and node j, ki is the sum of
edge weights associated with node i and γ is the resolution parameter, that was
modulated between 0.5 and 1.6 with a stepsize of 0.1 [26]. For each resolution
parameter, the modularity index Q was measured, and the resolution parameter
associated to the highest Q was kept. For each subject’s epoch, the Louvain algo-
rithm was run a hundred times and consensus partitioning was performed across
them to obtain consistent communities for each epoch, as this algorithm is based
on a heuristic principle [16,17]. Then, consensus clustering was obtained, this
time across all subjects and epochs, to establish the representative community
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structure. For consensus clustering, the threshold τ was set at a level of 0.2 [16].
For visualisation of the communities on a brain anatomical sketch, Brain Net
Viewer software was used [27].

Finally, to characterize changes in the modularity of the functional connec-
tivity networks between different conditions, several community-based metrics
were estimated (Table 1): Intra-module metrics (Density Dintra, Efficiency Eintra

and Clustering coefficient Cintra) and inter-module metrics (Density Dinter, Effi-
ciency Einter). In the mathematical representations given below, m denotes a
specific community and aij represents the edge for nodes i and j. Such met-
rics can provide effective summarizing statistics on the differences in modular
structure of functional networks [1,16,17]. The inter-module efficiency provides
an estimate of how efficiently information is being exchanged between differ-
ent functional modules, while the inter-module density quantifies the number of
actual functional connections between pairs of modules over the number of total
possible connections. Similarly, the intra-module efficiency and density metrics
describe how efficiently information is being exchanged within specific modules,
and how many possible connections are being formed within modules, respec-
tively. Intra-modular clustering coefficient describes how tight connections form
around nodes within a specific module, providing information on localized, highly
specific functional processing [1].

Table 1. Intra- and inter-module metrics used in this study

Inter-module metrics Mathematical representation

Density (Dinter)
1

NmNn

∑
i∈m

∑
j∈n aij

Efficiency (Einter)
1

NmNn

∑
i∈m

∑
j∈n

1
lij

Intra-module metrics Mathematical representation

Clustering coefficient (Cintra) 1
Nm

∑
i∈m

sumj,k∈m(wijwjkwkl)
1/3

ki(ki−1)

Density (Dintra) 1
Nm(Nm−1)

∑
i,j∈m,i�=j aij

Efficiency (Eintra) 1
Nm(Nm−1)

∑
i,j∈m,j �=i

1
lij

These were computed for two conditions, namely the high pleasantness and
the low pleasantness, as determined by the behavioural ratings from the instan-
taneous behavioural responses collected after every trial. For each metric, sta-
tistical analysis was performed using Student’s t-test.

3 Results

3.1 Partitioning the Functional Connectivity Networks

Consensus community detection was performed to identify the highly-
interconnected modular clusters in the functional connectivity network. This
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resulted in four communities (functional modules) being formed for both the
alpha ([8–13] Hz) and the gamma ([30–40] Hz) bands (see Appendix tables for
the list of brain regions in each detected community). Figure 1(a) shows that the
topological organisation of these communities in the alpha band. As seen in the
figure, Communityα 1 consists of cortical entities in the central-occipital region,
Communityα 2 consists of cortical entities in the frontal region, Communityα

3 consists of cortical entities in the left temporal region while Communityα 4
consists of cortical entities in the right temporal region.

However, in the Gamma band, the organisation of communities is slightly dif-
ferent as compared with the alpha band. As seen in Fig. 2(a), these communities
consists of neuronal ensembles from the central-occipital regions (Communityγ

1), frontal and right temporal regions (Communityγ 2), left temporal region
(Communityγ 3) and right temporal region (Communityγ 4).

Fig. 1. (a) Four distinct communities were identified comprising of cortical entities from
central-occipital region (Communityα 1), frontal region (Communityα 2), left temporal
region (Communityα 3) and right temporal region (Communityα 4). (b) Inter-module
metrics (between communities) like Dinter and Einter. (c) Intra-modular (within com-
munities) metrics like Cintra, Dintra and Eintra. *p < 0.05.

3.2 Inter-module Metrics

In order to study the impact of olfactory perception on the interactions between
communities, inter-module density (Dinter) and efficiency (Einter) were com-
puted across the high pleasantness and low pleasantness conditions for both
alpha and gamma bands across all community pairs. Figure 1(b) shows that
in the alpha band, both Dinter and Einter are statistically significantly higher
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for the low pleasantness fragrance than for the high pleasantness fragrance
between the Community 1 and 2 (Dinter:t(31)= −2, 435, p = 0.015; Einter:t(31)=
−2, 252, p = 0.025). Thus, brain entities in the frontal and central-occipital
regions have statistically significant increase in the number of information chan-
nels while perceiving the low pleasantness odour stimuli as compared with the
high-pleasantness odour stimuli. Moreover, there is also a statistically significant
increase in the efficiency of the information exchange for the low pleasantness
fragrance in comparison with the high pleasantness fragrance between commu-
nity 1 and community 2 in the alpha band. These suggest that low pleasantness
odours elicit higher efficiency in the flow of information and wider connectivity
between the frontal, central and occipital regions in the alpha band. The Dinter

and Einter for other community pairs in the alpha band were not found to be
statistically significant. Moreover, we also did not find any statistical significance
in the intermodule metrics between all community pairs in the gamma band.

Fig. 2. (a) Four distinct communities were identified comprising of cortical entities
from central-occipital region (Communityγ 1), frontal-right temporal (Communityγ 2),
left temporal region (Communityγ 3) and right temporal region (Communityγ 4). (b)
Inter-module metrics (between communities) like Dinter and Einter. (c) Intra-modular
(within communities) metrics like Cintra, Dintra and Eintra. *p < 0.05.

3.3 Intra-module Metrics

For both pleasantness conditions, three intra-module metrics (Cintra, Dintra and
Eintra) were computed to understand the information transfer within the mod-
ular community organisation. As shown in Fig. 1(c), the intra-module metrics in
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the alpha band do not show any statistically significant differences in percep-
tion of the two types of odour stimuli. However, Fig. 2(c), in the gamma band,
Cintra in Communityγ 3 (left temporal region) was found to have undergone
statistically significant increase (t(31) = −2, 132, p = 0.034) between the high
pleasantness and the low-pleasantness conditions. Thus, the two different pleas-
antness conditions seem to be characterized by significant differences only the
intra-module metrics in the gamma band and not the alpha band. Moreover,
the effect is predominant only in the localized areas through formation of tight
functional clusters (as indicated by the clustering coefficient metric) rather than
in the number of information channels or in the efficiency of the information
exchange.

4 Discussion

4.1 Alterations in the Inter-module Metrics in the Community
Functional Connectivity Organisation

Established inter-module metrics have been estimated to investigate the effect of
olfactory perception on the functional organisation of the brain at the mesoscale
(modular) level. Traditional network analysis approaches that estimate connec-
tivity at a global or nodal level are not able to detect such minute differences. As
seen in Fig. 1(b), both inter-module density and inter-module efficiency in the
alpha band are significant higher in the low pleasantness conditions when com-
paring to the high pleasantness condition. Thus, between the two types of odours,
the one that is perceived as “least-liked” has increased number of information
channels and increased efficiency in communication between Communityα 1 and
Communityα 2 as compared to the fragrance perceived as “most-loved”.

Alpha band oscillations have been previously associated with inhibitory effect
on the activation of brain regions that are not relevant to the task at hand
[28]. In other words, there is an inverse relationship between the alpha activity
of the brain and the amount of neural response attributed for the given task
[28,29]. Thus, in our work, we see that there is an increase in the number of
the information channels and the efficiency of information exchange between
central-occipital regions (Communityα 1) and frontal regions (Communityα 2).
The frontal region of the brain contains centers that function as modulators of
emotion related process [8] while the central-occipital region contains entities
that specialise in working memory, conscious awareness and selective attention
[30]. These are reinforced by our findings that Communityα 1 includes regions
such as amygdala and anterior cingulate cortex, with well established emotion
processing roles [31], as well as the olfactory cortex (please see Appendix for
description of brain regions within each community for the two frequency bands).
Due to the inverse relationship between alpha oscillation and cortical activity, we
can speculate based on our results that the low-pleasantness condition induces
increased inter-modular connectivity, leading to inhibitory activity in emotion
related cortical machinery.
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Furthermore, Gamma band cortical activity has been associated with posi-
tive emotion regulation [19]. However, we can see from Fig. 2(b) that the inter-
module metrics do not show any statistically significant changes between the
two pleasantness conditions. Thus, collectively, these results suggest that, at
the inter-modular level, evoked cortical response to odours of different positive
valence levels occurs primarily due to alteration in the inhibitory processes rather
than excitatory processes in the brain.

4.2 Variations in the Intra-module Metrics in the Community
Functional Connectivity Organisation

Intra-module metrics have been computed to determine the differences in func-
tional modularity between the two conditions in terms of localized (within mod-
ule) processing. As seen in Fig. 2(c), statistically significant differences have
been observed in the intra-module clustering coefficient for Community 3 in
the gamma band. Thus, for the low pleasantness condition, there is increased
formation of segregated and specialised clusters in the left temporal lobe. The
left temporal lobe contains neuronal sites that specialise in semantic detailing
of emotion processing [32]. A study on dementia patients revealed that patients
with left temporal lobe atrophy had impaired responses towards the semantic
detailing of the presented stimulus while provided normal responses in emotional
tasks [33]. Thus, we speculate that the increased clustering coefficient in the self-
reported low pleasantness condition could be due to the increase in the semantic
processing of the emotions for that condition. In other words, while the subject is
behaviourally reporting low pleasantness scores for the fragrance, the increased
formation of localized functional connections around nodes in the left temporal
lobe suggests increase in functionally segregated clusters for semantic processing
of the emotions.

The intra-module metrics in the alpha band (Fig. 1(c)) do not show any sta-
tistically significant changes, alluding to the fact that, at the intra-module scale,
the processing of the olfactory stimuli of positively-valenced stimuli of different
pleasantness levels does not differ in terms of inhibitory brain responses. In other
words, the intra-modular brain activations differ at the semantic processing of
the emotions (left temporal lobe in the gamma band) and not in inhibitory
response (alpha band).

5 Conclusions

In this work, we have investigated the changes in functional connectivity in the
mesoscale architecture (communities) of the brain in response to fragrances of
varying pleasantness. It was observed that at the inter-modular level, the dif-
ference in brain responses towards fragrances of varying hedonic value occurs
because of changes in the inhibitory neuronal processes rather than excitatory
processes. These inhibitory responses occur in regions responsible for emotion
processing. However, at the intra-modular level, changes in the brain responses,
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corresponding to olfactory perception of fragrances with varying pleasantness,
occur due to excitatory processes responsible for semantic processing of posi-
tive emotions. Further concurrent EEG-fMRI studies need to be conducted to
visualize the changes in the functional connectivity of the modules at a finer
spatio-temporal scale.

A Appendix: Anatomical Segregation of ROIs in
Communities
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Abstract. Brain–computer interface technology facilitates communica-
tion and control of computers with brain signals. This technique uses
motor imagery to enable a robotic arm to function as a third arm for
the subject. During the process, the robotic arm must move in syn-
chrony with the two human arms, and consequently motor imagery
and motor execution must be performed simultaneously. In this study,
we examined whether information related to motor imagery could be
detected with an electroencephalogram during simultaneous measure-
ment of motor imagery and motor execution. Our experiment included
five participants who performed motor execution, and motor execution
with motor imagery. To identify motor imagery-related features, we ini-
tially extracted event-related spectrum perturbation (ERSP) data and
performed a t-test to examine significant differences using averaged-trial
ERSP data. Subsequently, the data were classified with Fisher’s linear
discriminant as the single-trial classification. Results revealed significant
differences between the two movement conditions and the motor imagery-
related features for each subject. The single-trial classification analysis
demonstrated slightly higher accuracy than the chance level classifica-
tion, but the difference was not significant. These results suggest that
information related to motor imagery could possibly be decoded during
motor execution, however performance improvement at the single-trial
level will be necessary in future studies.

Keywords: EEG · BCI · Motor imagery

1 Introduction

Many studies on the relationship between human brain function and human
mobility have been conducted. Brain–machine interfaces and brain–computer
interfaces control external devices (e.g., computers or robots) using brain activ-
ity as an input signal. This technology has the ability to use a robot arm as
our third arm. However, we need to perform motor imagery of the moving third
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 90–97, 2020.
https://doi.org/10.1007/978-3-030-63836-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63836-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-63836-8_8


Identifying Motor Imagery-Related Electroencephalogram Features 91

arm. Further, when we use it in daily life, we need to move the third arm along
with our original two arms. However, electroencephalogram (EEG) of motor
execution and motor imagery appear in similar places [1]. Thus, the EEG of
motor imagery hides behind the EEG of motor execution if both motor tasks
are performed simultaneously. However, this does not mean that the features
of motor imagery cannot be found. In some previous studies, features of motor
imagery were found with one condition, i.e., no motor execution while measuring
motor imagery. For example, Herman P et al. [1] performed feature extraction
of motor imagery of a moving hand, and Takahashi M et al. [2] detected event-
related desynchronization (ERD) online. Therefore, we formulated a hypothesis
that motor imagery-related EEG features can be found while simultaneously
performing motor imagery and motor execution. In this study, we performed an
experiment to measure two conditions: “motor execution” and “motor execu-
tion with motor imagery.” To prove this hypothesis, we examined the difference
of trial-averaged event-related spectral between two movements, by perform-
ing a t-test using trial-averaged event-related spectrum perturbation (ERSP).
Subsequently, we performed the classification analysis using Fisher’s linear dis-
criminant as the single-trial classification to check if we can distinguish between
two conditions in a single trial.

2 Method

2.1 Experiment and Preprocessing Procedure

Participant. Five healthy right-handed men (aged 22–23 years) participated in
this experiment, which was conducted after obtaining approval from the Ethics
Committee of the Nagaoka University of Technology and in accordance with the
Declaration of Helsinki. In addition, the details of this experiment were clearly
explained to the participants; all participants provided informed consent. (None
of the subjects had performed motor imagery before this experiment.)

Experimental Procedure. Participants sat on a chair facing a monitor, which
displayed an arrow in the right or left direction. If the monitor displayed a
right arrow, we asked the subjects to move their right hand. In contrast, if the
monitor displayed a left arrow, we asked the subjects to move their left hand. The
movement conditions were as follows: (1) motor execution, (2) motor imagery,
and (3) motor execution plus motor imagery. In this paper, we compared data
from two conditions, motor execution and motor execution plus motor imagery.
In this experiment, motor execution refers to finger tapping, and motor imagery
refers to stretching arms. This experiment was conducted for three consecutive
days, and the subjects completed three sessions per movement condition. One
session consisted of 20 trials. One trial was composed of a task and rest. The
task was performed for 6 s, and the rest was for 2 s (Fig. 1).
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Recording. An EEG measurement system (Biosemi ActiveTwo; Biosemi, Ams-
terdam, The Netherlands) was used to measure the brain and muscle activities.
Sixty-four electrodes were arranged based on the international 10/10 method;
one electrode was placed under the right eye to perform electrooculography. In
addition, electromyography (EMG) of the biceps and extensor digitorum brevis
was performed to check for muscle activity during movements. The sampling
frequency of the EEG, EMG, and EOG was 1024 Hz (Fig. 1).

Fig. 1. 64-channel EEG arrangement.

2.2 Data Analysis

Data Preprocessing and Feature Extraction. The preprocessing and fea-
ture extraction of EEG and EMG respectively explained.

– EEG
First, a high-pass filter (cut-off frequency: 2 Hz) was applied. Subsequently,
Baseline corrections were performed on the extracted data to ensure that the
average of the baseline (300–0 ms before task) became 0 using the average
of the baseline. Furthermore, a low-pass filter (cut-off frequency: 40 Hz) was
applied. Following this, blinking artifacts were removed from the brain sig-
nals using electrooculography measured from under the right eye using the
independent component analysis (ICA) of EEGLAB [3]. ERDS was verified
in the frequency domain of the brain activity before actual motor function or
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during motor imagery [4] as follows:
Event-related desynchronization (ERDS) was verified in the frequency domain
of the brain activity before actual motor function or during motor imagery
[4] as follows:

ERS(f, t) = |F (f, t)|2 (1)

where F (f, t) is the power spectrum calculated by the short-time Fourier
transform at frequency f and time t. Thus, it may be possible to visually
observe changes in brain activity by calculating event-related spectrum per-
turbation (ERSP), which was calculated using the time-frequency analysis in
EEGLAB after ICA. The frequency power change (from the baseline) was
chosen as the feature value for the following classification analysis. The fre-
quency power during the baseline is µβ :

µβ =
1
m

∑

t∈Base

|F (f, t)|2 (2)

where base is the time interval of the baseline and m is the number of time
samples at the baseline. ERSP is defined as:

ERSP (f, t) = 10 log10
ERS(f, t) − µβ

µβ
(3)

– EMG
First, baseline corrections were performed on the extracted data to ensure
that the average of the baseline (300–0 ms before task time) was 0 using the
average of the baseline. Subsequently, a high-pass filter (2 Hz) was applied.
Furthermore, full-wave rectification was applied. Since the positive and neg-
ative EMG signals are determined by the stretching direction of the muscle,
the positive and negative values are meaningless considering the magnitude
of ENG. Following this, normalization was applied. To see the movement of
muscles, we set the maximum value to 1.
For feature extraction, we calculated the average value of EMG during task
time for each trial.

Checking EMG Difference. First, we performed the t-test on the EMG data
for two movement tasks. If there was no significant difference in EMG between
“motor execution” and “motor execution with motor imagery,” movements per-
formed by the subject were the same in the two movement conditions. In other
words, movement conditions did not affect the results of the t-test on EEG.

ERSP Difference Between of Motor Execution and Motor Imagery.
In order to confirm if we could find new features, we performed the t-test as
a significant difference verification using averaged-trial ERSP. Since the EEG
was performed in the frequency/time direction of a certain channel, this method
could judge which place showed a significant difference using the t-value.
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Classification of Motor Imagery and Motor Execution a Single Trial.
In order to confirm if we could perform single-trial classification, we used Fisher’s
linear discriminant. Cross-validation was performed under the following condi-
tions to calculate the accuracy. A 10-fold cross-validation was performed by
randomly selecting 90% of the entire trial for training data and 10% for test
data.

3 Result

3.1 Checking Muscle Activity During Motor Imagery EMG

In order to confirm if there was no significant difference among EMG, motor
execution, and motor execution with motor imagery, we performed the t-test
on EMG. The results of t-tests, EMG of motor execution, and EMG of motor
execution + motor imagery are as follows: t-values of subjects 1 and 2: 0.068
and 0.77, respectively, in the right hand, and 0.77 and 0.053, respectively, in
the left hand. There were no significant differences in EMG. In addition, the
average t-values for the other subjects were 0.56 and 0.79, respectively, in the
right hand and 0.63 and 0.083, respectively, in the left hand. There were no
significant differences in EMG. This result indicates that if we find a significant
difference in the t-test of EEG, it appears on adding motor imagery.

3.2 Difference Between Motor Imagery and Execution EEG

To find new features, we performed the t-test for significant difference verification
using averaged-trial ERSP data, EEG of motor execution, and EEG of motor
execution with motor imagery. Figure 2 shows the results and the color map of
the t-value. The places where a significant difference occurred depending on the
subject were as follows: Subject 1, approximately 5 Hz in the front of the head;
Subject 2, approximately 20 Hz in the motor area; Subject 3, approximately
10 Hz in the motor area; Subject 4, approximately 10 Hz at the back of the head;
and Subject 5, approximately 0–10 Hz at the back of the head.

3.3 Classification Accuracy a Single Trial

As a single-trial classification, results of the Fisher liner discriminant are pre-
sented in Table 1. Within Table 1, the left column indicates test data accuracy,
while the right column indicates training data accuracy. The chance level was
0.5. Therefore, the accuracy of training was high. The accuracy of the test data
was slightly higher than that of the chance level. We believe that there was
over-fitting; therefore, learning with test data was not successful. Each chan-
nel number indicates the next position. (1) P + number = back head. (2) C +
number = motor area. (3) FC, T + number = upper motor area.
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Fig. 2. Result of t-value by t-test to ERSP of two movement conditions, “motor exe-
cution” and “motor execution with motor imagery”. The color shows a significant dif-
ference. The darker the color, the larger the t-value; the lighter the color, the smaller
the t-value. (Color figure online)

Table 1. Result of classification accuracies using Fisher’s linear discriminant. Chance
level is 0.5.

4 Conclusion

In this study, we examined whether new features could be found during the simul-
taneous measurement of motor imagery and motor execution using EEG. We
conducted an experiment in which five participants performed two movements:
“motor execution” and “motor execution with motor imagery.” The results show
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significant differences and features for each subject, but the single-trial classifica-
tion could not obtain a high classification accuracy. In conclusion, the following
three conclusions are drawn. First, when each subject performs motor execution
with motor imagery, EEG shows the recall movement. The following can be said
for each subject: (I) There is no significant difference in EMG. (II) Only motor
imagery can be performed. (III) There is a significant difference in EEG. More-
over, there are three places where significant differences appear: (I) motor area,
(II) frontal area, and (III) occipital area. It is considered to depend on the sub-
ject’s motor imagery method. For example, Visual motor imagery appears in the
occipital and frontal areas [5]. Joint motor imagery appears in the motor area
[2]. In fact, one subject showed significant differences in the occipital region on
the 2nd day and in the motor area on the 3rd day. Further, one subject answered
that he performed visual motor imagery after 2 days but joint motor imagery
after 3 days. If this consideration is correct, we can measure in any recall way.
Second, verifying whether the subject actually did not imagine the movement
during motor execution was difficult. In our study, we surveyed the subjects
to determine their degree of task achievement, and all subjects reported motor
execution without motor imagery. However, this observation was subjective, and
confirmation of motor execution without elements of motor imagery will be nec-
essary in future studies. Finally, the classification accuracy was low with the
single-trial method. This is because the training period was short. This exper-
iment was conducted for only 3 days, and subjects could not sufficiently learn
movement and motor execution with motor imagery. Some subjects answered
that it was more difficult than performing motor imagery alone. However, some
subjects said that movement became easier with each passing day. Even though
the training period was short, we found significant differences using averaged-
trial ERSP. These results show that information related to features might be
decoded from the simultaneous measurement of motor execution with motor
imagery, although it is necessary to improve the performance at the single-trial
level in future works.
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Abstract. The topography of human functional brain network not only
differs between individuals but also reconfigures according to the specific
brain state. However, it remains unknown how the fine-grained func-
tional boundaries change in different individuals and states. Instead of
using within-parcel features, we proposed an avenue to directly investi-
gate the individual boundary differences and state-specific reconfigura-
tions of functional topography using the boundary mapping method. By
quantitatively calculating the inter-subject and intra-subject boundary
variation rankings of different states and networks, we observed that the
individual variation of functional boundaries is higher in the resting state
compared to other task states, and is particularly variable in high-order
association networks. In addition, we also proved that the parcel bound-
aries within individuals are significantly more similar than those between
individuals from the view of boundary variation. Our results reveal the
spatio-temporal distribution of the inter and intra individual functional
topography variations and emphasize the importance of considering the
individualized functional parcellation for understanding the dynamic of
brain organization.

Keywords: Functional parcellation · Boundary variation · Task
states · Networks

1 Introduction

The topography of human functional brain network not only differs between
individuals but also reconfigures according to the specific brain state [1,2]. Most
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of the previous studies placed too much emphasis on the individual variations
and dynamic reconfigurations from the perspective of functional connectivity
and modular architecture of the large-scale brain networks [2,3]. However, the
dynamic boundaries of the functional brain regions are often not considered,
and fixed brain parcellations or atlases regardless of brain state are often used
in such studies. Recent studies found that the human brain functional bound-
aries reconfigure across different cognitive states [2], and comparing with the
intrinsic networks at resting state, the reconfigurations of task-related networks
are modest [1]. Therefore, it remains unknown how the fine-grained functional
boundaries change in different individuals and cognitive states. In other words,
the spatio-temporal distribution of the functional cortical boundary reconfigu-
ration and the corresponding interindividual variability are poorly understood.

Brain parcellation is important for understanding the organizational princi-
ples of the human brain. Among different parcellation methods, the data-driven
functional parcellation using functional features with BOLD (Blood Oxygen
Level-Dependent) MRI is very popular. There are two major methods in this
field, clustering and boundary mapping [4,5]. In the clustering method, spatial
elements (voxels or vertices) are grouped based on their functional similarity,
while boundary mapping selects sharply changing positions as parcel borders. In
recent research, Salehi et al. found that functional parcellation will reconfigure
substantially and reproducibly depending upon brain task state when transiting
from resting state [2]. Although the parcels of the brain are not defined stati-
cally, the number of parcels is fixed in the clustering mapping. Complementary to
this, the border generated from boundary mapping does not have fixed parcels
and intuitive within-parcel features that could be obtained in clustering eas-
ily, which make it difficult researching by boundary mapping. Some researches
studied reconfiguration of networks consisted of parcels generated by boundary
mapping method between resting and task states [3], but not at the level of
parcels. What we did was to research the differences in functional parcellation
results based on the boundary mapping method among resting state and all task
states.

In the current study, we used a functional parcellation method based on
boundary mapping proposed by Gordon et al. [6], and extended this method to
individuals and task states, generating functional parcellation results for each
subject’s each state, including resting and task. 108 subjects in the Human
Connectome Project (HCP) data S500 release was used. A new feature charac-
terizing parcellation result generated by Gordon’s boundary mapping method
was selected and a new index quantifying boundary variation was proposed.
We observed whether there is a significant difference between the results from
resting and task states or not in the view of boundary mapping. Furthermore,
we measured the boundary variation of different task states by leveraging the
new index, looking for the variation regularity and relationship with the exist-
ing network index [7]. We leveraged 7 networks model proposed by Yeo et al.
[8] to measure the changes of boundary variation in different cortical areas and
its relation with brain function in certain regions. Besides, we evaluated which
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has higher boundary variance between inter- and intra-subject from the new
perspective.

2 Method

2.1 Material and Preprocessing

We chose 108 subjects in the open dataset HCP S500. All subjects for analysis
completed 7 conventional tasks provided by HCP, which are emotion (EMOT.),
gambling (GAMB.), language (LANG.), motor (MOTO.), social (SOCI.), rela-
tional (RELA.), and working memory (WM). The HCP data were already pre-
processed by the minimal processing pipeline [9], including artifact removal,
motion correction, and registration to MNI standard space. Furthermore, the
band-pass filter (0.008 Hz<f< 0.1 Hz) was applied to reduce low-frequency drift
and high-frequency noise.

2.2 Feature of Boundary and the Index Measuring Boundary
Variation

Instead of focusing on parcels or within-parcel characteristics, we researched on
the cortical spatial distribution of functional boundary and its variation. In Gor-
don’s method, the final parcellation result is created from an edge-density map
with a given threshold, which is a representation of transition in functional con-
nectivity [6]. We could observe that shapes of high values in edge-density map
and of parcel boundary are the same in the same subject and states (Fig. 1a, 1b),
because the density map contains complete boundary information, and expresses
the latter abundantly and accurately. As a result, the chosen feature characteriz-
ing final parcellating boundary is the edge-density map, which has more advan-
tages on quantifying boundary difference in large or small scopes than spatially
discrete and discontinuous final parcellation boundary.

We extended Gordon’s pipeline to individuals and task states. To research
the boundary variation on specific cortical area and avoid the averaging effect of
the whole cortex, we leveraged 7 functional networks proposed by Yeo to repre-
sent certain brain functional areas: visual network (VIN), somatomotor network
(SMN), dorsal attention network (DAN), ventral attention network (VAN), lim-
bic network (Limbic), frontoparietal network (FPN) and default mode network
(DMN) [8]. The functional boundary distribution of a specific region in a certain
state can be represented by the spatial-corresponding edge-density map (Fig. 1c).
For convenience, situations in resting state and all task states are collectively
called task-conditions, and those in specific network and task-condition are gen-
erally called task-network conditions. All work in this paper was dealing with
the left and right brain separately and got consistent results.

We used root mean square error (RMSE) to measure the difference between
2 edge-density maps:

RMSE(X,Y ) =

√
√
√
√

1
n

n∑

i=1

(Xi − Yi)2 (1)
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Fig. 1. Functional parcellation boundary and corresponding edge-density map. a) Par-
cellation result in resting state of No. 102816 subject. b) Edge-density map of the
boundary in a). The lighter area has a greater frequency to be marked as boundary. c)
Edge-density map under the motor task state in DMN of the same subject.

where X, Y are spatial-corresponding edge-density maps, n means the number
of cortical vertices inside and i means one of them. Lower RMSE score means
a lower difference between 2 maps. Index RMSE has a great property that it is
sensitive to outliers. If peak values from 2 edge-density maps, which is a light
line in Fig. 1c and has the probability to become the final boundary, overlap, the
RMSE score would decrease obviously. This indicator well assesses the degree
of spatial overlap between peak values of edge-density maps as well as final
boundaries.

In summary, the edge-density map was used to characterize the functional
parcellation boundary. The difference of edge-density maps within subjects or
between subjects in certain cortical areas was utilized to represent boundary
variation, which is quantified by the RMSE index. Furthermore, we could explore
which task-condition or which cortical area has lower boundary variation by
comparing RMSE data on statistics.

2.3 Statistical Differences of Boundary Variation Distribution

In the following sections, we compared parcellation boundaries by pairs across
subjects or across task-conditions, which produce a batch of RMSE scores for
a certain condition. We called them an RMSE data group for this certain con-
dition, which represents boundary variation and is convenient for our succeed-
ing discussion. Matched by subject-pairs or by task-pairs, different RMSE data
groups were compared for statistically significant differences to research if there
are differences in boundary variation between corresponding conditions. Since
measurement of boundary variation takes 0 as the lower limit, the distribution
of RMSE data groups is not normal and is more similar to a chi-square dis-
tribution with the degree of freedom bigger than 1 (Fig. 2a). To our surprise,
differences between paired RMSE data groups could not pass all normal tests in
MATLAB, even it looks very similar to the normal curve (Fig. 2b). This result
prevented us from using the paired t-test to determine the significant difference
between RMSE data groups. Therefore, we used the sign test instead, a method
not as rigid as paired t-test but not require a normal population.
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Fig. 2. Distribution of RMSE data groups and their difference. a) Distribution of
RMSE data groups from SMN and VIN under the emotion task state. b) Distribu-
tion of difference of 2 groups in a).

The method of sign test is to test the sign of the difference between paired
data groups. Specifically, if two samples have the same distribution, the number
of positive and negative differences should account for about half for each sign.
On the contrary, if one of the ‘+’ and ‘−’ signs increases significantly, it proves
that there is a significant difference between distributions and we can infer which
RMSE data group has a smaller value as a whole. For example, we propose the
null hypothesis that scores distribution of RMSE data group A is NOT less
than that of group B, which means ‘−’ sign probability of difference A-B is
less than 0.5. The events of ‘−’ sign obey binomial distribution and probability
are given according to the number of events in the test. When the number of
‘−’ sign is large enough, the probability is low enough that we can negate the
null hypothesis and conclude that the distribution of A is less than B with a
statistically significant difference.

2.4 Inter-subject Boundary Variation

For the purpose of quantifying boundary variation between subjects in different
task-network conditions, regional edge-density maps were chosen from each sub-
ject in specific task-condition and network (Fig. 1c) and were compared across
subjects by pairs. An RMSE data group was got and represented boundary vari-
ation in this task-network condition, with the length equal to paired-comparison
number. To briefly show the tendency of inter-subject boundary variation in dif-
ferent conditions, averaged RMSE values across subjects in each task-network
condition were calculated, and shown in matrices and left cortical map (Fig. 3).
Then, leveraging the statistical method of comparing boundary variation in
different conditions, statistical distribution differences of boundary variation
between 7 networks or 8 task-condition were analyzed respectively.

First, we researched the ranking of inter-subject boundary variation of 7 net-
works under the same task-condition. We compared these 7 RMSE data groups
from each network and got all size relations by pairing each other. The ranking of
boundary variation from 7 networks under this task-condition was generated by
collecting all these relations. We have made many comparisons, so FDR correc-
tion was applied before inferring the ranking. Similar comparisons were carried
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under other task-conditions and rankings of networks in each task-condition were
obtained. Second, using the same method, we also could generate rankings of 8
task-conditions in specific networks. Fixing the network, there are 8 RMSE data
groups of 8 task-conditions. Compare these groups for pairs and get statistical
size relations. The ranking of task-conditions in this network could be generated
and so were rankings in other networks.

2.5 Intra-subject Boundary Variation

Regional edge-density maps were chosen as Sect. 2.4 and each map was compared
with another map that belongs to the same subject and same network but in
different task-conditions by the RMSE index. RMSE data group generating by
this way reflect boundary variation of task-condition pair from the same subjects
in the specific cortical region. So, there is an 8*8 task-condition variation matrix
for each subject and network. Each term in the matrix represents the boundary
variation between two task-conditions represented by RMSE. We could see the
tendency of the intra-subject variation between task-conditions by averaging all
8*8 task-condition variation matrices across subjects and networks. The result
is shown in Fig. 4.

After having a task-condition variation matrix, we averaged it into a task-
condition variation vector, in which each term represents average boundary vari-
ation of specific task-condition compared with other task-conditions and is what
we called intra-subject boundary variation. There was a task-condition variation
vector for each subject and network, so there was an RMSE data group for each
task-network condition with the length equal to the subject number. Fixing a
functional network, we could test if there is a statistical difference between intra-
subject variation from arbitrary 2 task-conditions and get intra-subject variation
rankings of task-conditions in each network. The generation of rankings of net-
works used a similar method.

2.6 Comparison of Boundary Variation Between Inter- and
Intra-subject

We proposed a method based on RMSE measurement to compare relative size
between variation of inter- and intra-subject. A hypothesis was proposed that
boundary variation with the same subject and different task-conditions is less
than that in different subjects. All comparisons, both within subject and between
subjects, consist of comparison units. A comparison unit is made of two pairs
of edge-density maps, belong to combinations of 2 subjects (i and j) and 2 task-
conditions (A and B). We marked their edge-density maps as Ai, Bi, Aj, Bj
respectively. Map-paired comparisons were processing between these 4 maps
when map-pair had the same subject or task-condition, and 4 RMSE scores
were generated. 2 of them were calculated across (Ai, Bi) and (Aj, Bj), repre-
senting variation between the same subject and different task-conditions, which
we called t1, t2, meaning values across tasks of the same subject. Others were
calculated across (Ai, Aj) and (Bi, Bj), representing variation between different
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subjects and the same task-condition. We called them s1, s2, meaning values
across subjects. If the average value of t1 and t2 is smaller than that of s1 and
s2, the conclusion of this comparison unit is following our hypothesis. In this
situation, if the minimum variation is a value across subjects, we thought the
persuasion was insufficient and marked this result as an ambiguous result, oth-
erwise a positive result. If the average value of t1 and t2 is bigger, marked as a
negative result. Method on the representative comparison unit was extended to
comparisons among all subjects and task-conditions. We observed the tendency
of all results to get the conclusion. Comparisons were conducted in each network
and hemisphere respectively.

3 Result

3.1 Tendency of Inter- and Intra-subject Boundary Variation

Inter-subject boundary variation represents the difference of function boundary
feature of different subjects, while intra-subject boundary variation represents
the boundary difference between a task-condition with others from the same
subject. The thinking to get inter- and intra-subject boundary variation has
been introduced in the Method section. Here, we use the mean value to show
the general tendencies of these 2 variations.

Average inter-subject variation values were calculated across subjects and
were shown in the matrices in Fig. 3a, 3b. Looking at these two matrices, we could
observe variation patterns in different networks with the same task-condition on
a row of the matrix, and also could observe patterns in the same network with
different task-conditions on a column. Average boundary variation values of the
left hemisphere were also demonstrated on the left cerebral cortex map for a
more intuitive presentation.

Averaged intra-subject variation values across networks and subjects were
shown at matrices of both hemispheres (Fig. 4a, 4b), and averaged intra-subject
variation across subjects was demonstrated on the cortical map of the left hemi-
sphere (Fig. 4c).

Inter- and intra-subject boundary variations were visually consistent on the
cortical map. From Fig. 3 and 4, we concluded that the resting state has greater
boundary variation than any task state. In all pictures in Fig. 3 and 4, the
corresponding parts of the resting state have the color that represents the highest
variation. In different task states, the emotion task has the smallest boundary
variation and the gambling task has the 2nd smallest. From 2 maps on the left
cortex, SMN is the network that has the most minimum variation values across
all task-conditions. Further analysis based on statistics were in the next section.

3.2 Rankings of Inter- and Intra-subject Boundary Variation
on Statistics

Ranking of Networks. We compared all inter-subject boundary variation of
all networks in pairs for the statistically significant difference (p(FDR)< 0.01) by
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Fig. 3. Tendency of inter-subject boundary variation. a) Matrix of inter-subject bound-
ary variation averaged across subjects in every task-network condition in left hemi-
sphere. b) Matrix in right. c) Average boundary variation values across subjects in
every task-condition shown on left cerebral cortex.

Fig. 4. Tendency of intra-subject boundary variation. a) Matrix of intra-subject bound-
ary variation averaged across subjects and networks in every task-condition pair in left
hemisphere. b) Matrix in right hemisphere. c) Intra-subject boundary variation values
averaged across subjects in every task-condition shown on left cerebral cortex.
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sign test, as well as the intra-subject boundary variation. Fixing task-condition,
we could obtain variation ranking in all networks by gathering statistically rela-
tive sizes. Inter- and intra-subject variation rankings were shown in Table 1. In
each item of the table, the number outside brackets indicates the inter-subject
variation while the number inside brackets indicates intra-subject variation. Two
different numbers in the same situation represent the left and right hemispheres
respectively. Smaller ranking means lower boundary variation, and equal places
in a ranking mean the statistical difference among corresponding networks fails
to pass the test. So is Table 2.

Table 1. Inter- and intra-subject boundary variation rankings of networks.

VIN SMN DAN VAN Limbic FPN DMN

REST 4 (6/4) 2/1 (1) 1/3 (1/2) 3/1 (3/2) 7 (6) 4/6 (4/6) 4/5 (4/5)

EMOT. 7/6 (7/4) 1/2 (1) 3 (3) 1 (2) 4 (4) 6/7 (4/7) 5 (4)

GAMB. 7/6 (5/4) 1 (1) 3/4 (3) 2 (2) 3 (4) 6/7 (4/7) 5 (4)

LANG. 5 (5/4) 1 (1) 3 (2) 2 (2) 4 (4) 7 (5/6) 6 (6)

MOTO. 6/4 (6/4) 1 (1) 2/3 (2) 3/1 (2) 7 (6/7) 4/6 (4/6) 5/4 (5/4)

RELA. 7/6 (4) 1 (1) 3 (2/3) 2 (2) 4/3 (4) 6/7 (4/7) 5 (4)

SOCI. 7/6 (7/4) 2 (1) 5/4 (3) 1 (2) 3 (4) 6 (4/7) 4/5 (4)

WM 7/5 (5/4) 1 (1) 3 (2) 2 (2) 4 (5/6) 6/7 (4/6) 5 (5)

There were similar patterns between the left and right brains and between
inter- and intra-subject results (average Spearman rank correlation coefficient
is 0.893 for left and 0.916 for right). In the case of large amounts of data, the
network ranking in resting state showed a different pattern, while rankings in task
states are similar to each other. This is a reflection of the difference between the
parcellation results based on resting and task states. In different brain functional
networks, SMN has the smallest boundary variation and variation of DAN, VAN
are less than mean in both left and right. VIN has the largest variation in the left
hemisphere while FPN is largest in right. The trend has been observed that high-
order association networks have high boundary variation and primary cortical
networks have low variation besides visual network.

Ranking of Task-Conditions. In the same way, fixing the network, we
obtained boundary variation ranking between all task-conditions (p(FDR)
< 0.01). Inter- and intra-subject variation rankings of task-conditions were shown
in Table 2 with inter-subject variation outside brackets and intra-subject varia-
tion inside.

Statistically, we could get the same conclusion as previous. There is high
accordance between results of inter- and intra-subject variation (average Spear-
man rank correlation coefficient is 0.897 for left and 0.921 for right). Left and
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Table 2. Inter- and intra-subject boundary variation rankings of task-conditions.

REST EMOT. GAMB. LANG. MOTO. RELA. SOCI. WM

VIN 8 (8) 1 (1) 2 (2) 3/4 (3/4) 5/4 (5/4) 5/4 (5/4) 5/4 (5/4) 3(3)

SMN 8 (8) 1 (1) 2 (2) 3 (3) 7/4 (4) 4 (4) 4 (4) 6/4 (4)

DAN 8 (8) 1 (1) 2 (2) 3 (3) 3/4 (5) 7 (5) 5 (5) 5 (3)

VAN 8 (8) 1 (1) 2 (2) 4/3 (3/4) 6 (3/4) 5 (3/4) 3 (3) 6 (3/4)

Limbic 8 (8) 1 (1) 2 (2) 4/3 (3/4) 7 (7/6) 6/5 (3/4) 3 (3) 6 (3/6)

FPN 8 (8) 1 (1) 2 (2) 5 (3/4) 4 (3/4) 7 (3/4) 3 (3/4) 5 (3)

DMN 8 (8) 1 (1) 2 (2) 4/7 (6/4) 4/5 (6/4) 4/5 (3/4) 3 (3) 4 (3/4)

right hemispheres have the same variation pattern and all task-condition rank-
ings are almost the same in each network. There is the biggest boundary variation
in resting state, the smallest variation in the emotion task, and the second small-
est variation in the gambling task both in inter- and intra-subject situations.

The resting state has the highest intra-subject boundary variation, which is
significantly greater than the variation of any task state in terms of ranking and
cortical map. It indicates that there is a large difference between functional parcel
boundaries of resting state and task state, which is consistent with the conclusion
found by the clustering method that functional parcellation will reconfigure while
transiting from resting to task state [2]. For further research on the accordance
between results of inter- and intra-subject variation between task-conditions, we
did another experiment to explain this phenomenon. We superimposed the final
parcellation boundary of all subjects according to the task-condition on the left
cerebral cortex. Then frequency that each cortical vertex was identified as the
boundary was calculated. We observed the distribution of the frequency of all
left cortical vertices and calculated the mean and variance, shown in Table 3.

Table 3. Mean value and standard variation of boundary frequency.

REST EMOT. GAMB. LANG. MOTO. RELA. SOCI. WM

Mean value 0.257 0.262 0.261 0.259 0.259 0.258 0.259 0.259

Standard variation 0.139 0.167 0.154 0.147 0.147 0.146 0.148 0.147

On the premise that the mean value is basically identical, we found that task-
condition with lower boundary variance has a greater variance, which means
some cortical vertices are identified as border more often and some not. In other
words, the functional parcellation boundary of task-condition with lower variance
is preferred to converging on some vertices. It can be inferred that the functional
boundary of task-condition with lower variance is closer to the intrinsic and
putative border of the human cerebral cortex than those with higher variation,
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which causes appearance that this task-condition has lower boundary variation
no matter within-subject or between-subject.

Relationship with Network Efficiency. The boundary variation of task
states is related to the global network efficiency after functional network recon-
figuration caused by activation. Network efficiency is the quantification of com-
munication capability between vertices and global efficiency is calculated as the
averaged value of all vertices’ efficiencies. Zuo et al. found that accompanied with
the reconstruction of the functional network when entering a task state, global
efficiency improves greatly [7]. The global network efficiency for each task state
shows a significant negative correlation with boundary variation, meaning task
state with lower boundary variation has higher global network efficiency. This
phenomenon maybe because they have a common internal motivation factor.
One of the possible explanations is the degree of task engagement, and relevant
research is underway.

3.3 Comparison of Boundary Variation Between Inter- and
Intra-subject

Results were similar in the left and right hemispheres. In different cortical
regions, the common percentage of negative cases was about 2%, while the max-
imum percentage did not exceed 9%. Even if we considered ambiguous cases,
the maximum percentage of cases that did not strongly support our hypothesis
was less than 26%. Limbic network, default mode network, and visual network
were cortical areas that have the largest, middle, and the smallest percentage
of negative cases in both hemispheres. From all results revealed, we verified our
hypothesis and concluded that intra-subject parcel boundaries are significantly
more similar than inter-subject parcel boundaries. Shown in Table 4.

Table 4. Results of comparison of boundary variation between inter- and intra-subject.

VIN SMN DAN VAN Limbic FPN DMN

Positive cases (L) 91.74% 84.23% 90.69% 79.54% 73.84% 87.94% 84.51%

Negative cases (L) 0.60% 2.53% 0.74% 5.19% 9.33% 2.04% 2.01%

Positive cases (R) 91.75% 85.32% 90.42% 80.91% 74.19% 90.66% 86.19%

Negative cases (R) 0.60% 1.94% 1.06% 5.33% 9.44% 0.66% 1.92%

4 Conclusion

In this paper, inspired by the conclusion based on the clustering method that
functional parcellation will reconfigure substantially and reproducibly when
entering task state, we gave a new perspective of boundary variation based on
the boundary mapping method. Rather than analyzing parcellation difference by
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features within the parcels, we preferred to focus on the change of edge-density
maps, which characterize functional boundary, in different individuals, cortical
networks and task-conditions, and proposed RMSE index to quantify the varia-
tion. We found results similar to cluster-based method when researching on the
intra-subject boundary variation, proving the significant parcellation difference
between resting state and task states. Furthermore, the boundary variations
of task-network conditions were quantified in inter- and intra-subject methods
respectively, and patterns are demonstrated by cortical maps and rankings. Con-
sistency between results of inter- and intra-subject indicated that the boundary
of task state with lower variation is closer to the intrinsic boundary of the human
brain. The boundary variation of task states is consistent with the efficiency of
the network after reconfiguration, indicating they have the same principle. There
are higher boundary variations in high-order association networks. In addition,
we also proved that the parcel boundaries within individuals are significantly
more similar than those between individuals from the view of boundary varia-
tion. To conclude, our results revealed the spatio-temporal distribution of the
inter and intra individual functional topography variations, and emphasize the
importance of considering the individualized functional parcellation for under-
standing the dynamic of brain organization. In the future, the next stage of
building the functional brain atlas will be dynamic instead of static by including
information on spatio-temporal brain state changes during normal development
or aging as well as disease-related effects.
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Abstract. The classification of action intention understanding based on
EEG signals is very important for human-robot and social interaction
studies. In order to classify the action intention understanding brain sig-
nals efficiently, we first use three kinds of phase synchronization indices,
phase locking value (PLV), phase lag index (PLI) and weight phase lag
index (WPLI), to construct functional connectivity matrices in multiple
micro time windows, and then extract the sum of significant edge values
of each time window matrix as the classification feature, finally apply
support vector machine (SVM) classifier to implement action intention
understanding data classification task. Classification result shows that
new method performs well on three datasets (alpha, beta and fusion fre-
quency bands), and brain network statistical analysis demonstrates that
many significant edges appear on the alpha frequency band. We con-
clude that the phase synchronization indices are extremely useful for the
classification task, the sum of significant edge values is an effective classi-
fication feature, and the action intention understanding closely correlates
with the alpha frequency band.

Keywords: Phase synchronization · Classification · Action intention
understanding

1 Introduction

In recent years, the study of action intention understanding has attracted exten-
sive attention [1–6]. The classification of action intention understanding based
on EEG signals is one of the most important branches of the study, which is
viewed as a key factor for human-robot interaction [1,7–9]. Many researchers
carried out a lot of experiments on the action intention understanding classifi-
cation by different methods [1,5,9]. However, the classification accuracy is often
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unsatisfactory. This is due to two important reasons: (1) it is difficult to extract
the most useful classification features, (2) it is hard to collect a large number of
training samples. As for the former question, some researchers use different brain
signal collection techniques to solve it [1,9], and some other researchers mainly
focus on extracting further feature [5]. Due to the popularity of deep learning,
many people begin to consider using neural network (e.g., convolution neural
network (CNN) and recurrent neural network (RNN)) technique to extract fea-
tures. As for the latter question, people usually spend much time and money to
recruit subjects and collect a certain amount of neural information data.

Brain network is an efficient tool to study neuroscience, which has some com-
prehensive merits (e.g., feature extraction, brain region position) [1,5]. There are
a lot of algorithms to construct the brain network [10]. The synchronous oscilla-
tion of a neural network is the main potential mechanism of brain information
integration and processing, and the synchronization of multiband signals is the
key feature of information exchange between different brain regions [11]. In the
EEG synchronization analysis algorithms, the phase synchronization analysis
method can directly separate the signal phase information in a given frequency
range from the amplitude of nonstationary information. Then, the signal phase
information can be used for the synchronization analysis of EEG narrowband
signals, such as mu rhythm [11–13]. It is noteworthy that some previous studies
point out the action intention understanding correlates with the alpha and beta
rhythms [14,15]. The advantage of phase synchronization is that it has nothing
to do with the amplitudes of two neural oscillatory activities, but only with the
phases.

Considering that, we first use three phase synchronization indices, phase
locking value (PLV) [11], phase lag index (PLI) [12] and weighted phase lag
index (WPLI) [13], to construct brain networks in this study, then apply these
brain networks to solve the former two problems (feature extraction and sample
collection). As for the first problem (feature extraction), we adopt t-test and
FDR correction to select the edges of a functional connectivity matrix and sum
for these edges as a feature. And as for the second problem (sample collection),
inspired by the literature [16], we use an idea that one divides into three to
model more samples. Each subject has three kinds of brain networks that are
calculated by the PLI, WPLI and PLV under a certain stimulus condition. We
view the different brain networks as different samples. Because our final goal is
to classify action intention understanding, the sample model method is feasible.
More details about how to solve these two problems are presented out in next
section.

The main contribution of this study is that we design a novel method which
can effectively solve the problem in feature selection for classifying action inten-
tion understanding EEG signals. Many other neural information data classi-
fication studies (e.g., epilepsy, emotion, and mathematical genius classification
tasks) also can draw lessons from the novel feature extraction method. The train-
ing sample collection idea based on the phase synchronization indices shows its
advantage under the condition of limited manual sampling. With the analyses of
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signals classification and brain network statistical test, we found that the alpha
frequency band easily obtains significant achievements in experiments, which
further supports the conclusion that action intention understanding closely cor-
relates with the alpha frequency band in some previous studies [5,14,15].

2 Materials and Method

2.1 Subjects

After deleting 5 subjects of which EEG data were seriously noised (e.g., someone
has abnormal channels that there were no signals in them), we totally retained 25
healthy subjects (17 males, 8 females; aged 19–25 years, mean ± SD: 22.96 ± 1.54;
right-handed). This research was approved by the Academic Committee of the
School of Biological Sciences and Medical Engineering, Southeast University,
China.

2.2 Experimental Paradigm

In the progress of EEG data acquisition, all subjects were asked to see three
kinds of hand-cup interaction pictures that were performed by an actor. They
only needed to judge the actor’s intention, but not to implement any concrete
operations. The three action intentions were drinking water (Ug), moving the cup
(Tg) and simply contact the cup (Sc). Figure 1 shows the experimental stimuli
and procedure. This design comes from Ortigue et al.’s experimental paradigm
[17].

2.3 Data Collection and Preprocessing

In this study, we use 64 AgCl electrodes that were arranged with the international
10–20 system to record the EEG signals. The sampling rate was set to 500 Hz,
and the reference electrode was set as M1 that was placed on the left mastoid.
All the data collection tasks were completed with the Neuroscan 4.3.

In order to obtain useful data, we clean the raw EEG signals by Neuroscan
4.3 and EEGLAB 14.0 [18]. In the light of some previous data preprocessing
experiences, it can’t efficiently clear noises of the raw EEG data by independent
component analysis (ICA). We adopted ocular processing in the Neuroscan to
replace the ICA in the EEGLAB. Mastoid reference is efficient in somatosensory
evoked potentials, which correlates with action behaviors. Thereupon, we trans-
formed the unilateral mastoid reference (M1) into bilateral mastoid (M1, M2)
re-reference. Both the ocular processing and re-reference are completed with the
Neuroscan.

When completed the ocular processing and re-reference, we used the
EEGLAB to select 60 scalp electrodes that cover frontal, partial, central, occip-
ital and temporal areas. Then, we adopted the Basic FIR filter in the EEGLAB
to extract the 1–30 Hz data. And then, we segmented the data with event types
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Fig. 1. Experimental stimuli. (A) An example of stimulus materials. Ug (use grip),
Tg (transport grip), and Sc (simple contact) denote that the actor grasps the cup for
drinking water, moving it, and touching it without any clear intention, respectively.
(B) An example of the experimental procedure in a trial. In the stimuli, a symbol
‘+’ was first presented on the screen with 150ms. Then, a cup was shown for 500 ms
to keep consistent sense. The formal action intention stimulus that was denoted by
a hand-cup interaction picture starts after 650ms, which was sustained for 2000ms.
When the hand-cup interaction stimulus appears, the subjects need to guess what the
actor want to do immediately. Before the next trial, the ‘+’ was presented again with
a random time that varied from 1000 to 2000ms.

in a time window (−0.65 s to 2.5 s) and removed the baseline by setting the
baseline at −0.65 s. In the end, we deleted artifacts with a threshold range that
varied from −75 to 75µV. A total of 679 trials were removed and an average
of 267 trials were kept for each subject. It is noteworthy that the alpha and
beta frequency sub-bands used in this study were extracted by low resolution
electromagnetic tomography (LORETA) in the source space.

2.4 Phase Synchronization Indices

The advantage of phase synchronization is that it has nothing to do with the
amplitudes of any two neural oscillatory activities, but only with the phases.
Considering that, we use three phase synchronization indices to construct the
functional connectivity matrices. Before giving out the concrete formulas of the
three indices, it needs to explain two important concepts in this study. One is that
each brain network is represented by a functional connectivity matrix. Another
is that the node in the brain network is defined by the region of interest (RIO) in
the source space, i.e., each node corresponds to a RIO. Our experiments mainly
based on the whole brain, which has 84 RIOs that are defined in the LORETA.
The preprocessed 60 channels EEG data were converted into 84 RIO time series
with the LORETA. Hence, the size of a functional connectivity matrix (brain
network) is 84 × 84. The mathematical expressions of the three algorithms that
are used to construct the functional connectivity matrices are defined as follows:
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• Phase locking value (PLV)
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where t is the time point, N is the total number of sample points, Φn,x(t) and
Φn,y(t) are two instantaneous phases that come from channel x and channel y
at the nth time point respectively. The instantaneous phases are computed by
Hilbert transform.

• Phase lag index (PLI)
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where �Θ is also the instantaneous phase difference that is between the time
series x(t) and y(t) at the nth sample time point as demonstrated in the Eq. (1).

• Weight phase lag index (WPLI)
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where S̃(w) denotes the imaginary component of cross-spectrum between time
series x(t) and y(t). The symbols 〈·〉, |·| and function sign denote mean, absolute,
signum function, respectively.

After obtaining the functional connectivity matrices that are calculated by
PLV, PLI and WPLI, we first use paired t-test and false discovery rate (FDR)
correction (p < 0.05) to find the positions of which edges are significantly differ-
ent between two kinds of action intention understandings (Ug-vs-Tg, Ug-vs-Sc
and Tg-vs-Sc). The final positions are determined by the edges that are all signif-
icantly different on the three paired comparisons. Then, we use the final positions
to select the weighted edges in each time window. Finally, we use the sum of the
selected edges in each time window as the classification feature, i.e., each time
window matrix is corresponding to one feature. Because there are 63 dynamical
time windows in this study (We divide the full-length time series into 63 sub
time series, each has a length of 50 ms.), hence, it totally has 63 features for a
single frequency band dataset. Figure 2 shows out the flow chart of our novel
method. It is important to note that the feature selection is completed on the
condition of 5-fold cross validation.

As for the problem of increasing data samples that is mentioned in the intro-
duction, we let the feature vectors which are from the three functional connectiv-
ity matrices (PLV, PLI and WPLI) of one subject be three samples. Therefore,
we can make 75 data samples for the original 25 subjects on one kind of action
intention stimulus. A total of 225 data samples (Ug, Tg, and Sc all have 75
samples) are collected in this experiment.
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Fig. 2. The flow chart of new method.

3 Results

The experimental results mainly include two parts: action intention understand-
ing classification and brain network statistics. In the following, we give out the
demonstrations of the results.

3.1 Action Intention Understanding Classification

The classification pattern is one-versus-one, i.e., Ug-vs-Tg, Ug-vs-Sc and Tg-vs-
Sc. The classifier is the classical support vector machine (SVM), of which kernel
function and order number parameters are set as polynomial, 1, respectively.
We use three datasets, alpha, beta and fusion, to carry out the action intention
understanding classification. That is to say, the action intention understanding
based on EEG signals come from the alpha, beta frequency sub-bands. Fusion
dataset is constructed by merging the features of alpha and beta datasets into
a big dataset. The classification tasks based on the group level, not a single
subject. In order to avoid random factors, we implemented 1000 times 5-fold
cross validation and calculated the mean of these 1000 times experiments as the
final classification accuracy.

Figure 3 shows the average classification accuracies on the alpha, beta and
fusion datasets. We can see that the lowest accuracy is over 65%, while the
highest accuracy is even over 95%. The classification accuracies on the Ug-vs-Tg
are all more than 85%, which performs the best compared with the other two
one-versus-one patterns. Among the three datasets, beta performs the worst and
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Fig. 3. Average classification accuracies on three datasets. The red stick denotes the
standard deviation. The alpha, beta and fusion are three different datasets, which come
from the alpha, beta and fusion frequency bands, respectively. (Color figure online)

fusion performs the best. Especially, the average classification accuracies on the
fusion dataset are all greater than or equal to 80%. Table 1 displays the details
of four classification estimation metrics under different conditions. We can see
that most of the numerical values of mean (average classification accuracy),
sensitivity and specificity are very high, while the numerical values of standard
deviation are very low.

3.2 Brain Network Statistics

In this part, we give out the edge value differences of the average brain network
that is based on 63 dynamical time windows. Each functional connectivity edge
is tested by serious t-test and FDR correction. The statistics are carried out on
the three one-versus-one patterns.

Figure 4 shows the statistical results on the alpha and beta frequency sub-
bands. We can see that there are many significant connectivity edges in the
alpha band, while the beta band is very sparse, especial in both Ug-vs-Sc and
Tg-vs-Sc. Additionally, we also can see that many important nodes appear in
the temporal, frontal and occipital lobes. The positions of the important nodes
are uncommon on different frequency bands and one-versus-one patterns.



Classification of Action Intention Understanding 117

Table 1. Classification estimation metrics. The mean denotes the average classification
accuracy.

Condition Estimation metrics

Frequency band Pattern Mean Standard deviation Sensitivity Specificity

Alpha Ug-vs-Tg 94.00 2.79 93.33 94.67

Ug-vs-Sc 82.67 5.96 76.00 89.33

Tg-vs-Sc 76.00 7.23 61.33 90.67

Beta Ug-vs-Tg 85.33 6.06 89.33 81.33

Ug-vs-Sc 74.67 3.8 66.67 82.67

Tg-vs-Sc 68.00 4.47 44.00 92.00

Fusion Ug-vs-Tg 96.67 2.36 98.67 94.67

Ug-vs-Sc 88.67 6.50 81.33 96.00

Tg-vs-Sc 80.00 6.24 64.00 96.00

4 Discussion

From the experimental results of action intention understanding classification
and brain network statistics, we have some important findings. In this section,
we present out the elaborations of these findings.

The results of classification accuracies display the novel method performs
well on the alpha, beta and fusion datasets (see Fig. 3 and Table 1), which sug-
gest that the feature extraction and sample collection that are dealt with by the
phase synchronization indices are effective and satisfactory. Some previous stud-
ies [1,5] which use a single index of phase synchronization (PLV, PLI or WPLI)
to decode action intention understanding point out that the phase synchroniza-
tion is a useful tool. The experimental results based on multiple indices of phase
synchronization (PLV, PLI and WPLI) further prove the previous viewpoint.
Both the alpha and beta frequency sub-bands show extremely high classification
accuracies, which indicate that the action intention understanding brain activ-
ities easily occur at these two bands. These are consistent with some previous
studies [5,15]. Figure 3 demonstrates that the fusion dataset obtains the best
classification accuracy. Because the fusion dataset contains twice the classifi-
cation features compared with a single alpha or beta dataset (both alpha and
beta have 63 features, fusion has 126 features), it more easily obtains a better
result. Another feasible explanation is that the fusion dataset not only captures
the alpha but also contains the beta frequency band information, therefore, the
fusion dataset can take the advantages of both frequency bands at the same
time. Briefly speaking, feature fusion is an effective method for classification. It
is noteworthy that when compared with the previous studies about action inten-
tion understanding classification [1,5,9], our novel method obtains more higher
classification accuracies.

In the Fig. 4, many functional connective edges are still retained after
serious FDR correction (p < 0.05). Because the difference brain networks are
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Fig. 4. Difference brain network. Each edge is determined by T-test and FDR cor-
rection (p < 0.05). The red, yellow, green, cyan, blue and purple-red nodes are from
the temporal lobe, limbic lobe, frontal lobe, occipital lobe, sub-lobar and parietal lobe,
respectively. The size of the node denotes the degree, the larger the size is, the higher
the degree is. (Color figure online)
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constructed by the mean of the 63 sub brain networks, hence, we conclude that
the dynamical network effectively catches the difference information of action
intention understanding brain activities in each microstate (50 ms). The alpha
frequency band displays more significant edges than the beta frequency band,
which suggests that the action intention understanding brain activities more
easily occur at the alpha band [5,16]. The classification accuracies in the alpha
dataset are better than the results in the beta dataset (see Fig. 3) also support the
viewpoint that action intention understanding brain activities closely correlate
with the alpha frequency band [5]. Some big size nodes appear at the temporal,
partial, frontal and occipital lobes, which indicate that different action intention
stimuli easily lead to different extents brain activities in these areas. These are
consistent with some previous studies [6,16,17,19]. According to distribution of
the big size nodes in both alpha and beta frequency bands, we conclude that
human beings need the cooperation of multiple brain regions to complete the
correct understanding of action intention. If one big size node were destroyed,
the structure of brain network were destroyed, then the corresponding function
will be changed. This is why some people with brain injuries can not understand
other people’s intention perfectively, e.g., can not understand others’ language
and gesture.

Although the novel method obtains very high classification accuracies, there
are still some limitations in this study. For instance, the classifications are imple-
mented on the group level (we view each subject from one stimulus condition,
Ug, Tg or Sc, as a classification sample), while the number of raw subjects is
only 25. Hence, it still needs to expand the sample size in the future. Addi-
tionally, the classification accuracy based on integral level, i.e., the classification
accuracy is equal to the number of correctly classified samples divided by the
total number of samples in the test set. For the prediction of a real sample with
unknown stimulus condition, the integral level calculate strategy can not com-
plete effectively. The reason is that the classification task is carried out under
the 5-fold cross validation condition, which easily leads the sample labels to be
confused. Of course, we have a satisfactory way to solve this problem. With the
idea of Leave-One-Out (LOO) cross validation, we can use the real sample to be
predicted as the test set and all other samples as the training set. Because the
real sample is divided into three (they come from PLV, PLI and WPLI, respec-
tively), hence, it needs to predict three sample labels. When the labels of the
three indices are consistent, then we can get the predict class of the real sample.

5 Conclusion

In summary, the novel method improves the classification accuracies of action
intention understanding based on EEG signals effectively. It has some merits
of generality, e.g., it can be applied in other state-of-the-art neuro informatics
data recording technologies, such as MRI, fMRI, MEG, NIRS and so on, mean-
while, it also can be introduced into other neuroscience study fields, such as
emotion, motor imagery, Alzheimer’s disease, epilepsy, autism, alcohol addic-
tion, etc. When adopt the LOO cross validation strategy, the novel method will
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have some potential practical application values for the human-robot interaction.
In the future, we will try our best to weaken the deficiencies in the novel method
so as to obtain more satisfactory classification results and decode more complex
neural mechanisms about the action intention understanding brain signals.
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Abstract. Brain functional network (BFN) analysis based on functional
magnetic resonance imaging (fMRI) has proven to be a value method for
revealing organization architectures in normal aging brains. However, a
comprehensive comparison of different BFN methods for predicting brain
age remains lacking. In this paper, we introduce a novel method to estab-
lish the BFN by using the Schatten-0 (S0) and �0-regularized low rank
sparse representation (S0/�0 LSR) method. Moreover, the performance
of different BFN methods in the brain age prediction with different fea-
ture extraction methods is evaluated. A support vector regression (SVR)
is applied to the BFN data to predict brain age. Experimental results for
resting state fMRI data sets show that compared with the Pearson cor-
relation (PC), sparse representation (SR), low rank representation (LR),
and low rank sparse representation (LSR) methods, the LSR method
can achieve better modularity and predict brain age more accurately.
The novel approach can enhance our understanding of the functional
network of the aging brain.

Keywords: Brain functional network (BFN) · Brain age prediction ·
Schatten-0 (S0) and �0-regularized low rank sparse representation
(S0/�0 LSR) · fMRI

1 Introduction

Brain functional network (BFN) analysis is a valuable approach for understand-
ing the complex functional system of the brain and for studying brain develop-
ment, cognitive ability, disease, and other phenomena [1]. The study of brain age
prediction can provide theoretical analysis of changes in behavior or cognitive
function caused by brain aging. Recent studies have revealed age-related changes
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in connectivity at the whole-brain level across the entire lifespan [2–4]. However,
methods for predicting changes in the BFN of the normal aging brain suffer from
the following limitations: 1) they ignore the accuracy of the constructed BFN
and 2) they ignore the effects of different BFN methods on age prediction.

Accurately constructing the BFN is an important prerequisite for brain func-
tion prediction. According to graph theory, the BFN consists of nodes and edges,
where nodes represent the brain regions and edges represent the associations
between nodes in fMRI study. Pearson correlation (PC) [5] is commonly used
for constructing the BFN. However, the PC method only focus on the pairwise
associations between nodes and ignores the influences of other nodes. Some stud-
ies have found that both brain activity and brain functional connectivity have
sparsity [6]. �1-norm is commonly employed [7] as a sparse solution for the sparse
representation (SR) of fMRI data. However, the BFN commonly has more type
of structures than sparsity [8], and low rank representation (LR) [9] can capture
the modular structure of the data. Considering the sparsity and structures of
the brain network, Qiao et al. [8] propose the sparse and low rank representa-
tion (LSR) method, which considers nuclear norm and as the measures of low
rank and sparsity, respectively. However, the optimal solution of the nuclear and
�1 − norm regularized objective just achieves an approximate solution [10], and
does not provide exact measures of rank and sparsity. Brbic et al. [11] use the
direct solution Schatten-0 (S0) and �0-regularized low rank sparse representa-
tion (S0/�0 LSR) method to solve the over-penalized problem of LSR, which has
demonstrated good performance in speech recognition and handwriting recogni-
tion. Motivated by the highly correlated fMRI data of spatially adjacent brain
regions, we introduce the S0/�0 LSR to construct the BFN in this study.

There are many studies of brain age prediction [3,12,13]. However, few have
explored the effects of different the BFN methods on age prediction. In this
paper, we evaluate the performance of PC, SR, LR, LSR and S0/�0 LSR on age
prediction. The five methods are used to construct brain functional networks
after processing the fMRI data. Then, the functional connection (FC) values
and network metrics are extracted as features. Finally, a SVR is employed to
evaluate the prediction performance of the five different BFN methods. Note that
actual age is used in this study to optimize the parameters of the method. Thus,
we make the implicit assumptions that 1) age-related changes in connectivity
are similar and unimodal in a population; 2) all subjects in the cohort age at
the same pace. The overall procedure of our study is shown in Fig. 1.

The main contributions of this paper are two-fold. First, we use a novel
method to construct a sparse and modular structure and statistically robust
brain functional network with the aim of accurately predicting brain age. Sec-
ond, we evaluate the effects of five different BFN construction methods on age
prediction in the case of two different feature extraction methods.
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Fig. 1. A schematic of our method for evaluating age prediction.

2 Materials and Methods

2.1 Participants and Data Preprocessing

Data from ninety-two participants (age range: 13–85; 49 males and 43 females)
are obtained from the Nathan Kline Institute and can be downloaded from
http://www.fcon.com/ 1000.projects.nitrc.org/indi/pro/nki.html [14]. The sub-
jects underwent a scan session using a 3T Siemens Trio scanner. Resting state
fMRI scans are collected using an echo-planar imaging (EPI) sequence with
the following parameters: time repetition(TR)/time echo(TE) = 2500/30ms,
voxel size = 3.0∗3.0∗3.0mm3, 38 interleaved slices. Each scan session comprises
260 functional volumes. Inside the scanner, subjects are instructed to keep their
eyes closed and not move.

The fMRI data ware preprocessed by the Data Processing Assistant for
Resting-State fMRI (DPARSF) [15] in MATLAB R2013b. The first ten images
of each subject ware discarded. The remaining 250 images ware processed as fol-
lows: 1) slice timing and realignment ware conducted; 2) The six motion param-
eters, whole brain, cerebrospinal fluid (CSF) and white matter (WM) signals
as covariates ware regressed out by using the Friston-24 parameter model; 3)
spatial normalization to standard MNI space was conducted by DARTEL pro-
cedure; and 4) images ware smoothed with a full width half maximum (FWHM
= 4 mm) Gaussian kernel and temporal bandpass filtering(0.01–0.08 Hz). Then,
we used the Automated Anatomical Labeling (AAL) template of 90 regions of
interest (ROIs) as nodes of the brain network, and the time series of 90 nodes
of each subject ware obtained.

http://www.fcon.com/_1000.projects.nitrc.org/indi/pro/nki.html
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2.2 Construction of the BFN

• Pearson correlation (PC)

W
(pc)
ij =

∑n
t=1(it − ī)T (jt − j̄)

√∑n
t=1(it − ī)2

∑n
t=1(jt − j̄)2

, (1)

where W
(pc)
ij represents the correlation coefficient of the time series between

node i and j, and it and jt denote the fMRI signal value between node i and
j at time point t, respectively. n is the total number of time points, and ī and
j̄ are the average time series of the nodes.

• Low rank sparse representation (LSR)
Let x = (x1, ..., xn) ∈ R

d×n be the normalized fMRI time matrix of a subject,
which has n nodes with d time points. For the time series of a node, the time
series of all the other nodes X = (x1, ..., xi−1,, xi+1, ..., xn) ∈ R

d×(n−1) are
used as a dictionary for representation, which contains all samples except xi

itself, with a coding coefficient wi. LSR solves the following problem:

min
w

λ1‖W‖∗ + λ2‖W‖ 1, s.t.X − XW = 0, (2)

where λ1 and λ2 are the rank and sparsity regularization parameters, W =
(w1, w2, ..., wn) ∈ R

n×n

is the coding coefficient matrix, nuclear norm ‖W‖∗
denotes the low rank constraint on matrix, �1-norm ‖W‖1 in W is for spar-
sity constraint. The combination of the two constraints ‖W‖1 the BFN can
produce module structure. For data with noise, problem (2) can be extended
to the objective function as follows:

min
w

1
2

‖X − XW‖2F + λ1‖W‖∗ + λ2‖W‖1, (3)

where ‖X − XW‖2F indicates the data-fitting term. Note that when λ1 = 0,
Eq. (3) is the problem of low rank representation (LR); when λ2 = 0, Eq. (3)
reduces to the sparse representation (SR). The optimization problem of the
objective function can be solved by a proximal method [16]. Once the W
representation matrix is obtained, we could replace W with WLSR = (W +
WT )/2 to produce the affinity matrix. The elements of the matrix WLSR

represents the FC values between node i and node j.
• Schatten-0 (S0) and �0-regularized low rank sparse representation (S0/�0

LSR)
In this study, we introduce Schatten-0 (S0) and �0-regularized low rank sparse
representation (S0/�0 LSR) [11] to construct the BFN, in which S0 and �0
quasi-norm regularizations are used for the low rank and sparse constraint.
The objective function of the S0/�0 LSR method can be formulated as follows:

min
w

1
2

‖X − XW‖2F + λ1‖W‖S0
+ λ2‖W‖0, (4)

where ‖W‖S0
is the Schatten-0 quasi-norm of W defined as ‖W‖S0

=
‖diag(Σ)‖0, and W = UΣV T is the singular value decomposition of matrix
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W for the low rank constraint. diag(Σ) represents the vector of diagonal ele-
ments of matrix Σ. ‖W‖0 is the �0 quasi-norm of W , which represents the
number of nonzero elements in W for the sparsity constraint.

The objective function (4) can be optimized via the ADMM method [17].
For the proximal maps of low rank and sparsity regularizations, the proximal
average method [18] is used to average the solutions. And the hard thresholding
function is used as a proximity operator of the penalties. The iteration of the
hard thresholding operator [19,20] on the singular values and coefficients solve
the problems of the low rank and sparsity constraints. The definition entry-wise
of the proximity operator H : R → R of ‖x‖0 is shown as follows [19]:

H(y;λ) = arg min
x∈R

{
1
2
(y − x)2 + λ‖x‖0

}

. (5)

The hard thresholding function [18] H : R → R of ‖x‖0 defined in (6) is used
to solve the closed-form problem of (5) at y ∈ R.

H(x;λ) =

⎧
⎨

⎩

x, if |x| >
√

2λ

{0, x} , if |x| =
√

2λ

0, if |x| =
√

2λ

(6)

The proximity operator of ‖W‖S0
is obtained by the hard thresholding function

applied entry-wise to Σ [20]. Finally, the S0/�0 LSR is constructed by symmetric
association matrix with W s0/l0LSR = (W + WT )/2.

2.3 Evaluation of Brain Age Prediction

The basic procedure of age prediction is illustrated Fig. 1, and includes three
main steps. The leave-one-out-cross-validation (LOOCV) method is used to esti-
mate the prediction accuracy in the three steps. First, the features are extracted
by two common methods. In the first method, the FC values of the constructed
BFN are directly used as the features. In this study, there are 90 nodes in the
network, thus the feature dimensionality is 4005. In the second method, the
effective network metrics are extracted from the weighted matrices as features.
For second method, we obtain eight network metrics from five aspects: func-
tional integration(FI), functional segregation(FS), modularity index(MI), nodal
centrality(NC), and network resilience(NR), which can be implemented by the
brain connectivity toolbox [21]. The formulas and definitions are presented in
Table 1. The feature vectors based on network metrics features will have a size of
453 for each subject. Second, the feature selection aims to remove irrelevant or
redundant features and retain discriminative features, which can lead to better
prediction performance. Here, the Pearson correlation is employed to select use-
ful features. The correlation between the feature and the ages is computed. The
larger Pearson correlation score indicates the more useful discriminative feature.
Finally, the SVR [22] is employed to evaluate the prediction performance of the
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Table 1. Features based on network metrics.

Network metrics Formula Definitions

FI Global
efficiency

Egol(G) = 1
N(N−1)

∑

i�=j∈N

1
dij

Where dij is the shortest
path length from node i to j
in network G with G nodes

FS Local
efficiency

Eloc(G) = 1
N

∑

i∈G

Eglob(Gi) Where Eloc(G) is the local
efficiency of Where Egol(Gi)
is the subgraph of the
neighbors of the node i

Clustering
coefficient

Ci = 2ei
ki(ki−1)

Where ei is the number of
triangles around the node i,
and ki is the degree of node i

MI Modularity M = 1
L

∑

ij

[Aij − kikj

L
]δ(δi, δj) Where Aij is the elements of

the matrix, L is the total
number of edges, δi and δj

are the labels of the group

Participation
coefficient

Pi = 1 − ∑

m∈M

( kim
ki

)
2

Where M is the set of
modules, and kim is the
number of edges of node i
and the other nodes in
module m

NC Betweenness Bi =
∑

s �=t �=i∈N

δst(i)
δst

Where δst(i) is the number of
shortest paths between node
s and t that pass through
node i, and denotes the
number of the shortest paths
between node s and t

Degree
centrality

ki =
∑

j∈N

lij Where lij is the connection
status between the node i
and j

NR Average
neighbor
degree

knn,i =
∑

j∈Nlijkj

ki
Average neighbor degree
reflects the network
vulnerability to insult

five BFN methods. The kernel function and tolerance of SVR are set as linear
kernel and 0.1, respectively. The SVR is implemented using the LIBSVM toolbox
[23]. The whole process is iterated 1000 times with the permutation test method
to avoid random prediction.

2.4 Evaluation Metrics

The evaluation metrics focus on two aspects. The Newman’s spectral algorithm
[24] is employed to calculate the modularity scores of the BFN. The formula
and definitions are listed in the ‘modularity’ row of Tables 1. The higher the
modularity, the higher the structural quality of the network. Two metrics are
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used to evaluate the effectiveness of the prediction: 1) the accuracy R is the
correlation between the true age and predicted age and 2) the mean square error
(MSE) can be calculated as follows:

MSE = (|A1 − P1|2 + |A2 − P2|2 + ... + |An − Pn|2)/n (7)

where An and Pn are the true and predicted values, respectively, for each fold
in the LOOCV. A high R values and low MSE indicate good prediction perfor-
mance.

3 Results and Discussion

The experimental results and discussion are presented in three sections. The
five BFNs and their modularity are presented in Sect. 3.1. The performance in
age prediction of the five BFN methods is described in Sect. 3.2. The consensus
features for SVR of the S0/�0 LSR methods by FC features are presented in
Sect. 3.3.

3.1 The Brain Functional Network (BFN)

We use the PC, LR, SR, LSR and S0/�0 LSR to construct the BFN, and the regu-
larized parameters are selected for the five methods. For the SR, LR and LSR, the
regularized parameter λ is selected in the range [2−5, 2−4, ..., 20, ..., 24, 25]. For
the S0/�0 LSR method, λ is optimized in the range [0.1, 0.9] with step 0.1. The
regularization parameter λ is empirically set to 23 for LR, 20 for SR, λ1 = 2−1

and λ2 = 2−3 for LSR, and λ1 = 0.5 and λ1 = 0.5 for LSR. For fair comparison,
PC method is set a series of thresholding parameters [100%, 10%] with step 10%,
we also empirically preserve 30% of the strong edge weights.

Figure 2 shows the FC matrices of a randomly selected subject constructed by
the PC, LR, SR, LSR and S0/�0 LSR methods. It is apparent from the inferred
FC matrices that SR, LSR and S0/�0 LSR can automatically remove some weak
connections and achieve better sparsity than PC and LR. In other words, SR,
LSR and S0/�0 LSR lead to a more sparsely BFN in contrast to the PC and
LR. Compared with the PC and SR, the LR, LSR and S0/�0 LSR methods can
obtain a modular structure in the BFN. Both the LSR and S0/�0 LSR methods
lead to sparse and modular structure network, and the S0/�0 LSR method can
more clearly capture modular structures.

The modularity scores of the five BFNs with different thresholds are calcu-
lated. First, the networks are processed to remove weak connections based on
different thresholds, which vary from 0 to 0.9 with a step size of 0.1. The larger
the threshold values are, the more edges are preserved. Second, the absolute FC
values are obtained since negative FC values are invalid for Newman’s algorithm.
Finally, the average modularity scores for all subjects for the five methods are
obtained. The average modularity scores with different thresholds are shown in
Fig. 3.
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Fig. 2. The FC matrices of the same subject estimated by five different methods.

Fig. 3. Average modularity scores of networks constructed by five BFN methods.

From Fig. 3, it can be observed that the LR, LSR and S0/�0 LSR methods
obtain higher average modularity scores and larger areas under the curve than
PC and SR methods. In particular, S0/�0 LSR has a peak value 0.803 at a
threshold value of 0.6 and the largest area under the curve, compared with
the other methods. The PC and SR methods yield lower average modularity
scores than the other methods. The high modularity score can be partly due
to the modular effect of LR, LSR and S0/�0 LSR methods, which can select
functionally correlated nodes altogether by using the nuclear norm. In theory,
the low rank and sparse regularizer help LSR stand out from the PC, LR and
SR, owing to it obtain a sparse solution as the and select the highly correlated
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nodes as the modular effect of the nuclear norm. In addition, S0/�0 LSR method
using S0 and �0 regularization closer to low rank and sparse problem than LSR
method using nuclear norm and �1-norm regularization.

3.2 Prediction Performance

Table 2 lists the predictive performance metrics of the five FNB methods when
FC values and network metrics, respectively, are used as features. The compari-
son of Tables 2 indicates that 1) all five methods achieve higher prediction accu-
racy when FC values are used as features than when network metrics are used
as features; 2) both the LSR and S0/�0 LSR methods have higher R values and
lower MSE values than the PC, SR and LR methods (P -value < 0.05). In addi-
tion, compared with the LSR methods, S0/�0 LSR can predict brain age more
accurately (achieving 88.62% accuracy and 155.43 MSE with network metrics
as features, and 85.32% accuracy and 155.43 MSE with FC values as features).
In order to distinguish whether the BFN methods or feature selection methods
contribute to the final prediction accuracy, we use simple t-test and the SVR
for feature selection and prediction, respectively. Therefore, we argue that the
combination of low rank and sparse regularizer plays a key role in constructing
BFN in terms of prediction accuracy. In short, S0/�0 LSR can construct the BFN
more accurately and performs better in age prediction than the other methods.

Table 2. The prediction performance of different BFN methods with FC features and
network metrics.

FC features Network metrics

Methods Average accuracy MSE Average accuracy MSE

PC 82.63% 260.42 76.83% 273.25

LR 85.82% 198.93 78.42% 247.54

SR 85.51% 211.78 79.81% 199.98

LSR 86.30% 160.42 81.78% 171.22

S0/�0 LSR 88.62% 135.15 85.32% 155.43

3.3 Consensus Features and Discriminative Brain Regions

When the FC values are adopted as features in the SVR, those that survive in
each fold throughout the cross-validation process are called the consensus fea-
tures and the corresponding nodes are called the discriminative brain regions.
The consensus features retained in each fold by the five BFN construction meth-
ods are obtained. Since the S0/�0 LSR method achieves the best prediction
performance, we show the consensus features and discriminative brain regions
of only the S0/�0 LSR method in Fig. 4 and Fig. 5.
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Fig. 4. The representation of all surviving consensus features for the SVR of the S0/�0
LSR method by FC features using BrainNet Viewer software.

Figure 4 and Fig. 5a reveal the consensus features and discriminative brain
regions, including 108 negative edges and 110 positive edges. In Fig. 4, the
weights of the consensus features are proportional to the functional connection
thickness. In Fig. 5, the positive relationships between nodes are represented by
the red lines, the negative relationship between nodes are represented by the
blue lines. We then select the top 20 consensus features, representing 10 nega-
tive edges, 10 positive edges and 35 brain regions, as shown in Fig. 5b shows the
top brain regions which contribute to age prediction include the left inferior tem-
poral gyrus, left superior temporal gyrus, right superior parietal gyrus, occipital
superior gyrus, left superior frontal right superior frontal medial postcentral,
right postcentral, right superior orbital frontal, and right middle frontal. Some
discriminative brain regions are located in the default mode network (left pos-
terior cingulate gyrus, right posterior cingulate gyrus, precuneus); and salience
network (insula, anterior cingulate and paracingulate gyri). The results are con-
sistent with some previous studies [3]. In addition, other brain regions with high
discrimination such as the left superior temporal gyrus and right superior frontal
medial, are detected in our study, which were also reported in [25]. These con-
sensus features and discriminative brain regions may provide insight into the
mechanisms of brain aging.
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Fig. 5. The consensus features for SVR of the S0/�0 LSR methods by FC features via
Circos software. Figure 5a shows all surviving consensus features and discriminative
brain regions, Fig. 5b shows the top 20 consensus features and discriminative brain
regions. (Color figure online)

4 Conclusion and Limitation

In this study, we introduce a novel method to construct the BFN by using
the S0/�0 LSR, and evaluate the performance in age prediction by five differ-
ent BFN construction methods. Compared with PC, SR, LR, and LSR, S0/�0
LSR achieves better modularity and performs the best in age prediction with
fMRI data sets, when FC values and network metrics are extracted as features.
The issue of how to select the parameters automatically for the BFN methods
deserves further exploration. Our introduced S0/�0 LSR method is a promising
method for constructing the brain functional network and performs well in age
prediction.
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Abstract. The most labour-intensive stage of machine learning (ML)
modelling is the appropriate preparation of correct dataset. This paper
aims to show transfer dataset approach in image segmentation use case
to lower labour intensity. Moreover, we test the effectiveness of this app-
roach by training deep learning models on our prepared dataset. The
models achieved high-performance metrics, even on very hard test data.
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1 Introduction

In an online marketplace, product images play a crucial role in capturing user
attention and motivating them to make a purchase [1–3]. User needs fulfilment
and their satisfaction by buying are e-commerce’s main goals. Exploring and
comparing the full range of products impact user satisfaction. Hence, precise and
exact product presentation is critical in communication with potential buyers.

What is an online marketplace business concept? It is about connecting sup-
ply and demand and bringing economic advantage, at least for one side of the
market. Different sellers offer a wide range of products. Their images are usually
of a wide range of quality and with various background, from professional studios
to home-made photos with a mobile phone. To place clear and meaningful prod-
uct photos in search listings and offer descriptions, one must remove background
with noisy additional information [1]. This approach requires the introduction
of segmentation techniques.

In this segmentation task, the most challenging issues are additional logo-
types, texts, natural background, and overall lousy quality, i.e. image resolution.
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They often appear in product images because sellers frequently want to cre-
ate their recognition and capture user attention in the marketplace by making
their images full of branding texts and coloured frames following their brand
design [3].

High-quality segmentation techniques are useful for image retrieval tasks and
preparing good recommendations based on clear images or even sheer product
segments. Segmentation is crucial especially in visual product categories like
fashion or jewellery, in which it is challenging to describe patterns and styles in
text attributes. On the other hand, imprecise segmentation from the background
can mislead product visual representation for finding similarities between offers.

This paper aims to show transfer dataset approach in image segmentation
use case. We had access to a massive dataset of noisy offer images gathered from
Allegro, the most prominent online marketplace in Eastern Europe. The primary
annotation task for the dataset was to classify three product images’ defects,
i.e. noisy background consisting of promotional texts, logotypes, and additional
coloured frames. These classification annotations were much less laborious to
gather than outlining products in each image for training segmentation ML
models.

We will show an approach on how to transfer the dataset from image clas-
sification tasks to the segmentation one. After preparing a suitable dataset,
we benchmarked the most popular neural network architectures. The results
approved the effectiveness of our transfer data approach, having high perfor-
mance even on a very hard test dataset. Finally, we achieved very accurate
models – in terms of segmentation metrics – thus lowering labour intensity of
preparing dataset.

We define a new term and approach as the effect of this study: transfer dataset
(TD), adequate and complementary to transfer learning (TL). Hence, transfer
dataset is a research approach in machine learning that focuses on dataset enrich-
ment for one problem to a different but related task (see a definition of transfer
learning in [12] and Wikipedia). Transfer dataset means a data enrichment that
comprises data augmentation and task change; in our case from classification to
segmentation.

TD aims to lower the labour intensity of ML dataset annotation and pre-
processing. Another more obvious, yet crucial goal of TD is to improve models’
accuracy. In this case, the goals are the same as the goals of TL; however, the
approach is complementary, because we change data, not model parameters.
Noteworthy, currently many studies focus on dataset influence on models, e.g.
data drift problem. The current research questions are: how to catch the data
drift and observation outliers?; when gathered dataset is sufficient to the task
(see [11])?. The primary and general goal of our research is to minimise the
workload and make the process more automatic. The transfer dataset approach
shares these objectives.
Our main contributions in this work are as follows:

– We define transfer dataset term and research approach.
– We demonstrate how to utilise this approach on an image segmentation task.



Transfer Dataset in Image Segmentation Use Case 137

– We experiment with several techniques of data augmentation to transfer
dataset.

– We show how to change a task from classification to segmentation in the mar-
ketplace product segmentation task (segmentation is an arduous and time-
consuming task for humans, thus our approach can significantly lower human
workload).

– We test a few state-of-the-art neural network architectures to segment prod-
ucts and achieved high performance on test datasets (even on the very hard
one).

– We experimentally demonstrate the neural models’ abilities to surpass results
of the previously popular non-neural GrabCut algorithm in terms of perfor-
mance metrics and response time.

In the following section, we will describe our transfer dataset use case
(Sect. 2). Then we experiment with a region of interest segmentation models
(Sect. 3). In the last sections, we discuss and conclude the paper and show direc-
tions for future research.

2 Transfer Dataset: Our Approach

Our approach to transfer a dataset from an image classification tasks to the
segmentation one is a process with the following steps (see also Fig. 1):

1. Acquiring a preliminary classification dataset with defined classes of product
image noise and the following classes/labels indicating annotated defects:
‘dark background’, ‘frames’, ‘additional marketing text’.

2. Filtering clear images without defected labels from the preliminary dataset.
3. Extracting foreground of proper product objects with a standard technique

GrabCut to have ground truth product masks.
4. Generating larger sets (train and test sets) using the product masks and

different backgrounds with data augmentation techniques (e.g. translation,
scaling, blurring the background, adding artificial frames and texts) to build
a segmentation dataset.

5. Collecting hard cases (with all the noisy labels in classification) and preparing
product segment masks manually to have a final hard test ready and audit
our approach.

Fig. 1. Our process for transferring dataset from classification to image segmentation
task
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We need to prepare a broad set of images to learn neural networks and test
the product segmentation reliably. This section describes the initial dataset and
the work done to create regions of interest (ROIs). The ROIs are depicted as
binary product masks on an image matrix.

We describe data augmentation methods we used to generate various rep-
resentative images to enlarge our collection with product images and product
segments (ROIs). These segments are product masks that designate pixels con-
taining the offered product at each image in a set.

2.1 Our Preliminary Dataset

We collected our preliminary dataset from offer images used for product visuali-
sation at the online marketplace Allegro from a vast range of product categories,
e.g. mobile phones and other electronic accessories, fashion, products for home
and garden, antics. This set comprises thousands of images of very different qual-
ity and with additional objects besides the product, e.g. natural background or
coloured logotypes and other peripheral accessories (see Fig. 2). Sizes of images
vary to a large extent: from tiny images of 64 × 48 pixels up to very large pho-
tos of 2560 × 2560 pixels. Shapes also differ and come in square or rectangular
image matrices. This is a set of complex and diverse data, much more compli-
cated than open sets available on the Internet, e.g. ImageNet, CIFAR-10, and
other sets listed in [3].

Fig. 2. Examples of e-commerce offer images from the preliminary dataset

We supported each image in the dataset with labels that designate previously
defined defects, i.e. whether an image has a dark/noisy background, whether
there are additional texts and logotypes, and whether the image has a frame
(Fig. 2). Figure 3 shows the distribution of labels in the whole dataset.

Those human annotations provide information to extract high-quality
images, i.e. clear ones without defects. Moreover, to check the quality of the
new dataset, we selected one thousand images from the dataset of non-noisy
images so as to assess the quality of human annotations and the usefulness of
the dataset both for classification task and our segmentation task. Table 1 and
Fig. 4 reveal a few problems and their occurrences in the final annotations. We
can see that only about 65% of images are without defects.
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Fig. 3. Distribution of labels in our preliminary dataset

Table 1. Error distribution in labelling estimated on one thousand clear images
assessed as having no defects (without background, text, and frames).

Good images Images with
shadows

Images with
subtitles

Images
with background

The number of
images

647 174 131 48

Fig. 4. Wrong human annotations: images annotated as without any defects but having
shadows in the background, marketing texts, etc.

2.2 The Change of Task and Data Augmentation

At first, we filtered clear images from the preliminary dataset based on informa-
tion about annotated defects. Then we used the GrabCut technique to segment
proper product objects [3,4]. The parameters of the algorithms are several iter-
ations: default is 5, bounding box adjustment way. We adaptively chose the
bounding box (BB) for the product in each image after binary image thresh-
olding and morphological closing. Then, we set BB rectangle as parallel to the
image frame and enlarged by 2% in each direction.

This way, we achieved binary product masks, as in masks one states for pixels
within the ROI and zero for background. Finally, we prepared one thousand
images with product masks and an additional test set with 120 images with
ROIs, not used during the model training phase.

In the next step, we generated more massive sets with images with product
masks using data augmentation techniques for noisy background generation and
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for changing ROIs (and their masks), i.e. their sizes, rotations, etc. Each time,
we adapted and chose a few of the following techniques, while particular meth-
ods were selected randomly with arbitrary probabilities that were our method
parameters:

1. Translation and scaling: generating various translations and sizes of the back-
ground image (noteworthy, image sizes are different in source images, so after
scaling to the constant input of neural network, we achieve ROIs scaling).

2. Rotation of ROIs, their masks, and background.
3. Blurring the product in the final image, e.g. Gaussian filtering, which affects

the same ROI mask but with different contrast with the background.
4. Adding artificial background: blending monochromatic colours, gradient

colours, real images used as backgrounds, e.g. carpet images, bricks, grass
(see Fig. 5).

5. Adding promotional texts, e.g. ‘gratis’, ‘special offer’ in random places around
the primary product mask (and also with random letter sizes and fonts).

6. Adding frames using the techniques and patterns meant for the background.

Fig. 5. Sample backgrounds: stable and gradient colour and real images imitating
natural scenes

We used the techniques to add a random number of augmented clear and
defected images (with the mask from original images). Figure 6 presents an exam-
ple of the data augmentation steps in our approach.

Fig. 6. An example of data augmentation in our settings
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The defected images are images with noisy background, marketing texts and
frames. Table 2 listed our final train and test sets. This approach allows for
transmitting a variety of examples to the neural networks to train them on how
to segment products in noisy and clear images.

Table 2. Train and test sets for our segmentation task.

Dataset name The number of
images

Characteristics

Train-1 1959 A smaller train dataset made from 206
source original images (with ROI masks
done with manually adjusted GrabCut to
each image) adding from four to 14 new
augmented images to each original image
(original meaning taken from the
preliminary dataset with no augmentation)

Test-1 86 A smaller validation set (Image are
separated between Train-1 and Test-1 sets.)

Train-2 41794 A bigger train set made from 1000 source
original images (with ROIs masks done with
GrabCut with constant parameters)

Test-2 1505 A bigger validation set (see Fig. 7)

Test-AD 184 A distinct test set of average difficulty

Hard-Test 15 A distinct test set with very hard cases
(Fig. 8). Each ROI was segmented from the
background manually because GrabCut
technique failed on these images

Fig. 7. Sample images from Test-2 dataset
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Fig. 8. Sample images from a collection of difficult images (Hard-Test)

3 Experiments: Settings and Results

3.1 Initial Test of Many Networks

Our goal was to create the best possible network taken from established research
for our segmentation task. We tested several networks (see Table 3) based on
VGG-16 and VGG-19 architectures [5] (as backbones), having 16 and 19 weight
layers, respectively. The final architectures’ input and output consisted of 448 ×
448 colour images. We scaled our images to this size. Table 3 describes architec-
tures for our segmentation task in this experiment. Each network ended with a
pixel classification map as an output layer (binary mask of a product object).

We chose intersection over union (IoU) as the primary metric. IoU measures
the overlap between two regions of model output and ground truth [9,10]. IoU
is built using pixel set operations in proportion of an intersection to a union on
segments of output binary masks (P) and ground truth gathered from prepared
image masks (G), expressed in the following relationship:

IoU = area(G ∩ P )/area(G ∪ P ) (1)

One model prediction (an output region) is considered to be True Positive (TP)
if IoU > 0.5 and False Positive (FP) if IoU < 0.5. We use accuracy based on
the above assumptions on TPs and FPs. Moreover, we measure IoU to better
visualize intermediate results while tuning networks.

The results of a few given architectures (listed in Table 3) are gathered in
Table 4. Neural networks are much better than GrabCut. Results of VGG SegNet
are slightly better than FCN-8, while SegNet was trained significantly faster, so
in the following test, we concentrate only on adjusting VGG SegNet.
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Table 3. Architectures of tested neural networks.

Network name Description & Parameters

UNet Four parts for encoding and decoding, each comprising three
conv layers and then max-pooling or up-sampling, respectively
for encoding and decoding, each encoder’s part additionally
copies their activations to respective parts of decoder (the
network architectures resembles U-shape) as in [7]

VGG UNet Four first parts of encoding and decoding fragments are from
VGG, each part contains at least two (to three) convolutional
layers of VGG with max-pooling of 2 × 2 as in [5]; the other
UNet parts are the same as in [7]

FCN FCN architecture as in [8], with added five conv layers of VGG
as a first part of the network

SegNet-Basic Four decoding and four encoding layers; first two parts with two
conv layers each and final two big layers with three conv layers
each; each encoding part separated with max-pooling (mask 2 ×
2); each decoding part separated with up-sampling; furthermore,
each convolutional layer is used with batch normalisation and
ReLU activation such as in [6]

VGG SegNet Encoding with VGG and decoding with SegNet-Basic

VGG FullSegNet Encoding with the first four layers of VGG and full decoding
part of SegNet as in [6]

Table 4. Preliminary results of networks based on VGG-16 architecture on Train-1
and Test-1 datasets.

Model Train Epochs Train-1 Accuracy Test-1 Accuracy Test-1 IoU

VGG SegNet 9 98.39 97.85 83.83

FCN-8 8 97.73 96.85 80.06

FCN-32 8 96.27 95.52 70.66

VGG UNet 5 93.58 94.33 69.15

GrabCut – – – 25.95

3.2 More Precise Tests of the Best Architecture

Further tests for VGG SegNet – which performed the best in the first tests –
were conducted on a larger and more diverse collection of images, i.e. Train-2
and Test-2. Figure 9 shows an example of how segmentation looks for subsequent
epochs during training. We gathered the results of parameter tuning in Table 5.
Final results and benchmark comparison with GrabCut technique was done on
datasets Test-AD and Test-Hard, available in Table 6 and Table 7, respectively.
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Table 5. VGG SegNet tuning on Train-2 and Test-2.

Model Epochs Test-2 IoU

VGG-16 SegNet (optimizer – adadelta: lr = 1.0, rho = 0.95,
decay = 0.0; batch = 2)

418 92.21

VGG-19 SegNet (optimizer – adadelta: lr = 1.0, rho = 0.95,
decay = 0.0; batch = 2)

441 92.56

VGG-19 SegNet (optimizer – adamax: lr = 0.002, beta 1 = 0.9,
beta 2 = 0.999, decay=0.0; batch = 2)

73 93.63

VGG-19 SegNet (optimizer – adamax: lr = 0.002, beta 1 = 0.9,
beta 2 = 0.999, decay = 0.0; batch = 20 + diversification of
images within one batch)

100 93.02

VGG FullSegnet (optimizer – adamax: lr = 0.002, beta 1 = 0.9,
beta 2 = 0.999, decay = 0.0; batch = 2)

300 96.01

Table 6. Final results on Test-AD.

Method IoU min IoU Accuracy Response time (sek)

Trivial method (all image is ROI) 18.78 1.06 18.78 0.000

GrabCut (high threshold = 240) 64.09 0.00 76.57 2.8714

GrabCut (low threshold = 25) 62.15 0.00 88.70 1.5083

VGG-19 FullSegNet 95.70 63.57 99.35 0.0487

Smoothed SegNet output 95.72 59.10 99.36 0.0675

Table 7. Final results on Test-Hard.

Method IoU min IoU Accuracy Response time (sek)

Trivial method (all image is ROI) 19.12 1.06 19.12 0.000

GrabCut (threshold high = 240) 63.73 0.00 76.30 2.8823

GrabCut (threshold lot = 25) 61.93 0.00 88.39 1.5342

VGG-19 FullSegNet 95.39 34.64 99.22 0.0487

Smoothed SegNet results 95.41 34.64 99.23 0.0676
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Fig. 9. Sample image, ground truth: ROI and network output during training

4 Conclusions

We defined and presented our transfer dataset approach which is complemen-
tary to transfer learning. Transfer dataset in machine learning modelling focuses
on a dataset enrichment for one problem to a different but related task. This
enrichment comprises data augmentation and task change.

We showed that the approach achieves its goals. In our use case – transferring
dataset from image classification to image segmentation task – we achieved stable
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and high results, even for very hard images, with a low response time. Moreover,
we reduced workload for the very laborious image segmentation labelling using
semi-automatic methods (GrabCut, data augmentation).

A significant area of our research will be measuring the importance of obser-
vations and their ability to maintain the key information to choose the crucial
images [13] and their salient ROIs [14,15] to be transferred from source to final
tasks. We will also check and explain the final task results and models using
the methods for finding salient ROIs and interpretability techniques to see if our
approach concentrated on the essential image parts, not on the augmented back-
grounds. Moreover, we will also try other use cases for transfer dataset approach,
also in other domains, e.g. natural language processing and time series.
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3. Wróblewska, A., et al.: Optimal products presentation in offer images for an
e-commerce marketplace platform. URSI (2018)

4. Rother, C., et al.: GrabCut: interactive foreground extraction using iterated graph
cuts. In: SIGGRAPH (2004)

5. Simonyan, K., et al.: Very deep convolutional networks for large-scale image recog-
nition. In: ACPR (2015)

6. Badrinarayanan, V., et al.: SegNet: a deep convolutional encoder-decoder archi-
tecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12),
2481–2495 (2017)

7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

8. Shelhamer, E., et al.: Fully convolutional networks for semantic segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2016)

9. Gilani, A., et al.: Table detection using deep learning. In: ICDAR (2017)
10. Rezatofighi, H., et al.: Generalized intersection over union: a metric and a loss for

bounding box regression. In: CVPR (2019)
11. Hohman, F., et al.: Understanding and visualizing data iteration in machine learn-

ing. In: CHI (2020)
12. Yang, Q., et al.: Transfer Learning. Cambridge University Press (2020)
13. Zabalza, J., et al.: Novel folded-PCA for improved feature extraction and data

reduction with hyperspectral imaging and SAR in remote sensing. ISPRS J. Pho-
togrammetry Remote Sens. 93, 112–122 (2014)

14. Zabalza, J., et al.: Novel segmented stacked autoencoder for effective dimensionality
reduction and feature extraction in hyperspectral imaging. Neurocomputing 185,
1–10 (2016)

15. Yan, Y., et al.: Unsupervised image saliency detection with Gestalt-laws guided
optimization and visual attention based refinement. Pattern Recogn. 79, 65–78
(2018)

https://doi.org/10.1007/978-3-319-24574-4_28


Neural Network Models



A Gaussian Process-Based Incremental
Neural Network for Online Regression

Xiaoyu Wang1(B), Lucian Gheorghe2, and Jun-ichi Imura1

1 Graduate School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
xiaoyuwanganddl@gmail.com, imura@sc.e.titech.ac.jp

2 Nissan Research Center, Nissan Motor Co., Ltd., Kanagawa, Japan
lucian@mail.nissan.co.jp

Abstract. This paper proposes a Gaussian process-based incremental
neural network algorithm to handle the online regression problem. It can
extract prototypes by an incremental neural network, where 1) Gaussian
process approximations are adopted to update the threshold regions and
the posterior distribution of the dependent variable at the weight vectors
of nodes and 2) the optimal bandwidth matrix is derived for adapting to
network structure. Besides, we discuss some properties of the proposed
approach, and the experimental results show that our approach achieves
remarkable accuracy improvement in extracting prototypes for online
regression on noisy data.

Keywords: Incremental neural network · Gaussian process · Online
regression

1 Introduction

Classical parametric regression has the problem that if the assumed form is
misspecified, the accuracy decreases severely. Thus, it is undesirable to learn
data without giving much prior knowledge. In contrast, nonparametric regression
that attempts to directly generate the regression model has become increasingly
important, among which regressogram and kernel regression are the two most
popular approaches [1]. Regressogram assumes that the data points falling into
the same block of a partition of the input space have the same weight and
takes the average value as the prediction. As a modification, kernel regression
gives higher weights to the nearby data points of a query point xs as f̂(xs) =
n∑

i=1

Kh(xi−xs)fxi
n∑

i=1
Kh(xi−xs)

, where fxi
represents the value of regression function f at xi, k

is a kernel function and h is the kernel bandwidth parameter. However, directly
taking training sample points as the kernel components only works in batch
mode. Hence, it is significantly necessary to propose an online learning approach
that can extract prototypes automatically.

As an inherently online learning and topology-preserving approach, self-
organizing map (SOM) generally adopts a 1-D or 2-D lattice to represent the
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 149–161, 2020.
https://doi.org/10.1007/978-3-030-63836-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63836-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-63836-8_13
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input space of samples. However, the fixed number of nodes and the discontinu-
ity associated with the boundaries in SOM [2] limit its performance on data sets
of unknown complicated distributions. Recently, based on growing neural gas
theory, several self-organizing incremental neural network (SOINN) algorithms
[3–5] have been introduced. These algorithms calculate a threshold region for
each node, the network structure can be adaptive to input data and due to the
local concept drift property [6], the intermediate fit model can be incorporated
well into the incremental neural network learning process. Various experimen-
tal results in [4,5] show that SOINN achieves performance comparable to the
current state-of-the-art algorithms.

However, the threshold region in ESOINN [3], a sphere with the maximum
Euclidean distance of a node to its neighbors as the radius, does not consider
carefully the information of the underlying local distributions and ignores the
knowledge that data belonging to the same subclass lie on a much lower nonlinear
dimensional manifold [7,8]; the Mahalanobis distance employed in KDESOINN
[5] generates threshold regions of extremely high fractional anisotropy [9,10] and
results in many inappropriate edges.

On the other hand, Gaussian process (GP) [11,12], for its modeling flexibility
and robustness to overfitting, has become a standard approach to solve many
machine learning tasks. As further extensions, several Gaussian process-based
incremental algorithms have been proposed for online density estimation [9,10].
However, as far as we know, an incremental regression model that combines the
advantages of incremental neural network and GP has yet to be explored.

This paper proposes a novel Gaussian process-based incremental neural net-
work for online regression that can incrementally update the weight vectors in
input space and the network structure in map space. It employs sparse GP
regression approximations [13,14] to calculate threshold regions and the poste-
rior distribution of the dependent variable at nodes (prototypes).

The remainder of this paper is organized as follows. We show the general
learning framework of SOINN in Sect. 2.1, and then derive the optimal band-
width matrix, GP posterior approximation and threshold region determination
in Sect. 2.2, 2.3, and 2.4, respectively. Section 2.5 discusses further its property
and Sect. 2.6 shows the algorithm. At last, Sect. 3 presents some experimental
results to demonstrate the performance of our approach.

2 Proposed Method

In this part, we explain comprehensively a Gaussian process-based incremental
neural network for online regression and analyze some of its properties.

2.1 Overview of SOINN

Algorithm 1 describes the general learning process of SOINN, and Table 1 gives
the definitions of the involved variables, parameters, and symbols.
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When a new sample si is observed, first, based on the employed distance
measure D (Euclidean distance in ESOINN [3]; Mahalanobis distance in KDES-
OINN [5]), line 2 searches the nearest 2 nodes w1,2 (called the 1st and 2nd
winning nodes of si, respectively), and line 3–7 calculate their similarity thresh-
old rw1(2) . Then, depending on whether D(si, w1) > rw1 ‖ D(si, w2) > rw2 , line
8–16 update the network. It is noteworthy that since the initially formed edges
may become inappropriate as the input of samples, one effective method is to
delete the initially formed edges when their ages reach an upper bound agemax at
line 15. At last, when the number of input samples comes to an integer multiple
of λ, outlier nodes defined with degree 0 are deleted at line 18.

Algorithm 1: SOINN
Initialization: V ← {s1, s2}, E ← ∅

1 while ∼ isempty(si) do
2 w1 ← arg min

ni∈V
D(si, ni), w2 ← arg min

ni∈V\w1

D(si, ni);

3 if ∼ isempty(Nw1(2)) then
4 rw1(2) = max

nj∈Nw1(2)

D(nj , w1(2));

5 else
6 rw1(2) = min

nj∈V\Nw1(2)

D(nj , w1(2));

7 end
8 if D(si, w1) > rw1 ‖ D(si, w2) > rw2 then
9 V ← V ∪ {si};

10 else
11 E ← E ∪ {(w1, w2)};
12 age(w1, w2) = 0, age(w1, nj) = age(w1, nj) + 1 % nj ∈ Nw1 ;
13 Ww1 ← Ww1 + 1, w1 = w1 + 1

Ww1+1 (si − w1);

14 nj = nj + g(Ww1)(si − nj);
15 E ← E \ {e | age(e) > agemax},V ← V \ {ni | |Nni

| = 0};
16 end
17 if mod(i, λ) = 0 then
18 V ← V \ {s | |Ns| = 0};
19 end
20 end

2.2 Gaussian Process and Bandwidth Matrix Optimization

Gaussian process (GP) [11,12] can represent the underlying function rigor-
ously in a nonparametric form, where the values of the dependent variable f =
{fx1 , fx2 , ..., fxn

} at n values of independent variable x = {x1, x2, ..., xn}(xi ∈
R

d) generally follow a zero-mean n− dimensional Gaussian distribution with a



152 X. Wang et al.

Table 1. Definitions of Variables, Parameters, and Symbols

V(E) The set of nodes (edges)

Nni The set of the nodes connected with node ni

Nni
:= {n1,i, ..., n|Nni |,i}, |Nni | is its cardinality

rni The similarity threshold of node ni

D(x1, x2) The distance between x1 and x2

Tni The threshold region of node ni, Tni
:= {x | D(x, ni) ≤ rni}

Wni The number of times ni is the 1st winner in competitive
learning, that is the winning times of ni

W The set of the winning times of all nodes {Wni}
age(ni, nj) The age of the edge linking ni and nj

agemax A predetermined upper bound of age for deleting initially
formed edges

g(Wnj ) The coefficient for updating the weight vectors of the neighbors
of nj , generally g(Wnj ) := 1

100Wnj

λ The number of inputs in one learning period

kernel matrix as its covariance. So, given x and f, the prediction at a query point
x0 (denoted as f̂x0) is subject to a Gaussian distribution

f̂x0 |x, f ∼ N (Kx0,xK−1
x f,K∗ − Kx0,xK−1

x KT
x0,x), (1)

where k is a kernel function: Rd ×R
d → R, K∗ = k(x0, x0), [Kx0,x]p = k(x0, xp)

and [Kx]p,q = k(xp, xq).
Since using a fixed bandwidth parameter leads to a sub-optimal rate of con-

vergence [15], we adopt an adaptive kernel matrix Mni
, that is, ∀nj , nk ∈ Nni

,

ki(nj , nk) = σ2
1 exp

{ − 1
2
(nj − nk)T M−1

ni
(nj − nk)

}
+ σ2

2δ(j, k) (2)

where δ(j, k) is the Kronecker delta function. And different from [9], we consider
the distribution of dependent values in calculating the optimal Mni

, and for the
reason that directly minimizing

∑

nj∈N
Wnj

(fnj
− f̂nj

)2 can cause overfitting, the

leave-one-out method is employed here to achieve the optimal Mni
by minimizing

the least squares cross-validation error as follows

Mnp
= arg max

Mnp

∑

nj∈V
Wnj

(fnj
− E(f̂nj

|V \ nj ,M \ Mnj
))2 (3)
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⇒
∂(

∑

nj∈V
Wnj

(fnj
− E(f̂nj

|V \ nj ,M \ Mnj
))2

∂M−1
np

=
1
2

∑

j �=p

Wnp
Wnj

Mnp
kp(nj , np)|Mnp

|− 1
2

∑

t�=j

Mnt
kt(nj , nt)|Mnt

|− 1
2

[

fnj
−

∑

t�=j

fnt
Wnt

kt(nj , nt)
∑

t�=j

Wnt
kt(nj , nt)

]

[

fnp
−

∑

t�=j

fnt
Wnt

kt(nj , nt)
∑

t�=j

Wnt
kt(nj , nt)

]

(Mnp
− (nj − np)(nj − np)T ).

(4)

Consider the underlying lower dimensional manifold and the idea of the mani-
fold Parzen density estimator [7], the optimal kernel component at np is approx-
imately aligned with the plane locally tangent to this underlying manifold and
the information about this tangent plane can be gathered from the neighbors of
np. So, from Eq. (4) and Bayes theorem, we have

Mnp
≈

∑

nj∈Nnp

Wnj
Mp,j(

fnp+fnj

2 −
∑

nt∈Nnj

Wntfnt

∑

nt∈Nnj

Wnt
)2

∑

nj∈Nnp

Wnj
(

fnp+fnj

2 −
∑

nt∈Nnj

Wntfnt

∑

nt∈Nnj

Wnt
)2

+ ρId (5)

where Mp,j = (np − nj)(np − nj)T and a small isotropic (spherical) Gaussian
noise of variance in all directions, ρId, is added to guarantee that Mnp

is positive
definite.

2.3 Posterior Approximation

GP is employed to achieve the closed form of the posterior approximation, for a
new sample point sm, assume that the previous posterior at N 0

wi
(the neighbors

of the winning node wi (i = 1, 2) before updating the network) is subject to a
Gaussian distribution q0(fN 0

wi
) = N (fN 0

wi
|mwi0 , vwi0), the posterior approxima-

tion at N 1
wi

(the neighbors of wi after updating the network), q1(fN 1
wi

), can be
derived from Bayesian variational inference [13,14] as the following steps:

1). Calculate the Kullback-Leibler divergence from P (f |{s1≤i≤m}) to q1(f)
(denoted as KL[q1(f)‖P (f |{s1≤i≤m})]) and its derivative w.r.t q1(fN 1

wi
), we have

∂KL[q1(f)‖P (f |{s1≤i≤m})]
∂q1(fN 1

wi
)

=
∂(

∫
q1(f) log

P (fN0
wi

)q1(fN1
wi

)

P (fN1
wi

)q0(fN0
wi

)N (sm|f,σ2
2I)

df)

∂q1(fN 1
wi

)
(6)
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2). Set the above derivative to 0, one can obtain

q1(fN 1
wi

) = N
(

fN 1
wi

∣
∣
∣
∣

[
KsmN 1

wi

KN 0
wi

N 1
wi

]T ( [
KsmN 1

wi

KN 0
wi

N 1
wi

]

K−1
N 1

wi

[
KsmN 1

wi

KN 0
wi

N 1
wi

]T

+

[
σ2
2I 0
0 (v−1

wi0
− K−1

N 0
wi

)−1

] )−1
[

fsm

(v−1
wi0

− K−1
N 0

wi

)−1v−1
wi0

mwi0

]

, vwi1

)

,

(7)
where

vwi1 = KN 1
wi

−
[

KsmN 1
wi

KN 0
wi

N 1
wi

]T ( [
KsmN 1

wi

KN 0
wi

N 1
wi

]

K−1
N 1

wi

[
KsmN 1

wi

KN 0
wi

N 1
wi

]T

+

[
σ2
2I 0
0 (v−1

wi0
− K−1

N 0
wi

)−1

] )−1
[

KsmN 1
wi

KN 0
wi

N 1
wi

]

.

(8)

2.4 Threshold Region Determination

The threshold region of node ni is the set of points that have high similarity
with Nni

, that is

Tni
= {(xs, fs)|vi

s ≤ vi
ni

, |fs − mi
s| ≤ α

√
vi

s} (9)

where α is a positive number (3 in the paper) and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi
s = K∗ − KsN 1

ni
K−1

N 1
ni

KN 1
ni

s + KsN 1
ni

K−1
N 1

ni

vni1K
−1
N 1

ni

KN 1
ni

s

mi
s = KsN 1

ni
K−1

N 1
ni

μi

μi = vni1K
−1
N 1

ni

[
KsmN 1

ni

KN 0
ni

N 1
ni

]T [
σ2
2I 0
0 (v−1

ni0
− K−1

N 0
ni

)−1

]−1

[
fsm

(v−1
ni0

− K−1
N 0

ni

)−1v−1
ni0

mni0

]

.

(10)

One can find that vi
s ≤ vi

ni
is an ellipse in an implicit feature space, and so

is |fs − mi
s| ≤ α

√
vi

s from the following theorem

Theorem 1.

|fs − mi
s| ≤ α

√
vi

s

⇔ ‖Q(K−1
N 1

ni

KN 1
ni

s − fs(QT Q)−1μi)‖22 ≤ α2(K∗ − f2
s

α2 + μT
i β−1

i μi

)
(11)

where QT Q = α2βi + μiμ
T
i and βi = KN 1

ni
− vni1.
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Proof.

|fs − mi
s| ≤ α

√
vi

s

⇔ KsN 1
ni

K−1
N 1

ni

(α2KN 1
ni

− α2vni1 + μiμ
T
i )K−1

N 1
ni

KN 1
ni

s

≤ 2fsμ
T
i K−1

N 1
ni

KN 1
ni

s + α2Kss − f2
s

⇔ ‖Q(K−1
N 1

ni

KN 1
ni

s − fs(QT Q)−1μi)‖22 ≤ α2K∗ + f2
s μT

i (QT Q)−1μi − f2
s

= α2(K∗ − f2
s

α2 + μT
i β−1

i μi

).

(12)

It shows that, as an extension of the threshold regions in ESOINN and KDES-
OINN that are simply a sphere or an ellipse in the input space, our model gives
threshold regions in a reproducing kernel Hilbert space.

2.5 Property Discussion

In this section, we explore further the property of the proposed model.

Theorem 2.
lim

‖vni0‖max→0
σ2→0

‖vni1‖max = 0. (13)

Proof. Regarding the relationship between |N 1
ni

| and |N 0
ni

|, there are 2 cases as
follows.
1). When |N 1

ni
| = |N 0

ni
| + 1, we have lim

‖vni0‖max→0
(v−1

ni0
− K−1

N 0
ni

)−1 =

lim
‖vni0‖max→0

vni0−vni0(KN 0
ni

−vni0)
−1vni0 = 0, then from Eq. (8), (13) is proven.

2). When |N 1
ni

| = |N 0
ni

|,

v−1
ni1

= K−1
N 1

ni

+
1
σ2
2

K−1
N 1

ni

KN 1
ni

sm
KsmN 1

ni
K−1

N 1
ni

+ K−1
N 1

ni

KN 1
ni

N 0
ni

(v−1
ni0

− K−1
N 0

ni

)KN 0
ni

N 1
ni

K−1
N 1

ni

.
(14)

Suppose that the singular value decomposition of KN 0
ni

N 1
ni

K−1
N 1

ni

:= UΣV , then

for any eigenvalue λi of K−1
N 1

ni

KN 1
ni

N 0
ni

(v−1
ni0

− K−1
N 0

ni

)KN 0
ni

N 1
ni

K−1
N 1

ni

,

lim
‖vni0‖max→0

1
λi

≤ lim
‖vni0‖max→0

‖(v−1
ni0

− K−1
N 0

ni

)−1‖‖UΣ2UT ‖ = 0. (15)

From the property that for two Hermitian matrices A and B, λmin(C := A+B) ≥
λmin(A) + λmin(B), it follows that lim

‖vni0‖max→0
λmin(v−1

ni1
) = ∞, so

lim
‖vni0‖max→0

‖vni1‖max = 0, (13) is proven.

When the dependent variable is constant, |fs − mi
s| ≤ α

√
vi

s always holds
and the threshold region determination is consistent with the results in [16] that
infers cluster set based on the variance function of Gaussian process.
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2.6 Algorithm: A Gaussian Process-Based Incremental Neural
Network for Online Regression

Based on the above analysis of optimal bandwidth matrix, posterior approxima-
tion, and threshold region determination, we present a novel algorithm to extract
prototypes for online regression using Gaussian process-based incremental neural
network (GPINN) in Algorithm2.

First, we check whether a new sample si ∈ Tw1 ∩ Tw2 using Eq. (9) at line 3
after calculating the winner candidate set at line 2. Second, update the network
in line 3–13 (e.g. V, weight vectors, edge, kernel bandwidth matrices (Eq. (5))
and the posterior approximation (Eq. (7)) of w1(2). Third, similar to [9,10], at
the end of each learning period, some edges are added between the nodes that
have duplex edges in a k-NN graph on V (denote the set of the added edges as
A) at line 16 to achieve a more robust network structure, and then the kernel
bandwidth matrices and posterior approximations are updated in line 17–20.

Algorithm 2: GPINN for Online Regression
Initialization: V ← {s1, s2}, E ← ∅

1 while ∼ isempty(si) do

2 {w1, w2} ← arg min
{nφ1 ,nφ2}⊂V

2∑

j=1

‖si, nφj
‖2;

3 if si �∈ Tw1 ∩ Tw2 ← Eq.(9) then
4 V ← V ∪ {si} ;
5 else
6 E ← E ∪ {(w1, w2)};
7 age(w1, w2) = 0, age(w1, nj) = age(w1, nj) + 1 % nj ∈ Nw1 ;
8 Ww1 ← Ww1 + 1, w1 = w1 + 1

Ww1+1 (si − w1);

9 nj = nj + g(Ww1)(si − nj) % nj ∈ Nw1 ;
10 E ← E \ {e | age(e) > agemax},V ← V \ {ni | |Nni

| = 0};
11 Mnk∈w1∪Nw1

← Eq.(5);
12 q1(fNw1

), q1(fNw2
) ← Eq.(7);

13 end
14 if mod(i, λ) = 0 then
15 V ← V \ {s | |Ns| = 0};
16 E ← E ∪ A;
17 for ∀nj ∈ {ni|∃nk, (ni, nk) ∈ A} do
18 Mnj

← Eq.(5);
19 q1(fNj

) ← Eq.(7);
20 end
21 end
22 end

Complexity: 1). In calculating the winning nodes and their corresponding
threshold regions, the time complexity of line 2 is O(|V|) and the time com-
plexity of calculating {K−1

w1(2)
} in determining whether si ∈ Tw1 ∩Tw2 at line 3 is
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O(age3max). 2). In the network adjustment process, the complexity of updating
{Mnj

} and q(fNj
) at line 18 and line 19 are both O(|V|). The complexity of

k-NN graph is O(|V|2). The complexity of other lines is O(1).

3 Experimental Results

In order to demonstrate the performance of our method, we have conducted
experiments on both synthetic data and real-word data.

3.1 Synthetic Data

We first extracted prototypes (nodes) using three models: (1) ESOINN, (2)
KDESOINN, and (3) our model (GPINN), and then adopted the prevalent Gaus-
sian kernel regression with parameter suggested by Bowman and Azzalini [17]
on the nodes given by each model. Here, the normalized root-mean-square error
(NRMSE) is employed to compare their regression accuracies. Besides, the clas-
sical batch learning kernel smoothing regression (denoted as Kernel in Fig. 1(a)
and 1(b)) is used as the benchmark.
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Fig. 1. Changes in NRMSE with sample size on (a) data set I and (b) data set II

The true regression functions consist of 5 sine functions with dependent vari-
able f and independent variable x (of different amplitudes in data set I and
discontinuous in data set II). In addition, we add as noise a contamination dis-
tribution fcon (the Gaussian distribution with mean 0 and variance 100), that
is,
Data set I

{
f = (2.5 + 0.5 ∗ �x�) sin(2π ∗ (x − �x�)) · 1α<0.95 + fcon · 10.95≤α,

0 < x < 5,
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Data set II
⎧
⎪⎨

⎪⎩

f = 5 sin(2π ∗ (t − �t�)) · 1α<0.95 + fcon · 10.95≤α,

x = t + �t�
0 < t < 5,

where α ∼ unif(0, 1). The training samples of the two data sets are randomly
sampled from the domains of the functions.

In order to compare these four approaches comprehensively, we tested on
different training sample sizes (for the three incremental neural network models,
agemax = 3, λ = 150 and σ2

2
σ2
1

= 0.1), and for each size, we tested 20 times and
recorded the average NRMSEs depicted in Fig. 1(a) and 1(b). It is noteworthy
that since there are no nodes left in KDESOINN when the training sample size
is less than 400 on data set I and less than 500 on data set II, the corresponding
average NRMSEs of KDESOINN are not shown in the figure.

3.2 Real-World Data

Recent research [18–20] showed that there is a decrease in the amplitude of elec-
troencephalography (EEG) signal before the start of the steering action followed
by an increase back during steering, which confirms the presence of movement-
related cortical potentials preceding steering actions. To further explore brain
activities in preparation epochs (the last 4 s before the onset of the steering
action, named as class I) and straight epochs (4 s of continuous straight driving,
named as class II) [18,19], we collected the EEG signals from the Cz channel
at the sampling rate of 256 Hz (and linearly interpolating the values between
consecutive timestamps) of 500 lane change trials and 500 straight epochs.
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Fig. 2. The EEG signals and the one standard deviation intervals of (a) Preparation
Epochs and (b) Straight Epochs; (c) Changes in the average KL divergence with the
time window position

Figure 2(a) and 2(b) shows the signals and the one standard deviation inter-
vals. Some epochs with amplitudes close to 50 µV are regarded as contamina-
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tion epochs (noise data) and can lead to large intersections between the stan-
dard deviation intervals of these two classes [18,19]. So, it is desired that the
extracted prototypes should be class-specific, that is, for a time window wt (t
is the timestamp of the window’s central point) before the onset of the move-
ment, the distributions of the dependent values of the prototypes falling into
wt (denoted as Ppre,wt

and Pstr,wt
for the preparation epoch and the straight

epoch, respectively) should have a large divergence value, KL(Ppre,wt
‖Pstr,wt

).

Table 2. Paired-sample t-test

Window’s central point t-test(GPINN, Training samples) t-test(GPINN, ESOINN)

−1.8 s 0.0145 0.0477

−1.4 s 0.0056 0.0071

−1.0 s 0.0023 0.0042

−0.6 s <0.001 <0.001

−0.2 s <0.001 0.0013

In this experiment, for each class, 2000 training samples were drawn randomly
from the last 2 s of the epochs. For ESOINN, KDESOINN and GPINN (test times
= 15, agemax = 3, λ = 250 and σ2

2
σ2
1

= 0.1), Fig. 2(c) shows the changes in the
average KL(Ppre,wt

‖Pstr,wt
) as the time window of length 400 ms slides in steps of

400 ms. Besides, the divergences calculated directly from the training samples are
given as the benchmark. Table 2 gives the paired-sample t-test results and shows
that our approach achieves the statistically significantly largest divergences at
the 5% significance level.

The results on both synthetic data and real-world data show that, due to
the high fractional anisotropy of threshold region, there are very few nodes in
the network generated by KDESOINN; the threshold regions in ESOINN do
not carefully consider the distribution of neighbors that can lead to many inap-
propriate edges and significantly decrease its accuracy. In contrast, by mapping
input space to an implicit feature space, our approach adopts Gaussian process
to calculate the probability of generating an edge between winning nodes and can
update the threshold region and approximate the posterior with the advantage
of robust to inappropriate edges.

4 Conclusion

This paper has introduced a novel Gaussian process-based incremental neural
network for online regression. It addresses the shortcomings of the previous
Euclidean distance-based and Mahalanobis distance-based self-organizing incre-
mental neural network algorithms; in detail, it allows online updates of threshold
regions and the posterior approximation of the dependent variable at nodes as
the adjustment of the network in both input space and map space. Moreover, we
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derived the optimal bandwidth matrix adaptive to the learned network struc-
ture and discussed some of its properties. The experimental results show that
the proposed approach achieves improvement in extracting prototypes for online
regression on noisy data.
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Abstract. The Boltzmann machine (BM) model is able to learn the
probability distribution of input patterns. However, in analog realiza-
tion, there are thermal noise and random offset voltages of amplifiers.
Those realization issues affect the behaviour of the neurons’ activation
function and they can be modelled as random input drifts. This paper
analyzes the activation function and state distribution of BMs under the
input random drift model. Since the state of a neuron is also determined
by its activation function, the random input drifts may cause a BM to
change the behaviour. We show that the effect of random input drifts
is equivalent to raising temperature factor. Hence, from the Kullback–
Leibler (KL) divergence perspective, we propose a compensation scheme
to reduce the effect of random input drifts. In our derive of compensation
scheme, we assume that the input drift follows the Gaussian distribution.
Surprisedly, from our simulations, the proposed compensation scheme
also works very well for other distributions.

Keywords: Activation function · State distribution · Boltzmann
machine · Noise

1 Introduction

The Boltzmann machine (BM) model is a kind of stochastic Hopfield network
models [1,2]. With its energy-based model, it can learn the internal representa-
tions of inputs. The BM model can be used many applications, such as image
and speech recognitions [3–5].

When implementing a BM by analog hardware, there some imperfect issues.
For instance, the random offset voltage and thermal noise in electronic compo-
nents may lead to noisy behaviors like random input drifts in activation func-
tion [6–8]. For traditional non-stochastic neural network models, many noise
aware learning algorithms, like the algorithms developed in [9–11], have been
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developed for feedfoward neural networks. However, very few results have been
presented for the BM model [12–14]. Recently, Sum et al. [14] have investigated
how the additive weight and bias noise affects the conditional probability and
state distribution during training and operation.

In this paper, we consider a problem regarding the implementation of a Boltz-
mann machine. Suppose the Boltzmann machine fitting the distribution of a
set of binary patterns have been attained by numerical simulation. The model
parameters are thus used as reference for the design of the analog hardware
BM. However, it is known that the analog components have non-ideal proper-
ties, like random input drifts to the threshold logic unit. Hence, there is a loss in
Kullback–Leibler (KL) divergence between the drifted BM (i.e. the implemented
model) and the drift-free BM (i.e. the ideal model). When a trained BM is run-
ning on hardware, their behaviours are also affected by the thermal noise and
random offset drifts of operational amplifiers. Here, we investigate the effect of
random input drifts in activation function on a BM.

If the random drift follows zero-mean Gaussian distribution, a compensa-
tion method is derived for setting the temperature factor for the Boltzmann
learning. The BM attained is then best-fit for hardware implementation. Exper-
imental results show that the compensation method still works well for some
zero-mean symmetric distributions other than Gaussian distribution. The main
contributions can be summarized as follows

• We present the activation function and state distribution for BM under the
random input drift condition. We theoretically prove that the effect of random
input drifts is approximately the same as increasing the temperature factor.

• We propose the compensated method. With the proposed method, in term of
KL divergence metric, the property of the drifted network is approximately
the same as that of drift-free BM.

This brief is organized as follows. Section 2 reviews the background of BM and
presents the drifted BM model. Section 3 presents our analytical results and pro-
poses the compensation method, respectively. Section 4 shows the experimental
results. Section 5 gives the concluding remark.

2 Background

A BM is a stochastic recurrent neural network with symmetrical connections.
Assume there are p neurons in the BM. Each neuron is fully connected with the
other neurons. Let sk, where k = 1, 2, · · · , p, be the state of the kth neuron. Let
S−k be the state vector like [s1, · · · , sk−1, sk+1, · · · , sp]

T ., i.e., the collection of
the states of neurons except the kth neuron.

The state of the kth neuron can be on (node output is 1) or off (node output
is 0), which is controlled by a stochastic activation function. The probability
that sk becomes 1 is given by

P (sk = 1|S−k) =
1

1 + e−uk/T
, (1)
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where uk is the input for this activation function, and it is defined as

uk =
p∑

l=1

wklsl + dk. (2)

In (2), wkl is the interconnection weight between the kth and the lth neuron, and
dk is the input bias. Note that a BM is symmetrical connected, i.e., wkl = wlk

and not self-connected, wkk = 0. In (1), T is called temperature factor. In the
BM concept, the states of neurons are updated in an asynchronous way.

We use v to denote visible neurons and h to denote hidden neurons. For a
noise-free trained BM, its state distribution is given by

P̃ (v,h) =
e−E(v,h)/T

∑
v,h e−E(v,h)/T

, (3)

where E(v,h) is the energy of state (v,h):

E (v,h) = −
∑

k<l

wklsksl −
∑

k

skbk. (4)

For the probability distribution over the visible neurons which is reconstructed
by the drift-free BM, it is defined as

P̃ (v) =
∑

h

P̃ (v,h)

=
∑

h e−E(v,h)/T

∑
v,h e−E(v,h)/T

. (5)

When a trained BM is running on hardware, their behaviours are also affected
by the thermal noise and random offset drifts of operational amplifiers. Those
external imperfect issues can be modelled as random input drifts in activation
function, stated in (1).

We use the notation Δu to represent drifts. Under the noisy condition, the
activation function in (1) and (2) are modelled as

Pn (sk = 1|S−k,Δuk) =
1

1 + e−ũk/T
(6)

ũk = uk + Δuk. (7)

Here, the value of Δuk is time-varying but its statistics are time-invariant. It
follows zero-mean Gaussian distribution with variance σ2. From (6)–(7), it can
be seen that the random input drift Δuk affects the stochastic decision.

Figure 1 depicts that when σ increases, the BM with random drifts in acti-
vation function has degradation on the KL divergence metric.
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Fig. 1. The loss in KL divergence for the Gaussian random drift case. The BM is a
4 − 3 − 4 encoder. It is trained with 16 states from 0000 to 1111. We measure the KL
divergence between the drifted BM and drift-free BM.

3 Main Result

In this section, we first theoretically analyze how random input drifts affect
the activation function and state distribution. Then, we propose a compensa-
tion method to suppress the effect of input drifts based on the KL divergence
perspective.

In our analysis, we use the following important lemma.

Lemma 1: A logit model can be approximate to the normal integral [15], given
by

1
1 + e−βz

≈
∫ z

−∞

1√
2π

e− x2
2 dx, (8)

where β = 1.702.

From (6) and (7), input drifts lead to the situation that the activation func-
tion works improperly. Theorem 1 presents how the input drifts affect the con-
ditional probability.

Theorem 1. For a drifted BM, the effective activation function is given by

Pn (Sk = 1|S−k) ≈ 1
1 + e−uk/(ηT )

(9)

where η =
√

1 + σ2

β2T 2 .

Proof: Based on the Lemma 1, we can obtain that

Pn (Sk = 1|S−k,Δuk) =
1

1 + e−ũk/T

≈
∫ ũk

−∞

1√
2πα

e− x2
2α dx

=
∫ uk

−∞

1√
2πα

e− (x+Δuk)2

2α dx
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where α = β2T 2.
Since Δuk ∼ N(0, σ2), Pn (Sk = 1|S−k) is obtained by

Pn (Sk = 1|S−k) =
∫ ∞

−∞
Pn (Sk = 1|S−k,Δuk)

1√
2πσ2

e− (Δuk)2

2σ2 dxdΔuk

=
∫ ∞

−∞

∫ uk

−∞

1√
2πα

e− (x+Δuk)2

2α

× 1√
2πσ2

e− (Δuk)2

2σ2 dxdΔuk

=
1√
2πα

1√
2πσ2

∫ uk

−∞

∫ ∞

−∞
e

− x2

2(α+σ2)

× e
−

(Δuk+ σ2

σ2+α
x)2

2σ2α/(σ2+α) dΔukdx

=
1√

2π (σ2 + α)

∫ uk

−∞
e

− x2

2(σ2+α) dx

≈ 1
1 + e−uk/(ηT )

where η =
√

1 + σ2

β2T 2 . The proof is completed. �

The interpretation of Theorem 1 is that when a trained BM with operational
temperature T is affected by input drifts, it is equivalent to the situation that
the operational temperature is increased from T to

√
1 + σ2

β2T 2 , where σ2 is the
variance of the random input drifts.

With the new activation function on the neurons, we can obtain Theorem 2
that shows the new state distribution.

Theorem 2. For a BM with random input drifts, the state distribution is given
by

P̃n (v,h) =
e−E(v,h)/(ηT )

∑
v,h e−E(v,h)/(ηT )

. (10)

Proof: Compared (1) with (9), it is observed that the effect of random input
drifts for activation function is the same as increasing temperature from T to
ηT (η > 1). Hence, for the state distribution in (3), under the random drift
condition, it is modified as

P̃n (v,h) =
e−E(v,h)/(ηT )

∑
v,h e−E(v,h)/(ηT )

. (11)

The proof is completed. �
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Based on Theorem 2, the probability distribution over the visible neurons
which is reconstructed by the drifted BM is given by

P̃n (v) =
∑

h

P̃n (v,h)

=
∑

h e−E(v,h)/(ηT )

∑
v,h e−E(v,h)/(ηT )

. (12)

Furthermore, the KL divergence between the drift-free probability distribution
P̃ (v) and the drifted probability distribution P̃n (v) is

D1 =
∑

v

P̃ (v) ln
P̃ (v)
P̃n (v)

. (13)

Since the temperature factor in P̃ (v) and P̃n (v) are different, it is clear that
the random input drifts introduce a loss in KL divergence.

The following theorem gives us a way to cancel out the loss in the KL diver-
gence caused by random input drifts in the activation function.

Theorem 3. Based on the KL divergence perspective, in realization, to make the
probability distribution for the drifted BM to be the same as that for drift-free
BM, we should set the temperature factor of the drifted BM to

T ′ = T

√

1 − σ2

β2T 2
(14)

such that the updated activation function is given by

P̌n (Sk = 1|S−k) =
1

1 + e−ũk/T ′ . (15)

Proof: Based on Theorem 1,

Pn (Sk = 1|S−k) ≈ 1

1 + e
−uk/

√

T 2+ σ2

β2

. (16)

We modify temperature factor from T to T ′. As a result,

P̌n (Sk = 1|S−k) =
1

1 + e
−uk/

√

T ′2+ σ2

β2

≈ 1

1 + e
−uk/

√

T 2− σ2

β2 + σ2

β2

=
1

1 + e−uk/T

= P (Sk = 1|S−k) .
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Thus,
P̌n (v,h) ≈ P̃ (v,h) . (17)

The visible unit distribution is

P̌n (v) =
∑

h

P̌n (v,h) (18)

≈
∑

h

P̃n (v,h). (19)

The KL divergence between the drifted BM with (15) and the drift-free BM is

D2 =
∑

v

P̃ (v) ln
P̃ (v)
P̌n (v)

. (20)

Since P̃ (v) ≈ P̌n (v), D2 ≈ 0. The proof is completed. �

Theorem 3 shows that by reducing the temperature factor from T to T ′, the
effect of random input drifts can be canceled out. However, this method has the
limitation. From (14), we can obtain that

1 − σ2

β2T 2
≥ 0

σ ≤ βT. (21)

In other words, to apply Theorem 3, the standard deviation of the random input
drifts must be smaller than 1.702T .

4 Simulations

In this section, we evaluate the behaviour of drifted BMs after using the com-
pensated activation function. A drift-free BM is trained first. Its configuration
is like 4 visual neurons as inputs, 3 hidden neurons and 4 visual neurons as out-
puts. Without loss of generality, the temperature factor T is set as 1. The BM
is trained to do two tasks. Task 1 is to be a 4 − 3 − 4 auto-encoder. Task 2 is to
achieve bitwise negation. For example, the input is 1001 and the corresponding
output is 0110. For both tasks, the input sets include 16 states from 0000 to
1111. After training the BM can achieve those two tasks.

During testing, three types of noise as random input drifts are added into
the activation function: (1) zero-mean Gaussian noise with different standard
deviation; (2) zero-mean uniform noise with different maximum noise level; (3)
for beta distribution: Betaa,b(x) = Γ (a+b)

Γ (a)Γ (b)x
a−1 (1 − x)b−1, where Γ (.) is the

Gamma function and a = b = 2, we shift it to zero mean and stretch it to
different maximum noise level. Although our compensation method is designed
for the Gaussian case, we also evaluate its ability for other zero-mean symmetric
distributions. In the simulation, for each drift level and each input pattern, we
run the BM long enough. Afterwards, we measurement the state distribution by
using 1 × 106 samples.
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Fig. 2. The actual and simulated activation function for zero-mean Gaussian noise
with different variance.

4.1 Use of Theorem 1

Since the compensated activation function is derived from the approximation
in Theorem 1, we investigate how well the approximation is. Figure 2 shows
the approximated and actual probability under the Gaussian drifts. The input
for activation function, UG, is in {−6, −5.99, · · · , 5.99, 6}. For each variance
setting

(
σ2 = 0.1, 2, 5

)
, 100,000 zero-mean Gaussian variance ΔUG are gen-

erated. The actual probability for each given UG is obtained by averaging(
1 + e−(UG+ΔUR)/T

)−1
. The approximated probability is based on (9). It can

be seen that the approximated probability well approximates the actual one.

4.2 Use of Theorem 3

The advantage of using Theorem 3 is that the loss in KL divergence due to
random input drifts can be cancelled out by only reducing the temperature factor
in activation function. The KL divergence between the drifted BM and dirft-
free BM in (13) is taken as the baseline, denoted as Dbase. The KL divergence
between the revised and noise-free BMs in (20) is denoted as Drevise. Figures 3
and 4 illustrate the behaviour of our compensation method under different noise
conditions based on the KL divergence metric.

For the Gaussian case, in the auto-encoder application (the first column of
Fig. 3), when σ = 1.5, the loss for drifted BM is 2.268 × 10−4. After applying
Theorem 3, the loss is reduced to 9.809×10−6. Similarly, in the bitwise negation
application (the first column of Fig. 4), using the revised activation function can
effectively decreases the loss in KL divergence from 8.219×10−4 to 2.781×10−5.

One concern of our results is that the theory is derived based on the Gaus-
sian assumption. As shown in the second and third columns of Figs. 3, 4. Our
compensation method still works very well. For instance, for the encoder appli-
cation with random drifts being uniformly distributed, when the drift level is
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Fig. 3. KL Loss in the encoder application. The loss in KL divergence for drifted and
compensated BM under Gaussian, Uniform and Beta drift condition.

σ = 1.5, the KL loss for the drifted BM is 2.141×10−4. After applying Theorem
3, the KL loss is reduced to 3.632×10−5. In sum, even for the uniform and beta
noise cases, Drevise is smaller than Dbase. That means although our method is
designed for canceling out the effect of Gaussian drifts, it still works for other
drift distributions.
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Fig. 4. KL loss in the bitwise negation application. The loss in KL divergence for
drifted and compensated BM under Gaussian, Uniform and Beta drift conditions.

5 Conclusion

This paper investigates the behaviors of BM with the Gaussian noise as random
input drifts in the activation function. We show that the effect of random input
drifts is to increase the temperature factor in activation function (Theorem 1)
and state distribution (Theorem 2). Since the random input drifts cause the
loss in the KL divergence for drifted BMs, we propose a compensation method
(Theorem 3). We prove that after applying Theorem 3, the behaviours of the
drift-free BM and the drifted BM are approximately same based on the KL
divergence metric. Our simulation shows that our compensation method works
not only for the Gaussian drift but also for other distributions.

As a final note, the results presented in this paper can be equally applied to
the model with other noise conditions.

(1) sk ∈ {0, 1} and d̃k = dk + Δdk for k = 1, · · · , p.
(2) sk ∈ {−1, 1} and ũk = uk + Δuk for k = 1, · · · , p.
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(3) sk ∈ {−1, 1} and d̃k = dk + Δdk for k = 1, · · · , p.

However, the results presented in this paper are not applicable to the model with
sk ∈ {−1, 1} and additive weight noise, i.e. w̃kl = wkl + Δwkl for k, l = 1, · · · , p.
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Abstract. Ever since the advent of AlexNet, designing novel deep neu-
ral architectures for different tasks has consistently been a productive
research direction. Despite the exceptional performance of various archi-
tectures in practice, we study a theoretical question: what is the condi-
tion for deep neural architectures to preserve all the information of the
input data? Identifying the information lossless condition for deep neu-
ral architectures is important, because tasks such as image restoration
require keep the detailed information of the input data as much as pos-
sible. Using the definition of mutual information, we show that: a deep
neural architecture can preserve maximum details about the given data if
and only if the architecture is invertible. We verify the advantages of our
Invertible Restoring Autoencoder (IRAE) network by comparing it with
competitive models on three perturbed image restoration tasks: image
denoising, JPEG image decompression and image inpainting. Experi-
mental results show that IRAE consistently outperforms non-invertible
ones. Our model even contains far fewer parameters. Thus, it may be
worthwhile to try replacing standard components of deep neural archi-
tectures with their invertible counterparts. We believe our work provides
a unique perspective and direction for future deep learning research.

1 Introduction

Ever since AlexNet won the ImageNet challenge in 2012 [13], deep learning has
been revolutionizing research in many industries. One key factor to account for
the success of deep learning is the transferability of deep learning architectures
[2]. That is, a neural architecture that exhibits excellent performance for one
task can also excel in a variety of other related tasks. However, the major-
ity of deep learning architectures were initially proposed to address high-level
computer vision tasks. Recently, researchers also explored applying these deep
architectures used for high-level tasks to tackle low-level vision tasks.

Empirical results suggest the plausibility of transferring the neural architec-
tures for high-level vision tasks to addressing low-level image-processing tasks.
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Nonetheless, there is a division between the requirements for deep models to
solve high- and low-level vision tasks. To specify, it may be acceptable to miss
image details for high-level tasks, as long as it captures the most salient features.
However, missing details of images can be unsupportable when dealing with
low-level vision tasks. Instead of primarily concentrating on conceptual vision
features, models for low-level tasks require specific minutiae such as colors and
textures to be able to restore original images [16].

Inspired by the division between the requirements for high- and low-level
vision tasks, we study whether it is proper to apply deep architectures of high-
level vision tasks to tackle low-level tasks. From the perspective of mutual infor-
mation, we show that: in order to let a neural architecture to preserve all the
information of the given input, the neural architecture needs to be invertible.
In this paper, we evaluate the performance of invertible neural architectures on
image restoration tasks. Invertible neural architectures exhibit excellence experi-
mental results. Thus, we believe it is a promising avenue to replace non-invertible
neural components with their invertible counterparts. In summary, our contri-
butions are three-fold:

1. Deriving from the definition of mutual information, we show non-invertible
deep neural architectures lead to loss of information concerning the input.

2. Inspired by the need for invertibility, we develop an Invertible Restoring
Autoencoder (IRAE) network via invertible flow-based generative algorithms.

3. We test IRAE with a series of experiments, finding that we achieve superior
performance on both image denoising and inpainting tasks. Moreover, our
model has fewer parameters than the baseline information-lossy models.

2 Preliminaries

2.1 Residual Blocks

Deep neural networks suffer from the problem of vanishing gradient [8] when
the depth of the network increases. To address this problem, Residual Networks
and Highway Networks [24] use additional pathways to connect the input with
the output of a layer directly. Such residual paths facilitate back-propagation,
bypassing the multiplication with the layer weight to alleviate the vanishing
gradient. These residual blocks are common features in image restoration models.
For example, REDNet [18] uses symmetric residual blocks. Zhang et al. [32]
employ a large number of residual blocks to preserve detailed information.

2.2 Flow-Based Generative Models

The arguably most important cornerstone of generative models is maximum
likelihood estimation (MLE). Generative models aim to maximize the probabil-
ities of producing results that look similar to the given data. Unlike variational
autoencoders (VAE) [10] and generative adversarial networks (GANs) [7] that
bypass accurately estimating densities, flow-based generative models directly
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maximize log probabilities of the given data. Therefore, flow-based generative
models require all the model components to be invertible. Pioneering flow-based
generative models include NICE [3] and RealNVP [4]. However, they suffer from
poor generation quality. Recently, Glow was proposed by Kingma et al. [11].
Glow can generate realistic-looking images, achieving similar and sometimes bet-
ter performance than other generative algorithms like VAE and GAN.

2.3 Mutual Information

Mutual Information (MI) is a quantity measuring the dependencies between
two variables. Intuitively, it estimates the amount of information that one can
obtain about one variable when observing the other [1]. MI is more powerful than
correlations. Correlations can only measure dependencies between two linearly
dependent variables. MI can tackle non-linearity among variables [20]. Thus, MI
is employed to investigate how learning is achieved in a deep neural network
with many non-linear layers. Examples include pc-softmax and the information-
bottleneck theory [20,22]. The formula for MI I(x;y) between variables x and y
is:

I(x;y) = E(x,y)

[
log

(
P (x,y)

P (x)P (y)

)]
.

3 Conditions When Deep Architectures Lose Information

In this section, we show interesting circumstances under which a deep neural
architecture loses information about the given input data. To this end, we first
present the definition of an invertible deep neural architecture:

Definition 1. A deep neural architecture is invertible if and only if:

1. It satisfies the function property of being deterministic.
2. It meets the definition of a one-to-one function.

Each input x corresponds to a unique resultant variable z, We consider the
cases of the variables being discrete and continuous separately. If the variables
are discrete, one immediate implication of Definition 1 is P (x|z) = 1, i.e., the
conditional probability of the input data x given the output z is one, where the
output z can either be the intermediate features or the final output. In contrast,
for discrete variables, a non-invertible deep neural architecture has P (x|z) < 1,
since multiple different input x can lead to the same output z. Furthermore, if
the variables are discrete, we consider P (x|z) as a probability, thus it cannot
exceed 1. As to the cases of continuous variables, we use a conclusion from [12],
stating that MI is invariant under the smooth invertible transformations of the
variables, to show invertible can preserve information about the input data. We
then have the following proposition:

Proposition 1. If a deep neural architecture is not invertible, then it will lose
information from the input during the feed-forward process.
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Proof. Following the above definition, we use x and z to respectively denote the
input data and the middle or final features of x processed by a neural network.
We employ MI, denoted as I(x; z), to represent the information that z carries
about x. From the definition of MI, we have:

I(x; z) = E(x,z)

[
log

(
P (x, z)

P (x)P (z)

)]
= E(x,z)

[
log

(
P (x|z)
P (x)

)]
.

From the definition of invertible deep neural architectures, if variables x and z
are discrete, we have p(x|z) = 1 if and only if the architecture is invertible. In
contrast, when not invertible, we have: p(x|z) < 1. That is, the MI between x and
z is larger when the network is invertible as compared to not being invertible.

When variables x and z are continuous, we utilize the fact that MI is invariant
under the smooth invertible transformations of the variables [12]. That is, given
two continuous variables m and n, we have:

I(m;n) = I(f(m); g(n)), (1)

where both functions f and g are smooth and invertible functions. Therefore,
if function f(x) = x, and function g(x) is an invertible neural architecture,
outputting z, i.e., g(x) = z. Then, we have:

I(x;x) = I(f(x); g(x)) = I(x; z). (2)

That is, the MI between input x and output z is the same as the MI between
input x and itself, implying output z preserves information of input x.

From Proposition 1, we note that we require invertible deep neural networks
to maintain all the detailed information about the input data.

4 Flow-Based Image Restoration Models

In Subsect. 2.2, we have described the requirement of flow-based generative mod-
els. Flow-based generative models require an invertible mapping between the
input and the latent tensors, directly conducting maximum likelihood estima-
tion for the given data. Due to the invertibility between inputs and outputs, as
Proposition 1 suggests, flow-based models are information-lossless.

We also require a image-restoration model to be information-lossless. There-
fore, we investigate the empirical performance of applying flow-based invertible
deep architectures to address image restoration tasks.

4.1 Architecture Overview

Figure 1 presents an overview of our deep architecture for image restoration. Our
primary requirement is to make the architecture completely invertible to preserve
all information about the given data, as we have described in Sect. 3. To fulfill
the invertible requirement, we aim for an encoding-decoding symmetric image-
restoration deep architecture. In the architecture, every component is invertible.
In the subsequent sections, we describe each component of our architecture in
detail.
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Fig. 1. Architecture of our Invertible Restoring Autoencoder (IRAE) network. “Act-
Norm” means “activation normalization”.

4.2 Encoder and Decoder

Our auto-encoding architecture is inspired by Glow [11], a flow-based generative
model. Two motivations inform this choice: 1) We require an invertible deep
architecture to preserve all the information about the input data, and 2) among
flow-based models, Glow can generate the highest quality images. However, our
architecture is considerably different from the Glow architecture. While Glow
contains only an encoder and relies on the inverse function of the encoder to
reconstruct the images, we utilize an additional decoder, and hence our archi-
tecture is symmetric, as Fig. 1 depicts. We argue that the decoder is mandatory
because, unlike reconstructing the given images, our model aims to convert the
given perturbed data to the original forms. Nonetheless, the entire architecture
is still invertible since encoders and decoders are invertible.

4.3 Invertible Local Spatial Feature Extraction

The great success of CNNs can be attributed to their ability to leverage local
spatial features. Specifically, CNN filters can exploit the 2D-spatial structure
of images via employing spatial convolutions to extract the local information
around each pixel. Unfortunately, this operation is non-invertible due to dimen-
sion reduction, which leads to further information loss. To address this dimension
reduction, we borrow ideas from a flow-based model called Real-NVP and utilize
the spatial checkerboard pattern within Real-NVP to apply the local spatial fea-
ture aggregation. Particularly, we squeeze a 1 × 4 × 4 tensor, where the order is
“channel × width × height”, into a 4×2×2 tensor. Consequently, each resultant
channel corresponds to a 4 × 4 region of the original image. We then perform
a 1 × 1 convolution to aggregate channel information together. In this squeez-
ing and 1 × 1 convolving fashion, we facilitate extracting local spatial features
invertibly.



Are Deep Neural Architectures Losing Information? 177

4.4 Steps of Flow

We follow the same set of flow steps as the Glow model, consisting of three
invertible sub-steps:

1. Activation Normalization abbreviated as ActNorm, performs an affine
transformation with a scale and a bias parameter per channel. The intention
is to initialize the first minibatch to have mean zero and standard deviation of
one after ActNorm to address covariate shift, similar to batch normalization.

2. 1×1 Convolution can be viewed as a linear transformation without shrinking
dimensions. Thus, it is invertible.

3. Affine Coupling aims to mix information of different dimensions. It consists
solely of invertible functions, so the composite function is still invertible.

4.5 Loss Function

Assume the training pairs we use are {xi ,yi}Ni=1, where xi is the ground truth
image and yi is the corresponding corrupted image,

yi = A ⊗ xi + ni , (3)

where ⊗ is the element-wise multiplication. A is the degradation matrix (which
is an identity matrix for image denoising tasks). We follow the standard loss
function for image restoration tasks and use the �1 loss as the objective function,

Lp =
1
N

N∑
i=1

||IRAE(yi) − xi ||1, (4)

where Lp is the pixel loss and Invertible Restoring Autoencoder (IRAE ) is our
network.

5 Experiments

To evaluate the image restoration performance of our invertible deep neural
architecture, we conduct experiments on three tasks: 1) image denoising, 2)
JPEG compression, and 3) image inpainting. All of these experiments show that
our model can consistently restore images to their original forms, and better than
other competitive methods. The quantitative results of noise removal even show
a large-margin improvement. More pleasantly, despite superior performance, our
invertible architecture contains fewer parameters than other competitive models.
Specifically, our model has 1.33×106 parameters, whilst DnCNN [30] and U-Net
[21] have 1.48 × 106 and 7.70 × 106 parameters respectively.
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Table 1. Quantitative denoising performance of our model compared against others.
The column σ stands for different noise levels. “BLD” represents blind denoising. Values
are average PSNR(dB). The best results are highlighted in bold.

Dataset σ DnCNN [30] FFDNet [31] U-Net [21] Ours

CelebA 15 31.4597 31.8551 31.7719 33.0812

25 29.4340 28.9438 30.5915 31.0795

50 26.7126 25.5980 26.4775 28.0887

BLD 30.3496 30.8492 30.8807 31.6158

Bird 15 30.0825 31.1383 31.9578 33.0805

25 28.4882 28.3442 30.3652 31.0111

50 26.4529 26.4082 27.7812 28.0976

BLD 28.7662 28.4686 31.4173 31.4448

Flower 15 29.8116 30.8773 32.0690 32.6267

25 28.8444 28.2578 30.2644 30.5044

50 26.1073 26.1131 27.1729 27.5092

BLD 28.4645 28.7165 31.3378 31.6123

5.1 Experimental Settings

For our architecture IRAE (see Fig. 1) (Invertible Restoring Autoencoder), we
apply K = 16 and L = 2 for the encoding and decoding layers. We adopt Adam
[9] as the optimizer and the learning rate as 10−3 initially, which decays to
2 × 10−4 after the first 50 epochs. Afterward, if the peak signal-to-noise ratio
(PSNR) does not improve for 10 epochs, the learning rate decays to a fifth of
the original rate. The training terminates when the learning rate decreases below
10−6.

The evaluation metrics we use for comparison are the average peak signal-
to-noise ratio (PSNR) and the structural similarity index (SSIM). Higher values
indicate better performance for both metrics.

5.2 Comparison on Image Restoration Tasks

To show the competitive performance of our IRAE model, we compare its
performance on the following three image restoration tasks.

– Image Noise Removal. We first evaluate the denoising capability of
IRAEon three types of images: CelebA (human faces) [17], Flower (natural
plants) [19] and Bird [27]. The synthetic noise added to these datasets is stan-
dard additive white Gaussian noise (AWGN) [26], with three distinct standard
deviations: σ = 15, 25, 50. We also conduct experiments for blind denoising
with random noise levels between 0 to 55. Table 1 quantitatively demonstrate
that our model performs denoising better than other approaches by a large
margin. Figure 2 exhibits qualitative results of the denoising performance of
our model compared against others.
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Fig. 2. Qualitative visualization of image denoising of our model compared with other
methods. The noise level σ = 50.

Fig. 3. Qualitative visualization of JPEG decompression of our model compared with
other methods. Our model preserves details more clearly and does not have artifacts as
in the yellow box in DnCNN while remaining invertible and requiring few parameters.
(Color figure online)
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Table 2. Quantitative JPEG decompression performance of our model compared
against others. ’QF’ means “quality factor”. Higher QFs represent less compression
loss. PSNR values are average (in dBs). The best results are highlighted in bold.

QF Mod

AR-CNN [5] DnCNN [30] U-Net [21] Ours

10 27.8221 27.5406 28.7041 28.7322

20 29.9814 28.8870 30.9274 30.9984

30 31.1935 28.6428 32.0025 32.1832

40 31.9283 31.0741 32.8755 33.0835

(a) Quantitative JPEG decompression results in PSNR (dB).

QF Mod

AR-CNN [5] DnCNN [30] U-Net [21] Ours

10 0.9368 0.9326 0.9479 0.9476

20 0.9568 0.9469 0.9647 0.9652

30 0.9658 0.9350 0.9712 0.9715

40 0.9702 0.9648 0.9757 0.9765

(b) Quantitative JPEG decompression results in SSIM.

Table 3. Quantitative results of our model compared with others on image inpainting,
in terms of PSNR (averaged) on CelebA dataset.

Metrics Models

Contextual
attention [29]

Shift-Net [28] Coherent
semantic [14]

Ours

PSNR 23.93 26.38 26.54 27.14

SSIM 0.882 0.926 0.931 0.975

– JPEG Image Decompression. JPEG is a commonly used lossy image
compression method. It achieves compression by converting images into a
frequency domain, then discarding the high-frequency regions that are hard
to perceive for humans [15]. However, JPEG compression often leads to arte-
facts, such as blockiness and ’mosquito noise’. We evaluate the capability of
IRAE to decompress JPEG images in comparison with competitive methods.
Our model can reconstruct JPEG images back to their near-original forms.
The effectiveness is shown in Table 2 for quantitative results and Fig. 3 for
qualitative visualization. As illustrated in Table 2, our architecture achieves
the highest PSNR results on the images with different compression quality
factors. Although Unet also gets competitive results, the parameter in our
network is 1.33 × 106, which is far less than the parameter used in Unet
(7.70 × 106). For factor 10, we achieved almost the same SSIM result but
higher PSNR value than Unet, which also demonstrates our method’s supe-
riority in denoising.
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Fig. 4. Image inpainting. Our model is general and has not been customized for image
inpainting like the state-of-the-art methods.

– Image Inpainting. Lastly, we show that our invertible deep neural archi-
tecture also performs better for image inpainting. We employ the CelebA
dataset with a size of 256 × 256, followed by randomly generating masks
of size 128 × 128, overlapped on each image. We ignore masking parts that
are outside the central region of images. We are pleased to find that our
model outperforms, even by a large margin, other methods that are specif-
ically designed for image inpainting, such as the ones based on adversarial
training, as Table 3 indicates. Figure 4 presents a qualitative visualization of
our model’s results on image inpainting.

6 Discussion and Future Work

One may concern that: preserving all the information of the given images is not
logically plausible. To specify, the noises on an image is also a part of the infor-
mation. Then, how can we conduct denoising if we also preserve the information
of noises? However, preserving the noise information is not equivalent to keeping
noises visible. That is, if a model maps noises to values that are extremely close
to zero, then noises on images become invisible. Consequently, the model per-
forms denoising well. Also, from the information-theoretic perspective, the model
preserves all the information of the given image. Nevertheless, if the model loses
the information of the visually salient regions, then even the model can remove
all the noises, it is still not acceptable.

This paper can be inception of investigating whether performance improves
if neural network components become invertible. With the definition of mutual
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information, we have shown the necessity of invertibility for preserving infor-
mation. We have also demonstrated promising results of using invertible neural
networks for image restoration.

7 Conclusion

Designing deep neural architectures is an essential role in modern deep learning
research. In the past decade, the manually designed deep neural architectures
such as VGGs [23] and GoogLeNet [25] have made breakthroughs in various
applications. Recently, automatic searching for effective deep neural architec-
tures has gained attention [6]. In this paper, we aim to study a theoretical ques-
tion: what deep neural architectures can preserve all the information of the input
data? We leverage the definition of mutual information. We show that: invert-
ible deep neural architectures are indispensable to preserve all the details about
the given data. We propose IRAE, an invertible model. Experimental results of
IRAE for image denoising, decompressing, and inpainting further validate the
necessity of invertibility. Our IRAE even has far fewer parameters. We believe
our theoretical results and practical demonstration in this paper imply that:
making deep neural architectures invertible can be a promising future direction
for deep learning research.
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Abstract. A greater demand for accuracy and performance in neural
networks has led to deeper networks with a large number of parameters.
Overfitting is a major problem for such deeper networks. Dropout is a
popular regularization strategy used in deep neural networks to mitigate
overfitting. However, dropout requires a hyperparameter to be chosen for
every dropout layer. This process becomes tedious when the network has
several dropout layers. In this paper, we introduce a method of sampling
a dropout rate from an automatically determined distribution. We fur-
ther build on this automatic selection of dropout rate by clustering the
activations and adaptively applying different rates to each cluster. We
have evaluated both our approaches using the CIFAR-10, CIFAR-100,
and Fashion-MNIST datasets, using two state-of-the-art Wide ResNet
variants as well as a simpler network. We show that our methods out-
perform standard dropout across all datasets and neural networks.

Keywords: Dropout regularization · Convolution neural networks

1 Introduction

Deeper and wider convolution neural networks (CNNs) have been gaining popu-
larity over the last few years in the quest for better feature representation. This
has resulted in neural networks with a greater number of network parameters.
It is well known that such networks are typically prone to over-fitting. Hence,
in practice, regularization methods have been proposed to improve generaliza-
tion and ultimately network performance. A number of regularization methods
have been proposed, such as L2 regularization, early stopping, data augmen-
tation, and dropout, to achieve better model generalization and prevent model
over-fitting.

Of all the regularization techniques, the standard dropout [3] and its pro-
posed improvements [9] have been prolific in the advancement of neural net-
work performance since the application of standard dropout in 2012 to win the
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Large Scale Visual Recognition Challenge [8]. The popularity of dropout has
also been helped by advances in the theoretical understanding of why dropout
works. According to the seminal paper [3], dropout is one of the regularization
methods which work by reducing co-adaptation of the neurons.

A limitation of the dropout method is that it typically requires a dropout
rate hyper-parameter, which defines the probability of a neuron being dropped or
retained during training. This parameter, if set too high, results in many neurons
being dropped, affecting the convergence of training and, if set too low, does not
generalize the model well. In addition, most of the deep network implementations
have a fixed dropout rate for all layers of the network. In the original dropout
implementation [3], the rate was set to 0.5. Usually the optimal dropout rate for
a network is determined through cross-validation.

There have been several approaches proposed in the literature which improve
on standard dropout by focussing on improving regularization [5,13,18] and
rate of convergence during training [15,20]. The proposed methods are broadly
categorized into adaptive and stochastic dropout approaches [9]. Whilst some
adaptive dropout techniques are based on structural changes to the network [5],
other adaptive techniques have proposed to use additional networks [24] during
training. The Gaussian dropout method [14] is a stochastic technique which
achieves the dropout effect by adding a predetermined Gaussian noise to the
neurons. With this method, no neuron is actually dropped. A further extension of
this method automatically learns the parameters of a Gaussian noise distribution
as part of the network training process by learning a variational objective [6].
This in essence, leads to learning a dropout rate for each layer of the network.
A more recent stochastic approach, named jumpout [18], proposes a method
sampling the dropout rate from a Gaussian distribution.

Fast dropout [20] proposes a method for faster training convergence by
showing that activations during training with dropout can be approximated
as a Gaussian distribution. Further extending fast dropout, the variational
dropout [23] introduces a Bayesian feature noising model to infer dropout noise
for neurons (or features). Targeted dropout [2] proposes a method of dropping a
certain proportion of low-valued weights to reduce degradation of performance
due to dropout towards the end of training. Curriculum dropout [11] proposes
a method of varying dropout to make learning more difficult as the network
training progresses.

[4] proposes stochastic depth where a subset of layers are dropped during
training, while retaining the entire depth during testing. Swapout [13] is another
method which generalizes on both dropout and stochastic depth. In this method,
the activations are randomly assigned the value zero, input value, output value,
or sum of input and output values. There is also a family of adaptive dropout
techniques that rely on additional neural networks or neural network elements.
Standout is an adaptive method, where a deep belief network and deep neu-
ral network (DNN) with shared parameters are trained jointly to obtain the
dropout rate adaptively across layers [1]. In fraternal dropout [24], the network
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is trained to be invariant to dropout by training two identical networks with
shared parameters but with different dropout masks.

In this paper, we propose two methods of improving the performance of the
neural networks using dropout as follows:

– In our first method, we automatically determine the dropout rate to be used
for a layer by using the distribution of neuron activations from the previous
layer.

– In our second method, we cluster the activations using k-means and apply
different dropout rates to activations in each cluster.

Our methods are widely applicable to a variety of neural networks such as
auto-encoders, deep neural networks for classification and segmentation where
dropout is used for model regularization. They do not rely on making structural
changes to the network or additional network elements during training. Unlike
the standard dropout, we eliminate the need to search the hyper-parameter
space for an optimal dropout rate. Compared to the most recent development,
jumpout [18], our method differs by estimating the parameters of the Gaussian
automatically from the activations of each layer.

Our method differs from all the dropout methods cited above. Standard
dropout [3] requires a hyper-parameter for every layer with dropout function
enabled but our method removes the need for this hyper-parameter. Unlike [1]
and [24], our method does not introduce any structural changes to the network
or need an additional network during training. Our method is different from drop
connect [16] in that it does not apply sparsity to weights and biases of neurons.
Further, unlike Bayesian methods such as the fast dropout [20] and variational
dropout [6], our method does not involve modeling of noise for each neuron as a
substitute for dropout. Finally, all of the above methods need a hyper-parameter
which is either in the form of a dropout rate or parameters of a Gaussian for
their respective implementation.

Our automatic dropout rate method is inspired by jumpout [18], in that we
too sample a dropout rate from a Gaussian distribution but unlike jumpout,
which requires cross validation to establish the parameters of the Gaussian dis-
tribution, our proposed automatic dropout rate selection method determines it
from the activation of the neurons at each individual layer.

Our second method that adapts dropout rates to clusters of activations is
inspired by a recent method called guided dropout [5]. Our method, instead of
learning the strength of a neuron as they do in [5], applies clustering to the
activations at training time and applies different dropout rates to each cluster.
In our implementation, we modify the dropout rate determined automatically
in accordance with the cluster centre of each cluster.

2 Methods

We propose two methods of choosing a dropout rate automatically, eliminat-
ing the need to choose a hyper-parameter for a dropout for every given layer
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Layer N-1

Layer N

SD=0.9

SD=0.4

Fig. 1. Illustration of automatic dropout rate calculation at two layers of a neural
network and its effect on how dropout rate is sampled and applied to activations in
individual layers. Note the shape of the Gaussian affecting the probability of a dropout
rate selected.

of the network. In our first method, we choose a dropout rate for a layer by
analysing the distribution of neuron activations from the previous layer. We fur-
ther enhance this method by clustering activations and applying an adaptive
dropout for the activations based on their membership to a cluster. Both these
methods are described in more detail in following sections.

2.1 Automatic Dropout

As observed by existing studies [12,17,19], a DNN which uses ReLU activations
can be thought of as piecewise linear weight function which divides the input
plane into regions. For non-zero bias terms which are usually the case with neural
networks, the regions form a convex polyhedra. The shape of the polyhedra is
based on the activation patterns, each represented by a set of linear constraints.

Our automatic dropout rate method relies on finding smooth approximations
to such convex polyhedra. Since ReLU is a cheap and efficient activation function
used in state-of-the-art deep networks, our research is focused on improving the
performance of such deep networks. Dropping out some activations changes the
polyhedral accordingly. Thus, the dropout mechanism trains a family of DNNs,
each represented by a slightly different polyhedron. A constant dropout rate
can be considered as the average distance between the polyhedra created by
dropout. So, the weights of the final model can be thought of as an average of
these individual polyhedral regions created as a result of dropout. To obtain
good generalization performance, the resulting averaging should result in locally
smooth regions. However, with fixed dropout, it can only be achieved when the
dropout rate is low.

As in jumpout [18], we sample the dropout rate from a Gaussian distribution
which ensures that the probability of dropping out more activations reduces
as the number of units dropped out increases. We further extend the work of
jumpout [18] by automatically choosing a Gaussian distribution based on the
spread of the activated neurons. This ensures that the probability of obtaining a
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smooth polyhedra not only increases but it is also locally optimized by sampling
from a Gaussian distribution of an appropriate shape.

In our method we automatically determine the dropout rate for a dropout
layer based on the standard deviation of the distribution of activations of the
neurons from the earlier layer. We then sample a dropout rate from this distri-
bution and determine a dropout mask based on the dropout rate. To ensure that
during the training phase neither too many activations are dropped out nor too
few activations are dropped out, we further truncate |p| so that |p| ∈ [smin, smax],
where 0 ≤ smin < smax ≤ 1. We note that the standard deviation σ will have
a lower value if the activations are all similar to one another when compared to
the case where there is a large variation in the magnitude of the activations.

The details of the automatic dropout rate method are illustrated in Algo-
rithm 1. In our implementation, this algorithm is implemented in a separate
custom dropout layer into which the activations aj from the previous jth layer
are input. Hyper-parameters smin,smax are set such that the sampled dropout
rate is clipped to be within acceptable bounds. The details of automatic dropout
rate algorithm are also illustrated in Fig. 1. In this figure, we show a part of a
neural network with 2 layers – N − 1 and N . For each layer, during training, we
determine the standard deviation of the activations. In this example, for layer
N − 1 the computed standard deviation is 0.9, for layer N it is 0.4. The com-
puted standard deviation is used to determine the parameters of the Gaussian
distribution to sample a dropout rate from. In all our experimental results, we
refer to this method by name as M1.

Algorithm 1. Automatic Dropout (M1)
Input aj ,smin,smax where aj are activations of the jth layer
Compute the mean of the activations
aave = (

∑
aj)/n

Compute standard deviation of activations
astd =

√
(
∑

(aj − aave)
2)/(n − 1)

Compute dropout probability
N(0, astd), ptrunc = min(smin + p, smax)
Apply dropout to activations with a rate ptrunc

2.2 Adaptive Dropout Based on Clustering

Inspired by [5], we hypothesize that varying dropout rates based on the acti-
vation itself would allow the network to generalize better. Thus, we propose an
enhancement over standard dropout to adaptively dropout neurons based on
the strength of the activation. Our adaptive dropout strategy is based around
the clustering of activations and applying varying levels of dropout rates for
each cluster. The details of the adaptive dropout based on clustering are illus-
trated in Algorithm 2. In our implementation, this algorithm is implemented in
a separate custom dropout layer along with the automatic dropout method to
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which the activations aj from the previous jth layer are input. Hyper-parameters
smin,smax are set to values so that the sampled dropout rate is clipped to be
within acceptable bounds.

Algorithm 2. Adaptive dropout using clustering (M2)
Input aj ,smin,smax where aj are activations of the jth layer
Compute the mean of the activations
ck = kmeans(aj)
for k = 1 to 3 do

Determine the cluster with the highest mean
cmax = max(ck)

end for
Compute ptrunc according to either algorithm M1 or use a fixed dropout rate
for k = 1 to 3 do

Compute dropout probability for each cluster k
pk = ptrunc ∗ (ck/cmax)

end for
Apply dropout pk to activations belonging to cluster k

In [5], a separately learned parameter called strength of a node, a scalar
value indicating the importance of the node/neuron learned during training.
In our method, we simplify this formulation by using the magnitude of the
activation as a proxy for the strength. Further, we perform k-means clustering
of the activations at training time and group the activations into N clusters.
We then order the clusters in descending order of the cluster mean and apply
a dropout rate which is inversely proportional to the cluster mean (details later
in this section). The intuition underlying this dropout strategy is as follows.
We want to progressively decrease the dropout rate as the strength of activation
decreases. Similar to [5], we argue that by dropping higher strength activations at
a higher dropout rate, the network generalizes better by relying on activations of
a lower strength. Note that this method can use a fixed dropout rate (dropout
as a hyper-parameter) as well as the automatically determined dropout rate
proposed earlier and progressively adapt to different clusters of activations.

We rely on [10] to provide a theoretical understanding of why the adap-
tive dropout using clustering works. The process of dropout as a regularization
method can be understood by considering a neural network with input x ∈ R

d2 .
Let y ∈ R

d1 be the output feature vector obtained by the neural network rep-
resented by the matrix M . Then, y = Mx for some M ∈ R

d1×d2 . Now if we
assume that the neural network has two hidden layers with respective weight
matrices U ∈ R

d1×r and V ∈ R
d2×r, the goal of learning is to determine the

weight matrices corresponding to the hidden layers U, V such that the following
objective in Eq. (1) is minimized:

f(U, V ) = E[‖ (y − UV T x) ‖2]. (1)
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Layer N-1

Layer N

C1 (0.25) C2 (0.3) C3 (0.4)

Dropout rate=0.4

C1 (0.15) C2 (0.2) C3 (0.3)

Dropout rate=0.3

Fig. 2. Illustration of how adaptive dropout based on clustering works in combination
with automatic dropout rate selection. The clustering of activation allows different
dropout rates to be applied selectively to activations within a cluster based on the
strength of the activation.

In the presence of dropout, Eq. (1) can be rewritten as follows:

f(U, V ) = E[‖ (y − 1
θ
Udiag(b)V T x) ‖2], (2)

where b ∈ Bernoulli(θ), which means the indicator function b is sampled
from Bernoulli trials. In [10], Lemma A.1 is used to show that Eq. (2) can be
rewritten as follows:

f(U, V ) = l(U, V ) + λ
∑

‖ ui ‖2‖ vi ‖2, (3)

where ui, vi are the columns of the matrices U, V respectively and λ is a regu-
larization constant equal to 1−θ

θ . The term λ
∑ ‖ ui ‖2‖ vi ‖2 increases in value,

hence increasing the overall loss f(U, V ) when higher activations are dropped.
This allows the network to rely on activations of a lower magnitude to improve
their contribution to the overall network generalization. A similar principal is
used in [5] with the strength parameter.

The details of the adaptive dropout based on the clustering algorithm are
illustrated in Fig. 2. A key feature of this method is to use the magnitude of a
neuron activation as a guide to regularizing the network. We argue that just as
using large weights leads to network overfitting, large activations also contribute
to overfitting. The adaptive dropout through clustering addresses this issue.

As illustrated in Fig. 2, we cluster the activations for each layer indepen-
dently. In our implementation, we use three clusters which map to low, medium,
and high strength activations. We adaptively apply the dropout rate to each
cluster as follows. For the cluster with the largest centroid we apply the dropout
rate determined according to either Algorithm 1 or using fixed dropout rate.
For the next highest cluster, we reduce the dropout rate by an amount ck/cmax

where ck is the cluster mean and cmax is the maximum cluster mean. This pro-
cess is repeated for all clusters. This allows the network to not overly rely on
higher strength activations during training and leads to better generalization.
In all our experimental results, we refer to this method by name as M2. For
ablation study, we also design a variation of this method where we adaptively
apply the dropout rate with the highest dropout rate assigned to the cluster with
the lowest centroid. In all our experimental results, we refer to this method as



192 V. Dodballapur et al.

M2
min. When this method is evaluated independently of the automatic dropout

rate method, we use a fixed dropout rate as input.

3 Evaluation

3.1 Experiments

All our experiments were performed using two NVIDIA GeForce GTX 1080 Ti
GPUs and the Keras/TensorFlow programming platform. We used Wide resid-
ual network (Wide ResNet) [22] and v3 network1 as the baseline. We chose Wide
ResNet [22] because it has demonstrated state-of-the-art results over other pop-
ular networks. The variants of Wide ResNet, namely width = 8, depth = 16 and
width = 10, depth = 28 of Wide ResNet, have fewer parameters than ResNet
but have performed better on CIFAR [7]. In our experiments involving Wide
ResNet and CIFAR datasets, we used stochastic gradient descent (SGD) with
Nesterov momentum and cross-entropy loss. The initial learning rate was set to
0.1, weight decay to 0.0005, dampening to 0, and momentum to 0.9. We trained
the network for 200 epochs, where the learning rate was dropped by 0.2 at 60,
120, and 160 epochs. In our experiments involving the Fashion-MNIST dataset
and Wide ResNet, the initial learning rate was set to 0.001, weight decay to
0.0005, dampening to 0, and momentum to 0.9. We used a time-based learning
decay of 1e−5. We trained the network for 50 epochs. For both CIFAR and
Fashion-MNIST experiments, mini-batch size was set to 64 and horizontal flip
was the only data augmentation used. The training protocol was very similar
to [22].

We also performed experiments on a simpler network similar to VGG called
the v3 network. This was to apply our methods to a very different architecture
when compared to Wide ResNet. For our experiments with the v3 network, we
used SGD with an initial learning rate of 0.01 and momentum of 0.9. We trained
the network for 50 epochs, where we dropped the learning rate by 0.5 and used
momentum decay of 0.05 every 10 epochs. This training protocol is similar to
the implementation of v3 network.

For standard dropout, we empirically determined the best performing
dropout (=0.3) for Wide ResNet across all datasets and used this value for
all the layers of Wide ResNet across all our experiments. For the proposed auto-
matic dropout rate, we limited the automatically determined dropout rate such
that it always lay in the interval [0.01, 0.6]. We compared our implementation
with the standard dropout [3] as well as jumpout [18]. For the v3 network, we
have compared our method with the standard dropout only since the jumpout
method did not converge for the datasets we experimented with.

To get a better understanding of our proposed methods, we performed several
ablation experiments by combining our two proposed methods and introducing
variations on our proposed methods. For these ablation experiments we used
the three variants of Wide ResNet namely width = 8, depth = 16, width = 10,

1 The “v3” network from https://github.com/jseppanen/cifa lasagne.

https://github.com/jseppanen/cifa_lasagne
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Table 1. Results for Wide ResNet

Method Wide ResNet:16 8 Wide ResNet:28 10

CIFAR10 CIFAR100 FASHION CIFAR10 CIFAR100 FASHION

Dropout 0.945 0.762 0.911 0.949 0.776 0.910

Jumpout 0.939 0.752 0.912 0.926 0.735 0.921

M1 0.949 0.769 0.925 0.953 0.780 0.921

M1 + M2 0.951 0.771 0.931 0.956 0.785 0.932

Table 2. Results for v3 network

Method CIFAR10 CIFAR100 FASHION

Dropout 0.845 0.481 0.920

M1 0.874 0.495 0.923

M1 + M2 0.884 0.565 0.932

depth = 28, and width = 4, depth = 40. We chose these variants because they
explore the network architecture both in terms of width and depth. We consid-
ered a simple training protocol with no data augmentation, an initial learning
rate of 0.01, SGD with Nesterov momentum, cross-entropy loss, and time based
learning rate decay of 1e−5. We trained for 50 epochs. We chose to use no data
augmentation to measure the regularization effect of the methods alone.

3.2 Results

For our experiments we chose the CIFAR-10 [7], CIFAR-100 [7], and Fashion-
MNIST [21] datasets which are mainly image classification datasets. To measure
the improvement provided by using dropout and its variants, we kept data aug-
mentation to a minimum. We ran the evaluation of each method for each dataset
and network 3 times and reported the median results.

Table 1 shows the results of our method using the CIFAR-10, CIFAR-100,
and Fashion-MNIST datasets for the two variants of the Wide ResNet we evalu-
ated on. We used the same augmentation method and training protocol [22] for
all methods and hence can compare the relative performance of our proposed
methods against both standard dropout and jumpout. We note that across both
variants of Wide ResNet networks tested, our methods outperform the stan-
dard dropout and jumpout for the CIFAR-10, CIFAR-100, and Fashion-MNIST
using the automatic dropout rate method. The combination of the first and
second methods gave a small improvement over the first method alone.

Table 2 shows the results on the v3 network. For the v3 network, we ran
experiments for dropout and our proposed methods only. We note that, as in
the case of Wide ResNet, our automatic dropout rate method, as well as the
combination of automatic dropout rate and adaptive dropout with clustering,
outperform the standard dropout.
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Table 3. Ablation experiments

Method Result for Wide ResNet:16 8 Result for Wide ResNet:28 10

FASHION CIFAR10 CIFAR100 FASHION CIFAR10 CIFAR100

Dropout 0.910 0.856 0.549 0.910 0.810 0.612

Jumpout 0.910 0.834 0.548 0.920 0.820 0.623

M1 0.925 0.874 0.632 0.920 0.850 0.636

M1 +M2 0.932 0.878 0.641 0.932 0.889 0.644

M2 0.934 0.870 0.600 0.929 0.886 0.649

M1 +M2
min 0.920 0.870 0.600 0.929 0.870 0.607

M2
min 0.915 0.858 0.589 0.929 0.862 0.575

Table 4. Results for Wide ResNet:40 4

Method FASHION CIFAR10 CIFAR100

Dropout 0.910 0.780 0.591

Jumpout 0.920 0.830 0.592

M1 0.920 0.862 0.612

M1 + M2 0.923 0.870 0.618

M2 0.921 0.868 0.611

M1 + M2
min 0.920 0.844 0.547

M2
min 0.918 0.833 0.546

Table 3 and Table 4 show the results of our ablation experiments. Firstly, we
note that the results across different datasets are slightly lower than the state-
of-the-art because data augmentation and highly tuned learning rates were not
used. Here we show that across all networks and datasets, our first method (M1)
outperforms the standard dropout as well as jumpout [18]. Further combining
the first and second methods (M1 + M2) performs better than the first method
alone. However, we note that introducing M2 slows down training performance
by a factor of 5 when compared to M1 alone because the k-means algorithm is
computationally expensive. We hope to address this in a future work. We also
note that in some instances our second method (M2) with a carefully chosen
dropout rate performs as well as the first and second methods combined (M1 +
M2). This confirms the utility of both methods in their own right. Finally, the
variation on the second method as described earlier (M2

min) on its own and in
combination with first method (M1) performs worse but is still comparable to
jumpout for fashion and CIFAR-10 datasets, confirming our original hypothesis
about dropping high strength activations more often for better generalization.

4 Conclusion

In this paper, we have proposed two methods for improving dropout. Our first
method removes the need for choosing a dropout rate hyper-parameter. Our sec-
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ond method applies dropout rate adaptively to activations based on clustering.
We have demonstrated that both our methods outperform standard dropout
when applied individually as well as when combined. We have demonstrated
the versatility and applicability of our methods of our results by evaluating on
well-known datasets such as CIFAR and Fashion-MNIST using three variants of
Wide ResNet and a substantially different network such as the v3 network.
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Abstract. The architecture of a neural network (NN) plays a signifi-
cant role in its performance. Recently, automating the process of choos-
ing the architecture has received huge attention. While neural architec-
ture search (NAS) methods mainly concern on searching, the searching
space is constrained and designed manually. Stochastic network genera-
tors will loosen the constraint as well as automating the process. In this
work an uncertainty quantification (UQ) for randomly wired neural net-
works (RWNN) is investigated. The classical Watts-Strogatz (WS) ran-
dom graph is utilized as the random generator and a bayes by backprop
algorithm is introduced to measure the epistemic and aleatoric uncertain-
ties of RWNN for image recognition tasks. The RandAlexNet architec-
ture is proposed and the algorithm is applied on. We test the algorithm
on FashionMNIST, CIFAR10 and MNIST datasets and the good results
achieved illustrate the effectiveness of our proposed method.

Keywords: Uncertainty quantification (UQ) · Bayes by backprop ·
Randomly wired neural network · Epistemic uncertainty · Aleatoric
uncertainty

1 Introduction

The machine learning research was revolutionised in 2012 by the introduction of
deep learning (DL) algorithms. Compared to conventional machine learning tech-
niques, DL models achieve best-in-class performance, scale effectively with data,
are fully transferable, and automatically extract useful information for decision
making [1]. DL models implement the hierarchical feature extraction in an end-
to-end fashion which does not require manual design. The performance of DL
models is always bounded by their engineered architecture. Accordingly, there
has been a desire to automate the process of architecture engineering without
human intervention. This has made the research in the field of neural architecture
search (NAS) in the spotlight.
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NAS as a new area of research, is an optimization problem, trying to auto-
mate the process of choosing the architecture with the lowest validation error
[2–13]. Literally NAS eventually shifts the paradigm from architecture engineer-
ing to architecture learning. Reinforcement learning and evolutionary algorithms
have been both applied to NAS in recent years [2,12,14–18]. In both categories
of algorithms, a set of sequential actions generate a network architecture whose
performance metrics are applied as the reward.

The human expert first makes several restricting assumptions on the network
type and its components such as the bounds for the number of layers, neurons,
filters, learning rate, and so on. These values are often set based on prior knowl-
edge about the performance of the state-of-the-art models. For instance, the
filter size for convolutional neural networks is set to values such as 3, 5, and
7 which have been used in models like ResNet [19] or DenseNets [20]. Similar
restrictions apply to how the network neurons and layers are connected. Thus,
the search space in the controlled NAS is always biased.

The random network generators aim to make the NAS conditions more
relaxed as well as producing NNs with reasonable accuracies for tasks such as
image recognition [21]. Network generator consist of all possible wiring order
that the network is sampled from. Considering stochastic network generators
leads to advent of randomly wired neural networks [21]. Traditionally, the net-
work generators have been hand-designed and their searching space was limited.
Three random graph generators are used in [21] to minimize the humans involve-
ment in NAS. These are Erdos-Renyi (ER) [22], Barabasi-Albert (BA) [23] and
Watts-Strogatz (WS) [24]. According to result reported in [21], WS produces
networks obtaining higher or competitive accuracy in comparison to their peers.
Authors in [21] also mention that the networks produced by a single generator
often have a low accuracy variance.

Estimating uncertainties associated with NN predictions is fundamental in
real world applications such as healthcare or autonomous driving [25–28]. In par-
ticular, the epistemic uncertainty represents how much the end user can trust
network predictions on new samples must be properly quantified [29]. The epis-
temic uncertainty is mainly related to the data insufficiency and can be reduced
through collection of more quality data. The aleatoric uncertainty that repre-
sents the inherent uncertainty in data is also considered in UQ. It is mainly
caused by the measurement noise or image quality. It is important to mention
that the focus of researches on RWNNs have been mainly on the network per-
formance metrics such as forecasting accuracy. UQ and its proper evaluation
for RWNNs (in general for NAS problems) has been largely overlooked. The
research community has been trying to develop RWNNs with a competitive
performance without paying attention to the reliability of predictions made by
those networks. In recent years, the so-called Bayesian Deep Learning (BDL)
was introduced as an effective UQ method to apply bayesian frameworks to
deep NNs [30]. Bayes by backprop introduced by [31] as an effective method to
estimate the true posterior probability. This algorithm automatically regularize
the network and prevents overfitting as well as making the NN more reliable.
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The bayes by backprop algorithm was first applied to feedforward NNs [31].
Later this technique was extended to recurrent [32] and convolutional NNs [33]
as well.

In this paper we propose a bayes by backprop algorithm for quantifying the
epistemic and aleatoric uncertainties of RWNNs for image recognition tasks. Our
method for quantifying uncertainties of RWNN uses WS random graph as the
random generator for constructing the NN. However our method generalizes to
ER and BA or other random graphs as well. A random architecture should also
be considered. We propose RandAlexNet here which is inspired by AlexNet [34].
It should be mentioned that our proposed algorithm can also be applied on other
random architectures. The aleatoric and epistemic uncertainties are estimated
separately to determine who we should put the blame on (the model or dara) and
specify whether we can reduce it or not. Finally we test the proposed algorithm
on CIFAR10, FashionMNIST and MNIST datasets and the uncertainties are
estimated in all cases.

The rest of this paper is organised as follows. Section 2 provides some back-
ground information. The proposed method for uncertainty quantification of
RWNN predictions is discussed in Sect. 3. Sections 4 and 5 present the exper-
iments and conclusion respectively.

2 Background

2.1 Variational Inference

The common probabilistic algorithms such as variable elimination [35] are mainly
complicated and computationally demanding and slow. Many researches have
developed algorithms to approximate the solution of the inference problem. Two
main approximation families are sampling and variational methods [36].

While sampling inferences methods collect data samples to estimate the
marginal probability, variational inference methods focus on presenting the infer-
ence as an optimization problem [37–39]. In this work we use variational inference
method as it is of a good reason effective and less computationally demanding
than classic sampling methods [40].

A variational distribution q is used to approximate p. The Kullback-Leibler
(KL) divergence is applied for this approximation by finding q as close as possible
to p. KL divergence is defined as follows:

KL(q||p) =
∑

x

q(x)log
q(x)
p(x)

(1)

Considering the x∗ and y∗ as the new input and predicted output respectively.
Equation 2 predicts the new output.

p(y∗|x∗,X, Y ) =
∫

p(y∗|f∗)p(f∗|x∗,X, Y )df∗ (2)
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As the integral Eq. 2 is intractable, a random variable w is chosen to approximate
2 as follows:

p(y∗|x∗,X, Y ) =
∫

p(y∗|f∗)p(f∗|x∗, w)p(w|X,Y )df∗dw (3)

where p(w|X,Y ) is intractable. It will be then approximated by q(w) and KL
divergence will be applied:

q(y∗|x∗) =
∫

p(y∗|f∗)p(f∗|x∗, w)q(w)df∗dw (4)

We finally get the KL as this:

KLV I =
∫

q(w)p(F |X,w)log p(Y |F )dFdw − KL(q(w)||p(w)) (5)

This is known as the variational inference technique [33].

2.2 Bayes by Backprop

Variational inference methods are used to approximate the posterior distribution.
Bayes by backprop [31,41] as a variational inference technique minimizes the KL
divergence to make qθ as similar as possible to p(w|D). So one has the following
optimization problem:

θopt = argθmin KL [qθ(w|D)||p(w|D)] (6)

θopt = argθminKL[qθ(w|D)||p(w)] − Eq(w|D)[log p(D|w)] + log p(D) (7)

Considering Eq. 1, we need to deal with another intractability. First, the true
posterior p is approximated with q where θ is a learnable parameter. Then using
sampling methods such as Monte Carlo, we sample from the variational posterior
q. So the cost function is defined as follows:

F (D, θ) ≈
n∑

i=1

log qθ(w(i)|D) − log p(wi) − log p(D|w(i)) (8)

where n is the number of draws and w(i) is sampled from qθ(w|D). The cost
function 8 is aimed to be minimized with respect to θ during training. The
bayes by backprop has been used for feedforward [31,42], recurrent [43] and
convolutional NN [33].

2.3 Randomly Wired Neural Networks

Consider the network generator g as a transformation from the parameter space
Θ to the NN architecture space N , g : Θ⇒N . In system analysis, a network
generator can be considered as a function that receives some parameters (Θ) and
returns a network architecture [21]. A random parameter s is used in stochastic
network generators. g(Θ, s) for a fixed Θ and different values of s represent a
uniform probability distribution over all possible s values [21].
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The NN architecture will be achieved as follows:

– A graph is considered (a set of nodes and edges). There is no restriction and
any graph from the graph theory can be considered (this step is done by
network generator).

– The graph is mapped to a NN. The mapping is arbitrary in general.

In this paper we use WS random graph model for the network generator. The
WS random graph [24] is a graph for defining small-world networks. Small-world
networks have low average distance between nodes and high clustering. The steps
of generating a WS random graph are defined as follows [24]:

– All the nodes (N) are placed in a circle.
– Each node is connected to m nearest neighbor on either side of it. This net-

work is known as a regular network.
– Randomly chose M×β links then rewire one end of the chosen links to another

randomly chosen node. β is the probability of rewiring (Fig. 1).

Small worldRegular Random

Increasing randomness
beta = 0 beta = 1

Fig. 1. Regular, small world and random graphs. The regular graph has the high
average distance and high clustering. The random graph has small average distance
and low clustering. The small world network has small average distance and high
clustering. β (probability of rewiring) for regular graph is 0 and for random graph is 1.

3 Methods

3.1 Validation Accuracy and Uncertainty Estimation

Consider x∗ is an unseen data and y∗ is the predicted output (class), the pre-
dictive distribution is defined as follows:

pD(y∗|x∗) =
∫

pw(y∗|x∗)pD(w)dw (9)

where pD(y∗|x∗) In Bayes by Backprop q is considered to have a Gaussian distri-
bution qθ(w|D) � N (w|μ, σ2) and θ = μ, σ is learned with datasets D. Assuming
categorical distribution for predictive distribution one has:
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pD(y∗|x∗) =

∫
Cat(y∗|fw(x∗))N (w|μ, σ2) =

∫ C∏
c=1

f(x∗
c |w)y

∗
c

1√
2πσ2

e
−

(w − μ)2

2σ2 dw

(10)
In Eq. 10, C is the number of all classes and

∑
c f(x∗

c |w) = 1. Due to intractabil-
ity, sampling method is used to estimate the predictive distribution:

Eq[pD(y∗|x∗)] =
∫

qθ(w|D)pw(y|x)dw ≈ 1
T

T∑

t=1

pwt
(y∗|x∗) (11)

The predictive variance is defined as follows:

V arq(p(y∗|x∗)) = Eq[yyT ] − Eq[y]Eq[y]T

=
1
T

T∑

t=1

diag(p̂t) − p̂tp̂t
T +

1
T

T∑

t=1

(p̂t − p̄)(p̂t − p̄)T (12)

where p̄ = 1
T

∑T
t=1 p̂t and p̂t = Softmax(fwt

(x∗)) In Eq. 12, the first term is
considered as aleatoric and the second one is considered as epistemic uncertain-
ties.

The mean epistemic and aleatoric uncertainties for bayesian RandAlexNet
based on the method proposed in [44] are defined as follows:

Aleatoric Uncertainty =
1
T

T∑

t=1

diag(p̂t) − p̂tp̂t
T (13)

Epistemic Uncertainty =
1
T

T∑

t=1

(p̂t − p̄)(p̂t − p̄)T (14)

The aleatoric or statistical uncertainty represents the inherent probabilistic vari-
ability. The aleatoric uncertainty is irreducible and represents how noisy the data
are. On the other hand epistemic or systematic uncertainty refers to the uncer-
tainty of the model. The epistemic uncertainty can be reduced by preparing
more data. Calculating the epistemic and aleatoric uncertainties can be help-
ful to distinguish if the quality of the data is not good enough (high aleatoric
uncertainty) or the model itself should be blamed (high epistemic uncertainty).

3.2 Activation Function

Also the most popular activation function in NN architecture is ReLU [33], in
this paper we use Softplus activation function. The main advantage of Softplus
function defined in Eq. 15 is that it never becomes zero for x → −∞, but the
ReLU function becomes zero when x → −∞. The Softplus function is defined
as follows:

Softplus(x) =
1
β

.log(1 + exp(β.x)) (15)

The most common value for β is 1.



BRWNN with VI for Image Recognition 203

3.3 Network Architecture

We propose RandAlexNet architecture to implement the uncertainty quantifica-
tion of RWNN on. The specification of RandAlexNet architecture that is inspired
from AlexNet [34] is reported in Table 1.

4 Experiments

In this section the details of our proposed algorithm are illustrated and the results
and figures are reported. Based on the WS random graph model, the network
generator is automated. A bayes by backprop algorithm is utilized on the ran-
domly wired neural network. In all the experiments we conduct our algorithm
on RandAlexNet, that is inspired form AlexNets [34]. The exact architecture
is represented in Table 1. The proposed algorithm is examined on CIFAR10,
FashionMNIST and MNIST datasets. The number of epochs in all cases is 100.
The initial learning rate is set as 0.1 and the weight decay and momentum are
chosen as 5e−4 and 0.9 respectively. The epistemic and aleatoric uncertainties
for CIFAR10, FashionMNIST and MNIST datasets are reported in Table 2.
The aleatoric uncertainty of CIFAR10 is larger (almost twice) of the aleatoric
uncertainties of FashionMNIST and MNIST. The lower validation accuracy of
CIFAR10 in comparison to FashionMNIST and MNIST datasets also corrobo-
rate it. The small number of training examples of CIFAR10 can be considered
as a contributing factor. The validation accuracies for these datasets are also
reported in Table 3. Figures 2, 3 and 4 illustrate the epistemic and aleatoric
and total uncertainties per epochs for CIFAR10, MNIST and FashionMNIST
dataset. It should be noticed that randomly wired neural networks, proposed in
[21], do not suppose to reach noticeably higher accuracies in comparison to other
architectures. It is claimed that randomly wired neural networks in most cases
reach competitive accuracies in comparison to other image classification archi-
tectures. In [21] the best accuracy for image classification on CIFAR10 dataset
is reported as 74.7%. However using the information reported in [21], the best
accuracies we reached in our simulations was 66.8%. It is also worth mention-
ing that these results achieved in different situations in comparison to ours. For
instance the number of epoch, optimizer, learning rate, momentum and etc are
totally different. In one word, there are lots of contributing factors for reach-
ing better accuracies but our work do not focus on improving the accuracies.
Our main concern is presenting a bayesian framework for randomly wired neural
network and estimating the uncertainties of the predictions. However our accu-
racy results are competitive and acceptable in comparison to others. The idea
in this paper is applied on RandAlexNet (Table 1) architecture, that is inspired
by AlexNet [34]. This architecture can also be improved and better results can
be achieved. The optimization of the parameters can be achieved by trial and
error.
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Table 1. The RandAlexNet architecture.

Layer Type Width Stride Padding Nonlinearity

B-Convolution (3 × 3) 10 1 1 SoftPlus

Max-Pooling (2 × 2) 2 0

B-Convolution (3 × 3) 10 1 1 SoftPlus

Max-Pooling (2 × 2) 2 0

Randwire

Randwire

B-Convolution (1 × 1) 1280 1 1 SoftPlus

Max-Pooling (2 × 2) 2 0

Flatten-Layer

B-Fully Connected

Table 2. Epistemic and aleatoric uncertainty for bayesian RandAlexNet calculated for
MNIST, FashionMNIST and CIFAR10.

Epistemic uncertainty Aleatoric uncertainty

MNIST 0.0413 0.1123

FashionMNIST 0.0402 0.1073

CIFAR10 0.0367 0.2113

Table 3. Validation accuracies (in percentage) for RandAlexNet for MNIST, Fashion-
MNIST and CIFAR10.

Dataset Validation accuracy (%)

MNIST 87.5

FashionMNIST 87.5

CIFAR10 66.88

Fig. 2. The epistemic, aleatoric and total uncertainties per epochs for CIFAR10
dataset.
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Fig. 3. The epistemic, aleatoric and total uncertainties per epochs for MNIST dataset.

Fig. 4. The epistemic, aleatoric and total uncertainties per epochs for FashionMNIST
dataset.

5 Conclusion

In this paper, the uncertainty quantification problem for randomly wired neu-
ral networks for the task of image classification is investigated. The WS random
graph model is applied as the random network architecture generator. The bayes
by back prop algorithm is proposed and applied for tuning parameters of Ran-
dAlexNet to compute predictive uncertainty estimates using randomly wired
neural network. The epistemic and aleatoric uncertainties are estimated sepa-
rately. The simulation results on MNIST, FashionMNIST, and CIFAR10 datasets
demonstrate the competency of proposed framework for capturing epistemic and
aleatoric.
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Abstract. The remarkable object recognition ability of biological sys-
tems allows individuals to have prompt and reliable responses to dif-
ferent stimuli. Despite many implementations, an efficient and effective
one is still under exploring. Spiking neural networks (SNNs), following
brain-like processing, provide a potential solution for efficient object
recognition. The existing SNNs can benefit an efficient feature extrac-
tion from a temporal code, but they are vulnerable to noise, less adap-
tive and vitally poor in recognition accuracy. How could one make full
use of the biological plausibility to improve their performance? In this
paper, we propose a new temporal-based encoding method with unsu-
pervised matching pursuit. Additionally, a unified SNN framework for
image recognition is designed by integrating our encoding with recently
advanced synaptic learning. We evaluate our approach on MNIST, with
systematic insights into encoding capabilities, robustness to noise, learn-
ing efficiency and classification performance. The results highlight the
effectiveness and efficiency of our spike-based approach. To date and the
best of our knowledge, our approach achieves the best temporal-based
accuracy performance. Moreover, our approach requires and consumes
fewer number of neurons and spikes, making it significantly advanta-
geous to fast and efficient computation. Our work also contributes to
motivating new brain-inspired developments on image classification.

Keywords: Temporal encoding · Spiking neural networks · Image
classification · Multi-spike

1 Introduction

Object recognition is an important cognitive ability that enables human to
quickly respond to various visual stimuli and then make proper decisions accord-
ingly. Inspired by this, it has been successfully applied to various visual tasks
such as medical diagnosis, face recognition and autonomous driving [1,4]. How-
ever, as compared to human brain, most of the current approaches for object
recognition are less biologically plausible and inefficient. Recently, spiking neu-
ral networks (SNNs) attract increasing attention as they are more biologically
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plausible and computationally powerful than previous models due to the use of
time dimension [8,17]. Therefore, SNNs provide a potential solution for efficient
and biologically plausible object recognition.

A unified SNN framework model for object recognition mainly includes two
parts: spike encoding and learning. SNNs have an aptitude for dealing with spa-
tiotemporal spike patterns owing to the temporally-dynamic characteristics, but
poor at feature extraction [9]. Therefore, an appropriate encoding frontend that
converts visual stimuli into spikes is an essential step required by SNNs for object
recognition. Biological experiments show that the visual systems use a hierarchi-
cal structure for information processing [16], which motivates the development of
hierarchical models resembling information processing in the mammalian brain
[19]. In a typical hierarchical model, simple cells (SCs) will integrate information
from their receptive fields in response to an external stimulus. Then, complex
cells (CCs) extract information with nonlinear refinement on the outputs of
SCs. Several temporal-based hierarchical encoding methods have been proposed
according to this, such as HMAX [20] and S1C1 [26]. However, predefined filters
are selected for SCs in these methods, thus limiting their capabilities to freely
adapt to various tasks for a better extraction of features.

In recent years, convolutional neural networks (CNNs) gain a series of suc-
cesses in machine vision and have demonstrated remarkable capabilities for fea-
ture extraction[11]. This motivates a CNN-based temporal encoding frontend
[23] being proposed to improve the performance of SNNs by resorting to the
powerful feature extraction ability of CNNs. Compared with previous hierarchi-
cal models, SCs’ weights can be learned through the backpropagation method
in this approach. However, its recognition accuracy is still poor as compared
to other state-of-the-art SNN-based approaches, and thus leaving more room
for improvement. Moreover, this approach depends on massive labeled data and
powerful computing platforms [21], being inferior to the efficiency of biological
systems.

How could one benefit the efficiency from the temporal-based neural code
while making full use of the biological plausibility to improve the performance of
SNNs? In this paper, we propose a new temporal-based encoding method with
unsupervised matching pursuit (UMP). Our approach follows a similar routine
to the retina, where neurons with stronger activations will fire earlier, while
weaker ones spike later or not at all [14]. In our encoding scheme, SCs integrate
information from their receptive fields in a hierarchical model, followed by a
competing strategy to select the neuron with the strongest activation to elicit
a spike. Afterward, a lateral inhibition is sent from the winner neuron to those
silent ones. Iterating these steps, input information is thus encoded into a series
of spikes. Importantly, our UMP provides an unsupervised learning scheme to
adjust the selectivity of SCs, which can lead to a more sparse and effective
representation of images and thus make our method competent for a broad
range of tasks.

After spike encoding, learning rules are employed to train SNNs to have
desired responses to different inputs. Recently, a new multi-spike learning rule
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called TDP has been proposed and demonstrates various learning advantages
such as simplicity, efficiency, robustness, and more importantly, the remarkable
applicability to various tasks [24]. In this work, we therefore develop an alterna-
tive framework for image classification by integrating our encoding method with
TDP.

Our main contributions are proposing a new unsupervised matching pur-
suit temporal encoding method and designing a unified SNN framework for the
challenging task of image classification. Several experiments are conducted to
evaluate the performance of our method. Our approach obtains 98.56% classi-
fication accuracy on the MNIST task. To the best of our knowledge, our app-
roach is the best among temporal-based approaches, and even achieves compara-
ble performance to the rate-based ones. Notably, our temporal-based approach
requires less network resource and computation, which is significantly beneficial
to low-power and high-speed implementations. Thus, our work also contributes
to paving a way towards the new paradigm of brain-like computation and pro-
cessing.

2 Methodology

In this section, we will introduce the methods used in our framework, including
UMP temporal encoding and TDP multi-spike learning. Details are presented in
the following.

2.1 UMP Encoding

When external stimuli are presented, it is widely believed that the retina plays
a critical role for feature extraction in the nervous systems [8]. The ganglion
cells (GCs) in the retina will integrate information from their receptive fields in
response to visual stimulus [18]. Inspired by this, the hierarchical model [16] is
thus proposed to emulate the information processing in visual systems. In a typ-
ical hierarchical model, simple cells (SCs) are introduced to collect information
from a local position, and the process is given as

r =
∑

i

∑

j

I(x + i, y + j) · w(i, j) (1)

where (x, y) and (i, j) indicates the position and the range of SCs’ receptive
field in the input image I, respectively. w represents the weights of SCs, and
r denotes neuron’s activation value. Afterward, complex cells (CCs) are intro-
duced to extract information with nonlinear pooling operation on the outputs
of SCs. This hierarchical scheme has inspired several temporal-based encoding
methods for images, such as HMAX [20], S1C1 [26] and Focal [15]. However,
these encoding frontends are vulnerable to noise, less adaptive and relatively
poor in performance of accuracy.
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In this paper, we propose a new temporal encoding method with unsupervised
matching pursuit (UMP). Following a similar process to Eq. (1), the activation
value Ai of SCs can be calculated as

Ai =
∑

l∈Ri

I(l) · φi(l) (2)

where I(l) is the pixel value of an input image I in position l. φi and Ri represent
the weight and receptive field of neuron i, respectively.

Afterward, a competing strategy is introduced to select the neuron with the
strongest activation to elicit a spike. Subsequently, a lateral inhibition is sent
from the winner neuron to others. The selection and inhibition processes are
iterated until none one of neurons is strong enough to fire. We implement this
by successively removing the best matching unit from the input image. More
specifically, the initial image I0 and activation values A0

i at step t = 0 are set
to I and Ai, respectively. Then, the neuron to fire is chosen as the one with the
highest activation value.

i0 = ArgMaxi(|A0
i |) (3)

where i0 denotes the index of the fired neuron, and its corresponding activation
value is defined as A0

i0 . Afterward, inhibition is applied in a way to remove
features of the selected neuron from previous input I0, yielding the follow

I1 = I0 − < I0, φi0 >

‖φi0‖2 · φi0 = I0 − A0
i0

N2
i0

· φi0 (4)

where I1 is the remaining information at step t = 1, and N2
i0 is the squared

norm of φi0 . < I0, φi0 > indicates the integration process described by Eq. (1).
Merging Eq. (2)–(4), we can get a clear inhibition effect of the fired neuron on
the others.

A1
i =< I1, φi >= A0

i − A0
i0

N2
i0

· < φi0 , φi > (5)

According to Eq. (3) and (5), the iteration process in later time t > 0 can
thus be given as {

it = ArgMaxi(|At
i|)

At+1
i = At

i − mt· < φit , φi >
(6)

with mt = At
it/N2

it denoting UMP coefficient.
Iterating these steps, the input image is thus converted into a series of spikes.

In our UMP scheme, we bin these spikes with a temporal precision of 1 ms before
feeding them to downstream spiking neurons.

2.2 Unsupervised Kernel Learning

How could one set proper weights for SCs such that they could be adaptive
to various tasks with a good selectivity of features? In this part, we propose an
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unsupervised learning scheme to adjust their weights according to their respond-
ing activation and the input. Our learning rule is given as

Δφit = λmt · It
it (7)

where λ is the learning factor. It
it indicates the residual error of weight φit in step

t. Equation (7) thus provides a way to estimate the gradient Δφi. In order to
have better discriminative weights for the learning, we add a regularization term
for selecting the winner neuron during learning. The modified selection scheme
for learning at time t is given as

it = ArgMaxi(|At
i| + γ‖φi − φit−1‖) (8)

where γ is a regularization constant and ‖φi−φit−1‖ denotes the distance between
two neurons.

With the above learning rule to set proper weights, the input image can thus
be converted into a spare spatiotemporal spike pattern that can be further used
for multi-spike learning and classification.

2.3 Neuron Model

In this paper, we use the leaky integrate-and-fire (LIF) neuron model [3] due to
its simplicity and computational efficiency. When an input spike pattern is pre-
sented, each afferent will result in a post-synaptic potential (PSP). The neuron
continuously integrates PSP into its membrane potential V (t), and it will elicit
a spike whenever V (t) crosses the threshold. According to the model, neuron’s
membrane potential is calculated by integrating synaptic currents from its N
afferents as

V (t) =
N∑

i

ωi

∑

tji<t

K(t − tji ) − ϑ
∑

tjs<t

exp
(

− t − tjs
τm

)
(9)

where ωi is the synaptic efficacy. tji denotes the time of the j-th spike from the i-
th afferent, and tjs is the time of the j-th output spike. ϑ represents the neuron’s
threshold. The last term in Eq. (9) is a reset dynamic that allows neuron to
continuously integrate following input spikes and elicit output ones after firing.
K(t − tji ) is a normalized kernel function, which is defined as

K(t − tji ) =V0

[
exp

(
− t − tji

τm

)
− exp

(
− t − tji

τs

)]
(10)

where τm and τs are the decay time constants of the membrane integration and
synaptic currents, respectively. V0 normalizes K(t − ti) such that the maximum
value of the kernel function is unity.
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2.4 Multi-spike Learning

Learning rules are employed to train neurons to make proper responses to cer-
tain spatiotemporal spike patterns. In recent years, various learning methods
have been introduced. We adopt the TDP [24] rule in this paper due to its
computational advantages on efficiency, feature selectivity and classification.

TDP is developed based on spike-threshold-surface (STS) function [6] which
describes the relationship between neuron’s threshold and the number of output
spikes. With other conditions being fixed, the responses of a neuron can be
determined by its thresholds. STS defines a series of critical threshold values
ϑ∗

k+1 where the number of output spike no jumps from k to k+1. Based on this,
the critical threshold ϑ∗ is employed to tune neuron’s weight ωi. According to
[24], its gradient with respect to ωi is given as

ϑ∗′

i =
∂V (t∗)

∂ωi
−

m∑

j=1

∂V (t∗)
∂tjs

1
V̇ (tjs)

∂V (tjs)
∂ωi

(11)

where m denotes the total number of output spikes before the critical time t∗.
According to the relation between the actual no and the target nd number

of spikes, the learning rule can be given as

Δω =

⎧
⎪⎨

⎪⎩

−λ
dϑ∗

no

dω if no > nd

λ
dϑ∗

no+1
dω if no < nd

0 otherwise.

(12)

where dϑ∗
nk

/dω is the derivative of critical threshold with respect to synaptic
weights, which is evaluated by Eq. (11).

In our image classification task, the neurons are trained to elicit at least 6
spikes in response to their target categories and to keep silent otherwise.

3 Experiments

In this section, several experiments are conducted and comparisons between ours
and other baseline models are provided. The accuracies are averaged over ten
independent runs.

3.1 Dataset

The MNIST is a large handwritten digit dataset that contains 60,000 training
and 10,000 test images of digits 0–9, with a pixel size of 28× 28 each. It is
widely used in spike-based research [17]. We thus adopt MNIST to provide a
clear comparison between our work and other baselines. The MNIST database
is available from http://yann.lecun.com/exdb/mnist.

http://yann.lecun.com/exdb/mnist
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3.2 Experimental Settings

In both our UMP and convolution-based methods [14,23], encoding neurons
sharing the same filter are organized in one feature map but with a specific loca-
tion focus each. Therefore, the number of encoding neurons will linearly increase
with the number of feature maps (or filters), resulting in an inefficient represen-
tation. To control the number of encoding neurons as well as the computational
efficiency, we set the number of filters to eight. Following a similar procedure as
previous hierarchical models, we employ a 4× 4 pooling operation on the outputs
of SCs. Our method thus results in 400 encoding neurons. We find this approach
can lead to a sparse and effective representation of images.

In the synaptic learning, we set τm = 40 ms, τs = 10 ms and λ = 10−4. We
use a single neuron to learn each one target category. In our readout, the final
decision is made by the neuron with the maximal number of output spikes.

Fig. 1. The train and test accuracies versus neuron numbers used for encoding.

3.3 Effect of the Number of Encoding Neurons

In this section, we conduct experiments with different numbers of encoding neu-
rons to clearly show their effects on recognition performance. Encoding neurons
in UMP are mutually inhibited, and thus could affect the learning performance
if insufficient information is extracted. To overcome this, we use a grouping
scheme where neurons in the same group mutually inhibit each other, while the
ones in a different group are not bound. In this way, we can balance exploration
and exploitation. In our experiments, we set 400 neurons for each group while
increase the number of groups one by one.

The train and test accuracies with respect to the neuron number are shown
in Fig. 1. These experimental results are based on the TDP learning rule. We
observe that both the train and test accuracies increase with the number of
neuron groups. Our method achieves 97.24% and 98.06% test accuracy when
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the neuron number is 400 and 800, respectively. When the encoding number is
increased to 1200, the performance is growing slowly, indicating that the features
from input images have been extracted well that facilitate the learning. This
experiment highlights that our UMP can effectively learn and extract useful
features from the input data. A larger number of encoding neurons leads to a
better accuracy, but could also increase the computational cost.

Fig. 2. Test accuracies of different temporal-based encoding methods against spike
jitter noise σjit (the top panel) and spike deletion noise Pdel (the bottom).

3.4 Comparison with Different Temporal-Based Encoding

To show the feature extraction ability, we compare our UMP with S1C1 [26],
HMAX [19] and CNN-based [23] temporal encoding methods.

S1C1 employs two scales difference of Gaussian (DoG) filters (σ = 1 for 5× 5
pixels as scale 1, and σ = 2 for 7× 7 pixels as scale 2) to encode input images. The
number of encoding neurons used in S1C1 is 200. HMAX adopts four orientations
(π/8, π/4 +π/8, π/2 +π/8, and 3π/4 + π/8) 7 × 7 Gabor filters to convert image
into spikes. CNN-based encoding method uses the convolutional and pooling
layers of a trained CNN as the encoding frontend. The number of neurons used
in HMAX and CNN is 800. In order to make a fair comparison between the four
temporal encoding methods with respect to their feature extraction capabilities,
we use 800 neurons, i.e. two neuron groups, to encode the input image with our
UMP. Additionally, we examine the robustness of different encoding methods by
adding two types of different random noises to the spatiotemporal spike pattern:
spike jitter σjit and spike deletion Pdel noises.

As can be seen from Fig. 2, UMP outperforms the other three encoding meth-
ods under multiple test conditions, highlighting the advanced feature extraction
capabilities and good robustness of our UMP, which can even tolerate severe
noises up to 0.5 s of jitter and 60% deletion with a subtle loss of accuracy. The
improved performance of our UMP is attributed to the competition mechanism
and unsupervised learning from data samples. The effectiveness and robustness
of our approach may be beneficial for implementing hardware systems that are
prone to perturbations.
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Notably, in the above experiments, both CNN and HMAX generate 800 spikes
with each encoding neuron firing one, while only 400 spikes are elicited with our
UMP thanks to our competition scheme as it depresses both redundancy and
weak activations. This suggests that under an event-driven scheme [24], our UMP
saves at least half of the computation. Therefore, as is compared to CNN and
HMAX, our method is more efficient, accurate and robust.

Fig. 3. Performance comparison of different synaptic learning rules: Bin, PSD, MST
and TDP. The same UMP encoding is used for all rules.

3.5 Comparison Between Different Learning Methods

In this part, we focus on the performance comparison between TDP and other
learning rules.

We select the tempotron (‘Bin’) [7], Precise-Spike-Driven Synaptic Plasticity
(‘PSD’) [25] and MST [6] learning rules for comparison in this experiment. The
Bin trains neuron to elicit a spike when the input spike pattern belongs to the
target class and to keep silent otherwise. During readout, the neuron’s status of
firing or not is used for making decision. The PSD trains neuron to emit spikes at
the specified times for corresponding patterns. For simplicity, we set the desired
spike train as 20, 40, 60, 80 and 100 ms in this work. In decision, we choose the
neuron with the maximum number of desired spikes as the classification result.
For MST, we use the same experimental setup as TDP.

As can be seen from Fig. 3, the two multi-spike learning rules, i.e. MST and
TDP, achieve better performance than others, highlighting the advanced ability
of multi-spike rule for processing spatiotemporal spike patterns. MST and TDP
achieve similar performance on both the training and test datasets. However, as
shown in [24], TDP performs better than MST in terms of learning speed due
to its simplicity and efficiency. The reason for the relatively poor performance of
PSD may because that restricting neurons to fire exactly at specified times will
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Table 1. Test accuracies (%) of SNNs on MNIST

Methods Neurons (Structure) Coding scheme Accuracy

S1C1-SNN [26] 200 + 10 Temporal 78.00

CSNN [23] 800 + 10 Temporal 87.00

Multi-Net [2] 784 + 3136 + 150 Temporal 91.26

Our work 800+10 Temporal 98.06

Dendritic neurons [10] 5000 + 10 Rate 90.26

Spiking RBM [13] 6470 + 1010 Rate 94.09

Unsupervised STDP [5] 784 + 6400 Rate 95.00

Our work 2400+10 Temporal 98.56

Spiking NN [12] 784 + 800 + 10 Rate 98.64

Spiking CNN [22] 784+15C5+P2+40C5+P2+300+10 Rate 99.42

result in insufficient learning as these times could hardly cover useful features.
The above experiments demonstrate the powerful learning capability of TDP
rule. We thus propose a unified framework for image classification by integrating
our encoding method with TDP and compare it with other SNN models in the
following.

3.6 Performance Comparison with Other SNNs

In this part, we compare our framework with other baseline SNNs. The perfor-
mance comparisons on MNIST dataset are shown in Table 1. We first compare
our system with three state-of-the-art temporal-based frameworks, i.e. S1C1-
SNN [26], CSNN [23] and Multi-Net [2]. As shown in Table 1, the recognition
accuracies of previous temporal-based systems are relatively poor as compared
to ours. Moreover, our work only depends on a light network structure. Our
work thus significantly improves the performance of a temporal-based spiking
framework for a practical task.

Besides, we also compare ours with the rate-based models where firing rates
of spikes are used to represent information. In terms of recognition accuracy,
our framework outperforms many of them, while achieves a comparable per-
formance with the deep rate-based models such as Spiking NN [12] and Spik-
ing CNN [22]. Despite their high accuracy, the use of high-density spikes and
multi-layer structures reduces their biological plausibility and computational effi-
ciency. Oppositely, our method uses the efficient temporal code and has a very
light network structure. Compared with these frameworks, our approach uses
fewer number of spikes, spiking neurons and computation resource, which greatly
improves the computational efficiency. The efficient and effective performance of
our framework would provide an alternative approach for image classification,
being potentially beneficial to low-power and high-speed developments.
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4 Conclusion

In this work, we proposed a new unsupervised matching pursuit (UMP) temporal
encoding method and designed a unified SNN framework for the challenging
task of image classification. Firstly, we introduced UMP method to emulate the
efficient and effective encoding procedure in the retina. Then, TDP multi-spike
learning rule was adopted to adjust neuron’s weights such that it will respond
appropriately to different inputs. Finally, we developed an alternative framework
for image classification by integrating UMP with TDP. Several experiments were
conducted to benchmark our system, and the performance comparisons between
ours and several baseline ones were provided. Our approach achieves significantly
better accuracy than previous temporal-based SNN implementations, and was
even comparable to rate-based SNNs, while only using lighter network structure
and fewer computation resource. Our framework highlights the advantageous
potential of more brain-like temporal-based SNNs on practical developments.
The outstanding performance of our approach would be a step forward towards
closing the gap between artificial neural network and the brain. It would also
pave the way for more research efforts to be made to the new paradigm of brain-
like computation.
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Abstract. We consider the problem of estimating the conditional proba-
bility distribution of missing values given the observed ones. We propose
an approach, which combines the flexibility of deep neural networks with
the simplicity of Gaussian mixture models (GMMs). Given an incom-
plete data point, our neural network returns the parameters of Gaussian
distribution (in the form of Factor Analyzers model) representing the cor-
responding conditional density. We experimentally verify that our model
provides better log-likelihood than conditional GMM trained in a typi-
cal way. Moreover, imputation obtained by replacing missing values using
the mean vector of our model looks visually plausible.

Keywords: Missing data · Density estimation · Imputation ·
Gaussian mixture model · Neural networks.

1 Introduction

Estimating missing values from incomplete observations is one of the basic prob-
lems in machine learning and data analysis [7]. A typical approach relies on
replacing missing values with a single vector based on available information con-
tained in observed inputs [9,32]. While imputation techniques are frequently
used by practitioners, they only give point estimate instead of a probability dis-
tribution. Quantifying the probability distribution of missing values plays an
important role in generative models [12], uncertainty prediction [5] as well as is
useful in applying classification models to incomplete data [3,28,33].

While deep generative models such as VAE, GAN or WAE [6,10,30] are
capable of modeling the distribution of complex high dimensional data, such as
images, it may be difficult to use them to estimate the uncertainty contained in
missing data due to the nonlinear form of decoder (generator) [18]. The authors
of [15,23] define a sampling procedure based on pseudo-Gibbs sampling and
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Fig. 1. The idea of the proposed DMFA. Given a missing data point, our model returns
the parameters of conditional Gaussian density: mean, factor loading matrix (we use 4
factors) and noise matrix for the model of Factor Analyzers, which describes a distri-
bution of missing data (the area inside the blue square). (Color figure online)

Metropolis-within-Gibbs algorithm for filling missing values by iterative auto-
encoding of incomplete data. Śmieja et al. [25,26] propose iterative algorithm for
maximizing conditional density based on the dynamics of auto-encoder models.
Mattei and Frellsen use importance sampling for training VAE on incomplete
data as well as for replacing missing values by single or multiple imputation [16].
Flow models can also be trained to represent a conditional density as a neural
network transformation [13,31]. Nevertheless, the constructed density cannot be
maximized analytically. One can only produce samples or attempt to maximize
the corresponding density numerically.

In the case of shallow density models, such Gaussian mixture models
(GMMs), we can easily calculate a conditional density function related to miss-
ing values in a closed-form [2,5] as well as to maximize it analytically. Moreover,
simple Gaussian form of the conditional density function allows us to combine
conditional GMM with other machine learning techniques that can process miss-
ing data without using any imputations at preprocessing stage [27,28]. Another
related line of work has explored autoregressive models for conditional data gen-
eration or density estimation [19].

In this paper, we propose DMFA (Deep Mixture of Factor Analyzers) for
estimating the probability density function of missing values, which combines
the features of deep learning models and GMMs. We construct a neural network,
which takes an incomplete data point and returns the parameters of Gaussian
density (represented as Factor Analyzers model) modeling the distribution of
missing values, see Fig. 1. Since the proposed network returns an individual Gaus-
sian density for every missing data point, its expressiveness is higher than using
GMM with a fixed number of components. In contrast to classical GMM, which
estimates a density of the whole data, DMFA directly maximizes the likelihood



222 M. Przewięźlikowski et al.

function on missing values. In consequence, the obtained Gaussian density has
a better quality in the context of missing data than the conditional distribu-
tion computed from GMM. Nonetheless, our model still provides an analytical
formula for a distribution of missing values, which is useful in diverse applica-
tions, and may be more attractive than adapting deep generative models to the
case of missing data. Our work is strictly related with [1], but instead of using
isotropic covariance matrix and many Gaussian components for conditional den-
sity, we follow [24] and employ Factor Analyzers model, which suits better to
high dimensional spaces such as images. Our preliminary work suggests that
isotropic covariance is not able to model dependencies between pixels while the
mixture often tends to collapse to a single Gaussian.

Experiments conducted on image datasets confirm that the proposed DMFA
gives a better value of log-likelihood function on missing values than conditional
GMMs [24]. Moreover, imputations obtained by replacing missing values with
the mean vector of returned Gaussian density look visually plausible. The paper
also contains a visualization of produced density function, which gives an insight
into the proposed DMFA.

2 Density Model for Missing Data

In this section, we introduce DMFA model. First, we recall basic facts concerning
GMM and MFA in high dimensional data. Next, we show how to compute con-
ditional density from GMM. Finally, we present the proposed DMFA – a deep
learning model for estimating conditional Gaussian density on missing values.

2.1 Gaussian Mixture Model for High Dimensional Data

GMM is one of the most popular probabilistic models for describing a density
of data [17]. A density function of GMM is given by:

p(x) =
k∑

i=1

piN(μi, Σi)(x),

where pi > 0 is the weight of i-th Gaussian component with mean vector μi and
covariance matrix Σi (we have

∑k
i=1 pi = 1). Given a dataset X ⊂ R

n, GMM is
estimated by minimizing the negative log-likelihood:

l(x) = −
∑

x∈X

log p(x).

While theoretically GMM can be estimated using EM or SGD, this procedure
may fail in the case of high dimensional data, such as images. Observe that for
color images of size 32 × 32, the covariance matrix of a single component has
4.7 · 106 free parameters. In training phase, we need to store and invert these
covariance matrices, which is computationally inefficient and may cause many
numerical problems [24].
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It is widely believed that high-dimensional data, such as images, are embed-
ded in a lower-dimensional manifold and using full covariance matrix may not
be necessary. For this reason, it is recommended to use the Mixture of Factor
Analyzers (MFA) [4] or Probabilistic PCA (PPCA) [29], in which every Gaussian
density is spanned on a lower-dimensional subspace. In contrast to the typical
GMM, the covariance matrix in MFA is given by Σ = AAT +D, where A = An×l

is a factor loading matrix, which is composed of l vectors a1, . . . , al ∈ R
n such

that l � n, and D = Dn×n = diag(d) is a diagonal matrix representing noise1
defined by d ∈ R

n. The set of vectors ai defines a linear subspace, which spans
a Gaussian density N(μ,Σ), while adding a noise matrix guarantees that Σ
is invertible. The use of MFA drastically reduces the number of parameters in
a covariance matrix as well as avoids problems with inverting large matrices.
Recent studies show that MFA can be effectively estimated from image data
and is able to describe a higher spectrum of data density than GAN models, see
[24] for details.

2.2 Conditional Gaussian Density

It is imporant to note that GMM can not only describe a density of data, but
is also useful for quantifying the uncertainty of missing data. A missing data
point is denoted by x = (xo, xm), where xo represents known values, while xm

describes absent attributes. Given a missing data point x, a natural question is:
what is the distribution of missing values given the observed ones? In the case
of density models, the answer is given by a conditional density [5]:

p(xm|xo) =
p(xo, xm)

p(xo)
=

p(x)
p(xo)

.

In contrast to many deep generative models, e.g. GANs or VAE, the formula
for conditional density can be found analytically for GMM. For a single Gaus-

sian density N(μ,Σ) with μ =
(

μo

μm

)
and Σ =

(
Σoo Σom

ΣT
om Σmm

)
, the conditional

Gaussian density is given by:

p(xm|xo) = N(μ̂m, Σ̂m),

where

μ̂m = μm + ΣomΣ−1
oo (xo − μo),

Σ̂m = Σmm − ΣomΣ−1
oo ΣT

om.
(1)

Note that N(μ̂m, Σ̂m) is a Gaussian density in a lower dimensional space, where
the dimension equals the number of missing values.

To extend these formulas to the mixture of Gaussian densities, we need to find
a conditional density of every Gaussian component and recalculate the weights pi.
1 PPCA uses spherical matrix D.
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Since the tails of Gaussian densities decrease exponentially, the resulting condi-
tional GMM in high dimensional spaces typically reduces to a single Gaussian.
Other components become irrelevant, because their weights (in the conditional
density) are close to zero.

2.3 Deep Conditional Gaussian Density for Missing Data

An important advantage of GMM is that the conditional densities can be cal-
culated and maximized analytically, which may be appealing in the context of
missing data. However, GMM is not trained to estimate a density of missing
data – its objective is the log-likelihood computed on all data points. In con-
sequence, there are no guarantees that the resulting conditional density gives
optimal log-likelihood for missing values.

In this paper, we are motivated by typical deep learning models used for
image inpainting [8,35]. Let us recall that context-encoder [20] first generates
missing values by selecting random masks for images in every mini-batch. Next,
missing values are replaced by zeros and such images together with corresponding
masks are processed by the auto-encoder neural network. The model is trained to
minimize the mean-square error on missing values. Since the loss covers only the
missing part, the context-encoder should find a better replacement for missing
values than the model, which is trained to reconstruct the whole image.

Following the above motivation, the proposed DMFA creates a Gaussian
density, which minimizes the negative log-likelihood on missing values. More
precisely, given a data point x ∈ R

n, we first generate a random binary mask
M to simulate missing attributes. The pair (x,M) induces a missing data point
(xo, xm). DMFA defines a neural network f , which takes (xo, xm) together with
M and returns the parameters of conditional Gaussian density p(xm|xo). Fol-
lowing MFA model, we represent covariance matrix using factor loading matrix
A = An×l = (a1, . . . , al), and the noise matrix D = Dn×n = diag(d). In the
case of images, f simply returns the mean image μ and the covariance matrix
Σ = AAT + D represented by l images spanning a Gaussian density supplied
with the noise image (l + 2 images in total) .

Given the output μ and Σ of the neural network f , we define a conditional
Gaussian density as

p(xm|xo) = N(μm, Σmm),

where μm and Σmm denote the restrictions of μ and Σ to missing coordinates, see
Fig. 1 for illustration. Since the number of missing values can be different for sub-
sequent data points, f has to output the parameters of n-dimensional Gaussian
density N(μ,Σ). However, N(μ,Σ) does not need to estimate a density of the
whole data. In consequence, we do not have to use the formulas for conditional
density (1), but we can simply restrict μ and Σ to missing attributes in order
to define a conditional density p(xm|xo). In our case, Σmm = Am·AT

m· + Dmm,
where Am· denotes the restriction of matrix A = An×l to the rows indexed by m.
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DMFA is trained to minimize the negative log-likelihood of conditional den-
sity p(xm|xo) which is given by:

l(xo, xm) = − log p(xm|xo) = − logN(μm, Σmm)(xm).

Observe that the above objective is calculated only on the parameters of μ,Σ
corresponding to missing values (other entries are not used by the model). This
means that f can theoretically return irrelevant values on coordinates related
to the observed values. The most important thing is that DMFA directly mini-
mizes the log-likelihood of p(xm|xo) and thus should provide a better estimate
of missing values than using conditional density obtained by a typical GMM.

Let us highlight that we do not need to specify the number of mixture com-
ponents as in the classical GMM. Once the neural network is fed with a missing
data point, it generates an individual density for this data point. In the case of
the classical mixture model, conditional density is formed by restricting the most
probable Gaussian components (from the set of mixture components) to missing
values. In consequence, our conditional density should be more expressive than
the one obtained from the classical GMM, where the number of components is
fixed.

3 Experiments

In this section, we compare the quality of a density produced by DMFA with a
conditional density obtained from GMM. For this purpose, we use three typical
image datasets: MNIST [11], Fashion-MNIST [34] and CelebA [14].

3.1 Gray-Scale Images

First, we consider two datasets of gray-scale images: MNIST and Fashion-
MNIST. For each test image of the size 28× 28, we drop a patch of size 14× 14,
at a (uniformly) random location. DMFA is instantiated using 4 convolutional
layers. This is followed by a dense layer, which produces the final output vectors
(the number of latent dimensions l determining the covariance matrix equals 4).
Our model is trained with a learning rate 4 ·10−5 for 50 epochs. As a baseline, we
use the implementation of MFA [24] trained in a classical way2. The number of
components k = 50 and the number of latent dimensions l = 6 in every Gaussian
following the authors’ code.

We examine the imputation constructed by replacing missing values with the
mean vector of corresponding conditional density. Sample results presented in
Fig. 2 for MNIST show that MFA produces sharper imputations than DMFA.
However, the results returned by MFA do not always agree with ground-truth
(7th and 9th rows). This is confirmed by verifying the mean-square error (MSE)
of imputations, Table 1. Since DMFA usually gives images more similar to the
ground-truth, it obtains lower MSE values than MFA. It is also evident from
2 The code was taken from https://github.com/eitanrich/torch-mfa.

https://github.com/eitanrich/torch-mfa
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Fig. 2. Sample imputation results produced by DMFA and MFA on MNIST (left) and
Fashion-MNIST (right) datasets.

Table 1 that a density returned by DMFA has significantly higher log-likelihood,
which means that DMFA finds a better solution to the underlying problem.

It is worth noting that the imputation generated by MFA is in fact similar
to nearest neighbor imputation. Indeed, we first select a Gaussian density which
has the highest conditional probability and next project its mean vector onto
the linear subspace corresponding to the missing data point (with respect to
the covariance matrix). Replacing missing values using nearest neighbor usually
gives sharp results, but may completely disagree with true values on the missing
region. On the other hand, more blurry image corresponding to the mean vector
of conditional density produced by DMFA may suggest that DMFA focuses on
estimating a high-quality density function rather than finding a single value
for imputation. This hypothesis is supported by high values of log-likelihood
function in Table 1.

Imputations generated for Fashion-MNIST show that MFA does not pay too
much attention to details. While it reflects the shape of cloth items reasonably
well, it is not able to predict a texture at all (compare 2nd, 5th 8th and 9th
rows). On the other hand, while DMFA sometimes gives blurry results, it is more
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effective at discovering more detailed description of the texture. It may be caused
by the fact that DMFA does not fix the number of components and returns an
individual conditional density for every input image using a neural network. In
consequence, its expressiveness is significantly better than MFA. While MSE
values of both models are similar for Fashion-MNIST, a disproportion between
log-likelihoods is again huge.

Table 1. Negative log-likelihood (NLL) and mean-square error (MSE) of the most
probable imputation obtained by DMFA and MFA (lower is better).

Dataset Measure MFA DMFA DMFA full-conv

MNIST NLL 58.10 –244.81 –
MSE 18.59 12.96 –

Fashion-MNIST NLL –85.15 –252.49 –
MSE 6.12 6.03 –

CelebA NLL –882.54 –1222.85 –1325.13
MSE 9.82 7.73 4.14

3.2 CelebA Dataset

We also use the CelebA dataset (aligned, cropped and resized to 32×32), which
is composed of color face images, with missing regions of size 16 × 16. Process-
ing of CelebA images is more resource demanding than working with MNIST
and Fashion-MNIST datasets. Therefore, in addition to the convolutional neural
network with a dense layer from the previous example, we also examine a fully-
convolutional neural network based on DCGAN [22], which does not contain
any dense layer and, in consequence, suits better to large data. Our preliminary
experiments suggested that it is difficult for the fully-convolutional model to find
a good candidate for the mean vector of returned density from scratch. To cope
with this problem, we supply the negative log-likelihood with MSE loss3 for the
first 10 epochs, which is later turned off. Again, we put l = 4 and train DMFA
with a learning rate 4 ·10−5 for 50 epochs. The baseline MFA model uses k = 300
components and l = 10 latent dimensions.

The Fig. 3 shows that the fully convolutional version of DMFA leads to
the best looking imputations (last column). The second version of DMFA also
coincides with ground-truth, but its quality is worse. The results obtained by
MFA are not satisfactory. Quantitative assessment, Table 1, confirms that DMFA
implemented using fully convolutional network outperforms standard DMFA
both in terms of MSE and log-likelihood.

3 In fact, minimizing MSE leads to fitting a Gaussian density with isotropic covariance,
so this form of loss function still optimizes a log-likelihood.
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3.3 Parameters of Conditional Density

Finally, we analyze a density estimated by DMFA. Figure 4 shows images corre-
sponding to the mean vector, the factors determining the covariance matrix and
the noise vector.

Note that DMFA returns the parameters of n-dimensional Gaussian density,
but the conditional density is obtained by restricting them to missing attributes.
Interestingly that the model with an additional dense layer (1st-9th rows) gives
a reasonable estimate on the whole image. Note however that the mean vector
outside the mask is not exactly the same as the input data – it is especially
evident for CelebA datasets. Introducing a dense layer allows the neural network
to easily fuse the information from the whole image, which may help the neural
network to fit better to the changing area of missing data. On the other hand, it
is evident that fully convolutional architecture focuses only on predicting values
at missing coordinates (and small area that surrounds it). It is generally difficult
(or even impossible) to fully convolutional networks to mix the information from
distant areas of the image and thus it concentrates only on estimating a density
on the required missing region.

Fig. 3. Sample imputation results produced by MFA and two versions of DMFA model
on CelebA.

It is evident that the factors determining the covariance matrix contain
diverse shapes, which allows the obtained density to cover a wide spectrum of
possible values. For example, the first three factors in the first row correspond to
digit “7" while the last one is more similar to the digit “9". Factors in the third
row determine different writing styles of digit “4". In the case of Fashion-MNIST,
factors are mainly responsible for adding brightness intensity to a given shape.
Observe that the factors for fully convolutional architecture have lower variance
than using additional dense layer. It is partially confirmed by lower MSE and
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Fig. 4. Parameters of Gaussian distribution returned by DMFA (the last three rows
correspond to the fully convolutional architecture).

negative log-likelihood values. The magnitude of the noise (last column) is very
low (except for MNIST), which is a positive effect, because the noise is added
only to guarantee the invertibility of covariance matrix.

4 Conclusion and Future Work

We proposed a deep learning approach for estimating the conditional Gaussian
density of missing values given the observed ones. Experiments showed that the
obtained density has significantly lower value of negative log-likelihood function
than conditional GMM trained in a classical way. Moreover, imputations pro-
duced by replacing missing values with the mean vector of resulting Gaussian
look visually plausible.
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In the future, we will use DMFA in a combination with machine learn-
ing approaches dealing with missing data. In particular, we plan to apply the
obtained conditional density to general classification neural networks, which do
not need to fill in missing values at the preprocessing stage, but can process
incomplete data using a Gaussian estimate of missing values. We would also
like to examine DMFA on higher resolution images. Moreover, we will focus on
designing a strategy for training DMFA on incomplete data.
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Abstract. Climate change is considered to be one of the most important issues
we are facing right now as a specie and existent metrics and benchmarks used to
evaluate the performance of different Deep Learning (DL) models and systems
are currently focused mainly on their accuracy and speed, without also con-
sidering their energy consumption and cost. In this paper, we introduce four
novel DL metrics, two regarding inference called Accuracy Per Consumption
(APC) and Accuracy Per Energy Cost (APEC) and two regarding training called
Time To Closest APC (TTCAPC) and Time To Closest APEC (TTCAPEC),
which take into account not only a DL model’s accuracy but also its energy
consumption, energy cost and the time it takes to train it up to that point.
Experimental results prove that all four DL metrics are promising, encouraging
future DL researchers to make use of models and platforms that require low
power consumption as well as of green energy when powering their DL-based
systems.

Keywords: Deep Learning � Metrics � Energy consumption � Energy cost �
Green energy

1 Introduction

With unprecedented growth in the number of platforms, e.g. CPUs, GPUs and FPGAs
as well as in the number of DL algorithms, architectures, and frameworks, the need for
a fair comparison between DL-based systems when performing training or inference by
using appropriate metrics is crucial.

Until recently, it was difficult to fairly compare DL models due to the inexistent
standard evaluation criteria. In the last years, efforts to deliver efficient tools for
benchmarking DL implementations were made by various researchers from both
academia and industry, an example in this direction being the MLPerf Benchmark [1]
introduced initially (in 2018) only for training but recently (in November 2019) also
regarding inference [2] and being supported by a group of 40 organizations like e.g.
Google and Microsoft. Regarding training, when measuring the performance of DL
implementations, there were many types of metrics used in prior DL benchmarks, i.e.
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throughput (samples per second), but recently Time-To-Accuracy (TTA), an end-to-
end training time to a specified validation accuracy level, is the accepted metric in the
DL community, being also the main metric used in MLPerf. A consequence of this race
towards occupying the first place in a Benchmark with the TTA as a metric for training
is that the state-of-the-art DL models consume an enormous amount of energy,
affecting the climate change and limiting the Artificial Intelligence (AI) innovation,
with a report from Allen Institute for AI [3] arguing that energy efficiency should be
considered a more common evaluation criterion for AI papers, at least as important as
accuracy and that the focus on a single metric is detrimental to our society, economy,
and environment, with recent work in [4] even concluding that there is a very sig-
nificant carbon footprint to DL. Despite there being many available DL benchmarks [1,
2, 5, 6] that consider various metrics like time, cost, utilization, memory footprint,
throughput, timing breakdown, strong scaling and communication as well as latency
and load balancing, only MLPerf Benchmark is considered [5] to have energy as a
metric for training (power measurement spec for inference is expected only in a future
update).

Considering these aspects, we strongly believe in the necessity of incorporating in
the next generation DL benchmarks the ability to take into account the energy con-
sumption that a DL system has when training or running inference. Furthermore, we
think that it should be taken into account also the autonomy of such a system, i.e. its
ability to work independently of a traditional power grid source and instead is able to
use 100% green energy such as solar energy [7]. For a more scalable and sustainable
future, especially considering the emerging focus of Green AI [3], we propose two DL
metrics for inference called APC and APEC and two metrics for training called
TTCAPC and TTCAPEC.

The paper is organized as follows. In Sect. 2 we present the related work. Section 3
describes the proposed APC, APEC, TTCAPC and TTCAPEC metrics. Section 4
presents the experimental setup and results. Finally, Sect. 5 concludes this paper.

2 Related Work

The question of energy consumption to be used as a metric when evaluating the
performance of DL models or DL-based systems is of high importance for many papers
in the literature.

An example is a work in [3] where the authors advocate for a simple and compute-
efficient metric, suggesting the use of energy efficiency as a metric when evaluating a
DL model instead of “Red AI” which refers to the kind of AI research that uses extreme
computational power and costs to achieve state-of-the-art results regarding accuracy.
A comprehensive analysis of important metrics such as accuracy, inference time, and
power consumption is made in [8] where the authors show the importance of these
metrics when designing 14 efficient DNNs. Similarly, the authors in [9] expand the
analysis to over 40 DNN architectures, highlighting the importance of metrics when
evaluating the performance of a neural network. Also, the authors in [10] contribute to
the challenge of estimating the energy consumption in machine learning by providing
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useful guidelines and a large selection of the latest software tools for a machine
learning expert who wants to design and estimate energy for future DL systems.

Some arguments against using only TTA as a metric when evaluating DL systems
on the MLPerf Benchmark are presented by the work in [11] where the authors propose
the Time-To-Multiple-Thresholds (TTMT) curves and the Average-Time-To-Multiple-
Thresholds (ATTMT) metric. By comparison, their metric targets the training part,
without taking into consideration the energy efficiency whereas our metrics target both
the training and the inference parts and take into consideration the energy consumption
as well as the energy cost of a DL-based system. Additionally, the TTA and ATTMT
metrics are able to compare only different systems, whereas our metrics are able to
compare also different models trained and executed in different systems, e.g. to identify
on which hardware is better to train a DL model and on which hardware is better to run
an inference with the same DL model.

3 The Proposed Deep Learning Metrics

In order to solve the problem of lacking in accountability in energy consumption and
costs, in this section we will describe the 4 proposed metrics.

We want the APC and APEC metrics to comply with the following important
properties: Output range from 0 to 1; 100% accuracy and 0 energy consumption/cost
imply the value of the metric is 1; 0% accuracy implies the metric is 0 regardless of
energy consumption/cost; The value of the metric increases with accuracy and
decreases with energy consumption/cost; Consumption/cost from inaccurate inferences
are weighted more heavily. We consider these to be the most important requisites for a
combination of two measures into one metric. Since it is a metric, it is desirable that it
ranges from 0 to 1, so that it can be expressed in terms of percentage and give some
sense of how close or distant the value of the metric is from the ideal (i.e. 1) result.
When combining two measures into a single metric it is important to consider how we
want each measure to influence the metric. Since lower consumption is desirable,
consumption should lower the final metric, and since higher accuracy is desirable,
accuracy should increase the final metric. We also want it to convey some common-
sense properties: if the DL-based system running inference has 0% accuracy, it doesn’t
matter how much or little it costs because we won’t use it, and an inaccurate inference
is a complete waste of energy by itself, so it makes sense to penalize its cost more
heavily.

With the previous properties in mind, we define a common function presented in
Eq. (1) for both metrics. It is a prerequisite in order to be able to create the final APC
and APEC metrics.

WCa c; accð Þ ¼ 2c 1� að Þ 1� accð Þþ a:accð Þ ð1Þ

This is a function WCa c; accð Þ to weight energy consumption/cost differently
between accurate inferences and inaccurate ones, where c is the energy
consumption/cost of a system, which could be measured per inference or per unit of
time, acc is the accuracy of the model and a is a parameter (ranges from 0 to 0.5) that
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controls how much weight is assigned to accurate inferences (i.e. if a = 0 the weight
assigned to accurate inferences is 0; if a = 0.5, the weight assigned is the same in all
cases/for accurate as well as inaccurate inferences). The function WCa has the fol-
lowing properties: If system a has a higher energy consumption/cost than system b and
both have the same accuracy, the weighted consumption/cost of b is lower or the same;
If system a has better accuracy than system b and both consume/cost the same the
weighted consumption/cost of a is lower or the same; If energy consumption/cost of a
system is 0 the weighted consumption/cost is 0; Consumption/cost from inaccurate
inferences are weighted more heavily.

The APC metric is a function that takes into account not only the accuracy of a
system (acc) but also the energy consumption of the system (c), as can be seen in
Eq. (2):

APCa;b c; accð Þ ¼ acc
b:WCa c; accð Þþ 1

ð2Þ

where c stands for the energy consumption of the system and it’s measured in watt-
hour (Wh) and acc stands for accuracy; a is the parameter for the WCa function, the
default value is 0.1; b is a parameter (ranges from 0 to infinity) that controls the
influence of the cost in the final result: higher values will lower more heavily the value
of the metric regarding the cost. The default value is 1. It is important to mention here
that, as a rule of thumb, our recommendation is to use a value for b in the ballpark of
1=avg where avg is the average cost of the systems to evaluate. This average cost is
among different systems that perform the same task, not each individual cost average
from a system to measure. For example, if the commonly used methods to solve a task
have an average cost of B, then, when measuring the APC for these systems, in order to
compare them to our own, we would use as b the value 1/B.

In the APC metric “c” means consumption and is proposed to be a measure of the
energy consumption of a single inference in a system, having its value always greater
than 0. The APC metric’s properties are the following: Ranges from 0 to 1; 100%
accuracy and 0 energy consumption imply the APC is 1; 0% accuracy implies an APC
of 0 regardless of energy consumption; APC increases with accuracy and decreases
with energy consumption; Consumption from inaccurate inferences are weighted more
heavily. In order to see how accuracy and consumption affect the APC value, we plot
APC over the consumption for different values of accuracy. In Fig. 1 we can see most
of the properties demonstrated in this section. Where a is 0, the consumption is not
measured for correct inferences which imply that a model with 100% accuracy will not
be penalized by its consumption (e.g. the constant pink colored line that is seen on the
top-left side of Fig. 1) as compared to where a is 0.25 and 0.5. Similarly, in order to
show how different values of b affect the APC metric, some variations in b are pre-
sented on the right side of Fig. 1 where b is 10, 100, and 1000. We can see how the
higher the b, the heavier the impact of the energy consumption is in the value of the
APC metric.
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The APEC metric is a function presented in Eq. (3) and is in appearance the same
as the APC function.

APECa;b c; accð Þ ¼ acc
b:WCa c; accð Þþ 1

ð3Þ

However, in practice, the two metrics are fundamentally different. Here, the main
difference lays in the meaning of the input “c”.

In APEC, “c” means cost and is proposed to be a measure of the energy cost of a
single inference in a system, therefore, it is measured in different units and in different
ranges. In Germany, for example, 1 kWh of energy costs 30.5 cents EUR [12].
Therefore, if our system pays 100Wh of energy for each inference, the cost “c” of our

Fig. 1. How different values of a and b affect the APC metric.
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system will be 3.05 (cents EUR). However, it is possible to set up a system in which
one doesn’t pay for the energy, for example, if the energy it consumes is a renewable
type of energy such as e.g. the green energy (solar energy) that comes from the sun
with the help of a solar tracker. In these kinds of systems, the cost of electricity would
be 0, and the APEC of these systems would be the same as the accuracy. Only in these
cases would it be theoretically possible to obtain 100% APEC. The APEC metric’s
properties are all the same as the APC metric’s properties presented earlier. The only
difference is the meaning of c, which here means cost, thus the impact that different
values for a and b have on the APEC metric is similar to the APC metric, as seen earlier
in Fig. 1.

Following, we will define a metric called Time To Closest Accuracy Per Mea-
sured Energy (TTCAPME) that takes into account the energy consumption/cost of a
model, its accuracy, and the time it takes to train it up to that point. We also want to be
able to compare with this metric for the same problem both different models and
different systems. For this, we define a delta in accuracy and another one in energy
consumption/cost for each problem, such that variations within that delta are consid-
ered negligible. For example, if the accuracy delta (da) is 0.01 and the energy delta (de)
is 0.1, then a model with 0.924 accuracy and 1.12 energy consumption/cost and a
model with 0.921 accuracy and 1.18 energy consumption/cost would be considered
equally good. Having defined both deltas, the grid is formed by the intervals of
accuracy and energy consumption/cost, and the value in each element of the grid is the
Accuracy Per Measured Energy (APME) of the lowest value in that element of the grid,
e.g. the element on the accuracy interval (0.25, 0.26) and energy interval (1.5, 1.6)
would be APME (1.5, 0.25). APME is a function that increases with accuracy and
decreases with energy consumption/cost. An example of this type of grid can be seen in
Fig. 2 where redder colors represent higher values of APC. The grid maps accuracies
and energies to the “closest” APC values. This metric compares training times of
models within the same grid interval, considering better the model that takes less time
to fall into that interval. For models on different APME values, we consider better the
one with higher APME value. Then, the metric effectively maps the ternary of values

Fig. 2. APC Grid with energy delta (de) = 1 and accuracy delta (da) = 0.01. Redder colors
represent higher values of APC.
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(accuracy, energy consumption/cost, training time) to the ordered pair of values
(“closest” APC, training time), and offers us a way to compare between these outputs.

Ordinality: In order to be able to compare between values of our metric’s outputs, we
need the mathematical tools to define <, = ,>.

Definition 1.1: Let a1; a2 be real numbers between 0 and 1 and b1; b2 real positive
numbers. Then we define the relationships between the ordered pairs a1; b1ð Þ; a2; b2ð Þ
as follows:

If a1 ¼ a2 then a1; b1ð Þ\ a2; b2ð Þ if and only if b1 [ b2, a1; b1ð Þ ¼ a2; b2ð Þ if and
only if b1 ¼ b2 and a1; b1ð Þ[ a2; b2ð Þ if and only if b1\b2.
if a1\a2 then a1; b1ð Þ\ a2; b2ð Þ, and if a1 [ a2 then a1; b1ð Þ[ a2; b2ð Þ regardless
of b1;b2.

We will prove that the set of ordered pairs with the previously defined ordinality is
well-ordered.

Trichotomy: Since we defined the relations case by case, for two pairs only one and
exactly one of the relations is true.

Transitivity: We want to prove that if v, w, and z are ordered pairs with the previously
defined ordinality and v < w and w < z then v < z:

v ¼ va; vbð Þ;w ¼ wa;wbð Þ; z ¼ za; zbð Þ
v\w; then either va\wa or va ¼ wa and vb [wb

w\z, then either wa\za or wa ¼ za and wb [ zb
If va\wa then va\za therefore v\z
If va ¼ wa and vb [wb and wa\za then va\za therefore v\z
If va ¼ wa and vb [wb and wa ¼ za and wb [ zb then va ¼ za and vb [wb [ zb,
therefore v\z}

Well-Foundedness: We want to prove that every nonempty set of ordered pairs has a
least element, that is, it has an element x such that there is no other element y in the
subset where x > y. This is easy to prove: from a set of ordered pairs we can find the
elements that have the least value in the first component. Then, from these elements, we
find the one with greater second component value, and that is the least element.

Parameters Properties: This metric has two parameters, energy delta (de) and
accuracy delta (da). Accuracy delta reflects inversely how important accuracy is for the
model. High values for this parameter will mean that a larger range of accuracies will
be grouped together as if they were the same value, therefore making smaller
improvements in accuracy is not relevant. Low values for these parameters will tend to
keep different accuracies separated, which will consider better models those with
slightly better accuracies than others. Following, because the training metric
TTCAPME requires a function that increases with accuracy and decreases with energy
consumption/cost, for simplicity, we will define two training metrics by using either
APC or APEC as this function.
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Regarding the TTCAPC metric, the objective of this metric is to combine training
time and the APC inference metric in an intuitive way, as can be seen in formula (4).
The formula for TTCAPC is:

TTCAPCb;de;da trainingTime; energy; accð Þ
¼ trainingTime;APCa;b roundedde energyð Þ; roundedda accð Þð Þ� � ð4Þ

where trainingTime is the training time in seconds for the model, energy is the energy
consumption in Wh of inferencing with the model, and acc is the accuracy of the
model. This will mean that higher accuracies will be celebrated and higher net energy
consumptions and higher training times will be penalized.

Regarding the TTCAPEC metric, the objective of this metric is to combine
training time and the APEC inference metric, as can be seen in formula (5).

TTCAPECb;de;da trainingTime; energy; accð Þ
¼ trainingTime;APECa;b roundedde energyð Þ; roundedda accð Þð Þ� � ð5Þ

The formula for TTCAPEC is the same as the one presented earlier for the
TTCAPC, but here the meaning of energy is different, meaning the energy cost in Euro
cents of inferencing with the model. Similar to TTCAPC, this will mean that higher
accuracies will be celebrated, but higher energy costs and training times will be
penalized.

4 Experimental Setup and Results

In order to realize the experiments with the above-defined metrics, we needed to
measure and extract two types of data: the accuracy of the DL models and the energy
consumption of the system they run training and inference on.

For this tasks, regarding the inference, we make use of one of our previously
trained DL models from the work in [13], namely the MobileNetV2, as well as of the
systems (i.e. Nvidia Jetson TX2 and a laptop containing an Nvidia GTX 1060 GPU) on
which this DL model was running inference in real-time [7]. Regarding the training, in
this case, we make use of all four DL models from [13]. It is important to mention that
regarding the training time (seconds) for the Nvidia Jetson TX2, the values are sim-
ulated. We naturally want to measure the APC for different values of accuracy and
power consumption.

For this, first, we run experiments for 2 h on both the laptop containing the
Nvidia GTX 1060 GPU as well as on the Nvidia Jetson TX2 platform and feed their
power consumption values into the APC equation presented in (2), where “c” in this
case stands for the power consumption of the system running the MobileNetV2 DL
model in real-time using motion detection [7]. Because both platforms run Linux
Ubuntu, these power consumption values are taken 12 times (one power consumption
value every 10 min) with the help of “sudo powerstat” for the laptop containing the
Nvidia GTX 1060 GPU and with the help of a power measurement script [14] as well
as “sudo./tegrastats” for the Nvidia Jetson TX2 platform.
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Secondly, we noted the accuracy values also every 10 min for a total of 12 times
(2 h), but in this case, instead of measuring the inference accuracy for both platforms,
we presented them only once, since presenting them for both doesn’t influence our
experimental results at all. Because of the weather, lighting, and image quality con-
ditions, to name only a few, it resulted in many different accuracy values, as seen in
Table 1. This situation was very helpful in our experiment because it can be easily seen
how well our metrics perform beside only with big differences in power consumption
values. We used alpha = 0.1 as the default and beta = 0.1 since the average con-
sumption is close to 10 and the inverse of this number is 0.1. In Table 1 we can see
these results.

As we can see, the APC metric succeeds in unifying the two metrics of accuracy and
energy consumption into one, and therefore it is a better metric in the cases where both
accuracy and energy consumption are required to be taken into account in the final result.

We also want to measure the APEC of our DL models in order to see how they
stand against each other and more importantly to see the difference between the two
types of energy: green energy (solar power) and energy grid. For simplicity and
because it is out of the scope of this paper to experiment with data regarding electricity
costs for all the countries in the world, we will just take Germany as an example.
According to “Strom Report” (based on Eurostat data) [12], German retail consumers
paid 0.00305 Euro cents for a Wh of electricity in 2017. We will use that value to
calculate the cost of energy by plugging it in the equation presented in (3)”, where “c”
in this case stands for the energy cost. In Table 2 we can see these results. We used
alpha = 0.1 as the default and beta = 50 since the average cost is close to 0.03 and the
inverse of this number is rounded up to 50.

Table 1. APC with alpha = 0.1 and beta = 0.1 for our MobileNetV2 DL model [7, 13] running
inference in real-time for 2 h, with 12 samples taken every 10 min.

Power consumption
[W]

Inference
accuracy [%]

APC [%]

Laptop Nvidia
Jetson TX2

Laptop Nvidia
Jetson TX2

50.07 8.85 99.7 65.84 91.39
50.51 9.01 92.11 49.42 79.81
47.16 9.01 91.32 49.63 78.69
49.11 9.07 94.54 54.57 83.27
49.6 6.94 50.25 13.51 36.4
49.12 8.96 25.57 5.34 15.13
49.15 9.19 80.69 34.39 64.46
48.51 9.11 47.31 12.49 31.06
47.9 9.23 60.14 18.8 42.25
47.03 9.05 85.86 41.5 71.21
48.15 9.15 99.42 65.98 90.68
46.01 9.3 98.31 64.25 88.79
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As we see in Table 2, in the cases where we use green (solar) energy to power our
DL-based systems, the APEC is in every case around 20% higher for the Nvidia Jetson
TX2 platform and around 50% higher for the laptop containing the Nvidia GTX 1060
GPU in terms of absolute values. As can be observed, the APEC metric is superior in
cases where not only the accuracy but also the energy cost matter in the final result.

Regarding the results presented in Table 3, for the models trained on different
systems, we can see that if we choose an accuracy delta of 0.1 and energy delta of 1, the
APC is different for each of them, therefore, this means that the best system is the one
with the higher APC and training time is not considered. However, with the same
models but with larger deltas we see that two models result in the same APC, and
therefore the deciding factor is the training time.

Regarding the experiments for the TTCAPEC metric, we use the same country and
price for electricity as mentioned earlier regarding the experiments with the APEC
metric. Similarly to the results regarding TTCAPC presented in Table 3, on Table 4 we
can see that for the models we trained on different systems, if we choose an accuracy
delta of 0.1 and energy delta of 0.001, the APEC is different for each of them, therefore
the best system is the one with the best APEC and training time is not considered.
However, with the same models but with larger deltas, all models result in the same
APEC, and therefore the deciding factor is the training time.

It is important to mention that despite using the term accuracy in our APC and
APEC metrics, both metrics can work well also by using another metric in place of
accuracy (as long as it ranges from 0 to 1, meaning that 0 represents a negative score
and 1 represents a positive one), such as the ones used by MLPerf Benchmark [1, 2].

Table 2. APEC with alpha = 0.1 and beta = 50 for our MobileNetV2 DL model [7, 13] running
inference in real-time for 2 h with regular (paid) energy as well as with solar (free) energy.

Power cost
[Cents EUR]

Inference
accuracy [%]

APEC [%] APEC
(Green energy)
[%]Laptop Nvidia Jetson

TX2
Laptop Nvidia Jetson

TX2

0.1527 0.0269 99.7 55.87 87.56 99.7
0.1540 0.0274 92.11 39.74 74.58 92.11
0.1438 0.0274 91.32 40.03 73.36 91.32
0.1497 0.0276 94.54 44.65 78.37 94.54
0.1512 0.0211 50.25 9.77 31.80 50.25
0.1498 0.0273 25.57 3.77 12.46 25.57
0.1499 0.0280 80.69 26.43 58.31 80.69
0.1479 0.0277 47.31 9.01 26.31 47.31
0.1460 0.0281 60.14 13.82 36.54 60.14
0.1434 0.0276 85.86 32.64 65.36 85.86
0.1468 0.0279 99.42 56.08 86.69 99.42
0.1403 0.0283 98.31 54.36 84.50 98.31
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Also, the metrics proposed in this paper can work for any DL-based system; all that is
needed is to have the training time, the consumption, the cost, and the accuracy
measured.

Table 3. TTCAPC values for four different DL models (V = VGG-19, I = InceptionV3,
R = ResNet-50, M = MobileNetV2) in two different hardware platforms. EC = Energy
Consumption; RA = Rounded Accuracy; REC = Rounded Energy Consumption; TT = Training
Time.

Laptop Nvidia Jetson TX2
V I R M V I R M

Accuracy 90.56 93.41 93.49 94.54 90.56 93.41 93.49 94.54
EC (Wh) 49.95 53.05 50.26 48.45 11.61 10.33 9.97 8.90
Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha = 0.1
RA 90.55 93.45 93.45 94.55 90.55 93.45 93.45 94.55
REC 48.5 53.5 50.5 48.5 8.5 10.5 9.5 8.5
Closest APC 47.72 50.50 51.83 54.87 78.24 80.08 81.19 83.91
TT (seconds) 20.27 38.85 21.39 38.84 20.27 38.85 21.39 38.84
Accuracy delta = 5, Energy delta = 10, beta = 0.1, alpha = 0.1
RA 92.5
REC 45 55 45 15 5
Closest APC 52.74 48.14 52.74 73.92 85.35
TT (seconds) 20.27 38.85 21.39 38.84 20.27 38.85 21.39 38.84

Table 4. TTCAPEC values for four different DL models (V = VGG-19, I = InceptionV3,
R = ResNet-50, M = MobileNetV2) in two different hardware platforms. EC = Energy Cost;
REC = Rounded Energy Cost; RA = Rounded Accuracy; TT = Training Time.

Laptop Nvidia Jetson TX2

V I R M V I R M

Accuracy 90.56 93.41 93.49 94.54 90.56 93.41 93.49 94.54
EC (cents) 0.1524 0.1618 0.1533 0.1478 0.0354 0.0315 0.0304 0.0272
Accuracy delta = 0.1, Energy delta = 0.001, beta = 50, alpha = 0.1
REC 0.1525 0.1615 0.1535 0.14775 0.0355 0.0315 0.0305 0.0275
RA 90.55 93.45 94.55 90.55 93.45 94.55

Closest APEC 37.557 40.924 42.096 45.000 68.161 74.739 75.217 78.468
Closest APEC (Green Energy) 90.55 93.45 94.55 90.55 93.45 94.55
TT (seconds) 20.273 38.853 21.396 38.847 20.273 38.853 21.396 38.847

Accuracy delta = 5, Energy delta = 0.1, beta = 50, alpha = 0.1
REC 0.15 0.05

RA 92.5
Closest APEC 40.997 65.198
Closest APEC (Green Energy) 92.5

TT (seconds) 20.273 38.853 21.396 38.847 20.273 38.853 21.396 38.847
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5 Conclusions and Future Work

Currently, the performance evaluation of a DL model is mainly based on its accuracy,
but not also on its energy consumption or its energy cost.

In this paper, we introduce four metrics, two for inference called APC and APEC
and two for training called TTCAPC and TTCAPEC for evaluating the performance of
DL models and systems not only regarding their accuracy but also their energy con-
sumption and cost. In our experimental results, we succeeded to prove that all four
metrics are efficient, showing, to the best of our knowledge, for the first time in
literature, that by using high accuracy together with low power consumption, especially
green energy (e.g. solar energy) during training and inference, a DL model or system is
evaluated as being much more performant than one that, despite having the same
accuracy, consumes more energy and uses a traditional power grid (paid electricity).

We believe that these metrics will encourage future researchers to develop and use
greener energy-based systems and that they will evaluate their performance only based
on how “green” they are and how less negative impact they have on our planet.
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Abstract. Depression is a mental health disorder characterised by per-
sistently depressed mood or loss of interest in activities resulting impair-
ment in daily life significantly. Electroencephalography (EEG) can assist
with the accurate diagnosis of depression. In this paper, we present two
different hybrid deep learning models for classification and assessment
of patient suffering with depression. We have combined convolutional
neural network with Gated recurrent units (RGUs), thus the proposed
network is shallow and much smaller in size in comparison to its counter
LSTM network. In addition to this, proposed approach is less sensitive to
parameter settings. Extensive experiments on EEG dataset shows that
the proposed hybrid model achieve highest accuracy, f1 score 99.66%,
99.93% and 98.87%, 99.12% for eye open and eye close dataset respec-
tively in comparison to state of the art methods. Based on high per-
formance, the proposed hybrid approach can be used for assessment of
depression for clinical applications and can deployed remotely in hospital
or private clinics for clinical evaluation.

Keywords: EEG · Depression · Anxiety · Electroencephalographic ·
Mental disorder

1 Introduction

Mental health conditions such as depression and anxiety can cause distress,
impact our daily life functioning and relationships, and are associated with poor
physical health and premature death from suicide. Depression is a major cause of
morbidity worldwide. It is estimated that above 3 million in Australians and 16.2
million Americans are living with anxiety or depression. Recent study showed
that COVID-19 worsened the mental health condition. Approximately, 14% of
the global burden of disease is attributed to mental health disorders. Among
these, unipolar depression is the second leading cause.
c© Springer Nature Switzerland AG 2020
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Depression can lead to serious health complications if left untreated, thus,
continuous monitoring is required since the patient may experience frequent
depressive episodes [7,8,11]. Fortunately, effective treatments such as therapy,
medication, diet, and exercise can be used to effetely treat patient suffering
from depression, however, it requires efficient early diagnosis [9,10]. Recently,
deep learning has escalated automatic diagnosis of unipolar depression to a next
level [12].

Complex and nonlinear nature of EEG signals require the development effi-
cient methods to achieve high diagnostic performance. Recently, several deep
learning based methods have been applied for EEG based depression diagnosis.
Acharaya et al. employed convolutional neural network (CNN) consisting of 13
layers of abstraction for the classification of depression and reported 93.5% and
96% classification performance on 30 (15 depressed and 15 healthy controls) for
left and right hemispheres, respectively [1]. Similarly, Ay et al. combined convolu-
tional neural network and long short term memory (LSTM) and achieved 99.12%
and 97.66% diagnostic accuracy for right and left hemisphere, respectively [2].
CNN learns the temporal properties of signal followed by LSTM for sequence
learning. Yildirim et al. presented CNN for abnormality detection in EEG sig-
nals [13] and achieved detection error rate of accuracy of 79.34%, on TUH EEG
abnormal dataset. Li et al. analyzed different aspects of EEG (spectral, spa-
tial, and temporal information) for the diagnosis of mild depression [4]. Results
showed that spectral information of EEG signals play major role whereas tempo-
ral information showed significant improvement in diagnostic performance. The
utilized the pre-trained ConvNet architectures on EEG-based mental load classi-
fication task and achieved accuracy of 85.62% for recognition of mild depression
and normal controls. Liao et al. applied kernel eigen-filter-bank common spatial
pattern to extract features and achieved 80% accuracy with sever depression [5].
Zhang et al. extracted both linear and nonlinear features from EEG signals from
25 subject with closed eye under resting state and achieved 92.9% and 94.2% with
KNN and back-propagation neural network respectively [14]. Mahato and Paul
compared the performance of multi layered perceptron neural network, radial
basis function network, linear discriminant analysis and quadratic discriminant
analysis for detection of major depressive disorder [6]. Comparative analysis of
nonlinear and linear features on different methods showed that best performance
93.33% is achieved when linear (band power, inter hemispheric asymmetry) and
non-linear feature (relative wavelet energy and wavelet entropy) are combined
i.e., combination alpha power and relative wavelet energy using multi layered
perceptron neural network and radial basis function network. Not only EEG but
other video data is also used for depression diagnosis. Huang et al. presented
attention-based CNN and LSTM to differentiate between major depressive dis-
order (MDD) and bipolar disorders (BD). Audio and facial expression in video
sequences are used to identify the mood disorder on the basis of response [3].

The main motivation of this work is to develop a completely automated diag-
nostic system for depression through raw EEG signals. In order to improve the
diagnostic performance, we proposed an electroencephalographic (EEG)-based
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hybrid deep learning framework that automatically discriminated depressed and
healthy controls and provided the diagnosis. We have used CNN for automated
feature extraction followed by classification through Gated recurrent units/long
short term memory. In comparison to LSTM, GRU may be a better choice for
EEG signals due to short sequence whereas LSTM is better for larger sequence.
In addition to this, it use less training parameters and less memory thus, faster
than its counter LSTM network. In this paper, we have used both LSTM and
GRU for depression diagnosis and compared their performance. We describe the
theoretical and empirical key contributions of this work as follows:

– an end-to-end application to detect the depression automatically using raw
EEG signals.

– present hybrid deep shallow model for classification and assessment of depres-
sion.

– CNN is used for feature extraction and LSTM/GRU for sequence learning.
– The assessment of depression has been measured using various performance

metrics for eye open and eye close datasets that significant improvement in
diagnostic performance.

2 Hybrid Depression Diagnostic Framework

In this section, we present hybrid deep network for efficient diagnosis of depres-
sion using EEG signals. We have performed two experiment. In our first exper-
iment, we used one-dimensional convolutional neural network (1DCNN) com-
bined with gated recurrent units and IDCNN with LSTM in our second exper-
iment. The 1DCNN-GRU has a capability to extract temporal features in an
efficient. Figure 1 shows an overview of the proposed deep hybrid framework.
There are three main component IDCNN, GRU/LSTM and classifier. The con-
volutional layers are the same in both experiments. There are three number of
convolutional, two Max-pooling, two dropout layers followed by LSTM/GRU
layer and fully connected and sigmoid classification layer. We have performed
several experiment to select best feature map combination. In order to improve
the performance, the features are extracted from last the dense layer in the
trained proposed models before the classification layer and passed these features
to machine learning models for classification (KNN, RF and SVM are used to
differentiate the control and MDD depression classification patient). The con-
volutional layer is represented by sliding one dimensional kernel filter over the
EEG signal with the specified stride. The convolution between EEG input signal
and one-dimensional kernel filter is shown in Eq. 1. The output of the convolu-
tional layer is called the feature map. Figure 1 shows an overview of the proposed
ML framework including the computation of the classifier performance metrics.
According to the proposed framework, the EEG data were segmented with a
window length of one second (256 samples). As the sampling rate was 256 sam-
ples per second, each EEG segment contains 19 channels and 256 data points
(window length). The selection of a one second window size was based on the
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empirical evaluation of the proposed models. It was observed that a window size
of one second provided best results. From the classifier point of view, the input
data dimension was 256 × 19 for each instant of class for two EEG datasets (EO
and EC). Moreover, the input data were divided into training and testing set
with 80 and 20% ratio.

Fig. 1. Proposed hybrid framework for automatic diagnosis of depression

Om =
N−1∑

t=0

xtKm−t such that t = 0, ...N − 1 (1)

where xt is the EEG one-dimensional signal and N is the number of elements
in xt, and t is the data points in EEG signal and Om is the output of convolutional
function. K is the filter or one-dimensional kernel. The subscript t indicates the
nth element of the filter vector while m corresponds to the mth output element
that is being calculated.

2.1 CNN-Gated Recurrent Units

Gated Recurrent Units (GRU) couples forget gates as well as input gates and
training parameters are much smaller than LSTM, thus, it use less memory
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and faster. The Gated recurrent units have the capability to capture signifi-
cant features from time series input EEG signal. Figure 2 shows the proposed
architecture of IDCNN-GRU. The GRU especially designed for time series data
and could bet better choice for EEG classification. The Eq. 2 shows the out-
put activation of GRU gated network and it is computed by linear activation
between activation from the previous state and candidate activation function ĥk

t

is represented in Eq. 3. The updated gate is given in Eq. 4 and σ represented the
sigmoid activation function, the value of sigmoid function is between 0 and 1.
The candidate activation function is controlled by reset gate as shown in Eq. 4.
Wz and Uz are trainable weight matrices for the update gate. Wr and Ur are
the weight matrices for reset gate. xt is the input EEG vector and ht−1 is the
previous state activation. The dimension of xt is 244 × 1 vector coming from
1DCNN model pooling layer and the dimension of ht−1 previous state hidden
function is 128× 1. The number of nodes for first hidden layer of GRU is chosen
128 units. The dimensions of Wz, W , Wr are 244×128 and Uz, Ur has dimension
equal to square of number of hidden units (128×128). In this way the candidate
activation function for the next GRU has the dimension equal to 128×1 number
of neurons.

Fig. 2. Hybrid deep network for depression diagnosis using gated recurrent units

hk
t = (1 − zkt )ht−1k + zkt hk

t (2)

zkt = σ(Wzxt + Uzht−1) (3)

ĥk
t = tanh(Wxt + U(rt � ht−1)) (4)

rkt = σ(Wrxt + Urht−1) (5)
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2.2 1DCNN-Long Short Term Memory

LSTM is one of the widely used deep learning model especially in natural lan-
guage processing, time series prediction and sequence generation. It has capa-
bility to learn features from long time series data and would be better choice
in EEG classification and prediction. Figure 3 shows the proposed LSTM based
classification of depressed patient. The two cascaded LSTM layers with 128 num-
ber of hidden neurons has been proposed with one-dimensional CNN model for
classification and assessment of depression. With a greater number of LSTM
layers, the parameters have been increased and model could be overfit on test
samples. The LSTM model performed better in the time series data due to it
only stores the valuable and useful information from the time series data and
forget the information that is not useful based on gating system performed in
LSTM cells. The mathematically equation used in LSTM layer is given below.
The LSTM has three number of gates and these gates are called input, forget
and output gates. The Eq. 6 shows the input gate ikt and okt is represented out-
put gate and fk

t represented forget gate is shown in Eq. 7 and 8 respectively.
The Vi, Vo and Vf are the trainable internal diagonal matrices and These keeps
the memory components within each LSTM unit. The ckt represented memory
components updating is shown in Eq. 9. The ctk new memory content is updated
using Eq. 10. Finally, the output of the LSTM unit is computed using the Eq. 11.

Fig. 3. Hybrid deep network for depression diagnosis using long short term memory

ikt = σ(Wixt + Uiht−1 + Vict−1) (6)

okt = σ(Woxt + Uoht−1 + Voct) (7)

fk
t = σ(Wfxt + Ufht−1 + Vfct−1) (8)

ckt = fk
t ckt−1 + ikt ĉ

k
t (9)
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ĉkt = tanh(Wcxt + Ucht−1) (10)

hk
t = okt tanh(ckt ) (11)

Where Wi, Wo, Wf , Ui, Uo, and Uf are the weights matrices and activation
functions computed based on the number of hidden units used in LSTM unit.
The different number of feature maps in convolutional layer has been used based
on experimental evaluation and chooses the best feature maps combination. The
number of hidden layers in LSTM has been chosen based on experimental eval-
uation.

3 Experiment

In this section, we have analyzed and compare the performance of proposed
hybrid network with state of the art network. In order to achieved best per-
formance, the features are extracted from last the dense layer in the trained
proposed models before the classification layer (sigmoid function for binary clas-
sification) and passed these features to machine learning models for classification.
The KNN, RF and SVM machine learning models has been chosen in this study
for classification of control and MDD depression classification.

3.1 Parameters

There are several training hyperparameters were involved such as parameters
learning rate, optimizers, loss-functions. The proposed model based on CNN-
LSTM and CNN-GRU were trained using Adam optimizer with learning rate
0.0004. The 50 number of epochs was used to train both proposed models and 100
batch size has been used in our experiment. The binary cross-entropy was used
as a loss function and sigmoid was used as activation function for classification
layer. The detail of each layer configuration is described in Table 1. The Keras
with backend Tensorflow library has been used to trained deep learning models
and machine learning algorithms are implemented in Scikit-learn python library.
The code is make publicly available1.

3.2 Results and Discussion

The proposed models were tested using 20% of the available EEG dataset. For
further analysis, 10-fold cross validation has been used and EEG input dataset
has been divided into ten equal portions. Out of ten portions, nine portions are
used for training and one-tenth portion of EEG data are used for testing to
check the performance of the system. The results section shows the best scores
as for both models. The testing of the proposed models is repeated 10 times. An
overall performance was computed by choosing the mean average results from
the 10 iterations. The accuracy precision, recall, f1 score performance metrics

1 Code: https://github.com/RespectKnowledge.

https://github.com/RespectKnowledge
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Table 1. The layer configuration based on hybrid GRUs and LSTM with 1DCNN
model

Layers Output size Number of filter Feature map

Input 256 × 19 - -

GRUs with 1DCNN

1D convolutional (C1) 252 × 64 5 × 1 64

1D MaxPooling (P1) 250 × 64 3 × 1 64

Dropout (DP1) 250 × 64 - 64

1D convolutional (C2) 246 × 128 5 × 1 128

1D MaxPooling (P2) 244 × 128 3 × 1 128

Dropout (DP2) 244 × 128 - 128

GRU1 244 × 128 - 128

GRU2 244 × 128 - 1 28

Fully connected (FC) - - 1024

Classifier (Sigmoid activation) 2 - 1024 × 2

LSTM with 1DCNN

1D convolutional (C1) 252 × 64 5 × 1 64

1D MaxPooling (P1) 250 × 64 3 × 1 64

Dropout (DP1) 250 × 64 - 64

1D convolutional (C2) 246 × 128 5 × 1 128

1D MaxPooling (P2) 244 × 128 3 × 1 128

Dropout (DP2) 244 × 128 - 128

LSTM1 244 × 128 - 128

LSTM2 244 × 128 - 128

Fully connected (FC) - - 1024

Classifier (Sigmoid activation) 2 - 1024 × 2

Fig. 4. Comparison of 1DCNN-GRU and 1DCNN-LSTM performance on eye open and
eye close dataset.
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has been used to evaluate of our proposed models. The performance metrics
based on proposed model 1DCNN-GRU is shown given in Table 2 and Fig. 4 and
1DCNN-LSTM is shown in Table 3 and Fig. 4 on both eye open and eye close
datasets. In comparison to LSTM based approach, Gated recurrent units showed
considerably better performance almost in all parameters for all classifier. The
RF classifier with 1DCNN-GRU features produced excellent performance and
achieved highest precision, recall and f1 score for both eye open and eye close
dataset.

Table 2. Performance metrics based on proposed model 1DCNN-GRU with classifica-
tion algorithms on eye open and eye close datasets

Algorithms Classes Precision Recall F1-score

Eye open

1DCNN-GRU-sigm Control 96.00 98.00 97.00

MDD 98.00 95.00 97.00

1DCNN-GRU-KNN Control 99.00 100.00 99.00

MDD 100.00 99.00 99.00

1DCNN-GRU-SVM Control 99.00 99.00 99.00

MDD 97.00 99.00 98.00

1DCNN-GRU-RF Control 99.84 100.00 99.92

MDD 1.00 99.88 99.94

Eye close

1DCNN-GRU-sigm Control 94.10 96.10 95.05

MDD 96.30 94.20 95.25

1DCNN-GRU-KNN Control 97.10 99.40 99.00

MDD 99.10 97.60 98.35

1DCNN-GRU-SVM Control 97.60 99.20 98.40

MDD 99.10 97.80 98.45

1DCNN-GRU-sigm Control 99.10 99.40 99.25

MDD 98.40 99.60 99.00

The ROC curves for proposed models is shown in Fig. 6. The Fig. 6(a) clearly
shows that the proposed mode produced robust performance curves for RF clas-
sifiers as compared to other models. The proposed 1DCNN-LSTM-RF based on
eye open dataset degrade the ROC curves for both classes. The Kolmogorov-
Smirnov (KS) test is a nonparametric test and used to discriminate two random
variable samples with each other. It is also used for empirical distribution func-
tions of two samples. The KS test determined the value how two samples are
far or close to each other. KS Statics based on proposed models is shown in
Fig. 5 that validates the robustness of proposed 1DCNN-GRU with RF with
KS statistic 0.996 value at threshold 0.50 in comparison to KS statistic 0.983
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Fig. 5. The KS statistics based on best proposed models. (a) 1DCNN-GRU-RF based
on eye open dataset, (b) 1DCNN-GRU-RF based on eye close dataset, (c) 1DCNN-
LSTM-SVM based on eye open dataset, (d) 1DCNN-LSTM-RF based on eye close
dataset

Table 3. Performance metrics based on proposed model 1DCNN-LSTM with classifi-
cation algorithms on eye open and eye close dataset

Algorithms Classes Precision Recall F1-score

Eye open

DCNN-GRU-sigm Control 100.00 96.80 98.40

MDD 96.10 100.00 98.05

1DCNN-GRU-KNN Control 98.30 98.40 98.35

MDD 100.00 96.60 98.30

1DCNN-GRU-SVM Control 100.00 99.60 99.30

MDD 99.10 100.00 99.05

1DCNN-GRU-RF Control 98.10 98.30 98.20

MDD 98.40 98.60 98.50

Eye close

1DCNN-GRU-sigm Control 95.00 92.10 93.05

MDD 91.60 94.00 93.30

1DCNN-GRU-KNN Control 96.00 96.80 96.40

MDD 98.00 96.40 97.20

1DCNN-GRU-SVM Control 98.10 95.60 96.35

MDD 95.30 97.50 96.40

1DCNN-GRU-sigm Control 97.40 97.30 97.35

MDD 98.80 96.10 97.45
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value at threshold value .054 using 1DCNN-LSTM. Similarly, 1DCNN-GRU also
showed better performance with KS statistic (0.949 at 0.470) value for eye close
dataset.

The precision, recall, f1 score and queue rate visualization based on our best
proposed models is shown in Figure. The discrimination threshold represented
the probability score of the binary classifier that can be chosen between pos-
itive and negative class. Usually this is set 50% however, the threshold could
be adjusted to decrease or increase the sensitivity to the false positive for some
sensitive applications. The F1 score(the harmonic mean of precision and recall)
could be tuned for adjusting the threshold of the classifier to best possible fit for
the specific applications. By adjusting the discrimination threshold will set the
sensitivity to false positives that is the inverse relationship of precision and recall
with respect to the threshold. The variability of model can be seen on the visu-
alization curve by running multiple trials using different train and test splits of
the data. The band curve shows the variability of each trail based on the median
and the band range is from 10th to 90th percentile. The classification threshold
could help us the users to determine an appropriate threshold for decision mak-
ing, particularly in biomedical applications that are using more sensitive data.
The visualization curve for threshold classifier based 1DCNN-GRU-RF(EO) pro-
duced optimal curve at decision threshold 0.50%. The precision, recall and
f1 score are almost completely produced above 99%. Similarly, the threshold
curve produced by proposed 1DCNN-GRU-RF based on eye open dataset pro-
duced better curve with recall, f1 score deviation. The probability curve for

Fig. 6. ROC plot for best proposed models. (a) Eye open using proposed 1DCNN-
GRU-RF model, (b) Eye close using proposed 1DCNN-GRU-RF model, (c) Eye open
using proposed 1DCNN-LSTM-SVM model, (d) Eye close using proposed 1DCNN-
LSTM-RF model. Class 0 represented as Control and class1 denoted as MDD.
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1DCNN-LSTM-SVM based on eye open dataset. In this curve, the recall f1 score
also has very small deviation from the ideal. Similarly, the 1DCNN-LSTM-RF
using eye close dataset produced more deviation in recall, f1 and precision.

4 Conclusion

In this paper, we have presented an end-to-end system based on hybrid deep
CNN and Gated recurrent units/LSTM architecture for diagnosis of patient
suffering from depression. Comparative evaluation showed that GRU may be a
better choice for EEG signals due to short sequence. Extensive experiments on
EEG eye open and eye close datasets shows that the proposed hybrid model
achieved significantly higher performance in terms of all parameters accuracy,
f1 score 99.66%, 99.93% and 98.87%, 99.12%. Based on high performance, the
proposed hybrid approach can be used for assessment of depression for clinical
applications and can deployed remotely in hospital or private clinics for clinical
evaluation.

References

1. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H., Subha, D.P.: Auto-
mated EEG-based screening of depression using deep convolutional neural network.
Comput. Methods Programs Biomed. 161, 103–113 (2018)

2. Ay, B., et al.: Automated depression detection using deep representation and
sequence learning with EEG signals. J. Med. Syst. 43(7), 1–12 (2019). https://
doi.org/10.1007/s10916-019-1345-y

3. Huang, K.Y., Wu, C.H., Su, M.H.: Attention-based convolutional neural network
and long short-term memory for short-term detection of mood disorders based on
elicited speech responses. Pattern Recogn. 88, 668–678 (2019)

4. Li, X., et al.: EEG-based mild depression recognition using convolutional neural
network. Med. Biol. Eng. Comput. 57(6), 1341–1352 (2019). https://doi.org/10.
1007/s11517-019-01959-2

5. Liao, S.C., Wu, C.T., Huang, H.C., Cheng, W.T., Liu, Y.H.: Major depression
detection from EEG signals using kernel eigen-filter-bank common spatial patterns.
Sensors 17(6), 1385 (2017)

6. Mahato, S., Paul, S.: Detection of major depressive disorder using linear and non-
linear features from EEG signals. Microsyst. Technol. 25(3), 1065–1076 (2018).
https://doi.org/10.1007/s00542-018-4075-z

7. Mdhaffar, A., et al.: DL4DED: deep learning for depressive episode detection on
mobile devices. In: Pagán, J., Mokhtari, M., Aloulou, H., Abdulrazak, B., Cabrera,
M.F. (eds.) ICOST 2019. LNCS, vol. 11862, pp. 109–121. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32785-9 10

8. Mumtaz, W., Qayyum, A.: A deep learning framework for automatic diagnosis of
unipolar depression. Int. J. Med. Informatics 132, 103983 (2019)

9. Razzak, I., Blumenstein, M., Xu, G.: Multiclass support matrix machines by maxi-
mizing the inter-class margin for single trial EEG classification. IEEE Trans. Neural
Syst. Rehabil. Eng. 27(6), 1117–1127 (2019)

https://doi.org/10.1007/s10916-019-1345-y
https://doi.org/10.1007/s10916-019-1345-y
https://doi.org/10.1007/s11517-019-01959-2
https://doi.org/10.1007/s11517-019-01959-2
https://doi.org/10.1007/s00542-018-4075-z
https://doi.org/10.1007/978-3-030-32785-9_10


Deep Shallow Network for Depression Assessment 257

10. Razzak, I., Hameed, I.A., Xu, G.: Robust sparse representation and multiclass
support matrix machines for the classification of motor imagery EEG signals. IEEE
J. Transl. Eng. Health Med. 7, 1–8 (2019)

11. Razzak, M.I., Imran, M., Xu, G.: Big data analytics for preventive medicine. Neu-
ral Comput. Appl. 32(9), 4417–4451 (2019). https://doi.org/10.1007/s00521-019-
04095-y

12. Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing:
overview, challenges and the future. In: Dey, N., Ashour, A.S., Borra, S. (eds.)
Classification in BioApps. LNCVB, vol. 26, pp. 323–350. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-65981-7 12
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Abstract. This paper introduces an approach to missing data imputa-
tion based on deep auto-encoder models, adequate to high-dimensional
data exhibiting complex dependencies, such as images. The method
exploits the properties of the vector field associated to an auto-encoder,
which allows to approximate the gradient of the log-density from its
reconstruction error, based on which we propose a projected gradient
ascent algorithm to obtain the conditionally most probable estimate of
the missing values. Our approach does not require any specialized train-
ing procedure and can be used together with any auto-encoder model
trained on complete data in a classical way. Experiments performed on
benchmark datasets show that imputations produced by our model are
sharp and realistic.

Keywords: Missing data imputation · Image inpainting ·
Auto-encoder · Dynamical system · Auto-encoder’s vector field

1 Introduction

Missing data imputation is an important problem in machine learning and data
analysis, especially when dealing with real-world applications [5,10,17]. The typ-
ical approach is to directly design a specialized model and train it to fill in
absent values. By constructing sophisticated architectures, trained under care-
fully designed loss functions, state-of-the-art models obtain impressive perfor-
mance, e.g., in image inpainting [11,32]. However, a natural question arises: can
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we complete missing data at test time using models that were not aware of the
imputation task during the training stage?

Our work is motivated by the use of classical parametric (or semi-parametric)
density models, such as Gaussian mixture models (GMMs) [27], for missing data
imputation. In that work, a density is estimated from complete data1 in a strictly
unsupervised way. To apply the model for missing data imputation, the missing
values are replaced either by samples or by maximizers of the estimated condi-
tional density of the missing data, given the observed data. Although the use of
a shallow density model, such as a GMM, may allow obtaining the conditional
density analytically, such a model may be unable to efficiently capture complex
dependencies in high-dimensional data, such as images [24].

While deep generative models, e.g., generative adversarial networks (GAN)
[8], variational auto-encoders (VAE) [12], or Wasserstein auto-encoders (WAE)
[28], are sufficiently expressive do describe complex dependencies in data, it may
be impossible to explicitly obtain or maximize the corresponding conditional den-
sity of the missing values due to the nonlinear form of decoder (generator) [20].
The authors of [22] define a pseudo-Gibbs sampling procedure for filling missing
values by iterative auto-encoding of incomplete data (see also [9, Section 20.11]
for more general formulation). In the case of VAE, this procedure can be modified
by adding an option to reject the proposal posterior distribution, which results
in Metropolis-within-Gibbs algorithm [18]. Mattei and Frellsen use importance
sampling for training VAE on incomplete data as well as for replacing missing
values by single or multiple imputation [19]. Similarly, it is challenging to obtain
a closed-form expression for such a conditional distribution in GAN, but one can
design a procedure to sample from it [15,31].

We tackle this problem by exploiting the dynamics of auto-encoders’ recon-
struction function. Based on theoretical results presented in [1], the reconstruc-
tion error of a denoising auto-encoder (DAE) [29] yields an approximation of
the gradient of the log-probability density function, which is (implicitly) esti-
mated from data. We exploit that fact to maximize the conditional density of
the missing values, given the observed ones. The conditionally most probable
values are found as the attractors of the iterated reconstruction function. We
experimentally demonstrate that, in a place of DAE, any auto-encoder model
(e.g., AE, VAE, WAE) can be used in the process of replacing missing data at
test time without any additional effort at training stage.

Alternatively, our procedure can be interpreted as a type of pseudo-Gibbs
sampling. While the pseudo-Gibbs sampling procedure proposed by [22] directly
replaces the input by its reconstruction, which may lead to falling out of the true
data manifold, our algorithm adds the reconstruction error to the input with a
small weight. Similarly to [18], it improves convergence of the algorithm when
the posterior approximation is imperfect. Our procedure is also similar to the
algorithm proposed in [6, Section 5.2] for NICE flow model, where the gradient

1 A GMM can also be learned from incomplete data, but the imputation process does
not change.
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is given explicitly. Our procedure works for every possible auto-encoder model,
even if the gradient is difficult to compute.

We experimentally assess the proposed approach on image datasets, showing
that it obtains results comparable to typical deep learning models (with analo-
gous neural network architecture) trained explicitly for missing data imputation.
Moreover, by using different initializations in the iterative procedure, we can
reach different attractors and, consequently, a diverse set of imputation candi-
dates for the same incomplete input. This makes our model similar to generative
models.

The paper is organized as follows. In Sect. 2, we recall known facts concerning
AE’s vector field and dynamics. Our approach is introduced in Sect. 3 and, next,
experimentally assessed in Sect. 4.

2 Auto-Encoder Dynamics

Because they underlie our approach to missing data imputation, this section
reviews relevant facts regarding the vector field associated with and auto-encoder
reconstruction function and the associated dynamics.

Auto-encoders (AE) have a long history in the field of artificial neural net-
works, going back at least to the 1980s [7,13]. An AE may be viewed as compo-
sition of two maps, an encoder f : Rd → Z and a decoder g : Z → R

d, such that
Z ⊂ R

l is the so-called latent space. An AE is trained from data with the goal
of making the reconstruction function r := g ◦ f close to identity, i.e., r(x) ≈ x,
for the training data, by capturing the essential features of that data.

Since an AE does not (and should not) achieve perfect reconstructions (spe-
cially for input data far from the training data), we can define an AE vector
field v : Rd → R

d associated to the reconstruction function as v(x) := r(x) − x.
Analogously, we also define an AE latent vector field u : Z → Z, given by
u(z) := f(g(z)) − z. A natural question arises: what is the structure of the
dynamics generated by the vectors fields v and u?

The properties of the vector fields v for a DAE were studied and discussed
in [1], where it was shown that the reconstruction error at some point x ∈ R

d is
approximately equal to the gradient of the log-pdf (logarithm of the probability
density function) computed at that point, in the low-noise limit, i.e., as σ2 → 0,

∇x log pX(x) ≈ rσ2(x) − x

σ2
=

vσ2(x)
σ2

, (1)

where rσ2 is the reconstruction function of the DAE at denoising level σ2 and vσ2

is the corresponding vector field. Consequently, the point with the highest log-pdf
can be found via gradient ascent, i.e., gradient flow, in the limit of infinitesimal
steps, by exploiting this equality. In discrete time, with a step-size of the order
of σ2, we thus have: xt+1 = rσ2(xt). Notice that, from Eq. 1, it is clear that fixed
points of this iteration correspond to stationary points of the log-pdf, i.e., zeros
of its gradient.
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Fig. 1. Example of latent space trajectories (left) for an AE trained on the MNIST
dataset (classes 0, 1, 2). Dots represent latent representation of the training examples:
0-red ,1 -green, 2-yellow. On the right hand side, for each trajectory. we present its
starting point and the attractor reached after 100 iterations. (Color figure online)

Analyzing the dynamics resulting from the vector field associated with the
reconstruction error may be useful in verifying the quality of an AE. The intu-
ition is that this dynamics (and its counterpart in the latent space) should have
stationary points, some of which are locally stable, thus are attractors. The basin
of attraction of each attractor should consist of a subset of the input space with
points with similar features.

As an example, consider an AE trained on digits 0, 1, and 2 of the MNIST
dataset, using latent space dimension l = 2. Starting from some latent point
z0 ∈ Z, we draw the latent trajectory generated by the iteration zt+1 := f(g(zt)),
which is the discrete-time counterpart of the gradient flow explained above. In
most cases, we observe the behavior shown in Fig. 1: each trajectory travels
through the latent space and converges to a fixed point (attractor). For some
starting points, a small perturbation may cause the trajectory to converge to
different attractor. In Fig. 1, we observe such behaviour for the cyan and pink
trajectories; their starting points lie close to the boundary between classes 1
and 2. It is also a low density region, so in some sense the AE is not trained
enough there. However, in the case of the blue and black trajectories, we see
such behaviour also for starting points in the relatively denser area of class 2.

3 Imputation Method

In this section, we show how to use the discrete-time dynamics above described
in the context of missing data to obtain imputations with the highest local prob-
ability. A point x ∈ R

d with missing components is denoted by a pair (x, J),
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where J ⊂ {1, . . . , d} is the set of indices with missing values. For a fully-
observed point, J = ∅. The key question in missing-data imputation is: what is
the “best” choice for filling the missing coordinates xJ (restriction of x to unob-
served components)? We follow a classical probabilistic approach by choosing the
maximizer of the corresponding conditional pdf, given the observed variables xJ̄ ,
where J̄ = {1, ..., d} \ J is the set of indices of the observed components of x.

To make the above statement more precise, let pX be a pdf defined on R
d.

Given a data point with missing components (x, J), assume that J 	= ∅, otherwise
imputation is unnecessary, and J 	= {1, ..., d}, otherwise we do not have an
imputation problem. The conditional pdf is given by Bayes law,

p(xJ |xJ̄) =
p(xJ , xJ̄ )

p(xJ̄)
=

pX(x)
p(xJ̄)

, (2)

because xJ∪J̄ = x ∈ R
d (missing and observed). Since we are looking for the

maximizer of this conditional pdf, the denominator is irrelevant, thus

x̂J = arg max
xJ∈R|J|

p(xJ |xJ̄ ) = arg max
y∈Rd:yJ̄=xJ̄

log pX(y). (3)

To seek the maximizer of the conditional density defined in Eq. 3, we propose
the following procedure (which we show below corresponds to a projected gra-
dient ascent scheme), based on an AE trained on a dataset with characteristics
similar to the data on which imputation will be performed:

1. pick an initial filling x̂0
J of the missing part xJ ;

2. iteratively update x̂J using x̂t+1
J = x̂t

J + h [rσ(x̂t) − x̂t]J .

where h is a step size and x̂t = (x̂t
J , xJ ′) ∈ R

d denotes a complete point where
the observed components are fixed at the observed values and the missing ones
are replaced by the current estimate. This procedure corresponds to moving on
an (axes-aligned) affine subspace of dimension R

|J| of the data space R
d in a

direction determined by the gradient of the log-density function (see Eq. (1)).
Because of the axes-aligned nature of the affine subspace, this coincides with a
projected gradient ascent algorithm.

As shown in the Fig. 2, the proposed method depends on the initialization x̂0
J .

We observe that, for the smallest missing window, all initializations lead to the
same attractor, thus the same imputations. For mid-sized missing regions, our
algorithm with random initialization gives different effect from the one obtained
using mean and k-NN filling. For the largest hole, we loose the image features
and land in the area of a different class regardless on the initialization.

In practice, we can control the final result by careful selecting the starting
point. To make the final imputation the most similar to ground truth, we should
pick an initialization using simple imputations, e.g., mean or k-NN. To provide
more diverse results, we can use add random noise or samples from some prior
distribution for the initialization. Consequently, our method has a generative
nature and is capable of creating a wide range of imputations depending on the
seed (see next section for more results).
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Fig. 2. Illustration of our algorithm (using the same AE as in Fig. 1), for missing regions
of three different sizes (9×9, 15×15, and 19×19) on the same data point from class “2”
(green point on the left hand side). Three initialization strategies were used: random
noise, mean value over the training set, mean value over 5-NN. We show trajectories in
latent space (left) and final imputations (rightmost) for different initializations (second
column from the right). (Color figure online)

4 Experiments

In this section, we experimentally validate the proposed model. For this purpose,
we fit a typical AE on a train set and use it for filling in missing data at test time2.
To examine the dependence on the initialization, we consider two variants of our
model: starting with random noise as initial imputation; initial filling generated
using k-NN imputation. We adapted the architecture and the training procedure
from [28] (using λ = 0 to obtain a classical AE).

As a baseline, we apply a pseudo Gibbs sampling (p-Gibbs) [22], where
decoded data is directly used as an input to the next iteration. Similarly to
our method, we use two variants of initialization: random replacement and k-
NN imputation. We also consider a context encoder (CE) [21], which is a type
of deep AE trained explicitly for filling in missing data. Roughly, a CE takes an
incomplete image (with a mask) and focuses on making the output as similar
to the original image as possible by minimizing the MSE on the missing area.
To make both approaches (p-Gibbs and CE) fully comparable with our method,
we use exactly the same architecture for all models. Additionally, we use two
typical imputation methods: (a) k-NN [3], which fills missing values with the

2 For a comparison between different auto-encoder models in the proposed procedure
the reader is referred to our workshop paper [25].
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Fig. 3. Reconstructions of incomplete MNIST images. Rows: (1) original image, (2)
incomplete image, and imputations using (3) our methods with random initialization,
(4) our method with k-NN initialization, (5) p-Gibbs with random initialization, (6)
p-Gibbs with k-NN (7) CE (8) k-NN, (9) MICE.

corresponding mean values computed from the k nearest training samples (we
used k = 5); (b) MICE [2,4], where several imputations are drawn from the
conditional pdf using Markov chain Monte Carlo sampling. Rather than pre-
senting state-of-the-art performance, which requires more advanced neural net-
work architecture (and modification of training procedure in our case), we focus
on showing that our test procedure obtains similar performance to the typical
models trained explicitly for the imputation task.

We consider two datasets of gray-scale images: MNIST [14] and Fashion [30].
For each test image of the size 28 × 28, we drop a patch of size 13 × 13, at
a (uniformly) random location. We also use the CelebA dataset [16], which is
composed of color face images of size 64×64, with missing regions of size 25×25.
Analogous missing regions are used for training the CE and MICE.

Figures 3 and 4 present sample results for MNIST and Fashion, respectively.
One can observe that the results produced by our method and p-Gibbs with k-NN
initialization are visually the most plausible and usually coincide with ground
truth. The results obtained by our method with random initialization are also
realistic, but differ in some cases from the ground-truth and from p-Gibbs with
the analogical initialization (2nd and 5th column for MNIST presents positive
effect while 3rd column for Fashion illustrates negative results).

Since a CE is trained to fill in missing data by minimizing the MSE, its
results usually coincide with the ground-truth average, but many details are
missing (see 7th column for Fashion, where this method failed to complete the
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Fig. 4. Reconstructions of incomplete images from Fashion. Each row presents subse-
quent methods: (1) original image, (2) incomplete image, and imputations using (3)
our methods with random initialization, (4) our method with k-NN initialization, (5)
p-Gibbs with random initialization, (6) p-Gibbs with k-NN (7) CE (8) k-NN, (9) MICE.

handbag strap). In contrast, our method aims at finding the most probable
replacement, usually yielding sharp images, although maybe different from the
ground truth. In the case of the more diverse Fashion dataset, the CE produces
a lot of artifacts.

While k-NN presents poor performance on MNIST, its results on Fashion are
appealing. Since Fashion contains many similar images, k-NN is able to fill in
missing regions with analogous shapes. It is evident that MICE fails to complete
missing data with reasonable content.

The results for CelebA dataset are presented in Fig. 5. It is clear that using
k-NN initialization in our procedure leads to more plausible results than random
initialization. As seen in the 1st column, random seed directed a filling trajectory
out of true data distribution. On the other hand, the same initialization in the
6th column created forehead bangs, which may be seen as a positive effect. The
results produced by p-Gibbs occasionally differ from the ones returned by our
method (see 9th column for random initialization as well as 4th and 7th column
for k-NN). At first glance, the imputations produced by the CE are visually
plausible. However, more detailed inspection reveals that the obtained images
are often blurry (5th and 8th columns) and sometimes contain artifacts (2nd
column). The use of k-NN imputation alone gives bad results. We were unable
to run MICE imputation due to high-dimensionality of data.
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Fig. 5. Reconstructions of partially incomplete images from CelebA. Each row presents
subsequent methods: (1) original image, (2) incomplete image, and imputations using
(3) our methods with random initialization, (4) our method with k-NN, (5) p-Gibbs
with random initialization, (6) p-Gibbs with k-NN (7) CE (8) k-NN.

An interesting aspect is that our method is more “creative” than the others.
Varying the initialization, our method can create different styles of the same
objects (2nd column for MNIST), examples from different classes (5th column
for MNIST) and other data manipulations (longer hairs - 6th column, closed
mouths - 8th column for CelebA). This property can be very appealing from a
generative perspective, which cannot be easily obtained using typical approaches.

To provide a quantitative assessment of the methods, we measure their struc-
tural similarity (SSIM) with ground truth. Unlike PSNR or MSE [23], which
measure pixel-wise absolute errors, SSIM is based on visible structures in the
image. SSIM is calculated for various windows of input images and, for the pixel
p, it is defined by [26]:
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Table 1. SSIM of imputations.

Method MNIST Fashion CelebA

Ours (random init.) 0.830 0.903 0.901

Ours (k-NN init.) 0.875 0.919 0.914

p-Gibbs (random init.) 0.828 0.904 0.899

p-Gibbs (k-NN init.) 0.868 0.918 0.907

CE 0.871 0.879 0.930

k-NN 0.829 0.841 0.857

MICE 0.797 0.809 -

SSIM(p) =
2μxμy + C1

μ2
x + μ2

y + C1
· 2σxy + C2

σ2
x + σ2

y + C2
,

where μx, μy are the mean values of the patches x and y, respectively, centered
at p; σ2

x, σ2
y denote variances; σ2

xy denotes covariance; C1 and C2 are variables
intended to stabilize the division with small denominator; its maximal value 1
is attained for identical images.

The results presented in Table 1 show that our method with k-NN initializa-
tion gives the highest resemblance with ground-truth on MNIST and Fashion.
While the performance of CE on MNIST is only slightly worse, the disproportion
between these methods on Fashion is evident. In the case of CelebA, CE is more
accurate than our method, but the difference is not high. It can be observed that
p-Gibbs performs slightly worse than our method. The disproportion between
shallow (k-NN, MICE) and deep methods (AE, CE) is enormous.

5 Conclusion and Future Work

In this paper, we proposed a strategy for filling in missing values based on auto-
encoder vector field. Our method does not require a training procedure designed
for imputation task, but can be used together with any AE trained in a typical
way. The idea is to traverse the AE vector field towards an attractor, which
is a local maximum of the probability density of function learned by the AE.
Experiments showed that this procedure gives comparable results to typical deep
models trained explicitly for imputation tasks.

To increase the performance of the proposed procedure, we plan to modify the
training procedure of the AE. One option is to simulate the iterative procedure in
the training phase, by reconstructing original images from partial imputations.
This should stabilize the test stage and prevent from falling out of the true data
distribution when initialized from random noise.
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Abstract. In this paper, we propose a multi-objective evolutionary
algorithm for automatic deep neural architecture search. The algorithm
optimizes the performance of the model together with the number of
network parameters. This allows exploring architectures that are both
successful and compact. We test the proposed solution on several image
classification data sets including MNIST, fashionMNIST and CIFAR-
10, and we consider deep architectures including convolutional and fully
connected networks. The effects of using two different versions of multi-
objective selections are also examined in the paper. Our approach out-
performs both the considered baseline architectures and the standard
genetic algorithm used in our previous work.

1 Introduction

In the last decade, we witness the boom of deep learning. Neural networks are
successfully applied in a wide variety of domains, including image recognition,
natural language processing, and others [8,14]. There is a variety of efficient
learning algorithms to use, however, the performance of the model depends
always also on the choice of the right architecture. The choice of architecture is
still done manually, requires expert knowledge and a time-demanding trial and
error approach.

In recent years, the need for automation of neural architecture search (NAS)
is getting more and more apparent. As the accessibility of efficient hardware
resources improved significantly, many automatic approaches for the setup of
hyper-parameters of learning models appeared. Many machine learning software
tools offer automatic search for various hyper-parameters, typically based on
grid search techniques. These simple techniques are however applicable on sim-
ple hyper-parameters – as real numbers (such as learning rates, dropout rates,
etc.) or categorical values from some choice set (such as the type of activation
function). The whole architecture, however, is a structured information and has
to be searched for as an entire entity. It is hardly possible to use a grid search
or similar exhaustive technique for NAS.
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In this paper, we evaluate the possibility of application of multi-objective
evolutionary algorithms on NAS. We restrict the problem to feed-forward dense
and convolutional neural networks. Evolutionary algorithms have been applied
to solve the NAS problem quite often, one of the most successful examples is a
work [18] that we mention in the next section. In our previous work [21,22,24]
we have applied evolutionary algorithms to search for architectures of simple
feed-forward neural networks. The straightforward approach suffers from huge
computational requirements, as it is necessary to train and evaluate many can-
didate networks during the search, and also from the fact that the candidate
solutions tend to grow uncontrollably. The resulting networks typically have a
good performance but a needlessly huge number of parameters. Therefore, we
decided to employ the multi-objective optimization approach and to optimize
not only the performance of the network but also its size (number of learnable
parameters). In many applications the need for reasonably small models is inher-
ent. This paper shows studies on how the use of multi-objective optimization may
help to tackle this problem.

The paper is organized as follows. The next section revises the related work,
including available tools for hyper-parameter search and works directly focused
on NAS. Section 3 briefly define deep neural networks. Section 4 explains the
proposed algorithm. Section 5 describes the results of our experiments. And
finally, Sect. 6 contains conclusion.

2 Related Work

Recently, several tools for automatic neural model selection have appeared.
The first of them, AutoKeras [11], is a software library for automated machine
learning. It provides functions for automatic architecture and hyper-parameters
search. The optimization process is based on Bayesian optimization. From our
experience with this software, it works well but often produces quite complicated
architectures.

The second tool, that deserves to mention, is Talos [20]. It provides a semi-
automatic approach to hyper-parameters search for Keras models (Keras [2] is
a generally known Python library for neural network implementation, recently
it became part of Tensorflow [10]). It enables a user to automatically search for
listed hyper-parameters in user-provided ranges, but does not include architec-
ture search. It is based on a grid search.

The above tools appeared quite recently, however, several hyper-optimization
frameworks exist already for a longer time. The Python hyperopt [1] library that
enables distributed hyper-parameter optimization has been designed in 2013.
Although it is limited to hyper-parameters only (not architectures), due to the
possibility of conditional hyper-parameters, it enables a user to tune also some
architecture properties (however, only in a limited way, such as to tune the
number of layers). Last but not least, there is the hyperas [12], a wrapper around
the hyperopt library, designed directly for Keras.
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The works focused directly on NAS are summarized in a recent survey [6].
The authors classify the NAS approaches based on search space, search strat-
egy, and performance estimation strategy. The search space means what types
of architectures are allowed. Often human bias is introduced. In our case, the
search space is limited to convolutional neural networks. The search strategy rep-
resents the particular optimization algorithm, works vary from random search
to evolutionary techniques, Bayesian optimization, or reinforcement learning.
The performance estimation strategy is the way how to set up the objective
of the optimization. The simplest way is to learn on training data and use the
performance on validation data.

Probably the best known evolutionary approaches to NAS for deep neural
networks come from Miikkulainen [18]. His approaches are built on the well
established NEAT algorithm [19]. While the use of multi-objective optimization
for NAS is quite natural, it is not generally used. One of the exceptions is the
paper [5] that uses multi-objective Lamarckian evolution for NAS.

Several works concerned with NAS approaches taking some measure of net-
work size or training efficiency into account have appeared recently. Authors
of [7] present a solution combining NAS with quantization procedure in order
to find the optimal precision that balances the network performance and energy
consumption during training. Authors of [17] proposed a multiplexing proce-
dure for channels in convolutional network used for image classification. The
positive effect of this modification on three criteria – the classification accuracy,
the compactness of resulting networks, and the efficiency of their training – was
observed. Authors of the paper [9] proposed the so called Neural Architecture
Transformer designed by a Markov decision process that optimizes neural archi-
tectures by removing unnecessary computationally intensive operations. Finally,
the recent survey paper [25] presents an overview of approaches that include the
compactness criterion to NAS algorithms.

The main points of our approach with respect to the above mentioned related
work are:

– the search space – we were inspired by the implementation of feed-forward
neural networks in Keras and designed the algorithm directly for Keras. So,
as in the Keras Sequential model, the network is a list of layers, we consider
only networks that can be defined as a list of layers (each layer always fully
interconnected with the following layer). In this paper, convolutional and fully
connected deep architectures are considered.

– the search strategy – we use multi-objective evolution that optimizes con-
currently both the performance of the network and the network size. The
state-of-the-art NSGA-2 algorithm [4] and NSGA-3 [3] were chosen for this
purpose.

– the performance estimation strategy – since the split for training and valida-
tion data always introduces a bias, we use cross-validation to evaluate network
performance.
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3 Deep and Convolutional Neural Networks

By a deep neural network (DNN) we understand a feed-forward layered neural
network architecture with more (typically many) hidden layers. Fully connected
DNNs can be seen as deep variants of traditional multi-layer perceptrons contain
several dense fully connected layers only. On the other hand, convolutional neural
networks (CNN) represent an important subset of DNN containing one or more
convolutional layers.

The typical architecture of a CNN is depicted in Fig. 1. The front part of
the network is responsible for feature extraction and besides convolutional layers
it contains pooling layers (typically max-pooling) that perform down-sampling.
The top layers of the network perform the classification itself and are often fully
connected dense layers. In this paper, we work with such a network architecture.
Further details about the DNN and CNN concepts can be found, e.g. in the
book [8].

Fig. 1. Convolutional neural network [15].

4 Multi-objective Evolution for Deep Neural Networks

We consider the problem of NAS that aims to find the architecture with good
that aims to find the architecture with good performance and a reasonable size
at the same time. Therefore, we use the multi-objective optimization approach
and optimize both the network performance and its size described by the number
of network parameters. To this end, wee chose the NSGA-2 [4] (or NSGA-3 [3],
respectively) algorithms that are considered to be the state of the art of the field,
to perform the multi-objective evolutionary optimization.

4.1 NSGA-2 and NSGA-3 Algorithms

The abbreviation NSGA stands for non-dominated sorting genetic algorithm, the
number 2 (3) stands for the second (third) improved variant of the algorithm.

Multi-objective optimization problems consider optimization problems with
more objectives, where the objectives may be conflicting, in the sense that if one
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objective increases the other decreases. Such problems have no unique solution
but a set of solutions.

Our case of NAS can be formalized as follows:

maxf(x) and min g(x),

where x stands for a particular network architecture, f(x) is the network x
accuracy (in case of classification) and g(x) is the network x size expressed by
the number of parameters (weights) of the network.

A solution x is said to dominate the other solution x′ if

1. x is no worse than x′ for all objectives
2. x is strictly better than x′ in at least one objective

Among the set of feasible solutions P , the non-dominated set of solutions P
is such a set that contains all solutions that are not dominated by any other
member of P . The non-dominated set of the entire search space is called the
Pareto-optimal set. The goal of multi-objective optimization is to find the Pareto-
optimal set.

NSGA-2 is an evolutionary algorithm for multi-objective optimization. It’s
main characteristics are

– it uses elitism (elites of the population are preserved to the future generation)
– it uses an explicit diversity preserving mechanism
– it favors the non-dominated solutions

The algorithm produces new generations from parents and offspring popula-
tion by

1. a non-dominated sorting of all individuals and labeling them by fronts (they
are sorted by an ascending level of non-domination)

2. filling the new generation according to front-ranking
– if the whole front does not fit into the new population, it performs

Crowding-sort (crowding distance is related to the density of solutions
around each solution), less dense solutions are preferred

3. creating new offspring by crossover and mutation operators, and by crowded
tournament selection (selection based on front ranking and crowding distance
if ranking equals)

The detailed description of the algorithm is out of the scope of this paper
and can be found in the paper [4].

Authors of [3], extended the NSGA-2 to deal with many-objective opti-
mization problem, using a reference point approach with non-dominated sorting
mechanism. The NSGA-3 uses a set of reference points to maintain the diversity
of the Pareto points during the search. This should improve an even distribution
of Pareto points across the objective space.
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4.2 Individual Encoding

To apply any evolutionary algorithm to architecture optimization we first have
to be able to encode the architecture to an individual.

Our proposal of encoding closely follows the architecture description and
implementation in the Keras [2] model Sequential. The model implemented as
Sequential is built layer by layer, similarly, the individual consists of blocks rep-
resenting individual layers.

Dense Neural Networks. For fully connected feed-forward neural networks (i.e.
networks with dense layers only), the individual looks like:

I = ([size1, drop1, act1]1, . . . , [sizeH , dropH , actH ]H),

where H is the number of hidden layers, sizei is the number of neurons in
corresponding layer that is dense (fully connected) layer, dropi is the dropout
rate (zero value represents no dropout), acti stands for activation function (acti ∈
{relu, tanh, sigmoid,hardsigmoid, linear}).

Convolutional Networks. For convolutional network, the individual is slightly
modified:

I = (I1, I2),
I1 = ([type, params]1, . . . , [type, params]H1)
I2 = ([size, dropout, act]1, . . . , [size, dropout, act]H2)

where I1 and I2 are the convolutional and dense part, respectively, H1, H2
is the number of layers in convolutional and dense part, respectively. The blocks
in the convolutional part encode type ∈ {convolutional, max − pooling} type
of layer and params other parameters of the layer (for convolutional layer it is
number of filters, size of the filter, and activation function; for max-pooling layer
it is only the size of the pool). The blocks in the dense part code dense layers,
so they consist of size the number of neurons, drop the dropout rate (zero value
represents no dropout), act activation function.

4.3 Genetic Operators

To produce new individuals, we need operators mutation, crossover and selection.
We also need to be able to evaluate the quality of individuals by their fitness.

Mutation. The mutation operator brings random changes to an individual. Each
time an individual is mutated, one of the following mutation operators is ran-
domly chosen (each of mutation operators has its own probability):

– mutateLayer - introduces random changes to one randomly selected layer.
– addLayer - one randomly generated block is inserted at a random position. If

it is inserted into the first part of the individual, it is either a convolutional
layer or max-pooling layer; otherwise, it is a dense layer.
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– delLayer - one randomly selected block is deleted.

When mutateLayer is performed, again one of the available operators is cho-
sen.

For dense layers they are:

– changeLayerSize - the number of neurons is changed. The Gaussian mutation
is used, the final number is rounded (since size has to be an integer).

– changeDropOut - the dropout rate is changed using the Gaussian.
– changeActivation - the activation function is changed, randomly chosen from

the list of available activations.

For max-pooling layers:

– changePoolSize - the size of the pooling is changed.

For convolutional layers:

– changeNumberOfFilters - the number of filters is changed. The Gaussian
mutation is used, the final number is rounded.

– changeFilterSize - the size of the filter is changed.
– changeActivation - the activation function is changed, randomly chosen from

the list of available activations.

Crossover. The operator crossover combines two parent individuals and pro-
duces two offspring individuals. It is implemented as one-point crossover, where
the crossing point is determined at random, but on the border of a block only.
Thus, only the whole layers are interchanged between individuals. In the case of
CNN, the two parts of the individual are crossed over separately, so if parents
are I = (I1, I2) and J = (J1, J2) we run crossover(I1, J1) and crossover(I2, J2).

Fitness Function. The fitness function should reflect the quality of the network
represented by an individual. To assess the generalization ability of the network
represented by the individual we use a cross-validation error. The lower the
cross-validation error, the higher the fitness of the individual.

Classical k-fold cross-validation is used, i.e. the training set is split into k-folds
and each time one fold is used for testing and the rest for training. The mean
loss function on the testing set over k run is evaluated. For the classification
tasks, the categorical cross-entropy is used as the loss function, for regression
tasks, the mean squared error is used instead. Since the evaluation of the fitness
function is the most time demanding step of the algorithm, small values of k are
typically used.
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5 Experiments

For experimental evaluation we have selected three traditional benchmark classi-
fication tasks – MNIST [16], fashionMNIST [26] and Cifar10 [13] datasets. Both
MNIST and fashionMNIST datasets contain 70 000 images 28 × 28 pixels each.
60 000 are used for training, 10 000 for testing. MNIST contains images of
handwritten digits, fashionMNIST contains greyscale images of fashion objects.
Cifar10 consists of 60000 32 × 32 color images divided into 10 classification
classes. There are 50000 training images and 10000 test images. The datasets
are quite small, but this was necessary for performing a proper experimental
evaluation. Since all algorithms used (i.e., the evolutionary search, the network
gradient training) include random factors, the evaluations had to be repeated
several times.

Our algorithm is implemented in Python, and it is publicly available as the
nsga-keras library [23].

We run the algorithm on all datasets to search for optimal CNNs and on
MNIST dataset to search for optimal dense DNN. In all cases, it was run five
times on each task both with NSGA-2 and NSGA-3 variants. The architecture
from Pareto front with the best cross-validation accuracy was chosen as the result
(i.e. it is typically the largest from the solutions). The corresponding network
was trained on the whole training set and evaluated on the test set. This final
training and evaluation were done ten times and average values were obtained.
Twenty epochs were used for training (the results can be further improved using
more training epochs).

In addition, the classical genetic algorithm – with the same individual encod-
ing, crossover and mutation operators, but only a single value fitness function,
was run five times on both tasks. The resulting architecture was evaluated in
the same way as for the multi-objective algorithm.

Also, for each task, we have chosen one baseline solution, that is the fixed
architecture taken from Keras examples.

The Table 1 contains the overview of accuracies of resulting networks for
a baseline solution, a solution produced by classical genetic algorithm (GA-
CNN), and a solution found by multi-objective NSGA-2 and NSGA-3 algorithms
(NSGA2-CNN, NSGA3-CNN). The average values of five runs are recorded.

Table 1. Accuracies of networks found by classical genetic algorithm (GA-CNN),
NSGA-2 and NSGA-3 algorithm (NSGA2-CNN and NSGA3-CNN), and a baseline
solution. In the case of genetic algorithms, average values, standard deviations and
minimal a maximal values over five runs are listed.

Task Baseline GA-CNN NSGA2-CNN NSGA3-CNN

avg std min max avg std min max avg std min max

MNIST 98.97 99.33 0.07 99.21 99.43 99.36 0.02 99.33 99.39 99.31 0.06 99.25 99.41

Fashion-MNIST 91.64 93.16 0.16 93.04 93.46 92.67 0.42 91.95 93.07 92.74 0.27 92.42 93.09

Cifar10 74.75 77.40 0.58 76.72 78.47 75.50 0.69 74.13 75.98 75.33 0.56 74.59 75.98
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The Table 2 lists the sizes of the resulting networks. Letter K stands for one
thousand, i.e. 77K stands for 77 000 learnable parameters.

Table 2. Sizes of networks (number of parameters in thousands) found by classi-
cal genetic algorithm (GA-CNN), NSGA-2 and NSGA-3 algorithm (NSGA2-CNN,
NSGA3-CNN), and a baseline solution. In case of genetic algorithms, average values,
standard deviations and minimal a maximal values over five runs are listed.

Task Baseline GA-CNN NSGA2-CNN NSGA3-CNN

avg std min max avg std min max avg std min max

MNIST 600K 1547K 1796K 468K 5123K 77K 48K 28K 168K 242K 270K 67K 778K

Fashion-MNIST 356K 898K 291K 543K 1203K 418K 311K 64K 876K 452K 154K 176K 634K

Cifar10 1250K 321K 87K 198K 426K 207K 87K 97K 363K 301K 176K 129K 638K

The Table 3 contains the overview of accuracies and sizes of resulting dense
networks for the MNIST dataset. Again, the average values of five runs are
presented.

Table 3. Accuracies and sizes of networks found by classical genetic algorithm (GA-
DNN), NSGA-2 and NSGA-3 algorithm (NSGA2-DNN, NSGA3-DNN), and a baseline
solution for the MNIST dataset. In the case of genetic algorithms, average values,
standard deviations and minimal a maximal values over five runs are listed.

Baseline GA-DNN NSGA2-DNN NSGA3-DNN

avg std min max avg std min max avg std min max

Accuracy 98.32 98.30 0.05 98.23 98.35 98.35 0.05 98.29 98.42 98.29 0.06 98.20 98.38

Size 669K 299K 20K 282K 324K 263K 22K 222K 281K 224K 39K 174K 284K

The Fig. 3 records the values of the fitness functions during the evolution
(for the NSGA-2 algorithm). We can see that the number of generations needed
to converge is not too high.

Regarding the setup of the evolutionary algorithm, the population with
30 individuals was used, networks were trained for 20 epochs (during cross-
validation in fitness evaluation), categorical cross-entropy was used as a loss
function, and the algorithm was run for 100 generations. In our preliminary
tests, we have also tried to use a lower number of epochs to save time, but the
results were inferior (Fig. 2).

The experiments were run on GeForce GTX 1080 Ti GPUs. To save the time,
the whole population was evaluated at once (on a single card), and also the cross-
validation parts were evaluated in parallel. This optimization was not possible
for classical genetic algorithm, where larger architectures evolved and therefore
it was no more possible to squeeze the whole population to the memory of one
card, thus, the fitness evaluation was done in two batches. The time required
for the evaluation of one generation was on average 52.24 min for NSGA-2 and
NSGA-3 and 178.61 min for the classical GA on MNIST.
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Fig. 2. Example of one run of nsga-keras (NSGA-2 version). On the left, average and
maximal accuracy. On the right, average and minimal network size.

Fig. 3. Resulting pareto fronts for the MNIST, fashionMNIST and Cifar10 datasets.

From the tables, we can see the evolutionary approaches outperform the
baseline solution and that our proposed multi-objective approach produces a
smaller solution with competitive performance.

6 Conclusion

In this paper, we proposed a novel approach to neural architecture search for
deep neural networks. The algorithm is based on multi-objective evolution uti-
lizing the well known NSGA-2 and NSGA-3 algorithms. The performance of the
network and the network size are optimized simultaneously, so the algorithm
produces competitive networks of reasonable size. The benefits from size opti-
mization are two-fold, first, it prevents the candidate solutions to bloat and
slow down the evolution, and second, the smaller solutions learn faster and are
suitable for devices with limited memory.

We confirmed the applicability of both evolutionary and multi-objective evo-
lutionary approaches to NAS. The proposed approach is implemented and is
publicly available, it is possible to run it both on GPUs and CPUs.
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Since we understand that our experimental evaluations are quite limited,
which is caused by the high time requirements of the experiments, our future
work includes more experimental evaluations (including more data sets). We also
plan to explore other multi-objective evolutionary algorithms.

Extension to general networks, including recurrent or modular architectures,
is another challenge for future research.

References

1. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In: Pro-
ceedings of the 30th International Conference on Machine Learning (ICML 2013)
(2013)

2. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using

reference-points-based nondominated sorting approach. IEEE Trans. Evol. Com-
put. 18(4), 577–601 (2014)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
https://doi.org/10.1109/4235.996017

5. Elsken, T., Metzen, J.H., Hutter, F.: Efficient multi-objective neural architecture
search via Lamarckian evolution. In: International Conference on Learning Repre-
sentations (2019). https://openreview.net/forum?id=ByME42AqK7

6. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach.
Learn. Res. 20(55), 1–21 (2019). http://jmlr.org/papers/v20/18-598.html

7. Gong, C., Jiang, Z., Wang, D., Lin, Y., Liu, Q., Pan, D.Z.: Mixed precision neural
architecture search for energy efficient deep learning. In: 2019 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pp. 1–7 (2019)

8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

9. Guo, Y., et al.: NAT: neural architecture transformer for accurate and compact
architectures. In: NeurIPS (2019)

10. Goodfellow, I., et al.: TensorFlow: large-scale machine learning on heterogeneous
systems (2015). Software available from tensorflow.org. https://www.tensorflow.
org/

11. Jin, H., Song, Q., Hu, X.: Auto-Keras: an efficient neural architecture search
system. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1946–1956. ACM (2019)

12. Keras + Hyperopt: A very simple wrapper for convenient hyperparameter opti-
mization. http://maxpumperla.com/hyperas/

13. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian Institute for Advanced
Research). http://www.cs.toronto.edu/kriz/cifar.html

14. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015). https://doi.org/10.1038/nature14539

15. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.
1109/5.726791

16. LeCun, Y., Cortes, C.: The MNIST database of handwritten digits (2012). http://
research.microsoft.com/apps/pubs/default.aspx?id=204699

https://github.com/fchollet/keras
https://doi.org/10.1109/4235.996017
https://openreview.net/forum?id=ByME42AqK7
http://jmlr.org/papers/v20/18-598.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.tensorflow.org/
https://www.tensorflow.org/
http://maxpumperla.com/hyperas/
http://www.cs.toronto.edu/kriz/cifar.html
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://research.microsoft.com/apps/pubs/default.aspx?id=204699
http://research.microsoft.com/apps/pubs/default.aspx?id=204699


Multi-objective Evolution for Deep Neural Network Architecture Search 281

17. Lu, Z., Deb, K., Boddeti, V.: MUXConv: information multiplexing in convo-
lutional neural networks, pp. 12041–12050, June 2020. https://doi.org/10.1109/
CVPR42600.2020.01206

18. Miikkulainen, R., et al.: Evolving deep neural networks. CoRR abs/1703.00548
(2017). http://arxiv.org/abs/1703.00548

19. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002). http://nn.cs.utexas.edu/?stanley:
ec02

20. Autonomio Talos [computer software] (2019). http://github.com/autonomio/talos
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Abstract. Extreme classification and Neural Architecture Search
(NAS) are research topics which have recently gained a lot of interest.
While the former has been mainly motivated and applied in e-commerce
and Natural Language Processing (NLP) applications, the NAS approach
has been applied to a small variety of tasks, mainly in image process-
ing. In this study, we extend the scope of NAS to the task of extreme
multilabel classification (XMC). We propose a neuro-evolution approach,
which was found to be the most suitable for a variety of tasks. Our NAS
method automatically finds architectures that give competitive results
with respect to the state of the art (and superior to other methods) with
faster convergence. In addition, we perform analysis of the weights of
the architecture blocks to provide insight into the importance of differ-
ent operations that have been selected by the method.

Keywords: Neural architecture search · Machine learning · Extreme
multi-label text classification · Evolutionary algorithms

1 Introduction

Neural networks (NNs) have shown impressive performance in many natural lan-
guage tasks, such as classification, generation, translation and many others. One
of the applications that has attracted growing interest in recent years with the
availability of large-scale textual data is the extreme multi-label text classifica-
tion (XMC). The goal in XMC is to classify data to a small subset of relevant
labels from a large set of all possible labels [13,16]. A major problem in applying
NNs to this task is to design an architecture that can effectively capture the
semantics of text. Diverse methods have been employed in the NLP field, such
as convolutional neural networks [25], recurrent neural networks [14] as well as
a combination of both [26]. However, this design phase is complex and often
requires human prior, with a good knowledge of the field and data. Over the
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last few years, NAS research has paved the way for the creation of dedicated
neural architectures for a given task or even dataset. Most of the NAS studies,
have focused on search algorithms for a small number of tasks (eg. image clas-
sification) and none of these studies have been applied to XMC before. In this
paper, we propose XMC-NAS a NAS-based method for automatically designing
an architecture for the extreme multi-label text classification task, using a min-
imum of prior knowledge. In addition, we define a search space with operations
(e.g. RNN, Convolution,..) specific to the NLP domain. To evaluate our solution,
we have used 3 large scale XMC datasets with an increasing number of labels.
Like popular NAS methods we have uses a proxy dataset to train and evaluate
architectures during the search phase. The discovered architecture gives com-
petitive results with respect to the state of the art on the proxy dataset with
faster convergence. Then we transfer the best performing architecture to other
datasets and evaluate it. Our evaluation shows, the discovered architecture also
achieves results close to the state of the art. Furthermore, this paper presents a
study on the importance of operation types and the network depth with respect
to the obtained results.

In the following section, we briefly review some related state-of-the-art. In
Sect. 3, we present our solution to extreme multi-label classification with neu-
ral architecture search. Experimental results are presented in Sect. 4 and the
conclusion and an outcome of this work are presented in Sect. 5.

2 Related Work

In this section, we will present related work on neural architecture search and
extreme text classification.

Neural Architecture Search. Studies on the subject of NAS date back to the
1990s [9] and they have gained significant interest in the last few years. In the
literature, different approaches have been studied, one of the first approaches was
based on Reinforcement Learning (RL) [27]. In these approaches, architectures
are first sampled from a controller, typically a RNN, and are further trained and
evaluated. The controller is updated from the evaluation results in a feedback
loop, improving the sampled architectures over time. Some other approaches
use Bayesian Optimization (BO) like [6] in order to predict the accuracy of a
new and unseen network and thus select only the best operation or as in [11]
which uses Sequential Model-Based Optimization (SMBO) to predict accuracy
of a network based on a network with fewer operations. Transfer Learning [22]
has also been used in NAS methods [18] allowing more efficient search by weight
sharing of overlapping operations, instead of training each new network from
scratch. Other NAS methods have used gradient descent based approaches such
as in [12] where they use a relaxation, which allows to learn the architecture
and the weight of operation simultaneously, using the gradient descent. More
recent studies have shown great performances using the well-known evolution
algorithms as in [15,20], which consists in starting with a base population and
successively apply mutation to the best performing architecture.



284 L. Pauletto et al.

Extreme Text Classification. Different methods have been proposed to
address the stakes posed by the extreme multi-label text classification [1,2,7].
The most recent of those methods are deep learning based such as XML-CNN
[13], a structure of convolutional neural network (CNN) and pooling in order to
get a precise text representation. However, it is hard for CNN to capture the
most relevant part of a text and the long term dependency. Other methods, more
similar, to Seq2seq methods have been applied as discussed in MLC2Seq [16],
SGM [23] and AttentionXML [24]. Those methods used recurrent neural network
(RNN) to classify the text. Moreover, a significant interest has been given on
attention mechanism the last few years [10]. Attention mechanism has demon-
strated great performance in sequence modeling, in particular in NLP domain
and has therefore been also applied in the context of XMC [23,24].

3 Framework and Model

We propose XMC-NAS, a tool to automatically design architecture for the extreme
multi-label classification task. Our approach is based on three main components:
i) the text embedding, ii) the search of the architecture, and iii) output classifi-
cation. These three components form a pipeline in which components i) and iii)
are fixed and excluded from the search task. Thus, the architecture search task
is performed only on the component ii). The first component of our methods
consists in transforming the text into word embedding, i.e. Numerical vectors.
This embedding step should allow the model to use these representations to pro-
duce a more accurate prediction. The second step is the search phase for the
most performing architecture, using an evolutionary algorithm (c.f. Figure 1).
Finally, the last component classifies the output, in several categories. This last
component is based on attention mechanism and fully connected layers.

Search pool:
Convolutions,

BiLTSM,
...

Trained
population

Mutation
process

I

IIIII

Fig. 1. I. Architectures are constructed from randomly sampled operations and then
trained and evaluated, II. Randomly sample 10 architectures, and rank them by Pre-
cision@5 obtained on test set. The most performing one is selected for mutation, III.
The newly mutated architecture, is trained and evaluated. Then placed in the trained
population. The oldest architecture is removed from the population.

In the following section, we describe our approach in detail. First, we present
the search space, the search algorithm used and their specificities; and finally,
we describe the different parts of the discovered network.
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3.1 Architecture Search Phase

The search phase can be broken down as follows. The architecture is searched in
a search space that defines the possible structure of the final architecture. In this
search space we have candidate operations that can be used in the architecture.
Finally, to research the architecture, we use a search algorithm that searches for
best architectures in the search space.

Search Space. A neural network architecture is represented in the form of
a Direct Acyclic Graph (DAG). Each node in this graph represents a layer. A
layer is a single operation, which is chosen among the set of candidate operations.
The edges of the graph represent the data flow, and each node can have only
one input. The graph is constructed as follows: first, the nodes are sampled
sequentially (i.e. An operation is selected) to create a graph of N nodes. Then,
the input of a node j is selected in the set of previous nodes (i.e. Nodes from
1 to j − 1). This set is initialized with a node that represents the embedding
layer. Finally, when the node j has an operation and an input, it is added to the
set of the previous nodes. To have a trade-off between performance and search
efficiency, we have set a limit to the maximum number of previous nodes that
a layer can take as input. We empirically determined this limit to 5 to achieve
reasonable search time on our hardware. Figure 2 illustrates a simple architecture
with N = 6 nodes (i.e layers).

Candidate Operations. To build our set of candidate operations, we have
selected the most common operations in NLP field, which consist of a mixture
of convolutional, pooling and recurrent layers. We have defined four variants of
1D convolutional layers, with a kernel of different size: 1, 3, 5 and 7 respectively.
All convolution layers use a stride of 1 and use padding if necessary to keep a
consistent shape. We used the two types of pooling layers that calculate either
the average or the maximum on the filter size, this size is set to 3 for both.
Similarly to the convolution layers, the pooling layers use a stride of 1 and use
padding if necessary. Finally, we used the two popular types of recurrent layers,
namely the Gated Recurrent Unit (GRU) [3] and the Long-Short Term Memory
(LSTM) [4], which are able to capture long-term dependencies. Specifically, we
use bi-directional LSTM and GRU.

Search Algorithm. As NAS algorithm we use the regularized evolution as
described in [20]. We chose this approach because it allows us to have a fine
vision of the impact of each operation on the final result. Regarding the mutation
aspect, we use the same configuration as described in [20]:

– Randomly select an input from a node on the network and modify it with a
new input.

– Randomly select an operation from the network and change it with a new
sample.
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Embedding
321 5

4 6

Attention
Module

Classification
Module

Fig. 2. Illustration of a simple architecture, with 6 layers. The numbers represent the
sampling order of the layers. The limit of maximum number of previous layers that
can be used as input is set to 5 (e.g. The layer 6 could hence take as input only nodes
from 1 to 5). Here, different operations are illustrated with different colors.

Figure 1 illustrates the search algorithm of the regularized evolution. In order to
see the impact of the number of layers on the final results, a third mutation,
corresponding to the addition of a new layer, has been introduced. The choice
among these mutations is random. We also seek to better understand how opera-
tions perform together, i.e. To evaluate the importance of the various operations
with respect to the final results. To do this, we use a linear combination of
outputs from each layer where weights are learned during the training process.

3.2 Text Embedding, Attention and Classification Modules

Our network has certain parts fixed, namely the embedding, attention and clas-
sification modules. This section will introduce them.

Text Embedding. The embedding layer produces a fixed length representation.
This layer is an embedding map, which means each word is mapped to a vector.
As initialization, we used the GloVe [17] embedding 840B-300d1 version, which
allows us to skip the step of learning a new embedding from scratch.

Attention Module. We use a self-attention mechanism based on the one demon-
strated in [10], similarly to [24]. The attention process helps to grasp the impor-
tant parts of the text. This mechanism uses a vector ct that represents the
relevant context for the label t, where t is in 1, . . . , T . For an input sequence of
size N , the context vector is given in Eq. 1.

ct =
N∑

i=1

αt,ihi, (1)
αt,i =

eWt
T ·hi

∑N
k=1 eWt

T ·hk

(2)

Where, hi denotes the hidden representation,i.e. The output of RNN encoder
states or of the convolution. In the case of BiRNN, layer hi is the concatenation
of vectors from the forward

−→
hi and backward

←−
hi passes. The term αt,i is called

attention factor (Eq. (2)). The set of attention factors {αt,i} represents how
much of each inputs should be considered for each output. In Eq. (2), Wt is the
attention weight (i.e a learnable weight matrix) for the t-th label.
1 http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip.

http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
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Classification Module. The final part of the network is composed of 2 or 3 fully
connected layers, which reduces the output of the attention module. The result
is then fed into an output layer that classifies it into different labels.

3.3 Analysis of Operations Importance

This section presents an analysis of the weights of the linear combination, par-
ticularly the impact of each operation on the final results, and whether different
operations combine efficiently. We address this analysis in two steps. In the first
step, we focus on how operations combine with each other. In a second step, we
analyze the results and the impact of operations as the networks deepen.

First Step: In this step, the base population is randomly initialized, meaning
that the input and operation of each node is chosen at random. We try to deter-
mine which operation is the most important in the first layers by scaling their
outputs with trainable weights of the linear combination. The Fig. 3 shows three
examples of the first layers for different combinations of operations as well as the
corresponding learned weights assigned to each operations. The block “Rest of
the network” represents the attention and classification modules. The blocks in
the hatched areas of the Fig. 3 were not part of the mutation process and were
“constrained”. For each architecture example, the displayed weights are the aver-
ages obtained over several runs of the NAS. The different grey scales indicate
different experiments. We observe in Fig. 3 that pairs of operations of same type,
i.e. BiLSTM, tend to have almost equal weights. However, some trends could be
observed in the case of the combination of two convolutions; those with a larger
kernel size have higher weights. This effect is particularly pronounced in the case
of the kernel size of 1, reflecting the need for sequence modeling blocks at this
level. In the case of mixed operations, it turned out that BiLSTM operations
systematically have higher weights. An example of a run with mixed operation is
presented in the right-hand side of Fig. 3. More generally, our results show that
architectures which contain BiLSTM at the first layer, perform better. This first
step shows that the result is based mainly on the long-term dependencies cap-
tured by BiLSTM rather than on the combinations of local features generated
by the convolution.

Second Step: This second stage of analysis aims to quantify the impact of the
number of layers on the final results as well as the weights assigned to each
operation. According to the results obtained in the first step, which show that
the network with BiLSTM layers works better, in this second step, a part of the
population has the constraint to start with at least one BiLSTM layer, which
takes as input the embedding. For the analysis of the impact of the number of
operations, we calculated the average P@5 based on the number of operations.
The number of operations ranged from 2 to 6. We observed that the average
precision is almost constant, regardless of the number of operations in the net-
work, with a range of results close to what we have previously obtained. This
result is corroborated by the analysis of the combination of operation weights.
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Embedding Embedding Embedding

BiLSTM

Rest of the
network

P@5 = [0.618; 0.622]

BiLSTM Conv

Rest of the
network

P@5 = [0.56; 0.58]

Conv Conv

Rest of the
network

BiLSTM

P@5 = [0.59; 0.61]

0.490.51 0.60.4 0.330.67

Fig. 3. Visualization of the network architecture with the applied weight on each opera-
tion. The weights have been averaged over multiple runs, the range of P@5 are obtained
on the proxy dataset. For the central case, we also averaged over the kernel size.

The Fig. 4 shows examples of architecture for different combinations of opera-
tions with associated weights. This time the operations are assigned sequentially
(i.e. One after the other) forming a deeper network. The blocks in hatched areas
in Fig. 4 are partially or totally part of a constraint as in the previous subsec-
tion. Here, the blocks “Rest of the network” represent the following layers in
the network, not shown for the sake of clarity, and still followed by the atten-
tion and classification modules. As previously, the weights displayed for each
type of architecture are the averages obtained from multiple runs of the NAS.
We note on the Fig. 4 that the weights on additional layers are small compared
to those that bypass it. This trend has been observed in all experiments and
suggests that, given our operations pool, additional layers do not provide much
more information. Thus, the information important for the result is extracted
by layers that take the embedding as input.

BiLSTM

Conv

Rest of the
network

BiLSTM

BiLSTM

Rest of the
network

Conv

BiLSTM

Rest of the
network

Conv

Conv

Rest of the
network

Embedding Embedding Embedding Embedding

0.71
0.29

0.67
0.33

0.65
0.35

0.69
0.31

Fig. 4. Visualization of the network architecture, when the network is deeper. The
dotted line represents the linear combination of all the layers outputs, with the weight
applied on each outputs. The weight indicates that layers which take the embedding
layer as input, have a predominant importance on the final result.
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4 Experimental Results

We have conducted a number of experiments to evaluate how the proposed
XMC-NAS method can help design an efficient neural network model for multi-
label text classification.

4.1 Datasets and Evaluation Metrics

We conducted our study on three of the most popular XMC benchmark datasets
downloaded from the XMC repository2. These datasets are considered large
scale, with the number of class labels ranging from 4,000 to 30,000, which are
listed from smallest to largest (in term of number of labels) by EURLex-4K,
AmazonCat-13K, and Wiki10–31K summarized in Table 1. We followed the same
pre-processing pipeline as the one used in [24]. To create the validation set we
perform a split with the same initialization seed for all experiments. As evalu-
ation metrics we used the Precision at k denoted by P@k, and the normalized
discounted cumulative gain at k denoted by nDCG@k [5]. Both metrics are
standard and widely used in the state of the art references.

Table 1. Statistics of XMC datasets used in our experiments. L: # of classes.

Dataset # of
Training
examples

# of Test
examples

L Avg. of class
labels
per example

Avg. size of
classes

EURLex-4K 15,539 3,809 3,993 25.73 5.31

Wiki10–31k 14,146 6,616 30,938 8.52 18.64

AmazonCat-13K 1,186,239 306,782 13,330 448.57 5.04

4.2 Architecture Search Evaluation

This section presents the data and the hyperparameters that we have used dur-
ing the search phase of our method. Finally, we present the most performing
architecture that has been discovered on the proxy dataset.

Parameters and Data. We performed the search phase on the relatively small
EURLex-4K dataset for scalability considerations, we call it the proxy dataset.
In each experiment we create a base population of 20 networks. We then apply 50
rounds of mutations. For our experiments we have used the same hyperparame-
ters as in [24], for the training of each sampled network. Namely, the optimizer
was Adam [8] with a learning rate set to 0.001, and the maximum number of
epochs were set to 30 epochs with early stopping. To be consistent with [24] we
have used the same number of hidden states for the LSTM, which are specified in
2 http://manikvarma.org/downloads/XC/XMLRepository.html.

http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 2. Hyperparameters used for the training of the discovered model.

Dataset Valid size BiLSTM Hidden size Fully connected

EURLex-4K 200 256 [512,256]

Wiki10–31k 200 256 [512,256]

AmazonCat-13K 4000 512 [1024,512,256]

Table 2. The training stops if the performance of the network does not increase
during 50 consecutive steps. We have used the cross-entropy loss function as
proposed in [13] for training the models.

The Discovered Architecture. The architecture found by XMC-NAS, consists
of two BiLSTMs that take the same input and holds their own representation.
The outputs of the two BiLSTMs is then concatenated along the hidden dimen-
sion, and given as the input of the self-attention block. Finally, we use a chain
of fully connected networks to classify the sequence. For the training detail we
use the same as presented in the previous paragraph (see also Table 2).

The architecture of the network discovered by XMC-NAS is presented in Fig. 5.

Embedding
BiLSTM

BiLSTM
Concat Attention module Classification module

Fig. 5. The discovered network by XMC-NAS, is composed of two BiLSTM whose outputs
are concatenated, and then passed in an attention module followed by fully connected
layers.

4.3 Performance Evaluation

In this section we will present the results obtained by the XMC-NAS discovered
architecture (Fig. 5) on various XMC datasets (Table 1). First we present the
results obtained on the proxy dataset (EURLex-4K) used for the search phase.
Finally, we evaluate the performance of this discovered architecture, transferred
on the other datasets. To train our network, we use 2 Nvidia GV100, with data
parallelism training. The search time on the proxy dataset, depending on the
configuration, ranges from 6 hours to 5 days. We compare the results of our
method to the most representative methods on XMC (with the results provided
by the authors in corresponding papers). Some of these techniques are deep learn-
ing based like MLC2Seq [16], XML-CNN [13], Attention-XML [24]. The others
techniques are, AnnexML [21], DiSMEC [1], PfastreXML [5] and Parabel [19].

EURLex-4K Results. As presented in the left-hand side of the Table 3 we
have obtained an improvement on P@1, P@3 and P@5 with respect to the state
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Table 3. Comparison performance table on three datasets. Our methods surpass the
state of the art in 4 cases and get competitive results that really close to the state of
the art otherwise.

EURLex-4K Wiki10–31K AmazonCat-13K

Methods P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

AnnexML 0.796 0.649 0.535 0.864 0.742 0.642 0.935 0.783 0.633

DiSMEC 0.832 0.703 0.587 0.841 0.747 0.659 0.938 0.791 0.640

PfastreXML 0.731 0.601 0.505 0.835 0.686 0.591 0.917 0.779 0.636

Parabel 0.821 0.689 0.579 0.841 0.724 0.633 0.930 0.791 0.645

XML-CNN 0.753 0.601 0.492 0.814 0.662 0.561 0.932 0.770 0.614

AttentionXML-1 0.854 0.730 0.611 0.870 0.777 0.678 0.956 0.819 0.669

XMC-NAS 0.858 0.738 0.620 0.849 0.772 0.681 0.951 0.813 0.664

of the art. The shown precisions are the average over 3 different initializations. A
significant improvement is obtained on the precision at 3 and 5, where we obtain
0.738 and 0.620 respectively compared to 0.730 and 0.611 before. The Fig. 6a
presents the evolution of P@5 and the nDCG@5 over the validation set with
respect to the number of epochs. We can observe that our network has a faster
convergence. The results is obtained around 15 epochs and after this point, the
improvement is relatively small, which indicates that the network might overfit.
It is not impossible that the improvement obtained is due to a larger network.
However, we have systematically observed faster convergence in all the cases we
have experienced. Furthermore, the contribution of the embedding or attention
module on the results is not yet clear, as we have not yet studied the impact of
these modules.

Architecture Transfer Results. We train and evaluate the discovered archi-
tecture following the same training procedure as defined in Sect. 4.2 and using

Fig. 6. Plot of the nDCG@5 and P@5 on the validation set, on two different datasets.
We notice, the discovered architecture have a faster convergence compared to the cur-
rent state of the art. In the 6a our method get better final results, in 6b our final results
(around epoch 15) are close.
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the hyperparameters presented in Table 2 on the two other datasets. The mid-
dle and right side of Table 3 show the comparison of the architecture discovered
by XMC-NAS on EURLex-4K with others methods. We notice that the best dis-
covered architecture transferred to larger datasets obtains results close to the
current state of the art. In some cases we slightly exceed the results as in the
case of P@5 on the Wiki10–31K. Moreover we notice in Fig. 6b that our methods
still have a faster convergence, the same trend as observed on proxy dataset (cf.
Fig. 6a). Moreover, our results on Wiki10–31K and AmazonCat-13K are obtained
in half of the epochs required by AttentionXML-1.

5 Summary and Outlook

We have presented in this work an automated method to discover architecture
for the specific task of extreme multi-label classification, based on the regularized
evolution [20] and with a domain oriented pool of operations. This method has
found architectures that have provided competitive results with the existing
state of the art methods [24], and in some cases overpassed them. Moreover, our
method showed faster convergence rates on all datasets, which are more likely
due to a higher complexity of the model. In addition, trainable weights were
introduced on each operation of the pool in order to provide more understanding
on the impact of each architecture blocks. Many directions are possible as future
steps. This includes the tuning of the various hyperparameters, the study of the
impact of attention and embedding modules, the development of a method that
can handle the scale of datasets, and speed up the search process (e.g. Using
transfer learning).
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Abstract. Non-linear source separation is a challenging open problem
with many applications. We extend a recently proposed Adversarial Non-
linear ICA (ANICA) model and introduce Cramer-Wold ICA (CW-ICA).
In contrast to ANICA, we use a simple, closed–form optimization target
instead of a discriminator–based independence measure. Our results show
that CW-ICA achieves comparable results to ANICA while foregoing the
need for adversarial training.

Keywords: Non-linear independent component analysis ·
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1 Introduction

Linear Independent Components Analysis (ICA) has become an important data
analysis technique. For example, it is routinely used for blind source separation
in a wide range of signals. The objective of ICA is to identify a linear transforma-
tion such that after the projection, the components of the dataset are indepen-
dent. More formally, the aim is to find an unmixing matrix W that transforms
the observed data X = (x1, . . . , xn)T into maximally independent components
S = WX = (s1, . . . , sn) with respect to some measure of independence. Com-
monly the independence is approximated using a measure of nongaussianity (e.g.
kurtosis [3,12], skewness [22]).

An obvious drawback of ICA is the restriction to linear transformations.
Unfortunately, in many practical applications, this linearity assumption does
not hold, which motivates research into Nonlinear ICA (NICA) [11,13].

One of the key challenges in developing a nonlinear variant of ICA is devising
an efficient measure of independence. The currently most popular approach is to
constrain the transformation so that independence can be efficiently estimated
[1,2,8,26,28]. Another approach is to learn the independence measure. This can
be achieved using Generative Adversarial Networks (GANs) [9]. In [4] (ANICA
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- Adversarial Non-linear ICA) authors demonstrate the efficacy of using GAN
for learning an independence measure. They show that GAN based indepen-
dence measures combined with an autoencoder architecture can be used to solve
nonlinear blind source separation problems.

Unfortunately, the use of adversarial training in ANICA comes at the cost
of added instability, as also noted by the authors. Our main contribution is
developing an effective independence measure that does not require adversarial
training, and matches ANICA performance. In other words, we found that the
adversarial training is not the key contributor to the efficacy of ANICA, and
based on this insight we developed a simpler, closed-form independence measure.
We demonstrate its efficacy on standard blind source separation problems.

This paper is structured as follows. We start by discussing related work in
Sect. 2. In Sect. 3 we describe the key contribution: the independence measure
based on Cramer-Wold metric. ICA based on the introduced independence mea-
sure is described in Sect. 4. Finally, we report experimental results in Sect. 5.

2 Related Work

The fundamental problem in solving NICA is that the solution is in principle
non-identifiable. Without any constraints on the space of the mixing functions,
there exists an infinite number of solutions [14]. To illustrate, consider that there
is an infinite number of possible nonlinear decompositions of a random vector
into independent components, and those decompositions are not related to each
other in any trivial way. A related problem is that measuring true independence
between distributions is often intractable. While ICA can be efficiently solved
using approximated independence measures, such as kurtosis, these approaches
do not transfer to the nonlinear scenario.

Perhaps the most common approach to solve NICA, which addresses both of
the problems, is to pose a constraint on the nonlinear transformation [1,2,8,20,
26]. One of the first attempts was to generalize ICA by introducing nonlinear
mixing models in which case the solution is still possible to identify [20]. In
[19] authors propose Reconstruction ICA (RICA) which requires that mixing
matrix W is as close as possible to orthonormal one WWT = I. Thanks to such
constraints, one can directly apply independent measures from the classical ICA
method.

The aforementioned approaches are arguably limited in their expressive
power. In a more recent attempt [8] the authors propose a neural model for mod-
eling densities called Nonlinear Independent Component Estimation (NICE).
The authors parameterize the neural network so that it is fully invertible and
the output distribution is fully factorized (independent). However, the model
incorporates learning the unmixing function using maximum likelihood, which
requires specifying a prior density family.

Our work is most closely related to the recently introduced Adversarial Non-
linear ICA model (ANICA) [4]. In contrast to the previous methods, ANICA
does not make any strong explicit assumptions on the transformation function.
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Instead, a clever adversarial-based measure for estimating and optimizing inde-
pendence efficiently is proposed. In this work, we will take a closer look at this
measure, and argue that the basic premise permits the construction of an effec-
tive non-parametrized independence measure.

Finally, let us note that a large process has been made in learning factorized
representations using deep neural networks [5,7]. What separates ANICA and
our method from the previous work is the direct encouragement of independence
in the latent space. A similar path was also taken by [17] where the VAE loss
function is augmented with a cost term directly encouraging disentanglement.

3 Independence Measure by Cramer-Wold Distance

In this chapter we develop an efficient independence measure, which contrary to
the ANICA model, does not require adversarial training. Our approach can be
effectively used to solve nonlinear ICA, in contrast to many other metrics used
solely in the context of linear ICA.

In the following, we discuss three independence metrics. Firstly, we consider
distance correlation, and adversarial–based metric used in ANICA. In the last
part, we introduce our Cramer-Wold based independence metric.

Distance Correlation. One of the most well-known measures of independence of
random vectors X and Y is the distance correlation (dCor) [24], which is applied
in [21] to solve the linear ICA problem. Importantly, dCor(X,Y) equals zero if
the random vectors X and Y are independent. Moreover, dCor has a closed-form
estimator.

However, to ensure the independence of components of a given random vec-
tor X in R

D, one has to compute dCor(XJ ,XJ ′) for every subset1 of indexes
J ⊂ {1, . . . , D}, where J ′ denotes the complement set of J and XJ is the restric-
tion of X to the set of coordinates given by J . As this procedure has exponen-
tial complexity with respect to the number of dimensions, we decided to use
a simplified version of dCor which enforces only pairwise independence of the
components:

dCorpairwise(X) =
∑

i<j

dCor(Xi,Xj),

where X = (X1, . . . ,XD).

Adversarial–Based Independence Metric. Now let us describe the adversarial
approach used in ANICA. The basic idea is to leverage that a random permu-
tation of features in a sample produces samples that come from a distribution
with independent components. More precisely, let X be a random vector which
comes from pdf f(x1, . . . , xD), and let X = (xi)i=1..n ⊂ R

D be a sample from
X, where xi = (x1

i , . . . , x
D
i ). We will describe how to draw a sample from the

density
F (x1, . . . , xD) = f1(x1) · . . . · fD(xD),

1 Except for the trivial cases when either J or J ′ is emptyset.
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where fi are the marginal densities of f . To do this, simply randomly choose
maps σi from {1, . . . , n} into itself, and consider

Xshift := (yi)i=1..n, where yi = (x1
σ1(i)

, . . . , xD
σD(i)).

Then Xshift comes from the pdf F , which has independent components. Con-
sequently, if X and Xshift are close, then the same holds for f and F , and
consequently f has independent components. In ANICA adversarial training is
used to reduce the distance between X and Xσ.

Cramer-Wold Independence Metric. The application of adversarial training in
ANICA can lead to instability, as discussed by the authors, and slower training.
In this paper, we propose an alternative independence measure. Our main idea
is to compute the distance between X and Xσ without resorting to adversarial
training.

In order to achieve this, one can choose commonly used metrics, such as the
Kullback-Leibler divergence [18] or Wasserstein distance [27]. Instead, due to its
simplicity, we have decided to use the recently introduced Cramer-Wold distance
dcw [25], which also possesses the advantage of having the closed-form for the
distance of two samples2 X = (xi)i=1..n, Y = (yi)i=1..n ⊂ R

D:

d2cw(X, Y ) =
1

2n2√
πγ

( ∑

ii′
φD(

‖xi − xi′‖2
4γ

) +
∑

jj′
φD(

‖yj − yj′‖2
4γ

) − 2
∑

ij

φD(
‖xi − yj‖2

4γ
)
)
.

where the bandwidth γ is a hyperparameter, which may be set accordingly
to the one-dimensional Silverman’s rule of thumb to γ = ( 4

3n )
1/5. The function

φD is computed with the asymptotic formula: φD(s) ≈ (1 + 2s
D )−1/2.

As a final step, we normalize each component of Xshift to ensure that the
Silverman’s rule of thumb is optimal, and define our independence metric as:

iiD(X) := d2cw(X, cn(Xshift)), (1)

where cn(Y ) is the componentwise normalization of Y .

4 Algorithm

We are now ready to define CW-ICA, a nonlinear ICA model based on the
Cramer-World independence metric. Following ANICA, we use an Auto-Encoder
(AE) architecture.

Let X ⊂ R
N denote the input data. An Auto-Encoder is a model consisting

of an encoder function E : R
N → Z and a complementary decoder function

D : Z → R
N , aiming to enforce coding of the input variables that minimize the

reconstruction error:

rec_error(X; E ,D) =
n∑

i=1

‖xi − D(Exi)‖2. (2)

2 In the computation we apply the equality φD(0) = 0.
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Algorithm 1. (CwICA train loop)
input

data X ∈ R
d, with each sample in a separate row

encoder E , decoder D
repeat

sample a batch X of size n from X
apply encoder Z = EX
resample to obtain Zshift:
for i ∈ {1, . . . , n} do

for j ∈ {1, . . . , d} do
k ∼ Uniform({1, . . . , d}) // sample col. index
Zshifti,j = Zi,k

end for
end for
normalize Zshift by element-wise rescaling

Ẑshift·,j =
Zshift·,j − mean(Zshift·,j)

std(Zshift·,j)
for j = 1, . . . d

J = d2
cw(Ẑshift, Z) · rec_error(X; E , D)

Update E and D to minimize J
until converged

The goal of our method is to train an encoder network EX which maps data
to informative, statistically independent features Z. In order to achieve this, we
introduce an independence measure on the latent space, by taking advantage
of the independence index iiD(EX) defined in (1). We denote this model as the
CW-ICA(Cramer-Wold Independent Component Analysis).

To obtain a procedure independent of a possible rescaling of the data, we
have decided to use a multiplicative model instead of an additive:

cost(X; E ,D) = iiD(EX) · rec_error(X; E ,D). (3)

In contrary to ANICA we do not use an adversarial objective, propos-
ing instead a closed-form solution based on the independence index. However,
enforcing independence by itself does not guarantee that the mapping from the
observed signals X to the predicted sources Z is informative about the input.
Therefore, the decoder constrains the encoder, as proposed in ANICA.

As explained earlier, in the case of the Cramer Wold index it is important
to normalize the resampled (permuted) latent variables, which additionally pre-
vents the encoder’s output from vanishing or exploding in magnitude.

In addition we implement another AE-based, nonlinear model, which follows
the same architecture as CwICA, but substitutes iiD(EX) by dCor(Ẑ). From
this point onwards and in all figures and tables, for simplicity, we shall also use
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the dCor notation instead of the dCorpairwise. The Ẑ stands for the component-
wise normalized features of the encodings of X. We refer to this method as
dCorICA.

5 Experiments

We evaluate our method on mixed images and synthetic dataset. For comparison
we use the nonlinear method ANICA [4] and the PNLMISEP [29], an extension
to the MISEP method [1,2]. It should be noted that the PNLMISEP is designed
especially for post-nonlinearity, not for the more general nonlinear mixing func-
tions used in presented experiments. We also report the results obtained on the
same datasets by four selected linear models. We choose the popular FastICA
algorithm [12], the Information-Maximization (Infomax) approach [3], the Joint
Approximate Diagonalization of Eigenmatrices (JADE) [6] and the Pearson [23]
system PearsonICA [16]. We use the implementations of the linear models in R
packages ica [10] and PearsonICA [15].

5.1 Comparison with ANICA

The CwICA and dCorICA models follow a similar architecture as ANICA, but
use a closed-form independence measure on the latent variables, as opposed to
the adversarial approach. We compare our algorithms with the ANICA model
using the synthetic signals dataset defined in [4].

The dataset in the nonlinear setting consists of n = 4000 observations X ∈
R

n×24 which are obtained by applying mixing function X = tanh(tanh(Y A)B)
to the independent sources Y ∈ Rn×6, where A and B are sampled uniformly
from [−2, 2] and tanh is the hyperbolic tangent function. We select the first 500
samples as the test dataset, and train on the remaining 3500 samples. We fit
ANICA using the best hyper-parameters setting for this dataset reported by
[4]. For CwICA we perform a grid search on the learning rate and bandwidth,
using batches of size 256 and choose the model with the smallest total loss on the
validation dataset. The validation dataset has a size of 500 and is drawn from the
same distribution as the train and test sets. All other model hyper-parameters are
set as in ANICA. We also ran a similar grid search on the learning rate and batch
size for dCorICA. We do not execute the PNLMISEP, as the implementation of
this method is not suitable for input data of this dimensionality.

We also report the performance of the nonlinear methods on linear data. The
linear dataset is obtained from the same independent sources Y by a transforma-
tion defined by the matrix A. We train the models using the same configuration
as in the nonlinear experiment.

We evaluate the methods on test data using the mean dCor distance between
all possible pairs of the unraveled latent independent factors Z. In addition, we
compute the mean maximum correlation (denoted as max corr) between the
sources Y and the results Z. As ICA extracts the source signals only up to a
permutation, we consider all possible pairings of the predicted signals with the



300 P. Spurek et al.

source signals and report only the highest max corr value. Before computing
the dCor, the latent variables Z are normalized. The results are presented in
Tables 1 and 2. The original sources and the recovered by CwICA signals are
presented in Fig. 3.

CwICA behaves very well on the nonlinear dataset, achieving a similar
max corr value to ANICA, at the same time outperforming it in MSE and
dCor criteria. This makes the method the best choice if a balanced solution is
desired.

Fig. 1. The number of iterations versus max corr (left), MSE (middle) and
dCor(right) for ANICA (black) and CwICA (red) Please note that the MSE and
dCor results are plotted in logarithmic scale on the y-axis. This experiment is separate
to the one presented in Table 1, therefore the results may slightly differ. (Color figure
online)

Fig. 2. The ranking (lower is better) of algorithms based on mean maximum correlation
between the latent variables and sources (left-hand side) and dCor (right-hand side) in
dimension d = 10.

Table 1. Results on nonlinear synthetic data

ANICA CwICA PNLMISEP dCorICA PearsonICA icafast exp icaimax ext jade

dCor 0.0027 0.0017 — 0.0000 0.0017 0.0017 0.0017 0.0017

max corr 0.9835 0.9697 — 0.3033 0.8969 0.8926 0.8940 0.9414

MSE 0.0516 0.0332 — 0.1475 — — — —
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Table 2. Results on linear synthetic data

ANICA CwICA PNLMISEP dCorICA PearsonICA icafast exp icaimax ext jade

dCor 0.0027 0.0175 0.0080 0.0000 0.0038 0.0038 0.0038 0.0038

max corr 0.8913 0.7805 0.9012 0.2514 0.9997 0.9997 0.9998 0.9984

MSE 0.0333 0.0094 — 0.1746 — — — —

Fig. 3. The original sources (left) and the independent components predicted by
CwICA (right) obtained from nonlinear mixtures.

In addition, we run the ANICA and CwICA models 5 times with different
seeds. We pick the best model in terms of dCor and summarize the reported
metrics on the validation dataset during training in Fig. 1. In this experiment,
both models were trained using a batch size of 256.

In the linear synthetic data experiments, all non-linear models perform worse
than the classical ICA algorithms. This sustains the claim that if the linear
characteristic of the mixing function is assumed beforehand, the most efficient
is the use of dedicated methods.

The dCorICA algorithm, as expected, achieves the lowest dCor cost in a both
linear and nonlinear setting; however, fails to recover the original sources. This
may suggest that the model focuses on the minimization of the independence
loss, disregarding the information in the input.

5.2 Comparison on Image Dataset

One of the most popular applications of ICA is the separation of images. We
conduct experiments on a dataset composed of images from the USC-SIPI Image
Database, scaled to 100 × 67 pixels and mixed using X = f(tanh(Y A)B),
where Y are the original sources, X are the observations, dim(Y ) = dim(X),
dim(X) ∈ {2, 5, 10, 20}, f(x) = x2 + x3 is applied element-wise, and A and B
are sampled uniformly from interval [−2, 2]. In addition, we prepare a linear
dataset, where the mixing function is defined by the transformation imposed by
a random matrix C sampled uniformly from [−2, 2]. The components of Y are
separate, flattened, gray-scale images, chosen at random from a dataset of size
100. The observations X are normalized before passing to the algorithms. The
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Table 3. Results on nonlinear image dataset. For dimension 10 and 20 the PNLMISEP
did not converge.

max corr dCor

2 5 10 20 2 5 10 20

ANICA 0.78 0.67 0.69 0.7 0.17 0.13 0.10 0.14
CwICA 0.79 0.69 0.66 0.68 0.22 0.19 0.15 0.12
PNLMISEP 0.77 0.71 – – 0.18 0.15 – –
dCorICA 0.79 0.68 0.73 0.67 0.24 0.20 0.20 0.23
PearsonICA 0.73 0.61 0.59 0.57 0.29 0.21 0.12 0.10
icafast 0.75 0.59 0.59 0.57 0.21 0.19 0.10 0.09
icaimax 0.75 0.60 0.59 0.57 0.21 0.19 0.10 0.09
jade 0.74 0.59 0.59 0.57 0.25 0.20 0.11 0.10
baseline 0.70 0.60 0.61 0.59 0.36 0.24 0.15 0.11

Table 4. Results on linear image dataset. For dimension 10 and 20 the PNLMISEP
did not converge.

max corr dCor

2 5 10 20 2 5 10 20

ANICA 0.90 0.74 0.73 0.7 0.16 0.11 0.09 0.14
CwICA 0.85 0.73 0.74 0.68 0.23 0.15 0.11 0.10
PNLMISEP 0.87 0.74 – – 0.14 0.09 – –
dCorICA 0.89 0.74 0.76 0.57 0.30 0.15 0.11 0.28
PearsonICA 0.91 0.82 0.8 0.67 0.25 0.14 0.11 0.18
icafast 0.92 0.83 0.82 0.75 0.22 0.15 0.10 0.08
icaimax 0.91 0.84 0.82 0.77 0.24 0.14 0.10 0.10
jade 0.93 0.84 0.79 0.68 0.23 0.14 0.10 0.09
baseline 0.85 0.72 0.71 0.65 0.33 0.16 0.11 0.09

numbers of distinct observation examples for each dimension are 50, 50, 20, 10,
respectively.

For each dim(X) we test the ANICA, CW, dCor, PNLMISEP, FastICA,
Infomax, Jade and PearsonICA algorithms. All the nonlinear models are trained
using the same configurations as in the previous subsection. We report the mean
max corr and dCor distance for each method in Table 3 (nonlinearly mixed
data) and in Table 4 (linearly mixed data). We also report the MSE loss for
auto-encoders (ANICA, CW, dCor) in Table 5.

CW-ICA achieves high max corr on the nonlinearly mixed data, comparable
to the other non-linear ICA algorithms (in fact CwICA gets the best results
among all ICA algorithms for dim(X) = 2) and strongly outperforms ANICA
and dCorICA separations on reconstruction loss.
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Table 5. Reconstruction loss (MSE) for auto-encoders on the nonlinear image dataset.

dim ANICA CwICA dCorICA

2 0.5839 0.0097 0.6041
5 0.5811 0.0181 0.5491
10 0.5146 0.0389 0.4616
20 0.5299 0.2748 0.5079

Additionally, dCorICA gives satisfactory results on the nonlinear setting only
for low dimensional data (dim(X) ∈ {2, 5}). For dim(X) ≥ 10 dCorICA still
manages to compete with other models in maxcorr, but evidently obtains the
worst results in dCor, although it minimizes this measure directly. This dispro-
portion can be especially observed in Fig. 2, which presents the mean rank of
the methods based on the two metrics.

For higher dimensions, the nonlinear methods perform better in maxcorr;
however, fail to surpass the classical algorithms in terms of dCor. An opposite
trend in the linear data experiments may be observed for the lower dimensions
(up to 10). In general, the linear methods achieve much better maxcorr, and
worse (higher) dCor. For dim(X) = 20 in both nonlinear and linear setting, the
results obtained by auto-encoders are even worse than the baseline scores.

6 Conclusions

In this paper, we have proposed a closed-form independence measure and applied
it to the problem of nonlinear ICA. The resulting model, CwICA, achieves com-
parable results to ANICA, while by using a closed-form formula avoids the
pitfalls of adversarial training. Future work could focus on scaling up these
approaches to higher-dimensional datasets and applying the developed inde-
pendence metric in other contexts. Finally, we found that nonlinear methods
generally underperform on linearly mixed signals, which could also be addressed
in future work.
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Abstract. Time series are usually complicated in nature and contains
many complex patterns. As such, many researchers work on different
ways to pick up such patterns. In this paper, we explore using Resid-
ual Networks (a Convolutional Neural Network) as a feature extractor
for Oblique Random Forest. Here, we extract features using Residual
Networks, and pass the extracted feature set to Oblique Random Forest
for classification of time series. Based on the experiments on 85 UCR
datasets, we found that using features extracted from Residual Network
significantly improves the performance of Oblique Random Forest. In
addition, using including intermediate features from Residual Networks
significantly improves the performance of Oblique Random Forests.

Keywords: Time series classification · Oblique Random Forests ·
Feature extraction

1 Introduction

Time series are frequently found in many real-world applications, which includes
electronic health records [23], human activity recognition [22,27], acoustic scene
classification and cyber-security [25]. Time series can be considered as a series of
data where the order which the series is presented is important [7]. This means
that useful information will be lost when the values in the series are shuffled.

However, the complexity of time series data and the presence of noise make
time series classification difficult. In a survey article, data mining experts had
identified Time Series Classification as one of the most challenging problems [29].
Many researchers had made many different attempts to classify time series, with
hundreds of different algorithms being proposed to solve such problems since
2015 [1].

A group of classifiers performs classification based on the similarity between
the given series and one of the known series. In this case, a similarity measure is
used to measure how similar between 2 series and a 1-Nearest Neighbour classi-
fier is usually employed to label the unknown series with the label of the closest
known series. Works on such classifiers often proposed different distance mea-
sures which compensate for small alignment difference. Such distance measures
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includes Dynamic Time Warping (DTW), Derivative DTW [8] and Derivative
Transform Distance [10].

Other methods involves the use of feature extractors to classify time series.
Many different strategies have been employed. In algorithms such as Time Series
Forest [6] and Time Series Bag of Features [2], a shorter segment of the time
series that contains the most useful information can be extracted before clas-
sification. Another group of classifiers such as Shapelet Transform [3,12] and
Learned Shapelets [9] picks up the presence of useful short patterns in the input
series before classification. Other methods such as Bag of SFA Symbols [24] picks
up the number of occurrence of useful short patterns in the input series before
classification.

Ensembles are also popular among researchers as they combine different tech-
niques which can produce superior performance in many datasets. Authors of
[18] proposed combining 11 different distance measurement methods to create
an Elastic Ensemble. The Collection of Transformation Ensemble (COTE) com-
bines Elastic Ensemble with 3 sets of 8 classifiers, each set of classifiers trained
on extracted features from Shapelet Transform, autocorrelation function and
power spectrum. However, COTE have high time and memory complexities,
which makes such ensembles not practical to be deployed in real-time settings.

Recently, deep learning techniques are getting popular as solutions for time
series classification. Convolutional Neural Networks such as Fully Connected
Networks and Residual Networks, are used as both a feature extractor and a
classifier [28]. Such networks pick up local patterns found in the series and per-
form classification on the extracted features. In [14], Fully Convolutional Net-
works features are combined with Long Short Term Memory features to improve
the classification performance. Echo Memory Networks employs convolutional
layers to extract features from Echo State Networks (a randomised recurrent
neural network).

Random Forests [4] are getting popular in other classification problems. Such
models are easy to interpret yet can achieve good classification performance.
Some researchers have proposed improvements to the original random forests.
These include oblique random forest which uses oblique splits to separate the
classes [15,30]. In [30], oblique random forest outperforms the original random
forest.

In this work, we explore the effect of extracting features from Residual Net-
works and use them to train Oblique Random Forests. Here, we use Residual
Networks (ResNet) as a feature extractor, which will supply features to Oblique
Random Forests for classification. We proposed 2 different approaches to extract
features from ResNet: First method extracts features only on penultimate layer,
and another extracts features from all blocks.

The organisation of the paper is as follows: Sect. 2 gives a brief overview on 2
Convolutional Neural Networks, followed by Random Forests. Section 3 focuses
on our proposed method. Section 4 details the experiments setup and results.
Finally, Sect. 5 concludes the paper.
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2 Convolutional Neural Networks and Random Forests

In this section, we give a brief review on Fully Convolutional Networks, Residual
Networks, Random Forests and Oblique Random Forests.

2.1 Fully Convolutional Networks

Fully Convolutional Networks (FCN) has proposed as an effective solution to
semantic segmentation on images [19]. In the original problem, the classifiers
perform classification on every pixel in the image, which can be used to separate
objects from the background.

For time series classification, the time series can be treated as an image with
a width of 1. FCN is used as a feature extraction technique in Time Series Clas-
sification. In [28], FCN is constructed with 3 convolutional blocks. Each convo-
lutional block comprises of a convolutional layer, batch normalisation layer [13]
and ReLU activation layer [21]. The following equations outlines the operation
of each convolutional block:

y = W ∗ x + b (1)
s = BN(y) (2)

h = ReLU(s) (3)

where W represents the convolution kernel weights and b represents the bias.
ReLU function returns 0 if s is negative and s otherwise.

This network structure differs from the original FCN structure where it does
not contain any pooling layers. This means that all output series from every
convolutional block will have the same length as the original time series. The
network configurations of the FCN can be found in [28]. At the end of the
network, a global average pooling layer [17] and a softmax layer is attached to
the back of the network.

2.2 Residual Networks

Residual Networks (ResNet) can be used to extend the original Fully Connected
Networks by having shortcut connections across the convolutional blocks. These
connects allows gradients to flow through to layers at the back of the network,
thus minimizing the vanishing gradient problem [11].

For time series classification, the authors expanded FCN into a deep network.
The residual network comprises of 3 residual blocks, each residual block contains
3 convolutional blocks as shown in Eqs. 1–3. The residual connection is added
before the activation function near the end of each residual block. The following
equations describes the residual block:
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h1 = Blockk1(x) (4)
h2 = Blockk2(h1) (5)
h3 = Blockk3(h2) (6)

y = h3 + x (7)

ĥ = ReLU(y) (8)

where Blockki
refers to the ith convolutional block. ReLU function returns

0 if s is negative and s otherwise.
Like Fully Convolutional Layer, an average pooling layer [17] and softmax

layer is attached to the end of the network.

2.3 Random Forests

Random Forests [4] is an ensemble of decision trees which uses concepts of both
Bootstrap Aggregating (Bagging) and random subspace to diversity its trees
within the ensemble [26]. In Bagging, multiple datasets are generated by ran-
domly picking samples from the original dataset with replacement, which is used
to train a decision tree is trained on every generated dataset.

At each node, only a random subsample of features is considered to be
selected as the best feature for splitting. Once the best feature is selected from
the subsample, a best split is identified and made along that feature axis. The
number of features in a subsample can be set using mtry parameter.

The base classifier used in the ensemble is Classification And Regression
Tree (CART) [4]. To select the best split, we use Gini-impurity as the evaluation
criterion, which we will minimise. Gini-impuirity is defined in Eq. 9.
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where nt, nl
t, and nr

t refers to the number of samples that reaches the parent
node, the left child node, and the right child node, respectively, K refers to the
number of classes, nl

wi
and nl

wi
refers to the number of samples that reaches the

left child node and the right child node respectively, that contains class wi.

2.4 Oblique Random Forests

Oblique Random Forest differs from the original Random Forests that it uses
oblique splits instead of axis-parallel splits. This gives decision trees flexibility
to produce splits which effectively separate the classes.

One method used to generate hyperplanes which separate the classes is Mul-
tisurface Proximal Support Vector Machines (MPSVM). However, the original
Support Vector Machine is developed for binary classification only. In order
for MPSVM to work on multiclass problems, researchers have to break down
the classification problem into smaller ones using methods such as “one-vs-all”.
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In [30], the authors divide the classes into 2 groups based on Bhattacharyya
distance.

In another work, authors propose improvements to Oblique Random For-
est [15]. This variant of Oblique Random Forests apply a popular “one-vs-all”
concept by creating K partitions. Then, a ‘best split’ is selected on each of the
partitions. Finally, the splits are evaluated based on Gini-impurity and the best
split (among all of the ‘best splits’) is selected.

3 Proposed Solution

In this work, we extract features from ResNet and use the extracted features
to train Oblique Random Forests. There are 2 approaches which we can extract
features from ResNet. For the first method, we extract the features only from
the penultimate layer of ResNet. We first train an original ResNet with the same
configurations as [28]. Once the ResNet model is trained, we remove the softmax
layer at the end of the trained network. We then pass the inputs through the net-
work, and collect the features at the end of network (or the global poling layer).
Here, we extract features from the output of the global average pooling layer
as it significantly reduces the number of features in the extracted feature set,
which in turn significantly reduces training time complexity of random forests.
We should get a feature set containing 128 features.

Fig. 1. Feature extraction from ResNet

For the second method, we extract the features at the ends of every residual
block in ResNet. In this way, we also extract previously acquired features which
can also be useful for classification. Here, the trained ResNet model is identical
to the ResNet model in the first method. We attach a global average pooling
layer to the outputs of every residual block, and features obtained from 3 global
average pooling layers are used as 3 separate feature sets. Global average pooling
will reduce the number of features to 64, 128, and 128, which helps to save
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computational costs. Finally, a classifier is trained on the each feature set, giving
us with 3 classifiers. Doing so can encourage more diversification of the trees in
ORF. Figure 1 illustrates the process.

For the classification phase, we first perform standardization on the extracted
features such that the mean of each feature in the feature set has mean of 0
and standard deviation of 1. Once the feature set is standardized, we train an
Oblique Random Forest since Oblique Random Forests performs better than
Random Forest in [30]. For both of the feature extraction techniques, we use the
improved version of Oblique Random Forests in [15]. For ResNet, we follow the
same network configurations as the model proposed in [28].

4 Experiments

4.1 Datasets

For the evaluation of our proposed idea, We use 85 UCR datasets. The length of
each sample is between 60 and 2709. The number of samples is between 16 and
8926. The number of classes ranges from 2 (binary) to 60. The datasets comes
from a wide range of problems such as electric device, sensor readings, motion
captures, spectrographs, ECGs, image outlines and simulated [1]. More details
on UCR datasets can be obtained in [5].

4.2 Experiment Setup

We follow the experiment setup in [20]. For each dataset, we use the same train-
ing/testing split given by [5]. The classifiers are trained only on the training set
and evaluated only on the testing set. For each dataset, We ranked the classifiers
based on classification accuracy. The best classifier is ranked 1, the second best
classifier is ranked 2, and so on. If there are ties, we average their ranks.

We follow the same network structure used in [28]. ResNet model comprises
of 3 residual blocks. Every convolutional layer in all residual blocks has 64, 128,
and 128 neurons respectively. In every residual block, the kernel length in layer
1, 2, and 3 is set to 8, 5, and 3 respectively. The models are trained with Adam
optimizer [16], with 1500 epochs.

For Oblique Random Forest (ORF), we set the total number of trees in the
ensemble to be 500 for each of our methods. For our second method, we set the
number of trees in each ORF be 166, bringing the total to 166 × 3 = 499 trees.
All trees are trained to full size without pruning. We do not tune the parameters
since no significant improvements in performance is observed when we attempt
to tune the mtry parameter. Hence, the mtry parameters is set based on the
following equation:

mtry = floor(
√
M) (10)

where M refers to the number of features.
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4.3 Results

To evaluate the performance of 2 different feature extraction methods, we repeat
the same experiment on the original dataset and extracted features from 2
different methods. Oblique Random Forest trained on the original dataset is
labelled ‘ORF’, Oblique Random Forest trained on feature extracted using the
first method is labelled ‘ORF-F1’, and Oblique Random Forest trained on fea-
ture extracted using the second method is labelled ‘ORF-F2’. We experimented
with Oblique Random Forests (ORF) used in the works in [15].

In addition, to give a brief idea on how our method compares with other algo-
rithms, we also compare with Euclidean Distance (ED), Dynamic Time Warping
(DWT), Derivative DTW (DDDTW), Derivative Transform Distance (DTDC),
Learned Shapelets (LS), Bag of SFA Symbols (BOSS), Time Series Forests
(TSF), Time Series Bag of Features (TSBF), Learned Pattern Similarity (LPS),
Shapelet Transform (ST), Elastic Ensemble (EE), Collection of Transformation
Ensembles (COTE), Multilayer Perceptions (MLP), Fully Connected Networks
(FCN), Residual Networks (ResNet) and Echo Memory Networks (EMN). The
results are detailed in Table 1, and summarized in Table 2.

4.4 Performance of Our Methods

Here, we compare the performance of our methods. We include ResNet as a
baseline classifier, which has average accuracy of 83.85% and average rank of
6.84.

Based on the results obtained, it is clear that Oblique Random Forests
requires useful features to be extracted as they performed poorly on the original
time series dataset. Residual Networks can serve as one of the useful feature
extractor for Oblique Random Forest. Average classification accuracy and rank
of ORF-F1 improves by 7.94% and 5.56 respectively.

However, ORF-F1 did not outperform Residual Networks. Average accuracy
and rank of ORF-F1 are 0.98% and 0.12 (respectively) worse than ResNet. In
addition, we observed that ORF-F1 wins in 34 datasets but loses in 38 datasets
(13 are ties). One reason could be that the useful features extracted from ResNet
might not be sufficient for Oblique Random Forests to make a reliable prediction.

ORF-F2 scored 0.71% higher accuracy and 0.81 better rank than ORF-F1.
ORF-F2 wins ORF-F1 on 43 datasets while loses on 24 other datasets. When
compared with ResNet, mean accuracy and rank of ORF-F2 are 0.13% and 0.69
(respectively) better than ResNet. ORF-F2 wins in 45 datasets but loses in 27
datasets.

When compared with other methods, ORF-F1 is ranked sixth, and ORF-F2
is ranked forth. The top 3 classifiers are given in this order: EMN, COTE, FCN.
For comparison, Residual Network is ranked fifth.

Our methods performed well among traditional Time Series Classification
methods. Both of our methods performs better all other traditional time series
methods except COTE. However, when comparing with other deep learning
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Table 1. Test accuracy (in %) and average ranks

Dataset ED DWT DDDWT DTDC LS BOSS TSF TSBF LPS ST EE COTE MLP FCN ResNet EMN ORF ORF-F1 ORF-F2

Adiac 61.1 60.4 70.1 70.1 52.2 76.5 73.1 77.0 77.0 78.3 66.5 79.0 75.2 85.7 82.6 82.9 74.7 82.6 82.6

ArrowHead 80.0 70.3 78.9 72.0 84.6 83.4 72.6 75.4 78.3 73.7 81.1 81.1 82.3 88.0 81.7 81.7 74.9 84.0 86.9

Beef 66.7 63.3 66.7 66.7 86.7 80.0 76.7 56.7 60.0 90.0 63.3 86.7 83.3 75.0 76.7 83.3 80.0 73.3 76.7

BeetleFly 75.0 70.0 65.0 65.0 80.0 90.0 75.0 80.0 80.0 90.0 75.0 80.0 85.0 95.0 80.0 80.0 75.0 85.0 85.0

BirdChicken 55.0 75.0 85.0 80.0 80.0 95.0 80.0 90.0 100.0 80.0 80.0 90.0 80.0 95.0 90.0 90.0 60.0 90.0 95.0

Car 73.3 73.3 80.0 78.3 76.7 83.3 76.7 78.3 85.0 91.7 83.3 90.0 83.3 91.7 93.3 81.7 80.0 93.3 93.3

CBF 85.2 99.7 99.7 98.0 99.1 99.8 99.4 98.8 99.9 97.4 99.8 99.6 86.0 100.0 99.4 100.0 90.2 99.7 99.8

Chlorine 65.0 64.8 70.8 71.3 59.2 66.1 72.0 69.2 60.8 70.0 65.6 72.7 87.2 84.3 82.8 84.5 80.3 84.6 85.2

CinCECGtorso 89.7 65.1 72.5 85.2 87.0 88.7 98.3 71.2 73.6 95.4 94.2 99.5 84.2 81.3 77.1 84.8 77.3 81.7 84.5

Coffee 100.0 100.0 100.0 100.0 100.0 100.0 96.4 100.0 100.0 96.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Computers 57.6 70.0 71.6 71.6 58.4 75.6 72.0 75.6 68.0 73.6 70.8 74.0 54.0 84.8 82.4 71.6 59.2 80.4 84.0

CricketX 57.7 75.4 75.4 75.4 74.1 73.6 66.4 70.5 69.7 77.2 81.3 80.8 56.9 81.5 82.1 78.2 56.7 78.7 80.0

CricketY 56.7 74.4 77.7 77.4 71.8 75.4 67.2 73.6 76.7 77.9 80.5 82.6 59.5 79.2 80.5 78.7 60.0 82.6 81.3

CricketZ 58.7 75.4 77.4 77.4 74.1 74.6 67.2 71.5 75.4 78.7 78.2 81.5 59.2 81.3 81.3 80.8 55.4 80.3 79.2

Diatom 93.5 96.7 96.7 91.5 98.0 93.1 93.1 89.9 90.5 92.5 94.4 92.8 96.4 93.0 93.1 97.4 95.1 96.7 91.5

DistPhxAgeGp 62.6 77.0 70.5 66.2 71.9 74.8 74.8 71.2 66.9 77.0 69.1 74.8 82.7 83.5 79.8 84.3 84.5 77.7 81.0

DistPhxCorr 71.7 71.7 73.2 72.5 77.9 72.8 77.2 78.3 72.1 77.5 72.8 76.1 81.0 81.2 82.0 82.2 80.5 80.3 81.3

DistPhxTW 63.3 59.0 61.2 57.6 62.6 67.6 66.9 67.6 56.8 66.2 64.7 69.8 74.7 79.0 74.0 79.5 78.7 75.2 75.0

Earthquakes 71.2 71.9 70.5 70.5 74.1 74.8 74.8 74.8 64.0 74.1 74.1 74.8 79.2 80.1 78.6 81.1 82.0 72.7 73.3

ECG200 88.0 77.0 83.0 84.0 88.0 87.0 87.0 84.0 86.0 83.0 88.0 88.0 92.0 90.0 87.0 92.0 87.0 86.0 88.0

ECG5000 92.5 92.4 92.4 92.4 93.2 94.1 93.9 94.0 91.7 94.4 93.9 94.6 93.5 94.1 93.1 94.4 94.0 93.2 93.9

ECGFiveDays 79.7 76.8 76.9 82.2 100.0 100.0 95.6 87.7 87.9 98.4 82.0 99.9 97.0 98.5 95.5 100.0 92.7 100.0 99.4

ElectricDevices 55.2 60.2 59.2 59.4 58.7 79.9 69.3 70.3 68.1 74.7 66.3 71.3 58.0 72.3 72.8 71.6 64.4 73.9 74.1

FaceAll 71.4 80.8 90.2 89.9 74.9 78.2 75.1 74.4 76.7 77.9 84.9 91.8 88.5 92.9 83.4 90.3 73.2 81.5 81.6

FaceFour 78.4 83.0 83.0 81.8 96.6 100.0 93.2 100.0 94.3 85.2 90.9 89.8 83.0 93.2 93.2 95.5 86.4 95.5 94.3

FacesUCR 76.9 90.5 90.4 90.8 93.9 95.7 88.3 86.7 92.6 90.6 94.5 94.2 81.5 94.8 95.8 94.7 76.0 95.0 93.7

FiftyWords 63.1 69.0 75.4 75.4 73.0 70.5 74.1 75.8 81.8 70.5 82.0 79.8 71.2 67.9 72.7 75.8 69.0 71.9 69.5

Fish 78.3 82.3 94.3 92.6 96.0 98.9 79.4 83.4 94.3 98.9 96.6 98.3 87.4 97.1 98.9 94.4 83.4 98.3 97.7

FordA 66.5 55.5 72.3 76.5 95.7 93.0 81.5 85.0 87.3 97.1 73.8 95.7 76.9 90.6 92.8 93.2 77.2 90.5 93.3

FordB 60.6 62.0 66.7 65.3 91.7 71.1 68.8 59.9 71.1 80.7 66.2 80.4 62.9 88.3 90.0 90.8 67.1 91.7 92.7

GunPoint 91.3 90.7 98.0 98.7 100.0 100.0 97.3 98.7 99.3 100.0 99.3 100.0 93.3 100.0 99.3 99.3 89.3 98.0 98.0

Ham 60.0 46.7 47.6 55.2 66.7 66.7 74.3 76.2 56.2 68.6 57.1 64.8 71.4 76.2 78.1 78.1 68.6 73.3 68.6

HandOutlines 86.2 88.1 86.8 86.5 48.1 90.3 91.9 85.4 88.1 93.2 88.9 91.9 80.7 77.6 86.1 89.1 87.6 82.1 84.5

Haptics 37.0 37.7 39.9 39.9 46.8 46.1 44.5 49.0 43.2 52.3 39.3 52.3 46.1 55.1 50.6 51.9 45.1 51.6 52.3

Herring 51.6 53.1 54.7 54.7 62.5 54.7 60.9 64.1 57.8 67.2 57.8 62.5 68.7 70.3 59.4 62.5 57.8 53.1 53.1

InlineSkate 34.2 38.4 56.2 50.9 43.8 51.6 37.6 38.5 50.0 37.3 46.0 49.5 35.1 41.1 36.5 46.0 31.3 37.1 39.8

InsWngSound 56.2 35.5 35.5 47.3 60.6 52.3 63.3 62.5 55.1 62.7 59.5 65.3 63.1 40.2 53.1 64.1 65.3 49.2 52.2

ItalyPower 95.5 95.0 95.0 95.1 96.0 90.9 96.0 88.3 92.3 94.8 96.2 96.1 96.6 97.0 96.0 97.1 96.7 96.6 96.6

LrgKitApp 49.3 79.5 79.5 79.5 70.1 76.5 57.1 52.8 71.7 85.9 81.1 84.5 48.0 89.6 89.3 90.1 56.3 90.9 92.0

Lightning2 75.4 86.9 86.9 86.9 82.0 83.6 80.3 73.8 82.0 73.8 88.5 86.9 72.1 80.3 75.4 83.6 73.8 78.7 78.7

Lightning7 57.5 72.6 67.1 65.8 79.5 68.5 75.3 72.6 74.0 72.6 76.7 80.8 64.4 86.3 83.6 83.6 68.5 75.3 76.7

Mallat 91.4 93.4 94.9 92.7 95.0 93.8 91.9 96.0 90.8 96.4 94.0 95.4 93.6 98.0 97.9 96.2 83.7 96.6 96.5

Meat 93.3 93.3 93.3 93.3 73.3 90.0 93.3 93.3 88.3 85.0 93.3 91.7 93.3 96.7 100.0 93.3 93.3 95.0 95.0

MedicalImages 68.4 73.7 73.7 74.5 66.4 71.8 75.5 70.5 74.6 67.0 74.2 75.8 72.9 79.2 77.2 77.5 71.7 72.8 78.2

MidPhxAgeGp 51.9 50.0 53.9 50.0 57.1 54.5 57.8 57.8 48.7 64.3 55.8 63.6 73.5 76.8 76.0 80.0 78.7 72.0 74.0

MidPhxCorr 76.6 69.8 73.2 74.2 78.0 78.0 82.8 81.4 77.3 79.4 78.4 80.4 76.0 79.5 79.3 81.5 67.2 81.3 82.5

MidPhxTW 51.3 50.6 48.7 50.0 50.6 54.5 56.5 59.7 52.6 51.9 51.3 57.1 60.9 61.2 60.7 63.9 63.2 58.6 58.6

MoteStrain 87.9 83.5 83.3 76.8 88.3 87.9 86.9 90.3 92.2 89.7 88.3 93.7 86.9 95.0 89.5 89.5 88.3 92.9 92.4

NonInv Thor1 82.9 79.0 80.6 84.1 25.9 83.8 87.6 84.2 81.2 95.0 84.6 93.1 94.2 96.1 94.8 93.3 89.8 95.1 95.4

NonInv Thor2 88.0 86.5 89.3 89.0 77.0 90.1 91.0 86.2 84.1 95.1 91.3 94.6 94.3 95.5 95.1 93.9 93.0 95.1 95.1

OliveOil 86.7 83.3 83.3 86.7 16.7 86.7 86.7 83.3 86.7 90.0 86.7 90.0 40.0 83.3 86.7 86.7 86.7 86.7 86.7

OSULeaf 52.1 59.1 88.0 88.4 77.7 95.5 58.3 76.0 74.0 96.7 80.6 96.7 57.0 98.8 97.9 89.7 52.9 99.6 99.2

PhalCorr 76.1 72.8 73.9 76.1 76.5 77.2 80.3 83.0 75.6 76.3 77.3 77.0 83.0 82.6 82.5 83.2 82.8 81.8 82.5

Phoneme 10.9 22.8 26.9 26.8 21.8 26.5 21.2 27.6 23.7 32.1 30.5 34.9 9.8 34.5 32.4 23.9 11.6 34.8 35.4

Plane 96.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.1 100.0 100.0 100.0 98.1 100.0 100.0

ProxPhxAgeGp 78.5 80.5 80.0 79.5 83.4 83.4 84.9 84.9 79.5 84.4 80.5 85.4 82.4 84.9 84.9 85.4 84.9 82.4 83.9

ProxPhxCorr 80.8 78.4 79.4 79.4 84.9 84.9 82.8 87.3 84.2 88.3 80.8 86.9 88.7 90.0 91.8 89.0 87.3 92.1 90.7

ProxPhxTW 70.7 76.1 76.6 77.1 77.6 80.0 81.5 81.0 73.2 80.5 76.6 78.0 79.7 81.0 80.7 83.0 80.2 80.5 82.3

RefDev 39.5 46.4 44.5 44.5 51.5 49.9 58.9 47.2 45.9 58.1 43.7 54.7 37.1 53.3 52.8 56.0 36.0 51.5 50.4

ScreenType 36.0 39.7 42.9 43.7 42.9 46.4 45.6 50.9 41.6 52.0 44.5 54.7 40.8 66.7 70.7 55.5 41.6 60.0 60.3

ShapeletSim 53.9 65.0 61.1 60.0 95.0 100.0 47.8 96.1 86.7 95.6 81.7 96.1 48.3 86.7 100.0 99.4 50.6 83.9 100.0

ShapesAll 75.2 76.8 85.0 83.8 76.8 90.8 79.2 18.5 87.3 84.2 86.7 89.2 77.5 89.8 91.2 87.3 74.8 91.5 89.7

SmlKitApp 34.4 64.3 64.0 64.8 66.4 72.5 81.1 67.2 71.2 79.2 69.6 77.6 38.9 80.3 79.7 69.9 73.1 79.7 82.4

SonyAIBOSurf1 69.6 72.5 74.2 71.0 81.0 63.2 78.7 79.5 77.4 84.4 70.4 84.5 72.7 96.8 98.5 93.0 80.7 94.3 94.2

SonyAIBOSurf2 85.9 83.1 89.2 89.2 87.5 85.9 81.0 77.8 87.2 93.4 87.8 95.2 83.9 96.2 96.2 92.9 80.6 98.3 98.4

StarlightCurves 84.9 90.7 96.2 96.2 94.7 97.8 96.9 97.7 96.3 97.9 92.6 98.0 95.7 96.7 97.5 97.8 97.2 96.4 97.8

Strawberry 94.6 94.1 95.4 95.7 91.1 97.6 96.5 95.4 96.2 96.2 94.6 95.1 96.7 96.9 95.8 97.1 97.7 97.1 97.1

SwedishLeaf 78.9 79.2 90.1 89.6 90.7 92.2 91.4 91.5 92.0 92.8 91.5 95.5 89.3 96.6 95.8 94.1 90.6 97.4 97.1

Symbols 89.9 95.0 95.3 96.3 93.2 96.7 91.5 94.6 96.3 88.2 96.0 96.4 85.3 96.2 87.2 95.5 87.8 92.6 91.2

Synth Cntr 88.0 99.3 99.3 99.7 99.7 96.7 98.7 99.3 98.0 98.3 99.0 100.0 95.0 99.0 100.0 99.7 97.7 100.0 100.0

ToeSegmentation1 68.0 77.2 80.7 80.7 93.4 93.9 74.1 78.1 87.7 96.5 82.9 97.4 60.1 96.9 96.5 96.5 60.5 96.5 97.4

ToeSegmentation2 80.8 83.8 74.6 71.5 91.5 96.2 81.5 80.0 86.9 90.8 89.2 91.5 74.6 91.5 86.2 93.1 79.2 91.5 90.8

Trace 76.0 100.0 100.0 99.0 100.0 100.0 99.0 98.0 98.0 100.0 99.0 100.0 82.0 100.0 100.0 100.0 78.0 100.0 100.0

TeoLeadECG 74.7 90.5 97.8 98.5 99.6 98.1 75.9 86.6 94.8 99.7 97.1 99.3 85.3 100.0 100.0 99.9 87.3 100.0 100.0

TwoPatterns 90.7 100.0 100.0 100.0 99.3 99.3 99.1 97.6 98.2 95.5 100.0 100.0 88.6 89.7 100.0 99.9 84.0 100.0 99.7

UWavGestAll 94.8 89.2 93.5 93.8 95.3 93.9 95.7 92.6 96.6 94.2 96.8 96.4 95.4 82.6 86.8 95.8 94.4 85.0 86.9

UWavGest X 73.9 72.8 77.9 77.5 79.1 76.2 80.4 83.1 82.9 80.3 80.5 82.2 76.8 75.4 78.7 81.3 75.4 77.2 79.1

UWavGest Y 66.2 63.4 71.6 69.8 70.3 68.5 72.7 73.6 76.1 73.0 72.6 75.9 70.3 72.5 66.8 73.6 69.2 67.5 70.6

UWavGest Z 65.0 65.8 69.6 67.9 74.7 69.5 74.3 77.2 76.8 74.8 72.4 75.0 70.5 72.9 75.5 75.5 71.3 75.1 77.1

Wafer 99.5 98.0 98.0 99.3 99.6 99.5 99.6 99.5 99.7 100.0 99.7 100.0 99.6 99.7 99.7 99.8 99.5 99.9 99.9

Wine 61.1 57.4 57.4 61.1 50.0 74.1 63.0 61.1 63.0 79.6 57.4 64.8 79.6 88.9 79.6 81.5 83.3 75.9 81.5

WordSynonyms 61.8 64.9 73.0 73.0 60.7 63.8 64.7 68.8 75.5 57.1 77.9 75.7 59.4 58.0 63.2 66.3 57.1 61.9 59.6

Worms 45.5 58.4 58.4 64.9 61.0 55.8 61.0 68.8 70.1 74.0 66.2 62.3 34.3 66.9 61.9 58.0 45.9 63.5 61.9

WormsTwoClass 61.0 62.3 64.9 62.3 72.7 83.1 62.3 75.3 75.3 83.1 68.8 80.5 59.7 72.9 73.5 75.1 61.3 76.2 74.0

Yoga 83.0 83.7 85.6 85.6 83.4 91.8 85.9 81.9 86.9 81.8 87.9 87.7 85.5 84.5 85.8 86.6 80.0 85.7 86.6

*Results of ED, DWT, DDDWT, DTDC, LS, BOSS, TSF, TSBF, LPS, ST, EE, COTE, MLP, FCN, ResNet

& EMN are taken from [20].

* Bold values represent the best accuracy/rank.
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Table 2. Summary of results

ED DWT DDDWT DTDC LS BOSS TSF TSBF LPS ST EE COTE MLP FCN ResNet EMN ORF ORF-F1 ORF-F2

Mean Accuracy 70.89 74.04 76.86 76.89 76.91 81.02 77.88 77.80 78.68 82.24 79.23 83.81 75.16 84.40 83.85 84.38 75.33 83.27 83.98

Average Rank 16.06 14.64 12.71 12.83 11.11 9.16 10.89 10.91 11.18 8.44 10.11 5.91 12.39 5.93 6.84 5.25 12.52 6.96 6.15

methods (MLP, FCN, ResNet and EMN) where competition is more intense,
ORF-F1 only wins MLP and ORF-F2 wins both MLP and ResNet.

These results show that the performance of ORF on extract ResNet fea-
tures leaves much to be desired. There is no free lunch. With 85 dataset having
a wide range of characteristics, our best methods performed badly on some
datasets, such as Diatom, FiftyWords, HandOutlines, Herring, UWavGestAll,
and WordSynonyms.

Table 3. Mean Number of Nodes in a Tree and Mean Training Time across 85 datasets.
Mean training times are relative to ResNet. Mean training times is for ORF-F1 and
ORF-F2 does not include feature extraction phase.

ResNet ORF ORF-F1 ORF-F2

No. of nodes 144.66 26.17 67.71

Training time 1 0.0692 0.0189 0.0340

In Table 3, we estimate the computational effort to train ORF for all our
methods. All our ORF models are trained using the same CPU. Mean training
times and number of nodes in each tree are recorded. As a comparison, we also
compare our ORF models with ResNet to get a brief idea. ResNet models are
trained using a GPU since ResNet trains faster using a GPU.

Training ORF-F2 takes nearly twice as long as ORF-F2. This is evident as
trained trees in ORF-F2 have over twice the number of nodes than ORF-F1.
This means full-sized trees in ORF-F2 are over twice as complex as those in
ORF-F1, with twice as much training parameters. None of our ORF models
takes a significant amount of effort when compared to ResNet.

ORF trained without features extraction takes significantly more time than
ORF-F1 and ORF-F2. This is due to the large input sizes seen by ORF, leading
to even more complex structure of trees in ORF. 63 datasets have input length
of more than 128, which is the maximum number of features seen in ORF-F1
and ORF-F2. However, training ORF-F1 and ORF-F2 requires ResNet to be
trained, which outweighs their advantages. The total computational effort for
ORF-F1 and ORF-F2 will be slightly more than ResNet.

In conclusion, ORF without feature extraction requires significantly less com-
putational effort than ORF-F1 and ORF-F2 but performs significantly worse
than both ORF-F1 and ORF-F2.
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5 Conclusion

In this paper, we explore using Residual Networks as a feature extractor for
Oblique Random Forests. We tried 2 different methods to extract features from
Residual networks (ResNet). In our first method, we extract features only from
the penultimate layer in ResNet. In our second method, we include intermediate
ResNet features by extracting features from every block.

Based on the experiment on 85 UCR datasets, ResNet features help Oblique
Random Forests to improve classification performance significantly. In addi-
tion, using including intermediate features from Residual Networks significantly
improves the performance of Oblique Random Forests.

Some of the possible improvements can include combining more features from
other feature extraction techniques or effectively tuning the Oblique Random
Forests. More Recurrent Neural Networks can be added into the comparisons.
In addition, improvements can be made using other classifiers, such as Oblique
Decision Tree Ensemble via Twin Bounded SVM and Ensemble Deep Random
Vector Functional Link.
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Abstract. Deep learning methods have shown great success in several
domains as they process a large amount of data efficiently, capable of
solving difficult classification, forecast, segmentation, and other tasks.
However, these networks suffer from their inexplicability that limits their
applicability and trustworthiness. Although there exists work address-
ing this perspective, most of the existing approaches are limited to the
image modality due to the intuitive and prominent concepts. Unfortu-
nately, the patterns in the time-series domain are more complex and
non-comprehensive, and an explanation for the network decision is piv-
otal in critical areas like medical, financial, or industry. Addressing the
need for an explainable approach, we propose a novel interpretable net-
work scheme, designed to inherently use an explicable reasoning process
inspired by the human cognition without the need of additional post-
hoc explainability methods. Therefore, the approach uses class-specific
patches as they cover local patterns, relevant to the classification, to
reveal similarities with samples of the same class. Besides, we introduce
a novel loss concerning interpretability and accuracy that constraints
P2ExNet to provide viable explanations of the data that include rele-
vant patches, their position, class similarities, and comparison methods
without compromising performance. An analysis of the results on eight
publicly available time-series datasets reveals that P2ExNet reaches sim-
ilar performance when compared to its counterparts while inherently
providing understandable and traceable decisions.

Keywords: Deep learning · Convolutional neural networks ·
Time-series analysis · Data analysis · Explainability · Interpretability.

1 Introduction

Nowadays, deep neural networks are popular and used in many different domains
comprising image processing, natural language processing, and time-series
processing. Though these deep networks have achieved high performance, they
are still black boxes in nature. This behavior makes it tough to understand the
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reasons behind the decisions. In particular, this black box nature hinders the use
of these models in critical domains like medical, autonomous driving, industrial,
financial, and raises the need for interpretability methods to provide intuitive
and understandable explanations. Only explainable models can are usable in
critical domains that require transparency [16].

The existing methods for interpreting decisions of deep learning models are
mostly applicable to image modalities. In particular, image concepts are intuitive
by default [25]. Besides the image domain, there is only a limited amount of
work in the field of time-series as the modalities are more complex and usually
not directly interpretable for a human. Nevertheless, these time-series analysis
networks and their explanations are pivotal for their industrial and financial use.
Therefore, we propose P2ExNet as an approach to deal with time-series data.

Also, existing approaches are mostly post-hoc methods that are applied after
the classifier to explain their decisions [7]. Intuitively, these approaches keep the
network as it is without any change to the structure, enabling their use on almost
every architecture. Usually, this results in an instance-based local explanation
that does not explain any global behavior. In contrast to post-hoc methods,
the intrinsic methods focus on model design concerning the inference process
to provide an understandable global explanation. Ultimately, neither of the two
approaches is superior as both have to deal with several limitations regarding
the quality, subjectivity [14], the audience, and the domain usage.

To overcome these limitations, we propose a network architecture for time-
series analysis based on the standard deep neural network architecture pro-
viding a global explanation using representative class-specific prototypes and
an instance-based local explanation using patch-based similarities and class-
similarities. The inference process of our architecture follows the human-related
reasoning process [11] and uses concepts and prototypes [13]. Intuitive class-
specific patches explain the network decision. Our approach is superior compared
to existing template matching approaches [5] in the manner of generalization and
applicability. Our experiments emphasize the use of our network structure by
highlighting the comparable performance when compared to a non-interpretable
network of the same size over eight publicly available datasets while preserving
an intuitive and traceable explanation.

2 Related Work

The field of network interpretability covers post-hoc and intrinsic methods.
Based on the use-case, it is not always possible to use both methods as these
methods come with restrictions concerning the data and the network. In the
following paragraphs, we address the perspectives, their advantages, and draw-
backs.
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2.1 Post-hoc

Using post-hoc methods to explain the decisions of deep neural networks is a very
prominent approach as these methods do not modify the network architecture
and can provide an instance base explanation. Furthermore, these methods offer
instance-based as well as global explanations resulting in broad applicability.

Instance-Based: A widespread instance-based post-hoc class of approaches
in the field of image domain are so-called back-propagation methods [4]. These
approaches produce heat-maps highlighting the most relevant and sensitive parts
concerning the network decision. There exist enhancements that evolved [27] and
take various aspects into account to improve the expressiveness and consistency.
Another post-hoc instance-based class of methods are the layer-wise relevance
propagation methods [3,10] that produce results that are close to the heat-maps
but more stable. In particular, the image domain explored different approaches to
visualize the activations [24] or make use of the gradients [18] or saliency [21] to
produce heat-maps for instances. However, in the case of the time-series modal-
ities, there exists only a limited amount of work [20].

Global: In contrast to instance-based methods, there exist attempts to compute
a global behavior based on the influence of the samples [12,23]. These methods
provide an idea of helpful and harmful dataset samples to detect outliers and
debug dataset using the sample influence. Another approach is to attach an inter-
pretable architecture to the trained network. As presented in [15], the attachment
of an autoencoder before the neural network and a customized loss function for
the autoencoder can enhance the interpretability. Siddiqui et al. [19] presented
an adoption of this approach for the time-series domain with an adjusted loss
function.

2.2 Intrinsic

Intrinsic methods approach the problem from a different perspective by incorpo-
rating the interpretability directly. Therefore, they modify the model architec-
ture by introducing interpretable layers [26]. A drawback of these approaches is
the restricted learning process that can harm the performance. An intuitive inter-
pretable layer solution are prototype layers to explain model decision [2]. Mainly,
two types of prototypes showed to provide reasonable explanations. First, class
prototypes that cover the complete input [8,13] and second patch prototypes [6].

2.3 Limitations of Existing Methods

Even though there exists work to explain the network decisions, most of the
approaches are limited to image modalities [17]. Furthermore, there is ongo-
ing research investigating the consistency, expressiveness, and subjectivity of
these explanations. Some findings prove the inconsistency of saliency-based meth-
ods [22] and the expressiveness [1]. Also, methods that use sparsity constraints
suffer from the same problems concerning their consistency.
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3 P2ExNet: The Proposed Approach

This section provides insights into the proposed approach. It starts with a moti-
vation followed by the general architecture structure, the mathematical back-
ground, and the training procedure.

Fig. 1. Inference and testing workflow. Artificially, computed prototypes are eval-
uated in a similarity-based manner to suggest class-specific patches.

3.1 Motivation: An Understandable Reasoning Behavior

Inspired by human reasoning behavior, we aligned our framework to rely on
implicit knowledge about objects and examples already seen before. This app-
roach is similar to the humans’ inference process. Precisely, we compare new
instances to abstract concepts include class-specific features. The term proto-
typical knowledge describes the knowledge about these concepts and covers the
analogical process to map new to the existing knowledge [9]. Following this pro-
cess, the proposed method uses shallow representations. These prototypes encode
class-specific pattern and provide the decision based on similarity.

3.2 Architecture

Inspired by the work of Gee et al. [8], we combined an autoencoder with a proto-
type network. The autoencoder consists of several convolutional and max-pooling
layers serving as a feature encoding network to provide a latent representation
that encodes the relevant features of an input sequence. This representation is
fed forward to a custom prototype layer to generate prototypes. Motivated by
the work of Chen et al. [6], we use multiple prototypes to represent a sample
rather than a single one for the complete input. Precisely, the prototype layer has
randomly initialized variables representing patch prototypes of user-defined size.
Larger sizes will result in composed concepts, and smaller sizes result in more
basic concepts. On top of the prototype layer, we attached a prototype-weight
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layer to encourage class-specific prototypes and weight their position within the
sample to cover the local importance. Finally, a soft-max classification evaluates
the similarity scores produced by the prototype layer multiplied with weights of
the prototypes, as shown in Fig. 1.

3.3 Mathematical Background

Our method uses a novel combined loss that captures several aspects enabling
the network to produce a meaningful set of patch prototypes based on the losses
proposed by [6,8]. For the following equations, let Sx be the set of patches
corresponding to a sample x and the set P of prototypes.

Distances: We use the L2 norm to compute the distance between any two vec-
tors. Furthermore, we compute the minimum distance between a sample and any
prototype (Ds2p) and vice versa (Dp2s). We denote Dp2p as the minimal distance
between a prototype and all others and calculate the minimum distance to a pro-
totype of the same class Dclst and to the other classes Dsep w.r.t. y. Therefore
Py denotes the subset of P assigned to the class label of y. The distances are
shown in Eqs. 1 to 4.

Ds2p(s) = min
p∈P

L2(s, p) (1)

Dp2p(p) = min
p′∈P

L2(p, p′) (2)

Dclst(s, y) = min
p∈Py

L2(s, p) (3)

Dsep(s, y) = min
p∈{P\Py}

Ds2p(s, p) (4)

Loses: To ensure high-quality prototypes, we introduce our novel patch loss.
This loss is a combination of different objectives to achieve good accuracy and
an explanation that does not contain duplicates or prototypes that are not class-
specific. Our loss combines the following losses:

– Autoencoder loss: MSE is used to encourage reconstruction later used for
prototype reconstruction.

– Classification loss: To produce logits for the softmax cross-entropy we mul-
tiply the reciprocal of Ds2p and the prototype-weight layer.

– Lp2s and Ls2p: These losses preserve the relation between the input and the
prototypes and vice versa as shown in Eq. 5 and 6.

– Ldiv: The diversity among the patch prototypes is computed as shown in
Eq. 7.

– Lclst and Lsep: To encourage the network to learn class-specific prototypes we
compute Lclst and similarly to Lsep but with a negative sign. This penalized
prototypes close to samples of the wrong class w.r.t. their assigned class.
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Lp2s(x) =
1

|P |
∑

p∈P

Dp2s(p) (5)

Ls2p(x) =
1

|Sx|
∑

s∈Sx

Ds2p(s) (6)

Ldiv = log(1 +
1
|P |

∑

p∈P

Dp2p(p))−1 (7)

Lclst(x, y) =
1

|Sx|
∑

s∈Sx

Dclst(s, y) (8)

Our proposed final loss is a linear combination taking into account previously
mentioned aspects and ensures meaningful, diverse, and class-specific patch pro-
totypes shown in Eq. 9. By default, we set all lambda values except λc to one to
find the best compromise between the objectives preserving high accuracy.

Patch Loss(x, y) = λcH(x, y) + λmseMSE(x, x) + λp2sLp2s(x)
+ λs2pLs2p(x) + λdivLdiv + λclstLclst(x, y) + λsepLsep(x, y) (9)

3.4 Training Process

The training process of your approach consists of two stages. In the first stage,
we fix the weights of the pre-initialized prototype-weight layer to ensure class-
specific prototypes. We then train the network until it converges. In the second
learning phase, all layers except the prototype-weighting layer are frozen, and
the network learns to adjust the prototype weights. The adjustment corrects the
prototype class affiliation using the previously trained latent representation.

4 Datasets

We used eight publicly available time-series datasets to emphasize the broad
applicability of our approach and examine possible limitations. As a representa-
tive set, we used seven different datasets from the UCR Time Series Classification
Repository1 and a point anomaly dataset proposed in [20]. These datasets and
their parameters are visualized in Table 1. Note that the Devices dataset corre-
sponds to the ‘Electrical devices’ dataset taken from the UCR. To have better
coverage of different types, we selected the datasets based on the characteris-
tics concerning the number of classes, channels, and time-steps to cover several
conditions and show the prototypes. However, we focus on classification datasets.

5 Experiments

In this section, we present our results concerning the performance, applicability,
and resource consumption for our proposed approach, highlighting a comparable
performance while producing interpretable results.
1 http://www.timeseriesclassification.com/.

http://www.timeseriesclassification.com/
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(a) Original (b) Modified (c) Prototypes

Fig. 2. Adiac dataset prototype explanation. a) shows the original series. b) shows
the series with the prototype between the red bars. c) shows two prototypes. (Color
figure online)

(a) Time-series (b) Character of the class ’m’

Fig. 3. Character dataset prototype explanation. a) shows the original series
and the series with the prototypes. b) shows the character output and the modified
character.

(a) Overall distribution (b) Patch distribution

Fig. 4. Class and prototype distribution. a) shows the class similarities. b) shows
some patches and the corresponding class similarities.

5.1 P2ExNet: Instance-Based Evaluation

The proposed method provides the possibility to identify and highlight the parts
of the input that were most relevant for the classification. Besides, it provides
prototypes along with a sample containing the prototypes to compare it to the
original input. Figure 2 shows highlighted regions that were important for the
inference on the ADIAC dataset sample. This explanation includes the original
sample of the adiac dataset, a modified version, and two prototypes. In the mod-
ified version shown in Fig. 2b, we replaced the part between the two red lines
with the most important patch prototype to show how close it is to the original
part. Figure 2c shows two prototypes. The value of each prototype denoted as
‘Val’ highlights its contribution towards the classification result. Similarly, Fig. 3
shows a sample from the character trajectories dataset and the mapping of the
time-series back to the character. The black value highlights the pressure of
the pen, and the yellow part shows the mapping of the prototype back to the
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(a) Original (b) Modified (c) Original (d) Modified

Fig. 5. Prototype substitution. a) and c) show original time-series. b) and d) show
the corresponding modified samples and their re-classification.

Table 1. Accuracy comparison. A comparison of interpretable and the correspond-
ing non-interpretable counterpart.

Dataset Classes Length Channel CNN P2ExNet

Anomaly [20] 2 50 3 99.79 93.79

FordA 2 500 1 85.44 89.32

Devices 7 96 1 55.42 62.53

Adiac 37 176 1 63.54 60.15

Crop 24 46 1 68.27 68.54

50words 13 270 1 76.84 81.98

PenDigits 10 8 2 94.29 93.95

Character 20 206 3 96.53 91.78

input space. In the case of an incorrect classification, the prototypes have a red
caption. Furthermore, in Fig. 4 the class-wise overall and patch-wise distribu-
tion provides additional information about similar classes and important patch
positions. Especially in Fig. 4b, we show that not all patches have the same
importance when it comes to the classification. There are sensitive datasets for
which the re-classification can change if the original data gets replaced with
a prototype. However, for the classification and the explanation, this is not a
problem as it can be solved. A proper re-scaling and adjustment can remove the
offset between the prototype and the time-series. In Fig. 5b such a jump in the
orange signal is shown and leads to an anomaly. However, the classification of
the original signal with the network was correct. Furthermore, some datasets are
invariant to small offsets shown in Fig. 5d. That is why re-scaling should be done
based on the problem task. In case of a point anomaly task, the patches have
to align. In a classification task, it is unlikely that the offset of a single point
changes the prediction.

5.2 P2ExNet: Evaluation as a Classifier

Usually, intrinsic interpretability approaches come with an accuracy drop. In
Table 1 we present the accuracy trade-off highlighting that our structure is on
the same level as the non-interpretable counterpart. To create a network similar
to ours without the interpretable part, we replaced the prototype layer with a
dense layer and a cross-entropy loss, as suggested by Chen et al. [6]. Furthermore,
we removed the decoder as there is no need to restrict the latent representation
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as no reconstruction is required. We conducted this comparison for all eight
datasets showing that P2ExNet achieves comparable or better performance in
comparison to the non-interpretable variant. Overall the interpretable network
has an insignificant performance increase of 0.03%. Each architecture was supe-
rior in four out of the eight datasets. The results show that the accuracy using
the interpretable model dropped about 6% on the anomaly dataset but increased
7% on the Electric Devices dataset.

5.3 P2ExNet: Sanity Check

To prove the class-specific and meaningful behavior of the prototypes, we
replaced the original time-series once with the most positive and once with the
most negative influencing prototypes. In Table 2 we show that the replacement
with the most confident prototypes corresponding to the predicted class achieved
results close to the default accuracy, whereas the best fit prototype of a different
class dramatically decreased the performance as the prediction switched. These
results show that our prototypes are class-specific. However, we conducted the
second sanity check to investigate the need for the decoder to produce latent
representations that are close to the representative prototypes. In Table 3 we
show that for the character trajectories, 50words, and the FordA dataset there

Table 2. Replacement of original patch. The second column shows how much data
was replaced with the suggested prototypes proposed by P2ExNet. The third column
shows whether the prediction was the same as with the original time-series or not. The
fourth column shows the P2ExNet accuracy for the original sample and the last column
for the sample replacing the original patch with the suggested patch. The first row of
each dataset corresponds to replacements with the most similar whereas the second
row with the most different prototype.

Dataset Data replaced Equal Pred. P2ExNet Acc. P2ExNet mod. Acc.

Anomaly 71.99 87.43 93.79 91.78

67.32 19.45 22.72

FordA 51.17 99.92 89.32 89.40

44.95 23.09 32.69

Devices 52.36 81.65 62.53 60.52

65.81 49.81 39.11

Adiac 35.22 85.97 60.15 55.98

69.90 9.11 14.84

Crop 50.50 94.08 68.54 66.94

81.12 22.01 23.28

50words 36.43 93.01 81.98 77.20

52.88 62.50 56.98

PenDigits 69.47 99.31 93.95 93.54

68.65 8.83 11.0

Character 18.15 92.93 91.78 85.30

52.90 31.71 32.87
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Table 3. Closeness of prototypes. The difference between representative and gen-
erated latent patch prototypes for P2ExNet with and without the use of the decoder
are shown.

Dataset P2ExNet with decoder P2ExNet without decoder Improvement

Anomaly 0.6393 0.4929 −22.9%

FordA 0.7018 1.0315 47.0%

Devices 0.4135 0.3399 −17.8%

Adiac 0.538 0.4993 −6.2%

Crop 0.442 0.4815 8.9%

50words 0.0413 0.2086 505.1%

PenDigits 0.5123 0.5622 9.7%

Character 0.0099 0.5887 5946.5%

is a significant difference if the decoder gets excluded. Also, we compared the
representative and decoded prototypes and visualized two prototypes in Fig. 6
highlighting the small difference between the selected representative sample (left)
and the decoded one (right). We further provide the latent representation of the
character trajectory prototype in Fig. 7. Each plot represents one of the three
channels and the blue color encodes the part of the selected sample whereas the
orange color decodes the latent representation of the prototype. It is clearly visi-
ble that both latent representations share the same pattern and therefore result
in a similar decoded prepresentation as shown in Fig. 6b.

(a) Crop dataset (b) Character trajectories dataset

Fig. 6. Prototype comparison. This figure shows the representative patch based on
the distance to the latent prototype and the reconstruction of the latent representation.

5.4 Comparison with Existing Prototype-Based Approaches

We compared the proposed method against existing work [6] and [8]. Precisely,
we highlight the explanations and additional outputs. In Fig. 8 we show the
explanation of each approach for a character ‘a’ sample. While [8] explains the
class with a prototype providing a single prototype capturing the complete sam-
ple, [6] is based on parts of the input leading to a more detailed explanation.
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Fig. 7. Latent space difference. The difference between the prototype (orange) and
the real sample (blue) in the latent space for each channel are shown. (Color figure
online)

(a) Original (b) Gee et al. [8] (c) Chen et al. [6] (d) P2ExNet

Fig. 8. P2ExNet approaches. Different explanations of the character ‘a’.

This method searches a patch for a region in the input image. Precisely, this
means additional position information is available. Lastly, our proposed method
provides the same information about the location but offers re-scaling as well as
an implicit comparison to other prototypes and a class distribution for the com-
plete sample and the patches, as shown in Fig. 4b. Furthermore, our prototypes
are class-specific and invertible. It is possible to decode them for a comparison
with the representatives.

6 Conclusion

Summarizing our results, we came up with novel network architecture, along
with a loss and training procedure aligned to produce interpretable results and
an inference process similar to the human reasoning without a significant drop
in performance. Further, we proved that the proposed method works for sev-
eral time-series classification tasks and when excluding the class-specific proto-
type assignment, our approach is suitable to produce prototypes for regression
and forecast tasks. Besides, we compared the proposed method with existing
prototype-based methods concerning their interpretable output and time con-
sumption, finding ours superior in both aspects.



P2ExNet 329

Acknowledgements. This work was supported by the BMBF projects DeFuseNN
(Grant 01IW17002) and the ExplAINN (BMBF Grant 01IS19074). We thank all mem-
bers of the Deep Learning Competence Center at the DFKI for their comments and
support.

References

1. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods.
arXiv preprint arXiv:1806.08049 (2018)

2. Angelov, P., Soares, E.: Towards explainable deep neural networks (xDNN). arXiv
preprint arXiv:1912.02523 (2019)

3. Arras, L., Montavon, G., Müller, K.R., Samek, W.: Explaining recurrent neural
network predictions in sentiment analysis. arXiv preprint arXiv:1706.07206 (2017)

4. Bojarski, M., et al.: Visualbackprop: efficient visualization of CNNs. arXiv preprint
arXiv:1611.05418 (2016)

5. Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Prac-
tice. Wiley, Chichester (2009)

6. Chen, C., Li, O., Tao, C., Barnett, A.J., Su, J., Rudin, C.: This looks like that:
deep learning for interpretable image recognition. arXiv preprint arXiv:1806.10574
(2018)

7. Choo, J., Liu, S.: Visual analytics for explainable deep learning. IEEE Comput.
Graphics Appl. 38(4), 84–92 (2018)

8. Gee, A.H., Garcia-Olano, D., Ghosh, J., Paydarfar, D.: Explaining deep classifica-
tion of time-series data with learned prototypes. arXiv preprint arXiv:1904.08935
(2019)

9. Gentner, D., Colhoun, J.: Analogical processes in human thinking and learning.
In: Glatzeder, B., Goel, V., Müller, A. (eds.) Towards a Theory of Thinking, pp.
35–48. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03129-8 3

10. Gu, J., Yang, Y., Tresp, V.: Understanding individual decisions of CNNs via con-
trastive backpropagation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.)
ACCV 2018. LNCS, vol. 11363, pp. 119–134. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-20893-6 8

11. Guidoni, P.: On natural thinking. Eur. J. Sci. Educ. 7(2), 133–140 (1985)
12. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions.

In: Proceedings of the 34th International Conference on Machine Learning, vol. 70,
pp. 1885–1894. JMLR. org (2017)

13. Li, O., Liu, H., Chen, C., Rudin, C.: Deep learning for case-based reasoning through
prototypes: a neural network that explains its predictions. In: Thirty-Second AAAI
Conference on Artificial Intelligence (2018)

14. Lipton, Z.C.: The mythos of model interpretability. arXiv preprint
arXiv:1606.03490 (2016)

15. Palacio, S., Folz, J., Hees, J., Raue, F., Borth, D., Dengel, A.: What do deep
networks like to see? In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018

16. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: under-
standing, visualizing and interpreting deep learning models. arXiv preprint
arXiv:1708.08296 (2017)

17. Schlegel, U., Arnout, H., El-Assady, M., Oelke, D., Keim, D.A.: Towards a rigorous
evaluation of XAI methods on time series. arXiv preprint arXiv:1909.07082 (2019)

http://arxiv.org/abs/1806.08049
http://arxiv.org/abs/1912.02523
http://arxiv.org/abs/1706.07206
http://arxiv.org/abs/1611.05418
http://arxiv.org/abs/1806.10574
http://arxiv.org/abs/1904.08935
https://doi.org/10.1007/978-3-642-03129-8_3
https://doi.org/10.1007/978-3-030-20893-6_8
https://doi.org/10.1007/978-3-030-20893-6_8
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1708.08296
http://arxiv.org/abs/1909.07082


330 D. Mercier et al.

18. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 618–
626 (2017)

19. Siddiqui, S.A., Mercier, D., Dengel, A., Ahmed, S.: Tsinsight: a local-global
attribution framework for interpretability in time-series data. arXiv preprint
arXiv:2004.02958 (2020)

20. Siddiqui, S.A., Mercier, D., Munir, M., Dengel, A., Ahmed, S.: Tsviz: demystifica-
tion of deep learning models for time-series analysis. IEEE Access 7, 67027–67040
(2019)

21. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

22. Tomsett, R., Harborne, D., Chakraborty, S., Gurram, P., Preece, A.: Sanity checks
for saliency metrics. arXiv preprint arXiv:1912.01451 (2019)

23. Yeh, C.K., Kim, J., Yen, I.E.H., Ravikumar, P.K.: Representer point selection for
explaining deep neural networks. In: Advances in Neural Information Processing
Systems, pp. 9291–9301 (2018)

24. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural
networks through deep visualization. arXiv preprint arXiv:1506.06579 (2015)

25. Zhang, Q.s., Zhu, S.C.: Visual interpretability for deep learning: a survey. Front.
Inf. Technol. Electron. Eng. 19(1), 27–39 (2018)

26. Zhang, Q., Nian Wu, Y., Zhu, S.C.: Interpretable convolutional neural networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8827–8836 (2018)

27. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network
decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017)

http://arxiv.org/abs/2004.02958
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1912.01451
http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1702.04595


Prediction of Taxi Demand Based on
CNN-BiLSTM-Attention Neural Network

Xudong Guo(B)

Memory Platform Group, Samsung (China) Semiconductor Co. Ltd.,
Xi’an, People’s Republic of China

guoxudong@bupt.edu.cn

Abstract. As an essential part of the urban public transport system,
taxi has been the necessary transport option in the social life of city resi-
dents. The research on the analysis and prediction of taxi demands based
on the taxi trip records tends to be one of the important topics recently,
which is of great importance to optimize the taxi dispatching, minimize
the wait-time for passengers and drivers, reduce the time and distances of
vacant driving, as well as improve the quality of taxi operation and man-
agement. In this paper, we propose the CNN-BiLSTM-Attention model,
which consists of Convolutional Neural Networks (CNNs), Bidirectional
Long Short Term Memory (BiLSTM) neural networks and the Attention
mechanism, to predict the taxi demands at some certain regions. Then we
compare the prediction performance of CNN-BiLSTM-Attention model
with the baselines. The results show that this model can outperform
other models in predicting the taxi demands, which also proves that our
CNN-BiLSTM-Attention model is capable of capturing the spatial and
temporal features more effectively, and has a better prediction accuracy.

Keywords: CNN-BiLSTM-Attention · Taxi demand · Prediction

1 Introduction

Nowadays, taxi has played an important role in the urban public transport sys-
tem, as well as the social life of city residents. More and more people tend to
choose taxi as the transport option due to its convenience, flexibility and com-
fort. However, there still exists the imbalance problem between taxi supply and
passenger demands. Taxi drivers usually search for the next passenger blindly
and randomly, while a lot of passengers often complain the long wait-time to
take a taxi. Therefore, the analysis and prediction of taxi demand throughout a
region or city is of great importance in improving taxi dispatching effectively, as
well as enhancing the satisfaction of taxi passengers. With the aid of big data
technologies, more data resources can be available and computable than before.
In recent years, taxi trips data has been widely utilized in many tasks, such as
taxi dispatching optimization [1], urban traffic condition analysis and prediction
[2], and the applications of taxi service strategies [3].
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However, there are a few researches focused on the prediction of taxi demand
throughout a region or city based on the historical data of taxi trips. Zhao et al.
[4] define a maximum predictability method for the taxi demand and prove that
the taxi demand can be highly predictable. In addition, three specific algorithms
are applied to validate the theory. Qian et al. [5] propose a Gaussian Conditional
Random Field (GCRF) model to predict the short-term taxi demand only using
the historical taxi data, proving that the model can capture the complex spatio-
temporal dependencies to some extent and owns a desirable accuracy in predict-
ing the short-term taxi demand. Yan et al. [6] analyze the data of taxi calls,
and propose a Bayesian hierarchical semi-parametric model to predict the taxi
demands in the future, besides, this spatio-temporal model is implemented in
the cloud computing environment, which can realize the online real-time predic-
tion of taxi demands. The above-mentioned methods mainly focus on predicting
the taxi demands by analyzing the historical taxi related data and trying to
capture the spatio-temporal features of taxi demands, which can effectively pre-
dict taxi passengers in certain regions to some extent. However, this is also a
time series forecasting problem, the long-term dependencies exist in the differ-
ent time periods, which is difficult to be handled by traditional approaches. We
need a better method to deal with the long-term dependency and improve the
prediction accuracy. With the rapid development of deep learning technologies,
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN)
are widely used in a lot of applications. Zhang et al. [7] propose a deep spatio-
temporal residual network called ST-Resnet to forecast the inflow and outflow
of crowds in each region of a city. The CNNs and residual units in ST-Resnet
model can effectively capture the spatio-temporal features of the crowds, but
the potential information in the long time series may be lost. Xu et al. [8] pro-
pose a real-time method forecasting taxi demands based on LSTM network and
achieve an admirable prediction accuracy. As a typical network of Recurrent
Neural Network (RNN), Long Short Term Memory (LSTM) [9] network is capa-
ble of learning long-term dependencies by utilizing some gating mechanisms to
store information for future use, which also has been proved to be powerful in
solving some kinds of sequence learning problems. However, it still contains much
redundancy for the spatial data. Liu et al. [10] carry out a difficult and challeng-
ing task, called taxi origin-destination demand prediction, which mainly aims at
predicting the taxi demand between all region pairs in a future time interval. In
addition, a novel Contextualized Spatial-Temporal Network (CSTN) is proposed
and proved to be effective in predicting taxi demands both in origin and destina-
tion. But the spatial and temporal information of taxi demands has not been fully
taken into consideration. In this paper, in order to capture the spatio-temporal
features comprehensively, and predict the taxi demands more precisely, we pro-
pose a new model, called CNN-BiLSTM-Attention, which mainly consists of
three essential parts, namely, CNNs (Convolutional Neural Networks), BiLSTM
(Bidirectional Long Short-Term Memory) neural networks and the attention
mechanism. Then we compare the specific prediction performance of the CNN-
BiLSTM-Attention model with other models, such as LSTM, CNN-LSTM and
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CNN-LSTM-Attention. The experimental results show that the CNN-BiLSTM-
Attention model can outperform these three baselines for the prediction of taxi
demands.

2 Models

2.1 CNN-BiLSTM-Attention Model

Here we proposed a model called CNN-BiLSTM-Attention model, which con-
sists of three essential components, namely, Convolutional Neural Networks
(CNNs), Bidirectional Long Short Term Memory neural network (BiLSTM) and
the Attention mechanism. The structure of CNN-BiLSTM-Attention model is
shown in Fig. 1.

Fig. 1. The structure of CNN-BiLSTM-Attention model

As shown in Fig. 1, the input data is sent to the Convolutional Neural Net-
works at first, which contains several convolutional layers. The CNNs can be
applied to capture the complex spatial information of the taxi demands. Then
the BiLSTM neural network will accept the sequence data from the CNNs, due
to the fact that the time periods also play an important role in the taxi pick-
ups, therefore, the BiLSTM network is used to achieve the potential temporal
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features in the time series, then the attention mechanism will be adopted in
the model, which is able to focus on the relevant elements of the input data,
assigning different weights to the elements of the input sequence based on the
location and contents of the sequence. More details about each component will
be described as below.

2.2 Model Components

As mentioned above, The CNN-BiLSTM-Attention model mainly contains three
important components, namely, Convolutional Neural Networks (CNNs), Bidi-
rectional Long Short-Term Memory neural networks (BiLSTM) and Attention
mechanism. Each component of this model is described in detail as below.

Convolutional Neural Network (CNN). As a deep multi-layer neural net-
work based on the convolution calculation, Convolutional Neural Network has
been widely applied in many fields, such as computer vision and pattern recogni-
tion. In 1980, Kunihiko Fukushima proposed the neocognitron model [11], which
tends to be regarded as the embryonic form of the convolutional neural network.
LeNet-5 model [12], proposed by LeCun, which has been a typical and influen-
tial neural network in the field of computer vision. The LeNet-5 model provides
a standard network structure for the CNNs, which mainly consists of convolu-
tional layers, pooling layers and fully-connected layers. The standard structure
of CNNs is shown in Fig. 2.

Fig. 2. The standard structure of Convolutional Neural Network

As shown in Fig. 2, the CNNs can effectively capture the spatial information
by the convolution operations, as well as its characteristics of weight sharing and
sparse connection. The input data usually is the one-dimensional vector or the
2-D matrix. In our experiment, the entire region or area can be treated as an
image, while the number of passengers taking a taxi in a location can be seen
as the pixels in the image. Therefore, the CNNs in our CNN-BiLSTM-Attention
model are applied to capture the underlying spatial features of taxi demands in
the target region.



Taxi Demand on CNN-BiLSTM-Attention Model 335

Bidirectional Long Short-Term Memory Neural Network (BiLSTM).
BiLSTM neural network is a variant network of the standard LSTM network,
which consists of forward LSTM and backward LSTM, providing the access to
long range context in both input directions. As a desirable neural network to deal
with the long-term dependencies in time series, LSTM is designed to overcome
the vanishing gradients through a special gating mechanism.

The standard LSTM architecture is composed of many recurrently connected
subnets, known as memory blocks [13]. Each memory block consists of one or
several memory cells and three gates, namely, input gate, forget gate and output
gate. The input gate aims at selecting the needed new information, and adds
it to the cell state. The forget gate tends to remove the information that is no
longer required by the memory cell, while the output gate decides what kind
of necessary information in the cell should be output. Generally, the gating
mechanisms can ensure the cells in LSTM network to store and update the
essential information over long periods of time. The equations of these gates
(input gate, forget gate and output gate) in LSTM are as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (1)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (2)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (3)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (4)

ht = ot tanh(ct) (5)

Where i, f and o refer to the input gate, forget gate and output gate respectively,
while c stands for the memory cell, W is the weight matrix of hidden state, xt is
the input data at time t, ht−1 is the hidden output at time t−1, ct is the cell state
at time t, the activation function of these gates is denoted σ, and b represents
the bias value. Given that the event in some time periods in the future tends
to exert an influence on the taxi demand at present, for instance, the concert
hold in next week may increase the taxi demands in the ticket office this week.
Therefore, in our experiment, the BiLSTM network is applied to capture the
long-term dependencies in the time series.

Attention Mechanism. The attention mechanism was proposed and applied
to solve the image related problems at first, which has been utilized in the field
of natural language processing recently. Here we use the attention mechanism
to calculate the weights of feature vectors output from the BiLSTM network at
different time step, and assign the higher weight to the vital features, making
sure that the network can have the better performance. The attention layers
proposed by Zhou et al. [14] is used here, the formulas are shown as below.

et = tanh(Wht + bt) (6)
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αt=
exp(et)

t∑

j=0

ej

(7)

v =
n∑

t=0

αtht (8)

Here ht is the hidden state, bt stands for bias, and v represents the output vector
calculated by the weighted sum of the hidden state.

3 Experiment

3.1 Dataset

The dataset used in our experiment is TLC Trip Record Data [15], which includes
the historical yellow and green taxi trip records of New York City. This dataset is
provided by NYC Taxi and Limousine Commission for research purposes. Each
taxi trip in the dataset consists of several records, such as vendor id, pickup
datetime, pickup longitude, trip distance, passenger count and so on. Given that
the majority of green taxi trip records cannot be available in some years, and
also limited by the hardware condition and computational power, here we choose
the trip records of the yellow taxi from June 2012 through August 2012 as the
training data, and the data from 1st Sept. 2012 to 7th Sept. 2012 is treated as
the testing data.

3.2 Preprocessing

The preprocessing for the data is an essential step before the source data is sent
to the model, this process mainly includes the treatment of outliers and miss-
ing values, as well as the data normalization. In terms of outliers processing,
for example, the longitude and latitude values are beyond the boundary of New
York City, or the number of passengers exceeds the seating capacity of taxis.
Here these kinds of outliers will be removed from the relevant records. When
it comes to the missing values, the delete operation is also applied to deal with
the related records, ensuring the data integrity. In addition, the Min-Max nor-
malization method is used to scale the input data into the range [−1, 1]. In the
evaluation phase, the predicted values are re-scaled back to the normal values,
then compared with the ground truth.

3.3 Model Hyperparameters

The python libraries, including pandas, matplotlib, Tensorflow and Keras, are
utilized to build our models. In our experiment, we choose the Lower Manhat-
tan region, a geographical area with the longitude ranging from −74.0080◦ to
−73.9740◦ and the latitude ranging from 40.7230◦ to 40.7490◦, as our target
area. Then we partition the entire region into equal small ones based on the
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longitude and latitude, which means that each small area possesses the same
size. In order to explore the influence of the geographical partition methods in
the process of predicting the taxi demands, the target experimental region are
partitioned into 36 (6 * 6) small areas and 144 (12 * 12) small areas respectively.
The convolutional neural networks use 32 filters of size 3 * 3, the MaxPooling
layer and Flatten layer are also applied. In terms of BiLSTM network, here the
time interval is set as one hour, and the time-step length is chosen as 24, which
means that the historical taxi trip records in the past 24 time intervals will be
used to forecast the number of taxi pickups in the next time period. Besides, to
avoid the over-fitting problem, the tackle of dropout is also adopted, the param-
eter is set as 0.3. The hidden units in the BiLSTM network is set as 64. We
compare the performance of the CNN-BiLSTM-Attention model in predicting
taxi demands with other three models, namely, LSTM network, CNN-LSTM
network and CNN-LSTM-Attention network. Different from other two models,
the input shape of LSTM network is a 1 * N vector, where N stands for the
number of small areas, while other two models accept a 2-dimensional matrix.
Table 1 includes the list of major parameters in our experiments.

Table 1. Important experimental parameters.

Parameter Value

Number of small areas 36/144

Number of filters 32

Filter size 3 * 3

Time steps 24

Number of units in hidden layer (BiLSTM) 64

Dropout 0.3

3.4 Evaluation Metrics

Due to the fact that multiple areas and time periods are involved in the experi-
ment, here we measure our model by two kinds of prediction error metrics: Root
Mean Square Error (RMSE) [16] and Symmetric Mean Absolute Percentage
Error (SMAPE) [17]. The SMAPE is an alternative to Mean Absolute Percent-
age Error (MAPE) when there are zero or near-zero demand for items [18].
Different from the original formula defined by Armstrong in 1985, the widely
accepted version of SMAPE without the factor 0.5 in denominator is applied
here. The RMSE and SMAPE in regions i over time periods [1−T] are as fol-
lows:

RMSEi =

√
√
√
√ 1

T

T∑

t=1

(Pi,t − P ∗
i,t)

2 (9)
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SMAPEi =
1
T

T∑

t=1

∣
∣Pi,t − P ∗

i,t

∣
∣

Pi,t + P ∗
i,t + k

(10)

Here Pi,t represents the real taxi demand in region i at time-step t, while P ∗
i,t

stands for the predicted taxi demand. In order to avoid division by zero when
both Pi,t and P ∗

i,t are zero, a small value k is added to Eq. 11 [17]. Similarly, The
RMSE and SMAPE of all regions at time-step t would be:

RMSEt =

√
√
√
√ 1

N

N∑

i=1

(Pi,t − P ∗
i,t)

2 (11)

SMAPEt =
1
N

N∑

i=1

∣
∣Pi,t − P ∗

i,t

∣
∣

Pi,t + P ∗
i,t + k

(12)

N refers to the number of small regions in the experiment. Based on these metrics,
we can get the average RMSE and average SMAPE in regions N as follows:

RMSE-N =
1
N

N∑

i=1

RMSEi (13)

SMAPE-N =
1
N

N∑

i=1

SMAPEi (14)

Similarly, the average RMSE and average SMAPE in all time periods would be:

RMSE-T =
1
T

T∑

t=1

RMSEt (15)

SMAPE-T =
1
T

T∑

t=1

SMAPEt (16)

4 Results

4.1 Spatio-temporal Features

The spatio-temporal features of taxi demands play a vital role in the prediction
of the number of passengers who would like to take a taxi. Here, a portion of
historical taxi trip dataset is used to analyze the spatio-temporal features. In
terms of spatial features, in order to ensure the reliability of evaluation results,
we randomly choose the records of taxi pickups on 10th May 2012 as the target
data to analyze the spatial distribution pattern of taxi demands throughout
New York City, which is visualized by the software ArcGIS. The result of taxi
demands distribution on 10th May 2012 throughout New York City is shown in
Fig. 3. With regard to the temporal features, the taxi records of Metropolitan
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Museum of Art on 6th Jun. 2012 and 16th Jun. 2012 are selected to explore
the taxi demands at different time periods in both weekday and weekend. The
taxi demands during different periods of time at Metropolitan Museum of Art
are shown in Fig. 4. As shown in Fig. 3, affected by external multiple factors,
such as geography, economic development, road network, and so on, there is an
apparent difference about the passenger numbers in different boroughs. As the
economic and cultural center of NYC, Manhattan owns the majority of the taxi
demands, in addition, due to the location of JFK airport, there still exist many
taxi passengers in Queens, while few people would like to request the taxis in
Staten Island. As we can see from Fig. 4, in general, the passenger numbers of
taxi pickups at Metropolitan Museum of Art on weekend are obviously more
than the ones on weekday. Besides, the taxi demands mainly focus on the time
period ranging from 10:00 AM to 19:00 PM, which are affected by the opening
hours of the museum, as well as the normal work and rest time of citizens.

Fig. 3. The distribution of taxi pickups throughout NYC on May 10, 2012

4.2 Prediction Results

In our experiment, we first give the comparison with three other models when
the number of divided small areas is set as 36, the results are shown in Table
2 as below. We can find that the RMSE − N , RMSE − T , SMAPE − N and
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Fig. 4. The passenger number of taxi pickups at Metropolitan Museum of Art at time
periods

SMAPE − T of our CNN-BiLSTM-Attention model are better than LSTM,
CNN-LSTM and CNN-LSTM-Attention model, which means this model can
capture the spatial and temporal features more effectively, and has the better
prediction accuracy. Although the CNN-BiLSTM-Attention model can outper-
form the baselines, it is worth noting that there is a small gap on the performance
in predicting taxi demands between the CNN-LSTM-Attention model and the
CNN-BiLSTM-Attention model.

Table 2. Model performance metrics (36 regions).

Model RMSE −N RMSE − T SMAPE −N SMAPE − T

LSTM 45.72 47.23 0.3786 0.3786

CNN-LSTM 39.64 40.52 0.3421 0.3421

CNN-LSTM-Attention 37.26 38.05 0.3279 0.3279

CNN-BiLSTM-Attention 35.94 36.39 0.3158 0.3158

Then in order to evaluate the influence of geographical partition methods in
predicting taxi demands, here we give the comparison with three other models
when the number of small regions is 144, which is shown in Table 3 as below.
As shown in Table 3, it is obvious that the results of RMSE − N , RMSE − T ,
SMAPE − N and SMAPE − T are all lower than the ones in the condition
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Table 3. Model performance metrics (144 regions).

Model RMSE −N RMSE − T SMAPE −N SMAPE − T

LSTM 22.40 22.65 0.1974 0.1974

CNN-LSTM 19.67 19.52 0.1845 0.1845

CNN-LSTM-Attention 18.31 18.49 0.1711 0.1711

CNN-BiLSTM-Attention 18.15 18.23 0.1710 0.1710

where the number of small regions is set as 36, which means that more divided
areas can help to reduce the prediction errors and improve the model perfor-
mance to some extent. In addition, the CNN-BiLSTM-Attention model still has
the better prediction performance than other three models, proving that this
model owns the desirable prediction accuracy, as well as the reliable stability.

5 Conclusion and Future Work

In this paper, based on the historical taxi trip dataset of New York City, we
first analyze the potential spatial and temporal features of taxi demands, then
propose a model called CNN-BiLSTM-Attention to predict the number of taxi
passengers when the divided small areas is set as 36 or 144. The experimental
results show that the prediction performance of the CNN-BiLSTM-Attention
model is better than other three baselines, which proves that this model has
the better prediction accuracy, as well as the reliable stability. In addition, our
experiment also studies the effect of the size of small regions in the prediction
problem. The result shows that the prediction accuracy may become better with
the smaller region size. For future work, more factors can be taken into consid-
eration, such as weather, traffic condition and so on. We also intend to improve
our models with better network structures.
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Abstract. Music can be used as a form of therapy and can reduce symp-
toms of depression and anxiety. Understanding the relationship between
music and physiological reactions could be essential in further developing
music therapy. This paper uses machine learning techniques to classify
which genre of music is being listen to using physiological responses. Both
Long Short Term Memory Networks and Convolutional Neural Networks
can be used for making predictions from sequence data. We trained and
compared two networks which attempted to classify the genre of music a
participant was listening to from their electrodermal activity. An LSTM
and a CNN were trained and their accuracy was found to be 69.23% and
72.97% respectively. Pruning of each of the networks was also conducted
and it was found that the network structure for both the CNN and the
LSTM can be reduced by at least 20% without having a reduction in the
accuracy of the model. It was found that the LSTM has only very few
important neurons and weights that contribute to the accuracy of the
model.

Keywords: Network pruning · Sequence classification · Long short
term memory networks · Convolutional neural networks

1 Introduction

The effects of music on humans has long been observed but is still yet to be fully
understood. The reason some songs give people chills while others make them
want to dance is an interesting and complex problem. It is likely that different
genres of music have different effects on people, and understanding how this
could be measured is an interesting problem that could lead to breakthroughs
in music therapy and music development. If we are able to successfully classify
music into genres from physiological signals it would support research into music
therapy. To better determine the importance of these physiological responses,
this paper looks to identify the effectiveness of model simplification techniques
on classification accuracy in two leading neural network architectures.

Time series classification and prediction has been a growing area of focus for
deep learning techniques. Time series data includes a multitude of interesting
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data, including weather data, stock market forecasts and human physiological
signals, which are the focus of this paper. There are many different techniques
which can be used to extract the most out of a time series data, including
employing the use of Recurrent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs).

Recurrent Neural Networks (RNNs) often suffer from vanishing or exploding
gradient problems. Long Short-term Memory (LSTM) networks are an improve-
ment to RNNs by using gating functions as part of their sequence [9]. LSTMs are
able to model varying length sequence data. They are able to look at long term
dependencies in sequence data [11]. LSTMs are very powerful when dealing with
sequence data, as unlike traditional RNNs, they have the ability to remember
information from the beginning of the sequence right at the end of the sequence.
This means that the network can remember and exploit the most important
information from any time point when classifying the sequence. Convolutional
Neural Networks (CNNs) are also powerful tools for classifying sequential or
spatially related data. CNNs make excellent use of adjacent features, meaning
that they excel in spatial classification as adjacent pixels of an image often have
related content [7].

Deep learning networks can suffer from the same issues as shallow neural net-
works, where the optimal size of the model is hard to determine before training
occurs and too many neurons in hidden layers can result in the same overfitting
problems that occur in shallow neural networks.

The performance of a neural network relies heavily on the number of neu-
rons chosen. Usually, the number of input and output neurons is defined by the
problem the network is trying to solve. There may be some ambiguity about
the number and type of input neurons to use, however this is a separate area of
study. What is far less obvious, however, is how many neurons to use in the hid-
den layers of the network. There are many rules of thumb when considering how
many hidden neurons to include in the network. Some of these include: choosing
a number of hidden neurons between the size of the input layer and output layer,
choosing a number of hidden neurons which is two thirds the size of the input
layer plus the output layer, and choosing the number of hidden neurons which
is less than twice the size of the input layer [4].

These rules of thumb give a user an indication of where to start to avoid
having too many or too few hidden neurons. However, having too many neurons
in the network can lead to inefficient training and cause the model to overfit
to the training data, while having too few can result in the network failing to
learn to the desired level of performance. There are rules of thumb when adding
hidden neurons to a network, including adding one or two hidden units, adding
10% more hidden neurons, or even doubling the amount [12].

Once adequate training has been achieved using these rules of thumb, a
question of the optimal network structure arises. If the size of the model was
simply doubled to achieve good training performance, some redundant neurons
may have been introduced to the network. Reducing the network to the optimal
size not only increases the efficiency of the network, but it allows us to determine
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the appropriate number of hidden neurons for similar problems in the future
[5,6].

Many metrics can be used for the assessment of how well a neural network
performs. In this paper, we will focus on the percentage of correct classifications
the neural network makes, known as the accuracy as a metric of how well the
neural network performs. Accuracy is a simple to calculate and easy to under-
stand performance metric which is suitable for the context of this problem.

This paper intends to predict the genre of music a participant is listening
to by using the electrodermal activity collected during the song. Two neural
networks, an LSTM and a CNN, are trained to attempt to classify the music
into the three genres of music. In this paper, we will also attempt to prune
the LSTM and CNN, getting rid of unnecessary or redundant neurons without
significantly impacting the network performance.

After this introductory section, Sect. 2 of this paper will describe the data
set and the neural network features for the LSTM and the CNN. Section 3
will present the results of the neural networks and looks at how the networks
performed while pruning. Finally, Sect. 4 of the paper concludes the paper and
presents future work.

2 Method

2.1 Data Set

This paper uses the data set developed by Rahman et al. in [13]. The data set
contains a set of physiological signals collected from 24 students when exposed
to different music stimulus. This paper focuses on the prediction of the genre of
the song based on the electrodermal activity of each participant throughout the
song. The electrodermal activity of each participant was recorded throughout the
song at a sampling rate 4 Hz, meaning that 4 samples were collected each second.
The songs were of varying length, but all were about 4 min long. 16 of the 24
participants listened to each song and their electrodermal activity was recorded
throughout. 12 different songs were used, with four songs representing three
genres, being classical, instrumental, and pop. This single sequential feature will
be used for training [13].

2.2 Data Pre-processing

Extensive data pre-processing was required in order to properly train a model
able to successfully classify sequential data. Some exploratory data analysis was
conducted, and it showed that the values ranged a significant amount between
participants. All the participants’ data was included in the analysis for each
song.

As the data from each participant varied a significant amount, sometimes by
an order of magnitude, it was decided that before any analysis the data should be
normalised. Min-max normalisation was used on the data of each participant for
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each song, leaving each participant with a range of values for their electrodermal
activity being between zero and one. Min-max normalisation has been shown to
improve accuracy of neural nets, and is a simple and easy to implement method
of normalisation [8].

In order to have the data in the suitable format for training, an ID for each
data point was used. This was generated from the timestamp and participant
ID, and song genre. Maintaining the time stamp in this dataset is essential to
maintain the sequential nature of the dataset.

The data was split into training and test set in order to train and test our
model. The training set contained approximately 80% of the data, with the test
set containing the remaining 20%. The data was randomised before being split to
ensure that the test set did not contain data from only one or two participants.
It was decided that a validation set for this data was not required because of
the small data sample size. As there is an even amount of data for each genre,
an even sample from class was taken for testing, leaving a balanced set for the
training dataset.

Each song was of a slightly different length. In order for the data to be trained
using Pytorch, the data was truncated to make each song to the length of the
shortest song. This aided with the training of the CNN, even though LSTMs are
able to train with sequences of varying lengths. It has been demonstrated that
padding can have an effect on the classification of both an LSTM and a CNN,
and careful consideration must be made when padding sequences for this reason
[2]. It was determined that cutting off the end sequence of the song would not
impact the accuracy of the network significantly.

2.3 Network Details

Two networks were trained, an LSTM and a CNN. Both LSTMs and CNNs have
shown the ability to classify and predict physiological signals with good accuracy.
An LSTM showed accuracy of approximately 85% when predicting emotions
from EEG signals [1]. A CNN was used to predict emotions of a participant and
achieved a high level of precision and accuracy [15].

The networks were trained, aiming to predict the genre of music the partici-
pant listened to based on the sequence of their electrodermal activity. Network
parameters were determined based on trial and error results based on the testing
accuracy and speed of computation obtained.

It was found that the optimal number of epochs used for both the LSTM and
the CNN varied based on other hyperparameters. On many occasions, after sev-
eral hundred epochs, a dramatic decrease in the testing accuracy was observed.
This was deemed to be occurring because the model was overfitting to the train-
ing data. In these situations, early stopping of training happened to avoid over-
fitting the model. Reducing the number of hidden layers also helped to reduced
the model overfitting during training.

One of the hyperparameters considered for the LSTM was the sequence
length. It was found that long sequence lengths tended to overfit to the training
data. In the LSTM model, the learning rate was extremely important to the
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performance of the training. A high learning rate resulted in the model oscillat-
ing between high and low accuracies, with the error of the model increasing and
decreasing dramatically. Again, through iterative experimentation a low learning
rate of 0.001 was found to produce the most accurate results.

The loss for the LSTM network was calculated using a combination of the
softmax function and the negative log likelihood loss function. The optimisation
function used was Adam which was chosen because it is an efficient computa-
tional method and it performed similarly on accuracy measures as more complex
optimisation algorithms [10].

Due to the relatively small size of the dataset, it was decided that a single
layer LSTM would be sufficient for achieving the desired accuracy in this model.
Salman et al. [14] found that using a multilayer LSTM increased the accuracy
of the classification problem from 72% to 80%, however that dataset contained
more than 40 000 data points.

Network parameters for the CNN were determined based on trial and error
results based on the testing accuracy and speed of computation obtained. Having
extremely low learning rates for the model slowed training down a significant
amount, so the rate had to be increased to achieve desired results, with a learning
rate of 0.01 being the final rate decided upon.

Again, it was found that the optimal number of epochs used varied based
on other hyperparameters. On many occasions, after several hundred epochs, a
decrease in the testing accuracy was observed. This was deemed to be occur-
ring because the model was overfitting to the training data. In these situations,
training was stopped early to avoid overfitting the model.

The loss for the CNN was calculated using the negative log likelihood loss
function. The optimisation function used was Stochastic Gradient Descent. A
1 dimensional CNN was used for the sequence data. 1 dimensional CNNs have
shown to be comparable to human experts when evaluating pathological voice
quality [3].

3 Results and Discussion

3.1 LSTM Sequence Length

Figure 1 shows that when the sequence length is small, the model does not
achieve its best accuracy. This may be because there is a pattern in longer
sequences. We also see a reduction in accuracy for large sequence lengths. This
corresponded to a higher training accuracy, but a lower testing accuracy which
leads to the conclusion that the larger sequence length resulted in the model
overfitting. It was found that the best accuracy was found at sequence lengths
of 32 and 64.

Overall given the size of the data set and the amount of noise present, achiev-
ing an accuracy near 70% for the prediction of a genre is pretty good and goes
some way of demonstrating the power of the LSTM – using 16 features on the
smaller data set only ever yielded about 50% in classification accuracy using a
simple feed forward neural network.
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Fig. 1. A graph showing the decrease in accuracy of the LSTM with different sequence
lengths.

3.2 Classification Results

We will now look at how the different numbers of epochs changed the accuracy
of the LSTM and the CNN.

Fig. 2. LSTM classifier accuracy over
100 epochs

Fig. 3. CNN classifier accuracy over 100
epochs

Figure 2 shows us that the LSTM network seems to reach its maximum
accuracy fairly early in the training cycle. The testing accuracy sometimes takes
sharp dips in accuracy through the epochs, and learning should be stopped when
this happens as we are achieving poor test accuracy for no increase in training
accuracy.

Unlike the LSTM, the CNN requires more epochs to achieve a higher accu-
racy, and it would be interesting to see whether this accuracy might become
more stable if more epochs were looked at. We see that both the training and
testing accuracy has a general upward trend, so it is possible that if the model
was left to run for longer that it might obtain a higher accuracy. Overall, the
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chosen hyperparameters do not appear to indicate any overfitting in the model,
however the shape of the curve indicates that the learning rate could potentially
be lowered to smooth out some of the jagged decreases in accuracy that are seen
in Fig. 3.

3.3 Effects of Network Pruning

Pruning can reduce model complexity, reduce computational time and prevent
overfitting of a model. We will now look at the effect of pruning different amounts
of neurons in both the LSTM and the CNN.

Due to computing constraints, the model was only run for 10 epochs to test
the pruning accuracy, meaning that the model has not always reached its highest
accuracy when the pruning accuracy is reported.

Fig. 4. LSTM accuracy with pruning Fig. 5. CNN accuracy with pruning

The LSTM network was trained with 100 hidden neurons, which may be
too many for the problem at hand. We have previously discovered that pruning
the network can remove several neurons without significantly affecting the accu-
racy. The network was run with the same hyperparameters, each time pruning
a different number of neurons to see what effect this has on the accuracy of the
network. The pruning has been done on the final, fully connected layer. As there
are three classes for the classification and 100 hidden neurons, there are 300
weights which can be pruned. The results of the pruning can be seen in Fig. 4.

It can be seen from the Fig. 4 that the accuracy removing the number of
neurons decreases the accuracy of the network. However, we can also see that
there is not a dramatic decrease in the accuracy of the network with pruning
until we have removed 295 of the weights. This is somewhat surprising, but
indicates that there are only a few neurons and associated weights that strongly
contribute to the accuracy of the model.

Similar to the pruning of the LSTM, we see that several neurons can be
pruned from the CNN without significantly decreasing the accuracy of the net-
work, presented in Fig. 5. We do, however see a more drastic and earlier decrease
in accuracy with pruning which may indicate that there are more neurons asso-
ciated with the accuracy in the CNN than there were in the LSTM.
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The computational advantages of pruning each network was also investigated.
Table 1 and Table 2 show the average time taken to train one epoch at each num-
ber of neurons pruned for the LSTM and CNN respectively. The computational
times can vary significantly, depending on background processes running on the
computer used. For this reason, the non-pruning time was calculated at the same
time as each of the different pruning metrics.

Table 1. Computational times for LSTM with pruning.

Number of weights
pruned

Time before
pruning (s)

Time after
pruning (s)

Percentage
change (%)

0 1.441 1.429 0.88

50 3.097 3.024 2.39

100 1.464 1.400 4.54

150 2.965 2.937 0.97

200 1.342 1.277 5.11

250 1.473 1.455 1.24

290 1.455 1.404 3.62

295 1.739 1.484 17.17

It can be seen in Table 1 that for the LSTM, the training time for each epoch
does reduce with an increase in the number of weights pruned. Although this
was only run over one epoch on a small data set, it does indicate that pruning
an LSTM may be a way to reduce computational time without significantly
affecting the accuracy of the network.

Table 2. Computational times for CNN with pruning.

Number of weights
pruned

Time before
pruning (s)

Time after
pruning (s)

Percentage
change (%)

0 3.336 3.304 0.966

50 3.295 3.307 –0.362

100 3.281 3.265 0.489

150 3.371 3.395 –0.697

Looking at the computational times for the CNN presented in Table 2, we
don’t see the same reduction in computing time we saw with the LSTM. This
is possibly because there is still a significant amount of computation being done
in the CNN, and pruning the final layer is less effective at reducing the compu-
tational time.
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4 Conclusion and Future Works

Two neural networks were trained and each attempted to classify the genre
of music a participant was listening to from their electrodermal activity data
collected throughout the participant listening to the track. An LSTM and a CNN
were trained and their accuracy was found to be 69.23% and 72.97% respectively.
Rahman et al. [10] was able to achieve an accuracy of 96.8% when predicting the
genre of the song from the participant’s skin response. The paper, unlike this
one, used more features in the classification, not just the electrodermal activity
in the time-series. Future work may be to consider using more features along
with the sequence data to see what accuracy can be obtained from combinations
of features. The ability to classify music into genres using electrodermal signals
recorded from participants indicates that there are reactions to music that are
common across different people.

Pruning of each of the networks was also conducted and it was found that the
network structure of each network can be reduced without having a reduction in
the accuracy of the model. It also showed that for an LSTM, pruning the network
may be an efficient way to reduce computational time without compromising the
accuracy of the network.

There were some constraints when training this data, most notably the
absence of a GPU to train the data. This means that often training had to
be finished early due to time constraints. This analysis could be replicated and
more epochs of the data could be run to allow the models to converge more and
see the effects of a large number of epochs. In line with this, more tuning of the
parameters could be conducted to test the maximum accuracy of the model. Dif-
ferent normalisation techniques could be employed and the effects of this change
on the accuracy could be tested. In this analysis, the data was truncated to
make the analysis of the sequences more simple. This is not a robust method, as
it would not allow sequences of shorter lengths to be included in the analysis.
Instead, an analysis with padding of noise or some other kind of padding could
be used to allow the whole sequence to be used.
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Abstract. Deep learning architecture has shown remarkable perfor-
mance in machine learning and AI applications. However, training a
spiking Deep Convolutional Neural Network (DCNN) while incorporat-
ing traditional CNN properties remains an open problem for researchers.
This paper explores a novel spiking DCNN consisting of a convolu-
tional/pooling layer followed by a fully connected SNN trained in a
greedy layer-wise manner. The feature extraction of images is done by the
spiking DCNN component of the proposed architecture. And in achieving
the feature extraction, we leveraged on the SAILnet to train the original
MNIST data. To serve as input to the convolution layer, we process the
raw MNIST data with bilateral filter to get the filtered image. The convo-
lution kernel trained in the previous step is used to calculate the filtered
image’s feature map, and carry out the maximum pooling operation on
the characteristic map. We use BP-STDP to train the fully connected
SNN for prediction. To avoid over fitting and to further improve the
convergence speed of the network, a dynamic dropout is added when the
accuracy of the training sets reaches 97% to prevent co-adaptation of neu-
rons. In addition, the learning rate is automatically adjusted in training,
which ensures an effective way to speed up training and slow down the
rising speed of the training accuracy at each epoch. Our model is evalu-
ated on the MNIST digit and Cactus3 shape datasets, with the recogni-
tion performance on test datasets being 96.16% and 97.92% respectively.
The level of performance shows that our model is capable of extracting
independent and prominent features in images using spikes.

Keywords: Spiking Deep Convolutional Neural Network (DCNN) ·
Backpropagation STDP (BP-STDP) · Sparse representation

1 Introduction

Spiking Neural Networks (SNNs) allow learning that is primarily inspired by
the brain transformation via discrete action potential in time through adap-
tive synapses [1]. However, developing a neural network that is efficient and
c© Springer Nature Switzerland AG 2020
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biologically plausible as SNNs and powerful as deep neural networks in accom-
plishing different tasks is a prospect in the area of AI and computational neu-
roscience. Deep learning architecture has many layers of trainable parameters
and has shown remarkable performance in machine learning and AI applications
[2,3]. Deep Convolutional Neural Networks (DCNNs) have proven outstanding
performance in image recognition [4–6], speech recognition [7,8], bioinformat-
ics [9,10] and object detection and segmentation [11,12]. To link biologically
plausible learning methods and conventional learning algorithms in neural net-
works, a number of deep SNNs have recently been developed [13,14]. One of
the earliest feed-forward hierarchical CNN of spiking neurons for unsupervised
learning was developed in [15]. This networks was extended for larger problems
in [16]. A probabilistic STDP rule was later used in [17] to enhance the per-
formance of the model in different object recognition tasks. The work in [18] is
one of the deepest and recent STDP-trained convolutional architectures trained
by STDP yielding a high accuracy of 98.4% on MNIST. Later, [19] introduced
dual accumulator units to address unfavorable interactions of multi-layer train-
ing motivated by the design in [18] which used an unsupervised STDP to train
all layers concurrently. However, this networks did not use SAILnet and dropout
in their implementation. Layer-wise spiking representation learning approaches
have been implemented in recent spiking CNNs [20–22] to train convolutional fil-
ters. The Foldiak model [23] first presented a set of three learning rules: Hebbian,
anti- Hebbian, and homeo-static which attained representation coding in a non-
SNN. Zylderberg et al. [24] later modified Foldiak’s plasticity rules to develop
a sparse representation model with SNNs called SAILnet. However, the lack-
ing features of SAILnet were that the learning rules were not temporally local
and the inputs utilized pixel intensity, not spike trains. Without the usage of
spike times, the question of training using an approach that is spatio-temporally
local and spike-based (as STDP [25]) remains unresolved. Tavanaei and Maida
in [21,22] used SAILnet to train orientation selective kernels of the initial layer
of a spiking CNN with a feature discovery layer equipped with an STDP vari-
ant [17] to extract visual features for classification. A new version of SAILnet
was created in [26] to enhance its locality in space and time. However, their
implement never included bilateral filters and dropout. Their feature discovery
layer also used softmax probability. In the past, experiments of MNIST in SNN
used spiking convolution structure to encode the original data into spike trains
first, get the feature map, and then use the machine learning classifier to classify
the pooled data [18,21]. Although the accuracy of these models are about some
percentage points higher than ours, they use machine learning classifier classi-
fication to break the biological interpretability of spiking, and we use spiking
method to steal the to rail. Since the convolution layer simulates the work of the
primary visual cortex of the Primate’s eye, our model is better in the biological
interpretability. In addition, we use the pooled data to train the classification
network, greatly speeding up the fitting speed, and training can be completed
in about 20 epochs, which is also to our advantage. We propose a novel spiking
DCNN architecture that comprises of a convolutional/pooling layer and a fully
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connected SNN equipped with an unsupervised learning, all of which undergo
bio-inspired learning. We utilized bilateral filter for processing the raw image to
obtain the filtered image. To avoid overfitting, we included a dynamic dropout
techniques as a mask to randomly disable activation of unit and to shorten
the training time. The fully connected SNN is trained using a backpropagation
STDP (BP-STDP) rule adopted from [20,27].

2 Network Architecture

This section specifies the details of our spiking DCNN architecture. The network
comprises of the SAILnet, a convolutional/pooling layer, and a fully connected
SNN. Figure 1 shows the proposed Spiking DCNN architecture.

Fig. 1. Architecture of the proposed Spiking DCNN model.

2.1 SAILnet

The SAILnet trained the required filters to learn to represent an image as a
set of sparse, distributed features of visual area V1. The SAILnet algorithm
uses excitatory weights (W ex), inhibitory weights (W inh) and threshold (θ) as
adaptive parameters. It has an input layer and an early representation layer,
fully connected laterally by inhibitory weights. SAILnet used spiking neurons
for its representation layer and maintained spatial locality in its plasticity rules.
However, the lacking features is that the learning rules were not temporally local
and the inputs utilized pixel intensity, not spike trains. The training method of
our model is consistent with the method in SAILnet. The following formula is
used to update the weights:

ΔW inh
im = α(ninm − ρ2) (1)

ΔW ex
ik = βni(xk − niW

ex
ik ) (2)

Δθi = γ(ni − ρ) (3)
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where ni (or nm) denotes the number of spikes fired during a stimulus presenta-
tion, ρ is the sparsity parameter and xk is the pixel intensity. Detail description
of how stimulus is presented for SAILnet and SAILnet’s learning rules is in [22].

2.2 Bilateral Filter

A bilateral filter is a non-linear, edge-preserving, and noise-reducing smoothing
filter for images which substitutes the intensity of each pixel with a weighted
average of intensity values from neighboring pixels. With bilateral filter, the
weighted average of the adjacent pixel is set through the space and the pixel
value distance. Critically, the weights depend not only on Euclidean distance of
pixels, but also on the radiometric differences and this preserves the structure
of the sharp. It is defined and presented as:

Os =
1
Zs

∑

t∈Ns

ωs,tIt (4)

where
ωs,t = Gδα

(‖s − t‖)Gδγ
(‖Is − It‖) (5)

Zs =
∑

t∈Ns

Gδα
(‖s − t‖)Gδγ

(‖Is − It‖) (6)

and

Gδα
(‖s − t‖) = exp(

−(‖s − t‖)2

2δ2α
) (7)

Gδγ
(‖Is − It‖) = exp(

−(‖Is − It‖)2

2δ2γ
) (8)

Os denotes the output pixel value after bilateral filtering, ωs,t denotes the weight
of any pixel t, Zs denotes the normalization term, Gδα

is the spatial distance
function, Gδγ

is the pixel value distance function, I is the original input image
to be filtered, t is the location of any pixel, s being the location of the target
pixel and δα and δγ represent filter radius and filter ambiguity respectively and
Ns is the size of the adjacent pixel set of (2δα + 1) × (2δα + 1).

2.3 Convolution and Pooling

Adopting same strategy in [21,22], we use the SAILnet of spiking neurons for
sparse representation of visual features introduced in [24] to train our convolu-
tion layer. The trained weight obtained from the sparse coding algorithm is then
used as a filter for the convolutional layer. The convolutional layer is represented
by a 16-filter, which extracts visual features across the image. A convolutional
layer is made up of several neuronal maps and shares weight to lessen the num-
ber of parameters as in CNN. Each neuron is discriminative to a visual feature
controlled by its input synaptic weights. All the convolutional layers have Leaky
Integrate and-Fire (LIF) neurons which gather input from presynaptic units in
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Fig. 2. Bilateral filter distribution of weight average of intensity values of pixelsl.

the form of spikes and fires when their internal potential reach a pre-specified
threshold, thereby enabling information in the spiking DCNN to be transferred
in the form of spike train instead of real numbers. To generate feature map,
the filter is convolved independently with the image over 50ms time step pre-
sentation interval, depicting a specific image characteristic. After training, these
filter weights are frozen and are no longer trained when used in our model. The
purpose of the pooling layers is to reduce the spatial resolution of the feature
maps and thus attain spatial invariance to input distortions and translations [2].
Max pooling is use in the layer to choose a neuron with the highest activity in
a square neighborhood. The spike train produced from the pooling layer convey
varied visual features of the image distributed across the feature maps. The fea-
ture maps of the pooling layer are unrolled into a 1-D vector and used as input
for the fully connected SNN.

2.4 Dropout

We used dropout to effectively regularize our spiking DCNN. In our experiment,
a one-dimensional vector is generated from the output spikes of the pooling layer
on which a dynamic dropout is implemented to train the fully connected SNN
for final classification. Firstly, the standard model has no dropout. Overfitting
normally occurs when training accuracy is above 99%, and at this stage, the test-
ing accuracy neither increase nor decrease. Therefore, adding a dynamic dropout
when the accuracy of the training set reaches 97% to prevent co-adaptation of
neurons. The whole dropout process is equivalent to averaging many different
neural networks. We apply the dynamic dropout rule between the input layer
and the hidden layer in the fully connected SNN. Bernoulli function is used to
generate 1 or 0 according to a certain probability to decide whether to delete
the neuron and it is presented as:
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rh
j ∼ Bernoulli(p) (9)

U(t) = inputi × wh
ij × rh

j + U(t − 1) (10)

In addition, we reduced the weight matrix in the test phase using:

w
(l)
test = pW (l) (11)

2.5 Fully Connected SNN

The spike trains produced from the pooling layer carry various visual features of
the image distributed across the D feature maps. The feature maps of the pooling
layer are used as input for the fully connected SNN to generate inference deci-
sions. The feature maps of the pooling layer is connected to the feature discovery
layer which processes these features to recognize and discover more complex fea-
tures. This layer is implemented in a fully connected feedforward fashion using
BP-STDP yielding the predicted classification of the input image. BP-STDP
[20,27] shows the network’s ability to extract independent and prominent fea-
tures. BP-STDP uses bio-inspired STDP and high-performance backpropagation
(gradient descent) rules. It offers a temporally local learning technique defined
by an STDP/anti-STDP rule deduced from the backpropagation weight change
rules that can be applied at each time step. We implemented the learning rule
for single layer SNN trained with supervision denoted as:

ΔWih(t) ∝ μ(zi(t) − ri(t))sh(t) (12)

The synaptic weights are updated using a teacher signal to switch between STDP
and anti-STDP, ensuring the target neuron undergoes STDP and the non-target
undergoes anti-STDP. A detailed representation of the BP-STDP is shown in [20,
27]. The various parameters and their associated values used in our experiment
are shown in Table 1.

3 Experiment and Results

To evaluate the performance of our proposed spiking DCNN, we run an exper-
iment using the MNIST datasets containing normalized handwritten digits and
Cactus3 shape datasets which contain images of shapes of squares, circles, and
triangles.

3.1 Datasets Description

The MNIST datasets of handwritten digit was chosen for this investigation due
to it ubiquity in machine learning. An MNIST image has 28× 28 gray scale
images. Each image was divided in an overlapped of 5 × 5 patches with a stride
of 1. Training set of 12,000 individual handwritten digits, each labeled 0–9.
(12,000 × 576 = 6,912,000) were used to train the convolution filters. Our test
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Table 1. Parameter values of the spiking DCNN used in the simulations

Parameters Description Value

α Hebbian learning rate 0.05

β Anti-Hebbian rate 0.0001

γ Threshold adjustment rate 0.01

R Resistance 1 Ω

C Capacitance 0.001F

θconv Convolutional threshold 5

lp Pooling stride 2

a+ LTP Amplification rate 0.001

a− LTD Amplification rate 0.00075

θh Feature discovery neuron’s threshold 0.5

T Time step 50 ms

set consist of 1,800 digits. A patch is presented to a representation neuron to
train a 16 convolutional filters. As each picture is input, the weight matrix is
updated.

The Cactus3 Shape datasets which is made up of 300 images of squares,
circles, and triangles. Each shape has 100 images of pixels. Training datasets of
240 images, 80 images from each shape and testing dataset of 60 images were
used.

3.2 Experiments

In the MNIST experiment, we first train the convolution kernel with the raw
MNIST data. To serve as input to the convolution, we process the raw MNIST
data with bilateral filter to get the filtered image. Then we use the convolution
kernel trained in the previous step to calculate the filtered image’s feature map,
and carry out the maximum pooling operation on the characteristic map. After
getting the pooled data, we use BP-STDP to train the fully connected SNN for
prediction.

In Fig. 3, the data used are the same, that is, the pooled data obtained by
convolution layer and bilateral filter with the same parameters. The difference
is the number of neurons used in the hidden layer of BP-STDP which are 50,
100, 500, 1000 and 1500 respectively. The experiments show that BP-STDP
of 1000 neurons is the best. In order to conduct more sensitivity test on the
number of hidden neurons that gives the best performance of the model, we
varied the number of neurons around the 1000 neurons, such as 800 and 1200. It
is confirmed that the 800 neurons performed slightly better than 1000 neurons
for the proposed model. This is shown in Fig. 4.

To serve as a baseline and for comparative purpose, we use the original
MNIST data and the data of MNIST calculated by convolution layer but with-
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out bilateral filter, to train and test the BP-STDP network with 800 neurons in
hidden layer. The results is shown in Fig. 5. We can conclude that the perfor-
mance is not as good as compared to our model of combination of convolution
layer and bilateral filter.

Also, Fig. 6 shows the output voltage and spike train of neurons in the output
layer when different handwritten digits are input into the trained model. The
picture on the left shows the membrane voltage of 10 output neurons. The X
axis is the time axis and the Y axis is the voltage. The picture on the right is the
spike train produced by 10 output neurons, the X axis is the time axis, and the
Y axis is the output neuron. The picture of each output spike train corresponds
to the voltage map on the left. There are two lines in the figure, which shows
the output from the output layer of the input numbers 4 and 7 respectively from
top to bottom. In the figure, the output neurons corresponding to the input
numbers are represented by triangle symbols, and the others are represented by
dots. It can be seen that one output neuron’s membrane voltage tends to rise
very fast, and the number of spikes far exceeds that of other output neurons,
which is exactly the correct output we expect, which ensures the accuracy of
prediction. The voltage of other neurons decreased rapidly due to inhibition,
and the lowest value was below - 1000 mV. In addition, there are a fewer similar
number’s output neuron membrane voltage which may rise slowly, for example,
the left figure of the second line correctly outputs 7, but the output neuron
voltage corresponding to the number 9 rises slowly. However, the figure on the
right shows that the output neurons corresponding to number 7 spikes up to 25
times, while the output neurons corresponding to number 9 spikes only once.
Correct prediction is still an absolute advantage, which shows that our model is
very reliable.

In the Cactus3 shape experiment, we experimented with the Kaggle open-
source kernel in order to compare to our model. AlexNet is used as the neural
network model for training built using Keras framework. Alexnet has five con-
volution layers, three pooling layers and two fully connected layers. Because this
dataset is simple, we reduce the number of neurons in the five convolutions to
64, 128, 192, 192 and 128 respectively. The number of neurons in the two fully
connected layers were 120 and 84 respectively. To achieve better results, data
enhancement technique is used to rotate the training set image in three differ-
ent directions, that is, 90◦, 180◦ and 270◦ respectively, as shown in Fig. 7. The
accuracy of the test set is about 97.92%.

In Fig. 8, the accuracy of AlexNet is compared to our model in 100 training
epochs. It is obvious that the overall performance of our model is better than
AlexNet. In terms of fitting speed, our model’s accuracy can get around 90% at
the fifth epoch, while AlexNet needs to be close to 35 epochs to achieve similar
accuracy. In terms of accuracy, after the 60th epoch, both models have been
fitted. Our model is not only more accurate, but also less volatile.
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Fig. 3. Accuracy on train and test data for 50, 100, 500, 1000 and 1500 hidden neurons.

Fig. 4. Accuracy on train and test data for 800, 1000 and 1200 hidden neurons.

Fig. 5. Accuracy on train and test data for 800 hidden neurons for different data.
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Fig. 6. Output voltage and spike train of neurons in the output layer for MNIST.

4 Comparative Analysis

The presented network achieves good classification performance on the MNIST
benchmark using SNNs with unsupervised learning made of biologically plausi-
ble components. Our proposed spiking DCNN achieves competitive classification
accuracy using fewer trainable parameters as compared to the other SNNs shown
in Table 2. Our Spiking DCNN is trained using bio-inspired BP-STDP unsuper-
vised learning that connects the event-driven processing and on-chip learning
capabilities. A comparison of SNNs used for MNIST classification is shown in
Table 2. From the table, some of the various models had more trainable parame-
ters than our model. However, our spiking DCNN yields a competitive accuracy
with fewer synaptic updates.

Fig. 7. Data enhancement of shape in each training data.



Unsupervised Multi-layer Spiking CNN Using LWSC 363

Fig. 8. Result analysis of our model compared to AlexNet in 100 training epoch.

Table 2. Classification accuracy of SNNs for MNIST datasets

SNN topology Architecture Spiking encoding

scheme

Learning rule # trainable

parameters

Accuracy

Two-layer

SNN [28]

Fully connected Poisson

distributed

encoding

STDP 5017600 95%

SDNN [18] Convolutional Rank-order

encoding

STDP+SVM 76500 98.4%

Spiking CNN

[22]

Convolutional Poisson-

distributed spike

encoding

Sparse Cod-

ing+STDP+SVM

590642 98.3%

SpiCNN [29] Convolutional Poisson-

distributed spike

encoding

STDP 25488 91.1%

Spiking

DCNN (our

model)

Convolutional SAILNET+

Bilaternal filter

BPSTDP 356636 96.16%

5 Conclusion

Our work presents a novel spiking DCNN trained in a layer-wise and unsuper-
vised manner. Our model used bilateral filter to process the original images. We
extracted the features of the image in advance through a convolution structure,
which simulates the function of primary visual cortex in human eyes, making
our network more biologically interpretable. Firstly, the standard model has no
dropout. Overfitting normally occurs when training accuracy is above 99%, and at
this stage, the testing accuracy neither increase nor decrease. Therefore, we added
a dynamic dropout when the accuracy of the training set reaches 97% to prevent
co-adaptation of neurons. In addition, our learning rate is also adjust automati-
cally in training, which is also an effective way to speed up training and to slow
down the rising speed. The experimental results on the MNIST datasets digits
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and Cactus3 shape datasets showed a high performance of the proposed model.
Although some methods have been proposed to improve the training speed, if
too many convolution kernels are used in the convolution layer, the training time
of BP-STDP will be greatly increased. However, our network is not friendly to
large-scale pictures. Before training BP-STDP, we change the data into a two-
dimensional tensor. The first dimension is obtained by multiplying the number of
convolution cores by the height and width of the feature map. The second dimen-
sion is the time length of spike train. We observed that when the number of convo-
lution kernels and image size increase, the data will also increase rapidly. Also, our
model shows a strong learning ability in learning gray-scale images, which is due
to the ability of the convolution structure in extracting the features of the original
image in advance, and coding them as spiking train.
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Abstract. Many approaches to training generative models by distinct
training objectives have been proposed in the past. Variational Autoen-
coder (VAE) is an outstanding model of them based on log-likelihood. In
this paper, we propose a novel learnable prior, Pull-back Prior, for VAEs
by adjusting the density of the prior through a discriminator that can
assess the quality of data. It involves the discriminator from the theory
of GANs to enrich the prior in VAEs. Based on it, we propose a more
general framework, VAE with a Pull-back Prior (VAEPP), which uses
existing techniques of VAEs and WGANs, to improve the log-likelihood,
quality of sampling and stability of training. In MNIST and CIFAR-10,
the log-likelihood of VAEPP outperforms models without autoregres-
sive components and is comparable to autoregressive models. In MNIST,
Fashion-MNIST, CIFAR-10 and CelebA, the FID of VAEPP is compa-
rable to GANs and SOTA of VAEs.

Keywords: Variational Autoencoder · Deep generative model ·
Adversarial training

1 Introduction

How to learn deep generative models that are able to capture complex data pat-
terns in high dimension space, e.g., image datasets, is one of the major challenges
in machine learning. Many approaches to training generative models by distinct
training objectives have been proposed in the past, e.g., Generative Adversar-
ial Network (GAN) [6], flow-based models [11], PixelCNN [20], and Variational
Autoencoder (VAE) [10,21]. GANs achieve SOTA in generative models, but like-
lihood of GANs are poor or incalculable.

The likelihood is important for generative models. VAE uses the variational
inference and re-parameterization trick to optimize the evidence lower bound of
log-likelihood (ELBO). In the past, researches [12,27] focused on enriching the
variational posterior, but recently [26] showed that the standard Gaussian prior
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H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 366–379, 2020.
https://doi.org/10.1007/978-3-030-63836-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63836-8_31&domain=pdf
http://orcid.org/0000-0001-8852-675X
http://orcid.org/0000-0003-4614-7545
http://orcid.org/0000-0003-1965-2060
http://orcid.org/0000-0003-2841-5788
http://orcid.org/0000-0002-5113-838X
https://doi.org/10.1007/978-3-030-63836-8_31


VAEPP: Variational Autoencoder with a Pull-Back Prior 367

could lead to underfitting. To enrich the prior, several learnable priors have been
proposed [2,25,26]. Most of them focus on approximating aggregated posterior
which is the integral of the variational posterior and is the optimal prior that
maximizes ELBO. However, existing methods based on the aggregated posterior
reach limited performance, and the practical meaning of the aggregated posterior
is ambiguous. We notice that a discriminator can assess the quality of data and
we argue that it is advisable to adjust the learnable prior by the
discriminator, where the discriminator has clear practical meaning.

We propose a novel learnable prior, Pull-back Prior, based on the discrimina-
tor. Firstly, a discriminator D(x) is trained for assessing the quality of images.
Then, we define a pull-back discriminator on latent space, by D(G(z)), where
G(z) is the generator. Finally, we adjust the density of the prior according to
the pull-back discriminator.

We propose a training algorithm for VAE with Pull-back Prior (VAEPP),
based on SGVB [10] with gradient penalty terms, which mixes the discriminator
and the gradient penalty term [7,28] into VAE. Compared to AAE [18], VAEPP
uses discriminator to adjust learnable prior while AAE uses discriminator to
replace KL(q(z)||p(z)). Langevin dynamics, provided by [13] is used in VAEPP
to improve the quality of sampling.

The main contributions of this paper are in the following:

– We propose a novel learnable prior, Pull-back Prior, which is adjusted by a
discriminator that can assess the quality of data.

– We propose VAEPP framework to use existing techniques of VAE, e.g., flow
posterior, WGAN, e.g., gradient penalty strategy, and Langevin dynamics to
improve the log-likelihood and quality of sampling.

– In MNIST and CIFAR-10, the log-likelihood of VAEPP outperforms models
without autoregressive components and is comparable to autoregressive mod-
els. In MNIST, Fashion-MNIST, CIFAR-10, and CelebA, the FID of VAEPP
is comparable to GANs and SOTA of VAEs.

2 Background

2.1 VAEs and Learnable Priors

Many generative models aim to minimize the KL-divergence between the empir-
ical distribution p∗(x) and the model distribution pθ(x), which leads to maxi-
mization likelihood estimation. The vanilla VAE [10] models the joint distribu-
tion pθ(x, z) and the marginal distribution pθ(x) =

∫
pθ(x, z)dz. VAE applies

variational inference to obtain the evidence lower bound objective (ELBO):

ln pθ(x) ≥ Eqφ(z|x)[ ln pθ(x|z) + ln pθ(z) − ln qφ(z|x)] � L(x; θ, φ) (1)

where qφ(z|x) is the variational encoder and pθ(x|z) is the generative decoder.
The training objective of VAE is Ep∗(x) [L(x; θ, φ)] and it is optimized by SGVB
with the re-parameterization trick. In vanilla VAE, the prior pθ(z) is the standard
Gaussian.
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Recently, [26] showed that the simplistic prior could lead to underfitting.
Since then many learnable priors are proposed to enrich the prior. Most of them
focused on the aggregated posterior qφ(z), which was shown to be the opti-
mal prior that maximizes ELBO according to [26]. The training objective with
learnable prior pλ(z) is:

L(θ, φ, λ) = Ep∗(x)Eqφ(z|x) ln pθ(x|z) + Ep∗(x)H[qφ(z|x)] + Eqφ(z) ln pλ(z) (2)

I,J ,K denote 3 terms in Eq. (2) respectively for short thereafter. Notice that
pλ(z) only appears in the last term K and the optimal solution of pλ(z) is
qφ(z). [25,26] obtained an approximation of qφ(z) with their proposed prior, but
reached limited performance.

2.2 GANs and Wasserstein Distance

In vanilla GAN [6], a generator is trained to generate samples for deceiving the
discriminator, and a discriminator is trained to distinguish generated samples
and real samples. However, vanilla GAN is unstable during the training process.
To tackle this problem, Wasserstein distance is introduced by WGAN [1]:

W 1(μ, ν) = sup
Lip(D)≤1

{Eμ(x)D(x) − Eν(x)D(x)} (3)

where Lip(D) ≤ 1 means that D is 1-Lipschitz, and μ, ν are measures. WGAN
is optimized by minimizing W 1(p∗, pθ) which can be seen as a min-max opti-
mization.

WGAN makes progress toward stable training but sometimes fails to converge
since it uses weight clipping for the Lipschitz constraint. WGAN-GP [7] and
WGAN-div [28] improved WGAN by gradient penalty techniques, to achieve a
more stable training.

3 Pull-Back Prior

3.1 Intuition of Pull-Back Prior

Definition 1. The formula of Pull-back Prior is given by:

pλ(z) =
1
Z

pN (z) · e−βD(G(z)) (4)

where pN is a simple prior, D is a discriminator, G is a generator, β is a
learnable scalar, fλ(z) denotes pN (z)e−βD(G(z)), and Z =

∫
Z fλ(z)dz is the

partition function.

A design proposition of Pull-back Prior is that we increase pλ(z) where z
generates better data and decrease pλ(z) where z generates worse data. In Pull-
back Prior, D is a discriminator to assess the quality of x, where smaller D(x)
indicates x being more similar to real data, as shown in Fig. 1. Such discriminator
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D(x) is defined on x, and the pull-back discriminator on z is defined by D(G(z)),
where D(G(z)) represents the ability of z that can generate data with high
quality. To increase pλ(z) at the better z and decrease pλ(z) at the worse z, we
modify pN (z) by βD(G(z)), and then normalize it by Z. Finally, we obtain the
basic formula of Pull-back Prior.

The theoretical derivation for Pull-back Prior is provided in Theorem 1.
However, it remains questions about how to obtain D and G, determine β, and
calculate Z.

Fig. 1. The discriminators on above images (generated by linear interpolation of two
sample from qφ(z)), are better at both sides and worse at the middle, which validates
the intuition that a discriminator can assess the quality of images. Moreover, in VAEPP
the density of z which generates better images will increase, and the density of z which
generates worse images will decrease.

3.2 How to Obtain D and G

In our model, G(z) = Epθ(x|z)x, i.e., the mean of pθ(x|z). In our experiments,
pθ(x|z) is chosen to be a Discretized Logistic [23] or a Bernouli. G(z) is generated
by a neural network and it is set as the mean of pθ(x|z).

D plays an important role in Pull-back Prior. We shall propose two ways to
obtain D in Sect. 4.1 and Sect. 4.2, and compare them later in our experiments.

3.3 How to Determine β

To maximize ELBO, we can obtain the optimal β by (λ contains β and ω, where
ω denotes the parameters of D):

β = arg max
β

L(θ, φ, λ) = arg max
β

L(θ, φ, β, ω) (5)

When the training coverages, ∂L/∂β = 0. The gradient ∂L/∂β is:

∂ ln Z

∂β
=

1
Z

∫

Z
pN (z)e−βD(G(z)) · (−D(G(z)))dz = Epλ(z)[−D(G(z))]

∂L
∂β

= Eqφ(z)[−D(G(z))] − ∂ ln Z

∂β
= −Eqφ(z)[D(G(z))] + Epλ(z)[D(G(z))] (6)

The 1st term in Eq. (6) is the mean of the discriminator on reconstructed data
(reconstructed data are nearly same as real data in VAE, after few epochs in
training). The 2nd term in Eq. (6) is the mean of the discriminator on data
generated from pλ. ∂L/∂β = 0 means that the discriminator can’t distinguish
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reconstructed data and generated data when the training converges. It coincides
with the philosophy of GANs that the discriminator can’t distinguish real data
and generated data when the generator is well-trained.

Noticing that pN is a special case of pλ where β = 0, Pull-back Prior is a
general form of the standard Gaussian. We shall compare their performance in
experiments.

3.4 The Upper-Bound of Z

It is difficult to calculate the partition function Z exactly. Fortunately for
VAEPP, it is acceptable to obtain an upper-bound of Z, denoted by Ẑ. Using
the upper-bound Ẑ in training and evaluation, we can obtain lower-bounds of
log-likelihood and ELBO (note, p̂θ(x) ≤ pθ(x) indicates ln p̂θ(x) ≤ ln pθ(x)):

p̂θ(x) =
∫

pθ(x|z)fλ(z)
Ẑ

dz ≤
∫

pθ(x|z)fλ(z)
Z

dz = pθ(x)

K̂ = Eqφ(z) ln
1
Ẑ

fλ(z) ≤ Eqφ(z) ln
1
Z

fλ(z) = K

L̂ = I + J + K̂ ≤ I + J + K = L

The upper-bound Ẑ in our model is derived as follows:

Ẑ = Ep∗(x)Eqφ(z|x)
fλ(z)

1
N qφ(z|x)

≥ Ep∗(x)Eqφ(z|x)
fλ(z)
qφ(z)

= Eqφ(z)
fλ(z)
qφ(z)

= Z (7)

The fact that Ẑ is an upper-bound of Z comes from:

qφ(z|x)
N

≤ 1
N

N∑

i=1

qφ(z|x(i)) ≈ Ep∗(x)qφ(z|x) = qφ(z)

In previous VAE literatures [2,10,25] and our paper, it is a common practice
to dynamically sample 0/1 binary images (which is exactly the x of our VAE
and many other paper’s) from real-value grayscale images (whose distribution
is denoted by p∗(e)). Each pixel value of e is normalized into [0, 1], and then
is used as the probability of the corresponding pixel of x being 1 (denoted by
p∗(x|e)). In such situation, even when the size M of original grayscale image
dataset is moderate, the size N of the sampled images dataset is exponentially
large. Hence, we shall severely overestimate Z since 1

N qφ(z|x) � qφ(z) if directly
using Eq. (7). Therefore, we consider to use p∗(e) instead of p∗(x) to estimate
a lower bound of qφ(z) in such datasets (called Bernouli datasets in our paper).
Given that p∗(x) = Ep∗(e)p

∗(x|e), we shall have:

qφ(z) = Ep∗(x)qφ(z|x) = Ep∗(e)Ep∗(x|e)qφ(z|x) = Ep∗(e)qφ(z|e) (8)

where qφ(z|e) denotes Ep∗(x|e)qφ(z|x). Equation (8) suggests that we may train
a variational encoder qφ(z|e) instead of qφ(z|x), along with a generative decoder
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pθ(x|z), while the log-likelihood estimator is still correct:

Ep∗(x) log pθ(x) = Ep∗(e)Ep∗(x|e) log pθ(x) = Ep∗(e)Ep∗(x|e) logEqφ(z|e)
pθ(x, z)
qφ(z|e)

Based on this idea, we then derive Ẑ and ELBO as:

Ẑ = Ep∗(e)Eqφ(z|e)
fλ(z)

1
M qφ(z|e) ≥ Ep∗(e)Eqφ(z|e)

fλ(z)
qφ(z)

= Eqφ(z)
fλ(z)
qφ(z)

= Z

Ep∗(x) ln pθ(x) = Ep∗(e)Ep∗(x|e) lnEqφ(z|e)
pθ(x|z)pλ(z)

qφ(z|e)
≥ Ep∗(e)Ep∗(x|e)Eqφ(z|e) ln

pθ(x|z)pλ(z)
qφ(z|e)

= Ep∗(x) ln pθ(x) − Ep∗(e)Ep∗(x|e)KL(qφ(z|e), pθ(z|x)) (9)

Equation (9) is similar to the original ELBO, and the conclusions in this paper
hold for Eq. (9) by repeating derivations for Eq. (9). L(θ, φ, λ) denotes Eq. (9)
in Bernouli datasets.

Review the estimation of Z. By the theory of importance sampling, pλ is the
optimal choice for the proposal distribution in the estimation of Z. However,
it is intractable to sample from pλ. [2] uses pN as the proposal distribution to
estimate Z but when KL(pN , pλ) is high, the variance of this estimation will be
large.

In our experiments, KL(qφ, pλ) is much smaller than KL(pN , pλ). Therefore,
we choose qφ(z) as the proposal distribution and use 1

N qφ(z|x) as a lower bound
of qφ(z), to obtain Ẑ in Eq. (7). The variance of Ẑ is acceptable in experiments. In
training, pN (z) could be used together with qφ(z), as the proposal distributions,
since KL(pN , pλ) is small in the beginning of training.

4 Training and Sampling

In this section, we propose two training methods and a sampling method for
VAEPP. The main difference between two trainings method is how to train the
discriminator.

4.1 2-Step Training for VAEPP

The discriminator should be obtained by W 1(pθ, p
∗), suggested by WGAN [1].

However in VAEPP, pθ is intractable for sampling, since pθ(x) = Epλ(z)pθ(x|z)
and pλ(z) is intractable for sampling.

When β is small enough, pλ(z) is near to pN (z) which is feasible for sampling.
Then, pθ(x) is near to p†(x), where p†(x) = EpN (z)pθ(x|z) and p†(x) is feasible for
sampling. Therefore, we try to obtain the discriminator by W 1(p†, p∗) instead.
β is limited by a hyper-parameter. In this way, an discriminator D is trained by:

W 1(p†, p∗) = sup
Lip(D)≤1

Ep†(x)D(x) − Ep∗(x)D(x)
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Fig. 2. Training loss of Naive VAEPP and VAEPP on CIFAR-10. Naive VAEPP is
more unstable and nearly crashes at 80 epoch while VAEPP has a little acceptable
gap. From global view, the training loss of VAEPP is more smooth than Naive VAEPP
and is better than Naive VAEPP’s over almost all training process, which validates the
motivation in Sect. 4.2. There are little gaps at per 200 epoch because learning rate is
reduced to half at every 200 epoch.

The other parameters of VAEPP are trained by SGVB:

max
θ,φ,β

L(θ, φ, β, ω)

Above two optimizations run alternatively, as shown in Algorithm 1. The model
trained by 2-step training algorithm is called Naive VAEPP.

4.2 1-Step Training for VAEPP

However, the training process of Algorithm 1 is unstable and inefficient, as shown
in Fig. 2. We suspect that the two independent optimizations instead of one
whole optimization, may lower the log-likelihood and stability. Therefore, we try
to combine the training for θ, φ, β, ω into a whole optimization. Our solution is
to use SGVB with the gradient penalty term to train VAEPP:

max
θ,φ,β

max
Lip(D)≤1

L(θ, φ, β, ω) (10)

Theorem 2 in appendix indicates that it is reasonable to obtain discriminator
D during optimizing Eq. (10), and the gradient penalty term should be multiplied
by β. Finally, the optimizations for θ, φ, β and ω are combined into one, as shown
in Algorithm 2. The model trained by 1-step training Algorithm is called VAEPP.

4.3 Sampling from VAEPP

We apply Langevin dynamics to sample z from pλ(z). It could generate natural
and sharp images and only requires that ∇z log pλ(z) is computable and pλ(z0)
is high enough where z0 is the initial point of Langevin dynamics [24]. Moreover,
[13] has implemented a Metropolis-Adjusted Langevin Algorithm (MALA) for
sampling, where the formula of density also contains a discriminator term. But
how to obtain the initial z0 whose density is high enough is still a problem.
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Algorithm 1: 2-step training algorithm for VAEPP
Input: The gradient penalty algorithm R, the batch size b, the number of critic

iterations per generator iteration nc, the parameters for Adam
Optimizers, τ .

1 while θ, φ, β, ω have not converged do
2 for k = 1, . . . nc do
3 for i = 1, . . . , b do
4 Sample e, x ∼ p∗, z ∼ qφ(z|e), ε ∼ pN ;

5 Z(i) ← 1
2
(e−βD(G(ε)) + fλ(z)

1
M

qφ(z|e) );

6 L(i) ← ln pθ(x|z) + ln fλ(z) − ln qφ(z|e) ;

7 end

8 θ, φ, β ← Adam (∇θ,φ,β( 1
b

∑b
i L(i) − ln( 1

b

∑b
i Z(i))), {θ, φ, β}, τ);

9 end
10 for i = 1, . . . , b do
11 Sample e, x ∼ p∗, z ∼ pN , ê ← G(z);
12 get gradient penalty term ζ ← R(e, ê) ;

13 L(i) ← D(x̂) − D(x) + ζ ;

14 end

15 ω ← Adam (∇ω
1
b

∑b
i L(i), ω, τ) ;

16 end

The sampling of VAEPP consists of 3 parts: sample initial z0 by a GAN
modeling qφ(z); generate z ∼ pλ(z) from initial z0 by MALA; generate image
from z with the decoder. This sampling process is similar to 2-Stage VAE [4].
The main difference between them is that VAEPP applies Langevin dynamics
to sample from the explicit prior but 2-Stage VAE doesn’t, since the prior of
2-Stage VAE is implicit. In experiments, sampling from the explicit prior may
improve the quality of sampling in some datasets.

Accept-Reject Sampling [2] is useless for pλ because it requires that
pλ(z)/pN (z) is bounded by a constant T on the support of pλ, such that a
sample could be accepted in expected T times. But it is hard to ensure that
there exists a small T in VAEPP.

5 Experiments

5.1 Log-Likelihood Evaluation

We compare our algorithms with other models based on log-likelihood, on
MNIST and CIFAR-10 as shown in Table 1, and on Static-MNIST [15], Fashion-
MNIST [29], and Omniglot [14], as shown in Table 2. Because the improvement of
auto-regressive components is significant, we separate models by whether they
use an auto-regressive component. The reason of why VAEPP doesn’t use an
auto-regressive component is that VAEPP is time-consuming in training, eval-
uation and sampling due to the huge structure (need additional discriminator)
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Algorithm 2: 1-step training algorithm for VAEPP
Input: The gradient penalty method R, the batch size b, the parameters τ for

Adam Optimizers.
1 while θ, φ, β, ω have not converged do
2 for i = 1, . . . , b do
3 Sample e, x ∼ p∗, z ∼ qφ(z|e), ε ∼ pN , ê ← G(ε), ζ ← R(e, ê);

4 Z(i) ← 1
2
(e−βD(G(ε)) + fλ(z)

1
M

qφ(z|e) );

5 L(i) ← ln pθ(x|z) + ln fλ(z) − ln qφ(z|e) + βζ;

6 end

7 θ, φ, β, ω ← Adam (∇θ,φ,β( 1
b

∑b
i L(i) − ln( 1

b

∑b
i Z(i))), {θ, φ, β, ω}, τ)

8 end

Table 1. Test NLL on MNIST and Bits/dim on CIFAR-10. The data are from [2,3,17,
25,26]. Bits/dim means − log pθ(x|z)/3072/ ln 2. VAEPP+Flow means VAEPP with a
normalization flow on encoder. The decoder on CIFAR-10 is Discretized Logistic and
the decoder on MNIST is Bernouli. Additional, we compare VAE based on qφ(z|x) and
qφ(z|e) on MNIST, whose NLL are 81.10 and 83.30 respectively. Moreover, evaluation
using importance sampling based on qφ(z|e) has enough small standard deviation (0.01)
with 108 samples altogether. It validates that qφ(z|e) is stable for evaluation and doesn’t
improve the performance. VAEPP reaches SOTA without autoregressive component,
and is comparable to models with autoregressive component.

Model MNIST CIFAR Model MNIST CIFAR

With autoregressive Without autoregressive

PixelCNN 81.30 3.14 Implicit Optimal Priors 83.21

DRAW 80.97 3.58 Discrete VAE 81.01

IAFVAE 79.88 3.11 LARS 80.30

PixelVAE++ 78.00 2.90 VampPrior 79.75

PixelRNN 79.20 3.00 BIVA 78.59 3.08

VLAE 79.03 2.95 Naive VAEPP 76.49 3.15

PixelSNAIL 2.85 VAEPP 76.37 2.91

PixelHVAE+VampPrior 78.45 VAEPP+Flow 76.23 2.84

and Langevin dynamics. It is not easy to apply an auto-regressive component
on VAEPP since auto-regressive component is also time-consuming. Therefore,
how to apply an autoregressive component on VAEPP is a challenging practical
work and we leave it for future work. IvOM [19] of VAEPP reaches 0.018, 0.017
on MNIST, CIFAR-10, which shows good data coverage.

We compare Naive VAEPP trained by Algorithm 1 and VAEPP trained by
Algorithm 2 on CIFAR-10, as the gradient penalty algorithm is chosen from 3
strategies: WGAN-GP, WGAN-div-1 (sampling the linear interpolation of real
data and generated data) and WGAN-div-2 (sampling real data and generated
data both) in Table 3.
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Table 2. Test NLL on Static MNIST, Fashion-MNIST and Omniglot.

Model Static MNIST Fashion Omniglot

Naive VAEPP 78.06 214.63 90.72

VAEPP 77.73 213.24 89.60

VAEPP+Flow 77.66 213.19 89.24

Table 3. Comparison between Naive VAEPP and VAEPP when gradient penalty
strategy varies on CIFAR-10 with dim Z = 1024. For any gradient penalty strategy
in the table, VAEPP outperforms Naive VAEPP, which validates the our intuition of
Algorithm 2. WGAN-div-1 is chosen as the default gradient penalty strategy since it
reaches best performance in VAEPP.

GP Strategy WGAN-GP WGAN-div-1 WGAN-div-2

Naive VAEPP 3.15 3.20 4.47

VAEPP 2.95 2.91 2.99

To validate that it is better to use qφ(z) to evaluate Z than pN (z) in Sect. 3.4,
we calculate the KL(qφ(z)||pλ(z)) and KL(pN (z)||pλ(z)) on CIFAR-10 and
MNIST. The former is smaller than L − I [9](180.3 on CIFAR-10 and 12.497
on MNIST), and the latter can be evaluated directly (1011.30 on CIFAR-10 and
57.45 on MNIST). Consequently, qφ(z) is much closer to pλ(z) than pN (z).

To ensure the variance of estimation Ẑ is small enough, the qφ(z|e) is chosen
as truncated normal distribution (drop the sample whose magnitude is more than
2 standard deviation from the mean) instead of normal distribution, which may
reduce the gap between qφ(z) and 1

M qφ(z|x). With 109 samples, the variance of Ẑ
with truncated normal and normal is 0.000967 (truncated normal) and 0.809260
(normal) respectively in MNIST. Therefore, truncated normal is chosen as the
default setting.

5.2 Quality of Sampling

As a common sense, the quality of sampling of VAEs is worse than GANs, and
it is indeed a reason that we involve the techniques of GAN to improve VAE
model: We use the discriminator to adjust learnable prior and a GAN to sample
the initial z0 for Langevin dynamics. These techniques will help VAEPP improve
the quality of samples. The samples of VAEPP gets good FID [8], comparable
to GANs and 2-Stage VAE (SOTA of VAE in FID), as shown in Table 4. Some
generated images of VAEPP are shown in Fig. 3. It is important to notice that
the GAN in VAEPP only plays the role that generates z0 with high pλ(z0), in
latent space with small dimension, instead of image. The ability of VAEPP that
generates image from z is totally depend on the decoder.

It is hard to reach best FID, IS [22] and log-likelihood simultaneously with
one setting. We observe the fact that when dimZ (the dimension of latent space)
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Fig. 3. Examples of generated images from VAEPP on CelebA [16] and CIFAR-10.

Table 4. FID comparison of GANs and VAEs. Best GAN indicates the best FID on
each dataset across all GAN models when trained using settings suggested by origi-
nal authors [4]. VAEPP uses Bernouli as decoder on MNIST and Discretized Logistic
on others. GAN-VAEPP indicates that image is directly sampled from z0, without
Langevin dynamics. In experiments, we found that the FID of VAEPP is usually bet-
ter than GAN-VAEPP, which means that the explicit prior and Langevin dynamics
might be useful for improving the quality of sampling in some datasets.

Model MNIST Fashion CIFAR CelebA

Best GAN ∼ 10 ∼ 32 ∼ 70 ∼ 49

VAE+Flow 54.8 62.1 81.2 65.7

WAE-MMD 115.0 101.7 80.9 62.9

2-StageVAE 12.6 29.3 72.9 44.4

GAN-VAEPP 12.7 26.4 74.1 53.4

VAEPP 12.0 26.4 71.0 53.4

Fig. 4. Comparison of VAEPP with a learnable scalar γ (variance of pθ(x|z)), as the
dimension of latent space varies on CIFAR-10, with metrics BPD, FID and IS. FID
and BPD are better when it is smaller and IS is better when it is larger. When dim Z
is greater than 128, the quality of sampling becomes worse and BPD becomes better as
dim Z increases. It validates the proposition that dim Z should be chosen as a minimal
number of active latent dimensions in [4]. It shows an interesting phenomenon that
trends of FID and IS, are not same as BPD, maybe greatly different.
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increases, the trends of FID and IS are greatly different to log-likelihood’s, as
shown in Fig. 4. As diagnosis in [4], the variance of pθ(x|z) is chosen as a learn-
able scalar γ, and the dimZ is chosen as a number, slightly larger than the
dimension of real data manifold. In our experiments, VAEPP reaches best FID
when dim Z = 128.

For better understanding, the values of discriminator on training set are
normalized into N (0, 1). To validate the Eq. (6), we calculate Epλ(z)D(G(z))
and Eqφ(z)D(G(z)). They are 0.092 and 0.015 respectively on CIFAR-10, which
means discriminator on generated samples and reconstructed samples are nearly
same as on real data. To validate the assumption in Sect. 7 holds in experiment,
we calculate |Epθ(x|z)D(x) − D(G(z))|, which is an acceptable value (0.019) on
CIFAR-10.

6 Conclusion

We propose a novel learnable prior, Pull-back Prior, for VAE, by adjusting the
prior through a discriminator assessing the quality of data, with a solid deriva-
tion and an intuitive explanation. We propose an efficient and stable training
method for VAEPP, by mixing the optimizations of WGAN and VAE into one.
VAEPP shows impressive performance in log-likelihood and quality of sampling
on common datasets. We believe that VAEPP could lead VAE models into a new
stage, with clearer formula, more general framework and better performance.

7 Derivation of Pull-Back Prior

For any given θ, φ, search the optimal prior that minimizes the W 1(pθ, p
∗):

min
λ

sup
Lip(D)≤1

{Epλ(z)Epθ(x|z)D(x) − Ep∗(x)D(x)} (11)

We use an assumption Epθ(x|z)D(x) = D(G(z)) and an approximation D to
simplify it. The D in Eq. (11) could be replaced by an approximation D in
W 1(p†, p∗), if pλ is near pN , as Sect. 4.1 and Sect. 4.2 does. The simplified
optimization is:

min
λ

{Epλ(z)D(G(z)) − Ep∗(x)D(x)} s.t. KL(pλ, pN ) = α,

∫

Z
pλ(z)dz = 1

Theorem 1. The optimal solution for this simplified optimization is the Pull-
back Prior.

Proof. It could be solved by Lagrange multiplier method introduced by calculus
of variation [5]. The Lagrange function with Lagrange multiplier η, γ is:

F (pλ, η, γ) = Epλ(z)D(G(z)) − Ep∗(x)D(x) + η

∫

Z
pλ(z)dz + γKL(pλ, pN )
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By Euler-Lagrange equation, the optimal pλ satisfies δF
δpλ

= 0. Therefore, we
obtain

δF

δpλ
= D(G(z)) + η + γ log

pλ(z)
pN (z)

+ γpλ(z) ∗ 1
pλ(z)

= 0

Rewritten it into ln pλ(z) = − 1
γ D(G(z)) + ln pN (z) − ( η

γ + 1), which is the Pull-
back Prior with β = 1

γ , ln Z = (1 + η
γ ). β is determined by α. In simplified

optimization, α is static and need to be searched, i.e., β need to be searched, as
Sect. 3.3 does.

Theorem 2. The optimization process of maxLip(D)≤1 L(θ, φ, β, ω) is equivalent
to the maxLip(D)≤1 K, which is a lower-bound of βW 1(p†, p∗).

Proof. L = I +J +K, where I +J is independent to D, then I +J is constant.

K = −Eqφ(z)β ∗ D(G(z)) − ln Z ≤ βEpN (z)D(G(z)) − Eqφ(z)D(G(z))

where ln Z = lnEpN (z)e
−β∗D(G(z)) ≥ EpN (z)[−β ∗ D(G(z))]. Then

max
Lip(D)≤1

K ≤ β max
Lip(D)≤1

{Ep†(x)D(x) − Epr(x)D(x)} = βW 1(p†, pr)

where pr(x) = Eqφ(z)pθ(x|z) and pr ≈ p∗ is observed in experiments.
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Abstract. Training the classical-vanilla deep neural networks (DNNs) with sev-
eral layers is problematic due to optimization problems. Interestingly, skip con-
nections of various forms (e.g. that perform the summation or concatenation of
hidden representations or layer outputs) have been shown to allow the successful
training of very DNNs. Although there are ongoing theoretical works to under-
stand very DNNs that employ the summation of the outputs of different layers
(e.g. as in the residual network), there is none to the best of our knowledge that
has studied why DNNs that concatenate of the outputs of different layers (e.g.
as seen in Inception, FractalNet and DenseNet) works. As such, we present in
this paper, the first theoretical analysis of very DNNs with concatenated hidden
representations based on a general framework that can be extended to specific
cases. Our results reveal that DNNs with concatenated hidden representations
circumnavigate the singularity of hidden representation, which is catastrophic for
optimization. For substantiating the theoretical results, extensive experiments are
reported on standard datasets such as the MNIST and CIFAR-10.

Keywords: Deep networks · Skip connection · Optimization · Generalization

1 Introduction

Classical deep neural networks (DNNs) have only one path from the input layer to
the output layer for information flow. This type of DNNs are commonly referred to as
‘PlainNets’, and many works [1,2] have reported improved results on various tasks by
simply extending the depth of previous state-of-the-art PlainNets. Following this obser-
vation, theoretical studies that characterize the role of model depth for the compact
representation of complicated functions can be found in [3,4]. Interestingly, training
PlainNets with many layers of feature representations (i.e. very deep PlainNets) is dif-
ficult, since optimization typically becomes problematic when the number of model
layers exceeds fifteen [5,6]. However, it is known that the optimization problem of very
deep PlainNets can be mitigated by employing skip connections of various forms. A
popular form of skip connection in the literature is based on the summation of the out-
put of any given layer with the outputs of earlier layers. Some very DNNs that adopt
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 380–392, 2020.
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Fig. 1. Generic DNN block used for analysis, where ⊕ denotes the vertical concatenation opera-
tion. Left: PlainNet block. Right: ConcNeXt block.

this type of construction include the ResNet [7], ResNeXt [8] and S-ResNet [9]. While
very impressive results for different tasks have been reported in several works using
skip connections, the literature is still lacking of a concrete theoretical account of their
operation. We note that analytical studies have been limited to the ResNet, since using
skip connections that sum the hidden representation of different layers generally results
in complicated DNNmodels. Notwithstanding, controversies such as the useful number
of layers [10], how optimization problem is circumnavigated [10–12], and the source
of improved generalization capacity [10] continue to trail the ResNet. Hence, it is not
surprising that the theoretical analysis of similar but more complicated models such as
the ResNeXt [8] and S-ResNet [9] are outrightly missing in the literature.

The other popular and successful form of skip connection in the literature entails
the concatenation of the output of different layers. DNNs that employ this type of con-
struction are the Inception [13], Inception V3 [14], FractalNet [15] and DenseNet [16].
Despite the success of these DNN models, to the best of our knowledge, there are no
theoretical works to understand their operation. This is not surprising, given the compli-
cated architectural construction of this type of DNNs in comparison to the DNNs that
employ skip connections and the summation of hidden representations [7–9]. In this
paper, we provide a theoretical framework for understanding the complicated operation
of very DNN models that employ skip connections with concatenated hidden repre-
sentations. We acknowledge the proliferation of DNN architectures that employ skip
connections and concatenated hidden representations in the literature [13–16]. As such,
a generic DNN architecture that can be adapted to specific cases is employed for analy-
sis in this paper. Specifically, our generic architecture is similar to the ResNeXt, where
the summation operation is simply replaced by the concatenation operation. We bor-
row the nomenclature of the ResNeXt so that the DNN architecture used in this paper
is referred to as ‘ConcNeXt’. We note that the theoretical results for the generic DNN
architecture used in this paper are relatable to similar DNNs such as the Inception [13]
and DenseNet [16]. Namely, our contributions are as follows.

1. Present the first theoretical study of DNNs with concatenated hidden representa-
tions that relies on elements of linear algebra and random matrix theory. Our results
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unravel unique model characteristics that translate to a good optimization condition
for models with several hidden layers.

2. Report extensive experimental results to support the analytical results using bench-
marking datasets such as the MNIST and CIFAR-10.

The paper is organized as follows. Section 2 discusses related works. Section 3 presents
the preliminaries on DNNs with skip connection and concatenated hidden representa-
tions using a generic DNN architecture. Theoretical analysis is given in Sect. 4. Exper-
imental results with discussions are in Sect. 5. Section 6 concludes the paper.

2 Related Work

Deep Neural Networks with Skip Connections: Considering the proliferation of dif-
ferent DNN architectures, there is a growing concern in recent times of their inter-
pretability. Particularly, we are interested in how the architectures of the DNNs impact
their training characteristics and performances. Interestingly, the unconventional con-
struction of the state-of-the-art DNNs, which employ various forms of skip connections
obfuscate their operation. Nevertheless, we note that considerable progress has been
made in understanding the operation of DNNs that employ the summation of the out-
puts of hidden layers with the outputs of the previous layers; particularly, the ResNet
[7]. For instance, the work [10] argued that the effective depth of the ResNet is signif-
icantly smaller than the architectural depth. Namely, the ResNet with 110 layers was
shown to have an effective depth of 17 layers [10]. The gradients shattering problem
was studied in [11], where skip connections were found to be helpful for fostering
well-structured gradients that make the training of very DNNs successful. The unrolled
iterative estimation concept was proposed in [12,17], where it was argued that groups of
ResNet blocks iteratively refine the representations computed in a particular stage, and
new representations are computed in other stages [12]. Another work from the dynam-
ical systems perspective is in [18]. Importantly, a unanimous account of the operation
of the ResNet remains a challenge in the deep learning community. Subsequently, the
literature is lacking of the theoretical study of DNNs that employ skip connections and
the concatenation of the outputs of hidden layers with the outputs of previous layers.
Some DNNs that use this type of construction include the Inception [13,14], FractalNet
[15] and DenseNet [16]. We presume that the main reason for the lack of analytical
study for this type of DNNs is their more complicated constructions and operations.

Studying Deep Linear Neural Networks: The strict theoretical study of DNNs with
all its ‘bells and whistles’ often results in mathematical intractability. Among other
simplifications that make DNN amenable to theoretical analysis is the linear activation
function assumption [19–21]. In fact, stricter assumptions such as the number of hidden
units, data points and convexity are in the literature [20,22]. Interestingly, it is known
that the theoretical results obtained using linear DNNs are mostly applicable for non-
linear DNNs [23,24]. This observation is not confounding, since a linear DNN with two
or more layers is still a non-convex optimization problem in the parameter space.
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3 Preliminaries

We discuss as preliminaries the simplified and generic DNN architecture used for the
theoretical analysis in the paper. Specifically, the building blocks for the PlainNet and
ConcNeXt that the analyses are based on are shown in Fig. 1, where we use ⊕ to denote
the vertical concatenation operation. Note that we assume the linear activation function
for analysis. However, we show via experiments (in Sect. 5) that theoretical results are
valid for practical models that use the non-linear activation function such as the rectified
linear function. First, we give the following axiom that is important for expressing the
hidden representations of the ConcNeXt in interesting forms.

Axiom 1. Let a matrix C ∈ R
n×N be the vertical concatenation of matrices A ∈

R
n1×N and B ∈ R

n2×N as in C = (A⊕B); where n = n1+n2. Assuming A = DB
with D ∈ R

n1×n2 , so that C = (DB⊕B). Then, we can write C = (D⊕I)B, where
I ∈ R

n2×n2 is the identity matrix.

3.1 Plain Network (PlainNet)

The output of the PlainNet block is strictly hierarchical as in Fig. 1 (left); there is only
one connecting input. Let the input data to the PlainNet DNN model be X ∈ R

n×N .
Subsequently, let the input to a hypothetical PlainNet block composed of two hid-
den layers be H(X)l−2

p ∈ R
n×N as in Fig. 1 (left); where W l

pb ∈ R
n×n and

W l−1
pb ∈ R

n×n are the layers’ parameters initialized as Gaussian random matrices,
and pb indicates the weights in a PlainNet block. Thus, the output of the PlainNet block
is

H(X)lp = W l
pbW

l−1
pb H(X)l−2

p . (1)

For the sake of simplicity, the transformation W l
pbW

l−1
pb given in Eq. (1) is lumped as

W l
p = W l

pbW
l−1
pb , where W l

p ∈ R
n×n. Hence, the output of the PlainNet block can be

simply expressed as
H(X)lp = W l

pH(X)l−2
p . (2)

3.2 Concatened Network of Hidden Representations (ConcNeXt)

The ConcNeXt employs skip connections that concatenate the output of the previous
block with the outputs of the s parallel paths in the current block in Fig. 1 (right); where
s ∈ N

+ is referred to as the cardinality of the ConcNeXt with 1 ≤ k ≤ s. As such,
let the weight matrix at layer l and path k be W l,k

gb ∈ R
q×q, where gb indicates the

weights in the ConcNeXt block. Similar to the ResNeXt [8], the parameterization of the
ConcNeXt is such that q ← q/s. That is, the dimensions of the weight matrix is reduced
with an increase in cardinality. For compactness, we use Υ s

k=1Γ
k to denote successive

vertical concatenations of the variable Γ k, where the dimension of Γ k permits the
concatenation operations. That is, Υ s

k=1Γ
k = (Γ 1 ⊕ · · · ⊕ Γ k ⊕ · · · ⊕ Γ s). Given the

block’s input, H(X)l−2
g ∈ R

q×N , the output of the ConcNeXt block, H(X)lg , with
the parameters W l,k

gb ,W l−1,k
gb ∈ R

q×q initialized as Gaussian random matrices is

H(X)lg = (Υ s
k=1W

l,k
gb W l−1,k

gb H(X)l−2
g ⊕ H(X)l−2

g ), (3)
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Again, for simplicity, the transformation W l,k
gb W l−1,k

gb in Eq. (3) is lumped as W l,k
g =

W l,k
gb W l−1,k

gb , where W l,k
g ∈ R

q×q. Finally, factorizing Eq. (3) using Axiom1 gives

H(X)lg = (Υ s
k=1W

l,k
g ⊕ I)H(X)l−2

g . (4)

4 Theoretical Study of DNNs with Skip Connections
and Concatenated Hidden Represenations

This section theoretically investigates why DNNs with skip connections and concate-
nated hidden representations alleviate the training problems of very DNNs. The analysis
of the ConcNeXt is positioned relative to the optimization problem of very deep Plain-
Nets based on the singularity of hidden representations. First, the definitions, proposi-
tions and lemmas that are crucial for the theoretical study are given as follows. Note
that all proofs are in the supplementary material.

Definition 1. The condition number of a matrix A ∈ R
n×N denoted κ(A) is given as

κ(A) = σmax(A)
/
σmin(A), (5)

where σmax(A) and σmin(A) are the maximum and minimum singular values of A,
respectively. From Definition 1, singularity implies that σmin(A) = 0, so that κ(A) =
∞. Generally, the optimization of ill-posed problems are very difficult [25,26].

Proposition 1. Given a matrix W ∈ R
n×n whose column vectors, wi, are drawn from

a Gaussian or uniform distribution, the probability that W is non-singular, P (wi /∈
W span

−i ), is
P (wi /∈ W span

−i ) = 1 : 1 ≤ i ≤ n (6)

Corollary 1. The initialization [27,28] of an m-layer DNN weight matrices, {W l ∈
R

n×n}ml=1, follows Proposition 1, and hence are all non-singular. That is, σmin(W l) �=
0 : 1 ≤ l ≤ m.

Corollary 2. For an m-layer DNN, Corollary 1 gives 0 < σmin(W l) < ∞ : 1 ≤ l ≤
m. Subsequently, popular weights initialization schemes [27,28] yield P (σmin(W l) <
1) = 1 : 1 ≤ l ≤ m.

Assumption 1. The input to an m-layer DNN, X ∈ R
n×N , is non-singular. This is an

important assumption required for the validity of many machine learning algorithms.

Lemma 1. Let X ∈ R
m×n and V ∈ R

n×p be matrices. If V is singular, then their
product, Y = XV , is also singular.

Lemma 2. Let X ∈ R
m×n and V ∈ R

n×p be two matrices. If X and V are non-
singular, then their product, Y = XV , is also non-singular.

Lemma 3 (Solymosi [29]). Let Z ∈ R
n×n be the set of non-singular matrices. Thus,

for many pairs X1, X2 ∈ Z , the sum Y = X1 +X2 is non-singular. i.e. σmin(Y ) �= 0.
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Proposition 2. Assuming that the optimal solution for a DNN is θ. A relative change of
the hidden representation at layer l, ΔH(X)l, results into a relative solution change,
Δθ, which can be expressed as follows

‖ Δθ ‖
‖ θ ‖ ≤ κ(H(X)l)

‖ ΔH(X)l ‖
‖ H(X)l ‖ : 0 ≤ l ≤ m, (7)

where θ = {W l}ml=1, andH(X)0 = X for l = 0 is the input to the DNN.We note that
changes in the hidden representation ‖ ΔH(X)l ‖ can result from small intentional
variations (or inevitable noise) that are captured in the input data batch, X .

Definition 2. For anm-layer DNN, let the input to layer l beH(X)l−1, and the weight
and error gradient at iteration t be W l(t) and Δl(t), respectively. The weight update
for W l at iteration t + 1 denoted W l(t + 1) is

W l(t + 1) = W l(t) + ηΔl(t)H(X)l−1 : 1 ≤ l ≤ m, (8)

where η is the learning rate.

4.1 PlainNet (PlainNet)

Let the input of a linear m-layer PlainNet be X ∈ R
n×N , and the hidden layers param-

eterized by θp = {W l
p ∈ R

n×n}ml=1. The output of the PlainNet in the last layer m,
H(X)mp , can be written as

H(X)mp =
m∏

l=1

W l
pW

l−1
p · · · W 2

p W 1
p X. (9)

Let γm
pmin

=
∏m

l=1 σmin(W l
p) characterize the cummulative outcome of the product

of the minimum singular values of different layer weights, σmin(W l
p). Particularly,

γm
pmin

allows the characterization of the singularity or near-singularity of the hidden
representation H(X)mp in a DNN using Eq. (5). Considering that m 	 1 for very deep
PlainNets, Corollary 2 where P (σmin(W l

p) < 1) = 1 : 1 ≤ l ≤ m yields γm
pmin


 1.
Importantly, for m 	 1, it is observed that γm

pmin
can become extremely small such

that insufficient machine floating point precision results in a rounding-off to zero. i.e.
γm
pmin

= 0. As such, the transformation caused by
∏m

l=1 W l
p collapses space, and is thus

singular. Subsequently, using Lemma 1, the result of the transformation of X based on∏m
l=1 W l

p in Eq. (9) is singular; that is, H(X)mp is singular, and κ(H(X)mp ) = ∞.

Remark 1. FromProposition 2, ‖ Δθp ‖ / ‖ θp ‖ is unbounded given κ(H(X)mp ) =
∞ for the PlainNet. Consequently, small changes in the hidden representation,
ΔH(X)l, in Proposition 2 are so magnified that optimization is haphazard in the solu-
tion space defined by θp. The constant and extreme fluctuation of θp means that opti-
mization cannot progress, and convergence to any decent local minima is impossible.
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Since H(X)mp is singular, Lemma 1 shows that the term ηΔm(t)H(X)m−1 in Def-
inition 2 is singular too so that the weight update, Wm(t + 1) can become badly con-
ditioned; this observation is confirmed via experiments in Sect. 5. In constrast, γm

pmin

does not become extremely small for shallow PlainNets where typically m < 20 such
that κ(H(X)mp ) < a : a ∈ R. Hence, ‖ Δθp ‖ / ‖ θp ‖ in Proposition 2 for the
shallow PlainNet is bounded by a reasonable value, and the fluctuation of θp due to
ΔH(X)l is moderate so that shallow PlainNets can be successfully optimized. i.e.
model optimization converges.

4.2 Concatened Network of Aggregated Hidden Representations (ConcNeXt)

The theoretical analysis of the hidden representations of the ConcNeXt show that they
are never singular. However, we first give the following important lemma and axiom
that allow the characterization of the minimum singular value of the outcome of the
concatenation of any matrix and the identity matrix.

Lemma 4. Let a matrix B ∈ R
n×n2 be the vertical concatenation of any matrix A ∈

R
n1×n2 with n1 ≥ n2 and the identity I ∈ R

n2×n2 as in B = [A ⊕ I], so that
n = n1 + n2. Let the singular values of B and A be {σ(B)i}n2

i=1 and {σ(A)i}n2
i=1,

respectively. Then, it can be shown that σ(B)i =
√

(σ(A)i)2 + 1 : 1 ≤ i ≤ n2.

The implication of Lemma 4 is that σmin(B) ≥ 1 ∵ σmin(A) ≥ 0.

Axiom 2. Let a matrix B ∈ R
q×z be the vertical concatenation of s random matrices

Ak ∈ R
qk×z : 1 ≤ k ≤ s with q =

∑s
k=1 qk, as in B = Υ s

k=1Ak = [A1 ⊕· · ·⊕Ak ⊕
· · · ⊕ As]. Then, we conclude that the aggregated matrix, B, is also a random matrix.

Let the input of a linear m-layer ConcNeXt be X ∈ R
n×N , and the hidden layers

parameterized by W 1
g ∈ R

q×n and {W l
g ∈ R

q×q}ml=2, so that θg = {W l
g}ml=1. Follow-

ing Eq. (4), the output of the ConcNeXt in the last layer m, H(X)mg , can be written
as

H(X)mg =
m∏

l=1

(Υ s
k=1W

l,k
g ⊕ I)X. (10)

Using Axiom 2, Υ s
k=1W

l,k
g in Eq. (10) can be aggregated in a compact form so that we

have W l
a = Υ s

k=1W
l,k
g . Therefore, Eq. (10) becomes

H(X)mg =
m∏

l=1

(W l
a ⊕ I)X. (11)

Let γm
gmin

=
∏m

l=1 σmin(W l
a ⊕ I). In Eq. (11), we have σmin(W l

a ⊕ I) ≥ 1 : 1 ≤
l ≤ m from Lemma 4. As such, γm

gmin
≥ 1 so that the overall transformation effect

of
∏m

l=1[W
l
a ⊕ I] in Eq. (11) does not collapse space, and thus is non-singular. Since∏m

l=1(W
l
a ⊕ I) is non-singular and X is non-singular from Assumption 1, we can

conclude using Lemma 2 that H(x)mg in Eq. (11) is non-singular too. i.e κ(H(x)mg ) <
a : a ∈ R.
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Remark 2. Considering κ(H(X)mg ) < a : a ∈ R, ‖ Δθg ‖ / ‖ θg ‖ in Propo-
sition 2 for the ConcNeXt is bounded. Thus, small changes in the hidden represen-
tation, ΔH(X)m, in Proposition 2 results in moderate changes in the solution, θg .
The stability of θg means that optimization can progress successfully, and decent local
minima can be reached. Again, considering that H(X)mg is non-singular, the term
ηΔm(t)H(X)m−1 in Definition 2 is non-singular by applying Lemma 2. Finally, not-
ing that Wm

g is non-singular from Proposition 1, the weight update Wm
g (t + 1) in

Eqn. (8) is non-singular with a high probablity using Lemma 3. Our experiments indeed
confirm these interesting observations.

5 Experiments

5.1 Experimental Settings

This section reports the experimental results that validate the theoretical analysis given
in Sect. 4 using 110 layers PlainNet and ConcNeXt models, which are multilayer per-
ceptrons (MLPs) trained on the MNIST [30] dataset. All model parameters are ini-
tialized from Gaussian distributions using the He method [27]. In addition, all models
are trained using gradient descent, learning rate = [0.0001–0.1], momentum rate = 0.9,
batch normalization (BN), weight decay of 10−4, batch size of 128, and for 60 epochs.
Table 1 shows the model architectures and number of parameters for the different mod-
els. Note that for showing the agreement between our theoretical analysis and practical
models, the experiments reported herein use the rectified linear activation. For addi-
tional experiments using the linear activation function, see Section A7.2 in the supple-
mentary material. Furthermore, Section A8 in the supplementary material contains the
experiments for convolutional neural network (CNN) models using CIFAR-10 dataset
[31]. In the following section, important results for the MLP models are reported.

5.2 Results and Discussion

Training results are given in Table 1, where the PlainNet clearly reflects poor optimiza-
tion. In contrast, ConcNeXt-110 (s = 1) and ConcNeXt-110 (s = 2) are both well
optimized. For testing, ConcNeXt-110 (s = 2) slightly outperforms ConcNeXt-110
(s = 1); similar results for s = 2 on the harder CIFAR-10 dataset are provided in
Section A8 of the supplementary material. The hidden representations for PlainNet-
110 are shown in Fig. 2, where singularity (i.e. units respond in similar fashion for
different input data) is seen. In contrast, ConcNeXt-110 (s = 1) in Fig. 2 shows no sin-
gularity problems (i.e. units respond in different manners for different input data); the
hidden representations for ConcNeXt-110 (s = 2) is similar to that of ConcNeXt-110
(s = 1) so are not shown; Section A7.1 of the supplementary material contains results
for ConcNeXt-110 (s = 2). Figure 3 and Fig. 4 show the weight values and hidden
units’ outputs in the different layers of the MLPs, respectively. It is seen that PlainNet-
110 has bizzarely high weight and units’ output values, while ConcNeXt-110 (s = 1)
has reasonable weight and units’ output values; ConcNeXt-110 (s = 2) has values that
are similar to ConcNeXt-110 (s = 1), and thus not shown.
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Figure 5 and Fig. 6 show the conditions of the weights and hidden representations in
the MLPs, respectively. From Fig. 5 (left), the weights of PlainNet-110 have extremely
high conditions numbers, while the weights of ConcNeXt-110 (s = 1) and ConcNeXt-
110 (s = 2) both have small condition numbers. From Fig. 5 (right), the weights of
PlainNet-110 have zero singular values starting from the 25th layer, while the weights
of ConcNeXt-110 (s = 1) and ConcNeXt-110 (s = 2) both have a minimum singular
value of one for all the layers. Figure 6 (left) shows that the hidden representations
of PlainNet-110 have extremely high and even infinite condition numbers that plague
optimization, while ConcNeXt-110 (s = 1) and ConcNeXt-110 (s = 2) both have
small condition numbers that foster successful optimization. For clarity, Fig. 6 (right)
shows that the hidden representations of ConcNeXt-110 (s = 2) operates with smaller

Table 1. 110 layers MLP details and results on the MNIST dataset.

MLP model PlainNet-110 ConcNeXt-110 (s = 1) ConcNeXt-110 (s = 2)

Hidden units per layer 180 50 25

Parameters 3.66M 3.92M 3.77M

Training accuracy 13.22% 100% 100%

Testing accuracy 12.45% 98.42% 98.83%

Fig. 2. Hidden representations for the 110 layers MLPs using randomly chosen batch of input
data from the MNIST dataset. Top row: PlainNet-110. Bottom row: ConcNeXt-110 (s = 1).

Fig. 3. Weights distribution for the 110 layers MLPs using randomly chosen batch of input data
from the MNIST dataset. Top row: PlainNet-110. Bottom row: ConcNeXt-110 (s = 1).
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Fig. 4. Units’ outputs distribution for the 110 layers MLPs using randomly chosen batch of input
data from the MNIST dataset. Top row: PlainNet-110. Bottom row: ConcNeXt-110 (s = 1).

Fig. 5. Condition of the layer weight in the MLPs. Left: condition number of the weights in the
different layers plotted to log-scale. Right: smallest singular value of the weights in the different
layers.

condition numbers as compared to the ConcNeXt-110 (s = 1). Subsequently, using this
observation in 2 explains the improved generalization performance of ConcNeXt-110
(s = 2) over ConcNeXt-110 (s = 1).

5.3 Main Insights into Models Concatenated Hidden Representations

The main insights from the theoretical and empirical results are summarized as follows.
1. The minimum singular values for the weights in the PlainNet are invariably less

than one. i.e. σmin(W l
p) < 1 : 1 ≤ l ≤ m. As such, for very DNNs where m 	 1, the

repeated multiplication of the input data, X , by the model weights {W 1
p , · · · ,Wm

p }
causes some components of X to vanish so that collinearity and thus singularity occur
in the resulting output H(X)mp . Finally, singularity plagues model optimization.

2. Skip connections that concatenate hidden representations operate such that the
minimum singular values for the compactly expressed model weights are σmin(W l

a ⊕
I) ≥ 1 : 1 ≤ l ≤ m. Thus, for very DNNs where m 	 1, the repeated multiplication
of the input data, X , by the model weights {(W 1

a ⊕I), · · · , (Wm
a ⊕I)} does not cause

any component of X to vanish, and thus collinearity and singularity are mitigated.
Consequently, such models with several layers can be successfully optimized.
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Fig. 6. Condition number of the hidden layer representations in the 110 layers MLPs. The layers
for which values are not shown have infinite condition numbers. Left: condition number of the
hidden representations in the different layers. Right: condition number of the hidden representa-
tions in the different layers of the ConcNeXt (s = 1) and ConcNeXt (s = 2).

6 Conclusion

The successful training of very DNNs requires using skip connections of various forms.
However, understanding why DNN architectures with skip connections circumnavigate
optimization problems is challenging. Specifically, the operation of DNNs that employ
the concatenation of hidden representations is so complicated that their theoretical anal-
ysis is outrightly missing in the literature. This paper presents the theoretical analysis of
DNNs with skip connections and concatenated hidden representations, which to the best
of our knowledge is the first in the literature. Our theoretical results that are confirmed
via extensive experiments show that concatenating hidden representations improve the
condition of the hidden representations by mitigating singularity problems in hidden
representations that ensue from the repeated multiplication of model weights.

Acknowledgments. This work was funded by the National Research Fund (FNR), Luxembourg,
under the project reference R-AGR-0424-05-D/Björn Ottersten and CPPP17/IS/11643091/
IDform/Aouada.
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Abstract. The performance of personalized recommendation can be
further improved by exploiting multiple user behaviors (e.g., browsing,
adding-to-cart, product purchasing) to predict items of user interests.
However, the challenge lies in how to accurately model the relations
among multiple user behaviors. The commonly adopted cascade rela-
tion over-simplifies the problem and cannot model the real user behavior
patterns. In this paper, we propose a novel multi-behavior recommenda-
tion algorithm called AMBR (Attentive Multi-Behavior Recommenda-
tion), which can well capture the complicated relations among multiple
behaviors. AMBR integrates the representation learning module and the
matching function learning module into one framework. By utilizing the
modern neural network techniques, AMBR is more flexible in modeling
the relations of multiple behaviors without presuming a fixed cascade
relation. Finally, we also conduct a set of experiments based on two
real-world datasets, and the results show that our AMBR algorithm sig-
nificantly outperforms other state-of-the-art algorithms by over 8.6%,
9.3% in terms of HR and NDCG.

Keywords: Personalized recommendation · Multi-behavior data ·
Neural networks

1 Introduction

In the past decade, personalized recommendation has become an essential func-
tionality of many Internet services (e.g., online shopping, online video), which
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helps end users discover items of their interests when confronting with a plethora
of items in the system. Traditional recommender systems commonly utilize only
one type of user behavior (e.g., product purchasing) to make recommendation
decisions, which fails to explore more valuable information contained in multiple
user behaviors (e.g., website browsing, adding-to-cart) [3].

Recent studies show that the performance of recommender systems can be
improved by taking multiple user behaviors into account [4,9]. Thereafter, the
problem of multi-behavior recommendation has gained significant attention from
both academic researchers and industrial practitioners. Collective Matrix Fac-
torization (CMF) [9], the extension of MF (Matrix Factorization), was proposed
to cope with multi-behavior data by optimizing the likelihood of each type of
user behaviors separately. Nevertheless, CMF only resorts to the dot-product
interaction between latent vectors, which cannot seize the complicated relations
between multiple behaviors very well. Other sophisticated recommendation algo-
rithms were designed though they were based on some strong assumptions. For
instance, the work [4] assumed that browsing, adding-to-cart, and purchasing
should occur sequentially.

However, it is challenging to accurately model the impact of multiple user
behaviors on personalized recommendation. Existing works have a few draw-
backs: First, it is not reasonable to assume a simple sequential relation among
behaviors. For example, it is assumed that purchasing behavior should occur
before adding-to-cart, and adding-to-cart happens before browsing in Gao
et al. [4]. But it is common that users may purchase an item recommended
via online social networks from their friends without adding-to-cart behavior [6];
Second, latent semantics can reflect the relations among multiple behaviors bet-
ter, but existing approaches have not taken them well into consideration [7,9].

In this paper, we propose a novel multi-behavior recommendation algorithm
called AMBR (Attentive Multi-Behavior Recommendation) to address the afore-
mentioned drawbacks. To model the impact of multiple user behaviors more
accurately, we enhance the multi-behavior recommendation framework with
representation learning and matching function learning, where the knowledge
among different behavior channels are learned, transferred and fused in a seam-
less model. To learn the latent semantics of multiple behaviors, we further pro-
pose to adopt the attention mechanism to capture the relations among multiple
user behaviors. Specifically, we apply the attention mechanism to the widely
used Neural Collaborative Filtering (NCF) model via deep neural networks. In
this way, our model can better model the complex relations among multiple
behaviors. We also define a new personalized objective function, which can be
efficiently solved by existing optimization methods.

In a nutshell, the main contributions of this work are listed as follows.

– We design the AMBR algorithm by integrating representation learning and
matching function learning into one framework. To learn the representation of
multiple behaviors, we propose to utilize the attention mechanism to capture
the relations of behaviors in the latent space.
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– We propose a new user-specified multi-behavior matching score function,
which can better depict the relations between multiple user behaviors than
the previous cascade matching function. In this way, our model can easily
handle more complex behavior contexts.

– We conduct extensive experiments on two real-world datasets. The experi-
ment results reveal that our AMBR algorithm can improve the recommenda-
tion performance by at least 8.6%, 9.3% in terms of HR and NDCG compared
with state-of-the-art algorithms.

The rest of this paper is organized as follows. In Sect. 2, we review the
latest related works. In Sect. 3, we present our proposed algorithm in detail.
The experiment settings and results are shown in Sect. 4. Finally, we conclude
our work in Sect. 5.

2 Related Work

Recently, due to the decent capacity to fit non-linear functions, neural networks
were widely used to digest auxiliary information for recommendations, such
as audio information, textual description of items, and visual information [1].
Although deep-learning based methods have been paid much attention, the afore-
mentioned methods still resorted to the MF-based models to depict the inter-
action between users and items. To learn a more complex user-item interaction
function, a neural network architecture, named Neural Collaborative Filtering
(NCF), was proposed by He et al. [5]. They designed several user-item matching
functions through different deep neural networks. Our work extends the archi-
tecture of NCF for multi-behavior recommendation through the perspectives of
both representation learning and matching function learning.

On the other hand, previous works on multi-behavior recommendation
learned the recommendation model in two different ways, either from the per-
spective of representation learning or matching function learning. A typical
method of the first type is the Collective Matrix Factorization (CMF) model [9],
which factorized multiple user-side matrices while sharing the item-side matrix.
Further, Zhao et al. [11] extended the CMF to build user profiles by using a vari-
ety of consumption and publishing behaviors in social media. They employed
matrix factorization techniques to model each user’s behaviors as a separate
entry in the input user-by-topic matrix. The main limitations of these works
lie on that they utilized the same optimization objective for different behaviors
and did not analyze the relations between different behavior types, which should
contain more useful information for recommendations.

Some other works dealt with the multi-behavior recommendation from the
perspective of matching function learning. Loni et al. [7] proposed the Multi-
Feedback Bayesian Personalized Ranking (MF-BPR), a pairwise method which
extended the Bayesian Personalized Ranking (BPR) [8] by assigning different
types of user behaviors with different levels of feedback. The work in Gao et al. [4]
extended the architecture of NCF via a multi-task learning framework, which is
named as Neural Multi-Task Recommendation (NMTR). NMTR accounted for
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the cascade relation among different types of behaviors (e.g., a user must click on
a product before purchasing it) and performed a joint optimization using multi-
task learning method. However, in many circumstances, different behaviors do
not have a strict cascade relation. To solve this problem, our work proposes a
new user-specified optimization objective which does not rely on the cascade
relation between behaviors.

3 Design of AMBR Algorithm

Assume that there are n types of behaviors in a multi-behavior recommendation
system, and N denotes the set of all behavior types, where N = {1, 2, ..., n}. We
denote the n-th behavior as the key behavior such as the buying behavior in E-
commerce systems or viewing behavior in online video platforms. Given a triple
record (u, i,y) from the dataset, u indicates a particular user and i represents
a particular item respectively. Let y = {y1, y2, ..., yn} denote the labels of each
type of behavior (either observed in the history or not), and we aim to estimate
the likelihood of the key behavior ŷn as precisely as possible.

3.1 Framework Overview

As shown in Fig. 1, the overall framework of our AMBR algorithm can be sum-
marized into the following blocks:

– Input Layer. Without loss of generality, we feed the user one-hot vector and
item one-hot vector into the model.

– Attention Based Representation Learning. We resort to the attention
mechanism to exploit the relations between multiple behaviors in the latent
space.

– Multi-behavior Matching Function Learning. We utilize the non-linear
NCF units as the sub-module to predict the matching scores for each type of
behaviors and we fuse the matching scores to make personalized recommen-
dation.

– Multi-task Optimization Module. We optimize the objective function for
each observed behavior simultaneously to make the model more robust.

3.2 Attention Based Representation Learning

Let vU
u and vI

i denote the one-hot vectors for the current input of user u and
item i respectively. Then we project each type of user behaviors associated with
the input item into the latent space via linear embedding:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e1u = W1vU
u ,

e2u = W2vU
u ,

...

enu = WnvU
u ;

(1)
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Fig. 1. The overall framework of our AMBR algorithm.

and
qi = WIvI

i , (2)

where W∗ denotes the parameter matrix used in linear embedding layer. e∗
u and

qi denote the behavior embedding vector and item embedding vector respec-
tively.

After having assigned each type of behavior a separate latent vector, we
now take the inter-behavior relations into consideration. Actually, it is non-
trivial to exploit the behavior relations in the latent space since there is no
fixed ordinal order in real-life scenarios as we have stated in Sect. 1. Thankfully,
we can resort to the attention mechanism, which reflects the context influence
of each word for the sentence in the machine translation domain [10]. For the
scenario of recommendation where multiple user behaviors are available, some
behavior implies a positive feedback to the key behavior while other behaviors
may neutralize. We reflect these relations using the attention mechanism with
some customized settings for multi-behavior recommendation.

Let C ∈ R
N×N denote the attention weight matrix, where cjk denotes the

attention weight between behavior j and k. Then we calculate each element of
matrix C as:

cjk = (eju)
T
M eku, ∀j, k ∈ N ; (3)

where M denotes the parameters in the attention layer. Note, it is not necessary
that cjk is equal to ckj . After obtaining the attention score matrix, we also
normalize it by applying the softmax function along its row axis to guarantee
that each row vector of C sums to 1:
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cjk =
exp(cjk)
n∑

k=1

exp(cjk)
. (4)

Finally, we obtain the attention-based user behavior embedding vector p∗
u by

multiplying the latent vector e∗
u from Eq. (1) associated with its corresponding

attention weights generated from different behavior channels:

pj
u = cj1e1u + cj2e2u + ... + cjnenu, ∀j ∈ N . (5)

The intuition behind Eq. (5) can be explained as follows. We represent each type
of behavior not only using its own latent vector but also the latent vectors of the
other behaviors. And we intuitively exploit the attention mechanism to co-relate
the behavior semantics with each other by assigning different attention weights
for different user behaviors.

3.3 Multi-behavior Matching Function Learning

For single behavior recommender systems, dot-product is the most frequently
used matching function, which is simple but practical when there is only one type
of behavior to be considered. However, the circumstance will be more complex
when we design a recommendation algorithm based on multiple behaviors. That
is to say, given a certain commodity, the interaction scores of different behaviors
may vary a lot. For example, when we choose a mobile phone, it is more likely
for us to view and compare relevant ones several times. In this case, the score of
viewing should be much higher than that of the purchasing behavior. To learn
the interaction scores for multi-behavior recommendation, we assign different
matching functions between each specialized behavior latent vector and item
latent vector via:

ŷ1
ui =f1(p1

u,qi|θ1),
ŷ2
ui =f1(p2

u,qi|θ2),
...

ŷn
ui =fn(pn

u,qi|θn).

(6)

Here f∗ denotes different matching score functions and θ∗ denotes the parameters
used in the function.

Recently, the NCF unit [5] has been well exploited to generate matching
scores. In our model, we also resort to the NCF units to generate matching
scores for multiple behaviors and f can be implemented as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f j
GMF (pj

u,qi) = σ(sT (pj
u ⊗ qi))

f j
MLP (pj

u,qi) = σ(sT zL)

f j
NeuMF (pj

u,qi) = σ(sT
[
pj
u ⊗ qi

zL

]

)

∀j ∈ N ,

where sT and zL denote the layer-specific settings in the original paper [5] and σ
denotes the sigmoid function. Generally, the choice for a specific NCF function
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used for our algorithm should depend on the dataset, and we leave this discussion
in Sect. 4.

Now we focus our attention on the fusion of matching scores generated from
different behavior channels. Previous works relate the matching scores between
different behaviors by setting an ordinal order uniformly, which is unreasonable
in real-life scenarios. Considering two users whose behavior patterns vary a lot:
user A browses commodity many times every day. He/She just regards Internet
suffering as a daily entertainment but never purchasing. While user B only inter-
acts with the E-commerce system when necessary. It is obvious that the way to
fuse matching scores on the above two circumstances should be different. Thus
we introduce another user-specific variable hu = {h1

u, h2
u, ..., hn

u} ∈ R
N to reflect

the heterogeneity. Then we update our estimated matching scores in Eq. (6) as:

ŷj
ui =

{
h1
u ∗ ŷ1

ui + h2
u ∗ ŷ2

ui + ... + hn
u ∗ ŷn

ui , if j = n

ŷj
ui , if j �= n

(7)

Here, the user-specific vector hu is another trainable variable in our model,
which reflects the behavior diversities among different users. In our method, we
calculate the value of hu via:

hj
u =

N j
u∑n

t=1 N t
u

, ∀j ∈ N , (8)

where N j
u denotes the times of behavior j observed in user u’s history. Through

Eq. (8), we bound the value of hj
u in the range of [0, 1] to avoid the problem that

the prediction of the key behavior is over-influenced by the other behaviors. Since
our final objective is to exploit the relations between the key behavior and the
other behaviors, thus it is a vector of dimension n. If the number of behaviors
to be predicted is more than one, then it can be set as a matrix.

3.4 Model Learning

After having generated the matching scores of different user behaviors from
Eq. (7), we resort to the Multi-Task Learning (MTL) paradigm to learn different
optimization objectives simultaneously in a shared model. For a single behavior
j ∈ N , the cross entropy loss can be written as:

Lj = −(
∑

(u,i)∈Yj
+

log ŷj
ui +

∑

(u,i)∈Yj
−

log(1 − ŷj
ui)). (9)

Taking all behaviors into the MTL paradigm, our final optimization objective
can be written as:

L = −
n∑

j=1

λj(
∑

(u,i)∈Yj
+

log ŷj
ui +

∑

(u,i)∈Yj
−

log(1 − ŷj
ui)). (10)
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Here, λ∗ denotes a weight representing the extent of the importance of every
single behavior. The advantage of our model is that we use a more general
approach to optimize multiple objectives simultaneously. For the case that we
only aim to optimize the key behavior, we can simply set λn as 1 and other λ∗
as 0.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate the performance of our algorithm using two real-world
E-commerce datasets. The statistics of the two datasets are summarized in
Table 1.

– Tmall Dataset. This dataset is released in IJCAI-15 challenge, which is
collected from Tmall, one of the largest E-commerce systems in China. Three
types of user behaviors including viewing, adding-to-cart and purchasing are
available within the time period from 01/05/2014 to 30/11/2014.

– Beibei Dataset. Beibei is another E-commerce website providing mater-
nal and infant products in China. Since the original dataset is not publicly
available, we use the data sampled by Ding et al. [3].

Table 1. The statistics of the datasets used in our experiment

Dataset User# Item# View# Add-to-cart# Purchase#

Tmall 12,921 22,570 531,640 24,681 160,840

Beibei 10,000 49,488 952,791 – 156,883

Evaluation Metrics. We adopt the leave-one-out method to split the training
set and the test set. Following the experimental settings in previous works, we
use HR@K and NDCG@K to evaluate the performance of all the algorithms.
HR measures whether the test item is contained in the top-K list. While, NDCG
accounts for the position influence by assigning higher scores if the hits are at
top ranks.

Baselines. We compare our methods with several baselines, which can be fur-
ther divided into two groups depending on whether the algorithms are designed
for multi-behavior recommendation.

The compared single-behavior methods are as follows.

– ItemkNN [2]: This is a typical memory-based algorithm, which calculates
the similarity between item-vectors. And it has been widely used in previous
works for comparison.
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– BPR [8]: BPR is an optimization criterion derived from the maximum pos-
terior estimator for personalized ranking. We implement it to optimize the
matrix factorization model.

– NCF [5]: NCF is a neural-based framework for collaborative filtering. It has
three instances (i.e., GMF, MLP and NeuMF) which model user-item
interactions in different ways. We evaluate all three optional models for com-
parison.

We also compare our methods with the following multi-behavior methods.

– CMF [11]: It extends the MF-based methods through factorizing multi-
ple user-side behavior matrices simultaneously, while sharing the item-side
matrix.

– MF-BPR [7]: MF-BPR utilizes an extended sampling method which reflects
different types of behaviors with different levels.

– NMTR [4]: This is the state-of-the-art algorithm for multi-behavior recom-
mendation, which optimizes the cascade relation between multiple behaviors
using neural networks.

Parameter Settings. We implement our algorithm and all the other baseline
models using Tensorflow. For neural-based models, we initialize the parameters
in the same way as He et al. [5]. For models that have multiple hidden layers,
i.e., NCF, NMTR and AMBR, we tune the number of hidden-layers from 1 to 4.
We set the embedding size as 64 and the negative sampling ratio as 4 uniformly,
which can achieve good performance. The batch size is selected through a grid
search in [512, 1024, 2048]. Similarly, the learning rate is in [0.001, 0.002, 0.005,
0.01] and the epoch size is in [30, 40, 50]. Three optimizers including SGD,
Adam and Adagrad are implemented. Finally, we also apply L2 regularization
for all methods to prevent over-fitting. The best parameters of our algorithm are
presented in Table 2.

Table 2. The best parameters of AMBR algorithm

Dataset Embedding
size

Learning
rate

Epoch
size

Batch
size

L2 Regular-
ization

Optimizer

Tmall 64 0.002 30 2048 10−5 Adam

Beibei 64 0.001 30 1024 10−6 Adam

4.2 Performance Comparison

Table 3 shows the performance comparison between our AMBR algorithm and
other baseline algorithms. We set different random seeds for several times and
report the best performance score for each algorithm.
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Table 3. The overall performance comparison for different algorithms

Method HR@50 NDCG@50 HR@100 NDCG@100 HR@200 NDCG@200

Tmall Dataset

ItemKNN 0.0198 0.0059 0.0248 0.0068 0.0284 0.0073

BPR 0.0302 0.0087 0.0484 0.0115 0.0793 0.0158

GMF 0.0202 0.0053 0.0351 0.0080 0.0606 0.0115

MLP 0.0192 0.0050 0.0336 0.0073 0.0577 0.0106

NeuMF 0.0193 0.0050 0.0337 0.0073 0.0576 0.0106

CMF 0.0164 0.0045 0.0376 0.0081 0.0620 0.0114

MF-BPR 0.0317 0.0093 0.0532 0.0127 0.0861 0.0174

NMTR 0.0336 0.0086 0.0573 0.0130 0.0937 0.0178

AMBR 0.0386 0.0103 0.0657 0.0146 0.1077 0.0205

Beibei Dataset

ItemKNN 0.0198 0.0059 0.0248 0.0068 0.0284 0.0073

BPR 0.0384 0.0101 0.0652 0.0141 0.1041 0.0196

GMF 0.0517 0.0155 0.1148 0.0281 0.1738 0.0365

MLP 0.0499 0.0137 0.1083 0.0236 0.1760 0.0329

NeuMF 0.0514 0.0139 0.1053 0.0231 0.179 0.0328

CMF 0.0579 0.0166 0.1286 0.0280 0.1998 0.0379

MF-BPR 0.0375 0.0102 0.0653 0.0145 0.1069 0.0203

NMTR 0.0663 0.0173 0.1304 0.0276 0.2020 0.0364

AMBR 0.0737 0.0191 0.1416 0.0307 0.2196 0.0398

Table 4. The ablation study for AMBR algorithm on Tmall dataset

Method HR@50 NDCG@50 HR@100 NDCG@100 HR@200 NDCG@200

AMBR/WtAtt 0.0337 0.0087 0.0632 0.0134 0.1039 0.0191

AMBR/WtFuse 0.0304 0.0082 0.0538 0.0120 0.0882 0.0168

AMBR 0.0386 0.0128 0.0657 0.0146 0.1077 0.0205

We can observe that AMBR achieves the best performance over the other
baseline algorithms in terms of both HR and NDCG. Overall speaking, our algo-
rithm can achieve the relative improvements of 27.8%/11.9% in comparison with
the best single-behavior/multi-behavior baseline algorithms (i.e., BPR/NMTR)
in terms of HR on Tmall dataset. The performance gains can be explained from
two perspectives. We not only propose an elaborately designed method for behav-
ior representation learning but also optimize a more reasonable user-specific
matching function than previous works. We also find that the algorithms which
utilize multiple behaviors achieve better performance than that of single behav-
ior algorithms. This demonstrates the effectiveness to exploit the information in
multiple behaviors.
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(a) HR performance (b) NDCG performance

Fig. 2. The performance of the AMBR algorithm with different layer settings on Tmall
dataset.

4.3 Ablation Study

To investigate which component is the main contributing component in our
algorithm, we conduct extensive experiments with two variations of AMBR. We
denote the ablation of the attention mechanism in Eq. (5) as AMBR/WtAtt,
which means we remove the attention layer from our architecture. And the abla-
tion of the variable hu in Eq. (7) is named as AMBR/WtFuse. Table 4 shows
the experiment results on Tmall dataset, from which we find both of the two
components play a significant role in our design. They learn different knowledge
when working at multi-behavior recommendation.

4.4 Layer Settings

To choose an appropriate NCF function and investigate how the number of
hidden layers influences our algorithm, we conduct extensive experiments with
all three optional NCF units as we have mentioned in Sect. 3.3. And we present
the results by varying the number of layers from 1 to 5 on Tmall dataset in Fig. 2.
From Fig. 2 we find that, the recommendation performance gains as we increase
the layer number for AMBR algorithms. This demonstrates the efficiency of
the deep-learning based methods for multi-behavior recommendation. On the
other hand, when we increase the layer number continuously, the performance
stagnates. In general, it is unnecessary to set the layer number greater than 4,
since too many layer parameters may lead to over-fitting.

5 Conclusion

In this paper, we firstly analysed the drawbacks of the previous multi-behavior
recommendation algorithms. To overcome these shortcomings, we proposed a
unified framework by integrating representation learning and matching function
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learning into a neural network based framework seamlessly. Under this frame-
work, we proposed and implemented the AMBR algorithm via concatenating
the attention layer with the widely used neural collaborative filtering units.
Ultimately, the experiment results on two large-scale real world datasets demon-
strated the superiority of our algorithm. In the future, we aim to consider the
influence of time series when recommending items to users.
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Abstract. Heterogeneous one-class collaborative filtering (HOCCF) is
a recent and important recommendation problem which involves two
different types of one-class feedback such as purchases and examina-
tions. In this paper, we propose a generic asymmetric pairwise preference
assumption and a novel like-minded user-group construction strategy for
the HOCCF problem. Specifically, our generic assumption contains six
different pairwise preference relations derived from the heterogeneous
feedback, where we introduce a series of weighting strategies to make
our assumption more reasonable. Our group construction strategy intro-
duces richer interactions within user-groups, which is expected to learn
the users’ preference more accurately. We then design a novel recommen-
dation model called asymmetric pairwise preference learning (APPLE).
Extensive empirical studies show that our APPLE can recommend items
significantly more accurately than the closely related state-of-the-art
methods on three real-world datasets.

Keywords: Asymmetric pairwise preference learning · Heterogeneous
one-class collaborative filtering · Implicit feedback · User-group

1 Introduction

The main purpose of a recommender system is to deliver a personalized ranked
list of items for each user accurately, which helps a user discover some items
that he/she is interested in. In the community of recommender systems, there
have been lots of works [8,13] for the one-class collaborative filtering (OCCF) [9]
problem, where the input data only contains one single type of users’ behaviors
such as purchases.

However, in real-world applications, users’ behaviors are usually in hetero-
geneous forms, including more than one type of one-class feedback such as
both purchases and examinations, which is usually called heterogeneous OCCF
(HOCCF) [11]. In this paper, we study the HOCCF problem and propose a
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 407–419, 2020.
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generic asymmetric pairwise preference assumption, a weighting strategy and a
group construction strategy, and finally obtain our recommendation model called
asymmetric pairwise preference learning (APPLE).

Firstly, on the basis of the asymmetric pairwise preference assumption of a
very recent work [8], we propose a generic assumption by extending (i) “a user’s
preference to a purchased item and an un-purchased item” to “a user’s preference
to a purchased item, an examined item and an un-interacted item”, and (ii) “the
preference of a purchase user-group and an un-purchase user-group to an item”
to “the preference of a purchase user-group, an examination user-group and an
un-interaction user-group to an item”. Our generic assumption introduces more
pairwise relations so as to exploit the users’ purchases and examinations more
completely.

Secondly, we find that it may be not the best to assign different pairwise
preference relations the same weight since each user (or user-group) may have
his/her (or their) own criterion. We therefore introduce some dynamic weighting
factors to adjust the weight appropriately for different users. In particular, we
design some weighting factors for two of four relations involving examinations,
because we find that this type of user behaviors are the key difference between
OCCF and HOCCF, which may cause over-learning without interference.

Thirdly, we propose a strategy for the construction of a user-group, which
is the first like-minded user-group construction strategy for a recommendation
algorithm as far as we know. Specifically, for each user-group who purchased
or examined an item i, we sample the users by our similarity-priority strategy
rather than by a random selection strategy in most previous works. Moreover, our
strategy for user-group construction can be readily applied to other algorithms
or real-world applications.

We then conduct extensive empirical studies and show the effectiveness of
our APPLE in comparison with the very competitive state-of-the-art methods.

2 Related Work

Before introducing our solution to the HOCCF problem, we first discuss some
closely related works on addressing the one-class collaborative filtering (OCCF)
problem [9] and the heterogeneous OCCF problem [11], respectively.

2.1 One-Class Collaborative Filtering

In a real-world recommender system such as an e-commerce platform, users’
one-class feedback such as purchases are easier to be collected than users’ cate-
gorical ratings to items. For this reason, recommendation with users’ one-class
feedback or OCCF [4,6,9] becomes more and more important compared with the
counterpart of multi-class collaborative filtering with users’ explicit categorical
ratings [14].

For modeling users’ one-class feedback in OCCF, there are two main branches
of methods, including neighborhood-based methods [2] and factorization-based
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methods [7,13]. In neighborhood-based methods, we often first mine similar users
(or items) to a target user (or a candidate item), and then make recommendation
based on the assumption that users with similar taste in the past will have similar
taste in the future (or a user’s taste in the past is similar to that in the future).
In factorization-based methods, we usually learn some latent representation of
each user and each item by factorizing the (user, item) interaction matrix, with
which we can then make recommendation by the inner product of each (user,
item) pair or other forms.

Among the factorization-based methods, different methods adopt different
preference assumptions, including pointwise preference assumption [6,9] and
pairwise preference assumption [13], where the former assumes that a user likes
(and dislikes) an interacted (and an un-interacted) item, and the latter assumes
that the hidden preference score between an interacted (user, item) pair is larger
than that of an un-interacted (user, item) pair. The pairwise preference assump-
tion has well been recognized to be a better one for it is more relaxed and more
likely to be satisfied in real situations, based on which some important works have
been developed such as Bayesian personalized ranking (BPR) [13] and its exten-
sions [10]. Very recently, a new asymmetric pairwise preference assumption is
proposed with improved performance, which involves two types of pairwise pref-
erence assumptions, one defined on the original (user, item) interaction matrix
and the other defined on the transposed (user, item) interaction matrix.

However, most factorization-based methods based on the pairwise preference
assumption are designed for modeling one single type of one-class feedback, which
may not be able to capture users’ preferences sufficiently for the case with two
different types of one-class feedback such as both purchases and examinations
in HOCCF.

2.2 Heterogeneous One-Class Collaborative Filtering

In order to model the heterogeneous one-class feedback such as purchases and
examinations in HOCCF (instead of the homogeneous feedback in OCCF), we
have to answer some fundamental questions, e.g., “how to deal with the difference
between two different types of feedback”, “how to address the uncertainty of the
examinations”, etc.

In transfer via joint similarity learning (TJSL) [11], the authors first extend
the factored item similarity model [7] by designing an expanded prediction rule
to involve two different types of feedback, and then design an iterative algorithm
to adaptively identify some likely to be purchased items from the examinations
for each user so as to address the uncertainty issue. The expanded prediction rule
and the iterative learning procedure may not be very efficient. In view-enhanced
alternative least square (VALS) [3], the authors design more than one loss func-
tions for the two types of one-class feedback, and then assign different weight
for different losses, which is usually difficult to be determined. In BPR for het-
erogeneous implicit feedback (BPRH) [12], the authors generalize the concept
of item-set from homogeneous one-class feedback [10] to heterogeneous one-class
feedback, and use two types of pairwise preference relations for the two types
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of feedback. However, they do not consider the pairwise relations from the aux-
iliary perspective of the transposed (user, item) interaction matrix, which thus
may not be sufficient in modeling users’ preferences. In efficient heterogeneous
collaborative filtering (EHCF) [1], the authors develop an efficient non-sampling
optimization method by leveraging the sparsity of the positive-only data and also
incorporate the context of each level’s behaviors. However, it may not learn the
users’ preferences well since the impact from the neighboring users’ behaviors
are not modeled.

In this paper, we focus on how to generalize the very recent and effective
asymmetric pairwise preference learning approach [8] to the HOCCF problem in
order to capture the users’ preferences more sufficiently.

3 Our Solution

3.1 Problem Definition

In HOCCF, we have two types of one-class feedback, i.e., purchases RP = {(u, i)}
and examinations RE = {(u, k)}. We use IP

u = {i|(u, i) ∈ RP} and IE
u =

{k|(u, k) ∈ RE} to denote the set of purchased items and the set of examined
items by user u, respectively. Our goal is to exploit the (user, item) pairs in RP

and RE so as to recommend a personalized ranked list of items for each user
u ∈ U from the set of not-yet purchased items I\IP

u . We illustrate the studied
problem in Fig. 1 and list some commonly used notations in Table 1.

Fig. 1. Illustration of ranking-oriented recommendation with heterogeneous one-class
feedback in HOCCF.

3.2 A Generic Preference Assumption

In modeling users’ homogeneous one-class feedback (e.g., purchases), the well-
known pairwise preference assumption used in Bayesian personalized ranking
(BPR) [13] is as follows,

r̂ui > r̂uj , (1)
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Table 1. Notations and descriptions.

Notation Description

n Number of users

m Number of items

U = {u} The whole set of users

I = {i} The whole set of items

u, v, w User ID

i, k, j Item ID

RP = {(u, i)} Purchases

IP
u = {i|(u, i) ∈ RP} Items purchased by user u

UP
i = {u|(u, i) ∈ RP} Users who purchased item i

P ⊆ UP
i A set of users

RE = {(v, k)} Examinations

IE
v = {k|(v, k) ∈ RE} Items examined by user v

UE
k = {v|(v, k) ∈ RE} Users who examined item k

E ⊆ UE
k A set of users

RN = {(w, j)} Un-interacted pairs

IN
u = {i|(u, i) ∈ RN } Items un-interacted with by user u

UN
i = {w|(w, j) ∈ RN } Users who un-interacted with item i

N ⊆ UN
i A set of users

r̂ui Predicted preference

d Number of latent dimensions

Uu· ∈ R
1×d User u’s latent feature vector

Vi· ∈ R
1×d Item i’s latent feature vector

bi ∈ R Item i’s bias

where (u, i) ∈ RP and j ∈ IN
u denote that user u has purchased the item i

and has not interacted with the item j, respectively. The pairwise relation in
Eq. (1) means that the preference of the user u to the item i is larger, which is
reasonable because a user usually prefers a purchased item to an un-interacted
one.

Very recently, a novel asymmetric pairwise preference assumption is used in
asymmetric BPR (ABPR) [8], which involves a horizontal relation in Eq. (1) and
a vertical one,

r̂ui > r̂uj , r̂Pi > r̂N i, (2)

where P ⊆ UP
i is a set of users who purchased item i and N ⊆ UN

i is a set of
users who have not interacted with item i. The newly introduced vertical relation
r̂Pi > r̂N i in Eq. (2) is defined on groupwise preference, i.e., the preference of
a group of users P to item i is larger than that of a group of users N to the
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same item, which makes the relation more comparable in comparison with the
relation defined on two single users [8].

However, the asymmetric assumption in Eq. (2) is designed only for one sin-
gle type of one-class feedback instead of both purchases and examinations in
HOCCF. As a response, we propose a novel and generic preference assumption,

r̂ui > r̂uk > r̂uj , r̂Pi > r̂Ei > r̂N i, (3)

where (u, i) ∈ RP is a purchasing record, k ∈ IE
u and j ∈ IN

u are items that have
been examined and have not been interacted with by user u, respectively, and
P ⊆ UP

i , E ⊆ UE
i and N ⊆ UN

i are sets of users who have purchased, examined
and un-interacted with item i, respectively.

3.3 Weighting Strategy

In our generic preference assumption shown in Eq. (3), we have six pairwise
relations, i.e., r̂ui > r̂uj , r̂ui > r̂uk, r̂uk > r̂uj , r̂Pi > r̂N i, r̂Pi > r̂Ei and
r̂Ei > r̂N i. We realize that the examined item k in the relation r̂ui > r̂uk is very
different from the item j in the relation r̂ui > r̂uj or the relation r̂uk > r̂uj ,
because |IE

u | << |IN
u | results in the consequence that the item k ∈ IE is very

likely to be over exploited. This issue also exists for the relation r̂Pi > r̂Ei.
The above observation motivates us to design a weighting strategy for the

two relations r̂ui > r̂uk and r̂Pi > r̂Ei. To obtain some reasonable weights, we
take advantage of a user’s/user-group’s behaviors and covert them into some
kind of ratios.

Specifically, for each user u, we exploit his/her purchase and examination
information, and introduce an individual purchase-to-examination (iP2E) ratio,

αu =
|IP

u |
|IP

u | + |IE
u | . (4)

The ratio αu is derived from one single user u, which may be insufficient
to represent the weight for the relation r̂Pi > r̂Ei, because we should consider
the overall effect of both user-group P and user-group E . We thus introduce a
conventional purchase-to-examination (cP2E) ratio,

Ac =
∑

u∈P∪E αu

|P ∪ E| . (5)

However, the weighting factor for r̂Pi > r̂Ei, i.e., cP2E, is still unable to
accurately reflect the overall standard of user-groups P and E in r̂Pi > r̂Ei since
Ac here should be a group-oriented factor. Hence, we regard the group P ∪ E as
a whole and further design a groupwise purchase-to-examination (gP2E) ratio,

Ag =
|⋃u∈P IP

u |
|⋃u∈P IP

u | + |⋃v∈E IE
v | . (6)
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Since gP2E reflects the overall standard of user-groups P and E more accurately
than cP2E, we expect that the relation rPi > rEi weighted with gP2E will
perform better than that with cP2E, which can also be found in our empirical
studies.

Finally, we further introduce a tunable parameter β (0 < β ≤ 1) to iP2E,
cP2E and gP2E in order to have a more flexible strategy, i.e., αu

β , Ac

β and Ag

β .
Notice that our weighting factors αu, Ac and Ag are different for different users
and user-groups, which makes the corresponding relations more likely to hold.
For example, some user may purchase an item once the item meets his/her
requirement, while others may be very cautious when shopping.

3.4 Like-Mined User-Group Construction

For each user u, we can learn the influence of different users of P, E and N
with an equal probability under the traditional random sampling strategy. But
it should be noted that this widely adopted strategy can be further improved by
taking the similarities among the users into consideration.

We hope to find a sampling strategy for P and E , which not only preserves
the advantage of the random sampling strategy but also makes the selected
users of the two groups as similar to user u as possible. This similarity-priority
strategy can also eliminate the effect of occasionality when constructing a group.
For example, a user u likes fruits and thus he/she examines an avocado k, while
another user u′ does not like fruits but also examines the same item just out of
curiosity. In this case, the previous random sampling strategy will unreasonably
add u′ to UE

i though u and u′ are not related (they both just happened to
examine the same item k). Such occasionality is detrimental to the preference
learning of user u, because it brings deficiency to the previous random sampling
strategy.

Specifically, for the construction of a user-group P, we randomly divide UP
i \u

into |UP
i \u|/(|P| − 1) groups, where each group contains |P| − 1 users. We then

compute the similarity between each group-user u′ and user u by the purchase
information. After that, we pick up the group with the highest overall similarity,
and obtain our P by adding u into the selected group. The purchase similarity
is defined as follows,

SP =
∑

u′∈P\{u}
JIPu,u′ + δ ×

∑

u1,u2∈P\{u},u1 �=u2

JIPu1,u2
, (7)

where JIPu,u′ = |IP
u ∩ IP

u′ |/|IP
u ∪ IP

u′ | is the Jaccard index. As we can see, the
weight of the similarity between users within the group is reduced by δ < 1. The
reason is that the group we finally pick up may still have a large difference among
its internal users (e.g., the similarity between one group-user and user u is very
low, while those between other group-users and user u are very high), resulting
in unreasonable partial similarities within the group. We adopt a similar way to
construct E , where the examination similarity is defined as follows,
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SE =
∑

u′∈E
JIEu,u′ + δ ×

∑

u1,u2∈E,u1 �=u2

JIEu1,u2
, (8)

where JIEu,u′ = |IE
u ∩ IE

u′ |/|IE
u ∪ IE

u′ | and u /∈ E . Notice that there may be insuf-
ficient candidate users in UP

i or UE
i for an item i, for which we will then use all

the available |UP
i | and/or |UE

i | users instead in the training process.

Algorithm 1. The algorithm of APPLE.
1: for t = 1, 2, .., T do
2: for t2 = 1, 2, .., |RE\ ∑

(u,i)∈RP {(u, k) ∈ RE}| do
3: Randomly pick a (user, item) pair (u, k) from RE\ ∑

(u,i)∈RP {(u, k) ∈ RE}.

4: Randomly pick an item j from IN
u .

5: Calculate the gradients w.r.t. the tentative objection function − ln σ(r̂uk −
r̂uj) + α

2
||Vk·||2 + α

2
||Vj·||2 + α

2
||Uu·||2.

6: Update the corresponding model parameters.
7: end for
8: for t3 = 1, 2, .., |RP\ ∑

(u,k)∈RE {(u, i) ∈ RP}| do
9: Randomly pick a (user, item) pair (u, i) from RP\ ∑

(u,k)∈RE {(u, i) ∈ RP}.

10: Randomly pick an item j from IN
u .

11: Pick highest-similarity |P| − 1 users from UP
i \{u}.

12: Randomly pick |E| users from UE
i .

13: Randomly pick |N | users from UN
i .

14: Calculate the gradients w.r.t. the tentative objection function
− ln σ(r̂ui − r̂uj) − 1

|N|
∑

w∈N ln σ(r̂Pi − r̂wi) − A
β

1
|E|

∑
v∈E ln σ(r̂Pi −

r̂vi) − 1
|N|

∑
w∈N ln σ(r̂Ei − r̂wi) + α

2
||Vi·||2 + α

2
||Vj·||2 + α

2
||bi||2 + α

2
||bj ||2 +

∑
u′∈P [α

2
||Uu′·||2 + α

2
||bu′ ||2]+∑

v∈E [α
2
||Uv·||2 + α

2
||bv||2]+∑

w∈N [α
2
||Uw·||2 +

α
2
||bw||2].

15: Update the corresponding model parameters.
16: end for
17: for t4 = 1, 2, .., |RP | do
18: Randomly pick a (user, item) pair (u, i) from RP .
19: Randomly pick an item k from IE

u .
20: Randomly pick an item j from IN

u .
21: Pick highest-similarity |E| users from UE

i .
22: Pick highest-similarity |P| − 1 users from UP

i \{u}.
23: Randomly pick |N | users from UN

i .
24: Calculate the gradients w.r.t. the tentative objection function in Eq.(9).
25: Update the corresponding model parameters.
26: end for
27: end for
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Table 2. Results of our APPLE and two closely related baseline methods, i.e., BPR and
ABPR. Notice that we fix δ = 0.5, and use the best value of β from {0.1, 0.2, . . . , 1.0}.
The significantly best results (p-value is smaller than 0.05) are marked in bold.

Dataset Method Prec@5 Recall@5 F1@5 NDCG@5 1-call@5

ML100K BPR 0.0552±0.0006 0.1032±0.0019 0.0673±0.0007 0.0874±0.0020 0.2425±0.0034

ABPR 0.0606±0.0012 0.1173±0.0049 0.0744±0.0020 0.0956±0.0021 0.2655±0.0070

APPLE 0.0679±0.0003 0.1291±0.0028 0.0828±0.0007 0.1089±0.0022 0.2880±0.0048

ML1M BPR 0.0928±0.0008 0.0829±0.0002 0.0717±0.0003 0.1121±0.0010 0.3609±0.0018

ABPR 0.0931±0.0014 0.0809±0.0009 0.0706±0.0010 0.1150±0.0019 0.3596±0.0042

APPLE 0.1079±0.0017 0.0974±0.0014 0.0840±0.0011 0.1314±0.0028 0.4109±0.0044

Alibaba BPR 0.0050±0.0006 0.0193±0.0026 0.0077±0.0009 0.0138±0.0017 0.0246±0.0031

ABPR 0.0050±0.0004 0.0194±0.0015 0.0077±0.0006 0.0145±0.0007 0.0246±0.0018

APPLE 0.0079±0.0002 0.0317±0.0006 0.0124±0.0003 0.0224±0.0003 0.0391±0.0012

3.5 Objective Function and Algorithm

Based on our preference assumption and weighting strategy, we reach the objec-
tive function of our model for each (u, i, k, j,P, E ,N ),

min
Θ

�(u, i, k, j,P, E ,N ) + reg(u, i, k, j,P, E ,N ), (9)

where �(u, i, k, j,P, E ,N ) = − ln σ(r̂ui−r̂uj) −αu

β ln σ(r̂ui−r̂uk) − ln σ(r̂uk−r̂uj)
− 1

|N |
∑

w∈N ln σ(r̂Pi − r̂wi) −A
β

1
|E|

∑
v∈E ln σ(r̂Pi − r̂vi) − 1

|N |
∑

w∈N ln σ(r̂Ei −
r̂wi) is the loss function, and reg(u, i, k, j, P, E ,N ) = α

2 ||Vi·||2 +
α
2 ||Vk·||2 + α

2 ||Vj·||2 +α
2 ||bi||2 + α

2 ||bk||2 +α
2 ||bj ||2 +

∑
u′∈P [α

2 ||Uu′·||2 +α
2 ||bu′ ||2]

+
∑

v∈E [α
2 ||Uv·||2 +α

2 ||bv||2] +
∑

w∈N [α
2 ||Uw·||2 +α

2 ||bw||2] is the regularization
term used to avoid overfitting, and Θ = {Uu·, Vi·, bu, bi, u ∈ U , i ∈ I} is a set
of model parameters to be learned. We then have the gradients of the parame-
ters w.r.t. the objective function, and obtain a stochastic gradient descent based
algorithm enhanced with our group construction strategy, which is shown in
Algorithm 1.

The time complexity of our APPLE mainly includes two parts, i.e., the pair-
wise preference learning and the construction of like-minded user groups, where
the former is comparable to that of the closely related method ABPR, and the
latter is dependent on the group size, which is usually a small constant such as
3 in our experiments.

4 Experiments

4.1 Datasets and Evaluation Metrics

We employ three real-world datasets [11] in our empirical studies, includ-
ing MovieLens 100K (ML100K), MovieLens 1M (ML1M), and Alibaba2015
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Table 3. Results of our APPLE with cP2E and gP2E (β = 1 and δ = 0.5).

Dataset Strategy Prec@5 NDCG@5

ML100K cP2E 0.0600 0.0939

gP2E 0.0635 0.1025

ML1M cP2E 0.1021 0.1244

gP2E 0.1030 0.1261

Alibaba cP2E 0.0078 0.0217

gP2E 0.0079 0.0224

(Alibaba). ML100K and ML1M are both users’ 5-star ratings on movies, where
the former contains 100,000 ratings assigned by 943 users to 1,682 movies, and
the latter contains 1,000,209 ratings assigned by 6,040 users to 3,952 movies.
The pre-processing steps of ML100K and ML1M for the HOCCF problem can
be found in [11]. Alibaba is a real data with users’ purchases and clicks. We fol-
low previous works and adopt five ranking-oriented evaluation metrics, including
Precision@5 (Prec@5), Recall@5, F1@5, NDCG@5 and 1-call@5.

4.2 Baselines and Configurations

We compare our APPLE1 with two closely related methods, i.e., BPR [13] and
ABPR [8]. We fix the number of latent dimensions d = 20, the learning rate
γ = 0.01, the group size |P| = |E| = |N | = 3, and search the best value of
the iteration number T ∈ {100, 500, 1000} and the best value of the tradeoff
parameter α ∈ {0.001, 0.01, 0.1} on the regularization terms for each method on
the three datasets via NDCG@5.

For both the baseline methods and our APPLE, we implement them in the
same stochastic gradient descent (SGD) based algorithm. We use β = 1 and
δ = 0.5 as default values, and adjust their values in the range of {0.1, 0.2, . . . , 1.0}
when specified. We also compare the effect of our proposed cP2E and gP2E
weighting strategy on the construction of user-groups in our empirical studies,
and compare the recommendation performance of similarity-priority user-group

ML100K ML1M Alibaba

Fig. 2. Results of our APPLE with different values of β (δ = 0.5).

1 http://csse.szu.edu.cn/staff/panwk/publications/APPLE/.

http://csse.szu.edu.cn/staff/panwk/publications/APPLE/
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Table 4. Results of our APPLE with two different user-group construction strategies
(β = 1 and δ = 0.5).

Dataset Strategy Prec@5 NDCG@5

ML100K Random 0.0598 0.0951

Similarity-priority 0.0635 0.1025

ML1M Random 0.1002 0.1228

Similarity-priority 0.1030 0.1261

Alibaba Random 0.0069 0.0200

Similarity-priority 0.0079 0.0224

ML100K ML1M Alibaba

Fig. 3. Results of our APPLE with different values of δ (β = 1).

construction strategy with that of random sampling user-group construction
strategy. Moreover, we conduct empirical studies to support our weighting strat-
egy to only two relations and our hypothesis that similarities within groups
should be reduced.

4.3 Results

We fix δ = 0.5, tune β ∈ {0.1, 0.2, . . . , 1.0} and report the results in Table 2. We
can see that our APPLE performs significantly better than BPR and ABPR,
demonstrating its effectiveness in modeling heterogeneous one-class feedback.

We then fix β = 1, δ = 0.5 and study the impact of the two different weighting
factors, i.e., cP2E and gP2E, and report the results in Table 3. We can see that
our groupwise weighting strategy is always better, which shows that it can better
reflect the overall standard of user-groups P and E in r̂Pi > r̂Ei.

In order to study the performance of β with different values in
{0.1, 0.2, . . . , 1.0}, we fix δ = 0.5 and report the trends in Fig. 2. We can see
that a medium or large value of β is usually better, which also provides us some
guidance in deploying our solution in a real-world application.

In order to study the effectiveness of our like-minded user-group construction
strategy, we fix β = 1, δ = 0.5 and report the results of the random strategy
and ours in Table 4. We can see that our strategy is always better, which shows
that it can indeed eliminate the effect of occasionality to some extent. Notice
that our strategy is generic and can be readily applied to other algorithms.
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Finally, we fix β = 1 and study the impact of δ in our similarity-priority
strategy, and report the results of δ ∈ {0.1, 0.2, . . . , 1.0} in Fig. 3. We can see
that a medium value of δ is usually better, i.e., 0.8, 0.5 and 0.3 on ML100K,
ML1M, and Alibaba, respectively, which shows the effectiveness of reducing the
similarity weight between users within a group. In real deployment, we may
safely fix δ = 0.5 for simplicity.

5 Conclusions and Future Work

In this paper, we study the HOCCF problem and propose a generic asymmetric
pairwise preference learning model called asymmetric pairwise preference learn-
ing (APPLE). Our APPLE involves various pairwise relations with a dynamic
and flexible weighting strategy and a generic preference assumption, as well as
a novel like-minded user-group construction strategy, which introduces richer
interactions within user-groups. Extensive experimental results on three real-
world datasets show that our APPLE performs significantly better than the
closely related and very competitive methods.

For future works, we are interested in improving the efficiency of the user-
group construction strategy and generalizing our APPLE to some deep learning
architectures [5].

Acknowledgement. We thank the support of National Natural Science Foundation
of China Nos. 61872249, 61836005 and 61672358. Weike Pan and Zhong Ming are the
corresponding authors for this work.
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Abstract. In the wake of developments in artificial intelligence, deep
learning technology has been used in location-based social networks
(LBSNs) to provide web services that meet the needs of users. Point
of interest (POI) recommendation, as one of the most important mobile
services, aims to recommend new satisfactory POIs to users according
to their historical records. However, existing models that uses original
high-dimension user vector or location vector cannot capture useful infor-
mation from historical records effectively. Meanwhile, most of them com-
plete recommendation service only in terms of user’s perspective or loca-
tion’s perspective. Hence, in this paper, we propose a novel deep learning
framework for POI recommendation. Firstly, we use a multi-layer neural
network to reduce the dimension of user vector and location vector. Then,
we construct a union neural network by concatenating and multiplying
vectors to obtain the preferences of users. Finally, considering the unique
geographical characteristic of location, we model the distance probability
to enhance recommendation. Experimental results on real-world dataset
demonstrate our model outperforms some popular recommendation algo-
rithms and achieves our expected goal.

Keywords: Recommendation system · Point of interest · Deep
learning · Neural network · Geographical influence

1 Introduction

With the rapid prevalence of artificial intelligence, location-based social net-
works (LBSNs) that link the physical and virtual world have grown in popu-
larity, such as Facebook, Twitter and Foursquare [18]. Point of interest (POI)
recommendation, one of the basic mobile services in LBSNs, aims at recom-
mending new locations to users who haven’t visited them before by mining their
historical check-ins on locations [3]. This facilitates people’s outdoor activities.
Meanwhile, large-scale check-in data that describes users’ behavior on visiting
locations provides us with opportunities to design absorbing service [4].

c© Springer Nature Switzerland AG 2020
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Existing POI recommendation models based on classical machine learning use
the original high-dimension user vector and location vector to complete service,
such as matrix factorization [7]. However, in the real world, users may have
visited a few locations while most of locations are unvisited, which causes the
challenge of learning users’ complex preferences [6]. Moreover, there is always
some hidden information between users and locations [2]. Most models ignore
the union between users and location and they provide recommendation just
from user’s perspective or location’s perspective. Deep learning, emerging as
powerful tools for relation extraction [9], is able to solve the problems mentioned
above effectively. By applying deep learning technology, it’s possible to mine
potential preferences and mobile patterns of users by dimension reduction and
union computation. The user preferences indicate the POIs users prefer to visit,
which helps us design recommendation services. Different from other types of
recommendation, one of the most prominent features for POI recommendation
is the geographical distance of location [11]. For instance, in most cases, users
tend to visit the locations that are closer to them.

In this paper, we focus on how to use deep learning technology to deeply
mine users’ preferences for POIs and how geographic distance plays its role.
Therefore, we propose a deep POI recommendation framework which also takes
into account the distance probability of location. There are two parts of our deep
model. One is for dimension reduction and the other is for union computation.
For simplicity, we also call POI location.

The main contributions of this paper can be summarized as follows.

• In order to solve the problem of high-dimension vectors of user and loca-
tion, we construct two different multi-layer neural networks to reduce the
dimensions of user vector and location vector respectively. This extracts the
key information of users and locations and alleviates the data sparsity to a
certain extent.

• For the sake of computing the recommendation prediction from the union
of user and location, we design an innovative union neural network by con-
catenating and multiplying the results of the first step respectively to obtain
the potential preference of user. This is our core which mines the correlation
between user and location effectively.

• For making our recommendation more explainable in real-world, we model
the geographical distance by probability distribution to further enhance rec-
ommendation and improve the performance.

• The experimental results on two real-world datasets demonstrate our pro-
posed model outperforms some popular recommendation algorithms.

The rest of our paper is organized as follows. Section 2 introduces the related
work of POI recommendation. Section 3 presents our proposed deep model.
Section 4 discusses and analyzes the experimental results. Finally, Sect. 5 con-
cludes the paper.
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2 Related Work

Nowadays, deep learning technology has been widely used in industry, including
the field of recommendation system. In our previous work, we propose a deep
recommendation framework based on restricted Boltzmann machine and non-
negative matrix factorization [17]. We also propose a recurrent neural network
model with self-attention to predict the next locations of users [15]. In addition,
we integrate geographical and social influence into collaborative filtering to make
recommendation more reasonable [16]. Xue proposes a novel matrix factorization
model based on neural network to learn a common low dimensional space for
both users and locations [12]. Yang proposes a general and principled framework
to solve the sparsity problem by smoothing among users and locations [13]. Our
proposed model in this paper is inspired by the work of Xue and Yang. Moreover,
Chang proposes a content-aware POI embedding model that consists check-in
layer and text layer [1].

Geographical distance is one of the most prominent features for POI rec-
ommendation. Ye argues that geographical influence among locations plays an
import role in users’ behaviors and model it by power law distribution [14]. Gao
proposes a joint model that utilizes social network information and geographical
distance [5]. Wang exploits the geographical influence to improve POI recom-
mendation by three different factors [11]. Liu proposes an adversarial learning
model based on geographical information by fusing geographical features and
generative adversarial networks [8]. It can be seen that the using of geograph-
ical distance will improve the performance of POI recommendation. Hence, we
decide to apply geographical distance into our proposed model.

3 DPR-Geo: POI Recommendation Using Deep Neural
Network and Geographical Influence

POI recommendation aims to recommend new locations to users by mining their
historical check-in records. In this section, we will introduce our recommendation
model DPR-Geo on the whole. The framework is shown in Fig. 1. First, for the
sake of extracting useful information of users and locations, we construct a multi-
layer neural network to reduce the dimensions of user vector and location vector
respectively. Second, we design a union neural network by concatenating and
multiplying the user vector and location vector after reducing dimensions and
then get the potential preferences. Third, considering that geographical distance
plays an important role in POI recommendation, we model distance by power
law distribution to enhance final recommendation. The details of each step will
be presented in following subsections.
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Fig. 1. The framework of DPR-Geo.

3.1 Problem Formulation

Suppose we have a set L of locations {l1, l2, · · · , ln}, a set U of users
{u1, u2, · · · , um}. The user-POI matrix is R: U × L and Rij denotes the cor-
relation between user ui and location lj , which is defined as follows.

Rij =
{

1, if ui has visited lj
0, if lj is unvisited by ui

(1)

Most research takes the number of times that ui visits lj as the value of Rij .
However, we focus on whether ui will visit a new location in the future. So we
adopt 0–1 value. Our goal is to predict the unknown R̂ij and produce a list Recui

of recommendations for ui, which is defined as follows:

R̂ij = F (ui, lj |θ) (2)

Recui
=

{
lj |sorted by R̂ij ,K

}
(3)

where F is our model, θ is parameter set and K is the length of Recui
. Our task

is to recommend satisfactory POIs to users and make them enjoy our service.

3.2 Dimension Reduction Network

The original vectors of users and locations are high dimensional, so we need to
find a common space of them. Followed by Xue [12], in order to extract the key
information of users and locations, we construct a multi-layer neural network for
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Fig. 2. Dimension Reduction Network.

dimension reduction that is shown in Fig. 2. The neural network is computed as
follows:

L0 = ui or lj (4)

Lk = f (wkLk−1 + bk) , k = 1, 2, . . . , N − 1 (5)

where Lk is the layer k, wk and bk are weight matrix and bias of Lk correspond-
ing. The activation function f is chosen as sigmoid function that many deep
models adopt. We reduce the dimension of user and location separately to find
a same-dimension space for them. Therefore, after reducing dimension, the user
vector and location vector are defined as follows:

xi = f
(
wU

Nf
(· · · f (

wU
2 f

(
wU

1 ui + bU1
)

+ bU2
) · · ·) + bUN

)
(6)

yj = f
(
wL

Nf
(
. . . f

(
wL

2 f
(
wL

1 lj + bL1
)

+ bL2
)
. . .

)
+ bLN

)
(7)

where wU
N and bUN are weight matrix and bias of the dimension reduction network

for users, wL
N and bLN are weight matrix and bias of dimension reduction network

for locations. xi and yj are the results of reducing dimension.

3.3 Union Network

Most POI recommendation systems calculate preference only from the perspec-
tive of user or location. However, we argue that the union of user and location
contains more hints of user’s preference. Therefore, we construct our union neu-
ral network that is shown in Fig. 3. This is the core of DPR-Geo because it
extracts the correlation between user and location. The input in Fig. 3 is the
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Fig. 3. Union neural network.

low-dimension user vector and location vector after dimension reduction and the
output is the preference whose value is from 0 to 1.

Since we have the vectors of user and location, now we need to calculate
the potential preference of user. Inspired by Yang [13], we use two different
methods to construct union neural network. On one hand, we concatenate the
vectors of user and location. The concatenation is a unique vector and it will
help us mine the preference from the view of both user and location. We input
the concatenation of xi and yj to union neural network, which is computed as
follows:

L̃0 = xi ⊕ yj (8)

L̃k = f
(
w̃kL̃k−1 + b̃k

)
, k = 1, 2, . . . ,M − 1 (9)

where L̃k is the layer k, w̃k and b̃k are weight matrix and bias of L̃k. Same as
dimension reduction network, the activation function is sigmoid function. Note
that it’s vector concatenation, not vector addition. On other hand, considering
that xi and yj can be regarded as the results of matrix factorization, we calculate
the dot product of xi and yj . Compared with the original vectors of user and
location, our xi and yj are low dimensional and have key information of them.
So xi and yj can perform better in matrix factorization. Next, we calculate the
potential union preference, which is defined as follows:

zij = f
(
wZ

Mf
(
. . . f

(
wZ

1 (xi ⊕ yj) + bZ1
)
. . .

)
+ bZM

)
(10)

Unionij =
1
2

(zij + xi · yj) (11)

where wZ
M and bZM are parameters of the union neural network. The reason why

we average the two methods we mentioned above is we assume that they both
have equal effects. Meanwhile, it will simplify the training process. In our future
work, we will try other measures to combine them.
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3.4 Loss Function

There are many loss functions in deep learning. Since we adopt 0–1 value for
the user-POI matrix R, so mean square error suits our deep model and it is
computed as follows:

Loss =
1

|B|
∑

ui,lj∈R+∪R−
(Unionij − Rij)

2 (12)

where R− is the set of our negative samples and R+ is the set of non-zero
elements in R. B is the size of a training batch. Based on loss function, we use
gradient descent algorithm to train our model and update all parameters.

3.5 Geographical Influence

Distance between two locations plays an important role when recommending
[14]. If a location is far away from user’s current location, there is little chance
that user will visit it. Hence, in order to model the geographical influence, we
adopt a power law distribution that is shown as follows:

Pro (lj |lp) = a × dis(lj , lp)
b (13)

where lp is user’s current location and Pro(lj |lp) represents the probability of
visiting the new location lj after lp. a and b are parameters of power law distri-
bution.

It’s difficult to use the geographical model directly. For obtaining the
unknown parameters, we need to convert our power law distribution to a linear
model by using logarithmic representation, which is defined as follows:

log Pro = log a + b log dis (lj , lp) (14)

δ (C,ω) = a′ + b log ω (15)

where ω is parameter set, C represents dis(lj , lp) and a′ is equal to log a. Based
on least squares method, the objective function that needs to be minimized is
defined as follows:

min
1
2

∑
C∈D

(δ (C,ω) − t (C))2 +
ϕ

2
‖ω‖2 (16)

where D is a real-world dataset and t(C) is the logarithmic value of the true
distance probability derived from D. The last term is a regularization and ϕ is
the weight. Now we get our distance model. Therefore, the locations that user
has visited is denoted by Lu and the probability of unvisited location lj for Lu

is calculated as follows:

Pro (lj |Lu) =
∏

lp∈Lu

Pro (lj |lp) (17)
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3.6 POI Recommendation

We have introduced our deep learning model and geographical influence respec-
tively. For the sake of improving the performance of our deep model, now we
integrate it with the geographical influence. Hence, the prediction of unknown
R̂ij is computed as follows:

R̂ij = α × Pro (lj |Lu)
max

lp∈L−Lu

Pro (lp|Lu)
+ (1 − α) × Unionij (18)

where α is the weight and α ∈ [0, 1]. Finally, we rank all predictions for user ui

according to R̂ij and produce a recommendation list with Top-K POIs to user.

4 Experiments

In this section, we evaluate our proposed model with some popular recommen-
dation algorithms on two real-world datasets. In order to avoid over-fitting, N
and M in our model are both set to 3.

4.1 Datasets

We employ two real-world datasets collected from two cities on Foursquare. One
is Honolulu, Hawaii. The other is Atlanta, Georgia. There are 33884 check-ins
made with Honolulu and they are produced by 768 users on 4716 locations. The
average check-in of per user is 44. For Atlanta dataset, there are 43987 check-ins
and they are made by 3238 users on 4853 locations. The average check-in of
each user is 13. Obviously, the dataset of Atlanta is more sparse than that of
Honolulu. We randomly select 80% of the locations of each user as training data
and the remaining 20% as test data. Moreover, for the sake of effectiveness of
experiments, the users who have visited less than 6 locations and the locations
that have been visited by less than 6 users are removed from datasets.

4.2 Evaluation Metrics

Precision, recall and F1-score are most used evaluation metrics in POI recom-
mendation system. F1-score is the combination of precision and recall. We adopt
F1-score to find the optimal α. Precision and recall are used in comparing our
model with other algorithms. All evaluation metrics are defined as follows:

Precision@K =
1

|U |
∑
u∈U

|Recu ∩Testu|
|Recu| (19)

Recall@K =
1

|U |
∑
u∈U

|Recu ∩ Testu|
|Testu| (20)

F1 − score@K = 2
Precision@K × Recall@K

Precision@K + Recall@K
(21)

where Recu is the recommendation list for user u and Testu is the test data of
user u. K is the length of recommendation list, which is set to 5, 10 and 15.
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4.3 Optimal α

In our proposed model DPR-Geo, there is a parameter α that controls the influ-
ence of graphical distance. Since we need to determine the best α, we use F1-
score that combines precision and recall. The result of α is shown in Fig. 4. In
Honolulu dataset, it’s obvious that all curves first go up and then go down after
reaching their peaks α = 0.4 basically. It indicates that appropriate geographical
influence can enhance the output of our neural networks. The curve of K = 5
goes down sharply and is even lower than other curves after α = 0.7, which tells
us it is more sensitive to distance when K is small. In Atlanta dataset, all curves
keep the same trend of Honolulu dataset while there are some fluctuations. Their
peaks are around α = 0.6. The curve of K = 5 also goes down sharply. The pos-
sible reason is that geographical distance has more significant influence on the
curves with small K.

In a word, geographical distance will improve our POI recommendation
results and its influence is significantly different in terms of different datasets.

Fig. 4. F1-score under different α.

4.4 Performance Comparison

To comprehensively demonstrate the effectiveness of our proposed model DPR-
Geo, we compare it with following popular recommendation algorithms:

POP: A standard model that recommends popular POIs to users.

NMF: A classical non-negative matrix factorization.

BPR [10]: Bayesian personalized ranking via optimizing the ordering relation-
ship of users and POIs.

DMF [12]: A novel deep matrix factorization for recommendation system, which
learns a common low dimensional space for both users and recommendations.

DPR: Our proposed deep model that dose not consider geographical influence.
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Fig. 5. Precision and Recall.

Our final model which integrates DPR and geographical influence is called
DPR-Geo. We set α = 0.4 and α = 0.6 for Honolulu dataset and Atlanta
dataset respectively. The performance comparison is shown in Fig. 5 and we
summarize the following observations.

For Honolulu dataset, DPR-Geo outperforms other algorithms in terms of
both precision and recall. In precision, NMF and DMF are better than POP
and BPR, which indicates that matrix factorization still has some advantages.
However, matrix factorization can’t mine users’ preferences deeply. Hence, our
DPR-Geo extract the potential correlation between users and locations based
on neural networks. In recall, BPR and POP are superior to DMF and NMF.
The possible reason is that recommending POIs according to POI-pair method
or popularity is more suitable since Honolulu is a famous tourist city. DPR-
Geo performs better than DPR, which demonstrates integrating geographical
influence into deep model can improve performance effectively.

For Atlanta dataset, DPR-Geo is still superior to other algorithms in terms
of both precision and recall. In precision, DMF is not as good as BPR and
even inferior to NMF when the length of recommendation list increases. This
is caused by the data sparsity because the average check-in is 13 in Atlanta
dataset while the average check-in of Honolulu dataset is 44. Therefore, DMF
can’t capture more useful information of users. POP is the worst model, which
shows recommendation based on popularity can’t achieve excellent result. In
recall, BPR is only second to DPR-Geo and DPR. It indicates that BPR keeps
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its traditional advantages. DMF is slightly better than NMF and POP due to its
sparsity problem. Our DPR-Geo uses geographical influence to make proposed
DPR more explainable.

In a word, our DPR-Geo that is based on neural network and geographical
influence outperforms other comparison algorithms and can be applied to POI
recommendation system.

5 Conclusion

The rapid development of artificial intelligence forces location-based social net-
works use deep learning technology to improve their mobile services, such as
point-of-interest (POI) recommendation. However, traditional POI recommen-
dation can’t mine users’ preferences effectively. In this paper, we propose a deep
POI recommendation model (DPR-Geo) which also considers the geographical
influence. On one hand, we construct two neural networks for the sake of reduc-
ing dimension of users and locations and making recommendation. On the other
hand, we model the influence of geographical distance between two locations to
enhance our recommendation results. The experiments on two real-world dataset
demonstrate our proposed model DPR-Geo outperforms some popular recom-
mendation algorithms.

In the future, first of all, we will improve the neural networks of our deep
model by trying different structures and layers. In our union network, we adopt
a simple combination of concatenating and multiplying vectors. We will find a
more suitable measure to finish that. Secondly, we will take into account more
factors that may affect the performance of our model, such as the categories of
POIs. Category can be regarded as the explicit semantic expression of POI itself.
So we are able to capture the explicit preferences of users from categories.
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Abstract. Advertising recommendation is crucial for many Internet
companies because it largely affects their business income, and click-
through rate (CTR) plays a key role in it. Most of the current CTR
prediction models pay less attention to the feature importance before fea-
ture interaction. Besides, during bilinear feature interaction (BI), these
models simply use hadamard product or inner product and implicitly
introduce unnecessary feature order noise. In this paper, we propose
a model called Feature Aware and Bilinear Feature Equal Interaction
Network (FaBeNET). On the one hand, it can be aware of the feature
importance and keep original feature as many as possible through the
Squeeze-and-Excitation Residual Network (SE-ResNet); On the other
hand, it assigns an interaction matrix to each feature, so the BI can be
equally and effectively learned by the combination of hadamard prod-
uct and inner product. On this basis, a deep neural network is used to
learn higher-order feature interaction. Experiments show that FaBeNet
achieves performance 0.7919 AUC and 0.4581 Logloss, which is better
than other models, such as the DCN, xDeeepFM, and FiBiNET.

Keywords: Click-through rate · Squeeze-excitation residual network ·
Bilinear Feature Equal Interaction · Recommender systems

1 Introduction

Recommendation system is indispensable for many Internet companies because
their quality directly affects the business income of the platforms [1–3]. The
core problem of it is CTR prediction, which aims to predict the probability
of users clicking on advertisements or items [4,5]. In the literature, numerous
methods have been applied to predict CTR, which can be divided into two
types: traditional models and deep learning models.

For traditional models, Logistic regression (LR)model [6] is the forerunner
and foundation of many popular CTR prediction models. Despite the strong
interpretability, it is difficult to deal with the problem of increasingly sparse and
high-dimensional data. The Factorization Machine (FM) model [7] decomposes
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 432–443, 2020.
https://doi.org/10.1007/978-3-030-63836-8_36
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the weight into the inner product of two vectors to carry out the interaction of
variables, which can deal with the problem of data sparsity better. The Field-
aware Factorization Machine (FFM) model [8] adds the concept of “field” based
on the FM model and uses field-aware embedding vector to complete feature
interaction. The Attentional Factorization Machine (AFM) model [9] uses the
popular attention mechanism recently to make different feature interactions con-
tribute differently to the prediction. However, these traditional methods can only
learn the second-order interaction of feature, their linear expression ability limits
the final prediction effect.

For deep learning models, Factorization machine supported neural network
(FNN) model [10] introduces the DNN structure and uses the pre-trained factor-
ization machine for field embedding. Wide&Deep (W&D) model [1] uses a linear
model of “wide part” and a DNN model of “deep part” to model low-order and
high-order feature interactions simultaneously. However, expertise feature engi-
neering is still required as input for “wide part”. DeepFM [11], the Factorization-
Machine based neural network, can be trained end-to-end without any feature
engineering because it replaces the “wide part” with the FM model and the two
parts share the feature embedding vector. Neural Factorization Machine [12]
stacks deep neural networks on top of the output of the second-order feature
interactions to model higher-order features. Deep & Cross Network [13] intro-
duces a special cross-network module for feature interaction. But the output
of CrossNet is limited in a special form. To solve this problem, the eXtreme
Deep Factorization Machine (xDeepFM) [14] designs a Compressed Interaction
Network (CIN) module to learn explicit high-order feature interactions better.
FiBiNET [15] introduces the SENet [16] mechanism to learn the feature impor-
tance and three types of BI layer to learn fine-grained feature interaction.

Many challenges need to be faced for CTR prediction. Different features
should be given different weights. It is important to dynamically learn the feature
importance while ensuring that the information of the original features is not
lost. Besides, the interaction between features should be simple and effective
and the interaction result should has nothing to do with the order of features.
However, few models can achieve the above two points. To solve these problems,
we propose a model called Feature Aware and Bilinear Feature Equal Interaction
Network (FaBeNET). The contributions of our work are as follows.

* We introduce SE-ResNet [16,17] to dynamically learn the feature importance
and keep original feature information. Thanks to the shortcut connection of
residual network, the original feature embeddings don’t need to enter the BI
layer, which reduces a large number of parameters.

* In BI layer, we propose a new type of feature interaction called “Bilinear
Feature Equal Interaction”. In this interaction, each feature corresponds to
an interaction matrix, so the bilinear feature interaction can then be equally
and effectively learned by the combination of hadamard product and inner
product. It successfully solves the problem of introducing feature order noise
during feature interaction.
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2 Feature Aware and Bilinear Feature Equal Interaction
Network

In this section, we will describe the structure of our FaBeNET model (Fig. 1). For
the sake of simplicity, we omit the logistic regression part of the model, because
it is relatively simple and common. Our model mainly includes the following six
parts: sparse input and embedding layer, SE-ResNet layer, bilinear feature equal
interaction layer, concatenation layer, DNN network layer, and output layer.

Fig. 1. FaBeNet model structure.

2.1 Sparse Input and Embedding Layer

In CTR prediction, input features are usually categoric. Sparse inputs are vec-
tors formed by one-hot encoding of them. To reduce the dimension of input
features, we use embedding technology to transform these sparse inputs into
dense embeddings [10]:
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ei = Wembed,ixi (1)

where xi ∈ Rni
v is the one-hot encoding vector of the i-th categorical feature,

Wembed,i ∈ Rne×ni
v is the corresponding embedding matrix, and ne is the embed-

ding size, ni
v is the vocabulary size of the i-th feature. It will be optimized

together with other parameters in the network. ei ∈ Rn
e is the i-th embedding.

Finally, we stack all the embeddings together to get the output of this layer:

E = [eT1 , eT2 , · · · , eTnf
] (2)

where nf represents the number of features.

2.2 SE-ResNet Layer

SENet has the ability to automatically be aware of the importance of the channel.
The shortcut connection structure of residual network can keep original feature
information and enhance the diversity of features. SE-ResNet is a combination
of the above two models and has achieved success in many fields [18]. In this
section, We introduce the SE-ResNet (Fig. 2) to make FaBeNet dynamically
be aware of and learn the feature importance. Besides, the jump connection
structure can alleviate the subsequent network degradation of FaBeNet.

As shown in Fig. 2, SE-ResNet can be divided into four parts: squeeze, exe-
cution, rescale and shortcut connection. We will introduce them in detail as
follows.

Fig. 2. SE-ResNet structure.



436 L. Luo et al.

Squeeze. The purpose of this part is to squeeze the global information of each
feature embedding into a feature-aware static by using global pooling:

zi = Fsq(ei) =
1
ne

∑ne

i=1
e
(t)
i (3)

Then, we can get a statistic vector Z which is generated by shrinking E
through its dimensions nf :

Z = [z1, z2, · · · znf
] (4)

As the output of the transformation E, Z ∈ Rnf can be interpreted as a
collection of the local descriptors whose statistics are expressive for the whole
feature embeddings.

Excitation. The purpose of this part is to fully capture feature-wise dependen-
cies. We opt to employ a simple gating mechanism with two fully connected (FC)
layers to learn the importance of the feature. Formally, the weights of feature
embeddings S is calculated by:

S = Fex(Z) = σ(W2δ(W1Z)) (5)

where S ∈ Rnf refers to the weight vector, and σ, δ is Sigmoid function and
ReLU function respectively. The parameters of this layer are W1 ∈ Rnf×nf

r ,
W2 ∈ R

nf
r ×nf , and r is reduction ratio which is a hyper-parameter of FaBeNet.

Rescale. In this part, we multiply the feature weight vector S and feature
embeddings E in feature-wise way to get a new SENet-Like embeddings. For-
mally, G ∈ Rnf×ne is calculated by:

G = Frs(E,S) = [e1 × s1, e2 × s2, · · · , enf
× snf

] (6)

Shortcut Connection. The purpose of this part is to transmit the original
feature embeddings to the SE-ResNet-Like embeddings V through the shortcut
connection structure. Formally, V ∈ Rnf×ne is calculated by:

V = Fsc(E,G) = [e1 + g1, e2 + g2, · · · , enf
+ gnf

] (7)

2.3 Bilinear Feature Equal Interaction Layer

The BI layer aims to model the second-order feature interaction automatically.
The traditional methods only use inner product or hadamard product, which is
too simple to learn informative feature interaction in a sparse dataset. FiBiNet
combines inner product and hadamard product and proposes three types of
feature interaction methods:
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Field-All Type.
pi,j = vi ∗ W � vj (8)

where ∗ denotes the inner product and � denotes the hadamard product. pij is
the result of feature interaction between vi and vj . W is the interaction matrix
that is shared among all (vi, vj). This feature interaction method is too simple to
express all the feature interaction information with only one interaction matrix,
which limits the expression ability of the model.

Field-Each Type.
pi,j = vi ∗ Wi � vj (9)

where Wi is the corresponding parameter matrix of the i-th feature. The total
number of interaction matrices is nf − 1. This feature interaction method is
asymmetric in feature interaction because vi ∗ Wi � vj �= vj ∗ Wj � vi. Predic-
tion results will change as the order of input features changes. This method is
unreasonable because it implicitly introduces feature order noise.

Field-Interaction Type.

pi,j = vi ∗ Wij � vj (10)

where Wij is the corresponding parameter matrix of interaction between feature i
and feature j. In this feature interaction method, the total number of interaction
matrices is nf×(nf−1)

2 . On the one hand, too many parameters lead to long
training time; On the other hand, it is easy to cause overfitting problem.

Field-Equal Type. As also shown in Fig. 3, we propose a new type of interac-
tion method named “Bilinear Feature Equal Interaction”. For the convenience
of subsequent comparison experiments, we can also call it ”Field-Equal Type”.
Taking the i-th embedding vi and j-th embedding vj as an example, the result
of feature interaction pij is calculated by:

pi,j = (vi ∗ Wi) � (vj ∗ Wj) (11)

where Rij = {(i, j)i∈{1,2,··· ,nf},j∈{1,2,··· ,nf},j>i}, (i, j) ∈ Rij , pij ∈ Rne , xi ∈
Rne , xj ∈ Rne . Wi ∈ Rne×ne , Wj ∈ Rne×ne are the corresponding parameter
matrix of xi and xj , respectively. In this interaction mode, the position of features
is equal because they are symmetrical in feature interaction, which successfully
solves the problem of introducing feature order noise in “Field-Each Type”. The
total number of interaction matrices is nf . Compared to “Field-Each Type”,
the cost it pays is just one more parameter matrix to learn and one more inner
product to perform. Besides, it has stronger expression ability than “Field-All
Type” and fewer parameters than “Field-Interaction Type”.

In this layer, the SE-ResNet-Like embeddings V is transformed into interac-
tion vectors:

P = [p1, p2, · · · , pnp
] (12)

where P ∈ Rnp×ne , np = nf×(nf−1)
2 .
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Fig. 3. Field-equal type bilinear feature interaction.

2.4 Concatenation Layer

In the task of CTR estimation, the input features also contain some dense numer-
ical features. Let the normalized dense features be D ∈ Rnd , where nd is the
number of dense features. We concatenate dense features D and interaction vec-
tors P in this layer. The concatenate vector C ∈ Rnd+np×ne is calculated by:

C = Fconcat(D,P ) = [d1, · · · , dnd
, p1, · · · , pnp

] (13)

* Shallow Type: When we sum C element by element, and then use sigmoid
function to get CTR prediction results, we call it shallow-FaBeNet.

* Deep Type: If we input C to the subsequent DNN layer to calculate the final
CTR prediction result, we call it deep-FaBeNet.

2.5 DNN Network Layer

This part is a fully-connected feed-forward neural network with each MLP layer
having the following formula:

hl+1 = f(W lhl + bl) (14)

Where hl+1 ∈ Rnl+1, hl ∈ Rnl are the (l + 1)-th and l-th hidden layer output,
respectively. W l ∈ Rnl+1×nl , b ∈ Rnl+1 are the model weight and bias which
need to be learned. Finally, this layer outputs an real number yd, which can be
calculated by:

yd = f(WL+1hL + bL) (15)

where L is the number of deep layers.

2.6 Output Layer

In this part, we give the final CTR prediction formulation of out proposed model:

ŷ = σ(w0 +
∑nx

i=0
wixi + yd) (16)

where ŷ ∈ (0, 1) is the predicted value of CTR, nx is the feature size, x is the
original input and w is the corresponding weights in the linear part.
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Our Loss function is Logloss:

L = − 1
N

∑N

i=0
(Nyilog(ŷi) + (1 − yi)log(1 − ŷi)) (17)

where N is the size of training set, yi is the true label of the i-th sample xi.

3 Experiments

In this section, we compare our proposed modes FaBeNet with existing models
in CTR prediction. Moreover, we analyze the impact of our two improvements:
SE-ResNet and “Field-Equal Type” through ablation study.

3.1 Dataset

The dataset of our experiment is the Criteo Display ADs1. Due to the limitation
of experimental hardware, we randomly sample 10% of them as our experimental
dataset. And then we split the experimental dataset randomly into two parts:
90% is for training, while the rest is for testing.

3.2 Experiments Setting

For all shallow models, we set the mini-batch size, embedding size to 1000, 10,
respectively. For the optimization method, we use the AdaGrad [19] with learning
rate of 0.001 as optimization method.

For all deep models, we set mini-batch size, embedding size, DNN structure
to 1000, 6, (600, 600, 600) and use Adam [20] with learning rate of 0.0002 as
optimization method. For FiBiNet and FaBeNet, We set reduction ratio to 6.
For FaBeNet, we set dropout [21] to 0.3. For other models, we set dropout to
0.5.

3.3 Model Comparison

Firstly, from the Table 1 we can observe that the results of deep models are better
than shallow models, which also proves the effectiveness of modeling high-order
feature interaction.

Secondly, LR performs poorly in shallow model comparison experiments
because it has no effective measures to solve the data sparseness problem.
Although FM alleviates data sparseness through factorization, it does not per-
form well because it does not model the importance of features. Shallow-FiNiNet-
interaction is the best performer in shallow-FiBiNet, both in and shallow-
FaBeNet has a greater improvement than AFM and FFM. Shallow-FaBeNet is
not as effective as shallow-FiNiNet-interaction, probably because we did not con-
catenate the original embeddings with Se-ResNET like embeddings after passing
1 http://labs.criteo.com/downloads/download-terabyte-click-logs/.

http://labs.criteo.com/downloads/download-terabyte-click-logs/
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Table 1. Comparison results of different models

Model Class Model AUC Logloss Runtime Per
Epoch(s)

Shallow LR [6] 0.7548 0.4874 2170

FM [7] 0.7665 0.4784 2202

AFM [9] 0.7697 0.4757 4316

FFM [8] 0.7715 0.4743 4416

shallow-FiBiNet-all [15] 0.7739 0.4725 3550

shallow-FiBiNet-each [15] 0.7754 0.4714 3880

shallow-FiBiNet-interaction [15] 0.7760 0.4708 4330

shallow-FaBeNet(Ours) 0.7757 0.4712 3891

Deep FNN [10] 0.7873 0.4634 4814

W& D [1] 0.7783 0.4705 6050

DeepFM [11] 0.7878 0.4632 4770

NFM [12] 0.7876 0.4633 7894

DCN [13] 0.7872 0.4636 7702

xDeepFM [14] 0.7883 0.4630 4984

deep-FiBiNet-all [15] 0.7913 0.4589 5360

deep-FiBiNet-each [15] 0.7915 0.4586 6052

deep-FiBiNet-interaction [15] 0.7912 0.4591 6950

deep-FaBeNet(Ours) 0.7919 0.4581 5372

through the BI layer, which makes the shallow models without DNNs too sim-
ple. However, the parameters of shallow-FaBeNet are much less than that of
shallow-FiNiNet-interaction and can be a good solution when time performance
is required.

Thirdly, in the comparative experiment of the deep models, the deep-FabeNet
proposed by us achieves the best performance overall baseline methods on the
Criteo dataset. The performance of W&D model is the worst because there are
no artificial features in this experiment. The best performance of deep-FiBiNet is
the deep-FiBiNet-each. Both it and our proposed deep-FaBeNet are better than
DeepFM, xDeepFM, and other models in terms of evaluation metrics, which
shows the effectiveness of introducing mechanisms such as SENet to learn fea-
ture importance before DNN. Compared with deep-FiBiNet-each, deep-FaBeNet
replaces SENet with SE-ResNet and improves the feature interaction mode. The
performance of deep-FaBeNet shows that the SE-ResNet mechanism and “Field-
Equal Type” bilinear interaction are effective. On the one hand, the SE-ResNet
mechanism automatically learns the importance of features while preserving the
information of the original embeddings, which enhances the diversity of features.
At the same time, the original embedding vector does not need to enter the Bi
layer for interaction, which reduces the number of parameters. On the other
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hand, the feature interaction mode of “Field-Equal Type” makes the features
equal in the interaction and solves the problem of introducing feature sequence
noise.

3.4 Ablation Study

Ablation Study of SE-ResNet. In order to further illustrate the effectiveness
of SE-ResNet, we carry out the ablation experiments over FaBeNet in this section
to explore the role of it. The comparison results are shown in the Table 2.

Table 2. Ablation study result of SE-ResNet

Model Class Model AUC Logloss

Shallow BASE (Ours) 0.7757 0.4712

NO-RES 0.7748 0.4718

NO-SE-RES 0.7710 0.4747

Deep Deep-BASE 0.7919 0.4581

NO-RES 0.7716 0.4588

NO-SE-RES 0.7910 0.4593

We set shallow-FaBeNet as the base model, and NO-RES means replacing
SE-ResNet with SENet, NO-SE-RES means removing the SE-ResNet. From the
table, we can observe that the SE-ResNet structure is indispensable to FaBeNet,
especially in the shallow model. When we remove the SE-ResNet structure, the
performance of the model declines apparently, which illustrates the effectiveness
of modeling the importance of features. At the same time, no matter in the shal-
low model or the deep model, the SE-ResNet structure performs better than the
SENet structure, which shows the effectiveness of retaining the original feature
information through the shortcut connection.

Ablation Study of “FILE-EQUAL TYPE”. In order to further illustrate
the effectiveness of our proposed field-equal type bilinear-interaction, we carry
out the ablation experiments in this section to explore the role of field-equal
type bilinear-interaction in FaBeNet. The comparison results are shown in the
Table 3:

We set shallow-FaBeNet as the base model, and NO-BI means removing the
bilinear interaction layer, Base-Each means that replacing the ‘Field-equal type’
with ‘Field-each type’ and so on. From the table, we can observe that whether
the shallow model or the deep model, the performance of the model has dropped
to a large extent after removing the BI layer, which shows that the BI layer
is essential too. In the deep model, the “Field-equal type” interaction method
achieves the best performance among the four feature interaction methods, which
shows that our improvement is effective. Although the effect of the “field-equal
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Table 3. Ablation study result of “Field-equal Type”

Model Class Model AUC Logloss

Shallow BASE (Ours) 0.7757 0.4712

NO-BI 0.7708 0.4749

BASE-all [15] 0.7741 0.4723

BASE-each [15] 0.7755 0.4713

BASE-interaction [15] 0.7763 0.4706

Deep Deep-BASE (Ours) 0.7919 0.4581

NO-BI 0.7906 0.4596

Deep-BASE-all [15] 0.7912 0.4591

Deep-BASE-each [15] 0.7914 0.4589

Deep-BASE-interaction [15] 0.7910 0.4593

type” is not as good as the “Field-interaction type” in the shallow model, it has
fewer parameters and is better in effect than the remaining feature interaction
methods.

4 Conclusion

In the task of CTR prediction, being aware of the feature importance and design-
ing a reasonable and effective feature interaction mode is the key factor. We pro-
pose a model that can dynamically learn the feature importance and perform
equal type bilinear feature interaction: FaBeNet. On the one hand, it can learn
the feature importance and keep original feature information through the SE-
ResNet. On the other hand, we propose a new bilinear feature interaction mode
by integrating hadamard product and inner product to perform equal inter-
action. Experimental results show that our proposed model FaBeNet achieves
state-of-art performance in AUC and Logloss. The ablation studys in the exper-
iment verify the effectiveness of the SE-ResNet mechanism and the “Field-Equal
Type” bilinear feature interaction, which provided experimental support for our
improvements.
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Abstract. Click-Through Rate (CTR) is a fundamental task in person-
alized advertising and recommender systems. It is vital to model dif-
ferent orders feature interactions in click-through rate. There are many
proposed methods in this field such as FM and its variants. However,
many current methods can not adequately and precisely extract feature
interactions. In this paper, we improve an effective light weight method
called the Graph Feature Extract Network (GFEN) to further explicitly
or implicitly model low-order and high-order feature interactions infor-
mation via Graph Convolutional Network (GCN) and Global Recom-
bination Network (GRN). GCN explicitly models local high-order fea-
ture interactions. GRN automatically captures global high-order feature
interactions via the diversity pooling layer and recombines global and
local feature interactions via fully connection layer. We conduct exten-
sive experiments on there real-world datasets and show that our model
achieves the best performance compared to the existing state-of-the-art
methods such as CKE, DKN, Wide&Deep, RippleNet etc. Our proposed
GFEN is a very light weight model, which can be applied to other compli-
cate model such as Ripplenet based knowledge graph and deep learning
models based CTR. The whole model can be efficiently fit on large-scale
raw input feature.

Keywords: Recommender system · Click-through rate · Graph
Convolution Network · Deep neural network

1 Introduction

Click-Through Rate prediction is a critical problem for many applications such as
online advertising and recommender systems which predicting the probabilities
c© Springer Nature Switzerland AG 2020
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of users clicking on ads or items. Now it is a big challenge for users to obtain
meaningful information in so much information. Recommender system aims to
address this problem and make personalized recommendations for users. In click-
through rate task, it is vital to capture feature interactions of users. But in
current internet companies like Amazon, the user’s representation vector is high-
dimensional and sparse because of a lot of categorial features. As a result, the
combinatorial features are more sparse. With such sparse and high-dimensional
input features, some models such as Linear Regression are easily overfitted, which
can not accurately learn users’ features.

In order to alleviate dimension explosion, most models need to convert the
one-hot encoding vector of user and item to latent low dimension embedding
vector. And, due to the more structure information in knowledge graph, many
researchers begin to make use of knowledge graph to improve the recommen-
dation performance and explainable [10,18,19]. However, many current models
can not precisely capture feature interactions.

In this paper, we propose GFEN, which consists of Graph Convolution Net-
work (GCN) and Global Recombination Network (GRN) to precisely extract
high-order feature interactions. Graph Convolutional Network (GCN) is able to
explicitly model the local high-order feature interactions. And Global Recom-
bination Network (GRN) combines the diversity pooling layer with fully con-
nection layer, which can automatically capture and recombine global and local
high-order feature interactions. In Global Recombination Network (GRN), we
can get the global information of multi perspectives via diversity pooling layer.
Then the fully connection layer recombines global and local feature interactions.
Our results are substantially more than state-of-the-art models. Empirically, we
conduct many experiments in three real-world datasets. The experiments show
that GFEN has achieved remarkable performance.

Our main contributions are listed as follows:

• We introduce a light weight module called Graph Feature Extract Network
(GFEN) which can be used to enhance the performance of complicated models
based knowledge graph.

• We combine Graph Convolutional Network (GCN) and Global Recombina-
tion Network (GRN) to capture high-order feature interactions via different
perspective information.

• We conduct experiments on three real-world datasets, and the results prove
the effectiveness of GFEN over state-of-the-art baselines.

2 Related Work

2.1 Factorization Machine

Factorization Machine (FM) [15] is the most successful model for click-through
rate. FM converts a high dimensional sparse vector to a low dimensional dense
real-value vector to solve the dimensional disaster problem. Meanwhile, FM mod-
els all feature interactions between variables using factorized parameters. These
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Fig. 1. Overview of the Enhanced Ripplenet.

interaction information is vital to predict users preferences in click-through rate
tasks. Thus, some researchers have made a lot of improvements on the basis of
FM, like AFM [6], NFM [8], DeepFM [6] and xDeepFM [12] etc.

2.2 Feature Generation by Convolutional Neural Networks

Recently, due to its ability to extract potential features information, CNN [1,
3,21] has achieved great success in many fields such as computer vision and
natural language processing. As a result, many neural network models [4,6,12,
24,25] based CTR have also been proposed in recent years. How to effectively
model the feature interactions is the key factor for most of these neural network
based models. Liu [13] proposed “Feature Generation by Convolutional Neural
Network (FGCNN)”. It uses Convolutional Neural Network (CNN) and Multi-
Layer Perception(MLP), which complements each other, to learn global and local
feature interactions for feature generation. Be inspired of it, our model adopts
Graph Convolutional Network (GCN) [11,14] that is able to more capture users’
local feature interactions in knowledge graph.

3 Our Method

We aim to dynamically learn a user’s feature. To this end, we propose the Graph
Feature Extract Network(GFEN) for click-through rate prediction. We apply our
model on Ripplenet to improve its effective performance. So in this section, we
will describe some definitions in Ripplenet as depicted in Fig. 1. Our proposed
GFEN can enhance the performance of captureing feature interactions in knowl-
edge graph.
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3.1 Basic Framework

We regard Ripplenet as our the basic net to enhance it. Input and embedding
layer are applied upon the raw feature to convert it to a low dimensional, dense
real-value vector. A users historical preferences are used to find more interac-
tive interests in knowledge graph. In each interest propagation, we can infer a
interest vector T from a user vector H and relation vector R. These related tail
embeddings can be used as the latent features of the user embedding. Finally,
the user embedding and item embedding are used to predict the probability of
the user’s clicking.

We will introduce GFEN into Ripplenet to improve its performance. One
problem in Ripplenet is that the tail feature embedding in each hop are only
calculated by weighted sum. It can not precisely capture a users feature interac-
tions in each hop. And it can not been take into account that high-order features
interaction information between features in each tail feature embedding. The tail
embedding from different relationships paths in every hop has a lot of meaningful
feature information. And these feature interactions information [13] is helpful to
the representation of a user’s embedding. So we propose Graph Feature Extract
Network(GFEN) to extract and recombine user’s linear features and high-order
feature interactions.

3.2 Propagation Process in Ripple Network

Given the item v embedding and the user’s 1-hop ripple set S1
u, we can get the

similarity of each triple and item v.

pi = softmax
(
vTRihi

)
=

exp
(
vTRihi

)
∑

(h,r,t)∈S1
u

exp (vTRihi)
(1)

After the similarity weights are obtained, we take sum of tails in S1
u weighted

by corresponding weights.

o1u =
∑

(h,r,t)∈S1
u

piti (2)

o1u is also used to update item v’s vector, so that the same operation can be
repeated in order to get o2u. Then we can get the final feature representation
vector of user.

u = o1u + o2u + · · · + oHu (3)

Lastly, the final feature interaction vector of user u and the embedding of the
item v inner product to output the probability of clicking.

∧
y = σ

(
uT v

)
(4)

Here, σ is the Sigmoid function.
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Fig. 2. Graph feature extract network (GFEN).

3.3 Graph Feature Extract Network

Since we aim to dynamically learn global and local feature interactions, we pro-
posed Graph Feature Extract Network (GFEN). As depicted in Fig. 2, the model
GFEN consists of Graph Convolutional Network (GCN) and Global Recombi-
nation Network (GRN). In Graph Convolutional Network (GCN) [5], we model
explicitly local high-order feature interactions. In order to model multi perspec-
tives local feature interactions, we adopt GCN module to dynamically extract
feature interactions via multi scaled convolution kernel such as f2×2 and f3×3

and multi perspective pooling. The following is operation steps in GFEN.
Assuming that the output of the first Graph Convolutional Layer is Oc1, we

can formulate the operation convolution part:

Oc1 = εku ∗ f
Oc1 = pooling (Oc1)
Oc1 = ReLU (Oc1)

(5)

where Oc1 is the concatenation of Omean
c1 and Omax

c1 . As we all know, CNN [9]
only models the local feature information of the receptive field area, so it will
lose some meaningful information. Thus, we adopt diversity pooling layers [14]
to capture different perspective feature interactions. And we concatenate the
feature interactions of mean and max pooling. It contains different perspective
feature interactions [20].

In Global Recombination Network (GRN), we automatically recombine high-
order feature interactions via fully connection layer. We formulate recombination
layer operation:

Of1 = Oc1 × W
Of1 = ReLU (Of1)

(6)

where W is the weight in fully connection layers, Of1 is the output of GFEN.
All offset values bias are omitted for the simplification of the formulations.

So we can get the user feature embedding after H hops. In this way, we capture
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the linear feature information oiu and the high-order feature interactions of a
user. We introduce high-order feature interactions to enhance Ripplenet.

u =
(
o1u + O1

GFEN

)
+

(
o2u + O2

GFEN

)
+ · · · +

(
oHu + OH

GFEN

)
(7)

3.4 Objective Function

In the Enhanced Ripplenet, we still choose cross-loss entropy as the objective
function. In order to avoid the overfitted problem, the L2 regularization term of
the parameters is also added.

min L=
∑

(u,v)∈Y

− (
yuv log σ

(
uTv

)
+ (1 −yuv) log

(
1 − σ

(
uT v

)))

+ λ1
2

(

‖V ‖2
2+ ‖E‖2

2+
∑

r∈R

‖R‖2
2

)

+ λ2
2

∑

r∈R

∥
∥Ir −ETRE

∥
∥2

2

+ λ3
2

(‖Wc‖2
2 + ‖Wf‖2

2

)

(8)

Here, yuv is the ground truth value anduTv is the predicted value.
Our model chooses Adam’s method to optimize the loss function. By calcu-

lating the gradient of the loss function with respect to the model parameters, we
use back-propagation to update all the trainable parameters to obtain the best
model. We will carry out some experiments in Sect. 4.

4 Experiments

In order to verify the effectiveness of our model, we conduct experiments on three
different popular datasets: MovieLens-1M1, Book-crossing2 and Last.FM3. We
arrange our experiments with 2 T K80 GPUs. The results of our proposed method
are compared with several state-of-the-art CTR techniques based knowledge
graph.

4.1 Datasets and Metrics

Movielens-1M [7] is a widely used benchmark dataset in movie recommendations,
which consists of approximately 1 million explicit ratings (from 1–5) on the
Movie-Lens website. Book-Crossing contains 114,9780 explicit ratings(from 0
to 10) of books in the Book-Crossing community. Last.FM contains musician
listening information from a set of 2K users from Last.fm online music system.
Since MovieLens-1M, Book-Crossing are explicit information, we need transform
explicit feedback data into implicit feedback data, where 1 indicates that the
user rated the item, otherwise 0. We split all datasets into two parts:80% is for
training, while the rest is for testing.

In our experiments, we adopt two metrics. AUC: Area Under the ROC Curve
measures the probability that a CTR predictor will assign a higher score to a
1 https://grouplens.org/datasets/movielens/1m/.
2 http://www2.informatik.uni-freiburg.de/∼cziegler/BX/.
3 https://grouplens.org/datasets/hetrec-2011/.

https://grouplens.org/datasets/movielens/1m/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://grouplens.org/datasets/hetrec-2011/
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randomly chosen positive item than a randomly chosen negative item. A higher
AUC score indicates a better performance. ACC: Accuracy reflects the rate at
which the CTR predictor accurately identifies true positives and negatives. A
higher ACC score indicates a better performance (Table 1).

Table 1. Dataset statistics.

Datasets MovieLens-lM Book-Crossing Last.FM

Users 6036 17860 1872

Items 2445 14967 3846

Interactions 753772 139746 42346

1-hop triples 19098 15682 11546

2-hop triples 133002 54340 1169

Table 2. The overall performance of proposed model.

Model MovieLens-1M Book-Crossing Last.FM

AUC ACC AUC ACC AUC ACC

PER 71.2% 66.7% 62.3% 58.8% 63.3% 59.6%

CKE 79.6% 73.9% 67.4% 63.5% 74.4% 67.3%

DKN 65.5% 58.9% 62.1% 59.8% 60.2% 58.1%

LibFM 89.2% 81.2% 68.5% 63.9% 77.7% 70.9%

Wide&Deep 90.3% 82.2% 71.1% 62.3% 75.6% 68.8%

Ripplenet 92.1% 84.6% 72.2% 65.1% 76.8% 69.1%

Ours 92.3% 84.8% 73.1% 68.9% 80.5% 74.3%

4.2 Baselines Methods

We compare our proposed GFEN base Ripplenet with the following baseline
models. PER [22] considers the knowledge graph as a heterogeneous informa-
tion network and extract meta-paths feature-based to represent the connections
between users and items. CKE [23] combines the structure information in knowl-
edge graph, item comment texts, visual information of the item with the collab-
orative filtering method to realize recommendation as a whole framework. DKN
[18], a model for news recommendation, treats entity embedding, entity context
embedding and word embedding as multi-channels to input the recommendation
module for click-through rate prediction. LibFM [16] is a general feature-based
method. This method uniformly uses the attributes of users and items as input to
the recommendation algorithm. Wide&Deep [2] joints trained wide linear models
for linear feature information and deep neural networks for non-linear feature
information for recommendation. Ripplenet [17] is a memory network, spreading
user preferences in knowledge graph to predict next click for user.
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4.3 Results and Discussion

Overall Performance. In this subsection, we summarize the overall perfor-
mance on MovieLens-1M, Book-Crossing and Last.FM in Table 2. It shows the
results of our model and the existing methods on three datasets. Obviously, our
model consistently outperforms other models such as PER, CKE, DKN etc. The
results indicate that GFEN is an effective method on many real-world datasets.

Among all compared methods, our proposed GFEN achieves the best perfor-
mance. The best AUC and ACC on MovieLens-1M is 92.1% and 84.6%. The best
AUC and ACC is 73.1% and 68.9% on Book-Crossing dataset. The best AUC
and ACC is 80.5% and 74.3% on Last.FM dataset. The proposed model has
achieved a significant improvement when compared to existing state-of-the-art
models. It proves that GFEN is effective to model feature interactions in knowl-
edge graph. The GCN layer learns local feature interactions, which dynamically
captures feature interactions. The GRN layer recombines local and global feature
interactions via pooling and fully connection layer.

Table 3. Performance of different reception sizes in GCN

Reception size MovieLens-1M Book-Crossing Last.FM

AUC AUC AUC

2*2 92.35% 72.58% 81.26%

3*3 92.14% 73.47% 81.33%

4*4 92.13% 72.25% 80.22%

Table 4. Performance of different pooling types in GRN

Pooling type MovieLens-1M Book-Crossing Last.FM

AUC AUC AUC

Mean Pooling 92.24% 72.45% 80.96%

Max Pooling 92.35% 74.25% 81.33%

Both 92.3% 73.1% 80.5%

Ablation Analysis. To further validate and gain deep insights into our model,
we conduct some ablation studies. As shown in Table 3 and Table 4, we con-
duct ablation experiments about the parameter of reception sizes in GCN. On
Book-Crossing and Last.FM dataset, we can observe that increasing reception
size improves model performance at the beginning. However, the performance
is degraded if the reception size keeps increasing. When the size reaches 3*3,
model gets best performance. And the size of 2*2 achieves the maximum AUC
on MovieLens-1M.
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The Table 4 shows that the pooling operation in GRN is how to impact the
performance of our model. We can observe that the performance of max pooling
on AUC metric outperforms mean pooling on the three datasets. Therfore, its
better to adopt max pooling in experiments.

5 Conclusion

In this paper, we proposed GFEN, which is a light weight module. It consists of
two parts: Graph Convolutional Network (GCN) and Global Recombination Net-
work (GRN). Graph Convolutional Network (GCN) is able to explicitly model
the local high-order feature interactions. And Global Recombination Network
(GRN) combines the diversity pooling layers with fully connection layers. In
GRN, we can get the global information of multi perspectives via diversity pool-
ing layer. Then the fully connection layer recombines global and local feature
interactions. We conduct extensive experiments in three real-world datasets. The
results demonstrate the significant superiority of GFEN over strong baselines.
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Abstract. Recommender constantly suffers from the problems of data
sparsity and cold-start. As suggested by social theories, people often alter
their ways of behaving and thinking to cater to social environments, espe-
cially their friends. For this reason, prior studies have integrated social
relations into recommender systems to help infer user preference when
there are few available data, which is known as social recommendation.
However, explicit social relations are also sparse and meanwhile are usu-
ally noisy. To enhance social recommendation, a few studies identify more
reliable implicit relations for each user over the user-item and user-user
networks. Among these research efforts, meta-paths guided search shows
state-of-the-art performance. However, designing meta-paths requires
prior knowledge from domain experts, which may hinder the applica-
bility of this line of research. In this work, we propose a novel social
recommendation model (JUST-BPR) with a meta-path-free strategy
to search for implicit friends. Concretely, We adopt the idea of ’Jump
and Stay’, which is a heterogeneous random walk technique, to social
recommendation. Based on this idea, we manage to bypass the design
of meta-paths and obtain high-quality implicit relations in a more effi-
cient way. Then we integrate these implicit relations into an augmented
social Bayesian Personalized Ranking model for top-N recommendation.
Experiments on two real-world datasets show the superiority of the pro-
posed method and demonstrate the differences between implicit friends
discovered by meta-paths and JUST-BPR, respectively.

Keywords: Recommender systems · Social networks · Heterogeneous
networks · Random walk

1 Introduction

Internet users are often overwhelmed by a mass amount of information online.
To cope with this issue, recommender systems have emerged to capture the
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user’s preferences. The task of the recommender system is to predict a rating
of user u on item i or to generate a personalized recommendation list for the
given user u [4]. Despite the effectiveness, traditional recommender systems that
only leverage user-item interaction records suffer from the data sparsity and
cold-start issues because users can only consume a tiny proportion of millions
of products (i.e., the density of the user-item rating matrix in commercial rec-
ommender systems is often less than 1% [7]). Therefore, there is a need to go
beyond user-item ratings and incorporate more auxiliary information to improve
recommender systems.

As suggested by social science theories [1], people often alter their ways of
behaving and thinking to cater to social environments, especially their friends.
That means, users’ friends may influence and shape their personal tastes. For
this reason, prior studies incorporate social relations into recommender sys-
tems [4,6,7,14,20] to alleviate the above two issues, which is known as social
recommendation. As the complementary information of user-item interaction
behaviors, social relations can improve the performance of recommender sys-
tems. However, new issues are along with this new paradigm of recommender
system. Those are, people often seek their friends’ advice before making deci-
sions in real-life and in the social network. The difference between the two cases
is that we know which friends we can trust in real-life, while it is difficult for the
social recommender system to know who is trusted more by the target user in
the social network since social relations are often noisy because of the openness
nature of the social network. Besides, a few studies reveal that the cold-start
users are ‘cold’ in both user-item interactions and social networks [19]. As a
result, these user can hardly benefit from the explicit social relations. To make
better use of social relations, some meta-paths guided methods [16,17] are pro-
posed to discover implicit and reliable friends to enhance social recommenda-
tion. However, in the context of a heterogeneous information network composed
of user-item interactions and user-user social relations, using meta-paths guided
random walks requires strong prior knowledge from domain experts [2] to design
a set of meaningful meta-path, which hinders the applicability of this line of
research.

Inspired by the idea of ‘Jump and Stay’ [3], in this paper, we develop a
social Bayesian Personalized Ranking model for social recommendation, named
JUST-BPR, with a meta-path-free strategy to discover implicit and reliable
friends for each user. For a better social recommendation performance, we face
the following challenges: (1) how to utilize the idea of ‘Jump and Stay’ to discover
implicit and reliable social relations; (2) how to integrate implicit and reliable
friends discovered without meta-paths into the recommendation process. To cope
with these two challenges, JUST-BPR is designed with two stages: searching for
implicit relations and generating social recommendations, and mainly includes
the following five components: (1) a component which constructs user-item and
user-user heterogeneous networks with positive feedback and negative feedback
respectively; (2) a component which obtains unfixed sequences of node types
over the positive heterogeneous network and negative heterogeneous network
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using ‘Jump and Stay’; (3) a component which learns the user/item embedding
based on a heterogeneous skip-gram model; (4) a component to get the user’s
implicit and reliable positive friends and negative friends using user similarity;
and (5) a component which generates personalized recommendation list with
an item ranking model. Among these components, components (1) and (2) deal
with challenge (1), while the rest deal with challenge (2).

Overall, the main contributions of this paper are summarized as follows.

• We develop a meta-path-free strategy to discover implicit relations based on
the idea of ‘Jump and Stay’.

• We develop a social Baysian Personalized Ranking model for social recom-
mendation named JUST-BPR, which utilizes positive feedback and negative
feedback to discover implicit and reliable friends without meta-paths guided
random walks.

• Extensive experiments on real-world datasets demonstrate the feasibility of
decoupling meta-paths from the process of discovering implicit and reliable
friends. The results verify the effectiveness of our meta-path-free idea.

Fig. 1. Heterogeneous information network used in this paper.

2 Discover Implicit Friends with Jump and Stay
for Recommendation

2.1 Preliminaries

Heterogeneous Information Network. A heterogeneous information net-
work is defined as G = (V,E, T ), where V denotes the set of nodes and E
denotes the set of edges. Each node v ∈ V and each edge e ∈ E are associated
with their mapping functions φ(v) : v → TV and φ(e) : e → TE , respectively. TV

and TE denote the node types and relation types, where |TV | + |TE | > 2. For an
edge e ∈ E, if it connects two nodes of different types, it is called heterogeneous
edge. Otherwise, it is called homogeneous edge.

Positive Feedback and Negative Feedback. Positive feedback Pu = {(u, i)}
refers to a set of user-item pairs in which user u shows affection to item i.
Negative feedback Nu = {(u, j)} refers to a set of user-item pairs in which user
u dislikes item j (e.g. giving low ratings).
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Implicit Friends. Implicit friends refer to a pair of users who have similar
tastes or preferences but are not necessarily connected to each other in the
social networks.

Let U denote the user set, and I denote the item set. Figure 1 is an example of
a heterogeneous information network composed of user-item interaction records
with positive feedback FP and negative feedback FN and user-user social rela-
tions SR, which includes two types of nodes and three types of edges. In other
words, |TV | = 2 and |TE | = 3.

2.2 Generating Node Corpora with Jump and Stay

Meta-paths [12] are extensively used in heterogeneous mining tasks. As the data
in social recommender systems can be organized as a heterogeneous network,
meta-paths have also been introduced to social recommendation to discover
implicit relations [16,17]. However, designing meta-paths requires prior knowl-
edge from domain experts, which hinder the applicability of meta-paths-based
work. Inspired by heterogeneous graph embedding with the ‘Jump and Stay’ [3],
we propose a meta-paths-free strategy to discover implicit friends. Concretely,
we first conduct a random walk over the user-item and user-user heterogeneous
network by probabilistically balancing the ‘Jump and Stay’ options rather than
using meta-paths when selecting the next node vi+1 from the current node vi.
‘Jump’ means selecting one node, whose type is different from the current node,
as the next node. ‘Stay’ means selecting one node, whose type is the same as
the current node, as the next node. ‘Jump and Stay’ can be formally defined as
follows.

• Jump to a target domain q ∈ TV : choosing one of those nodes in the target
domain q, which is connected to the current node vi with a heterogeneous
edge, as the next node vi+1.

• Stay in the current domain: choosing one of those nodes in the current
domain, which is connected to the current node vi with a homogeneous edge,
as the next node vi+1.

After defining ’Jump and Stay’, we can probabilistically control the random
walk using two steps rather than meta-paths. The first step is to determine
whether to jump or stay. If the jump decision is made, the second step is to
decide which domain to jump. Otherwise, we will stay in the current domain.
Given a node vi, the probability of staying in the current domain is listed as
follows.

Pstay(vi) =

⎧
⎪⎨

⎪⎩

1, if Vjump(vi) = ∅

0, if Vstay(vi) = ∅

αl, otherwise ,

(1)

where Vjump(vi) and Vstay(vi) denote a set of nodes, which are connected to the
current node vi with heterogeneous edges and homogeneous edges, respectively.
αl denotes an exponential decay function, where α ∈ [0, 1] is the initial stay
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probability, and l denotes the number of nodes that consecutively visited in
the same domain of the current node vi. Using this method, the probability
function Pstay can not only help us to balance the number of heterogeneous
edges and homogeneous edges but also help us to avoid staying too long in the
same domain [3]. However, according to [10,16], if the next node vi+1 has more
shared neighbors with the current node vi, the connection strength will be more
reliable. To this end, we define the transition probability from the current node
vi to the node vq

j in the next domain q as follows:

Ptrans(v
q
i+1|vi) =

N(vi) ∩ N(vq
i+1)

N(vi)
, (2)

where N(vi) denotes the neighbors connected to the current node vi. Using
this method, we can not only balance the number of heterogeneous edges and
homogeneous edges, but also take personalized jump of nodes into account. The
next step is how to balance the variety of nodes, i.e., the node distribution over
different node types.

As mentioned in [3], we also use a fixed-length queue Qhist to memorize the
node types, which have been visited recently. When a jump decision is made at
the current node vi, the next target domain q will be selected as follows:

q =

{
q|q ∈ TV ∧ q �= Tvi

, if Qhist = ∅

q|q ∈ TV ∧ q /∈ Qhist, otherwise ,
(3)

where Tvi
denotes the type of the current node vi. Eventually, utilizing the idea

of ‘Jump and Stay’, positive node corpora Cp and negative node corpora Cn

will be generated from positive heterogeneous information network and negative
heterogeneous information network, respectively. The node corpora will be used
to generate the representation of user preferences in the next section.

2.3 Node Embedding to Discover Implicit Friends

After the node corpora is generated, i.e., Cp, we learn the user/item embed-
ding based on a heterogeneous Skip-Gram model [2], which is a variant of
word2vec [8,9]. The model tries to maximize the network probability in terms
of local structure in a random walk. Formally, given a network G = (V,E), node
vi, the objective function is

arg max
Θ

∑

vi∈V

∑

t∈TV

∑

vj∈Ct(vi)

p(vj |vi; θ), (4)

where Ct(vi) denotes the context of vi with window size w, and p(vj |vi; θ) is
the conditional probability of having a context node vj for a given node vi. The
probability is commonly defined as a softmax function:

p(vj |vi; θ) =
eXvi

·Xvj

∑
u∈V eXvi

·Xvu
, (5)
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where Xvi
represents the embedding vector of node vi. Moreover, to achieve

efficient optimization, negative sampling [9] is adopted. Given a node vi and
a small set of negative nodes with size M , Eq. 4 is updated by maximize the
following objective function:

log σ
(
Xvi

· Xvj

)
+

M∑

m=1

Evm∼P (v) [log σ (−Xvm
· Xvi

)] , (6)

where σ(x) = 1
1+e−x , and P (v) is the pre-defined sampling distribution deter-

mined by the node degree. Using this method, the user embedding can be learned,
and then we identify top-K implicit friends for each user by computing the cosine
similarity of user embeddings over Cp and Cn, respectively. Then we can get K
positive friends PF (u) and K negative friends NF (u).

2.4 JUST-BPR: BPR with Jump and Stay

After obtaining PF (u) and NF (u) for each user, we find that these two sets share
an overlapped part. We name the users in the joint set perfect friends since they
have some shared preferences on both postive and negative feedback. Then we
augment the assumption of social Bayesian Personalized Ranking [20], which
assumes that the items consumed by the current user u should be ranked higher
than items consumed by u’s friends, and higher than items neither consumed by
u nor u’s friends, to that

xui � xup � xuf � xuu � xun, (7)

where xui denotes items which are consumed and given a positive feedback by
u, xup denotes items which are consumed and given a positive feedback by u’s
perfect friends, xuf denotes items which are consumed and given a positive feed-
back by u’s positive friends who share similar preferences over Cp, xuu denotes
items have not been consumed by u, and xun denotes items which are consumed
and given a negative feedback by either u or u’s negative friends who share sim-
ilar preferences over Cn. xui ∪ xup ∪ xuf ∪ xuu ∪ xun = I, and they are disjoint
with each other. Therefore, the likelihood function of our recommendation model
JUST-BPR can be formulated as follows:

L(Θ) =
∏

u∈U

(
∏

i∈xui,j∈xup

Pr[i � j]
∏

j∈xup,k∈xuf

Pr[j � k]

∏

k∈xuf ,l∈xuu

Pr[k � l]
∏

l∈xuu,m∈xun

Pr[l � m]).
(8)

Finally, a local minimum can be obtained through the gradient descent tech-
nique.

3 Experiments

In this section, we conduct extensive experiments on two real-world datasets to
evaluate the effectiveness of the proposed method JUST-BPR.
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3.1 Experimental Setup

Datasets. Table 1 summarizes the main statistics of the two datasets used in our
experiments. The LastFM1 is the collection of listening records. The songs, which
interacted with the current user only once, are treated as negative feedback. For
Douban2 with a rating scale from 1 to 5, positive feedback and negative feedback
contain the ratings of 4 and 5 and the ratings of 1 and 2, respectively. It should
be noted that we use 80% of the data as the training set and the remaining 20%
as the testing set. The experiments are conducted with five-fold cross-validation
for ten times, and the average results are reported.

Table 1. Statistics of the datasets.

Datasets #Users #Items #Feedbacks Density #Relations

LastFM 1,892 17,632 92,834 0.278% 25,434

Douban 2,831 15,918 636,436 1.412% 35,624

Baselines. To demonstrate the superiority of the JUST-BPR, we compare our
approach with the following methods:

• BPR: It is a classic Bayesian personalized ranking method proposed in [11].
It only uses the user-item ratings for recommendation with the assumption
that users tend to assign higher ranks to items that they have observed.

• SBPR: This model is a social Bayesian personalized ranking method pro-
posed in [20]. It assumes that users are more likely to prefer items that their
friends have consumed.

• IF-BPR: It is a implicit relation-based social recommendation method pro-
posed in [16]. It uses meta-paths guided random walks over the heterogeneous
network to identify users’ implicit friends.

• RSGAN: It is an adversarial social recommendation method proposed
in [17]. It relies on meta-paths guided walks to obtain seeded friends as well.

Metrics. We use one relevance-based metric (Recall@10) and two ranking-based
metrics (MAP@10 and NDCG@10) to evaluate the recommendation results of
JUST-BRP and the baselines.

3.2 Recommendation Performance

Table 2 demonstrates the performance of different recommendation methods on
two real-world datasets. We can draw the following conclusions from the table.
1 https://www.last.fm.
2 https://www.douban.com.

https://www.last.fm
https://www.douban.com
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First, our proposed method outperforms all the compared baselines on both
datasets. Second, we can observe that the proposed method achieves better per-
formance than SBPR and BPR, which only leverages explicit social relations and
user-item interactions, respectively. It shows the importance of taking implicit
social information into account. Third, according to IF-BPR and RSGAN, we
can find that the proposed method can achieve similar, even better, recommen-
dation results in most cases without using meta-paths guided random walks.
Namely, utilizing the idea of ‘Jump and Stay’ to discover implicit and reliable
friends for social recommender system is useful.

Table 2. Statistics of the datasets.

Dataset Metric BPR SBPR IF-BPR RSGAN JUST-
BPR

Improv

LastFM Recall@10
MAP@10
NDCG@10

0.1270
0.0559
0.1220

0.1322
0.0594
0.1269

0.1441
0.0653
0.1394

0.1364
0.0605
0.1307

0.1543
0.0710
0.1496

7.064%
8.710%
7.329%

Douban Recall@10
MAP@10
NDCG@10

0.0494
0.0870
0.1658

0.0536
0.0908
0.1721

0.0568
0.1056
0.1923

0.0543
0.0969
0.1805

0.0622
0.1074
0.1959

9.398%
1.630%
1.895%

Fig. 2. Performance evaluations on cold-start users.

As mentioned in the beginning, one of the biggest challenges in the recom-
mender system is to recommend items for cold-start users. They have very few
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Fig. 3. Performance impact of different stay probability α.

interaction records with the items. To compare our method with the other meth-
ods, we first select users whose interaction records are less than ten as cold-start
users and then conduct experiments on them. As shown in Fig. 2, we can see
that JUST-BPR performs better than other methods. Interestingly, we notice
that SBPR shows better results than BPR on LastFM dataset, but is inferior
to BPR on Douban dataset. This confirms the issue that using explicit social
relations is affected by noise again.

3.3 Parameter Effect Analysis

In this part, we investigate the impact of the stay probability α for the rec-
ommendation. It helps us to balance the number of heterogeneous edges and
homogeneous edges in the process of identifying implicit friends. We show the
impact of α on the recommendation performance in Fig. 3. In this experiment,
we tune α in the range of [0.1, 0.9] with a step of 0.1 to report the corresponding
performance. We can observe that the proposed method JUST-BPR performs
best when α lies in the range [0.2, 0.4] on LastFM and [0.3, 0.5] on Douban. We
can draw that heterogeneous edges play the primary role in the process of dis-
covering implicit friends. When α is too large, the random walk will stay in the
current domain with high probability, and a homogeneous edge will be selected.
To this end, α is set to 0.3 in this experiment.

3.4 Implicit Friends Identified by Jump and Stay vs. Meta-Paths

In this part, we will explore why the model is useful. Specifically, we explore the
difference between implicit friends found by meta-paths and those discovered by
JUST-BPR. It is natural for us to ask whether the implicit friends discovered by
meta-paths and those discovered by ‘Jump and Stay’ overlap with each other.
To explore this, we extract implicit and reliable friends with meta-paths used
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Fig. 4. Difference of implicit friends discovered by meta-paths and Jump and Stay.

in [16,17] and ‘Jump and Stay’ on LastFM, respectively. As expected, we observe
that more than 56% of implicit friends discovered by ‘Jump and Stay’ appear
in those discovered by meta-paths. Figure 4 illustrates that more than 56% of
implicit positive friends discovered by Jump and Stay appear in those discovered
by meta-paths, more than 51% of implicit negative friends discovered by ‘Jump
and Stay’ appear in those discovered by meta-paths, and more than 55% of
implicit perfect friends discovered by ‘Jump and Stay’ appear in those discovered
by meta-paths. It shows that using the idea of ‘Jump and Stay’ can also identify
implicit reliable friends without meta-paths guided random walk.

4 Related Work

The early exploration of social recommendation mainly focuses on the incorpo-
ration of explicit social relations. Owing to the flexibility of integrating prior
knowledge, matrix factorization (MF) [4] is the most used model during this
period. The representative work of MF-based social recommendation models can
be categorized into three groups: Co-factorization methods [7], Ensemble meth-
ods [6], and regularization methods [4]. Besides, some studies also investigate
the effect of social relations in item ranking [20] and user exposure [13]. With
the boom of deep learning, deep neural networks have also been introduced to
social recommendation. A few models which are based on deep forward networks
[17] and graph neural networks [15,18] were proposed successively.

After the negative findings of directly using explicit social relations were
reported, researchers then shift attention to exploring implicit social relations.
Ma et al. [5] are the first to investigate the effect of implicit relations. In their
work, rating information is used to identify similar users as implicit friends, but
if two users do not share common items, the work is inapplicable. Zhang et al.
[19] use network embedding to deal with the problem that neighborhood-based
methods cannot connect users without common neighbors, and enable distant
similar users identification. Yu et al. [16] adopt meta-paths to social recommen-
dation and use specific meta-paths to guide the random walk-based search of
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implicit relations, which shows state-of-the-art performance. However, manually
designing meta-paths requires expert knowledge and hence their work cannot be
generalized to new situations. In this paper, we fill this gap and propose ‘Jump
and Stay’ to conduct random walk, which has a better applicability.

5 Conclusion

This paper aims to utilize both positive and negative feedback to find implicit
and reliable friends for social recommender system using the idea of ‘Jump and
Stay’ instead of a set of meaningful meta-paths. In our method, we first gener-
ate a sequence of nodes from the heterogeneous network composed of user-item
interactions and user-user social relations. Secondly, we map each user node into
the latent feature space by word embedding technology and find top-k implicit
friends according to the similarity between each node. Finally, the implicit rela-
tions are integrated into the social Bayesian personalized ranking method. The
experimental results on two real-world datasets show the effectiveness of the
proposed method. Moreover, we compare the difference between implicit and
reliable friends, identified by meta-paths guided random walks and JUST-BPR.
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Abstract. Knowledge graphs (KGs) have proven to be effective to
improve the performance of recommendation. However, with the tremen-
dous increase of users and items, existing methods still face several
challenging problems: (1) path-based methods rely heavily on manually
designed meta-path; (2) embedding-based methods lack sufficient consid-
erations of user personality. To overcome the shortcomings of previous
works, we propose a novel model, named KCER, short for leveraging
Knowledge Context to Enhance Recommendation. Firstly, KCER gen-
erates the representation of knowledge context associating with specific
user-item pairs. Then to obtain enriched user representations, we lever-
age a gated attention network to extracted meaningful information from
the associated knowledge context and user dedicated ID embedding. We
conduct extensive experiments on three real-world datasets to evaluate
the model. The experimental results show the superiority of KCER com-
pared with other state-of-the-art methods.

Keywords: Recommender system · Collaborative filtering ·
Knowledge graph · Gated attention network

1 Introduction

With the development of the internet, information overload is one of the dilem-
mas we confront with [8]. Recommender system (RS) is an effective means to
solve this problem as it can help select the appropriate data to satisfy the users’
needs. However, with the tremendous increase of users and items, traditional
methods are difficult to cope with the highly sparse data [17]. Recently, many
efforts have been devoted to taking advantage of the knowledge graph (KG) to
improve the performance of RS [18]. In the KG, entities (nodes) are connected by
various relationships (edges) to form a heterogeneous network [11]. In this way,
KG can strengthen the connection between items, which helps to explore users’
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 467–478, 2020.
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Fig. 1. Illustration of knowledge graph
enhanced movie recommendation sys-
tem.

directed

genre
( Alice, Star Wars)  

( Alice, Titanic)  

...  

genre 

directed

Fic�on

George Lucas

James Cameron

Romance

directed

genre
( Alice, Avatar)  

Fic�on

James Cameron

Fig. 2. A possible illustration of knowl-
edge context effect on specific user-item
pairs.

potential preferences and alleviate the cold-start problem [1]. Figure 1 shows a
toy example of the knowledge graph enhanced movie recommendation system.

In the past years, many approaches have been studied [2]. The mainstream
methods can be divided into two categories. The first is path-based methods,
which adopt hand-craft meta-paths to model complex relations between users
and items. This approach often requires a lot of manual experience. The other
category is embedding-based methods, which aim at incorporating the knowledge
graph embedding into the traditional recommendation framework. For example,
Deep Knowledge-Aware Network (DKN) [12] is a convolutional neural network
(CNN) based framework to make news recommendations in which the infor-
mation of news is enriched by associated entities in the knowledge graph. Rip-
pleNet [11] aims at item recommendation in which users’ interests are enriched
by entities they have interacted with. Although embedding-based method is more
efficient, simply introducing knowledge representation methods may bring some
irrelevant information, that users are not interested in.

According to the above discussion, we can see that it is necessary for us to
find a more effective way to use knowledge context. Figure 2 shows our key idea.
We argue that users have various preferences for the auxiliary information on
different items. For example, the user Alice pays more attention to the genre
when interacting with the item Avatar, but pays more attention to the director
when interacting with the item Titanic. Out of such considerations, we propose
a novel recommendation model named KCER, short for leveraging Knowledge
Context to Enhance Recommendation. KCER first generates the representation
of user-specific knowledge context, which can be used to infer the user’s poten-
tial interests. Then, to capture the meaningful information from the knowledge
context, a gated attention network is utilized to adaptively fuse the knowledge
context and users’ dedicated information.

In sum, our main contributions are outlined as follows:

– We propose a novel deep collaborative filtering model named KCER for
item recommendation. It takes both the user-item interaction and item-based
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knowledge information into account and is able to improve the performance
of recommendation.

– KCER explicitly generates the representation of knowledge context associated
with the specific user-item pairs and further adopts it to enhance user final
representation via a gated attention network.

– We conduct extensive experiments on three real-world datasets to demon-
strate the effectiveness of our proposed model.

2 Related Work

There is a rich line of research on item recommendation. Traditional recom-
mender system approaches mainly focused on user-item interaction, including
explicit and implicit feedback. Most recently, the exploration of deep neural net-
work on recommendation has attracted the attention of researchers. There are
two main ways to use the knowledge graph to enhance recommendation.

Path-based methods explores various types of paths to describe the asso-
ciations between users and items. HeteRec [15] first introduces meta-paths to
leverage the heterogeneous information for personalized recommendation. Lim-
ited to the expressive power of a single path, FMG [20] first fuses the heteroge-
neous information via meta-graph to generate recommendation results. Recently,
RKGE [9] learns semantic representations of both entities and paths between
entities for characterizing user preferences towards items. Compared with path-
based method, our model is more flexible, since it does not need to design hand-
crafted meta-paths.

Embedding-based methods utilize KGE algorithms to introduce struc-
tural information in the knowledge graph. CKE [16] leverages structure, tex-
tual and visual information from the knowledge base for recommendation. Deep
knowledge-aware networks (DKN) [12] incorporates knowledge entity embed-
dings into a CNN framework for news recommendation. RippleNet [11] explores
users’ potential interests by propagating the preferences on the item-based
knowledge graph. AKUPM [10] figures out the most related part of the incor-
porated entities based on depicting intra-entity-interaction and inter-entity-
interaction among entities. Recently, graph neural networks (GNN) [4] are
used to explore the complex interaction between users and items. For instance,
KGCN [13] adopts GNN to capture inter-item relatedness effectively, i.e., min-
ing their associated attributes on the KG. The major difference between these
method and our KCER method is that KCER utilizes the combination informa-
tion of different user-item pairs to extract related information from the knowl-
edge context and followed with a deep fusion network, which is beneficial for
making final recommendation.

3 Task Formulation

In order to introduce our recommendation method more clearly, we will give a
detailed explanation of the notations and target problem.
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Definition 1 (User-item Interaction Graph). Given a recommendation sce-
nario, let U = {u1, u2, ..., uM} denote a set of M users and V = {v1, v2, ..., vN}
denote a set of N items. Here, we can represent the interaction between users
and items as graph G1, which is defined as {(ui, vj , yij)|ui ∈ U , vj ∈ V}. Since we
focus on the user’s implicit feedback on items, the link yij = 1 indicates there is
an observed interaction between user i and item j.

Definition 2 (Item Knowledge Graph). In addition to the interaction data,
side information such as item attributes, can help distinguish different relations
between items. We represent the auxiliary information in the form of knowledge
graph G2, which consists of triples of entities and relationships. Formally, it is
defined as {(h, r, t)|h, t ∈ E , r ∈ R}, where E ,R denote the set of entities and
relations, respectively.

Task Description. We now formulate the recommendation task to be
addressed in this paper:

Input: user item interaction graph G1 and item knowledge graph G2.
Output: a prediction function F(·) that predicts the probability ŷij that

user ui would interact with item vj .

4 Our Proposed Model

In this section, we will introduce the proposed KCER model, which exploits
knowledge context in an end-to-end fashion. We will first present the overall
architecture of KCER and then introduce the details of each layer of it. Finally,
we offer the optimization procedures.

4.1 Model Overview

We present the overall architecture for the proposed model in Fig. 3. As we can
see, KCER consist of four main components: (1) embedding layer, (2) knowledge
context generating layer, (3) knowledge fusion layer and (4) prediction layer. We
explicitly incorporate item-based auxiliary information as the knowledge context
to capture user preference. To enrich the representation of users and items, a
neural fusion layer is adopted. Due to the adaptive incorporation of knowledge
context information, our model is able to yield better performance.

4.2 Input and Embedding Layer

Following previous work [3], we set up a lookup layer to transform the one-
hot representation of users and items into low-dimensional dense vectors. For-
mally, given a user-item pair (ui, vj), we first convert each of them into a low-
dimensional dense vector ui and vj . For the associated entities and relations
in the knowledge graph, we also adopt a lookup layer to transform them into
low-dimensional dense vectors.
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Fig. 3. The architecture of our proposed model KCER.

4.3 Knowledge Context Generating Layer

In order to model the interactions between users and items in a more fine-
grained way, we first generate knowledge context representation based on the
specific user-item pair. Consider a candidate pair of user ui and item(entity)
vj . Following [11], we use S1

ui
to denote the set of triples directly connected

to user ui’s clicked history, and rk to denote the relation between head entity
hk and tail entity tk. We argue that users will consider relations and relation
values simultaneously when interacting with the corresponding items. Therefore,
inspired by [19], we implement attention score α as follows:

α∗
k = tanh(s + s � rk + b)tTk ,

αk =
exp(α∗

k)∑
(hk,rk,tk)∈S1

ui

exp(α∗
k)

,
(1)

where b ∈ R
d is a global bias vector and � denotes the element-wise product

of vectors. Note that s is the joint embedding of specific user-item pair (ui, vj).
We apply the following operation to transform:

s =
ui � vj

‖ui‖ ‖vj‖ . (2)

The denominator added in Eq. (2) is used to normalize and make the generated
vectors have the same scale.
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The score α acts as the personalized filter when computing an entity’s neigh-
borhood representation since we aggregate the neighbors with respect to these
user-specific scores. After obtaining the relevance probabilities, we take the sum
of tails in S1

ui
weighted by the corresponding relevance probabilities, and the

vector h1
u ∈ R

d is returned:

h1
u =

∑

(hk,rk,tk)∈S1
ui

αktk. (3)

Following [11], by replacing the joint embedding s with h1
u in Eq. (1), we can

repeat the procedure of preference propagation to obtain user’s 2-order repre-
sentation h2

u of the associated knowledge context. Therefore, a user’s preference
is propagated up to K hops away from his click history, and we observe mul-
tiple representations of user ui with different orders: h1

u,h2
u, ...,hK

u . We stack
these vectors to get the matrix representation Hu ∈ R

K×d of user associated
knowledge context.

4.4 Knowledge Fuison Layer

By knowledge context generating layer, we have obtained the representation
of user associated knowledge context. The next aim is to combine knowledge
context to enhance the final user representation. Unlike previous works con-
catenating these two kinds of hidden representations, we propose a neural fusion
layer to adaptively merge them. We first adopt the multi-dimensional attentional
layer [6] to get the final vectorized representation, since the user focuses on mul-
tiple aspects of the knowledge context. The aggregation operation is computed
as follows:

A = softmax(W1tanh(W2ui + W3vj + W4HT
u + b1) + b2),

Zc =AHu,

zc =avg pooling(Zc),
(4)

where W1 ∈ R
da×d,W2,W3,W4 ∈ R

d×d is the weight matrix, b1 ∈ R
d,b2 ∈

R
da is the bias term, and the softmax is performed along the second dimension

of its input. We adopt the average pooling to aggregate the context matrix
representation Zc ∈ R

da×d into a vector form, i.e., zc ∈ R
d.

Then, to get the final user representation, we adopt the gating mechanism to
fuse knowledge context representation zc and user dedicated ID embedding ui.
The computation is as follows:

g = σ(Wg1ui + Wg2zc + bg),

uf
i = g � ui + (1 − g) � zc,

(5)

where Wg1,Wg2 ∈ R
d×d , bg ∈ R

d are the parameters in the gating layer. σ(·)
denotes the sigmoid function. By using a gating layer, we can extract useful
information from the two representations and combine them smoothly. So far, we
have improved the user preference model by considering the knowledge context,
and next the model (i.e., uf

i ,vj ) is utilized to recommend items.
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4.5 Prediction Layer

In this layer, the estimated preference score ŷij is calculated given the user and
item latent representations uf

i ,vj . Similar to [3], we conduct the inner product
operation on user and item representations to predict their matching score:

ŷij = σ(uf
i

T
vj), (6)

where σ(·) denotes the sigmoid function. For each user, all items are ranked by
their corresponding preference scores and the top-k lists are recommended to
the user.

4.6 Learning Algorithm

The entire KCER model is trained in an end-to-end manner. Similar to [3],
we adopt cross-entropy as the loss of the recommendation task. The final loss
function of KCER is represented as follows:

L = −
∑

(i,j)∈Y+∪Y−
(yij log(ŷij) + (1 − yij) log(1 − ŷij)) + λ||Θ||2, (7)

where the Y+ denotes all the observed interactions and Y− denotes the unob-
served interactions. λ is the balancing parameters. Θ denotes all the trainable
parameters in the proposed KCER model. The last term is the L2 term. To make
computation more efficient, we use a negative sampling strategy during training
process and n is the number of negative samples for user ui. We use mini-batch
stochastic gradient descent (SGD) algorithm to minimize this loss function.

5 Experiment and Evaluation

In this section, we conduct experiments with the aim of answering the following
research questions: RQ1: Does our proposed model KCER outperform the state-
of-the-art knowledge-based recommender methods? RQ2: What is the design
choices of KCER on the quality of item recommendation? RQ3: How sensitive
is our model to hyper-parameters? In what follows, we first present the experi-
mental settings, followed by answering the above research questions.

5.1 Experimental Settings

Datasets. We evaluate our models on three public available datasets.
Movielens-1M1 contains approximately 1 million ratings and is a widely used
benchmark dataset in movie recommender systems. Book-Crossing2 collects user
ratings for books from Book-Crossing community. Last.FM3 contains listening
information of approximately 2 thousand users from Last.FM online music sys-
tem. The basic statistics of the three dataset are summarized in Table 1.
1 https://grouplens.org/datasets/movielens/.
2 http://www2.informatik.uni-freiburg.de/∼cziegler/BX/.
3 https://grouplens.org/datasets/hetrec-2011/.

https://grouplens.org/datasets/movielens/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://grouplens.org/datasets/hetrec-2011/
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Table 1. Basic statistics of the datasets.

Datasets #Users #Items #Interactions Density #Triples

MovieLens-1M 6,036 2,347 753,772 5.3% 1,241,995

Book-Crossing 17,860 14,910 139,746 0.05% 151,500

Last.FM 1,872 3,846 42,346 0.59% 15,518

Baselines. In this subsection, we compare the proposed model KCER with the
following state-of-the-art methods:

– LibFM [7]. It is a widely used feature-based factorization model in CTR sce-
narios. Following [11], we concatenate user ID, item ID, and the corresponding
averaged entity embeddings learned from TransR [5] as input for LibFM.

– PER [14]. It is a path-based method, which generates latent feature for users
and items by exploring meta-paths.

– CKE [16]. It is an embedding-based method, which leverages structural, tex-
tual and visual information from the knowledge base for recommendation.
We implement CKE as CF plus a structural knowledge module in this paper.

– RippleNet [11]. It is a memory-network-like approach that propagates users’
preferences on the KG for recommendation.

– KGCN [13]. It is a GCN-based model to aggregating neighbors’ information,
which reflects users’ personalized and potential interests.

Evaluation Metrics. We randomly split each dataset into training, validation
and test set in a ratio of 6:2:2 and evaluate our method in two experiment
scenarios: (1) in click-through rate prediction, we use Accuracy (ACC) and AUC
to evaluate the performance prediction; (2) in top-K recommendation, we adopt
Precision@K, Recall@K to evaluate the recommendation results.

5.2 Performance Comparison (RQ1)

CTR Prediction Results. Table 2 summarizes the results of all these methods
in CTR prediction. From the evaluation results, we observe that the proposed
KCER model consistently outperforms all the state-of-the-art baselines. Com-
pared with the best results of baselines, KCER achieves an improvement of 1.5%,
1.6%, 2.3% w.r.t. AUC on three datasets respectively.

We find that PER is inferior to other baselines. This is probably because the
paths discovered by hand-crafted meta-paths introduce noise information, which
leads to degraded model performance. CKE performs poorly on three datasets
compared with other embedding-based methods. One possible reason is that
CKE’s introduction of KGE is too simple and lacks considerations of sufficient
user personalization. KGCN and RippleNet are the most competitive ones, since
they can adaptively mine higher-order information in the knowledge graph.
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Table 2. Evaluation of CTR prediction.

Methods Movielens-1M Book-Crossing Last.FM

AUC ACC AUC ACC AUC ACC

LibFM 0.906 0.828 0.691 0.713 0.785 0.729

PER 0.711 0.665 0.634 0.589 0.645 0.604

CKE 0.801 0.739 0.678 0.640 0.743 0.672

RippleNet 0.913 0.831 0.729 0.661 0.767 0.694

KGCN 0.910 0.828 0.727 0.660 0.783 0.715

KCER 0.927 0.839 0.741 0.693 0.803 0.744

Top-K Item Recommendation Results. We test the top-K (K = 2 to 20)
item recommendations on Movielens-1M and Book-Crossing dataset in Fig. 4.
Several observations stand out:

– Path-based method, such as PER, performs comparably poorly than other
baselines. One possible reason is that PER depends heavily on the quality of
meta-paths, which require extensive domain knowledge to define. Unreason-
able paths may easily introduce noise.

– FM method outperforms CKE by a large margin. This is because the cross
features in FM actually serve as the second-order connectivity between users
and entities. However, CKE models connectivity on the granularity of triples,
which neglects the high-order connectivity.

– KCER achieves the best performance in general and obtains high improve-
ments over the state-of-the-art methods in both metrics of Precision@K and
Recall@K. In particular, KCER improves over the strongest baseline w.r.t.
Recall@20 by 1.3% and 7.9% in Movielens-1M and Book-Crossing. Moreover,
compared to the recent method RippleNet, KCER adopts attention mecha-
nism to distinguish the importance of different orders in KGs, rather than
simple concatenation operation used in RippleNet.

Fig. 4. Evaluation of top-K item recommendation, where K ranges from 2 to 20 on
Movielens-1M and Book-Crossing datasets.
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5.3 Ablation Analysis (RQ2)

Since KCER is composed of several important design decisions, we next present
an ablation analysis to study the impacts of these decisions on recommendation
quality. Table 3 shows the ablation analysis results. We use KCER-p to present
that we generate the knowledge context representation without considering user-
specific preference, i.e., replacing s with the embedding of the item. KCER-f
indicates we replace the gated fusion with concatenation operator. From the
results shown in Table 3, we have some observations. KCER performs better
than KCER-p, because the joint embedding can help to extract information
associated with user-specific preference from knowledge context representation.
KCER performs better than KCER-f, because the gated attention network can
adaptively fuse the knowledge context and user’s intrinsic information.

Table 3. The ablation analysis on Movielens-1M and Book-Crossing datasets.

Methods Movielens-1M Book-Crossing

AUC ACC AUC ACC

KCER 0.927 0.839 0.740 0.693

KCER-p 0.919 0.830 0.728 0.683

KCER-f 0.912 0.824 0.733 0.688

5.4 Sensitivity Analysis of Hyper-parameters (RQ3)

In this section, we investigate the influence of parameters d and λ in KCER. We
vary d from 10 to 150 and search the λ from {10−7, 10−6, 10−5, 10−4, 10−3},
respectively, while keeping other parameters fixed. The results of AUC on
Movielens-1m are presented in Fig. 5. We observe that, with the increase of
d, the performance is boosted at first since embeddings with a large dimension
can encoder more useful information. Small λ can improve our model and KCER
reaches its best when λ is set to 10−6. When the value of λ continues to decrease,
the performance hardly changes.

Fig. 5. Parameter sensitivity of KCER on the Movielens-1M dataset.
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6 Conclusion

In this paper, we propose a novel deep knowledge-enhanced model KCER to learn
the complex interactions between users and items with the help of an item-based
knowledge graph. The two main factors of the proposed model are (i) generation
of user-item pairs’ specific knowledge context representation; (ii) deep fusion
process to improve final user representation. More specifically, we generate the
multi-hop knowledge context representation based on the joint embedding of
user-item pairs. Then we design a knowledge fusion layer to filter out the related
parts in the multi-hop knowledge context and obtain the final enriched user
representation. Experiment results on several public datasets demonstrate the
effectiveness of our proposed model. For future work, we plan to extend KCER
by considering the fine-grained composition of entities and relations in KGs.
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Abstract. Most current recommender systems used the historical
behaviour data of user to predict user’ preference. However, it is dif-
ficult to recommend items to new users accurately. To alleviate this
problem, existing user cold start methods either apply deep learning to
build a cross-domain recommender system or map user attributes into
the space of user behaviour. These methods are more challenging when
applied to online travel platform (e.g., Fliggy), because it is hard to find
a cross-domain that user has similar behaviour with travel scenarios and
the Location Based Services (LBS) information of users have not been
paid sufficient attention. In this work, we propose a LBS-based Het-
erogeneous Relations Model (LHRM) for user cold start recommenda-
tion, which utilizes user’s LBS information and behaviour information in
related domains (e.g., Taobao) and user’s behaviour information in travel
platforms (e.g., Fliggy) to construct the heterogeneous relations between
users and items. Moreover, an attention-based multi-layer perceptron is
applied to extract latent factors of users and items. Through this way,
LHRM has better generalization performance than existing methods.
Experimental results on real data from Fliggy’s offline log illustrate the
effectiveness of LHRM.

Keywords: Recommender system · Cold start · Cross domain

1 Introduction

Recommender Systems (RSs) aim to improving the Click-Through Rate (CTR),
post-Click conVersion Rate (CVR) and stay time in the application. Most current
RSs are based on the intuition that users’ interests can be inferred from their
historical behaviours or other users with similar preference [21]. Unfortunately,
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recommendation algorithms are generally faced with data sparsity and cold start
problems so that RSs cannot guarantee high recommendation accuracies [6,7].

Cold start problem refers to making recommendations when there are no
prior interactions available for a user or an item [10,12,14], which falls into two
forms: (1) new user cold start problem (2) new item cold start problem [7]. In
new user cold start problem, a new user has just registered to the system and RS
has no behaviour information about the user except some basic attributes [15].
In new item cold start problem, a new item is presently added to the online
recommendation platform and RS has no ratings on it [15]. Compared with
new item cold start problem, the new user cold start problem is more difficult
and has been attracting greater interest [1]. In this paper, we focus on user
cold start problem. Existing methods, including cross-domain recommendation
algorithms [6,9,17,19,20], Lowrank Linear Auto-Encoder (LLAE) [11] have been
proposed and achieved great success for user cold start problem.

User cold start recommendation over online travel platforms (e.g., Fliggy)
are more challenging, thus existing methods cannot work well. LLAE [11] can
reconstruct user behavior from user attributes, but even for active user, travel
is a low-frequency demand and user behaviour is quite sparse. Therefore, the
generalization performance of LLAE is limited by the sparse behaviour of users.
Cross-domain algorithms try to utilize explicit or implicit feedbacks from multi-
ple auxiliary domains to improve the recommendation performance in the target
domain [6]. Unfortunately, it is hard to find a cross-domain that user has similar
behaviour with travel scenarios and the LBS information of users have not been
paid sufficient attention. Unconditional fuse the user behaviour information from
other domains may introduce much noise. More importantly, user’s travel inten-
tion is strongly related to user’ LBS information. The intuition is that, users
who are geographical situation closer may have similar travel intention.

To alleviate the user cold start problem in travel scenarios, we propose a LBS
based Heterogeneous Relations Model (LHRM) for user cold start recommenda-
tion in online travel platform. LHRM firstly constructs heterogeneous relations
between users and items and then apply an attention-based multi-layer per-
ceptron to learn the latent factors of users and items. Heterogeneous relations
is proposed in [2], which include user-user couplings, item-item couplings, and
user-item couplings. It is increasingly recognized that modeling such multiple
heterogeneous relations is essential for understanding the non-IID nature and
characteristics of RSs [2,3]. In order to relieve the problem of data-sparse, user
behaviour information in a specific category of items in related domains (e.g.,
Taobao) is used to learn the embedding representation of user. The background
is that, more than 80% of Fliggy users have Taobao platform account1, and most
of them are cold start users in Fliggy, but they have rich behaviours on Taobao.
Then LBS information and user behaviour information in a specific category of
items in Taobao domain are concatenated to construct the heterogeneous rela-
tions between users. User behaviour information in Fliggy domain is used to

1 Fliggy and Taobao jointly use Taobao platform account, and relevant data sharing
has been informed to users and obtained user’s consent.
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construct the heterogeneous relations between items. Meanwhile, user attributes
are mapped into the space of user behaviour in Fliggy domain. After obtaining
the side information and the embedding representation of user and items, an
attention-based multi-layer perceptron is applied to extract higher level features
and make the recommendation results more accurately for cold start user in
Fliggy.

In summary, the contributions of this paper are multi-fold:

– We propose a LBS-based Heterogeneous Relations Model (LHRM) for user
cold start recommendation in travel scenarios, which utilize the LBS infor-
mation and fuses user behaviour information in specific category in Taobao
domain to improve the recommendation performance.

– A new heterogeneous relations between users and items is proposed in LHRM,
which can represent the relationship between users who with similar prefer-
ence better.

– Comprehensive experimental results on real data demonstrate the effective-
ness of the proposed LHRM model.

The rest of this paper is organized as follows: Sect. 2 review the related work.
Section 3 describe the proposed model in detail. Section 4 focus on the experi-
mental results about the proposed model, including performance evaluation on
real data from Fliggy’s offline log. At last, we conclude the paper in Sect. 5.

2 Related Work

The main issue of the cold start problem is that, there is no available informa-
tion can be required for making recommendations [7]. There has been extensive
research on cold start problem in recommender systems. In the section, we mainly
review the related work about user cold start problem.

Cross domain [5,6,8,9,17,19] recommendation algorithms have attracted
much attention in recent years, which utilize explicit or implicit feedbacks from
multiple auxiliary domains to improve the recommendation performance in the
target domain. [6] proposed a Review and Content based Deep Fusion Model
(RC-DFM), which contains four major steps: vectorization of reviews and item
contents, generation of latent factors, mapping of user latent factors and cross-
domain recommendation. Through this way, the learned user and item latent
factors can preserve more semantic information. [8] proposed the collaborative
cross networks (CoNet), which can learn complex user-item interaction relation-
ships and enable dual knowledge transfer across domains by introducing cross
connections from one base network to another and vice versa. [19] combine an
online shopping domain with information from an ad platform, and then apply
deep learning to build a cross-domain recommender system based on shared
users of these two domains, to alleviate the user cold start problem.

Servel recent works model the relationship between user attributes and user
behaviour. With the assumption that people with the similar preferences would
have the similar consuming behavior, [11] proposed a Zero-Shot Learning (ZSL)
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method for user cold start recommendation. Low-rank Linear Auto-Encoder
(LLAE) consists of two parts, a low-rank encoder maps user behavior into
user attributes and a symmetric decoder reconstructs user behavior from user
attributes. LLAE takes the efficiency into account, so that it suits large-scale
problem.

A non-personalized recommendation algorithm is proposed in [16]. The
authors hypothesize that combining distinct non-personalized RSs can be bet-
ter to conquer the most first-time users than traditional ones. [16] proposed two
RSs to balance the recommendations along the profile-oriented dimensions. Max-
Coverage and Category-Exploration aims to explore user coverage to diversify
the items recommended and conquer more first-time users.

3 The Proposed Approach

3.1 Problem Statement

Most current Recommender Systems (RSs) based on the intuition that users’
interests can be inferred from their historical behaviours (such as purchase and
click history) or other users with similar preference. However, it is difficult to
recommend items to new users accurately. User cold start problem is a long-
standing problem in recommender systems. In this work, we define the cold start
user as the user who have not any behaviours on Fliggy in the past one month.
Specifically, more than 20% of users are cold start users in Fliggy everyday and
the optimization task of user cold start is becoming very important in Fliggy.
The problem can be summarized as follows:

Problem: Given a target domain Dt, and a source domain Ds, user u is
new for Dt, but it has interactions in Ds, recommend top k items for u in Dt.

3.2 Notations

In this paper, we use lowercase and uppercase letters to represent vector and
matrix, respectively. We denote active users in two domain intersection as
the target users {ut}. For every target ut, we denote the basic attributes as
xut

= {x1, x2, x3, ..., xk}, the heterogeneous relation of user-user as Eug
=

{eu1 , eu2 , eu3 , ..., eun
; eut

}, each eun
is the representation vector of un. We denote

the items that target users have interacted as the target items {it}. For every
target it, we denote the basic attributes as xit = {x1, x2, x3, ..., xj}, heteroge-
neous relation of item-item as Eig = {ei1 , ei2 , ei3 , ..., eim ; eit}, each eim is the
representation vector of im. We use U to denote the target user matrix, and I

to denote the target item matrix, Y ∈ {0, 1}|U |∗|I| be the relationship matrix
between U and I, where Yu,i = 1 means un clicked im.

3.3 Geohash Algorithm

In order to map user’ LBS information (such as latitude and longitude) to a
range, we use the Geohash algorithm [18]. Geohash is a public domain geocode
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system invented in 2008 by Gustavo Niemeyer and G.M. Morton, which encodes
a geographic location into a short string of letters and digits (e.g., geohash6
(31.1932993, 121.4396019) = wtw37q). Length of different Geohash strings rep-
resent different area of region, for example, geohash5 means a square area of
about 10 km2.

3.4 LBS Based Heterogeneous Relations Model

It is worth noting that users’ interests can be inferred from historical behaviours
or other users with similar preference and benefited from heterogeneous rela-
tions. Moreover, user’s travel intention is strongly related to user’ LBS informa-
tion (such as latitude and longitude), which based on the intuition that users
who are geographical situation closer may have similar travel intention. To active
this, we propose LBS based Heterogeneous Relations Model (LHRM), in which
LBS information is used to construct the heterogeneous relation between users.
The framework of LHRM illustrated in Fig. 1. LHRM contains two modules: het-
erogeneous relations construction module and representation learning module.

Fig. 1. Framework of the proposed LHRM

Heterogeneous Relations Construction Module. The detailed process of
constructing the heterogeneous relations between users and items is shown in
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Fig. 2. We can see that user’s historical behaviours sequence and LBS sequence
in Taobao domain are concatenated and input into a embedding layer, which pre-
trained by skip-gram algorithm [13]. Specifically, items not related to travel are
filtered out and user’s latitude and longitude information is mapped to a string
with the length of 5 by the geohash5 algorithm. After the embedding layer, we
adopt average-pooling to generate the corresponding vector representation of
user. In order to generate different user groups, we utilize K-means algorithm to
cluster users according to their representation vectors. For each user group, any
user can be regarded as the target user, and the other users are regarded as the
friends of the target user.

Fig. 2. Architecture overview of the process to construct heterogeneous relations
between users and items

Each item that the target user has interacted in Fliggy domain is regarded as
the target item. The whole candidate items set contains two part: items recalled
by target item through item-item (i2i) and items interacted by all users in user
group. Finally, the items in candidate set are filtered according to the topic of
the target item and generate the item group. In this way, all items in item group
are more related, and which can be represented by a pre-trained item embedding
vector in Fliggy domain.

Representation Learning Module. An attention-based multi-layer percep-
tron is used to learn the latent factors of users and items. After the process of
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heterogeneous relations construction, Eug
and Eig are generated. Then we adopt

an attention layer to focus on the relevant parts of Eug
and Eig . The implemen-

tation of attention for sequence-to-one networks on Eug
is shown in Eq. (1) and

Eq. (2):

αti =
exp(score(eut

, eui
))

∑n+1
i′=1

exp(score(eut
, eu

i
′ ))

(1)

where:
score(eut

, eu
i
′ ) = eut

Waeu
i
′ (2)

Wa is the learnable parameters in attention layer, and the output of attention
layer is computed as Eq. (3):

au =
n+1∑

i=1

αti × eui
(3)

Similarly, attention layer is implemented on Eig , and the output is ai. The
MultiLayer Perceptron (MLP) layer is a feed-forward neural network, which can
generalize better to unseen feature combinations through low-dimensional dense
embeddings learned for the sparse features [4]. We denote the input of MLP layer
as vu and vi, the output of MLP layer as su and si. vu = [au, xut

], vi = [ai, xit ].
The output of LHRM is the preference score of ut for it, we denote ŷ as the
output of dot layer. ŷ is computed as Eq. (4):

ŷ =
1

1 + exp(−su · si)
(4)

y is binary labels with y = 1 or y = 0 indicating whether click or not. The
logistic loss of LHRM is shown in Eq. (5):

L(y, ŷ) = −ylog(ŷ) − (1 − y)log(1 − ŷ) (5)

For clarity, we show the key steps of our algorithm in Algorithm1.

4 Experiment

In this section, we conduct experiments on Fliggy and Taobao’s offline log dataset
to evaluate the performance of LHRM and some baseline models.

4.1 Compared Methods

In the experiments, we compare the following methods.

– Hot: Hot is a non-personalized recommendation algorithm, which recom-
mends items to new users according to the popularity score of item in Fliggy
domain.



486 Z. Wang et al.

Algorithm 1. LBS based Heterogeneous Relations Model
Input: User’s behaviour sequence in Taobao domain ST , user’s LBS sequence in
Taobao domain LT , user’s behaviour sequence in Fliggy domain SF , user attributes
Xu, item attributes Xi

Output: Latent factors of users Su, latent factors of items Si

1: ST and LT are used to construct heterogeneous relation between users by K-means,
and output Eug

2: SF is used to construct heterogeneous relation between items, and output Eig

3: Eug and Eig are input into attention layer, and output au, ai

4: the concatenation vector of [au, xut ] and [ai, xit ] are input into MLP layer, and
output su, si

5: su, si are input into dot layer, and output ŷ
6: update all parameters according to L(y, ŷ) = −ylog(ŷ) − (1 − y)log(1 − ŷ)
7: Cold start:
8: ŷnew = sunew · si
9: Recommendation:

10: Computing the similarity score between the new user and all candidate items, and
recommend the top-k items

– HERS: Heterogeneous relations-Embedded Recommender System (HERS) is
proposed in [9], which based on ICAUs to model and interpret the underlying
motivation of user-item interactions by considering user-user and item-item
influences and can handle the cold start problem effectively.

– MaxCov: Max-Coverage (MaxCov) [16] is a non-personalized recommenda-
tion algorithm, which aims to explore user coverage to diversify the items
recommended and conquer more first-time users.

– LHRM: Lbs based heterogeneous relations model proposed in this paper.

Popularity score of items is very important factor in cold start recommendation,
therefore, when implementing LHRM and HERS in experiments, we fuse the
popularity score of items with the score of LHRM and HERS’s output. Then,
final preference score of ut for it calculated in Eq. (6):

ŷ = ScoreLHRM/HERS × Pop Scoreitem (6)

4.2 Implementation Details

We set the maximum length of user group and item group to 10. The number
of cluster center is set to 1000. The dimension of latent factors of user and item
is a hyper parameter, we set it to 32, 64, 128 and 256 in the experiments. In
order to evaluate the performance of proposed methods, we adopt two evalu-
ation metrics, i.e., Hit Rate (HR@30,@50,@100,@200), Normalized Discounted
Cumulative Gain (NDCG@30,@50,@100,@200). HR is a metric of shotting accu-
rately at target items. NDCG is a cumulative measure of ranking quality, which
is more sensitive to the relevance of higher ranked items.
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4.3 Datasets

During our survey, no public datasets for user cold start recommendation in
travel scenarios. To evaluate the proposed approach, we collect the offline log
data from Fliggy and Taobao domain in the past one month as the dataset.
Generally, impression and click sample as positive samples, impression but not
click samples as negative samples. The statics of dataset is illustrated in Table 1.

Table 1. Statistics of dataset. (pos - positive, neg - negative, M - Million)

Training Validation Testing

# of samples 7.68M 1.56M 1.34M

# of pos samples 3.64M 0.35M 0.062M

# of neg samples 4.04M 1.21M 1.28M

# of users 1.6M 0.437M 0.012M

# of items 0.15M 0.086M 0.2M

4.4 Results

We show the experimental results of different models in Table 2. Among all meth-
ods, LHRM achieves the best performance in terms of all metrics. Specifically,
when the dimension of latent factors of user and item is set to 32, the HR and
NDCG are the highest.

Table 2. Comparison of different models on dataset.

HR NDCG

@30 @50 @100 @200 @30 @50 @100 @200

Hot 0.034 0.065 0.128 0.169 0.008 0.014 0.023 0.029

HERS 0.039 0.088 0.142 0.245 0.011 0.02 0.028 0.041

MaxCov 0.035 0.075 0.0993 0.1989 0.002 0.007 0.024 0.036

LHRM-32 0.0754 0.109 0.184 0.266 0.022 0.028 0.039 0.05

LHRM-64 0.056 0.097 0.152 0.254 0.016 0.023 0.031 0.044

LHRM-128 0.0728 0.101 0.149 0.255 0.02 0.025 0.032 0.044

LHRM-256 0.052 0.089 0.15 0.253 0.014 0.02 0.03 0.043

Table 2 shows the HR and NDCG on target items, and all existing methods
did not work well on cold start users. Generally, in practical applications, we
not only care whether the recommended items will be clicked, but also whether



488 Z. Wang et al.

the recommended items are related to the target items. Therefore, we evaluate
the hit rate of different models under different degree of relevance with target
items. Experimental results are shown in Fig. 3. We can see that, LHRM-32 is
very competitive, MaxCov performs best when calculating hit rate according to
whether the destination same as the target items.

(a) Same destination and
category

(b) Same destination (c) Same category

Fig. 3. Comparison of different models w.r.t different degree of relevance with target
items

5 Conclusion

In this paper, we point out two challenges of user cold start recommendation in
travel platform: i) it is hard to find a cross-domain that user has similar behaviour
with travel scenarios ii) LBS information of users have not been paid sufficient
attention. To address this problem, we propose LBS based heterogeneous rela-
tions model. LHRM utilizes user’s LBS information and behaviour information in
Taobao domain and user’s behaviour information in Fliggy domain to construct
the heterogeneous relations between users and items. Moreover, an attention-
based multi-layer perceptron is applied to extract latent factors of users and
items. Experimental results on real data from Fliggy’s offline log illustrate the
effectiveness of LHRM.
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Abstract. Characterizing users’ interests accurately plays a significant
role in an effective recommender system. The sequential recommender
system can learn powerful hidden representations of users from successive
user-item interactions and dynamic users’ preferences. To analyze such
sequential data, the use of self-attention mechanisms and bidirectional
neural networks have gained much attention recently. However, there
exists a common limitation in previous works that they only model the
user’s main purposes in the behavioral sequences separately and locally,
lacking the global representation of the user’s whole sequential behav-
ior. To address this limitation, we propose a novel bidirectional sequen-
tial recommendation algorithm that integrates the user’s local purposes
with the global preference by additive supervision of the matching task.
Particularly, we combine the mask task with the matching task in the
training process of the bidirectional encoder. A new sample production
method is also introduced to alleviate the effect of mask noise. Our
proposed model can not only learn bidirectional semantics from users’
behavioral sequences but also explicitly produces user representations to
capture user’s global preference. Extensive empirical studies demonstrate
our approach considerably outperforms various baseline models.

Keywords: Recommendation · Sequential recommendation ·
Matching task

1 Introduction

Recommender Systems can help users obtain a more customized and personal-
ized recommendation experience by characterizing users exhaustively and mine
their interests precisely. A widely used approach to building quality recommender
systems in real applications is collaborative filtering (CF) [1]. But such a method
takes users’ shopping behaviors as isolated manners, while these behaviors usu-
ally happen successively in a sequence. Recently, sequential recommendations
based on users’ historical interactions have attracted increasing attention. They
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model the sequential dependencies over the user-item interactions (e.g., like or
purchase) in sequences to capture user interests [2]. Two basic paradigms of the
pattern have proliferated: unidirectional (left-to-right) and bidirectional sequen-
tial model. The former, including Markov Chains (MC) [3], Recurrent Neural
Networks (RNNs) [4] and self-attentive sequential model [5], is more close to
the order of interactions between users and items in many real-world applica-
tions, yet it is not sufficient to learn optimal representations for user behavior
sequences. The latter, like BERT4Rec [6], premeditates various unobservable
external factors and does not follow a rigid order assumption, which is benefi-
cial to incorporate context from both sides for sequence representation learning.
However, the aforementioned bidirectional sequential model only relays on cap-
turing the user’s main purposes, which are reflected by relatively important
items distributed in different local areas of the whole sequence. Therefore, there
exited a limitation that these models cannot always conjecture the user’s main
purposes without the global knowledge, especially, when the sequence is quite
short or the user just clicks something aimlessly.

In this paper, we consider the user’s entire sequential behavior as the sup-
plement of the local purposes. We integrate the mask task with the matching
task by the novel mask setting of the unambiguous user sequential represen-
tation during the training processing of the bidirectional model. The matching
task which usually directly build the mapping between the user’s whole behav-
ior sequence and the targeted items, treats the recommendation problems as the
matching problem and can measure the user’s global preference on items [7]. The
mask task [6,8] is adopted to substitute the objective in unidirectional models
for the bidirectional models. Some items in the users’ behavioral sequences are
masked in certain probability (e.g., replace them with a special token [mask]).
Then, the recommender model predicts the ids of those masked items based on
their surrounding context, which is a mixture of both the left and right con-
text. To integrate the matching task in such a mask task, we use a special token
“[UID]” to explicitly represent individual users, inspired by doc2vec [9]. Then
we concatenate the user token with several item tokens from a sequence to train
a bidirectional encoder model. Thus, our model can determine whether or not
each users’ semantic vector (i.e., the output of the user token) and items’ seman-
tic vectors (including positive samples and negative samples) are well matched.
Because the output of the user token has merged various correlations among
items in each sequence, this method can also be applied to variable-length pieces
of sequences and expressly form the user representation. To alleviate the effect
of mask noise in the training, we produce instances that only compute the loss
function of the matching task between the original user behavioral sequence and
items. Extensive experiments on four datasets show that our model outperforms
various state-of-the-art sequential models consistently.

In conclusion, the contributions of this paper are listed as follows: a) We
integrate the matching task with the bidirectional recommender model by the
novel mask setting during the training. In this way, user’s local purposes and
the global preference in the behavioral sequence can be combined to boost the
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performance of the recommender system. b) We propose a novel sample produc-
tion method to alleviate the effect of mask noise in the training for matching
task. c) Extensive experiments show that our model outperforms state-of-the-art
methods on four benchmark datasets.

2 Related Works

In this section, we briefly introduce several works closely related to ours. We
first discuss general recommendation, followed by sequential recommendation
and the process of the matching task in the recommendation.

As mentioned above, Collaborative Filtering (CF) [1] is one of the most
widely used general recommendations that takes users’ shopping behaviors as
isolated manners. Recently, deep learning techniques have been introduced for
general recommendation. Some researchers tried to use more auxiliary informa-
tion (e.g., text [10], images [11], acoustic [12]) into recommendation systems.
Some works focused on replacing conventional matrix factorization (NCF [13])
with neural networks (e.g., AutoRec [14] and CDAE [15]).

Different from the above methods, sequential recommendation systems con-
sider orders in users’ behaviors. Early works adopted the Markov chain to model
the transition matrices over user-item interactions in a sequence [3]. Then recur-
rent neural networks (RNN) are widely used for sequential recommendation [4].
Apart from RNNs, other deep learning models are also applied in sequential
recommendation systems. For example, Caser [16] learns sequential patterns
through both horizontal and vertical convolutional filters. Recently, the use
of attention mechanisms in recommendation has got the substantial perfor-
mance. SASRec [5] applies a two-layer Transformer decoder to capture the user’s
sequential behaviors in left-to-right order (i.e., Transformer language model).
BERT4Rec [6] uses a two-layer Transformer decoder with the help of the Cloze
task to achieve bidirectional information mining, which is closely related to our
work.

Matching tasks in the recommendation is used to capture the user’s global
preference on items. The fundamental problem of matching tasks is the semantic
gap because users and items are heterogeneous objects, and there may not be
any overlap between the features [7]. To address the problem, matching tasks
usually are performed at the semantic level. Thus, the strong representation
ability of the models is the key to improving recommendation performance. Deep
learning methods are widely used in the matching task because of their great
potentials of abstracting representations for data objects [13–15]. In this paper,
we use Transformer to unambiguously represent individual users and perform
the matching task, aiming to model user’s global preference in the sequence to
get better recommendation performance.

3 Methodology

In this section, we introduce our model architecture and several detailed modules.
Firstly, some important variables are defined as the following. Considering a
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user’s interaction sequence Sui = [vui
1 , vui

2 , vui
3 , ..., vui

|V |], the next item vui
n+1 needs

to be predicted by the sequential recommendation algorithm, where vu
i ∈ V ,

item set V = {v1, v2, v3, ..., v|V |}, and ui ∈ U , item set U = {u1, u2, u3, ..., u|U |}.
Predicted probability can be formalized as p(vui

n+1 = v|Sui).

3.1 Model Architecture

Our model architecture is shown in Fig. 1, which is made up of the embedding
layer, transformer layers, and the output layer.

Fig. 1. Our proposed model architecture.

In the embedding layer, the input sequential items are mapped into item
embedding and position embedding. Note that to expressly build the user rep-
resentation, we add a special token “[UID]” at the beginning of a sequence and
share the weights from the item embedding with positive and negative items
that are used in following matching task. After the embedding layer, we stack
L Transformer layers to catch dependencies of items in each sequence. Different
from other sequential models such as RNN, the self-attention mechanism directly
computes dependencies of tokens in sequences rather than through accumulative
dependencies in the last time. In the output layer, the model needs to predict
masked items and determine if user-item pairs are well matched.

The embedding layer and the output layer is specially designed for our pro-
posed model, the transformer layers share the same structure of BERT [8], which
is used to process neural language sequence, and is also used in BERT4Rec [6]
for recommendation problem.

3.2 Embedding Layer

In our model, given a user’s interaction sequence Sui , we set a restriction on the
maximum sequence length N to make sure our model can handle. In other words,
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we only consider the most recent N -1 actions (except special token “[UID]” at
first of the sequence). The input embedding has two types: user embedding and
item embedding. User embedding E ∈ RN×d is made up by summing item
embedding Ev ∈ RN×d and position embedding En ∈ RN×d:

E = Ev + Ep. (1)

Additionally, we use shared weights from item embedding Ev to map one positive
item (i.e., the last item) and n random sampled negative items (non-interaction
items) to item space. A visualization of this construction can be seen in Fig. 2.

Fig. 2. Input representation of our model. The input embedding has two types: user
embedding and item embedding.

Take the case shown in Fig. 1 to help readers to understand. The consumer
finally buys a shampoo, while we build a triple [shampoo, cream, lipstick] for
the matching task. The shampoo is positive, the latter two items are negative.

3.3 Transformer Layer

As mentioned above, Transformer Layer is first proposed in [8] to build the
bidirectional semantic representation for language understanding. Every Trans-
former layer is mainly constructed by a multi-head self-attention sub-layer and a
feed-forward network [17]. Based on [17], we employ a residual connection, layer
normalization and dropout around each of the two sublayers to avoid overfitting
model and vanishing gradient. The process is formulated as follow:

g(x) = x + Dropout(g(LayerNorm(x))), (2)

where g(x) represents the self-attention layer or the feed-forward network.

3.4 Output Layer

In the output layer, we need to deal with two tasks: masked items prediction
and matching prediction. For masked items, we get the final output HL

t after L
Transformer layers, where t means the masked item vt is at time step t. Softmax
is employed as the activation function. The process is formulated as follow:

PMask(vt) = Softmax(HL
t Wp + bp), (3)
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where bp is a learnable projection bias, Wp is the projection matrix. In order
to alleviate overfitting and reducing the model size, we make Wp share weights
from the item embedding matrix in the embedding layer.

For matching prediction, we extract the first final output HL
1 (i.e., the final

output of “[UID]”), and a positive item Epos
v and n negative items Eneg

v that
have been mapped into item semantic space in the embedding layer. We calculate
matching scores of a positive one and negative ones. The process is defined by:

Scorepos = Epos
v • HL

1 , (4)

Scoreneg = (Eneg
v • HL

1 )/n. (5)

Note that the negative score is divided by the number of negative sampling n to
balance positive and negative score weights.

3.5 Model Learning

For unidirectional sequential recommendation, the task of predicting the next
item tends to be adopted in their models. For example, these models create N -1
samples (like ([v1], v2) and ([v1, v2], v3) from the original length N behavioral
sequence. But for the bidirectional sequential recommendation, if we also adopt
this strategy to train model, these models create (N -1)! samples, which is time-
consuming and infeasible. Thus we employ the mask task (same as [6,8]) to
efficiently train our model. Different from [6], we add special tokens “[UID]” at
the first of the sequence, which is used in the matching task. Here is a mask
example in our model:

Input: [[UID],v1,v2,v3,v4,v5]→[[UID],v1,[mask]2,v3,[mask]4,v5],

Labels: [mask]2=v2,[mask]4=v4.

where we randomly mask the proportion ρ of all items in the input sequence (i.e.,
replace with special token “[mask]”), and we always mask all of the successive
same items at once to prevent the information leakage as far as possible. Our
model needs to predict these masked items’ ids based on their surrounding items.
We define the negative log-likelihood loss for each masked input Su′

:

Lossmask =
1

|Su
mask|

∑

vmask∈Su
mask

− log Pmask(vmask = v∗
mask|Su′

), (6)

where Su′
is the masked version for user behavior history Su, Su

mask is the
random masked items in it, v∗

mask is the label for the masked item vmask, and
the probability Pmask(•) is defined in Eq. (3). In multiple epochs, we produce
different masked samples to train a more powerful model.

Simultaneously, we add a new matching task into our model to capture user’s
global preference. We adopt the binary cross-entropy loss for each user:

Lossmatching = −(log(σ(scorepos • c)) + log(1 − σ(scoreneg • c)), (7)
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where scorepos and scoreneg are defined in Eq. (4) and (5) separately, c is a
scaling coefficient, which is assigned to 10 by us. In multiple epochs, we randomly
generate n negative items for each user sequence. And the total loss is the sum
of the mask loss and the matching loss, shown as the following equation:

Loss = Lossmask + Lossmatching. (8)

We propose a new sample production method including three types. Firstly,
we create samples used in the computation of the total loss. To address the
mismatch between training and prediction, we create another type of sample that
only masks the last item in the input user behavior sequences (same as [12]). To
enhance our model’s power of representations and alleviate the effect of mask
noise, we also produce samples that are made of original sequences and the
matching part. Here, we mix up these samples to train. Three types of samples
are listed as follows:

Mask+Matching: [[[UID],v1,[mask]2,v3,[mask]4,v5],[vpos,vneg1 ,vneg2 ]],

ThelastMask: [[[UID],v1,v2,v3,v4,v5,[mask]6],[]],

Matching: [[[UID],v1,v2,v3,v4,v5],[vpos,vneg1 ,vneg2 ]].

In the prediction stage, we adopt a conventional strategy: sequential predic-
tion (i.e., predicting the last item based on the final hidden representation of the
sequence).

4 Experiments and Discussions

4.1 Datasets and Baselines

We evaluate the proposed model on four representative datasets from three
real-world applications, which vary significantly in domains and sparsity. Ama-
zon [18] datasets contain product reviews and metadata from Amazon online
shopping platform. They are separated into 24 categories according to the top
level. In this work, we employ the small review subsets of “Beauty” and “Video
Games” category. Steam [5] datasets contain reviews from the Steam video
game platform. MovieLens [19] is a popular benchmark dataset, including sev-
eral million movie ratings, reviews, etc. We employ the “MovieLens-1M” version.

For the preprocessing procedure, we use a common strategy from [4–6,13].
For all datasets, we transfer all ratings or reviews to implicit feedbacks (i.e.,
representing as numeric 1). Then, we group the interaction records by users
and arrange them into sequences ordered by timestamp. We leave out users and
items with fewer than five feedbacks. The statistics of the processed datasets
are shown in Table 1. It needs to emphasize that we employ review datasets of
Amazon rather than rating datasets, which is different from [5,6].

To verify the effectiveness of our method, we choose the following base-
lines: POP is a simple baseline that ranks items according to their popularity.
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Table 1. Statistics of processed datasets.

Dataset #users #items #actions Avg. length

Beauty 22363 12101 0.23M 6.88

Video Games 24303 10672 0.26M 7.54

Steam 334730 13047 5.3M 10.59

ML-1M 6040 3416 1.0M 163.5

NCF [13] is a general framework that replaces an inner product with a neu-
ral network to learn the matching function. FPMC [3] combines an MF term
with first-order MCs to capture long-term preferences and short-term transitions
respectively. GRU4Rec+ [4] uses GRU with a new cross-entropy loss functions
and sampling strategy to achieve session-based recommendation. Caser [16]
employs CNN in both horizontal and vertical ways to model high-order MCs for
the sequential recommendation. SASRec [5] uses a left-to-right Transformer
language model to capture users’ sequential behaviors. BERT4Rec [6] uses a
two-layer Transformer decoder with the help of the Cloze task to mine bidirec-
tional sequential information.

For GRU4Rec+, Caser, SASRec, we use codes provided by the corresponding
authors. For NCF, FPMC, and BERT4Rec, our model, we implement them by
using TensorF low. All parameters are initialized by using truncated normal
distribution in the range [−0.02, 0.02]. We consider the �2 weight decay from
{1, 0.1, 0.01, 0.001}, and dropout rate from {0, 0.1, 0.2, ..., 0.9}, learning rate from
{1e−3, 1e−4, 1e−5}, β1 = 0.9, β2 = 0.999, the hidden dimension size d from
{16, 32, 64}. For our model, we set the layer number L = 2 and head number
h = 2 and set the maximum sequence length N = 200 for ML-1m, N = 50
for Beauty, Video Games, and Steam datasets, and we employ the same mask
proportion ρ with [6] (i.e., ρ = 0.6 for Beauty and Video Games, ρ = 0.4 for
Steam, ρ = 0.2 for MovieLens-1M). We consider the number negative sampling
n from {5, 10, 20}. All hyper-parameters are tuned on the validation sets. All
results are under their optimal hyper-parameter settings.

4.2 Evaluation Metrics

To evaluate the performances of the recommendation models, we adopt the leave-
one-out evaluation (i.e., next item recommendation) task, which is widely used
in [4–6,16]. For each user, we select the most recent action of his/her behavioral
sequence as the test set, treat the second most recent action as the validation set,
and utilize the remainder as the train set. Note that during testing, the input
sequence is a combination of the train set and the validation set.

We adopt Normalized Discounted Cumulative Gain (NDCG), Hit Ratio (HR)
and Mean Reciprocal Rank (MRR) metrics as evaluation metrics. In this work,
we report HR and NDCG with k = 10. The higher value means better perfor-
mance for all metrics. To avoid computing heavily on all item predictions, we
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randomly sample 100 negative items and rank these negative items with the
ground-truth item for each user. Based on the rankings of these 101 items, the
evaluation metrics can be evaluated.

4.3 Recommendation Performance

Table 2. Recommendation performance. The best performing method in each row is
boldfaced, and the second-best method in each row is underlined.

Datasets Metric POP NCF FPMC GRU4

Rec+

Caser SAS Rec Bert4

Rec

Ours Improv.

Beauty NDCG

@10

0.1793 0.2567 0.2937 0.2354 0.2705 0.3019 0.3298 0.3370 2.1%

HR@10 0.3363 0.4217 0.4064 0.3943 0.4223 0.4654 0.4943 0.5009 1.3%

MRR 0.1553 0.2229 0.2773 0.1105 0.2424 0.1865 0.2431 0.2957 21.6%

Video

Games

NDCG

@10

0.2512 0.3778 0.3225 0.4634 0.4137 0.4738 0.4947 0.5163 4.1%

HR@10 0.4385 0.6031 0.5211 0.7137 0.6307 0.7320 0.6861 0.7217 –1.4%

MRR 0.2151 0.3241 0.2793 0.2379 0.3616 0.3134 0.4119 0.4396 6.7%

Steam NDCG

@10

0.4927 0.4996 0.5768 0.5465 0.5950 0.6171 0.6316 0.6460 2.2%

HR@10 0.7556 0.7629 0.8216 0.7986 0.8310 0.8440 0.8633 0.8760 1.4%

MRR 0.4225 0.4295 0.5087 0.5247 0.5292 0.4177 0.5488 0.5835 6.3%

ML-1M NDCG

@10

0.2455 0.4094 0.5258 0.5456 0.5408 0.5354 0.5483 0.5669 3.3%

HR@10 0.4458 0.6856 0.7439 0.7514 0.7769 0.7889 0.7546 0.8096 2.6%

MRR 0.2070 0.3398 0.3600 0.4039 0.4517 0.3039 0.4728 0.4973 5.1%

Table 2 illustrates the results of all methods on the four datasets. The last
column is the improvements of our method relative to the best baseline. In
our re-implementation of BERT4Rec, we reported different results compared to
the original paper. The following three reasons need to be considered: firstly,
we employ different datasets; secondly, we adopt a uniform negative sampling
method instead of sampling according to items’ popularity during the evalu-
ation; thirdly, we reproduce it according to the published paper without the
configuration file. From the results, we can summarize that:

The non-personalized POP method gets the worst performance on all
datasets because of just considering the number of interactions. In general, the
sequential methods outperform traditional non-sequential methods such as NCF
due to successive sequential information. This observation explains sequential
information is beneficial to the improvement of recommendation performance.
Particularly, on sparse dataset Video Games, FPMC performs worse than NCF
only based collaborative filtering. This means that these datasets only have little
additional sequential information and the neural model having more parameters
is magnificent to recommendation performance. Among sequential recommen-
dation baselines, on dense dataset ML-1m, Caser gets better performance than
FPMC, which suggests that high-order interactions are useful for long input
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sequences. Furthermore, SASRec outperforms RNN (GRU4Rec+), CNN (Caser)
sequential model, on the whole, meaning that the self-attention mechanism is
more powerful for sequential feature extraction. BERT4Rec basically gets better
performance than SASRec, suggesting that bidirectional sequential information
is beneficial for the recommendation system.

According to the results, our method improved the best baseline on all four
datasets w.r.t. the three metrics, especially, gaining 9.93% MRR improvements
(on average) against the strongest baselines. Compared with BERT4Rec, an
additional matching task and more abundant samples make our model outper-
form by a large margin w.r.t. the three metrics, which means the matching task
is an important auxiliary tool to improve recommendation performance.

Meanwhile, Fig. 3 visualizes average correlation coefficients of output
sequences on Beauty of the first 10 items to qualitatively reveal the model’s
behavior. From the result, some tendencies can be concluded as follows: a) The
users’ representations are more affected by recent behavior, which is consistent
with our common sense. Because recent items usually play a more important role
in predicting the future. b) Items in our model tend to highlight the items on
both sides, especially the surrounding items. This indicates bidirectional infor-
mation has been mined successfully.

Fig. 3. Heat-map of average correlation coefficients of output sequences on Beauty at
different positions. The first position “0” denotes “[UID]”.

4.4 Ablation Study

Finally, we use the ablation study to analyze numerous key components of our
model to better understand their impacts. Table 3 shows the results of our default
version and its variants on all four datasets (with d = 32).

w/o PE. Without the position embedding, the sequential model becomes the
sequential model based on isolated actions. The attention weight on each item
depends only on item embedding, which leads to the rapid decline of recommen-
dation performance, especially on dense datasets, because long sequences have
more noise actions.
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Table 3. Ablation analysis (MRR). The bold score indicates performance better than
the default version, while “↓” indicates performance drop more than 10%.

Architecture Beauty V-Games Steam ML-1M

Default 0.2957 0.4396 0.5835 0.4973

w/o PE 0.2777 0.3911↓ 0.5591 0.2955↓
w/o Matching Task 0.2406↓ 0.4101 0.5462 0.4513

1 head (h = 1) 0.2818 0.4078 0.5763 0.4611

4 heads (h = 4) 0.2826 0.4216 0.5841 0.5012

1 layer (L = 1) 0.2756 0.4273 0.5713 0.4656

3 layers (L = 3) 0.2981 0.4435 0.5907 0.5076

w/o Matching Task. The variant only adopts the mask task as an objective
task (like BERT4Rec [6]). The recommendation performance witnesses a notice-
able decrease on sparse datasets (e.g., Beauty) because the phenomenon of the
mask dilemma is more common for short sequences. (i.e., more masked items
mean less available context information and vice versa.)

Head Number h. Multi-headed attention can expand the model’s ability to
focus on different positions. We observe that long sequence datasets benefit from
a larger h (e.g., ML-1M), which means users’ multiple interests are mined.

Layer Number L. The results demonstrate that hierarchical Transformer layers
can help model learn more complicated item transition patterns. This confirms
the validity of the self-attention mechanism.

4.5 Space and Time Complexity Analysis

A theoretical analysis of the time and space complexity is presented as follows:

Space Complexity. The learned parameters in our model are from the embed-
ding layer, the transformer layers and the output layer. The total number of
parameters is O(|V |d + Nd + d2), where |V | means the number of the item
set, d is the size of hidden dimension, N means the maximum sequence length.
BERT4Rec [6] also has O(|V |d + Nd + d2).

Time Complexity. The time complexity of our model is mainly due to trans-
former layers, which is O(dN2 +Nd2). BERT4Rec has O(|V |d+Nd+d2). With
GPU acceleration and N = 6 in experiments, the difference is minor.

5 Conclusion

Recently, deep bidirectional sequential architecture proposed for neural language
processing has brought impressive progress in recommender systems. In this
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paper, we optimize the bidirectional encoder representation recommender system
via the additive matching task by the special token “[UID]” representing users.
This method explicitly provides representations of users and captures user’s
global preference and main attentions in the sequence. Extensive experimental
results on four real-world datasets indicate that our model outperforms state-
of-the-art baselines. In the future, we will try to fuse heterogeneous interactions
(e.g., purchase, review, clicks, etc.) in our model to achieve better performance.

Acknowledgements. This work was partial supported by National Natural Science
Foundation of China (Grant No. 41876098)

References

1. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L.,
Shapira, B. (eds.) Recommender Systems Handbook, pp. 77–118. Springer, Boston
(2015). https://doi.org/10.1007/978-1-4899-7637-6 3

2. Wang, S., Hu, L., et al.: Sequential recommender systems: challenges, progress and
prospects. In: IJCAI, pp. 6332–6338. Morgan Kaufmann, Macao (2019)

3. Rendle, S., Freudenthaler, C., Thieme, L.S.: Factorizing personalized Markov
chains for next-basket recommendation. In: WWW, pp. 811–820. ACM, New York
(2010)

4. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-
based recommendations. In: CIKM, pp. 843–852. ACM, New York (2018)

5. Kang, W.C., Julian, M.: Self-attentive sequential recommendation. In: ICDM, pp.
197–206. IEEE, Singapore (2018)

6. Sun, F., Liu, J., et al.: BERT4Rec: sequential recommendation with bidirectional
encoder representations from transformer. In: CIKM, Beijing, China, pp. 1441–
1450. ACM (2019)

7. Xu, J., He, X., Li, H.: Deep learning for matching in search and recommendation.
In: SIGIR, Ann Arbor, USA, pp. 1365–1368. ACM (2018)

8. Devlin, J., Chang, M.W., et al.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. In: NAACL, NAACL, New Orleans, USA
(2018)

9. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML, Beijing, China. ACM (2014)

10. Kim, D., Park, C., et al.: Convolutional matrix factorization for document context-
aware recommendation. In: RecSys, pp. 233–240. ACM, New York (2016)

11. Kang, W.C., Fang, C., et al.: Visually-aware fashion recommendation and design
with generative image models. In: ICDM, New Orleans, USA, pp. 207–216. IEEE
(2017)

12. Oord, A.v.d., Dieleman, S., Schrauwen, B.: Deep content-based music recommen-
dation. In: NIPS, pp. 2643–2651. MIT Press, Lake Tahoe (2013)

13. He, X., Liao, L., et al.: Neural collaborative filtering. In: WWW, Perth, Australia,
pp. 173–182. ACM (2017)

14. Sedhain, S., Menon, A.K., et al.: AutoRec: autoencoders meet collaborative filter-
ing. In: WWW, pp. 111–112. ACM, New York (2015)

15. Wu, Y., DuBois, C., et al.: Collaborative denoising auto-encoders for top-N rec-
ommender systems. In: WSDM, pp. 153–162. ACM, New York (2016)

https://doi.org/10.1007/978-1-4899-7637-6_3


Match4Rec: A Recommendation Algorithm with Matching Task 503

16. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolu-
tional sequence embedding. In: WSDM, Marina Del Rey, USA, pp. 565–573. ACM
(2018)

17. Vaswani, A., Shazeer, N., et al.: Attention is all you need. In: NIPS, pp. 5998–6008.
MIT Press, Long Beach (2017)

18. McAuley, J., Targett, C., et al.: Image-based recommendations on styles and sub-
stitutes. In: SIGIR, pp. 43–52. ACM, New York (2015)

19. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM
Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015)



Multi-level Feature Extraction
in Time-Weighted Graphical

Session-Based Recommendation

Mei Yu1,2,3, Suiwu Li1,2,3, Ruiguo Yu1,2,3, Xuewei Li1,2,3, Tianyi Xu1,2,3,
Mankun Zhao1,2,3, Hongwei Liu4, and Jian Yu1,2,3(B)

1 College of Intelligence and Computing, Tianjin University, Tianjin, China
{yumei,suiwuli2018,rgyu,lixuewei,tianyi.xu,zmk,yujian}@tju.edu.cn

2 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China
3 Tianjin Key Laboratory of Advanced Networking (TANK Lab), Tianjin, China

4 Foreign Language, Literature and Culture Studies Center,
Tianjin Foreign Studies University, Tianjin, China

liuhongwei@tjfsu.edu.cn

Abstract. Session-based recommendation aims to simulate users’
behavior through a series of anonymous sessions. Recent research work
mainly introduces deep learning into the recommender systems, and has
achieved relatively good results. Previous research only focused on the
clicked item thus ignoring the time information, that is dwell time for
each item. It is undeniable that the length of dwell time on an item
can reflect the user’s preferences to a certain extent. And they lack the
mining latent features of items. In this paper, we propose to explore
multi-level feature extraction in time-weighted graphical session-based
recommendation, abbreviated as F-TGNN. In F-TGNN, we first con-
struct graphs for session sequences, in which the dwell time between
two items is used as the weight of the corresponding edge. Then we use
gated Graph Neural Network (GNN) to learn the transitions of items
in the session sequence and obtain the embedding of each item. After
that, we propose a Feature Extraction Module (FEM) to mine sequen-
tial patterns from item-level and contextual information between items
from sequence-level. Finally, the predicted score for each item to be the
next click is calculated. Extensive experiments conducted on two real
datasets show that F-TGNN evidently outperforms the state-of-the-art
session-based recommendation methods consistently.

Keywords: Session-based recommendation · Dwell time · Graph
neural network · Feature Extraction

1 Introduction

Session-based recommender system (SRS) [8,10,14] takes into account the infor-
mation embedded from one session to another and takes a session as the basic
unit for recommendation. With the development of deep learning, more and more
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 504–515, 2020.
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people have applied it to the SRS and achieved better results than traditional
methods. [1] is first to use Recurrent Neural Network (RNN) in session-based
recommendation and then improved by [11], who use data enhancement tech-
niques and take user’s time-shifting behavior into account. [3] design a global
and local RNN recommender NARM to capture users’ sequential behavior and
main purposes simultaneously. Similar to NARM, STAMP [7] propose s short
memory model to combines RNN and attention mechanism. But RNN-based
methods focus on the final hidden state, so the general interest features of long-
distance items may be omitted. At the same time, this one-way relationship is not
applicable to some sequences with complex transitions. To solve these problems,
GNN has been introduced to construct session graphs to learn the transitions
between items. [16] first propose SR-GNN to use GNN with attention mechanism
in SRS and take the result to a new level. [17] then further improves the result
by applying the self-attention mechanism, which better considers the impact of
long-term interest on recommended performance.

Above methods still have some limitations. First, most research work ignored
the impact of dwell time on recommender performance but only regarded the
positions of items in a session as a time click sequence. Second, most previous
research is still insufficiency in mining user’s sequential patterns and extracting
the latent feature of items in the session.

In light of these problems, we introduce F-TGNN. The main contributions
of this work are as follows:

• We add dwell time as the weight of edges in the process of building the session
graph, which explicitly expresses the user’s preference for items.

• We propose Feature Extraction Module to capture important features and
mine sequential patterns at item-level and selecting contextual information
between items at sequence-level. The model learn the feature interactions
among the session embedding from local to global in a hierarchical manner.

• We conduct experiments on two real datasets which demonstrate the superior
performance of the proposed model with other state-of-the-art methods.

2 Related Work

In this chapter, we introduce the deep learning-based recommendation method
and the related work on Graph Neural Network.

Deep Learning-Based Approach. When it comes to session-based recom-
mendations, [1] proposes RNN model (GRU4REC) to simulate sequential mode
in SRS. On the base of [1,11] enhances the GRU4REC model by using data
enhancement techniques and considering temporal changes in users’ behavior. In
addition to RNN, a neighborhood-based method to capture co-occurrence signals
is proposed by [2]. In terms of using Convolutional Neural Network (CNN), [13]
combine session clicks with content features such as item descriptions and item
categories to generate recommendations by using a three-dimensional CNN. [12]
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model recent items as an “image” and use horizontal/vertical convolutional for
top-N sequential recommendation. [15] proposed a list-wise deep neural network
model to train a ranking model. With the development of attention mechanism
in deep learning, [3] introduces NARM, a neural attention recommender with
encoder-decoder architecture, to capture users’ sequential patterns and global
purpose. After that, [7] proposes STAMP that utilizes MLP networks and an
attention network to effectively capture the users’ long-term interests and short-
term interests.

Graph Neural Network Based Method. Recently, Graph neural network
(GNN) is a type of method for processing graph domain information based
on deep learning. Due to its better performance and interpretability, GNN has
recently become a widely used graph analysis method, such as script event pre-
diction [6], situation recognition [4], and image classification [9]. As for session-
based recommendations, the SR-GNN model proposed by [16] constructs session
sequences into graphs and uses gated GNN [5] for embedded representation. [17]
then enhances SR-GNN model by adding a self-attention network to better cap-
ture global preference of users.

3 Method

In this section, we first introduce the definitions and notations of session-based
recommendation, and then introduce our model F-TGNN in detail. Figure 1
shows our model F-TGNN. Specifically, our model F-TGNN is divided into the
following steps. First, we dynamically construct graphs for session sequences
with dwell time consideration and learn the transitions of items through gated
GNN. Then, Feature Extraction Module is used to extract feature interactions
and mine sequential patterns in the specific session from item-level and extract
contextual information between items from sequence-level. Finally, the predicted
score for each item to be the next click is calculated.
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Fig. 1. The workflow of the proposed F-TGNN method.
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3.1 Notations

In session-based recommendation, let V = {v1, v2, · · · , v|V |} represents a set of
unique items in all sessions. For an anonymous session s = [vs1 , vs2 , · · · vsn ], can
be ordered by its corresponding timestamp t = [t1, t2, · · · tn], where vsi ∈ V
indicates an item that a user clicks in a session. Except for the last item, the
dwell time corresponding to other items is tdwell = [td1 , td2 , · · · td(n−1) ], where
tdi

= ti+1 − ti. The goal of session-based recommendation is to predict the user’s
next click, which is vsn+1 ∈ V in s. In such a model, for a particular session, the
probability ŷ of all items indicating the score of the corresponding item. Finally,
the items with top-k highest score will be the recommended candidate items.

3.2 Build a Session Graph

Each session can be constructed into a directed graph Gs = (νs, εs), each node
represents an item vsi ∈ νs and each edge (vsi−1 , vsi) ∈ εs means that the user
clicks vsi after clicking vsi−1 .

A phenomenon commonly encountered in real life is that the more a user likes
an item, the more time he will spend on this item, thus the corresponding dwell
time will be longer. Based on this, we use the dwell time as the weight of each
edge in the graph. Next, we introduce the process of constructing the adjacency
matrix, which determines how nodes in the subgraph interact with each other.
Adjacency matrix is represented by A ∈ R

n×2n, where n is the number of nodes.
Since multiple items may be repeated in sequence, a normalized weight value to
each edge has been assigned, which is calculated as the dwell time of a certain
edge divided by the sum of the dwell time of the starting node of the edge.
Figure 2 is an example of a directed session graph and its adjacency matrix A.

0 1 0 0 0 0 0 0

0 0 1/3 2/3 1/4 0 1/4 1/2

0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

Outgoing edges Incoming edges

20s 30s

60s 40s

20s

Fig. 2. An example of a session graph and its adjacency matrix A.

3.3 Graph Neural Network Layer

After building the session graphs, the next thing we need to do is to use gated
GNN to learn the embedding of items and the transitions between items in the
session. The basic recurrence of gated GNN is as follows:
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a(t) = ATv(t−1) + b (1)
z(t) = σ(Wza(t) + Uzv(t−1)) (2)
r(t) = σ(Wra(t) + Urv(t−1)) (3)
c(t) = tanh(Woa(t) + Uo(r(t) � v(t−1))) (4)
v(t) = (1 − z(t)) � v(t−1) + z(t) � c(t) (5)

The whole process is like a typical GRU-based update, which integrates infor-
mation from other nodes and previous states to update the current hidden state
of the target node . Where r and z are reset gate and update gate respectively.
v(t−1) = [vt−1

1 , ..., vt−1
n ] is the node embedding in the session, and each node

vi ∈ R
d, d is the dimension of the latent vector. σ is the logistic sigmoid func-

tion, and � is element-wise multiplication. The final state is the combination
of the previous hidden state and the candidate state, under the control of the
update gate.

3.4 Feature Extraction Module (FEM)

In FEM, we use CNN to extract latent feature and mine sequential patterns from
item-level and select contextual information between items from sequence-level.

Utilize CNN at Item-Level. [12,18,19] has used CNN for sequence recom-
mendation, which shows that convolution facilitates the mining of sequential
patterns within the serialized items. For example, when a user has clicked the
pencil and eraser, his sequential pattern maybe “(pencil, eraser)→ pencil case”.
So when a convolution filter slides on the line of items a user clicked, it will select
the sequential pattern by having larger values in the latent dimensions where
pencil and eraser have larger values.

In our model, we will take the output E ∈ R
L×d of GNN as the “image” of the

L items in the latent space, and regard the sequential patterns as local features
of “image”. We use n convolution filters fk ∈ R

h×d, 1 ≤ k ≤ n, h ∈ {1, · · ·, L} is
the height of a convolution kernel. fk will slide from top to bottom and interact
with the horizontal dimensions of all items in E. Then the i-th convolution value
is:

cki = Φc(Ei:i+h−1 · fk + bc) (6)

where i is in the range of [1, L − h + 1], Ei:i+h−1 denotes the i-th row to
the row i + h − 1. · indicating the inner product of fk and Ei:i+h−1. Φc is the
activation function of the convolutional layer, bc is a bias term. The convolution
output of fk is:

ck = [ck1 ck2 · · · ckL−h+1] (7)

Then, to select the most important features extracted by the filters, we use
the max pooling operation. The final output of the n convolution filters will be:

o = {max(c1),max(c2), · · · ,max(cn)} (8)
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where o ∈ R
n, which is considered to be the specific feature extracted by

the n convolution filters, i.e., the sequential patterns at item-level in the current
session.

Utilize CNN at Sequence-Level. Different from that utilizing CNN at item-
level, we horizontally connect sequential items to form an overall representation
of the session sequence, denoted by Es ∈ R

1×(L×d). We think that the overall
embedding Es keeps the timing information and the context information of each
item. Then we use convolution filter fk

s ∈ R
1×(L×d) to extract this information

at sentence-level (the process is similar to that at item-level), which makes the
extracted features more continuous. The final output of the n convolution filters
is denoted by õ ∈ R

n, which selects the important contextual information from
a global perspective.

3.5 Prediction Layer

After the convolution, we cascade the output of the FEM with the last vector of
the GNN output EL, and then perform a linear transformation:

sh = W ′

⎡

⎣

o
õ

EL

⎤

⎦ + b′ (9)

where W ′ ∈ R
d×(d+2n) and b′ ∈ R

d are the weight matrix and the bias term
respectively, EL is the last item embedding of current session. Similar to [7,16],
adding the final state EL can better represent sequential patterns because the
item that the user will click on is largely related to the item that was clicked
recently. o intend to capture user’s sequential patterns at item-level and õ is
proposed to capture important context information at sentence-level.

Then, the score si is computed:

ŝi = sTh · vi (10)

Finally, a softmax function is utilized to get the output vector of the model:

ŷ = softmax(ŝ) (11)

where ŝ ∈ R
|V | denotes the score of all items in the item set, and ŷ ∈ R

|V |

indicates the probability of appearing in the ranking list.

3.6 Objective Function

The objective function can be defined as the cross-entropy of the prediction score
ŷ:

L(y, ŷ) = −
|V |
∑

i=1

yi · log(ŷi) + λ‖θ‖2 (12)

where y is the true probability distribution, ŷ is the predicted rough dis-
tribution, θ represents all the parameters that can be learned, and λ is the
regularization weight.
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4 Experiments

The structure of the experimental part is as follows: (1) Introduce the datasets,
evaluation metrics and comparison methods. (2) Comparison with other baseline
methods. (3) Ablation analysis and show the experimental results under different
experimental parameters. The code is available at1.

4.1 Datasets

Two public datasets i.e., Yoochoose2 and Diginetica3 are used in our exper-
iment. As the same setting of [3,7,16], we filter out the session sequence
with length 1 and the items that occur less than 5 times in the datasets.
In addition, same as [11,16], according to the time order of a sequence,
we generate the corresponding subsequences. More specifically, for a session
sequence s = [vs1 , vs2 , · · · , vsn ], we generate a series of sequences and labels
([vs1 ], vs2),([vs1 , vs2 ], vs3),· · · ,([vs1 , vs2 , · · · , vsn−1 ], vsn). Since the data volume of
Yoochoose dataset is very large, similar to [3,7,16], we use its most recent 1/64
fragment. The detailed description of the two datasets is shown in Table 1.

Table 1. Statistics of the datasets used in our experiments

Datasets Yoochoose 1/64 Diginetica

All the clicks 557248 982961

Train sessions 369859 719470

Test sessions 55898 60858

All the items 16766 43097

Average length 6.16 5.12

4.2 Evaluation Metrics

Like [16], we use P@20 and MRR@20 as evaluation metrics.

P@20: Precision@20 is used to measure the accuracy of recommenders. It is the
proportion of desired items in the top 20 in all test cases.

P@k =
nhit

N
(13)

where N is the number of test cases, nhit means the number of cases when
the desired item is in the top-k ranking list.

1 https://github.com/DebonairLi/F-TGNN.
2 http://2015.recsyschallenge.com/challege.html.
3 http://cikm2016.cs.iupui.edu/cikm-cup.

https://github.com/DebonairLi/F-TGNN
http://2015.recsyschallenge.com/challege.html
http://cikm2016.cs.iupui.edu/cikm-cup
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MRR@20: Average reciprocal rank is the average of the reciprocal ranks of the
desired items in all test cases. The reciprocal rank is set to zero if the rank is
larger than 20. The larger the value of MRR, the better the recommendation
effect.

MRR@k =
1
N

∑

t∈R

1
rank(t)

(14)

where R denotes the top-k ranking list.

4.3 Parameter Setup

The dimension of the embedded vector used in our model is d = 50 in Diginetica
and 100 in Yoochoose. All parameters are initialized using a Gaussian distribu-
tion with a mean of 0 variance of 0.01. All parameters are optimized through,
in which the initial learning rate is 0.001 and will decay by 0.1 after every 3
epochs. In addition, the value of batch size is 100, and the L2 penalty is 10−5.
The number of convolution filters are 32 in Diginetica and 64 in Yoochoose1/64
respectively.

4.4 Baseline Methods

To prove the validity of proposed method F-TGNN, we compare it with the
latest deep learning-based methods:

GRU4REC [1]: It is the first method that utilize RNN to build users’ sequential
patterns in session-based recommendation.

NARM [3]: Based on RNN, they propose to use attention mechanism for
session-based recommendation to capture users’ general purpose and short-term
interest.

STAMP [7]: A model that learns long and short interest with a short-term
attention/memory priority module.

SR-GNN [16]: Use GNN to learn the transitions of items in a session, and then
utilize soft-attention to learn global preference and the current interest.

GC-SAN [17]: Based on SR-GNN, add self-attention mechanism to better con-
sider long-term interests.

4.5 Comparison with Baseline Methods

Table 2 shows the performance of the baseline methods and our method F-TGNN
on two metrics, in which the best results are indicated in bold type. And the
best results proves the validity of our model.

GRU4REC is a first method that uses GRU in SRS, which proves the deep
learning-based methods have good result in SRS. With the development of atten-
tion mechanism, NARM and STAMP use it with neural networks and improves
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Table 2. The performance of FTSR with other baseline methods over two datasets

Method Yoochoose 1/64 Diginetica

P@20 MRR@20 P@20 MRR@20

GRU4REC 60.64 22.89 29.45 8.33

NARM 68.32 28.63 49.70 16.17

STAMP 68.74 29.67 45.64 14.32

SR-GNN 70.57 30.94 50.73 17.59

GC-SAN 70.77 30.78 50.99 17.45

F-TGNN 71.30 31.48 52.78 18.48

the results further. Recently, SR-GNN first propose to use Gated GNN for learn-
ing session graphs, which is used to learn the contextual transitions instead of
one-way relations. On the base of SR-GNN, GC-SAN add self-attention blocks
to consider long-term interest more accurately.

However, compared to above methods, our model F-TGNN first add dwell
into the process of constructing session graph to express a user’s preference for
certain items. Then we take session as an image and use Feature Extraction Mod-
ule to mine sequential patterns at item-level and extract contextual information
at sequence-level. The results show correctness of our method.

4.6 Ablation Analysis

For in-depth analysis, we propose related variants:
(1) SR-GNN: The baseline SR-GNN proposed in 2019.
(2) SR-GNN+Time: The SR-GNN model adds dwell time in the process of
constructing session graph.
(3) SR-GNN+FEM: The SR-GNN model adds Feature Extraction Module to
select features and mine sequential patterns, and we remove the soft-attention
from original SR-GNN model.
(4) F-TGNN: The overall F-TGNN model we propose.

We keep other parameter settings stay the same and the result of SR-GNN,
F-TGNN and its related variants is shown in Fig. 3 and Fig. 4.

First of all, from the figure we can see that the experimental results of F-
TGNN and its variants are superior to SR-GNN using only GNN, which shows
that our method is effective in session-based recommendation. Then, it can be
seen from (1), (2) that when we add dwell time into the process of constructing
session graphs, the result improves, proving that considering time attribute helps
sequential modeling. From (1) and (3), we can conclude that the use of FEM
has an obvious effect on the improvement of the model effect and is the core
component of our F-TGNN. At item-level, we use CNN to extract features and
mine sequential patterns and at sequence-level, we use CNN to select important
contextual information among items. Finally, as can be seen from (2), (3) and
(4), If we combine the first two, the effect is the best.



F-TGNN 513

49.50

50.00

50.50

51.00

51.50

52.00

52.50

53.00

P@20 in Diginetica

SR-GNN SR-GNN+Time SR-GNN+FEM F-TGNN

(a)

17.00

17.20

17.40

17.60

17.80

18.00

18.20

18.40

18.60

MRR@20 in Diginetica

SR-GNN SR-GNN+Time SR-GNN+FEM F-TGNN

(b)

Fig. 3. The performance of SR-GNN, F-TGNN and it’s related variants in Diginetica.
This figure should be viewed in colour. (Color figure online)
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Fig. 4. The performance of SR-GNN, F-TGNN and it’s related variants in Yoo-
choose1/64. This figure should be viewed in colour. (Color figure online)

4.7 The Sensitivity of Hyper-parameters

Due to the space limit, we only analyse the effects on Diginetica.

Table 3. Influence of different number of convolution filters on experimental results in
Diginetica.

Number of filters (n) 4 8 16 32 64

P@20 51.37 51.60 52.36 52.78 52.46

MRR@20 17.78 17.85 18.17 18.48 18.09

Firstly, different convolution filters on experimental results are compared and
the results are show in Table 3. It can be seen that as the number of convolution
filters increases, the value of both metrics first increase and then decrease, and
reach the maximum when n = 32. Therefore, the number of convolution filters
should be selected appropriately. If the number is too small, important features
cannot be fully extracted. If the number is too large, the extracted features may
be contrary to the prediction, and will increase the model training time.

Secondly, we analyze the effect of different embedding dimensions on the
experimental results. From Fig. 5, we can see that as the embedding dimen-
sion increases, both metrics increase first and then decrease. So we choose the
embedding dimension 50 as the best choice for the experimental parameters.
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Fig. 5. The performance of embedding dimension on dataset Diginetica.

5 Conclusion

In this paper, we propose the model F-TGNN. We first add dwell time into the
process of constructing session graphs to express a user’s preference for certain
items. Experiments prove that GNN with dwell time weighting can better learn
the transitions between items. Then we introduce Feature Extraction Module
to extract feature and mine sequential patterns at item-level, meanwhile we
combine items horizontally to select important context information among items
at sequence-level, which improves the deficiencies of previous work on feature
modeling of session items. Experimental results from two public datasets show
the superiority of F-TGNN over state-of-the-art methods.

Acknowledgments. This work is jointly supported by National Natural Science
Foundation of China (61877043) and National Natural Science Foundation of China
(61877044).
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Abstract. This work presents an extended hybrid and hierarchical deep
learning model for electrical energy consumption forecasting. The model
combines initial time series (TS) decomposition, exponential smoothing
(ETS) for forecasting trend and dispersion components, ETS for desea-
sonalization, advanced long short-term memory (LSTM), and ensem-
bling. Multi-layer LSTM is equipped with dilated recurrent skip connec-
tions and a spatial shortcut path from lower layers to allow the model to
better capture long-term seasonal relationships and ensure more efficient
training. Deseasonalization and LSTM are combined in a simultaneous
learning process using stochastic gradient descent (SGD) which leads
to learning TS representations and mapping at the same time. To deal
with a forecast bias, an asymmetric pinball loss function was applied.
Three-level ensembling provides a powerful regularization reducing the
model variance. A simulation study performed on the monthly electricity
demand TS for 35 European countries demonstrates a high performance
of the proposed model. It generates more accurate forecasts than its pre-
decessor (ETS+RD-LSTM [1]), statistical models such as ARIMA and
ETS as well as state-of-the-art models based on machine learning (ML).

Keywords: Exponential smoothing · Long short-term memory ·
Mid-term load forecasting

1 Introduction

The power system load is a nonlinear and nonstationary process that can change
rapidly due to many factors such as macroeconomic variations, weather, electric-
ity prices, consumer types and habits, etc. Therefore, electricity demand fore-
casting, which is essential for the power system operation and planning, is a big
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challenge. In this study we consider mid-term electrical load forecasting (MTLF)
focusing on monthly electricity demand forecasting over 12 months horizon.

MTLF methods can be roughly classified into statistical/econometrics meth-
ods or ML methods [2]. The former include ARIMA, ETS and linear regression
(LR). ARIMA and ETS can deal with seasonal TS but LR requires additional
operations such as decomposition or extension of the model with periodic com-
ponents [3]. Limited adaptability of the statistical MTLF models and problems
with nonlinear relationship modeling have increased researchers’ interest in ML
and AI tools [4]. Of these, neural networks (NNs) are the most popular because of
their attractive features including learning capabilities, universal approximation
property, nonlinear modeling and massive parallelism. Some examples of using
NNs for MLTF are: [5] where NN uses historical loads and weather variables to
predict monthly demand and is trained by heuristic algorithms to improve per-
formance, [6] where Kohonen NN is used, [7] where NNs are supported by fuzzy
logic, [8] where generalized regression NN is used, [9] where weighted evolving
fuzzy NN is used, and [10] where NNs, LR and AdaBoost are combined.

Recent trends in ML such as deep recurrent NNs (RNNs), are very attractive
for TS forecasting [11]. RNNs are able to exhibit temporal dynamic behavior
using their internal state to process sequences of inputs. Recent works have
reported that RNNs, such as the LSTM, provide high accuracy in forecasting
and outperform most of the traditional statistical and ML methods [12]. Some
application examples of LSTMs to load forecasting can be found in [13–15].

In [1] we proposed a hybrid residual dilated LSTM and ETS model
(ETS+RD-LSTM) for MTLF. This model was based on the winning submission
to the M4 forecasting competition 2018 [16], developed by Slawek Smyl [17].
A simulation study confirmed the high performance of the model and its com-
petitiveness with classical models such as ARIMA and ETS as well as state-
of-the-art ML models. In this work we extend ETS+RD-LSTM by introduc-
ing initial TS normalization, i.e. detrending and unifying the variance. This
method of TS preprocessing we used in our previous works achieving very good
results [18]. Recently we used it for LSTM model obtaining a 15% reduction in
error [19]. We expect that the TS initial normalization, which simplifies the rela-
tionship between input and output data, allows ETS+RD-LSTM to improve its
performance.

2 Forecasting Model

The proposed model is a modified version of ETS+RD-LSTM which we described
in [1]. We extend ETS+RD-LSTM by introducing initial TS normalization. A
normalization procedure removes a trend and unifies variance of the TS. The
normalized TS exhibit yearly patterns which are further removed using desea-
sonalization as an integral part of ETS+RD-LSTM. The normalized and desea-
sonalized TS are forecasted using RD-LSTM. Then the forecasts are reseason-
alized using seasonal components extracted by ETS. To reduce the model vari-
ance, we use ensembling at three levels which aggregates individual forecasts.
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The resulting aggregated forecasts are finally denormalized. For denormaliza-
tion, the forecasts of the mean yearly demand and yearly dispersion are needed.
They are produced by additional two ETS modules.

2.1 Architecture and Features

An architecture of the proposed forecasting system is shown in Fig. 1. The system
components are as follows (symbols in italics denote the sets of TS or forecasts):

– Normalization – each original monthly electricity demand TS is normalized.
This procedure removes a trend from the TS and unifies its variance. Nor-
malization module loads a set of TS (Z), calculates the series of yearly mean
demands (Z) and yearly dispersions (Σ) for each TS, and determines nor-
malized series (Y ).

– ETS – exponential smoothing modules for forecasting the yearly mean
demands and their dispersions. These values are necessary for denormaliza-
tion.

– Deseasonalization – each normalized TS is deseasonalized. This procedure
extracts the seasonal components, S, individually for each series using ETS
(ETSd module), and determines deseasonalized TS, X.

– RD-LSTM – residual dilated LSTM for forecasting the normalized and desea-
sonalized TS, X.

– Reseasonalization – each TS forecast produced by RD-LSTM is reseasonalized
using inverse operations to deseasonalization.

– Ensembling – the reseasonalized forecasts produced by RD-LSTM are aver-
aged. The ensembling module receives the sets of individual forecasts, Ŷ r

k ,
and returns an aggregated forecast for each TS, Ŷavg.

– Denormalization – the averaged forecasts Ŷavg are denormalized using fore-

casted values of the yearly means, Ẑ, and dispersions, Σ̂.

Fig. 1. The proposed forecasting system architecture

The proposed system has a hybrid and hierarchical structure. It combines
statistical modeling (ETS), advanced ML (RD-LSTM), and ensembling. ETS is
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used as a forecasting model for yearly means, Z, and dispersions, Σ, as well as
for extraction of seasonal components (ETSd). The preprocessed TS, without
trend and seasonal variations, are forecasted using RD-LSTM. Details of data
preprocessing and flow are described in Subsect. 2.2.

The TS are exploited in a hierarchical manner, meaning that both local and
global components are utilized in order to extract and combine information at
either a series or a dataset level, thus enhancing the forecasting accuracy. The
global features are learned by RD-LSTM across many TS (cross-learning). The
specific features of each individual TS, such as trend, variance, and seasonal-
ity, are extracted by normalization and ETSd modules. Thus, each series has a
partially unique and partially shared model.

The strength of RD-LSTM, which revealed in M4 competition, is cross-
learning, i.e., using many series to train a single model. This is unlike standard
statistical TS algorithms, where a separate model is developed for each series.
Another important ingredient in the success of the proposed method precursor
in the M4 competition was the on-the-fly preprocessing that was an inherent
part of the training process. Crucially, the parameters of this preprocessing (in
the proposed model these are twelve initial seasonal components and smoothing
coefficient β, see Subsect. 2.2) were being updated by the same overall optimiza-
tion procedure (SGD) as weights of RD-LSTM, with the overarching goal of
minimizing forecasting errors. This enables the model to simultaneous optimiza-
tion of data representation, i.e. searching for the most suitable representations
of input and output data for RD-LSTM, and forecasting performance.

ETSd is used as the preprocessing tool. It extracts a seasonal component
which is used for deseasonalization of the normalized TS. ETSd was inspired by
the Holt-Winters multiplicative seasonal model. However, it has been simplified
by removing trend and level components (see Subsect. 2.2). This is because the
input TS are normalized, i.e. they have no trend and their level is one. ETSd is
optimized simultaneously with RD-LSTM using pinball loss function [17]:

Lt =

{
(xt − x̂t)τ if xt ≥ x̂t

(x̂t − xt)(1 − τ) if x̂t > xt

(1)

where xt and x̂t are the actual and forecasted values, respectively, and τ ∈ (0, 1)
is a parameter controlling the loss function asymmetry.

When τ = 0.5 the loss function is symmetrical and penalizes positive and
negative deviations equally. When the model tends to have a positive or neg-
ative bias, we can reduce the bias by introducing τ smaller or larger than 0.5,
respectively. Thus, the asymmetric pinball loss function, penalizing positive and
negative deviations differently, allows the method to deal with bias.

ETS for forecasting the yearly mean demands and their dispersions are
defined as innovations state space models [20]. They combine the seasonal, trend
and error components in different ways (additively or multiplicatively). For each
TS the optimal ETS model is selected using Akaike information criterion (AIC).

Ensembling is used for reduction the model variance related to the stochastic
nature of SGD, and also related to data and parameter uncertainty. Ensembling
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is seen as a much more powerful regularization technique than more popular
alternatives, e.g. dropout or L2-norm penalty [21]. In our case, ensembling com-
bines individual forecasts at three levels: stage of training level, data subset level
and model level. At the stage of training level, the forecasts produced by L most
recent training epochs are averaged. This can reduce the effect of stochastic
searching, i.e. calming down the noisy SGD optimization process. At the data
subset level, we use K models which learn on the subsets of the training set,
Ψ1, Ψ2, ..., ΨK . Each k-th model produces forecasts for TS included in its own
training subset Ψk. Then the forecasts produced by the pool of K models are
averaged individually for each TS. The third level of ensembling simply averages
the forecasts for each TS generated in R independent runs of a pool of K models.
In each run, the training subsets Ψk are created anew (see [1] for details).

2.2 Time Series Processing

A monthly electricity demand TS exhibits a trend, yearly seasonality and random
component (see Fig. 2(a)). To simplify the forecasting problem, the TS is prepro-
cessed as follows. Let {zt}Nt=1 be a monthly electricity demand TS starting from
January and ending in December. This TS is divided into yearly subsequences
{zit}12(i−1)+12

t=12(i−1)+1, i = 1, ..., N/12. Each i-th subsequence is expressed by a vector
zi = [zi,1zi,2 . . . zi,12]T . The normalized version of zi, yi = [yi,1yi,2 . . . yi,12]T , is
determined as follows:

yi,j =
zi,j − zi

σi
+ 1 (2)

where j = 1, ..., 12, zi is a mean of subsequence {zit}, and σi =
√∑12

j=1(zi,j − zi)2

is a measure of its dispersion.
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Fig. 2. TS preprocessing: (a) original TS {zt}, (b) yearly mean demand TS {zt}, (c)
yearly dispersion TS {σt}, (d) normalized TS {yt}, (e) seasonal component TS {st},
and (f) normalized and deseasonalized TS {xt}

Note that yearly subsequences {zit} have different means and dispersions (see
Fig. 2(a)). After normalization they are unified, i.e. all yearly subsequences have
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an average of one, the same variance and also a unity of length. They carry
information about the shapes of the yearly sequences. Now we create a new TS
composed of normalized subsequences representing successive yearly periods:
{yt} = {yT

i }N/12
i=1 = {y1,1, y1,2, ..., yN/12,12}. This TS is shown in Fig. 2(d). Note

its regular character and stationarity.
The TS of the mean yearly demand, {zi}N/12

i=1 , and yearly dispersion,
{σi}N/12

i=1 , are shown in Fig. 2(b) and (c), respectively. They are forecasted by
ETS one step ahead (for the next year) and used for denormalization.

The normalized TS, {yt}, is further deseasonalized. To do so, we use a sim-
plified Holt-Winters multiplicative seasonal model with only one component:

st+12 = βyt + (1 − β)st (3)

where st is the seasonal component at timepoint t and β ∈ [0, 1] is a smoothing
coefficient.

The seasonal component is shown in Fig. 2(e). It is used for deseasonaliza-
tion during the on-the-fly preprocessing. The TS {yt} is deseasonalized in each
training epoch using the updated values of seasonal components. These updated
values are calculated from (3), where parameters, 12 initial seasonal components
and β, are increasingly fine tuned for each TS in each epoch by SGD.

The TS is deseasonalized using rolling windows: input and output ones. The
input window contains twelve consecutive elements of the TS which after desea-
sonalization will be the RD-LSTM inputs. The corresponding output window
contains the next twelve consecutive elements, which after deseasonalization will
be the RD-LSTM outputs. The TS fragments inside both windows are desea-
sonalized by dividing them by the relevant seasonal component. Then, to limit
the destructive impact of outliers on the forecasts, a squashing function, log(.),
is applied. The resulting deseasonalization can be expressed as follows:

xt = log
(

yt
st

)
(4)

where xt is the deseasonalized t-th element of the normalized TS, and st is the
t-th seasonal component.

The preprocessed TS sequences contained in the successive input and output
windows are represented by vectors: xin

t = [xt . . . xt+12], xout
t = [xt+13 . . . xt+24],

t = 1, ..., N − 24. These vectors are included in the training subset for the i-th
TS: Φi = {(xin

t ,xout
t )}N−24

t=1 . The training subsets for all M TS are combined
and form the training set Ψ = {Φ1, ..., ΦM} which is used for RD-LSTM cross-
learning. Note the dynamic character of the training set. It is updated in each
epoch because the seasonal components in (4) are updated by SGD.

The forecasts produced by RD-LSTM, x̂t, are reseasonalized as follows:

ŷt = st exp(x̂t) (5)

where st is determined from (3) on the basis of the TS history.
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Finally, the TS is denormalized using transformed Eq. (2):

ẑi,j = (ŷi,j − 1)σ̂i + ẑi (6)

where i refers to the forecasted yearly period, j = 1, ..., 12, ẑi and σ̂i are the
forecasted yearly mean and dispersion for period i.

2.3 Residual Delated LSTM

The RD-LSTM architecture used in this study is shown in Fig. 3(a) [1]. It is
composed of four recurrent layers and a linear unit LU. The first layer consists
of the standard LSTM block shown in Fig. 3(b). The subsequent three layers
consist of RD-LSTM blocks, i.e. blocks equipped with dilated recurrent skip
connections and a spatial shortcut path from lower layers (Fig. 3(c)).

A standard LSTM block consists of hidden state ht and cell state ct. The
cell state contains information learned from the previous time steps which can
be added to or removed from the cell state using the gates: input gate (i), forget
gate (f) and output gate (o). At each time step t, the block uses the past state,
ct−1 and ht−1, and input xt to compute output ht and updated cell state ct.
The hidden and cell states are recurrently connected back to the block input.
All of the gates are controlled by the hidden state of the past cycle and input
xt. The equations for a standard LSTM block are shown in Table 1.

Fig. 3. RD-LSTM architecture (a), LSTM block (b), and RD-LSTM block (c)

The RD-LSTM blocks employ dilation mechanism proposed in [22]. It is to
solve three main problems related to RNN learning on long sequences: complex
dependencies, vanishing and exploding gradients, and efficient parallelization. It
is characterized by multi-resolution dilated recurrent skip connections. To com-
pute the current states of the LSTM block, the last d − 1 states are skipped,
i.e. a dilated LSTM block receives as input states ct−d and ht−d, where d > 1
is a dilation. Usually multiple dilated recurrent layers are stacked with hierar-
chical dilations to construct a system, which learns the temporal dependencies
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Table 1. Equations for the forward pass of LSTM blocks

Standard LSTM block RD-LSTM block

f1t = σg(W
1
fxt + V1

fh
1
t−1 + b1

f ) flt = σg(W
l
fh

l−1
t + Vl

fh
l
t−d + bl

f )

i1t = σg(W
1
ixt + V1

ih
1
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i ) ilt = σg(W
l
ih

l−1
t + Vl

ih
l
t−d + bl

i)

g1
t = σc(W

1
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gh
1
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g) gl
t = σc(W

l
gh

l−1
t + Vl

gh
l
t−d + bl

g)

o1
t = σg(W

1
oxt + V1

oh
1
t−1 + b1

o) ol
t = σg(W

l
oh

l−1
t + Vl

oh
l
t−d + bl

o)

c1t = f1t ⊗ c1t−1 + i1t ⊗ g1
t clt = flt ⊗ clt−d + ilt ⊗ gl

t

h1
t = o1

t ⊗ σc(c
1
t ) hl

t = ol
t ⊗ (σc(c

l
t) + hl−1

t )

where W, V and b are input weights, recurrent weights and biases,
respectively, σc is a hyperbolic tangent function, σg is a sigmoid acti-
vation function (1 + e−x)−1, ⊗ denotes the Hadamard product, super-
script 1 refers to the first layer of RD-LSTM network, where we use
the standard LSTM block, superscript l indicates the layer number for
RD-LSTM blocks (from 2 to 4 in our case), and d is a dilation (3, 6 or
12 in our case).

of different scales at different layers. In [22], it was shown that this solution can
reliably improve the ability of recurrent models to learn long-term dependency.
Dilated RNN can be particularly useful for seasonal TS. In this case dilations
can be related to seasonality. In our case we use d = 3, 6 and 12.

A residual LSTM was proposed in [23] to enable effective training of deep
networks with multiple LSTM layers by avoiding vanishing or exploding gradi-
ents in the temporal domain. Residual LSTM provides a shortcut path between
adjacent layer outputs. The shortcut paths are used to allow gradients to flow
through a network directly, without passing through non-linear activation func-
tions. In our implementation, we introduced shortcut paths extending equation
for the hidden state (note additional component, hl−1

t , for a hidden state in the
right column of Table 1, where the RD-LSTM computation process is shown).

A linear unit, LU, transforms the output of the last layer, h4
t , into the forecast

of the output x-vector:
x̂out
t = Wxh4

t + bx (7)

Note that RD-LSTM works on 12-component x-vectors. It produces the fore-
casts for the whole yearly period receiving the previous yearly period as input.
The parameters of RD-LSTM, i.e. input weights W, recurrent weights V, and
biases b, are learned using SGD in the cross-learning mode simultaneously with
the ETSd parameters. The length of the cell and hidden states, m, the same for
all layers, was selected on the training set to ensure the highest performance.

3 Results

The proposed forecasting model is applied for monthly electricity demand fore-
casting for 35 European countries. The real-world data are taken from the
ENTSO-E repository (www.entsoe.eu). The TS lengths vary from 5 to 24 years.

www.entsoe.eu
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The forecasting problem is to produce the forecasts for the twelve months of
2014 (last year of data) using data from the previous period for training. For
hyperparameter selection the model learned on the TS fragments up to 2012,
and then it was validated on 2013. The selected hyperparameters were used to
build the model for 2014: number of epochs 10, learning rate 10−3, length of the
cell and hidden states m = 40, asymmetry parameter in pinball loss τ = 0.4,
ensembling parameters: L = 5, K = 4, R = 3. RD-LSTM was implemented in
C++ relying on the DyNet library and run in parallel on an 8-core CPU. We
employ R implementation of ETS (function ets from package forecast).

The proposed model was compared with its predecessor, ETS+RD-LSTM [1],
and other state-of-the-art models based on ML as well as classical statistical mod-
els. They include: k-nearest neighbor weighted regression model, k-NNw, fuzzy
neighborhood model, FNM, general regression NN model, GRNN, multilayer
perceptron, MLP, adaptive neuro-fuzzy inference system, ANFIS, LSTM model,
ARIMA model, and ETS model. All ML models were used also in +ETS ver-
sions, where the TS were initially normalized and the yearly mean and dispersion
were forecasted using ETS (just like in this study). Details of the comparative
models can be found in [18,19,24,25].

Table 2 shows the forecast results averaged over 35 countries, i.e. median of
absolute percentage error (APE), mean APE (MAPE), interquartile range of
APE as a measure of the forecast dispersion, root mean square error (RMSE),

Table 2. Results comparison among proposed and comparative models

Model Median APE MAPE IQR RMSE MPE

k-NNw 2.89 4.99 3.85 368.79 −1.87

FNM 2.88 4.88 4.26 354.33 −2.03

N-WE 2.84 5.00 3.97 352.01 −1.91

GRNN 2.87 5.01 4.02 350.61 −1.87

k-NNw+ETS 2.71 4.47 3.52 327.94 −1.25

FNM+ETS 2.64 4.40 3.46 321.98 −1.26

N-WE+ETS 2.68 4.37 3.36 320.51 −1.26

GRNN+ETS 2.64 4.38 3.51 324.91 −1.26

MLP 2.97 5.27 3.84 378.81 −1.37

MLP+ETS 3.11 4.80 4.12 358.07 −1.71

ANFIS 3.56 6.18 4.87 488.75 −2.51

ANFIS+ETS 3.54 6.32 4.26 464.29 −1.30

LSTM 3.73 6.11 4.50 431.83 −3.12

LSTM+ETS 3.08 5.19 4.54 366.45 −1.41

ARIMA 3.32 5.65 5.24 463.07 −2.35

ETS 3.50 5.05 4.80 374.52 −1.04

ETS+RD-LSTM 2.74 4.48 3.55 347.24 −1.11

3ETS+RD-LSTM 2.64 4.09 3.13 314.01 −0.32
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and mean PE (MPE). The proposed model is denoted by 3ETS+RD-LSTM. As
can be seen from this table, all error measures indicate that 3ETS+RD-LSTM
is the most accurate model comparing with its competitors. It outperforms its
predecessor, ETS+RD-LSTM, by 8.7% in MAPE and 9.5% in RMSE.

MPE provides information on potential forecast bias. All the models pro-
duced negatively biased forecasts, i.e. overpredicted. But for 3ETS+RD-LSTM,
the t-test did not reject the null hypothesis that PE comes from a normal dis-
tribution with mean equal to zero (p-value = 0.44). All other models did not
pass this test. So it can be concluded that 3ETS+RD-LSTM, as the only model,
produced unbiased forecasts. Note that 3ETS+RD-LSTM has the mechanism to
deal with bias. The loss function (1) asymmetry is controlled by parameter τ . It
was selected as 0.4, which allowed the model to reduce the negative bias.

Figure 4 depicts more detailed results, MAPE for each country. As can be
seen, in most cases 3ETS+RD-LSTM is one of the most accurate models.
Figure 5 depicts the model rankings based on MAPE and RMSE. They show
average ranks of the models in the rankings for individual countries. Note the
first position of 3ETS+RD-LSTM in both rankings.

Examples of forecasts produced by the selected models are shown in Fig. 6.
For PL and DE data, MAPE is on the low level around 2% while for GB data
the forecasts are strongly underestimated, over 5%. This is because the demand
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Fig. 6. Examples of forecasts produced by selected models

for GB went up unexpectedly in 2014 despite the downward trend observed in
the previous period.

Summarizing experimental research, it should be noted that the forecasting
model performance depends significantly on the appropriate TS preprocessing.
Although LSTM deals with raw data, without preprocessing [19], introducing ini-
tial normalization and dynamic deseasonalization in 3ETS+RD-LSTM improved
significantly LSTM performance.

It should be noted that LSTM based models are more complex than other
comparative models. Due to the huge number of parameters and complicated
learning procedure using backpropagation through time, the learning time of
LSTM is much longer than for other comparative models.

4 Conclusion

In this work, we proposed an extended hybrid RD-LSTM and ETS model for
MTLF. It combines initial TS decomposition into three components (normalized
TS, trend, and dispersion), ETS modules for trend and dispersion forecasting,
ETS for deseasonalization, advanced LSTM, and ensembling. The model has a
hierarchical structure composed of a global part learned across many TS (LSTM)
and a TS specific part (normalization and deseasonalization). Deseasonalization
and LSTM are combined in a simultaneous learning process using SGD which
leads to learning TS representations and mapping at the same time.

We used residual dilated LSTM, which can capture better long-term seasonal
relationships and ensure more efficient training. This is because of dilated recur-
rent skip connections and a spatial shortcut path from lower layers. To deal
with a forecast bias, an asymmetric pinball loss function was applied. Three-
level ensembling provides regularization reducing the model variance, which has
sources in the stochastic nature of SGD, and also in data and parameter uncer-
tainty.

An experimental study, monthly electricity demand forecasting for 35 Euro-
pean countries, demonstrated the state-of-the-art performance of the proposed
model. It generated more accurate forecasts than its predecessor (ETS+RD-
LSTM), classical models such as ARIMA and ETS as well as state-of-the-art
models based on ML.
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Abstract. Time series forecasting predicts values in future timestamps
based on historically observed series information. Algorithms based on
deep neural networks such as Temporal Convolution Network(TCN) have
outperformed traditional methods such as Autoregressive Integrated
Moving Average Model(ARIMA). However, most existing deep learning
approaches suffer from the insufficient ability to capture the seasonality
features in series adequately since the network structure ignores the fact
that the importance of points the series varies a lot. The local context
that reflects a sub-segment of seasonality can indicate potential pat-
terns of the series based on the periodicity. Therefore, we tend to exploit
local information from historical records. To this end, we develop a novel
strategy to extract local context sensitivity information and integrate
them into the current state-of-the-art TCN model, namely LS-TCN. This
information enables an improvement in capturing the series pattern and
fluctuation, as well as providing transferable guidance for forecasting
in the next steps. Experiments conducted on three different real-world
series datasets demonstrate that our method significantly outperforms
the state-of-the-art models, especially in autocorrelation series corpus.

Keywords: Time series forecasting · Temporal convolution network ·
Point context similarity

1 Introduction

Time series forecasting task involves using historical information predicting fea-
ture timestamps values which applies to many real-world scenarios from traffic
speed forecasting in the intelligent transportation systems to stock price predict-
ing in the market decision and long-term energy demand forecasting in resource
management. Moreover, we also have witnessed the success of deep learning
in time series forecasting task [2], especially in big-data temporal series due
to their capacity to extract complex patterns automatically without laborious
hand-crafted features [16].
c© Springer Nature Switzerland AG 2020
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Previous empirical studies have demonstrated that deep learning-based algo-
rithms outperform traditional algorithms such as ARIMA model [15] and convo-
lutional architectures such as TCN can outperform recurrent canonical networks,
e.g., LSTM in multiple time series datasets [6,11]. Moreover, several hybrid
TCN approaches, e.g., Multi-Stage TCN (MS-TCN), Ensemble Empirical Mode
Decomposition-Temporal Convolutional Network (EEMD-TCN) and Temporal
Graph Convolutional Network (T-GCN) are better than TCN and other deep
recurrent models cross a diverse range of tasks and datasets [4,22].

Most deep learning approaches suffer from the insufficient ability to capture
the local information and seasonality features in series adequately. As the trend
and seasonal patterns are ingredients that frequently occur in time series, which
can impact future outcomes, periodic features extracted from trend and season-
ality can be in close reflection with the corresponding series. Although TCN
architecture filters larger area by enlarging the number of layers to get more
receptive fields to achieve significantly longer for training, their abilities to pick
up on seasonality and trends and to adapt series-specific features are insufficient
due to the unbiased sampling.

In particular, the influence of points in various time periods is different.
Therefore, the intuitive idea is to give the points in the series different weights
that could be integrated during the learning process to discover the seasonality
and trends. To comprehensively take the seasonal information into consideration,
we develop LS-TCN, in which the sub-segment of seasonality is represented as a
local context. The network can extract periodic knowledge for every point and
fuse it with the original series.

The key contributions of this paper include:

– We propose a mechanism to fetch the importance features of every point
under its micro-context condition, which considers both seasonality of global
series and its local neighbors. Various and sweeping methods are adopted to
compute the correlation between the sample and target area in corpora.

– We propose a novel model LS-TCN to leverage both micro-context sensitiv-
ity and global longer periodic dependencies which does not need additional
features but only utilizes generated decomposition features by the series itself.

– We conduct experiments on multiple real-world datasets to demonstrate that
the model has a better capability of capturing patterns of the series as well
as making more robust forecasting.

2 Related Work

2.1 Time Series Forecasting

Time Series forecasting is a significant task in machine learning. Furthermore,
time series exists in every aspect of life—for instance, traffic flow, company
revenue, stock index, and so on. An extensive amount of data can be regarded
as a time series.
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As deep learning is gaining popularity in recent years, lots of sophisticated
neural networks are applied to time series forecasting, including LSTM [5] and
WaveNet [1] which was initially designed for audio generation [13]. Meanwhile,
the attention mechanism is applied to time series forecasting tasks as well [9].

Most methods based on TCN simply rely on the dilation convolution with a
growing receptive field to capture longer temporal dependencies, which ignores
the local periodic characteristics of the convolution features [21]. Therefore a
method that can capture the locality at a point level to have better performance
is required.

2.2 Series Significance Representation

Dynamic time warping was a widely used technique for time series similarity
measure [3], even though it has excellent performance and can get high accuracy,
the time consumed may be computationally expensive, which leads to a method
that segment the series first and extract features in order to balance between the
computational cost and accuracy [10]. Discrete wavelet transformation (DWT)
[19] compresses the time series [8] and projects the signal into a tiling of the
time-frequency plane for feature extraction [14].

The detection of periodic patterns in time series contributes to forecasting
tasks. Using suffix trees as the underlying data structure can discover the period-
icity [7]. Meanwhile, date-compensated discrete Fourier transform (DCDFT) is
shown as a powerful tool for identifying periodic components [20]. Other network-
based methods can capture the periodicity as well as processing the noise [18].

3 Framework

To address the short and long term time series forecasting problem, We propose
a novel framework that is based on fusing seasonal features with local context
to help better capture semantic features. Figure 1 shows the architecture of our
neural network model.

Specifically, we first determine the size of the sliding window in order to
sample the contexts properly. Then we sample the series into segment levels
to obtain contexts. The micro-context represents a sub-segment characteristic
of the seasonality of the series. Then we can extract local sensitivity features
by estimating micro-contexts pair by pair. We use causal convolution to make
sure the dimension of the series after each layer consistent. We stack dilated
convolution layers to capture longer periodic local sensitivity information and
learn valid periodic features. The whole framework of LS-TCN is trained in an
end-to-end manner. Next, we introduce each module of LS-TCN in detail.

3.1 Optimal Sampling for Contexts Generation

Given a time series X = {x1, x2, x3, ..., xn−1, xn, xn+1}, where n + 1 denotes the
total length of the series and xi+1 ∈ X denotes the next timestamp value of the
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Fig. 1. The architecture of our model. In this case, the size of the sliding window W
is 2. Here y denotes the ground-truth value of the next point. In the sampling process,
The closest W points form the target context Xt and X2 is the second micro-context.
Sensitivity fusion captures the periodic local dependencies and fuses the prior knowl-
edge with the original series. The detail of the sensitivity fusion layer will be illustrated
in Sect. 3.3. The receptive fields grow exponentially as the layer goes deeper, enabling
the dilated convolution to uncover local patterns. After the propagation through a
dense layer, the network forecasts a value ŷ. The last full connection reflects that the
point weights vary.

series. We define the micro context :

Xi = {xi−W
2

, ..., xi−1, xi+1, ..., xi+W
2

}, (1)

where i ∈ [1, n + 1]. For each point xi ∈ X , we treat its neighbors with window
W as a context to represent local features. If the length of a micro context is less
than |W |, we use zero-padding to maintain the same input length. Meanwhile,
we define the target context :

Xt = {xn−W+1, ..., xn−1, xn}, (2)

where we denote the closest |W | points to xi+1 since they may have a more
substantial influence on the forecasting result.

In order to compute the importance of points in the series, the first step is
to select proper contexts. Here |W | denotes the size of the sliding window of a
context that represents the local features. We use moving average and autocor-
relation coefficient methods to calculate the optimal window W , thus enhance
the ability of the network to capture periodic trend features.

First, we determine W by the moving average method, which is a low-pass
filter and could filter out the high-frequency disturbance in time series. For
each point xi ∈ X , to measure the percentage deviation between Xt and Xi,
we compute the mean absolute percentage error(MAPE) as a metrics by simple
moving average model(SMA) under various window size, ranged from 1 to n.
The SMA in computed by:

SMA(X , k) =

∑k
j=1 xi−j+1

k
, (3)
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we assume k is the most suitable size for sliding window and k should satisfy
that the MAPE of SMA is minimum for all i.

Then, the second strategy is to compute the autocorrelation coefficient by
sliding window W . If the values of the series that occurred closer together in
time have higher similarity than that occurred further apart in time, it indicates
that the series is autocorrelated. We calculate the autocorrelation coefficient:

ρt =
∑n−t

i=1 (xi − x)(xi+t − x)
∑n

i=1 (xi − x)2
, (4)

where x refers to the mean value of the context and the autocorrelation coefficient
indicates the degree to which two different contexts interact with each other.
Then we select t when ρt is maximum. Since k and t are different, the final size
of window w is token into account both suitable values, such as weighted ranking
algorithms.

Eventually, there will be 1 target context and n micro contexts. The target
context can be represented as a target vector Vt ∈ R

1×W , and all micro contexts
can be represented as a vector Vs ∈ R

n×W .

3.2 Integration of Context Significance Features

After obtaining the micro contexts that represent the semantics, the next step is
to integrate the significance features of each context by comparing the context
Xi and target context Xt by the following three methods:

Value Square Deviation(VSD):

V SD(Xi,Xt) =

∑|W |
j=1(Xij − Xtj)2

|W | , (5)

where |W | represents the sliding window size; Xij refers to the j-th value of
micro context Xi; Xtj corresponds to the j-th value of target context Xt. VSD
measures the average square deviation between two contexts.

Value Mean Deviation(VMD):

V MD(Xi,Xt) =

∑|W |
j=1 |Xij − Xtj |

|W | , (6)

VMD measures the average mean deviation between two contexts.

Dot Product Ratio (DPR):

DPR(Xi,Xj) =

∑|W |
j=1 Xij × Xtj
∑|W |

j=1 X 2
ij

, (7)

DPR is used to measures the ratio of the dot product between two contexts, and
the value range is [ n−2

2n−1 , 1].
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Then, all three computed importance features are integrated by concatena-
tion:

X = X ⊕ XV SD ⊕ XVMD ⊕ XDPR, (8)

where the symbol ⊕ denotes concatenation in channel dimension, X corre-
sponds to the time series after integration, XV SD refers to the VSD feature series,
XVMD is the VMD feature series, and XDPR represents the DPR feature series.

Therefore, the original series now contains additional seasonality and local
sensitivity information for every point in multiple dimension space X ′ ∈ R

4×n.

3.3 Local-Context Sensitive Convolution

After integrating the local sensitivity information with the time series, we can
extract features by the dilated convolution layers.

Step 1: Sensitivity Fusion. At this step, we aim to employ sensitivity decom-
position to transform the time series to a tensor that contains the prior periodic
knowledge of the original series. Since the number of channels of the input series
may not be constant, we first compress the channels of the series through a pre-
process causal convolution layer before sensitivity decomposition. We define the
convolution computation:

X
′
= Conv(X ,K1), (9)

where X ∈ R
nc×n refers to the series with nc channels, K1 denotes the convolu-

tion kernel with kernel size K1 ∈ R
nc×1×1.

Then we can compute context importance features of each point by the meth-
ods mentioned in Sect. 3.2 and concatenate the original series and feature series.
Now that the context features are distributed in multiple channels, we apply
another causal convolution layer to enable these features to interact with each
other. Meanwhile, it can keep the channel dimension consistent.

X ′
1 = Conv(X

′
,K2), (10)

where X ′
1 represents the local sensitive series of the 1-st layer and K2 corresponds

to the convolution kernel with kernel size K1 ∈ R
4×dc1×1 where dc1 denotes the

hidden dimension of the 1-st layer.
This process of sensitivity fusion is shown in Fig. 2.

Step 2: Temporal Convolution. At this step, we stack three dilated convo-
lution layers with dilation equal to 1, 2, 4, respectively, to enlarge the receptive
field, enabling the network to capture longer periodic local sensitivity informa-
tion. Before each dilated convolution, we fuse the sensitivity information with
the current series. Therefore, the context importance is enhanced through each
layer, guiding the network to predict based on different point weights.

X2 = Conv(X ′
1,K3, dilation = 1),K3 ∈ R

dc1×dc2×1 (11)

X ′
2 = SensitivityFusion(X2),X ′

2 ∈ R
dc2×n−1 (12)
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Causal 
Convolution

Sensitivity 
Decomposition Extension

Causal 
Convolution

reluBatch Norm Output

Fig. 2. Structure of the Sensitivity Fusion layer. The causal convolution is used for
channel transformation as well as interaction. After decomposition, we extend the
original series with the sensitivity vectors in channel direction for fusing. Note that
the dimension of the series before and after sensitivity fusion remains the same, only
except that the local periodic pattern is included.

X3 = Conv(X ′
2,K4, dilation = 2),K4 ∈ R

dc2×dc3×1 (13)

X ′
3 = SensitivityFusion(X3),X ′

3 ∈ R
dc3×n−3 (14)

X4 = Conv(X ′
3,K5, dilation = 4),K5 ∈ R

dc3×dc4×1, (15)

where X ′
i corresponds to the local sensitive series activated by the i-th sensitivity

fusion layer; Ki denotes the convolution kernel in the i-th layer, concretely,
X1 ∈ R

dc1×n and X4 ∈ R
dc4×n−7.

Step 3: Forecasting. Eventually, we propagate the learned features through
a dense layer to predict the next value of the series. Since the original series
is fused with prior local sensitive knowledge through the temporal convolution,
the points in the dense layer have different weights, which guides the network to
adjust the forecasting result to get closer to reality automatically.

4 Experiments

In this section, we first describe the experimental setup and then assess the
performance of LS-TCN the time series forecasting task comparing with several
deep learning models as baselines.

4.1 Experimental Setup

Dataset Descriptions. To compare our model and baselines in the task of
next value forecasting, we supply three public real-world sequential datasets,
including:

PEMS-BAY1: A stable dataset in the field of transportation with few noises.
The mean autocorrelation coefficient of the dataset is 0.31. The dataset contains

1 https://github.com/liyaguang/DCRNN.

https://github.com/liyaguang/DCRNN
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traffic speed collected by 325 sensors in the Bay Area of California, starting from
Jan 1, 2017, through May 31, 2017. We aggregate traffic speed into 5 min interval
with size 1000 × 92.

SML20102: Dataset collected from a monitor system that corresponds to
approximately 40 days of monitoring data. The dataset has strong periodicity,
and the autocorrelation coefficient is 0.68. We aggregate the temperature data
into 15 min intervals. There are 4048 points in total, and we use the first 2800
for training, the rest for validation.

NASDAQ1003: We use a subset MSFT of the full NASDAQ100 stock dataset,
which includes 105 days’ stock data starting from July 26. The dataset has
a regular periodicity with the autocorrelation coefficient being 0.31, and the
fluctuation is small.

All datasets have been applied Z-Score normalization and split into training
set (60%), validation set (20%) and test set (20%) in chronological order.

Comparison with the Baseline Methods. To prove the validity of the pro-
posed approach, we compare the following forecasting methods:

LSTM [12]: A commonly used model implements a gated system that controls
neural information processing. We set hidden dimension dh = 10 with one layer
stacked;

WaveNet [13]: A seminal CNN model that has been generalized for broader
sequence modeling problems. We set residual channel 32; skip channel 128 with
layer K = 4 for each block; three blocks stacked in total;

Transformer [17]: A model that comprises a sequence of encoders with the
self-attention mechanism. We set eight layers in total; query size q = 32; value
size v = 32; hidden dimension dh = 256; attention window size 32; dropout rate
β = 0.3. The rest of parameter settings remained the same as in the original
paper;

TCN [11]: A convolutional architecture which is autoregressive, able to process
sequences of arbitrary length. Three dilated convolution layers stacked; each
layer has the kernel size 2 and stride 1.

LS-TCN: Parameters of our model are provided in Table 1. The source code of
our implementation is available at Github4.

Evaluation Metrics. To measure the effectiveness of different time series fore-
casting methods, we utilize the following evaluation metrics:

2 https://archive.ics.uci.edu/ml/datasets/SML2010.
3 http://cseweb.ucsd.edu/∼yaq007/NASDAQ100 stock data.html.
4 https://github.com/NewWesternCEO/LS-TCN/.

https://archive.ics.uci.edu/ml/datasets/SML2010
http://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html
https://github.com/NewWesternCEO/LS-TCN/
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Table 1. LS-TCN parameter settings

Learning rate λ 0.001 Weight decay 0.0001 Batch size 256

Dilation factors [1,2,4] Sliding window size W 4 Extend dimension 4

Dense layers 2 Units in dense layers [73, 12] Kernal size 2

Mean Absolute Percentage Error(MAPE):

MAPE(y, ŷ) =

∑n
i=1

∣
∣
∣yi−ŷi

yi

∣
∣
∣

n
× 100%, (16)

where y refers to the ground-truth value, and ŷ denotes the predicted value.
MAPE is used to measure the relative errors, often reported as a percentage.

Mean Absolute Error(MAE):

MAE(y, ŷ) =
∑n

i=1 |yi − ŷi|
n

, (17)

MAE is used to measure the average absolute error between the predicted value
and the ground-truth value.

Root Mean Square Error(RMSE):

RMSE(y, ŷ) =

√
∑n

i=1 (yi − ŷi)
2

n
, (18)

RMSE is applied to measure the deviation between the predicted value and the
ground-truth value. RMSE is more sensitive to outliers.

All the compared models are trained and tested multiple times to eliminate
outliers, and the results are averaged to reduce random errors.

4.2 Forecasting Performance Evaluation

Table 2 provides the average forecasting error averaged over 10 runs on the
PEMS-BAY traffic dataset, where the best results are highlighted and the
second-best results are underlined.

Table 2. Performance evaluation of PEMS-BAY traffic dataset

Methods 15min 30min 1 hour

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

LSTM(Malhotra et al. 2015) 7.54% 3.13 6.00 7.60% 3.23 6.06 8.34% 3.62 6.61

WaveNet(van den Oord et al. 2016) 17.90% 7.26 11.52 17.88% 7.25 11.47 18.05% 7.24 11.54

Transformer(Vaswani et al. 2017) 10.98% 6.34 10.98 14.70% 6.16 10.48 13.73% 6.01 9.98

TCN(Liu et al. 2019) 7.11% 3.97 5.01 7.56% 4.17 5.36 9.05% 4.72 6.31

LS-TCN 3.81% 1.84 3.37 4.42% 2.07 4.42 5.58% 2.55 5.09
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Fig. 3. Variance estimation of 10 runs on the PEMS-BAY dataset. For each box in
the figure, the vertical line in the middle denotes the mean value, the vertical line on
the left indicates the minimum value. In contrast, the one on the right denotes the
maximum value. And the notch denotes the confidence interval.

The 1-h forecasting results of the mean and confidence interval of MAPE of
10 runs on the PEMS-BAY dataset is shown in Fig. 3. The LS-TCN not only
has achieved lower forecasting error than all the compared methods but also has
lower variance and more excellent stability than the original TCN. The short-
term forecasting of LS-TCN outperforms the long-term forecasting since it can
capture the local features better in the former case.

Table 3 provides the average 12-point forecasting error averaged over 10 runs
on all three series datasets, where the best results are highlighted and the
second-best results are underlined.

In order to observe the influence between seasonality of series and effec-
tiveness of our module, we calculate the autocorrelation value of these three
datasets. The results are 0.31 for PEMS-BAY, 0.68 for SML2010 and 0.31 for
NASDAQ100. According to the results in Table 3, We note that LS-TCN has
better performance than other baselines in PEMS-BAY and SML2010, where
observations occur at different points are more similar. By contrast, LS-TCN
is not so good in RMSE value than LSTM in those data whose seasonality is
not so related as NASDAQ100. Therefore, our LS-TCN is more suitable in these
seasonal and serial correlation series.

Table 3. Performance evaluation of 12-point forecasting on three datasets

Methods PEMS-BAY SML2010 NASDAQ100

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

LSTM(Malhotra et al. 2015) 8.34% 3.62 6.61 9.28% 1.64 2.07 0.99% 0.58 0.74

WaveNet(van den Oord et al. 2016) 18.05% 7.24 11.54 12.47% 2.59 2.99 6.52% 3.83 4.09

Transformer(Vaswani et al. 2017) 13.73% 6.01 9.98 15.43% 2.57 3.46 2.28% 1.34 1.64

TCN(Liu et al. 2019) 9.05% 4.72 6.31 7.75% 1.61 1.84 1.16% 0.74 0.95

LS-TCN 5.58% 2.55 5.09 5.79% 1.21 1.54 0.67% 0.39 1.01
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5 Conclusion

In this paper, we focus on how to decompose long, complex series into periodic
trends, seasonality in micro context view, and calculate the importance of each
point in series. We propose a Local-Context Sensitive Temporal Convolution
Network framework called LS-TCN, fusing local and global features to learn
the pattern of the fluctuation and enhance performance validly. Experiments in
three real-world datasets are demonstrated that our model can achieve promis-
ing better results in short and long term forecasting than other deep learning
methods, especially in those autocorrelation data. In the future, we will work
on how to integrate more robust and accurate features via the seasonal-trend
decomposition approach into classical deep sequence models and promote the
neural network architecture as well.

Acknowledgments. Funding support for this research was in part provided by Zhe-
jiang Department of Education (No.Y20194137).
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Abstract. The adversarial vulnerability of deep networks has spurred
the interest of researchers worldwide. Unsurprisingly, like images, adver-
sarial examples also translate to time-series data as they are an inherent
weakness of the model itself rather than the modality. Several attempts
have been made to defend against these adversarial attacks, particu-
larly for the visual modality. In this paper, we perform detailed bench-
marking of well-proven adversarial defense methodologies on time-series
data. We restrict ourselves to the L∞ threat model. We also explore
the trade-off between smoothness and clean accuracy for regularization-
based defenses to better understand the trade-offs that they offer. Our
analysis shows that the explored adversarial defenses offer robustness
against both strong white-box as well as black-box attacks. This paves
the way for future research in the direction of adversarial attacks and
defenses, particularly for time-series data.

Keywords: Time-series · Deep learning · Adversarial attacks ·
Adversarial defenses

1 Introduction

Time-series data is ubiquitous in this era of internet-of-things (IoT) and indus-
try 4.0 where millions of sensors are generating data at an extremely high fre-
quency [5,8,9,11]. With this increasing amount of data, there has been a wide-
scale deployment of deep models for time-series analysis. Deep learning models
have proven to be susceptible to changes in the input which can significantly
alter the predictions of the classifier [12]. This raises a serious concern over the
real-world deployment of these models. This vulnerability has been particularly
explored in the context of images [2,6,10,12].

A similar vulnerability exists also in the context of other modalities as this
is primarily a weakness of the current learning paradigm rather than the modal-
ity [12]. Since many of the time-series models are deployed security-critical sce-
narios, there has been an increasing interest regarding the robustness of these
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models [5,8,9,11]. Therefore, gradient-based attacks prevalent in the computer-
vision community have also been translated to time-series data [5,9,11].

Various defenses have been proposed to circumvent this adversarial vulner-
ability [10,14,15]. Some of these defenses are specific to the visual modality,
while a wide range of literature has been focused on either training on these
adversarial examples or adding an additional regularization term that forces the
predictions to be consistent within a specific neighborhood of the example. In
this paper, we employ some of the most well-recognized defense methodologies
tested on images and evaluate their robustness for time-series data to establish
a proper benchmark.

2 Related Work

Adversarial examples were first discovered by Szegedy et al. (2013) [12] as a
consequence of trying to solve an inverse optimization problem. Since then, a
wide range of literature has focused on this security aspect including both devel-
opment of more sophisticated defenses as well as advances in attacks in order to
break these defenses.

Adversarial attacks can be mainly categorized into two different categories
namely white-box attacks and black-box attacks. White-box attacks assume
access to model architecture and parameters, therefore, they can effectively and
efficiently attack the model using the gradient information. Black-box attacks,
on the other hand, require access to either the output probabilities or even just
the label, making them more applicable in real-world settings. However, black-
box attacks usually require thousands or even millions of queries to the model
to compute just a single adversarial example.

Szegedy et al. (2013) [12] presented the first adversarial attack based on box-
constrained L-BFGS to mine adversarial examples. Goodfellow et al. (2014) [6]
proposed a fast version of the attack by assuming the linearity of classifiers
around the input. With this assumption, they were able to use a single step attack
based on the gradient which they named Fast Gradient-Sign Method (FGSM).
Madry et al. (2017) [10] proposed an iterative version of FGSM with a random
restart which they named Projected Gradient Descent (PGD) and claimed it to
be an optimal first-order adversary. Another famous attack is Carlini-Wagner [4]
attack. However, this is mainly designed for L2 norm-based attacks while we
only focus on L∞ norm-based attacks in this paper. Boundary attack [2] intro-
duced by Brendel et al. (2017) formed the basis for decision-based attacks where
the attacker assumes access only to the output label. SIMple Black-box Attack
(SIMBA) [7] proposed by Guo et al. (2019) greatly simplified the attack pipeline
by assuming access to the output probabilities of the model. The attack mines
adversarial examples by just randomly perturbing pixels if they have a negative
impact on the output probability.

As attacks have progressed, more and more sophisticated methods have been
developed to defend against these attacks. However, most of these attacks were
either shown to be masking the gradient or poorly tested [1]. One of the most
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effective methods to defend against adversarial attacks is PGD-based adver-
sarial training [10]. The robust model is trained on the generated adversarial
examples rather than the original inputs in this case. As PGD is one of the
most powerful white-box attacks, PGD-based adversarially trained models were
shown to be significantly superior in terms of robustness as compared to other
techniques [1,10]. Zhang et al. (2019) [15] proposed TRADES which uses an
additional regularization term along with the conventional cross-entropy loss
that minimizes the discrepancy between clean and adversarial predictions. Fea-
ture denoising [14] proposed by Zie et al. (2019) introduced additional denoising
operators in the network. The whole network was then trained using adversarial
training [10]. The idea was based on minimizing the discrepancy between the
feature maps of a clean and adversarial example. A large fraction of adversar-
ial defense literature has been focused on provable defenses that provide for-
mal guarantees against the worst-case adversary. However, they are usually pro-
hibitively slow and unable to scale to large datasets [13]. We don’t include these
methods in our comparison and leave it as future work.

Minor efforts have also been made in terms of extending these attacks for
time-series data. Siddiqui et al. (2019) [11] showed that gradient-based adversar-
ial attacks were effective for both time-series classification as well as time-series
regression networks. Fawaz et al. (2019) [5] analyzed a range of different time-
series datasets and showed that deep models trained on time-series data are
vulnerable to adversarial attacks. Both these papers only explore the vulnerabil-
ity of networks, which is not surprising given that adversarial attacks exploit the
machine learning optimization framework, rather than a specific modality [6].
Karim et al. (2020) [9] and Harford et al. (2020) [8] employed Gradient Adver-
sarial Transformation Network (GATN) for attacking models. Since they also
considered classical time-series models that are non-differentiable, they used a
knowledge distillation approach to train a student network mimicking the predic-
tions of the original classifier. Therefore, what they explored were just transfer
attacks which are a rather weak form of black-box attacks. On the other hand,
we evaluate using both the strongest white-box as well as black-box attacks to
truly establish the robustness of the evaluated defenses. Our work specifies a
proper threat model when evaluating against attacks as well as considers both
strong white-box and black-box attacks which haven’t been explored in the con-
text of time-series data. Therefore, we not only benchmark adversarial defenses
but also establish a benchmark for strong adversarial attacks to be considered
for future work which has been missing in the prior work [3].

3 Method

3.1 Threat Model

The threat model specifies the conditions under which the considered defense
is designed to be secure [3]. We consider L∞ threat model and use an epsilon
of 0.3 for training robust models. There are no box-constraints for time-series
data due to their variable input range in contrast to the visual modality where
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the pixels take on a discrete value from [0, 255]. Therefore, in our case, the data
was normalized with zero-mean and unit standard deviation which justified the
choice of 0.3 as the epsilon value.

3.2 Adversarially Robust Models (using Adversarial Defenses)

A robust model is a model which is robust against these minor corruptions of
the input signal. A robust model is usually obtained by training a model with
a particular adversarial defense methodology. There is a very wide range of
literature on the topic of adversarial defenses. However, most of these defenses
were shown to be broken by a stronger attack [1]. Therefore, we only explored
defenses that withstood these attacks when evaluated on images. We will now
discuss each of the evaluated defenses in detail.

Adversarial Training. Madry et al. (2017) [10] proposed a robust optimization
algorithm which they named as adversarial training. Adversarial training is one
of the most simple and widely accepted adversarial defenses in the literature.
The idea is to just train a classifier on the attacked examples rather than the
original ones. As the model inherently learns to be robust to these attacks during
training, this naturally re-configures the decision boundaries of the network.

w∗ = arg min
w

arg max
x′∈Bp(x,ε)

L(Φ(x′;w), y′)

where y′ indicates the model’s prediction on the input x. The maximization
problem is approximately solved by generating an adversarial example using the
PGD attack which is considered to be the optimal first-order adversary [10].
The biggest advantage of adversarial training is that there are no additional
hyperparameters making model training very easy and convenient.

TRADES. Zhang et al. (2019) [15] introduced TRADES which smoothens the
predictions of the classifier around the input by employing an additional term
in the final objective alongside the conventional cross-entropy.

w∗ = arg min
w

{
LCE(Φ(x;w), y) + arg max

x′∈Bp(x,ε)

LKL(Φ(x;w), Φ(x′;w))/λ
}

where LCE represents the conventional cross-entropy loss on clean data while
LKL computes the KL-divergence between the logits obtained from the original
example and the computed adversarial example. The maximization problem is
again approximately solved by generating an adversarial example using the PGD
attack. TRADES introduces an additional hyperparameter λ which controls the
trade-off between clean accuracy and adversarial robustness.
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Feature Denoising. Xie et al. (2019) [14] introduced the idea of feature denois-
ing based on their observation that the feature maps computed for an adversarial
example are significantly noiser than the ones computed for the original image.
Therefore, in order to circumvent this problem, they used denoising operators
before max-pooling layers in their network. They compared different denoising
operators, and found Gaussian Non-Local Means (GNLM) to be the most effec-
tive one. This can be represented as:

yi =
1∑

∀j∈N f(xi, xj)

∑
∀j∈N

f(xi, xj) × xj

where yi denotes the ith output, N denotes all the spatial locations on the
feature map and f(xi, xj) captures the similarity between xi and xj . Since we
use the Gaussian version of non-local means, the similarity function is given
by f(xi, xj) = e

1√
d

θ(xi)
tφ(xj) where θ(xi) ∈ R

64 and φ(xj) ∈ R
64 represents two

embedded versions of the input implemented via 1×1 convolution, and d denotes
the number of channels. Based on their findings, we also introduce an additional
GLNM denoising layer before every pooling layer in all of our networks. Since
this denoising layer is also learned during adversarial training, we compare it’s
impact when training the model using different adversarial defense techniques.

3.3 Robust Evaluation (using Adversarial Attacks)

The aim of robust evaluation is to precisely identify the robustness of the trained
robust model. Carlini et al. [3] provided comprehensive guidelines to evaluate
robust models in order to avoid pitfalls which prior defense methods could not
avoid, providing a false sense of security. For this reason, we included two major
black-box as well as two major white-box attacks to compare. In total, we used
5 different attacks, where one black-box attack i.e. noise attack is a rather weak
attack, but serves as a trivial baseline.

Evaluation Metric
There are many different choices when evaluating robust models. This includes
the input examples to consider as well as the target to use for computing the
adversarial example. In our case, we compute robust accuracy on all examples
regardless of whether they were correctly classified or not. We always conduct
attack using the original labels instead of the model’s prediction in order to
ensure that the attack does not mistakenly move an incorrectly classified exam-
ple to a correct class, providing a false sense of robustness. However, regardless
of the choice of this metric, the key takeaways from our experiments still remain
the same. We evaluate robustness using untargeted attacks as they can be con-
sidered worst-case adversaries. Targeted attacks are usually much more relevant
in practice but harder to find as compared to untargeted attacks.

White-box Attacks

FGSM [6]: Goodfellow et al. (2014) [6] posited that the lack of robustness
of deep models is due to their linear nature. Therefore, they used this linear
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approximation to develop a Fast Gradient-Sign based attack Method (FGSM)
which takes just a single step in the direction pointed by the gradient.

xa = x + ε sign
( ∂

∂x
L(Φ(x;w), y)

)

where y can either be the original label or the model’s prediction, and sign
returns the sign of the gradient. We used 100 random restarts for FGSM-100
and picked the best adversarial example from these 100 restarts.

PGD [10]: Projected-Gradient Descent (PGD) is an iterative version of FGSM
with an additional random restart.

x(t+1)
a = Clipx,ε

{
x(t)

a + α sign
( ∂

∂x(t)
a

L(Φ(x(t)
a ;w), y)

)}

where α is per-step update size, Clipx,ε binds the L∞ norm of the perturbation
to be ε, and x(t)

a indicates the adversarial example obtained after the tth opti-
mization step. In the case of PGD, x(0)

a = x+δ where δ is a random perturbation
within the L∞ norm-ball. We used 10 random restarts for PGD-10 and picked
the best adversarial example from these 10 restarts. Each every restart, we use
100 PGD steps with α = 2 × ε/T where T is the number of PGD steps.

Black-box Attacks
Noise Attack: One of the most simple and preliminary attacks is the random
noise attack. The idea is to generate a set of random vectors and pick the best
one out of them. We used a set of 100 random vectors for NOISE-100.

Boundary Attack [2]: Boundary attack was the first decision-based attack. It
starts with a random input that is not classified as the given label y and walks
towards the original input until it hits the decision boundary. At this point, the
attack starts moving orthogonal to the decision boundary until it encounters the
closest attainable point to the given example x. Boundary attack minimizes the
L2 norm of perturbation, therefore, it is not particularly optimized for the L∞
models that we consider in our case. In order to compute the robust accuracy
metric that we report, we compute the L∞ norm of the computed perturbation
and then discard any perturbations which exceed this budget. Therefore, in many
cases, although being a powerful attack when considering euclidean distances, it
does not provide high success rates when evaluated on L∞ norm.

Simple Black-box Attack (SIMBA) [7]: SIMBA is one of the most simple
black-box attacks which uses the predicted probabilities from the classifier to
decide the perturbation vector. SIMBA attack considers all of the input points
in the sequence and computes their impact on the probability of the predicted
class if perturbed by either {−ε, ε}. It then chooses perturbation, whichever
maximally reduces the probability of the predicted class. If the probability of
the predicted class is not impacted by the chosen input point, the attack leaves
it intact, hence, it also minimizes the L0 norm of the perturbation. The number
of input points queried to compute the adversarial example is restricted when
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considering high-dimensional images in order to make the attack time efficient.
However, we did not impose any such restrictions as the number of points in a
sequence is usually smaller in contrast to the number of pixels in an image.

3.4 Dataset

Due to lack of space, we only present results on the famous character trajecto-
ries dataset1. We also experimented with several other datasets and found the
results to be consistent between these different datasets. The character trajecto-
ries dataset contains hand-written characters using a Wacom tablet. Only three
dimensions are kept for the final dataset which includes x, y and pen-tip force.
The sampling rate was set to be 200 Hz. The data was numerically differenti-
ated and Gaussian smoothen with σ = 2. The task is to classify the characters
into 20 different classes. This dataset is comprised of 2858 character samples
divided into 1383 training, 606 validation and 869 test sequences. Each sequence
is comprised of 206 time-steps with three channels. Since we need to constrain
the input range for precisely defining the epsilon norm-ball to consider within
our attack and defense framework, we normalize the data to have zero mean and
unit standard deviation.

(a) CT (b) AT [10] (c) TR [15]

(d) CT + GNLM [14] (e) AT [10] + GNLM [14] (f) TR [15] + GNLM [14]

Fig. 1. Adversarial robustness curves computed for the different robust models using
five different attacks. CT stands for conventional training, AT stands for adversarial
training, TR stands for TRADES, and GNLM stands for Gaussian Non-Local Means.

4 Results

Our main results are presented in Fig. 1. We report the robust accuracy of the
classifier considering different attack methods on a range of different epsilon val-
ues starting from 0.05 to 0.3 with an increment of 0.05. These plots precisely
1 https://archive.ics.uci.edu/ml/datasets/Character+Trajectories.

https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
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capture the robustness of the model against adversarial attacks of different mag-
nitudes. Since we trained a range of different TRADES models using different
values of 1/λ, we only report the best one out here, and explore the impact of
these hyperparameters later in Sect. 4.2. It is evident from the plot that conven-
tional training results in poor robustness against these attacks, almost reducing
the classifier’s accuracy to 0% when considering the worst-case adversary. How-
ever, when using defense methodologies such as adversarial training or TRADES,
the model gains robustness against both white-box as well as black-box attacks
with a slightly detrimental effect on the clean accuracy of the model.

(a) 1/λ = 0.01 (b) 1/λ = 0.01 + GNLM (c) 1/λ = 0.05

(d) 1/λ = 0.05 + GNLM (e) 1/λ = 0.1 (f) 1/λ = 0.1 + GNLM

(g) 1/λ = 0.5 (h) 1/λ = 0.5 + GNLM (i) 1/λ = 1.0

(j) 1/λ = 1.0 + GNLM (k) 1/λ = 5.0 (l) 1/λ = 10.0

Fig. 2. Impact of hyperparameters on the robustness curves for TRADES.

4.1 Quantifying the Impact of Denoising Operators

Figure 1 also presents a comparison of using Gaussian Non-Local Means (GNLM)
as a denoising operator alongside the use of different training schemes. Using
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Table 1. Clean accuracy of the different models

Defense 1/λ Denoising operator Train accuracy Test accuracy

- - - 100.00% 98.16%

- - GNLM [14] 100.00% 97.35%

Adversarial Training [10] - - 99.13% 95.40%

Adversarial Training [10] - GNLM [14] 98.70% 94.71%

TRADES [15] 0.01 - 99.49% 95.63%

TRADES [15] 0.01 GNLM [14] 99.93% 97.93%

TRADES [15] 0.05 - 99.71% 97.47%

TRADES [15] 0.05 GNLM [14] 99.57% 98.39%

TRADES [15] 0.1 - 99.42% 97.70%

TRADES [15] 0.1 GNLM [14] 99.71% 97.81%

TRADES [15] 0.5 - 99.13% 95.86%

TRADES [15] 0.5 GNLM [14] 89.08% 90.10%

TRADES [15] 1.0 - 98.77% 95.05%

TRADES [15] 1.0 GNLM [14] 98.70% 95.05%

TRADES [15] 5.0 - 96.02% 90.10%

TRADES [15] 5.0 GNLM [14] - -

TRADES [15] 10.0 - 92.99% 88.61%

TRADES [15] 10.0 GNLM [14] 93.42% 87.46%

denoising operator with conventional training results in inferior adversarial per-
formance along with inferior clean accuracy (98.16% vs 97.35%) since the fea-
tures are not optimized for this denoising operator. There is a slight drop in
clean accuracy when switching from adversarial training to adversarial train-
ing with a denoising operator (95.40% vs 94.71%) alongside a minor drop in
terms of robustness. This drop in robustness is primarily a consequence of the
initial drop in clean accuracy as our evaluation metric is directly impacted by
such changes. This drop is permissible for ImageNet classifiers where the accu-
racy even after adversarial training is only 35% [14]. However, for time-series
datasets where the initial accuracy is already high, GNLM shows a detrimental
effect on performance.

In contrast, when using TRADES, the accuracy of the classifier remains
the same with and without the denoising operator. The denoising operator also
positively impacts the robustness of the model. In comparison to adversarial
training, there is no impact on clean accuracy when using TRADES with 1/λ =
1.0. Table 1 summarizes the clean accuracies of the model under different settings
for a direct comparison.
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4.2 Sensitivity to Regularization Hyperparameters

Figure 2 visualizes the robustness curves for different values of the hyperparam-
eter 1/λ used when training the robust model using TRADES. We also list the
clean accuracies of the models in Table 1 for a direct comparison. It is evident
from the table and the figure that higher regularization leads to lower clean
accuracy as expected alongside higher robustness against adversarial attacks. It
is important to note that the network failed to converge in many cases when
using 1/λ > 1.0 and GNLM denoising operator.

(a) NOISE-100 (b) FGSM-100 [6] (c) PGD-10 [10]

(d) Boundary [2] (e) SIMBA [7]

Fig. 3. Generated adversarial examples using an ε of 0.3. The original signal is highlight
using a solid line while the attacked signal is represented using different line styles. The
shaded area highlights the difference between the two signals.

4.3 Attacked Examples

Figure 3 presents a particular example from the character trajectories dataset
on the undefended model. We visualized examples generated from a rather high
value of epsilon i.e. 0.3. This is to ensure that the differences between different
attacks are properly highlighted. It is interesting to note that all attacks changed
the label to the same target class 3 indicating that the two classes are similar
in the feature space. Almost all attacks exhausted the L∞ perturbation budget
except for boundary and SIMBA attack as boundary attack minimizes the L2

norm of the perturbation while SIMBA additionally minimizes the L0 norm of
the perturbation alongside the L∞ norm.

5 Conclusion

This paper establishes an important benchmark regarding the robustness of time-
series classification models trained using different adversarial defense techniques.
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Our analysis shows that the defenses evaluated for visual modality provide sim-
ilar robustness against adversarial attacks on time-series data.

Future work should be mainly targeted towards the evaluation of these adver-
sarial attacks for regression networks. While it is easy to quantify the impact in
terms of success rate for classification networks, this is much harder to report
when considering real-valued outputs. Another important direction is to com-
pare provable robustness methods on time-series data and evaluate their efficacy
as compared to the defenses considered here.
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Abstract. Change-point detection (CPD) aims to detect abrupt
changes over time series data. Intuitively, effective CPD over multivariate
time series should require explicit modeling of the dependencies across
input variables. However, existing CPD methods either ignore the depen-
dency structures entirely or rely on the (unrealistic) assumption that the
correlation structures are static over time. In this paper, we propose
a Correlation-aware Dynamics Model for CPD, which explicitly mod-
els the correlation structure and dynamics of variables by incorporating
graph neural networks into an encoder-decoder framework. Extensive
experiments on synthetic and real-world datasets demonstrate the advan-
tageous performance of the proposed model on CPD tasks over strong
baselines, as well as its ability to classify the change-points as correlation
changes or independent changes.

Keywords: Multivariate time series · Change-point detection · Graph
neural networks

1 Introduction

Change-point detection (CPD) aims to detect abrupt property changes over
time series data. In this study, change-points are detected through the changes
of dynamics and correlation of variables. Dynamics refers to the physical prop-
erty that determines a variable’s modus operandi and correlation describes the
interactions between variables. Previous CPD methods [1,2] model dynamics by
parametric distributions like Hidden Markov Models (HMM), but they don’t
explicitly capture the correlation information. Other works capture static corre-
lation structures in the multivariate time series [3], but they can’t detect any cor-
relation changes. We propose a Correlation-aware Dynamics Model for Change-
point Detection (CorD-CPD) which incorporates graph neural networks into
an encoder-decoder framework to explicitly model both changeable correlation
structure and variable dynamics. We refer to the changes of correlation structure
as correlation changes and the changes of variable dynamics as independent
changes, as shown in Fig. 1.
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Our model is capable of distinguishing the two types of changes, which could
have a broader impact on decision-making. In financial markets, traders use pair
trading strategy to profit from correlated stocks, such as Apple and Samsung
(both are phone sellers), which share similar dips and highs. News about Apple
expanding markets may independently raise its price without breaking its cor-
relation with Samsung. However, news about Apple building self-driving cars
will break its correlation with Samsung, and establish new correlations with
automobile companies. While both of them are change-points, the former is an
independent change of variables and the latter is a correlation change between
variables. Knowing the type of change can guide financial experts to choose
trading strategies properly.

Fig. 1. (Left) an independent change of one
variable and (Right) a correlation change
between two variables. The red vertical line
is the labeled change-point.

Our contributions can be summa-
rized as follows:

– We propose CorD-CPD to cap-
ture both changeable correlation
structure and variable dynamics.

– Our CorD-CPD classifies the
change-points as correlation changes
or independent changes, and ensem-
bles them for robust CPD.

– Experiment on synthetic and real
datasets demonstrates that our
model can bring enhanced inter-
pretability and improved perfor-
mance in CPD tasks.

2 Method for CPD

A multivariate time series is denoted by x ∈ RT×N×M , where T is the time
steps, N is the number of variables and M is the number of features for each
variable. We study the CPD problem in a retrospective setting and assume there
is one change-point per x = {xj}T

j=1. The change-point at time step t satisfies:

{x1,x2, . . . ,xt−1} ∼ P

{xt,xt+1, . . . ,xT } ∼ Q

where P and Q denotes two different distributions. We attribute this difference
to a correlation change (of the correlation structure), an independent change (of
variable dynamics), or a mixture of both.

Correlation Change corresponds to the change of the correlation structure of
multivariate time series, which is modeled by correlation matrices A ∈ R

T×N×N .
At each time step, the pairwise interaction between variables (At

ij) is represented
as a continuous value between 0 and 1, indicating how much they are correlated.
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The correlation change score sr is calculated by the L1 distance between two
neighboring correlation matrices:

st
r = ‖At − At−1‖1,t > 1 (1)

Independent Change corresponds to the change of the variable dynamics.
Given the current values of time series (and the extracted correlation matrices),
if the dynamics rule is followed, the expected values of the future time steps
predicted by our model will be close to the observed values; Otherwise, the
difference will be large. This difference is used as the independent change score
sd. Formally, we use the Mean Squared Error (MSE) as a metric to compare the
expected values ŵt+1 = {x̂i}t+k

i=t+1 with the observed values wt+1 = {xi}t+k
i=t+1

over a window of size k.

st
d = MSE(ŵt,wt),t > 1 (2)

Note that if only a correlation change takes place, the expected value ŵt should
not be different from the observed value wt, since we model a conditional prob-
ability P (xt|x<t,A) and any correlation change will be factored in.

Ensemble of Change-point Scores aims to combine the correlation change
with the independent change, because in real world applications, change-points
could be resulted from a mixture of both. A simple way to ensemble them (for
sen) is to sum the normalized scores of sr and sd:

sen = Norm(sr) + Norm(sd) (3)

Norm(s) =
s − us

σs
(4)

where us and σs are mean and standard deviation of score s.
In order to use our CPD methods above, we need to model correlation matri-

ces and to be able to predict a future window of time steps based on the extracted
correlation. We will introduce our CorD-CPD in the next section.

3 Correlation-Aware Dynamics Model

The CorD-CPD has an encoder for correlation extraction and a decoder for
variable dynamics. Given a time series x, the encoder models a distribution of
correlation matrix qφ(At|x) for each time step t, and by factorization,

qφ(A|x) =
T∏

t=1

qφ(At|x) (5)

The decoder models a distribution of time steps pθ(x|A) auto-regressively,

pθ(x|A) =
T∏

t=1

pθ(xt|x<t,At−1) (6)
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Fig. 2. CorD-CPD Encoder: the encoder extracts correlation matrices from multivari-
ate time series. The temporal encoding layer captures time dependent features, and the
spatial encoding layer models relational features between variables.

The objective function maximizes the log likelihood,

Lobj = Eqφ(A|X)[log pθ(x|A)] (7)

3.1 Correlation Encoder

The encoder infers a correlation matrix At at each time step, which depends
on both temporal features and variable interactions. To leverage both sources,
we propose Temporal Encoding Layers (TEL) to extract features across time
steps and Spatial Encoding Layers (SEL) to extract features from variable inter-
actions. As shown in Fig. 2, the two types of layers are alternatively applied to
progressively incorporate temporal and correlation features into latent embed-
dings. Practically, we found 2 TEL and 1 SEL is enough for our tasks.

For each layer, let h ∈ R
T×N×K denote the input and let h̃ ∈ R

T×N×K′

denote the output, where T is the time steps, N is the number of variables, and
K,K ′ are the number of input and output features respectively. The input to
the initial layer is the multivariate time series data x ∈ R

T×N×M . The posterior
distribution of the correlation matrix is modeled by

qφ(At
ij |x) = Softmax(Linear([h̃t

(f)i; h̃
t
(f)j ]) (8)

h̃(f) = TEL2(SEL(TEL1(x))) (9)

where [·; ·] is the concatenation operator and h̃(f) is the embedding of the final
layer. As an additional trick, we apply Gumbel-Softmax [4] to enforce sparse
connections in correlation matrices in order to reduce noise.

Temporal Encoding Layer (TEL). Leverages information across T time
steps (independently for each variable). For a fixed variable i, let hi = {ht

i}t=N
t=1

denote the embeddings of that variable at all time steps. We offer two implemen-
tations of TEL with different neural architectures: RNNTEL and TransTEL.
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RNNTEL is a bidirectional GRU network [5]:

−→
hi

t =
−−−→
GRU(

−→
hi

t−1,ht
i) (10)

←−
hi

t =
←−−−
GRU(

←−
hi

t+1,ht
i) (11)

h̃t
i = [

−→
hi

t,
←−
hi

t] (12)

where
−→
hi

t,
←−
hi

t are intermediate representation from forward and backward GRU.
The output h̃t is a concatenation of embeddings from both directions.

TransTEL uses the Transformer model [6] with self-attention to capture temporal
dependencies. For the self-attention layer, the input is transformed into query
matrices Qt

i = ht
iWQ, key matrices Kt

i = ht
iWK and value matrices Vt

i =
ht

iWV . Here WQ,WK ,WV are learnable parameters. Finally, the dot-product
attention is a weighted sum of value vectors:

h̃t
i = softmax

(
QKT

√
dk

)
· V (13)

where dk is the size of hidden dimension. Similar to [6], we use residual connec-
tion, layer normalization and positional encoding for TransTEL.

Spatial Encoding Layer (SEL). Leverages the information between the N
variables (independently at each time step) via graph neural networks (GNN)
[7]. For a fixed time step t, let ht = {ht

i}N
i=1 denote the embeddings all variables

at time t. The output is obtained by

h̃t = GNN({ht
i}N

i=1) (14)

where a GNN module is implemented by the feature aggregation and combination
operations:

eij = fe([ht
i;h

t
j ]) (15)

h̃j = fv(hj +
∑

i�=j

eij) (16)

where Eq. 15 aggregates features between neighboring nodes and Eq. 16 combines
those features by a summation. fe(·) and fv(·) are non-linear neural networks
for which we provide two implementations: GNNSEL and TransSEL.

GNNSEL is implemented by a multilayer perceptron (MLP) and TransSEL

is implemented by the Transformer model. Compared with MLP, Transformer
has could be advantageous for spatial encoding because of well-designed self-
attention, residual connection and layer normalization. The positional encoding
layer is removed from Transformer because the variables are order invariant.
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3.2 Dynamics Decoder

Fig. 3. CorD-CPD Decoder: Given a cor-
relation matrix, the decoder predicts the
change of future steps.

At a high level, the decoder learns the
dynamics of variables by predicting
the future time steps to be as close
as the observed values. Instead of pre-
dicting the value of x̂t+1

i directly, we
predict the change Δx̂t

i = x̂t+1
i − xt

i

as shown in Fig. 3.
Since the prediction has to factor

in the correlation between variables,
we also need GNN to incorporate correlation matrices into feature embeddings.
Again, the feature aggregation and combination operations are performed on the
input xt,

et
ji = At

jige([xt
j ;x

t
i]) (17)

h̃t
i = gv(xt

i +
∑

j �=i

et
ji) (18)

where the functions ge(.) and gv(.) are MLPs. We model Δx̂t
i = gout(h̃

≤t
i ), where

gout(h̃
≤t
i ) can be MLP(h̃t

i) or RNN(h̃≤t
i ) depending on the application. Together,

x̂t+1
i = xt

i + Δx̂t
i = xt

i + gout(h̃
≤t
i ).

The log likelihood of density pθ(x|A) can be expressed as:

log pθ(x|A) =
T∑

t=1

log pθ(xt|x<t,At−1) (19)

=
∑

i

T∑

t=1

log N (xt
i|x̂t

i, σ
2I) (20)

∝ −
∑

i

T∑

t=2

‖xt
i − x̂t

i‖22
2σ2

(21)

Maximizing Eq. 21 is equivalent to minimizing Lobj =
∑

i

∑T
t=2

‖xt
i−x̂t

i‖2
2

2σ2 .
Since change-points are sparse in time series data, we introduce an additional

regularization to ensure the smoothness of correlation matrix:

Lsmooth =
1

T − 1

T∑

t=2

‖At − At−1‖22 (22)

Finally, the loss function is L = Lobj + λLsmooth, where λ controls the relative
strength of smoothness regularization.

4 Experiment with Physics Simulations

4.1 Particle-Spring Change-Point Dataset

We developed a dataset with a simulated physical particle-spring system. The
system contains N = 5 particles that move in a rectangular space. Some
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randomly selected pairs (out of the 10 pairs in total) of particles are connected by
invisible springs. The motion of particles are determined by the laws of physics
such as Newton’s law, Hooke’s law, and Markov property. The trajectories of
length T = 100 of the particles are recorded as the multivariate time series data.
Each variable has M = 4 features: location lx, ly and speed vx, vy.

While the physical system is similar to the one in [3], we additionally design
3 types of change-points by perturbing the location, speed, and connection at a
random time step between [25, 75]:

– location: A perturbation to the current location sampled from N (0, 0.1),
where the range of the location is [−5, 5].

– speed: A perturbation to the current speed by sampled from N (0, 0.02),
where range of the speed is [−1, 1].

– connection: re-sample connections and ensure that at least 5 out of 10 pairs
of connections are changed.

The change of location or speed (both are dynamics) belongs to the independent
change, and the change of connection (a type of correlation) belongs to the
correlation change. Since the change-point is either a correlation change or an
independent change, we are able to test the ability of our model to classify them.

We generate 500 time series for each type of change and mix them together
(totally 1500 time series) as training data. For validation and testing data, we
generate 100 time series for each type of change and evaluate on them separately.
Our model is unsupervised, so the validation set is only used for hyperparam-
eter tuning. In real world datasets, human labeled change-points are scarce in
quantity, which usually results in large variance in evaluation. As a remedy, our
synthetic data can be generated in a large amount to reduce such a variance in
testing.

4.2 Evaluation Metric and Baselines

For quantitative evaluation of CPD performance, we consider two metrics:

Area-Under-the-Curve (AUC) of the receiver operating characteristic
(ROC) is a metric commonly used in the CPD literature [8].

Triangle Utility (TRI) is a hinge-loss-based metric: max(0, 1 − ‖y−l‖
w ), where

w = 15 is the margin, l and y are the labeled and predicted change-points.
Both of the metrics range from [0, 1] and higher values indicate better predictions.
However, AUC treats the change-point scores at each time step independently,
without considering any temporal patterns. TRI considers the distance between
the label and the predicted change-point (the one with highest change-point
score), but it doesn’t measure the quality of predictions at the other time steps.
We use both metrics because they complement with each other.

Next, we introduce 6 baselines of the state-of-the-art statistical and deep
learning models:
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– ARGP-BODPD [9] is Bayesian change-point model that uses auto-
regressive Gaussian Process as underlying predictive model.

– RDR-KCPD [10] uses relative density ratio technique that considers f-
divergence as the dissimilarity measure.

– Mstats-KCPD [11] uses kernel maximum mean discrepancy (MMD) as dis-
similarity measure on data space.

– KL-CPD [8] uses deep neural models for kernel learning and generative
method to learn pseudo anomaly distribution.

– RNN [5] is a recurrent neural network baseline to learn variable dynamics
from multivariate time series (without modeling correlations).

– LSTNet [12] combines CNN and RNN to learn variable dynamics from long
and short-term temporal data (without modeling correlations).

Table 1. AUC and TRI metrics on synthetic datasets for the prediction of location,
speed and connection change. Our CorD-CPD (evaluated with sen) has the best
performance on both metrics among all the baselines.

Model Location Speed Connection
AUC TRI AUC TRI AUC TRI

ARGP-BOCPD 0.5244 0.0880 0.5231 0.0660 0.5442 0.1287
RDR-KCPD 0.5095 0.0680 0.5279 0.1093 0.5234 0.0860
Mstats-KCPD 0.5380 0.0730 0.5369 0.0727 0.5508 0.0833
RNN 0.5413 0.2567 0.5381 0.2660 0.5446 0.3047
LSTNet 0.5817 0.3487 0.5817 0.3460 0.5337 0.2193
KL-CPD 0.5247 0.1053 0.5378 0.1352 0.5574 0.3127
GNNSEL+RNNTEL 0.9864 0.9740 0.9700 0.9320 0.9681 0.9153
TransSEL+RNNTEL 0.9885 0.9773 0.9755 0.9080 0.9469 0.9040
GNNSEL+TransTEL 0.9692 0.9333 0.9609 0.8473 0.8840 0.8527

4.3 Main Results

Table 1 shows the performance of the statistical baselines (first panel), the deep
learning baselines (second panel) and our proposed CorD-CPD (third panel).

Statistical Baselines are not as competitive as the other deep learning models
among all the types of changes. One explanation is that those models have strong
assumption on the parameterization of probability distributions, which may hurt
the performance on datasets that demonstrate complicated interactions of vari-
ables. The dynamics rule of the physics system can be hardly captured by those
methods.

Deep Learning Baselines are slightly better than the statistical models, in
which the LSTNet has the best performance on location and speed changes.
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Table 2. Our CorD-CPD separately computes the scores for correlation change (cor)
and independent change (ind). The correlation change score is high on the connection
data, while the correlation change score is high on the location and speed data.

Model Type Location Speed Connection
AUC TRI AUC TRI AUC TRI

GNNSEL+RNNTEL Cor 0.5145 0.3153 0.5590 0.3553 0.9649 0.9073
Ind 0.9835 0.9727 0.9587 0.9493 0.8093 0.7320

TransSEL+ RNNTEL Cor 0.4944 0.2626 0.5463 0.3266 0.9755 0.9273
Ind 0.9859 0.9720 0.9685 0.9233 0.7774 0.6460

GNNSEL+TransTEL Cor 0.5544 0.3467 0.5832 0.4266 0.9098 0.8787
Ind 0.9855 0.9693 0.9623 0.9133 0.7912 0.7620

Since LSTNet has a powerful feature extractor for long and short-term temporal
data, it is better at learning variable dynamics. However, as correlation plays an
important role in the synthetic data, ignoring it will hurt performance in general.

CorD-CPD is evaluated on the test data by the ensemble score sen. It has
the best performance on both metrics among all the baselines. We didn’t include
the result of TransSEL+TransTEL, because empirically it is harder to converge.
TransSEL+RNNTEL is the best at detecting the independent changes, while
GNNSEL+RNNTEL is the best at detecting the correlation changes. The reason
could be that the Transformer models are better at identifying local patterns,
while RNNs are more stable at combining features with long term dependencies.
Among the three types of changes, the score of connection change is lower than
that of the other two, indicating the detection of correlation changes is harder
than independent changes.

4.4 Change-Point Type Classification

Our CorD-CPD separately computes change-point scores for correlation change
(sr) and independent change (sd). We show the ability of our model to separate
the two types of changes based on the scores.

Correlation vs. Independent Change. In Table 2, the correlation change
(cor) and independent change (ind) are separately evaluated. The correlation
change scores (sr) are high on the connection data, while the independent change
scores (sd) are high on location and speed change. This result shows that our
system can indeed distinguish the two types of changes.

Location&speed. The independent changes can be successfully distinguished. For
location and speed data, AUC of the independent changes is over 0.97, close to a
perfect detection; AUC of the correlation change is close to 0.5, nearly a random
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guess. Therefore, our system doesn’t signal a correlation change for location and
speed data, but it gives a strong signal of an independent change.

Connection. The correlation changes are harder to be detected, but CorD-CPD
gives a good estimation. In the connection data, AUC of correlation change are
higher than independent change, but the gap was smaller than that in location
and speed data. The reason could be that the errors made by encoder are prop-
agated into the decoder, and thus made the forecasting of time series values
inaccurate.

Classification Method. While our model shows a potential to distinguish the
two types of changes, we want it to be able to classify them. We propose to use
the difference between normalized correlation change score sr and independent
change score sd as an indicator of change-point type, at time t:

Norm(sr)t − α Norm(sd)t

{
≥ τ, correlation change
< τ, independent change

where α = 0.75 is our design choice, and τ is a threshold to separate the corre-
lation change and the independent change. Moving the value of τ controls the
type I error (False Positive) and the type II error (False Negative). To measure
the classification quality by leveraging the error, ROC AUC is a typical solution.

We classify the change-point types under two settings: with label and without
label, according to whether the labeled change-point is provided.

With Label: When a labeled change-point is provided by human experts, our
model classifies it as either a correlation change or an independent change,
whichever dominates.

Without Label: When the label information is unavailable, our model performs
classification from the predicted change-point with the highest sen score.

The results are shown in Table 3. Our best model TransSEL+RNNTEL

achieves an ROC AUC of 0.979 (with label) and 0.973 (without label). This
indicates that our model has a strong ability to discriminate the two types of
change-points under both settings. GNNSEL+TransTEL has the worst classifica-
tion performance, which is consistent to the observation in Table 2 that it is not
good at capturing correlation changes.

In the next experiment, we set τ = 0 and report the classification accuracy
on the three data types. As shown in right part of Table 3, a high accuracy
of 98% on identifying the location and speed change demonstrates that our
model can predict the independent changes well. For correlation changes, the
TransSEL+RNNTEL shows the best performance by achieving 93% on supervised
setting and 84% on unsupervised setting.

When labeled change-points are not provided, the classification task could be
more difficult, because the it relies on the predicted change-points. If a predicted
change-point is far from the ground truth, the classification is prone to errors.
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Table 3. ROC AUC metric demonstrates the ability of our model to separate the two
types of change-points. When τ = 0, we report the change-point classification accuracy
on the 3 types of data.

Model ROC AUC Location Speed Connection
With Label

GNNSEL+RNNTEL 0.972 98% 97% 68%
TransSEL+RNNTEL 0.979 98% 96% 93%
GNNSEL+TransTEL 0.916 98% 96% 87%
Without Label
GNNSEL+ RNNTEL 0.969 98% 96% 73%
TransSEL+RNNTEL 0.973 96% 92% 84%
GNNSEL+TransTEL 0.929 91% 83% 75%

5 Experiments with Physical Activity Monitoring

In addition to our synthetic dataset, we test our CorD-CPD on real-world data:
the PAMAP2 Physical Activity Monitoring dataset [13]. The dataset contains
sensor data collected from 9 subjects performing 18 different physical activities,
such as walking, cycling, playing soccer, etc. Specifically, the variables we con-
sider are N = 3 Inertial Measurement Units (IMU) on wrist, chest and ankle
respectively, measuring M = 10 features including temperature, 3D acceleration,
gyroscope and magnetometer. The change-points are labeled as the transitions
between activities.

To account for the transitions between activities, the independent changes
could possibly include the rising of temperature and the correlation changes
could be from the switch of different moving patterns between wrist, chest and
ankle.

Table 4. We report the performance of our CorD-CPD on a real-world multivariate
time series dataset (PAMAP2). The variables are sensors and the features includes
temporatures and 3-D motions. The change-points are transitions between activities.

Model AUC TRI

ARGP-BOCPD 0.5079 0.1773
RDR-KCPD 0.5633 0.1933
Mstats-KCPD 0.5112 0.1480
RNN 0.5540 0.2393
LSTNet 0.5688 0.3145
KL-CPD 0.5326 0.2102

GNNSEL+RNNTEL 0.7868 0.7574
TransSEL+ RNNTEL 0.7903 0.7750
GNNSEL+ TransTEL 0.8277 0.8020
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The data was sample every 0.01 second over totally 10 hours. In the pre-
processing, we down-sample the time-series by 20 time steps and then slice them
into windows of a fixed length T = 100 steps. Each window contains exactly one
transition from range [25, 75]. There are totally 184 multivariate time series with
change-points: 150 of them are used as training, 14 are used as validation and
20 are used as testing.

The results are shown in Table 4. Our CorD-CPD achieves the best per-
formance among the 6 statistical and deep learning baselines. We attribute the
enhanced performance to the ability of CorD-CPD to better model the two
types of changes and to successfully ensemble them. In real life scenarios, a
change-point could arise from a mixture of independent change and correlation
change. The experiment results show that explicitly modeling both types of
changes injects a positive inductive bias during learning, and thus enhances the
performance of CPD tasks.

6 Conclusion

In this paper, we study the CPD problem on multivariate time series data under
the retrospective setting. We propose CorD-CPD to explicitly model the corre-
lation structure by incorporating graph neural networks into an encoder-decoder
framework. CorD-CPD can classify change-points into two types: the correla-
tion change and the independent change. We conduct extensive experiments on
physics simulation dataset to demonstrate that CorD-CPD can distinguish the
two types of change-points. We also test it on the real-word PAMAP2 dataset to
show the enhanced performance on CPD over competitive statistical and deep
learning baselines.
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Abstract. For time series forecasting, the weight distribution among
multivariables and the long-short-term time dependence are always very
important and challenging. Traditional machine forecasting can’t auto-
matically select the effective features of multivariable input and can’t
capture the time dependence of sequences. The key to solve this problem
is to capture the spatial correlations at the same time, the spatiotempo-
ral relationships at different times and the long-term dependence of the
temporal relationships between different series. In this paper, inspired
by human attention mechanism including encoder-decoder model, we
propose DPAST-based RNN (DPAST-RNN) for long-term time series
prediction. Specifically, in the first phase we use attention mechanism
to extract relevant features at each time adaptively then we use stacked
LSTM units to extract hidden information of time series both from time
and space dimensions. In the second phase, we use another attention
mechanism to select the related hidden state in encoder to the hidden
state of the decoder at the current time to make context vector which
is embed into recurrent neural network in decoder. Thorough empirical
studies based upon the VM-Power dataset we collected on OpenStack
and the NASDAQ 100 Stock dataset demonstrate that the DPAST-RNN
can outperform state-of-the-art methods for time series prediction.

Keywords: Time series prediction · Spatiotemporal LSTM ·
Attention mechanism · Encoder-decoder model

1 Introduction

Time series prediction algorithm has a wide range of applications, e.g., fine-
grained photovoltaic output prediction [3], financial prediction [20], environ-
mental forecasting [21], heart and brain signal analysis [7] and prediction of
geo-sensor over future hours [13]. Generally, time series prediction can be divided
c© Springer Nature Switzerland AG 2020
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into single variable problem and multivariable problem. However, in most cases,
multivariable time series prediction problem is more in line with the needs
of practical modeling. Different from the single variable time series prediction
with strong periodicity, the problem of the multivariable prediction is mainly
reflected in the following aspects: the correlation between the multivariable fea-
tures at the same time, the correlation between the multivariable features at
different times and the correlation between the multivariable features and the
time of the target sequence. For some classical methods in time series prediction,
ARIMA [1] assumes that the sequence variation is stable, so it is not suitable
for non-stationary and multivariate time prediction. Support vector regression
(SVR) [14], as a traditional regression method is used for time series prediction
where feature sequences are mapped into high dimensional space, which pays
more attention to the spatial correlations of these exogenous series at the same
time, but ignores the time dependence. With the development of neural net-
work, recurrent neural network (RNN) [18] especially Long short-term memory
units (LSTM) [10] and gated recurrent unit (GRU) [5] are widely used in time
series prediction. The encoder-decoder network structure was first proposed by
Sutskever et al. [19] to solve the sequence to sequence machine translation prob-
lem. RNN based encoder-decoder network [5] was initially applied to machine
translation. However, with the increasing length of vector representation, the
performance of the encoder-decoder network deteriorated rapidly. Therefore,
Bahdanau et al. [2] proposed the attention mechanism based on encoder-decoder
structure. Attention mechanism has been widely used in machine translation [6],
image caption [4], exogenous time series prediction [9], etc. Due to the success of
attention-based encoder-decoder networks in sequence learning, Qin et al. [17]
employ two-stage attention mechanism based on encoder-decoder structure to
forecast multivariate time series. To capture the spatial dependency between sen-
sors, Liang et al. [13] added global attention in GeoMAN. However, the decoder
part of the models mentioned above does not fully consider the cyclic relationship
between the target information and the encoded data in time.

In this paper, we use spatiotemporal LSTMs in the encoder network to obtain
more accurate spatiotemporal relationship of the input data, and then embed
the context information into the LSTM in the decoder network to enhance the
attention of the target sequence to the encoding information in time. In addi-
tion, we build OpenStack virtual environment to collect VM power dataset and
use DTW to preprocess and filter the data. The contributions of our work are
three-fold:

– In the stage of data preprocessing, we use DTW [15] to analysis the original
multivariate data and extract the effective feature variables in our dataset.

– In addition, considering that the single-layer LSTM can not transfer the effec-
tive information of multivariate input data, we use the spatiotemporal LSTMs
to encode time series information as the input of decoder after the input
attention mechanism.
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– In the decoder, we embed the context vector generated by the temporal atten-
tion mechanism into recurrent neural network, so as to obtain a more accurate
spatiotemporal relationship.

2 Model

The framework of the proposed forecasting model is shown in Fig. 1, which con-
sists of encoder and decoder. The two phases attention modules are contained in
the encoder and decoder respectively. The first phase in Encoder can adaptively
select the most relevant input features while the second phase in Decoder uses
categorical information to decode the stimulus. The Encoder encodes the time
series conditioned on the input attention through the spatiotemporal LSTMs. In
the decoder, the temporal attention is used to generated context vector ct which
represents a weighted sum of previous encoder hidden state across all the time
steps. Then we combine the ct with the hidden state in LSTM unit as the new
hidden state fed to LSTM.

Fig. 1. Graphical illustration of the Dual-Phase Attention-based Recurrent Neural Net-
work using Spatiotemporal LSTMs model.

2.1 Encoder

The encoder is used to encode the input sequence in time window T into the
feature representation through RNN. Inspired by the DSTP [11] model which
can select elementary stimulus features in the early stages of processing and
input attention mechanism in DA-RNN [17], we use spatial attention to select
the relevant driving series adaptively.

For time series prediction, given the input sequence X = (x1,x2...,xn)�

where n is the number of driving (exogenous) series, it can be divided into a series
of time windows with T. Given the k-th input driving (exogenous) series xk =
(xk

1 , x
k
2 , ..., x

k
T )�, we can construct an input attention mechanism by referring to

the previous hidden state ht−1 and the cell state st−1 in the encoder LSTM unit
with:
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ekt = ve
�tanh(We[ht−1; st−1] + Uex

k) (1)

and

αk
t =

exp(ekt )∑n
i=1 exp(eit)

(2)

where ve ∈ RT , We ∈ RT×2m, Ue ∈ RT×T are parameters to learn. After that,
we employ a softmax function to ensure all the attention weights at per time
step sum to one. With these attention weights, we can adaptively extract the
driving time series with:

x̃ = (α1
tx

1
t , α

2
tx

2
t , ..., α

n
t xn

t ) (3)

Then the encoder is applied to learn a mapping from xt to ht (at time step
t) with ht = fe(ht−1, xt) can be updated as ht = fe(ht−1, x̃t) where fe is a
spatiotemporal LSTM architecture based on LSTM units can be summarized as
follows:

ft = σ(Wf [ht−1;xt] + bf ) (4)

it = σ(Wi[ht−1;xt] + bi) (5)

ot = σ(Wo[ht−1;xt] + bo) (6)

st = ft � st−1 + it � tanh(Ws[ht−1;xt] + bs) (7)

ht = ot � tanh(st) (8)

where [ht−1;xt] ∈ Rm+n is a concatenation of the previous hidden state ht−1

and the current input xt, Wf , Wi, Wo, Ws ∈ Rm×(m+n), and bf , bi, bo, bs ∈ Rm

are parameters to learn.
In order to enhance the ability of LSTM to capture long-term memory, we

use two layers of stacked LSTM to transmit information in space and time. At
every time step t, the first layer of LSTM is hl

t = f l
e(h

l
t−1, x̃t) where l = 1. Given

the current level of LSTM layer l where l � 2, the output can be updated with:

hl
t = f l

e(h
l
t−1, h

l−1
t ) (9)

then the output is a concatenation of the previous T hidden state of the
LSTM units as the encoded input driving series.

2.2 Decoder

In order to predict the output ỹt, we use another LSTM to decode the input
infomation. In the decoder, the attention weight of the decoder hidden state at
time t is calculated based upon the previous decoder hidden state dt−1 and the
cell state of the LSTM unit s

′
t−1 with:

lti = vd
�tanh(Wd[dt−1; s

′
t−1] + Udhi), 1 � i � T (10)
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βi
t =

exp(lit)
∑T

j=1 exp(ljt )
(11)

where [dt−1; s
′
t−1] ∈ R2p is a concatenation of the previous hidden state and cell

state of the LSTM unit in the decoder and hi is concatenation of the hidden state
in last time window T . vd ∈ Rm, Wd ∈ Rm×2p, Ud ∈ Rm×m are parameters to
learn. The weights of the i-th encoder hidden states βi

t represent the importance
it take at time ti. Since each encoder hidden state hi is mapped to a temporal
component of the input, the context vector ct can be computed as a weighted
sum of all encoder hidden states {h1, h2, ..., hT },

ct =
T∑

i=1

βi
thi (12)

Then the updated history target value can be combined with ct−1 and the
given target series yt−1 = {yt−1, yt−1, ..., yt−1}:

ỹt−1 = yt−1
� · ct−1 (13)

where yt−1
� · ct−1 is the point product of the decoder input yt−1 and the com-

puted context vector ct−1.
In order to enhance the influence of context vector on decoder, we combine

the context vector with the hidden state of the decoder at every moment, the
new hidden state can be updated after a linear layer as,

d̃t = vc
�tanh(Wc[ct; dt−1]) (14)

where [ct; dt−1] ∈ Rm×p is a concatenation of the previous hidden state in LSTM
unit of decoder and the current context vector ct. We choose the nonlinear
function fd as a LSTM unit [10] to model long-term dependencies. Then the
hidden state dt can be updated as:

dt = fd(d̃t−1, ỹt−1) (15)

and the final prediction can be computed as:

ỹT = vy
�(Wy[dT ; cT ] + bw) + bv (16)

where [dT ; cT ] ∈ Rp+m is a concatenation of the decoder hidden state and the
context vector and the Wy, bw, bv are the parameters to learn.

2.3 Training Procedure

The model is based on encoder-decoder structure and parameters can be learned
by standard back propagation with mean squared error as the objective function:

L(yT , ỹT ) =
1
N

N∑

i=1

(yi
T − ỹi

T )2 (17)
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where N is the number of training samples. We choose Adam optimizer [12] to
train the model and the size of the minibatch is 128. The learning rate is 0.001.
Specifically, the proposed DPAST-RNN can make the loss function converge
quickly.

3 Experiments

In this section, we first introduce the two datasets for this experiment. In addi-
tion, we introduce the collection process of VM-Power dataset. Then we discuss
the parameter settings for DPAST-RNN and the evaluation metrics. Finally, we
compare the DPAST-RNN with three different baseline methods.

3.1 Data Acquisition

In order to verify the performance of our DPAST-RNN model on more time
series data, we configured the OpenStack environment to collect the indicators
and real power of the virtual machine to make VM-Power dataset. There is an
OpenStack controller node, an OpenStack compute node, and a monitor node
for collecting the data from the compute node. These nodes are connected to the
same (Local Area Network) LAN. The power of IT equipment can be measured
by the Power Distribution Unit (PDU). The architecture is shown in Fig. 2.

Fig. 2. The architecture of data collection procedure for VM-Power.

We deployed a collector called collectd [8] on the compute node to collect
metrics of the compute node. The sampling frequency of collectd is set to 1 Hz,
the same as the sampling frequency of PDU. Specifically, we use a client machine
with a Quad-core CPU to request web resource and collect virtual machine
metrics per seconds with real power in PDU.
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3.2 Datasets and Setup

In this experiment, we used two datasets NASDAQ 100 Stock and VM-Power as
shown in Table 1 where the size of encoder hidden states m and decoder hidden
states p are set as m = p = 64 and 128 to test the performance of different
methods for time series prediction.

Table 1. The statistics of two datasets.

Dataset Driving
series

Target
series

Size

Train Valid Test

VM-Power 10 1 2636 263 528

NASDAQ 100 Stock 80 1 40551 4055 8111

The NASDAQ 100 Stock is a public dataset which contains the stock prices
of 81 major corporations under NASDAQ 100. In this dataset, we use the share
price of NDX as the target sequence and the share price of the remaining 80
companies as the driving time sequence.

From over 100 metrics we collected in origin VM-Power dataset, we draw a
line chart of power and some features to simply analyze the correlation between
them. As shown in Fig. 3, the trend of the four CPU cores usage is roughly as
same as the trend of the power curve. On the contrary, memory-free, memory-
cached, irq-CAL, cup-2-idle, are not related to or even contrary to power trend,
so we use dynamic time warping (DTW) [15] to measure the similarity between
feature variables and target sequences and select effective variables in the data
preprocessing stage to enhance the robustness of the model. Compared with the
traditional Euclidean distance, DTW can better compare the similarity of two
time waveforms by distorting the sequence on the x-axis. The 10 metrics from
DTW selection are cpu-0-usage, cpu-1-usage, cpu-2-usage, cpu-3-usage, cpu-0-
user, cpu-1-user, cpu-2-user, cpu-3-user, cpu-0-system, cpu-1-system.

Fig. 3. The curves of power and the features
selected of VM-Power dataset.

Fig. 4. Plot of input spatial atten-
tion weights in one time window
T = 10 for 10 virtual machine
energy consumption index vari-
ables in VM-Power dataset.
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3.3 Parameter Settings

We initialized the size of hidden states 128 both in encoder and decoder and
choose the window size T=10 where T ∈ {5, 10, 15, 20, 25} that achieve the
best performance over the validation set are used for evaluation. To measure
the effectiveness of various methods for time series prediction, we consider two
different evaluation metrics, root mean squared error (RMSE) [16] and mean
absolute error (MAE). Given yt is the target at time t and ŷt is the predicted

value at time t, RMSE is defined as RMSE =
√

1
N

∑N
i=1(y

t
i − ŷt

i)2 and MAE is

defined as MAE = 1
N

∑N
i=1 |yt

i − ŷt
i |.

3.4 Results: Time Series Prediction

We compared our DPAST-RNN with three baseline methods in two datasets and
proved its effectiveness. The results of prediction in two datasets are shown in
Fig. 5 and 6. Among these baselines, LSTM [10] is a basic method to address time
series prediction in RNN. From the prediction results in Fig. 5, the model based
on RNN can better predict the time series data with more severe fluctuations.
For the rising part of continuous oscillation, our model can better reduce the
time delay. We also show the visual attention distribution in Fig. 4. We observe
that the different characteristic variables get different weights in time window
T which indicates that input attention mechanism can effectively extract the
relevant driving sequence.

Fig. 5. VM-Power prediction result.

The time series prediction results of DPAST-RNN and baseline methods
over the two datasets are shown in Table 2. In Table 2, the results of the RMSE
of ARIMA is generally worse than the RNN based methods. This is because
ARIMA only consider the target series rather than the relationship between
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Fig. 6. NASDAQ 100 Index prediction result.

Table 2. Time series prediction results over the Vm-Power dataset and NASDAQ 100
Stock dataset (best performance displayed in boldface).

Models VM-Power dataset NASDAQ 100 Stock dataset

MAE RMSE MAE RMSE

ARIMA 1.97 2.66 0.92 1.47

LSTM(64) 0.282 0.003 0.362 0.003 0.262 0.005 0.390 0.003

LSTM(128) 0.270 0.003 0.347 0.003 0.251 0.005 0.380 0.003

DA-RNN(64) 0.014 0.003 0.019 0.001 0.216 0.002 0.310 0.003

DA-RNN(128) 0.016 0.004 0.021 0.005 0.229 0.002 0.330 0.003

DPAST-RNN(64) 0.015 0.001 0.017 0.001 0.218 0.002 0.319 0.005

DPAST-RNN(128) 0.012 0.001 0.014 0.001 0.212 0.002 0.298 0.005

driving series. The encoder-decoder structure with integration of the input atten-
tion mechanism as well as temporal attention mechanism performs better than
original LSTM. With integration of the input attention mechanism and spa-
tiotemporal LSTMs in encoder as well as context vector embedded in recurrent
neural network in decoder, our DPAST-RNN achieves the best MAE and RMSE
across two datasets since it not only uses spatiotemporal LSTMs in encoder with
input attention to extract relevant driving series, but also combine the context
vector with hidden state in LSTM in the encoder to obtain a more accurate
spatiotemporal relationship across all time steps.

4 Conclusion and Future Work

In this paper, we propose a DPAST-RNN model based on spatiotemporal LSTM
network for time series prediction, which consists of two phases attention mech-
anism. In the proposed model, we use DTW to remove the noise of multivari-
ate input time series. In the encoder part of DPAST-RNN, the spatiotemporal
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LSTMs can accurately encode the driving series after input attention mecha-
nism. In the decoder part of DPAST-RNN, the updated hidden state in LSTM
with context vector can naturally capture the long-range temporal information
of the encoded inputs. The experimental results on two datasets demonstrate a
higher performance than other baseline methods.

In the future, we will explore time series prediction based on attention mech-
anism without RNN structure. Moreover, we will extend our method to solve
the problem of long-term prediction.

Acknowledgments. This work was supported by National Key Research and Devel-
opment Program of China (2018YFB1003702) and Jiangsu Scientific Research Innova-
tion Practice Project (KYCX20 0760).
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Abstract. Recurrent and convolutional neural networks are the most
common architectures used for time-series forecasting in deep learning
literature. Owing to parameter sharing and repeating architecture, these
models are time-invariant (shift-invariant in the spatial domain). We
demonstrate how time-invariance in such models can reduce the capac-
ity to model time-varying dynamics in the data. We propose Forecast-
Net which uses a deep feed-forward architecture and interleaved outputs
to provide a time-variant model. ForecastNet is demonstrated to model
time varying dynamics in data and outperform statistical and deep learn-
ing benchmark models on several seasonal time-series datasets.

Keywords: Time-invariance · ForecastNet · Forecasting · Deep
learning

1 Introduction

Multi-step-ahead forecasting involves the prediction of some variable(s), several
time-steps into the future, given past and present data. Over the set of time-
steps, various time-series components such as complex trends, seasonality, and
noise may be observed at a range of scales or resolutions. Increasing the number
of steps ahead that are forecast increases the range of scales that need to be mod-
elled. An accurate forecasting method is required to model all these components
over the complete range of scales.

Deep sequence models based on the recurrent neural network are popular
for time-series forecasting [6,9,10]. The recurrence in the RNN produces a repli-
cated set of cells over time. This replication creates a time-invariant model. The
same is true for the convolutional neural network (CNN), though the property
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is more commonly known as shift-invariance in the spatial domain. Time invari-
ance means that the model is not able to vary in time. Intuitively, this restricts
the model’s ability to adapt to changes. Such changes may be in the form of
variations in dynamics and long-range dependencies.

To address this, we propose ForecastNet; a time-variant deep feed-forward
architecture with interleaved outputs. Between the interleaved outputs, are flexi-
ble network structures (hidden blocks) whose parameters and (optionally) archi-
tecture vary over time. We demonstrate four variations of ForecastNet to high-
light its flexibility and compare these with state-of-the-art benchmark mod-
els. ForecastNet is shown to be accurate and robust in terms of performance
variation.

The contributions of this study are: (1) our novel ForecastNet model1; (2)
we provide the first study (to our knowledge) which specifically targets time-
invariance in deep learning models, and show how time-invariance can cause
popular deep learning models to fail – which we believe has significant impli-
cations to the field as a whole; and (3) we provide a comparison with several
benchmark models on seasonal time-series datasets.

2 Motivations and Related Work

The RNN comprises a set of cell structures with parameters that are replicated
over time. The replication has key benefits such as parameter sharing and an abil-
ity to handle varying sequence lengths. However, the time invariant properties
can reduce its capacity to model complex dependencies over time. In compar-
ison, ForecastNet is not time-invariant. Another challenge with RNNs is that
learning long sequences can be difficult due to complex dependencies over time
and vanishing gradients [4]. ForecastNet however, mitigates vanishing gradient
problems and advocates a deep architecture by using shortcut-connections [8,14]
and by interleaving outputs between hidden blocks.

State-of-the-art deep sequence models include multiple RNNs linked in vari-
ous configurations. The sequence-to-sequence (encoder-decoder) model [15] is a
prominent configuration. This model sequentially links two RNNs (an encoder
and a decoder) through a fixed size vector, such as the last encoder cell state.
This vector can form a bottleneck between the encoder and decoder and earlier
inputs have to pass through several layers to reach the decoder. The attention
model [1] addresses these problems by adding an attention mechanism between
the encoder and decoder to ascribe relevance to each encoder cell. Unlike the
sequence-to-sequence and attention models, ForecastNet does not have a sepa-
rate encoder and decoder. Challenges in linking these entities are thus removed.

The convolutional neural network (CNN) has also been applied to modelling
sequential data. WaveNet [11] is a seminal CNN model which uses multiple layers
of dilated causal convolutions for raw audio synthesis. The Temporal Convolu-
tional Network (TCN) [2] generalises WaveNet for broader sequence modelling

1 Code is available at https://github.com/jjdabr/forecastNet.

https://github.com/jjdabr/forecastNet
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X

ff c ff c ff c ff

yt yt+1 yt+2 yt+3

Fig. 1. ForecastNet structure to provide a forecast yt:t+3 given X = xt−Ti:t−1 as
inputs (rectangle). A hidden block (squares labelled with ff) comprises some form of
feed-forward neural network structure. The first hidden block takes X as an input. The
remaining blocks take a concatenation (rounded square blocks labelled with c) of the
input X, the previous hidden block, and the previous output. Outputs (circles) can
take various forms such as mixture densities or linear layers. Each hidden block and
output are illustrated with a different shade to indicate that they are unique in terms
of parameters (they are not shared) and (optionally) architecture.

problems. The CNN is shift-invariant (or translation-invariant). This is bene-
ficial in image processing, however, it directly translates to time-invariance in
time-series applications. We however demonstrate how ForecastNet is able to
accommodate convolutional layers but still provide a time-variant model.

A model that has successfully departed from the RNN and CNN architectures
is the transformer model [16]. Though the transformer has been highly successful
in natural language processing, in its canonical form, it has limitations in time-
series analysis. The first limitation is that it does not assume any sequential
structure of the inputs [16]. Positional encoding in the form of a sinusoid is
injected into the inputs to provide information on the sequence order. Temporal
structure is key in time-series modelling and is what time-series models are
usually designed to model. The second limitation is that the majority of the
processing operates over the dimension of the input embedding. The Transformer
is thus not designed to operate on low dimensional time-series signals such as
univariate time-series. ForecastNet is specifically designed to model the temporal
structure of the data and it is not limited to high-dimensional inputs.

3 ForecastNet Architecture

Definition 1. ForecastNet is a feed-forward neural network comprising a set
of Ti inputs, To outputs (forecasts), and a set of sequentially connected hidden
blocks. Each hidden blocks comprises some form of feed-forward neural network.
ForecastNet’s output at time t is given by

yt = ft(ht) and ht = gt(X,ht−1,yt−1) (1)

where X = xτ−Ti:τ−1 are the inputs comprising the Ti observations up to the
first forecast time τ , yt is the forecast at time t = [τ, . . . , τ + To − 1], ht is the
hidden block output, ft is the output layer, and gt is a function describing the
hidden block. The functions ft and gt are indexed by t as their parameters and
(optionally) architecture vary over time. Initially yτ−1 = hτ−1 = ∅ such that
hτ = gτ (X).
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ForecastNet is illustrated in Fig. 1. Here, the inputs X = xt−Ti:t−1 are a set
of Ti lagged values of the dependent variable. The dependent variable can be
univariate or multivariate. The set of inputs are presented to every hidden block
in the network, providing a form of skip connections as illustrated in Fig. 1.

A hidden block represents some form of feed-forward neural network such as
a multi-layered perceptron (MLP), a CNN, or self-attention. Each hidden block
can be heterogeneous in terms of architecture. However, even if the architecture
of each hidden block is identical (as used in this study), each block is provided
with its own unique set of parameters (weights). The hidden blocks are intended
to model the time-series dynamics. Links between hidden blocks model local
dynamics and sets of hidden blocks model longer-term dynamics.

Outputs follow hidden blocks. Each output in ForecastNet provides a forecast
one-step into the future. The deeper the network, the more outputs there are.
ForecastNet thus naturally scales in complexity with increased forecast reach.
To provide forecasts with uncertainty, a mixture density network [3,13] output
with a single Gaussian is used. A linear and softplus layer predict the mean and
the variance respectively. The model is trained with gradient descent to optimise
the Gaussian log-likelihood function. We also demonstrate ForecastNet with a
linear output layer that is optimised using the mean squared error.

4 ForecastNet Properties

4.1 Time-Variance

A time-invariant system is defined as a system for which a time shift of the
input sequence causes a corresponding shift in the output sequence [12]. Proving
a system is time-invariant involves showing that, passing a delayed input through
a system is the same as delaying the output of the system by the same amount.

Theorem 1. If the hidden blocks and output layers of ForecastNet are time-
varying, ForecastNet is not time-invariant.

Proof. Let h′
t = ht−m and X the Ti inputs up to the first forecast time τ .

Time-invariance requires that yt−m = y′
t. From (1), yt−m is given by

yt−m = ft−m(gt−m(X,ht−m−1,yt−m−1))

and y′
t is given by

y′
t = ft(gt(X,h′

t−1,y′
t−1)) = ft(gt(X,ht−m−1,y′

t−1)).

As ft �= ft−m & gt �= gt−m ⇒ yt−m �= y′
t, ForecastNet is not time-invariant. ��

Owing to no parameter sharing in ForecastNet, its parameters (and optionally
architecture) vary over time (over the sequence of inputs and forecast horizon)
which cause ft �= ft−m and gt �= gt−m. This results in a time-variant model. In
comparison, the RNN, is time-invariant according to the following:
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Theorem 2. A RNN with inputs xt and hidden states ht, given by

ht = f(Wxt, V ht−1) (2)

is time invariant if f is a function that is constant in time; W and V are
parameters and weights that are constant in time; and when ht is initialised to
some initial value h0 immediately before the first input is received.

Proof. The RNN in (2) can be represented in a telescopic form given by

ht = f(Wxt, [V f(Wxt−1, [. . . [V f(Wx1, V h0)]])]) (3)

where h0 is a constant. Given x′
t = xt−m, show that ht−m = h′

t. For ht−m:

ht−m = f(Wxt−m, [V f(Wxt−m−1, [. . . [V f(Wx1, V h0)]])])

For h′
t

h′
t = f(Wx′

t, [V f(Wx′
t−1, [. . . [V f(Wx′

1, V h′
0)]])])

= f(Wxt−m, [V f(Wxt−m−1, [. . . [V f(Wx1−m, V h′
0)]])])

However, xt−m = 0 ∀ t ≤ m and ht−m = 0 ∀ t ≤ m. Furthermore, assume that
the system is always initialised with the constant h0. Thus

ht = f(Wxt, [V f(Wxt−1, [. . . [V f(Wx1, V h0)]])])

and ht−m = h′
t proving the RNN is time-variant. ��

4.2 Interleaved Outputs

The vanishing/exploding gradient problem stems from the repeated application
of the chain rule of calculus producing a long chain of factors. By interleaving
outputs between hidden blocks in ForecastNet, the chain is broken into a sum of
terms which is more stable than a product of factors.

To show this, consider ForecastNet with L hidden blocks each containing a
single fully connected layer, with a neuron’s linear combination z[l] (before the
activation), an output a[l] (after the activation), layer weights W [l], and cost
function L. Application of the chain rule produces

∂L
∂W [l]

=

L−1−l
2∑

k=0

∂L
∂z[l+2k+1]

∂z[l+2k+1]

∂a[l+2k]
Ψk

∂a[l]

∂W [l]
(4)

where Ψk = 1 if k = 0 and Ψk =
∏k

j=1
∂z[l+2j]

∂a[l+2(j−1)] for k > 0.
Similarly, consider a multi-layered perceptron (MLP) with L-layers. Repeated

application of the chain rule of calculus results in the following product

∂L
∂W [l]

=
∂L

∂a[L]

∂a[L]

∂z[L]

∂z[L]

∂a[L−1]

∂a[L−1]

∂z[L−1]
· · · ∂z[l+2]

∂a[l+1]

∂a[l+1]

∂z[l+1]

∂z[l+1]

∂a[l]

∂a[l]

∂z[l]
∂z[l]

∂W [l]
(5)
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This product of factors can be expressed in the form λL. If |λ| < 1, the product
vanishes towards 0 as L grows. In comparison, (4) contains a sum of terms, which
does not tend to zero (vanish) as the product of factors does2.

The interleaved outputs mitigate, but do not eliminate the vanishing gradient
problem. The term Ψk contains a product of derivatives. The number of factors
in this product grows proportional to k. For a distant layer where k is large, Ψk

will have many factors. Gradients back-propagated from distant layers are thus
still susceptible to vanishing gradient problems. However, for nearby outputs
where k is small, Ψk will have few factors and so gradients from nearby outputs
are less likely to experience vanishing gradient problems. Thus, nearby outputs
can provide guidance to local parameters during training, resulting in improved
convergence as the effective depth of the network is reduced.

4.3 Memory Requirements

Parameter sharing is an effective way of reducing memory requirements in a neu-
ral network. With the repeating architecture in the RNN and CNN, a network
size remains constant irrespective of the sequence length. As ForecastNet has dif-
ferent parameters associated with each sequence step, its memory requirements
increase with increased forecast reach and input sequence length. For problems
with extremely large forecast horizons, or where computing resources have min-
imal memory capacity, the hidden block architecture must be constrained.

Parameter sharing additionally provides a means to handle varying sequence
lengths. ForecastNet is designed for fixed length sequences. In seasonal time-
series forecasting, ForecastNet is sized according to the seasonal period of the
data. This has the benefit of incorporating prior knowledge of the data’s temporal
structure into the network.

5 Methods and Datasets

5.1 Datasets

A set of models are compared on a synthetic dataset and nine real-world datasets
sourced from various domains. These include weather, environmental, energy,
aquaculture, and meteorological domains. Datasets are hand-picked to ensure
that they provide a sufficiently challenging problem and have a seasonal compo-
nent. Properties such as varying seasonal amplitude, seasonal shape, trend, and
noise were sought. For example, the shape of the seasonal cycle changes over
time in most datasets. The dataset’s properties are summarised in Table 1.

The synthetic dataset is used to provide a baseline. The data is generated
according to xt = 2 sin (5ωt) + 1/3 sin (ωt), where ω is the angular frequency and
t denotes time. The low frequency sinusoid emulates a long-term time-varying
trend, whereas the high frequency sinusoid emulates seasonality.
2 Note that RNNs can have a derivative with a form similar to (4) if each cell has a

target. However, if targets are not provided, such as in the encoder of the sequence-
to-sequence model, the derivative reduces to a form similar to (5).
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Table 1. Dataset properties.

Dataset Abbrev Resolution Period (T ) Length Minimum Maximum Mean Std. Dev

Synthetic Synth – 20 4320 −2.33 2.33 −0.00 1.43

England temperature1 Weath Monthly 12 3261 0.10 18.80 9.27 4.75

River flow1 River Monthly 12 1492 3290 66500 23157.60 13087.40

Electricity2 Elect Hourly 24 19224 5514 14580 8709.79 1360.29

Traffic Volume3 Traff Hourly 24 8776 125 7217 3269.26 2021.57

Lake levels1 Lake Monthly 12 648 10 20 15.08 2.00

Dissolved Oxygen [5] DO Hourly 24 2422 5.66 7.94 6.50 0.53

pH [5] pH Hourly 24 2422 8.07 11.15 8.56 0.21

Pond temperature [5] Temp Hourly 24 2422 24.38 31.97 27.74 1.85

Ozone1 Ozone Monthly 12 516 266 430 338.00 38.30

1 https://robjhyndman.com/tsdl/
2 https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard
3 https://archive.ics.uci.edu/ml/index.php

Table 2. Model configuration. T is the seasonal period of the dataset.

Model Configuration

FN A hidden block comprises two He initialised [7] fully connected hidden layers, each

with 24 ReLU neurons

FN2 Identical to FN2 but with a linear output layer instead of a mixture density layer

cFN A hidden block comprises a convolutional layer with 24 filters, each with a kernel

size of 2, followed by a average pooling layer with a pool size of 2. The

convolutional and pooling layers are duplicated and followed by a fully connected

layer with 24 ReLU neurons

cFN2 Identical to cFN2 but with a linear output layer instead of a mixture density layer

DeepAR The sequence-to-sequence architecture with single layered LSTMs are used in the

encoder and decoder. The mixture density output of the network is a Gaussian

distribution

TCN The TCN contains a convolutional layer with 32 filters, each with a kernel size of 2

for the Synthetic, Weather, Elect., and River datasets. For the remaining datasets,

the TCN contains a convolutional layer with 64 filters, each with a kernel size of 3.

The output contains a dense layer with T linear units

Attention Encoder has a bidirectional LSTM and the decoder has a single layered LSTM. The

LSTM cells are configured with 24 ReLU units

Seq2Seq Encoder and decoder use a single layered LSTM with 24 ReLU units

MLP Feed forward MLP with a single hidden layer comprising 4T ReLU hidden neurons.

A set of 2T inputs are provided and a set of T linear outputs are used

DLM The DLM used is the free-form seasonal model with a zero order trend component

[17]. Model fitting is performed using a modified Kalman filter1

SARIMA Standard form (p,d,q)(P,D,Q)s with: Synthetic: (1,1,1)(1,1,0)20, Weather:

(2,0,3)(0,1,0)12, Elect.: (3,1,4)(0,1,0)24, River: (2,0,4)(0,1,0)12, Traff.:

(3,1,1)(0,1,0)24, Lake: (2,0,8)(0,1,0)12, DO: (2,0,6)(0,1,0)24, pH: (4,1,3)(0,1,0)24,

Temp.: (2,1,4)(0,1,0)24, and Ozone: (3,0,4)(0,1,0)12,
1 See https://pydlm.github.io/index.html

5.2 Models

Four variations of ForecastNet are tested, and are denoted by FN, FN2, cFN, and
cFN2. Two have fully connected blocks and two have convolutional blocks. These
are compared with four deep-learning based benchmark models: deepAR [13],

https://robjhyndman.com/tsdl/
https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard
https://archive.ics.uci.edu/ml/index.php
https://pydlm.github.io/index.html
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the TCN [2], the sequence-to-sequence (Seq2Seq) model [15], and the attention
model [1] (the Transformer is not considered for reasons discussed in Sect. 2). For
completeness, a (traditional) MLP, a free-form seasonal Dynamic Linear Model
(DLM) [17], and a seasonal autoregressive moving average (SARIMA) model are
additionally included. The DLM (a state space model) and the SARIMA model
are well-known statistical models used for time-series forecasting. All models
except the ForecastNet and the MLP models are time-invariant. The bench-
mark models are configured in their default form (as close as possible to how
their authors present them). Configuration details of the models are provided in
Table 2.

The models are tested on datasets that have a seasonal component with
period denoted by T . The number of inputs in all models is set to 2T and the
number of outputs (forecast-steps) is set to T . Thus, the models are trained to
forecast one seasonal cycle ahead in time, given the two previous cycles of data.

5.3 Training and Testing

The datasets are scaled to the range of [0, 1]. For each dataset, the first 90%
of the dataset sequence is used as the training set and the last 10% is used as
the test set. The training and test sets each comprise a long sequence of values.
These sequences are converted into a set of samples that the models can process.
A sample is extracted using a sliding window of length 3T . The first 2T elements
in this window form the input sequence to the model, and the last T elements
form the forecast target values. The sliding window is slid element-by-element
across the dataset sequence to produce a set of samples. The set of training
samples are shuffled prior to training.

The ADAM algorithm is used in all machine learning models. The learning
rate is selected using a grid-search over the range 10−i, i = [2, . . . , 6]. Early stop-
ping is used to address overfitting and defines the number of epochs. The Mean
Absolute Scaled Error (MASE) is used to evaluate forecasting performance.

6 Results and Discussion

6.1 Time-Invariance Demonstration

To demonstrate the effect of time-invariance in a model, we test the models on
a time-varying dataset. The synthetic dataset is adapted to include amplitude
modulation, which is a time-varying operation. The modified synthetic dataset is
given by xt = 1

2 sin
(
1
6ωt

) (
3
5 sin (ωt) + 1

5 sin
(
1
5ωt

))
. The first sinusoid performs

amplitude modulation, the second sinusoid emulates a seasonal cycle, and the
third sinusoid emulates a time-varying trend.

The amplitude modulation repeats every 6 cycles of the seasonal period.
A model is only presented with two seasonal cycles as inputs and thus does
not observe the complete amplitude modulation pattern. A time-variant model’s
parameters are able to change over time, which enables the model to adapt to the
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Fig. 2. Time-variant synthetic dataset forecasts for the seq2seq, Att., FN2, and cFN2
models at starting time indices 0, 50, 150 and 200.

variations in amplitude. As amplitude modulation is a time-variant operation, a
time-invariant model is expected to perform poorly in forecasting.

The seq2seq, attention, FN2, and cFN2 models are trained on the dataset.
Results of forecasts from inputs starting at time indices 0, 50, 150 and 200 are
presented in Fig. 2. As expected, the time-invariant seq2seq model is not able
to provide accurate forecasts when there are large variations in the amplitude.
The attention model performs slightly better given its attention mechanism.
However, the ForecastNet models are able to adapt to the large variations in the
amplitude demonstrating the effectiveness of a time-variant model.

Table 3. Average MASE of the models results over the test datasets. The last row
indicates the sum of Borda counts of the models over the datasets (a higher value
indicates more points in the voting score). Boldface numbers highlight top results.

FN cFN FN2 cFN2 deepAR Seq2Seq Attention TCN MLP DLM SARIMA

Synth 0.0039 0.0089 0.0004 0.0032 0.0284 0.0106 0.0359 0.0476 0.0082 0.6400 0.2853

Weath 0.4630 0.4030 0.4556 0.3142 0.4615 0.4258 0.3703 0.4729 0.4655 0.5221 0.6087

Elect 1.1173 1.0430 0.8946 0.5410 1.7747 1.0045 1.3858 1.0924 1.3389 1.7267 1.2580

River 0.7137 0.6630 0.6644 0.3936 0.8602 0.5735 0.5282 0.8510 0.8514 0.7655 0.8655

Traff 2.2343 1.9470 1.4356 0.8208 2.0066 1.7806 1.9400 2.1968 2.3575 2.3997 2.3163

Lake 1.4239 1.6127 1.5815 1.6858 1.6111 1.7250 1.5575 2.0268 1.5659 1.9521 1.6929

DO 0.5354 0.6197 0.6162 0.5380 0.7128 0.7335 2.1052 0.7776 0.7654 0.7746 0.6449

pH 1.4099 1.2276 1.2623 1.0101 2.6355 1.7021 1.4157 1.3456 1.9020 1.2930 1.6850

Temp 1.9008 1.9020 1.6624 1.9951 1.9503 2.1274 2.2314 3.1774 2.1010 3.6660 1.6449

Ozone 0.7235 0.7849 0.6903 0.7933 1.0266 1.4955 0.5816 0.6921 0.6603 0.7552 0.8871

Borda 74 76 90 90 43 57 65 42 51 31 41

6.2 Model Comparison Error Results

The average MASE over all forecasts on each dataset’s test set is provided in
Table 3. ForecastNet produces the best results on 8 of the 10 datasets. The cFN2
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variation of ForecastNet achieves the best results on 4 of these 8 datasets. This
result is reinforced with Borda count rankings provided in the last row. FN2 and
cFN2 are voted as the best models with the highest Borda counts. These are
followed by cFN, FN and the attention models respectively.

The attention model produced the lowest error for the ozone dataset. The
attention model is a relatively complex model, and its attention mechanism
assists in modelling long-term dependencies. FN2 provides strong competition
to the attention model over the remaining datasets. This is despite it having an
arguably a simpler architecture. We argue that ForecastNet generally performs
well as it is a time-invariant model and is thus able to adapt to changes in the
dynamics such variations in amplitude, trend, and seasonal cycle shape.

Increasing the model complexity generally resulted in improved forecast per-
formance. For example, cFN generally outperforms FN, and attention model
outperforms seq2seq. However, simpler models do not fail on the datasets. For
example, the MLP provided comparably accurate forecasts despite its simplicity.
Note however, that the MLP is a time-variant model.

The DLM and SARIMA statistical models performed well despite being linear
models. For example, the SARIMA model achieved the lowest error on the pond
temperature dataset. This suggests that the dynamics of this dataset are more
linear. However, with the non-linear trends, amplitudes, and cyclic shapes in
the other datasets, the DLM and SARIMA models did not perform as well the
non-linear neural network-based models.

Of the deep neural network-based models, the TCN performed the worst on
several datasets. However, the authors suggest that the model is in a simplified
form and improved results may be possible by using a more advanced architecture
[2]. Furthermore, the TCN is designed to perform dilated convolutions over many
samples. Of the datasets used in this study, the maximum number of input
samples was 48 for datasets with a period of 24 h. This may be too few to
demonstrate the effectiveness of the TCN.
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Fig. 3. Box plot of the MASE over the set of forecasts produced for each training
dataset. The DLM and SARIMA boxes are outside of the plot range for the synthetic
dataset. The labels on the horizontal axis are common for all plots.
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6.3 Model Comparison Box-Whisker Plots

Box-whisker plots of the results over all the forecasts in each dataset’s test set
are provided in Fig. 3. ForecastNet consistently produced small boxes with low
median values. The small boxes indicate that there is little variation in the
accuracy over the set of forecasts. This indicates some form of robustness in
the ForecastNet model. The low median values indicate a high level of accuracy.
We argue that the time-variance properties of ForecastNet allow it to generalise
better over the variations in the data dynamics. This results in the smaller boxes
and lower median values.

There was significant variation over the different models in the synthetic
dataset box-whisker plots. For this dataset, the fully connected networks such as
FN, FN2 and MLP have small boxes. DeepAR had a large box which indicates
a high variation in the forecast accuracy.

The models generally perform well on the weather dataset. This may be due
to a more consistent seasonal amplitude in this dataset compared with the other
real-world datasets. The lake and pH datasets have varying trends, amplitudes,
and seasonal shape resulting in higher errors. ForecastNet and the attention
model seem to model these variations better given their lower errors.

In datasets such as electricity, traffic, and pH, ForecastNet produced low
errors with small boxes indicating reliable and accurate forecasts. Especially in
the electricity and traffic datasets, it is evident that increased model complexity
and removing the mixture density output results in lower errors and a more
robust model. The mixture density outputs can reduce accuracy because the
learning algorithm seeks to simultaneously minimise two variables in the normal
distribution’s log likelihood function. This is opposed to minimising a single
variable in mean squared error loss function used for a linear output layer.

7 Summary and Conclusion

In this study, ForecastNet is proposed as time-variant deep neural architecture
for multi-step-ahead time-series forecasting. Its architecture breaks from conven-
tion of structuring a model around the RNN or CNN. The result is a model that
is time-variant compared with the RNN and CNN, which are time-invariant.

We demonstrate how time-invariant models can fail on a time-variant dataset.
Additionally, we provide a comparison of several deep learning and statistical
models on a range 10 of seasonal time-series datasets, selected from various
domains. We demonstrate that ForecastNet is both accurate and robust on all
datasets. It outperforms other models in terms of MASE on 8 of the 10 datasets
and is ranked as the best performing model overall with Borda counts.

ForecastNet is a flexible architecture that lends itself well to various layer
structures and is easily implemented in modern deep learning platforms. To
improve accuracy, we suggest experimenting with various approaches such as
using batch normalisation, shortcut-connections within and between hidden
blocks, and augmenting the inputs with temporal information such as position.
Integrating self-attention into the model will provide benefits relating to model



590 J. J. Dabrowski et al.

interpretability. In future work, investigating ways of handling variable sequence
lengths could be investigated to make the model more widely applicable to prob-
lems such as natural language processing.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of the International Conference on Learning
Representations (2015). http://arxiv.org/abs/1409.0473

2. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271
(2018)

3. Bishop, C.M.: Mixture density networks. Technical report NCRG94004, Aston Uni-
versity (1994)

4. Chang, S., et al.: Dilated recurrent neural networks. In: Guyon, I., et al.
(eds.) Advances in Neural Information Processing Systems 30, pp. 77–87. Cur-
ran Associates, Inc. (2017). http://papers.nips.cc/paper/6613-dilated-recurrent-
neural-networks.pdf

5. Dabrowski, J.J., Rahman, A., George, A., Arnold, S., McCulloch, J.: State space
models for forecasting water quality variables: an application in aquaculture prawn
farming. In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and #38; Data Mining. (KDD 2018), pp. 177–185, ACM,
New York (2018). https://doi.org/10.1145/3219819.3219841

6. Du, S., Li, T., Yang, Y., Horng, S.J.: Multivariate time series forecasting via
attention-based encoder-decoder framework. Neurocomputing (2020). https://
doi.org/10.1016/j.neucom.2019.12.118, http://www.sciencedirect.com/science/
article/pii/S0925231220300606

7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: 2015 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 1026–1034, December 2015. https://doi.
org/10.1109/ICCV.2015.123

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

9. Hewamalage, H., Bergmeir, C., Bandara, K.: Recurrent neural networks for
time series forecasting: current status and future directions. arXiv preprint
arXiv:1909.00590 (2019)

10. Mariet, Z., Kuznetsov, V.: Foundations of sequence-to-sequence modeling for time
series. In: Chaudhuri, K., Sugiyama, M. (eds.) Proceedings of Machine Learning
Research. Proceedings of Machine Learning Research, vol. 89, pp. 408–417. PMLR,
16–18 April 2019. http://proceedings.mlr.press/v89/mariet19a.html

11. Oord, A.V.D., et al.: WaveNet: a generative model for raw audio. arXiv preprint
arXiv:1609.03499 (2016)

12. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Pearson edu-
cation signal processing series, 3rd edn. Pearson, London (2009)

13. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic
forecasting with autoregressive recurrent networks. Int. J. Forecast. (2019).
https://doi.org/10.1016/j.ijforecast.2019.07.001, http://www.sciencedirect.com/
science/article/pii/S0169207019301888

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1803.01271
http://papers.nips.cc/paper/6613-dilated-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6613-dilated-recurrent-neural-networks.pdf
https://doi.org/10.1145/3219819.3219841
https://doi.org/10.1016/j.neucom.2019.12.118
https://doi.org/10.1016/j.neucom.2019.12.118
http://www.sciencedirect.com/science/article/pii/S0925231220300606
http://www.sciencedirect.com/science/article/pii/S0925231220300606
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1909.00590
http://proceedings.mlr.press/v89/mariet19a.html
http://arxiv.org/abs/1609.03499
https://doi.org/10.1016/j.ijforecast.2019.07.001
http://www.sciencedirect.com/science/article/pii/S0169207019301888
http://www.sciencedirect.com/science/article/pii/S0169207019301888


ForecastNet: A Time-Variant Deep Feed-Forward Neural Network 591

14. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In:
Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 28, pp. 2377–2385. Curran Associates,
Inc. (2015). http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf

15. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural net-
works. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3104–
3112. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.pdf

16. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc.
(2017). http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

17. West, M., Harrison, J.: Bayesian Forecasting and Dynamic Models. Springer Series
in Statistics, Springer, New York (1997). https://doi.org/10.1007/0-387-22777-6

http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1007/0-387-22777-6


Memetic Genetic Algorithms for Time
Series Compression by Piecewise Linear

Approximation

Tobias Friedrich , Martin S. Krejca(B) , J. A. Gregor Lagodzinski ,
Manuel Rizzo , and Arthur Zahn

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{tobias.friedrich,martin.krejca,gregor.lagodzinski}@hpi.de,

arthur.zahn@student.hpi.de

Abstract. Time series are sequences of data indexed by time. Such
data are collected in various domains, often in massive amounts, such
that storing them proves challenging. Thus, time series are commonly
stored in a compressed format. An important compression approach is
piecewise linear approximation (PLA), which only keeps a small set of
time points and interpolates the remainder linearly. Picking a subset of
time points such that the PLA minimizes the mean squared error to
the original time series is a challenging task, naturally lending itself to
heuristics. We propose the piecewise linear approximation genetic algo-
rithm (PLA-GA) for compressing time series by PLA. The PLA-GA is a
memetic (μ+λ) GA that makes use of two distinct operators tailored to
time series compression. First, we add special individuals to the initial
population that are derived using established PLA heuristics. Second,
we propose a novel local search operator that greedily improves a com-
pressed time series. We compare the PLA-GA empirically with existing
evolutionary approaches and with a deterministic PLA algorithm, known
as Bellman’s algorithm, that is optimal for the restricted setting of sam-
pling. In both cases, the PLA-GA approximates the original time series
better and quicker. Further, it drastically outperforms Bellman’s algo-
rithm with increasing instance size with respect to run time until find-
ing a solution of equal or better quality – we observe speed-up factors
between 7 and 100 for instances of 90,000 to 100,000 data points.

Keywords: Genetic algorithms · Time series compression · Piecewise
linear approximation · Hybridization · Experimental study

1 Introduction

In the modern age of Industry 4.0 and the Internet of Things, sensors are used
in abundance in smart devices, cars, or to monitor production facilities. This
leads to a huge accumulation of data over time, whose collection speed is only
going to increase in the nearby future [9]. A prevalent type of such sensory data
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are time series – sequences of measurements indexed by time. In order to store
these vast amounts of data in the long term and to allow scalable data analysis
techniques, it is often necessary to compress time series [17,22]. To this end,
various approaches exist that construct a time series of reduced dimensionality
as an approximation of the original, known as time series representation [15,27].

In this setting, the use of lossy compression methods [18,19,37], adopted from
the research on multimedia data, has been often advocated under several termi-
nologies. These methods trade precision for a higher compression factor so that
the reconstructed time series is only an approximation of the original, frequently
omitting noise, outliers, and other information deemed not worthy of their mem-
ory cost. While some of these methods represent the time series in a transformed
domain (e.g., involving discrete Fourier [1] or Wavelet transforms [31]), in certain
application fields, it is important to maintain the original time domain and the
related time stamps information, such as in GPS or accelerometer data [20].

In this work, we study piecewise linear approximation (PLA [21,24]), which
is among the most important time series representation procedures for lossy com-
pression and has been shown to be efficient in terms of memory and transmission
cost compared to other similar methods [37]. PLA compresses a time series by
representing it via a sequence of linear segments whose quality is assessed by an
error measure between the original and the reconstructed series. This leads to a
combinatorial problem similar to NP-hard problems like cluster analysis or sub-
set selection in regression [35]. Consequently, heuristics are applied. We analyze
to what extent evolutionary algorithms (EAs) can be used for this problem.

Related Work. Using EAs as heuristics for time series analysis is not a novel
approach [3]. However, most research is focused on detecting break points in
time series, that is, certain points in the series that have interesting or impor-
tant structural properties [3,5,7]. To the best of our knowledge, the only prior
research concerning EAs for compression by PLA was conducted by Duràn-Rosal
et al. [10–12]. The authors consider the restricted setting of sampling, for which
the compressed series is restricted to consist only of points contained in the origi-
nal time series. Their works introduce a memetic genetic algorithm [12], particle
swarm optimization algorithm [10], and coral reef optimization algorithm [11],
all augmented with a local search operator to improve intermediate solutions.

Outside the domain of EAs, other heuristics have been considered for com-
pression by PLA [34]. Especially, in the restricted setting of sampling, Bellman’s
algorithm [4] is optimal and deterministic. However, compression by PLA usu-
ally concerns the slightly different setting where one is not given a number of
points m to pick but an error bound ε instead [8,14,26]. The goal is to find a
compressed series with a mean squared error (MSE) of at most ε to the orig-
inal time series. Thus, the number of points to pick can be chosen freely by
the compression algorithm. Recent advances were made in this area [23,36]. The
benefit of this approach is that the result is guaranteed to be within the specified
error distance (if a result is returned). On the downside, the user has no control
over the memory that the compressed time series occupies. However, note that
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the approaches of a given error bound ε and a given compression size m can
be roughly converted into one another by performing a binary search on the
parameter not provided.

Our Results. We propose the piecewise linear approximation genetic algorithm
(PLA-GA, Alg. 1), a memetic (μ + λ) genetic algorithm (GA) variant for gen-
eral time series compression via PLA. It features a seeding and a local search
operator, both specific to this domain. Seeding adds special individuals to the
initial population, which are computed via established PLA heuristics. The local
search operator is a novel contribution that greedily improves a compressed time
series.

We empirically analyze the impact of these two memetic operators on the
PLA-GA’s performance (see 4.2). We find that both operators are favorable, as
they help the PLA-GA improve its MSE as well as its run time (see Fig. 1). We
then evaluate the performance of the PLA-GA against competing approaches
(see Sect. 4.3 and 4.4), which all operate under the sampling restriction. First,
we compare the PLA-GA to the two latest and best-performing EAs [10,11] (see
Sect. 4.3), which are the only EAs for compression by PLA, to the best of our
knowledge. We observe that the PLA-GA outperforms them both with respect
to the MSE as well as run time (see Table 1). Second, we compare the PLA-
GA to Bellman’s algorithm [4] (Sect. 4.4), a deterministic optimal algorithm
for the sampling restriction, which the PLA-GA is not restricted to. First, we
provide the PLA-GA with a run time budget equivalent to that of Bellman’s
algorithm. We observe a large variance of the MSE in the results, with the PLA-
GA usually outperforming Bellman’s – reducing the error of Bellman’s up to
55% (Table 2). Then, we analyze how long the PLA-GA takes to find a solution
of Bellman’s quality or better. Our results show that the PLA-GA drastically
outperforms Bellman’s algorithm, expressing speed-up factors between 7 and 100
for instances of 90,000 to 100,000 data points (see Fig. 2). Overall, our results
suggest that the PLA-GA is particularly well suited to compression by PLA for
long time series.

2 Preliminaries

For m,n ∈ N, let [m..n] denote the set of all natural numbers in the interval
[m,n]. A time series is a function S : R≥0 → R with a finite domain of n ∈ N+

elements, where n is the length of S. We call the domain of S, denoted by dom(S),
the time points of S. Furthermore, for an index i ∈ [1..n], let tSi denote the i-th
smallest time point of S, and let vS

i denote its function value S(tSi ). Given a
time series S of length n, we call a time series C of length m a compression of S
if and only if dom(C) ⊆ dom(S), m ≤ n, and if tS1 = tC1 and tSn = tCm. Note that
while we demand that the time points of C are a subset of those of S, we make
no such claims for the function values of C and S. We view C as a piecewise
linear approximation (PLA) of S by interpolating values for the time points in
dom(S)�dom(C) using linear functions. More formally, we define the PLA of S
via C, denoted as C∗, to be a time series of length n with dom(C∗) = dom(S)
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such that, for all i ∈ [1..m − 1] and all t ∈ dom(S) ∩ [tCi , tCi+1], it holds that
C∗(t) = vC

i +
(
t − tCi

)
(vC

i+1 − vC
i )/(tCi+1 − tCi ).

Approximation Error by PLA. Given a time series S and a compres-
sion C, we quantify the approximation error via the mean squared error
(MSE), which is a common measures [10,14,23,25]. We define MSE(C,S) =
1
n

∑n
i=1

(
vS
i − C∗(tSi )

)2.

3 The Piecewise Linear Approximation Genetic
Algorithm

We introduce the (μ+λ) piecewise linear approximation genetic algorithm (PLA-
GA; Algorithm 1), a memetic genetic algorithm following a (μ + λ) GA outline
and using PLA to compress a time series of length n down to length m ≤ n,
minimizing the MSE. The PLA-GA makes use of a seeding and a local search
operator, both of which are tailored to improve the quality of compressed time
series. Please find the source code as well as a detailed description of the PLA-GA
on GitHub.1

Each individual represents a compressed time series C of length m for a given
time series S of length n. Since we minimize the MSE of C∗ and S, we only store
the time points dom(C); we compute the values vC

i optimally with respect to
the MSE only if needed. That is, we represent a compressed time series C by a
bit string x of length n such that, for all i ∈ [1..n], xi = 1 if tSi ∈ dom(C), and
xi = 0 otherwise, as is common [11,12]. Note that x has exactly m 1s. Recall
that we demand each compressed time series to contain the first and last time
point of S. Thus, for each individual x, it holds that x1 = xn = 1. If a bit string
fulfills these conditions, we call it valid, otherwise invalid.

Algorithm 1: The (μ + λ) PLA-GA with parameters α ∈ [0, 1], k ∈ N,
μ ≥ k, λ ∈ N+, and m ≥ 2, compressing a time series S of length n down
to length m ≤ n, minimizing the MSE
1 P1 ← μ − k individuals, each uniformly at random from {x ∈ {0, 1}n |x is valid};
2 P2 ← k individuals, each generated by one of the k seeding operators;
3 P ← P1 ∪ P2;
4 while termination criterion not met do
5 L ← ranking selectionλ(P, S);
6 O ← recombine(L);
7 bitflip repair(O);
8 bitswap mutationα(O);
9 foreach x ∈ O do local search(x, S);

10 P ← out of P ∪ O, choose μ best individuals;

1 https://github.com/arthurz0/ga-for-time-series-compression-by-pla/.

https://github.com/arthurz0/ga-for-time-series-compression-by-pla/
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In order to determine the fitness of an individual for C, that is, its MSE
to S, we first determine the values vC

i optimally as proposed by Marmarelis [25].
This approach is based on solving a system of m linear equations, where each
equation represents the error of a piecewise linear function of C to S. Solving
these equations takes time in O(n). Afterward, we compute the MSE.

4 Experimental Evaluation

We evaluate the performance of the PLA-GA empirically in different settings.
In Sect. 4.2, we analyze the impact of the memetic operators on the PLA-GA’s
performance by comparing different variants of hybridization. We find that both
memetic operators improve the quality of the solutions and the time to find
them.

Afterward, we compare the PLA-GA against other algorithms that compress
a time series S of length n to a time series C of length m. These algorithms take
a simplified approach to PLA by only choosing points of the original series, that
is, for all t ∈ dom(C), it holds C(t) = S(t), called sampling.

In Sect. 4.3, we compare the PLA-GA against two memetic EAs of Duràn-
Rosal et al. [10,11], which, to the best of our knowledge, are the currently best
EAs for compression by PLA. Since the EAs require a predetermined budget N of
evaluations, we give the PLA-GA a roughly equivalent computation time budget.
We observe that the PLA-GA outperforms the EAs during the entire budget.

In Sect. 4.4, we analyze the quality of the MSE achieved by the PLA-GA
when it is not bound to a fixed time budget. To this end, we use Bellman’s algo-
rithm [4] as a baseline, which is deterministic and optimal under the restriction
of sampling. First, we compare the quality reached when giving both algorithms
the same run time budget on data sets of up to 30,000 points. The results depend
strongly on the data set, ranging from solutions of similar quality to significant
improvements of up to 0.55 times the MSE of Bellman in the best experiment.
Then, we analyze how much time the PLA-GA needs to find solutions of the
same quality as Bellman on problem instances of increasing size. We observe
that the PLA-GA scales far better, reaching speed-up factors between 7 and 100
for problem sizes of 90,000 or 100,000 points.

In all of our experiments, we run the PLA-GA with μ = 200, λ = 200, and
α = 0.8

m−2 (and k = 3). These parameters were determined in pilot experiments.
The experiments were conducted on an Intel(R) Core(TM) i5-6200U CPU @
2.30 GHz with 8 GB RAM, unless noted otherwise.

4.1 Data Sets

Most of our time series originate from the publicly accessible UCR Time Series
Classification Archive [32], which contains sets of time series for classification
purposes. We use the data sets Rock, Ham, HandOutlines, Mallat, Phoneme,
and StarLightCurves from different application fields. Since we aim to conduct
experiments on time series of up to 100,000 points but the classification data sets
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consist of instances with a length between 431 (Ham) and 2844 (Rock) points,
we concatenate the instances of each data set until the desired length is reached.
An exception to this is Mallat (8192 points), where we use the same version as
Duràn-Rosal et al. in [10,11].

Further, we use the “PAMAP2 Physical Activity Monitoring Dataset” [28,29]
from the UCI Machine Learning Repository [33], containing data from real-world
activity tracking. In particular, we use the columns 5 (Subject5 ) and 6 (Subject6 )
from the protocol of Subject103, both of which contain 252,311 points of 3D-
acceleration data. Since the time series are too long for our purposes, we only take
the first n points, where the specific value of n is mentioned in each experiment.

4.2 Evaluation of Hybridization

We examine the benefit added by hybridization and evaluate its cost, demon-
strating that both, seeding and local search, improve the PLA-GA.

Setup. We run the PLA-GA in the following four configurations: with no seed-
ing and no local search (PLA-GA-B), with seeding but no local search (PLA-
GA-S), with local search but no seeding (PLA-GA-L), and the main algorithm
PLA-GA, which uses both seeding and local search. We measure their MSE per
iteration and determine the run time cost of seeding and local search. We have
50 independent runs per algorithm and choose m = 0.01n.

Results. Fig. 1 shows the MSEs of each PLA-GA variant by iteration. Although
it is hardly noticeable in the figure, note that, bar statistical inaccuracies, PLA-
GA and PLA-GA-S have the same best MSE in the initial population (iter-
ation 0), as both use seeding, which deterministically introduces high-quality
solutions. Similarly, both PLA-GA-B and PLA-GA-L start with roughly the
same best MSE, as neither uses seeding. Further, the MSEs of each algorithm
are concentrated around the median, as the interquartile ranges are merely
visible.

On all data sets, PLA-GA-B performs worst and the PLA-GA best. In
between we have PLA-GA-L, which starts worse than PLA-GA-S but overtakes it
after some time, on Phoneme even at iteration 1. This substantiates the intuition
that seeding helps during the start of the algorithm (since it adds good individ-
uals to the initial population), whereas the gain of local search is incremental
and adds up over time. On some data sets, the three better configurations end
up with very close MSEs, though it should be considered that small differences
gain significance the closer the solutions get to the optimum. When looking at
the number of iterations required to reach a specific level of quality, the speed
boost granted by the hybridization operators becomes evident.

For the full picture, one must further consider the computational effort of the
hybridization operators. The creation of the initial population without seeding
costs roughly as much as 1.3 iterations without local search; adding seeding
increases this cost by roughly 25%, so the computational effort of seeding is
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(a) Ham (b) HandOutlines

(c) MALLAT (d) Phoneme (e) Rock

(f) StarLightCurves (g) Subject5 (h) Subject6

Fig. 1. The MSE of the best solution for four different variants of the PLA-GA (Algo-
rithm 1) plotted against the iteration, compressing a time series of length n down to
length m. The solid lines represent the median of 100 runs per algorithm, and the
surrounding shaded areas depict the mid 50 %. The legend of each plot denotes the
order of the curves in the last iteration. Please also refer to Sect. 4.2.

almost irrelevant for the total run time. The local search, on the other hand, is
very expensive: an iteration with the local search takes roughly 2.9 times as long
as an iteration without. Nonetheless, the quality benefit of local search makes it
worthwhile, leading to an overall better performance despite its high cost.

4.3 Comparison with Other Evolutionary Algorithms

Duràn-Rosal et al. propose several memetic EAs for compressing time series by
PLA under the sampling restriction [10–12]. Their best are the particle swarm
algorithm ACROTSS [10] and the coral reef algorithm DBBePTOSS [11]. Both
algorithms require a bound N on the number of evaluations in advance, as they
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Table 1. Median best MSE of each of the 100 runs for the algorithms DBBePTOSS [11],
ACROTSS [10], and the PLA-GA (Algorithm 1) when compressing a time series of
length n. The results state the MSE after the first and the last iteration within the
given budget. Scale denotes the factor that applies to all MSEs in the table. Please
also refer to Sect. 4.3.

Data set n Scale DBBePTOSS ACROTSS PLA-GA

Start End Start End Start End

Mallat 8192 10−5 15889 2207 1427 999 626 410

Ham 10000 10−3 982 474 399 330 246 196

Rock 10000 10−5 15264 1405 1122 918 906 682

Subject5 10000 10−4 5813 1148 920 791 750 598

Subject6 10000 10−3 1251 408 347 308 301 256

HandOutlines 20000 10−7 45619 538 377 335 294 215

Phoneme 20000 10−3 1122 588 534 496 484 393

StarLightCurves 20000 10−6 30833 1115 789 684 319 185

perform local searches after certain iterations, relative to N . When comparing
these algorithms to the PLA-GA, we provide it with a similar budget. However,
since the PLA-GA’s computational effort of a fitness evaluation is much higher
due to calculating optimal function values for the compressed time series first,
we instead give the PLA-GA a wall-clock-time budget matching the converted
median run time of the fastest competing approach.

Setup. For the EAs of Duràn-Rosal et al., we choose the parameters as stated
in the respective publications, including the budget of N = 3.5n evaluations and
compression length m = 0.025n+1. For each algorithm, we start 100 independent
runs and log the MSE of the best individual in the population in each iteration.
Unfortunately, the EAs of Duràn-Rosal et al. are implemented in Matlab, while
the PLA-GA runs in Julia. Thus, we cannot directly take the wall-clock time
of the EAs as budget for the PLA-GA. Instead, we divide the times of the
EAs by 5, which is roughly the speed-up of our implementation of Bellman’s
algorithm [4] when run in Julia compared to Matlab. However, we acknowledge
that no constant conversion factor exists [2,30].

Results. Table 1 shows the median best MSE of each algorithm for the first
and last iteration. The PLA-GA clearly outperforms the competing approaches,
as even its starting values are consistently better than the end values of DBBeP-
TOSS and ACROTSS. This is most likely due to the less restrictive approach of
the PLA-GA and its use of seeding.
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Table 2. Median MSE of the best solution of 50 runs of the PLA-GA (Algorithm 1)
after a computation time equivalent to Bellman’s algorithm [4] when compressing a
time series of length n. Ratio shows the median MSE of the PLA-GA divided by that
of Bellman’s. Best ratio is the best MSE of the PLA-GA divided with the MSE of
Bellman. Scale denotes the factor that applies to all MSEs in the table. Please also
refer to Sect. 4.4.

Data set n Scale Bellman PLA-GA Ratio Best ratio

Mallat 8192 10−4 911 741 0.81 0.79

Ham 20000 10−3 512 496 0.97 0.96

Rock 20000 10−3 270 184 0.68 0.64

Subject5 30000 10−3 131 121 0.92 0.91

Subject6 30000 10−3 300 287 0.96 0.94

HandOutlines 20000 10−7 1663 910 0.55 0.54

Phoneme 20000 10−3 566 573 1.01 1.00

StarLightCurves 20000 10−5 418 270 0.65 0.64

4.4 Comparison with Bellman

We compare the MSE and the wall-clock time of the PLA-GA against Bell-
man’s algorithm [4], which deterministically computes an optimal solution in
the restricted setting of sampling. First, we examine the MSE of the PLA-GA
when giving it a budget equivalent to Bellman’s wall-clock-time. Second, we ana-
lyze how the PLA-GA’s run time scales with the input size n in comparison to
Bellman’s algorithm, which has a rather slow run time of O(n2m).

Setup. Both sets of experiments have 50 independent runs per algorithm and
m = 0.01n. In the first set, the PLA-GA has a run time budget equivalent to the
wall-clock-time of Bellman’s algorithm, and the time series have up to 30,000
points. For the second set, we stop the PLA-GA once it finds a solution equal
to Bellman’s quality or better for the first time. The second set was conducted
on an Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz and 8 GB RAM.2

Results. Table 2 compares the MSE of the solutions found by the PLA-GA and
Bellman with the same amount of time; a small ratio is desirable. The results
vary drastically between the experiments, ranging from similar MSEs on some
data sets to huge improvements over Bellman on others. This variance is to be
expected, as the difference between Bellman and the best ratio, which is an
upper bound on the global optimum, also differs between each data set.

2 Bellman’s algorithm was modified to calculate the segment errors incrementally on
the fly. This reduced the memory complexity from O(n2) to O(mn), allowing us to
run larger experiments. This modification does not affect the asymptotic run time.



Memetic Genetic Algorithms for Time Series Compression by PLA 601

(a) Ham (b) Rock

(c) Subject5 (d) Subject6

Fig. 2. Median Wall-clock time it takes for the PLA-GA (Algorithm 1) and Bellman’s
algorithm [4] on increasing instance sizes. The PLA-GA is stopped once it finds a
solution of at least Bellman’s quality. In each figure, the lower curve shows the run
time of the PLA-GA. The numbers over Bellman’s curve denote the speed-up factor
for that value of n, which is the quotient of Bellman’s run time divided by that of the
PLA-GA. Please also refer to Sect. 4.4.

Figure 2 compares the run times of Bellman and the PLA-GA with increas-
ing problem size n and shows the resulting speed-up factors. The results differ
strongly between the data sets, reaching a speed-up of 7 for Ham on 90,000
and 100 for Rock on 100,000. Thus, the PLA-GA seems to be more sensitive to
the type of data than Bellman. Nonetheless, the speed-up factor clearly grows
with n across all four data sets, indicating that the PLA-GA scales far better
than Bellman.

5 Conclusions

We introduced the PLA-GA, which is a memetic (μ + λ) GA for compressing a
time series by PLA. We showed that its two memetic operators – seeding and
local search – have a positive impact on the algorithm’s solution quality and run
time. Further, we ran experiments comparing the PLA-GA to other EAs for time
series compression and an optimal deterministic algorithm for a more restrictive
setting. We observed that the PLA-GA outperforms all of these approaches with
respect to solution quality and run time, leading to speed-up factors between 7
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and 100 in comparison to the optimal algorithm. This indicates a clear advantage
of the PLA-GA to the existing approaches.

An interesting question for future research is how well the PLA-GA performs
on data streams instead of fixed time series. Especially in industrial settings, time
series data are produced in streams in rapid succession. Analyzing how well the
compression works if the PLA-GA only sees certain chunks of data instead of the
entire data set would provide insights into whether the PLA-GA is also useful
for on-the-fly compression. Moreover, it would be interesting to observe whether
including a statistical modeling step in the procedure is beneficial. In fact, we
currently use a mathematical procedure for obtaining optimal predicted values
with respect to the mean squared error, but taking advantage of the dependence
between time points by statistical modeling (e.g., local linear smoothing [16])
before this step could further improve the quality of the approximation.

Acknowledgments. We thank Durán-Rosal et al. [10–12] very much for immediately
providing us with the source code of their evolutionary algorithms upon request.
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Abstract. Gas sensor drift affects the performance of chemical sensing.
In this paper, a Long Short Term Memory (LSTM) network and a Sup-
port Vector Machine (SVM) are used for gas sensor drift compensation
to improve gas classification performance. An improved dynamic feature
extraction method is developed to reduce feature dimensions. A public
time series chemical sensing dataset is used for evaluation, which was
collected by 16 metal-oxide gas sensors over three years. Results show
that a high classfication accuracy can be achieved using the proposed
method compared to other studies, which demonstrates the robustness
of the proposed method for sensor drift compensation.

Keywords: Sensor drift · Support vector machine · Long short term
memory network · Gas sensors

1 Introduction

Gas sensors are used for identifying different types of gases and monitoring
the composition of gases such as food producing, environmental and biomedi-
cal monitoring [1], where reliability of sensors is an important indicator in gas
classification systems. However, sensor drift affects the gas recognition perfor-
mance. There are different forms of drifting including zero, span and concept
drifts etc. [2]. Sensor drift occurs due to the interference of many factors such
as atmospheric pressure, temperature, humidity variations and other uncontrol-
lable changes from external environment [3]. Moreover, materials of sensors are
unstable during the process of gas recognition. Physical and chemical interac-
tions in micro-structure of gas sensors or deployments in polluted environment
can lead to changes of sensor surface. For example, sensors’ ageing affects the
sensor signal collection process, which makes the output sensor signals unstable.
These factors reduce recognition accuracy in gas classification systems.

Sensor drift should be considered in the data processing stage [4], and it can
be addressed by using some compensation technologies. By using compensation,
classification accuracy of gas can still be maintained. Compensation technologies
c© Springer Nature Switzerland AG 2020
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can be divided into the hardware and software compensations. For the former, it
mainly focuses on repairing gas sensors, which includes removing aged modules
or using stable sensors. The disadvantage is the high cost of replacing sensors
[2]. For the latter, software compensation includes univariate, multivariate and
machine learning methods. Univariate method is sensitive to sampling rates and
not suitable for solving sensor drift in severe environment. Multivariate method
can simulate drift, but the process is complex. In recent studies, machine learn-
ing methods are used to resolve sensor drift. Support Vector Machine (SVM),
K nearest neighbour, random forest are usually used in gas recognition [3,5]. It
is necessary to reduce dimension of gas data as original gas data is complex,
and accuracy is low if original data is used for gas recognition. Machine learn-
ing methods can classify features with low dimension and address sensor drift
in gas classification systems. Principal components analysis is used for feature
extraction and partial least squares regression is used for classification in [6].
By removing components of drift direction from collected data, a better perfor-
mance can be achieved. A signal processing technique is used by [7] for sensor
drift compensation. However, a chemically stable gas is necessary for reference in
these studies, which is difficult to conduct. In recent studies, deep learning meth-
ods are used in gas recognition. A domain adaptive extreme learning machine
[8] is used to mitigate sensor drift. Deep learning such as recurrent neural net-
work is used in many studies [9–13]. Gas data belongs to long time-series data,
and recurrent neural network is not suitable for classifying it. Therefore, the
Long Short Term Memory (LSTM) network is used for classification, and Pear-
son product-moment correlation coefficient is used for feature extraction by [2].
However, classfication accuracy can be further improved.

In this paper, an improved feature extraction method is proposed by using
ReliefF algorithm. Features’ dimension is reduced by adjusting weights obtained
from the ReliefF. LSTM and two fully-connected layers are used for gas recog-
nition. For fair comparison with other studies, SVM is also trained as a baseline
classifier for evaluating the proposed algorithm. A public gas dataset namely
‘Gas Sensor Array Drift Dataset’ in the machine learning repository is used for
classifying. Contribution of this paper is summarized as follows: (1). An improved
feature extraction algorithm is proposed in this paper. (2). Gas sensor drift can
be mitigated using the proposed methods and performance is better in most
batches compared to other works using the same dataset. The rest of the paper
is organised as follows. Section 2 is dataset description. Section 3 introduces the
proposed algorithm. Section 4 introduces structure of network. Section 5 presents
experiments and analysis of results. Section 6 is the conclusion.

2 Dataset

The dataset [4] used in this work is a public gas dataset for gas recognition. It
consists of six different gases collected during 36 months using 16 metal-oxide
sensors. Gas sensors are put into different test chambers containing Ethanol,
Ethylene, Acetone, Ammonia, Acetaldehyde and Toluene. Number of collected
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Table 1. Gas dataset [4]

Batch ID Month ID Number of samples

1 1,2 445

2 3,4,8,9,10 1244

3 11,12,13 1586

4 14,15 161

5 16 197

6 17,18,19,20 2300

7 21 3613

8 22,23 294

9 24,30 470

10 36 3600

samples is 13,910. For each sample, there are eight kinds of features calculated
using data collected from gas sensors. According to [4], two features are cal-
culated by maximum ascent and decay in internal resistance of gas sensors in
steady state, and other six features are calculated through exponential moving
average filter, which is given by

y[k] = (1 − a)y[k − 1] + a(r[k] − r[k − 1]), (1)

where a = 0.1, 0.01, or 0.001, y[k] represents the real scalar and initial state of
y is set to zero, r is time curve of sensor resistance. Thus, feature dimension of
each sample is 128 (16×8).

Original features are pre-processed using normalization, and each feature is
scaled to the range of −1 to +1, which is expressed by

y[n] = 2 × x(n) − Min(x)
Max(x) − Min(x)

− 1, (2)

where x represents original value of features, Max(x) and Min(x) represent the
maximum and minimum value of all features, respectively. Data in this dataset
is organized into ten batches, where each batch consists of different amounts of
samples. Data combination in gas dataset is shown by Table 1. The number of
samples is different in each batch according to [4]. Features are extracted in the
proposed algorithm for gas recognition using SVM and LSTM.

3 Feature Extraction Algorithm

As described in Sect. 2, feature dimension is 128 for each sample. According to [2],
good accuracy can be achieved by reducing dimension of features in gas dataset.
Moreover, computational complexity time can be reduced and classification time
can be saved.
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ReliefF is improved from Relief for multi-class tasks [14]. It can help remove
unnecessary data from dataset and output the weights of different features in
the dataset. Thus, dimension can be reduced compared to original data. Weights
are calculated according to correlations among features of samples with different
labels. After setting the thresholds weights, features with high weights are kept
for classification.

The ReliefF is improved in this work. First, the gas dataset is divided into
training data and testing data. Then the sample R is selected and the nearest
neighborhood of the same and different classes are calculated to find the nearest
neighbors by diff function. diff is defined by

diff (A, I1, I2) =
|value (A, I1) − value (A, I2)|

Max(A) − Min(A)
(3)

where I1 and I2 are two samples selected from attribute A. After that, the nearest
neighbor H in the same class and the nearest neighbor M in different classes
are selected. Then Ri, M , H and weighting vector are used for calculating the
distance of adjacent sample A between the same and different classes. Weight
W [Af ] is updated by

W [Af ] = W0 [Af ] +
diff (AP , RiM)

m
− diff (AF , Ri,H)

m
(4)

where initial value of W0[Af ] is set to 0, m represents the operations are repeated
for m times.

For gas dataset used in this work, features of each sample are extracted with
ReliefF and weights of each sample are obtained. For each batch, weights of all
features are shown by Fig. 1, where the distribution of high weights are mainly
limited on position of 0–60 and 110–128. Features with high weights mean they
are more important among all features. Thus, a threshold value should be set
and features with weights higher than the threshold value can be kept. Thus,
dimension of samples’ features can be reduced. Threshold is selected dynamically
in order to achieve the best accuracy in classifiers. Considering dimension of each
sample, threshold value is set to 0–0.018.

4 LSTM

LSTM is effective in classifying long timing information, which can be used for
analyzing gas samples. The model used in this paper consists of four layers,
which includes the input layer, the LSTM layer, the hidden layer and the output
layer. Structure of the model is shown by Fig. 2. Input sequence X is fed to
LSTM layer, and output of LSTM layer is sent to the hidden layer. After that,
output of hidden layer is sent to output layer for classification. C and H are two
outputs from current state to the next state of LSTM cell.

As threshold of feature extraction algorithm is not fixed, dimension of input
sequence X also varies in this work. According to threshold value, dimension
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Fig. 1. Feature weight distribution

of X is from 29 to 128. LSTM cell consists of forget, input and output gates.
Outputs of these three gates can be expressed by

ft = σ (wf × ht−1 + wf × xt + bf ) , (5)

it = σ (Wi × [ht−1, xt] + bi) , (6)

ot = σ (wo × ht−1 + wo × xt + bo) , (7)

where f , i, o are results of the three gates, Wf , Wi, Wo are weights of three
gates, which are initially set to 0. bf , bi and bo are bias terms. States can be
expressed by

C̃t = tanh (Wc × [ht−1, xt] + bc) , (8)
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Ct = ft × Ct−1 + it × C̃t, (9)

ht = ot × tanh (Ct) , (10)

where ot is defined in Eq. (7), Ct is input state of neuron at time t + 1, ht

is final output of neuron at time t, Wc is the weight matrix, bc is the bias of
input gate. In fully-connected layer, Relu is selected as the activation function.
In output layer, output function is softmax. Optimizer is adam in this model.
Loss function is cross entropy, and it is defined by

loss = −
∑

yi log ŷi, (11)

where yi is predictions of output layer, yi is values of labels of gas dataset.

5 Results

For gas recognition, sensor drift affects the performance of classifiers and accu-
racy of each batch is gradually decreasing with time. The SVM is used for bench-
marking. In gas dataset, batch 1 is used as training set, and batch 2 to 10 are
used as testing set. Threshold in this experiment is set to 0.018. Accuracy of each
batch is shown by Table 2, where data used for training and testing is original
data in dataset. Accuracy of batch 1 is 100% because training and testing data
are same. Accuracy of each batch gradually decreases during the whole testing
process. It indicates that gas sensor is drifting when sensor is used for monitor-
ing the gas in external environment. Experiments in this paper mainly focus on
mitigating gas sensor drift by using the proposed feature extraction algorithm
and classifiers. In order to study senor drift of gas sensors, four settings are
considered as follows:

Table 2. Accuracies (%) of SVM

Batch ID 1 2 3 4 5 6 7 8 9 10

Accuracy 100 46.8 77.0 93.2 84.3 49.3 78.3 67.3 54.9 32.4

Setting 1: Using data without feature extraction, batch k is used for testing,
and batch k − 1 is used for training classifiers.

Setting 2: Using data without feature extraction, batch k is used for testing,
and batch 1 to batch k − 1 are used for training classifiers.

Setting 3: Using data after feature extraction, batch k is used for testing, and
batch k − 1 is used for training classifiers.

Setting 4: Using data after feature extraction, batch k is used for testing, and
batch 1 to batch k − 1 are used for training classifiers.

In these four settings, k = 2, 3, 4, 5, 6, 7, 8, 9, 10. In setting 1, the previous
batch is used for training and current batch is used for testing to minimize dif-
ference between training set and testing set due to drift of gas sensors. However,
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because of different amount of samples in each batch, classification results may
be affected by training set due to lacking enough data. Thus, in setting 2, all
previous batches are used for training and current batch is used for testing on
classifiers. Data used in setting 3 and setting 4 are extracted features, and they
are set for comparison with setting 1 and setting 2 in order to verify effectiveness
of the proposed feature extraction algorithm.

Table 3. Accuracies (%) and thresholds of all batches by using SVM under 4 settings

Batch ID Setting1 Setting 2 Setting 3 Setting 4

2 46.8(0.018) 46.8(0,018) 47.2(0,01) 47.2(0.01)

3 77.0(0.018) 53.5(0.018) 77.5(0.08) 81.3(0.018)

4 93.2(0.018) 91.9(0.018) 93.2(0.01) 92.5(0.018)

5 84.3(0.018) 98.5(0.018) 86.3(0.01) 99.0(0.018)

6 49.3(0.018) 75.5(0.018) 49.3(0) 75.7(0.01)

7 78.3(0.018) 85.6(0.018) 78.3(0) 86.6(0.005)

8 67.3(0.018) 94.9(0.018) 65.6(0) 94.9(0)

9 54.9(0.018) 77.2(0.018) 56.0(0.001) 77.2(0.01)

10 32.4(0.018) 67.2(0.018) 42.8(0.018) 67.2(0.018)

Table 4. Accuracies (%) and thresholds of all batches by using LSTM under 4 settings

Batch ID Setting1 Setting 2 Setting 3 Setting 4

2 74.4(0.018) 74.4(0.018) 80.2(0.01) 80.2(0.01)

3 82.7(0.018) 78.0(0.018) 79.0(0.01) 97.2(0.018)

4 77.6(0.018) 80.1(0.018) 91.3(0.01) 99.4(0.018)

5 98.0(0.018) 99.0(0.018) 98.5(0.01) 98.5(0.018)

6 43.6(0.018) 77.6(0.018) 40.1(0.01) 76.1(0.01)

7 86.8(0.018) 87.0(0.018) 86.0(0.01) 86.5(0.01)

8 94.2(0.018) 92.2(0.018) 86.1(0.01) 86.4(0.01)

9 64.9(0.018) 76.8(0.018) 52.8(0.01) 76.2(0.01)

10 34.2(0.018) 74.4(0.018) 45.2(0.01) 72.3(0.01)

A linear kernel SVM with search space 2[−10:10] is used for experiments under
four settings. After training and testing on SVM, accuracies of all batches in
four experiments are obtained, which are shown by Table 3. Numbers in brack-
ets represent threshold values of all batches. Accuracies of setting 1 are selected
as benchmarking results. Best accuracy achieves 99.4% at batch 4 among all set-
tings. Best average accuracy achieves 80.2% under setting 4. It should be noticed
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that lowest accuracy is achieved at batch 10. According to Table 1, collection of
batch 10 is at least six months later than batch 9, which causes serious sensor
drift. Performance of SVM is also shown by Fig. 3. Performance of setting 4 is
better than that of setting 1, which indicates that the algorithm is effective in
mitigating sensor drift of gas sensors. Moreover, performance of setting 2 and
setting 4 using all previous batches for training the classifier are better than that
of settings using only one batch for training.

For LSTM, experiments are the same as SVM under 4 settings. For parame-
ters of LSTM, epoch is set to 200, batch size is set to 100, and learning rate is set
to 0.01. The number of neurons in input layer and step of LSTM cell is the same
as dimension of input, which is decided by threshold value. Neurons in hidden
and output layer are 100 and 6, respectively. The used neural network is set by
using an open source platform named Tensorflow [15]. After training and testing,
accuracy of each batch is obtained and shown in Table 4. Best accuracy achieves
99.4% at batch 4 among all settings. Best average accuracy achieves 85.9% under
setting 4. Lowest accuracy is also obtained at batch 10. Performance of LSTM is
also shown by Fig. 4. The best performance is setting 4. Performance of settings
using extracted features is better than settings using original data, indicating
the robustness of the proposed method.

Fig. 3. Accuracy of each batch under 4 settings by using SVM

After collecting best accuracy of each setting on each classifier, performance
of gas recognition in this paper is shown by Fig. 5. Performance of this paper is
much better compared to the benchmarking method, which indicates that gas
sensor drift can be resolved using the proposed feature extraction algorithm and
classifiers. For complexity analysis, amount of parameters in LSTM is 22,467.

From experiments under four settings, it can be shown that using data pro-
cessed by the proposed methods have better performance than other works. In
Table 3, accuracies of setting 3 are the same as or higher than that of setting 4
in batch 2, 3, 4, 5, 6, 7, 9, 10. Accuracies of setting 4 are the same as or higher
than that of setting 2 in all batches. In Table 4, accuracies of setting 3 are higher
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Fig. 4. Accuracy of each batch under 4 settings by using LSTM

than that of setting 1 in batch 2, 4, 5, 10. Accuracies of setting 4 are higher than
that of setting 2 in batch 2, 3, 4. Moreover, accuracies of the proposed methods
are better than that of benchmarking methods, which demonstrates the effec-
tiveness and robustness of gas sensor drift compensation methods proposed in
this paper.

Fig. 5. Best accuracies in this work compared with the benchmarking method

Three works using the same dataset are used for comparison. Best accuracies
of 9 batches in each study are shown by Table 5. In the approach of [4], com-
ponent correction method and SVM are used for gas recognition, but accuracy
is not high (54.3%∼94.9%). Accuracies of each batch in the proposed work are
higher than [16] except batch 6 and 10. Pearson product-moment correlation
cofficient is used for feature extraction in the approach of [2], and SVM and
LSTM are used as classifiers, where a higher accuracy is obtained compared to
[4]. In this paper, the number of batches with higher accuracies is more than
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other works, which demonstrates the proposed method has better robustness
compared to others using the same dataset.

Table 5. Comparison with other works

Batch ID [4] [16] [2] This work

2 74.4 ∼69.0 75.9 80.2

3 87.8 ∼83.0 95.5 97.2

4 90.7 ∼87.5 97.2 99.4

5 94.9 ∼94.6 99.0 99.0

6 71.0 ∼80.0 83.8 76.6

7 83.5 ∼79.0 88.5 89.5

8 91.8 ∼81.0 94.2 94.9

9 69.2 ∼76.0 85.9 77.2

10 54.3 ∼75.0 83.4 74.4

6 Conclusion

In this paper, a feature extraction algorithm is proposed and two classifiers are
used for gas classification. Features with different dimensions are dynamically
extracted to achieve the best accuracy in experiments. SVM and LSTM are used
as classifiers for training and testing under a public the gas dataset. Experiments
are carried out under four settings, where each batch is used for testing in all
experiments to study sensor drift of gas sensors. The best accuracy achieves
99.0% on SVM and 99.4% on LSTM. Compared to the benchmarking method
and other studies, accuracy of each batch is higher in this work and sensor drift in
gas sensors is mitigated. Future work includes investigation of optimized neural
network with less amount of parameters.
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Abstract. In this paper, we present SpringNet, a novel deep learning
approach for time series forecasting, and demonstrate its performance in
a case study for solar power forecasting. SpringNet is based on the Trans-
former architecture but uses a Spring DTW attention layer to consider
the local context of the time series data. Firstly, it captures the local
shape of the time series with Spring DTW attention layers, dealing with
data fluctuations. Secondly, it uses a batch version of the Spring DTW
algorithm for efficient computation on GPU, to facilitate applications to
big time series data. We comprehensively evaluate the performance of
SpringNet on two large solar power data sets, showing that SpringNet
is an effective method, outperforming the state-of-the-art DeepAR and
LogSparse Transformer methods.

Keywords: Time series forecasting · Solar power forecasting ·
Transformer · Dynamic Time Warping · Deep learning · Dynamic
programming

1 Introduction

Time series forecasting is an important task in many domains, e.g. forecasting
stock prices, sales and spending, traffic flow, electricity consumption and gen-
erated solar power. The traditional autoregressive and state-space models fit
each of the related time series independently and require expertise in manually
selecting trend and seasonality which limits their applicability [1].

Recently, deep learning methods have been investigated as an alternative.
Salinas et al. [2] proposed DeepAR, a probabilistic forecasting model based on
sequence-to-sequence Long Short Term Memory (LSTM) neural networks. How-
ever, the vanishing and exploding gradient problem of LSTM makes training dif-
ficult, especially when processing long sequences. The Transformer architecture
[3] has been recently proposed to model sequential data with attention mecha-
nism only, without any recurrent or convolutional layers. Its main advantage is
the ability to access any part of the historical sequence regardless of distance. Li
et al. [1] proposed the LogSparse Transformer, a modification of the Transformer
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 616–628, 2020.
https://doi.org/10.1007/978-3-030-63836-8_51
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for time series forecasting, aiming to overcome the problem of locality-agnostics
and memory bottleneck by employing convolutional attention layers and sparse
attention mechanism. However, the LogSparse Transformer may have limited
ability to capture the time series shape information because the shape could be
distorted after being projected into latent space with lower dimension after con-
volutions. For example, two series with similar shapes that are shifted or scaled
over the time axis may have completely different results after convolutions.

On the other hand, Dynamic Time Warping (DTW) [4] is a classic trajec-
tory similarity measure that can handle temporal distortions, such as shifting
and scaling in the time axis. It has also been used in sequential modelling tasks,
including time series analysis [5–7]. The main drawback of DTW is its high com-
plexity, due to the non-parallelizable characteristics of dynamic programming,
which limits its applicability. A variation of DTW is the Spring DTW algo-
rithm [8], which identifies subsequences in a data stream, that are similar to a
given template. We propose to use the String DTW algorithm as an attention
mechanism for Transformer architectures.

In this paper, we present a new deep learning approach, SpringNet, for time
series forecasting. SpringNet is based on the Transformer architecture but utilizes
Spring DWT attention layers that measure the similarities of query-key pairs
of sequences. We assume that attending to the shape of time series patterns
directly would be beneficial to achieve accurate prediction. SpringNet is the
first Transformer that attends to the shape of time series patterns directly with
Spring attention layers. We also propose a batch version of the Spring DTW
algorithm for GPU acceleration, by identifying a batch of matched subsequences
concurrently.

The effectiveness of the proposed SpringNet approach is comprehensively
evaluated for solar power forecasting using two big data sets. The results show
that SpringNet outperformed the state-of-the-art deep learning models DeepAR
and LogSparse Transformer and the persistence baseline, especially under ran-
dom fluctuations of data. The batch version of the Spring DWT algorithm in
SpringNet was also found to be significantly faster than the original Spring DWT.

2 Case Study: Solar Power Forecasting

Solar photovoltaic (PV) power is a cost-effective and sustainable electricity
source. However, the power output is highly variable as it depends on the weather
conditions. PV power forecasting is needed to quantify the uncertainty associ-
ated with power generation and ensure the successful integration of PV systems
into the electricity grid. Previous work on solar power forecasting includes statis-
tical methods such as autoregressive integrated moving average [9] and machine
learning methods such as neural networks [10] and support vector regression [11].
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2.1 Data Sets

We use two solar power data sets: Sanyo1 and Hanergy.2 They contain solar
power generation data from two PV plants in Alice Springs, Northern Territory,
Australia. The Sanyo dataset contains solar power data from 01/01/2011 to
31/12/2017, and the Hanergy dataset - from 01/01/2011 to 31/12/2016.

We also collected weather data from nearby weather stations. The weather
data includes temperature, humidity, global and diffuse radiation. In addition, we
also prepared weather forecast data based on historical weather data. Specifically,
weather forecasts are formed by adding 20% Gaussian noise to the observed
weather data since we did not have access to weather forecast data. Both solar
power and weather data are aggregated to 30-min intervals by taking the average
, and only the data between 7 am and 5 pm is considered [10]. The missing values
in the raw data (1.25% in Sanyo and 3.24% in Hanergy) are filled using the
multivariate imputation by chained equations algorithm [12]. Both solar power
and weather data are normalized to have zero mean and unit variance.

In addition to solar power and weather data, we also consider the calendar
information as inputs to the prediction models. The calendar information (time
features) we consider include month, hour-of-the-day, minute-of-the-hour [1,2].

2.2 Problem Statement

We use the solar power for day d with associated covariate information for
days d (weather and calendar features) and day d + 1 (weather forecast and
calendar features) to forecast the solar power for the next day d + 1. Specif-
ically, given is a set of N : 1) solar power time series {PVi,1:Tl

}Ni=1, where
PVi,1:Tl

� [PVi,1,PVi,2, ...,PVi,Tl
], Tl is the input sequence length, Tl = 20

(1 day), and PVi,t ∈ � is the ith PV power generated at time t; 2) associated
time-based multi-dimensional covariate vectors {Xi,1:Tl+Th

}Ni=1, where Th = 20
(1 day) denotes the length of forecasting horizon. The covariates for our case
study include: weather {W1i,1:Tl

}Ni=1, weather forecasts {WFi,Tl+1:Tl+Th
}Ni=1

and calendar features {Zi,1:Tl+Th
}Ni=1. Our goal is to predict the PV power for

the the next Th time steps after Tl, i.e. {̂PVi,Tl+1:Tl+Th
}Ni=1.

The overall structure of SpringNet is illustrated in Fig. 1. The model’s input
and output arrangement is the same as that of DeepAR [2] and LogSparse Trans-
former [1]. At each time step, the inputs of the model are the PV values at its
previous time step and the covariates X (weather W1 and calendar Z features)
at the current time step. At the first time step of the encoder, PVi,0 value is
initialized as zero. The decoder uses weather forecasts WF features instead of
weather features W1. The decoder is autoregressive, which takes the observation
at the previous time step ̂PV as an input at the current time step.

1 http://dkasolarcentre.com.au/source/alice-springs/dka-m4-b-phase.
2 http://dkasolarcentre.com.au/source/alice-springs/dka-m16-b-phase.

http://dkasolarcentre.com.au/source/alice-springs/dka-m4-b-phase
http://dkasolarcentre.com.au/source/alice-springs/dka-m16-b-phase
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Fig. 1. Summary of SpringNet

3 Background

3.1 Transformer

The Transformer [3] is a new architecture which uses only attention mechanism
for processing sequential data. Compared to the widely used sequence models,
it does not use any recurrent or convolutional layers, but keeps the encoder-
decoder design and uses stacked multi-head self-attention and fully connected
layers, which could run in parallel.

Each layer of the encoder contains a multi-head self-attention layer followed
by a feed-forward layer, while that of decoder contains an additional encoder-
decoder attention layer between the self-attention layer and the feed-forward
layer. The multi-head attention uses scaled dot product with the queries Q,
keys K and values V . The queries, keys and values are obtained from pre-
vious layer output for self-attention and encoder output for encoder-decoder
attention. Given input X of the attention layer, the hth query, key and value
matrix can be computed through linear projections with the trainable weights:
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WQ
h ,WK

h ∈ �dx×dk and WV
h ∈ �dx×dv as shown in (1), where dk, dv and dx are

the dimensionality of K, V and X. The encoder-decoder attention layer takes the
encoder output to compute keys and values and uses previous decoder output
to compute queries.

Qh = XWQ
h ;Kh = XWK

h ;Vh = XWV
h (1)

3.2 LogSparse Transformer

Li et al. [1] proposed the LogSparse Transformer, an improved version of the
Transformer for time series forecasting. In particular, they addressed two weak-
nesses: 1) locality-agnostics (lack of sensitivity to local context which makes the
model prone to anomalies) and 2) memory bottleneck - quadratic space com-
plexity as the sequence length increases.

The LogSparse Transformer introduces casual convolutions to transform
inputs linearly into queries and keys in the attention layer. The convolution
design allows the model to capture local context with a series of queries and
keys to further improve the accuracy. Another improvement is the LogSparse
attention mechanism, which lets the model attend to part of the past history.
The use of LogSparse attention reduces the memory complexity to O(L(log2L)2),
where L is the sequence length, which is important for overcoming the memory
bottleneck that occurs frequently for long sequences.

3.3 Spring Algorithm

Sakurai et al. [8] proposed the Spring algorithm for finding non-overlapping sub-
sequences in data streams that are similar to a query sequence, using the DTW
distance measure. Compared to the naive DTW subsequence searching method,
which has O(n3m) time complexity (where n is the length of the sequence and m
is the length of the query sequence), the Spring algorithm with star padding and
Subsequence Time Warping Matrix (STWM) is significantly faster and requires
O(m) space and O(m) time per time-tick.

The Spring algorithm has attracted significant interest due to its effectiveness
and efficiency. Cai et al. [7] proposed DTWNet which uses the Spring algorithm
as a feature extractor for time series classification.

4 Proposed Approach: SpringNet

4.1 Motivation and Novelty

The daily pattern in solar power data could vary significantly over time because it
is highly sensitive to weather conditions. For examples, although the overall solar
power pattern repeats everyday (an inverse U shape with a peak in the middle
of the day), fluctuations caused by weather conditions could occur several times
during the day, significantly changing this pattern. The time of occurrence and
the magnitude of these fluctuations vary substantially.
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Algorithm 1: SpringNet attention algorithm
input : Q, K ∈ �nbatch×nhead×L×dk ,V ∈ �nbatch×nhead×L×dv , Lsub ∈ Z

+,
F : (�N×Lsub×dk , �N×L×dk ,Z+) → �N×ntop×2, ntop ∈ Z

+

output: O ∈ �nbatch×nhead×L×dv

1 init: Qsub � �L×nbatch×nhead×Lsub×dk ; Ktemp � �L×nbatch×nhead×L×dk ;

Vsub � �nbatch×nhead×ntop×dv ; D � �nbatch×nhead×ntop×1;
N = L × nbatch × nhead;

// Preprocessing

2 for l ← 1 to L do
3 Qsub[l, :, :, :, :] = Q[:, :, l : l + Lsub, :];
4 Ktemp[l] = K;

5 end

6 reshape Qsub to �N×Lsub×dk ;

7 reshape Ktemp to �N×L×dk ;
// Batch Spring DTW function

8 matrix ← F(Qsub, K, ntop);
9 Vsub, D ← V, matrix;

10 O = softmax(D) × Vsub;

The Transformer cannot capture the local context of such time series data
with its canonical self-attention layers [1]. While the LogSparse Transformer is
able to capture local context, it could miss the time series shape information
during convolutions.

On the other hand, DTW was designed to measure time series similarity with
temporal distortions. Motivated by the success of recent works that combine
DTW with deep learning [5–7], we leverage DTW to compute attention scores.

The Spring DTW algorithm for subsequences matching is effective and effi-
cient (compared to the naive DTW) but is not suitable to be implemented on
GPU because it processes one pair of sequences at a time. To the best of our
knowledge, recent applications still use the original version of the Spring algo-
rithm and proceed on a sample-by-sample basis.

Below we present our proposed approach, SpringNet, which assumes that it is
beneficial for forecasting models to capture series shape information, especially
when the repeatable fluctuations occur frequently. SpringNet is a Transformer
architecture that attends to the shape of time series patterns directly by using
the SpringNet attention algorithm. The SpringNet attention algorithm is based
on the Spring subsequence matching algorithm but allows to process a batch of
query-key sequence pairs concurrently and is thus suitable for GPU computation.

4.2 Model Architecture

We adopt the general Transformer architecture but replace the multi-head atten-
tion layer of Transformer or the convolutional attention of LogSparse Trans-
former with our Spring attention layer, as shown in Fig. 1. The SpringNet atten-
tion algorithm is illustrated in Algorithm 1, where Lsub is the query subsequence
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Fig. 2. SpringNet attention mechanism

length, ntop is the number of best-matched subsequences from the keys and F
denotes the batch Spring DTW function as shown in Algorithm 2. Instead of
mapping a piece of subsequence into a query and key like the convolutional
attention, Spring attention transforms single time point into individual query
and key and observes the shape of query and key series pattern. Spring atten-
tion identifies the subsequences of keys that match query series.

In lines 2 to 7 of Algorithm 1, we preprocess the queries and keys by extracting
subsequences from queries, repeating keys and reshaping the tensors as the input
of batch Spring DTW function F . Q[:, :, l : l + Lsub, :] in line 3 indicates the
extraction of a tensor from Q with all elements in the 1st, 2nd and 4th axis and
the elements from the lth to the l+Lsub position in the 3rd axis of Q. F produces
the matrix that stores the DTW distance D of ntop best-matched subsequences
from the key series and their ending indexes. Then, values which indexes are
stored in matrix are extracted as Vsub. Finally, we use DTW distance D and
matched values Vsub to compute the Spring attention output O.
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Whenever ntop is less than the number of keys, the Spring attention is sparse.
The ntop controls the number of time steps that are attended to. Thus, the
attention could be sparser and memory usage could be lower with smaller ntop.
Lsub controls the Spring attention locality and SpringNet with short Lsub tends
to capture short-term pattern.

Figure 2 shows the feedforward dataflow of the SpringNet attention mecha-
nism. Similarly to the Transformer, SpringNet extracts queries, keys and values
from individual inputs and concatenates them as tensors. Then, these queries
and keys are reshaped to Qsub and Ktemp (see lines 2 to 7 of Algorithm 1) and
passed to the Batch Spring DTW algorithm (function F). Finally, the values and
matrix computed by the Batch Spring DTW algorithm are used to generate the
attention output O (see lines 9 to 10 of Algorithm 1).

4.3 Batch Spring Attention

We follow the design of the Spring algorithm for subsequence mining but propose
a batch version in Algorithm 2. The batch Spring attention algorithm achieves
the same functionality as the Spring algorithm (see Sect. 3.3). The advantage
of our Spring attention algorithm is the ability to process multiple query-key
pairs concurrently on GPU, in order to speed up the Spring attention layer’s
feedforward speed.

We create multiple matrices and arrays to store temporary variables: 1) Dprev

and Dnow store the previous and current DTW distance, Sprev and Snow store
the previous and current starting position of all samples; the four matrices come
from the STWM; 2) Dis stores the DTW distance of matched subsequences,
Je stores the ending position of matched subsequences; both arrays are used
to update the matrix via function updateMatrix, which is the output of batch
Spring DTW function. The function updateMatrix ensures matrix only keeps
the Dis and Je of ntop best-matched subsequences.

Our Algorithm 2 has two nested loops starting at line 4 and 5 to identify all
subsequences in parallel, while the original Spring DTW algorithm would have
a third outer loop to iterate through all subsequence templates. In each Spring
attention layer, there are nbatch × nhead × L subsequence templates (Qsub). In
lines 5 to 15 of Algorithm 2, we compute the DTW distance and subsequence
starting position of the subsequence point at the jth time step. The candidate
subsequences are identified and saved in lines 16 to 21. Finally, we update the
Dis, Je and STWM to proceed to the next time step in lines 22 to 29.

5 Experimental Setup

All prediction models were implemented using PyTorch 1.5 and CUDA 10.1. For
both data sets, we use the last year as test set, the second last year as validation
set for hyperparameter tuning, and the remaining data (5 years for Sanyo and
4 years for Hanergy) as training set.



624 Y. Lin et al.

Algorithm 2: Batch Spring DTW algorithm
input : Qsub ∈ �N×Lsub×dk , Ktemp ∈ �N×L×dk , ntop ∈ Z

+

output: matrix ∈ �N×ntop×2

1 init: Dprev, Dnow, Sprev, Snow � �N×Lsub ; Je, Dis, check � �N ; k ∈ Z
+;

matrix � �N×ntop×2;
2 Dprev[:, :], Je[:], Dis[:], matrix[:, :, :] = ∞;
3 Dnow[:, :], Sprev[:, :], Snow[:, :] = 0;
4 for j ← 1 to L do

// Update subsequences DTW distance and starting position

5 for i ← 1 to Lsub do
6 if i == 1 then
7 Dnow[:, i] = ||Ktemp[:, j, :] − Qsub[:, i, :]||;
8 Snow[:, i] = j;

9 else
10 Dnow[:, i] = ||Ktemp[:, j, :] − Qsub[:, i, :]||+

min(Dnow[:, i − 1], Dprev[:, i], Dprev[:, i − 1], axis = 2);
11 Distance ← concatenate(Dnow[:, i − 1], Dprev[:, i],

Dprev[:, i − 1]) along the 3rd axis;
12 Start ← concatenate(Snow[:, i − 1], Sprev[:, i],

sprev[:, i − 1]) along the 3rd axis;
13 Snow[:, i] = Start[:, :, argmin(Distance, axis = 3)];

14 end

15 end
// Identify new matched subsequences

16 check[:] = 0;
17 for i ← 1 to Lsub do
18 check[Dnow[:, i] >= Dis[:] ∩ Snow[:, i] > Je[:]]+ = 1;
19 end
20 index = (check == Lsub);

// Store the information of new matched subsequences

21 matrix[index] = updateMatrix(matrix[index], Dis[index], Je[index]);
// Reset for the incomig time point

22 Dis[index] = ∞;
23 index ← duplicate index along the 2nd dimension for Lsub times;
24 Dnow[Snow <= Je ∪ index] = ∞;
25 index = (Dnow[:, Lsub] <= Dis[:]);
26 Dis[index] = Dnow[index, Lsub];
27 Je[index] = j;
28 Dprev = Dnow;
29 Sprev = Snow;

30 end

We use three models for comparison: two state-of-the-art autoregressive deep
learning models (DeepAR and LogSparse Transformer) and a persistence model.
DeepAR [2] is a widely used sequence-to-sequence forecasting model, while the
LogSparse Transformer [1] is a recently proposed variation of the Transformer
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architecture for time series forecasting; we denote it as “Transformer” in Tables 1
and 2. The persistence baseline is a typical baseline in forecasting and considers
the PV power output of the previous day as the prediction for the next day.

Table 1. Hyperparameters for all models

Model δ dhid nlayer dk&dv nhead Lsub nbatch

DeepAR (Sanyo) 0 8 3 – – – 256

Transformer (Sanyo) 0.2 12 3 6 3 – 256

SpringNet (Sanyo) 0 24 2 6 3 3 256

DeepAR (Hanergy) 0.2 16 4 – – – 512

Transformer (Hanergy) 0.2 12 3 4 2 – 512

SpringNet (Hanergy) 0 12 2 4 2 3 512

All deep learning models are optimized by mini-batch gradient descent with
the Adam optimizer, with variable learning rate (initial λ = 0.005, decay factor
= 0.5) and maximum number of epochs 100. We used Bayesian optimization for
hyperparameter search with a maximum number of iterations 20.

For all models, the dropout rate δ is chosen from {0, 0.1, 0.2}, the hidden
layer dimension size dhid and number of layers nlayer are chosen from {8, 12, 16,
24, 32} and {2, 3, 4, 5}. For LogSparse Transformer and SpringNet, the query
and value’s dimension size dk&dv and number of heads nhead are chosen from
{4, 6, 8, 12} and {2, 3, 4, 6, 8}. For LogSparse Transformer, we use restart
attention range of 20 and local attention range of 3. For SpringNet, the number
of best-matched subsequences ntop is set to 5 and the subsequence length Lsub

is chosen from {2, 3, 4}.
The selected best hyperparameters for all models are listed in Table 1 and

used for the evaluation on the test set.

6 Results and Discussion

Table 2 shows the Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) of all models for the two data sets. The best result for each metric
and data set is highlighted in bold. On both data sets, all deep learning models
outperform the baseline model. SpringNet is the most accurate model in terms
of MAE on both data sets, followed by LogSparse Transformer and DeepAR.
In terms of RMSE, SpringNet is the best performing model for Sanyo and the
second best for Hanergy. Overall, SpringNet is the best performing model which
shows the effectiveness of the proposed approach which attends to the shape of
the time series patterns directly.

In addition, the Batch Spring DTW algorithm significantly speeds up the
model training. On the same Tesla P100-16GB GPU, the feedforward process
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Table 2. Accuracy of all models

Sanyo Hanergy

Model MAE RMSE MAE RMSE

Persistence 0.522 0.985 0.703 1.174

DeepAR 0.276 0.381 0.370 0.505

Transformer 0.267 0.384 0.360 0.478

SpringNet 0.258 0.380 0.358 0.494

of a single Spring DTW layer (Algorithm 2) takes 2.081 s and 2.082 s per batch
on Sanyo and Hanergy set respectively. In comparison, for the original Spring
algorithm, the processing time is 12.057 h and 18.426 h per batch on the Sanyo
and Hanergy data sets correspondingly. The running time of our Spring DTW
layer is relatively stable with respect to the batch size, as long as it does not
exceed the GPU memory constraint, while that of the original Spring algorithm
without parallelism increases as the number of series pairs increases.

(a)

(b)

Fig. 3. Actual vs predicted data: (a) Sanyo dataset and (b) Hanergy dataset

Figure 3 plots the actual and predicted solar power data for two days, for
both data sets. The actual data shows different levels of fluctuations, higher
for Sanyo and lower for Hanergy. We can see that the predictions provided by
SpringNet are the closest to the ground truth. SpringNet also forecasts the data
fluctuations much better than DeepAR and LogSparse Transformer which tend
to produce smooth curves. This shows that SpringNet is able to capture the time
series pattern and deal well with repeated fluctuations.
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Hence, based on the results, we conclude that SpringNet is a promising
method for solar power forecasting - it outperforms all models used for com-
parison and is more robust to fluctuations. The attention layer in SpringNet
helps to capture repeatable fluctuation patterns and provide accurate forecasts
especially in the presence of fluctuations.

7 Conclusions

In this paper, we present SpringNet, a new deep learning based approach for time
series forecasting, and demonstrate its performance in a case study for solar PV
power forecasting. SpringNet is based on the LogSparse Transformer architecture
but uses Spring DTW attention layers. We propose the use of Spring attention
to overcome the weakness of LogSparse Transformer to effectively capture the
time series shape information. In addition, we propose the Batch Spring DTW
algorithm to speed up the feedforward operation of the Spring DTW attention
algorithm. SpringNet is a generic time series forecasting approach and can be
used in different domains. We present a case study for solar power forecasting,
using two big data sets from solar plants located in Australia. The results show
that SpringNet outperforms the state-of-the-art deep learning forecasting meth-
ods DeepAR and LogSparse Transformer, and also a persistent baseline used for
comparison. Our experiments suggest that SpringNet can capture shape infor-
mation from trajectories and make robust predictions. In summary, the results
validate our hypothesis that attending to the shape of time series pattern directly
is beneficial. We also found that the Batch Spring attention algorithm was sig-
nificantly faster than the sequential version.

Hence, we conclude thatSpringNet with Batch Spring Attention mechanism
is a promising method for time series forecasting.

References

1. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of Trans-
former on time series forecasting. In: Conference on Neural Information Processing
Systems (NeurIPS) (2019)

2. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic
forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–1191
(2020)

3. Vaswani, A., et al.: Attention is all you need. In: Conference on Neural Information
Processing Systems (NeurIPS) (2017)

4. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49 (1978)

5. Cuturi, M., Blondel, M.: Soft-DTW: a differentiable loss function for time-series.
In: International Conference on Machine Learning (ICML) (2017)

6. Guen, V.L., Thome, N.: Shape and time distortion loss for training deep time
series forecasting models. In: Conference on Neural Information Processing Systems
(NeurIPS) (2019)



628 Y. Lin et al.

7. Cai, X., Xu, T., Yi, J., Huang, J., Rajasekaran, S.: DTWNet: a dynamic time warp-
ing network. In: Conference on Neural Information Processing Systems (NeurIPS)
(2019)

8. Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream monitoring under the time war-
ping distance. In: International Conference on Data Engineering (ICDE) (2007)

9. Pedro, H.T., Coimbra, C.F.: Assessment of forecasting techniques for solar power
production with no exogenous inputs. Solar Energy 86, 2017–2028 (2012)

10. Lin, Y., Koprinska, I., Rana, M., Troncoso, A.: Pattern sequence neural network
for solar power forecasting. In: International Conference on Neural Information
Processing (ICONIP) (2019)

11. Rana, M., Koprinska, I., Agelidis, V.G.: 2D-interval forecasts for solar power pro-
duction. Solar Energy 122, 191–203 (2015)

12. Azur, M., Stuart, E., Frangakis, C., Leaf, P.: Multiple imputation by chained equa-
tions: what is it and how does it work? Int. J. Methods Psychiatr. Res. 20, 40–49
(2011)



U-Sleep: A Deep Neural Network for
Automated Detection of Sleep Arousals

Using Multiple PSGs

Shenglan Yang1, Bijue Jia1, Yao Chen1, Zhan ao Huang1, Xiaoming Huang2,
and Jiancheng Lv1(B)

1 College of Computer Science, Sichuan University,
Chengdu 610065, People’s Republic of China

{yangshenglan,jiabijue,chenyaoscu,huangzhanao}@stu.scu.edu.cn,
lvjiancheng@scu.edu.cn

2 CETC Cyberspace Security Research Institute Co.,
Chengdu 610041, China

apride@gmail.com

Abstract. Sleep disorders can seriously affect human health. Most of
the previous studies focused on sleep disorders of apnea, but few on
non-apnea. This type of sleep disorder is complex and difficult to detect
by traditional methods. In this paper, a physiological time series seg-
mentation network U-Sleep based on deep learning is proposed to ana-
lyze these sleep disorders. U-Sleep is a time series convolution network
based on U-Net architecture. U-Sleep uses the sequence to sequence
input-output mode to map multiple complete original polysomnograms
to a single tag sequence. This enables our model to automatically learn
the variable interaction between different signals and any related time
dependence, and automatically extract such arousal features from the
rich physiological time series. We conducted three-fold cross-validation,
and use the ensemble model strategy to get the final detection results.
Experiments on the datasets of PhysioNet show that the average perfor-
mance of the final model is: accuracy(0.886), F1(0.892), AUROC(0.916),
AUPRC(0.797), SE(0.804), and AI(6.240).

Keywords: Neural networks · LSTM · Sleep arousal ·
Polysomnography

1 Introduction

Sleep quality is closely related to human health. Poor sleep quality can easily
lead to poor mental state, which can lead to health problems, especially obesity,
depression, liver disease, mental diseases, and some cardiovascular and cere-
brovascular diseases with high risk of death. Sleep quality will decrease with the
frequent occurrence of sleep arousal, that is, temporary interruptions of wake-
fulness into sleep or spontaneous increase of the vigilance level.
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Sleep disorder mainly refers to the arousals caused by the interruption of the
sleep process. Apnea and hypoventilation are the most common sleep interrup-
tions. This kind of sleep disorder will have a more direct impact on human health
and is a more serious disease, so there are many studies. Sleep interruption of
non-apnea includes pain, bruxism, insomnia, muscle twitches, vocalization, snor-
ing, periodic leg movements, and respiratory-related diseases (such as Cheyne
Stokes breathing, respiratory disorders, etc.). There are few studies on this kind
of sleep disorder, and the main reasons are as follows: first, this kind of research
is expensive and difficult to detect with traditional methods; second, compared
with apnea, artificial detection of such sleep arousals has been shown to have a
lower scoring reliability [3].

Polysomnography (PSG) is widely used in the sleep laboratory. The detec-
tion of sleep disorders is usually to mark the arousal caused by sleep disorders,
which is usually done manually by sleep experts through several periods of PSG
records. This method has obvious defects: first, the task is very tedious and
time-consuming; second, the knowledge and experience of the rater will have
an important impact on the scoring results. Therefore, the development of PSG
automatic arousal detection systems in the form of efficient, fast, and reliable
algorithms can provide strong help for clinicians.

The main purpose of this paper is to realize the automatic detection of non-
apnea disorders and promote the relevant medical research. We propose a feed-
forward network which uses forward segmentation to map multiple complete
PSGs into a tag sequence. In this paper, we make the following contributions:
First, a network with a full convolution encoder-decoder structure is proposed to
realize multi-scale feature recognition. Second, a unified preprocessing method
for biological signals is proposed, which greatly reduces the workload and solves
the problem that it is difficult to analyze multiple biological signals at the same
time. third, We input complete sleep records into the model to ensure that
the model can capture any relevant time dependence and automatically extract
arousal features from abundant physiological time series. Fourth, LSTM uses
skip connection structure to add location information and strengthen the deter-
mination of arousal boundary points. More discussion about this study will be
given in later sections.

The rest of this paper is arranged as follows. Section 2 briefly introduces the
related work. The U-Sleep model is introduced in detail in Sect. 3. In Sect. 4, we
describe and analyze the experiment in detail, including the data preprocessing
and the performance evaluation. Section 5 concludes our work.

2 Related Work

The American Academy of Sleep Medicine (AASM) defines the arousal as an
abrupt shift in electroencephalogram (EEG) signal frequency[1]. Besides, AASM
mentions that arousal can be associated with an increase in chin electromyo-
graphic (EOG) signals [2]. It’s hard to analyze events in different biological sig-
nals at the same time, Therefore, previous researchers mainly study sleep based
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on EEG signal and adopt the standard parameter methods for time and fre-
quency domains. Cho combined Support Vector Machine (SVM) with previous
work, proposed an automatic arousal algorithm based on time-frequency anal-
ysis and SVM classifier using a single channel EEG [6]. Pacheco and Vaz used
a k-means classifier after obtaining the frequency and power of the EEG and
EMG respectively [10]. Alvarez-Estevez and Moret-Bonillo compared different
classification models after selecting intervals based on the frequency from two
EEG derivations, and on the amplitude from one submental EMG [11].

Deep learning performs well in sequence problems [4]. Many people use it for
sleep research to avoid extracting manual features. Sleep staging is an important
preliminary examination in the diagnosis of sleep disorders. In [20], an end-
to-end learning method is proposed, which uses the temporal context of each
30 seconds window of data to classify sleep stages without extracting manual
features. Similarly, Perslev proposed the U-Time model which implicitly classifies
each time point of the input signal and aggregates these classifications at a
fixed time interval to achieve the segmentation of the sleep stage [12]. In the
detection of sleep disorders, most of the work is conducive to the detection of
apnea. Sinam filtered ECG to generate two-dimensional images, and finally used
a convolutional neural network based pre-training model (AlexNet) to predict
apnea disease [16]. In [13], Kim proposed a recursive neural network sleep arousal
detection model with MFCC as feature vector Sanchis used an artificial neural
network for pattern recognition of arousal [8].

The above methods have studied sleep from many aspects, but there are
still some problems, which are mainly due to the following reasons: first, sleep
disorders of non-apnea are difficult to detect because of their numerous types.
Second, The changes of PSG are very subtle when sleep disorders occur, these
methods do not fully mine the hidden features behind the data. Third, The
influence of sleep on human body is multifaceted. Detection from a single or a
few biological signals will have a greater impact on the detection results.

3 Methodology

In this work, we propose a sleep disorder detection model U-Sleep based on time
series to solve the above three problems. Its inspiration comes from the popular
U-Net [14] architecture originally proposed for image segmentation and the long
short term memory networks. In this part, we first give some symbols used in
this work and define the problem of sleep arousal detection. In the rest of this
section, we will introduce the architecture of the model, then discuss the main
components of U-Sleep.

3.1 Problem Definition

Let x ∈ R
s×τ be a physiological signal at sampling rate s for τ seconds, article

i sleep record can be abstractly expressed as a physiological signal set Xi =
{x1, x2, · · ·, xC}. Where C represents the number of channels. Each channel is
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a one-dimensional signal with a length of m = s × τ . Then define e as the
frequency we want to output. That is, each label is based on n = e × τ sampled
points. In other words, our goal is to map Xi to a label of n. Let Ŷi be the label
sequence. The formula of problem definition could be expressed as the following:
Ŷi = f(Xi, θ), where Xi ∈ R

C×m, Ŷi ∈ R
n, and f(·) is the model with parameter

θ we are going to construct in this paper.

3.2 Model Architecture

In this work, we see some similarities between sleep disorder detection and image
segmentation. We propose a U-Sleep model variant based on the concept of U-
Net which has a good performance in image segmentation to detect sleep disor-
ders. We use the method of sequence to sequence to input a complete sleep record
into the network for learning and realize the segmentation of one-dimensional
sleep data sequence. The input of U-Sleep is multiple fixed-length PSG signals,
each length is m. The network is composed of encoder block, decoder block, and
LSTM layer which are shown in Fig. 1.

1D convolution

Batch normalization

ReLU

Max pool

NN up-sampling

Average pool

Dropout

Channel-wise normalization

input output input output
(a) (b)

(c)

Fig. 1. (a): FEU(Feature Extraction Unit), with max-pooling and no channel-wise
normalization. (b): USU(Up-sampling Unit), with up-sampling and channel-wise nor-
malization. (c): Structural overview of the network architecture, including an encoder
block(5 FEU), a decoder block(5 USU), and an LSTM block
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Encoder Block. The encoder block consists of five similar FEUs, the archi-
tecture of each unit illustrated in Fig. 1(a). It takes input tensor X ∈ R

B×C×m

where B is the batch size. The process at each unit l is defined as:

V l = fr(fr(X l−1 ∗ W0
l + b0

l) ∗ W1
l + b1

l) (1)

where ∗ denotes the convolutional operation and fr(·) is Relu activation function.
The W 1,...,l

0,1 and the b1,...,l
0,1 are parameters. Each unit will produce a scale vector

V l ∈ R
C×dl , where the width dl = m/

∏l
1pwl, and the pw is the pooling window

size. After five FEUs, there is an additional convolution unit that will enforce
learning abstract features and make the dl of the V l correspond to the dl of
the P l one by one. After this, we transform the out to a feature V L = fr(V 5 ∗
WL + bL). In the lowest layer, the aggressive down-sampling reduces the input
dimensionality by a factor 5 × 5 × 2 × 2 × 2 = 200. This can greatly reduce
computing and memory requirements. Sleep data is usually recorded overnight,
even if the sampling frequency is very low, the data length is very large, and
the analysis of sleep arousal needs at least 10 seconds of data before and after
observation. The input of complete sleep data is conducive to network learning.
The input X can be a complete PSG record or a subset of it. Our model is based
on convolution, the input length m is variable. Although the m is adjustable, it
must be large enough to meet all the maximum pooling operations, that is, the
d5 ≥ 1. In theory, this is equivalent to mmin = 200. Too small m prevents the
model from exploiting long-term relationships, thereby reducing performance.

Decoder Block. The decoder block consists of five similar USUs, Each unit
has a similar structure to FEU. Before the signal enters the convolution layer,
it goes through the nearest-neighbor up-sampling processing [18]. This block
receives a collection of tensors V l. The resulting feature maps P l ∈ R

C×dl

are
concatenated with the corresponding V l at the same scale. The process at each
unit l is defined as:

P l = fr(fpw(fr(fpw((P l−1 ⊕ V l−1) ∗ W0
l + b0

l)) ∗ W1
l + b1

l)) (2)

where ⊕ is the concatenation operation, fpw is the position-wise normaliza-
tion function. In particular, V 0 = V L. Before using the ReLU activation func-
tion, position-wise normalization with a channel-specific affine transform is also
applied to batch normalization outputs. With this, we transform output The
dilation in the convolution layer is also used to expand the receptive field. The
decoder block produces an output PL ∈ R

B×CL×n.
After the decoder, there is the LSTM consists of one or more self-connected

memory cells ci: the input gate igt, forget gate fgt, and output gate ogt. The
multiplication gate of LSTM allows its storage unit to keep information for a
long time. This process can be expressed as follows:

igt = σ(Wix · PL
t + Wih · ht−1 + bi) (3)

fgt = σ(Wfx · PL
t + Wfh · ht−1 + bf ) (4)
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ogt = σ(Wox · PL
t + Woh · ht−1 + bo) (5)

Ct = fgt ∗ Ct−1 + igt ∗ C̃t (6)

ht = ogt ∗ tanh(Ct) (7)

where σ(·) is the sigmoid function, tanh(·) is the hyperbolic tangent function.
We get the final feature vector X̃ ∈ R

B×C×n. Then, we reduce the dimension of
the out feature vector by two fully connected layers, which can be defined as:

X̂ = fc(W
fc
2 · fc(W

fc
1 · X̃ + bfc

1 ) + bfc
2 ) (8)

Finally, a softmax function is applied to transforms the X̂ to a probability vector
Ŷ .

4 Experimental Results and Discussion

4.1 Data Description

We briefly review the characteristics of the dataset in our works. Data were con-
tributed by the Massachusetts General Hospital’s (MGH) Computational Clini-
cal Neurophysiology Laboratory (CCNL), and the Clinical Data Animation Lab-
oratory (CDAC), including PSG data from 994 subjects, adding up to the overall
135 GB. Each polysomnographic recording set contains 13 signals, include 6-
channel EEG, single-channel EOG, 3-channel EMG, respiratory Airflow, single-
lead ECG, and SaO2 signals. All signals are digitized at 200 Hz. According to the
provided annotation file, we remarked the target arousal regions by 1 and the
non-target arousal regions by 0. More details regarding the dataset and available
annotations for different sleep analysis purposes are provided in [17].

Fig. 2. (a): The sleep duration distribution of the dataset. (b): The data proportion of
the dataset. (Color figure online)

According to our statistical analysis of the dataset, we found that most of
the subjects slept time is between 7–8 h, and the average time is 7.7 h. The sleep
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duration distribution of the dataset is shown in Fig. 2. The red dotted line in
Fig. 2.(a) represents the average sleep duration, and (b) shows the proportion
of positive and negative samples, there is a data skew problem. Moreover, the
duration of most arousal events (99.7%) is less than 2 min, and the average event
duration is 30 ± 15 s. The arousal events are asymmetrically distributed in all
sleep stages of the dataset. The 994 data were randomly split into training set
(70.4%), validation set (10%), and test set (19.6%).

4.2 Pre-processing

In this work, the 13 channels PSGs are used. First, all channels are sampled down
50 Hz and removed the DC bias. Secondly, each channel is normalized separately
by fast Fourier transform (FFT) convolution. Note that the normalization here
is the standardization of the sliding window with 10-min size and 80% over-
lap, rather than the whole record. According to the guidelines, the baseline of
breathing is established within 2 min, that is to say, the size of the baseline win-
dow is 2 min. A high percentage overlap ensures that any important variation in
breathing is not normalized out. Finally, considering the stability and efficiency
of the calculation memory, we unify the sampling time of each record to 7.5 h,
that is, each record has 50 × 7.5 × 3600 = 1350000 sampling points. For data
longer than 7.5 h, discard the redundant data directly, and fill in zero value for
data shorter than 7.5 h. We plot in Fig. 3 an example of 60 s of PSG recording
with sleep arousal annotations.

Fig. 3. Time series waveforms given as inputs to the model (blue), and labels deter-
mining whether the patient was in a target arousal phase (red). (Color figure online)

4.3 Evaluation Metric

In order to evaluate the effectiveness of the model, we use several perfor-
mance metrics, includes accuracy, F1 score, area under the accurate recall curve
(AUPRC), area under the receiver operating characteristic curve (AUROC),
sleep efficiency (SE), and arousal index (AI). They are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, F1 − score =

2 × P × R

P + R
(9)
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AUPRC =
∑

j

Pj(Rj − Rj+1) (10)

AUROC =
∑

j∈(TN+FP )

TPj

(TP + FN) × (TN + FP )
(11)

SE =
TST

TRT
, AI =

Na × 60
TST

(12)

where
P =

TP

TP + FP
, R =

TP

TP + FN
(13)

TP: Both the reference and the system detection indicate an arousal state. FN:
The reference indicates an arousal state, but the system detects a non-arousal
state. FP: The system detects an arousal state but the reference indicates it
is not. FN: Both the reference and the system detection indicate a non-arousal
state [7]. TST, TRT,Na correspond to the total sleeping and recording times and
number of arousals lasting more than 10s, respectively. These metrics are used to
identify sleep disorders and estimate their severity. The higher the AI value, the
more serious sleep disorder. Note that this is the gross AUPRC (i.e., for each
possible value of j, the P and R are calculated for the entire test database),
which is not the same as averaging the AUPRC for each record.

4.4 Hyperparameter Settings

To train our model, the cross-entropy loss function is used to optimize the net-
work. The network weight parameters are optimized by using the Adam method
without weight decaying [19]. Our learning rate is set to 0.001, too large value is
easy to cause loss value explosion. After many experiments, when dropout prob-
ability is set to 0.2, a better network structure can be obtained. We choose a
larger convolution kernel size to improve the receptive field as much as possible.
The final experimental results show that our network has better performance
when the convolution kernel size of the convolution unit is set to [71, 71, 35, 35,
35, 35, 35, 35, 35, 35]. The dilation rates are respectively set to [2, 2, 4, 4, 8] so
that when a single calculation is performed, the receptive domain is increased,
but the calculation amount is not increased, and more detailed information is
retained, which can improve the accuracy of the upper sampling part.

4.5 Ablation Study

We use the AUPRC and AUROC scores as evaluation metrics of the validation
set data in the process of network training, to determine whether the network is
optimized with the increase of training time. In each epoch, we randomly select
200 complete nocturnal records and send them to the network for processing. If
the result of the verification set does not improve or the loss of verification is
not further reduced, the learning process is stopped. Note that in our work, the
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definition of the epoch is different from the general concept. It is the applica-
tion of 200 whole night records to the network, rather than the whole training
set. Moreover, a record may appear in multiple epochs. Figure 4 shows the two
metrics evaluated and the loss value as the model trained. In order to improve
the generalization ability of the model, the available data are divided into three
folds. We repeat the whole training process three times in different folds data,
and finally average the detection of the three models to obtain the final ensemble
model.

Fig. 4. (a): The AUPRC and AUROC for the training. (b): The loss value for the
training. The training employed early stopping to prevent overfitting

Table 1. The performance of a single model and the ensemble model on the test set

Model AUPRC AUROC ACCU F1-Score Average SE Average AI

Model1 0.785 0.912 0.879 0.882 0.792 6.188

Model2 0.731 0.889 0.820 0.841 0.773 6.236

Model3 0.751 0.904 0.872 0.867 0.799 6.213

Ensemble model 0.797 0.916 0.886 0.892 0.804 6.240

According to the details given in Sects. 3.2, our network output frequencies
are 10 Hz. The original data is 200 Hz, we do a up-sampling processing of the
network output, and upgrade it to the 200 Hz to evaluate the performance of
our network in the test data set. The average detection values are measured and
shown in Table 1. The actual average SE and the actual SE on three different
folds data are 0.838, 0.815, 0.829, 6.398, 6.469, 6.402, respectively. The ensemble
model gives the best results.

4.6 Performance Comparison

In order to evaluate the effectiveness of the model, we compared U-Sleep with
CNN [9], CNN-LSTM [15], BRNN-LSTM [5]. These models all trained for a fixed
number of epochs without early stopping, we think that the direct application of



638 S. Yang et al.

the original implementation is not conducive to our comparison. Therefore, we re-
implemented three models and plugged it into our U-Sleep training pipeline. This
ensures that the models use the same early stopping mechanisms and PyTorch
implementations. As shown in Table 2, U-Sleep shows the best performance in
both accuracy and precision. We think the CNN’s biggest problem is that it
can’t model longer sequence information. LSTM can memorize the information
of longer steps, so the CNN-LSTM has achieved better results. In BRNN-LSTM,
the input of each layer includes the information of all previous layers, a richer
description and discrimination of features is formed. U-Sleep combines shallow
and deep features. Not only use skip connection to fuse features of different
scales to achieve multi-scale detection but also use multiple upsampling blocks
to makes the edge information more accurate.

Table 2. Detection results on the first fold of the test set

Model AUPRC AUROC ACCU F1-Score Average SE Average AI

CNN 0.215 0.653 0.815 0.493 0.294 5.147

CNN-LSTM 0.467 0.788 0.811 0.803 0.510 5.468

BRNN-LSTM 0.745 0.881 0.847 0.845 0.782 6.103

U-Sleep 0.797 0.916 0.886 0.892 0.804 6.240

4.7 Discussion

U-Sleep is a new method of mapping multiple complete sleep map sequences to
a single label sequence by using the ability of full convolutional encoder-decoder
structures. We first preprocess the physiological signals in a unified way, which
greatly reduces the workload and solves the problem that it is difficult to ana-
lyze multiple signals at the same time. Sleep has many effects on the human
body. Detection of sleep disorders from a single or a few biological signals has a
great impact on the detection results. The learning of multiple biological signals
can effectively improve the accuracy of detection results. The codec structure of
the network realizes the multi-scale feature recognition of sleep disorders. The
low-resolution information of the encoder after multiple undersampling can pro-
vide the context information of the detection target in the whole sequence. This
feature is helpful to judge the type of sleep disorder. The decoder combines the
features of the encoder to form a thicker feature map. The high-resolution infor-
mation transferred directly from the encoder to the decoder at the same height
through concatenate operation can provide more fine features, such as gradient,
for the detection of sleep disorders. This enables our model to automatically
learn the variable interactions between different biological signals. At the same
time, the fusion of multi-scale features enables the model to fully mine the small
changes of PSG. At last, we use the sequence advantage of LSTM to aggregate
the output. The input of the complete sequence ensures that the model can cap-
ture any relevant time dependence and automatically extract arousal features
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from the rich physiological time series. By analyzing multiple signals at the same
time, our model has achieved good results in the detection of non-apnea.

5 Conclusions

In this study, we propose a feed-forward model to automatically detect the
arousals in sleep. The performance and simplicity of the proposed model encour-
age us to further improve the model, make use of additional features, and build
a new deep neural network model for different physiological signals.

The biggest limitation of this study is the single data set. All the records
are collected in the same place using the same equipment. 13 PSG channels
are interdependent, and the marker data only uses the judgment results of a
professional, which is a great test for the generalization ability of the model.

If each record has multiple independent annotations, you can compare the
performance measures of different annotators with each other and model outputs.
If the model output and multiple manual annotations show great differences,
we need to do further work to make this model reach the artificial level, or
better understand how an imperfect model can be effectively integrated into the
clinical workflow. This work shows the potential of clinical application. With
the development of research, it is expected to become an automatic real-time
detection system for sleep disorders.
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