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Abstract. In the real-world scenario of data stream classification, label
scarcity is very common. More challenges are data streams always
include concept drifts. To handle these challenges, an algorithm of semi-
supervised classification of data streams based on adaptive density peak
clustering (SSCADP) is proposed. In SSCADP, to generate concept clus-
ters at leaves in a Hoeffding tree, a density peak clustering method and
a change detection technique are combined to adaptively locate the clus-
tering centers. Concerning concept drift detection, we argue that the
change of cluster with higher density more likely reflect the change of
data distribution. Hence, to detect concept drifts, an adaptive weighting
method for density change detection is proposed to calculate the devi-
ations between the history concept clusters and new ones. Experiments
on synthetic and real datasets confirm the advantages of SSCADP.

Keywords: Semi-supervised classification · Data stream · Decision
tree · Clustering · Concept drift

1 Introduction

The classification of data steams with concept drift is one of the main challenges
of data mining [1–3]. In various real-applications, including network intrusion
detection, spam filtering and credit card fraud detection[4] etc., due to labeling
cost and time consuming, it is unrealistic that all instances are labeled by expert.
Therefore, a semi-supervised classification algorithm which can handle concept
drifts plays a critical role in addressing the issue of data stream mining.

To overcome these challenges, many researches have been reported in recent
years. However, there are still some limitations. Firstly, many existing methods
[5,6] commonly take clustering methods to label the unlabeled instances which
should assign the number of clusters in advance and keep it constant during the
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processing of data streams. Secondly, many methods ignore the impact of high
density clusters on concept drift detection [5,7].

Specifically in SUN [5], firstly, K-modes is used to form clusters and label the
unlabeled data. However, using K-modes requires setting the number of clusters
in advance and keeping it unchanged during the processing of data streams,
which is unreasonable in many real-applications. Since the dynamic feature of
data streams, new concept clusters may appear while old may disappear. Sec-
ondly, the average deviation between the history and new concept clusters is
adopted to detect concept drifts, which ignores changes in high-density clusters
which are more likely result in concept drifts.

In light of these limitations, an approach of semi-supervised classification
of data streams based on adaptive density peak clustering (SSCADP) is pro-
posed. The framework of SSCADP is the same as SUN, but there are two main
differences.

Firstly, to generate concept clusters at the leaves in a Hoeffding tree, a density
peak clustering method [8] and a change detection technique [9] are combined
to adaptively locate the cluster centers, instead of using K-modes. Secondly, we
consider that the change of clusters with higher density is more likely to reflect
the change of data distribution. And hence an improved detection method based
on SUN is proposed that an adaptive weighted average strategy is adopted to
assign higher weight value to the higher density clusters.

The rest of this paper is organized as follows. Section 2 presents some related
work. Section 3 describes the proposed algorithm in detail including adaptively
locating the cluster centers, labeling the unlabeled samples, and concept drift
detection method. Experiments and results are shown in Sect. 4. Finally, Sect. 5
summarizes this paper and future work.

2 Related Work

The proposed approaches for semi-supervised classification of data stream with
concept drifts can be broadly divided into decision tree-based and non-decision
tree-based methods. The decision tree-based methods like SUN [5] and REDLLA
[7] adopt a Hoeffding tree as base classifier. During the construction of the base
classifier, unlabeled data are labeled by clustering in leaves, and then added into
the detection of concept drifts and the updating of the base classifier. Concept
drifts are detected based on the deviation between history concept clusters and
the new ones. Others like Sco-forest [10] extends Co-forest algorithm to handle
evolving data streams. The concomitant ensemble is used to select samples with
high classification confidence and label these samples to update the correspond-
ing base classifier. If a concept drift is detected by Adwin2 [11], the base classifier
with the worst accuracy will be discarded.

The non-decision tree-based methods usually take cluster model for data
streams classification. Reasc [12] maintains an ensemble of cluster-based classi-
fiers. When updating the ensemble, the cluster-based classifier with the worst
accuracy will be removed out. SPASC [6] maintains a classifier pool which is
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composed of weighted clusters-based model. The weight value will be adjusted
adaptively according to the correctness of classification. SCBELS [13] maintains
an ensemble of cluster-based classifiers which are constructed by BIRCH [14]
and incrementally updated during the classification of data stream. Local struc-
tural information of data is taken into account to deal with concept drifts. [15]
proposed to dynamically maintain a set of micro-clusters, each instance is used
to update the model, outdated or micro-clusters with low reliability are removed
to adapt to the evolving concepts of data streams.

Other models like ECU [16], it constructs an ensemble model which com-
bines both classifiers and clusters for classification. [17] proposed a neural net-
work framework for streaming data classification that each layer consists of a
generative network, a discriminant structure and a bridge.

3 Proposed Algorithm

3.1 The Framework of the Proposed Algorithm

In this paper, a data stream is represented as D = {D0,D1,D2 . . . ,Dt, . . .}, in
which Dt = {x t

1,x
t
2, . . . ,x

t
m} indicates the data batch collected at the time t.

SSCADP1 is described in the algorithm 1. It employs a Hoeffding tree as its base
classifier. After Dt is classified by the Hoeffding tree, each instance in it is sorted
into a leaf, the corresponding statistics of the leaf are updated. If the number
of instances arrived at the tree meets dp, all the labeled instances in a leaf l are
utilized to label the unlabeled instances in it, and then concept drift detection is
installed to detect drift at the leaf. Then, a pruning strategy is adopted on the
Hoeffding tree, and if the number of instances in a new leaf meet nmin, the leaf
attempts to split. After splitting, the updated Hoeffding tree is ready for new
concept.

3.2 Adaptively Locate Cluster Centers and Label Unlabeled
Instances

If a detection period is reached, a clustering method named Clustering by fast
search and find of density peaks (CFSDP) [8] and a change detection technique
[9] are combined to adaptively locate the cluster centers. After concept clusters
at each leaf are created, graph-based label propagation [18] is installed to label
the unlabeled data in each cluster. If a cluster without any labeled instance, all
unlabeled instances in it will be assigned the majority label of the closest cluster.

The basic idea of CFSDP is that the clustering centers should be in the
region with high data density and far away from each other. CFSDP is based on
two quantities: (1) ρi, the local density of the i-th instance; (2) δi, the minimum
distance between the i-th instance and the instances which have higher density
than the i-th instance. ρi and δi are defined as

ρi =
∑

j∈Is/{i}
exp{−(dij/dc)

2}, δi = min
j:ρj>ρi

(dij). (1)

1 Source code: https://gitee.com/ymw12345/sscadpsrc.git.

https://gitee.com/ymw12345/sscadpsrc.git


642 C. Liu et al.

Algorithm 1: SSCADP
Input: A data stream in the form of chunk:D = {D0,D1,D2...,Dt, ...} and

parameters of nmin, dp, α
Output: The predicted labels of Dt

1 Initialize a leaf for tree T , t = 0;
2 while data chunk Dt is available do
3 if t > 0 then
4 T .classify(Dt);

5 for each xi ∈ Dt do
6 sort x i into a leaf l ;
7 update the statistics of the leaf l according to it is labeled or unlabeled;
8 if the number of arrived instances at T meets dp then
9 for each leaf l from bottom to top do

10 D l = get data(l);
11 labeling unlabeled data(D l, α);
12 concept drift detection(l);

13 Installing pruning;
14 if the number of arrived instances at a leaf l meets nmin then
15 Installing split-test and growing child leaves ;

16 t + +;

where dij refers to the Euclidean distance between i-th and j-th instance. dc

represents the cutoff distance, which is set the same as CFSDP according to
experience. Is is the set of all instances indexes. Hence, a cluster center has such
characteristic that ρi and δi are as large as possible. The ρi − δi plot (decision
graph) can provide a visual way to determine the number of clusters.

In the function 1, γi = ρiδi is computed for each instance and then all γi

are sorted in ascending order. CFSDP assumed that the sorted γi(γ) follows the
power-law distribution, and hence jump point of the sorted γi can be found.

After the cluster centers are determined, the clustering is installed, and then
label propagation is conducted.

In order to find the jump point of the sorted γi, we refer to the idea of change
detection in SAND [9], in which a change detection method is proposed to detect
the location of the most significant changes in a series of values along a direction.
Then, we further assume that the sorted γi follows a Pareto distribution. After
the jump point is found, the number of clusters can be determined. As shown
in the Fig. 1, the point in the red circle are jump point, the points above it are
the center points.

The probability density function of Pareto distribution can be expressed as
f(x, a, k) = akax−(a+1) where a is the shape parameter and k is the proportion
parameter. The corresponding logarithmic probability density function can be
expressed as log f(x, a, k) = a log(k) + log(a) − (a + 1) log(x). Define a random
variable γ ∼ Pareto(a, k), and {γi} is the observed value of γ. The maximum
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Function 1: labeling unlabeled data

Input: Data D = {x 1, x 2, ..., xn}; Confidence parameter α
Output: The expanded labeled data D ′; Concept clusters set C

1 D ′=null, labeled data are added to D ′;
2 Construct distance matrix on D based on dij and record it as M ;
3 Calculate ρi and δi for each data x i based on M ;
4 Normalize ρi and δi, γi = ρiδi and sort the elements in γ in ascending order;
5 JumpPoint = jump point detection(γ, α), CN = n − JumpPoint;
6 The instances corresponding to the first CN values in γ are selected as the

cluster centers. {Ci}CN
i=1 denotes the corresponding clusters;

7 for each xi ∈ D′ do
8 if xi is not a cluster center then
9 x i is assigned to the cluster the same as its nearest higher density point

belongs to;

10 for each Ci ∈ C do
11 Label unlabeled data at Ci by graph-based label propagation;
12 Labeled data are added to D ′;

13 return D ′, C;

likelihood estimation of the parameters are calculated as follow, where N is the
total number of observed values.

k̂MLE = min
1≤i≤N

{γi}, âMLE = N/
∑N

i=1
(ln γi − ln k̂MLE) (2)

Fig. 1. Jump point detection.

To detect the jump point, in the function 2, γ is divided into two sub-windows
by k from N/2 to N − 3. The k value corresponding to the maximum statistical
difference between the two sub-windows is the index of the jump point.
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Function 2: jump point detection

Input: Array γ with elements in ascending order; Confidence parameter α
Output: The corresponding index of the jump point e

1 N = size(γ);
2 e = −1, wn = 0;
3 for k = N/2 : N − 3 do
4 ma = mean(γ[1 : k]), mb = mean(γ[k + 1 : N ]);
5 if ma < αmb then
6 Pareto[scalea, shapea] < −estimateParam(γ[1 : k]);
7 Pareto[scaleb, shapeb] < −estimateParam(γ[k + 1 : N ]);
8 sk = 0;
9 for i = k + 1 : N do

10 ta = logf(γ[i], scalea, shapea), tb = logf(γ[i], scaleb, shapeb);
11 sk+ = log(tb/ta);

12 if sk > wn then
13 wn = sk, e = k;

14 return e;

3.3 Concept Drift Detection

A concept drift detection method is installed at each leaf. Before introducing
the detail of concept drift detection, many variables should be defined. Respec-
tively, rhist and rnew denote the radius of the set of history concept clusters
Chist and the new ones Cnew, nhist and nnew represents the number of clus-
ters in Chist and Cnew. rk denotes the radius of a cluster and is computed
as the average Euclidean distance from all instances in the cluster to its cen-

ter: rk =
∑|Ck|

i=1

√∑D
j=1 (ckj − xij)2/ |Ck|, where xi= {xi1,xi2, . . . ,xiD} ∈ Ck

is the i-th instance in cluster Ck. D represents the attribute dimension. ck

refers to the cluster center of Ck and |Ck| is the total number of instance
in Ck. rhist=

∑nhist

i=1 ri/nhist. Similarly, rnew is calculated by this way. dist is
used to measure the average distance between these two concept cluster sets.

dist = (
∑nnew

i=1 min[
√∑D

j=1 (cij − ckj)
2
, ck ∈ Chist, 1 ≤ k ≤ nhist])/nnew, where

ck and ci denote cluster centers in Chist and Cnew, respectively. In SUN, the
value of dist greater than max(rhist, rnew) means concept drift.

However, in our algorithm, it is assumed that the change of points with higher
density is more likely to reflect the change of data distribution. Therefore, dist
is redefined as dist =

∑nnew

i=1 widisti to capture the distribution change of data
more accurately. disti and wi are calculated by (3) and (4) respectively. disti
refers to the distance of the cluster center ci to Chist. ρci refers to the average
density of the clusters Ci and Ck which is the closest cluster to Ci in Chist , and
ρcij refers to the density of j-th instance belonging to Ci, ni and nk mean the
total number of data in Ci and Ck respectively. And hence larger wi and disti
mean concept drift. Like SUN, if the value of dist is more than max(rhist, rnew),



SSCADP on Data Streams Semi-supervised Classification 645

a real concept drift is considered. The process of drift detection is described in
the function 3.

disti = min[

√∑D

j=1
(cij − ckj)

2
, ck ∈ Chist, 1 ≤ k ≤ nhist] (3)

wi = ρci

/∑nnew

i=1
ρci , ρci = (

∑ni

j=1
ρcij +

∑nk

j=1
ρckj

)/(ni + nk). (4)

Function 3: concept drift detection

Input: Concept clusters set Cnew and Chist saved in leaf l
Output: Flag

1 Flag = False;
2 if Chist = ∅ then
3 Chist = Cnew

4 else
5 calculate rhist, rnew and dist using Chist and Cnew;
6 if dist > max(rhist, rnew) then
7 Flag = True

8 return Flag

dist can be utilized to detect concept drifts caused by the change of P(x).
In addition, considering concept drift can be caused by the distribution change
of class labels, the class labels of history concept clusters and new ones are
compared when concept drift is not detected. If the class labels of Chist and
Cnew are completely opposite, it is also defined as a real concept drift.

After the bottom-up search is implemented to find all drift leaves, a pruning
method is installed for adjusting the tree to cope with concept drifts. Each level
of the tree will be traversed once to check concept drift of each leaf from bottom
to top until the root is reached. If all child nodes of a node are detected concept
drift, these child nodes are pruned and the new leaf node maybe split again.

4 Experiments

In this paper, all synthetic datasets are generated by MOA [19]. xxx-abr, xxx-gra
and xxx-inc represent the concept drift types of abrupt, gradual and incremental,
respectively. In the dataset with gradual drifts, it takes 5000 instances to change
from one concept to another. In addition, to verify the performance of SSCADP
on the datasets where the number of clusters varies apparently, we generate a
Gaussian dataset with clusters change dynamically and concept changes, which
are shown in Fig. 2(a), (b) and (c) represent three different distributions which
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Fig. 2. Changes in clusters.

evolve along the time sequence, with the positive instances in red ‘+’ and the
negative instances in green ‘×’, each figure contains 600 instances.

Table 1 shows the properties of all datasets. For Sea, four concepts are gen-
erated by setting θ = 8, 9, 7, and 9.5. For Sine, the definition of Sine is if
a ∗ sin(b ∗ x1 + θ) + c > x2, the label is 0, otherwise is 1, four concepts are
generated by setting a = b = 1 and c = θ = 0, a = b = 1 and c = θ = 0
with class labels are changed oppositely, a = 0.3, b = 3π, c = 0.5, θ = 0
and a = 0.3, b = 3π, c = 0.5, θ = 0 with class labels are changed oppositely.
For HyperPlane-abr and HyperPlane-gra, four concepts are generated by setting
w1 = (0, 0.5, 0.5), w2 = (0, 1, 0), w3 = (1, 0, 0) and w4 = (0.5, 0, 0.5), while for
HyperPlane-inc, d = 10. For Agrawal, function 1, 2, 5, 6 are selected as the con-
cepts of 1, 2, 3, 4. The Weather and Electricity dataset are used in this paper.
For each synthetic data, 10 copies are randomly generated while for each real
dataset labeled instances are randomly selected 10 runs.

In this paper, nmin refers to the minimum number of instances when a leaf
attempts to do split-test and it is set to 200. dp means the detection period and
dp = 200 empirically. α = 0.95 is the confidence used in the clustering algorithm.

4.1 Experimental Results

SSCADP is compared with three baseline methods including SUN, SPASC, and
Reasc. Three groups of experiments are conducted to evaluate the accuracy, the
impact of label ratio, and concept drift tracking. In the first and last groups of
the experiments, in order to simulate the situation of limited labeled data in real
applications, the label ratio of all datasets are set to 0.1.

Accuracy. The accumulative accuracy is utilized to evaluate the performance
of baseline methods and SSCADP. Table 2 shows the detailed results. For all
datasets, each result is obtained by averaging the results of 10 runs.

It can be observed that SSCADP performs better than other baseline algo-
rithms on almost of all datasets. The Friedman test is conducted on the results
in Table 2, and the average rank is shown in Table 2, SSCADP achieves the best.
Test statistic FF = 10.654, the critical value for α = 0.05 is 2.892, hence we can
reject the null-hypothesis that there is no difference among the performance of
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Table 1. Properties of the datasets

Datasets Attributes Instances Classes Chunk size Concept change

Sea-abr 3 80000 2 1000 1-2-3-4-1-2-3-4

Sea-gra 3 115000 2 1000 1-2-3-4-1-2-3-4

Sine-abr 4 80000 2 1000 1-2-3-4-1-2-3-4

Sine-gra 4 115000 2 1000 1-2-3-4-1-2-3-4

HyperPlane-abr 3 80000 2 1000 1-2-3-4-1-2-3-4

HyperPlane-gra 3 115000 2 1000 1-2-3-4-1-2-3-4

HyperPlane-inc 10 80000 2 1000 Unknown

Agrawal-abr 9 80000 2 1000 1-2-3-4-1-2-3-4

Agrawal-gra 9 11500 2 1000 1-2-3-4-1-2-3-4

Gaussian 2 3600 2 600 1-2-3-1-2-3

Weather 8 18159 2 360 Unknown

Electricity 8 45312 2 1000 Unknown

all algorithms. Furthermore, in Nemenyi test CD = 1.35 which means SSCADP
performs significantly better than SUN and Reasc. There is no significant differ-
ence in the performance between SSCADP and SPASC.

Table 2. Accumulative accuracy (%) on all datasets.

Datasets SUN SPASC Reasc SSCADP

Sea-abr 78.58 ± 2.64 83.36 ± 1.41 83.17 ± 1.58 83.48± 1.02

Sea-gra 81.16 ± 2.50 82.83 ± 1.10 82.45 ± 0.86 84.45± 0.51

Sine-abr 51.68 ± 2.37 57.15± 2.91 51.98 ± 0.31 51.92 ± 2.20

Sine-gra 53.21 ± 1.82 55.35± 1.76 51.03 ± 0.37 51.06 ± 1.40

HyperPlane-abr 64.47 ± 1.86 66.57 ± 2.29 51.38 ± 1.47 67.14± 0.82

HyperPlane-gra 65.54 ± 1.10 66.92 ± 1.99 51.17 ± 1.06 68.31± 1.73

HyperPlane-inc 74.15 ± 4.66 62.02 ± 3.38 50.06 ± 0.34 74.34± 7.53

Agrawal-abr 52.37 ± 1.03 57.78 ± 0.45 43.73 ± 0.32 58.88± 0.62

Agrawal-gra 53.36 ± 0.98 57.09 ± 0.53 44.34 ± 0.28 57.86± 0.46

Gaussian 52.64 ± 3.05 58.93 ± 5.86 50.38 ± 6.31 62.17± 6.37

Weather 67.89 ± 0.76 66.77 ± 1.21 67.95 ± 0.00 68.53± 0.67

Electricity 57.73 ± 5.04 54.75 ± 1.15 57.12 ± 1.49 70.52± 3.03

Average rank 3.00 2.25 3.41 1.33
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Impact of Label Ratio. Considering the influence of labeling ratio on classifi-
cation accuracy, we simulate the real scene to compare the algorithms by setting
the label ratio to 0.05 and 0.2. Detailed results are shown in Table 3. In the case
of 0.05, Friedman test is conducted and FF = 3.175, critical value for α = 0.05 is
2.892. This results indicate that the performance of all the algorithms is signifi-
cantly different. Furthermore, in Nemenyi test CD = 1.35, and hence it can be
concluded that SSCADP performs significantly better than SUN. These results
indicate that even there are very limited labels available, SSCADP can achieve
better performance, and it is suitable for semi-supervised classification of data
stream.

In the case of 0.2, Friedman test is conducted and FF = 6.567, critical value
for α = 0.05 is 2.892. This results indicate that the performance of all the
algorithms is significantly different. Furthermore, in Nemenyi test CD = 1.35,
and hence it can be concluded that SSCADP performs significantly better than
SUN and Reasc. There is no significant difference in the performance between
SSCADP and SPASC in the cases of 0.05 and 0.2.

Table 3. Impact of the label ratio on accumulative accuracy (%).

SUN SPASC Reasc SSCADP

0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

Sea-abr 69.87 81.28 80.81 84.04 82.09 84.23 79.56 84.51

Sea-gra 74.07 82.53 80.89 84.78 83.13 85.18 77.33 85.22

Sine-abr 51.11 51.95 56.67 61.66 52.12 51.86 50.40 51.67

Sine-gra 52.19 52.28 57.81 54.36 53.01 53.05 52.22 50.16

H-abr 63.29 65.83 65.83 66.79 50.66 50.69 66.00 66.94

H-gra 64.22 66.97 66.04 68.32 51.39 50.65 67.28 68.86

H-inc 72.15 77.61 60.34 65.90 50.03 49.95 73.31 78.99

Agr-abr 51.69 52.98 56.87 58.82 43.69 43.80 57.63 59.30

Agr-gra 52.48 53.66 57.19 58.64 44.41 44.38 57.60 58.75

Gaussian 52.84 58.40 56.60 59.88 49.96 52.79 57.16 61.45

Weather 67.59 67.58 65.25 68.05 67.85 67.93 68.23 68.65

Electricity 59.36 70.56 53.67 56.15 59.69 57.38 68.09 70.82

Rank 3.16 3.00 2.25 2.25 2.83 3.25 1.75 1.50

Concept Drift Tracking. The drift tracking performance of all algorithms
on all datasets with abrupt drift type are shown in Fig. 3. The number at bot-
tom represent the kind of concept, and the vertical line indicate the location of
concept drift. In the dataset of Sea, when new concepts arrive, the accuracy of
SSCADP declined less in most cases, especially in concept 3 and 4 which are
quite different. In the dataset of HyperPlane, SSCADP performed well in most
cases except concept 2. In the dataset of Agrawal, the accuracy of SSCADP also
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declined less in most cases. In the dataset of Sine, SSCADP performed not well
since it is a single model and the large differences exist between each concept.
SPASC adopts ensemble model as well as can deal with recurring drifts which
can achieve better performance.

Fig. 3. Drift tracking graph.

5 Conclusions

In this paper, we propose a method of SSCADP to handle the semi-supervised
classification of data streams. SSCADP can adaptively locate the cluster centers
by considering both the local density and the distance between two points, and
detect concept drifts by combining both the density of clusters and the distance
between the historical clusters and the new ones. Experimental results illustrated
that SSCADP can achieve better performance than the baseline algorithms in
most datasets. In future, we will focus on how to effectively combine labeled
data with unlabeled data to detect concept drift. We will also explore how to
deal with recurring concept drift more effectively.
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