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Abstract. A series of semi-supervised learning (SSL) algorithms have
been proposed to alleviate the need for labeled data by leveraging large
amounts of unlabeled data. Those algorithms have achieved good per-
formance on standard benchmark datasets, however, their performance
can degrade drastically when there exists a class mismatch between the
labeled and unlabeled data, which is common in practice. In this work,
we propose a new technique, entropy repulsion for mismatch (ERCM), to
improve SSL against a class mismatch situation. Specifically, we design
an entropy repulsion loss and a batch annealing and reloading mech-
anism, which work together to prevent potentially mismatched unla-
beled data from participating in the early training stages as well as
facilitate the minimization of the unsupervised loss term of traditional
SSL algorithms. ERCM can be adopted to enhance existing SSL algo-
rithms with minor extra computation cost and no change to their net-
work structures. Our extensive experiments demonstrate that ERCM
can significantly improve the performance of state-of-the-art SSL algo-
rithms, namely Mean Teacher, Virtual Adversarial Training (VAT) and
Mixmatch in various class-mismatch cases.
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1 Introduction

Deep learning models have achieved remarkable performance on many super-
vised learning problems by leveraging large labeled datasets [12]. Creating large
datasets with high-quality labels, however, is usually very labor-intensive and
time-consuming [21,24]. Semi-supervised learning [3] (SSL) provides an attrac-
tive way to improve the performance of deep learning models by also utilizing
easily obtainable unlabeled data, so as to mitigate the reliance on large labeled
datasets. Algorithms for SSL mainly include the following core ideas: consistency
regularization [11,14,19], entropy minimization [7,13], and traditional regular-
ization [23]. Recent holistic approaches, Mixmatch [2] and UDA [20] achieve the
state-of-the-art performance by combining these ideas above.

Existing SSL algorithms usually demonstrate their successes using fully-
labeled classification datasets (e.g., CIFAR-10 [10], SVHN [15] and Imagenet
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[5]) by treating most samples of each dataset as unlabeled. Therefore, those
evaluation results are based on an implicit assumption that all unlabeled sam-
ples come from the same classes as labeled samples. In real world, however, it
is very likely that a large portion of the unlabeled samples do not belong to
any classes of the labeled data, i.e., there exist a mismatch between class distri-
butions of labeled and unlabeled data. As an example, if you intend to train a
model to distinguish between ten classes of animals with only a small amount
of labeled images at hand, you may want to employ a large collection of unla-
beled animal images to improve the model performance. The unlabeled dataset
may contain many images of other animal classes than the ten target classes.
Most existing SSL algorithms use a combined loss of a supervised term and an
auxiliary (unsupervised) term to achieve high test accuracy as well as generalize
better to unseen data. As reported in some recent work, the class mismatch issue
can make it difficult to minimize the auxiliary loss term [22], furthermore, dras-
tically degrade the performances of SSL algorithms compared to not using any
unlabeled data at all [16]. Though class mismatch can actually hurt the applica-
bility of SSL algorithms, it has not received much attention until recently. [11]
and [22] consider to evaluate SSL algorithms in class-mismatch cases. Two tech-
niques, Split Batch normalization (Split-BN) [22] and ROI regularization, have
been proposed to improve the robustness of existing SSL methods against class
mismatch.

In this work, we focus on reducing the performance degradation caused by
class mismatch problems so as to improve the applicability of existing SSL algo-
rithms. We propose a novel entropy repulsion technique for mismatch (ERCM)
to restrict potentially mismatched unlabeled samples from participating in the
training process. Specifically, we introduce a new entropy repulsion loss term,
which is gradually relaxed to prevent the model from premature overfitting on
mismatched unlabelled data. We also design a batch annealing and reloading
mechanism to work together with the loss, which dump samples with low-
confidence pseudo labels and reload samples with highest-confidence pseudo
labels from a temporal pool to make the training more stable. Our contribu-
tions are summarized as follows:

– We propose a novel technique ERCM, including an entropy repulsion
loss together with a batch annealing and reloading mechanism, which
can empower existing SSL algorithms to achieve a significant performance
improvement over the state of the art even when there is a significant class
mismatch between labeled and unlabeled data. For example, with 250 labeled
data and 20000 unlabeled data (mismatched data accounts for 20%) on
CIFAR-10, as shown in Table 1, our method achieved 11.3% test error, which
is 5.9% lower compared to 17.2% test error of the next-best method (Mix*).
Specially, our analysis and ablation experiments show that ERCM can effec-
tively alleviate the difficulty to minimize the auxiliary loss term in class-
mismatch cases, which is a challenging issue reported by previous work [22].

– Our design is orthogonal to traditional SSL algorithms and can be effec-
tively adopted by existing SSL methods to improve their performance in
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Fig. 1. Workflow of our proposed ERCM technique (details in Sect. 3).

class-mismatch cases. Our ERCM technique is highly portable, requiring no
change to network structures and only introducing minor extra computational
overhead.

2 Related Work

In this section, we mainly review state-of-the-art SSL techniques and recent
efforts to address the class mismatch issue. A more comprehensive survey of SSL
is provided in [3]. A common underlying assumption of SSL algorithms is that
the decision boundary should pass through the low-density regions of data. One
core idea to enforce this is entropy minimization. EntMin [7] makes low-entropy
predictions for all unlabeled samples by adding an explicit loss term. Pseudo
Label [13] gives pseudo labels for unlabeled data with high-confidence outputs
for entropy minimization. Another core idea is consistency regularization that
encourages the model to output the same class distribution for various augmen-
tations of an unlabeled sample. Π-Model [11] and Temporal Ensembling [17]
generalize ensemble predictions of unlabeled samples by networks with dropout
regularization [18]. Mean Teacher [19] averages model weights instead of label
predictions in which teacher model is an average of consecutive student models.
VAT [14] involves consistency by applying a perturbation to the input. Recently,
holistic methods Mixmatch [2] and UDA [20] achieve state-of-the-art perfor-
mance on benchmark datasets by incorporating several recent advanced tech-
niques. When it comes to a more realistic setting where class mismatch exists,
those methods, however, may suffer a significant performance degradation.

The class-mismatch problem has not drawn much attention from traditional
SSL methods. It is first considered in [11], which only appears in partial experi-
ments and has not been discussed in depth. Recently, class distribution mismatch
is formally discussed in [16], which shows clear performance degradation of var-
ious SSL methods in class-mismatch cases. Moreover, class mismatch shares
some characteristics with domain adaptation [1,6] in which there are differences
between distributions of training data and test data. [9] designs ROI regulariza-
tion to help VAT perform better against class mismatch. Split-BN [22] uses split
batch normalization to improve the performance of Mean Teacher and VAT.
And a SSL method named UASD [4] is proposed to mitigate the impact of class
mismatch. In this paper, we aim to further enhance existing SSL methods by
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restricting potentially mismatched unlabeled samples from participating in the
training process. Moreover, ERCM can also effectively improve the performance
of the holistic method, Mixmatch.

3 Our Method

3.1 Problem Formulation

In SSL, we are given a labeled dataset DL and an unlabeled dataset DU . Let
DY = {0, 1..K − 1} be the set of labels. For each labeled sample x ∈ DL, we
have label(x) ∈ DY . SSL algorithms aim to leverage unlabeled samples from DU

to train a model with better performance than what would have been obtained
by using DL alone. In this work, we consider a situation that is very common in
real-world settings, named class mismatch. DU is very likely to have extra “dirty”
data called mismatched samples that do not belong to any of these K classes.
As reported in [16], class mismatch can actually hurt the performance of SSL
methods. Our goal is to improve the performance of SSL in class-mismatch cases
by mitigating the negative impact of mismatched unlabeled samples during the
training process.

3.2 Design Overview

In a typical training process of SSL, a minibatch is composed of a labeled batch
X (a set of size C randomly sampled from DL), an unlabeled batch U (a set
of size C randomly sampled from DU ), and corresponding labels Y of X . Many
recent SSL approaches use a combined loss function L consisting of a supervised
part and an auxiliary part:

L = λX LX + λULU , (1)

where λX and λU are weights of loss terms. The supervised part LX is a loss
function of labeled samples like cross-entropy:

LX =
1

|X |
∑

x∈X ,ŷ∈Y
ŷ log(

1
p( y|x, θ) )

. (2)

The auxiliary loss LU is designed to explore the decision boundary by unla-
beled data. For example, in Mixmatch, LU is a consistency regularization loss
term defined as || ĝ − p( y|u, θ) ||22, u ∈ U , where ĝ represents “guessing label” of
unlabeled samples after sharpening.

Entropy Repulsion Loss. In traditional SSL algorithms, combining a cross-
entropy loss and a consistency regularization loss leads to a decrease of the
entropy of labeled and unlabeled samples, which achieves good performance
on standard datasets. In class-mismatch cases, however, blindly reducing the
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entropy of unlabeled data is not always beneficial and can even hurt the perfor-
mance. Once the model is over-trained or over-fitted on mismatched unlabeled
samples, it will introduce great errors to the model. To address this problem, we
propose an entropy repulsion loss term LM (shown in Eq. (3)), which encourages
output entropy of labeled samples relatively smaller than that of unlabeled ones
during the training process. LM encourages the entropy of p( y|x′, θ), x′ ∈ X d to
be relatively smaller than the entropy of p( y|u′, θ), u′ ∈ Ud, where X d and Ud

are randomly sampled from batch X and U .

LM = E[H(p( y|x′, θ))]−E[H(p( y|u′, θ))]

=
1

α |U| (
∑

x′∈Xd

H(p( y|x′, θ))−
∑

u′∈Ud

H(p( y|u′, θ))) (3)

Here the conditional entropy H(Y|X ) is defined as

H(p( y|x, θ)) = −
n∑

i=1

p( y|x, θ)i log p( y|x, θ)i (4)

The conditional entropy is a measure of class overlap, which is invariant to
the parameterization of the model. It is related to the usefulness of unlabeled
samples where labeling is indeed ambiguous [7,8].

Batch Annealing and Reloading with Temporal Pool. To further reduce
the negative impact of mismatched unlabeled samples, we design a batch anneal-
ing mechanism to discard those high-entropy unlabeled samples from batch U
and reserve only low-entropy unlabeled samples in batch Ur for training. The
standard for reserved samples is strict in the early stages and is gradually relaxed
as the model gets more accurate. Inspired by [11] and [19] which utilize the tem-
poral information of training process, we propose a reloading mechanism with
a temporal pool to refill Ur with low-entropy unlabeled samples. The temporal
pool is a size limited buffer to store the temporal samples with lowest entropy in
the training process. The reloading mechanism increases the degree of fitting on
low-entropy unlabeled samples as well as enhances training stability. The details
of batch annealing and reloading will be presented in Sect. 3.3 and Sect. 3.4.

Based on our batch annealing and reloading mechanism, we redefine the
consistency regularization loss term LU in a class mismatch case as

LU =
1

(1 − α) |U| || ĝ − p( y|u, θ) ||22 u ∈ Ur (5)

where Ur represents unlabeled samples after batch annealing and reloading.

Loss Function in ERCM. By adding our proposed entropy repulsion loss term
to supervised loss and consistency regularization loss, the loss function in our
method is presented in Eq. (6), which is a weighted combination of LX , LU , and
LM. Here, λX , λU and λM are weights of loss terms.

L = λX LX + λULU + λMLM (6)
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Algorithm 1. Entropy Repulsion for Class Mismatch (ERCM)
Require: the labeled batch X = sample{(xi)}C

i=1 ∼ DL

Require: the corresponding labels Y of X
Require: the unlabeled batch U = sample{(ui)}C

i=1 ∼ DU

Require: the training step t;
Require: allocate(T , M), T is an initialized temporal pool, M is the pool size;
Require: β and γ are annealing parameters;
Require: k is weights warming step;
Require: λX , λU , λM are weights of loss term

1: X , U = augmentation(X , U);
2: for s in training steps �1, t� do

3: λU , λM =

{
λ s

k
s < k

λ s ≥ k

4: α = max( 1, update(β, γ, s, t));
5: Ud, Ur, X d = batch_annealing (U , X , α)
6: Ur, T ′ = reloading (Ur, T , α)
7: T = T ′; //update temporal pool
8: LX = cross_entropy(X , Y); //supervised loss, e.g., Eq.(1)
9: LU = consistency_loss(Ur ); //auxiliary loss, e.g., Eq.(5)

10: LM = erm_loss(X d, Ud ); //entropy repulsion loss in Eq.(3)
11: L = sum(λX LX , λULU , λMLM)
12: θ = update( θ, ∇θL ); //e.g. SGD, Adam
13: end for
14: return θ

Workflow of ERCM. We illustrate the workflow of ERCM in Fig. 1 and give
the detailed algorithm in Algorithm1. First, we conduct stochastic augmentation
(line.1, like random horizontal flips or crops) on the input batch X and U . At the
beginning of training, there will be a warming up process of weights for stability
as usually done in traditional SSL approaches (line.3). During training the batch
s, batch annealing discards high-entropy parts of U and reserves Ur (line.5). We
uniformly sample X d and Ud from X and U . Then, we refill Ur by reloading
low-entropy samples from the temporal pool T (line.6). Finally, we calculate
the supervised loss term LX by labeled batch X and corresponding labels Y,
auxiliary loss term LU by Ur, and entropy repulsion loss term LM by Ud and
X d (line.8–10). We update the model by minimizing the total loss L (line.11).

3.3 Batch Annealing

As shown in Algorithm 2, we first calculate the conditional entropy H(p( y|u, θ))
of unlabeled samples in U . Then, we reserve the first α×C lowest-entropy (most
confident) samples from U to compose Ur for training. Here, the α is the anneal-
ing rate, which is obtained by the following increment function:

α = β + log(γ
s

t
+ 1). (7)
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t is the total training step number and s is the current training step. β and γ are
hyperparameters. With steps of training, the model becomes more accurate and
robust, meanwhile α increases so as to gradually relax the standard for selecting
reserved samples. In this way, our mechanism improves the model training by
restricting potential mismatched unlabeled samples from participating in the
training.

For each round of training, to calculate LM, we uniformly select (1− α)× C
samples from U to compose Ud and uniformly select (1−α)×C samples from X
to compose X d. We note that the limitation of LM will gradually decrease due
to the increase of α. The batch annealing mechanism anneals both the loss term
LM and unlabeled samples Ur which will participate in the calculation of LU .

Algorithm 2. Batch Annealing
Input: the unlabeled batch U ;

the labeled batch X ;
the annealing rate α;

H = cal_entropy ( p(U , θ));
Ud = uniform_sample (U , �(1 − α) × C�)
X d = uniform_sample (X , �(1 − α) × C� );
Ur = lowest_k (H, U , �α × C�);
return Ud, Ur, X d;

3.4 Reloading with Temporal Pool

Before training, we initialize a temporal pool of size M to store “very likely
matched” unlabeled samples in DU . We first get the union set B of current Ur

(output of the batch annealing) and the temporal pool T . Then, top (1−α)× C
samples with lowest entropy in B will be reloaded into Ur to calculate of the aux-
iliary loss. The top M samples with lowest entropy in B will compose the updated
temporal pool. A sample will be reloaded if it keeps high confident pseudo label in
several continuous temporal training models. The reloading mechanism improves
the model to achieve better fitting on high-confidence unlabeled samples as well
as more stable training process.

4 Evaluation

4.1 Experiment Configuration

We use Wide ResNet-28 [16] for all models in experiments. Because traditional
SSL methods will be badly hurt by class-mismatch problems in the late training
period, for fair comparison, we run 3 × 223 training steps and report the test
error rate of a model with highest valid accuracy.
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4.2 Supervised with Mixup

Mixup [23] is a widely adopted data augmentation method. In our experiments,
we obtain the performance of supervised learning with Mixup using only labeled
data, which is denoted as Supervised-only.

4.3 ERCM-SSL Implementations

We combine our design with three state-of-the-art SSL approaches MeanTeacher,
VAT, and Mixmatch to obtain ERCM-MT, ERCM-VAT, ERCM-Mix. λX and
λU in SSL methods refer to the implementation in [2] which achieve good perfor-
mance. Unless otherwise noted, we use constant ERCM hyperparameters with
k = 100k, M = 64, and γ = 0.5 in our experiments.

ERCM-MT & ERCM-VAT: We use consistency regularization in [19] as the
auxiliary loss function. Before feeding the unlabeled data into the model, we add
a “guessing label” operation to obtain p(y|u, θ). In our experiments, we set hyper-
parameters for all class-mismatch cases, where λX = 1, λU = 50, λM = 0.001,
and β = 0.65. We adopt the loss function of VAT to implement ERCM-VAT with
the same p(y|u, θ) as ERCM-MT. In our experiments, we set hyperparameters
for all class-mismatch cases, where λX = 1, λU = 0.3, λM = 0.05, and β = 0.75.

ERCM-Mix: We adopt square difference between guessing label and output for
LU as shown in Eq. (5). Moreover, original Mixmatch mixes labeled data with
unlabeled data by Mixup for better performance with no mismatched samples.
However, in class-mismatch cases, we find that it makes the supervised loss hurt
by mismatched samples, especially when the quantity of labeled samples is small
as shown in Fig. 2 and Table 1. We adjust Mixmatch to Mix* by mixing labeled
data and unlabeled data separately. In ERCM-Mix, we set hyperparameters for
all class-mismatch cases, where λC = 1, λU = 100, λM = 0.5, and β = 0.75.

4.4 Results

Table 1. Test error (%) ± standard deviation of methods against different class mis-
match rate on CIFAR-10 with 250 label samples and 20k unlabeled samples on different
random splits.

0% 20% 40% 60% 80% 100%

MT 28.4 ± 0.5 28.5 ± 2.6 29.9 ± 0.5 30.0 ± 1.5 29.8 ± 0.4 30.1 ± 0.8
Mix 14.1 ± 0.8 18.0 ± 3.4 17.9 ± 1.1 20.7 ± 1.2 24.6 ± 1.4 28.2 ± 1.0
Mix* 13.4 ± 0.5 17.2 ± 1.2 17.1 ± 1.5 19.0 ± 1.6 21.2 ± 1.8 25.5 ± 1.9

Supervised-only 28.4 ± 0.2

ERCM-MT 26.4 ± 2.7 26.6 ± 0.7 26.7 ± 2.2 28.3 ± 0.8 28.6 ± 0.4 28.6 ± 1.7
ERCM-Mix 9.7 ± 1.3 11.3 ± 1.3 14.3 ± 0.8 15.6 ± 0.6 18.2 ± 1.5 23.6 ± 0.7
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Table 2. Test error (%) ± standard deviation of methods against different class
mismatch rate on SVHN with 250 label samples and 20k unlabeled samples on different
random splits.

0% 20% 40% 60% 80% 100%

VAT 4.6 ± 0.3 5.1 ± 0.1 6.1 ± 0.5 7.1 ± 0.7 7.7 ± 0.6 10.5 ± 0.3
Mix 3.4 ± 0.2 3.8 ± 0.2 5.2 ± 0.8 6.1 ± 0.7 8.6 ± 0.6 13.8 ± 1.6
Mix* 3.4 ± 0.1 4.0 ± 0.1 4.9 ± 0.2 5.3 ± 0.2 7.2 ± 0.4 14.6 ± 1.3

Supervised-only 21.7 ± 0.2

ERCM-VAT 4.9 ± 0.5 4.9 ± 0.4 5.8 ± 0.3 6.4 ± 0.3 6.8 ± 0.3 9.6 ± 0.3
ERCM-Mix 3.5 ± 0.1 3.6 ± 0.2 4.5 ± 0.3 5.0 ± 0.6 6.3 ± 0.6 11.2 ± 1.3

Table 3. Ablation study results on CIFAR-10 with 250 labeled samples and 20k
unlabeled samples when mismatch rate is 60%. Average test error ± standard deviation
with different entropy repulsion loss weights (λM = 0.1, 0.25, 0.5).

Method 250 labels 2000 labels

ERCM-Mix 17.1 ± 0.6 7.8 ± 0.1
ERCM-Mix (mix labeled with unlabeled samples) 18.4 ± 0.8 7.5 ± 0.1
ERCM-Mix (without entropy repulsion loss term, λM = 0) 18.4 ± 0.4 8.2 ± 0.1
ERCM-Mix (α = 1 and λM = 0, equal to Mix*) 20.8 ± 1.4 8.5 ± 0.2
ERCM-Mix (removing temporal pool, M = 0) 18.1 ± 0.7 7.9 ± 0.2

Fig. 2. Test error on various numbers of labeled samples with mismatch rate 60% on
splits of CIFAR-10 (6 classes, 400 labels each class). Shaded regions indicate standard
deviation over five trials.

In this section, we compare the performances of various methods in class-
mismatch cases on different datasets. Mismatch rate represents the proportion
of mismatched data among unlabeled data. For example, given 20000 unlabeled
samples, 60% mismatch rate means 12000 unlabeled samples are mismatched
(Table 3).
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CIFAR-10: We first discuss the situation with only a small number of labeled
samples. We selected 250 labeled samples, 20k unlabeled samples and 5000 valid
samples from CIFAR-10 [10] to train a 5-classes classifier with random splits. We
report the average test errors and standard deviations in Table 1. The perfor-
mances of all three SSL methods decrease gradually as the mismatch rate rises.
With the help of our design, ERCM-MT clearly outperforms traditional MT and
Supervised-only. ERCM-Mix performs best among all algorithms on CIFAR-10.
Compared to the standard Mixmatch, ERCM-Mix achieves up to 6.7% improve-
ment when the mismatch rate is 20%. Compared to Mix*, ERCM-Mix reduces
the error rate by 5.9% when the mismatch rate is 20%. The results prove that
ERCM significantly improves the performance of SSL methods in class-mismatch
cases.

We vary the number of labeled samples (250–2000) when the mismatch rate
is 60%. The test errors of different methods are presented in Fig. 2. ERCM-
Mix still outperforms other methods. We note that the performance of Mix
gradually approaches and slightly exceeds Mix* as the number of labeled samples
increases. Imbalance between the quantities of labeled and unlabeled samples
will introduce uncertainty to training. With smaller quantity of labeled samples,
the improvement introduced by ERCM is more significant. Compared to Mix*,
the improvement of ERCM-Mix decreases from 3.4% to 0.8% as the number of
labeled samples rises.

Table 4. Test error (%) ± standard devi-
ation comparison of 6 classes (400 per
class) on CIFAR-10 with mismatch rate
of 25% and 75%.

Method 25% 75%

Split-BN+MT 22.4 ± 0.2 22.9 ± 0.4
Split-BN+VAT 23.4 ± 0.3 23.9 ± 0.0
VAT+ROIreg – 22.3 ± 1.2
ERCM-MT 14.1 ± 0.2 15.6 ± 0.2
ERCM-VAT 16.5 ± 0.4 17.4 ± 0.2
ERCM-Mix 9.8± 0.1 11.8± 0.1

Table 5. Test error (%) ± standard devi-
ation comparison on 8A8O-Imagenet with
mismatch rate of 25% and 75%. Details of
8A8O-Imagenet are described in [22].

Method 25% 75%

Split-BN+MT 44.4 ± 0.5 47.9 ± 0.8
Split-BN+VAT 47.3 ± 0.0 49.3 ± 0.0
ERCM-MT 32.1 ± 0.5 32.7 ± 0.2
ERCM-VAT 32.5 ± 0.4 33.0 ± 0.6
ERCM-Mix 32.3 ± 0.6 33.4 ± 0.4

To compare with the recent work Split-BN [22] and ROIreg [9], which aims
to address the class mismatch issue, we conduct experiments on 6 classes (400
per class) of CIFAR-10 according to [16] and [22]. As shown in Table 4, ERCM-
MT and ERCM-VAT significantly outperform Split-BN+MT, Split-BN+VAT
and ROIreg+VAT when mismatch rates are 25% and 75%.1. Moreover, ERCM-
Mix performs best among these methods and achieves 11.8% test error when
mismatch rate is 75%.
1 Performances of Split-BN+MT, Split-BN+VAT and ROIreg+VAT are reported in

[22] and [9].
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SVHN: On SVHN [15], we evaluate traditional VAT and Mixmatch in var-
ious class-mismatch cases (0% –100%). We implement ERCM-SSL methods
with γ = 0.2. Table 2 reports the average test error on 250 labeled samples
and 20k unlabeled samples over random splits. With no class-mismatch prob-
lems, ERCM-SSL methods perform slightly worse than traditional SSL methods.
ERCM-SSL methods, however, achieve better performance in all class-mismatch
cases. For example, when the mismatch rate is 100%, ERCM-Mix achieves 11.2%
test error which is 3.4% lower than Mix*.

8A8O-Imagenet: We conduct evaluations on 8A8O-Imagenet (8 animals and 8
others), a subset of Imagenet [5] described in [22]. We select 600 labeled samples
per class for an 8-animals classifier. As shown in Table 5, the performances of
ERCM-MT, ERCM-VAT and ERCM-Mixmatch are better than Split-BN+MT
and Split-BN+VAT.

4.5 Auxiliary Loss

We explore the impact of our design on auxiliary loss (unsupervised loss). We
use 250 labeled samples and 20k unlabeled samples on CIFAR-10 when the
mismatch rates is 60%. As shown in Fig. 3, we select uniform batches to observe
the auxiliary loss term produced by the unlabeled samples of MT, Mix*, ERCM-
MT and ERCM-Mix every 216 steps during training. However, auxiliary loss
terms of ERCM-SSL methods are becoming lower than those of traditional SSL
methods. ERCM mitigates the harm caused by mismatched data and makes it
easier for auxiliary terms to be minimized.

Fig. 3. Auxiliary loss term of SSL methods with and without ERCM when the mis-
match rate is 60%. The smoothing rate is 0.95.

4.6 Ablation Study

We conduct ablation study on ERCM-Mix to figure out the importance of each
part by removing each part of ERCM separately. We carry out our experiments
on CIFAR-10 with 250 labeled and 20k unlabeled samples mentioned in Sect. 4.4
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when the mismatch rate is 60% (λM = 0.1, 0.25, 0.5). We measure the impact
of using original mixup mode, removing entropy repulsion loss, removing batch
annealing operation (i.e. setting α = 1 and LM = 0, equal to Mix*), and remov-
ing temporal pool.

5 Conclusion

In this work, we propose ERCM, a new technique that involves a novel entropy
repulsion loss together with a batch annealing and reloading mechanism to
empower traditional SSL approaches against class-mismatch problems. Com-
pared with the original SSL methods, ERCM-SSL methods can reduce the per-
formance degradation caused by class mismatch samples. Extensive experiments
demonstrate a clear performance improvement and strong portability of ERCM.
We believe that ERCM has the potential to be combined with more advanced
SSL approaches in the future.
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