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Preface

This book is a part of the five-volume proceedings of the 27th International Conference
on Neural Information Processing (ICONIP 2020), held during November 18–22,
2020. The conference aims to provide a leading international forum for researchers,
scientists, and industry professionals who are working in neuroscience, neural net-
works, deep learning, and related fields to share their new ideas, progresses, and
achievements. Due to the outbreak of COVID-19, this year’s conference, which was
supposed to be held in Bangkok, Thailand, was organized as fully virtual conference.

The research program of this year’s edition consists of four main categories, Theory
and Algorithms, Computational and Cognitive Neurosciences, Human-Centered
Computing, and Applications, for refereed research papers with nine special sessions
and one workshop. The research tracks attracted submissions from 1,083 distinct
authors from 44 countries. All the submissions were rigorously reviewed by the con-
ference Program Committee (PC) comprising 84 senior PC members and 367 PC
members. A total of 1,351 reviews were provided, with each submission receiving at
least 2 reviews, and some papers receiving 3 or more reviews. This year, we also
provided rebuttals for authors to address the errors that exist in the review comments.
Meta-reviews were provided with consideration of both authors’ rebuttal and review-
ers’ comments. Finally, we accepted 187 (30.25%) of the 618 full papers that were sent
out for review in three volumes of Springer’s series of Lecture Notes in Computer
Science (LNCS) and 189 (30.58%) of the 618 in two volumes of Springer’s series of
Communications in Computer and Information Science (CCIS).

We would like to take this opportunity to thank all the authors for submitting their
papers to our conference, and the senior PC members, PC members, as well as all the
Organizing Committee members for their hard work. We hope you enjoyed the
research program at the conference.

November 2020 Haiqin Yang
Kitsuchart Pasupa
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Abstract. Place cells and grid cells are crucial parts of the cognitive
map, which shows a presentation of the real-world observation. However,
the previous architecture, which uses CAN for simulating the activities
of grid cells, is redundant. And it could not generate natural activities of
place cells while it needs many computing resources and storage. In this
paper, we proposed a simple novel mathematic entorhinal-hippocampal
system to build an accurate cognitive map by combining the activities of
head direction cells, grid cells, place cells, and visual cues. It has fewer
parameters and could generate a natural pattern of place cells. Moreover,
we could also perform a cognitive map building system with generated
weight without training.

Keywords: Grid cell · Place cell · Cognitive map · SLAM

1 Introduction

Spatial cognition is an innate ability in humans and many animals. It involves
the ability to understand and manipulate the environment, meaning that life can
understand the environment and navigate through it. For a long time, researchers
have been studying how animals perceive the environment and navigation.

In 1948, Thomas thought navigation was controlled or affected by the inter-
nal map-like representation, which is known as a cognitive map [16]. The concept
explains the maze learning space layout of the mouse and then applied to other
animals, including humans. Some specialists said that a cognitive map is a type
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of mental representation that serves an individual to acquire, code, store, recall,
and decode information about the relative locations and attributes of phenom-
ena in their everyday or metaphorical spatial environment. However, it was only
a concept without concrete evidence until the discovery of the different types
of spatial cells. O’Keefe and Dostrovsky first discovered place cells in the hip-
pocampus and demonstrated place cells would fire whenever the rat was within
a specific place in the environment [10,11]. HD cells are found in many areas in
the brain, only when the animal heads to a specific direction, the firing rate will
be higher than the baseline level of the neurons [14]. Then Moser et al. studied
the activities from different levels of the entorhinal cortex and found that the
cells in the dorsal part of the medial entorhinal cortex (MEC) had place fields
similar to the pattern in the hippocampus but fired at multiple locations [5] and
discovered the grid cells [7]. The activities of place cells are a linear summation
of a subset of afferent grid cells with a range of spatial frequencies [4,12].

Many computational models were proposed to simulate the grid pattern.
Additionally, they can be summed up in three types, which are continuous attrac-
tor network (CAN) [2,4], oscillatory interference [3,18], and sinusoidal gratings
[12]. Also, there are some work searching for property of the grid cells [1,6,13]. It
has been observed that rats can correct the accumulative errors of path integra-
tion when they meet the notable landmark [9]. And a few years ago, some works
combining the grid cells and RatSLAM were done to build a cognitive map.
Yuan et al. proposed an entorhinal-hippocampal model to build the cognitive
map with CAN [17]. Hu et al. changed the learning rule between grid cells and
place cells to produce a point centralized response [8]. Nevertheless, all of them
are computationally intensive and complicated because they use many layers of
grids to encode the grid cell. The activities of place cells in these models can
be strange because they always have multiple responses, which is quite different
from the single-peaked activities of real place cells.

In this work, we construct a simple novel mathematic entorhinal-hippocampal
system to build a cognitive map by integrating visual cues, place cells, head direc-
tion cells, and velocity-coupled grid cells. This system provides an alternative
method to build the cognitive map and could be used on the mobile robot to
build an accurate cognitive map in the real world. The system might be faster for
having fewer parameters than the system proposed before, and it can generate
natural activities of place cells, which have only one central firing point. The
discovery that the weight distribution is similar to the grid pattern confirms the
distance measuring a property of the grid cells, and it helps us to build a system
that does not require trained parameters.

Our future work may be improving the current grid cell model to solve the
irregular grid cell pattern or use more powerful SLAM methods with the grid
cell model to achieve a better cognitive map building result.
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2 Model Description

2.1 Architecture of the System

The system can be divided into a few parts.

Fig. 1. The architecture of the system building cognitive maps

– Train the weight between grid cells and place cells. Here, we set up that a
grid code was fully connected to place cells.

– The initial position and velocity of the robot are used to generate a grid
code. The initial position was first provided to produce the first intermedi-
ate variable. Then the velocity information was used to generate the new
intermediate variable, which will directly produce the grid code.

– Use the weight computed in the first step to compute the activities of the
place cells, which could tell us the location where we are.

– Use the information combining with the visual cues to make sure whether it
is the place we have ever been to.

– With the progress that the robot goes through the maze, the cognitive map
will emerge into a more real trajectory.

2.2 Neuron Model

In our building system, three kinds of neurons are used: head direction cells,
grid cells, and place cells. Head direction cells provide velocity and orientation.
Grid cells use the data to compute a representation in a high dimension, which
shows a hexagonal firing pattern in each dimension. Place cells are a population
of neurons representing the location of the agent.

As to the grid gell, we should know that the grid cell spikes with a hexagonal
pattern, which is described as Fig. 2a. The horizontal and vertical coordinates
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Fig. 2. (a) The natural grid pattern; (b) Grid cell pattern generating method; (c)
Activities of place cells are generated by grid cells

indicate a position in the real world, and the value of these pixels indicates the
firing rate of the grid neuron at the position. Besides, the pattern can be math-
ematically generated by overlaying periodic fringes with different orientations.
Figure 2b showed the grid pattern generated by the model with orientation θ
equaling 0, a scale ρ equaling 0.2 and a phase φ equaling (0, 0) in a 30m ∗ 30m
environment. The activities of place cells are thought to be computed by the
activities of grid cells with different orientations, scales and phases as shown in
Fig. 2c.

Fig. 3. Architecture of the model

The architecture of the grid cell and place cell in our system is shown as
Fig. 3. In our grid cell model, we consider three important parameters—scale,
orientation and phase, which decide the property of grid cells. We can compute
the basis function ζx,l by Eq. 1.

ζx,l = [eiwT
1,l(x+φl), eiwT

2,l(x+φl), eiwT
3,l(x+φl)] (1)

where wj,l can be computed by Eq. 2,

wj,l = ρl[cos(θl +
2jπ

3
), sin(θl +

2jπ

3
)]T , j ∈ {0, 1, 2} (2)

ρl is related to the scale of the grid cell, θl is related to the orientation of the
pattern and φl is related to the phase of the pattern.

We will use the start position x0 to initial the ζx0,l. And every time the agent
moves, velocity and orientation will be provided to compute the βdxt,l with Eq. 3.

βdx,l = [eiwT
1,ldx, eiwT

2,ldx, eiwT
3,ldx] (3)
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And just like the computation described as xt+1 = xt + dxt in Euclidean Space,
the current ζxt+1,l can be iteratively computed by Eq. 4. Also, it could be directly
got by Eq. 1.

ζxt+1,l = ζxt,l � βdxt,l (4)

For grid cells with different scales, orientations and phases, the grid code is
separately computed by Eq. 5:

Gx,l = C · ζx,l (5)

where C is required to be a positive definite unit matrix, which means:

C · CT = I (6)

As mentioned above, Gx,l is a subset of complex grid code with the same
ρ, θ and φ. The best method to eliminate the complex number is to separate
the complex number into two parts (the real part and the imaginary part) and
combine them. So Gfinal

x , which is the final grid code of x, could be computed
by Eq. 7:

Gfinal
x = [−Greal

x , Gimag
x ] (7)

Furthermore, we had known that the activities of place cells can represent the
location and they are calculated by the output of grid cells, so a fully connected
layer was taken to connect the grid cells and place cells. Thus the activities of
place cells Px can be computed by Eq. 8:

Px = WT Gfinal
x (8)

where x is the position, and W is the weight of the fully connected layer.
Moreover, the activities of place cells will be much like a two-dimensional

gaussian. Here, we use the WTA (winner take all) rule. That’s to say that we
choose the highest point as the center of the activities of the place cells to confirm
the position locationx from the by Eq. 9:

locationx = [argmax(Px)/lp, argmax(Px)%lp] (9)

Of course, some other methods can confirm the location through the activities
around the highest point instead of the highest point only [17].

2.3 Learning Algorithm

Through the reproduction of the previous paper, we found that Hebb learning
seems to be biological, but it always needs a good initial state and may cause
a divergence of the place cells’ activities. And if we train the network in the
cognitive map building process, there might be a significant error of the place
cells’ activities at the beginning or in the whole process because it is a wrong
firing pattern at first.



8 J. Peng et al.

So we choose a supervised method to train the weight before the map building
process. The target place cells’ activities are generated by a combination of a
radial function, which can be a gauss function, and a normalization:

Pm(x) =
e− ‖x−um‖2

2
2σ2

∑M
j=1 e− ‖x−uj‖2

2
2σ2

(10)

where Pm(x) present the current place cell activities, x indicates the current
position and um is the place cell we choose, uj indicates each of the place cells.

2.4 Visual Calibration

Although it is not clear how visual cues affect the internal cognitive map, what
we confirmed was that visual cues are essential to the correction of the cognitive
map. The Depth information is helpful to increasing the robustness of the model,
because the information carried by 2D image may not be enough, which could
cause a wrong loop closure detection or template match. Some work has been
done to compare the image profiles between the RGB and Depth images for loop
closure detection and new scene detection [15]. So we use the images including
both the RGB and depth images as the visual cues to correct the path integration
errors and detect the loop closure.

And Algorithm 1 describes the algorithm to build an accurate cognitive map
in our system with more details.

Algorithm 1: The cognitive map building algrithm

Input : Raw odometry data from the robot wheel encoder and visual images
from the RGB-D sensor
Out: Cognitive map
Begin:

– Pre-train the weight between grid cells and place cells with fake data.
– Compute the activities of the grid cells with the current speed.
– Compute the activities of the place cells.
– Compute the position of the highest value in the activities of place cell.
– Compare the current visual cues with the experience recorded.

If Matched
Then Perform map correction
Else Create a new experience map point
End if

End:
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3 Experiment Result

3.1 Environment

The raw image data was collected on a real mobile robot platform, which consists
of a Pioneer 3-DX mobile base, an RGB-D sensor, and a laptop. The front wheels
of the base equipped with encoders provide raw odometry data, and the RGB-D
sensor mounted on the front top of the base captures visual RGB-D images of
environments [17].

3.2 Experiment for Cognitive Map Building

Before the formal experiment, it is crucial to make sure whether the model could
perform path integration. We pretrain the weight from grid cells to place cells
with the supervised learning method mentioned above. And it is obvious that
the grid code could realize accurate path integration as shown in Fig. 4.

-10 -8 -6 -4 -2 0 2 4
X

-3

-2

-1

0

1

2

3

4

Y

Real Trajectory
Predict Trajectory

Fig. 4. The green solid line is a trajectory randomly generated from (0, 0), while the
red dotted line shows the trajectory predicted by the model (Color figure online)

We had known that what we wanted to build a cognitive map of is about
35 m × 35 m office environment. First, 1600 place cells are used to cover an area,
whose horizontal and vertical coordinates are both from −35m to 35m. Then,
the proposed system is used to perform a cognitive map building. In this exper-
iment, seventy-two different grid cells are used to encode and compute the posi-
tion.

Figure 5a shows the trajectory calculated by the odometer, which has an
accumulated error resulting in a shift in position. The subfigure is plotted in
an environment with a fixed size (from −30m to 20 m for each axis). Figure 5b
is the cognitive map consisting of the corrected experience map points. We can
see that the experience map detects the closure loop and corrects itself into a
well-constructed cognitive map. Figure 5c show the activities of the place cell in
our model.
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(a) (b) (c) (d)

Fig. 5. (a) Trajectory computed from original odometer; (b) Cognive map building
result; (c) Activities of place cells at the last time; (d) The cognitive map building
result with the non-trained weight.

3.3 Experiment for Distribution of the Weight

The distribution of place cells’ activities makes us pay attention to how the
weight distributed and why the weight could result in a gauss distribution. So
we visualized the weight W between the grid cells and all the place cells, which
is shown as Fig. 6b. Each image shows the connection from a grid cell to all
place cells. And it is a surprising discovery that the visualized weight images are
similar to the pattern of the grid cells, which is visualized as Fig. 6a.

Fig. 6. (a) Some grid pattern sampled from cognitive map building process. (b) Visu-
alized results of the parts of the weight W . Each of the images shows the connection
from one grid cell to all of the place cells

We take that Wi,j is the weight from the ith grid cell to the jth place cell,
Wj is the weight connected to jth place cell, Gx is the grid code at position x,
Px,j is the activity of the jth place cell, and XPj

is the position whose center of
the activities of place cells is just on the jth place cell. The weight connected to
one place cell is similar to the grid code of the position corresponding to that
place cell, which signifies Wj ≈ GXPj

.
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3.4 Experiment for Property Verification

Here, we test whether the inner product of the grid code can measure the relative
distance. A five-star point and the other 100 are randomly chosen as shown in
Fig. 7. In the picture below, we can see the two different lines almost overlap,
which means the inner product of the two grid code could represent the relative
distance. For visualization reasons, we take the reciprocal of the inner product to
simulate that the closer two points have a smaller relative distance because the
closer two points have a bigger inner product. But reciprocal operations won’t
affect relative relations.

-30 -20 -10 0 10 20 30

-20

0

20 the point compared with
100 random compared points

0 20 40 60 80 100
0

0.5

1 2 dimensional distance
distance computed by grid code

Fig. 7. In the picture above, the five-star is the point which compared to all of the
others, and the dot indicates the other points we randomly chose; In the picture below:
The green line is the relative distance in Euclidean Space, and the black dotted line
represents a relative distance computed by grid code of that position. (Color figure
online)

So we tried to replace the weight with the pattern of grid cells, which is
computed by the model in our system. In this model, the scale parameter ρ
is sampled with normal distribution, and the orientation factor θ is sampled
with a uniform distribution, and the phase factor φ is randomly sampled under
the environment scale. Experiments show it can generate a network that does
not require training parameters. It can perform path integration very well and
can be used in our cognitive map building system. The cognitive map building
result with the non-trained weight is shown in Fig. 5d. And we could see that
the system with the generated weight also detects the closure loop and builds a
well-constructed cognitive map.



12 J. Peng et al.

4 Discussion

4.1 Discussion on Cells and Parameters of the Model

The model in our system has fewer grid cells and parameters than the CAN
model used in [17]. By analyzing the CAN model, we can see it is redundant
that many grid cells with different phases in the same layer could have the same
firing pattern for periodicity. While in our model, we can see that there are only
a few neurons with different orientations and phases in each layer, each of them
plays their own role.

If we set that the grid cells in each layer have the same scale. In the CAN
model, each of the layers consists of size2 neurons, where size indicates the
number of the neurons in each axis. For an environment with the same range,
if we want to get a more accurate position, more place cells are needed. In the
CAN model, the number of grid cells in each layer will rise up to be the same as
the number of place cells. While in our model, the number of grid cells will be
the same as before. And our model will have fewer parameters to have a faster
speed, as shown in Table 1.

Table 1. Comparison of the Amount of Parameter

CAN model CAN model Our model Our model

Range of place cells 40 50 40 50

Number of place cells 1600 2500 1600 2500

Layer of grid cells 12 12 12 12

Number of grid cells 12× 1600 12× 2500 12× 3 12× 3

Number of weight 12× 16002 12× 25002 36× 1600 36× 2500

Through the reproduction of the previous paper, we have known that only a
few layers of the grid cells dominate the activities of the place cell, and some of
the weights are closer to zero in some of the CAN model, which means activities
of the connected grid cells might be redundant to the activities of place cells.
But in our system, we take all of the weights that could be useful.

4.2 Discussion on the Distribution of the Weight

From the experiments, we can see that the inner product of the grid code of
two positions can measure the distance between them, and two positions with
a larger inner product are thought to be closer. Furthermore, the computation
of the inner product could be a radial function, which seems to be a function
of distance. So we can take the forward computation Pj = Wj · Gx as the inner
product computation of the grid codes representing the current position and the
each of all target positions 〈Gx, GXPj

〉. Moreover, taking the max value of the
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forward computation results also conform to that two closer positions will have
a larger inner product of their grid code, and two same grid code has the largest
inner product.

4.3 Discussion on the Activities of Place Cells

Our system could generate a natural pattern of place cells. The activities of place
cells should have only one spike center in order to get an unambiguous position
in the real world. However, the previous model represents a strange pattern
with more than one spike center, just as shown in Fig. 8a [17]. The activities of
place cells that computed with weight, which is trained by the improved method
called Pre-synaptically Gated Learning and Spatial Window [8], become more
regular and have fewer centers. Nevertheless, the activities are more like a grid
cell pattern with some center point weaken, as shown in Fig. 8b, whose pattern
is not natural enough.

Fig. 8. Place patterns of some previous models. (a) The activities of place cell generated
by the traditional CAN model [17]. (b) The activities of place cell generated by the
CAN trained by the Pre-synaptically Gated Learning and Spatial Window in [8]

The activities of the place cells sampled from the map building process with
our model are more natural than the above model.

The main reason might be that the Hebb learning algorithm in the CAN
models is not robust enough. Also, most of the connections are from grid cells
to grid cells in those models, and the number of the weight between grid cells
and place cells is too small, which may cause a poor-fitting ability. However, in
our model, the number of weights between grid cells and place cells is enough
and the weight could present the activities of place cells very well.

For our model with generated weight, the activities of place cells are similar
to a quadratic function with a negative coefficient of quadratic term, and the
extent of the bump is mainly controlled by the scales of grid cells ρ.

5 Conclusion

In our system, we used a novel mathematic entorhinal-hippocampal model to
build an accurate cognitive map by combining the activities of head direction



14 J. Peng et al.

cells, grid cells, place cells, and visual cues. Experiments and analysis show that
the system might be simple for having fewer parameters than the system pro-
posed before and it could generate natural activities of place cells. And generated
grid patterns could be used as a weight to build a system that has no learned
parameters to perform cognitive map building.
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Abstract. Bayesian decision-making theory presumes that humans can
maximize the expected gains by trading off risk-returns in a predefined
gain function. Recent findings from spatial reaching and coincident tim-
ing tasks have challenged this theory by revealing that humans exhib-
ited risk-seeking or risk-aversive rather than risk-neutral tendency (i.e.,
failed to achieve Bayesian optimality) in asymmetric gain functions (the
gain/loss asymmetric to the target time/position). The debate on why
these participants’ performances were sub-optimal remains unsettled. In
the current paper, we argue that the abrupt change (i.e., gain volatility,
a.k.a., risk magnitude) around the optimal point in the gain function,
rather than its asymmetry, is a significant factor of this phenomenon,
and that sub-optimality is resolved with an “adaptive risk control” where
individual participants voluntarily adjust risk-return trade-off through a
controllable task variable. We propose that the relationship between risk
sensitivity and risk magnitude determines optimal motor planning.

Keywords: Bayesian decision-making · Movement planning ·
Adaptive risk-return control

1 Introduction

In daily life situations, we often find ourselves involved in planning motor actions
intentionally or unintentionally. The available options of how to plan actions are
often infinite. From which direction shall I kick the incoming ball? At which
timing point shall I catch the falling book? At which speed shall I walk to cross
the road? Each planned action associates with a certain risk. In economics, the
expected utility theory was used to predict human decision-making behavior
under risk [1]. This theory predicts that humans make decisions in a manner
of maximizing the expected utility. In motor planning domains, maximizing the
expected utility is equivalent to achieving the Bayesian optimality according to
the Bayesian decision-making theory [2]. However, the optimality is not feasibly
achieved given that the decision-making process is often susceptible to various
cognitive factors, e.g., risk preference.
c© Springer Nature Switzerland AG 2020
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Risk preference was often exhibited in binary decision-making scenarios, as
described in Kahneman and Tversky’s experiments [3]. Let us consider the fol-
lowing binary decisions:

Problem 1
A: 80% chance to win 4000 USD or B: win 3000 USD with certainty.
Problem 2
A: 20% chance to win 4000 USD or B: win 900 USD with certainty.

Participants were asked to make a one-shot decision over the two choices
and chose a more desirable option. A large number of participants favored B in
Problem 1 and A in Problem 2. Should human decision-making adhere to the
expected utility hypothesis, participants would choose A in Problem 1 and B in
Problem 2, because these choices yield higher expected returns. However, most
participants accepted the unfavorable choice to secure 3000 USD (risk-aversive)
in Problem 1, whereas they tended to be risk-seeking in hope of getting larger
gains in Problem 2 [3,4]. The contrasting results revealed that people express risk
preferences as sensitivity to payoff variance. In any above cases, risk sensitivity
leads to sub-optimal decisions as the overall gains are less than those brought
by risk-neutral decisions.

Previous motor planning tasks often investigated the optimality of motor
decisions without considering risk preference. A symmetric “two-circle”
paradigm was adopted in the pioneering studies regarding spatial reaching [5–
8]. “Two-circle” paradigm refers to two overlapping circles respectively defining
gain/loss regions where the overlapping part separates gain and loss. Partici-
pants received points by touching the gain circle whereas losing points if the
penalty circle was hit. Points gained on each trial were feed-backed and partici-
pants were asked to maximize the points received across trials. The “two-circle”
paradigm allowed participants to adjust the mean end-point (MEP) to search
for the optimal value. The corresponding findings supported the expected utility
hypothesis, as most participants achieved Bayesian optimality (risk-neutral) [5–
8]. However, Wu et al. argued that these participants might rely on the axis of
symmetry as a shortcut to achieve optimality, and challenged the expected util-
ity hypothesis by using a “three-circle” paradigm that formed a geometrically
asymmetric gain/loss configuration [9]. Participants received the same reaching
task to maximize the points received but most performed sub-optimally, leav-
ing the unsolved question that whether humans could achieve optimality under
asymmetric designs. Under the symmetric paradigm, the optimal value is cued by
the axis of symmetry so that the risk sensitivity is overshadowed by the heuristic
strategy [9]. On the other hand, Wu et al.’s asymmetric design, although ruling
out the probability of implementing heuristic strategy, did not investigate the
risk preference of individual participants that can affect decision-making.

A recent study by Ota et al. evaluated spatial reaching performance using a
“cliff” paradigm (another type of asymmetric design) where a fixed risk-return
control was implemented [10]. Under the “cliff” paradigm, the gain linearly
increased along with reaching distance whilst the highest gain was located at
the “cliff” edge (at a certain distance from the starting line); Overshooting the
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“cliff” incurred a fixed penalty. Ota et al. discovered that participants failed to
achieve the optimal performance, and interestingly exhibited either risk-seeking
or risk-aversive preference dependent on individual participants [10]. This indi-
cates that the risk sensitivity does not simply stem from the task structure (i.e.,
the shape of gain function), but also depends on the characteristics of individu-
als. In other words, this type of risk preference is somewhat different from that
of the prospect theory which is common to most people.

The same result was also found in motor planning under the temporal dimen-
sion. In Ota et al.’s experiments, participants were asked to reproduce the target
interval in a coincident timing task [11]. The gains were proportional to the rela-
tive timing response if the responses were made before the target tone; otherwise,
participants received no gains (i.e., temporal “cliff” paradigm). Participants were
exposed to 9 d of practicing 2250 trials. Similar to the spatial task, they found
that different risk preference (i.e., risk-seeking or risk-aversive) was exhibited at
the initial phase of the trials, and this preference was mostly preserved to the
final phase of the task sessions. However, examining their results in detail, we can
see that the performance of most participants approached risk-neutral region as
they repeated the experimental sessions (See Fig. 2 in the supplement material
of [11]). This suggests that the asymmetry of gain structure is not the primary
factor for the performance sub-optimality (if so, the risk sensitivity would persist
even after many trials). In sum, these findings indicate that the risk sensitiv-
ity observed in an unfamiliar task can be resolved as people get familiar with
the task (i.e., the statistical structure of the task is learned). In other words,
long-term adaptation to the gain structure is required to reduce the individual
component of the risk sensitivity.

In the current study, we discuss another approach, “adaptive risk-return con-
trol”, to reduce the effect of the individual risk sensitivity instead of implement-
ing long-term adaptation in various spatial and timing tasks. The idea of “adap-
tive” was firstly mentioned in speed-accuracy study by Nagengast et al. [12] but
we are the first to term and applied the control to the motor planning tasks
that evaluate performance optimality [13–15]. We demonstrated the Bayesian
model under adaptive risk-return control, and compared it with the one men-
tioned in Ota et al.’s study [11,16]. We argue that risk sensitivity bringing the
sub-optimality in human motor planning can be reduced by adaptive risk-return
control, and through this control it is unnecessary to impose excessive practice
to reach optimality.

2 Modeling

We take the coincident-timing task used in Ota et al. [11,16] as an example. Let
us imagine that participants are asked to press a button after the presentation
of a visual cue and receive a reward (gain) according to the response time t.
Specifically, the reward is the highest when the response time t is equal to target
time T (2.3 s, [11,16]), and linearly decreases as deviated from T while it is 0 if
the responses are released before the target time (risk-before condition, Fig. 1a).
Mathematically, the gain is defined as,
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G(t) =

⎧
⎨

⎩

0, t < T
a(t − Tm), T ≤ t ≤ Tm

0, t > Tm

(1)

(where a = − 100
T , Tm = 4.6 s, in Ota et al.’s experiment). Note that all partici-

pants receive the same gain function so that the gain function does not provide
the flexibility on risk-return control.

Next, we introduce a linear gain function with an adjustable slope k,

G(t; k) =

⎧
⎨

⎩

0, t < T
k(t − Tm), T ≤ t ≤ Tm

0, t > Tm

(2)

Note that Tm can be adjusted together with k so that the amount of gain can
satisfy task’s demand (Fig. 1b). Gain functions under symmetric paradigm were
plotted in Fig. 1c (symmetric linear function) and Fig. 1d (step gain function),
respectively.
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Fig. 1. Gain function configurations. (a) Asymmetric fixed linear gain function; (b)
Asymmetric linear gain function with an adjustable slope where the two functions
demonstrate two extreme situations of risk-return trade-off; (c) Symmetric linear gain
function; (d) Step gain function; Figure a, c, d were retrieved and modified from [16].
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Fig. 2. Stimulus configuration in a planned design. Participants move a cursor from
the start point to the green curve and click the mouse button at an appropriate timing.
The slope of the gain functions is determined by the movement direction.

To access the adaptive control, several requirements need to be considered.
Firstly, the key point of adaptive control lies in the sensitivity of the gain func-
tion (i.e., risk-return trade-off). To prepare the risk-return control, the selected
gain function needs to have a spread parameter (such as k in the above example).
For an example of using Gaussian gains, see [13,14]. Secondly, a task variable
is required to allow direct control on the spread parameter. The variable needs
to be measured simultaneously with the target variable (for example, movement
direction while performing the reaching task where reaching distance is the tar-
get variable). Thirdly, a mapping between the spread parameter and the task
variable is required to implement the control (see [13,14] for an example of linear
mapping). In the above case, the mapping relation ensures that participants can
choose a larger |k| if they prefer higher risk sensitivity and by the same token
for participants who prefer lower risk sensitivity can choose a smaller |k|.

Figure 2 shows an illustrative implementation of this control in a planned
design. In this setting, participants perform a spatial reaching task by moving
the cursor from the start point to the green curve and click the mouse button.
The gain is determined by the reaching distance, whilst the spread parameter of
the gain function is determined by the click position. Therefore, participants can
control the risk-return trade-off of the task by choosing an appropriate movement
direction. In the next section, we will argue that how the risk sensitivity could
be diminished by this adaptive risk-return control.

3 Model Evaluation

The expected gain function in Ota et al.’s model is calculated by integrating the
distribution of timing response p(t|te) over Eq. (1)
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EG(te) =
∫

G(t)p(t|te)dt (3)

The shape of the expected gain is determined by the mean timing response and
the timing variance, expressed as (te, σt).

On the other hand, the expected gain function of the adaptive risk control is
given by:

EG(te; xe) =
∫ ∞
0

p (x|xe)
∫ ∞
0

G (t; x) p (t|te) dtdx (4)

where x is the task variable determining the slope parameter of the gain func-
tions. The adaptive risk-return model includes four parameters: te, σt, xe, σx,
where we assumed p(x|xe) obeys Gaussian distribution N (xe, σx), meaning
the variable x fluctuates around the planned value xe, and p(t|te) also follows
Gaussian distribution N (te, σt), as modeled in previous studies [11,16].

In the following demonstration regarding Eq. (2), we construct a linear map-
ping by letting k = − 5

3 (mx+n)−2, Tm = T − 5
k (mx+n)−1, where m and n were

constants (m = 0.098, n = 0.01). In order to visualize the model characteristics,
we varied x e from 0 to 5, (σt fixed at 0.2 s, σx at 0.1). As seen in Fig. 3, with a
greater x e, the contour intervals become wider (i.e., gain becomes less sensitive
to the change in mean response time te). This indicates that participants can
adjust the gain structure by choosing appropriate values of x e. In other words,
the adaptive control allows participants to either choose a smaller xe to increase
the variability of gains (high-risk high-return) or to choose a larger xe if high
variability of gains is unfavorable (low-risk low-return).

As Ota et al.’s results showed [10,11,16], the risk preference of individual
participants was exhibited under the “cliff” paradigm, where the gain volatility
is extremely high at the edge of the “cliff”. To measure the volatility, we employed
the standard deviation of gains as a proper index [17].

Regarding the gain functions in Ota et al.’s experiments and in the adaptive
risk-return model, we set σt = 0.05 s, σr = 0.05 and xe = 0.1, 1.3, 2.5, 3.7, 4.9
respectively, and simulated the corresponding standard deviations of gains (each
SD computed from 1000 simulated trials) for every te ranging from 2 to 4.5 s.

The volatility under symmetric paradigm (Fig. 4c, d) remains extremely low
at the axis of symmetry (i.e., te = 2.3 s). Particularly, even though gains are
choppy at the edge of the step gain function, the gain volatility remains 0 around
the axis of symmetry where the optimality value is located. In these conditions,
no risk sensitivity could occur. Therefore, the optimality is easily to achieve,
given low volatility around the optimality value.

On the other hand, the “cliff” replaces the axis of symmetry under the asym-
metric paradigm. Note that the volatility (i.e., risk magnitude) abruptly changes
around the “cliff” (Fig. 4a, b) and the potential location of optimal value, which,
would lead to the risk sensitive to the volatility and cause sub-optimal perfor-
mance. There are two possible approaches to reduce the risk sensitivity: One
is through adaptation to the experimental task as indicated by Ota et al.’s
design [11], whereas the other is to arbitrarily manipulate the gain volatility
suggested by our adaptive model.
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Fig. 3. The expected gains given σt = 0.2 s. The expected gains were computed taking
Eq. (2) as gain function where the gain structure could be adjusted by xe. The dashed
line represents the “cliff”.

Under Ota et al.’s model, the gain structure was fixed at a pre-experimentally
defined shape [10,11,16]. When the gain structure is volatile at the cliff edge
(Fig. 4a), participants are facing a high volatility and become risk sensitive.
However, they are unable to exert direct control over the risk magnitude but
can only adjust the response time, e.g., to shift the timing responses towards
or away from the “cliff”, resulting in risk-seeking or risk-aversive bias. This
approach was proved to be less effective and required excessive trials of practice,
in order to approximate the optimal performance [11].

On the other hand, the adaptive risk-return control model scales the gain
variance on a spatial dimension, which forms a mapping relation between the
gain structure and the risk sensitivity (so that participants can manipulate the
risk magnitude). Under this model, the risk control is operated by integrating two
statistical information: adjusting the response time to find the possible location
of optimal value whilst adjusting the corresponding risk magnitude to modify
the risk sensitivity. Therefore, the risk reference is not exhibited when the risk
magnitude is consistent with the individual risk sensitivity. The adaptive risk-
return control works faster and the optimality is easier to achieve, as we revealed
that participants only needed around 150 trials (much less than 2250 trials) to
find out the optimal value [13–15].
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Fig. 4. The volatility of gain in Ota et al.’s experimental conditions [16] and adaptive
risk-return model. The dashed line represents “cliff” in Graph a and b, and “the axis
of symmetry” in Graph c and d. (a) The volatility around the “cliff” in asymmetric
gain condition is highest, Fig. 1a; (b) The gain volatility under adaptive risk-return
model. The volatility can be adjusted according to different values of x e, Fig. 1b; (c)
The volatility in symmetric gain condition is lowest as the curve tends almost flat,
Fig. 1c; (d) The volatility remains 0 around the axis of symmetry but high at the edge
of the step gain function, Fig. 1d. The corresponding gain functions were plotted by
grey lines.

4 Summary and Discussion

The current paper reviewed the unresolved issue regarding risk control in vari-
ous spatial and temporal decision-making tasks. Then, we proposed an adaptive
risk-return control as a modification of the previous model. The adaptive con-
trol allows a direct manipulation of the gain structure by a task variable. The
participant-dependent risk sensitivity could be adaptively matched by the cor-
responding payoff variance, and therefore the risk sensitivity is diminished and
tends risk-neural. Our previous research has proved the effectiveness of adaptive
risk-return control, as participants could achieve Bayesian optimality under an
asymmetric paradigm in a coincident timing task [15].

The implementation of adaptive control requires repeated feedback. It was
discovered that providing feedback could enhance task performance [18–20]. In
Kahneman and Tversky’s classical binary choice tasks, no feedback was pro-
vided [3]. Participants analyzed the expected returns and made the decisions
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with probability distortions. On the other hand, receiving repeated feedback
reduced subjective distortion on low probability events, known as decisions from
experience [21,22]. It might be arguable that whether it is the repeated feedback
rather than the adaptive control that leads to performance optimality. How-
ever, so far to our best knowledge, all studies related to motor planning require
repeated trial-by-trial feedback on the task performance, including our adap-
tive risk-return model [13–15]. Further researches are required to investigate
the adaptive risk-return model under the feedback provided on different time
schedules.
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9. Wu, S.W., Trommershäuser, J., Maloney, L.T., Landy, M.S.: Limits to human
movement planning in tasks with asymmetric gain landscapes. J. Vis. 6(1), 5
(2006). https://doi.org/10.1167/6.1.5

10. Ota, K., Shinya, M., Maloney, L.T., Kudo, K.: Sub-optimality in motor planning
is not improved by explicit observation of motor uncertainty. Sci. Rep. 9(1), 1–11
(2019). https://doi.org/10.1038/s41598-019-50901-x

https://doi.org/10.1088/0957-0233/4/1/001
https://doi.org/10.2307/1914185
https://doi.org/10.1163/156856803322467527
https://doi.org/10.1163/156856803322467527
https://doi.org/10.1364/josaa.20.001419
https://doi.org/10.1111/j.1467-9280.2006.01816.x
https://doi.org/10.1111/j.1467-9280.2006.01816.x
https://doi.org/10.1167/6.1.5
https://doi.org/10.1038/s41598-019-50901-x


24 Q. Yao and Y. Sakaguchi

11. Ota, K., Shinya, M., Kudo, K.: Sub-optimality in motor planning is retained
throughout 9 days practice of 2250 trials. Sci. Rep. 6(1), 37181 (2016). https://
doi.org/10.1038/srep37181

12. Nagengast, A.J., Braun, D.A., Wolpert, D.M.: Risk sensitivity in a motor task with
speed-accuracy trade-off. J. Neurophysiol. 105(6), 2668–2674 (2011). https://doi.
org/10.1152/jn.00804.2010

13. Yao, Q., Sakaguchi, Y.: Humans achieve bayesian optimality in controlling risk-
return tradeoff of coincident timing task. In: Proceedings of JNNS2018, pp. 24–25
(2018)

14. Yao, Q., Sakaguchi, Y.: Humans achieve Bayesian optimality in controlling risk-
return tradeoff of spatial reaching task. In: Proceedings of JNNS2019, pp. 59–60
(2019)

15. Yao, Q., Sakaguchi, Y.: Optimizing motor timing decision through adaptive risk-
return control (2020, submitted)

16. Ota, K., Shinya, M., Kudo, K.: Motor planning under temporal uncertainty is
suboptimal when the gain function is asymmetric. Front. Comput. Neurosci. 9(9),
88 (2015). https://doi.org/10.3389/fncom.2015.00088

17. Aumann, R.J., Serrano, R.: An economic index of riskiness. J. Polit. Econ. 116(5),
810–836 (2008). https://doi.org/10.1086/591947

18. Lejarraga, T., Gonzalez, C.: Effects of feedback and complexity on repeated deci-
sions from description (2011). https://doi.org/10.1016/j.obhdp.2011.05.001

19. Neyedli, H.F., Welsh, T.N.: People are better at maximizing expected gain in a
manual aiming task with rapidly changing probabilities than with rapidly changing
payoffs. J. Neurophysiol. 111(5), 1016–1026 (2014). https://doi.org/10.1152/jn.
00163.2013

20. Neyedli, H.F., Welsh, T.N.: Optimal weighting of costs and probabilities in a risky
motor decision-making task requires experience. J. Exp. Psychol. Hum. Percept.
Perform. 39(3), 638–645 (2013). https://doi.org/10.1037/a0030518

21. Hertwig, R., Barron, G., Weber, E.U., Erev, I.: Decisions from experience and the
effect of rare events in risky choice. Psychol. Sci. 15(8), 534–539 (2004). https://
doi.org/10.1111/j.0956-7976.2004.00715.x

22. Jessup, R.K., Bishara, A.J., Busemeyer, J.R.: Feedback produces divergence from
prospect theory in descriptive choice. Psychol. Sci. 19(10), 1015–1022 (2008).
https://doi.org/10.1111/j.1467-9280.2008.02193.x

https://doi.org/10.1038/srep37181
https://doi.org/10.1038/srep37181
https://doi.org/10.1152/jn.00804.2010
https://doi.org/10.1152/jn.00804.2010
https://doi.org/10.3389/fncom.2015.00088
https://doi.org/10.1086/591947
https://doi.org/10.1016/j.obhdp.2011.05.001
https://doi.org/10.1152/jn.00163.2013
https://doi.org/10.1152/jn.00163.2013
https://doi.org/10.1037/a0030518
https://doi.org/10.1111/j.0956-7976.2004.00715.x
https://doi.org/10.1111/j.0956-7976.2004.00715.x
https://doi.org/10.1111/j.1467-9280.2008.02193.x


Discrete Mother Tree Optimization
for the Traveling Salesman Problem

Wael Korani and Malek Mouhoub(B)

University of Regina, Regina, Canada
{wmk182,mouhoubm}@uregina.ca

Abstract. The Mother Tree Optimization (MTO) algorithm is a new
swarm intelligence technique that we have recently proposed for solving
continuous optimization problems. MTO is built on an offspring topology
and a set of cooperating agents. In this paper, we first present a discrete
version of MTO, that we call Discrete MTO (DMTO), for solving the
Traveling Salesman Problem (TSP). DMTO is based on a new swap
operation that is best suited for TSPs. We also used this swap oper-
ation to introduce an updated version of the Discrete Particle Swarm
Optimization (DPSO) algorithm. With a careful application of our new
swap operation, we will show that our Updated DPSO (UDPSO) is more
effective than DPSO. In order to assess the performance of our proposed
methods, DMTO and UPSO, we conducted several experiments compar-
ing both to DPSO and an exact method (Branch and Bound), on ten
TSP instances taken from the well-known TSPLIB dataset. The results
clearly show that DMTO produces solutions of much better quality than
in DPSO, and superior to those in UDPSO.

Keywords: Mother Tree Optimization · Particle Swarm
Optimization · Combinatorial optimization · Traveling Salesman
Problem

1 Introduction

Discrete optimization problems play a crucial role in many real-world appli-
cations, so that many scientific methods have been proposed to tackle them
effectively [22]. These proposed methods are classified into exact and approx-
imate techniques. Approximate methods include the following nature-inspired
techniques: Particle Swarm Optimization (PSO) [15], Ant Colony Optimization
(ACO) [8], Genetic Algorithms (GAs) [6], and Artificial Bee Colony (ABC) [16].
However, these methods have some drawbacks, such as complicated fitness func-
tion, premature convergence, and the challenge with tunable parameters. More
recently, we have proposed the MTO algorithm, a population-based optimiza-
tion method, that is inspired from the symbiotic relationship between Douglas
fir trees and the mycorrhizal fungi network [18]. The fungi network allows plants
to transfer nutrients between plants of same and different species, without any
c© Springer Nature Switzerland AG 2020
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intervention. In addition, the fungi networks allow plants to supply fungi with
carbohydrates that are essential for survival and growth. The fungi will then help
their host plants to maximize the transfer of nutrients via their root system. The
forest environment system includes different kinds of plants and fungi networks
that are connected together in a way that allow them to exchange essential
nutrients using what we call a cooperative system. This system allows plants
from same and different species to communicate, exchange different essential
nutrients, and protect each other [3]. Douglas fir trees communicate, protect,
and help their kin and other trees by transferring different nutrients [1]. We
claim that the cooperative system has three different subsystems: recognition,
measurement, and defense [18].

The TSP is a well-know discrete optimization problem that consists of finding
the shortest possible round trip through a given set of cities. Starting from a
given city, the salesman should visit each other city once before returning to the
starting city. The TSP is represented using a weighted graph G = (V,E), where
V is a set vertices (cities) and E is a set of edges that fully connects the nodes in
the graph G. Each edge e in E has a weight d(Ci, Cj) representing the distance
between city i and city j. The distance between cities can either be symmetric
or asymmetric. Finding the shortest tour for the TSP consists of looking for a
sequence π = C1, C2, C3 . . . , Cn, where Cn corresponds to the nth selected city,
minimizing the total distance between all cities. This total distance is expressed
with the function, f , defined as follows.

f(π) = d(Cn, C1) +
n−1∑

i=1

d(Ci, Ci+1) (1)

There are many exact and nature-inspired techniques [29] that have been
proposed for solving the TSP. Branch and bound [26,28], branch and cut [23],
cutting plane [10], and dynamic programming [5] are examples of exact meth-
ods that have been developed to solve small and medium TSP instances. In
[19,25], GAs are implemented to produce acceptable solution within a reason-
able time frame as an example of evolutionary computation algorithms. Tabu
search [11], simulated annealing [12], and neural networks [20] were also consid-
ered for solving TSPs. TSPs have also been tackled using Ant Colony Optimiza-
tion (ACO) [2,14], Bee Colony Optimization [21] and ABC [17]. In [15,24], PSO
has been adopted to solve the TSP using some basic operations. Some other
approaches combining PSO with simulated annealing [9], PSO with ACO [13],
and PSO with genetic simulated annealing and ACO [4] have also been consid-
ered.

These proposed methods are built on either a path construction or a path
improvement strategies. Path construction consists of extending a partial solu-
tion into a complete and optimal one. More precisely, this method starts with
one or more cities and adds other cities one by one until a complete tour is
constructed. On the other hand, the path improvement approach starts with a
complete (solution) tour and improves it at each iteration until no improvement
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can be done [30]. The path improvement techniques produce fast results, but do
not often return a good solution in a reasonable time.

In this paper, we propose a discrete version of MTO (belonging to the path
improvement category), that we call Discrete MTO (DMTO), for solving the
TSP. DMTO is based on a new swap operation that is best suited for TSPs. We
also used the same swap operation to introduce an updated version of the dis-
crete variant of PSO (DPSO). The Updated DPSO (UDPSO) that we propose, is
superior to DPSO, thanks to our new swap operation. In order to assess the per-
formance in practice of our methods, we conducted several experiments compar-
ing DMTO, DPSO, UDPSO, and Branch and Bound, on ten TSP instances taken
from the well-known TSPLIB dataset. The results clearly show that DMTO pro-
duces solutions of much better quality than in DPSO and UDPSO. In case of
Oliver TSP instance, the obtained relative error when using DMTO is decreased
194 times less than DPSO and 33 times less than UDPSO.

2 Discrete Mother Tree Algorithm (DMTO)

The MTO algorithm is based on a fixed-offspring topology [18], where agents
update their positions in the search space according to the group to which they
belong. The population is a set of Active Food Sources (AFSs) whose size is
denoted as NT, and it is divided into a the TMT (the agent receiving nutrients
from a random source), the Partially Connected Trees (PCTs) group that has
NPCTs agents, and the Fully Connected Trees (FCTs) group that has NFCTs

agents. The numbers of agents within the PCTs and FCTs groups are given by
the following equations.

NPCTs = NT − 4,

NFCTs = 3,

NT = NFCTs + NPCTs + 1.

(2)

2.1 Solution Representation

DMTO starts the search from a candidate solution (complete tour) correspond-
ing to a given sequence of all the cities. The candidate solution corresponds to
a vector of size n, where n is the total number of cities, and each entry corre-
sponds to a different city. The fitness function corresponds to the total distance
along the tour. Figure 1 shows a weighted graph (left) and a candidate solution
(middle), with a fitness value of 25.

2.2 Swap Operation

During the DMTO search, a candidate solution moves from one position to
another, in the search space, through swap operations. Each agent i corresponds
to a given candidate solution (TSP tour). An agent is updated at each kin
recognition signal (corresponding to an iteration) using a Swap Operation (�),
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as shown in Fig. 1. In this regard, there are n(n−1)
2 possible swap operations that

can be applied to any candidate solution. This number corresponds to the neigh-
bourhood size (maximum number of possible neighbours) for each agent. The
actual number of neighbours, to consider for each agent, is within the following
range [n : n(n−1)

2 ], and depends on the group that the agent belongs to. For
instance, TMT has n(n−1)

2 neighbors, and the agent ranked 2nd (belonging to
PCTs) has n neighbors only (as we see later in this Section). All possible swap
operations are stored in a pool called Basic Swap Operation Pool (BSOP). In
DMTO, the feeder influence and distance are represented by the number of swap
operations. A swap operation removes four edges and adds four new ones in the
fully connected graph. In our previous example, the swap operation results in
adding two new edges {(A → C), (E → B)} and removing two others, from
the original solution: {(B → C), (E → A)}, as shown in Fig. 1. Thus, edge
(E → A) is replaced with edge (A → C), and edge (B → C) is replaced with
edge (E → B). The difference in fitness values (before and after performing
the swap operation) can be calculated by considering those added and removed
edges i.e. (((3 + 7) + (3 + 4)) - ((3 + 3) + (3 + 4))), as shown in Fig. 1.
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Fig. 1. An example of a TSP

There is a special swap operation pool called Supper Swap Operation Pool
(SSOP) that has the capability to transform one solution to another using a
successive number of SOs. The SSOP is used for all agents except the TMT to
select a random SO to update an agent’s position. A SSOP is a mediator swap
operation pool between two solutions: the influencer solution and the influenced
solution. Applying all the SOs, in order, of a given SSOP will transform the
influenced solution into an influencer solution. For instance, assume we have two
solutions {B, C, D, A, E} (Influencer) and {D, A, C, B, E} (influenced). The
corresponding SSOP will be: {(1, 4), (2, 3), (3, 4)}. This pool can transform
the influenced solution into the influencer solution by applying all SOs in order.
Each DMTO run has a number of iterations called kin recognition Krs. Note
that the SSOP can have a maximum of n SOs (given that we need a maximum
of n swaps to go from any sequence to another).
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2.3 Updating the TMT

The TMT performs an exploration process at each Krs iteration by searching
among its neighbors for a better solution. The TMT has two levels of exploration:
L1 and L2. Each level of exploration has Nos iterations. In the first iteration of
L1, the TMT computes the difference in the fitness values for each member of
the BSOP. The resulted cost difference will be transferred to a range between [0
: 1] using the sigmoid function given by:

f(x) =
1

1 + e−x
, (3)

where x is the difference in fitness values, and f(x) represents the probability
of a swap operation to be selected. The higher the sigmoid value the higher
the chance of its associated swap operation to be selected. Then, the best swap
operation is obtained as follows.

P k
L1(n+1) = (P k

L1(n)
� SOP best

n ) (4)

where, P k
L1(n)

is the position of TMT at iteration k and at iteration n at level L1,
P k
L1(n+1) is the updated solution at n+1 iteration , and SOP best

n is the best swap
operation in the current SOPn at iteration n. If the updated solution of the TMT
does not achieve a better fitness value, the TMT randomly picks and removes
an SO from the current BSOPn. Then, the TMT goes to the next iteration in
L1 (it will not pass though the second exploration level L2). However, if the
updated fitness value in L1 is better than the current one, then this SOP best

n

will be removed from the current BSOPn. Then, the TMT agent switches to the
next exploration level L2. The main reason to remove any SO after it is selected,
is to avoid being trapped in a local minimum. In this regard, we have conducted
several preliminary experiments, and the results show that removing every SO
(after selection) improves significantly on the quality of the solution. In L2, the
same process is repeated for all members of the current BSOPn and the best
SO that has the highest sigmoid value will be selected. This process is reflected
by the following equation.

P k
L2(n+1) = (P k

L2(n)
� SOP best

n ) (5)

The TMT agent continues repeating the same process in L2 until the maximum
number of iterations is reached. Then, the TMT witches again to the first level L1

and repeats the same process until it reaches the maximum number of iterations.
There is a TMT special state called Sigmoid Deadlock (SD) situation. The SD

state happens when several swap operations, form a pool called Swap Operation
Deadlock Pool (SODP), achieve the same cost difference, and then the same
sigmoid values. TMT resolves the deadlock situation by selecting the best agent
in SODP that will achieve the highest sigmoid value for the next iteration.
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2.4 Updating the Solutions of the FPCTs Group

The FPCTs group has a defense mechanism that helps any of its member to
avoid being supported by a bad food source. Thus, if any member of this group
gets an updated solution that has a worse fitness value than its current one, then
it will pick a random SO from BSOP \ SSOP. The updated position is calculated
as follows.

P k+1
n =

n−1∑

i=1

1

n− i + 1
(P k

n � shuffle(SSOPi)), (6)

where P k
n represents the current solution of any member in range [2 : NT

2 − 1],
shuffel is a function to change the order of the swap operations in the SSOPi,
SSOPi is the super swap operator pool of agent i to cause influence on agent n,
and 1

n−i+1 represents the probability of selecting a SO from SSOPi. However,
if any member of this group uses the defense mechanism, it picks a random SO
as explained before.

Solution agent i is used to create the SSOPi by targeting solution n. Then,
all members of SSOPi is implemented in a random way on solution n, and the
sigmoid values are calculated as explained earlier. The probability of selecting
a SO from SSOPi depends on its probability level. For example, the solution
ranked 2nd is influenced only by the TMT with probability level 1

2 [18]. Thus,
SSOP1 is generated using the TMT to influence the solution ranked 2nd. Each
member of SSOP1 is implemented on solution ranked 2nd in a random way,
and then its sigmoid value is calculated. If the sigmoid value is higher than the
probability level (1− 1

2 ), then the associate swap operation will be implemented
and the solution will be updated; otherwise, the swap operation will be ignored.
After implementing all good swap operation of SSOP1 and the final updated
solution is worse than the beginning solution, then the defense mechanism is
implemented as explained before.

2.5 Updating the Solutions of FCTs Group

All members of the FCTs group are in the range [NT
2 : NT

2 + 2]. The updated
solution is given by the following equation.

P k+1
n =

n−1∑

i=n−Nos

1

n− i + 1
(P k

n � shuffle(SSOPi)). (7)

For instance, in case of a population of size six, the 3rd solution is influenced
by the TMT and the 2nd solution. Thus, two SSOPs are created. SSOP2 is
created using the solution ranked 2nd to influence the solution ranked 3rd with
probability level 1

2 , and SSOP1 is created to influence solution ranked 3rd with
probability level 1

3 . When a sigmoid value resulted from SSOP2 is higher than
(1 − 1

2 ) the associated SO will be selected and implemented on solution ranked
3rd. In addition, any swap operation associated with a sigmoid value higher
than (1− 1

3 ) and located in SSOP1 will be selected and implemented on the 3rd

solution.
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2.6 Updating the Solutions of LPCTs Group

LPCTs is the last group of candidate solutions in the population, and their
members have the least number of nutrients in the population (worst fitness
values). More precisely, LPCTs members are in the range [NT

2 + 3 : NT ]. Each
LPCTs member is updated as follows.

P (k+1)
n =

NT−Nos∑

i=n−Nos

1

n− i + 1
(P (k)

n � shuffle(SSOPi)). (8)

2.7 DMTO Climate Change

The climate change is a diversification phoneme that helps DMTO find better
solutions. The number of climate change events is denoted by Cl and each cli-
mate change happens once every cycle (a group of kin recognition signals) and
corresponds to a distortion process. More precisely, the population is distorted
by a certain level, called deviation level, that depends on the number of swap
operations. The deviation level is adopted based on preliminary experiments to
three random successive swap operation.

3 Discrete Particle Swarm Optimization for TSPs

3.1 Discrete Particle Swarm Optimization (DPSO)

In [15], Sarman et al. introduced a discrete version of the PSO (DPSO), and
tested the algorithm for one instance (five cities). The proposed variant is built
on swap operations. The population, of size n, is initialized in a random way,
and the velocity corresponds to a random swap sequence. The particle position
is updated as follows.

Xk+1
id = Xk

id + V k+1
id (9)

V k+1
id = ωV k

id ⊕ α(Pid − Xid) ⊕ β(Pgd − Xid) (10)

α and β are random numbers in the range [0 : 1]. (Pid −Xid) produces a pool of
swap operations (called the basic swap sequence) in the same way we produce
the super swap operator. The cognitive term α(Pid − Xid) means that each
swap operation in the basic swap sequence is accepted or rejected based on a
probability α. In other words, a random number is generated in the range [0
: 1], and if this number is below α, it will be accepted otherwise it will be
rejected, and its associated swap operation will not be used. The social term
β(Pgd − Xid) is calculated in the same way as the cognitive term. The result
of the velocity equation produces a pool of swap operations (by merging three
pools). These swap operations are then applied to update the particle position.
The cost function of each particle is calculated at each iteration, and the value
of both Pid and Pgd are updated until the maximum number of iterations is
reached [15].
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DPSO has some drawbacks resulting in the production of very poor perfor-
mance, when the number of cities is more than five. The authors explained the
cognitive and social terms and how to calculate them. They did not however
mention anything about the ωV k

id term, and ignored this term in their imple-
mentation by assuming that it is equal to zero. In each iteration, the authors
created a new velocity pool for each particle based on the updated cognitive and
social terms. This contradicts with the basic concept of PSO where the veloc-
ity equation is updated by adding a part of the old velocity to the social and
cognitive terms.

The authors basic idea is to apply a sequence of swap operations on a solution
(particle) without any other selection criteria to improve the fitness value of
the solution. Thus, after implementing their created velocity pool of the swap
operations the result may produce a solution with lower fitness value [15]. In
most cases, after applying all swap operations, the solution ends with a bad
fitness value as every swap operator can have a significant effect on the solution.
The velocity pool is updated in two cases: a solution is different than the local
best and/or global best. The authors actually did not think about the global
best solution that will not change, because it has the best local and the best
global at the same time. This was an unwise decision to leave the global best
solution without any updates.

3.2 Updated Version of Discrete Particle Swarm Optimization
(UDPSO)

The DPSO limitations we listed in Sect. 3.1 have motivated us to introduce our
UDPSO. In UDPSO, we assume that we have a velocity pool with 3n swap
operations, where n is the number of cities. In the first iteration k, we create
a random pool V k

id (a group of 3n swap operations, that we call V pool, we
select the group size 3n after conducting preliminary experiments). In the next
iteration, k+1, we firstly calculate the cognitive and social swap operations called
Lpool and Gpool respectively. Lpool is a generated SSOP between the local best
solution of the current agent and the current solution, and we calculate the SSOP
in the same way that we use in our DMTO. Gpool is a generated SSOP between
the global best solution and the current solution, and we calculate the SSOP
in the same way that we use in our DMTO. The number of swap operations in
any SSOP is equal to n, and we add only the unique items in the pool. Thus,
the number of swap operations in Lpool and Gpool is less than or equal to 2n.
Then, we add ten random swap operations to V k+1

id . Finally, we add the rest of
the swap operations to reach 3n from V k

id. More precisely, the velocity pool is
calculated as follows.

V k+1
id = Part(V k

id) + Lpool + Gpool + SO10 (11)

where SO10 is a set of ten random swap operators. In iteration k + 1, the new
velocity is initially the sum of the number of swap operations in Lpool and Gpool.
Then, we add random extra swap operations from Part(V k

id) until the number
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of swap operations in the V k+1
id reaches (3n − 10). Finally, we add ten random

swap operations to the V k+1
id to reach 3n. Note that all swap operators in Vpool

are unique. We use the sigmoid values of all swap operations in the Vpool as an
indicators to evaluate each swap operation. Then, the swap operation associated
with the best sigmoid value is selected and applied on the current solution.
Then, we calculate the sigmoid values for the same Vpool with the new updated
solution to see if we can further improve the solution. We keep repeating this
process until there is no way to improve this solution.

4 Experimentation

The timeout set for all the algorithms is set to five hours, for all the data sets. In
the case of DPSO and UDPSO, the number of agents in the population is equal
to the number of cities (n) of the TSP instance. In case of DMTO, the number
of agents is set to 10; the kin recognition signal (Krs) is set to 25; and the cli-
mate change, Cl, depends on the number of cities. More precisely, Cl = S·n

10·25 .
Branch and Bound (BAB) is implemented as a chronological backtrack search
algorithm, that visits each node and explores it depending on the values of the
Lower Bound (LB) and Upper Bound (UB). Here, LB corresponds to half of the
sum of the 2 edges with the least cost, adjacent to each node. UB is the cost of
the best solution found so far. The parameters of DPSO, UDPSO, and DMTO
have been tuned after conducting extensive preliminary experiments. We have
used the following TSP instances to conduct our experiments: Oliver30, Eil51,
Berline52, St70, Pr76, Eil76, Kroa100, Eil101, Ch150, and Tsp225. These TSP
instances were used in a recent research to compare ACO, ABC, and a hierar-
chic approach [14]. The optimum lengths of the TSP instances are obtained from
TSPLIB [27]. The TSPLIB has been published since 1991 and includes a collec-
tion of TSP benchmark instances with different levels of difficulty. This library
has been used in many research works for algorithm performance evaluation.

For each instance, we conducted 20 runs and report the best solution, the
worse solution, the average (Avg.), the standard deviation (Std. dev.) and the
relative error (RE), as shown in Table 1 and Fig. 2. RE is the ratio of the absolute
error (difference between the best and the actual value) by the actual value, All
the comparative results are reported in Fig. 2. The branch and bound method
could only solve the first instance in the experiment allocated time. As expected,
RE of DPSO is very high in all tested TSP instances. This is explained by the
drawbacks of this method, as we reported earlier. Figure 2 shows that DPSO has
the highest relative error among all three algorithms.
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Table 1. Comparative Results

Instance Method Best Worse Avg. Std. dev. RE%

Oliver30 DPSO 685 866 767.4 48.41 81.84

UDPSO 462 506 481.7 11.18 14.14

DMTO 420 422 420.2 0.509 0.42

BAB 420 420 420 0.00 0.0

Eil51 DPSO 962 1126 1046.7 39.743 145

UDPSO 519 559 542.15 10.65 27.43

DMTO 434 452 442.85 4.574 3.95

Berlin52 DPSO 15482 20040 18120.35 1242.55 140.25

UDPSO 8644 9768 9325.2 304.07 23.64

DMTO 7676 8194 7941.85 161.9 5.3

St70 DPSO 2077 2634 2297.35 149.764 240.34

UDPSO 989 1057 1023.8 20.05 51.67

DMTO 694 731 710.15 10.35 5.20

Eil76 DPSO 1564 1931 1724.25 98.89 220.49

UDPSO 740 817 785.4 18.44 45.98

DMTO 557 589 573.9 9.142 6.67

Pr76 DPSO 333033 419861 372852.55 24125.48 244.73

UDPSO 148438 165467 158975.85 3906.65 46.98

DMTO 114329 122206 118554.15 2333.01 9.61

Kroa100 DPSO 93629 122484 108342.4 7705.67 409.0

UDPSO 37726 42611 39952.5 1183.87 87.72

DMTO 22033 26350 23906.3 997.82 12.33

Eil101 DPSO 2180 2859 2421.7 169.99 285.0

UDPSO 1017 1091 1055.75 20.81 67.84

DMTO 658 703 681.95 10.753 8.41

Ch150 DPSO 33847 44681 38909.35 2555.98 496.04

UDPSO 13994 15185 14532.35 262.540 122.61

DMTO 7056 8183 7524.5 305.48 15.26

Tsp225 DPSO 26128 33431 30953.7 1895.78 690.44

UDPSO 10520 11468 11069.5 208.04 182.67

DMTO 4546 4959 4754.75 135.60 21.41

Table 1 lists all the resutls, with the lowest RE marked in bold. UDPSO is
significantly superior to DPSO. In general, RE is reduced between 3.8 times to 6
times. For instance, the relative error is reduced six times when solving Berlin52.
However, when we increase the number of cities to 225, the relative error is
reduced from 690.44% to 182.67%, which is 3.8 times. DMTO achieves much
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Fig. 2. Relative errors of DPSO, UDPSO, and DMTO

better performance in terms of RE. For instance, the results show that RE is
decreased 194.85 times when compared to DPSO for solving Oliver30. However,
when the number of cities increases to 225, RE for DMRO decreases to 32.24
times. Figure 2 shows the significant RE improvement when using DMTO with
respect to the other two algorithms.

5 Conclusion and Future Works

We propose an effective nature-inspired method to solve the TSP, called DMTO,
and an improvement of DPSO (that we call UDPSO). In order to assess the
performance of the proposed algorithms, we conducted several experiments on
known TSP instances. The results show that UDPSO has better performance
than DPSO in terms of quality of solutions. Also, DMTO achieves much better
performance than DPSO and UDPSO over all tested TSP instances. DMTO
can therefore be an alternative tool for solving TSPs. These promising results
have motivated us to consider, in the near future, other discrete optimization
problems, using DMTO. These problems will include: vehicle routing, knapsack,
set covering, and maximum clique. We also plan to tackle the Constraint Sat-
isfaction Problem (CSP) [7] which is a general framework for representing and
solving combinatorial problems.
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Abstract. Cloud computing is a powerful and scalable computing plat-
form that enables the virtualization, share and on-demand use of com-
puting resources. Scientific workflows on clouds are promising for han-
dling computational-intensive and complex scientific computing tasks.
The scientific workflow scheduling problem has been regarded as an
intractable optimization problem that determines the performance of
a scientific cloud workflow management system. The problem becomes
even more challenging if the dynamic and heterogeneous characteris-
tics of cloud workflows are taken into account. In order to adapt to the
dynamic environment, this paper proposes a hybrid genetic algorithm
(HGA) algorithm. Different from the traditional evolutionary algorithms
for workflow scheduling that uses a direct encoding scheme, the proposed
HGA uses an indirect encoding scheme, i.e., a schedule is encoded as a
sequence of heuristic rules. Since there have been some widely-studied
heuristic information for scheduling on a directed acyclic graph, this
heuristic information is adopted by HGA to improve performance. In
addition, under the dynamic batch-processing environment, it is found
that the results returned by HGA in the form of heuristic-based can still
adaptive to the changes. The experimental results validate that HGA is
promising.

Keywords: Workflow scheduling · GA · Heuristic rules · CPM ·
Batch processing

1 Introduction

With the burgeoning demand for computing power, the cloud computing indus-
try is experiencing an explosive growth. Cloud computing refers to that cloud
service providers build data centers or supercomputers through distributed com-
puting and virtualization technology [14], and provide data storage, analysis,
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scientific computing and other services to technology developers or enterprise
customers in a free or on-demand manner, such as Amazon data warehouse leas-
ing business. Cloud computing usually involves providing dynamic, scalable and
often virtualized resources through the Internet. Due to its strong scalability,
elasticity and efficiency [1], tons of tasks are uploaded to cloud. How to effec-
tively schedule these projects and allocate reasonable resources to tasks becomes
a significant problem.

For collaborative scientific projects in domains such like structural biology
and neuroscience, they usually involve the distributed data resource and small
tasks. These resources and tasks are usually presented and structured as a sci-
entific workflow. A workflow is widely used in cloud scheduling problems, and
it considers different tasks as a group to achieve a particular result. The tasks
in a workflow have parent and child relationships, a child node can be executed
only after all of its parent nodes is done. Generally, a workflow can be presented
by a weighted directed acyclic graph (DAG) [2] with nodes presenting tasks and
weighted edges presenting the data transferred between tasks. As a commonly
used model in scheduling problem, workflow can clearly indicate the relationships
of tasks in a large project, and the aim of scheduling problem turns to generate
an optimal scheduling solution to minimize the makespan of workflow. Schedul-
ing problem in cloud environment is a NP-hard problem. With the increasing
number of tasks in cloud environment, or even with the addition of VMs, the
solution search space is proportionally increased [3]. Hence, it is impossible to
find an optimal solution in a huge search space. Besides, some cloud service
providers prefer that the cloud can finish the tasks in demanded time under
extra constrains, such as energy cost minimization. In this case, how to find a
scheduling solution in extra constrains makes scheduling problem more complex.

However, researchers and scholars have proposed many excellent algorithms
to find an effective scheduling solution in a reasonable time. There are two main
categories. One is based on greedy strategies, such like heterogeneous earliest
finish time (HEFT), first come first serve (FCFS), shortest job first (SJF), crit-
ical path method (CPM) [16]. Nitish et al. [4] proposed a scheduling algorithm
based on HEFT, and through different greedy strategies such as choosing the
task with the largest deadline violation, the highest priority, the latest finish
time, etc., to minimize the makespan and cost. Faragardi et al. [5] promoted a
greedy strategy named Greedy Resource Provisioning (GRP) and modified the
HEFT algorithm to avoid budget violation. Based on GRP policy, this algo-
rithm greedily chooses the most effective VMs, making this algorithm standout.
Li et al. [2] constructed the initial solution with three greedy rules, minimum
average cost first, maximum cost ascending ratio first and earliest finish time
first, and used the greedy improvement heuristic and fair improvement heuristic
to improve the solution. The other category is based on heuristic algorithms, such
as genetic algorithm (GA) [6], particle swarm optimization (PSO), ant colony
optimization (ACO), etc. GA is a branch of evolutionary algorithm proposed
by Holland. By applying the principle of evolution, GA provides robust search
ability to allow high-quality solution to be derived from a large search space
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in polynomial time [7]. Therefore, GA is a powerful algorithm in dealing with
NP-hard search problem. Wu et al. [8] proposed an algorithm named MOELS
with a list of schedule heuristic embedded into GA, and it was compared with
MOHEFT and EMS•C, and the results showed that with the expansion of the
problem scale, the makespan of MOELS has not increased much as the other
algorithms did. Ahmad et al. [9] proposed an algorithm named heuristic-based
GA-PSO algorithm, this algorithm improves its initial population with GA for
half of its max iterations, and uses PSO to improve for the other half.

Though scholars have proposed many excellent algorithms, most of them are
in the condition that the problem only contains one workflow with fixed number
of tasks. In another way, most algorithms are aiming at static scheduling, but are
not suitable for dynamic scheduling. Dynamic problem means that the tasks are
arriving at the cloud at unknown time. In this paper, the tasks arrive at the cloud
in the form of workflows, which contains a series of organized tasks. Therefore,
the algorithm needs to adjust the scheduling solution when new workflows arrive.
Some researchers have proposed to use heuristic rules and the greedy algorithm
to deal with the dynamic scheduling problem [10–12]. However, the algorithm
with a single rule can easily get trapped in local optima. Hence, the performance
of pure-rules-based algorithm is not good as expected.

In this paper, we intend to propose a hybrid genetic algorithm (HGA)
algorithm. Different from the traditional evolutionary algorithms for workflow
scheduling, the proposed HGA encodes a schedule as a sequence of heuristic
rules. The heuristics, e.g., the earliest start time, the latest finish time of each
task, etc., are some effective heuristic information proposed in the existing stud-
ies of workflow scheduling. Most of these heuristics are calculated based on the
CPM method. CPM is an important management concept based on human expe-
rience. By embedding the heuristic information yielded by the CPM method, the
proposed GA can quickly evolves to promising search areas, and thus achieves
fast convergence. To handle dynamic scheduling problems, we further consider
the situation of dynamic batch workflow scheduling. It is found that by using
the proposed HGA, the solution yielded by the algorithm in the form of a list of
heuristics can easily adapt to the dynamic environment.

The rest of this paper is organized as follows. Section 2 gives a detailed
description of cloud workflow scheduling problem. In Sect. 3, the framework of
proposed algorithm HGA is presented. Comparison studies are shown in Sect. 4,
and the conclusions are summarized in Sect. 5.

2 Definition and Background

2.1 Workflow Modeling

In cloud, the workflows are uploaded at different times, and usually the upload
time conforms to the Poisson distribution. Figure 1 is a sample of workflow.
These workflows are indicated as wi, and each wi can be presented by a tuple,
wi = ai,Gi, where ai indicates the arrival time of wi, and Gi presents the struc-
ture. The structure of workflow are usually presented by a Direct Acyclic Graph
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(DAG), where Gi = {Ti,Ei}, Ti = {ti1, ti2, . . . , tiN}, Ei = {ejki, . . .}, where Ti

is the set of tasks, tij presents the j-th task of the i-th workflow, and N presents
the number of tasks in workflow; Ei presents the set of edges in the i-th workflows
and ejki presents the data transferred from tij to tik. pred(tij) = {tip

∣
∣ eipj ∈ Ei}

is the set of predecessor tasks of the task tij . succ(tip) = {tij
∣
∣ eipj ∈ Ei} is the

set of successor tasks of the task tip. It is defined that a task can be executed
only if all of its predecessor tasks have been done.

Fig. 1. A simple workflow example with 5 nodes and 5 edges.

2.2 Resource Modeling

A widely used technology in cloud computing is virtualization. It indicates
that the cloud platform offers multiple virtual machine (VM) resources R =
{r1, r2, r3, . . . , rM} for different resource types, and M presents the number of
VMs. Each type of VM has its own specified attributes such as computing speed
and prices, which can be indicated as 3-tuple ri = {ocpi, speedi, pricei}, where
ocpi presents the occupied time of VM ri, this indicator is for calculating the
utilization, and speedi presents the processor speed of VM ri and pricei means
the computing cost of VM ri per unit time. Higher performance virtual machines
have higher price. From Barton’s experiment [15], it can be seen that the pro-
cessor cost increases logarithmically with the increasing of performance. It can
be assumed that:

• Consumption of a machine includes calculating consumption and system con-
sumption.

• The faster the machine runs, the more energy it costs, while system consump-
tion remains stable.

• Faster machines have higher energy utilization.
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Based on the above assumptions, it can be known that mapping the tasks
to faster machines can increase the utilization of energy, so this paper takes a
greedy strategy that tasks are allocated to the fastest machine when scheduling.

2.3 Extended CPM

Heuristic rules are a set of rules based on human experience. According to
Ozdamar [16], heuristic rules can be embedded into GA, guiding the evolution
direction and reach a reasonable solution faster. These heuristic rules are mainly
based on critical path method, also named CPM. This method defines a series
of concept such as earliest start time (EST), latest finish time (LFT) to describe
the start time and finish time of a task theoretically, and these theoretical values
provides a judgement basis for task arrangement.

However, these rules didn’t take data transmission time into account. And
the problem this paper discusses doses consider the data transmitted between
tasks. So the original CPM rules are utilized and they are defined as follows:

1) MINSK:
Pij = lftij − estij − dij + dtij

where lftij and estij are the LFT and EST of j-th task in workflow wi, and dij
is the duration of j-th task in workflow wi, dtij is the time of data transmission
before executing tij , the aim of rule MINSK is to find out the slack time of
each task, and the task with least slack time has higher priority.

2) MIN LFT:
Pij = lftij + dtij

This rule makes the tasks that finishes earliest executed earliest.
3) MIN SPT:

Pij = dij + dtij

This rule gives the lightest task highest priority. Lightest tasks executes ear-
liest, reducing the total waiting time.

4) MIN LST:
Pij = lftij − dij + dtij

This rule adopts delaying strategy. The tasks that can be delayed for a long
time will be given a small priority.

5) MIN EFT:
Pij = estij + dtij

This rule is similar to the rule first-in-first-out, since the task with earliest
start time has the highest priority.

When scheduling, the task with least Pij will be scheduled at once. Com-
pared to the original rules, these polished rules all plus an additional dtij , dtij
presents the data transmission time from ti to tj , since it is very likely that the
predecessor task and posterity task may not be executed on the same machine.
As for machine choose strategy, the scheduler firstly choose the fastest machine
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ri, and then choose a task tij to be executed on ri. If none of its predecessor tasks
is executed on that machine, the scheduler calls other machines to send the data
of its predecessor tasks produced. If some of its predecessor tasks are executed on
the same machine, the data does not need to be transmitted. Let dataL present
the largest data that transmitted from other machines among these data, then
dtij = dataL/bw, bw is the bandwidth of cloud platform.

All of these rules are based on human experience that urgent tasks execute as
soon as possible. But these rules judge the urgency of tasks by different criteria,
there is not strong evidence says that which one is better or worse. Therefor
this paper embeds all these heuristic rules into GA and takes full advantage of
various rules.

2.4 Objective Functions

The aim of this paper is to provide a solution for cloud tasks scheduling, and
for a optimal solution, it should finish the task as soon as possible and keep
the consumption as low as possible at the same time, put it in another way, the
makespan should be as small as possible and the cost should be in a reasonable
range. Thought in terms of technology, the cloud platform takes divided tasks
as basic units to execute, the users expect their whole projects can be finished
in expected time. Hence the target of the research should focus on the makespan
of single project. The makespan of workflow wi can be calculated as:

makespani = max {ftij} − min {stij}

where ftij is the finish time of task tij , and stij is the start time of task
tij ,max{ftij} presents the finish time of the last task in wi, it also means the
finish time of wi, and min{stij} presents the start time of first tasks in wi, it
also means the start time of wi.

After calculating the makespan of each workflow, our goal is to reduce the
total computing time of all workflows in cloud platform, and the total time is
concerned with the number of workflows N. Therefore, in this paper, it takes the
average makespan of all workflows as the final criterion.

makespanavg =
∑N

i=1 makespani

N

3 Algorithm

3.1 Batch Processing

Since the dynamic situation of cloud computing platform, workflows are
uploaded and added to computing queue at any time. These workflows need to be
rescheduled in real time depending on the current situation. Genetic algorithm
is a effective method for workflow scheduling but not for real time processing,
since GA can only search in fixed-size space. To make GA more suitable under
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Fig. 2. Framework of batch processing.

dynamic cloud environment, this paper combines GA with the batch processing
technique.

Figure 2 is the frame of batch processing. It explains how GA works in batch
processing. At the beginning of batch, the scheduler collects all the newly-arrived
workflows during the last batch, and re-collects all the unfinished tasks in last
batch to re-unite as a new batch. Then the GA generates a new population for
the new batch scheduling and the population iterates for generations. When a
new scheduling solution is generated, it will be implemented on the platform,
after the platform running for a period of time T, the scheduler collects the
newly-arrived worfklows, re-collects unfinished tasks, and enters the next batch.
Giving the period time T, the cloud platform can schedule the tasks in a near
real-time way.

3.2 Scheduling Generator

The scheduling generator is defined to find an optimal scheduling solution. Algo-
rithm 1 depicted the generating process in one batch.

In the final generations, an optimized solution is generated. This solution can
be implemented on the platform during this batch.

3.3 Heuristic-Based Encoding GA

The traditional GA generates hundreds or thousands of chromosomes to present
the solutions in search space. After generations of evolution, including crossover
and mutations, GA may reach a right spot in the search space and find a optimal
solution, the process of evolution is long, but with some human experience, this
long process may speed up. GA embedded with heuristic rules may speed up the
evolution and get a satisfied solution faster.



Dynamic Cloud Workflow Scheduling 45

The traditional GA generates hundreds or thousands of chromosomes to
present the solutions in search space. After generations of evolution, includ-
ing crossover and mutations, GA may reach a right spot in the search space and
find a optimal solution, the process of evolution is long, but with some human
experience, this long process may speed up. GA embedded with heuristic rules
may speed up the evolution and get a satisfied solution faster.

Chromosomes Encoding. Chromosomes encoding. For the traditional GA, a
chromosome may conclude all tasks on cloud platform, and the priority of each
task is presented by its position on the chromosome, however, CPM contains a
series rule to define the priority of each task, and what the chromosome needs
to do is to determine when and which rule to use. Suppose there are 5 rules
and their sequence numbers are 1-MINSK, 2-MINLFT, 3-MINSPT, 4-MINLST,
5-MINEST, respectively, and there are 6 tasks to be scheduled. Then, the chro-
mosome can be defined as Fig. 3:

Fig. 3. An example of the chromosome in HGA

The number of the first position on this chromosome is 3, which means the
first time to choose next task should use rule 3. The number of second position
on this chromosome is 2, which means the generator should use rule 2 when the
second time to choose next task, and so on. Through this chromosome encoding,
the generator can choose tasks based on experience, instead of random order.
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Crossover and Mutation. For crossover, here we use the traditional two-
point crossover, we randomly choose two parents from the population, and then
randomly choose two pair of same spot on both parent. The genes between the
two spots will be exchanged to deliver two new offsprings. For mutation, we
randomly choose one spot on chromosome according to the mutation rate and
mutate that spot.

4 Experiments and Analysis

In order to fit the reality situation that many workflows are uploaded to the
cloud computing platform, we randomly create several groups of workflows in
the experiment. The number of tasks in each workflow varies from 10 to 30.
The edges between tasks are produced randomly. The total number of workflow
that program generated is 50. The workflow uploaded to the cloud platform is
randomly selected. The parameters of the machine resources are shown in the
Table 1.

Table 1. Parameter of machine resource

In this experiment, the focus is to test and verify that the batch process
and heuristic-based GA can effectively schedule the tasks on cloud platform.
For comparison, the traditional GA with the pure encoding scheme is applied.
Table 2 defines the parameter of population in both GA-related algorithms. Since
the experience focuses on heuristic rules, the parameter of population is set as
a constant.

Table 2. Parameter of population
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4.1 Efficiency of Single Heuristic Rules

Heuristic method is essentially a greedy algorithm. To validate the effectiveness
the heuristics, we first compare the efficiency of each single heuristic. In addition,
two more rules are used in the comparison, e.g., the first-in-first-out (FIFO) rule
and the random selection rule.

Fig. 4. Makespan increase with the number of workflows

Figure 4 presents the growth of makespan when the number of workflow
grows. From the figure, it can be inferred that with the increasing scale of work-
flows, the makespan of each workflow also increases. The y-axis presents the
makespan of each workflow. The lower the curve is, the better the rule is. It can
be directly seen that the curves of FIFO and RANDOM are mostly above the
other curves, which means heuristic rules with human experiences are better.
From Fig. 4, it can also be deduced that when the number of workflows reaches
60, there is a sharp increasing on all curves. This means the execution power
of machine resources has reach saturation. Tasks begin to compete for machine
resources. Some tasks need to wait for the resources. Thus there is extra waiting
time apart from the executing time of the tasks.

4.2 Heuristic-Based GA vs. Pure GA

The HGA based on heuristics and the Pure GA are both GA algorithms. To
adapt to the dynamic environment. GA needs to combined with batch process-
ing. This method provides GA a near real-time way to solve the dynamic cloud
workflow scheduling problem. In this experiment, the period time T of batch pro-
cessing is set as 500, which means every 500 unit time, the scheduler reschedules
all of the tasks. The experiment runs 3 periods for observation.

Figure 5 shows 3 experiment results during 3 periods executing. In 3 situa-
tions, there are 30, 60, and 100 workflows uploaded to the cloud. Hence in each
experiment, there are 2 jumps in the graph. For the first period, the efficiency
of heuristic-based GA and Pure GA makes no difference, since the number of
workflows is small. There is no pressure for the scheduler to handle the work-
flows since most machines are idle. But for the second period and when N ≥ 60,
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Fig. 5. The least makespan in each generation under different circumstances N = 30,
60, 100.

the competition between tasks begins to emerge. So HGA begins to show its
advantage. Its convergence rate and the final results yielded are better than
pure GA. According to Fig. 5, when the workflow number grows to 100, the final
makespan of HGA turns out to be much shorter than that of the Pure GA. So
this experiment shows that HGA is promising for dynamic workflow scheduling.

5 Conclusion

This paper provides a heuristic-based GA to solve the dynamic cloud workflow
scheduling problem. Though under most circumstances, GA are usually used to
solve fixed-sized problem, to take advantages of the powerful search ability of GA,
this paper combines GA with batch processing. It allows GA to solve dynamic
problems in a near real-time way. Besides, to speed up GA, some heuristic rules
based on CPM are embedded into GA. A special encoding scheme that regards
a solution as a list of selected heuristics is developed. In the experiment, it
can be seen that though HGA makes no difference with the Pure GA when
the workflow number is small. But as the number of workflows increases, the
advantage of HGA becomes significant.
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for Automated Jigsaw Puzzles
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Abstract. Solving jigsaw-puzzles has been of increasing importance in
many real-world applications. The existing methods endure the prob-
lem of local or premature convergence, which perform inefficiently on
some challenging images. For an efficient optimizer of jigsaw puzzles,
this paper utilizes the powerfulness of the global optimization technique
and develops a multi-strategy evolution algorithm. The algorithm con-
stantly generates jigsaw puzzle solutions by mimicking the process of
natural evolution, while adopting a new objective function to evaluate
the solutions. An elite-based crossover operator is designed to exploit the
historically good patterns for generating competitive solutions. Then, a
new mutation operator consisting of four perturbation strategies is devel-
oped to handle different puzzle situations. Experimental results verify the
promising performance of the proposed algorithm that it outperforms the
state-of-the-art methods on various image datasets.

Keywords: Jigsaw puzzle · Evolutionary computation · Global
optimization · Shredded piece assembly

1 Introduction

The automatic solver of jigsaw puzzle has received increasing attention since
it plays an important role in many scientific and engineering fields, such as
reassembling archaeological artifacts [17] and recovering shredded documents [2].
Specifically, given non-overlapping and disordered square pieces of an image,
the automatic solver needs to reconstruct the original image without any prior
knowledge.

Assembling jigsaw puzzles is a technically challenging problem that has been
proved to be NP-complete [4]. Recently, many efforts have been devoted to this
domain to develop different solutions, such as greedy algorithms [13,14], hierar-
chical loop constraints [18], and the genetic algorithm [16]. The greedy methods
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have a great risk of converging to local optima, resulting in unsatisfactory solu-
tion accuracy. The approach of hierarchical loop constraints [18] merges the
pieces in a bottom up manner based on the basic loops of assembling 2× 2
pieces, which may however endure the error propagation problem that the mis-
matched patterns propagate to the rest. The evolutionary computation (EC)
algorithms, such as the genetic algorithm, are widely known for the powerful
global optimization capability and the flexibility in dealing with arbitrary objec-
tive formulations [7,19]. This paper focuses on utilizing the EC paradigm for
solving jigsaw puzzle. However, this type of algorithm faces the “curse of dimen-
sionality” problem, whose performance degrades fast when the number of pieces
increases.

To address the above-mentioned issues, we develop a multi-strategy evolu-
tionary approach (MSEA) for the efficient assembling of image pieces. Typically,
an evolutionary algorithm (EA) is composed of a main loop of the reproduc-
tion and selection operations to evolve the candidate solutions and approach to
the optimum. On the other side, there are two crucial components of a jigsaw
puzzle solver: an estimation function to evaluate the compatibility of adjacent
pieces and an assemble strategy to place the pieces. Note that the first com-
ponent determines the fitness evaluation step in the selection operation of EC,
while the second component relies on the reproduction operations. Following
this line of thinking, for an efficient jigsaw puzzle solver, we specifically develop
novel reproduction mechanisms for generating high-quality solutions, and we
also design a comprehensive fitness function to improve the effectiveness of the
selection operation.

The novelties of MSEA are summarized in the following. 1) An elite-based
crossover (EBC) operator is proposed to synthesize the genetic information of
the parents to generate the offspring. EBC incorporates the historical guidance
of elite individuals (i.e., solutions) to assign the adjacency patterns with dif-
ferent priorities. Then, it applies heuristic rules based on the priority hierarchy
to reproduce solutions. The mechanism is good at identifying promising pat-
terns and passing them to the offspring. 2) A four-strategy mutation is devel-
oped, which consists of an unfit point exchange (UPE) strategy, a random point
exchange (RPE) strategy, an unfit line exchange (ULE) strategy, and a random
line exchange (RLE) strategy. The mutation not only fixes some particularly
unsuitable placement of pieces but also enhances the search diversity to avoid
the premature convergence. 3) A comprehensive fitness function named distance
and gradient compatibility (DGC) is designed to evaluate the solution quality
and guide the selection operation that maintains good solutions and discards
inferior ones. Experiments and the comparisons with existing algorithms vali-
date that our MSEA is a powerful and stable algorithm for solving jigsaw puzzle
problem.

2 Related Work

The first attempt of jigsaw puzzle solver has been made in [5]. The early works
were mostly based on the shape of puzzles. Then, the research direction turned
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Fig. 1. The pipeline of MSEA.

towards the content-based jigsaw puzzle problems [10,20] and identical square
pieces [3,6,8,13–16,18]. In this paper, we only discuss the content-based jigsaw
puzzle problem with square pieces.

Greedy Methods: Pomeranz et al. [14] presented an automatic square puzzle
solver based on a greedy method. The algorithm tackles three subproblems,
namely, placement, segmentation, and reconstruction, iteratively. To improve the
work of [14], Paikin et al. [13] presented a greedy algorithm with more careful
initial configuration, which can solve jigsaw puzzles with additional challenges.

Hierarchical Methods: Gallagher [6] proposed a tree-based assembly approach
using a new piece compatibility score focusing on the gradients near the bound-
ary of adjacent pieces. Hammoudeh [8] introduced an agglomerative hierarchical
clustering-based solver for mix-bag jigsaw puzzle problem. Son [18] proposed
an algorithm based on hierarchical cyclic constraints, which uses a bottom-up
loop puzzle fragment construction method to reconstruct images. However, for
hierarchical methods, the existing matching error in the early fragments will
propagate to the rest.

Advanced Approaches: Sholomon et al. [16] shown the potential of the genetic
algorithm (GA) that can solve a very large jigsaw puzzle. Rika [15] combined
GA and deep learning to reconstruct Portuguese tile panels. The evolutionary
algorithms such as the GA are powerful global optimizers specialized in solving
NP-complete problems, and they have seen successful applications in solving the
jigsaw puzzles. However, there are several important issues that still remained
unexplored. For example, how to fully exploit the historical information dur-
ing the evolution in order to inherit promising patterns of piece matching and
produce high-quality offspring, and how to specifically address targeted unfix
situations in order to enhance the global optimization capability. In this paper,
we apply multiple strategies to evolution algorithm and propose our MSEA for
solving the jigsaw puzzle problem.
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3 The Multi-strategy Evolution Algorithm

This paper develops a multi-strategy evolution algorithm, the MSEA, which is a
global optimizer to solve jigsaw puzzle. Figure 1 depicts the pipeline of MSEA.
The details are illustrated in Sect. 3.1–Sect. 3.5. The problem input is a set of
M × N disordered pieces of an image. In MSEA, each individual is represented
as an M × N matrix,where each element stores the ID of a jigsaw piece.

3.1 Compatibility Between Pieces and the Objective Function

In EC, the objective function is utilized to evaluate the fitness of each individual.
We use (xi, xj , R) to denote the relation between pieces xi and xj , where R ∈
{l, r, a, b} represents the space relationships (left/right/above/below) of the two
pieces. Each piece is represented by a K × K matrix of pixels, where each pixel
is a triple in the normalized CIELAB color space.

Our proposed measure combines the pixel distances of the connecting bound-
aries of the two adjacent pieces and the gradient changes across the boundaries.
The study in [11,12] have shown the effectiveness of processing color compo-
nents reasonably. By integrating the gradient information between adjacent pixel
points, the pairwise compatibility measure between pieces can be more informa-
tive. Suppose that a piece xj is placed on the right side of xi, the compatibility
between the two pieces is calculated as

Vp,q(xi, xj , r) = Dp,q(xi, xj , r) + Gp,q(xi, xj , r) (1)

Dp,q(xi, xj , r) = (
K∑

k=1

3∑

d=1

(|xi(k,K, d) − xj(k, 1, d)|)p)
q
p (2)

Gp,q(xi, xj , r) = {
K∑

k=1

3∑

d=1

[|δij
r (k, d) − Eij

r (k, d)|]p} q
p (3)

where,
δij
r (k, d) = xj(k, 1, d) − xi(k,K, d) (4)

Eij
r (k, d) =

1
2
(xi(k,K, d) − xi(k,K − 1, d) + xj(k, 2, d) − xj(k, 1, d)) (5)

In the equations, xi(k,K, d) represents the pixel value in the kth row, Kth
column, and dth channel of the pixel matrix (jigsaw puzzle piece). Note that the
gradient change calculation in Eq. (3) follows the work in [18]. We use the asym-
metric dissimilarity with Lp

q norm [14]. To maximize the compatibility between
two pieces, their Vp,q values should be minimized. The overall cost function,
distance and gradient compatibility (DGC), is defined as below:

DGC(p, q) =
N∑

i=1

M−1∑

j=1

(Vp,q(xi, xj , r))+
N−1∑

i=1

M∑

j=1

(Vp,q(xi, xj , b)) (6)
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Fig. 2. Illustration of the construction manner in the crossover. The slots around the
kernel are marked in blue, and the unsettled slots are marked in gray. The operator
joins piece into blue slots that are neighboring the kernel. (a) initial stage with only
one piece D. (b)–(d) allocation of selected pieces.

3.2 Selector

In MSEA, we use the tournament selection, which is a useful and robust selection
mechanism [1]. The selector first randomly chooses a group of individuals from
the population, and then it chooses the best one from the group of individuals
for population reproduction. The above procedure involves a parameter, namely
the group ratio s that decides the number of individuals participating in the
competition, which controls the convergence rate of MSEA.

3.3 Elite-Based Crossover

We design an EBC that absorbs the promising genetic materials from both
parents and elite individuals. Particularly, three individuals participate in the
crossover, two of which are chosen by the selector, and the remaining one is
selected randomly from the preserved elite individuals. The elite individuals are
the individuals whose fitness values are ranked at the former e place in each gen-
eration. Using elite individuals to participate in crossover, the operator can make
full use of historical experience information to improve the search efficiency.

The next issue becomes how to inherit the valid genetic information from the
three parent individuals. The proposed crossover operator counts the pairwise
adjacency patterns in the parent individuals and divides them into “3A”, “2A”,
and “other” categories to obtain an agreement table. The “3A” relationship
indicates that all three parent individuals contain the pattern (agree to the
relationship), the “2A” relationship means that two of the parent individuals
contain the pattern, and the “other” means that the pattern only occurs once.
Our crossover operator will be executed in a hierarchical manner that it gives
the highest priority to preserve the “3A” patterns and then the “2A” patterns.
The basic idea is to maintain the previously found good patterns and explore
the others. Details of the proposed EBC are presented below.

Constructive Manner: As shown in Fig. 2, given the selected parent individ-
uals, the crossover operator first chooses a piece randomly as a “seed” (a kernel)
and place it in the center of the solution matrix. Then, the kernel is grown up
by gradually filling the empty slots around it with the other available pieces
selected using some heuristic rules. When the placement of a piece exceeds the
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Fig. 3. The state transition diagram of EBC.

image boundary, the entire kernel is shifted one place to make a space for the
piece. This makes the location of pieces be not certain before the offspring being
completed, which ensures the position independence property when constructing
the solutions. The above kernel grow-up and shift mechanisms repeat until the
entire solution matrix has been filled up. Note that this constructive manner
follows the approach developed by Sholomon [16].

Elite-Based Heuristic Rules: The elite-based heuristic rules are applied to
select the appropriate piece when needed , by which the state transition diagram
of EBC is shown in Fig. 3. The placer repeats the below three phases until it
completely reproduces an offspring.

Phase 1 Agreement-Table Match: Given all the existing boundary pieces of the
current kernel, the placer checks checks the agreement table. When there is only
one available “3A” boundary pattern, the placer directly implements it. When
there are multiple “3A” boundary patterns, one of these is selected randomly.
After a piece xj has been placed, the piece becomes no longer available that
all the other patterns that involves the piece xj will be ignored in the following
procedure. Repeat this process until there is no more available “3A” boundary
pattern existing. Then, the placer turns to check “2A” boundary patterns, and
places the piece in a similar manner. This phase terminates when there is no
more available “2A” boundary patterns to realize.

Phase 2 Best-Buddy Match: Two pieces are regarded as the best buddies [14] if
each of them considers the other as its most appreciate piece. Piece xi and piece
xj are the best buddies if they hold:

∀xk,∀xp, C(xi, xj , r1) ≥ C(xi, xk, r1) ∧ C(xj , xi, r2) ≥ C(xj , xp, r2) (7)

where r1 and r2 are the opposite spatial direction. Given existing boundaries,
the placer checks whether one of the parents contains best buddies. If so, the
corresponding buddy piece will be assigned. As before, when multiple best-buddy
pieces are available, the placer chooses one to assign at random.

Phase 3 Greedy : The third phase begins when there is no available best-buddy
piece. The placer chooses a boundary at random, selects the most compatible
piece of it, and place the piece to the proper slot.
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Fig. 4. Unfit points [(a) and (b)] and unfit lines [(c) and (d)] in MSEA iteration. The
unfit points and lines in the figure have been marked by red boxes. (Color figure online)

3.4 Four-Strategy Mutation

Mutation is used to simulate a random perturbation on the genotype of individ-
uals and alter the product of genes. In MSEA, we develop four solution variation
strategies for mutation: UPE, RPE, ULE and RLE. Shown in Fig. 4, the UPE
strategy is used to address the situation that some pieces appearing in the MSEA
iteration are not suitable for the surrounding, and the ULE strategy is mainly
for the case where a line of consecutive pieces is placed improperly. Besides, the
RPE and RLE are random strategies as the traditional mutation does, but they
are performed at different levels of granularity.

Point Exchange: the point exchange strategies are used to find those unfit
pieces and try to place them in more appropriate positions. The number of
points to be exchanged, denoted as enp, is determined by a probability Pmt.

UPE : the mutation operator sorts all patterns involved in the individual based
on their pairwise compatibility. For the top 2 × enp worst pieces, enp times of
random exchanges are performed.

RPE : each piece with random(0, 1) < Pmt will be exchanged with a random
piece once. The strategy increases the diversity of individuals in the population.

Line Exchange the line exchange strategies attempt to correct a line of L
consecutive pieces that shifts slightly from its appropriate position, where the
length L is generated randomly and validly in length. Since we need to consider
both column exchange and row exchange, one of them is chosen at random.

ULE : taking row exchange as an example, the operator calculates the local
fitness LF of every line segment, and chooses the most inappropriate one.

LF (Lr, Lc, L) =

⎧
⎨

⎩

fdown(Lr, Lc, L), Lr = 0
1
2 (fdown(Lr, Lc, L) + fup(Lr, Lc, L)), 0 < Lr < M
fup(Lr, Lc, L), Lr = M

(8)

fdown(Lr, Lc, L) =
L∑

j=Lc

Dp,q(xLr,j , xLr+1,j , b)

fup(Lr, Lc, L) =
L∑

j=Lc

Dp,q(xLr,j , xLr−1,j , a)

(9)
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Algorithm 1: Pseudocode of MSEA.

Input: I(M, N): a set of M × N disordered pieces of an image, Population size P ,
Maximum generation Tmax , Tournament rate s , Elite number e, Random rate
parameters: Pmt, Pmb, Pmp, Mutation parameters: ω1, ω2

Output: a jigsaw puzzle solution
1 population ← generate P random individuals;
2 evaluate all individuals of population using the objective function;
3 repeat
4 new population ← ∅ ;
5 copy e best individuals to new population;
6 while size(new population)≤ P do
7 parent1 ← select individual;
8 parent2 ← select individual;
9 parentElite ← select elite individual;

10 child ← crossover (parent1, parent2, parentElite);
11 child ← mutation(child);
12 add child to new population;

13 end
14 population ← new population ;
15 evaluate all individuals of population using the objective function;
16 diversity enhancement strategy;

17 until the maximum generation Tmax is reached;

where Lr represents the row of the piece xLr,Lc
, Lc indicates the column of

the piece xLr,Lc
, and (Lr, Lc) is the start index of the line segment L. After

the exchange segment has been selected, the operator checks the local fitness in
condition of assigning it to all slots of the puzzle. If there exists one slot that
is more appreciate to assign the segment, the operator exchanges the chosen
segment and the one in the slot.

RLE : the operator randomly generates two start points to determine the
exchange lines. Then, two selected lines of pieces are exchanged in position.

The proposed four-strategy mutation merges the above UPE, RPE, ULE,
RLE strategies in a frame with two parameters. The parameter ω1 controls the
ratio of point exchange and line exchange, and the parameter ω2 adjusts the
proportion of random strategy participation.

3.5 Diversity Enhancement Strategy

We further incorporate a diversity enhancement strategy into MSEA to avoid
the premature convergence. This strategy checks whether there is no significant
change in the population fitness of four successive generations, which is called
stagnation. When stagnation occurs, for each individual except the elite ones, the
MSEA executes either a block exchange strategy or a point exchange strategy
at random. The block exchange strategy simply generates two blocks and swaps
them, in which the block size is determined by a probability parameter Pmb.
The point exchange strategy is the same as the RPE in the mutation with a
parameter Pmp , but they are executed in different situations.
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Table 1. Comparison of different jigsaw puzzle solvers under the NC metric.

Image Set Pomeranz et al. (%) Sholomon et al. (%) Paikin et al. (%) MSEA (%)

Best Avg Best Avg Best Avg Best Avg

MIT-432 94.81 88.65 94.16 93.19 94.48 - 95.96 95.61

McGill-540 89.82 81.72 88.61 87.51 92.50 - 96.19 95.42

BGU-805 89.73 81.74 90.97 89.70 93.50 - 96.87 96.07

BGU-2360 93.89 86.43 75.29 74.37 93.32 - 97.09 96.52

BGU-3300 86.39 83.50 73.65 72.56 90.73 - 94.10 93.39

SR-805 87.70 74.62 80.16 78.20 95.19 - 98.71 98.14

SC-3300 83.62 76.61 81.08 79.76 97.05 - 98.58 98.29

* The numerical results reported in [18] on MIT-432, McGill-540, BGU-805, -2360 and
-3300 are 95.60, 97.00, 95.50, 96.00 and 97.70.

4 Experiments

4.1 Experimental Setup and Test Sets

Experiments are carried on seven datasets of different scales, including the set
of images supplied by Cho [3] (MIT-432) and the four image sets supplied by
Pomeranz [14] (McGill-540, BGU-805, BGU-2360 and BGU-3300). The image
sets above are the most commonly used dataset to examine the performance of
jigsaw puzzle solvers, which contains 20 images of 432-, 540-, 805-pieces puzzles
and 3 images of 2360- and 3300-pieces puzzles. Following [14,16], all images are
composed of 28 × 28-pixel patches. In addition, we also test the proposed MSEA
on the 805-pieces partial images of Urban100 (SR-805) [9] and our generated
image set consisting of 10 images with 3300 pieces (SC-3300).1

The proposed MSEA algorithm is compared with three jigsaw puzzle solvers:
two are based on local greedy methods [13,14] and the other is based on the
genetic algorithm (GA) of Sholomon et al. [16]. Each algorithm is independently
executed ten times to obtain the statistic results, except for the greedy algorithm
that is deterministic [13]. Besides, we also compare with the numerical results
reported in [18] on the same datasets tested. The parameters p and q in the
objective function are set to 0.5 and 1.0 after experiment. The pseudo code
of MSEA is shown in Algorithm 1, in which the parameter values are set as:
the population size P = 1000, maximum generation Tmax = 100, group radio
s = 0.01, elite number e = 4, random rate parameters: Pmt = 0.01, Pmb =
0.8, Pmp = 0.1, mutation parameters: ω1 = 0.8, ω2 = 0.5.

4.2 Performance Metrics

To evaluate the image reconstruction quality of different algorithms, standard
performance metrics are used, namely, the direct comparison metric and the
neighbor comparison metric [3]. Direct Comparison (DC): the ratio between

1 Link to the dataset: https://github.com/SenhuaZhao/SC-3300.

https://github.com/SenhuaZhao/SC-3300
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Fig. 5. Solved jigsaw puzzles on images ‘shade’, ‘harbor’ and ‘station’ of SC-3300.

Fig. 6. Reconstruction process of MSEA on images ‘station’, ‘boat’ and ‘buildings’ of
SC-3300. (a) The input images. (b)–(e) The best solutions in the first,second,tenth and
twentieth generation. (f) Output images. (g) Original images.

the number of pieces that are placed in their correct position and the total num-
ber of pieces. Neighbor Comparison (NC): the ratio between the number
of pairwise piece adjacencies that are correct in the origin image and the total
number of pairwise piece adjacencies. When comparing the performance of dif-
ferent algorithms, we mainly focus on the NC metric, since the DC metric is
very sensitive to a slight shift of some patterns found in the solution.

4.3 Comparison Results

Table 1 presents the results achieved by the comparison algorithms mentioned
above and our MSEA on each dataset. The data reported are the average of
the mean and best NC scores for all images in each dataset. As can be seen
from Table 1, the proposed MSEA obtains the best value on all datasets, and its
performance is very stable for different scales of jigsaw puzzles. Note that Paikin
et al.’s algorithm [13] is deterministic. In addition, the final assembly results
obtained by different algorithms are shown in Fig. 5. The selected images are
challenging because they contain smooth contents or narrow textures. It can be
seen that the previous algorithms return the assembly with some false configu-
rations. In contrast, the proposed MSEA performs much better than the others,
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Table 2. The average accuracy of MSEA, where the best, worst, and standard deviation
in each dataset are presented after ten executions.

Image Set Avg. Best (%) Avg. Worst (%) Avg. Avg. (%) Avg. Standard Deviation (%)

NC DC NC DC NC DC NC DC

MIT-432 95.96 96.33 95.15 90.73 95.61 94.56 0.33 2.64

McGill-540 96.19 94.19 94.79 91.80 95.42 92.96 0.45 0.79

BGU-805 96.87 96.29 95.27 93.34 96.07 94.88 0.50 0.97

BGU-2360 97.09 94.92 96.25 94.35 96.52 94.61 0.24 0.16

BGU-3300 94.10 91.18 92.63 87.85 93.39 89.50 0.50 1.26

SR-805 98.71 98.80 97.58 89.24 98.14 94.08 0.39 4.65

SC-3300 98.58 98.82 97.82 97.71 98.29 98.50 0.24 0.36

owing much to its powerful global optimization capability and the specifically
designed new evolution strategies.

4.4 In-Depth Performance of MSEA

The optimization process of MSEA is illustrated in Fig. 6. Three images are from
the SC-3300 dataset, where each puzzle consists of 3,300 pieces. Note that the
third image of column (d) triggers the diversity enhancement strategy to enhance
population diversity, so that it is a little bit disordered. Generally, as the iter-
ation progresses, the fitness value of the entire population becomes higher, and
adjacent segments (or relationships) in individuals are gradually linked. Even-
tually, these segments and the adjacency relationship are shifted to a possible
correct absolute position to generate the final solution. It can be seen that the
final solutions are very close to the original images. The output NC accuracy
from top to bottom is 94.5%, 99.5% and 99.9%.

For each image set, the averages of the best, worst, and mean results for all
images obtained by MSEA, as well as the standard deviations, are recorded in
Table 2. Note that each dataset contains one or more images that contain smooth
contents, e.g.., a region of blue sky. The lack of sufficient texture information for
these smooth regions challenges the algorithm to restore the pieces into the cor-
rect absolute positions. Nevertheless, the MSEA’s NC accuracy on each dataset
is above 94% and its DC accuracy is above 90%. At the same time, the standard
deviation of the algorithm is small, and the best, worst value of the algorithm is
similar to the average value. In addition, MSEA exhibits a good performance for
the dataset with a large number of pieces. Thus, although the algorithm is non-
deterministic with some random decisions, the results of multiple tests indicates
that MSEA is stable and robust under different situaions.

5 Conclusion

In this paper, a multi-strategy evolution algorithm named MSEA is designed
to tackle the jigsaw puzzle problem. The promising performance of MSEA
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owes much to the comprehensive objective function and the global optimiza-
tion method it applies. The EBC operator generates offspring by making full
use of historically promising patterns in a hierarchical manner, accelerating the
algorithm to find high-quality solutions. The four-strategy mutation adapts the
algorithm to different conditions of jigsaw puzzles, performing a local search
on the solution generated by the algorithm. Besides, the diversity enhancement
strategy prevents the algorithm from premature convergence. With the EBC and
all these strategies, MSEA can handle different puzzle situations and perform
well on various types of images. The experimental results show that the MSEA
outperforms the state-of-the-art algorithms on different datasets. Owing to the
good performance of MSEA, it is appealing to extend the algorithm for other
types of jigsaw puzzles or piece assembly problems in the future.
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Abstract. Card counting is a family of casino card game advantage
gambling strategies, in which a player keeps a mental tally of the cards
played in order to calculate whether the next hand is likely to be in the
favor of the player or the dealer. A card counting system assigns point
values (weights) to the cards. Summing the point values of the already
played cards gives a concise numerical estimate of how advantageous the
remaining cards are for the player. In theory, any assignment of weights is
permissible. Historically, card counting systems used integers and rarely
the 1/2 and 3/2 fractions, as computation with these are easier and more
tractable for the human memory.

In this paper we investigate how much advantage would a system
using real valued weights provide. Using a blackjack simulator and a
simple genetic algorithm, we evolved weights vectors for ace-neutral and
ace-reckoned balanced strategies with a fitness function that indicates
how much a given strategy empirically under or outperforms a simple
card counting system. After convergence, we evaluated the systems in
the three efficiency categories used to characterize card counting strate-
gies: playing efficiency, betting and insurance correlation. The obtained
systems outperform classical integer count techniques, offering a better
balance of the efficiency metrics. Finally, by applying rounding and scal-
ing, we transformed some real valued strategies to integer point counts
and found that most of the systems’ extra edge is preserved. However,
because of the large weight values, it is unlikely that these systems can
be played quickly and accurately even by professional card counters.

Keywords: Card counting strategies · Evolutionary computation.

1 Introduction

Blackjack is unique among casino games as it affords to an observant player
an opportunity to have an advantage over the house. There is ample statistical
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evidence that high cards benefit the player, while the low cards are advantageous
to the dealer. In his 1962 book, Beat the Dealer [17], Edward O. Thorp described
a system and proved that it gave a blackjack player an edge over the house. While
Thorp is considered the father of card counting, even before the publication
of its seminal work, professional card counters were already exploiting casino
blackjack games for a profit. Since the early days of card counting, a plethora
of other systems were proposed with the aim of offering a better ease-of-use vs.
profitability balance, or as responses and adaptations to the counter-measures
taken by casinos to curb the profitability of card counting. The documentary
film “The Hot Shoe”1 provides a nice overview of the card counting history.

Blackjack in general [19] and optimal strategies (when to hit, double, stand
or split) and count systems in special [2,3,5,8,12], have received considerable
attention from the AI community. Most approaches use evolutionary algorithm
(EA) to optimize the strategies over simulated hands, while others use neural
network to develop complete blackjack players.

Historically, the manually developed count systems or the ones obtained via
artificial evolution [5] were targeted for use by humans. Therefore, these systems
restrict the point counts to only integers (and rarely simple fractions) so people
can perform the calculations mentally, relatively simply. In this paper we inves-
tigate i) if a count strategy that use real valued weights offers any meaningful
edge over the integer restricted ones; ii) and if it does, can the system be trans-
formed into an integer point count system that preserves (part of) the additional
advantage.

2 The Game of Blackjack

Blackjack, also known as 21, is a card game in which a player or players compete
against the dealer or “house”, by obtaining a sum of cards that is as close to 21
as possible, without exceeding that value (busting). The game is played with one
to eight decks of 52 French cards. The rules of Blackjack can vary by country
and even by casino.

First, the dealer shuffles the card, while the players make their bets that are
in-between a minimum and maximum bet size and can not be changed once or
taken back the first card is dealt. The house deals cards from left to right, one
by one. Players start with two cards, both face up, while only one of the dealers
card is visible. The values of the cards between two and ten are their pip value
(2 to 10), Jacks, Queens and Kings are all worth ten while the Ace has two
values: one or eleven. The value of a hand equals sum of the card values. While
pursuing the goal of getting as close to twenty-one as possible, every player can
draw, request as many cards as they wish, an action called Hit. The player can
also choose to Stand - take no more cards, Double - double the bet and draw
one last card or Split, to obtain two separate hands from an initially dealt set
of pairs. The dealer cannot double down. Some casinos let the player Surrender
after seeing the first two cards, for a portion of the bet.
1 https://www.imdb.com/title/tt9414698/.

https://www.imdb.com/title/tt9414698/
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The most valuable hand is an Ace paired with a ten value card. This is
called a Blackjack. It depends on the casino whether or not this beats, draws or
loses to the Blackjack of the dealer. A player automatically loses, if they draw
more than twenty-one. Once all players completed their hands, the dealer turns
over his hidden card and is obligated to draw until his hand values is at least
seventeen, where they stop and they compare their hand to the ones obtained
by the players. A player is considered a winner if is closer to twenty-one than the
house. In case their hand value is equal, it’s a draw, otherwise the player loses.

When the dealer’s up card is an Ace, the players are allowed to take an
“insurance” bet. If they two, the price is half the bet. If the dealer face down
card is a ten, the insurance bet pays 2:1. The maximum size of the insurance
bet is half of the current bet size. The odds of the dealer making a Blackjack is
9:4, therefore insurance can become profitable only if the player counts the cards
and knows that there are proportionally above average ten-point cards still left
in the shoe.

Edward O. Thorp used computer simulations to test each distinct situation in
a blackjack game and derive the best action the player can take. This collection
of rules is called Basic Strategy and when strictly followed, it decreases the edge
of the house from 4% to 0.5% [9]. Since then the game has changed, now it
is usually played with more than one deck of cards (to reduce the efficiency
of card counting systems). Nevertheless, each blackjack game still has a Basic
Strategy2, which describes the optimal method of playing any hand against
whatever the dealers up card is. Rarely, casino promotions such as limited 2:1
blackjack payouts enables players to have an edge over the house just by playing
the basic strategy.

2.1 Card Counting Principles

Card counting strategies are built upon the observation that high cards benefit
the player more than the dealer, while the opposite is true for the low cards. 5s
help the dealer the most, thus many such cards remaining in the shoe is very
disadvantageous for the player. Higher concentration of high cards benefit the
player because it increases the player’s chances of hitting a Blackjack, which
pays out at a 3:2 rate, while the dealers Blackjack is valued at 1:1. When the
deck is stacked in such way the player has the option of Doubling down on
additional hands, to increase the expected profit, while the dealer is restricted
from Doubling. It also leads to more splitting opportunities for the player, while
the dealer, again, is restricted from Splitting. Also, a high enough concentration
of 10’s increases the probability of the dealer making a blackjack from 4/9 to
over 0.5, making the insurance bet profitable.

A concentration of low cards benefit the dealer, since according to the rules
the dealer must continue Hitting until he reaches 17. For the common hand
values of 12–16, the dealer would bust for every 10-valued card, while low cards
provide safety, and hand values close to or spot-on 21.

2 https://en.wikipedia.org/wiki/Blackjack#%23Basic strategy.

https://en.wikipedia.org/wiki/Blackjack#%23Basic_strategy
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Casinos have implemented many changes to the game rules and casino poli-
cies, in an effort to combat bleeding money to professional card counters. While
the edge of the card counter player can be severely reduced, it can not be com-
pletely eliminated. Countermeasures include increasing the number of decks or
shoe count, preferential shuffling - shuffling when the remaining cards are deemed
to favour the player, decreasing deck penetration by reshuffling early, no mid-
shoe entry into the game, continuous shuffling etc.

Card counting systems assign a positive, negative, or zero point value to each
card value available. Once a card is dealt, the so called running count, which
starts from 0, is adjusted by that card’s point value. Low cards usually have
positive point values and raise the value of the count, signaling the increased
percentage of high cards in the remaining decks. Conversely, high cards have
negative values and they decrease the count for the opposite reason. System
that assign 0 point values to cards (usually 7–9, sometimes aces) consider them
neutral and they do not affect the running count.

2.2 Efficiency Metrics

Good card counting strategies must perform well several objectives and metrics,
that gauge different aspects of the game. Following the work of Peter A. Griffin
[6], strategies aim to achieve a balance of efficiency in three categories:

1. Playing Efficiency (PE) or Strategic Efficiency. This metric indicates how well
a counting system can be used to vary playing strategy, according to the actual
composition of the remaining cards in the shoe. PE is particularly important
in hand-held games that only use one or two decks of cards. Approximately
0.70 is the cap on the highest possible PE [6] for a single parameter count-
ing system, that does not use side counts. PE is not relevant to unbalanced
counting systems (the running count does not equal zero after all cards are
dealt), therefore in this paper we only develop balanced strategies.

2. Betting Correlation (BC) gauges how well the system detects the player
advantage based on the remaining undealt cards. Effective card counting sys-
tem assign point values to each card that correlates well with the card’s “effect
of removal” as computed in [17], enabling a good estimation of the edge pro-
vided by the composition of cards still to be dealt. The player advantages in
percentages, when removing card types from Aces, 2, 3 ... to ten-valued cards
are: −2.42, 1.75, +2.14, +2.64, +3.58, +2.40, +2.05, +0.43, −0.41, +1.62.
Larger ratios between the point values permit a higher correlation but they
also result in an increased complexity, mentally more taxing computations of
the count. By taking the ratio between the highest and lowest assigned point
values of a system, counting strategies may be referred to as “level 1”, “level
2” etc. The correlation value computed by the BC can approach 1.00.

3. Insurance Correlation (IC) expresses how well a counting strategy indicates
whether an Insurance bet should be taken. A high IC offers additional value
to a card counting system, as the expected gain from counting cards also
comes from taking the insurance bet, when the count is high. A point value
of -9 for tens and +4 for all other cards provides a maximal IC value.
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To obtain a single valued overall metric that permits an easy comparison of
strategies, in this paper we will use the Unified Performance Metric (UPM), that
for a point value count vector w, simply computes the normalized averages of
the above mentioned metrics:

UPM(w) =
PC(w)/0.7 + BC(w) + IC(w)

3
(1)

2.3 Card Counting Strategies

Table 1 illustrates a few famous balanced card counting systems and their respec-
tive performance metrics.

Table 1. Comparison of different balanced card counting strategies. The first 10
columns after the strategy name describe the card values used in counting, while the
last 4 contain different performance metrics, namely the Playing Efficiency, Betting
Correlation, Insurance Correlation and Unified Performance Metric defined in Eq. 1

Strategy A 2 3 4 5 6 7 8 9 10JQK PE BC IC UPM

Hi-Lo -1 1 1 1 1 1 0 0 0 -1 0.51 0.97 0.76 0.8195

Hi-Opt I 0 0 1 1 1 1 0 0 0 -1 0.61 0.88 0.85 0.8671

Hi-Opt II 0 1 1 2 2 1 1 0 0 -2 0.67 0.91 0.91 0.9257

Mentor -1 1 2 2 2 2 1 0 -1 -2 0.62 0.97 0.8 0.8852

Omega II 0 1 1 2 2 2 1 0 -1 -2 0.67 0.92 0.85 0.9090

Revere Point Count -2 1 2 2 2 2 1 0 0 -2 0.55 0.99 0.78 0.8519

Revere RAPC -4 2 3 3 4 3 2 0 -1 -3 0.53 1 0.71 0.8223

Revere 14 Count 0 2 2 3 4 2 1 0 -2 -3 0.65 0.92 0.82 0.8895

Wong Halves -1 0.5 1 1 1.5 1 0.5 0 -0.5 -1 0.56 0.99 0.72 0.8366

Zen Count -1 1 1 2 2 2 1 0 0 -2 0.63 0.96 0.85 0.9033

Averages 0.599 0.9454 0.8009 0.8674

The Hi-Lo or the “Complete Point-Count System” balanced card counting
strategy was first introduced by Harvey Dubner in 1963 at the Fall Joint Com-
puter Conference in Las Vegas and was later refined by Julian Braun and dis-
cussed by Edward Thorp’s famous book, Beat the Dealer [17] (pp. 93–101). The
Hi-Lo is the most commonly used card counting strategy and the majority of
simulations and studies are based on this count. Hi-Lo has a high BC of 0.97
but its PE is the smallest and the IC is also below average.

Hi-Opt I and Hi-Opt II are strategies developed by Lance Humble and its
collaborators [7]. Because of their high PE they are very suited for single deck
games. Hi-Opt II has the highest UPM and its still used by many professional
blackjack players as it works very well in shoe games, outperforming many other
systems [15].

Mentor [13] is a strategy developed with the aim of being suitable for both
hand-held and shoe games. It achieves this balance with an above average PE
and BC, and slightly below average IC.
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Omega II [1] is a more complex counting system created by Bryce Carlson,
with one of the highest PE and above average IC. It has the second highest UPM
of the strategies from Table 1.

Revere Advanced Plus-Minus, Revere Point Count, Revere RAPC and Revere
14 Count are balanced strategies developed by Lawrence Revere and described in
its book Playing Blackjack as a Business [14]. Revere was originally a blackjack
dealer, and trained many players to count cards with his advanced systems and
also shared techniques meant to avoid detection by casinos. His counting systems
have very high BC, thus are very suited for shoe games.

Wong Halves [20] is special counting system that also uses fractions, not
just integers. It has a near perfect BC of 0.99, however the PE and IC is way
below the average. In practice, many players double the tag values to remove
the fractions.

Zen Count [16] is an advanced balanced counting strategy, with all 3 metrics
well above average. Similarly to Mentor, it was designed to provide a balance
between single-deck and multi-deck strategies.

3 Methods

3.1 Genetic Algorithm

For evolving the strategies we use a Genetic Algorithm [18] implemented with
the help of the Distributed Evolutionary Algorithms in Python (DEAP3) [4]
framework.

The solution are encoded as vectors of float numbers of length 9 in case of
ace-reckoned strategies, one float weight for the cards ranging from Ace, 2, 3 to
9. In the case of ace-neutral strategies, the first weight is always zero, therefore
the method optimizes the remaining 8 point counts.

As observed, the genetic algorithm does not search for the point value for
the 10-J-Q-K cards. Instead, this value is computed from the other weights, in
order to ensure that the strategies are all balanced, the count after playing all
cards is zero:

w10 = −
∑9

i=1 wi

4
(2)

The method uses a population size of 100 individuals, tournament selection of
size 2 [10], crossover probability of 0.8. After crossover, individuals are mutated
with a probability of 0.5; if mutations occurs, each allele is perturbed with a
probability of 0.2 using a Gaussian mutation with μ = 0 and σ = 0.1.

Objective Function. Blackjack is a nonlinear potentially chaotic game[5],
therefore attempts to actually calculate the expected gain from a particular
system often rely on simulation techniques [11,17].

3 https://deap.readthedocs.io/en/master/.

https://deap.readthedocs.io/en/master/
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In this paper we also asses the quality of the evolved strategies according
to bench–marks obtained from a simple but efficient blackjack simulator. The
simulator takes a given strategy expressed as an array of 10 elements as input
and simulates that strategy over a user selected shoe count (number of decks
used for playing), allowed shoe penetration before reshuffling and number of
random hands played. The bet sizes are adjusted according to the current count
and the supplied bet spread. If the input is comprised only of zeros (no card
counting), the simulator executes the basic strategy. The simulator returns a net
overall result summing up all the game results.

The fitness function for a strategy characterized by a weight vector w is
defined as the difference between its benchmarks results and the net Hi-Lo strat-
egy, divided by the number of played hands:

F (x) =
sim(w, hands) − sim([−1, 1, 1, 1, 1, 1, 0, 0, 0,−1], hands)

length(hands)
(3)

In our experiments, the number of hands used in the bench-marks is 10e6. Due
to the high variability of blackjack game, these hands are re-sampled every gen-
eration. Therefore, the fitness function is noisy, an individual fitness can vary
slightly from generation to generation. F (w) is positive if the strategy encoded
by w outperforms the Hi-Lo strategy on the actual hands. We have chosen the
Hi-Lo system as the baseline as this is the most commonly used card counting
strategy and the majority of previous studies and simulations were also based
on this count. However, other strategies can also be used to provide a baseline.

3.2 Expert Advisor Mobile Application

For testing and training purposes we also developed an Expert Advisor that scans
and recognizes the played cards and indicates what to play next, according to
the actually loaded strategy. While card counting with the mind is legal, the use
of an automatic card counting device in a casino game would be illegal in most
jurisdictions.

Fig. 1. Expert Advisor for testing and training purposes.
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The flowchart of the card processing is depicted in Fig. 1. To identify the
cards we used EdjeElectronics’s OpenCV Playing Card Detector 4. The method
first detects the card object in the image frame. Then it processes the card image
determining its corner points and corrects for perspective and obtains a flattened
200× 300 pixels sized image of the card. In the last step, the method isolates
the card’s suit and rank from the flattened image. The detector works best if it
is provided with sample rank and suit images generated from the actual playing
cards.

4 Experiments and Results

Some strategies count the ace (ace-reckoned strategies) while others do not (ace-
neutral strategies). Counting the aces usually improves betting correlation since
the ace is the highest value card in the deck for betting purposes. However,
since the ace can either be counted as one or eleven, is both a small and a
high card. Including it in the count decreases playing efficiency, therefore many
experts prefer to assign a value of zero to the ace. To obtain strategies with
emphasis on BC (more important in shoe games) but also ones that emphasize
PE (more important in single- and double-deck games) more, we searched for
both flavours of strategies with 150 runs of the genetic algorithm, each run
spanning 50 generations. The simulator was configured with a shoe count of 6
and 10e6 played hands, the minimum bet size was 1 while the maximum was set
to 100.

The average, minimum and maximum fitness values obtained from the runs
is depicted in Fig. 2. The runs show a great variability in the range of fitness
values, which can be attributed to the noisy nature of the fitness function (the
hands are re-sampled every generation) and also to the inherent variability of the
game. The average fitness curve shows a steep increase in the first generations
then a steady but small growth in the later ones.

Next we computed the PE, BC and IC performance metrics for each one of
the 300 evolved strategies using blackjackinfo.com’s the free Card Counting
Efficiency Calculator5 then we computed the normalized averages per Eq. 1 to
obtain the UPM. The distribution of these values is depicted in Fig. 3.

For both ace-neutral and ace-reckoned strategies the average values of 0.9261
and 0.87342 significantly exceeds the 0.8674 average value of the strategies sum-
marized in Table 1. The average is much higher in the case of ace-neutral strate-
gies, even exceeding the 0.9257 maximum value from Table 1, belonging to the
Hi-Opt II strategy.

The average metric values for the ace-neutral strategies were PE=0.6652
± 0.0136, BC=0.8910 ± 0.0155, IC=0.9370 ± 0.0197 and for the ace-reckoned
ones PE = 0.5784 ± 0.02369, BC=0.9610 ± 0.0168, IC=0.83291 ± 0.0330. As
expected, considering the ace to be neutral leads to strategies with a high PE and
lower BC, while the opposite happens when aces are also counted. Surprisingly,
4 https://github.com/EdjeElectronics/OpenCV-Playing-Card-Detector.
5 https://www.blackjackinfo.com/card-counting-efficiency-calculator/.

https://github.com/EdjeElectronics/OpenCV-Playing-Card-Detector
https://www.blackjackinfo.com/card-counting-efficiency-calculator/
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Ace-neutral strategies. Ace-reckoned strategies.

Fig. 2. Average, minimum and maximum fitness values observed over the 2× 150 runs
of the Genetic Algorithm.

the evolved ace-neutral strategies have a very high IC, the biggest observed one
being 0.9735, while the average IC value of the strategies from Table 1 is just
0.8. The average again exceeds even the maximum IC value of 0.91 belonging to
Hi-Opt II.

Table 2. Interesting counting strategies obtained by the Genetic Algorithm.

A 2 3 4 5 6 7 8 9 10JQK PE BC IC UPM

AN 0 2.8 2.68 3.55 4.67 3.52 2.99 1.32 -0.13 -5.35 0.6850 0.9012 0.9404 0.9400

AR -2.36 2.7 3.9 4.62 4.93 4.51 3.1 0 -1.16 -5.06 0.6401 0.9702 0.8485 0.9110

Table 2 contains the best ace-neutral (AN) and ace-reckoned (AR) strategies,
with the point counts truncated to two decimal points, an the value of 10-J-Q-K
adjusted to maintain a balanced strategy. The AN outperforms all strategies
from Table 1 on PE, IC and UPM. The AN strategy provides a great balance
between PE and BC, outperforming strategies like Mentor and Zen Count that
were especially developed to be suitable for both hand-held and shoe games. The
only metric where the evolved strategies did not beat classical ones is BC, the
highest obtained value being 0.98902, while several published strategies have a
BC of 0.99.

4.1 Integer Weights

We also tested if the strategies can be converted to integer counts while also
retaining their advantageous properties. For this we rounded each weight to the
nearest quarter an then scaled each value by 4. Finally, we slightly increased-
decreased some point counts, until the re-balancing for the 10-J-Q-K also yielded
an integer value.

The resulting weights and the corresponding performance metrics can be
found in the first two rows of Table 3. As can be observed from the last column,
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Fig. 3. Distribution of the evolves strategies UPM values

Table 3. Integer counting strategies derived from the real weights obtained by the
Genetic Algorithm.

Strategy A 2 3 4 5 6 7 8 9 10JQK PE BC IC UPM

ANI 0 11 11 14 19 14 12 7 0 -22 0.6833 0.8953 0.9461 0.9391

ARI -9 11 16 18 20 18 12 0 -6 -20 0.6414 0.9704 0.8386 0.9084

Combined -4 12 12 16 20 16 12 6 -6 -21 0.6725 0.9451 0.8907 0.9321

the remapping to integers leads to only a slight decrease in UPM and other
metrics, the edge of the original real valued systems are retained.

The strategy from row three was obtained as a combination of the first two
and provides a great balance between PE, BC, and IC, outperforming the best
PE strategies Hi-Opt II and OMEGA II not only on PE but also on BC.

Unfortunately, the integer point counts are very high, making the mental
counting of the running count difficult.

5 Conclusions

We have shown that by using real valued weights in card counting strategies
offers a significant extra edge in the game of blackjack. Many of the developed
systems have a very high Insurance Correlation value while also matching and
outperforming the classical systems on Performance Efficiency and Betting Cor-
relation.

We also found, that when re-scaling these strategies to integer point counts,
most of the edge is preserved. However, this leads to high level counting strate-
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gies, that are harder to mentally operate with, and may detract players from
their ability to count cards quickly and accurately. Experts suggest, that the
return of a simpler and less advantageous system that can be played flawlessly
for hours, typically outperforms the return of more complex systems that are
prone to user error.

Future work will experiment with unbalanced and suite aware counting
strategies and the application of other intelligent search algorithms.
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Abstract. In machine learning, we presume datasets to be labeled while
performing any operation. But, is it true in real-life scenarios? To its con-
trary, we have an enormous amount of unlabeled datasets available in the
form of images, videos, audios, articles, and many more. The major chal-
lenge we face is to train our classification model with primitive machine
learning algorithms because these algorithms only expect labeled data.
To overcome these limitations visual domain adaptation algorithms such
as MEDA (Manifold Embedded Distribution Alignment) have been intro-
duced. The main motto of MEDA is to minimize the distribution differ-
ence between the source domain (an application that contains enough
labeled data) and the target domain (an application that contains only
unlabeled data). In this way, the source domain labeled data can be uti-
lized to enhance the performance of the target domain classifier. Though
MEDA (Manifold Embedded Distribution Alignment) approach shows
remarkable improvement in classification accuracy, but still there is con-
siderable scope of improvement. There are plenty of irrelevant features in
both domains. These irrelevant features create a hole for this algorithm
and prevent the target domain classifier from becoming more robust.
Therefore, for the purpose of filling this hole, we propose a new feature
selection based visual domain adaptation (FSVDA) method which uses
particle swarm optimization (PSO), where the MEDA method is consid-
ered as a fitness function that leads to automatically select a good subset
of features over both the domains. Extensive experimental results on two
real-world domain adaptation (DA) data sets such as object recognition
and digit recognition demonstrate that our proposed method outper-
forms state-of-the-art primitive and domain DA algorithms. It is a big
challenge to train the classifier for a new unlabeled image dataset in
image classification and computer vision. The two magnificent solutions
to this challenge are transfer learning and domain adaptation. By trans-
fer learning, we can use our knowledge from previously trained models
for training newer models.

Keywords: Transfer learning · Feature selection · Domain
adaptation · Classification.
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1 Introduction

Machine learning (ML) is one of the most compelling recent technology which
attempts to imitate how the human brain learns. Some of the ML applications
which are being frequently used in our day to day life are image recognition,
speech recognition, effective web search etc. [4]. The ML algorithm intends to
discover and exploit the hidden patterns accessible in the training data. And
those patterns can be used to identify new or unknown patterns in test data.
The main constraint with the primitive ML algorithm is that both training and
test data must follow the same distribution. Therefore, they were incapable to
withstand any shifts from the training and test data. But recent technological
advances such as Transfer Learning (TL) and Domain Adaptation (DA) [5,8,15]
have made these algorithms flexible and thus increased its appropriateness in
real-world applications.

Domain adaptation is a form of transfer learning, which intends to transfer
information from the source domain to enhance the performance of the target
classifier. If a distributional change happens after learning a classifier, it can lead
to the degradation of performance during test time. The DA technique attempts
to decrease the distribution difference between the source domain labeled data
and the target domain unlabeled data. In the literature, DA method is compiled
into two major divisions:(a) feature-based DA [8]- It aims to discover a uni-
versal feature space between both the domains; and (b) instance re-weighting
based DA [6]- It attempts to re-weight the source domain instances to reduce
the distribution difference between domains. Since our proposed work is con-
cerned to feature learning, we concentrate on methods of feature learning. In
the existing feature-based DA methods, the two most important challenges are
unevaluated distribution alignment and degenerated feature transformation. As
the name suggests, ’Unevaluated distribution alignment’ means not evaluating
the relative importance of marginal and conditional distributions i.e treating
both the distributions with equal importance. It may result in degraded model
performance because we can encounter scenarios where assigning equal weights
to both the distribution may not help, like- if both domains are very different
from each other, more weight should be assigned to the marginal distribution
alignment. Similarly, if the distance between both the domains is marginally dis-
tributed, then more weight should be assigned to the conditional distribution.
’Degenerated feature transformation’ means that existing distribution alignment
[8] and subspace learning [1] methods are only able to reduce, but are not able to
eliminate, the distribution differences between domains. For example, subspace
learning methods only attempts to transform the subspaces of both domains for
good feature representation but fails to eliminate feature deviations as it only
deals with subspace structure. Whereas the distribution alignment methods only
minimize the distribution distance in the original feature space. It is quite diffi-
cult to minimize divergence between domains due to the presence of distortion
in the majority of the features. Therefore we need to take advantage of both sub-
space learning and distribution alignment methods to enhance the performance
of DA methods.
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To overcome the threat of degenerated feature transformation, most existing
work like Joint Geometrical and Statistical Alignment (JGSA)[14] acknowledges
both subspace learning and distribution alignment. However, these methods suf-
fer from some drawbacks like- (i) They fail to assess the significance of both
marginal and conditional distributions, (ii) They do not consider the Laplacian
regularization term, which is required to conserve the original similarity of the
data samples. Therefore, to address all these challenges, Wang et al. [12] propose
a Manifold Embedded Distribution Alignment (MEDA) DA method. MEDA first
uses original features of both domains for learning manifold features to eliminate
the threat of degenerated feature transformation. Then, it performs dynamic dis-
tribution alignment to quantitatively measure the relative significance of both
the distributions to overcome the limitation of unevaluated distribution align-
ment. However, if key features in both domains are too irregular (or there are
plenty of irrelevant features), even after performing manifold feature learning,
the risk of degenerated feature transformation may not be eliminated.

Fortunately, in the literature, there are some feature selection approaches [7],
which can overcome the risk of degenerated feature transformation by selecting
a good subset of features across both the domains. The task of feature selection
is quite difficult when there are a huge number of features because a) Search
space varies exponentially with respect to the number of features;b) The inter-
action between the features is complicated. Some of the features in our domain
are invariant i.e they have no change in characteristics under different circum-
stances, while some possess high distinguishing capacity (relevant features). It
is equitably crucial to select both types of features. Selecting only highly rele-
vant features can’t serve the purpose, to its contrary it can lead to redundant
features. So, weakly relevant features should also be considered to increase the
classification performance. To address this issue, we need to do a global search,
and one of the most simple EC (Evolutionary Computation) technique is PSO
[13].

The principal contributions of this work can be listed as follows:
– Our proposed method FSVDA is the first framework, which crosses the limits

of all existing state-of-the-art methods, by selecting a good subset of features
and considering MEDA’s proposed functions as our fitness function.

– To prove the strength of our proposed methodology, we have considered two
broadly utilized real-world visual domain adaptation problem datasets- Office
+ Caltech10 and Digit Recognition datasets. We have done a comparison
between them and several state-of-the-art primitive and domain adaptation
methods.

– To make fair comparisons, we have taken the outcomes of previous methods
straight from previous papers for both datasets and also explained why our
method is superior to others.

2 Related Work
Although much research has been done in the domain of DA, we have only
discussed those methods that are more related to the current work.
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Transfer Component Analysis (TCA) [8] method attempts to get transfer
components across domains in a Reproducing Kernel Hilbert Space (RKHS)
with the help of Maximum Mean Discrepancy (MMD). Joint Distribution Adap-
tation (JDA) [5] advances TCA by considering both marginal and conditional
distribution for reducing the distribution gap between both domains. Transfer
Joint Matching (TJM) [5] extends JDA by considering both feature learning
and instance re-weighting into a common framework. Correlation Alignment
(CORAL) [11], reduces domain shift by aligning the second-order statistics of
source and target distributions, without demanding any target labels. Geodesic
Flow Kernel (GFK) [3] minimizes the distribution gap by integrating an infi-
nite number of subspaces from the source domain to domain. Scattered com-
ponent analysis (SCA) [2] explores such a representation that weighed between
maximizing classes isolation, lessening mismatch between domains, and maxi-
mizing data isolation; each is determined by scattering. JGSA [14] succeeds the
shortcomings of TCA and JDA by acknowledging the following objectives into a
collaborative framework: (i)preserving source domain discriminative information
(SDI) using linear discriminant analysis(LDA),(ii) preserving both marginal and
conditional distributions (MCD), (iii) subspace alignment (SA),(iv) maximizing
target domain variance (TV). The most recent method MEDA eliminates the
drawbacks of JGSA by evaluating the significance of both marginal and con-
ditional distributions. In order to preserve the fundamental similarity of data
samples, it considers the Laplacian regularization(LR) term.

3 A Feature Selection Approach to Visual Domain
Adaptation in Classification

3.1 Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm is a stochastic optimization tech-
nique which was proposed by Eberhart and Kennedy (1995) [13]. It is originated
from the simulation of flock of birds, fish schooling or ant colonies seeking food.
Birds are acknowledged as particles without mass and volume in the algorithm.
The search space is parallelly explored using a swarm of particles. The posi-
tion and velocity of each particle moving in search space are unique. During the
searching process, they share their best positions with each other to guide the
swarm towards the optimal solution.A particle’s moving state is influenced by
the speed and direction of- its neighbors and the whole particle swarm. Particles
having good position and direction have a greater tendency to approach the opti-
mal solution. We represent the position and velocity by numeric vectors, whose
lengths are equal to the number of dimensions in the search space. Finally, it
employs the fitness function to estimate the quality of the solution.

In this work, PSO aims to select good subsets of common features over the
source and target domains. It will eradicate the risk of degenerated feature trans-
formation. Each particle consists of a position field p (to select subsets of features
in both domains) and a fitness value field v (which includes accuracy correspond-
ing to its position field). Initially, the PSO generates a collection of random
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particles S(or solutions) and then seeks for an optimal particle by renewing the
position field with respect to velocity. In each iteration, the velocity of each
particle is renewed by two values, namely, Particle Best (PB) and Global Best
(GB). PB is the local best particle in each iteration, while GB is the global best
particle obtained until the current iteration. After finding both GB and PB, the
velocity of each particle (ith particle) is updated with the help of the following
equation.

V ′(i) = ωV(i) + a1 ∗ d1 ∗ (PB.p − S.S(i)) + a2 ∗ d2 ∗ (GB.p − S.S(i)) (1)

where, a1 and a2 are acceleration coefficients, ω is adaptation factor, d1 and d2
are random numbers ranging between 0 and 1, PB.p represents position field of
particle PB, V(i) and S.S(i) are the current (or present) velocity and position
of ith particle, and V ′(i) is updated velocity of ith particle.

Based on the updated velocity V ′(i) of ith particle, its next position field is
updated as follows:

S ′(i).p = V ′(i) + S(i).p (2)

where S(i).p is the present position of ith particle.

3.2 Fitness Function

To address both the challenges, we consider MEDA algorithm’s stated function
f(·) as a fitness function for our proposed framework. This function f(·) takes
subsets (X ′

s ∈ Xs and X ′
t ∈ Xs, where Xs and Xt are the source and target

domain data) of the selected common features in both domains based on the
position field of each particle and gives us accuracy as a fitness value. The two
important steps of MEDA are :(i)manifold feature learning; (ii)dynamic distri-
bution alignment.

As per the first step, we need to eradicate the threat of degenerated feature
transformation. It can be done by manifold feature learning. The manifold fea-
ture learning classifier g(·) is learnt in the Grassmann manifold G(d). Geodesic
Flow Kernel (GFK) [3] is used to learn g(·). Let Ss and St denote the Principle
Component Analysis (PCA) subspaces for the source and target domains respec-
tively and G denote collection of all d-dimensional subspaces. Finding a geodesic
flow φ(t) : 0 ≤ t ≤ 1 from Ss to St where Ss = φ(0) and St= φ(1), can be seen
as an incremental way of walking from φ(0) to φ (1).The new features can be
represented as z = g(x) = φ(t)T x. The inner product of transformed features zi

and zj gives rise to a PSD geodesic flow kernel:

< zi, zj >=
∫ 1

0
(φ(t)T xi)T (φ(t)T xj)dt = xT

i Gxj (3)

where G Grassmann manifold and can be computed by SVD decomposition.
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After application of the first step, we get transformed features Zs and Zt of
source domain and the target domain, respectively. Then, according to the sec-
ond step, we need to evaluate the importance of aligning marginal (P ) and con-
ditional (Q) distributions in domain adaptation. Many methods assume that the
importance of both distributions is same, but this assumption doesn’t fit for real
applications. Therefore, Wang et al.[12] proposed an adaptation factor δ to tackle
this problem.In order to measure the distribution divergence between domains
empirically, MMD [8] method is widely adopted. The MMD distance between
distributions q and r can be calculated as d2(q, r) = ‖Eq[φ(zs)] − Er[φ(zt)]‖2HK

,
HK is the reproducing kernel Hilbert space (RKHS) induced by feature map
φ(·) and E[·] denotes the mean of the embedded samples. After associating
MMD with function f(·), the marginal distribution between both domains can
be computed as Df (Ps, Pt) = ‖E[f(zs)] − E[f(zt)]‖2HK

. Similarly, the condi-
tional distribution between both domains can be computed as Df

c (Qs, Qt) =
‖E[f(z(c)

s )] − E[f(z(c)
t )]‖2HK

, where c denotes cth class samples. Thus, according
to [12], both the distribution alignment terms can be added by using dynamic
adaptation factor δ as follows:

Dd
f (Zs, Zt) = (1 − δ)‖E[f(zs)] − E[f(zt)]||2HK

+ δ

C∑
c=1

‖E[f(z(c)
s )) − E[f(z(c)

t )]‖2
HK

(4)

When δ → 0 the second term of the equation will become 0, which suggests
that the marginal distribution alignment is more significant. It suggests that the
distribution distance among both domains is huge. Whereas, when δ → 1, the
first term of the equation becomes 0, which suggests that the conditional distri-
bution alignment is more significant. It means that the distribution of each class
is dominant. When δ= 0.5, both distributions have equal significance. Parameter
sensitivity testing is one way to find its proper value, but it is a time-consuming
process. Therefore, Wang et al.[12] developed an idea to find out its appropriate
value automatically.

The overall learning function (f(·)) of MEDA method can be learned by
summarizing these two steps with the function (l(·)) of SRM (Structural risk
minimization) [10] and a Laplacian regularization term [9] as follows:

f = arg min
fε

∑n

i=1
HK

l(f(zi), yi) + η||f ||2K + λDd
f (Zs, Zt) + ρRf (Zs, Zt) (5)

where η, λ, and ρ are regularization parameters, n is the total number samples
available in both domains, ‖f‖2K is the squared norm of f , and finally Dd

f (·, ·)
and Rf (·, ·) represent dynamic distribution alignment term and Laplacain reg-
ularization term, respectively. The optimization procedure of this function f is
given in [12].
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Algorithm 1: FSVDA
Input : Input data:Xs, Xt, Ys, Yt

Output: Selected Positions:Pos, Accuracy:Acc
/* Initialize Constant: */

1 i = 0, mf = 800, nf = 750, ps = 100, a1 = 1, a2 = 1, ω = 0.5, T = 10;
/* Initialize Particles: */

2 GB.v(i) = 0, V = ones(ps, nf ), Po = zeros(ps, nf ), S = struct
/* Initializing each row of Po with the feature index or position

randomly generated between 1 to mf */
3 for j ← 1 to ps do
4 Po(j, nf ) = randperm(mf );
5 end
6 while i < T do

/* Generate ps particles for population set matrix S by MEDA’s
function f(·) */

7 for j ← 1 to ps do
8 S(i).p(j, :)=Po(j, :);
9 S(i).v(j) = f(Po(j,:));

10 end
/* Find a particle with maximum fitness value in matrix P and

then it will become PB particle */
11 [P B.v(i), ind] = max(S(i).v);/* where ind is the index of best

particle in P */
12 P B.p(i, :) = S(i).p(ind, :);

/* Find GB particle after comparing with PB particle */
13 if (GB.v(i)<PB.v(i)) then
14 [GB.v(i), GB.v(i + 1)] = P B.v(i);
15 GB.p(i, :) = P B.p(i, :);
16 else
17 GB.v(i + 1) = GB.v(i);
18 GB.p(i + 1, :) = GB.p(i, :);
19 end

/* Update the velocity matrix V ′
and the position matrix P ′

o based
on PB and GB particles */

20 for j ← 1 to ps do
21 V ′

(j,:)=ω ∗V(j, :)+a1 ∗d1(P B.p(j, :)−Po(j,:))+a2 ∗d3(GB.p(j, :)−Po(j,:))
22 P ′

o(j,:)=Po(j, :)+V
′
(j,:)

23 end
24 i=i+1;
25 end

/* Select the global best particle */
26 Pos=GB.p(i, :), Acc:GB.v(i)
27 Return (Pos, Acc)
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3.3 Main Idea

The goal of our proposed feature selection technique based on PSO in the DA
framework is to find out an optimal position vector p for deciding good subsets
of common features across both domains so that the risk of degenerated feature
transformation( Even after features in both domains are too much distorted) is
eliminated. The pseudo-code of the introduced framework FSVDA is shown in
Algorithm 1.

The working steps of proposed FSVDA Algorithm is as follows:

– Step 1 (or line no. 1):Initialize all constant parameter values such as max-
imum number of features available for selection (mf ), number of features for
selection (nf ), population size (ps), current iteration (i), maximum number
of iterations (T ), a1, a2, ω etc.

– Step 2 (or line no. 2): As the given population size is (ps), we have total
(ps) particles in population set S,i.e. (S = s1, s2, . . . , sps

) and each particle
has two fields, namely position (p) and value (v), where the position field
contains the positions for selecting subset of features across both domains,
while the value field includes corresponding accuracy calculated from MEDA
algorithm’s proposed function f(·). V is the velocity parameter matrix that
contains the velocity of each particle present in the population set S and is
of size (ps × nf ). Similarly, Po is the position parameter matrix that contains
positions of each particle present in the population set S for selecting subsets
of common features across both the domains and is of size (ps × nf ). In
this step, the value field of GB particle is initialized to zero, velocity matrix
(V) is initialized with one(i.e., ones(ps, nf )), and the position matrix (Po) is
initialized with zero (i.e., zeros(ps, nf )).

– Step 3 (or line no. 3–5): In this step, we initialize each row of the position
matrix (Po) with permutation of numbers from 1 to mf for selecting subsets
of features across both domains.

– Steps 4 (or line no. 7–10): In this step, based on each entry (or positions)
in the position matrix (Po), the subsets of features across both both domains
are selected and then the fitness value corresponding to these features is cal-
culated by using MEDA’s function (f(·)). Later, all the entries and computed
corresponding fitness values are assigned to respective fields in the particle
set S.

– Step 5 (or line no. 11–12): A particle that has the highest fitness value or
accuracy is chosen among all the particles in the population set S. And then
this particle will become the PB particle.

– Step 6 (or line no. 13–19): If the value field of PB particle is greater
than the value field of GB particle (i.e., PB.v > GB.v), then GB particle is
assigned with the PB particle.

– Step 7 (or line no. 20–23): First compute new velocity of each particle
by using Eq. (1) and update the velocity matrix (V). After that, we find new
velocity matrix (V ′). Similarly, new velocity matrix (V ′ ), we find new position
matrix (P ′

o) by using Eq. (2).
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– Step 8 (or line no. 20–23): Repeat steps 3–7 until the maximum number
of iterations are completed or until there is no optimal value adjustment.

– Step 9 (or line no. 27): Return best particle position vector and corre-
sponding accuracy.

After the application of FSVDA approach, we obtain best position vector
(p) for choosing best subsets of features across both domains and corresponding
accuracy (v).

Table 1. Comparison of the proposed method with other state-of-the-art methods on
the Office + Caltech10 and digit recognition data-sets

Primitive Algorithms Domain Adaptation Algorithms
Office+Caltech10 datasets using SURF features.

Task 1NN PCA SVM GFK TCA JDA CORAL TJM SCA JGSA MEDA Proposed
C A 23.7 39.5 53.1 46.0 45.6 43.1 52.1 46.8 45.6 51.5 56.5 58.04
C W 25.8 34.6 41.7 37.0 39.3 39.3 46.4 39.0 40.0 45.4 53.9 56.45
C D 25.5 44.6 47.8 40.8 45.9 49.0 45.9 44.6 47.1 45.9 50.3 60.51
A C 26.0 39.0 41.7 40.7 42.0 40.9 45.1 39.5 39.7 41.5 43.9 45.86
A W 29.8 35.9 31.9 37.0 40.0 38.0 44.4 42.0 34.9 45.8 53.2 58.98
A D 25.5 33.8 44.6 40.1 35.7 42.0 39.5 45.2 39.5 47.1 45.9 50.96
W C 19.9 28.2 28.8 24.8 31.5 33.0 33.7 30.2 31.1 33.2 34.0 35.26
W A 23.0 29.1 27.6 27.6 30.5 29.8 36.0 30.0 30.0 39.9 42.7 44.47
W D 59.2 89.2 78.3 85.4 91.1 92.4 86.6 89.2 87.3 90.5 88.5 92.36
D C 26.3 29.7 26.4 29.3 33.0 31.2 33.8 31.4 30.7 29.9 34.9 37.67
D A 28.5 33.2 26.2 28.7 32.8 33.4 37.7 32.8 31.6 38.0 41.2 43.84
D W 63.4 86.1 52.5 80.3 87.5 89.2 84.7 85.4 84.4 91.9 87.5 90.51
Avg. 31.4 43.6 41.1 43.1 46.2 46.8 48.8 46.3 45.2 50.0 52.7 56.45
Office+Caltech10 datasets using DeCaf6 features
Task 1NN PCA SVM GFK TCA JDA CORAL TJM SCA JGSA MEDA Proposed
C A 87.3 88.1 91.6 88.2 89.8 89.6 92.0 88.8 89.5 91.4 93.4 94.11
C W 72.5 83.4 80.7 77.6 78.3 85.1 80.0 81.4 85.4 86.8 95.6 96.23
C D 79.6 84.1 86.0 86.6 85.4 89.8 84.7 84.7 87.9 93.6 91.1 95.51
A C 71.7 79.3 82.2 79.2 82.6 83.6 83.2 84.3 78.8 84.9 87.4 88.35
A W 68.1 70.9 71.9 70.9 74.2 78.3 74.6 71.9 75.9 81.0 88.1 93.22
A D 74.5 82.2 80.9 82.2 81.5 80.3 84.1 76.4 85.4 88.5 88.1 95.90
W C 55.3 70.3 67.9 69.8 80.4 84.8 75.5 83.0 74.8 85.0 93.2 94.18
W A 62.6 73.5 73.4 76.8 84.1 90.3 81.2 87.6 86.1 90.7 99.4 99.42
W D 98.1 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4 100.0
D C 42.1 71.7 72.8 71.4 82.3 85.5 76.8 83.8 78.1 86.2 87.5 88.18
D A 50.0 79.2 78.7 76.3 89.1 91.7 85.5 90.3 90.0 92.0 93.2 94.02
D W 91.5 98.0 98.3 99.3 99.7 99.7 99.3 99.3 98.6 99.7 97.6 99.66
Avg. 71.1 81.7 82.0 81.5 85.6 88.2 84.7 86.0 85.9 90.0 92.8 94.89
USPS+MNIST
Task 1NN PCA SVM GFK TCA JDA CORAL TJM SCA JGSA MEDA Proposed
U M 44.7 45.0 62.2 46.5 51.2 59.7 30.5 52.3 48.0 68.2 72.1 74.3
M U 65.9 66.2 68.2 61.2 56.3 67.3 49.2 63.3 65.1 80.4 89.5 90.5
Avg. 55.3 55.6 65.2 53.85 53.75 63.5 39.85 57.8 56.55 74.3 80.8 82.4
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4 Experiment Section

This section deals with the thorough experiments which we have conducted
for image classification problems to estimate the performance of the FSVDA
strategy on various primitive and DA methods.

4.1 Data Preparation

Office+Caltech10 and Digit Recognition [14] are the widely chosen pub-
lic image datasets for evaluating the performance of visual DA algorithms.
Office+Caltech10 dataset consists of two data-sets such as Office-31 and Cal-
tech10. Office-31 dataset comprises of three real-world object domains: Amazon
(A), DSLR (D), and Webcam (W). It contains 4,652 images with 31 categories.
Caltech-256 (C) comprises of 30,607 images and 256 categories. The objects in
Office and Caltech datasets hold distinct distributions which aid to implement
cross-domain recognition. For the experiment, we have considered 10 common
classes available in both the data-sets. Since there are 4 domains, a total of 12
tasks will be possible such as C → A, . . . , D → W , where (W → D denotes
transfer of knowledge from source domain Webcam to target domain DSLR).
Similar to previous work [12,15], we have also considered both 800 SURF and
4,096 DeCaf6 features for these datasets. We have extended our experiment
to Digital Recognition Data-sets also, like- USPS and MNIST [14]. It consists
of handwritten digits between 0 and 9. USPS is comprised of 7,291 training
images and 2,007 test images of size 16 ×16 whereas MNIST is comprised of
60,000 training images and 10,000 test images of size 28 × 28. As there are two
domains, a total of 2 tasks will be possible such as M → U and U → M . Here,
for experiment, we have considered 256 SURF features of both domains.

4.2 State-of-the-Art Comparison Methods

We have compared here, the performance of our proposed algorithm to var-
ious state-of-the-art traditional approaches like 1NN, SVM, and PCA. The
domain adaptation methods are TCA[8] (performs marginal distribution),
GFK [6](performs manifold feature learning), JDA[6] (assign equal weights
to marginal and conditional distribution), CORAL [1](performs second-order
subspace alignment), TJM [5] (adapts marginal distribution with source sam-
ple selection by instance re-weighting), SCA [2] (adapts scatters in subspace),
JGSA[14](considers both distribution and subspace alignment), MEDA[12]
(addresses degenerated feature transformation and unevaluated distribution
alignment).

4.3 Parameter Sensitivity and Experimental Setup

Since the performance of an algorithm depends on the appropriate value of each
parameter, we need to implement parameter sensitivity tests manually to deter-
mine them. As our proposed method uses MEDA’s proposed function as a fitness
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function, we consider appropriate values of all its parameters reported in [12] for
the experiment. However, for the parameters of our proposed PSO method, we
have performed parameter sensitivity tests and found that the proposed method
is performing remarkably well for all the considered data-sets for the parameter
values like T = 10, a1 = 1, a2 = 2, ps = 100, and w = 0.5. But for the parameter
mf , the proposed method outperforms at mf = 750 for Office+Caltech10 using
SURF features, at mf = 3000 for Office+Caltech10 using DeCaf6 features, and
finally at mf = 220 for digit recognition using SURF features datasets.

After finding the appropriate value of each parameter, we experimented
with the proposed method with those values for all tasks in both data-sets
and reported the performance as accuracy in Table 1. The results reported in
Table 1 for other methods, we have directly taken them from previous domain
adaptation papers [5,12,14].

4.4 Comparative Analysis
By comparing the experimental results given in Table 1, the following observa-
tions can be drawn:

1. The performance of primitive machine learning algorithms such as 1NN, PCA,
and SVM are not notable due to the distribution differences between both
source and target domain data.

2. Earlier methods such as TCA, GFK, TCA, JDA, CORAL, TJM, and SCA
are not performing well due to the lack of one or more import objectives
(as discussed above) such as SA, MCD, TV, LR, and SDI, in their proposed
functions.

3. The performance of JGSA is remarkable compared to other DA approaches
except for MEDA and the proposed methodology. This is because of consid-
ering all the above important objectives except LR, in a common framework.
However, it still suffers from degenerated feature transformation and uneval-
uated distribution alignment problems.

4. MEDA improves JGSA by overcoming the limitations of degenerated feature
transformation and unevaluated distribution alignment problems. It also con-
siders the Laplacian regularization term for preserving the original similar-
ity of data samples. Therefore, it outperforms the other DA methods(except
ours). However, if the original features itself are distorted, it suffers from
degenerated feature transformation problem.

5. Our proposed method eliminates the problem of distorted features by select-
ing appropriate good subsets of features across both domains. Therefore, in
Table 1, it is clearly shown that the average accuracies (i.e., 55.45%, 94.89%,
and 82.4% ) for all tasks of the various datasets of our proposed method are
excellent over all other primitive and domain adaptation methods.

5 Conclusions
In this work, we have proposed a novel feature selection based visual domain
adaptation (FSVDA) method for real-world visual domain adaptation problems.
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In contrast to previous studies, the proposed method selects appropriate sub-
sets of features across both domains and considers a more robust fitness func-
tion for guiding the PSO algorithm. Each time we select a set of features and
then perform dynamic distribution alignment for manifold domain adaptation
until we get a set of good features. MEDA has successfully tackled both the
challenges of degenerated feature transformation and unevaluated distribution
alignment. It has also preserved the relative significance of marginal and con-
ditional distribution in domain adaptation. Experimental results evaluation on
two real-world domain adaptation problems demonstrates the superiority of our
proposed method over the state-of-the-art methods.
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Abstract. The subject of this paper is reinforcement learning. Policies
are considered here that produce actions based on states and random
elements autocorrelated in subsequent time instants. Consequently, an
agent learns from experiments that are distributed over time and poten-
tially give better clues to policy improvement. Also, physical implementa-
tion of such policies, e.g. in robotics, is less problematic, as it avoids mak-
ing robots shake. This is in opposition to most RL algorithms which add
white noise to control causing unwanted shaking of the robots. An algo-
rithm is introduced here that approximately optimizes the aforemen-
tioned policy. Its efficiency is verified for four simulated learning control
problems (Ant, HalfCheetah, Hopper, and Walker2D) against three other
methods (PPO, SAC, ACER). The algorithm outperforms others in three
of these problems.

Keywords: Reinforcement learning · Actor-Critic · Experience
replay · Fine time discretization

1 Introduction

The usual goal of Reinforcement Learning (RL) to optimize a policy that samples
an action on the basis of a current state of a learning agent. The only stochastic
dependence between subsequent actions is through state transition: The action
moves the agent to another state which determines the distribution of another
action. Main analytical tools in RL are based on this lack of other dependence
between actions. E.g., for a given policy, its value function expresses the expected
sum of discounted rewards the agent may expect starting from a given state.
The sum of rewards does not depend on actions taken before the given state was
reached. Hence, only the given state and the policy matter.

Lack of dependence between actions beyond state transition leads to several
difficulties. In physical implementation of RL, e.g. in robotics, it usually means
that white noise is added to control actions. However, that makes control discon-
tinuous and rapidly changing all the time. This is often impossible to implement
since electric motors that are to execute these actions can not operate this way.
Even if it is possible, it requires a lot of energy, makes the controlled system
shake, and exposes it to damages.
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It is also questionable if the lack of dependence between actions beyond
state transition does not reduce efficiency of learning. Each action is an exper-
iment that leads to policy improvement. However, due to limited accuracy of
(action-)value function approximation, consequences of a single action may be
difficult to recognize. The finer the time discretization, the more serious this
problem becomes. Consequences of a random experiment distributed over sev-
eral time instants could be more tangible thus easier to recognize.

The contribution of this paper may be summarized in the following points:

– A framework is introduced in which a policy produces actions on the basis
of states and values of a stochastic process. That enables relation between
actions that is beyond state transition.

– An algorithm is introduced that approximately optimizes the aforementioned
policy.

– The above algorithm is tested on four benchmark learning control problems:
Ant, Half-Cheetah, Hopper, and Walker2D.

The rest of the paper is organized as follows. Section 2 overviews related lit-
erature. Section 3 introduces a policy that produces autocorrelated actions along
with tools for its analysis. Section 4 introduces an algorithm that approximately
optimizes that policy. Section 5 presents simulations that compare the presented
algorithm with state-of-the-art reinforcement learning methods. The last section
concludes the paper.

2 Related Work

2.1 Stochastic Dependence Between Actions

The idea of introducing stochastic dependence between actions was analyzed
in [16] as a remedy to problems with application of RL in fine time discretiza-
tion. The control process was divided there into “non-Markov periods” in which
actions were stochastically dependent. A policy with autocorrelated actions was
analyzed in [18] with a standard RL algorithm applied to its optimization that
did not account for the dependence of actions.

In [5] a policy was analyzed whose parameters were incremented by the
autoregressive stochastic process. Essentially, this resulted in autocorrelated ran-
dom components of actions. In [8] a policy was analyzed that produced an action
being a sum of the autoregressive noise and a deterministic function of state.
However, no learning algorithm was presented in this paper that accounted for
specific properties of this policy.

2.2 Reinforcement Learning with Experience Replay

The Actor-Critic architecture of reinforcement learning was introduced in [1].
Approximators were applied to this structure for the first time in [7]. In order to
boost efficiency of these algorithms, they were combined with experience replay
for the first time in [17].
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Application of experience replay to Actor-Critic encounters the following
problem. The learning algorithm needs to estimate quality of a given policy on
the basis of consequences of actions that were registered when a different policy
was in use. Importance sampling estimators are designed to do that, but they
can have arbitrarily large variance. In [17] that problem was addressed with
truncating density ratios present in those estimators. In [15] specific correction
terms were introduced for that purpose.

Another approach to the aforementioned problem is to prevent the algorithm
from inducing a policy that differs too much from the one tried. That idea was
first applied in Conservative Policy Iteration [6]. It was further extended in
Trust Region Policy Optimization [12]. This algorithm optimizes a policy with
the constraint that the Kullback-Leibler divergence between that policy and the
tried one should not exceed a given threshold. The K-L divergence becomes
an additive penalty in Proximal Policy Optimization algorithms, namely PPO-
Penalty and PPO-Clip [13].

A way to avoid the problem of estimating quality of a given policy on the
basis of the tried one is to approximate the action-value function instead of
estimating the value function. Algorithms based on this approach are Deep Q-
Network (DQN) [11], Deep Deterministic Policy Gradient (DDPG) [10], and Soft
Actor-Critic (SAC) [4]. In the original version of DDPG the time-correlated OU
noise was added to action. However, this algorithm was not adapted to this fact
in any specific way. SAC uses white noise in actions and it is considered one of
the most efficient in this family of algorithms.

3 Policy with Autocorrelated Actions

Let an action, at, be computed as

at = π(st, ξt; θ) (1)

where π is a deterministic transformation, st is a current state, θ is a vector of
trained parameters, and (ξt, t = 1, 2, . . . ) is a stochastic process. We require this
process to have the following properties:

– Stationarity: The distribution of ξt is the same for each t.
– Zero mean: Eξt = 0 for each t.
– Autocorrelation decreasing with growing lag:

EξT
t ξt+k > EξT

t ξt+k+1 ≥ 0 for k ≥ 0. (2)

Essentially that means that values of the process are close to each other when
they are in close time instants.

– Markov property: For any t and k, l ≥ 0, the conditional distributions

(ξt, . . . , ξt+k|ξt−1, . . . , ξt−1−l) and (ξt, . . . , ξt+k|ξt−1) (3)

are the same. In words, dependence of future values of (ξt) on its past is
entirely carried over by ξt−1.
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Consequently, if only π (1) is continuous for all its arguments, and subse-
quent states st are close to each other, then the corresponding actions are close,
although random. In words, they create a consistent, distributed in time exper-
iment that can lead to policy improvement.

Fig. 1. A realization of the normal white
noise (εt), and the auto-regressive process
(ξt) (4).

Example: Auto-Regressive (ξt). Let
α ∈ [0, 1) and

εt ∼ N(0, C), t = 1, 2, . . .

ξ1 = ε1

ξt = αξt−1 +
√

1 − α2εt, t = 2, 3, . . .
(4)

Figure 1 demonstrates a realization of
both the white noise (εt) and (ξt).
Let us analyze if (ξt) has the required
properties.

Both εt and ξt have the same distri-
bution N(0, C). Therefore (ξt) is sta-
tionary and zero-mean. A simple derivation reveals that

Eξtξ
T
t+k = α|k|C and EξT

t ξt+k = α|k|tr(C)

for any t, k. Therefore, (ξt) is autocorrelated, and this autocorrelation decreases
with growing lag. Consequently, the values of ξt are closer to one another for
subsequent t than the values of εt, namely

E‖εt − εt−1‖2 = E(εt − εt−1)T (εt − εt−1) = 2tr(C)

E‖ξt − ξt−1‖2 = E
(
(α−1)ξt−1 +

√
1 − α2εt

)T (
(α − 1)ξt−1 +

√
1 − α2εt

)

= (α − 1)2tr(C) + (1 − α2)tr(C) = (1 − α)2tr(C).

The Markov property of (ξt) directly results from how ξt (4) is computed.
In fact, marginal distributions of the process (ξt), as well as its conditional

marginal distributions are normal, and their parameters have compact forms.
We shall not present derivations of these parameters due to lack of space, but
we shall denote them for further use. Namely, let as consider

ξ̄n
t = [ξT

t , . . . , ξT
t+n−1]

T . (5)

The distribution of ξ̄n
t is normal

N(0, Ωn
0 ), (6)

where Ωn
0 is a matrix dependent on n, α, and C. The conditional distribution

(ξ̄n
t |ξt−1) is also normal,

N(Bnξt−1, Ω
n
1 ), (7)

where both Bn and Ωn
1 are matrices dependent on n, α, and C.
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The neural-normal policy. A simple and practical way to implement π (1) is as
follows. A feedforward neural network,

A(s; θ), (8)

has input s and weights θ. An action is computed as

at = π(st, ξt; θ) = A(st; θ) + ξt, (9)

for ξt in the form (4). While the discussion below can be extended to the general
formulation (1), in order to make it simpler we will further assume that a policy
is of the form (9).

Let us consider

s̄n
t = [sT

t , . . . , sT
t+n−1]

T ,

ān
i = [aT

t , . . . , aT
t+n−1]

T ,

Ā(s̄n
i ; θ) = [A(st; θ)T , . . . , A(st+n−1; θ)T ]T ,

and fixed θ. With (9) the distributions (ān
t |s̄n

t ) and (ān
t |s̄n

t , ξt−1) are both normal,
namely N(Ā(s̄n

t ; θ), Ωn
0 ), and N(Ā(s̄n

t ; θ) + Bnξt−1, Ω
n
1 ), respectively (see (6)

and (7)). The algorithm defined in the next section updates θ to manipulate
the above distributions. Density of the normal distribution with mean μ and
covariance matrix Ω will be denoted by

ϕ(· ;μ,Ω). (10)

Noise-value function. In policy (1) there is a stochastic dependence between
actions beyond the dependence resulting from state transition. Therefore, the
traditional understanding of policy as distribution of actions conditioned on state
does not hold here. Each action depends on the current state, but also previous
states and actions. Analytical usefulness of the traditional value function and
action-value function is thus limited.

As a valid analytical tool we propose noise-value function defined as

Wπ(ξ, s) = Eπ

⎛

⎝
∑

i≥0

γirt+i

∣∣∣ξt−1 = ξ, st = s

⎞

⎠ . (11)

The course of events starting in time t depends on the current state st and the
value ξt−1. Because of Markov property of ξt (3), the pair (ξt−1, st) is a proper
condition for the expected value of future rewards.

The value function V π : S �→ R is slightly redefined, namely

V π(s) = E
(
W (ξt−1, st)|st = s

)
. (12)

The random value in the above expectation is ξt−1 and its distribution is condi-
tional with the condition st = s. The distribution of ξt−1 may differ for different
st. However, being in the state st and not knowing ξt−1 the agent may expect
the sum of future rewards equal to V π(st).
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4 ACERAC: Actor-Critic with Experience Replay
and Autocorrelated aCtions

The algorithm presented here has Actor-Critic structure. It optimizes a policy
of the form (9) and uses Critic,

V (s; ν),

which is an approximator of the value function (12) parametrized by a vector, ν.
For each time instant of the agent-environment interaction the policy (9) is

applied and a tuple, 〈st, At, at, rt, st+1〉, is registered, where At = A(st; θ).
The general goal of training is to maximize Wπ(ξi−1, si) for each state si

registered during the agent-environment interaction. In this order previous time
instants are sampled, and sequences of actions that follow these instants are
made more/less probable depending on their return. More specifically, i is sam-
pled from {1, . . . , t − 1} and the conditional density of the sequence of actions
(ai, . . . , ai+n−1) is being increased/decreased depending on the return

ri + · · · + γn−1ri+n−1 + γnV (si+n; ν)

this sequence of actions yields. At the same time adjustments of the same form
are performed for several sequences of actions starting from ai, namely for n =
1, . . . , τ , where τ ∈ N is a parameter.

4.1 Actor and Critic Training

The following procedure is repeated several times at each t-th instant of agent–
environment interaction:

1. A random i is sampled from the uniform distribution over {1, . . . , t − 1}.
2. If i is the initial instant of a trial, then consider for n = 1, . . . , τ

μi+j = E(ξi+j) = 0, j = 0, . . . , n − 1
ηi+j = E(ξi+j) = 0, j = 0, . . . , n − 1
Ωn

2 = Ωn
0 .

Otherwise, consider

μi+j = E(ξi+j |ξi−1 = ai−1 − Ai−1), j = 0, . . . , n − 1
ηi+j = E(ξi+j |ξi−1 = ai−1 − A(si−1; θ)), j = 0, . . . , n − 1
Ωn

2 = Ωn
1 .

3. Consider the following vectors for n = 1, . . . , τ

μ̄n
i = [μT

i , . . . , μT
i+n−1]

T ,

η̄n
i = [ηT

i , . . . , ηT
i+n−1]

T ,

s̄n
i = [sT

i , . . . , sT
i+n−1]

T ,
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ān
i = [aT

i , . . . , aT
i+n−1]

T ,

Ān
i = [AT

i , . . . , AT
i+n−1]

T ,

Ā(s̄n
i ; θ) = [A(si; θ)T , . . . , A(si+n−1; θ)T ]T .

4. Temporal differences are computed for n = 1, . . . , τ

dn
i (θ, ν) =

(
ri + · · · + γn−1ri+n−1 + γnV (si+n; ν) − V (si; ν)

) ×

× ψb

(
ϕ(ān

i ; Ā(s̄n
i ; θ) + η̄n

i , Ωn
2 )

ϕ(ān
i ; Ān

i + μ̄n
i , Ωn

2 )

)
,

(13)

where ψb is a soft-truncating function, e.g. ψb(x) = b tanh(x/b), for a certain
b > 1.

5. Actor and Critic are updated. The improvement directions for Actor and
Critic are

Δθ =
1
τ

τ∑

n=1

∇θ ln ϕ(ān
i ; Ā(s̄n

i ; θ) + η̄n
i , Ωn

2 )dn
i (θ, ν) − ∇θL(si, θ) (14)

Δν =
1
τ

τ∑

n=1

∇νV (si; ν)dn
i (θ, ν), (15)

where L(s, θ) is a loss function that penalizes Actor for producing actions that
do not satisfy conditions e.g., they exceed their boundaries. Δθ is designed do
increase/decrease the likelihood of the sequence of actions ān

i proportionally
to dn

i (θ, ν). Δν is designed to make V (· ; ν) approximate the value function
(12) better. The improvement directions Δθ and Δν are applied to update θ
and ν, respectively, with the use of either ADAM, SGD, or other method of
stochastic optimization.

In Point 1 the algorithm selects an experienced event to replay. In Points 2
and 3 it determines the parameters the distribution of the sequence of subsequent
actions, ān

i . In Point 4 it determines the relative quality of ān
i . The temporal dif-

ference (13) implements two ideas. Firstly, θ is changing due to being optimized,
thus the conditional distribution (ān

i |ξi−1) is now different than it was at the
time when the actions ān

i were happening. The density ratio in (13) accounts for
this discrepancy of distributions. Secondly, in order to limit variance of the den-
sity ratio, the soft-truncating function ψb is applied. In Point 5 the parameters
of Actor, θ, and Critic, ν, are being updated.

5 Empirical Study

This section presents simulations whose purpose has been to compare the algo-
rithm introduced in Sect. 4 to state-of-the-art reinforcement learning methods.
We compared the new algorithm (ACERAC) to ACER [17], SAC [4] and PPO
[13]. We used the rllib implementation [9] of SAC and PPO in the simulations.
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Our implementation of ACERAC is available at https://github.com/mszulc913/
acerac.

We used four control tasks, namely Ant, Hopper, HalfCheetah, and Walker2D
(see Fig. 2) from PyBullet physics simulator [2] to compare the algorithms. A
simulator that is more popular in the RL community is MuJoCo [14].1 Hyper-
parameters that assure optimal performance of ACER, SAC, and PPO applied
to the considered environments in MuJoCo are well known. However, PyBul-
let environments introduce several changes to MuJoCo tasks, which make them
more realistic, thus more difficult. Additionally, physics in MuJoCo and PyBul-
lets slightly differ [3], hence we needed to tune the hyperparameters. Their value
can be found in appendixA.

For each learning algorithm we used Actor and Critic structures as described
in [4]. That is, both structures had the form of neural networks with two hidden
layers of 256 units each.

Fig. 2. Environments used in simulations: Ant (left upper), HalfCheetah (right upper),
Hopper (left lower), Walker2D (right lower).

5.1 Experimental Setting

Each learning run lasted for 3 million timesteps. Every 30000 timesteps of a
simulation was made with frozen weights and without exploration for 5 test
1 We chose PyBullet because it is a freeware, while MuJoCo is a commercial software.

https://github.com/mszulc913/acerac
https://github.com/mszulc913/acerac
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episodes. An average sum of rewards within a test episode was registered. Each
run was repeated 5 times.

Fig. 3. Learning curves for Ant (left upper), HalfCheetah (right upper), Hopper (left
lower) and Walker2D (right lower) environments: average sums of rewards in test trials.

5.2 Results

Figure 3 presents learning curves for all four environments and all four compared
algorithms. Each graph reports how a sum of rewards in test episodes evolves
within learning. Solid lines represent the average sums of rewards and shaded
areas represent their standard deviations.

It is seen that for Ant the algorithm that achieve the best performance is
ACERAC, then ACER and SAC, then PPO. For HalfCHeetah, the best per-
formance is achieved by ACERAC which is slightly better than ACER, then
SAC, then PPO. For Hopper the algorithms to win are ACERAC ex aequo with
ACER, then PPO, then SAC; actually SAC fails in this task. Eventually, for
Walker2D, PPO achieves the best performance, then ACERAC and SAC, and
then ACER.

5.3 Discussion

It is seen in Fig. 3 that ACERAC is the best performing algorithm for three envi-
ronments out of four (in one ACER preforms equally well). ACERAC extends
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Table 1. ACERAC hyperparameters

Parameter Value

Action std. dev. for Hopper 0.3

Action std. dev. for other envs. 0.4

α 0.5

Critic step-size for Walker2D 10−4

Critic step-size for other envs. 6 · 10−5

Actor step-size for Walker2D 5 · 10−5

Actor step-size for other envs 3 · 10−5

τ 4

b 2

Memory size 106

Minibatch size 256

Target update interval 1

Gradient steps 1

Learning start 103

Table 2. ACER hyperparameters

Parameter Value

Action std. dev 0.3

Critic step-size 10−5

Actor step-size 10−5

λ 0.9

b 2

Memory size 106

Minibatch size 256

Target update interval 1

Gradient steps 1

Learning start 103

Table 3. SAC hyperparameters

Parameter Value

Step-size for Hopper 0.0001

Step-size for other envs 0.0003

Replay buffer size 106

Minibatch size 256

Target smoothing coef. τ 0.005

Target update interval 1

Gradient steps 1

Learning start for Ant 104

Learning start for HalfCheetah 104

Learning start for Hopper 103

Learning start for Walker2D 103

Reward scale for Ant 1

Reward scale for HalfCheetah 0.1

Reward scale for Hopper 30

Reward scale for Walker2D 30

Table 4. PPO hyperparameters

Parameter Value

GAE parameter (λ) 0.95

Minibatch size 64

Step-size 0.0003

Horizon 2048

Number of epochs 10

Policy clipping coef. 0.2

Value function clipping coef. 10

Target KL 0.01

ACER in two directions. Firstly, it admits autocrrelated actions. This enables
exploration distributed in many actions instead in one. Secondly, in order to
mimic learning with eligibility traces [7], ACER estimates improvement direc-



100 M. Szulc et al.

tions with the use of a sum whose limit is random. This increases variance of
these estimates. Instead, for each state ACERAC computes an improvement
direction as an average of increments similar to those ACER selects on random.
Hence smaller variance of improvement direction estimates in ACERAC which
enables larger step-sizes and faster learning.

It is important to note that the algorithm introduced here, ACERAC, has
been designed for fine time discretization and real life control problems. However,
here it has been tested on simulated benchmarks in which time discretization was
not particularly fine and control could be arbitrarily discontinuous. Its relatively
good performance is a desirable result. It allows to expect that this algorithm
will perform relatively even better in real life control problems. That remains to
be confirmed experimentally in further studies.

6 Conclusions and Future Work

In this paper a framework was introduced to apply reinforcement learning to
policies that admit stochastic dependence between subsequent actions beyond
state transition. This dependence is a tool to enable reinforcement learning in
physical systems and fine time discretization. It can also yield better exploration
thus faster learning.

An algorithm based on this framework, Actor-Critic with Experience Replay
and Autocorrelated aCtions (ACERAC), was introduced. Its efficiency was ver-
ified in simulations of four learning control problems: Ant, HalfCheetah, Hop-
per, and Walker2D. The algorithm was compared with PPO, SAC, and ACER.
ACERAC outperformed the competitors in Ant and HalfCheetah. For Hopper
ACERAC was the best ex aequo with ACER. For Walker2D the best results was
obtained by PPO.

It is desirable to combine the framework proposed here with adaptation of
dispersion of actions by introducing reward for the entropy of their distribution,
as it is done in PPO. The framework proposed here is specially designed for
applications in robotics. An obvious step of our further research is to apply it in
this field, obviously much more demanding than simulations.

Acknowledgement. This work was partially funded by a grant of Warsaw University
of Technology Scientific Discipline Council for Computer Science and Telecommunica-
tions.

A Algorithms’ Hyperparameters

This section presents hyperparameters used in simulations reported in Sect. 5.
All algorithms used the discount factor equal to 0.99. The rest of hyperparame-
ters for ACERAC, ACER, SAC, and PPO, are depicted in Tables 1, 2, 3, and 4,
respectively.
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Abstract. Recommender systems have been widely adopted in various
large-scale Web applications. Among these applications, online dating
application has attracted more and more research efforts. Essentially,
online dating data is a bipartite graph with sparse reciprocal links. Recip-
rocal recommendations consider bi-directional interests of service and
recommended users, not merely the service user’s interest. This paper
proposes a motif-based graph neural network (MotifGNN) for online dat-
ing recommendation task. We first define seven kinds of motifs and then
design a motif based random walk algorithm to sample neighbor users
to learn feature embeddings of each service user. At last, these learned
feature embeddings are used to predict whether a reciprocal link exists or
not. Experiments are evaluated on two real-world online dating datasets.
The promising results demonstrate the superiority of the proposed app-
roach against a number of state-of-the-art approaches.

Keywords: Recommender system · Graph convolutional networks ·
Online dating · Reciprocal recommendation

1 Introduction

Nowadays there exist various web-scale social applications attracting a huge
amount of users. Among these popular applications, online dating applications
could even have over hundred millions of registered users. This kind of applica-
tion aims to match users who are mutually interested in each other. To better
serve such a large volume of users, effective reciprocal recommender systems
(RRS) are urgently needed, which is seldom studied in the literature. Different
from traditional recommender systems [18,19] which recommend items of inter-
est to users, the reciprocal recommender systems try to make reciprocal recom-
mendations by simultaneously matching mutual interests between service user
(receiving recommendations) and target user (recommended user) [6,13,16].

Apparently, it is more challenging to make RRS-type recommendations than
making conventional recommendations. For conventional recommendation, it
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 102–114, 2020.
https://doi.org/10.1007/978-3-030-63833-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63833-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-63833-7_9


A Motif-GNN to Reciprocal Recommendation for Online Dating 103

only cares whether the service user is interested in recommended items or not.
However, for RRS recommendation, the successful recommendation should con-
sider bi-directional interests, not merely the service user’s interest. In the litera-
ture, there exist a few conventional techniques based RRS approaches [6,13,16].
Most of these approaches simply employ conventional user-item recommenda-
tion system twice and then match the directional recommendation results. On
top of this, several attempts have been made to simultaneously model users’
mutual interests. To summarize, most of these existing approaches build their
recommendation models directly based on users’ features such as profile data or
behavior records. As is known, online dating data is a directed attributed graph
data, and graph representation approaches like Graph Neural Network (GNN)
is more suitable for this task. However, this task is still challenging due to the
following practical difficulties. First, online dating data is essentially a bipartite
graph which means an edge only appears between heterosexual users. Second, a
service user sends messages to other users and only a few messages have been
replied, and thus the reciprocal edges are seriously imbalanced. Last, such a
bipartite graph is relatively sparse when compared with other social graphs like
WeChat or Facebook. Therefore, how to learn a highly predictable GNN-based
model from such large sparse graph data has become a challenging research issue.

In this paper, we cast this reciprocal recommendation task into a reciprocal
link prediction problem. Practically, there are no sufficient reciprocal link data
for model training. Intuitively, we seek the help from neighbor users who have
similar dating preferences. How to select such users especially in sparse bipar-
tite graph data is a challenging task. To this end, the motivating GraphSAGE
[4] first samples certain k-hop neighbors for each given node, then aggregates
neighbors’ features. Unfortunately, these approaches cannot be directly applied
on sparse bipartite graph data. Network motifs, i.e., small subgraphs, could well
preserve users interactive behaviour information [8,9], and thus is suitable for
our problem. Consequently, this paper proposes a motif-based graph neural net-
work model for reciprocal recommendation task. The major contributions of this
paper can be summarized as follows.

– We define seven kinds of motifs to capture mutual interests or attractiveness
among users. Then, a motif-based random walk algorithm is designed to sam-
ple more informative neighbor users based on the defined network motifs, and
then their node features are learned to represent each service user.

– We propose a motif-based Graph Neural Network (MotifGNN) approach for
reciprocal online dating recommendations. Particularly, MotifGNN adopts a
motif-based neighbor sampling method to sample the neighbors users and an
attention aggregation mechanism is employed to aggregate users features.

– We collect a real-world dataset from one of the most popular online dating
application. Then, extensive experiments are evaluated on this private dataset
and one public dataset. The proposed approach achieves superior performance
against a number of baseline and state-of-the-art approaches with respect to
several widely adopted evaluation metrics.
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2 Related Work

As is well known, recommender systems have long been studied in the his-
tory literature. However, reciprocal recommender systems (RRS) are seldom
investigated. We briefly review conventional approaches, deep learning based
approaches, and graph neural network based approaches for RRS in this section.

2.1 Conventional RRS Approaches

As one of the benchmark RRS models, the RECON [13] is proposed for online
dating recommendations. It measures mutual interests between the service user
and the target user. Particularly, the authors propose a content-based algorithm
that calculates the reciprocal scores of each pair of users to be matched. Unfortu-
nately, only users’ attributes are considered to calculate the score and thus users’
interaction history is bypassed by the model. In addition to RECON, [16] com-
putes such reciprocal scores by using the similarities between users’ attributes
and the similarities of mutual interests and attractiveness. The similarity of
interest and attractiveness for a pair of users is calculated based on the inter-
sected set of users approached by service and target users. Alternatively, there
exists another line of research efforts that focus on social relations among users
to make the recommendations. One common assumption of these approaches is
that users’ preferences are susceptible to their cliques (nearest neighbors) which
is theoretically supported by general principles in social sciences.

2.2 Deep Learning Based RRS Approaches

There exist some recently proposed deep learning based approaches for recom-
mender systems [3]. These approaches consider the recommendation system as
a CTR prediction problem, which use deep learning algorithms to learn deep
latent features and then predict the probability that a service user would be
interested in the recommended users. For reciprocal recommendation, a hybrid
model is proposed in [6] which combines collaborative filtering and deep neural
network to predict the probability that a target user is interested in a service
user. It first calculates users’ similarity according to their interaction history.
Then, the features of service users and target user are concatenated as the input
of the proposed deep model to predict the probability that the target user would
reply to the service user’s messages.

2.3 Graph Neural Networks Based Approaches

With the popularity of Graph Neural Network (GNN) model [5], researchers
attempt to adapt GNN to solve the recommendation problem [1,4,17]. Graph-
SAGE [4] is proposed to learn feature representations via sampling and aggregat-
ing strategies. In [17], PinSAGE is proposed for Web-scale recommender systems.
It learns node representations via selecting neighbor nodes by a revised random
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walk algorithm and then aggregating representations of neighbor nodes by GCN
model. [1] proposes to learn representations of users and items based on their
social relations. Alternative to these random walk based approaches, “motif” is
proposed to capture graph structural information [10,11,14]. In [10], a spectral
motif convolution approach is proposed for convolutional filters. Motif-CNN [14]
defines several kinds of motifs to design the receptive fields around the target
node of interest, and then motif-based spatial convolution operations are per-
formed to extract local connectivity features. For graph node classification, [11]
proposes a motif-level self-attention model to differentiate the importance of
different motifs.

Fig. 1. The framework of the proposed MotifGNN approach. Note that we learn the
representations of male user and female user in parallel. If a male user is chosen as
service user, the recommended female users are target users.

3 The Proposed MotifGNN Approach

In this section, we propose the motif-based graph neural network (MotifGNN)
for the reciprocal recommendation task. The overall framework of MotifGNN is
illustrated in Fig. 1. We first introduce the designed motif-based random walk
algorithm. Then, we employ the motif-based graph convolution operations to
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learn feature representations of service and target user in parallel. These fea-
ture representations of service and target users are then concatenated to predict
whether there exists a reciprocal link or not between them.

3.1 Preliminaries

Generally, online dating network data could be represented as a bipartite graph
G = {Us, Ut, E}, where Us = {u1, u2, · · · , uN} and Ut = {u1, u2, · · · , uM}
respectively denote the service user set and target user set, and E = {f(ui, uj)},
ui ∈ Us, uj ∈ Ut denotes the edge set. If ui sends a message to uj , there exists
a directed edge from ui to uj . “REPLY” is a special kind of “SEND” action.
The proposed motif-based random walk algorithm is to sample neighbor user
sets N(ui) and N(uj) for a pair of service user ui and target user uj . A mapping
function Φ : U → R

d is to embed features of a user u ∈ U into d-dimensional
feature space. The purpose of the proposed approach is to predict whether there
exists a link between ui and uj .

Fig. 2. The defined seven kinds of motifs for online dating graph. The dark blue nodes
denote source nodes us, the light blue nodes denote neighbor nodes un and dark red
nodes denote intermediate nodes um. (Color figure online)

3.2 Defined Motifs

Generally, social graphs like Facebook or Twitter assume that densely connected
users may have similar preferences, and thus have similar behavior patterns.
Consequently, their feature representations should be close to each other. How-
ever, online dating network G is a bipartite graph, where users can only send
“SEND” or “REPLY” messages to heterosexual users. Intuitively, the node fea-
tures of these heterosexual users as well as their behavior patterns would be
fundamentally different. Hence, we further define “neighbor user” to be “homo-
sexual neighbor user”, which means that two homosexual users could be neigh-
bors if they “SEND” or “REPLY” to the same heterosexual users. This motivates
us to find high-order connected homosexual users instead of randomly sampling
adjacent neighbors.

In this paper, we propose to employ network motifs to capture this high-
order connectivity patterns to sample homosexual neighbors. According to the
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Fig. 3. The working process of the proposed motif based random walk algorithm. For
each service user in (a), a motif based random work is applied in (b), and then the
walking paths are extracted in (c) and we embed selected users using skip-gram model
as illustrated in (d).

characteristics of online dating data, we only consider 3-node network motifs,
which are plotted in Fig. 2. As is observed, there are only 7 network motifs
for bipartite graph instead of 13 network motifs for conventional homogeneous
directed graphs [8]. We denote the defined motifs as MS = {M1,M2, . . . ,M7}.
Let Mτ = {us, un, um, es, en},Mτ ∈ MS denotes a 3-node motif where us, un

and um respectively denote source node, neighbor node and intermediate node,
and es and en respectively denote the edge between us, um and un, um. Then,
we have ∀us, un, um ∈ U and ∀es, en ∈ E.

Although there are only 3 nodes in the defined motifs, the directional edges
represent different interaction patterns among these three users, and each pattern
could be used to measure closeness of two homosexual users us and un. Taking
M1 as an example, both us and un send messages to the same intermediate
user um, and thus M1 simply shows that um has the same attractiveness to
us and un. The um of M2 and M3 have the same attractiveness to us and un,
but not the same interest in us and un. Alternatively, M4 represents that us

and un have the same attractiveness to um, and so does M5 and M6. But us

and un have different interests in um for M5 and M6. Obviously, M7 represents
mutual attractiveness between um and {us, un}. From above observations, it is
well noticed that different network motifs can well differentiate local neighbors’
contribution to attractiveness or interests of a service user. To further enhance
the contributions of motifs having reciprocal links, we set the edge’s weight w to
be 1 for non-reciprocal edge, i.e.,“SEND”, and 2 for reciprocal edge. Therefore,
the total weight W of motif can be calculated as W = wsm + wnm where wsm

and wnm denote the weight of edges between us, um and un, um.

3.3 Motif Based Random Walk Algorithm

In this subsection, we propose a motif based random walk algorithm as conven-
tional graph embedding techniques like DeepWalk [12] and Node2Vec [2] cannot
be directly applied on bipartite graph. The proposed motif based random walk
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algorithm is to sample homosexual neighbor nodes within 2-hops and we sample
L times forming a L length neighbor user sequence. Let nk denote the k-th node
in a sequence and nl denote the next node to walk. Let Mτ

kl denote a 3-node
motif containing nk and nl, where us = nk and un = nl, W τ

kl denote the weight
of motif Mτ

kl. The transition probability from node nk to nl can be calculated
as

P (nl|nk) =

⎧
⎪⎪⎨

⎪⎪⎩

E[k][τ ] ∗ W τ
kl∑

ut∈M+(nk)

Wkt
, Mτ

kl ∈ MS ,M+(nk) ∈ MS ,

0, Mkl /∈ MS ,

(1)

where MS = {M1,M2, . . . ,M7} is the set of 3-node motifs, M+(nk) is the set
of adjacent motifs of node nk, and ∀Mτ

kt ∈ M+(nk) → Mτ
kt ∈ MS , E[k][τ ]

denote the total number of τ type motif which W τ
kl belongs to among M+(nk).

After sampling a sequence of neighbor nodes, the Skip-Gram model is adopted
to embed each node into low-dimensional feature space. The corresponding fea-
ture representation is learned by maximizing the co-occurrence probability of
contextual nodes in the generated random walk path, calculated as

Min
Φ

E = − log Pr(nk−w, nk−w+1, . . . , nk+w|Φ(nk))

= − log
k+w∏

l=k−w,l �=k

Pr(nl|Φ(nk)),
(2)

where w is the window size of contextual nodes in the path, Φ is mapping function
which embeds ui into a d−dimensional space. By adopting the negative sampling
strategy, the new loss function can be written as

Min
Φ

∑

l∈N(uk)

log σ(Φ(nl)�Φ(nk)) +
∑

l′∈N(uk)′
log σ(−Φ(nl′)�Φ(nk)), (3)

where N(uk) is the set of sampling neighbors, N(uk)′ is the set of negative
samples for uk and σ() is sigmoid function, and we set |N(uk)′| = |N(uk)| in
the experiments. The working process of the proposed motif based random walk
algorithm is illustrated in Fig. 3.

3.4 Embedding with Attentive Graph Convolution

After embedding user features with skip-gram model, these feature represen-
tations are treated as the input of the graph neural network component. The
proposed graph neural network component is to convolute users features and
their neighbor users’ features using a two-layer graph convolution operation.
The convolution operation is performed by iteratively aggregating features of all
neighboring nodes. The CONVOLUTE1 operation differentiates the importance
of user extracted from different motifs. Instead of concatenating neighbor users’
features, the CONVOLUTE2 operation learns the high-order feature interac-
tions between each given user and his (her) neighbor users.
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Fig. 4. The structure of the proposed CONVOLUTE1 operation with attention mech-
anism.

For any user u, motif-based random walk first samples a set of neighbor
users N(u) with its size to be |N(u)| = L. To differentiate the importance of
each user in N(u), we adopt an attention mechanism to aggregate features of
each neighbor user, as illustrated in Fig. 4. For each user ut in N(u), the weight
αt is calculated as

hut
= Xut

⊕ Φ(ut) (4)
μt = W�

2 σ1(W�
1 hut

+ b1) + b2 (5)

αt =
eμt

∑
ul∈N(u) eμtl

, (6)

where σ1() is the tanh function, W�
1 ∈ R(m+d)×n1 ,W�

2 ∈ Rn1×1 are learnable
parameters. The CONVOLUTE1 operation is calculated as

h1
N(u) = W�

3 (α1hu1 ⊕ α2hu2 · · · ⊕ αLhuL
) + b3, (7)

where W�
3 ∈ RL×(m+d)×n3 and b3 are the parameters of the convolution layer.

The CONVOLUTE2 operation combines the embeddings of neighbor users as
well as the given user. It contains a fully connected layer and a batch normalized
layer, computed as

μ2 = σ2(W�
4 (Xu ⊕ Φ(u) ⊕ h1

N(u)) + b4) (8)

h2
u =

μ2 − E[μ2]
√

Var[μ2] + ε
∗ γ + β, (9)

where σ2() is the ReLU function, W�
4 ∈ R(m+d+n3)×n4 , γ and β are learnable

parameter vectors. The mean and standard deviation are calculated within each
mini-batch.

3.5 Reciprocal Recommendation Component

The purpose of this component is to predict whether there exists a reciprocal
link or not. Given a pair of users (ui, uj) and their learnt feature representations
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h2
ui

, h2
uj

, a feature vector Z is acquired by concatenating these feature repre-
sentations, and then is fed into the reciprocal recommendation component for
prediction task. This prediction component consists of two fully connected layers
and a dropout layer, calculated as

Z = h2
ui

⊕ h2
uj

(10)

μ3 = σ2(W�
5 Z + b5) (11)

μ̂3 = Dropout(μ3) (12)
y = σ(W�

6 μ̂3 + b6), (13)

where dropout rate is set to 0.5 and y ∈ [0, 1] indicating whether there exists
a reciprocal link or not. The cross-entropy loss function is adopted to optimize
the proposed model, given as

L = min{−(y log y + (1 − y) log(1 − y))}, (14)

where y is the ground truth reciprocal link between ui and uj .

4 Experiments

4.1 Dataset and Experimental Settings

Two real-world datasets are chosen to evaluate the proposed model called “Dat-
ing dateset 1” and “Dating dataset 2”. “Dating dataset 1” is a public online dat-
ing dataset provided by a competition1. “Dating dataset 2” is collected by our-
selves from one of the most popular online dating Applications. “Dating dataset
1” contains 34 user attributes and their interaction history, i.e. “message” and
“click”. We treat these action equally between users to generate both reciprocal
links and non-reciprocal links. “Dating dataset 2” contains 228,470 registered
users with 25,168,824 links, where 14.5% of the links are reciprocal. Each regis-
tered user has 28 different attributes. Statistics of these two datasets are summa-
rized in Table 1. Before experiments, we respectively extract pre-defined motifs
from each dataset and the statistics are reported in Table 2.

For evaluation criteria, several widely adopted metrics are adopted in the
experiments which are precision, Recall, F1-measure and AUC. Following base-
line model as well as state-of-the-art approaches are evaluated which are DeepFM
[3], xDeepFM [7], DeepWalk [12], Node2vec [2], GraphSage [4], PinSage [17] and
Social GCN [15]. To prepare the experiments, datasets are randomly partitioned
into training and testing dataset at the ratio of 90% to 10%.

1 https://cosx.org/2011/03/1st-data-mining-competetion-for-college-students/.

https://cosx.org/2011/03/1st-data-mining-competetion-for-college-students/
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Table 1. Statistics of experimental datasets.

Dataset # Users # Messages # Reciprocal links Percentage of
reciprocal links

Dating dataset 1 59,921 232,954 9,375 0.0402

Dating dataset 2 228,470 25,168,824 1,592,945 0.1449

Table 2. Statistics of the defined motifs.

Dataset M1 M2 M3 M4 M5 M6 M7

Dating dataset 1 4.57% 2.76% 2.76% 27.50% 14.23% 14.23% 33.97%

Dating dataset 2 4.16% 12.94% 12.94% 15.13% 19.24% 19.24% 16.09%

4.2 Model Performance Evaluation

We evaluate all models and report the corresponding experimental results in
Table 3. From this table, it is well noticed that deep neural network based
approaches, e.g., deepFM and xDeepFM, are generally better than those graph
convolution based approaches, e.g., GraphSage and PinSage. This indicates that
node attributes play a more important role in online dating prediction task. This
is consistent with our common intuition that users may be interested in differ-
ent attributes of dating users. The performance of graph neural network based
approaches are slightly better than node embedding based methods, e.g., Deep-
Walk and Node2vec, in “dataset 1” but not in “dataset 2”. The possible reasons
might be as follows. Both graph neural network based approach and node embed-
ding approach utilize graph structural information. The neighbor users sampled
by these approaches might not contain sufficient information due to the data
sparsity issue. The node embedding based approach could achieve comparably
good model performance in “dataset 2”, and the reason is that the adopted walk-

Table 3. Results of reciprocal recommendations on two experimental datasets.

Methods Dating dataset 1 Dating dataset 2

Precision Recall F1 AUC Precision Recall F1 AUC

DeepWalk .5177 .3544 .4208 .7646 .8801 .7579 .8144 .9026

Node2vec .4865 .4380 .4610 .7752 .8138 .8558 .8343 .9135

DeepFM .7004 .4852 .5732 .8609 .8533 .7477 .7970 .8849

xDeepFM .7714 .5094 .6136 .8877 .9357 .8605 .9047 .9506

GraphSage .7151 .3383 .4593 .8679 .6829 .6643 .6735 .7126

PinSage .6428 .7493 .6920 .9020 .7220 .7549 .7991 .8891

SocialGCN .4667 .4434 .4547 .7669 .8588 .8314 .7991 .8886

MotifGNN (M7) .8576 .6900 .7647 .9206 .9476 .8713 .9078 .9684
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Table 4. Evaluation results about how the defined motifs affect model performance.

Methods Dating dataset 1 Dating dataset 2

Precision Recall F1 AUC Precision Recall F1 AUC

MotifGNN (M7) .8576 .6900 .7647 .9206 .9476 .8713 .9078 .9684

MotifGNN (M1,M4) .7975 .5997 .6846 .8627 .9880 .8484 .9129 .9660

MotifGNN (M1,M2,M3) .8339 .6496 .7303 .8993 .8483 .9338 .8890 .9670

MotifGNN (M4,M5,M6) .6908 .6806 .6857 .8890 .9682 .8605 0.9112 .9676

MotifGNN (M1–M7) .8055 .6752 .7346 .8933 .9986 .8999 .9468 .9467

ing strategy can well sample neighbor nodes and extract higher order information
to avoid the over-smoothing problem usually occurred in graph representation
learning related tasks. While the proposed MotifGNN significantly outperforms
all compared methods w.r.t. all evaluation criteria except the Recall in “dataset
1”. This verifies that effectiveness of the proposed approach.

4.3 Evaluation Results on Motif Effect

This experiment is to investigate how the proposed motifs could affect the recip-
rocal recommendation performance. To recall that, the motif M7 is the desired
one which can best capture the reciprocal relationships among bipartite users.
The combination of M1 and M4 could be used to approximate the results of
motif M7. For motifs M1, M2 and M3, they are considered to model the inter-
ests of the service user, whereas the motifs M4, M5 and M6 capture the attrac-
tiveness of service users. Thus, we respectively sample homosexual neighbor users
by using these combinations of motifs and evaluate the corresponding model per-
formance which are reported in Table 4.

From this table, it is well noticed that in “dataset1”, MotifGNN with M7 is
the best model w.r.t. most evaluation criteria. But in “dataset2”, the combina-
tion of M1, M2 and M3 achieves the best performance w.r.t. recall criterion and
the combination of all motifs achieves the best precision and F1 score. As for
recommendation task, the AUC score is the most important evaluation criterion.
In terms of the AUC score, we still can conclude that the MotifGNN(M7) is the
best model on “dataset 2”. Furthermore, different combinations of motifs could
achieve quite different model performance and this needs further investigation.

5 Conclusion

Recommender systems have long been studies in various applications. However,
the reciprocal recommender systems have seldom been investigated. This paper
proposes a motif based graph neural network model for this task to address exist-
ing research challenges in RRS problem. Experiments are evaluated on two real-
world datasets. The promising empirical evaluation results demonstrate the supe-
riority of the proposed approach against a number of state-of-the-art approaches
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w.r.t several widely adopted evaluation criteria. In the near future, we will fur-
ther explore a better way to utilize the defined motifs.
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Abstract. Although a couple of spiking neural network (SNN) archi-
tectures have been developed to perform vector quantization, good per-
formances remains hard to attain. Moreover these architectures make
use of rate codes that require an unplausible high number of spikes
and consequently a high energetical cost. This paper presents for the
first time a SNN architecture that uses temporal codes, more precisely
first-spike latency code, while performing competitively with respect to
the state-of-the-art visual coding methods. We developed a novel spike-
timing-dependent plasticity (STDP) rule able to efficiently learn first-
spike latency codes. This event-based rule is integrated in a two-layer
SNN architecture of leaky integrate-and-fire (LIF) neurons. The first
layer encodes a real-valued input vector in a spatio-temporal spike pat-
tern, thus producing a temporal code. The second layer implements a
distance-dependent lateral interaction profile making competitive and
cooperative processes able to operate. The STDP rule operates between
those two layers so as to learn the inputs by adapting the synaptic
weights. State-of-the art performances are demonstrated on the MNIST
and natural image datasets.

Keywords: Neural network models · Self-organizing map · Vector
quantization · Temporal coding · Representation learning

1 Introduction

Spiking Neural Networks (SNNs) have gained an increasing attention in the
recent years and have been used to perform supervised and unsupervised learn-
ing [4,17] tasks. From a neuromorphic perspective, SNNs offer the advantages of
energetic and communication efficiency [15]. Indeed, they don’t need to produce
and send real-valued outputs at each iteration. Instead they sparsely emit binary
events, the so-called spikes. This event-driven message passing scheme greatly
alleviates the communication channels as compared to the clock-driven commu-
nication of traditional neural network implementations. Further energetic and
communication improvements can be obtained by making the memory storage
(the synapses) locally accessible to the computational unit (the neurons). This
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hardware architectural scheme can then be fully exploited at the algorithmic level
by the use of local learning rules such as STDP (spike timing dependent plastic-
ity). Local learning rules are leveraging information available at the presynaptic
terminal (or synaptic input) and the postsynaptic cell membrane (or synapse
output). This paper follows this algorithmic line of work. We propose a SNN
architecture that incorporates a novel STDP rule operating locally in space and
time to perform vector quantization and clustering.

The paper is organized as follows. In Sect. 2, we rapidly situate this work with
respect to vector quantization, self-organizing maps and spiking neural networks.
The architecture and learning method of our model is described in Sect. 3, and
the experimental results are presented in Sect. 4.

2 Background

Vector quantization (VQ, see [19]) consists in approximating the probability
density of a possibly highly multi-dimensional input space with a finite set of
prototype vectors, often called codewords, the set of codewords being called the
codebook. Many VQ algorithms exist such as k-means [10], self-organizing maps
(SOM) [8], neural gas (NG) [12], growing neural gas (GNG) [5] or growing when
required (GWR) [11]. The well-known k-means method provides a codebook
without any internal structure, meaning that no additional knowledge is provided
with respect to the similarities between codewords. Algorithms such as NG,
GNG or GWR create a codebook as a network of codewords and connections
between codewords. These connections stand for significant similarities between
codewords, thus inducing the codebook structure that derives from the learned
data. On the contrary, SOM are based on a static underlying topology and a fixed
number of codewords (neuron weight vectors). Each codeword has an associated
position in the underlying map that is usually a 2D lattice, and the learning
process captures the topographic relationships between the inputs: similar input
samples are represented by the weights of spatially close neurons in the map.

All above mentioned neural models for VQ use analog neurons. More biolog-
ically inspired computational paradigms recently attract more and more atten-
tion. The so-called spiking neurons mimic the neurons in the brain that commu-
nicate thanks to action potentials. Their success is tightly linked to the recent
trend towards neuromorphic processors (such as IBM TrueNorth or Intel Loihi)
or sensors (such as DVS event cameras) that make use of spikes. Our work aims at
defining an efficient spiking model for VQ inspired by SOM. Other works already
tackles the problem of vector quantization in SNN with local rules [3,7,18]. How-
ever, they make use of rate coding. Rate coding is energetically expensive as it
encodes a continuous variable in the spike rate of a neuron. The higher the
value the higher the rate. Furthermore, rate-coding is not an efficient coding
scheme for non-stationary data, that are the norm rather than the exception in
real-world applications. Indeed, the firing rate is defined as a limit that theo-
retically involves an infinite number of spikes [2]. Getting a reliable firing rate
estimate then requires to integrate enough spikes either with a large temporal



A Spiking Neural Architecture for Vector Quantization and Clustering 117

Fig. 1. Spiking neural network architecture.

window or with a high number of spiking neurons [4]. Consequently temporal
codes are often preferable due to their biological plausibility and energetical effi-
ciency. Contrary to rate codes, temporal codes leverage the precise spike times
to encode continuous variables. Among temporal codes we can cite first-spike
latency code that uses the precise spike time and rank-order-code, which can be
considered as a special case as it only leverages the rank of the spikes.

Our model performs vector quantization on the basis of a temporal coding
of data. It also addresses other common limitations of SNN architecture such
as the lack of scalability: changing input data dimensionality often requires an
additional fine tuning of parameters. To sum up, we propose here a new SNN
model for fast and efficient vector quantization and clustering, that differs from
previous works by making use of a new STDP rule for temporal codes, more
precisely first-spike latency code, and by being easily scalable to N input data
dimensions, without additional parametric fine-tuning.

3 Methods

Our SNN architecture is composed of two layers of LIF neurons (leaky integrate
and fire). The first layer u encodes a vector of continuous variables into spike
times, thus producing a temporal code. This layer is fully connected to the second
layer v that we call the spiking SOM. Layer v performs vector quantization
in a way that is conceptually similar to the initial SOM algorithm [8]. The
first neuron that spikes with respect to an input vector is considered to be the
best matching unit (BMU), i.e. the neuron that is best tuned to the current
input vector. This spike triggers the learning of the input vector by its afferent
synaptic weights with our new STDP rule. The spike produced by the BMU
also influences the other neurons in layer v via a distance-dependent lateral
interaction profile that mimics the usual neighbourhood kernel in the usual 2D
underlying topology of a Kohonen SOM. Spatially close neurons will tend to
spike in close temporal proximity and thus learn the input vector, while more
distant neurons will not spike and therefore not learn it. By iterating this process,
the map gets gradually topologically ordered, i.e. vectors that are close in the
input space will be represented by spatially close neurons in layer v.
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Fig. 2. A feature value of 0.45 is encoded by a spatio-temporal spike pattern. A) A
bank of 10 neurons represent this feature. Each neuron ui of that bank has a gaussian
tuning curve centered aroung a preferential value. u5 and u10 have 0.45 and 0.95 as
preferential values, respectively. The tuning curves of u5 and u10 and their resulting
activation levels for an input value of 0.45 are plotted. B) These activations levels are
constant for an interval of time of 12.5 ms and are followed by a quiescent period of
the same duration. C) The activation levels are integrated by the membrane potentials
of u5 and u10. The membrane potential of u5 grows faster than for u10 as the input
is higher. Consequently u5 reaches its threshold faster, is resetted and enters in a
refractory period. D) Each neuron ui emits a spike when it crosses it’s threshold,
thereby producing a spatio-temporal spike pattern at a mesoscopic level.

The architecture was simulated using the BRIAN2 simulator. The following
sections more precisely describe the different components of our model.

3.1 Neuron and Synapse Model

The network only contains leaky integrate-and-fire (LIF) neurons. This one-
variable model captures the basic behavior of a biological neuron while main-
taining a low computational cost and analytical tractability. The dynamic of a
LIF neuron is given by

τm
dV

dt
= −V (t) + E(t)

V (t) ← Vreset, if V (t) ≥ θ (1)

where τm is the membrane time constant, V (t) is the membrane potential, and
E(t) is the input to the neural membrane at time t. When the neuron’s membrane
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potential V (t) crosses its membrane threshold θ, the neuron instantaneously
emits a spike and the membrane potential is reset to Vreset. The neuron then
enters an absolute refractory period Trefrac during which it cannot emit a new
spike as the membrane potential stops being integrated.

The synaptic transmission is modeled with an instantenous jump of the
postsynaptic potential (PSP) by the synaptic weight when a spike is emitted
by a presynaptic neuron, followed by an exponential decay. This exponential
decay can be expressed by a linear differential equation. Rather than model-
ing the synaptic transmission with one differential equation per synapse, only
one differential equation is needed for the whole set of synapses, thanks to the
superposition principle of linear systems. This reduces the computational load
significantly.

Ej(t) ← Ej(t) +
I∑

i=1

si(t)wij(t), if a presynaptic neuron i spikes

τf
dEj

dt
= −Ej(t), otherwise (2)

where i and j index the pre- and post-synaptic neurons, respectively. Ej(t) is the
input potential of postsynaptic neuron j. si(t) is an indicator function returning
the value 1 when a presynaptic neuron i spikes at time t, 0 otherwise. wij(t) is
the synaptic weight between pre-synaptic neuron i and post-synaptic neuron j,
and τf is the fall time constant.

3.2 Input Encoding

Continuous input variables need to be encoded into spike times in layer u. This
can be achieved by distributing a variable x over a bank of N neurons (see Fig. 1),
where each of the i ∈ 1, ..., N neuron of that bank has a receptive field size σ
and is tuned to a preferential value μi in a periodic space. In our experiments
N = 10 and all neurons used an identical σ = 0.6 while the prefential values
μi were equally spaced between 0.05 and 0.95. A wrapped gaussian activation
function G(σ, μi, x) is then used to compute the input potential of each neuron.
The resulting periodic tuning curves cover the entire interval of variation of the
normalized input variable. The neuron whose preferential value is the closest
to the current input value will get the highest input, and will thus spike first.
The other neurons of the bank then spike in an order that is determined by the
distance between the input value and their preferential values (see Fig. 2). In this
way a continuous variable is encoded in a spatio-temporal spike pattern. This
coding scheme can be easily generalized for an input vector of M dimensions,
where each dimension is independently encoded by a corresponding bank of N
neurons in layer u, as inspired by [1].

3.3 Learning Rule

STDP rules that are not weight-dependent result in the steady-state in a bimodal
distribution, where the synaptic weights are either fully potentiated, or fully
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depressed, as shown by Rossum [14]. With our rule, the learned distribution
is unimodal and thus the interval of variation of the synaptic weights is fully
leveraged to learn the inputs. This makes possible an easy subsequent decoding
step.

To learn the inputs encoded in first-spike latency codes, we developed an
event-based plasticity rule derived from a vector-quantization criterion. It takes
the form of a novel STDP rule operating 1) locally in space with a single pair of
pre and postsynaptic neuron i and j, and 2) locally in time within a temporal
learning window. STDP rules are characterized by a weight change Δwij that is
a function of the time difference Δt = tpost − tpre between the post and presy-
naptic spikes, respectively. The magnitude of the weight change Δwij usually
depends on the term e−Δt/τ . Two different time constants τ+ and τ− account
for Δt > 0 and Δt ≤ 0, respectively and determine the width of the temporal
learning window. To keep computation efficient and local, we implemented an
online version of STDP. Each synapse has two local state variables xij and yij .
These variables serves as memories of recent pre and postsynaptic activities,
respectively. When a pre (post) synaptic spike is emitted, xij(t) (yij(t)) is set to
1 and then decays exponentially with a time constant τ+ (τ−) to 0. In this way
we reproduce the behavior of e−Δt/τ .

xij(t) ← 1, if neuron i spike

τ+
dxij

dt
= −xij(t), otherwise

yij(t) ← 1, if neuron j spike

τ−
dyij

dt
= −yij(t), otherwise (3)

The weight change Δwij of a synapse is then computed as a function of
xij(t) and yij(t). The weight is updated by that change such that wij(t) ←
wij(t) + Δwij . The final learning rules read:

Δwij =
{

α+

(
1 − xij(t) − wij(t) + woffset

)
, if neur. j spikes and xij(t) > θstdp

α−
(
1 − yij(t)

)
, if neur. i spikes and yij(t) > θstdp

(4)

and are combined with the hard bounds 0 ≤ wij ≤ 1. α+ and α− are the learning
rates. woffset is a positive offset that shifts the attracting fixed point up. We will
discuss about the fixed point in the next paragraph. If xij(t) (yij(t)) is smaller
than the threshold θstdp, then it does not lead to a change. This is done to
account for the time elapsed between the presentation of two successive input
patterns. Without this condition, the memories xij(t) (yij(t)) decaying to 0 after
a first input presentation would automatically lead to a maximal weight change
when a new input pattern is presented.

In the first adaptation case - that corresponds to Δt > 0 - we can observe
that the learned weight is an attractive fixed point by analyzing the equilibrium
solution:
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Δwij
= 0

⇔ 0 = 1 − xij(t) − wij(t) + woffset

⇔ wij(t) = 1 − xij(t) + woffset (5)

Consider a pattern that is repeatedly presented as an input. wij will converge
to a value that depends on the memory xij(t) and thereby on Δt. The higher
Δt, the higher the learned value, as the memory xij(t) relaxes to 0 for large Δt

values. Thus the first presynaptic neuron that spike will have the highest weight
and the last one that spike will have the lowest weight (see Fig. 3). This process
happens for each pair of pre and postsynaptic neuron that meet the conditions
of the first adaptation case. This behavior is reminiscent of first-spike latency
code or of rank-order coding which can be considered as a special case of the
former.

The second adaptation case - which corresponds to Δt ≤ 0 - implements
depression. The weight gets depressed by a magnitude that grows with Δt, as
the memory yij(t) relaxes to 0 for large Δt. Thus in the limit, the weights wij

takes the value 0, as the lower bound for the weight is set to 0.

3.4 Lateral Interactions

We describe in this section the lateral interaction profile in layer v, where the
neurons are arranged in a grid. Instead of using a high global inhibition to imple-
ment a Winner-Take-All (WTA) behavior, we use a distance-dependent lateral
interaction profile, similar to the Kohonen SOM [8]. This profile implements weak
short-range inhibition and strong long-range inhibition [6]. In this way, spatially
close neurons will tend to spike together and represent close input vectors, while
distant neurons will not spike together and thus will learn uncorrelated codes.
This also tends to accelerate the learning process, as a population of neurons
spike in response to an input vector rather than a single neuron. The lateral
interaction profile in layer v reads

wij =
{

cmin‖i − j‖, if ‖i − j‖ ≤ r
cmax, otherwise (6)

where wij is the lateral connection weight between the neurons at locations
i and j in the grid. cmin scales the inhibitory level for neurons whose distance is
less than a radius r, otherwise wij takes a maximum value cmax.

In the learning phase of the Kohonen SOM, the interaction radius progres-
sively decreases so as to first organize the map and then make the neurons learn
more and more individualized receptive fields. When the interaction radius is
equal to zero, we get a WTA behavior. We mimic this behavior by increasing
the lateral connection weights wij during the training phase. By increasing the
inhibition level, we approach a WTA behavior. The growing inhibition during
the training phase is implemented by the following homeostatic mechanism:

τw
dwij

dt
= cmax − wij (7)
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Fig. 3. Qualitative sketch of the steady-state learned weights when presenting an input
value of 0.45. The value gets encoded in a spatio-temporal spike pattern with a bank
of 10 neurons in layer u. The neuron whose preferential value is the closest to the input
spikes first, followed by the other neurons of that bank. At some time, a postsynaptic
spike is emitted by a neuron in layer v, here after the 5th spike and before the 6th spike.
The sign of the time difference Δt between a post and presynaptic spike delimits two
learning regimes for the STDP rule. If Δt > 0, then the learned weight is an attracting
fixed point. If Δt ≤ 0 the weight gets depressed by a magnitude that grows with Δt,
and finally the weight tends to 0.

Thus wij will exponentially converge to the target value cmax with a timescale
τw. In our experiments τw is equal to the period of the training phase.

4 Experiments and Results

This section presents the results of the conducted experiments to evaluate the
performance of our architecture in terms of reconstruction error. The data are
reconstructed from the weights with a center of mass with periodic boundary
conditions. This is a consequence of the circular nature of the gaussian receptive
fields of neurons in layer u. For the two datasets, data were normalized in range
[0.05, 0.95] to prevent the wrapping effect of the circular gaussian receptive fields
covering the range [0,1]. Each input vector is encoded by the receptive fields in
a vector of activation levels for the neurons of u layer. Activation levels are kept
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Table 1. Network parameters used in all simulations

Neuronal parameters, used in (1)

dt τu
m τv

m V u,v
reset θu θv Tu

refrac T v
refrac

0.1 ms 10.0 ms 1.3 ms 0.0 0.5 1.3 ndim 6 ms 4ms

Synaptic parameters, used in (2)

τf (u to v) τf (v to v)

2.8 ms 0.7 ms

Learning parameters, used in (3) and (4)

τ+ τ− α+ α− woffset θstdp

2.2 ms 5.5 ms 0.005 0.045 0.2 0.35

Neighborhood parameters, used in (6) and (7)

r cmin cmax

0.3 4 θv 37 θv

constant for a period of 12.5 ms, followed by a quiescent period of 12.5 ms (see
Fig. 2B). Synaptic weights between layers u and v are randomly initialized in
range [0.4,0.6]. Layer v is initialized with 100 neurons arranged in a 10*10 grid.

Table 1 show the network parameters and gives a simple strategy to scale the
architecture to higher input data dimensions ndim. Only three parameters need
to be scaled: the threshold level θv and the inhibitory levels cmin and cmax.

4.1 Quality Assessment of the Reconstructed Images

We used the root mean squared (RMS) error to quantify the difference between
an original image patch yp and a reconstructed patch ŷp.

RMS =
1
P

P∑

p=1

√√√√ 1
D

D∑

i=1

(yi,p − ŷi,p)2 (8)

where P is the number of extracted patches from the images and D is the
number of pixels of the patch.

4.2 Results on MNIST and Natural Images

We performed two experiments on two real datasets. For the testing phase and for
both experiments we fixed the lateral inhibition in layer v to cmax and disabled
the plasticity.

The first experiment was conducted on the MNIST dataset [9]. We randomly
selected a subset of 15 000 and 1000 training and testing digits, respectively, from
the MNIST dataset. The 28 * 28 digits were splitted in 4 * 4 patches. We scaled
θv, cmin, cmax with the strategy presented in Table 1 for 16 dimensions. 150,000
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Fig. 4. Left: learned receptive fields of the neurons of v layer after the training phase.
Right: original digits and reconstructed digits from the receptive fields.

Table 2. RMS reconstruction error values reported by Tavanei et al. [18]

Dataset 1 Tavanei [18] Our model

MNIST 0.17 0.13

Natural images 0.24 0.10

randomly selected patches were used to train the network. Figure 4 shows the
learned receptive fields and the reconstructed images for visual assessment.

The second experiment was performed on natural images [13]. 512 * 512
images were splitted in 16 * 16 patches. Again, we scaled θv, cmin, cmax with
the strategy presented in Table 1 for 256 dimensions. 150,000 randomly selected
patches were used so as to train the network.

The RMS reconstruction error for the two datasets is reported in Table 2
and is compared to the state-of-the art performances of Tavanei et al. [18]. Our
architecture shows better performances for the two datasets.

5 Discussion

Related works make use of rate codes [3,7,18]. Our work makes use of first-spike
latency code which brings significant advantages compared to rate code and rank-
order code. Consider a bank of N neurons in which each neuron only spike once to
represent a feature. Rank-order codes used in conjunction with gaussian receptive
fields will lead to a resolution of 1/N for the encoded feature. Thus increasing
the resolution requires to increase the number of neurons and consequently the
number of spikes. This is costly but the situation is getting worse for a rate
code, as it requires N2 neurons to achieve the same resolution. It is possible
to be more efficient: by using the spike latencies we can theoretically decode a
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feature value with a resolution that is only limited by the time step resolution.
What is then missing is a mechanism able to efficiently decode these latencies.
This is provided by our novel STDP rule that learns a representation of the
latencies in the synaptic weights. In our experiments only 10 neurons in layer u,
generating 10 spikes, are able to represent a feature. The first neurons that spike
in response to a feature value convey a maximal amount of information - as they
are best tuned to the feature value - thus the resulting latencies are encoded by
non-zero synaptic weights. The neurons that spike later convey few information,
thus the resulting latencies induce weight depression and make the weights decay
to 0. In this way a postsynaptic neuron in layer v learns a filter in its afferent
synaptic weights that makes it able to quickly detect an input pattern. In other
words the postsynaptic neuron spikes without having to wait for the whole set of
presynaptic neurons to spike. Rumbell et al. [16] also developped a spiking SOM
that uses temporal codes and mimics the original Kohonen SOM [8]. However,
this architecture only performs categorization and not vector quantization.

A limitation of our architecture is the costly all-to-all lateral connectivity
in layer v. The scalability of the architecture also needs further investigations,
though preliminary results show that a simple strategy to adapt parameters to
higher dimensions already provides satisfactory performances.

To conclude, we presented in this paper a SNN architecture able to perform
for the first time vector quantization using temporal codes, more precisely first-
spike latency code. This code brings a good theoretical compromise between
the amout of neurons and/or spikes required to encode a continuous variable
compared to rate code or rank-order code. What was missing was a mechanism
able to decode the latencies. We solved this issue by developing a novel STDP
rule able to efficiently learn a representation of the latencies in the synaptic
weights. The locality in time and space of the computation brought by the STDP
rule makes it neuromorphic-friendly. The learned synaptic weights fall in range
[0,1] and the distribution is unimodal, allowing an easy subsequent decoding
step. A soft competition is implemented in the lateral connections of layer v
so that neighboring neurons of the BMU have a chance to spike and thus to
represent close vectors in the input space. The lateral inhibition increases during
the training phase with an homeostatic mechanism, so as to first organize the
map and then make the neurons learn more and more individualized receptive
fields.
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Abstract. Interest has been growing lately towards learning represen-
tations for non-Euclidean geometric data structures. Such kinds of data
are found everywhere ranging from social network graphs, brain images,
sensor networks to 3-dimensional objects. To understand the under-
lying geometry and functions of these high dimensional discrete data
with non-Euclidean structure, it requires their representations in non-
Euclidean spaces. Recently, graph embedding in Riemannian spaces has
been explored to successfully capture the geometric properties of net-
works and achieve the state-of-the-art quality in graph representation
learning tasks. In this survey, we provide an overview on graph embed-
dings based on Riemannian geometry with different curvature spaces. We
further present recent developments in various application areas using
graph embedding models in non-Euclidean domains.

Keywords: Graph curvature · Geometric data · Graph embeddings ·
Hyperbolic spaces · Applications

1 Introduction

Graphs are universal data structures and have been perceived as empirical mod-
els for representing complex relational data in terms of nodes and edges. In mul-
tiple domains (e.g., social networks, recommender systems, knowledge graphs,
molecular fingerprints, traffic networks, etc.), the datasets usually contain mil-
lions of samples as well as very rich interaction information. It is difficult to store
and query relationships between the data in traditional relational databases due
to their fixed schema. Graph, as a very flexible data structure captures essen-
tial topological properties and is regarded as a powerful analysis paradigm across
fields as divergent as biology, neuroscience, linguistics, engineering, finance, mar-
keting, and social sciences.

In order to learn the underlying structural information and graph features,
many graph representation learning methods have been proposed. After obtain-
ing the graph as input, representation learning (also called network embedding)
provides dense representation of features, i.e., low dimensional vectors for nodes,
edges or subgraphs (shown in Fig. 1). This conversion benefits the downstream
c© Springer Nature Switzerland AG 2020
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applications including node classification, link prediction and graph categoriza-
tion, as the learning models can only understand and deal with numerical data.
There are roughly three classes of graph embedding methods: factorization-
based, random walk-based, and deep learning-based algorithms [12]. The goal
of these methods is that the semantics of the discrete data is captured by dis-
tances in the embedding space, i.e., two similar nodes should be located nearly
to each other. Recently, there has been a growing interest in deep learning-
based models where Graph Neural Networks (GNN) have achieved state-of-
the performance [12]. Due to powerful simplicity and efficiency of Euclidean
geometry, these models exploit conventional Euclidean spaces to learn graph
representation. While deep learning-based models show high performances on

Fig. 1. Illustration of graph embedding in Euclidean and non-Euclidean spaces.

non-geometric data such as images, speech signals, or videos, Euclidean spaces
have limitations for geometric data such as graphs and three-dimensional (3D)
objects. However, in recent works it has been validated that flat Euclidean
space is not an appropriate isometric space to embed geometric-structured
graphs [10,22,28]. The tree-like properties of graphs suffer from substantial dis-
tortion upon embedding in such spaces. Moreover, when the number of nodes
increases in graphs, it is inappropriate to position nodes in such embedding
spaces as the distances get more distorted towards leaves of the tree [2].

Over the last few years, there has been a surge of interest in trying to
exploit non-Euclidean space for graphs, since the underlying geometry of embed-
ding space is favourable for representation of such geometric data [9]. Rieman-
nian geometry provides a mathematical framework to manipulate non-Euclidean
geometries and leads to the fundamental theory of manifold learning and infor-
mation geometry [2]. A space of constant sectional curvature assigns an inter-
esting trade-off between Euclidean space and Riemannian manifolds and defines
hyperbolic, spherical, and Euclidean geometries. As presented in Fig. 1, Non-
Euclidean spaces exploit structural properties and show efficient learning repre-
sentation capacity. For instance, a non-Euclidean hyperbolic space continuously
grows as analogous to a tree and even provides nearly isometric embedding when
a tree grows exponentially. Additionally, hyperbolic embeddings in the case of
complex networks, scale-free graphs, and hierarchical data exhibit low distor-
tion and naturally unfold their properties, such as strong clustering, hierarchical
community structure, and heterogeneous degree distributions [22,29,33,39].
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In this survey we introduce a mathematical generalization of constant curva-
ture spaces and provide classes of graph embedding models in canonical Rieman-
nian manifolds with constant curvature. We then review a taxonomy of graph
embedding models in non-Euclidean spaces. Finally, we briefly present the recent
advances in graph embedding applications and tasks. This unified formation of
the geometric background, recent development in embedding methods, and appli-
cations would help the reader to gain grasp of the foundation and insight into
recent advancements in graph representation learning.

2 Mathematical Background

This section serves as background of concepts and mathematical definitions of
basic notions of manifolds and description of various curvatures in Riemannian
geometry to understand non-Euclidean spaces.

2.1 Preliminaries

We briefly introduce the concepts and terminologies which we shall use in the
following parts.

Curvature. Curvature is a measure which defines how much a geometric object
deviates from being flat. Graphs are discrete data and for a given graph the
“flatness” is to be understood to manifest connectivity and interdependence
between distant nodes.

Metric Spaces and Embeddings. Metric space is an ordered pair (X , d),
where X is the underlying space and d : X ∗ X → R is a distant function
(metric) measuring distance between pairs of elements of X . An embedding of
(X1, d1) into (X2, d2) is a mapping of f : X1 → X2. Embedding of graph metric
(V, dG) of a graph G = (V,E), with V nodes and E edges into k-dimensional
target space (T k, dT ), where dG measures the length of shortest paths between
two nodes in G and dT is a standard metric of T k [41]. The worst-case distortions
over all the distances in the metric determine the quality of the embedding.

Riemannian Manifold. Manifolds belong to the branches of mathematics of
topology and differential geometry, which can be considered as collections of
points that locally but not globally resemble Euclidean space [5]. For instance, a
manifold can be considered as a continuous approximation of a discrete graph.
The shortest paths on manifolds are termed as geodesics. Riemannian manifolds
(M, g) are smooth manifolds M equipped with Riemannian metrics g, which
is described by smoothly varying choices of inner products on tangent spaces
denoted by TpM for tangent vectors Tp at each point p ∈ M. Riemannian metric
g is a function to measure geometric quantities such as geodesic distances, angles
and curvatures [24].
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2.2 Curvatures of Riemannian Geometry

In Riemannian geometry, curvature is defined in terms of first and second order
derivatives of the metric tensor [26]. There are different notions of curvatures
to describe geometry objects: Principal curvature, Gaussian curvature [24], sec-
tional curvature, Ricci curvature [26], etc. Table 1 lists different curvature notions
and their properties. For further investigation of the two discretizations of Ricci
curvature [34] may be referred.

Principal Curvature. Principal curvature is the simplest curvature, which is
described by two values kmax and kmin, are the maximum and minimum values
of the curvature at each point p of a differential manifold.

Gaussian Curvature. The product of the principal curvatures is known as
Gaussian curvature: K = kmax∗kmin. The Gaussian curvature assigns a scalar for
each point on the surface in 3D Euclidean space and it also equals the Jacobian
determinant of the Gaussian map. This curvature notion is helpful to be able to
distinguish different types of manifolds from each other.

Sectional Curvature. Sectional curvature is a full invariant and encodes all
information about a Riemannian metric. It further generalizes Gaussian curva-
ture to high dimension and assigns a scalar for 2-dimensional (2D) linear sub-
space of tangent space at each point on a Riemannian manifold by encoding all
the information about Riemannian metric.

Ricci Curvature. The Ricci curvature is the average of sectional curvature. The
Ricci curvature assigns a scalar for each unit tangent vector at each point on the
manifold. Sectional curvature only involves one 2D subspace P in the tangent
space TpP at point p, while Ricci curvature further involves each 2D subspace
and takes the average as the curvature metric at p. Generalization to the Ricci
curvature have been explored under different notions including Ollivier’s Ricci
curvature (ORC) [30] and Forman’s Ricci curvature (FRC) [16]. These discrete
formulations on curvature provide important tools to study geometric and topo-
logical properties of graphs in terms of curvatures of nodes and edges.

Ollivier Ricci Curvature. Ollivier reformulated Ricci curvature in the view
of an optimal transportation plan between two points in a metric space. In fact,
ORC generalizes Ricci curvature to general metric space with probability mea-
sure and this gives intuition that ORC discretizes Ricci curvature to undirected
graphs with nodes having probability measure attributes.

Forman Ricci Curvature. Forman Ricci curvature generalizes Ricci curvature
which measures how fast distance volume grows between points and in graph
analogy this can be inferred to measure dispersion rate of geodesics. Based on
Forman curvature of edges, Forman curvature (a scalar value) for nodes are
defined.

All above variants of curvatures are useful to understand and define the
notion of graph curvature and representation learning in Riemannian manifolds.
It is beyond the scope of this paper to define them in canonical forms.
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Table 1. Various curvature notions on manifolds

Curvature Output Definition Geometric
nature

Principal 2 scalars Extremums of curvature of 3D
line

Extrinsic

Gaussian 1 scalar Product of principal curvatures Intrinsic

Sectional 1 scalar Gaussian curvature in one tan-
gent space

Intrinsic

Ricci 1 scalar Average of Gaussian curvatures Intrinsic

Ollivier Ricci 1 scalar Minimal transportation expense Intrinsic

Forman Ricci 1 scalar Dispersion rate of geodesic Intrinsic

Table 2. Properties of constant curvature spaces

Property Euclidean Spherical Hyperbolic
Curvature zero positive negative

Parallel lines 1 0 ∞
Sum of angles in triangle 180◦ >180◦ <180◦

Characteristic Graph

2.3 Spaces of Constant Curvature

We now present an intuitive description of curvatures and the geometry of homo-
geneous spaces, also called “spaces of constant curvature”, in this case curvature
is constant everywhere in the space and deforms to a constant curvature space.
According to the different conditions, there are three kinds of connected Rie-
mannian manifolds with constant sectional curvature: Euclidean space with zero
curvature, spherical space with constant positive curvature and hyperbolic space
with constant negative curvature. Table 2 summarizes the properties of the three
geometries of constant curvatures. The notion of curvature plays a central role
due to correlation between structure of the data (hierarchical, cyclical) and the
geometry of non-Euclidean embedding space [19]. The geometry of hyperbolic
spaces is suited to embed a tree structured graph and that of spherical spaces
is appropriate to embed a cyclic graph. We define (1) Hyperbolic Spaces and
(2) Spherical Spaces with related models in the remaining part of this section.

(1) Hyperbolic Spaces. In Hyperbolic spaces projections preserve angles but
massively distort distances. Another interesting property regarding hyperbolic
spaces is that the area and volume of a ball grows exponentially with the radius,
which makes the hyperbolic space a perfect model to embed tree-like data. In
hyperbolic geometry distances can grow exponentially towards the edges of the
disk (shown in Fig. 2(a)) and a set of hyperbolic straight lines can pass through
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a single point (shown in Fig. 2(b)). These properties contribute infinite trees to
have nearly isometric embeddings in hyperbolic space [10].

We denote a Euclidean space as R, hyperbolic space as (H, g), and g is a
Riemannian metric. The three commonly used models for hyperbolic space in
Riemannian geometry are (i) Poincaré Ball Model [28], (ii) Klein Model,
and (iii) Lorentz Model [29].

Fig. 2. Properties of hyperbolic spaces: (a) Each tile is a constant area in hyperbolic
plane, however vanishes at the Euclidean space boundary and (b) Number of straight
lines passing through a point, parallel to the blue line [10]. (Color figure online)

(i) Poincaré Ball Model. Let Bn = {x ∈ Rn ‖x‖ < 1} be an n-dimensional
hyperbolic space and ‖.‖ denotes Euclidean norm. The Poincaré ball model cor-
responds to the Riemannian manifold (Bn, gx) and Riemannian metric tensor
defined on Bn is defined as:

gx =
(

2
1 − ||x||2

)2

gE , (1)

where x ∈ Bn and gE stands for the Euclidean metric tensor. Furthermore,
hyperbolic distance between points Zi, Zj ∈ Bn in Poincaré ball model is calcu-
lated as:

gp(Zi, Zj) = arcosh
(

1 + 2
||Zi − Zj ||2

(1 − ||Zi||2)(1 − ||Zj ||2)

)
, (2)

where arcosh(w) = ln(w +
√

w2 − 1) is the inverse of hyperbolic cosine function.
(ii) Klein Model. The metric space (Bn, gk) is the Klein model of n dimensional
hyperbolic space, in this case Bn is a Euclidean unit ball, and the distance is
given as:

gk(Zi, Zj) = arcosh

(
1 − (Zi|Zj)√

1 − ||Zi||2
√

1 − ||Zj ||2

)
, (3)

(iii) Lorentz Model. The metric space (L, gl) is the Lorentz model (also called
upper sheet hyperboloid model) of n dimensional hyperbolic space where dis-
tance is defined as:

gl(Zi, Zj) = arcosh(−〈Zi|Zj〉) ∈ [o,∞], (4)



A Survey of Graph Curvature and Embedding in Non-Euclidean Spaces 133

Fig. 3. Taxonomy of graph embedding models in non-Euclidean spaces.

where 〈Zi|Zj〉 is a Minkowski bilinear form and 〈Zi|Zj〉 = −Zi0Zj0 +∑n
k=1 ZikZjk. It is experimentally proven that among all the three models, the

Lorentz model has the best performance in graph analysis since it contains sim-
ple formulas and avoids numerical instabilities that arise from the fraction in the
Poincaré distance [29]. It should be noted that the Poincaré Model exhibits con-
formal behaviour in view of the fact that the Euclidean angles between hyperbolic
lines are equal to their hyperbolic angles in the model [42]. Due to this property
of the model it is well-suited for gradient-based optimization.

(2) Spherical Space. In the case of spherical space, the spherical model Sn
K

is most easily defined when embedded in Rn+1 Euclidean space. The spherical
manifold for any K is defined on the subset {x ∈ Rn+1 : ||x||2 = K1/2} with
metric gs originated by the Euclidean metric on Rd+1. The spherical distance
on Sn is defined as: gs(Zi, Zj) = arccos(〈Zi, Zj〉)

With above background and description of Riemannian geometry and hyper-
bolic space, following sections provide graph embedding models and summariza-
tion on recent development in the wide range of applications concerning graph
structured data embedded in non-Euclidean spaces.

3 Graph Embeddings in Non-Euclidean Spaces

Non-Euclidean spaces are well-suited for graph embeddings to explore underly-
ing geometry and function and also have been considered for various network
science problems [1,35,41]. In this section we present taxonomy (shown in Fig. 3)
of graph embedding models in non-Euclidean geometry with a constant curva-
ture for downstream machine learning tasks and applications. We discuss these
models in the following part of this section.

Poincaré Embeddings. The Poincaré ball model of hyperbolic space is specif-
ically suitable to represent hierarchies present in graph data. The Poincaré
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embedding model [28] learns hyperbolic space embeddings via Poincaré distance
function defined in Eq. (2). The points {Zi}, i ∈ V represented on hyperbolic
spaces denote embeddings for node i, where graph properties (local and global)
are well preserved. The smooth change in distances within the Poincaré ball with
respect to the points Zi and Zj is the key for continuous hierarchical embed-
dings in hyperbolic spaces. The embeddings are then learned by computing loss
function which minimizes distances between connected nodes while maximizes
distance between disconnected nodes given as:

L(θ) =
∑
Zi,Zj

log
e−gp(Zi,Zj)∑

Z′
j∈N (Zi)

e−gp(Zi,Z′
j)

, (5)

where N (Zi) is the set of negative examples for Zi (including Zi). The distance
function for Poincaré in Eq. (2) is differentiable and pertinent for gradient-based
optimization. This requires Riemannian optimization techniques, for example,
the Riemannian stochastic gradient descent (Riemannian SGD), a generaliza-
tion of the SGD [8] in Euclidean space, except that there is no concept of vector
addition. In hyperbolic space, the similar concept is exponential map [7]. Other
variants of Poincaré embedding model have been proposed with relevant loss
functions to offer isometric embedding in hyperbolic space. For example, Cham-
berlan et al. [10] extend Poincaré embedding and define learning by optimising
objective function which integrates hyperbolic inner product in skip-gram losses
with negative sampling. The model has different adaptations including multi-
relational Poincaré model [4], Poincaré Glove for word embeddings [39], and
Hyperbolic Entailment Cone to embed symbolic objects in hyperbolic space [17].

Hyperboloid Embeddings. This model aims to learn non-Euclidean graph
representation based on distance function of Lorentz model as defined in Eq. (3).
The model provides improved stability and efficient learning than Poincaré ball
model. Nickel and Kiela [29] define Hyperboloid (Lorentz) embeddings in hyper-
bolic spaces with Riemannian SGD optimization. The model preserves pairwise
similarity and defines the loss function based on similarity semantic approach.
As stated in [29], the basic idea of the model is to define embedding of concept
ci, where {ci}mi=1 ∈ C (concepts set) and X ∈ R

m×m denotes the similarity scores
of these concepts. According to our notations Zi be the embeddings for ci and
N (i, j) denotes the concepts set that are less similar to ci then cj as negative
sampling cases. The embeddings θ = {Z}mi=1 are learned by optimizing the loss
function given as:

Prob(φ(i, j)|θ) =
∑
Zi,Zj

log
e−gl(Zi,Zj)∑

Z′
j∈N (Zi)

e−gl(Zi,Z′
j)

, (6)

where φ(i, j) = arg mink∈N (i,j)(gl(Zi, Zk)). It is significant to note that due to
equivalence of both models, points in Lorentz model and Poincaré ball model
can be mapped onto each others’ spaces via diffeomorphism (ψ) [23], such that
ψ : Bn → Ln, where ψ(p0, p1, .., pn) = (p0,p1,..,pn)

p0+1 maps the Lorentz model into a
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Poincaré ball. Inheriting hyperboloid embedding, there are various modifications
for embeddings in hyperbolic spaces [1,11,23,38].

Product Space Embeddings. Graph data with hierarchical and cyclical
nature of local regions need embedding spaces with heterogeneous curvature.
Product Space (also known as mixed spaces) provides higher quality of repre-
sentation in such a framework. Gu et al. [19] define product space, where the
mixed curvature embeddings are characterised with Riemannian product mani-
folds of hyperbolic, spherical and Euclidean components and provide a decom-
posable non-constant curvature. The curvature is directly learned from geometry
of underlying data for each component space with the embedding via Rieman-
nian optimization. Authors define distance-based loss function to learn optimal
embedding on product spaces.

Hyperbolic GCN. Graph Convolutional Networks (GCNs) are GNN based
models. GNNs leverage node features and provide deep learning frameworks
for graph embedding in Euclidean geometry and associated vector spaces [12].
Furthermore, GCNs bring up inductive graph embeddings and define layer-wise
propagation for neural network models on GNN. However, GNN embeddings in
non-Euclidean geometry lead to a large distortion due to hierarchical and scale-
free property of graphs. On the other hand, non-Euclidean frameworks extend
GNN to enable learning on hyperbolic geometry and perform convolution in
hyperbolic spaces. We present hyperbolic GCNs which introduce and define core
GCN operations to perform convolution and next define attentions based graph
attention networks (GAT) model in hyperbolic spaces with curvature as trainable
parameters. GCNs compute node representations by aggregating messages from
neighbors over multiple steps and define information propagation operations on
graphs. A new representation for node u at propagation step k + 1 is given as:

hk+1
u = σ(

∑
v∈I(u)

ÃuvW
khk

v), (7)

where σ is an activation function, hk
v is representation of node v at step k,

W k ∈ R
h×h represents a trainable parameter at time t, Ãuv is derived from adja-

cency matrix A and it captures connectivity of node u and set I(u) of neighbors
of u. Recently, HGCN [14] and HGNN [25] extend GNN in hyperbolic spaces
with learnable curvatures. These models propose new set operations for aggre-
gation to perform graph convolution and provide a first-order approximation of
the hyperbolic manifold at a point. Furthermore, Bechmann et al. [2] introduce
an extension of hyperbolic graph neural networks to the stereographic model
of a trainable and unified hyperbolic and spherical curvatures. Ye et al. [44]
define curvature graph network (CurvGraph) and formulate weighted aggre-
gation parameter in update step of GCN to incorporate advanced structural
information of Ricci curvature of edges connecting set of neighbors I(u).

Hyperbolic GAT. Attention operation in GCN computes a notion of neighbors’
importance to the center node and learns attention weights to construct weighted
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neighborhood aggregation. Hyperbolic attention-based aggregation uses hyper-
bolic embeddings to compute attention weights. HGCN [14] extends graph convo-
lutions to hyperbolic geometric space with attention based architecture for neigh-
borhood propagation. Shimizu et al. [36] define hyperbolic multi-head attention
mechanism perceived in the Poincaré ball model.

Riemannian Generative Models. In recent times, generative models have
been generalized to hyperbolic and spherical latent spaces. Following the same
analogy, Davidson et al. [15] explored hyperspherical latent representation for
variational auto-encoders. Grattarola et al. [18] define adversarial autoencoders
framework for graph embedding on manifolds with constant curvatures.

Other Models. Recently, several models of deep networks extend the hyperbolic
geometric representation in terms of generalizing operations defined on Lorentz
and Klein models for graph embeddings. Following that, Gülçehre et al. [20]
define hyperbolic attention mechanism using hyperbolic distance between nodes
and generate hyperbolic aggregation weights. Zhang et al. [45] investigate GNN
in hyperbolic spaces and define graph operation for attention mechanism based
on hyperbolic proximity.

4 Applications and Tasks

Graph embedding in a non-Euclidean space can be applied to a wide range of
tasks and applications. We review some recent developments in this section.

Knowledge Graph Embedding. Recently, knowledge graphs (KG) embed-
ding models in the hyperbolic planes have shown to be effective as they can rep-
resent model topological structure. Recent work presented in [4,13,21] exploited
hyperbolic embedding to learn relationship-specific hyperbolic transformations.

Community Analysis. Ni et al. [27] considered the problem of community
detection in geometric view. Bakker et al. [3] considered Riemannian geometry
for community detection tasks where graphs change over the time.

Hyperbolic Embedding. The geometry view of graph embedding has gen-
erated considerable attention and offered a new perspective on the topology
of complex networks structure. Most recent advancements in this direction
are [1,6,22,28,29,37].

Hyperbolic Graph Neural Networks. Hyperbolic graph neural networks
offer low distortion and enable to learn embedding for graph structures like
hierarchical and scale-free graphs with hyperbolic distance metric [14,32,36].

Recommender Systems. Lately, hyperbolic spaces have gained significant
attention to investigate the notion of training recommender systems. Recent
works in [11,31,40,43] offer effective performances in this direction.
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5 Conclusion

This survey highlights the significance of graph curvature and the representa-
tion of graph-structured data in non-Euclidean spaces. We present an overview of
models of curvature spaces and description of Riemannian hyperbolic geometry.
We further provide categories of graph embedding models in geometric spaces
and summarize the survey on recent works in various application domains using
non-Euclidean geometry. We explore the use of hyperbolic representation on
graph-structured data and encourage future research in deep geometric mod-
els for graph learning methods and applications. In the future we may con-
duct a more comprehensive coverage of learning graph embedding on different
hyperbolic models with challenges in optimization methods, further studies may
investigate complex Riemannian manifolds and exploit architectures on non-
Euclidean spaces for graph learning.
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Abstract. Tax evasion detection has a crucial role in addressing tax
revenue loss. In the real world, an accessed tax dataset only contains a
small number of labeled taxpayers who evade tax (positive samples) and
a large number of unlabeled taxpayers who either evade tax or do not
evade tax. It is difficult to address this issue due to this nontraditional
dataset. In addition, the basic features of taxpayers designed according
to tax experts’ domain knowledge and experience are very limited to
determining whether taxpayers evade tax. These limitations motivate
the contribution of this work. In this paper, we argue that the tax eva-
sion detection task in the real world should be formalized as a positive
unlabeled (PU) learning problem. We propose a novel tax evasion detec-
tion method based on PU learning with Network Embedding features
(PUNE). PUNE effectively detects tax evasion based on basic features
and transaction network features that are extracted by a network embed-
ding algorithm. Moreover, PUNE can work well even under label noise.
To evaluate the effectiveness of PUNE, we conduct experimental tests
on a real-world tax dataset. The results demonstrate that PUNE can
significantly improve the performance of tax evasion detection.

Keywords: Positive and unlabeled learning · Tax evasion · Network
embedding · Label noise

1 Introduction

Tax evasion has always been a crucial issue to both governments and academic
research. Billions to trillions of dollars in revenue are lost every year due to
various tax evasion means [7,18]. Tax evasion violates tax-related laws and causes
a large amount of tax loss, which not only reduces the national fiscal revenue
but also seriously undermines the economic order in society [9,25].
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To detect tax evasion, numerous detection methods have been proposed,
which can be divided into two categories: whistle-blowing-based methods and
manual-select-based methods. The former method mainly relies on the internal
or mutual supervision of taxpayers, while the latter method relies on the expe-
rience of tax inspectors to judge whether taxpayers have abnormal behaviors
related to tax evasion. Although these methods have been employed to identify
many tax evasion taxpayers, it is still very difficult to manually process rapidly
growing tax data by a limited number of tax inspectors. Therefore, in recent
studies, machine learning techniques have been utilized to help tax inspectors
detect suspicious taxpayers, extract taxpayer-related features and train detec-
tion models for mining vast amounts of tax data [2,4,8]. However, due to the
complexity of tax data and the concealment of tax evasion means, two main
challenges still exist for detecting tax evasion.

First, there are limited features for describing transactions. Traditional
machine learning based models are mainly built on the basic features of tax-
payers, which are designed according to tax experts’ domain knowledge and
experience. However, with exponentially growing tax transaction data, the mea-
surement of trading characteristics in large-scale transaction data using manually
designed features, such as the amount and number of transactions, is difficult.

To extract additional features that are beneficial for improving the perfor-
mance of detecting tax evasion by machine learning, the network embedding
(NE) algorithm is applied to describe transaction characteristics based on a
transaction network that is built by business records between taxpayers. The
combination of network features and basic features forms the feature space of
taxpayers, which is subsequently employed for training the tax evasion detection
model.

Second, there are a small number of labeled samples and a vast number of
unlabeled data. In the real world, tax inspectors randomly select several tax-
payers and analyze their income and expenses to determine whether they have
evaded tax. Thus, it is a common case in practical classification applications,
especially in tax evasion detection scenarios in which the available data only
contain labeled positive samples and a vast number of unlabeled samples that
could be positive or negative, that is, only a small number of taxpayers have
been confirmed as evading tax. The vast amount of taxpayer data and transac-
tion data provided by tax authorities are unlabeled, which include both normal
tax evasion taxpayers and suspicious tax evasion taxpayers.

Thus, we are motivated to use positive unlabeled (PU) learning [1], which is
a kind of semisupervised learning, to learn a binary classifier from a training set
of only positive and unlabeled samples. Compared to the previously discussed
machine learning methods, PU learning methods can only utilize labeled and
unlabeled samples so that negative samples are not necessary in the training
process, which matches our tax evasion detection scenario.

We propose a novel tax evasion detection method based on PU learning with
Network Embedding features (PUNE), which can fully utilize the large-scale
unlabeled samples in training process. Moreover, in order to improve accuracy
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of tax evasion detection, we extract transaction features of taxpayers by utilizing
network embedding algorithms in our method.

To evaluate the effectiveness of PUNE, we conduct experimental tests on a
real-world tax dataset obtained from our collaborated local tax authority. The
results demonstrate that PUNE can significantly improve the performance of
tax evasion detection. The main contributions of this work are summarized as
follows:

– We build a transaction network according to the business records between
taxpayers. Based on the network, we apply three network embedding algo-
rithms that are employed to extract the transaction features of taxpayers to
verify that transaction features can improve the tax evasion detection perfor-
mance.

– We formalize the tax evasion detection task as a positive and negative learning
problem. In PU training, we can fully utilize not only the positive samples
but also the large-scale unbalanced samples. Moreover, we give each sample
an individual weight by rank labeling to weaken the influence of label noise,
which is significant in tax evasion detection.

– We conduct an experimental test on a real-world tax dataset to evaluate the
effectiveness of our tax evasion detection method.

The remainder of this paper is organized as follows: Sect. 2 introduces the
preliminary of this paper. Section 3 explains the details of our approach of tax
evasion detection. Our approach mainly consists of extracting transaction net-
work features and PU training. Section 4 evaluates PUNE and demonstrates the
experiment. Section 5 concludes this work.

2 Preliminary

In the PU problem, let X ∈ R
d be a d-dimensional feature space and Y ∈ {−1, 1}

be a label space as input and output random variables, respectively. Another
random variable S ∈ {−1, 1} is applied to represent whether a sample is labeled.

Assuming that the number of labeled positive samples in the training set is
nl, we can obtain the labeled positive sample set Xl and the unlabeled sample
set Xu as follows:

Xl = {x1, x2, . . . , xnl
}

Xu = {xn1+1, xnl+2, . . . , xN}
We can represent the datasets by X and S as:

DSl = {(x1, s1), (x2, s2), . . . , (xnl
, snl

)}
DSu = {(xnl+1, snl+1), (xnl+2, ynl+2), . . . , (xN , sN )}

Where s1, s2, . . . , snl
= 1 and snl+1, snl+2, . . . , sN = −1, which means that

labeled samples are considered “positive” and unlabeled samples are considered
“negative”. In PU learning, the class prior π refers to the proportion of positive
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samples in the training set; it is represented by π = P (Y = 1), π is assumed to be
known throughout the paper and can be estimated from positive and unlabeled
data [3,13,16,20].

In addition, our basic assumption is that the labeled positive samples are
chosen completely randomly from all positive samples (SCAR) [1]. Under the
SCAR, X and S are conditionally independent given Y . Stated formally, that
is,

P (S = 1|X,Y = 1) = P (S = 1|Y = 1) (1)

In addition, c = P (S = 1|Y = 1) indicates the probability that a positive sample
is labeled, which is regarded as a constant on a definite dataset.

In the scenario of tax evasion detection, suspicious tax evasion taxpayers
are labeled by tax inspectors. Tax inspectors always randomly inspect taxpay-
ers. Thus, the labeled positive suspicious taxpayers are selected randomly in all
taxpayers that exactly satisfy the SCAR assumption.

3 PUNE Method

Our tax evasion detection method PUNE contains three process, as shown in
Fig. 1. In the first process, a network embedding algorithm is utilized to extract
network features that can describe the characteristics of businesses based on
transaction networks. In the rank labeling process, it utilizes class prior to rank
samples and gives each sample an individual weight to weaken the influence
aroused by label noise. In the last process, the final tax evasion detection model
is trained by using weighted samples.

network features 

 Network Features Extracting Rank Labeling 

basic features 

transaction 
records

transaction 
network

predict positive 
samples

negative
 samples

PN weighted
 train set MLP classifier

basic data

SVM

train

PU train set

combine

sorted samples

Weighted Binary Training

Fig. 1. Framework of PUNE method
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3.1 Problem Formulation

To help tax inspectors detect tax evasion, many machine learning based tech-
niques have been explored in previous literature [21,23,24]. These works dis-
regard the notion that transaction characteristics can distinguish tax evading
taxpayers more accurately than basic features because tax evasion is often hid-
den in transactions. Thus, network embedding algorithms are utilized to extract
network features based on transaction networks that are built according to busi-
ness records. In our method, we apply three famous network embedding algo-
rithms to verify the effectiveness of transaction features in the task of tax evasion
detection.

Moreover, these works disregard the notion that tax inspectors tend to ran-
domly select several taxpayers and analyze their income and expenses to deter-
mine whether they have evaded tax. Thus, this case is common in practical
classification applications, especially in tax evasion detection scenarios, in which
the available data only contain labeled positive samples (suspicious tax evasion
taxpayers) and a vast number of unlabeled samples that could be positive or
negative. The special dataset reduces the effectiveness of these works.

This PU problem can be solved by PU learning, which belongs to semisu-
pervised learning. PU learning is useful in many real-world problems. Many PU
methods have been proposed in the literature [5,6,14,15,17]. The bagging SVM
[17] and biased SVM [15] train binary classifiers using labeled samples and unla-
beled samples. They directly regard all unlabeled samples as negative, which
causes poor classifier performance because of bias.

The weighted SVM [7] simultaneously regards unlabeled data as weighted
positive and negative samples. In addition, this SVM gives unit weights to all
labeled positive samples. UPU [6] and NNPU [14] are both unbiased methods;
they propose unbiased risk estimators that are state-of-the-art. However, when
tax inspectors label data, they often make a mistake, that is, there is label noise
in labeled positive samples, which will influence the performance of tax evasion
detection. Thus, when these methods are applied to detect tax evasion, their
performance will be poor because of the inevitable noise.

Based on this claim, in PUNE, first, we build a transaction network according
to business records between taxpayers and then extract transaction features by
a network embedding algorithm. Second, based on the transaction features and
basic features, we weight both labeled positive samples and unlabeled samples
to solve the label noise problem and PU problem. Last, a multilayer perceptron
(MLP) is employed to train the final tax evasion detection classifier based on
the weighted samples.

3.2 Extract Network Features

In this section, we illustrate how to construct the transaction network from
raw transaction data. The feature space is built based on basic features and
transaction network features extracted by a network embedding algorithm.
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Transaction Network Construction. The raw transaction record describes
details such as the name of the buyer and seller taxpayers, the category and
price of trading commodities and other identification information. After data
preprocessing, such as removing irrelevant information, merging records of the
same buyers and sellers over time, and encoding commodity categories, we obtain
a dataset that contains transaction relationships of all taxpayers.

Based on the information of the transaction relationship, the transaction net-
work G = (V,E,W ) can be built, where V = v1, v2, · · · , vn is a set of taxpayers,
n is the number of taxpayers, and E = eij denotes the transaction relationships
between taxpayers and W = wij represents the weights of the edges which are
according to the transaction amount.

Network Embedding. In recent years, a significant amount of progress has
been made in studies of network embedding; nodes in a network are assigned
to low-dimensional representations and the local and global network structure
is preserved [22]. In these studies, many network embedding methods, such as
DeepWalk [19], LINE [22] and Node2vec [11], have been proposed. For example,
the Deepwalk [19] algorithm learns latent social representations of vertices using
local information from truncated random walks as input. The LINE [22] algo-
rithm designs an objective function that preserves first-order and second-order
proximities, which are complementary to each other. [11] proposed Node2vec,
which learns a mapping of nodes to a low-dimensional space of features that
maximizes the likelihood of preserving network neighborhoods of nodes.

These three network embedding algorithms are applied to for extract the
transaction network features based on the transaction network and verify
whether the transaction network is beneficial for tax evasion detection.

3.3 PU Training

After extracting network features, the feature space of the taxpayer has been
built based on the basic features and network features of the taxpayer. In this
stage, we mainly employ positive and unlabeled data to train a binary classifier
to detect tax evasion. The stage consists of two processes: rank labeling process
and binary classifier training process. First, in the rank labeling process, a biased
classifier is trained by datasets DSl and DSu to obtain P (s = 1|x) of all PU
data. Second, according to the value of P (s = 1|x), the weight of each samples
can be calculated. In binary classifier training, we train the final model by an
MLP based on weighted samples.

Rank Labeling Process. With the SCAR assumption, [7] has indicated that

P (S = 1|X) = P (Y = 1 ∧ S = 1|X)
= P (S = 1|Y = 1,X)P (Y = 1|X)
= P (S = 1|Y = 1)P (Y = 1|X)
= c · P (Y = 1|X)

(2)
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It shows that a classifier trained on positive and unlabeled samples predicts
probabilities that differ by only a constant factor from the true conditional prob-
ability of being positive. Although, the true conditional probability P (Y = 1|X)
is not equal to P (S = 1|X), the rank relationship between samples based on the
conditional probability is never changed. Stated formally,

P (si = 1|xi) > P (sj = 1)|xj) ⇒ P (yi = 1|xi) > P (yj = 1)|xj) (3)

This conclusion motivates us to perform the classification by class prior instead
of a threshold as employed by other methods.

As shown in Fig. 1, the basic learning algorithm is an support vector
machine(SVM). We train a biased SVM where DSl and DSu are regarded as
the training set. Then, we use this classifier, which works on all train samples
Xl and Xu to obtain the probability estimates P (s = 1|x), which indicates the
confidence degree that the samples are positive. As previously mentioned, the
rank relationship between samples based on P (s = 1|x) is the same as that based
on P (y = 1|x). Thus, we sort P (s = 1|x) and label the remaining samples as
negative, where np can be calculated by np = N ∗π After rank labeling, Dp and
Du can be obtained by reorganizing the dataset:

Dp = {(x1, y1), (x2, y2), . . . , (xnp
, ynp

)}

Dn = {(xnp+1, ynp+1), (xnp+2, ynp+2), . . . , (xN , yN )}.

where y1, y2, . . . , ynp
is equal to 1 and ynp+1, ynp+2, . . . , yN is equal to −1.

Weight Training Process. After the rank labeling process, we obtained rough
labels of the training set and the probabilities that indicate the confidence degree
that the samples are positive. Thus, the positive and unlabeled problem has
been transformed to an ordinary binary classification problem that is supervised.
Supervise learning is easier than PU learning because all samples in the training
set are labeled. For our binary classifier training, the employed neural network
type is the standard layered neural network type, which is referred to as called
the “multilayer perceptron”.

An MLP is a supervised learning algorithm that learns a nonlinear function
approximator. An MLP consists of an input layer of source nodes, one or more
hidden layers of neurons and an output layer [12,26]. Each layer is fully connected
to the next layer. The hidden layers are nonlinear layers that are situated between
the input layer and output layer. Because it can have one or more hidden layers,
an MLP renders it different and flexible from other algorithms. The number of
nodes in the input layer and the number of nodes in the output layer depend
on the dimensions of the feature space and the dimensions of the label space,
respectively. The input signal propagates through the network layer-by-layer. In
the training of ordinary binary classification, the risk estimator of MLP is

R(f) = πR1(f) + (1 − π)R−1(f) (4)
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where R−1(f) and R1(f) denote the expected risk of positive samples and the
expected risk of negative samples, respectively. π represents P (Y = 1), which is
the proportion of positive samples in the training set. It is obvious that every
sample has the same weight in training.

In PUNE, to further reduce the influence of noise, we give each sample an
individual weight rather than the same weight as given in ordinary classification.

First, we treat the positive samples in Dp with weight Wp = {p1, p2, . . . , pnp
}

and negative samples in Dn with weight Wn = {1−pnp+1, 1−pnp+2, . . . , 1−pN}.
Second, a three-layer MLP g is taken into account because it has been shown
that a single hidden layer is sufficient to approximate any continuous function
[10]. The optimization objective of our MLP is

Rmin(g) =
π

∑
wi∈Wp

wi
·

∑

(xi,yi)∈Dp,wi∈Wp

wi · l(g(xi), yi)+

1 − π
∑

wj∈Wn
wj

·
∑

(xj ,yj)∈Dn,wj∈Wn

wj · l(g(xj), yj)
(5)

The first term of Rmin represents the risk of positive samples; it is divided
by the sum of the weights of the positive samples because it is necessary to
normalize the weights of the positive samples. The same situation applies to the
second term.

Compared with the risk estimator of the ordinary binary MLP, PUNE assigns
each sample an individual weight so that PUNE can weaken the influence of the
label noise. The details of the PU training algorithm are described in Algo-
rithm1.

4 Experiments

In this section, we perform exhaustive experiments using real-world tax data. We
compare PUNE with state-of-the-art PU learning methods, such as the weighted
SVM [7], biased SVM [15], bagging SVM [17] and unbiased PU (UPU) [6] and
non-negative PU (NNPU) [14]. In addition, the traditional linear SVM is also
trained, where the unlabeled samples are directly treated as negative (PN-SVM).
What’s more, we conduct experiment on TEDM-PU, the state of art method
that used to detect tax evasion by PU learning. Among these methods, the
kernel function of SVM is linear function, and the base model of Unbiased PU
and NNPU is the same three-layer MLP. Precision (Pre), recall (Rec), F1 score
(F1) and accuracy (Acc) are employed as performance measurements in our
experiments.

Our tax dataset is obtained from collaborated local tax authorities because
of the lack of a standard dataset for a tax evaluation. This dataset contains
tax information about 85,791 taxpayers, which consists of 15,420 tax evasion
taxpayers (positive samples) and 70,371 normal taxpayers (negative samples).
For each taxpayer, there are two categories of data, basic data and transaction
data. The basic data include some inherent attributes of taxpayers, such as the
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Algorithm 1: PU training algorithm
Input: samples Xl and Xu, dataset DSl and DSu, number of train set N , loss

function l, class prior π, max iteration T
Output: final model g∗

1 Rank Labeling Process
2 Train an SVM such that SVM(DSl, DSu);
3 Obtain predicted scores of train samples such that scores=predict(SVM,

Xl ∪ Xu);
4 Rank the scores in descending order;
5 Label the first np = π ∗ N samples as positive and label the remainder as

negative to obtain the labeled data sets Dp and Dn after reorganizing;
6 Record Wp = predict(SV M, xi), xi such that xi in Dp and

Wn = 1 − predict(SV M, xj) such that xj in Dn;
7 Binary Classifier Training Process;
8 Initialized MLP g0,and let t=0;
9 while t < T do

10 Input training sets Dp and Dn into gt;
11 Obtain output and compute the empirical risk R(gt);
12 Backward propagation of the empirical risk R(gt);
13 Update the parameters of MLP to obtain gt+1;
14 t = t + 1;

15 end
16 g∗ = gT ;
17 return g∗

names of taxpayers, business codes, register types, addresses and other company-
related indicators. We extract 74 basic features from the basic data to describe
each taxpayer, including industry features (e.g., register time, industry category,
and location), capital features (e.g., registered capital and top 3 shareholding
ratios), employee features (e.g., total number of registered employees) and tax
features (tax amount and ratio in last 3 years). The transaction data include
transaction information that is based on invoices, such as the names of both
sides of trade, commodity names, quantity, commodity unit price, amount, trade
date, etc. After data preprocessing, we compress the raw transaction records from
854, 625 to 54, 914.

Before the classifier task, we use three famous network embedding algorithms
DeepWalk, LINE and Node2vec to extract 128-dimensional network features for
each sample to describe the transaction characteristics.

For this dataset, we randomly choose approximately 80% of the samples for
training; the remaining 20% are utilized for testing, that is, the training set
has 70,791 samples, and the test set has 15,000 samples. The training set con-
tains 12,300 abnormal taxpayers (positive samples) and 58,491 normal taxpayers
(negative samples). To simulate the PU problem, we choose 5,000 abnormal tax-
payers (positive samples) of the training set as the labeled set. In addition, we
randomly select 1,000 normal taxpayers (negative samples) as label noise with
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a labeled set, that is, the labeled set of train data contains 6,000 samples. The
remainder of the positive samples and normal taxpayers (negative samples) are
considered the unlabeled set.

To verify that the transaction network is beneficial for tax evasion detection,
we conduct additional experiments based on only basic features of taxpayers. The
first line in Table 1 is the baseline, in which the feature space only contains basic
features, and the classifier model is trained by the traditional PN method, which
directly treats unlabeled samples as negative samples. The results in Table 1
show that the performances of tax evasion detection are improved to different
degrees regardless of which network embedding algorithm is applied (compared
to PN-SVM and TEDM-PU). Moreover, PUNE performs better than other PU
methods when it is employed to detect tax evasion.

Table 1. Performances of various methods for the tax dataset

PU Method NE Method Pre Rec F1 Acc

PN-SVM – 0.409 0.584 0.481 0.580

TEDM-PU – 0.833 0.525 0.644 0.729

W-SVM Deepwalk 0.714 0.836 0.770 0.796

LINE 0.719 0.807 0.751 0.760

Node2vec 0.721 0.877 0.791 0.799

B-SVM Deepwalk 0.693 0.672 0.682 0.710

LINE 0.703 0.651 0.676 0.704

Node2vec 0.642 0.652 0.647 0.721

Bg-SVM Deepwalk 0.791 0.680 0.731 0.750

LINE 0.832 0.530 0.707 0.701

Node2vec 0.769 0.691 0.728 0.741

UPU Deepwalk 0.778 0.878 0.825 0.820

LINE 0.712 0.873 0.784 0.797

Node2vec 0.747 0.881 0.808 0.805

NNPU Deepwalk 0.778 0.978 0.867 0.850

LINE 0.712 0.973 0.792 0.807

Node2vec 0.747 0.981 0.848 0.825

PUNE Deepwalk 0.957 0.844 0.897 0.896

LINE 0.934 0.741 0.826 0.857

Node2vec 0.961 0.788 0.866 0.878

5 Conclusion

This paper proposes a tax evasion method that is based on positive and unla-
beled learning and network embedding. Before classification, we use network
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embedding techniques to extract transaction network features, which signifi-
cantly improved the accuracy of tax evasion detection. In the PU training pro-
cess, first, we use the SVM to predict the scores of all training samples. Second,
we label them according to the class prior and sorted rank scores and assign them
individual weights during the rank labeling process. The rank labeling process
transforms the original PU problem into a binary classification problem. Last,
an MLP is employed to train a binary classifier with weighted samples based on
minimizing the empirical risk. The experimental results with the real-world tax
dataset show that our method is superior to the state-of-the-art PU methods in
terms of tax evasion detection.
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Abstract. Scene text recognition with irregular layouts is a challenging
yet important problem in computer vision. One widely used method is
to employ a rectification network before the recognition stage. However,
most previous rectification methods either did not consider recognition
information or were integrated into end-to-end recognition models with-
out considering rectification explicitly. To overcome this issue, we pro-
pose an adversarial learning-based rectification network that integrates
transformation (from irregular texts to regular texts) with recognition
information into a unified framework. In this framework, we optimize
the rectification network with an extended Generative Adversarial Net-
work that competes between rectifier and discriminator, together with
the results of a recognizer. To evaluate the rectification performance, we
generated a regular-irregular pair set from the benchmark datasets, and
experimental results show that the proposed method can achieve sig-
nificant improvement on the rectification performance with comparable
recognition performance. Specifically, the PSNR and SSIM are improved
by 0.81 and 0.051, respectively, which demonstrates its effectiveness.

Keywords: Rectification network · Scene text recognition ·
Generative adversarial networks · Irregular text.

1 Introduction

Scene text recognition (STR) has attracted much attention recently. It can be
applied in a wide range of text-related applications, from tools including text
translation and license plate recognition, to an essential part of integrated sys-
tems, such as intelligent transportation, surveillance and product search.

With the advance of deep neural networks [1], regular text recognition meth-
ods [2,3] have achieved tremendous advances. However, reading irregular text is
still not satisfied in practice due to their various shapes and distorted patterns.
Figure 1 presents some examples of regular and irregular text images. Therefore,
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recent recognition methods [4–6] have concentrated on dealing with irregular
texts. ASTER [4] and MORAN [5] adopt rectification networks before recogni-
tion networks, which can rectify irregular text to be a canonical form and ease
latter recognition task. The rectification module of ASTER [4] predicts concrete
transformation matrices to rectify images. MORAN [5] adopts a simple CNN
to predict offset maps for every pixel. However, these methods are usually over-
trained for recognition performance while rectification networks may not learn
well.

(a) Regular images

(b) Irregular images

Fig. 1. Examples of regular and irregular images.

Inspired by the adversarial process from GANs [8–10], we propose an adver-
sarial learning-based rectification network to facilitate rectification ability. Fol-
lowing the structure of GAC [10], our method integrates rectification, recog-
nition, and discrimination networks together, where a rectifier is used for the
rectification, a recognizer is utilized to integrate recognition information, and a
discriminator is used to distinguish real regular images and fake rectified images.

Through adversarial learning of the rectifier and discriminator, the rectifica-
tion network can extract more precise spatial features and output more regular
images. However, with such training, the rectifier may concentrate on rectifying
the geometry of images while ignoring text details. Therefore, in addition to the
normal generator loss, we also design a recognition loss to constrain the rectifier
and keep more text information on rectified images. To our best knowledge, this
is the first network that trains a text rectification network with a discriminator
via an adversarial process. We test the proposed method on a regular-irregular
pair set and achieve encouraging rectification performance without losing much
recognition performance. The PSNR and SSIM are improved from 9.05 to 9.86
and from 0.4562 to 0.5072, respectively.
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2 Related Works

2.1 Generative Adversarial Networks

Generative Adversarial Network (GAN) is proposed by Goodfellow et al. [8]
based on adversarial learning. It consists of two competing modules, a generator
and a discriminator. The generator aims at producing fake samples close to train-
ing data by capturing the real data distribution, while the discriminator tries
to classify if a sample is from training data or generator. Due to its powerful
ability to generate realistic-looking samples, various extension methods [9–11]
have been proposed and successfully used in many areas, such as image synthe-
sis, video processing, and image super-resolution. SRGAN [9] is able to recon-
struct high-resolution images from heavily low-resolution ones via a perceptual
loss including an adversarial loss and a content loss. Besides a generator and a
discriminator, Triple-GAN [11] adds a classifier to learn how to label images,
thereby producing more training data. Similar to [11], GAC [10] proposed by
Qian et al. also consists of three parts. It is based on SRGAN [9] with removing
the perceptual loss and adding the classifier in order to recognize handwriting
character images reconstructed by the generator. Extending the above methods,
the proposed network also has three components. Differently, our generator is
not for recovering data, but to rectify images. In addition, the third component is
a recognizer used to read text instances in images. The purpose is thus different
among them and our network.

2.2 Scene Text Rectification and Recognition

Scene text recognition aims to recognize text sequences from cropped natural
scene images. Recently, deep learning-based works [2–5] have focused on directly
recognizing text from scene images. They regard scene text recognition as a
sequence-to-sequence problem. Existing methods [2] for reading regular scene
text images have achieved state-of-the-art performance. However, most of those
methods fail in recognizing irregular text images (perspectively distorted and
curved) that are more prevalent in daily life. Therefore, researchers have started
to propose novel networks for irregular text images. Rectification-based meth-
ods are extremely effective and intuitive, which introduce rectification networks
before recognition networks. Rectifications of irregular texts mostly based on
morphological analysis or registration techniques have been previously studied
in well-structured documents OCR. At present, [4] utilizes CNNs to predicts
a set of control points of upper and lower text edges and utilizes Thin-Plate
Spline transformation [7] to rectify images via these points. Different from those
methods using transformation methods, MORAN [5] is more flexible. It pre-
dicts displacement maps for pixels and moves pixels to transform images, which
is free of geometric constrains and generate more complicated transformation.
Due to its elasticity, we choose MORAN as the baseline model. In the adversarial
learning stage, the rectifier competes with a discriminator as well as considering
recognizer results simultaneously.
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3 Methodology

In this section, we first describe the architecture of our network, which contains
three parts: a generative network G (i.e. Rectifier), a discriminative network D,
and a recognition network R as shown in Fig. 2. We then detail the adversarial
learning framework in the system and finally introduce the specific loss function
of G.

Fig. 2. The overall structure of the proposed method.

3.1 Network Architecture

Initially, basic G and R are obtained through end-to-end training. Next, D par-
ticipates in the adversarial learning phase with pretrained G and R. It is noted
that G and D are trained alternatively in an adversarial manner, but R is frozen.
Therefore, to make R match with the well-learned G, R is fine-tuned for the final
recognition. During the recognition inference, we only use G and R. Here, our
G and R are based on MORAN [5] and D follows SRGAN [9].

Rectification Network (G). A multi-object rectification network (MORN)
from MORAN [5] is adopted as G. As demonstrated in Fig. 2, irregular images
are rectified by G to be more regular. According to the MORAN [5], we only
consider vertical transformation. It predicts offset maps offset which record
vertical displacement of every pixel from the original position. Then, offset are
summed with original pixel coordinates grid with the following:

offset′r,c = offsetr,c + gridr,c, (1)

where r, c represent the r-th row and c-th column respectively, offset′ denotes
the mapping from input image I to the rectified image I ′. The final rectified
image I ′ can be sampled using bilinear interpolation as follows:

c′ = offset′r,c ⇒ I ′
r,c = Ir,c′ , (2)

.
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Discriminative Network (D). The same architecture as in SRGAN [9] is
adopted. G contains eight convolutional blocks that each of them consists of
from 64 to 512 3×3 filter kernels, a batch normalization layer and a LeakyReLU
layer with 0.2 negative slopes. Strided convolutions are adopted to reduce feature
size when the number of features is doubled. The last resulting 512 feature
maps are followed by an adaptive average pooling layer, two dense layers and
a final sigmoid activation. In Fig. 2, we can see that input of D is a pair of a
regular image and the corresponding rectified image from G, and its output is
the probability of being the real regular text.

Recognition Network (R). We exploit the Attention-based Sequence Recog-
nition Network (ASRN) from MORAN as R to recognize text instances.
It employs a ResNet-BLSTM encoder and an attentional bidirectional GRU
decoder. For the encoder, ResNet is used to extract spatial features from recti-
fied images. Then, spatial features are reshaped and fed into a two-layer BLSTM.
BLSTM analyzes the feature sequence and outputs the contextual features. The
attention-based decoder translates the contextual features and outputs the tar-
get sequence. More details can be seen in [5].

In the pretraining phase, G and R both aim to minimize the recognition loss
as follows:

Lrecog = −
N∑

i=1

T∑

t=1

log(yi,t|Ii), (3)

where yi,t is the ground-truth of the t-th character in Ii, T is the length of
sequence per image, and N is the number of training images. G needs to com-
pete with D in the following adversarial process. Therefore, its loss function is
modified and will be introduced in Sect. 3.3.

3.2 Adversarial Learning

Traditional adversarial learning-based methods [8,9] train G and D simultane-
ously. G captures a vector d′ sampled from a noise distribution Pnoise(d′) and
outputs a fake data G(d′). Given a fake sample G(d′) or a real training sample d
from the distribution Pdata(d), D identifies whether the sample is from training
data or not and outputs the corresponding probability. This kind of adversarial
min-max problem can be optimized as follows:

min
G

max
D

Ed∼Pdata(d)[log(D(d))]+

Ed′∼Pnoise(d′)[log(1 − D(G(d′)))],
(4)

We propose to play the adversarial game among G, D and R. Our G learns
a mapping of z′ from the distribution of irregular images Pirregular(z′) to the
regular distribution Pregular(z) over real regular images z. Given the rectified
images, R outputs the conditional distribution P (s|z′) that should be like the
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training data distribution P (s|z), where s represents the text ground-truth of
the input image. Therefore, our model is defined by:

min
G

max
D

Ez∼Pregular(z)[log(D(z))]+

Ez′∼Pirregular(z′)[− log(D(G(z′)))]+

EI′∼Pirregular(z′)[l
recog
G (R(G(z′)), s)],

(5)

In our framework, both R and D are linked to G, trying to guide G to pro-
duce more regular but recognizable rectified images. We alternatively train G
and D in an adversarial manner, while fixing R. Initially, G generates rectified
images G(z′) which are relatively friendly to R but not enough to deceive D.
With the progress of adversarial learning, it learns strategies to obtain more
precise intermediate offset maps so that it becomes hard for D to identify. Also,
G considers recognition results R(G(z′)) so that R still can recognize rectified
images. At the same time, we seek to use labeled samples to train D in a super-
vised manner, while encouraging it to accurately classify real and fake images,
despite the existence of corrective measures.

3.3 Loss Function for Rectifier

In the pretraining stage, G is guided by R, which is trained implicitly and only
focuses on the recognition performance. However, in the adversarial training
process, G aims to generate more regular images that can fool D. Therefore,
the initial loss function of G is unsuitable. We design a weighted combination of
several loss functions for G, integrating information from D and R:

Ĝ = arg min
G

1
N

N∑

n=1

lG(G(z′
n), zn), (6)

lG = λ · lmse
G + μ · ladvG + lrecogG , (7)

where N is the number of training regular-irregular image pairs. lmse
G is the

content loss, ladvG is the adversarial loss, and lrecogG is the recognition loss. λ, μ are
trade-off parameters for the content and adversarial loss functions, respectively.
We use λ = 100 and μ = 0.1 in our experiments.

Content Loss. We utilize the pixel-wise MSE loss as the content loss for G:

lmse
G =

1
WH

W∑

x=1

H∑

y=1

(zx,y − G(z′)x,y)2, (8)

Regular images z and rectified images G(z′) have the same width W and height
H. Irregular images z′ are transformed from z through a series of rotation,
cropping and affine transformations.
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Here, we use MSE loss to evaluate the difference between regular images and
the rectified images at the pixel level, which makes G extract more accurate
transform features. However, [9] raises that MSE loss usually leads to a lack
of high-frequency content while realizing high PSNR. The edges of text usu-
ally belong to the high-frequency part which are important elements for text
recognition. Therefore, we follow [9] and utilize an adversarial loss.

Adversarial Loss. The solution of adversarial loss is designed to make D regard
the G(z′) as a regular image. The adversarial loss can be formulated as:

ladvG = − log(D(G(z′))), (9)

D(G(z′)) is the probability from D that the rectified image is classified as a
regular image.

Recognition Loss. G is to ease R for reading irregular text images. To make
the output of G suitable for the recognition, we also minimize the recognition
loss of rectified image G(z′) for G as follows:

lrecogG = − 1
T

T∑

t=1

log(yt|G(z′)). (10)

where yt is the t-th character in ground-truth.

4 Experiments

In this section, we begin by specifying datasets and implementation details.
Then, we conduct extensive experiments on regular and irregular benchmarks.
The evaluation criteria are Peak Signal to Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) [23] for rectification, and sequence accuracy for recog-
nition under lexicon-free.

4.1 Datasets

When pretraining G and R, we merely use two synthetic datasets [14,15]. In the
adversarial learning stage, pairs of regular and irregular images are required, but
such pairs are not available in public datasets. Therefore, we generate PairSet
for training and testing, more details are described in the following. Examples
of PairSet are shown in Fig. 3. We also test the model on 4 regular benchmarks
and 3 irregular benchmarks for general recognition performance. Datasets are
described in details as follows:

Synth90K [14] is the synthetic scene text dataset containing 8-million images
with relevant ground-truth.
SynthText [15] is the synthetic dataset for scene text detection. We crop around
5-million images for training according to bounding boxes.
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(a) Training pairs (rotation, curved, affine transfor-
mation)

(b) Testing pairs (rotation, curved, affine transfor-
mation)

Fig. 3. Examples of training and testing pairs on PairSet. For every two rows, the first
shows original regular images and the second row shows transformed irregular images.

IIIT5K-Words (IIIT5K) [16] contains 3,000 test images collected from the
Internet. Most of them are nearly horizontal.
Street View Text (SVT) [17] has 647 cropped word images from 249 street
images. Most are horizontal and many of them are severely corrupted by noise,
blur and low resolution.
ICDAR 2003 (IC03) [18] contains 867 cropped horizontal images for testing,
removing the images with non-alphanumeric characters or having few than three
characters.
ICDAR 2013 (IC13) [19] is mostly from IC03 and add some new images. The
total number of horizontal text images is 1015.
ICDAR 2015 Incidental Text (IC15) [20] exists more than 200 perspective
and oriented word images. It totally contains 2077 images for testing.
SVT-Perspective (SVTP) [21] contains 645 cropped text images for testing.
Most of them are highly perspective distorted.
CUTE80 (CUTE) [22] consists of 80 high-resolution scene text images.
According to the bounding box, there are 288 cropped word images for recogni-
tion testing.
PairSet contains 5 groups of regular-irregular pairs, one group for training and
four groups for evaluation. The training regular images are picked up from
Synth90K by a simple CNN classifier (output regular or irregular) and the
other four test groups are all samples of IIIT5K, SVT, IC03 and IC13, respec-
tively. The corresponding irregular images are obtained by the rotation, curved
and affine transformations on the regular images. Finally, we get 100 k and 5529
pairs of regular-irregular scene text samples for training and testing, respectively.
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4.2 Implementation Details

Our model follows a three-stage training. In the first stage, we pretrain G and R
as our baseline (same as [5]), adopting ADADELTA optimizer [12]. The learning
rate is set to 1.0 for the first 3 epochs and decreases to 0.1 for another 3 epochs.
In the second stage, G and D compete through adversarial learning strategy
with Adam optimizer [13] and 0.001 learning rate for 1 epoch. In the final stage,
R is finetuned to match with the well-learned G, and the training strategy is
the same as the first stage. The output of R contains 37 classes including 26
letters, 10 digits and a terminator. The batch size is set to 64. All models are
implemented with the Pytorch framework on an NVIDIA GTX-1080Ti GPU.

4.3 Rectification Performance

In order to explain the rectification improvement, we compare our method with
the baseline from PSNR and SSIM on the PairSet. Different from PSNR and
SSIM on super-resolution tasks, these criteria are more strict in rectification
tasks due to the movement of every pixel. Therefore, values of PSNR and SSIM
are relatively lower, and the results are reported in Tables 1 and 2. The value
of PS-All is calculated by all samples in the PairSet. As can be seen, our
model outperforms the baseline in all datasets, particularly on PSNR of SVT
(1.39) and IC03 (1.05) and SSIM of SVT (0.0727) and IC03 (0.0703). Therefore,
the proposed method presents great rectification performance in irregular text
images.

Table 1. The PSNR comparison of our model with the baseline on PairSet

Method PS-IIIT5K PS-SVT PS-IC03 PS-IC13 PS-ALL

Baseline 7.85 11.66 9.43 10.45 9.05

Our model 8.50 13.05 10.48 11.29 9.86

Table 2. The SSIM comparison of our model with the baseline on PairSet

Method PS-IIIT5K PS-SVT PS-IC03 PS-IC13 PS-ALL

Baseline 0.4477 0.4892 0.4341 0.4735 0.4562

Our model 0.4915 0.5619 0.5044 0.5203 0.5072

For further comparison, Fig. 4 visualizes the rectification results on some
examples from irregular datasets. We can see that the rectified images from the
baseline (the second column in Fig. 4) are adjusted slightly, which are not consis-
tent with the results from [5]. This may be caused by unstable weak supervised
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learning [5], where G is constrained by the over-trained R, thus leading to infe-
rior rectification results. Through adversarial learning with D, G not only serves
for R but also tries to deceive D. Therefore, the rectifier can extract precise
offset mappings for pixels, finally resulting in more regular rectified images as
shown in the third column in Fig. 4. Although some of the rectified images are
still distorted (merely vertical rectification), they are more flat and recognizable
than the original and baseline ones.

Fig. 4. Results of rectified images from irregular datasets. The first column shows the
original images, the second column shows the rectified images from the baseline, and
the last column presents the results from our proposed method.

4.4 Recognition Performance

To show the effect of the proposed adversarial rectification network on the recog-
nition performance, we evaluate it on the benchmark datasets (both regular and
irregular datasets), and the results are shown in Table 3. We can see that the
recognition performance is comparable with the baseline system, which is an
end-to-end recognition framework only focusing on the recognition performance.
In the irregular datasets of CUTE80 and SVTP, the recognition performance is
improved slightly from 78.47% to 79.51% and from 78.60% to 79.05%, respec-
tively. However, for those highly curved text images, the proposed method usu-
ally cannot rectify them well, which results in low recognition performance. Some
failure examples are shown in Fig. 5.
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Table 3. Recognition accuracy (%) on regular and irregular benchmarks.

Method Regular datasets Irregular datasets

IIIT5K SVT IC03 IC13 SVTP CUTE80 IC15 1811 IC15 2077

Baseline 92.16 86.70 93.31 91.62 78.60 78.47 75.70 71.73

Our model 91.83 86.08 93.42 90.04 79.05 79.51 73.49 69.61

Fig. 5. Failure examples with highly curve text. The first and third column are original
images and the rest two columns are rectified images.

5 Conclusion

In this paper, we propose an adversarial rectification network to rectify scene
texts, which contains a generator to rectify the regular scene texts, a discrimina-
tor to improve the rectification performance of the generator, and a recognizer
to help the generator capture the text property. Compared with those end-
to-end recognition models, the proposed method optimizes the rectification of
scene texts explicitly. Extensive experiments on the generated regular-irregular
PairSet from benchmark datasets show that the proposed method can improve
the rectification performance significantly and achieve the comparable recogni-
tion performance with the end-to-end recognition model. In the future, we will
improve the rectification performance on those severely curved scene texts.
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Abstract. Community detection algorithms are the basic tools for dis-
covering the internal structure and organizational principles of a commu-
nity. Ranging from model-based and optimization-based methods, exist-
ing efforts typically consider two sources of information, i.e. network
structure and node attributes, to obtain communities with both denser
network structure and similar attribute information. We argue that an
inherent drawback of such methods is that, different impacts of different
sources, is ignored during the clustering process. Besides, some existing
community detection algorithms typically consider two sources of infor-
mation but they cannot automatically determine the relative importance
between them to reveal subspaces. As such, the detected communities
may be unsatisfactory.

In this work, we propose to integrate subspace into a new overlapping
community detection framework, an Overlapping Community Detection
with Subspaces on Double-Views (CDDV), which exploits the relative
importance between structures and attributes. This leads to a better
detection result, effectively injecting subspaces to show the diversity of
communities into the detection process in an explicit manner. We con-
duct extensive experiments on four public benchmarks, demonstrating
significant improvements over several state-of-the-art models. Further
analysis verifies the importance of subspace finding for capturing better
communities, justifying the rationality and effectiveness of CDDV.

Keywords: Double views · Overlapping community detection ·
Subspace · Clustering

1 Introduction

The community detection algorithm is the fundamental tool for discovering the
internal structure and organizational principles of the community. It plays an
important role in many areas, such as metabolic network analysis in biological
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networks and community division in social networks. However, many real-world
networks not only contain structural information, but also attached with rich
attributes on vertices, obviously it is inadequate that only considering one type of
information to determine the community structure. The reasons are twofold. On
the one hand, the structure is usually sparse and noisy, if we only use structural
information to perform clustering usually leads to poor partitions. On the other
hand, if we only use attribute information for clustering [1], irrelevant attribute
information may also result in non-optimal clustering results.

In this paper, we propose a community detection method named CDDV
(Overlapping Community Detection with Subspaces on Double-Views) to detect
communities from attributed graph. Our framework is designed to discover
the internal structure and organizational principles of the community on an
attributed graph based on both its attributes and topological information. It
consists of three phases: (i) the graph is embedded into a low-dimensional space,
which can reflect the network structure and maintain the network attributes
simultaneously, then structure and attribute view is obtained, (ii) based on the
structure and attribute view, it is possible to acquire the weight of two levels and
exact subspaces and (iii) an additional step is added in the clustering process
which using weight values to automatically calculate the relative importance of
dimensions in different communities. What is more, the parameter that control-
ling the degree of overlap is added. The main contributions of this paper are as
follows:

– We propose a new framework to automatically calculate the structural con-
nections and attribute information of each node in an attributed graph. It is
a general model that can be used to adapt any two types of heterogeneous
information associated with object such as graph clustering.

– We provide an iterative update algorithm to solve this model and analyze
its optimization method and experiment. The model simultaneously learns
weights of nodes and reveal the latent subspaces automatically.

– We give an analysis about the experiment result and the effectiveness on
synthetic and real-world data sets, also evaluated the parameters.

The remainder of this paper is organized as follows. Section 2 gives a brief review
of related works on community detection and weighted K-means algorithms.
Section 3 gives some preliminaries. Besides the CDDV model and an iterative
algorithm are presented in Sect. 4. To verify the effectiveness of CDDV, several
experiments on the synthetic and real-world networks are carried out in Sect. 5.
The conclusions are drawn in Sect. 6.

2 Related Work

We review three categories of community detection algorithms: structural based,
attribute based, and community detection using both types of information. Tra-
ditional community detection algorithms typically only focused on one of the
structure and the attribute, or linearly superimposes them and then mine the
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community, so the information source cannot be effectively merged. Some classi-
cal works, such as Coscia [2] proposed Demon, which can find complex structures
in real networks, but ignored attributes; Approaches in [3] demonstrated the
BIGCLAM that can detect densely overlapping hierarchically nested as well as
non-overlapping communities in massive networks, but node attributes are not
considered at all; However, due to high computational cost, those algorithms can-
not handle large scale networks. The algorithm is scalable, but recent research
shows it is not robust when running on many common tasks [4].

Naturally, some attribute based community detection method like Whang [5]
proposed NEO-K-Means and Jing [6] proposed EWKM, which is an extension of
K-Means simultaneously [7], K-Means is attribute based clustering that is widely
used in industries and research for its effectiveness and simplicity, so there are a
huge number of extensions. The former considered the overlap between clusters
and outliers, but neglected the structure and attribute information, the latter
considered the subspace and node attributed, however it did not consider the
structure; MAC proposed by Frank [8] also ignored the network structure.

Different from the above, a few algorithms are proposed to detect commu-
nities based on both structural and attribute information. For example, Li [9]
proposed that the CDE algorithm, which utilizes a generative model to predict
community assignments and considers the both, but the relative importance can-
not be automatically calculated; TW-K-Means proposed by Chen [10] did not
consider overlapping cases, Ruan [11] through many experiments to adjust the
importance of each information source by domain knowledge and Cohn [12], sim-
ply fix the weights of all nodes to specific values. However, not all the structure
and attribute information when used to be clustered have the same importance
in guide a true partition. Given a large scale network with attributes, existing
algorithms are not (at least not directly) applicable. Besides that, how those
algorithms adjust the weights between attributes and structural information in
an unsupervised manner are not clearly discussed. In addition, as an extension
of the traditional clustering algorithm in high-dimensional space, the subspace-
based clustering algorithm considers that each cluster is a set of data identified
by a subset of attributes, and different clusters can be represented by differ-
ent subsets of attributes. Therefore, this paper designs a calculation method for
cluster subspaces, and updates the attribute subspaces of various clusters during
each iteration of the algorithm. The traditional k-means clustering algorithm is
modified by defining reasonable constraint conditions of objective function, so as
to calculate the weight of each dimension in each cluster, and the weight value
was used to identify the relative importance of the dimensions in different clus-
ters. In this paper, the proposed method, CDDV, considers the structure and
attribute information in the network simultaneously, which can automatically
calculate the relative importance of them and extract the subspaces.

3 Preliminaries

In this section, we introduce some necessary notations to describe the essential
basic concepts and the construction process of double-views.
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3.1 Problem Definition

An attributed graph can be defined as G = (V, E, F), where V = {v1, v2, ..., vn}is
the set of n nodes; E = {(vi, vj)}is the set of edges between nodes and F =
{f1, f2, ..., fr} is the set of r attributes. The adjacency matrix of G is defined
as A. Entry Aij is 1 if nodes vi and vj are connected, otherwise, Aij is 0.
Supposed the graph is divided into k communities, each community satisfies the
internal consistency and external separability, then mining subspaces with its
corresponding community sets C = {c1, c2, ..., ck}.

3.2 The Construction of Double-Views

The attributed graph G is represented as attribute view G1 and structure view
G2 respectively, where G1 is denoted by the attribute matrix AF = [fij ] ∈ Rn×r

and fij is the attribute value of node i in the j − th dimension. G2 is denoted
by the structure matrix As = [Sij ] ∈ Rn×d, and Sij is the value of node i in the
j − th dimension.

Construction of the Attribute View. For every node vi ∈ V in the
attributed graph, it is related with the attributes that represented by r-
dimensional vectors. The elements in the vector are the attribute values of each
nodes. The attribute values can be single words, tags, and so on, which depends
on the context of the given network. Let X = {x1, x2, ..., xn} be a set of data
points, each with its own attribute {f1, f2, ..., fr} attached, then we obtain the
attributed matrix.

Construction of the Structure View. Graph embedding is a common
method for representing the structures. LINE [13] is a classical method for graph
embedding, which combines first-order and second-order proximity to embed
large-scale networks into low-dimensional vector spaces. Recently Chen pro-
posed differentially privacy adjacency spectrum embedding method ASE [14] for
Stochastic Block models, which can estimate the potential location close to the
Frobenius norm by adjacency spectrum embedding, the accuracy is quite high
with the expected parameters in both simulated network and the real network
to effectively perform the graph embedding.

Definition 1. (Structural similarity) The structural similarity of (vi, vj) is
the similarity between their neighborhood network structures, where ui is the
representation of vi when they are treated as vertex while u′

i is the represen-
tation of vi when they are treated as specific “contexts” of other vertices. The
structural similarity of term vi and vj can be described as:

p (vj |vi) =
exp (uj

′ · ui)∑n
k=1 exp (uk

′ · ui)
(1)
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Similar with LINE, minimize the following objective functions:

O =
∑

i∈n

λid[p̂(•|vi), p(•|vi)] (2)

Where λi in the objective function to represent the prestige of vi in the network,
which can be measured by the degree or estimated through algorithms such as
PageRank [15], n is the number of contexts. The empirical distribution is defined
as p̂ (·|vi) = Sij

di
, where Sij is the weight of the edge (vi, vj), i.e. if there exists an

edge between vi and vj , Sij = N(i) ∩ N(j)

/
N(i) ∪ N(j), otherwise, Sij = 0. Then

we have:
O = −

∑

(vi,vj)∈E
Sij log p(vj |vi) (3)

By learning {ui}i=1···n and {ui}′
i=1···n that minimize this Eq. (3), we are able

to represent every vertex vi with a d-dimensional vector ui.

4 Methodology

In this section, we introduce the Community Detection algorithm based on
Double-Views for overlapping subspaces (CDDV).

4.1 The Objective Function of CDDV

Existing view-based dimension-weighted clustering algorithms such as TW-K-
Means [10] can calculate the weights of views and dimensions simultaneously
and assign weights to each dimension in the view. In this paper, CDDV com-
bines the attributes and structure information between nodes, which not only
can automatically calculate the relative importance of two views but also mine
overlapping communities and subspaces. The clustering process of dividing the
data matrix X into k clusters with two views and a single dimension weight is
modeled as a minimization of the following objective functions:

P (U,Z,V,W) =
k∑

l=1

n∑

i=1

2∑

t=1

∑

j∈Gt

ui,lwtvjd (xi,j, zl,j)

+
2∑

t=1
η

∑

j∈Gt

vj log(vj) + λ
2∑

t=1
wt log(wt)

(4)

Where U is a partition matrix whose elements are binary, where the entry equals
1 indicates the object is allocated to the correspond cluster; Z is the cluster
center matrix; W is a column vector with elements 1

2 and representing the
relative importance of the view, and V is a column vector, represents the relative
importance of each dimension attribute under each view. The first item on the
right side is the sum of the degree of dispersion within the cluster, l represents
the cluster, i indicates the node, t represents the view, j represents the dimension
of each view, G1 and G2 is the structure view dimension and the attribute view
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dimension respectively; The second entry and the third entry are two negative
entropy weights, and λ and η are two positive parameters.

Subject to: ⎧
⎨

⎩

trace(UTU) = (1 + α)n
∑2

t=1 wt = 1, 0 ≤ wt ≤ 1∑
j∈Gt

vj = 1, 0 ≤ vj ≤ 1, 1 ≤ t ≤ 2

where α controls the degree of overlap between clusters: 0 ≤ α ≤ (k − 1)

4.2 Model Optimization

We can minimize (4) by iteratively solving the following four minimization steps:

Step 1: Fix Z =
∧
Z, V =

∧
V, and W =

∧
W, and solve P =

(

U,
∧
Z,

∧
V,

∧
W

)

;

Step 2: Fix U =
∧
U, V =

∧
V, and W =

∧
W, and solve P =

(
∧
U, Z,

∧
V,

∧
W

)

;

Step 3: Fix W =
∧
W, Z =

∧
Z ,and U =

∧
U, and solve P =

(
∧
U,

∧
Z, V,

∧
W

)

;

Step 4: Fix V =
∧
V, Z =

∧
Z, and U =

∧
U, and solve P =

(
∧
U,

∧
Z,

∧
V, W

)

;

The way to optimize the objective function is to partially optimize U,Z,W
and V. By the iterative steps, the objective function tends to be local minimum,
and each step of the optimization is strictly decremented, so the algorithm con-
verges to the local minimum. Fixed U,Z, and V, when the objective function is
minimized according to W, the following function is used to update the objective
function similarly to the literature [10]. The formula for wt and vj is as follows:

If and only if U, Z, and V are given, the following formula holds:

wt =
exp(−Pt/λ)

∑2
j=1 exp(−Pj/λ)

(5)

where Pt =
k∑

l=1

n∑

i=1

∑

j∈Gt

ui,lvj(xi,j − zl,j)2 If and only if U, Z, and W are given,

the following formula holds:

vj = exp
(−Qj

h

)/∑Gt

m=1
exp

(

−Qm

h

)

(6)

where Qj =
k∑

l=1

n∑

i=1

ui,lwj(xi,j − zl,j)
2

4.3 The Algorithm of CDDV

Algorithm 1 illustrates the community detection process as above, in Algorithm
1, x is a set of n data points before preprocessing; k is the number of input
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Algorithm 1. CDDV
Input: data points x, clusters k, overlap parameter α, positive parameter η, λ
Output: U,Z,V,W
1:
2: Randomly choose k cluster centers Z
3: for t = 1 to 2 do
4: Wt=

1
2

5: for all j ∈ Gt do
6: Vj=

1
Gt

7: end for
8: end for
9: r ← 0

10: repeat
11: Compute the distance matrix d
12: Initialize U ← 0
13: Initialize T = ∅,p = 0
14: while p < (n + αn) do
15: Uj∗,l∗ = 1,where (j∗, l∗) = argmin

j,l
(djl) and {(j, l)} /∈ T

16: end while
17: Update the cluster centers matrix Z, Update W by (5), Update V by (6);
18: r ← r + 1
19: until the objective function obtains its local minimum value

clusters; α is a parameter that controls the degree of overlap, and η, λ are two
positive parameters. In the initialization process (Lines 1–7), initializing the
cluster center matrix Z, the view weight vector W, and the dimension weight
vector V under the view. Then CDDV calculates the weighted distance matrix
(Line 10). After that, CDDV initializes some parameters α, η and λ(Line 11–12).
CDDV next determines whether the overlap achieves the requirements (Lines 13–
15). If not, continuing to allocate data, otherwise stopped. Line 13 performs the
assignment to ensure that the objective function satisfies the first constraint.
The next step of CCDV updates the cluster center matrix Z, the view weight
vector W, and the weight vector V of the dimension under the view (Line 16).
Finally, it determines whether the objective function converges (Line 18).

The CDDV algorithm involves three steps in the main calculation steps, we
summarize the time complexity of our overall algorithm as follows:

(i) Division: we first classified the data into k overlapping clusters, and
calculated the weighted distance matrix, the complexity is O(nk);

(ii) Update cluster center: Given U, updating the cluster center is to find
the mean of the data objects in the same cluster. Therefore, for k clusters, the
computational complexity of this step is O (nk(|G1| + |G2|)). (iii) Update the
view weight and the view dimension weight: Given U, Z and V, updated
W according to formula (5), it is only necessary to traverse the entire data
set once to update W, so the complexity of this step is O (nk(|G1| + |G2|));
Given U, Z and W, and update V according to formula (6). Similarly, it is
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only necessary to traverse the entire data set once to update V, so the com-
plexity of this step is O (nk(|G1| + |G2|)). If the clustering process requires t
iterations to converge, the total computational complexity of the algorithm is
max(O(tnk(|G1|+|G2|)), O(tn2k)). The COCD algorithm monotonically reduces
the objective function value until it converges to a local minimum.

5 Experimental Evaluation

We perform experiments on five synthetic networks and three real-world datasets
to evaluate our proposed method, especially all the synthetic networks and the
real-world networks come with ground truth for validation. We aim to answer
the following research questions:

RQ1: How do different parameter settings (e.g., overlap parameter α positive
parameter η, λ) affect CDDV?

RQ2: How does the scalability of this method perform?
RQ3: How does CDDV benefit from adaptively calculate the importance of

double-views?

5.1 Experimental Settings

Synthetic Datasets: The synthetic network with the baseline community is
generated based on the LFR BENCHMARK [16], which has similar features
to the real-world networks. By setting some important parameters of the syn-
thetic network, five synthetic networks (Syn1–5) with ground truth community
is generated and as shown in Table 1.

Table 1. The synthetic network datasets.

Datasets Nodes Edges Attributes

Syn1 1300 34765 {f1, f2, f3, f5}
Syn2 2100 32987 {f1, f5, f7, f9, f12, f15}
Syn3 896 12860 {f4, f8, f13}
Syn4 925 16715 {f6, f12, f17}
Syn5 1016 87500 —

Real-World Datasets: The network data sets widely used in the existing
literature are collected and organized. The Flickr dataset [17] is a picture sharing
network; The Amazon data set is a product co-purchase network, which can be
obtained from the Stanford large network data set. In this paper, the original
Cora data set is simplified, and the words which less than 10 words frequency
statistics in the paper are removed. The three real-world network data sets are
summarized in Table 2.
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Table 2. The real-world network datasets.

Datasets Number

of nodes

Number

of edges

Nodes Edges Attributes

Flickr 6,710 16,063 User Friendship Users’ labels

Amazon 5,120 48,406 Product Co-purchase

relationship

Products’ features

Cora 2708 5429 Paper Citation rela-

tionship

Words appearing in

the paper

Evaluation Metrics: As an overlapping community detection method, the
same average F1 score and average NMI score for the improved evaluation index
of the classic F1 score and NMI score in the literature [2] and [5] were used for
evaluation.A good community detection method should obtain both high average
F1 score and high average NMI score.

5.2 Experimental Results and Analysis

Parameter Sensitivity (RQ1): CDDV consists of three important parame-
ters: α, η and λ. In this paper, the parameter α is intuitive, allowing the overlap
of specified clusters. η and λ can be verified by experiments to their optimal
values. Users can use the domain knowledge to estimate α, otherwise, α can also
be estimated by using the heuristics discussed below.

Different data sets may have different levels of overlap between clusters. You
can notice 0 ≤ α � (k − 1) in the second part. Since α is used to control
the overlap, the choice of α should depend on the degree of overlap desired by
the users, it can control the number of communities to which a node belongs.
Naturally, in larger datasets, the overlap between communities is relatively large,
a smaller α will reduce the performance of the method, and a larger α will bring
a significant performance improvement. On the contrary, cause the number of
communities and the overlap between communities is relatively small, it is not
appropriate to set a large α in smaller datasets. Therefore, for different data
sets, the degree of overlap between clusters is different, and the requirements
for the value of α are also different. For a few clusters(such as k ≈ 10), it is
recommended to use α = 0.1, α = 1 and α =

√
k − 1 to control the degree of

overlap. If the number of cluster centers is relatively huge (such as k ≥ 100), α =
1√
k−1

, α = 1
log k−1 , α = 1, α = log k − 1, α =

√
k − 1 would be recommend.

Figures 1 and 2 show the effect of the CDDV algorithm measured by F1
score on the clustering results for different η and λ on five synthetic datasets,
respectively. Due to space limitations, and the quantified results using the NMI
score are consistent with the F1 score, so only the results quantified using the F1
score are represented. Figures 1 and 2 show that when η and λ changes from 0.5
to 6, the fluctuation of the F1 score is not large, that is, the clustering accuracy is
not sensitive to the two parameters. The results show that the clustering results
of the CDDV algorithm are robust to the parameters.
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Fig. 1. The effects of η on clustering Fig. 2. The effects of λ on clustering

Evaluating Scalability (RQ2): We evaluate the scalability of CDDV by mea-
suring the running time on an increasing scale of synthetic networks. For eval-
uating, we consider four types of baseline community detection methods: (1)
methods that use only network structures:BIGCLAM; (2) methods that use
only node attributes:MAC [7]; and (3) methods that combine the two:CDE [9];
(4) node attributes and subspaces is considered simultaneously:EWKM [6]; (5)
multiview clustering method:TW-K-Means [10].

Figure 3 shows the relationship between the running time of the algorithm
and the size of the network. In general, CCDV is the fastest algorithm. It can
process about 300,000 nodes in an hour or so; MAC is the slowest, and BIG-
CLAM is faster than CDE because it uses an optimization process, but node
attributes are not considered.

Fig. 3. Algorithm runtime comparison

The Result Analysis on Synthetic Networks and Real-World Networks
(RQ3): Table 3 shows the experimental results on the synthetic network dataset.
From Tables 3, we notice that CDDV obviously almost outperforms other meth-
ods on all synthetic data sets with all metrics, Average F1 score and. Average
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Table 3. Average F1 score and average NMI score on five synthetic networks.

Method Average F1 score Average NMI score

Syn1 Syn2 Syn3 Syn4 Syn5 Syn1 Syn2 Syn3 Syn4 Syn5

BIGCLAM 0.252 0.380 0.552 0.325 0.396 0.813 0.552 0.457 0.528 0.532

MAC 0.189 0.189 0.329 0.303 0.258 0.564 0.405 0.492 0.462 0.405

CDE 0.223 0.312 0.498 0.461 0.392 0.505 0.383 0.496 0.623 0.612

EWKM 0.197 0.349 0.414 0.422 0.483 0.608 0.463 0.587 0.525 0.599

TW-K-Means 0.205 0.289 0.395 0.406 0.397 0.576 0.435 0.500 0.497 0.562

CDDV 0.262 0.398 0.582 0.527 0.491 0.724 0.602 0.62 0.738 0.648

Table 4. Average F1 score and average NMI score on real-world networks.

Method Average F1 score Average NMI score

Flickr Amazon Cora Flickr Amazon Cora

BIGCLAM 0.166 0.276 0.356 0.437 0.702 0.426

MAC 0.172 0.252 0.198 0.397 0.476 0.308

CDE 0.179 0.402 0.432 0.565 0.415 0.508

EWKM 0.179 0.373 0.436 0.405 0.523 0.506

TW-K-Means 0.176 0.325 0.298 0.388 0.390 0.423

CDDV 0.211 0.458 0.428 0.653 0.626 0.545

NMI score. Compared with the other probabilistic models, the performance of
CDDV increases by 10% or more on all metrics. Though CDDV does not perform
as well as BIGCLAM on syn1 with Average NMI score metric, it is competitive
compared against other algorithms. Besides, CDDV outperforms BIGCLAM on
other data sets with all metrics. This demonstrates that CDDV has a strong
ability to detect community structure.

The experimental results on a real-world network dataset shown in Table 4.
Comparing CDDV with the method which ignored node attributes (BIGCLAM),
it is noted that CDDV achieves better performance because it combines informa-
tion from node attributes and networks, also, the most important reason is that
CDDV could adaptively calculated the importance of double-views, it signifi-
cantly reduced runtime complexity. Similarly, CDDV is also better than MAC
because the latter only focuses on node attributes. Naturally, CDDV will never
perform worse than the most advanced methods using only a single source of
information. In addition, the baseline method in this paper does not perform as
well as CDE and CDDV on synthetic datasets and real-world datasets. This is
because TW-K-Means does not consider the overlap degree in the process of the
community detection, but the communities are overlap naturally. So the perfor-
mance is not good when there are overlapping communities. When comparing
the performance of CDDV with the method of considering network structure
and node attributes (CDE) and considering the performance of multiview clus-
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tering method (TW-K-Means). The powerful performance of CDDV can also be
observed again.

The NMI and F1 scores of CDDV on the synthetic data sets are better than
the values on the real-world data sets, which is understandable. In addition, for
real-world network datasets, CDDV offers a greater advantage in the content
sharing network (such as Flickr) than the social network’s baseline performance.
The possible explanation is that in the content sharing network, the attributes of
the nodes plays a bigger role in connection generation. Overall, CDDV produced
the best performance in 13 of the 16 cases. In summary, (RQ3) can be understood
clearly based on the above analysis.

6 Conclusion and Future Work

This paper proposes a practical framework of community detection algorithm,
CDDV, which combines the two information sources i.e. two views: structure
information and attribute information, that used to be clustered in the attribute
graph. On the one hand, the algorithm automatically calculates the relative
importance of the two views. On the other hand, it also assigns weights to each
dimension in the corresponding view and extract the subspaces. This is an exten-
sible approach for overlapping community detection in large, complex networks.
Experiments illustrate that the CDDV method proposed in this paper shows
better performance and improves the effectiveness and efficiency of community
detection on the both synthetic network datasets and the real-world network
datasets compared with the previous classic community detection algorithms.

In the future, we tend to further improve the research work from two direc-
tions. On the one hand, there may be more than one type of nodes and edges
in the real network, so community detection on heterogeneous networks will be
considered. On the other hand, deep learning frameworks are worth learning and
integrating into our method.
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Abstract. Ransomware is a widespread class of malware that encrypts
files in a victim’s computer and extorts victims into paying a fee to
regain access to their data. Previous research has proposed methods for
ransomware detection using machine learning techniques. However, this
research has not examined the precision of ransomware detection. While
existing techniques show an overall high accuracy in detecting novel ran-
somware samples, previous research does not investigate the discrimi-
nation of novel ransomware from benign cryptographic programs. This
is a critical, practical limitation of current research; machine learning
based techniques would be limited in their practical benefit if they gen-
erated too many false positives (at best) or deleted/quarantined criti-
cal data (at worst). We examine the ability of machine learning tech-
niques based on Application Programming Interface (API) profile fea-
tures to discriminate novel ransomware from benign-cryptographic pro-
grams. This research provides a ransomware detection technique that
provides improved detection accuracy and precision compared to other
API profile based ransomware detection techniques while using signif-
icantly simpler features than previous dynamic ransomware detection
research.

Keywords: Ransomware · Machine learning · Internet security and
privacy · Dynamic analysis

1 Introduction

Ransomware seeks to encrypt user data or lock the victim’s computer and
then extort money to regain access. Although early ransomware programs were
detected in 2006, the frequency of ransomware attacks have recently acceler-
ated and have become a significant information security problem [1]. The UK
National Health Service (NHS) suffered a ransomware attack in 2017, 80 out of
236 NHS trusts were infected by ransomware; the full cost of this attack is not
known [2].
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Tangible and non-tangible losses due to ransomware extend the impact
beyond reported cash losses. These costs include investigation, new anti-
ransomware strategies, data recovery, forensic costs, legal costs, crisis communi-
cation, fines, revenue loss, and reputational damage [3].

Prior research [4–8] has shown that novel ransomware families may be
detected through the use of machine learning techniques trained on the fea-
tures of existing ransomware samples. However, this research does not consider
that some common programs perform similar cryptographic operations to ran-
somware. While existing techniques show an overall high accuracy in detecting
novel ransomware samples, to the best of our knowledge, none of the previous
research investigates the discrimination of ransomware from common programs
that share some of the cryptographic characteristics of ransomware. This is a
critical, practical limitation of current research; machine learning based tech-
niques would be limited in their practical benefit if they generated too many
false positives (at best) or deleted/quarantined critical data (at worst).

The research in this paper provides significantly improved accuracy and pre-
cision in ransomware detection when compared with existing Application Pro-
gramming Interface (API) profile based techniques [7] and does so using sim-
plified features. The experiments in this paper were performed using dynamic
analysis of ransomware and benign programs in a Cuckoo sandbox. An SVM
model was trained using the API profile extracted from the Cuckoo results for
each program. Feature selection was used to select the highest performing API
features.

1.1 Command and Control Server Emulation

Historical ransomware samples were used in this research; a Command and Con-
trol (C2) server is used by a ransomware sample to obtain a public encryption
key and to report successful infections. A common technique to disable a ran-
somware attack is to remove the Domain Name Server (DNS) entry for the C2
server. A consequence of this is historical ransomware samples may be executed
in a virtual machine (VM), but network access to the C2 server will not be avail-
able. A C2 emulator is a program that is written to emulate the operation of the
absent C2 server. This use of a C2 emulator allows a historical malware sample to
exchange the required information with the emulated C2 server and to proceed
to searching for and encrypting user files. Running historical malware samples
with a C2 emulator provides accurate API profiles containing API calls related
to initialization, network communication, file searching, and file encryption.

1.2 Contribution

The contributions of this paper are as follows:

– This research is the first to consider whether machine learning API profile
based ransomware detection techniques could distinguish common crypto-
graphic programs from ransomware. In neglecting this question, previous
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research has focused on detection accuracy but has failed to consider pre-
cision as a performance metric.

– Development of techniques to improve the discrimination of ransomware from
benign-cryptographic programs. Experimentation showed that API based
machine learning has difficulties in discriminating ransomware from benign-
cryptographic programs.

– C2 emulators for Cryptowall and CryptoLocker were developed to allow sam-
ples of these ransomware families to be run in a simulated environment and
to perform the full range of operations that were possible when the malware
attack was active.

The remainder of the paper is organized as follows: related work is reviewed in
Sect. 2, Sect. 3 presents our research methodology. Section 4 covers feature selec-
tion and machine learning. We perform a detailed evaluation of our methodology
in Sect. 5, and Sect. 6 concludes the paper.

2 Related Work

Malware analysis may be performed using either static or dynamic analysis. Both
static and dynamic analysis techniques have been used to extract specifications of
malware behaviour [9,10]. The methodology proposed in this paper uses dynamic
analysis.

2.1 Ransomware Detection

Existing research deals with detecting ransomware using machine learning [4–
8,11]. EldeRan [4] demonstrates the importance of feature selection to reduce the
overall complexity of the problem and to improve the performance of machine
learning. EldeRan uses features from the following classes: API calls, registry
key operations, file system operations, file operations per file extension, direc-
tory operations, dropped files, and strings. The dataset used in this research
consisted of 582 samples of ransomware belonging to 11 malware families and
942 benign programs. The benign programs consisted of generic utilities for Win-
dows, drivers, browsers, file utilities, multimedia tools, developer’s tools, network
utilities, paint utilities, databases, emulator and virtual machine monitors, office
tools. While this is a comprehensive dataset, it does not specifically target pro-
grams with cryptographic features that could be misclassified as ransomware.
Experiments were performed to test the ability of EldeRan to detect known
ransomware, and to detect novel ransomware. Testing with known ransomware
provided an average accuracy of 0.963, and testing with novel ransomware sam-
ples gave a detection rate of 0.933 with 100 features and a detection rate of 0.871
with 400 features [11].

The research in [7] uses Windows API call data from the Cuckoo sandbox to
generate a vector model of API calls to train an SVM machine learning model for
ransomware detection. This research uses a vector representation that encoded
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the API call logs using a q-gram frequency and a standardized vector represen-
tation. The research uses 312 samples of benign software, further details of these
programs are not provided, 276 ransomware programs targeting the Windows
Operating System are used in this research. This dataset includes WannaCry,
Cerber, Petya, and CryptoLocker, but further details are not provided. The accu-
racy of this research using the proposed vector format was 0.9352, and 0.9748
using an extension to vector encoding technique. The published results do not
include true positive or false positive values. It is noted that the malware samples
were not divided into malware families before splitting for training/testing, this
allows the possibility that samples of malware families present in the training
data were also present in the test data, raising the apparent average detection
accuracy.

RansHunt is a hybrid analysis system that used static and dynamic analysis
for ransomware detection. RansHunt uses the following feature classes: function
length frequency, strings, API calls, registry operations, process operations, and
network operations [11]. The dataset used in this research consisted of 360 sam-
ples of ransomware from 21 families, 532 different types of malware, and 460
benign software. Details of the types of benign software in the dataset were not
provided. This paper uses a 10 fold cross-validation approach. Performing coss-
validation selection at the ransomware family level would give a better under-
standing of research performance. This would avoid the possibility of having
samples of the same malware families in both the train and test datasets. Fea-
ture selection was performed using Mutual Information criteria. The accuracy
and precision values for static analysis were 0.935/0.951, for dynamic analysis
was 0.961/0.960 and were 0.971/0.970 using the hybrid approach.

An analysis of the API calls made by malware samples from 14 malware
families concluded that it may be feasible to identify ransomware behaviour on
the basis of API call profile data alone [6].

GURLS [8] uses API call frequency features and machine learning based on
Regularized Least Squares (RLS) for ransomware detection. The highest average
binary detection rate of 0.886 was achieved using a radial basis (RBF) kernel.
Multiclass classification was used to identify each ransomware family with an
average accuracy of 0.867.

3 Research Methodology

The user mode programming interface for the Windows operating system is pro-
vided by the Windows API [12]. API calls in malware are readily identified by
dynamic analysis techniques. This allows the creation of API profiles for detec-
tion and classification [13]. The proposed method is based on the observation
that malware samples execute a unique sequence of API calls that can be used
to distinguish them from other programs. Our approach uses API call profiles
as features and uses feature selection to determine the most significant features.

An SVM machine learning model is used as a classifier to distinguish ran-
somware from benign programs and benign-cryptographic programs. API calls
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traces are taken from three datasets (ransomware, benign programs, and benign-
cryptographic programs) using the Cuckoo sandbox. The Windows API calls,
and the native functions calls are extracted from the API calls trace and
are represented as a vector of API call frequency values that are labelled as
ransomware/non-ransomware. Mutual Information Criteria (statistical models)
is used to extract the most significant features. SVM machine learning is per-
formed on the labelled API call frequency data. The trained model is used to
predict whether a sample is ransomware or non-ransomware. The motivation for
the use of SVM for learning and classifying ransomware is that, for binary clas-
sification, SVM has a high generalization rate and is designed to process large
datasets with large feature spaces [7,14]. In our setting, the number of features
is relatively high, so linear classifiers are a better choice [15,16].

3.1 Cross-Validation Approach

A cross-validation approach was used where the ransomware samples from one
malware family and an equal number of benign programs were used for testing.
The remaining ransomware samples and benign programs were used for training.
This process was repeated for each ransomware family, and 10 experiments were
performed for each ransomware family.

3.2 C2 Emulators

These emulators allow experimentation with historical ransomware samples by
providing an emulation of the C2 server used by the malware family. Simulated
DNS responses were provided by the Apate DNS simulator [17]; this permits the
ransomware process to perform the necessary communications with the emulated
C2 server and then continue and encrypt the user files in the test environment.
This emulation exercises more of the ransomware capabilities and allows a com-
plete API profile to be collected. C2 emulators were developed for the CryptoWall
and CryptoLocker ransomware families.

4 Feature Selection and Classification

The machine learning method consists of two parts: feature selection and classi-
fication. Feature selection is performed using statistical and model-based tech-
niques. For the statistical technique, we used Mutual Information Criteria
[18] using Python’s Scikit-learn library and Information Gain using the Weka
machine learning tool [19]. For the model-based technique, we utilized decision
trees (Random Forest) [20]. These techniques enable us to choose the most sig-
nificant features API features.
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4.1 Feature Engineering

The detection of ransomware activities may be performed by analysing their API
calls. API call frequency profiles are employed to identify ransomware behaviour
in a controlled environment. Feature selection is used to identify the most sig-
nificant features, allowing the generation of simpler machine learning models,
reducing the training and prediction time, and helping to counteract the problem
of overfitting. These techniques are not always used in machine learning malware
detection approaches [15,21]. The most significant API calls are selected based
on the required level of significance using Mutual Information Criteria. After
carrying out several experiments, we found that the highest accuracy could be
achieved by utilizing 60% of the most significant selected features.

An API call frequency profile is required for our experiments. This API call
profile can be represented by vectors, where each entry is a frequency of a given
API function. Let S = {a1, a2, a3..., an} be a set of all selected features (API
calls). A log of an application execution can be recorded as a sequence of API
calls of length l, denoted as A = {a1, a2, ...al} where ai ∈ S and l ≤ n.

Let ϕ be the frequency of a Windows API function, we define a function Ψ
that maps A to S and transforms each program’s API calls profile to a vector
of dimension |S| as shown in Eq. 1.

v(A) = Ψ(a)a∈S (1)

where

Ψ(a) =

{
ϕ, Frequency of an API call if present
0, otherwise

(2)

5 Experiments

In this section, we implement our SVM model and test its ability to discriminate
novel ransomware from benign programs and benign-cryptographic programs.
We collected 162 benign programs and 14 benign-cryptographic programs. We
collected 101 ransomware samples from 15 ransomware families targeting the
Windows operating system from Malpedia [22]. The ransomware families used in
this research are summarized in Table 1. We collected a dataset of 162 benign pro-
grams and 14 benign-cryptographic applications; these include Winzip, SHA256,
Crc32, Putty, and John the Ripper. The benign-cryptographic programs that
were used in this research are summarized in Table 2.

5.1 Comparison with Existing Research

To evaluate the effectiveness of our SVM model, we selected a comparison with
Takeushi’s SVM based ransomware detection work [7]. This research was selected
for comparison due to its relatively simple ransomware detection techniques, that
are still representative of current ransomware detection research. To perform
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Table 1. Summary of ransomware families

Family Year # Samples

TorrentLocker 2014 4

CryptoFortress 2015 2

TeslaCrypt 2015 9

Locky 2016 20

CryptXXXX 2016 6

CryptoMix 2016 4

CryptoLocker 2013 4

DirCrypt 2014 5

Petya 2016 4

Cerber 2016 10

WannaCrypto 2017 5

CryptoShield 2017 2

CryptoWall 2013 21

Cryptorium 2016 2

PadCrypt 2016 3

Table 2. Summary of Benign-cryptographic programs

Family # Samples

Cryptographic hashing 03

Error detection 02

File compression 03

Secure data removal 02

Password cracking 02

Secure network file sharing 02

this comparison, we replicated Takeuchi’s Extension To Standardized Vectors
encoding technique [7]. For the remainder of this paper, we refer to this encoding
technique as the Takeuchi technique. Although we replicated the vector encoding
techniques, we continued to use our cross-validation approach. We were not able
to obtain a copy of the dataset used in the Takeuchi research. This dataset
contained 276 ransomware samples. The ransomware families of these samples
are not specified in the paper, and it is assumed that the families of the individual
samples are not known. The result of splitting this dataset for machine learning
is that training may be performed on ransomware samples that are also present
in the test dataset, and this may overstate the accuracy of the technique. The
ransomware dataset used in our research contained 101 ransomware samples from
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15 ransomware families. We performed cross-validation using one ransomware
family at a time for testing.

5.2 Experimental Setup

A Ubuntu 16.04 LTS host operating system and a virtual machine (VM) using
host-only networking were used to ensure the containment and isolation of the
malware experiments. This research used a TensorFlow version 1 linear SVM
model, and an Adam optimizer with a learning rate of 0.001, and 20,000 training
iterations. The samples were executed in a Cuckoo sandbox [23] using a Windows
XP VM. A second Windows XP VM was used to run the emulated C2 server
and an emulated DNS service.

Evaluation Metrics. Each of the programs in our dataset was submitted to
the Cuckoo sandbox and an API profile were extracted from the sandbox anal-
ysis report. API frequency statistics were calculated, and supervised machine
learning was used to predict whether the program was ransomware. The detec-
tion was recorded as successful when a ransomware sample was identified cor-
rectly (true positive) or benign/benign-cryptographic program was detected as
a “not-ransomware” (true negative). The detection fails if ransomware was iden-
tified as a “not-ransomware” (false negative) or a benign/benign-cryptographic
program was identified as ransomware (false positive). We evaluated the perfor-
mance using 4 metrics: accuracy, precision, recall, and F1-Score. These metrics
are summarized in Table 3.

Table 3. Evaluation metrics

Metrics Expression Description

Accuracy
No. of correct predictions

Total no. of predictions
Correct fraction of predictions

Precision
TP

(TP + FP )
Rate of relevant results (Trues)

Recall
TP

(TP + FN)
Sensitivity for the most relevant results

F1-Score 2 × Recall × Precision

Recall + Precision
Estimate of entire system performance

5.3 Feature Selection

Over several experiments, we found that Mutual Information and Random For-
est techniques are comparable and outperformed Information Gain for feature
selection. Use of the Mutual Information Criteria from Python’s Scikit-learn
machine learning library provided an 11% increase in accuracy compared with
the Information Gain algorithm from Weka. We performed several experiments
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to determine the most significant features and evaluated our SVM model. We
observed that our machine learning model performed best when the top 60% of
the features were selected after being ranked by the mutual information criteria.
While this machine learning approach is able to identify the highest performing
set of API features, this approach does not identify the highest performing indi-
vidual API features. Table 4 summarizes the number of most significant features
selected in our experiments.

Table 4. Number of most significant featuress

Experiment type # Features selected

Ransomware/Benign Programs 118

Ransomware/Benign Cryptographic Programs 90

5.4 Ransomware Against Benign Programs

In this experiment, we test the ability of our technique to distinguish ransomware
from benign programs and compare the results with the replicated Takeuchi vec-
tor encoding technique. Table 5 provides the accuracy, precision, recall, and F1-
Score measures of both the methods. Our model substantially outperformed our
replication of the Takeuchi technique with an improvement of 6.2% in accuracy,
6.2% improvement in precision, and an improvement of 11.1% in recall.

Table 5. Average cross-validation evaluation results

Ransomware/Benign Ransomware/Cryptographic

Metric Our method Takeuchi method [7] Our method Takeuchi method [7]

Accuracy 93.3% 87.1% 67.3% 57%

Precision 96.2% 90% 67.1% 60%

Recall 90.1% 79% 71.2% 60%

F1-Score 92.2% 82.1% 67.4% 60%

5.5 Ransomware Against Benign-Cryptographic Programs

In this experiment, we test the ability of our technique to distinguish ransomware
from benign-cryptographic programs and compared this to the results from the
replicated Takeuchi vector encoding technique. The summary of these results is
shown in Table 5. In this experiment, our model substantially outperformed the
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Takeuchi technique with an improvement of 10.3% in accuracy, 7.1% improve-
ment in precision, and an improvement of 11.2% in recall. Our research indicates
an accuracy rate of 67.3% in distinguishing ransomware from benign crypto-
graphic programs. Two factors that may account for this relatively low result
are, firstly our dataset contained a low number (11) of benign-cryptographic pro-
grams, and secondly, our cross-validation approach of testing against program
features that were excluded from training, emphasises the need for the machine
learning to generalise. This gives a conservative estimate of model accuracy.
We acknowledge these limitations but note that our model outperforms existing
research.

6 Conclusion

In this research, we developed a technique that detects ransomware with sub-
stantially simpler features than existing research. The Takeuchi vector encoding
technique [7] was replicated, and our model was evaluated against it. The eval-
uation results demonstrate that our research improves prediction accuracy and
is better able to discriminate ransomware from benign-cryptographic programs.

Future research could investigate why the API profiles from some ransomware
families and the use of C2 emulators resulted in lower detection rates.

Based on our research, we conclude that machine learning trained on API
profile features is limited in its ability to discriminate between ransomware and
benign cryptographic programs due to the significant overlap of API calls pro-
files.
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Abstract. Graphs play an important role in many applications.
Recently, Graph Neural Networks (GNNs) have achieved promising
results in graph analysis tasks. Some state-of-the-art GNN models have
been proposed, e.g., Graph Convolutional Networks (GCNs), Graph
Attention Networks (GATs), etc. Despite these successes, most of the
GNNs only have shallow structure. This causes the low expressive power
of the GNNs. To fully utilize the power of the deep neural network,
some deep GNNs have been proposed recently. However, the design of
deep GNNs requires significant architecture engineering. In this work, we
propose a method to automate the deep GNNs design. In our proposed
method, we add a new type of skip connection to the GNNs search space
to encourage feature reuse and alleviate the vanishing gradient prob-
lem. We also allow our evolutionary algorithm to increase the layers of
GNNs during the evolution to generate deeper networks. We evaluate our
method in the graph node classification task. The experiments show that
the GNNs generated by our method can obtain state-of-the-art results
in Cora, Citeseer, Pubmed and PPI datasets.

Keywords: Graph Neural Networks (GNNs) · AutoML · Neural
Architecture Search (NAS) · Evolutionary Algorithm (EA) ·
AutoGraph

1 Introduction

Graph Neural Networks (GNNs) are deep learning-based methods that have been
successfully applied in graph analysis. It is one of the most important machine
learning tools for solving graph problems. Unlike other machine learning data,
graphs are non-Euclidean data. Many real-world problems can be modeled as
graphs, such as knowledge graphs, protein-protein interaction networks, social
networks, etc. The neural networks like Recurrent Neural Networks (RNNs) or
Convolutional Neural Networks (CNNs) cannot directly apply to graph data.
Hence, GNNs have received more and more attention. Some GNN models have
been proposed and obtain promising results on some graph tasks, such as node
classification [7,8,14,20], link prediction [23] and clustering [22].
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Fig. 1. Graph neural network architecture evolution example. The GNN architecture
can be encoded by six states, i.e., Attention Function, Attention Head, Hidden Dimen-
sion, Aggregation Function, Activation Function and Skip Connection.

However, most of the GNNs suffer the low expressive power problem due
to their shallow architectures. Some works [13,19] have been proposed to solve
this problem. The design of deep GNNs requires a huge amount of human effort
for neural architecture tuning. GNN models are usually very sensitive to the
hyperparameters, for different tasks, we might also need to adjust the hyper-
parameters to obtain the optimal result. For example, the activation function
needs to be carefully selected to avoid features degradation [13], the number of
attention heads of GAT [20] needs to be carefully selected for different data, etc.
The variants of GNNs may have a better performance in some specific problems.
It is impossible to explore all possibilities manually.

We notice that the Neural Architecture Search (NAS) has archived great suc-
cess in designing the CNNs and RNNs for many computer vision and language
modeling tasks [11,17,26]. Many NAS methods for CNNs and RNNs have been
proposed recently. For example, Zoph et al. [26] apply reinforcement learning
to design CNNs for image classification problems. They use a recurrent network
controller to generate CNN models and use the validation result of the CNN
models as a reward to update the controller. Real et al. [17] design an evolution-
ary algorithm to evolve the CNN models from scratch and obtain state-of-the-art
results. However, these works cannot be applied to GNNs directly.

Inspired by the success of NAS in designing CNNs and RNNs, recent works
[6,25] are tried to apply NAS methods to design GNN models for citation net-
works. They propose to use reinforcement learning to design the GNN models.
However, their proposed method can only generate fixed-length GNN models,
and the generated GNN models only have shallow architectures. The deep GNNs
generated by their methods will suffer the over-smoothing problem.

To overcome the above-mentioned problem, we propose a new AutoGraph
method that applies an evolutionary algorithm to automatically generate deep
GNNs. We first design a new search space and schema for the GNN model, which
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allows GNN with various layers and covers most of the state-of-the-art models.
Then we apply evolutionary algorithm and mutation operations to evolve the
initial GNN models. Next, we demonstrate a method to search for the best
hyperparameters for the new GNN models which allow us to fairly compare the
generated models and improve the robustness of our method. Finally, we conduct
experiments on both transductive and inductive learning tasks and compare our
method with baseline GNNs and the models generated by other reinforcement
learning and random search strategies. The results show that we can generate
state-of-the-art models for all test data efficiently. In summary, our contributions
are:

– To the best of our knowledge, we are the first to study deep GNNs by using
NAS. Our method can automate the architecture engineering process for deep
GNNs, which can save many human efforts.

– Experiment results show that our proposed method can search for deep GNN
models for different tasks efficiently.

– The GNN models generated by our method can outperform the handcrafted
state-of-the-art GNN models.

2 Related Work

Inspired by CNNs [9,10] and graph embedding [2,4], GNNs are proposed to
collectively aggregate information from graph structure. It is first proposed in
[18]. GNNs have been widely applied for graph analysis [21,24] recently. The
target of GNNs is to learn a representation of each node hv ∈ R

s which contains
information for its neighborhood. The hv also called a state embedding of a
node. It can be used to produce an output ov, e.g., the node labels. They can
defined as follows [24]:

hv = f(xv,xco[v],hne[v],xne[v]), (1)
ov = g(hv,xv), (2)

where f is the transition function that updates the node state according to the
neighborhood, g is the output function that generates output from the node
state and features. xv, xco[v], xne[v], hne[v] are the features of v, the features of
its edges, the features and the states of its neighborhood, respectively.

Let H, O, X and XN be the stacked vectors of hv, ov, all features (node
features, edge features, neighborhood features, etc.) and all the node features.
Then the state embedding and output can be defined as:

H = F (H,X), (3)
O = G(H,XN ). (4)

Due to the shallow learning mechanisms of most GNNs, one major problem
of GNNs is the low expressive power limit. The main challenge of this prob-
lem is that most of the deep GNNs would suffer from the over-smoothing issue,
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i.e., the deep model would aggregate more and more node and edge information
from neighbors which would lead to the representation of node and edge indis-
tinguishable. Some works have been proposed to solve this problem recently. For
example, in the work of [13], the authors show that the Tanh activation function
may be more suitable for deep GNNs and they also propose a DenseNet like
architecture to alleviate the vanish-gradient problem.

To automate neural network exploration, some NAS methods have been
proposed. Due to the substantial effort of human experts for discovering the
state-of-the-art neural network architectures, there has been a growing interest
in developing an automatic algorithm to design the neural network architecture
automatically. Recently, the architectures generated by NAS have achieved state-
of-the-art results in tasks like image classification, object detection or semantic
segmentation. Most of the NAS methods are based on Reinforcement Learning
(RL) [15,26,27] and Evolutionary Algorithm (EA) [16,17].

Although the aforementioned NAS methods have successfully designed CNN
or RNN architectures for image and language modeling tasks, the GNN is very
different from CNN or RNN. Thus they cannot be directly applied to the GNN
architecture search. Gao et al. [6] and Zhou et al. [25] propose a new schema
to encode the GNN architecture and apply reinforcement learning to search for
GNN models, but their methods cannot generate deep GNNs and their methods
are not efficient and robust enough.

3 Method

In this section, we first define the AutoGraph problem. Then we describe our
search space and schema to represent GNN architectures. Next, we show our
evolutionary algorithm for the AutoGraph. Finally, we show a method to improve
the robustness of the search process.

3.1 Problem Statement

The AutoGraph problem can be formally defined as follows. Given search space
A, the target of our algorithm is to search the optimal GNN architecture α ∈ A
which minimizes the validation loss Lval. It can be written as follows:

minα Lval(w∗(α), α), (5)
s.t. w∗(α) = argminw Ltrain(w,α), (6)

where w∗ denotes the optimal parameters learned for the architecture in the
training set. This is a bilevel optimization problem [6].

We propose an efficient method to solve this problem based on the evolution-
ary algorithm. Each generated architecture is trained and obtains the optimal
weight of w∗ in the training set, then it is evaluated in the validation set. At
last, the best architecture in the validation set is reported. The following sections
explain the process in more detail.
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Fig. 2. Graph skip connection example. Binary connection status can be encoded to
[0, 2k−1), k is the current layer number.

3.2 Search Space

Many state-of-the-art GNNs would suffer from the over-smoothing problem
which makes the representation of even distant nodes indistinguishable [24]. The
recent work [13] shows that Tanh is better than ReLU for keeping linear inde-
pendence among column features for GNNs. They propose a densely-connected
graph network which is similar to DenseNet as follows:

H0 = X, Hl+1 = f(L[H0,H1, ...,Hl]Wl), l = 0, 1, .., n − 1, (7)
C = g([H0,H1, ..,Hn]Wn), (8)
output = softmax(LpCWC), (9)

where f and g are activation functions; Wl ∈ R
(
∑l

i=0 Fi)∗Fl+1 , Wn ∈
R

(
∑n

i=0 Fi)∗FC and WC ∈ R
FC∗FO are learnable parameters, Fi is the number

of input channels in layer i. This architecture stacks all the outputs of previous
layers as the input of current layers. It can increase the variety of features for
each layer, encourage the feature reuse, alleviate the vanishing gradient prob-
lem. However, concatenating all the outputs of previous layers will cause the
parameters of the GNNs to increase exponentially.

Inspired by this, we allow each layer of our generated GNN models to connect
to a various number of previous layers. To generate deep GNNs, we also allow
our method to add a new layer to the GNN model during the searching process.
So we define the search space and schema of our method as follows. We first
apply the same setting of Attention Function, Attention Head, Hidden
Dimension, Aggregation Function and Activation Function in [6]. Then
we introduce two new states:

– Skip Connection. It has been observed that most GNN models deeper
than two layers could not perform well because of the noisy information from
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expanding neighbors. This problem usually can be addressed by skip con-
nection. Inspired by Luan et al. [13], we allow skip connections between any
previous layers to the current layer. For each previous layer, 0 represents no
skip connection, 1 represents there is a skip connection between that layer to
the current layer, e.g., Fig. 2.

– Layer Add1. This state is only used during the mutation process. When this
state is selected, we duplicate the current layer and add the new layer after
the current layer. This state allows our method to extend the depth of GNNs
automatically.

Noted that most of the GNN layers can be represented by the above first six
states, as shown in Fig. 1. The above search space can cover a wide variety of
state-of-the-art GNN models. If the skip connections are applied then the input
dimension of the current layer would be the sum of all the output dimensions of
the connected layers.

3.3 Evolutionary Algorithm

Inspired by Real et al. [16], we apply the Aging Evolution Algorithm to search for
the deep GNNs. Similar to most of the evolutionary algorithms, our algorithm
can be divided into three stages, i.e., initialization, mutation and updating. In
the initialization stage, we randomly generate P GNN models with two layers.
P is the size of the population. The initial P models are trained and evaluated.
Then they are added to the population.

In the mutation stage, we sample S candidates from the population. The
candidate with the highest score in the sample set is selected to apply mutation.
We randomly select one state in the search space and change it to a new value
in the state set. Then the newly generated candidate is trained and evaluated.
Next, the new candidate needs to be added to the population. Since we need to
keep the population size unchanged, we would select the oldest candidate in the
population and remove it before we add the new candidate to the population.
This is the main difference between the Aging Evolution Algorithm and other
evolutionary algorithms.

We allow multiple skip connections for each layer. The skip connection
between the previous layer i to the current layer k can be represented by binary
ci,k. Since there is always a connection between layer k − 1 to layer k, we only
need to consider i ∈ 0, 1, .., k − 2 (0 represents the input of the network). Thus,
the skip connections state of layer k can be represented as

Sk =
k−2∑

i=0

ci,k · 2i, ci,k ∈ 0, 1, k ≥ 2. (10)

Then the possible state of Sk is [0, 2k−1). When k = 1, i.e., the current layer is
the first layer, the skip connection state would be always 0. Figure 2 shows an

1 “Layer Add” state is only used in the evolutionary process.
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example of skip connection representation. To avoid a significant change of the
GNN model, each mutation operation will only change one state of the model.
During the search process, every evaluated GNN model is added to the history
list. After the whole search process is finished, the model with the highest score
in the history list will be reported.

3.4 GNNs Evaluation

We notice that the GNN model is sensitive to change in hyperparameters, such as
the learning rate and weight decay. The best performance of a GNN architecture
can be achieved at different learning rates, weight decay and iteration number. If
we use the same hyperparameters to train and evaluate different GNN architec-
tures, we may miss the best GNN model because the hyperparameters are not
set properly. To fairly compare the architecture, we apply the hyperparameters
tuning for each generated GNN model.

The work of Bergstra et al. [1] shows that the Tree-structured Parzen Esti-
mator Approach (TPE) performs well on the hyperparameter search. We use the
TPE algorithm to search the hyperparameters for each GNN model. To avoid
overfitting and speed up the search process. We allow early stops during the
training process. For each GNN architecture, we will use the best performance
reported by the TPE algorithm as the performance of the architecture. The
comparison between different GNN models is based on the performance of their
best hyperparameter settings.

4 Experiments

We conduct experiments in both transductive and inductive learning tasks. For
the transductive learning task, we test our method on the Cora, Citeseer and
Pubmed datasets. For the inductive learning task, we test on the protein-protein
interaction (PPI) dataset. Our method is evaluated in the following aspects:

– Performance. We evaluate the performance of our AutoGraph method by
comparing the generated GNN model with the handcrafted state-of-the-art
GNN models.

– Efficiency. We analyze the efficiency of our method by comparing it with
other search strategies, i.e., GraphNAS (a reinforcement learning-based
method) and random search.

– Scalability. We analyze the scalability of our method by comparing the
performance of GNN models with different layers.

4.1 Experimental Setup

The configuration of our method in the experiments is set as follows. The popula-
tion size is 100. The max evaluation architecture is 2,000. The maximum training
iterations is 1,000. As described in the Methods, the mutation probabilities are
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Table 1. Dataset statistic

Cora Citeseer Pubmed PPI

Task Transductive Transductive Transductive Inductive

# Nodes 2,708 (1 graph) 3,327 (1 graph) 19,717 (1 graph) 56,944 (24 graphs)

# Edges 5,429 4,732 44,338 818,716

# Features/Node 1,433 3,703 500 50

# Classes 7 6 3 121 (multi-label)

# Training nodes 140 120 60 44,906 (20 graphs)

# Validation nodes 500 500 500 6,514 (2 graphs)

# Test nodes 1,000 1,000 1,000 5,524 (2 graphs)

uniform. The generated GNN architecture is trained with the ADAM optimizer.
The maximum hyperparameters search number for the TPE algorithm is 50. We
run the search algorithm in four RTX 2080 Ti GPU cards. For each task, the
best model which has the lowest validation loss is selected as our GNN model
to compare with other baseline models.

4.2 Datasets

Transductive Learning. In transductive learning tasks, the same graphs are
observed during training and testing. The experiment datasets for the trans-
ductive learning are Cora, Citeseer and Pubmed. In these datasets, the nodes
represent the documents and the edges (undirected) represent citations. The fea-
tures of the nodes are got by the bag-of-words representation of the documents.
The Cora dataset contains 2,708 nodes and 5,429 edges. We will use 140 nodes
for training, 500 nodes for validation and 1,000 nodes for testing. The Citeseer
dataset contains 3,327 nodes and 4,732 edges. The training, validation and test
set separations are the same as the setup of [20].

Inductive Learning. In inductive learning tasks, the graphs in training and
testing are different. The experiment dataset for inductive learning is the protein-
protein interaction (PPI). The graphs in this dataset represent different human
tissues. There are 20 graphs in the training set, two in the validation set and
two in the test set. The data in the test set is completely unobserved during
training.

The statistical detail of transductive learning and inductive learning datasets
is shown in Table 1. The Cora, Citeseer and Pubmed datasets are classification
problems. The PPI dataset is a multi-label problem.

4.3 Baseline Methods

We compare the GNN model generated by our approach with the following
state-of-the-arts methods:

– Chebyshev [3]. This method removes the need to compute the eigenvectors
of the Laplacian by using K-localized convolution to define a graph convolu-
tional neural network.
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Table 2. Experiment results on Cora, Citeseer and Pubmed

Models Cora Citeseer Pubmed

Chebyshev 81.2% 69.8% 74.4%

GCN 81.5% 70.3% 79.0%

GAT 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%

LGCN 83.3 ± 0.5% 73.0 ± 0.6% 79.5 ± 0.2%

GraphNAS 83.3 ± 0.6% 73.5 ± 1.0% 78.8 ± 0.5%

AutoGraph 83.5± 0.4% 74.4± 0.4% 80.3± 0.3%

Table 3. Experiment results on PPI

Models micro-F1

GraphSAGE (lstm) 0.612

GeniePath 0.979

GAT 0.973 ± 0.002

LGCN 0.772 ± 0.002

GraphNAS 0.985 ± 0.004

AutoGraph 0.987± 0.003

– GCN [8]. This method alleviates the problem of overfitting by limiting the
layer-wise convolution operation to K = 1.

– GAT [20]. This method introduces the attention mechanism to GNN. It
obtains good results in many graph tasks.

– LGCN [5]. It introduces regular convolutional operations to GNN.
– GraphSAGE [7]. This method can be applied to inductive tasks. It samples

and aggregates features from a node’s neighborhood.
– GeniePath [12]. It uses an adaptive path layer which consists of two comple-

mentary functions.

We use the public released implementations of these methods to do the com-
parisons. The evaluation metric for transductive learning tasks is accuracy. For
the inductive learning task, we use the micro-F1 score.

To evaluate the efficiency of our method, we also compare our method with
GraphNAS and random search. GraphNAS applies a reinforcement learning con-
troller to generate GNN models. For the random search baseline, we randomly
sample GNN models from the same search space in our approach.

4.4 Results

After our algorithm generates 2,000 GNN models, the model which has the lowest
loss in the validation set is selected and tested on the test set. The experiment
results of transductive learning datasets are summarized in Table 2. The results
of the inductive learning dataset are summarized in Table 3.
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Performance. For the transductive learning tasks, we compare the classification
accuracy with the above-mentioned GNN model and GraphNAS. From Table 2
we can see that our generated model can get the state-of-the-art result in all
transductive datasets.

For the inductive task, we compare the micro-F1 score with the popular GNN
models and GraphNAS. The result shows that our method also performs well in
the inductive dataset.

Table 4. Search strategies comparison

Method Accuracy Time (GPU hours) Best GNN layers

Random search 81.8 ± 0.5% 10 2

GraphNAS 83.3 ± 0.6% 10 2

AutoGraph 83.5± 0.4% 3 4

Efficiency. To evaluate the effectiveness of our search method, we compare our
method with different search strategies, i.e., random search and reinforcement
learning-based search method—GraphNAS [6]. Since GraphNAS does not do
the hyperparameters tuning when evaluating the GNNs, we also disable our
hyperparameters tuning during the search process. During the training process,
we record the generated architectures and their performance. From the Table 4,
we can see that our method can search for a better GNN model with less time
and our method can generate deeper GNNs.

Scalability. We know that most of the handcraft GNNs would suffer from the
over-smoothing problem. We compare the performance of the GNNs generated
by our method with different layers. Figure 3 shows the best performance of the

Fig. 3. Comparison of the GNN models with different layers on Cora
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GNNs generated by our method from two layers to nine layers. We can see that
our generated GNN models have good performance in deep architectures.

5 Discussion and Conclusion

In this work, we study the problem of AutoGraph. We present an efficient evo-
lutionary algorithm to search for GNN models. We can see that our method can
generate deep GNNs which alleviate the over-smoothing problem. The experi-
ments show that the generated models can outperform current handcraft state-
of-the-art models. In summary, we can see our proposed method has the following
advantages:

– It can save substantial efforts to explore good GNN models for different graph
tasks.

– Our generated GNN models can get state-of-the-art results.
– Our approach can generate deep GNN models which can alleviate the over-

smoothing problem.

Although our proposed method can design state-of-the-art GNNs for graph
tasks, it is remarkable that there are still many improvements that can be made.
The first problem is that the search process is time-consuming. We notice that
some approaches to reduce the search time have been proposed in NAS for CNNs.
However, most of them cannot be directly applied to GNNs, we need to design a
proper improvement method for GNNs. The second problem is that the search
space in our method is still limited, we can try to design a better search space
to explore more novel GNNs. We will focus on these two problems in our future
works.
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Abstract. Curriculum learning has the potential to solve the problem
of sparse rewards, a long-standing challenge in reinforcement learning,
with greater sample efficiency than traditional reinforcement learning
algorithms because curriculum learning enables agents to learn tasks in
a meaningful order: from simple tasks to difficult ones. However, most
curriculum learning in RL still relies on fixed hand-designed sequences
of tasks. We present a novel scheme of automatic curriculum learning
for reinforcement learning agents. A two-level hierarchical reinforcement
learning framework, with a high-level policy called the curriculum gener-
ator and a low-level policy called the action policy, is proposed. During
training, the curriculum generator automatically proposes curricula for
the action policy to learn. Our training methods guarantee that the pro-
posed curricula are always moderately difficult for the action policy. Both
levels of policies are trained simultaneously and independently. After
training, the low-level policy will be able to finish all tasks without the
instructions given by the curriculum generator. Experiment results on a
wide range of benchmark robotics environments demonstrate that our
method accelerates convergence considerably and improves the training
quality compared with the method without the curriculum generator.

Keywords: Deep reinforcement learning · Curriculum learning ·
Hierarchical reinforcement learning

1 Introduction

Recently, deep reinforcement learning (DRL) has achieved notable progress in
solving sequential decision-making problems, including continuous robot control
[10,14,17], Go game [24], video games [9,18,25] and automatic driving systems
[21]. However reinforcement learning (RL) could be very challenging in tasks with
sparse rewards since the agent can hardly get the reward to update the policy.
Curriculum learning [4,7] is considered as an effective way to solve the problem of
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sparse rewards. Curriculum learning imitates the mechanism of human learning,
starting with simple tasks and then gradually increasing the difficulty of tasks.
Take the environment of Reach (moving the end-effector of a robot to a goal
point; see Fig. 1) for example, the goal can be firstly set close to the initial
position of the end-effector so that the randomly initialized policy can achieve the
goal with less effort. Along with the training process, the policy will become more
sophisticated, and goals farther from the end-effector can be set to the agent.
As the policy can always learn from the current trajectory, curriculum learning
greatly improves the efficiency of sampling. However, currently, most applications
of curriculum learning on RL [12,22] still rely on hand-designed curricula by
domain expertise. This paper explores an automatic way of curriculum learning.

In this paper, a new scheme of curriculum learning is proposed. The main
contribution of this paper is a novel way of automatic curriculum generation
(ACG). To automatically generate curriculum, a two-level hierarchical reinforce-
ment learning (HRL) architecture is proposed. As shown in Fig. 1, the high-level
policy called curriculum generator takes the current state and the final goal g as
input and outputs an intermediate goal gi for the low-level policy called action
policy to achieve. Then the action policy uses as input the current state and
the intermediate goal gi and outputs the actions of the robot. In our approach,
techniques are designed to guarantee that the goals generated by the curricu-
lum generator are of intermediate difficulty to the action policy. Along with the
training, as the action policy become more capable, the curriculum generator
will propose more difficult intermediate goals for the action policy. Therefore,
the main function of the high-level policy is to generate increasingly difficult
curriculum for the low-level policy along with the training. It is worth noting
that, different with any other HRL scheme, after training, our low-level pol-
icy can achieve goals in the goal space independently, without the instructions
given by the high-level policy. Therefore, our approach is a scheme of automatic
curriculum learning.

Sufficient experiments are conducted to prove the efficiency of the proposed
method. We evaluate our method in a variety set of robotic control and manipula-
tion environments. The experiments show that our approach can accelerate con-
vergence considerably and increase the success rate in some tasks compared with
baseline RL algorithms. It is confirmed by our experiments that the intermedi-
ate goals generated by the curriculum generator in each episode are increasingly
difficult along with the training, which is of critical importance to curriculum
learning.

2 Related Works

Many works [2,13,20] research methods to build agents that can learn hierar-
chical policies. However, these methods cannot learn about multiple levels in
the hierarchy simultaneously. Instead, these methods learn each level of policy
separately in a bottom-up fashion. Work [15] proposes a framework that success-
fully learns three-level hierarchies in parallel in tasks with continuous state and



204 Z. He et al.

(a) Reach (b) Increasingly difficult curriculum

Fig. 1. (a): The task is to move the end-effector to a goal point (the red circle). The
curriculum generator generates intermediate goals (the blue circle) for the action policy.
(b): Alone with the training process, the curriculum generator will generate fewer and
fewer intermediate goals in each episode since the low-level policy becomes more and
more capable. Therefore, the proposed curriculum becomes increasingly difficult. (Color
figure online)

action spaces by integrating hindsight experience replay (HER) [1] and HRL.
Our method also learns two-level hierarchies simultaneously. However, our work
and [15] have a completely different purpose. Work [15] aims to learn hierarchi-
cal policies that work jointly to accomplish tasks even after training, while our
method uses the higher level policy to speed up the convergence of the lower
level policy. After training, our low-level policy can complete tasks alone.

Many previous works [3,4,26] explore the applications of curriculum learning
in supervised tasks using hand-designed curricula. Work [8] proposes a method to
build curriculum automatically; however, it is mainly applied in supervised tasks.
Most curriculum learning in RL [12] still requires a fixed pre-defined sequence of
tasks. Work [11] uses a generative adversarial network to automatically generate
goals of intermediate difficulty, but it needs a hand-designed label to label goals.
Our work regards the curriculum generator as the high-level policy in hierarchical
reinforcement learning and uses the same sparse reward function as the original
problem so that no expertise is required.

3 Background

3.1 Multi-goal Reinforcement Learning

In this paper, we consider a specific class of RL called multi-goal reinforcement
learning (multi-goal RL) [1], where agents learn to achieve every goal in a goal
space. Compared with standard RL, the policy function and value function in
multi-goal RL take as input not only the current state s ∈ S but also a goal
g ∈ G, where G denotes the goal space. The correspondence of states and goals
can be measured by a function fg : S → {0, 1}. Whenever agents achieve any
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states s that satisfy fg(s) = 1, it is considered as agents reaching its goal. It is
assumed that for every state s ∈ S, a corresponding goal ga satisfying fg(s) = 1
can be easily found by a mapping m : S → G. This goal ga is called the achieved
goal. Besides, the rewards in this setting are sparse and binary given by the
reward function:

Rg (st, at, st+1) =
{

0, fg (st+1) = 1
−1, otherwise (1)

3.2 Deep Deterministic Policy Gradients

We adopt Deep Deterministic Policy Gradients (DDPG) [16], an off-policy RL
algorithm for continuous action spaces, to train our policies. DDPG is an actor-
critic framework, maintaining two neural networks: a policy network (called the
actor) π : S → A and an action-value function approximator (called the critic)
Q : S × A → R. Because of the multi-goal RL setting in this paper, Universal
Value Function Approximators (UVFA) [19] is extended to DDPG. The pol-
icy network gets the current state and the current goal as input and output a
deterministic action π : S × G → A. Similarly, the action-value function approx-
imator gets as input not only the state-action pair but also the current goal
Q : S × A × G → R. For more training details about DDPG, see [16].

3.3 Hindsight Experience Replay

Hindsight Experience Replay (HER) [1] is a method to construct experience
buffers, which augments data considerably. Unlike the general experience buffer,
HER stores not only transition tuples (st, at, st+1, rt, g) but also tuples trans-
formed

(
st, at, st+1, r

′
t, g

′
)

where the original goal g is replaced with a goal g
′
,

which is achieved during the episode, and reward r
′
t is recomputed. Then the

buffer constructed by HER is fed to off-policy RL algorithms, such as DDPG,
to update policies. As transitions in HER must contain sparse rewards, HER
accelerates learning remarkably in tasks with sparse rewards. For more details
about HER, see [1].

4 Method

Our method is an approach to automatic curriculum learning. We propose a
new scheme of automatic curriculum generation (ACG) that makes action pol-
icy πa explore the whole goal space from simple goals to difficult ones. The
overall framework in our method is a two-level hierarchical reinforcement learn-
ing, where a high-level policy called curriculum generator πcg generates curricula
for the action policy πa. A method to train the curriculum generator and action
policy simultaneously and independently is proposed. Moreover, the training
method in our approach guarantees that curricula generated by the curriculum
generator πcg are moderately difficult for the action policy πa.
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In every episode, a final goal g is set to the agent to achieve and it is fixed
during the whole episode. The curriculum generator πcg first takes the initial
state s0 and the final goal g as input then outputs an intermediate goal gi for
the action policy to achieve: gi = πcg(s0, g). Each intermediate goal gi remains
unchanged within a maximum number of steps T for the action policy. Then the
action policy πa outputs actions on the agent based on the current state and
the intermediate goal at = πa(st, gi). After actions are executed, the current
state st transits to the next state st+1. After the maximum number of steps T is
reached, the state of curriculum generator si transits to sT as the next state si+1.
Then another intermediate goal gi+1 is generated based on the new state si+1.
The process above is repeated until the final goal g is reached or the maximum
horizon H of intermediate goals have been generated.

Note that, with the training process, the curriculum generator will propose
increasingly difficult targets. After training, the action policy can complete tasks
individually. In an ideal case, the training process is shown in Fig. 1(b). Initially,
to achieve the final goal g, the generator will propose sufficient simple intermedi-
ate goals for the action policy. Along with training, the action policy will become
more capable so that given a certain final goal, the intermediate goals that need
to be generated will become fewer. Fewer intermediate goals means that each
intermediate goal is more difficult for the action policy. When both the generator
and the action policy converge to the optimal, given any final goal g ∈ G, the
generator will directly guide the action policy to it. This means that the action
policy can achieve any goal g ∈ G individually. Our experiments confirm this
process.

In this section, we will introduce the curriculum generator, the action policy
and the algorithm testing in detail.

4.1 Curriculum Generator

The curriculum generator is the high-level policy in our two-level hierarchi-
cal reinforcement learning framework. Its input is the current state si and the
final goal g, and its output is an intermediate goal gi. Regarding the output
intermediate goal as an action, we formulate our curriculum generator as a
goal-oriented MDP, which satisfies multi-goal RL setting, described by tuples
M = {S,G,A,R,P, γ}, where S is the state space; G represents the goal space
of the problem; A denotes the action space of the curriculum generator; R is the
reward; P is the state transition function; γ is the discount factor. Compared
with general goal-oriented MDP, our curriculum generator has some unique fea-
tures. State transition functions P in our method are non-stationary. This is
because the action policy updates overtime. Given a certain intermediate goal,
the state that the agent can achieve changes along with action policy. However,
with the convergence of the action policy network, the state transition functions
become more stable.

We mainly design the following two techniques to guarantee the convergence
of the curriculum generator and ensure that the generated targets are moderately
difficult.
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Intermediate Goals Between the Achieved Goal and the Final Goal.
The actions of the curriculum generator are intermediate goals of the action
policy. In theory, the action space A is the same as the goal space of the problem.
However, in our approach, we limit the generated goals gi between the achieved
goal ga and the final goal g: gi ∈ (ga, g], where the achieved goal ga is the goal
currently achieved, obtained by the mapping m : S → G described in Sect. 3.1.
This way of goal generation has three advantages. All these advantages improves
the convergency of the curriculum generator. Firstly, as the intermediate goals
are on the path to the final goal, it is ensured that the intermediate goals guide
the agent to achieve the final goal so that the sparse rewards (described in the
following section) can be obtained with less effort. Secondly, the valid action
space for every state-goal pair (s, g) is much smaller compared with the whole
goal space G; therefore, our method reduces the dimension of action space. Lower
dimensional RL problems are easier to converge. Thirdly, the generator tends to
generate simple goals for the action policy in the initial stage of training, because
generated goals will always be simpler or just as difficult as the original final goal.
A trick to generate a goal that meets not only the constraints of the goal space
but also the restriction described above is not to generate a goal but output
an interpolation coefficient ac ∈ (0, 1]. The intermediate goal gi is obtained
by interpolating between the achieved goal ga and the final goal g using this
interpolation coefficient gi = ga + ac(g − ga).

Sparse Reward Function Determined by the Final Goal. The reward
of the curriculum generator is obtained by the next state and the final goal:
ri = r (si+1, g). Every time an intermediate goal gi is generated, the action
policy πa has a certain number T of attempts to achieve it. If the action policy
achieves the final goal g successfully after T time steps, the curriculum generator
πcg receives a reward of 0. Otherwise, it receives a penalty of −1. This is to
ensure that the generated goals are always moderately difficult. Initially, the
capability of the action policy is weak. The generator has to generate multiple
simple intermediate goals, decomposing tasks into simpler tasks, so that the
action policy could reach the final goal g, and the generator could get the sparse
reward. In the meantime, the curriculum generator tends to generate as few
intermediate goals as possible, because every time an intermediate goal gi is
generated, if the action policy fails to achieve the final goal, the generator will
get a negative penalty of −1. Therefore, as the action policy becomes more
capable, the generator generates fewer intermediate goals, that is, more difficult
subtasks, to maximize rewards.

It is worth noting that HER is adopted to the update of the action policy,
but not to the update of the curriculum generator. We update the curriculum
generator with the method of DDPG. The trajectories are stored in a replay
buffer in the form of tuples (si, g, gi, si+1, ri), where gi denotes the action of the
curriculum generator. If HER is used to construct the replay buffer, another
copy of transition tuples (si, g′, gi, si+1, r

′
i) will be added to the replay buffer,

but in every tuple, the original goal g is replaced with another goal g′, that
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the agent later achieved, and the reward r′
i is recomputed based on the new

goal g′. As is claimed by work [15], hindsight goal transitions encourage the
generator to generate the shortest path of intermediate goals that has been
found, ignoring the current capability of the action policy. This does not match
the idea of curriculum learning that goals must be slightly beyond the capability
of the action policy. Therefore, in our method, the replay buffer only contains
real trajectories, where the rewards are obtained based on the capability of the
action policy.

4.2 Action Policy

Action policy is the low-level policy in the hierarchy that directly controls the
agent. Receiving an intermediate goal given by the curriculum generator, the
action policy has a certain number T of attempts to achieve it. Action policy
interacting with the environment is another goal-oriented MDP described by
tuples M = {S,G,A,R,P, γ}. The goals of the action policy are intermediate
goals generated by the curriculum generator. If the agent reaches the intermedi-
ate goal, which is simpler than the final goal, it can receive the sparse reward.

The action policy is also updated with the method of DDPG. The difference
is that HER is adopted to augment the data and improve sample efficiency.
Given an intermediate goal, the action policy controls the agent to interact
with the environment T times, thus getting a trajectory. In each episode, the
generator generates up to H intermediate goals so that the action policy can
collect up to H trajectories. The trajectories are stored in a replay buffer as
the form of tuples (st, gi, at, st+1, rt). With the method of HER, another copy
of tuples (st, g′, at, st+1, r

′) containing the sparse reward is added to the replay
buffer. The original intermediate goal gi is replaced with the goal g′ that the
agent later achieved, and the reward r′ is recomputed based on the new goal.
The tuples are then sampled to update policies using the algorithm of DDPG
[16].

It is worth emphasizing that, with the convergence of the action policy, the
action policy will have the ability to achieve goals in the goal space indepen-
dently. This is an important reason why our method is a scheme of curriculum
learning.

4.3 Algorithm Testing

The overall training process has been described above. In our method, the cur-
riculum generator and the action policy are trained simultaneously. In training,
given a goal g ∈ G, the generator πcg and action policy πa work together to
complete the task. It should be noted that in the early stage of training, the
action policy can only complete some simple tasks independently. Along with
the training, the action policy can achieve more and more difficult targets.

After training, it is expected that the action policy can finish tasks alone.
Therefore, during testing, the action policy is tested independently. The final
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goal g sampled from the goal space G is directly set to the action policy and
remains unchanged throughout the whole episode.

5 Experiment

We conduct sufficient experiments on the standard robotic manipulation envi-
ronments in the OpenAI Gym [5] to confirm the applicability and effectiveness
of our method. We mainly compare the training results of our method and the
results without the curriculum generator. Without the curriculum generator, the
policies are trained with the same method as our action policy: DDPG and HER.
All experiments are conducted under the same conditions. In addition, ablation
experiments about the horizon H of the curriculum generator are performed to
explore its influence on the experiment results. Experiment details and results
are clearly explained in this section.

5.1 RL Environments

Our experiments are conducted on the Robotics environments in the OpenAI
Gym [5], including several robotic control and manipulation tasks. The tasks are
to control the end effector of a robot arm to accomplish some tasks or to control
a dexterous hand to complete some manipulation tasks. In these environments,
rewards are all sparse and binary. Only when the agent reaches the goal can
it get a reward of 0, otherwise, the reward is −1. In addition to the standard
settings, we modify some environments as follows. In our method, every episode
is divided into H parts at most. For the reason that the action policy to has
enough steps to achieve the intermediate goal, the maximum step number of the
environments of HandManipulate is modified to 500. It should be noted that all
comparative experiments are performed in the same environments.

5.2 Experiment Details

We compare our training results (ACG + HER + DDPG) with the results with-
out the automatic curriculum generator (HER + DDPG). In comparison exper-
iments, we use the implementation of HER in OpenAI Baselines [6]. Almost
all hyperparameters in OpenAI Baselines [6] remain unchanged, except that the
number of MPI workers is set to 4 and the buffer size is set to 105 transitions. For
the sake of fairness, our action policy uses the same hyper-parameters (including
the number of MPI works and the buffer size) and the network architectures as
the comparison experiments. Implementation details can be found in [6].

In our curriculum generator, the policy network and the state-value function
network have the same network architecture: three layers generic multilayer per-
ceptron (MLP) with 256 units and ReLU activation. The policies are optimized
by Adam optimizer with a learning rate of 10−3. The maximum horizon H of the
curriculum generator is set to five. In Sect. 5.5, ablation studies are performed
to explore the influence of this hyperparameter.
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Fig. 2. Training curves of our method (ACG + HER + DDPG) and the baseline
algorithm (HER + DDPG) on a variety of robotic manipulation environments. Each
epoch contains 50 episodes and the parameters are updated 40 times after each episode.
All the experiments use the same set of random seeds (from 1 to 5). The results are
averaged across 5 random seeds and shaded areas represent one standard deviation.

As is stated in Sect. 4.1, in our implementation, we do not generate values of
intermediate goals but output interpolation coefficient ac ∈ (0, 1]. The desired
intermediate goal gi is obtained by interpolating between the achieved goal ga
and the final goal g using this interpolation coefficient gi = ga + ac(g − ga). In
Hand environments, the target pose of the manipulated object is given in the
form of quaternions. The intermediate goals in Hand environments are computed
by spherical linear quaternion interpolation (Slerp) [23].

5.3 Results and Comparison

The results of our experiments are shown in Fig. 2. An episode is considered
successful if the agent finishes the task at the end of the episode, which means
the distance between the object and the goal is within an acceptable threshold.
The success rate is calculated by testing the policies learned 100 times. In each
test, the goal g is randomly sampled from the goal space G. It should be noted
that when testing our method, only the action policy is used.

From Fig. 2, we can see that our method (ACG + HER + DDPG) shows a
clear advantage in comparison with the method without our automatic curricu-
lum generator (HER + DDPG). Our method converges faster on all of the six
environments, and after training, our method has higher success rates on three of
the six environments. Especially in the experiments of Handreach and HandMa-
nipulateEggRotate, our approach has improved the success rate by more than
20%.
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Fig. 3. The average number of the proposed intermediate goals in each episode
decreases along with the training, which means each intermediate goal becomes more
difficult.

5.4 Increasingly Difficult Curricula

We measure the difficulty of the curricula by the average number of the gener-
ated intermediate goals in each episode during training. When the number of
intermediate goals is large, it indicates that the task is divided into many small
subtasks, and each subtask is simple. When there are fewer intermediate targets,
each subtask becomes more difficult. Therefore, the fewer intermediate goals, the
more difficult the curricula is.

We only depict the change in the average number of intermediate goals on the
environment of HandManipulateEggRotate in Fig. 3 because other environments
have very similar results. It is clear that the average number of intermediate goals
in each episode decreases considerably alone with the training process, so the
curricula proposed by the curriculum generator are increasingly difficult.

5.5 Ablation Studies

In this section, we perform experiments to explore the influence of the hyperpa-
rameter H, the maximum horizon of the curriculum generator. Larger H means
that the original tasks can be divided into more small tasks and the maximum
number of steps T to complete each small task becomes shorter because of the
maximum step number limit of the original task Tori. The relation between Tori,
T and H can be formulated by: T = Tori/H.

The training curves of two environments with different H are shown in Fig. 4.
Take the environment of HandManipulateEggRote for example, as H increases,
the convergence speed and the final success rate increase at first, reach a peak
at H = 5, and then decrease. Considering the final success rate, the optimal
H in the experiment of HandManipulateEggRotate and HandReach are H = 5
and H = 4, respectively. Our experiments show that the optimal selection of H
is environment dependent. However, the overall trends of the training results,
with the increase of H, are similar in different environments. Our explanation is
that the increase of H makes the subtasks easier, so the training results become
better at the beginning. But when H is further increased, the maximum number
of steps T to complete each subtask decreases, limiting the capability of the
action policy, so the training results becomes worse.
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Fig. 4. Training curves with different hyperparameters H.

6 Conclusion

In this paper, a novel method of automatic curriculum learning is proposed to
improve the sample efficiency of RL algorithms on problems with sparse rewards.
A two-level hierarchical reinforcement learning architecture is proposed, with a
high-level policy automatically generating curricula for the low-level action pol-
icy. A method to train the curriculum generator and action policy simultaneously
and independently is proposed. Our training method guarantees that the pro-
posed curricula are always moderately difficult for the action policy. After train-
ing, the action policy is tested alone to complete tasks. Sufficient experiments on
the standard robotic manipulation environments are conducted to confirm the
applicability and effectiveness of our approach. Experiment results show that
our method accelerates the convergence of baseline RL algorithms considerably
and improves the training quality in some environments.
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Abstract. Gradient-based reinforcement learning has gained more and
more attention. As one of the most important methods, Deep Deter-
ministic Policy Gradient (DDPG) has achieved remarkable success and
has been applied to many challenging continuous scenarios. However,
it still suffers from instable training on off-policy data and premature
convergence to a local optimum. To deal with these problems, in this
paper, we combine Boltzmann exploration with deterministic policy gra-
dient. The candidate policy is represented by a Boltzmann distribution,
and updated by Kullback-Leibler (KL) projection. By introducing the
Boltzmann policy, the exploration is encouraged to effectively prevent
the policy to collapse quickly. Experimental results show that the pro-
posed algorithm outperforms DDPG on most tasks in MuJoCo continu-
ous benchmark.

Keywords: Reinforcement learning · Policy optimization · Boltzmann
exploration

1 Introduction

Reinforcement learning (RL) aims to learn an effective behavior through trial
and error by interacting with the world. The goal is to optimize the agent’s
policy, in terms of the cumulative expected reward [16]. With powerful function
approximators such as neural networks, reinforcement learning can handle more
complex problems. Recently, deep reinforcement learning has been applied to a
lot of challenging tasks [11,12,14].

In a supervised learning task, a deterministic gradient-based optimizer can
find a pretty good solution. However, in RL, it does not exist explicit label infor-
mation, and the feedback from the environment is delayed. Without an effective
exploration strategy, the agent is prone to get stuck in a local optimum and
fails to discover useful policies. Many popular algorithms like Deep Q Network
(DQN) [12], Proximal policy optimization (PPO) [14] still rely on naive heuris-
tic exploration strategies. These simple methods may consume large interaction
times with the environment and fail on the complex and challenging tasks. In
continuous control tasks, deterministic policy optimization [10] plays an impor-
tant role. The deterministic policy is updated by following the gradient of a
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 214–222, 2020.
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parametric Q function. The generated policy is unimodal and is at high risk of
presenting a sub-optimal behavior. It results in unstable training and intensive
hyperparameters tuning.

In this paper, we combine Boltzmann exploration with the deterministic pol-
icy and extend it to continuous control. Boltzmann exploration attracted a lot of
attention in reinforcement learning [1,4,8]. Differently from DDPG which greed-
ily maximizes the Q function, we formulate a Boltzmann optimal policy and
minimize the KL divergence between the sampling policy and the Boltzmann
optimal policy. The KL projection can be efficiently implemented by stochastic
optimization. The benefit of introducing Boltzmann exploration into determin-
istic policy gradient can be summarized as the following: it assigns positive
probability mass to suboptimal actions and provides alternatives to unexpected
situations when suggested deterministic policy is not available in the environ-
ment. (2) Boltzmann distribution builds up a probability matching framework
and draws appealing connections with stochastic policy gradient methods.

2 Related Work

Policy optimization consists of a wide spectrum of algorithms and has a long
history in reinforcement learning. The earliest policy gradient method can be
traced back to REINFORCE [17] which uses the score function trick to esti-
mate the gradient of the policy. Subsequently, Trust Region Policy Optimization
(TRPO) [13] monotonically increases the performance of the policy by limit-
ing update sizes within the trust region. Proximal Policy Optimization (PPO)
[14] can be considered as an improvement on TRPO using a heuristic approach
to implement KL constraint. Conservative policy updating is helpful to restrict
oversized policy update and it also limits the scope of exploration.

Deterministic policy gradient (DPG) [15] as an off-policy algorithm occu-
pies a significant position in policy optimization. DDPG generalizes DPG to
high dimensional tasks using neural networks as function approximation. Twin
Delayed Deep Deterministic Policy Gradient (TD3) [5] uses the minimum of two
Q functions as the Q target to alleviate the overestimation caused by the max
operator during policy evaluation. Distributed Distributional DDPG (D4PG)
[2] extends DDPG to a distributional fashion that the return is parameter-
ized by a distribution Zθ(s, a) and employs several prevalent techniques: paral-
lelizing actors [11], prioritized experience replay and n-step temporal difference
update [16].

3 Background

3.1 Markov Decision Process

Sequential decision making problems are often modeled as a Markov Decision
Process (MDP). When interacting with the environment, at each step the agent
observes a state st and chooses an action according to the policy π(at|st). The
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agent receives a reward signal rt, and the environment transitions to a next state
st+1 ∼ p(st+1|st, at). The goal of the agent is to maximize the expected total
reward in Eq. (1). Hence, it is significant to define the Q function, denoted as
Qπ(s, a) = E [

∑∞
t=0 γtr (st, at) |s, π] .

maxπ E [
∑∞

t=0 γtr(st, at)|π,P0] ; (1)

where s0 ∼ P0, at ∼ P(·|st, at), γ ∼ [0, 1) is the discounted factor.

3.2 Value Based Methods

Value based methods represent its policy implicitly via the value function or
action-value function. In Q-learning, the optimal policy is represented by the
optimal Q∗(s, a). In each iteration, the Q function is estimated and the policy is
improved by Eq. (2). Thus a higher expected return is generated than previous
iterations.

Qπ(s, a) = Ea∼π(·|s)
[
r(st, at) + γ max

a′
Q∗ (s′, a′)

]
. (2)

DQN [12] combines function approximation with Q-learning using neural
networks to represent Q function. Innovatively, it introduces experience replay
and target network to handle drastically oscillation during the training proce-
dure. Transition samples (st, at, rt, st+1) are added into the replay pool and this
breaks the correlation of the sequential samples and approximately makes sam-
ples subject to the i.i.d. assumption. Target network copies the current network
parameters periodically and offers a stable supervision signal.

3.3 Deep Deterministic Policy Gradient

DDPG can be considered as a variant of DQN in the continuous domain. DDPG
utilizes an actor-critic framework and models the policy as a deterministic deci-
sion process. The actor is updated by following the chain rule from the critic in
Eq. (3). θ represents the parameters of the policy network and φ represents the
parameters of the Q value network.

∇θJ(θ) = ∇θE
[
Q(s, a|φ)|a=μ(s|θ)

]

≈ 1
n

∑

i

∇aQ(s, a)|a = μ(s)∇θμ(s|θ). (3)

Similar to DQN, the value function is optimized with Bellman-error through
Eq. (4). To stabilize the training process, it also utilizes a target network and
replay buffer to reduce the correlation between samples. φ− is the parameters of
the target network. While DDPG also inherits blemishes of DQN and DPG, it
has overestimation bias for Q function [5] and may lack of sufficient exploration.
These shortcomings make it sensitive to hyperparameters and suffer from fragile
convergence.

L(φ) = Es,a∼ρ(·)
[
(y − Q (s, a;φ))2

]
, (4)

where y = r + γQ (s′, μ (s′; θ−) ;φ−).
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4 Method

In a classic deterministic policy, the actor is optimized by following the gradient
of the critic. Exploration is separated from the optimization and implemented
by just adding noise into the action space. However, just by greedily maximizing
the Q function, the policy is prone to get stuck in a local optimum. In this paper,
a new form of policy called Boltzmann policy, denoted in Eq. (5), is adopted.

π(a|s) ∝ exp (Qπ(s,a)) . (5)

The probability of selecting each action is proportional to the exponential of
the Q function. Actions with a larger Q value estimate are more likely to be
sampled, and actions that have small estimations still have a chance. Thus, the
policy remains explorative and increases the probability of jumping out of the
local optima. When the policy π(a|s) ∝ exp(Q(s, a)), it is guaranteed to improve
and can eventually converge to an optimal policy [7].

An optimal policy, denoted as π∗
τ , is conducted. We want to establish an

actual sampling policy as close as possible with the optimal policy π∗. To better
measure the distance between two policies, a projection operator Π is defined in
Eq. (6). When the KL(π‖π∗) equals zero, it means the sampling policy matches
the optimal policy.

Ππ = arg min
π

KL (π‖π∗
τ )

where π∗
τ = 1

Z exp (Q∗(s, a)) .
(6)

However, Eq. (6) is difficult to optimize in practice. In each step, the optimal Q
function is not accessible. To make it tractable, we conduct an iterative opti-
mization process and substitute the current Q value into the optimal Boltzmann
policy. The denominator of the optimal policy, denoted as Z = exp V π

s , serves
as a normalization factor. It makes sure that the policy subjects to a probability
distribution. We utilize an actor-critic framework. The policy network is param-
eterized by θ and the value network is parameterized by φ. Gradient descent
is used to minimize the KL divergence between the sampling policy and the
optimal policy and the derivative of the KL divergence is showed in Eq. (7). The
normalization factor Z doesn’t contain the policy term θ and it can be considered
as a constant during gradient updates, and thus can be dropped. Empirically,
the gradient of the expectation is estimated by the Monte-Carlo return. D rep-
resents the experience replay buffer. Samples from the replay buffer are used to
estimate the gradients.

∇θKL (πθ‖π∗
τ ) = ∇θEπ

[

log
(

πθ

π∗
τ

)]

= ∇θEπ [log πθ − Qφ (s, πθ(a|s)) + log Z]

= ∇θ

∑

(s,a,r,s′)∼D
(log πθ − Qφ (s, πθ(a|s))) .

(7)

The parameters of the Q value network is updated through fitting the mean-
squared-error in Eq. (8). φ′ is the soft delay target network and does not par-
ticipate in gradient backpropagation. The optimization procedure alternates
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between value evaluation and policy improvement. In each iteration, the agent
selects the action according to the latest policy and yields a higher cumula-
tive return. In summary, we substitute the original deterministic policy with a
more explorative Boltzmann policy and conduct a two-step optimizing proce-
dure. First, we optimize the Q value using the standard Bellman equation in
Eq. (8). Second, we project the policy to Boltzmann optimal policy by Eq. (6).
Run the above two steps until a desired policy is found (Fig. 1).

min
φ

(rt + γQπ
φ′(st+1, at+1) − Qπ

φ(st, at))
2
. (8)

Fig. 1. Visualization of MuJoCo environments. From left to right: Ant-v2, HalfCheeta-
v2, Walker2d-v2, HumanoidStandup-v2.

5 Experiments

We consider the high dimensional action space tasks and evaluate our method on
a series of challenging control tasks. Empirical results show that the Boltzmann
form policy can lead a better direction to search.

5.1 Environments

Continuous Tasks. We evaluate the performance of our algorithm on MuJoCo
in OpenAI Gym [3]. It is the benchmark of continuous control tasks and is widely
used in [5,6,14]. Agents are encouraged to go forward as far as possible. Each
episode, the agents are allowed to interact with the environment up to 1000 steps.
The observation states are the raw sensory inputs, including the locomotion
positions and velocities. The action is the corresponding torques applied to the
joint. For example, in the ant task, a four-legged creature robot is motivated to
move forward as fast as possible and the rewards are proportional to the forward
progress.

Sparse Reward Task. We modify the reward function of MountainCar in
Gym. In the MountainCar task, a car is driving between two mountains. The
goal is to drive to the peak on the right. In a sparse setting, a reward is obtained
when the car achieves the top of the mountain.
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Fig. 2. The result on the sparse environment of MountainCar

5.2 Baseline Methods

For each task, both on-policy and off-policy methods are compared. We compare
our algorithm with PPO (clipped version) which uses a parallel setting to explore
the environment; Trust Region Policy Optimization (TRPO), an effective on-
policy policy gradient method; DDPG, a sample efficient off-policy algorithm.

5.3 Setup

We present the overall training curves in Fig. 3. Each experiment is averaged over
7 different seeds. The solid lines represent the mean of averaged rewards and the
shaded region shows the variance during training. To ensure the consistency
and comparison with the previous work, we keep the same network architecture
and hyperparameters across all the tasks. On most tested tasks, our proposed
method outperforms DDPG.

In the implementation of our algorithm, both the actor and critic are param-
eterized by two layer feedforward networks which use 400 and 300 units respec-
tively. The actor network outputs the mean and variance of the policy. Then an
action is sampled according to Gaussian distribution given the state dependent
mean and variance. We use Adam [9] to optimize both network parameters with
a learning rate of 3 × 10−4 and utilize a replay buffer with size 106. Each task
runs for 2.5 million steps and the performance is evaluated every 5000 steps.
In the first 10000 steps, we use a random policy to explore the environment
(Table 1).



220 S. Wang et al.

Fig. 3. The performance curves of our method against baselines on continuous control
task.

Table 1. Average return over 10 trial

Environment Halfcheetah Hopper Walker2d Ant Swimmer Humanoidstandup

DDPG 7567.3 2010.7 2403.2 2749.3 150.7 120000.8

Our method 8276.2 2303.4 2400.2 3556.9 98.4 145673.2

TRPO 1892.3 2614.2 1386.3 1152.2 85.9 75424.2

PPO 2282.2 1576.4 1329.7 992.1 52.3 82312.1



Boltzmann Exploration for Deterministic Policy Optimization 221

5.4 Results and Analysis

Across all the experiments, our method beats the performance on the tasks:
HaclfCheetah, Humanoidstandup, and Ant and matches the performance Swim-
mer and walker. Boltzmann exploration provides a connection with probability
matching. The agent selects actions proportional to the expected returns. In
Fig. 2, the agent interacts with the environment through sparse rewards. With
no clear reward signal, DDPG fails to solve the problem. The car always swings
back and forth at the foot of the mountain. Boltzmann policy guides the car to
drive up to the mountain and Boltzmann distribution provides more possibilities
for other sub-optimal actions. Each action is likely to be sampled.

6 Conclusion

This paper presents a softened deterministic policy gradient which combines
Boltzmann distribution to encourage exploration. Extensive empirical evalua-
tions show that our algorithm surpassed the original deterministic policy gradi-
ent and express better exploration on the sparse-reward and high dimensional
control tasks. In future work, we will consider a more reasonable distance mea-
sure as an alternative, filtering out actions that are poor and retain near-optimal
actions for exploration.

Acknowledgement. The work is partially supported by the National Natural Science
Foundation of China under grand No. U19B2044 and No. 61836011.
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Abstract. Causal inference between two observed variables has received
a widespread attention in science. Generally, most existing approaches
are focusing on inferring the casual direction based on data of the same
type. However, in practice, it is very common that the observations
obtained from different measurements can have different data types. This
issue has not been much explored by the causal inference community. In
this paper, we generalize the Additive Noise Model (ANM) to mixed-
type data where one variable is discrete and the other is continuous, and
take an information theoretic approach to find an unequal relationship
between the forward and the backward. To conduct model estimation, we
propose Discrete Regression model and Continuous Classification model
to learn the residual entropy. In addition to the theoretical results, empir-
ical results on synthetic and real data have also demonstrated the effec-
tiveness of our proposed model.

Keywords: Causal inference · Classification · Mixed type data

1 Introduction

Causality has received a widespread attention in the scientific field in recent
years [1]. Telling causes from effects is a difficult, expensive, or even impossible
task through controlled randomized experiments, so researches on the causality
community are mostly based on observational data known as causal discovery [2].
Conditional independence based methods [3] have been proposed to recover the
casual structure in causal graphs, typical constraint-based algorithms include
PC (named after its authors, Peter and Clark) [4] and Fast Causal Inference
(FCI) [2]. PC assumes that there are no confounders, while FCI can return results
even in the presence of confounders. Despite their merits, these methods cannot
distinguish the two graphs that satisfy the same conditional independence; in
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other words, they do not provide complete information for causal discovery and
thus generate Markov equivalent classes only.

To distinguish the causal direction for variables in the same equivalent class,
algorithms based on Functional Causal Models (FCMs) have been proposed [5].
Given the joint distribution of two variables X and Y , FCMs assume that the
effect Y is a function of the direct cause X and some noise item N , i.e., Y =
f(X,N). After proper derivations, certain asymmetric property, which only holds
in the true causal direction, can be derived to conduct inference. For example,
nonlinear causal discovery with additive noise model (ANM) assumes that the
effect Y is a function of the cause X with an additive noise N , i.e., Y = f(X)+N ,
where N is independent of X [6]. It has been shown that the forward model (i.e.,
X → Y ) and the backward model (i.e., Y → X) cannot exist simultaneously for
generic choices of f , p(X) and p(N). And the causal direction can be inferred
through the p-values after careful model estimation (as a nonlinear regression)
and independence tests. Different from ANM which is designed for continuous-
valued data, has been extended for discrete data [7]. Other FCM extensions
with proper restrictions include LiNGAM [8], and PNL [9], while all of them
assume that the variables share the same data types. However, in practice, it
could be very common that the two variables X and Y have different data types.
For example, in physics, temperature determines the states of water being solid,
liquid or gas. Here temperature is a continuous variable, while the states of water
is a discrete variable. Under such a condition of mixed data types, regression
models on continuous or discrete data are not applicable, and neither are the
proposed ANM models.

In this paper, we focus on analyzing observations come from a joint distri-
bution of one variable is continuous and the other is discrete and try to answer
the question: can we infer the causal direction of the two variables which have
different data types? Our approach is based on information theoretic, due to
the independence which between the cause and the noise only holds in the true
causal direction, according to the joint entropy and the form of ANM, we can find
an unequal relationship between the forward and the backward, and we further
propose the estimations for causal inference on mixed-type data and evaluate its
performance on both simulated and real data.

The rest of the paper is organized as follows: in Sect. 2, we formalize the model
of the mixed-type data based on ANM; in Sect. 3, we use information theoretic
approaches to identify the cause and effect; in Sect. 4, model estimation methods
are proposed; and we present experiments on synthetic and real world data in
Sect. 5 followed by the conclusion in Sect. 6.

2 Model Definition

In this section, we introduce the ANM on mixed-type data where one variable
is continuous and the other is discrete. We assume that the observed data are
generated by the following model:

Y = f(X) + N, N ⊥⊥ X,
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where N ⊥⊥ X means that N is independent to X. Without loss of generality,
we assume that X is a continuous variable and Y is a discrete variable, and we
want to identify which one is the cause and which one is the effect.

The two directions model can be given by

Y = f(X) + NY , X = g(Y ) + NX .

Here we can know immediately that Ŷ = f(X), NY and X̂ = g(Y ) are discrete
variables and NX is a continuous variable.

In this work, we adapt an information theoretic approach to identify the
cause and the effect. Note that the differential entropy has been studied in the
statistical consistency of ANM [10]. And the Shannon entropy on ANMs has
been studied for discrete data [11]. Followed by model definition and information
theories, we have the following theorem:

Theorem 1. Given samples drawn from the joint distribution p(X,Y ) with X
being continuous and Y being discrete, in an additive noise model, if X → Y
structure, then it holds that

H(X) + H(NY ) < H(Y ) + H(NX),

where NY ⊥⊥ X while NX � ⊥⊥ Y under the ground truth X → Y .

Proof. The joint entropy between X and Y can be given as follows: H(X,Y ) =
H(X) + H(Y |X) = H(Y ) + H(X|Y ). Considering the graphical structure X →
Y , we have

H(X) + H(Y |X) = H(X) + H(NY |X) = H(X) + H(NY )

where NY ⊥⊥ X.
In the other direction, we haveNX � ⊥⊥ Y , thus we can derive that

H(Y ) + H(X|Y ) = H(Y ) + H(NX |Y ) < H(Y ) + H(NX).

Based on Theorem 1, we can have the guideline of causal inference between
continuous and discrete data:

– if H(X) + H(NY ) < H(Y ) + H(NX), we infer that “X causes Y”,
– if H(X) + H(NY ) > H(Y ) + H(NX), we infer that “Y causes X”,
– if H(X) + H(NY ) = H(Y ) + H(NX), we infer that the mixed causal model

does not fit the data, or X and Y are not cause-effect pairs.

Therefore, we can discriminate the causal direction by comparing the two
sums of entropy in both sides. In addition, a threshold τ can be set to measure
the difference between sides of the inequality operators as a criterion of whether
we accept this result.
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Algorithm 1. Discrete Regression
Input: discrete variable Y and continuous variable X
Model: X = g(Y ) + NX

Output: H(Y ) + H(NX)

1: approximate precision of data dis
2: supp Y ← domain(Y )
3: for each yi ∈ supp Y do
4: g0(yi) ← arg maxx∈XP (Y = yi, X = x)
5: end for
6: res ← H(X − g0(Y ))
7: for each yi ∈ supp Y do
8: search (minx, maxx)
9: while minx < maxx do

10: new ← H(X − gminx→yi
i (Y ))

11: if new < res then
12: res ← new
13: g(yi) ← arg minxH(X − gminx→yi

i (Y ))
14: end if
15: minx ← minx + dis
16: end while
17: end for
18: return H(Y ) + res

3 Model Estimation

According to the theorem in the previous section, we can know that the difference
between the two sums of entropy can give us the information about the true
causal direction. We now consider practical estimation methods to infer the
entropy of noise variables in the forward and the backward processes. To avoid
confusion, we assume that X represents continuous variable and Y represents
discrete variable. Thus the inference methods for both directions are (1) “discrete
regression” (i.e., learning a function from discrete variables to continuous output)
to learn X̂ = g(Y ) to minimize H(NX), and (2) “continuous classification”
(i.e., learning a function from continuous variables to discrete output) to study
Ŷ = f(X) to minimize H(NY ).

3.1 Discrete Regression

Unlike continuous regression, in the case of discrete regression, through functions,
each yi in discrete variable Y will just have one corresponding value. Then we
can simply consider all possible (yi, xi) mapping relations and get the one which
can minimize the value of the loss function, as shown in Algorithm1.

In order to apply heuristic learning, firstly we learn the approximate precision
dis of X which is the minimum difference of data or we can set a small threshold
as dis, and learn the support domain supp Y of Y (line 1–2). Mapping each
discrete value yi to the most common co-occurring xi as initial function and
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Algorithm 2. Continuous Classification
Input: continuous variable X and discrete variable Y
Model: Y = f(X) + NY

Output: H(X) + H(NY )

1: supp Y ← domain(Y )
2: min X, max X ← domain(X)
3: l ← [min X, x0], · · · , [xsupp Y −2, max X]
4: p ← supp Y !
5: res ← min H(Y − f0(X)) where f0 : l → p
6: for i in len(l) do
7: start ← l[i][0], end ← l[i][1]
8: while start < end do
9: mid ← (start + end)/2.0

10: new ← min H(Y − f(X)) where f : lmid → p
11: if new < res then
12: res ← new
13: end ← mid
14: else if new > res then
15: start ← mid
16: else
17: break
18: end if
19: end while
20: end for
21: return H(X) + res

calculate the initial entropy of the residual (line 3–6). Then we iteratively update
the mapping relationships for each yi: find the boundary minx and maxx of x
which corresponded to yi, in the step of dis, search from minx to maxx, find the
best x∗ which minimize the residual entropy under the condition that keeping
the mapping relations of the other ȳ (ȳ = supp Y −yi) constant. After the loops,
we can get the minimal result (line 7–17). In the end, return the sum of minimal
residual entropy and the entropy of Y .

3.2 Continuous Classification

In the case of continuous classification, we need to find the correspondence
between continuous intervals [xi, xi+1] ⊂ [minX,max X] and the output yi ∈
supp Y . We first assume that the interval corresponding to yi is continuous, in
other words, there will be no gaps, and all intervals have their own classification,
the situations do not exist that one interval has multiple or zero value. These
assumptions are in most cases in line with reality. Based on the idea of the Bisec-
tion method, we propose the following method for continuous classification and
the pseudo code is given in Algorithm 2.

The bisection method is a root-finding method that repeatedly divides the
interval into two and then selects a sub-interval in which a root must lie for fur-



228 X. Liu et al.

Algorithm 3. Mixed Causal Inference
Input: continuous variable X and discrete variable Y , threshold τ
Output: causal direction

1: RY →X ← DiscreteRegression(X, Y )
2: RX→Y ← ContinuousClassification(X, Y )
3: if RY →X − RX→Y > τ then
4: return X → Y
5: else if RX→Y − RY →X > τ then
6: return Y → X
7: else
8: direction undecided
9: end if

ther processing. We use the idea of sub-interval to divide x into supp Y intervals
corresponded to each yi to make the entropy of residual minimal.

We first get the classified size supp Y and the boundary minX,max X of
interval of X (line 1–2). Evenly divide the interval into supp Y parts to get
equal length sub-interval set l. As for the label of these parts remains unknown,
so we get the full permutation p of supp Y , then under every arrangement of
labels, calculate the residual entropy and get the minimum value as initial result
(line 3–5). Next, iteratively update the interval in l with the extension of bisec-
tion method. For every parts in l, we do the following manipulations: set two
pointers start, end to the beginning and the end of the interval, at each step
divides the interval in two by computing the midpoint mid, update the interval
which begins from start and ends with mid, one step further update l and keep
others constant, get new correspondences with label set p, calculate the mini-
mum value of loss function as new result new, if new is less than res, it means
the interval which is being iterated has not found its minimum boundary value,
so we continue to search forward, update the value of res and set the end of
the interval as mid. If new is greater than res, it means the interval is divided
less than its actual length, so set the beginning of the interval as start to search
backward. If new equals to res, it explains the result has fallen into the local
optimal solution, so break and iterate next interval. Finally return the sum of
minimal residual entropy and the entropy of X.

In Algorithm 2, the full permutation of supp Y need to be obtained, so supp Y
should be in a smaller range that the algorithm efficiency can be guaranteed.

3.3 Mixed Causal Inference

Based on the algorithms mentioned above, we can naturally form the approach
for causal inference on mixed-type data, and the pseudo code is given in Algo-
rithm3. We use RY →X represents the result of discrete regression and RX→Y

represents the result of continuous classification. Comparing the difference which
between RY →X and RX→Y with τ we can infer the causal direction.
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4 Related Work

In recent years, many causal inference methods based on FCM have been pro-
posed. Most of them specify the type of data they are targeting, for continuous
variables, or discrete variables, or mixed-type variables.

The causal inference for discrete data, for example, [7] extends the notion of
additive noise models to discrete data, they prove the identifiability of the model,
propose regression method and use Person’s χ2 test [12] for independence test;
[13] proposes to learn the causal direction via comparing the distance correlation
between the distribution of the cause P (X) and the conditional distribution
P (Y |X), and infer the true causal direction with smaller dependence coefficient;
In [14] they propose another method for discrete causal detection based on ANM
by analyzing the supports of the conditional distributions |supp P (Y |xi)| and
further explore causal discovery with mixture model where the situation is that
the function f is changing across the observations.

More causal explorations are based on continuous case. In addition to the
aforementioned ANM, LiNGAM, PNL, [15] propose CURE which compare the
accuracy of the estimations of P (Y |X) and P (X|Y ) by using unsupervised
inverse Gaussian process regression, but the method only available for up to 200
data points; [16] propose SLOPE based on the Kolmogorov complexity which
believes that the joint distribution P (X,Y ) has a simpler description in the
causal direction than in the anti-causal direction, it does local and global regres-
sion using the method based on the Minimum Description Length (MDL); [17]
propose IGCI also following the idea of the Kolmogorov complexity to choose
the shortest description as the causal direction, they estimate Shannon entropy
or mean of log Jacobi determinant to learn the scores.

Causal methods for mixed-type data are been proposed in recent five years.
[18] extends LiNGAM for estimating causal structure in directed acyclic graph
(DAG) consisting of both continuous and discrete variables, they use the
Bayesian information criterion (BIC) scoring function and logistic regression
model to specify the causal model; [19] proposes method based on MDL, uses
classification and regression trees to model the dependencies and a greedy algo-
rithm called CRACK to learn the optimal score to determine the causal direction.

5 Experiments

In this section, to show the ability of our approach to distinguish the true causal
direction when all the assumptions hold approximately, we apply our method on
both synthetic and real data sets.

5.1 Evaluation on Synthetic Data

The aim of our experiments on synthetic data is to show our approach can
distinguish the true causal direction no matter the true relation is from discrete
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Fig. 1. Accuracy and threshold. (a) the true causal direction is from discrete variable
to continuous variable. (b) Contrary to the case of (a). Accuracy decreased with the
increase of the threshold.

variable to continuous variable or from continuous variable to discrete variable,
and we also set X represents continuous variable and Y for discrete variable.

Y → X. In this part, we generate synthetic data with assumed ground truth
Y → X. We simulate data using the model x = y2 + nx and x = sin(y) + nx,
the random discrete variables y are sampled randomly from [1, n] and the noise
variables nx are sampled from a Gaussian distribution. We use Kozachenko-
Leonenko (KL) estimator [20], which is a non-parametric estimator based on
k-nearest neighbors of a sample set, to estimate the differential entropy.

Accuracy. We generate 100 different models from each model class and each take
1000 samples, and we set τ = [0.001, 0.005, 0.01, 0.05, 0.1], n = 3. The results are
shown in Fig. 1(a). We can see that the greater the threshold, the lower the
accuracy. So, it is very important to set the appropriate threshold in practical
problems. Compare the two functions x = y2 + nx and x = sin(y) + nx we can
find that the greater the interval between data, the better the model can identify
the causal relationship.

Sample Size. Next we explore the relationship between sample size and infer-
ence accuracy. We take different numbers size = [500, 1000, 2000, 5000, 10000] of
samples each from 100 different models which following the function x = y2 +nx

and we set τ = 0.05, n = 3. The results are shown in Fig. 2, we observe that
the accuracy acc = [0.98, 1.0, 1.0, 1.0, 1.0] which means the sample size has little
effect on the accuracy of the model but too small sample size will affect the
accuracy.

Class Size. In this part we observe the relation between class size and inference
accuracy. We set the numbers of the types of y as supp Y = [2, 3, 4, 5, 6], and
under each supp Y we generate 100 different models which following x = y2+nx,
τ = 0.05 and size = 1000. After mixed causal model, we observe that the model
achieves 98% to 100% accuracy in all cases. Because the full permutation of
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Fig. 2. Accuracy and sample size.

supp Y need to be obtained in Continuous Classification, efficiency decreased
with the increase of the supp Y .

X → Y . In this paragraph we generate synthetic data with assumed the ground
truth X → Y to argument the effectiveness of our model on continuous-discrete
causal relationship. The continuous variables x are sampled from a Gaussian dis-
tribution and the noise variables ny are discrete sampled randomly from [−t, t].
We use the piecewise function to classify x with random boundary value

f(x) =

⎧
⎪⎨

⎪⎩

y1 if min ≤ x < x0

· · · if xi ≤ x < xj

yn if xn−1 ≤ x < xn

and take y from y = f(x) + ny.

Accuracy. We generate 100 different models from the model and each take 1000
samples and set t = 1, in Fig. 1(b), we show how the accuracy vary if we change
the value of τ . One can see that the accuracy for the correct direction decrease
with the increase of the threshold, even when τ = 0 we can get the greatest
accuracy is 89%. We think the reason for this problem is that in the model,
we assume the interval [xi−1, xi] corresponding to yi has no gaps which is in
line with reality, but in our synthetic data, we can’t choose the value of the
noise based on the cause because of the independence, so in the process of the
stochastic model, some models may have the situation which a yi corresponding
to multiple intervals of x leads to wrong results.

Sample Size. In this part we study the effect of sample size on inference accuracy.
We take samples following the size = [500, 1000, 2000, 5000, 10000] each from 100
different models, due to the reason mentioned above, we set τ = 0, t = 1. After
the mixed causal model, the results shown in Fig. 2 and we obtain the accuracy
acc = [0.88, 0.87, 0.84, 0.75, 0.76] which means with the increase of the sample,
taking random interference into account, the ability of the model to discriminate
causal directions is gradually reduced.

To validate how well the proposed model performs on real-world data, we
evaluate the proposed model on three real-world data sets.
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Fig. 3. Abalone data set, the relationship between data size and score difference of the
two directions.

Abalone. The data set is available from the UCI machine learning repository1.
It contains measurements of 4177 abalones (a group of shellfish) and we consider
the sex Y of the abalone (male, female or infant) against length (X1), diameter
(X2) and height (X3), where sex is discrete which has three choices and the
others are continuous data. Since the sex is probably causing the size of abalone,
but not vice versa, we regard Y → X1, Y → X2 and Y → X3 as being the
ground truth. We set τ = 0.05 and conduct the experiment on whole data and
report the result at Table 1. The algorithm identifies the true causal direction in
all three cases with a fairish score difference between two directions. Further we
include the first n data points of the abalone data set to observe the relationship
between the data size and score difference of two directions, the result shown in
Fig. 3, and we can see that the difference between the forward and the backward
does not depend on the data size, even there has fluctuation, it also remains in
a certain range.

Table 1. Results on Abalone data set. The algorithm identifies the true causal direction
in all three cases.

Truth RY →X RX→Y diff

sex → diameter 7.578982 7.821310 0.24

sex → height 6.284361 6.547466 0.26

sex → length 7.871185 8.104672 0.23

1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Table 2. Results on Iris data set. The algorithm identifies the true causal direction in
the first three cases and remains unknown in the last case.

Truth RY →X RX→Y diff

class → sepallength 5.789224 5.926420 0.137

class → sepalwidth 5.278778 5.534991 0.256

class → petallength 5.583935 5.713906 0.129

class → petalwidth 4.490743 4.452572 −0.038

Traffic. The data set is the 47th pair in the well-known Tuebingen cause-effect
benchmark pairs2. The X variable is denotes the number of cars per 24th at
different counting stations in Oberschwaben, Germany; and the Y variable is
categorical (denoting whether it is a working day or a holiday). Here the ground
truth is that Y is the cause and X is the effect. We apply our algorithm with
τ = 0.05 and get the result with RX→Y = 10.880608, RY →X = 10.704337,
diff = 0.176. It shows that our algorithm can recover the true causal direction
very well.

Iris. The data set is also available from the UCI machine learning repository.
The data set contains three classes Y of 50 instances each, where each class
refers to a type of iris plant, and has four features sepal length (X1), sepal width
(X2), petal length (X3) and petal width (X4) about each iris plant. We regard
Y → X1, Y → X2, Y → X3 and Y → X4 as being the ground truth, since the
class is probably causing the size of the iris plant, but not vice versa, and this
is in accordance with our intuition. We conduct the experiments with τ = 0.05
and show the results in Table 2 which we can see that our approach has good
performance in the first three cause-effect pairs but remains unknown in the last
pair. After analysis, we infer the reason of the failure may caused by that number
of samples is too small with 150 and the relation between class and petal width
may do not meet our assumptions.

6 Conclusion

We proposed a method based on ANM that is able to infer the cause-effect
relationship between two mixed-typed variables (where one is discrete and the
other is continuous). Based on information theoretic, we find unequal relation-
ship between the forward and the backward processes, and further propose dis-
crete regression and continuous classification for estimations. We have illustrated
our method on both simulated and real-world data sets.

2 http://webdav.tuebingen.mpg.de/cause-effect/.

http://webdav.tuebingen.mpg.de/cause-effect/
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Abstract. CDMC-International Cybersecurity Data Mining Competi-
tion (http://www.csmining.org) is a world unique data-analytic compe-
tition sitting in the trans-disciplinary area of artificial intelligence and
cybersecurity. In this paper, we summarize CDMC’19—the 10th cyber-
security data mining competition, which was held in Sydney Australia—
together with a coupled workshop event, the Artificial Intelligence and
Cyber Security (AICS) workshop 2019. We introduce the scope and back-
ground of the CDMC competition, the competition organizer, Interna-
tional Cyber Security Data-mining Society (ICSDS), and the rules that
we followed to manage the competition. We reveal details of CDMC’19
regarding the competition tasks, participating teams, and the results
the participants have achieved. Moreover, we publish the collection
of CDMC’s 10-year competition datasets as the CDMC Cybersecurity
Dataset Repository via http://archive.csmining.org. Finally, we conclude
the paper with an outlook on the future activities of CDMC.

1 Introduction

Cybersecurity has become more and more a data-driven industry—data becomes
both the goals and means of the all the activities in the cyber space. On the one
hand, data in the form of digital assets and intellectual properties have grown
into the most valuable resources for business and life and thus became the major
targets of the cyber attacks. This not only gives rise to the ever-evolving attacks
and record-breaking number of attack campaigns toward these data, but also
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 235–245, 2020.
https://doi.org/10.1007/978-3-030-63833-7_20
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brings chance to cyber security innovation for the digital economy, e.g., Data
Loss Prevention (DLP) and Cloud Security. On the other hand, with the advance
of digitization technology, e.g., Industry4.0, AI, 5G, software-defined networking,
we are more than ever capable of recording the footprint of any cyber-attacks
to enable corresponding defence operations. Hence, the solution to cybersecurity
highly relies on systematic collection, management, analysis, interpretation and
application of data.

Up to now, Artificial intelligence (AI) has been widely used in analyzing mas-
sive cyberspace data, creating so called cyber-threat intelligence to help security
operations analysts to identify potential threats and thus stay a step ahead of
big incidents. AI also helps to dramatically reduce the incident response time
at security operation centers, by instantly extracting insights from the noise of
thousands of daily threat alerts [1]. In this intelligence production process, var-
ious forms of advanced computational algorithms including statistical analyses,
machine-learning algorithms, and deep-learning networks are engaged.

Fig. 1. An illustration of balanced AI and cybersecurity development based on [6].

AI has been attracting investors, inventors, as well as academic researchers
worldwide. In the past decade, the publication of AI-focused academic papers,
has outpaced the amount of published researches on computer science; and the
number of AI-focused startups backed by venture capital was more than doubled,
outpacing the increase of the overall pool of startups. Yet as we employ more
and more AI and automation technologies in our life and business, e.g. Internet
of Thing (IoT) and robotics, they may introduce a potential new opening for
electronic intruders. Cybersecurity must be carefully refactored before further
application to more major but critical services. Towards a sustainable world
through a smart digital transformation, we foster a balanced development scheme



CDMC’19—The 10th International Cybersecurity Data Mining Competition 237

between AI and Cybersecurity, as shown in Fig. 1, or namely, cyber maturity of
AI. The interdisciplinary field, “AI × Cyber Security” focus on researches to
develop AI-enabled defense against increasingly sophisticated cyber attacks.

2 The Activities of ICSDS

In 2008, a remarkable collaboration between National Institute of Information
and Communications Technology (NICT) Japan and Auckland University of
Technology (AUT) New Zealand led to the formation of a dedicated international
academic society in the trans-disciplinary area of computational intelligence and
information security, i.e., the International Cyber Security Data-mining Society
(ICSDS). ICSDS was founded in 2008, after ICONIP’08 in Auckland, under the
leadership of Professor Paul S. Pang of AUT. Tao Ban of NICT, and Prof Youki
Kadobayashi of Nara Institute of Science and Technology, Japan. So far, it has
grown into a full-fledged research association with 15 governing board members
in 10 regions: New Zealand, Japan, Korea, China, Malaysia, Thailand, Australia,
United Arab Emirates, Singapore, and Canada. ICSDS seeks more active par-
ticipation from researchers and professionals specially in the Asia Pacific region.

Aiming at promoting more active interactions of researchers, scientists, and
industry professionals, ICSDS engaged in a variety of international research
activities soon after it has started.

Since 2008, ICSDS has been hosting the International Workshop on Data
Mining and Cybersecurity, which is reforged as the International Workshop on
AI and Cybersecurity to incorporate most recent progresses from AI field after
2017. The purpose of AICS is to raise the awareness of cybersecurity, promote
the potential of industrial applications, and give young researchers exposure to
the key issues related to the topic and to ongoing works in this area. AICS
provides a forum for researchers, security experts, engineers, and students to
present latest research, share ideas, and discuss future directions in the fields of
data mining, artificial intelligence, and cybersecurity. During the past years, we
had AICS2010 in Sydney Australia, AICS2011 in Hangzhou China, AICS2012
in Doha Qatar, AICS2013 in Daegu South Korea, AICS2014 in Kuala Lumpur
Malaysia, AICS2015 in Istanbul Turkey, AICS2016 in Kyoto Japan, AICS2017
in Guangzhou China, AICS2018 in Siem Reap, Cambodia, and AICS2019 in
Sydney Australia respectively. This year’s AICS2020 will be held on November
18–22 in Bangkok Thailand.

ICSDS started the CDMC competition since 2010, which turns out to be a
popular competition on cybersecurity which is attractive for young researchers.
Refer to more detail information, e.g., tasks, evaluation, and yearly statistics, in
the next section.

In 2017, ICSDS newly launched the first AI x Cyber Security Summit (ACSS)
as an ICSDS-leading international high-tech forum, which is featured as an
engagement of academia, industry and venture capital. ACSS’17 was hosted by
Xi’an Jiaotong-Liverpool University, in Suzhou, China, and ACSS’18 was hosted
by Chongqing University of Science and Technology, in Chongqing, China.
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ICSDS collaborates with other organizations and conferences to promote
academic and technical activities within its scope of interests. These collabora-
tors includes New Zealand Embassy Beijing, New Zealand Consulate ChengDu,
ICONIP conferences, Asia Pacific Neural Network Society (APNNA), IEEE New
Zealand Section, Europe Neural Network Society (ENNS), International Neural
Network Society (INNS), etc. Over the years, the events hosted by ICSDS have
gathered hundreds of researchers, scientists, and professionals who are work-
ing in the field of artificial intelligence and/or cybersecurity from more than 68
countries and regions.

This initiative provided funding and infrastructure to foster coordination of
a society of international experts, and launch the first ever international Cyber-
security Data Mining Competition (CDMC) in 2010, which not only gathered
hundreds of young researchers, but also brought together experts from around
the world to facilitate collaboration and accelerate research progress. Since then,
great progress has been made. In the following we review the 10-year activities
of ICSDS society.

3 CDMC Annual Competition

The CDMC is a challenging, research and practice competition, focusing on
application of knowledge discovery and computational intelligence techniques to
address cyber security challenges in real world applications. The competition
is open to worldwide research teams or individuals, particularly welcomes uni-
versity students, undergraduate or postgraduate, in the field of data science,
network engineering, cyber security, and artificial intelligence.

3.1 Past Statistics

Across the history of this competition series, a wide range of cyber security prob-
lems covering 10 different categories of challenges has been studied. In addition to
that, a couple of pattern recognition tasks have also been included in the compe-
tition series. In total, over 30 original datasets acquired from industry or research
experiments were used in the CDMC history. Over 1276 teams/individuals from
68 different countries have registered and/or participated the CDMC over the
last 10 years. See Fig. 2 for a record of yearly participation for CDMC.

Figure 3 illustrates the distribution of historical participants by country. As
seen, more than half of participants came from the Asia Pacific countries. USA
and Canada contributed to 9% of the participants. Europe also contributed to
10%, from which UK is the most active participation country. The remaining
28% participants scattered sparsely in the other part of the world. The partici-
pants included commercial ICT companies, universities, and research institutes.
It’s worth noting that some participants have participated more than one time.
Table 1 gives a list of the institution of the winning teams for the annual com-
petition.
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Fig. 2. A summary of 10-year CDMC participation.

Fig. 3. Distribution of participants by country.

3.2 CDMC Cybersecurity Repository

CDMC has been addressing a number of specific cyber security challenges in the
area of network security, IoT security, mobile security, social engineering, and
hardware security, as well as a list of pattern recognition tasks towards leveraging
AI techniques to meet industry needs. The acquired data range from numerical
data, text, image, video/image series, structured & unstructured data, binary &
multiple class data, as well as single & multi-task labelled data.



240 S. Pang et al.

Table 1. A list of institution of the winning teams for the annual CDMC competition.

Institution Country Year Rank

Shandong Uni. China 2010 1

Tongji Uni. China 2011 1

Fujitsu R& D Center Co., Ltd. Japan 2012 1

Uni. of Ottawa Canada 2013 1

Inst. for Infocomm Research Singapore 2014 1

Kyoto Women’s University Japan 2015 1

Austral University Argentina 2016 1

Uni. of Edinburgh UK 2016 2

Kyoto Women’s University Japan 2017 1

Uni. of Queensland Australia 2017 2

National Uni. of Defense Tech. China 2018 1

Washington Uni. USA 2018 2

Nara Inst. of Sci. & Tech. Japan 2019 1

Kle Technological University India 2019 2

As the 10-years anniversary of CDMC, we publish in this paper the whole
collection of CDMC datasets as the CDMC Cybersecurity Repository at http://
archive.csmining.org. Table 2 gives the list of datasets in the repository. Note
that a few tasks which are subject to specific restriction of publication after the
competition are excluded from the repository.

3.3 Citation

If you publish your work based on datasets of this repository, you have to
acknowledge the contributors of this repository. This will encourage other
researchers to conduct a comparison study of different approaches on the same
datasets and thus benefit your research as well. We suggest the following pseudo-
APA reference format to cite this repository:

Pang, S. Ban, T. Kadobayashi, J. Song, Y. Huang, K. Gondal A. Poh,
G. Pasupa, K. and Fadi, A. (2020). CDMC Cybersecurity Dataset Repository
http://archive.csmining.org, International Cybersecurity Data-mining Society
(ICSDS), hosted by the School of Engineering Information Technology and Phys-
ical Sciences, Federation University, Australia.

Note, a few datasets have additional citation requirements which can be
found at the bottom of the dataset’s web page.

http://archive.csmining.org
http://archive.csmining.org
http://archive.csmining.org
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4 CDMC 2019

Taking CDMC 2019 as an example, this section provides more detail information
about the events hosted by ICSDS.

4.1 Competition Process

The steps of CDMC process are summarized as:

(a) Obtaining the Tasks: The competition tasks will be made available at the
CDMC website wwww.csmining.org on the starting date of the competition.
To enter the competition, all participants must register and download the
assigned tasks at the official website.

(b) Result Submission: Submission of the results can be done using the sub-
mission form at the competition website. A valid submission should include
the predicted results for the testing samples in plain .txt files, where the
predictions need to be in the same definitions as the training datasets. In
addition to result submission, participants are encouraged to submit a 2–8
page short paper to the AICS workshop.

(c) Evaluation and Ranking: The performance evaluation criteria include
precision, recall, F -measure, and Accuracy, as defined in Sect. 4.3. Note that
while multiple submissions are allowed for one participant/team, only the
last valid entry of result submissions will be used for performance evaluation
and ranking. Here, a valid entry must include the results for all competition
tasks.

(d) Method Verification: To prevent cheating, the top ranking teams will be
required to fill out a fact sheet to describe their methods used for the compe-
tition. The ICSDS governing board will review the method and confirm the
ranking. Note that participants might be required to provide their compiled
software and/or source code for validation purpose.

(e) Awarding and Prize Giving: CDMC will announce 1st-place winner at
the AICS workshop, which is collocated with the International Conference
on Neural Information Processing (ICONIP). The awarding of cash prize
and winner certificate will be at the banquet of the ICONIP conference.
The CDMC cash prize is normally set as $3000NZD, the amount of which
may be subject to the yearly sponsorship grant received by CDMC.

In tradition, CDMC awards only the 1st-place winner of the competition.
The ICSDS governing board reserves the right to also present winner certificates
to a short list of top ranking teams.

4.2 Competition Tasks

CDMC’19 came with three competition tasks which includes Task 1&2:
SADAVS-sensor array data for autonomous vehicle safety, and Task 3: IoT mal-
ware classification [4].

wwww.csmining.org
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1. SADAVS-Sensor Array Data for Autonomous Vehicle Safety [5]
Vehicle-based accident detection systems monitor a network of sensors
to determine if an accident has occurred. Instances of high accelera-
tion/deceleration are due to a large change in velocity over a very short
period of time. In the context of autonomous vehicles, the speeds are hard
to attain since a vehicle is not controlled by a human driver. The presented
data captured originally in New Zealand gives a collection of a sensor array
(160 × 144) values in monitoring the status of moving vehicle. The objec-
tives of these competition tasks are for early detection of any potential road
accidents in two different scenarios.

2. IoT Malware Classification
Based on the sequence of system calls as discriminant features and the mal-
ware families of the programs as training labels, the participants are required
to perform a classification task to predict the malware families of the test
samples. The dataset consists of 8442 samples generated following the pro-
cedure below: First, a collection of potentially malicious Linux programs in
CEF format are collected from various sources. Then, each of these programs
is executed in a sandbox environment hosted by an emulator that provides
the required runtime environment for it. During the runtime, the strace com-
mand is used to monitor and record the interactions between the processes
initialized by the program and the Linux kernel. This process yields a log
file that contains lines of system calls. On each line, strace records the time
stamp, the invoked system call, as long as parameters and results of the calls.

4.3 Performance Evaluation

The results of classification are first represented in a confusion matrix composed
of true positives, false positives, true negatives, and false negatives. And then,
to embrace competition tasks which have imbalanced class distribution, we per-
form performance evaluation using multiple criteria including precision, recall,
F-measure, and accuracy.

Precision is a metric that calculates the accuracy for the minority class [3].
For an imbalanced binary classification problem, precision is calculated as the
number of true positives divided by the total number of true positives and false
positives:

Precision =
TP

(P + FP )
. (1)

In an imbalanced classification problem with multiple classes, precision is calcu-
lated as the sum of true positives across all classes divided by the sum of true
positives and false positives across all classes:

Precision =
∑

c∈C

TPc∑
c∈C(TPc + FPc)

. (2)
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Table 2. The list of datasets in CDMC Cybersecurity Repository

Category Dataset Name/CDMC Year

Social Attacks SNSSR/CDMC’19
e-News2016/CDMC’16
PSI/CDMC’14
e-News2013/CDMC’13
LingSparm/CDMC’10
e-News2015/CDMC’15

Sentiment Analysis Trademe Sentiment/CDMC’15

DDoS Attacks DDoS-ADENS/CDMC’18

IoT Malware IoT-Malware/CDMC’19

Network Security Packet Identification/CDMC’12

Intrusion Detection IDS-Korea2014/CDMC’14
IDS-Korea2013/CDMC’13

Mobile Security Android-API/CDMC’17
Android-Malware/CDMC’16

Cloud Security UniteCloud-UTM/CDMC’17
UniteCloud-Log/CDMC’16

Physical System Security SADAVS/CDMC’19

Financial Fraud FDFT/CDMC’17

Pattern Recognition AAP/CDMC’18
ESMC/CDMC’14
DMLI-MTPR/CDMC’13
5-Disease Diagnosis/CDMC’15

Recall is calculated for binary classification as the number of true positives
divided by the total number of true positives and false negatives:

Precision =
TP

TP + FN
. (3)

For multiple classes problem, recall is calculated as the sum of true positives
across all classes divided by the sum of true positives and false negatives across
all classes:

Precision =
∑

c∈C

TPc∑
c∈C(TPc + FNc)

. (4)

F-Measure combines precision and recall into a single measure that captures
both properties, i.e.,

F -Measure =
2Precision × Recall

Precision + Recall
. (5)
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Accuracy is calculated as the number of correctly classified instances divided
by the total number of instances:

Accuracy =
1

‖C‖
∑

c∈C

TPc + TNc

TPc + TNc + FPc + FNc
, (6)

where ‖C‖ is the total number of classes, TPc+TNc and TPc+TNc+FPc+FNc

are the correctly classified instances and the total number of instances of the ith
class, respectively.

4.4 Results

CDMC’19 had total 190 teams/participants from 24 different countries. Com-
pared to CDMC’18, the number of participants increased by 67, while the num-
ber of countries dropped from 50 to 24. Table 3 gives the top 10 teams and the
results they had achieved.

Table 3. Top 10 teams of CDMC’19 and their results

Rank Name Institution Country Accuracy

1 Masataka Kawai Nara Institute of Science and

Technology

Japan 75.22%

2 Aditya Pandey Kle Technological University India 73.42%

3 Shivam Ralli Kle Technological University India 73.33%

4 Inzamam Sayyed Nil India 72.12%

5 Teoh John University of Glasgow United Kingdom 70.63%

6 Qianguang Lin Hainan University China 70.41%

7 Syukron Abu Ishaq

Alfarozi

King Mongkut’s Institute of

Technology Ladkrabang

Thailand 69.52%

8 Vadim Borisov University Tuebingen Germany 68.93%

9 Binh Nguyen University of Science, Ho Chi

Minh City

Vietnam 66.94%

10 Yoshino Ozawa Kyoto Women’s University Japan 64.07%

5 Conclusion

Data is driving force for both AI and cybersecurity. It offers opportunities for
researchers to discover rules from the practices, for cyber security analysts to find
ways to adopt new policies to fortify cyber resilience, and for AI practitioners
to explore solutions to transform learned models to businesses. CDMC takes
advantage of such interdisciplinary insights, and has contributed to the society
in providing a premium forum for discussion and exchange of these experiences.

In 2020, despite of the COVID-19 situation, the 11th CDMC, and the 13th
AICS workshop have been set up. You are cordially invited to submit papers
to the 13th International Workshop on Artificial Intelligence and Cybersecurity
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(AICS2020) and participate in the 11th International Cybersecurity Data Min-
ing Competition (CDMC 2020). The two events are associated with the 27th
International Conference on Neural Information Processing (ICONIP 2020) as
a special session. ICONIP will be organized in Bangkok, Thailand, November
18–22, 2020. For more information about the CDMC2020, please refer to the
competition website at http://wwww.csmining.org. We look forward to meeting
you in Bangkok, Thailand.

Acoknowledgement. The authors would like to acknowledge all the participants
who had ever take part in the competitions over the last 10 years. We would like to
express our great appreciation to Auckland University of Technology, New Zealand,
Unitec Institute of Science and Technology, New Zealand, and National Institute of
Information and Communications Technology, Japan for their financial sponsorship to
CDMC in the past 10 years, and to the Asia Pacific Neural Network Society (APNNS)
for 10 years partnership in making CDMC a world known competition in the area of
AI × Cybersecurity.
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Abstract. To address class imbalance issue in scene text detection, we
propose two novel loss functions, namely Class-Balanced Self Adaption
Loss (CBSAL) and Class-Balanced First Power Loss (CBFPL). Specif-
ically, CBSAL reshapes Cross Entropy (CE) loss to down-weight easy
negatives and up-weight positives. However, CBSAL ignores gradient
imbalance that CE gives positives and negatives different gradients. Since
text detectors need to identify text and background simultaneously, pos-
itives and negatives have same importance and should possess equivalent
gradients. Thus CBFPL provides equal but opposite gradients for posi-
tives and negatives to eliminate this gradient imbalance. Then, CBFPL
abandons easy negatives and makes their gradients zero to handle class
imbalance. Both CBSAL and CBFPL can focus training on positives and
hard negatives. Experimental results show that on the basis of CBSAL
and CBFPL, the efficient and accurate scene text detector (EAST) can
achieve higher F-score on ICDAR2015, MSRA-TD500 and CASIA-10K
datasets.

Keywords: Scene text detection · Class imbalance · Gradient
imbalance.

1 Introduction

Scene text detection, which aims to detect text regions in natural scene images,
has become increasingly popular, as a result of its great value in real-world
applications such as image retrieval, product search, scene understanding and
automatic driving.

Due to the fast progress of object detection in recent years, some state-of-
the-art object detection frameworks, such as SSD [1] and Faster R-CNN [2],
have been employed to localize horizontal and multi-oriented scene text. These
text detection methods, which treat words or text lines as general objects and
are modified from object detection approaches, can be divided into two cate-
gories: (1) Indirect regression based text detection techniques [3–8], which adopt
object detectors like Faster R-CNN and SSD to first create region proposals and
then regress offset values from these proposals to precise text boxes. (2) Direct

c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 246–256, 2020.
https://doi.org/10.1007/978-3-030-63833-7_21
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regression based text detection methods [9,10], which adapt DenseBox [11] for
extracting scene text. These methods generate a score map and the correspond-
ing offsets. The score map is used to distinguish between text and background.
The offsets represent regression distances from one reference pixel to its ground
truth. Besides foregoing regression based text detection works, there are also
instance segmentation based text detection approaches [12–14], which employ
FCIS [15] and Mask R-CNN [16] for text detection task. These approaches first
detect individual text instances from images. Afterwards, a minimal area rectan-
gle algorithm is applied to gaining the oriented bounding boxes of text instances
as the final detection results.

Just as object detection, class imbalance exists in scene text detection as
well. The essential reason of class imbalance is that the quantity of background
pixels on the image is far more than that of text pixels. To solve this imbalance,
many effective techniques such as Class-Balanced Cross Entropy (CBCE) loss
[10], Focal Loss [17] and OHEM [18] have been put forward. Such balancing
sample approaches can improve text detectors’ performance.

But the aforementioned techniques also own their shortcomings. OHEM
chooses N hard samples to train the network. It is boresome that researchers
need to spend plenty of time in finding the optimal value of N . Focal Loss down-
weights the loss of easy samples, while the loss of positives is also restrained at
the same time. Focal loss does not differentiate between positive/negative sam-
ples. A balancing factor between positives and negatives is offered by CBCE to
down-weight the loss assigned to negatives. But CBCE does not consider the
distinction between easy and hard negative samples. Hence, CBCE-based text
detectors only can obtain sub-optimal performance.

In this paper, we propose two novel loss functions called CBSAL and CBFPL,
both of which can act as more valid substitutes to previous methods for coping
with class imbalance. The proposed CBSAL considers the distinction between
easy/hard samples as well as between positive/negative samples. CBSAL designs
a scaling factor as negatives weight to restrain the loss of easy negatives. Mean-
while, the loss of positives is up-weighted by CBSAL to prevent the vast number
of negatives from overwhelming the training of positives.

However, the gradient imbalance from CE is not considered by CBSAL which
is modified from CE. The gradient imbalance of CE is illustrated in Fig. 3. When
sample probability is not equal to 0.5, the gradient of CE w.r.t. positive sample
probability has unequal absolute value with that of CE w.r.t. negative sample
probability. As scene text detectors not only need to recall text but also remove
background regions, positive and negative samples own equal significance for
text detectors and should be given equivalent gradients. Therefore, we propose
CBFPL to generate equal but opposite gradients for positive and negative sam-
ples, which elegantly cancel the gradient imbalance. And then, CBFPL excludes
easy negative samples and offers them zero gradients to address class imbalance
during training of text detectors. As a result, the proposed CBSAL and CBFPL
can make the training of text detectors concentrated on positives and hard neg-
atives. For demonstrating the effectiveness of our proposed loss functions, we
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Fig. 1. Reimplemented version of EAST Pipeline. Resnet50 [19] is used as feature
extractor. EAST adopts the idea from U-shape [20] to produce the merged feature
maps, which are connected to two conv1X1 layers to output score map and RBOX.

replace CBCE in EAST [10] with CBSAL and CBFPL, respectively. Experi-
mental results show that two proposed loss functions enable EAST to obtain
higher performance on ICDAR2015 [21], MSRA-TD500 [22] and CASIA-10K
[23] datasets (Fig. 1).

The contributions of this work are three-fold:

(1) To deal with class imbalance in scene text detection, we first propose one
newfangled loss function, named CBSAL. CBSAL can effectively recall chal-
lenging text and suppress false positives.

(2) We propose another loss, namely CBFPL, to simultaneously overcome gra-
dient imbalance of CE and class imbalance. CBFPL is a simpler and more
effective approach than CBSAL.

(3) We experimentally prove that our CBSAL and CBFPL can boost the per-
formance of text detectors. For testifying the superiority of CBSAL and
CBFPL, Focal Loss and OHEM are also adopted for score map [10] in
EAST, respectively. The proposed CBSAL and CBFPL significantly out-
perform previous techniques for addressing class imbalance.

2 Methods

CBSAL and CBFPL are proposed to address foreground-background class imbal-
ance problem encountered during training of scene text detectors. This work
describes CBSAL and CBFPL starting from CE for binary classification which
corresponds to text/background classification:

CE(Ŷ , Y ∗) = −Y ∗ log Ŷ − (1 − Y ∗) log(1 − Ŷ ) (1)

Where Y ∗ ∈ {1, 0} represents the ground-truth, and Ŷ ∈ [0, 1] indicates the text
detector’s prediction probability for the class with label Y ∗ = 1.

2.1 Class-Balanced Self Adaption Loss

Due to the drawbacks of CBCE and Focal Loss, we propose a novel CBSAL
which balances the importance between easy and hard samples and takes into
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account the distinction between positive and negative samples. CBSAL down-
weights the loss of easy negative samples and up-weights the loss of positive
samples to make training focused on positives and hard negatives.

More formally, we propose to add a scaling factor s(1 − β)[a(1−Ŷ )] to CE
loss as negatives weight, with two hyperparameters s > 0 and a > 0. Then,
an exponential factor ge1−Ŷ is added to CE loss as positives weight, with one
tunable parameter g > 0. CBSAL is defined as:

CBSAL(Ŷ , Y ∗) = −PY ∗ log Ŷ − N(1 − Y ∗) log(1 − Ŷ ) (2)

P = ge1−Ŷ N = s(1 − β)[a(1−Ŷ )] (3)

β = 1 −
∑

y∗∈Y ∗ y∗

|Y ∗| (4)

Where β is the same as that of CBCE.

Fig. 2. The weight curves of CBSAL. Red curve indicates the weight of negatives and
green curve represents the weight of positives. (Color figure online)

The weight curves of CBSAL is illustrated in Fig. 2. Red curve is the weight
of negatives and green curve represents the weight of positives. As the nega-
tive sample probability increases, the weight of negatives is increased gradually.
Extremely tiny weight values are assigned to easy negative samples. So, these
negatives own very small gradients. However, hard negative samples obtain much
larger weight values, which can focus training on hard negatives. Besides, the
weight values of positives are up-weighted to further alleviate class imbalance
problem, because the number of positives is far less than that of negatives. To
recall more challenging text in natural scene, the weight values of easy positives
are smaller than that of hard positives, which makes training pay more attention
on hard positives.

2.2 Class-Balanced First Power Loss

Based on CE, aforementioned loss functions such as CBCE, Focal Loss and
CBSAL, design different sample balancing measures to down-weight or up-weight
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the loss and gradients of samples. These loss functions do not consider the gra-
dient imbalance from CE. The gradient of CE w.r.t. positive sample probability
is calculated as:

∂CE

∂Ŷpos

= − 1
Ŷ

(5)

The gradient of CE w.r.t. negative sample probability is calculated as:

Fig. 3. The gradient curves of CE. Red curve indicates the gradient of CE w.r.t. positive
sample probability and green curve respresents gradient of CE w.r.t. negative sample
probability. (Color figure online)

∂CE

∂Ŷneg

=
1

1 − Ŷ
(6)

We ignore their plus-minus sign and the curves of two gradients can be illustrated
in Fig. 3. If the probability is less than 0.5, the gradient of CE w.r.t. positive
sample probability is greater than that of CE w.r.t. negative sample probability.
However, when the probability exceed 0.5, the gradient of CE w.r.t. positive
sample probability is less than that of CE w.r.t. negative sample probability.
Such a difference leads to gradient imbalance.

Because scene text detectors not only need to identify text but also recognize
background, positives and negatives have equal importance for text detectors.
Therefore, positives and negatives should have equal but opposite gradients. As
to the class imbalance problem, we propose to get rid of easy negative samples
and make their gradients zero to address it. As a result, we define CBFPL as:

CBFPL(Ŷ , Y ∗) = Y ∗(1 − Ŷ ) + H(1 − Y ∗)Ŷ (7)

H =
{

1, neg pred > hard neg prob
0, otherwise

(8)

Where neg pred = (1 − Y ∗)Ŷ is the prediction for negatives. hard neg prob is
a hyperparameter, whose value is in the range of [0, 1].

If the prediction of negatives neg pred is greater than hard neg prob, these
negatives are hard and other negatives are easy. The gradient of CBFPL w.r.t.
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easy negative sample probability is zero. The gradient of CBFPL w.r.t. positive
sample probability is calculated as:

∂CBFPL

∂Ŷpos

= −1 (9)

The gradient of CBFPL w.r.t. hard negative sample probability is calculated as:

∂CBFPL

∂Ŷneg

= 1 (10)

The two gradients have same absolute value, which endows positives and neg-
atives with equal significance. In consequence, CBFPL can focus training on
positives and hard negatives.

Table 1. Results on ICDAR2015

Algorithm Recall Precision F-score

StradVision1 [21] 0.4627 0.5339 0.4957

StradVision2 [21] 0.3674 0.7746 0.4984

Zhang et al. [24] 0.4309 0.7081 0.5358

Tian et al. [25] 0.5156 0.7422 0.6085

Yao et al. [26] 0.5869 0.7226 0.6477

SegLink [5] 0.768 0.731 0.75

RRPN [27] 0.732 0.822 0.774

EAST [10] 0.7347 0.8357 0.7820

DDR [9] 0.800 0.820 0.810

EAST+CBCE 0.7665 0.8032 0.7844

EAST+OHEM 0.7256 0.8834 0.7967

EAST+Focal Loss 0.7675 0.8425 0.8032

EAST+CE 0.7612 0.8621 0.8085

EAST+CBSAL 0.7805 0.8743 0.8247

EAST+CBFPL 0.7935 0.8678 0.829

3 Experiments

To compare our CBSAL and CBFPL with CBCE, we conduct quantitative and
qualitative experiments on three public datasets: ICDAR2015, MSRA-TD500
and CASIA-10K.

3.1 Datasets

ICDAR2015 dataset appears in Challenge 4 of ICDAR 2015 Robust Reading
Competition. It includes 500 testing images and 1000 training images. The 229
training images from ICDAR2013 [28] are also used as the training data.
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Table 2. Results on MSRA-TD500

Algorithm Recall Precision F-score

TD-ICDAR [22] 0.52 0.53 0.50

TD-Mixture [22] 0.63 0.63 0.60

Yin et al. [29] 0.63 0.81 0.71

Zhang et al. [24] 0.67 0.83 0.74

DDR [9] 0.700 0.770 0.74

Yao et al. [26] 0.7531 0.7651 0.7591

EAST [10] 0.6743 0.8728 0.7608

SegLink [5] 0.700 0.860 0.770

EAST+CE 0.7096 0.8343 0.7669

EAST+OHEM 0.6873 0.8734 0.7692

EAST+Focal Loss 0.6976 0.8602 0.7704

EAST+CBCE 0.7062 0.8527 0.7726

EAST+CBSAL 0.7354 0.8717 0.7978

EAST+CBFPL 0.7457 0.8697 0.803

MSRA-TD500 dataset consists of 300 training images and 200 testing images.
Besides text in English, it also contains text in Chinese. The 400 images from
HUST-TR400 dataset [30] are also included as the training data.

CASIA-10K is a Chinese scene text dataset provided by Institute of Automa-
tion of Chinese Academy of Sciences. This benchmark comprises 7000 training
images and 3000 testing images.

Table 3. Results on CASIA-10. ∗ means multi-scale testing

Algorithm Recall Precision F-score

EAST [23] 0.5327 0.7771 0.6321

SegLink [23] 0.6967 0.7275 0.7118

MOML∗ [23] 0.7048 0.8128 0.7550

EAST+OHEM 0.5792 0.8632 0.6933

EAST+CBCE 0.6115 0.816 0.6991

EAST+Focal Loss 0.6553 0.7691 0.7077

EAST+CE 0.6249 0.8384 0.7161

EAST+CBSAL 0.655 0.8218 0.729

EAST+CBFPL 0.6674 0.8237 0.7374
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Fig. 4. Detection results from EAST+CBCE, EAST+CBSAL and EAST+
CBFPL: (a)–(d) from EAST+CBCE (Baseline), (e)–(h) from EAST+CBSAL
and (i)–(l) from EAST+CBFPL. The boxes in red ellipses represents wrong results
while other boxes are correct. (Color figure online)

3.2 Quantitative Results

As shown in Table 1, Table 2 and Table 3, Our reimplemented version of EAST
is EAST+CBCE, which applies CBCE to score map [10]. EAST+OHEM
replaces CBCE with CE and OHEM is only applied to negatives. For every
image, we choose N hard negatives and all positives to train the score map.
Focal Loss is used to replace CBCE to become EAST+Focal Loss. Note that
our all experimental results are based on single-scale testing.

EAST+CBSAL takes advantage of CBSAL as a more effective alterna-
tive to CBCE of EAST+CBCE. Our EAST+CBSAL reaches a F-score of
0.8247 on ICDAR2015, which is 4.03% higher than EAST+CBCE. Meanwhile,
CBSAL can also improve EAST by 2.52% on MSRA-TD500 (0.7978 vs. 0.7726)
and 2.99% on CASIA-10K (0.729 vs. 0.6991).

Compared with OHEM and Focal Loss, the proposed EAST+CBSAL
transcends EAST+OHEM by 2.8% and EAST+Focal Loss by 2.15% on
ICDAR2015 benchmark. EAST+CBSAL is in excess of EAST+OHEM
by 2.86% and EAST+Focal Loss by 2.74% on MSRA-TD500. In CASIA-
10K dataset, EAST+CBSAL surpasses EAST+OHEM by 3.57% and
EAST+Focal Loss by 2.13%.

Finally, we also compare proposed CBFPL with CBSAL. On ICDAR2015,
EAST+CBFPL can achieve a F-score of 0.829, outperforming EAST+
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CBSAL by 0.43%. Compared with EAST+CBSAL, EAST+CBFPL brings
in 0.52% F-score of revenue on MSRA-TD500 and obtains an increasement
of 0.84% in F-score on CASIA-10K. Both CBSAL and CBFPL obtain com-
petitive results, which are slightly lower than the highest result on CASIA-
10K. Our CBSAL and CBFPL outperform previous methods by a large mar-
gin on ICDAR2015 and MSRA-TD500 datasets. And CBFPL slightly surpasses
CBSAL. These experiments validate the efficacy of CBSAL and CBFPL, which
can promote the F-score of EAST prominently.

3.3 Qualitative Results

Some detection examples from EAST+CBCE, EAST+CBSAL and
EAST+CBFPL are presented in Fig. 4. Compared with CBCE loss, CBSAL
and CBFPL possess four advantages: (1) Eliminate text-like patterns: A
text-like pattern, which is a background region very similar to text, is wrongly
recognized as text by Fig. 4(a). However, Fig. 4(e) and Fig. 4(i) can get rid of
this text-like pattern, because CBSAL and CBFPL make training focused on
hard negatives. (2) Localize text better: Fig. 4(f) and Fig. 4(j) can obtain
better text localization than Fig. 4(b). Therefore, we believe that training clas-
sification branch better can facilitate the learning of localization branch since
they share features in EAST. (3) Recall more challenging text: Fig. 4(g)
and Fig. 4(k) capture more challenging text regions than Fig. 4(c) for the rea-
son that CBSAL and CBFPL also focus training on positives. (4) Suppress
background: Fig. 4(d) contains a obvious background region which is removed
in Fig. 4(h) and Fig. 4(l). This proves that CBSAL and CBFPL have better
discriminant ability between text and background.

4 Conclusion

In this paper, we conduct research on class imbalance in scene text detection and
analyze the deficiencies of previous methods such as OHEM, CBCE and Focal
Loss. To address this problem, we propose two class-balanced loss functions:
CBSAL and CBFPL. CBSAL applies a scaling factor and an exponential factor
to CE in order to down-weight easy negatives and up-weight positives. CBFPL
provides positives and negatives with equal but opposite gradients to solve gra-
dient imbalance from CE. CBFPL gets rid of easy negatives and offer them zero
gradients to handle class imbalance. In consequence, the proposed CBSAL and
CBFPL can focus training of text detectors on positives and hard negatives.
The experiments on three standard benchmarks demonstrate the effectiveness
of CBSAL and CBFPL.

Acknowledgement. This work was supported by the Major Project for New Gener-
ation of AI (Grant No. 2018AAA0100400).
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Abstract. Recently, multi-agent deep reinforcement learning (MADRL)
has been studied to learn actions to achieve complicated tasks and gener-
ate their coordination structure. The reward assignment in MADRL is a
crucial factor to guide and produce both their behaviors for their own tasks
and coordinated behaviors by agents’ individual learning. However, it has
not been sufficiently clarified the reward assignment in MADRL’s effect
on learned coordinated behavior. To address this issue, using the sequen-
tial tasks, coordinated delivery and execution problem with expiration time,
we analyze the effect of various ratios of the reward given for the task that
agent is responsible for to the reward given for the whole task. Then, we
propose a two-stage reward assignment with decay to learn the actions for
tasks that the agent is responsible for and coordinated actions for facili-
tating other agents’ tasks. We experimentally showed that the proposed
method enabled agents to learn both actions in a balanced manner, so they
could realize effective coordination, by reducing the number of tasks that
were ignored by other agents. We also analyzed the mechanism behind the
emergence of different coordinated behaviors.

Keywords: Control and decision theory · Multi-agent deep
reinforcement learning · Coordination · Cooperation

1 Introduction

Although one central issue in the study of multi-agent systems is to achieve
autonomous coordinated/cooperative behaviors to perform tasks that cannot be
solved by a single agent, it is quite difficult to describe these behaviors because
their coordination results are subtly affected by many factors such as other
agents’ actions, environmental characteristics, and task structures. Reinforce-
ment learning (RL) is one method that is expected to identify better coordina-
tion for multi-agent systems, but this is challenging due to the sophistication
of cooperation and uncertainty in mutual learning. Actually, because all agents
individually learn their behaviors simultaneously, the learning results through
the training process become meaningless due to the behavioral changes of other
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agents by learning. To realize the learning for coordination, a sort of mechanism
has to guide the agents to learn the consistent behaviors. Particularly, appro-
priate design of reward assignment is a crucial issue [1] to encourage agents to
learn not only how to do the tasks they are responsible for but also when and
where to do them to improve the entire performance.

Recent and ongoing techniques using deep reinforcement learning (DRL)
for a single agent have produced several successful results in many applica-
tion/research fields such as robotics [4,8] and video games [5,6]. Even in multi-
agent systems, various approaches to learn coordinated behavior using multi-
agent DRL (MADRL) in which each agent has its own deep neural network have
been proposed to address non-stationary problems [2,7]. For example, Palmer et
al. [7] proposed an extension of MADRL called lenient learning in which agents
possess the temperature value for each state-action pair and decay the value
without using the outdated pairs. Foerster et al. [3] also proposed an extension
of MADRL called COMA in which a centralized critic estimates Q-values for all
agents, and the actors for individual agents optimize the agent’s policy by using
its local observation. In general, DRL requires careful engineering for the reward
functions to explore high dimensional state-action spaces. The reward functions
for the MADRL are more complicated and difficult to design because the task
completion is the result of cooperation and coordination of individual subtasks,
and the functions must be able to guide so that agents can learn such coordinated
activities. However, the reward assignment method, i.e., how to give the rewards
for each subtask completion affected the coordination behaviors generated by
MADRL.

Therefore, we first examine how the reward assignment in a MADRL affected
the learning of agents’ cooperative behaviors using the example task called, which
is an abstraction of our target application in a construction site. In this prob-
lem, each task consists of two subtasks that should be executed sequentially by
two types of agents within a limited time, so these agents have to learn how
to coordinate with each other. We experimentally found that different behav-
iors are generated depending on how rewards are assigned to agents for their
responsible subtasks; for example, (1) some agents could not learn behaviors,
so their contributions are unbalanced, (2) the learning was very slow while they
coordinated to not waste others’ efforts, or (3) agents could do their responsible
subtasks but ignored coordination with others. We think that these is a trade-off
between learning speed, learnability, and the quality of behaviors. Thus, we pro-
pose a reward scheme called two-stage reward assignment with decay to guide the
learning of such coordinated behaviors of agents to ease these problems. We also
modified the extended experience replay for the proposed reward assignment
method. Our experimental results indicate that the proposed reward scheme
enabled agents to produce balanced behaviors for both doing their own tasks
and facilitating the subsequent subtasks done by other agents.
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2 Model and Problem

2.1 Models of Agents and Environment

In this work, we consider the multi-agent cooperation problem, called coordinated
delivery and execution problem with expiration time. In this problem, there are
two types of agents in an environment, and a task is done by the sequential
collaborations of two subtasks. The first type of agent, which is called a delivery
agent, has the role of picking up a material at the storage area, delivering it, and
placing it in a location in the installation area. The second type of agent, called
an execution agent, has the role of moving to the location where the material
has been placed, and executing the finishing task using the delivered material
as soon as possible. Delivered materials have an expiration time and become
unusable after that time (and then are removed). Thus, an execution agent has
to execute the finishing task before the material’s expiration after it has been
placed; otherwise, the effort of the delivery agents is wasted. The agents in an
environment repeat this sequential collaboration of joint tasks until all tasks
have been completed in all required areas.

Fig. 1. Environmental state
and agent’s views (Color figure
online)

An example of our problem environment is
shown in Fig. 1. The environment is a lattice con-
sisting of N ×N cells, where a hollow square is a
delivery agent, a hollow pentagon is an execution
agent, the group of green cells are the storage
areas where a delivery agent can pick up a mate-
rial, the gray cells are the installation areas where
a delivery agent holding a material can put it
down, and the yellow cells are the executable cells
where one of the delivery agents placed a mate-
rial, but the execution agents have not completed
the finishing task. We represent the remaining
time to the expiration of the delivered materi-
als by gradually changing the color of executable
cells from yellow to gray as the expiration time
approaches.

2.2 Problem Formulation

We introduce discrete time t ≥ 0. Our problem is described by tuple
〈I,N,m,E, {Si}i∈I , {Ai}i∈I〉, where I = {1, · · · , n} is the set of n agents includ-
ing two types of agent, N is the side length of the lattice environment, and m
is the number of installation cells. E(� e) is the set of all possible entire states
of the environment including the states of cells and all agents. Si is the set of
the states that can be observed by agent i ∈ I; each agent can observe a limited
local area whose center is itself. Thus, its element si,t ∈ Si can be considered as
a subset of the entire state et at time t (si,t ⊂ et ∈ E). Instead, we assume that
agents can observe their local areas accurately, so si,t at t is correct. We also
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define the set of joint actions A = A1 ×· · ·×An � at = (a1,t, . . . , an,t), where Ai

(= A = {up, right , down, left ,work}) is the set of all possible actions of ∀i ∈ I
regardless of the type of agent, and agents can take one action each time. If more
than two agents attempt to move onto the same cell, one of them can success-
fully move onto the cell, and the other remains in its original position. Agent i
cannot communicate with other agents and, of course, cannot know others’ next
actions before they are performed. The content of action work depends on the
agent’s type and its location and is described in the next section.

Every time agents take joint actions at ∈ A in et, they may receive reward
ri(et, at), and then, the environmental state transits to et+1. The rewards given
to delivery agents and execution agents are different due to their different roles,
and this will be explained in Sect. 3.2. Because we focus on applying MADRL to
our problem, the agents individually learn their own action-value pairs and the
associated policies πi : Si → Ai by using their own DQNs to increase the rewards
that are the results of their own responsible subtasks and coordinated behaviors
for the tasks of our problems. Therefore, we are curious if the delivery agents
can learn cooperative activities for increasing the success rate of the execution
agents’ tasks.

2.3 Agents’ Behaviors

The storage area consisting of four cells is at the center of the environment, as
shown in Fig. 1. Initially (at time t = 0), agents I = {1, · · · , n} are scattered
within the area surrounded by black dotted lines, and the K installation areas
consisting of 3×3 cells are also scattered randomly outside the area specified by
the purple dotted lines. Then, all agents take the following steps concurrently.

First, agent ∀i ∈ I chooses action ai,t in environment et on the basis of i’s
policy πi at ∀t (so ai,t = πi(si,t) ∈ A) and performs it in a concurrent manner.
Thus, i moves to one of the neighbor cells if the action is not work . However,
agent’s action work is different depending on its types.

Action work by delivery agent: The role of delivery agents is to deliver the
materials in the storage area to an installation area for the next subtasks done
by execution agents. When i arrives at the storage area, i picks up one material
ψi automatically and heads toward one of the installation cells (a delivery agent
with a material is represented as a hollow square whose inside is green in Fig. 1).
Then, if i takes action work on an installation cell at td, i puts down ψi on
the current installation cell. This material is denoted by ψi,td . The installation
cell changes to an executable cell, which is represented as a yellow cell in Fig. 1.
Agent i receives the reward for delivery rd,td ; we will describe this reward in
detail in Sect. 3.2. Let positive integer p be the fixed expiration time of the
delivered material on a cell. Thus, one of the execution agents has to do the
finishing task for this material before td + p; otherwise, it will be removed.

Action work by execution agent: The role of execution agents is to execute
the finishing task using the materials delivered by delivery agents before the
expiration time. Thus, execution agent j performs one action in Aj \ {work} to
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find the executable cell where ψi has been placed and, by taking action work ,
executes the finishing task immediately (at least, before the expiration). If it is
done before the expiration time, the execution cell changes to an executed cell,
which is represented as a white cell in Fig. 1. Then, j receives reward re,te when
the finishing task is done at te, and an additional reward is given to delivery
agent i that delivered ψi,td ; the details on the reward scheme are described in
Sect. 3.2.

These joint actions of all agents repeat until all the installation areas are
filled with executed cells or time t exceeds epoch length H (where H is a positive
integer); then the epoch ends. Then, another epoch will start after the envi-
ronment is initialized until Fe epochs have been done, where Fe > 0 is also an
integer. Note that we assume the materials do not run out at any green cell.

3 Learning Methods

3.1 Deep Q-Network with Local Belief

DQN is a reinforcement learning method in which the action-value function (i.e.,
Q-function) and the associated policy π are learned using a deep neural network.
We use the decentralized concurrent learning approach, meaning that individual
agents have their own networks for learning their Q-values. Each deep neural
network is specified by its associated parameters θ whose values are updated
through the agent’s experience. At time t, to obtain the approximated values of
the optimal Q-values from the network, parameters θi,t of the network of agent
i at t are updated to reduce the mean squared loss function Li,t(θi,t), which is
defined as

Li,t(θi,t) = E(si,ai,ri,s′
i)

[(ri+ γ max
a′
i

Qi(s′
i, arg min

a′
i

Qi(s′
i, a

′
i; θi,t); θ−

i,t)

− Qi(si, ai; θi,t))2],

where γ ∈ [0, 1) is the discount factor for expected future reward. Note that we
use the double DQN (DDQN) [10], i.e., the target network parameters θ−

i,t are
periodically copied from the main Q-network parameters θi,t every Tc epochs.
Then, actions are selected using the main Q-network, but its parameters θi,t are
updated using the Q-value based on the target network parameters θ−

i,t.
We propose a policy based on the combination of observations and additional

information fed to DQNs. Because we apply MADRL to this problem, each
agent decides its next action by using the policy associated with the learned
Q-values from its own DQN. Usually, the policy is decided only on the basis of
the observation si,t. By defining the view of i at time t, vi,t, as the aggregation
of the observed state si,t and part of i’s local belief, we extend the domain of Qi

and πi by
Qi : Vi × Ai −→ R, and πi : Vi −→ Ai,

where V is the set of observed states with the local belief in i. The details of vi,t

are described in Sect. 3.3.
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3.2 Two-Stage Reward Assignment and Experience Replay

The design of the reward assignment is an important part of reinforcement learn-
ing because in multi-agent systems, agents’ rewards depend on not only their
individual actions but also others’ actions. In particular, in our problem, the
desired results come from the sequential subtasks, so the efforts of the first
agent (i.e., delivery agent) may become wasted due to the inappropriate behav-
ior of the second agent (i.e., execution agent). Therefore, we should consider
how to assign rewards to individual agents and when to do this. We then would
like to clarify the learned cooperative behaviors and their differences in cooper-
ation/coordination structure depending on the reward assignment.

For this purpose, we introduce a reward scheme, two-stage reward assignment
(with decay) into our problem. In this reward scheme, the first agent i receives a
reward twice depending on the completion of the subsequent subtask. It receives
the first reward r1(td) (which is usually small and can be reduced to 0 if we use
the delay mechanism) when it completes its own subtask. Then, i receives the
second reward r2(te) when the subsequent subtask has been done by another
cooperative agent at time te = td + α. Hence, the required whole task has been
completed at te, and i receives r1(td) + r2(te) finally. However, i receives only
r1(td) if the subsequent subtask cannot be done successfully. It is obvious to
extend this reward assignment to a multi-stage reward assignment scheme for
tasks consisting of multiple sequential subtasks.

We also modify the experience reply to adapt our two-stage reward assign-
ment and reflect sequential collaboration by two types of agent. Experience
replay is used in our DQN learning to break the correlation between subsequent
experience. In a multi-agent system, agents learn their actions independently
and simultaneously, and their selections of actions during learning may lead to
DQN learning instability. Experience replay is used to avoid this negative effect.
We extended the experience replay by combining it with our multi-agent reward
scheme in which the reward may vary due to other agents’ subsequent actions
within a certain period.

To prevent storing the experience data of delivery agent i whose reward
has not been determined yet, i temporally stores the experience data ci,t =
(si,t, ai,t, ri,t, si,t+1) at t in its own temporal queue Pi,t whose maximal length is
Mp(≥ p > 0). Reward ri,t for every action is usually zero, but when i completes
its own subtask at td, ri,td = r1(td) ≥ 0. When the size of |Pi,t| > Mp, the top
element in Pi,t is moved to i’s replay memory Di,t. Then, if i receives reward r2
at te (where td + p ≥ te > td) as a result of one execution agent at te performing
the finishing task, the reward of the replay data ci,td in Pi,te is modified as
ri,td = r1(td) + r2(te). By setting Mp = p, where p is the expiration time of the
delivered material, when the delivered material could not be executed before its
expiration time, the replay data ci,td is stored in Di,td+p+1 without modifying its
reward ri,td (= r1(td)). Note that none of the execution agents have a temporal
queue (or its maximal size is set to Mp = 0).

We can denote the replay memory at t as Di,t = {ci,t−p−Md
, · · · , ci,t−p−1},

where Md (> 0) is the memory capacity. Then, i updates parameters θi,t at
every η steps to minimize loss Li,t(θi,t), which is denoted by
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(a) Installation (b) Materials (c) Expiration (d) Other agents (e) Itself

Fig. 2. Input structure for delivery agent (Color figure online)

(a) Installation (b) Materials (c) Expiration (d) Other agents (e) Itself

Fig. 3. Input structure for execution agent (Color figure online)

Li,t(θi,t) = E(si,ai,ri,s′
i)∼U(Di,t)[(ri + γ max

a′
i

Qi(s′
i, arg min

a′
i

Qi(s′
i, a

′
i; θi,t); θ−

i,t)

− Qi(si, ai; θi,t))2],

where U(Di,t) indicates the minibatch, i.e., random sampling from experience
memory Di,t. To reduce the value of loss function Li,t(θi,t), we calculated the
gradient of loss function ∇Li,t(θi,t) and adopted RMSprop [9] this might be
useful because independent multi-agent learning is likely to be unsteady.

The goal of the agents is to increase the rewards they receive. Thus, the
delivery agents attempt to put down a material on an installation cell so that
the material is likely to be executed as soon as possible, and the execution
agents have to seek a material on an installation cell or more aggressively seek
a delivery agent holding a material to perform the finishing task before the
expiration. Our concern is what kind of coordinated behaviors are learned by
deep reinforcement learning by defining different ratios between r1(td) and r2(te)
in the reward assignment method.

3.3 View Representation

Agent i has a limited observable area specified by the observable range size
Vi ≥ 0, where Vi is an integer, and i’s observed data at t, si,t ∈ Si, is the
(2Vi + 1) × (2Vi + 1) lattice. Two examples of observable areas whose sizes are
Vi = V and centers are agents themselves are shown by translucent blue squares
in Fig. 1. Regardless of the type of agent, i generates its view vi,t for input to the
local DQN by composing its observed state si,t and i’s beliefs about the current
environment.
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The data in vi,t is divided into five input channels consisting of a number of
lattices. These input channels are shown in Figs. 2 and 3. First, we assume that
the abstract map of the environment and i’s current location are part of the
agent’s belief; this map is expressed as the fifth channel in Figs. 2e and 3e. The
four remaining channels express the observed state si,t, and all input channels
except the second one are identical in both types of agent.

The first channel represents the installation cells (using the digit 1 and shown
as gray cells in Figs. 2a and 3a). Note that the light blue regions in Fig. 3 mean
outside the environment and are unobservable, so their cells are represented by
−1. The third channel represents the expiration time of materials put down by
delivery agents (Figs. 2c and 3c). The color of a material of ψi,td indicates the
ratio of the remaining time to the expiration time, and its cell in the lattice
is expressed using zt = max((p − td)/p, 0). The fourth channel includes other
agents’ IDs, although they cannot observe the types of other agents (Figs. 2d and
3d). The agents’ IDs are uniquely expressed by three digits (b1, b2, b3) (where
bk ∈ {0, 1,−1}), each of which is expressed by one of three lattices. Note that
other agents’ IDs are determined in each agent so that no different agents have
the same ID. We also note that (0, 0, 0) is not assigned to any agent since it
means there is no agent at the cells. Finally, the second input channel (Figs. 2b
and 3b) represents the locations of materials that delivery agents are holding
(using digit 1). Thus, when a delivery agent holds a material, its material is also
shown at the center of this input. In addition, this channel of delivery agents
includes the locations of the storage area (Fig. 2b), but that of execution agents
do not (Fig. 3b).

We also often add part of the trajectory of itself to the fifth input channels
of both types of agent by assuming that any type of agent i can memorize
its history of locations. In this representation of the fifth channel, i’s current
location is represented as 1, and its location k unit time ago is represented as
1 × βk (= βk) if βk > δt, where 0 < β < 1 is the decay rate, and δt is the
threshold to decide the length of the trajectory. Note that if the agent visited a
certain cell more than twice in this trajectory, only the maximal value is used
for the trajectory.

3.4 Architecture of Neural Network

In MADRL, each agent autonomously decides its next action using the policy
derived by the local DQN. The specifications of the neural network for deep Q-
learning used in our experiments are listed in Table 1; the Q-network consists of
some convolutional layers (Conv), max pooling layers, and three fully connected
network layers (FCN layers). The sizes of the inputs fed to the Q-network are
specified by using M and N , where M = (2V +1). Note that as described in the
previous section, the inputs are six M × M lattices (Conv-1.1 in Table 1) and
one N × N lattice (Conv-2 in Table 1).
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Table 1. Network architecture

Layer Input Filter size Stride Activation Next Layer

Conv-1.1 M × M × 6 2 × 2 1 Conv-1.2

Conv-1.2 M × M × 32 2 × 2 1 Max pooling-1

Max pooling-1 M × M × 32 2 × 2 2 FCN-1

Conv-2 N × N × 1 2 × 2 1 Max pooling-2

Max pooling-2 N × N × 16 2 × 2 2 FCN-1

FCN-1 M/2×M/2× 32+
N/2 × N/2 × 16

ReLu 512

FCN-2 512 ReLu FCN-3

FCN-3 256 Linear 5

We use the ε-greedy learning strategy with decay. Thus, agents choose their
actions on the basis of the learning results so far with probability 1 − εi,t; oth-
erwise, choose randomly with probability εi,t, where εi,t gradually decay as
εi,t = max{εi,t−1 ∗ γε, εl}, and εl is the lower limit εl ≥ 0. By starting with
a large value of ε, agents can take various actions in the earlier stages of learning
and gradually become conservative.

Table 2. Learning parameters

Parameter Value

Discount factor γq 0.95

Initial value εi = εi,0 0.99999

Decay rate γε 0.999999

Lower limit εl 0.002

Interval of parameter update η 8

Learning rate for RMSprop 0.00001

Momentum for RMSprop 0.90

ε for RMSprop 1e−07

Replay memory capacity Md 2000

Minibatch size |U(Di,t)| 32

Copy interval for DDQN Tc 1

Table 3. Experimental parameters

Parameter Value

Size of environment N 20

No. of agents nd + ne 12

Observable range size V 3

No. of installation areas K 12

Expiration time p 6

Reward for delivery agents r1 + r2 1

Reward for execution agents re 1

Epoch length H 600

Sum of epochs Fe 13,000

Trajectory decay rate β 0.9

Lower threshold for trajectory δt 0.05

4 Experiments and Discussion

4.1 Experimental Setting

We experimentally compare the performance (i.e., the total number of finishing
task and the ratio of executable cells to executed cells) and analyze agents’
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Fig. 4. Executed tasks per epoch Fig. 5. Execution rate in delivered
materials

Fig. 6. Number of delivered materials (Color figure online)

behaviors when we used the various values of reward r1(t) = r1. Note that
r1 + r2 is assumed to be constant. In the first experiment, we assume that r1
was fixed every epoch, but in the second experiment, we introduced the decay
of the first reward, so r1 was gradually reduced every Fr epochs; thus, r1 in the
h-th epoch was defined as

r1 = ra − δr · �h/Fr

where ra is the initial reward for r1, and the δr is the decay delta. These values
were set as ra = 0.5, δr = 0.1, and Fr = 1000, so r1 was zero after 5000
epochs. Therefore, delivery agents could receive high reward in the earlier stage
to learn their own behaviors and then gradually learn coordinated behaviors
to make sequential subtasks successful with a higher probability. The reward
assignment with gradual decay for r1 is called gradually decayed reward (GDR).
The other parameters in our experiments are listed in Tables 2 and 3. The number
of delivery agents nd is eight, and the number of execution agents ne is four in
all experiments.
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Fig. 7. Number of execution agents (Color figure online)

4.2 Performance Comparison

We first examined the improvement in the performance over time with the vari-
ous reward assignment methods by setting r1 to 0, 0.1, 0.3, and 0.5 and using the
GDR. The number of executed finished tasks per epoch from 1 to 13000 epochs
is plotted in Fig. 4, where each plot is the moving average of every 50 epochs.
This figure indicates that the agents could improve these performances except
when r1 = 0; in this situation no agents could learn any meaningful behaviors
(the number of executed finishing tasks was almost zero). The learning speed
was highest when r1 = 0.5, but its converged value was almost identical to that
when r1 = 0.3. When the GDR was adopted, the performance curve was between
those when r1 = 0.3 and 0.1.

The ratio of executable cells to executed cells over time is plotted in Fig. 5,
in which each plot is also the moving average rate of the ratio every 50 epochs.
The high ratio is desirable because it means that the execution agents could
utilize the efforts of delivery agents without wasting tasks. The result seemed
the opposite of the previous one, i.e., the ratio when r1 = 0.1 is the highest
with the fixed r1 value and gradually decrease with the increase of r1. When the
GDR was used, Fig. 5 indicates that its ratio is slightly higher than that when
r1 = 0.1, and we found that the agents try to take into account the behaviors
of other agents. The analysis of such coordinated behaviors is shown in the next
section. When r1 = 0, the delivery agents could not learn their subtasks, so the
execution agents could not learn theirs either because they have few chances to
learn their behavior for their subtasks.

4.3 Analyzing Learned Coordinated Behavior

We try to understand the reason for the difference of performance described
in the previous section by analyzing the characteristics of the behavior learned
by MADRL with the two-stage reward assignment with decay. Figure 6 consist
of the stack line graphs that plot the numbers of the delivered materials that
were used for the finishing task (green) and those that were not (blue) every 50
epochs.

First, we can see that when r1 = 0.5 (Fig. 6(b)), the number of materials
delivered by delivery agents was the largest, but many of them were removed,
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although the reward of execution agents had many chances to learn their behav-
iors. Because the delivery agents could get enough rewards by their sole subtasks,
they did not need to care the movements/locations of the execution agents; thus,
the execution agents could not effectively find the executable cells. In contrast,
when r1 was small, the delivery agents could receive higher rewards after the
effort of the execution agents, so their coordination is crucial. Therefore, as
shown in Fig. 6(a), the number of removed (so wasted) executable cells was
much smaller than that when r1 = 0.5.

When the GDR was used, Fig. 6(c) indicates that the number of removed
executable cells was smaller and the number of the executed cells was larger
than those when r1 = 0.1. We think that this improvement was caused by the
sufficient learning of their own subtasks in the earlier stage and the coordinated
behavior after that, so agents could learn the balanced behaviors with less wasted
efforts of other agents.

To make sure of the discussion above, we investigated that when the deliv-
ery agents put down the materials, how much did they care about the nearby
execution agents. We counted the number of execution agents within a delivery
agent’s observable range when it put down a material in the last 3000 epochs;
the results are shown in Fig. 7, where the orange bars indicate the number of
removed cells, and the gray ones indicate that of successfully completed cells.

Figure 7(b) shows that when r1 = 0.5, the agents put down many materials
even though no execution agent was within its observable range, and almost all
delivered materials were removed in vain; these activities are a waste of efforts so
are undesirable. When an execution agent happened to be within the observable
range, many of the materials were successfully used.

When r1 = 0, 1 or the GDR was used, Figs. 7(a) and 7(c) indicate that the
delivery agents did not put down materials without confirming that one or a few
execution agents were nearby; actually, we could see the activities of delivery
agents. Even if they arrived at one of the installation cells, they wait for an
execution agent before putting down the material. These coordinated behaviors
made it easier for the execution agents to do the finishing tasks. In particu-
lar, when the GDR was introduced, this tendency was more pronounced. As
mentioned above, the GDR enabled agents to produce the effective coordinated
behaviors for both doing their own tasks and facilitating subsequent tasks done
by other agents.

5 Conclusion

This paper proposed a reward scheme called two-stage reward assignment with
decay to produce effective coordinated behaviors for sequential coordinated tasks
using MADRL, in which each agent has its own DQN to learn actions concur-
rently. We examined the reward scheme based on completion of a sequential
task called coordinated delivery and execution problem. Our experiments indi-
cate that when agents could get enough reward just by doing the own subtasks,
agents quickly learned the improved behavior for them but did not care about
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other agents’ behaviors that are needed to complete the tasks. On the other
hand, when agents could get only a small reward by doing their own subtasks,
they could behave to facilitate other agents’ subtasks. However, the learning for
their own subtasks was not enough, and instead, agents became too cautious
about other agents’ tasks, so they reduced their efficiency. With learning using
our proposed reward assignment, agents could learn both their own responsi-
ble subtasks and coordinated behaviors while caring about subsequent subtasks.
This learned balanced behavior could reduce the wasted efforts and improved
the entire performance of our problem.

We would like to extend our environment and the reward assignment method
for more complex tasks in the future. For example, we will explore the problems
in which coordination among several types of agent is required.

Acknowledgements. This work was partly supported by JSPS KAKENHI Grant
Number 17KT0044, 20H04245.
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Abstract. This paper proposes a deep hierarchical Non-negative Matrix
Factorization (NMF) method with Skip-Gram with Negative sampling
(SGNS) to learn semantic relationships in short text data. The pro-
posed unsupervised method learns a dense lower-order text presenta-
tion by minimizing the encoding and decoding error of factor matrices.
Semantically-enriched dense text representation is constructed using the
factor matrices where clusters are identified. We empirically evaluate the
effectiveness of the method against the state-of-the-art short text clus-
tering methods and deep neural embedding based methods.

Keywords: Deep learning · NMF · SGNS

1 Introduction

Social media platforms are a popular networking mechanism that allow users to
disseminate information and assemble social views based on short-text commu-
nication [6]. A short text data faces sparsity and low word co-occurrences that
create challenges for unsupervised text mining to identify groups or topics or
concepts within the data. Recently, supervised deep learning methods based on
shallow auto-encoder to deep auto-encoders using Recurrent Neural Networks
(RNN) [10] and Convolutional Neural Network (CNN) [10] have been used in
learning deep feature representation [24]. However, discovering a dense repre-
sentation for short text in a fully unsupervised manner is essential in many
applications to identify the clusters or concepts or topics.

Non-negative Matrix factorization (NMF) [12], which maps the high dimen-
sional text representation to a lower-dimensional representation, has become
popular in text clustering due to its capability to learn part-based lower-order
representation where groups can be identified accurately [1,14]. Though the
decomposed factor matrices are considerably dense in traditional text data and
can be used to identify clusters, extreme-sparseness in short text challenges them
in identifying dense factor matrices for the short text data.

In this paper, we present a novel method of deep Hierarchical NMF in which
input data undergoes a special normalization which results in an effect similar
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to word embedding. This allows NMF to identify dense factor matrices incorpo-
rating contexts in the short text data. This technique is similar to Skip-Gram
modelling with negative sampling (SGNS) when used with NMF. To the best of
our knowledge, the proposed method, named as SG-DHNMF, is the first method
that aims to (1) capture the semantic relationship in the short text data by
analysing the pairwise documents similarity aligning with SGNS modeling and
(2) progressively identify lower-rank factor matrices with each layer of hierarchi-
cal NMF that encodes the information of sparse document representation in each
iteration. We conjecture that hierarchical factorization of document×document
matrix into lower order can embed the geometrical structure of sparse data by
combining the nearest neighbor(NN) information in each projection step. Empir-
ical analysis with several Twitter datasets reveals that SG-DHNMF can handle
sparsity in short text and outperforms the state-of-the-art short text clustering
methods in finding accurate clusters.

2 Related Work

Document Expansion. These methods typically expand the feature vectors
by adding relevant terms to deal with the sparsity in data [2,7,9]. A common
approach is to use external knowledge sources for document expansion such as
Wikipedia [2], WordNet [7], and ontologies [9]. Currently, word embedding-based
pre-trained models such as word2vec [15], doc2vec [11], Glove [19] and Skip-Gram
[17] have been used by exploiting semantic relationships in the data. However,
short text in social media enriched using these static external sources provide
inadequate information due to semantic incoherence [18]. Social media data
includes unstructured phrases that result in a huge variance to traditional text
vocabulary. Self corpus-based expansion is proposed as an alternative semanti-
cally aligned method in which concepts are identified in the collection for aug-
mentation using clustering [8] or topics based on term frequency probabilities
[18]. However, all these methods face challenges in dealing with the fewer word
co-occurrences and the unstructured nature of the micro-blogging data [11].

Supervised Deep Feature Learning. Deep neural networks have been success-
fully used in feature learning. Deep auto-encoder [4] was one of the first models
used in the text representation. Recent research uses advanced versions of NNs
to reconstruct text representation [10]. Recurrent and recursive NNs [16,22] have
been used with word-embedding to improve the representation learning process
by including information of previous nodes for better semantic analysis in the
dataset. Recent research applies convolution filters to capture the features simi-
larity and achieve dense feature representation with CNNs [10,24]. CNN-based
methods produce promising results in linguistic tasks among all supervised meth-
ods due to their ability to detect patterns in the data [3]. However, these methods
rely on the label data (i.e. the ground-truths) for feature learning and cannot be
applied to tasks where finding labelled data is scarce.

Unsupervised Deep Feature Learning. This emerging research area includes
two families of methods, word-embedding-based and matrix factorization. The
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word embedding methods include language modeling and feature learning tech-
niques where words are mapped to vectors of real numbers using a vocabulary
[20]. Word2vec [15], a feed-forward NN based method that efficiently estimates
word representations in vector space, is a popular model. Doc2Vec [11] is an
extension of Word2vec producing document level embedding using a word vec-
tor generated for each word and a document vector generated for each doc-
ument. Glove [19] is a non-neural network based vector space representation
model. It considers a global word×word co-occurrence count matrix and uses
the statistics in representing documents. The applicability of these pre-trained
word-embedding models to short text data is limited due to vocabulary mis-
match that shows a huge variance to the general text, a fewer number of word
co-occurrence in short text data and, the noisy nature of micro-blogging data.

Matrix factorization methods are the leading unsupervised text representa-
tion methods. NMF has been used in clustering multi-view data by learning
latent features embedded in multiple views [14]. It uses assistance provided by
many views in identifying the final set of features. In comparison to the one-step
dimensional reduction in traditional NMF, the use of progressive dimensional
reduction with multiple iterations [5,25] is a recent approach. This is used in [5]
with deep learning similar to autoencoder network considering encoding error,
trained by a non-negativity constraint algorithm to learn features that show a
part-based representation of data with matrix factorization. A handful of meth-
ods has been existed that use this type of hierarchical feature learning with NMF
in step-by-step fashion [23] for document data to discover feature hierarchies in
concepts. However, this stacking of NMF in leaning feature hierarchies considers
geometric relationships between features within each iteration and encodes data
to factor matrices that could approximate the input matrix more accurately.
This method captures latent features precisely that could be neglected by one
step dimensional reduction process. In [25], encoding as well as decoding of a
factor matrix is considered in the optimization process. It shows that considera-
tion of both the information as in deep auto-encoders is successful in identifying
communities through user×user matrix in network data.

The proposed SG-DHNMF performs a progressive factorization on a symmet-
ric document co-relation matrix that encodes normalized neighbourhood infor-
mation via overlapping terms that results in SGNS through factorization. It
considers encoding as well as decoding errors in each layer of the deep NMF
process to accurately capture the geometric information in the data in resulting
factor matrices. There exist only a very few similar works. In [21], each document
in a short text corpus is considered as a window and a term-correlation matrix
is factorized to boost the performance of short text-based topic modelling. It
models words based on their context through word-correlations to overcome the
sparsity. It has been shown that applying factorization on a normalized word-
correlation matrix is similar to SGNS that encodes the relationship between the
word and its context [13].
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3 Deep Hierarchical NMF with SGNS-Based Embedding

Figure 1 illustrates the overall process of SG-DHNMF for identifying clusters in
the short text data. Let D = {d1, d2, . . .dn} be the dataset that contain a set
of m unique terms after standard prepossessing steps such as lemmatazing and
stop word removal. Let A1 ∈ Rn×n represent the document×document matrix
where a cell models the number of common terms between a document pair. We
propose to model A1 with SGNS that becomes input A to NMF.

SGNS 
modelling 

Matrix 

document

document Dense
Document 

Representation

Encoding Process Decoding Process

Hard Clustering method
(NMF with hard 

assignment policy)

Hierarchical NMF

Matrix 

document

document

Matrix 

document
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Fig. 1. Overview of SG-DHNMF

SG-DHNMF progressively decomposes A into factor matrices Ug ∈ Rn×k

and Vg ∈ Rk×n where g ∈ p and p is the number of layers (or the level of
depth) in hierarchical decomposition. It does so by reducing encoding error
‖A − U1U2. . .UpV p‖ and decoding error ‖Vp − UT

p UT
p−1. . .U

T
1 A‖ in each iter-

ation and optimizes the process to converge for a given lower rank k. The
sequential dimensional reduction process allows encoding geometric relation-
ship with nearest neighbour documents to obtain dense representation in each
iteration. Finally, SG-DHNMF reconstructs A′ (document×document) by mul-
tiplying dense factor matrices. A clustering method can be applied to this dense
representation to identify cluster assignments. In SG-DHNMF we apply one step
NMF to the reconstructed A′ with hard assignment policy by setting k as the
cluster number.

3.1 Semantic Document Representation Learning with SGNS

SG-DHNMF aims to capture the closeness within documents in A with the
SGNS modeling. SGNS has been used to highlight the word embedding in text
data when representing them in NNs [17]. It can capture the context of a word
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in a corpus that the simple bag-of-word model fails [13]. The concept of nega-
tive (word, context) sampling is used with the Skip-Gram model to maximize
the probability of an observed pair while minimizing the probability of unob-
served pairs in distributed word representation [21]. SGNS has been proved to be
equivalent to factorizing a word correlation matrix whose cells are the point-wise
mutual information of the respective word and context pairs [13]. Specifically,
factorizing a word correlation matrix with SGNS can model the closely related
words with higher coefficients near to 1 while producing lower coefficients for
loosely related words.

Distinct from the previous work, we use SGNS in SG-DHNMF to effectively
encode the sparse text data by capturing the documents similarity and represent
the input matrix to the NMF process. It maximizes the weight for the document
pairs that show closer semantic similarity (i.e., share more common terms) in
comparison to the others while minimizing the weight of document pairs that
show fewer similarity. We conjecture that representing the input matrix with
neighborhood information will capture the geometric structure inherent in the
collection and utilise the relatedness while projecting the high-order dimensional
data to low-rank data. The low-rank data will exhibit similar documents in
closer space and non-similar documents in distant space. Hence, the low-rank
representation obtained will improve the accuracy of a clustering solution.

Let di, dj be a document pair in D. we model the closeness between them
based on their shared terms with respect to rest of the documents in the collec-
tion as in Eq. (1).

A(di,dj) = log

[
c(di,dj) × T∑

da∈D c(da,di) × ∑
da∈D c(da,dj)

]
where c(di,dj) > 0 (1)

where T is the total number of terms shared by the all the document pairs
in D. Equation (1) calculates a ratio of the number of terms shared between
a document pair with the number of terms that are shared by each of these
documents with others in the collection. Let c(di,dj) be the original cell value
that represents the terms shared between di and dj . It is divided by the sum
of the values in the di row and dj column. Document pairs that do not share
any terms, the SGNS value for them is set to 0. The cell values Adi,dj

whose
arguments of log are less than 0 are converted to 0 to minimize the probability
of document pairs that show less similarity [13]. This step ensures that the input
to NMF remains positive and will improve group identification.

3.2 Feature Learning with Hierarchical NMF

The matrix A modelled with SGNS becomes input to the deep factorization pro-
cess. The progressive factorization in NMF enables SG-DHNMF to learn docu-
ment context relationship accurately as it captures higher-abstract features with
every iteration of projection in comparison to learning latent features based on
one-step lower dimensional projection. The hierarchical representation of NMF
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enforces lower to higher level feature learning with each progression. Gener-
ally, NMF factorizes a given symmetric input matrix A ∈ Rn×n into two factor
matrices U ∈ Rn×k and V ∈ Rk×n as in Eq. (2), where k is the lower rank that
generally be the required cluster number.

minU,V ≥0‖A − UV ‖F s.t U ≥ 0, V ≥ 0 (2)

The SG-DHNMF factorization process with p layers starts factorizing the input
matrix A into two non-negative factor matrix pairs (U1, V1) and proceeds with
factorizing each Vg at each layer g+1 ∈ p hierarchically. p is an empirical param-
eter that represents the number of layers on which NMF is applied progressively.
In the short text data, the hierarchical representation learning through factor-
izing a matrix model with SGNS concept allows the data to promote document
co-occurrences to deal with sparsity.

A ≈ U1U2. . .UpVp (3)

where Vp ∈ Rk×n, Ug ∈ Rrg−1×rg where we set n = r0 ≥ r1 ≥ . . . ≥ rp = k and
1 ≤ g < p.

In the short text data where a fewer number of co-occurrences in terms exist,
it becomes difficult to accurately identify the factors only considering encoding
of input information. It is important to validate identified factors with decoding
that inversely track factors and approximate them through input data. SG-
DHNMF attempts to minimise the total approximation error by using both
encoding and decoding to obtain an optimum lower-order dense representation.
The decoding component, given in Eq. (4), is included in the objective function
of SG-DHNMF as follows.

Vp ≈ UT
p UT

p−1. . .U
T
1 A (4)

minUg,Vg≥0‖A − U1U2. . .UpVp‖2F + minUg,Vg≥0‖Vp − UT
p UT

p−1. . .U
T
1 A‖2F

s.t Ug ≥ 0, Vg ≥ 0
(5)

The objective function of SG-DHNMF as in Eq. (5) calculates the total encod-
ing error within p layer with the first component (Eq. (3)) and the total decoding
error within p layer with the second component (Eq. (4)) in each iteration. The
total error is attempted to minimize over the iterations in obtaining accurate
dense factors for short text. This use of reconstruction loss ensures to capture
the geometric information accurately in factor matrices. Figure 2 illustrates the
impact of hierarchical NMF in comparison to a single NMF using a toy dataset.
The multi-layer progressive factorization (k = 20, 10, 5) can achieve the denser
and accurate lower-order representation in comparison to the one-step projection
(k = 5).

Update Rules for SG-DHNMF. We initially pre-train each layer to have ini-
tial approximation of factor matrices Ug and Vg by simply decomposing the input
matrix for each layer as follows. This pre-training process starts by decomposing
A as A ≈ U1V1 by minimizing |A − U1V1‖2F + |V1 − UT

1 A‖2F where U1 ∈ Rn×r1
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Toy health dataset that consists of 50 tweets that belongs to 5 clusters are used for and analyse the first iteration
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One-step Factorization Three-layer Factorization

Note: All the and matrices has the same size; but matrices are generated with lower order factor matrices

lower rank - 5 lower rank - 5lower rank - 10
lower rank - 20

Fig. 2. Impact of hierarchical NMF

and V1 ∈ Rr1×n. Matrix V1 is then decomposed as V1 ≈ U2V2 by minimizing
|V1 − U2V2‖2F + |V2 − UT

2 V1‖2F where U2 ∈ Rr1×r2 and V2 ∈ Rr2×n.
This process is continued until all the p layers are pre-trained. This type of

pre-training has been found effective and efficient [25]. It has greatly reduced
the training time of the model as it gives better initialization for the model.
In each iteration of the optimization process of Eq. (5), entries of the factor
matrices for each layer are updated sequentially following multiplicative update
rule principles. Following update rules for Ug and Vg have been derived based on
the objective function using a derivative process similar to [25] for minimizing
the total error.

Ug ← Ug � 2ΨT
g−1AV T

p ΦT
g+1

ΨT
g−1Ψg−1UiΦg+1VpV T

p ΦT
g+1 + ΨT

g−1AATΨg−1UgΦg+1ΦT
g+1

(6)

where Ψg−1 = U1U2. . .Ug−1 and Φg+1 = Ug+1. . .Up−1Up. When g = 1 and g = p,
we set Ψ0 = I and Φp+1 = I respectively.

We start updating each matrix Ug as in Eq. (6), and then update Vg for lower
rank k within each iteration as follows:

Vg ← Vg � 2ΨT
g A

ΨT
g ΨgVg + Vg

(7)

This process used in SG-DHNMF is illustrated in Algorithm1.

Algorithm 1. The SG-DHNMF algorithm
Input : The Document-Document matrix model with SGNS weighting A,

Number of layers p with the configuration, Number of Clusters k
Output: The final Document-Cluster matrix C

while Convergence of Eq. (5) where number of iterations <= 100 do
foreach g=1: p do

Compute Ug using Eq. (6)
Compute Vg using Eq. (7)

end

end
A′ = VpUp

C ← Apply NMF with hard clustering policy on A′ to assign to k clusters
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4 Empirical Analysis

Datasets: Two publicly available tweets [26] and stack overflow [24] with their
ground-truth labels, used in prior short text clustering research, have also been
used. Two additional twitter datasets from Trisma (https://trisma.org/) span-
ning across discussions on Cancer types and University Education have been
used. The DS1:cancer dataset consists of 8 cancer types and the DS2:Edu dataset
consists of 7 subject streams. These subgroups are considered as clusters. Stop
words were removed. Terms with >90% frequency and <3 were removed. Table 1
reports the details of the datasets as well as the depth of the hierarchical-NMF
model and the layer configuration at each depth. The layer configurations have
been set based on experiments to systematically reduce the input data matrix.

Baselines: SG-DHNMF is compared with traditional unsupervised clustering
methods including traditional NMF, Latent Dirichlet allocation (LDA) and k-
means [1]. SG-DHNMF is also compared with the state-of-the-art unsupervised
methods proposed to address the sparseness in short text, (1) Gibbs Sampling
algorithm for the Dirichlet Multinomial Mixture model for short text clustering
(GSDMM) [26], (2) Short-text topic modeling via NMF [21] (SeaNMF) that
combines SGNS and NMF, (3) Deep autoencoder-like NMF [25] for community
detection with sparse data that combines deep learning and NMF, and (4) k-
means clustering with the document-level embedding, Doc2Vec [11] that can
be used as an alternative way to obtain dense representation. Doc2Vec which
creates a numeric representation that includes positive and negative numbers for
a document limits us to use Doc2Vec with NMF.

Additionally, we compare unsupervised SG-DHNMF against the commonly
used dense representation learning supervised methods to show how well SG-
DHNM can lean deep features without the guidance. State-of-the-art single-layer
shallow auto-encoder [10], RNN with Gated Recurrent Unit (RNN-GRU) [10]
and CNN [10], that rely on ground-truth labels, are used. Finally, we compare
the use of SGNS concept in learning the dense text representation accurately.

Evaluation Metrics: Two measures used to evaluate the accuracy of the short
text clustering are standard pairwise F1-score (F1) which calculates the har-
monic average of precision and recall, and Normalized Mutual Information
(NMI) which measures the purity against the number of clusters [18].

Table 1. Dataset description

Dataset # Docs # Terms #Clusters Sparsity Layers configuration

DS1:Cancer 20568 8851 8 0.9913 800-160-32-8

DS2:Uq 7504 5522 7 0.9974 700-140-28-7

DS3:tweet 2472 5077 89 0.9422 356-89

DS4:Stackoverflow 16407 2302 20 0.9413 2000-400-80-20

https://trisma.org/
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Comparison with Traditional Clustering Methods: Figure 3 shows the
comparative results of SG-DHNMF with traditional shallow clustering methods
when the input matrix is document×document representation encoded without
SGNS and reconstruction loss. It also shows the results on traditional methods
when the input matrix is used in classical way of term×document matrix. Results
show that the document×document matrix representation is able to produce
better results for traditional clustering methods. Additionally, it depicts that
SG-DHNMF is superior to traditional shallow clustering methods as it uses step-
wise deep learning to identify dense representation for text. This learning process
shows a significant impact on large sparse datasets such as DS1.
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0.8

1

NMF LDA K-means NMF LDA K-means SG-DHNMF

Term-Document Matrix Document-Document  Matrix

N
M

I

Methods with document modelling 
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Fig. 3. Comparison with traditional methods and different document modelling

Comparison with Unsupervised Short Text Mining Methods: Table 2
details the performance of SG-DHNMF with state-of-the-art unsupervised meth-
ods that have been designed to handle sparsity in the data. The compari-
son with SeaNMF shows the superiority of using the SGNS concept in SG-
DHNMF and with DANMF shows the superiority of using hierarchical learning
in SG-DHNMF. The Doc2Vec encoding with k-means that extends the word-
embedding concept to document embedding shows the least performance as
there exists low word co-occurrences among short documents that this method
can be benefited on. GSDMM which uses probability calculation face challenges
due to less word co-occurrences and is unable to capture probabilities. DANMF
uses reduced representation of network data for community detection balanc-
ing encoding and decoding, using a very large user to user network. However,
DANMF does not perform well with extremely sparse short text data. SeaNMF
uses the term×term relationship to learn word-context relationship with NMF
and is able to achieve the best results among the baselines. Datasets DS3 and
DS4 show generally good results with other methods such as SeaNMF, DANMF
and Doc2Vec in comparison to DS1 and DS2 which are more denser. In highly
sparse datasets SG-DHNMF produce superior results.

Comparison with Supervised Deep Learning Methods: Deep learning
methods have been commonly developed to learning dense representation with
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Table 2. Performance comparison with state-of-the-art unsupervised methods

Dataset SG-DHNMF GSDMM SeaNMF DANMF Doc2Vec

NMI F1 NMI F1 NMI F1 NMI F1 NMI F1

DS1 0.94 0.93 0.06 0.17 0.11 0.32 0.03 0.2 0.01 0.15

DS2 0.31 0.45 0.01 0.22 0.08 0.81 0.17 0.39 0.12 0.34

DS3 0.86 0.74 0.8 0.57 0.87 0.75 0.75 0.54 0.4 0.17

DS4 0.65 0.63 0.39 0.31 0.6 0.55 0.56 0.57 0.51 0.45

Avg 0.69 0.69 0.32 032 0.42 0.61 0.38 0.43 0.26 0.28

using ground-truth labels. They have been rarely used in unsupervised setting,
except only a handful such as DANMF [25], benchmarked in Table 2. Results
in Table 3 show the performance of state-of-the art supervised methods in cate-
gorising documents to respective clusters as classes. RNN and CNN based meth-
ods trained with ground-truth data only perform 4.35% and 7.25% better than
SG-DHNMF in NMI that is not trained with ground-truth data. In spite of
training, the shallow auto-encoder method shows inferior performance. It high-
lights the importance of deep learning embedded with hierarchical NMF in SG-
DHNMF without supervision and shows that it even outperforms supervised
shallow methods.

Table 3. Comparison of SG-DNMF with Supervised deep learning methods

Dataset SG-DHNMF Autoencoder-shallow RNN-GRU CNN

NMI F1-score NMI F1-score NMI F1-score NMI F1-score

DS1 0.94 0.93 0.01 0.25 0.86 0.68 0.81 0.81

DS2 0.31 0.45 0.01 0.84 0.92 0.99 0.84 0.99

DS3 0.86 0.74 0.05 0.13 0.77 0.63 0.79 0.71

DS4 0.65 0.63 0.01 0.1 0.65 0.59 0.50 0.50

Avg 0.69 0.69 0.02 0.33 0.8 0.72 0.74 0.75
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Impact of SGNS: The SGNS concept has been used in learning the word-
context relationship in text mining [13]. In SG-DHNMF, we have proposed to
use SGNS in learning the document-context relationship. Figure 4 shows that the
document-context relationship can be learnt accurately with the SGNS mod-
elling and factorizing the document correlation matrix. DS1 and DS2 which
are extremely sparse show higher boost with SGNS modelling by capturing the
document-correlations in modelling.

Sensitivity Analysis. We evaluate the depth of the layers used in NMF for
deep learning the low-order features. Results in Table 4 show that this parameter
depends on the nature and size of the dataset. This is similar to hyper-parameters
tuning in neural network-based methods. The best coefficients for factor matrices
are identified in iterative fashion reducing the encoding and decoding error. We
measure the total error for 100 iterations and reported the normalized total error
as in Fig. 5(a). It depicts that SG-DHNMF converges within this 100 iterations
for all the datasets. Figure 5(b) shows how performance varies with sparsity in
datasets. We have chosen a subset of cancer dataset (DS1) with different clus-
ter numbers to form varying sparse datasets. Results show that performance
increases with the sparsity in datasets. Figure 5(c) shows time taken for hierar-
chical NMF-based model training against the data size considering the subsets
of Cancer dataset. SG-DHNMF shows a trend close to quadratic efficiency when
double the sample size, similar to a NMF based method.

Table 4. Performance comparison using different number of layers

Dataset 1 layer 2 layer 3 layer 4 layer 5 layer

NMI F1 NMI F1 NMI F1 NMI F1 NMI F1

DS1 0.66 0.65 0.81 0.82 0.74 0.74 0.94 0.93 0.65 0.64

DS2 0.19 0.38 0.3 0.45 0.22 0.39 0.31 0.45 0.25 0.39

DS3 0.83 0.69 0.86 0.74 0.83 0.7 - - - -

DS4 0.62 0.59 0.64 0.62 0.64 0.62 0.65 0.63 - -
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Complexity Analysis. The computational complexity of SG-DHNMF is higher
than any methods that use term × document matrix as an input. It includes
an additional step calculating the document × document matrix by measuring
pair-wise similarity in the document set. Excluding this additional pair-wise
comparison, computational complexity of SG-DHNMF is O(p(n2r+nr2)) where
n is the number of documents, p is the number of layers in HNMF with (n >> p),
and r is the maximum layer size in layer configuration out of all layers. This is
similar to complexity of DANMF. However, seaNMF has O(n2) complexity [21]
while GSDMM [26] and Doc2vec [11] have O(nlog(v)) and O(knl) complexity
respectively where v is the size of the vocabulary, l is the average document
length and k is the number of groups/clusters. In contrast, deep NN models
have higher computation complexity to SG-DHNMF.

5 Conclusion

We present a novel unsupervised method for short text clustering by learning
a feature representation with deep NMF. The short text data shows extreme
sparseness and fewer co-occurrences and creates additional challenges for a clus-
tering algorithm to learn categories. This paper develops a feature learning
method with the progressive use of NMF similar to deep NNs to explore the
document-context relationships and encoding neighbour information within each
step. Empirical analysis shows the superiority of SG-DHNMF.

References

1. Aggarwal, C.C., Zhai, C.: Mining Text Data. Springer, New York (2012). https://
doi.org/10.1007/978-1-4614-3223-4

2. Banerjee, S., Ramanathan, K., Gupta, A.: Clustering short texts using Wikipedia.
In: SIGIR, pp. 787–788. ACM (2007)

3. He, T., Huang, W., Qiao, Y., Yao, J.: Text-attentional convolutional neural network
for scene text detection. IEEE Tran. Image Process. 25(6), 2529–2541 (2016)

4. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

5. Hosseini-Asl, E., Zurada, J.M., Nasraoui, O.: Deep learning of part-based repre-
sentation of data using sparse autoencoders with nonnegativity constraints. IEEE
Trans. Neural Netw. Learn. Syst. 27(12), 2486–2498 (2015)

6. Hu, X., Liu, H.: Text analytics in social media. In: Aggarwal, C., Zhai, C. (eds.)
Mining Text Data, pp. 385–414. Springer, Boston (2012). https://doi.org/10.1007/
978-1-4614-3223-4 12

7. Hu, X., Sun, N., Zhang, C., Chua, T.S.: Exploiting internal and external semantics
for the clustering of short texts using world knowledge. In: CIKM, pp. 919–928.
ACM (2009)

8. Jia, C., Carson, M.B., Wang, X., Yu, J.: Concept decompositions for short text
clustering by identifying word communities. Pattern Recogn. 76, 691–703 (2018)

9. Jin, O., Liu, N.N., Zhao, K., Yu, Y., Yang, Q.: Transferring topical knowledge from
auxiliary long texts for short text clustering. In: CIKM, pp. 775–784. ACM (2011)

https://doi.org/10.1007/978-1-4614-3223-4
https://doi.org/10.1007/978-1-4614-3223-4
https://doi.org/10.1007/978-1-4614-3223-4_12
https://doi.org/10.1007/978-1-4614-3223-4_12


282 W. A. Mohotti and R. Nayak

10. Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., Brown,
D.: Text classification algorithms: a survey. Information 10(4), 150 (2019)

11. Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights
into document embedding generation. arXiv preprint arXiv:1607.05368 (2016)

12. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

13. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization.
In: NIPS, pp. 2177–2185 (2014)

14. Luong, K., Balasubramaniam, T., Nayak, R.: A novel technique of using coupled
matrix and greedy coordinate descent for multi-view data representation. In: Hacid,
H., Cellary, W., Wang, H., Paik, H.-Y., Zhou, R. (eds.) WISE 2018. LNCS, vol.
11234, pp. 285–300. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02925-8 20

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

16. Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., Khudanpur, S.: Extensions
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Abstract. Advances in deep reinforcement learning have allowed
autonomous agents to perform well on video games, often outperforming
humans, using only raw pixels to make their decisions. However, timely
context awareness is not fully integrated. In this paper, we extend Deep
Q-network (DQN) with spatio-temporal architecture - a novel framework
that handles the temporal limitation problem. To incorporate spatio-
temporal information, we construct variants of architectures by feeding
spatial and temporal representations into Deep Q-networks in different
ways, which are DQN with convolutional neural network (DQN-Conv),
DQN with LSTM recurrent neural network (DQN-LSTM), DQN with
3D convolutional neural network (DQN-3DConv), and DQN with spa-
tial and temporal fusion (DQN-Fusion), to explore the mutual but also
fuzzy relationship between them. Extensive experiments are conducted
on popular mobile game Flappy Bird and our framework achieves supe-
rior results when compared to baseline models.

Keywords: Deep reinforcement learning · Spatio-temporal
architecture · Flappy bird

1 Introduction

Learning to play games has been one among of the popular topics researched
in AI today. Solving such problems using game theory and search algorithms
require careful domain specific feature definitions, making them averse to scala-
bility. Reinforcement learning (RL) algorithms based on neural network hold the
promise of allowing autonomous agents, such as robots, to do in a wide variety of
tasks such as neural program synthesis [1], high-dimensional robot control [2] and
solving autonomous-driving problems [3]. In particular, deep Q-networks (DQN)
are shown to be effective in playing Atari video games [4] and more recently, in
car racing game [5]. Recent advances in deep learning have made it possible to
extract high-level features from raw pixel data, leading to breakthroughs in com-
puter vision [6–8]. These methods utilize a range of neural network architectures,
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 283–294, 2020.
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including convolutional networks, multilayer perceptrons, and recurrent neural
networks. Inspired by recent advances, reinforcement learning uses several lay-
ers of convolutional neural network to capture spatio information and predict
agent’s action over time step.

While encouraging performances are reported, a lot of methods predict action
from spatio information, without explicitly taking more high-level temporal
information from images into account. Furthermore, temporal contexts are prop-
erties observed in images over time with rich motion cues and have been proved
to be effective in action recognition [9]. Lack of temporal context can lead to
partially observable states. In the case of partially observable states, the learning
agent needs to remember previous states in order to select optimal actions. A
valid question is how to incorporate high-level temporal information into deep
neural network as complementary knowledge in addition to spatio image repre-
sentations. We investigate particularly in this paper the architectures by exploit-
ing the mutual relationship between spatio and temporal image representations
for enhancing decision process. More importantly, to better demonstrate the
impact of simultaneously utilizing the two kinds of representations, we devise
variants of architectures by feeding them into different network, e.g. leveraging
spatio and temporal information with two CNN, and combine them in the late
fusion step. The main contributions of our work are as follows:

1. We conduct deep reinforcement learning, which incorporates spatial and tem-
poral information. More specifically, we establish four Deep Q-networks: DQN
with convolutional neural network (DQN-Conv), DQN with LSTM recurrent
neural net- work (DQN-LSTM), DQN with 3D convolutional neural network
(DQN-3DConv), and DQN with spatial and temporal fusion (DQN-Fusion).

2. We provide experimental evaluation of multiple approaches for extending rein-
forcement learning with spatio-temporal architectures, and report significant
gains in performance over strong baseline models [20,21].

3. We highlight an architecture (DQN-Fusion) that processes input with two
separate network - a spatio single frame network and a temporal multi-frame
network - as a promising way to provide complementary signals for deep RL
agents.

Our paper is organized as follows. In Sect. 2, we introduce some related works
on reinforcement learning; In Sect. 3, we give a detailed description on our pro-
posed frameworks; In Sect. 4, the performance is evaluated and compared to the
state of the art models in the environment of Flappy Bird; In Sect. 5, we will
make conclusion for this paper.

2 Related Work

The research on deep reinforcement learning has proceeded along three different
dimensions: model-based methods [10–12], value-based approaches [13,14] and
policy-based models [15,16].
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The first direction, model-based methods, learn a transition model that allows
for simulation of the environment without interacting with the environment
directly. many works learn how the game works and predict which actions will
lead to desirable outcomes. Obviously, most of them highly depend on the envi-
ronment of the game, which may be limited in practice. For example, [10] and [11]
employ deep dynamical model to predict high-dimensional observations based
on autoencoder. Similarly, [12] utilize auto-encoders to learn a low-dimensional
embedding of images jointly with a predictive model in this low-dimensional
feature space.

Value-based approaches use value function to select action. The learning
process is to optimize the value function. For instance, in [13], deep Q-network
agent, receiving only the pixels and the game score as inputs, was able to achieve
human-level control over Atari 2600 games. [14] addressed the fundamental insta-
bility problem of using function approximation in RL by the use of two tech-
niques: experience replay and target networks.

Different from value-based model, policy-based models do not need to main-
tain a value function model, but directly search for an optimal policy. In this
direction, TRPO [15], directly optimize the quantity of interest while remaining
stable under function approximation. In [16], Mnih et al. propose asynchronous
DRL, which is an efficient framework for DRL that uses asynchronous gradient
descent to optimize the policy.

Although some DRL approaches learn to play games from raw pixel, they suf-
fer from temporal limitations. For this problem, Mnih et al. [17] deploy input with
four greyscale frames of the game, concatenated over time, which are initially
processed by several convolutional layers in order to extract spatio-temporal fea-
tures, such as the movement of the ball in “Pong” or “Breakout.” Hausknecht
et al. [18] extends DQN into an RNN, which allows the network to better deal
with POMDPs by integrating information over long time periods. Like recursive
filters, recurrent connections provide an efficient means of acting conditionally
on temporally distant prior observations.

In short, our work in this paper belongs to the value-based models. Different
from most of the aforementioned models which uses layers of CNN or recurrent
connections [18], our work contributes by studying not only jointly exploiting
image representations and temporal information for deep reinforcement learn-
ing, but also how the architecture can be better devised by exploring mutual
relationship in between.

3 Deep Reinforcement Learning with Temporal-
Awareness Network

In this section, we devise our deep Q-network under the umbrella of additionally
incorporating the detected high-level temporal features. Specifically, we begin
this section by presenting the problem formulation and followed by four variants
of our spatio-temporal frameworks.
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Fig. 1. The illustration of four variants of our spatio-temporal framework.

3.1 Problem Formulation

Suppose we have an agent interacts with an environment E , in a sequence of
actions, observations and rewards. At each time step, the agent observes the
current state st of the environment, and selects an legal action at from a set of
possible game actions, A = {1, · · · ,K}. After every interaction with the environ-
ment, the agent receives a reward rt representing the change in game score. The
learning process of the game is to find the policy that maximizes the expected
cumulated discounted rewards Rt,

Rt =
T∑

t′=t

γt′−trt′ (1)

where T is the time at which the game terminates, and γ ∈ [0, 1] is a discount
factor that determines the importance of future rewards. The Q value of a given
policy π is determined by the expected return from interacting with the envi-
ronment E by action a,

Qπ(s, a) = E[Rt|st = s, at = a] (2)

The basic idea behind value-based model is to estimate the action value
function. Instead of using an accurate estimate, we follow Bellman equation
to obtain an estimate of the Q-function. Specifically, we use a neural network
parameterized by θ to estimate reward function Q as follows:
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Q∗(s, a) = max
π

{E[Rt|st = s, at = a]} (3)

It is common to use observed image which representing the current screen as state
st. Since the agent only observes images of the current screen, which is partially
observed. It is possible to divide the game states as spatio representations and
temporal features to tackle this problem. We therefore consider sequences of
actions and observations as temporal features to infer velocity or direction of
the objects. Besides, spatio representations provide visual clue for object location
and recognition respectively.

The goal of learning is to minimize difference between Qθ and Q∗ which leads
to the following square loss function:

Lt(θt) = Es,a,r,s′ [(yt − Qθt
(s, a))2] (4)

where yt = Es′∼ε[r + γ max
a′

Q(s′, a′; θt−1)|s, a]. Differentiating the loss function

with respect to the weights, we arrive the following gradient,

∇θt
Lt(θt) = Es,a,r,s′ [(yt − Qθt

(s, a))∇θt
Qθt

(s, a)] (5)

Instead of performing full expectations in the above gradient, it is popular
to use experience replay to break correlation between successive samples. Then
we arrive at the famous Q-learning algorithm.

Note that, at each time step, the action distribution is selected by an ε-greedy
strategy that follows the strategy with probability 1− ε selects a random action,
and with probability ε follow the action with maximum rewards.

3.2 DQN Without Temporal-Awareness

DQN without temporal-awareness considers task in which an agent interacts
with an environment, in this case the game engine. The agent observes an image
xt ∈ R

d from the engine, which is a vector of raw pixel values representing the
current screen. For simplicity the agent utilizes several layers of convolutional
neural network for state representation. Since the agent only observes images of
the current screen, the task is partially observed.

3.3 DQN with Temporal-Awareness

For DQN with temporal-awareness, the temporal components of game provide
an additional and important clue for environment state as velocity or direc-
tion can be reliably recognised based on temporal feature. An overview of our
proposed architectures is depicted in Fig. 1. We devise four variants of DQN
with temporal-awareness network for involvement of two design purposes. The
first purpose is about which network is better to capture temporal feature in
three architectures, i.e., DQN-Conv (capturing temporal feature with convolu-
tional neural networks), DQN-LSTM (leveraging temporal feature with recurrent
neural network) and DQN-3DConv (deriving temporal feature from 3D convo-
lutional neural network). The second purpose is about how to simultaneously
utilize spatio and temporal features and we design DQN-Fusion (deploying spa-
tial and temporal networks separately, and combining at late fusion step).
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DQN-Conv (DQN with Convolutional Neural Network). Given the cur-
rent screen of game, one natural way of incorporating temporal features is to
consider sequences of actions and observations, x1, a1, x2, · · · , at−1, xt and learn
game strategies that depend upon these sequences. We consider observations of
length n as st = xt−n+1, · · · , xt, where xi ∈ R

d, st ∈ R
n×d. The n frames obser-

vations are processed by layers of convolution network and rectified linear unit
to obtain high level state representation. In each time step, we use dense layer
to predict action. Here max value action (at = arg max

a′
Q(st, a

′)) is selected to

interact with the environment E . This kind of CNN architecture with stacked
frames input is named as DQN Conv.

DQN-LSTM (DQN with Recurrent Neural Network). To further lever-
age both image representations and high-level temporal features in the encod-
ing process, we design the second architecture DQN-LSTM. Instead of estimate
Q(st, at), we estimate Q(st, ht−1, at), where ht−1 is an extra input returned by
the network at the previous step st−1. The LSTM updating procedure in DQN-
LSTM is designed as

xt = Txx0 and ht = f(xt) (6)

where De is the dimensionality of LSTM input, Tx ∈ R
De×Dx is the transfor-

mation matrix for screen image representation, and f is the updating function
within LSTM unit. In each time step, we use the output ht of LSTM hidden
state to predict the next action.

DQN-3DConv (DQN with 3D Convolutional Neural Network). The
third design DQN-3Donv is similar to DQN-Conv as both designs utilize con-
volutional neural network and high-level temporal features, except that DQN-
3DConv use 3-dimensional convolutional neural network. DQN-3DConv model
extracts features from both spatial and temporal dimensions by performing 3D
convolutions [19], thereby capturing the motion information encoded in multiple
adjacent frames. The developed model generates multiple channels of informa-
tion from the input frames, and the final feature representation is obtained by
combining information from all channels. Suppose the current screen of envi-
ronment as grayscale image st ∈ R, multiple adjacent frames add additional
temporal dimension of the image which represents motion cues of object. For-
mally, the value at position (x, y, z) on j − th feature map in the i − th layer is
given by

vxyz
ij = tanh(bij +

∑

m

pi−1∑

p=0

Qi−1∑

q=0

Ri−1∑

r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m ) (7)

where Ri is the size of the 3D kernel along the temporal dimension, wpqr
ijm is the

(p, q, r) − th value of the kernel connected to the m − th feature map in the
previous layer.
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DQN-Fusion (DQN with Spatial and Temporal Fusion). Different from
the former three designed architectures which mainly explore different network
to capture temporal feature, we next deploy spatial network with additional
temporal networks for motion features and combine two networks output in the
late fusion step. As video game can naturally be decomposed into spatial and
temporal components. The spatial part, in the form of individual screen frame,
carries information about game scenes and objects depicted in the screen. The
temporal part, in the form of motion across the frames, conveys the movement
of the observer (the game view) and the objects. In DQN-Fusion, we deploy two
convolutional neural network, one for each individual screen, and the other for
n adjacent frames, and state can be denoted as ss

t = [xt−n+1, · · · , xt], st
t = xt,

The ConvNet output is then constructed as follows:

xs = CNNs(ss
t ) and xt = CNNt(st

t) (8)

u = [Tsxs, Ttxt] (9)

ot = Tuu (10)

where u is the concatenated vector of Tsxs and Ttxt, Ts ∈ R
u×s, Tt ∈ Ru × t,

Tu ∈ R
o×u are transformation matrices. Next action is selected from max value

of ot.

4 Experiments and Discussion

In this section, we present the Flappy Bird environment with variants of architec-
tures used in our experiments and discuss the effectiveness of spatio-temporal
model. The experimental results are listed in the Table 1. Then, it is neces-
sary to restore the above experimental settings and details to facilitate the fair
comparison experiments. We conduct the experiments to illustrate the impact
of different network involved in deep reinforcement learning and compare with
baseline methods.

4.1 Experimental Setting

Environment. The environment, Flappy Bird, is a popular mobile game, in
which the player guides the bird, which is the “hero” of the game through the
space between pairs of pipes. At each instant there are two actions that the
player can take: to press the “up” key, which makes the bird to jump upward or
not pressing any key, which makes it descend at a constant rate.

Pre-processing. Since the environment uses a very high dimensional state, we
need to perform pre-processing to reduce the dimensionality of state space. The
background image does not add important information, so we found a way to
erase the background and keep only the birds, pipes and the ground. The original
screen size is 512×288 in three channels, we convert the image to grayscale, crop
it to 340 × 288 pixels, rescaled to 84 × 84 pixels and normalized to the range of
[0, 1].
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Parameter Settings. The Flappy Bird game was run at 30 frames per second
and the number n of adjacent frames was set to 4. All networks are trained
using the Adam algorithm with learning rate 1e−6, β1 = 0.9, β2 = 0.999 and
the minibatch size is 32. Agent experiences (st, at, rt, st+1) are stored in replay
memory of size one million, and Q-learning updates are done on batches of
experiences randomly sampled from the memory. The discount factor γ was set
to 0.99. We use an ε-greedy policy during the training process, where ε is linearly
decreased from 1 to 0.1 over the first million steps, and then fixed to 0.1. The
convolution weights are initialized to have a normal distribution with mean 0
and variance 1e−2.

Evaluation Metrics. We report the performance of our proposed methods
using game average score and max score. In addition to the learned agents, we
also report the average scores for human game player. The human performance
is the median reward achieved after around two hours of playing game.

Fig. 2. The two plots of average rewards and losses per episode.

4.2 Comparison Experiments and Discussion

We pick up three methods based on reinforcement learning for Flappy Bird
environment as baseline models, i.e., FlapAI SARSA, FlapAI Q-Learning [20]
and Mixed-Integer Control Model [21]. The three techniques are totally dif-
ferent. In particular, SARSA and Q-Learning are deep neural network model
with discretization and backward updates. Mixed-Integer Control Model was
implemented with three different controllers, including flap controller, path plan
controller and model-based predictive controller. For these learned methods,
we follow the evaluation strategy used in Bellemare et al. [22,23] and report
the average score, standard deviation and max score obtained by running an
ε-greedy policy for a fixed number of steps. The curves in Fig. 2 show how the
average rewards and losses evolve during training on the game Flappy Bird. The
rewards plots continue improving during training. Besides, the loss plot tends
to be very noisy because small changes to the weights of a policy can lead to
large changes in the distribution of states the policy visits. In addition to seeing



Deep Reinforcement Learning with Temporal-Awareness Network 291

steady improvement of rewards during training our method is able to train deep
Q-network with stochastic gradient descent in a stable manner.

Results in Table 1 demonstrate the effectiveness of the spatio-temporal net-
work in improving the performance of our agent. DQN-Spatial is the model
without temporal feature which achieves average score of 5.1. DQN-Conv, DQN-
LSTM, DQN-3DConv and DQN-Fusion explicitly utilize both spatio and tempo-
ral features, which show better average score and max score over DQN-Spatial.
In our proposed methods, DQN-Fusion achieves the best performances with aver-
age score of 1397. The average score of DQN-Conv is better than DQN-3DConv,
but DQN-3DConv has higher max score, which is benefited from the mechanism
of convolutional kernel across multiple frames. Besides, our proposed methods
achieve much better performance than a human player. Our method boosts rein-
forcement learning with 3.3 million parameters compared to origin DQN with
1.7 million parameters.

Table 1. Performance of the agents for various learning methods by running ε-greedy
policy.

Method Mean Standard deviation Max

FlapAI SARSA [20] 117.317 112.998 811

FlapAI Q-Learning [20] 209.298 162.553 1224

Mixed Control [21] 418.6 - 500

DQN-Spatial 5.1 3.534 11

DQN-Conv 111 86.951 249

DQN-LSTM 102 76.422 214

DQN-3DConv 106.2 82.821 264

DQN-Fusion 1397 1754.076 5819

Human 4.25 10.614 21

To understand more about the working mechanism of the trained CNN
model, the screen frame was visualized after the last spatial convolutional layers
to highlight regions of interest. OpenCV was used to interpolate the heatmap
of activation function and we project it onto the original image. In Fig. 3, we
demonstrate weakly-supervised localization in the context of CNN, which cap-
ture objects of interest in the environment. Figure 3.a and c are original image,
Fig. 3.b and d are corresponding heatmaps of activation function. We see for
Flappy Bird, the CNN heatmap focuses on the bird and nearest pipes. This kind
of activation function is helpful, likely because the position of the pipe relative
to the bird is a very important spatial signals.

In summarize, the DQN-Fusion we proposed achieves superior results when
com- pared to baseline deep models. The results basically indicate the advantage
of simultaneously utilizing both spatio and temporal features for reinforcement
learning. Furthermore, though DQN-Conv, DQN-LSTM and DQN-3DConv all
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Fig. 3. The screenshots of the game Flappy Bird with heatmaps of activation function.

run involve the utilization of temporal features, DQN-Conv achieves better
scores, indicating 2-D convolutional networks is better to deal with temporal
features. Compare with other methods such as FlapAI and Mixed Control, our
methods are more suitable for game environment with abundant motion infor-
mation. For game without abundant motion information, our method plays com-
parable and achieves similar results.

5 Conclusions

In this paper, we construct the four spatio-temporal Deep Q-networks for rein-
forcement learning: DQN with convolutional neural network (DQN-Conv), DQN
with LSTM recurrent neural network (DQN-LSTM), DQN with 3D convolu-
tional neural network (DQN-3DConv), and DQN with spatial and temporal
fusion (DQN-Fusion). In addition to spatio signal, the temporal component of
the game provides an additional and important clue for environment state as
velocity or direction of the bird can be reliably recognized based on the tem-
poral feature. To verify our claim, we have devised variants of architectures for
dynamic temporal feature extraction. Experiments conducted on popular game
Flappy Bird validate our proposal and analysis. Performance improvements are
clearly observed when comparing to previous methods and more remarkably, the
performance of our DQN-Fusion achieves average score of 1397 and max score
of 5819, which utilizing both spatio and temporal features. Besides, by explic-
itly visualize heatmaps of activation function of CNN feature map, we found
that CNN architectures are capable of learning weakly-supervised localization,
which is important for decision process. In order to combine spatio and temporal
features, we investigate different architectures based on two separate networks,
which are then combined by late fusion. The spatial network performs anal-
ysis from single frame, while the temporal network is trained to add motion
clues. Taking account two kinds of information leads to significantly improve-
ment over other baseline methods. In fact, we achieved the state-of-the-art results
on Flappy Bird environment with two kinds of information.
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Here we take a step back from evaluating performance, there are some empir-
ical findings in our results.

1. Temporal and spatial features are complementary, as combination of two
kinds of features significantly outperforms baseline models [20,21].

2. 2D-ConvNet trained on multi-frame is better to capture temporal features
among our devised three different architectures. The reward signal success-
fully guides CNN to localize the bird and pipes in the game environments.

3. For game environments with abundant motion clues, DQN-Fusion is capable
to utilize meaningful features of the environment, as DQN-Fusion significantly
improves average score and max score.
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Abstract. In this paper we consider the problem of how to balance
exploration and exploitation in deep reinforcement learning (DRL). We
propose a generative method called double replay buffers with restricted
gradient (DRBRG). DRBRG divides the replay buffer in experience
replay into two parts: the exploration buffer and the exploitation buffer.
The two replay buffers with different retention policies can increase
sample diversity to prevent over-fitting caused by exploiting. In order
to avoid the deviation of the current policy from the past behaviors by
exploring, we introduce a gradient penalty to limit the policy change
into a trust region. We compare our method with other methods using
experience replay on continuous-action environments. Empirical results
show that our method outperforms existing methods both in training
performance and generalization performance.

Keywords: Deep reinforcement learning · Experience replay ·
Exploration and exploitation

1 Introduction

Deep reinforcement learning (DRL) has achieved great success in many fields
by combining deep learning and reinforcement learning [10,15]. From address-
ing simple physical control problems [2,24] to learning to play Atari games [14]
and control robots [12], to defeating expert human players in Go game [19,20],
there has been a variety of work to solve sequential decision-making problems.
However, one of the biggest challenges in these DRL methods is the exploration-
exploitation dilemma [21]. An agent exploits the learned knowledge to take
actions for instant reward. Only exploiting will cause the agent to over-fit the
current knowledge and fall into a sub-optimal point. Therefore, the agent needs
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to explore the environment to find a global optimal point for obtaining more
rewards in the future. However, random exploration without guided information
sometimes leads the current policy to diverge from the past policy, and cannot
even find the optimal point.

Experience replay (ER) [13] is a fundamental technique to improve sample
utility and training stabilization for recent DRL methods. Deep Q-network
(DQN) [14] uses ER to store experiences generated during interactions between
the agent and the environment in a buffer, and samples uniformly from the
buffer to train the agent to get the maximum cumulative reward. Prioritized
experience replay (PER) [16] is an improvement of DQN. PER distinguishes
importance of each experiences and allows the important experiences to be sam-
pled at a higher frequency, thus allowing the agent to learn faster and more
effectively. The above ER methods use first-in-first-out (FIFO) to replace expe-
riences in the buffer. Since some experiences which are rare and hard to obtain
are flush out the buffer, FIFO causes the problem of catastrophic forgetting [11].
That is, with the training progressing and exploration reducing, experiences in
the buffer tend to a small part of the state space, leading the policy to over-fit
the current experiences and forget the knowledge acquired from the experiences
replaced.

In the paper, we propose a generative method called double replay buffers
with restricted gradient (DRBRG) to address the problems mentioned above.
DRBRG classifies experiences based on an exploration rate to store in different
replay buffers, i.e., the exploration buffer and the exploitation buffer. The two
buffers use different retention methods to maintain the state distribution of
all experiences. To avoid the current policy diverging from past behaviors, we
penalty the policy change during the updating of policy gradient. By calculating
the KL divergence between the current policy and the previous policy, we can
estimate the change between policies, and add a penalty term when the policy is
updated. In the experimental part, we compare DRBRG with other methods in
the environments with continuous action spaces, including Pendulum and three
MuJoCo environments. The results show that DRBRG can achieve better.

2 Related Work

There are a lot of methods to the problem of exploring and exploiting the inter-
active environment effectively. Some algorithms improve the two functions of
ER (i.e., sampling and retention functions) to obtain more guided information
to improve experience utility. PER computers the temporal difference error (TD-
error) to assign priority of each experience. PER can allow important experiences
with high priority to be replayed at a higher frequency, which allows agent to
learn faster and more effectively. de Bruin et al. [5,6,8] store experiences into two
replay buffers with FIFO and distance-based retention methods. These methods
synthesize new experiences by sampling from the two buffers to train an agent. de
Bruin et al. [7] also investigate some proxies to guide the retention and sampling
of replay buffer via prior knowledge on control problems. Hindsight experience
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replay (HER) [1] uses additional goals to guide the agent to deal the problem
with sparse and binary rewards. The key idea is to learn from failure by stor-
ing the achieved goals to the replay buffer to facilitate learning. However, these
ER algorithms usually use FIFO as a retention method. The state distribution
in their replay buffers will focus on a small region of the state space, leading
catastrophic forgetting.

There are some methods on trust region to improve sample efficiency and
training stabilization. Trust region policy optimization (TRPO) [17] optimizes
a certain surrogate objective function by controlling the step size, improving
training stabilization. Proximal policy optimization (PPO) [18] improves TRPO
and is simple to implement. PPO clips a novel surrogate objective function
to limit policy change and enables multiple epochs of minibatch updates. It
improves sample complexity and training stabilization. Both TRPO and PPO
use a KL divergence between the new policy and the old policy to be a trust
region constraint. Our method combines ER with the trust region method to
balance exploration and exploitation.

3 Background

Reinforcement learning (RL) problems usually can be formalized as Markov
decision processes (MDPs). An MDP contains a state set S, an action set A, a
transition function T : S × A × S → [0, 1], a reward function r : S × A → R and
a discount factor γ ∈ [0, 1]. When interacting with the environment, an agent
takes an action at ∈ A according to a policy π at each step t ∈ {0, 1, 2, · · · }, and
moves from the current state st ∈ S to the next state st+1 ∈ S with the reward
rt+1 ∈ R. Meanwhile, the experiences (st, at, r, st+1) are stored in a replay buffer
D, which are used by off-policy DRL algorithms to train the policy π(at|st). The
goal of the agent is to find an optimal policy π∗ that maximizes the value function
defined as:

Vπ (s) =

[ ∞∑
t=0

γtr (st) |s0 = s, at ∼ π(·|st)

]
. (1)

The Q-function under the policy π is defined as

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

T (s, a, s′)Vπ(s′). (2)

The Q-function under the optimal policy π∗, denoted Q∗, satisfies the Bellman
optimality equation [3]:

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′). (3)

In order to verify our method, we combine it with deep deterministic policy
gradient (DDPG) [12] as an instance to deal with problems with continuous-
action spaces. DDPG uses the actor-critic architecture. Thus there are two parts:
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an actor and a critic. The actor has two neural networks: target network μ and
actor network π. And in the critic, there are also two networks: target network
Q

′
and critic network Q. The critic network is updated to evaluate the action

value Q(s, a) to guide the actor to take the action a with the maximum Q-value.

4 Method

Algorithm 1 describes DRBRG. We use two replay buffers to improve experience
utility and shift the state distribution towards the entire state space. To avoid
the policy diverging from past behaviors, we limit policy change by restricted
gradient.

Algorithm 1. Double Replay Buffers with Restricted Gradient
Input: buffer size k, sampling ratio τ , exploration threshold η, interval time C

for updating target network
1 Initialize two replay buffers Dr and Dg with size k/2;
2 Initialize an RL algorithm A;
3 for episode = 1 : M do
4 for t = 1 : T do
5 Sample an action at using current policy from A;
6 if exploration rate > η then
7 Store transition (st, at, rt, st+1) into Dr;
8 else
9 Store transition (st, at, rt, st+1) into Dg;

10 end
11 Generate the training batch Ds from Dr and Dg according to τ ;
12 for i = 1 : Ds do
13 Obtain state information sti ;
14 Update ρi = π(at|st)/μ(at|st);
15 Compute the police gradient with penalty: ĝti = βĝti − (1 − β) ĝKL

ti ;

16 end
17 Perform optimization update using A and batch Ds;
18 After C updates, update the target network and τ ;

19 end

20 end

4.1 Double Replay Buffers

The two replay buffers are exploration buffer Dr, and exploitation buffer Dg. The
entire buffer D is the combination of Dg and Dr. We classify the experiences
according the attributions of their actions to store the corresponding buffer.
In different problems, the classification methods are different. In discrete action
problems, an ε-greedy policy can control the magnitude of the exploration. While
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in continuous action problems, the noise N is often used to drive exploration.
Therefore, we set a threshold η, to determine whether the action belongs to
exploration action ar or exploitation action ag.

In early period of training process, the agent randomly explores the entire
environment, and the experiences are distributed throughout almost the entire
state space. When the policy improves, the agent reduces exploration to the
environment and exploits learned knowledge to make decisions. The experiences
generated by the current policy will be narrowed to a small region of the state
space. We use reservoir sampling (RS) [22] in Dr to preserve earlier experiences
to alleviate catastrophic forgetting. RS guarantees that all stored experiences
are equally sampled or removed to better maintain the early experiences. Dg

still focuses on the current policy with FIFO.
We introduce an sampling ratio τ which is adaptive to the policy update rate

to sample a training batch from the above buffers. τ is a parameter obtained
by comparing two networks in off-policy algorithms: the current network π and
the target network μ. There are two methods to calculate τ . The first one is to
count the number of the same actions nb. The actions are obtained by inputting
the states in training batches into the two networks. The specific expression is
as follows:

τ =
nb

Nb
× Tmax, (4)

where Tmax ∈ [0, 1] is a hyper-parameter to control the upper bound of τ and the
update of τ is the same as the frequency of the target network. In each training
batch with size Nb, τNb experiences are sampled from exploration buffer Dr and
the rest ones are sampled from exploitation buffer Dg.

The second one is to compute the importance weight (IW) ρ =
π(at|st)/μ(at|st) of each experience, and to count the number of the experi-
ences with IW below threshold nbelow. Here, we use the average of the value of
all IW as a threshold. The Eq. 5 describes the method:

τ =
nbelow

Nb
× Tmax. (5)

4.2 Restricted Gradient

ER uses the samples generated in the training to calculate the gradient estimate
for the current network, which improves the experience utility. However, when
the difference between the two networks is too large, the accuracy of the estimate
and the performance of the algorithm are reduced. In order to address the above
problems, we use a gradient penalty term to restrict policy change. This way is
combined with DRB, which not only ensures the diversity of samples to alleviate
the problem of catastrophic forgetting, but also improves the accuracy of gradient
update. When gradient updates, we penalize gradient updates according to the
state distribution in the training batch:

ĝ = βĝ − (1 − β) ĝKL. (6)
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Fig. 1. The performance of RS-DRB vs. other methods on Pendulum

β ∈ [0, 1] is a penalty coefficient to penalize the policy change. The update of
the coefficient β is related to the learning rate α ∈ [0, 1] of the neural network,
and β updates at each step:

β = (1 − α)β + α. (7)

In Eq. 6 ĝ is the policy gradient function, which is specifically expressed according
to different algorithms. ĝKL is a gradient penalty term that penalizes the
experiences where the current policy diverges from the past behaviors. The gra-
dient penalty is related to the KL divergence between the current policy and the
previous policy:

ĝKL = Esi∼D[∇θDKL(μ(·|si)||π(·|si)], (8)

where θ is the parameter in the neural network to approximate the policy.
The penalty term and related parameter adjustment are related to the current

experience distribution. By introducing a penalty term to the gradient update
method, the agent can find an optimal policy faster in a right direction.

5 Experiment

In this section we compare our method with DDPG to implement experiments.
The comparing methods are two variants of DDPG: DDPG with FIFO and
RS. We evaluate the performance of each combination on Pendulum and three
MuJoCo environments. The training performance is plotted by the cumulative
reward. The average return is used to reflect the generalization performance,
which can be used to demonstrate the mitigation of catastrophic forgetting. In
order to compare the effect of the two methods of computing τ , we distinguish
between RS-DRB, which counts the number of nb, and RS-DRB with IW count-
ing the number of nbelow. By comparison, we use the latter in DRBRG. The final
result is an average of five trials with different seeds.
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Fig. 2. The performance of DRBRG vs. RS-DRB on Pendulum

5.1 Pendulum

In Pendulum [4], we set the threshold η = 0.01 to determine the action whether
belongs to exploration or exploitation. The evaluation of generalization performs
per 10 episodes. The size of replay is 10000 in both FIFO and RS methods,
while RS-DRB has two buffers with 5000 capacity. The hyper-parameter Tmax

in Pendulum is set to 0.4.
We firstly compare our method without gradient penalty, RS-DRB, with

FIFO and RS. This was studied in our previous work [23]. The FIFO retention
method cannot hold its best performance as time evolves in Fig. 1. It can be
explained that the early exploratory experiences begin to reduce in the buffer,
while the new generated experiences are concentrated in the current preference
direction. The sample diversity of the buffer begins to decrease, which will cause
the problem of catastrophic forgetting. From Fig. 1, we can find that both of the
generalization and training performances of FIFO decrease after 1000 episodes.
In the RS method, the probability that a new experience generated by the learned
policy is the same as the probability of an early exploration experience. Therefore
the agent cannot concentrate on the learned policy. This causes that the RS
method achieves relatively good performance around 1500 episodes, much slower
than FIFO and RS-DRB. It can be seen that RS-DRB learned a good policy
around 1000 episodes which is the same as the FIFO method. Meanwhile, the
training performance of RS-DRB still improves.

Then we compare DRBRG with RS-DRB which is combined with the two
methods of computing the sampling ratio τ . From Fig. 2, we can find that the
training performance of DRBRG performs significantly better than RS-DRB, but
almost the same as RS-DRB with IW. Among the three methods, DRBRG con-
verges and covers the entire state space the fastest around 100 episodes. Mean-
while, the generalization performance of DRBRG converges the fastest among
the compared methods and maintains steady. It shows that DRBRG can quickly
coverage the entire state space to find an optimal policy and control the policy
change in a trust region. The results show that DRBRG can effectively balance
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Fig. 3. The performance of RS-DRB vs. other methods on Reacher

Fig. 4. The performance of RS-DRB vs. other methods on Hopper

Fig. 5. The performance of RS-DRB vs. other methods on HalfCheetah
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exploration and exploitation in training, achieving the best performance in terms
of episode return and generalization.

Fig. 6. The performance of DRBRG vs. RS-DRB on Reacher

Fig. 7. The performance of DRBRG vs. RS-DRB on Hopper

5.2 MuJoCo

To further verify the effectiveness of our method, we conduct our experiments
on three MuJoCo environments: Reacher, Hopper and HalfCheetah. In the three
environments, the experimental settings are the same with the one in Pendulum.

From Figs. 3 and 4, we can find that the performance of RS-DRB is not
significantly better than the compared methods in Reacher. The generalization
performance of RS-DRB and FIFO are better than RS in Hopper. It further
demonstrates that RS cannot concentrate on the current policy and leads the
policy changes frequently. While RS-DRB significantly outperforms than other
methods on HalfCheetah in terms of training and generalization performance.
RS-DRB achieves the same performance with FIFO and RS around 500 episodes.
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Fig. 8. The performance of DRBRG vs. RS-DRB on HalfCheetah

RS obtains the lowest return among the three methods. Figs. 3, 4 and 5 can
explain that the environment setting is not suitable to each environment. The
complex controlling problems need efficient implement action and more elaborate
adjustments on the parameters [9].

Then we compare the two methods of computing the sampling ratio τ and
DRBRG. Figs. 6, 7 and 8 show that RS-DRB with IW is better than the method
based on the number of same actions. In Fig. 6, we can find that DRBRG is
better than RS-DRB on training performance. In the three environments, the
performance of DRBRG is almost the same with the method of RS-DRB with
IW. The gradient penalty is not very effective due to the difficulty in handling
the complex controlling problem. It may require the more precise estimate to
policy change. In the future, we will make further improvement to this situation.

6 Conclusion

In this paper, we proposed DRBRG to deal with the dilemma of exploration and
exploitation in reinforcement learning. In our method, we classify the experiences
based on the nature of the actions, and store them in two replay buffers with
different retention methods. By using an adaptive sampling ratio, our method
can control the proportion of sampling from the two buffers. DRBRG efficiently
makes the experience distribution cover the entire state space and can explore
the potential states to maximize the cumulative reward. In order to perceive the
differences between policies, we use a KL divergence to measure the changes and
use it as a gradient penalty term. The introduction of gradient penalty limits the
policy changes and improves the accuracy of the estimate for the current policy.
DRBRG is a generative method that can combine with other DRL algorithms.
In order to explain our method in detail, we implement DRBRG by combining it
with DDPG to solve the problems with continuous-action spaces. Empirically, we
demonstrate that DRBRG outperforms existing methods in both Pendulum and
three MuJoCo environments. In the future, we will adjust the algorithm to handle
the discrete action space problems and train some challenging environments in
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the Atari games. We would like to combine our method with other DRL methods
that use experience replay to solve the sparse reward problems, and apply it into
the training of physical robots.
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Abstract. A series of semi-supervised learning (SSL) algorithms have
been proposed to alleviate the need for labeled data by leveraging large
amounts of unlabeled data. Those algorithms have achieved good per-
formance on standard benchmark datasets, however, their performance
can degrade drastically when there exists a class mismatch between the
labeled and unlabeled data, which is common in practice. In this work,
we propose a new technique, entropy repulsion for mismatch (ERCM), to
improve SSL against a class mismatch situation. Specifically, we design
an entropy repulsion loss and a batch annealing and reloading mech-
anism, which work together to prevent potentially mismatched unla-
beled data from participating in the early training stages as well as
facilitate the minimization of the unsupervised loss term of traditional
SSL algorithms. ERCM can be adopted to enhance existing SSL algo-
rithms with minor extra computation cost and no change to their net-
work structures. Our extensive experiments demonstrate that ERCM
can significantly improve the performance of state-of-the-art SSL algo-
rithms, namely Mean Teacher, Virtual Adversarial Training (VAT) and
Mixmatch in various class-mismatch cases.

Keywords: Semi-supervised learning · Class mismatch

1 Introduction

Deep learning models have achieved remarkable performance on many super-
vised learning problems by leveraging large labeled datasets [12]. Creating large
datasets with high-quality labels, however, is usually very labor-intensive and
time-consuming [21,24]. Semi-supervised learning [3] (SSL) provides an attrac-
tive way to improve the performance of deep learning models by also utilizing
easily obtainable unlabeled data, so as to mitigate the reliance on large labeled
datasets. Algorithms for SSL mainly include the following core ideas: consistency
regularization [11,14,19], entropy minimization [7,13], and traditional regular-
ization [23]. Recent holistic approaches, Mixmatch [2] and UDA [20] achieve the
state-of-the-art performance by combining these ideas above.

Existing SSL algorithms usually demonstrate their successes using fully-
labeled classification datasets (e.g., CIFAR-10 [10], SVHN [15] and Imagenet
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 307–319, 2020.
https://doi.org/10.1007/978-3-030-63833-7_26
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[5]) by treating most samples of each dataset as unlabeled. Therefore, those
evaluation results are based on an implicit assumption that all unlabeled sam-
ples come from the same classes as labeled samples. In real world, however, it
is very likely that a large portion of the unlabeled samples do not belong to
any classes of the labeled data, i.e., there exist a mismatch between class distri-
butions of labeled and unlabeled data. As an example, if you intend to train a
model to distinguish between ten classes of animals with only a small amount
of labeled images at hand, you may want to employ a large collection of unla-
beled animal images to improve the model performance. The unlabeled dataset
may contain many images of other animal classes than the ten target classes.
Most existing SSL algorithms use a combined loss of a supervised term and an
auxiliary (unsupervised) term to achieve high test accuracy as well as generalize
better to unseen data. As reported in some recent work, the class mismatch issue
can make it difficult to minimize the auxiliary loss term [22], furthermore, dras-
tically degrade the performances of SSL algorithms compared to not using any
unlabeled data at all [16]. Though class mismatch can actually hurt the applica-
bility of SSL algorithms, it has not received much attention until recently. [11]
and [22] consider to evaluate SSL algorithms in class-mismatch cases. Two tech-
niques, Split Batch normalization (Split-BN) [22] and ROI regularization, have
been proposed to improve the robustness of existing SSL methods against class
mismatch.

In this work, we focus on reducing the performance degradation caused by
class mismatch problems so as to improve the applicability of existing SSL algo-
rithms. We propose a novel entropy repulsion technique for mismatch (ERCM)
to restrict potentially mismatched unlabeled samples from participating in the
training process. Specifically, we introduce a new entropy repulsion loss term,
which is gradually relaxed to prevent the model from premature overfitting on
mismatched unlabelled data. We also design a batch annealing and reloading
mechanism to work together with the loss, which dump samples with low-
confidence pseudo labels and reload samples with highest-confidence pseudo
labels from a temporal pool to make the training more stable. Our contribu-
tions are summarized as follows:

– We propose a novel technique ERCM, including an entropy repulsion
loss together with a batch annealing and reloading mechanism, which
can empower existing SSL algorithms to achieve a significant performance
improvement over the state of the art even when there is a significant class
mismatch between labeled and unlabeled data. For example, with 250 labeled
data and 20000 unlabeled data (mismatched data accounts for 20%) on
CIFAR-10, as shown in Table 1, our method achieved 11.3% test error, which
is 5.9% lower compared to 17.2% test error of the next-best method (Mix*).
Specially, our analysis and ablation experiments show that ERCM can effec-
tively alleviate the difficulty to minimize the auxiliary loss term in class-
mismatch cases, which is a challenging issue reported by previous work [22].

– Our design is orthogonal to traditional SSL algorithms and can be effec-
tively adopted by existing SSL methods to improve their performance in
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Fig. 1. Workflow of our proposed ERCM technique (details in Sect. 3).

class-mismatch cases. Our ERCM technique is highly portable, requiring no
change to network structures and only introducing minor extra computational
overhead.

2 Related Work

In this section, we mainly review state-of-the-art SSL techniques and recent
efforts to address the class mismatch issue. A more comprehensive survey of SSL
is provided in [3]. A common underlying assumption of SSL algorithms is that
the decision boundary should pass through the low-density regions of data. One
core idea to enforce this is entropy minimization. EntMin [7] makes low-entropy
predictions for all unlabeled samples by adding an explicit loss term. Pseudo
Label [13] gives pseudo labels for unlabeled data with high-confidence outputs
for entropy minimization. Another core idea is consistency regularization that
encourages the model to output the same class distribution for various augmen-
tations of an unlabeled sample. Π-Model [11] and Temporal Ensembling [17]
generalize ensemble predictions of unlabeled samples by networks with dropout
regularization [18]. Mean Teacher [19] averages model weights instead of label
predictions in which teacher model is an average of consecutive student models.
VAT [14] involves consistency by applying a perturbation to the input. Recently,
holistic methods Mixmatch [2] and UDA [20] achieve state-of-the-art perfor-
mance on benchmark datasets by incorporating several recent advanced tech-
niques. When it comes to a more realistic setting where class mismatch exists,
those methods, however, may suffer a significant performance degradation.

The class-mismatch problem has not drawn much attention from traditional
SSL methods. It is first considered in [11], which only appears in partial experi-
ments and has not been discussed in depth. Recently, class distribution mismatch
is formally discussed in [16], which shows clear performance degradation of var-
ious SSL methods in class-mismatch cases. Moreover, class mismatch shares
some characteristics with domain adaptation [1,6] in which there are differences
between distributions of training data and test data. [9] designs ROI regulariza-
tion to help VAT perform better against class mismatch. Split-BN [22] uses split
batch normalization to improve the performance of Mean Teacher and VAT.
And a SSL method named UASD [4] is proposed to mitigate the impact of class
mismatch. In this paper, we aim to further enhance existing SSL methods by
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restricting potentially mismatched unlabeled samples from participating in the
training process. Moreover, ERCM can also effectively improve the performance
of the holistic method, Mixmatch.

3 Our Method

3.1 Problem Formulation

In SSL, we are given a labeled dataset DL and an unlabeled dataset DU . Let
DY = {0, 1..K − 1} be the set of labels. For each labeled sample x ∈ DL, we
have label(x) ∈ DY . SSL algorithms aim to leverage unlabeled samples from DU

to train a model with better performance than what would have been obtained
by using DL alone. In this work, we consider a situation that is very common in
real-world settings, named class mismatch. DU is very likely to have extra “dirty”
data called mismatched samples that do not belong to any of these K classes.
As reported in [16], class mismatch can actually hurt the performance of SSL
methods. Our goal is to improve the performance of SSL in class-mismatch cases
by mitigating the negative impact of mismatched unlabeled samples during the
training process.

3.2 Design Overview

In a typical training process of SSL, a minibatch is composed of a labeled batch
X (a set of size C randomly sampled from DL), an unlabeled batch U (a set
of size C randomly sampled from DU ), and corresponding labels Y of X . Many
recent SSL approaches use a combined loss function L consisting of a supervised
part and an auxiliary part:

L = λX LX + λULU , (1)

where λX and λU are weights of loss terms. The supervised part LX is a loss
function of labeled samples like cross-entropy:

LX =
1

|X |
∑

x∈X ,ŷ∈Y
ŷ log(

1
p( y|x, θ) )

. (2)

The auxiliary loss LU is designed to explore the decision boundary by unla-
beled data. For example, in Mixmatch, LU is a consistency regularization loss
term defined as || ĝ − p( y|u, θ) ||22, u ∈ U , where ĝ represents “guessing label” of
unlabeled samples after sharpening.

Entropy Repulsion Loss. In traditional SSL algorithms, combining a cross-
entropy loss and a consistency regularization loss leads to a decrease of the
entropy of labeled and unlabeled samples, which achieves good performance
on standard datasets. In class-mismatch cases, however, blindly reducing the
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entropy of unlabeled data is not always beneficial and can even hurt the perfor-
mance. Once the model is over-trained or over-fitted on mismatched unlabeled
samples, it will introduce great errors to the model. To address this problem, we
propose an entropy repulsion loss term LM (shown in Eq. (3)), which encourages
output entropy of labeled samples relatively smaller than that of unlabeled ones
during the training process. LM encourages the entropy of p( y|x′, θ), x′ ∈ X d to
be relatively smaller than the entropy of p( y|u′, θ), u′ ∈ Ud, where X d and Ud

are randomly sampled from batch X and U .

LM = E[H(p( y|x′, θ))]−E[H(p( y|u′, θ))]

=
1

α |U| (
∑

x′∈Xd

H(p( y|x′, θ))−
∑

u′∈Ud

H(p( y|u′, θ))) (3)

Here the conditional entropy H(Y|X ) is defined as

H(p( y|x, θ)) = −
n∑

i=1

p( y|x, θ)i log p( y|x, θ)i (4)

The conditional entropy is a measure of class overlap, which is invariant to
the parameterization of the model. It is related to the usefulness of unlabeled
samples where labeling is indeed ambiguous [7,8].

Batch Annealing and Reloading with Temporal Pool. To further reduce
the negative impact of mismatched unlabeled samples, we design a batch anneal-
ing mechanism to discard those high-entropy unlabeled samples from batch U
and reserve only low-entropy unlabeled samples in batch Ur for training. The
standard for reserved samples is strict in the early stages and is gradually relaxed
as the model gets more accurate. Inspired by [11] and [19] which utilize the tem-
poral information of training process, we propose a reloading mechanism with
a temporal pool to refill Ur with low-entropy unlabeled samples. The temporal
pool is a size limited buffer to store the temporal samples with lowest entropy in
the training process. The reloading mechanism increases the degree of fitting on
low-entropy unlabeled samples as well as enhances training stability. The details
of batch annealing and reloading will be presented in Sect. 3.3 and Sect. 3.4.

Based on our batch annealing and reloading mechanism, we redefine the
consistency regularization loss term LU in a class mismatch case as

LU =
1

(1 − α) |U| || ĝ − p( y|u, θ) ||22 u ∈ Ur (5)

where Ur represents unlabeled samples after batch annealing and reloading.

Loss Function in ERCM. By adding our proposed entropy repulsion loss term
to supervised loss and consistency regularization loss, the loss function in our
method is presented in Eq. (6), which is a weighted combination of LX , LU , and
LM. Here, λX , λU and λM are weights of loss terms.

L = λX LX + λULU + λMLM (6)
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Algorithm 1. Entropy Repulsion for Class Mismatch (ERCM)
Require: the labeled batch X = sample{(xi)}C

i=1 ∼ DL

Require: the corresponding labels Y of X
Require: the unlabeled batch U = sample{(ui)}C

i=1 ∼ DU

Require: the training step t;
Require: allocate(T , M), T is an initialized temporal pool, M is the pool size;
Require: β and γ are annealing parameters;
Require: k is weights warming step;
Require: λX , λU , λM are weights of loss term

1: X , U = augmentation(X , U);
2: for s in training steps �1, t� do

3: λU , λM =

{
λ s

k
s < k

λ s ≥ k

4: α = max( 1, update(β, γ, s, t));
5: Ud, Ur, X d = batch_annealing (U , X , α)
6: Ur, T ′ = reloading (Ur, T , α)
7: T = T ′; //update temporal pool
8: LX = cross_entropy(X , Y); //supervised loss, e.g., Eq.(1)
9: LU = consistency_loss(Ur ); //auxiliary loss, e.g., Eq.(5)

10: LM = erm_loss(X d, Ud ); //entropy repulsion loss in Eq.(3)
11: L = sum(λX LX , λULU , λMLM)
12: θ = update( θ, ∇θL ); //e.g. SGD, Adam
13: end for
14: return θ

Workflow of ERCM. We illustrate the workflow of ERCM in Fig. 1 and give
the detailed algorithm in Algorithm1. First, we conduct stochastic augmentation
(line.1, like random horizontal flips or crops) on the input batch X and U . At the
beginning of training, there will be a warming up process of weights for stability
as usually done in traditional SSL approaches (line.3). During training the batch
s, batch annealing discards high-entropy parts of U and reserves Ur (line.5). We
uniformly sample X d and Ud from X and U . Then, we refill Ur by reloading
low-entropy samples from the temporal pool T (line.6). Finally, we calculate
the supervised loss term LX by labeled batch X and corresponding labels Y,
auxiliary loss term LU by Ur, and entropy repulsion loss term LM by Ud and
X d (line.8–10). We update the model by minimizing the total loss L (line.11).

3.3 Batch Annealing

As shown in Algorithm 2, we first calculate the conditional entropy H(p( y|u, θ))
of unlabeled samples in U . Then, we reserve the first α×C lowest-entropy (most
confident) samples from U to compose Ur for training. Here, the α is the anneal-
ing rate, which is obtained by the following increment function:

α = β + log(γ
s

t
+ 1). (7)
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t is the total training step number and s is the current training step. β and γ are
hyperparameters. With steps of training, the model becomes more accurate and
robust, meanwhile α increases so as to gradually relax the standard for selecting
reserved samples. In this way, our mechanism improves the model training by
restricting potential mismatched unlabeled samples from participating in the
training.

For each round of training, to calculate LM, we uniformly select (1− α)× C
samples from U to compose Ud and uniformly select (1−α)×C samples from X
to compose X d. We note that the limitation of LM will gradually decrease due
to the increase of α. The batch annealing mechanism anneals both the loss term
LM and unlabeled samples Ur which will participate in the calculation of LU .

Algorithm 2. Batch Annealing
Input: the unlabeled batch U ;

the labeled batch X ;
the annealing rate α;

H = cal_entropy ( p(U , θ));
Ud = uniform_sample (U , �(1 − α) × C�)
X d = uniform_sample (X , �(1 − α) × C� );
Ur = lowest_k (H, U , �α × C�);
return Ud, Ur, X d;

3.4 Reloading with Temporal Pool

Before training, we initialize a temporal pool of size M to store “very likely
matched” unlabeled samples in DU . We first get the union set B of current Ur

(output of the batch annealing) and the temporal pool T . Then, top (1−α)× C
samples with lowest entropy in B will be reloaded into Ur to calculate of the aux-
iliary loss. The top M samples with lowest entropy in B will compose the updated
temporal pool. A sample will be reloaded if it keeps high confident pseudo label in
several continuous temporal training models. The reloading mechanism improves
the model to achieve better fitting on high-confidence unlabeled samples as well
as more stable training process.

4 Evaluation

4.1 Experiment Configuration

We use Wide ResNet-28 [16] for all models in experiments. Because traditional
SSL methods will be badly hurt by class-mismatch problems in the late training
period, for fair comparison, we run 3 × 223 training steps and report the test
error rate of a model with highest valid accuracy.
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4.2 Supervised with Mixup

Mixup [23] is a widely adopted data augmentation method. In our experiments,
we obtain the performance of supervised learning with Mixup using only labeled
data, which is denoted as Supervised-only.

4.3 ERCM-SSL Implementations

We combine our design with three state-of-the-art SSL approaches MeanTeacher,
VAT, and Mixmatch to obtain ERCM-MT, ERCM-VAT, ERCM-Mix. λX and
λU in SSL methods refer to the implementation in [2] which achieve good perfor-
mance. Unless otherwise noted, we use constant ERCM hyperparameters with
k = 100k, M = 64, and γ = 0.5 in our experiments.

ERCM-MT & ERCM-VAT: We use consistency regularization in [19] as the
auxiliary loss function. Before feeding the unlabeled data into the model, we add
a “guessing label” operation to obtain p(y|u, θ). In our experiments, we set hyper-
parameters for all class-mismatch cases, where λX = 1, λU = 50, λM = 0.001,
and β = 0.65. We adopt the loss function of VAT to implement ERCM-VAT with
the same p(y|u, θ) as ERCM-MT. In our experiments, we set hyperparameters
for all class-mismatch cases, where λX = 1, λU = 0.3, λM = 0.05, and β = 0.75.

ERCM-Mix: We adopt square difference between guessing label and output for
LU as shown in Eq. (5). Moreover, original Mixmatch mixes labeled data with
unlabeled data by Mixup for better performance with no mismatched samples.
However, in class-mismatch cases, we find that it makes the supervised loss hurt
by mismatched samples, especially when the quantity of labeled samples is small
as shown in Fig. 2 and Table 1. We adjust Mixmatch to Mix* by mixing labeled
data and unlabeled data separately. In ERCM-Mix, we set hyperparameters for
all class-mismatch cases, where λC = 1, λU = 100, λM = 0.5, and β = 0.75.

4.4 Results

Table 1. Test error (%) ± standard deviation of methods against different class mis-
match rate on CIFAR-10 with 250 label samples and 20k unlabeled samples on different
random splits.

0% 20% 40% 60% 80% 100%

MT 28.4 ± 0.5 28.5 ± 2.6 29.9 ± 0.5 30.0 ± 1.5 29.8 ± 0.4 30.1 ± 0.8
Mix 14.1 ± 0.8 18.0 ± 3.4 17.9 ± 1.1 20.7 ± 1.2 24.6 ± 1.4 28.2 ± 1.0
Mix* 13.4 ± 0.5 17.2 ± 1.2 17.1 ± 1.5 19.0 ± 1.6 21.2 ± 1.8 25.5 ± 1.9

Supervised-only 28.4 ± 0.2

ERCM-MT 26.4 ± 2.7 26.6 ± 0.7 26.7 ± 2.2 28.3 ± 0.8 28.6 ± 0.4 28.6 ± 1.7
ERCM-Mix 9.7 ± 1.3 11.3 ± 1.3 14.3 ± 0.8 15.6 ± 0.6 18.2 ± 1.5 23.6 ± 0.7
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Table 2. Test error (%) ± standard deviation of methods against different class
mismatch rate on SVHN with 250 label samples and 20k unlabeled samples on different
random splits.

0% 20% 40% 60% 80% 100%

VAT 4.6 ± 0.3 5.1 ± 0.1 6.1 ± 0.5 7.1 ± 0.7 7.7 ± 0.6 10.5 ± 0.3
Mix 3.4 ± 0.2 3.8 ± 0.2 5.2 ± 0.8 6.1 ± 0.7 8.6 ± 0.6 13.8 ± 1.6
Mix* 3.4 ± 0.1 4.0 ± 0.1 4.9 ± 0.2 5.3 ± 0.2 7.2 ± 0.4 14.6 ± 1.3

Supervised-only 21.7 ± 0.2

ERCM-VAT 4.9 ± 0.5 4.9 ± 0.4 5.8 ± 0.3 6.4 ± 0.3 6.8 ± 0.3 9.6 ± 0.3
ERCM-Mix 3.5 ± 0.1 3.6 ± 0.2 4.5 ± 0.3 5.0 ± 0.6 6.3 ± 0.6 11.2 ± 1.3

Table 3. Ablation study results on CIFAR-10 with 250 labeled samples and 20k
unlabeled samples when mismatch rate is 60%. Average test error ± standard deviation
with different entropy repulsion loss weights (λM = 0.1, 0.25, 0.5).

Method 250 labels 2000 labels

ERCM-Mix 17.1 ± 0.6 7.8 ± 0.1
ERCM-Mix (mix labeled with unlabeled samples) 18.4 ± 0.8 7.5 ± 0.1
ERCM-Mix (without entropy repulsion loss term, λM = 0) 18.4 ± 0.4 8.2 ± 0.1
ERCM-Mix (α = 1 and λM = 0, equal to Mix*) 20.8 ± 1.4 8.5 ± 0.2
ERCM-Mix (removing temporal pool, M = 0) 18.1 ± 0.7 7.9 ± 0.2

Fig. 2. Test error on various numbers of labeled samples with mismatch rate 60% on
splits of CIFAR-10 (6 classes, 400 labels each class). Shaded regions indicate standard
deviation over five trials.

In this section, we compare the performances of various methods in class-
mismatch cases on different datasets. Mismatch rate represents the proportion
of mismatched data among unlabeled data. For example, given 20000 unlabeled
samples, 60% mismatch rate means 12000 unlabeled samples are mismatched
(Table 3).
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CIFAR-10: We first discuss the situation with only a small number of labeled
samples. We selected 250 labeled samples, 20k unlabeled samples and 5000 valid
samples from CIFAR-10 [10] to train a 5-classes classifier with random splits. We
report the average test errors and standard deviations in Table 1. The perfor-
mances of all three SSL methods decrease gradually as the mismatch rate rises.
With the help of our design, ERCM-MT clearly outperforms traditional MT and
Supervised-only. ERCM-Mix performs best among all algorithms on CIFAR-10.
Compared to the standard Mixmatch, ERCM-Mix achieves up to 6.7% improve-
ment when the mismatch rate is 20%. Compared to Mix*, ERCM-Mix reduces
the error rate by 5.9% when the mismatch rate is 20%. The results prove that
ERCM significantly improves the performance of SSL methods in class-mismatch
cases.

We vary the number of labeled samples (250–2000) when the mismatch rate
is 60%. The test errors of different methods are presented in Fig. 2. ERCM-
Mix still outperforms other methods. We note that the performance of Mix
gradually approaches and slightly exceeds Mix* as the number of labeled samples
increases. Imbalance between the quantities of labeled and unlabeled samples
will introduce uncertainty to training. With smaller quantity of labeled samples,
the improvement introduced by ERCM is more significant. Compared to Mix*,
the improvement of ERCM-Mix decreases from 3.4% to 0.8% as the number of
labeled samples rises.

Table 4. Test error (%) ± standard devi-
ation comparison of 6 classes (400 per
class) on CIFAR-10 with mismatch rate
of 25% and 75%.

Method 25% 75%

Split-BN+MT 22.4 ± 0.2 22.9 ± 0.4
Split-BN+VAT 23.4 ± 0.3 23.9 ± 0.0
VAT+ROIreg – 22.3 ± 1.2
ERCM-MT 14.1 ± 0.2 15.6 ± 0.2
ERCM-VAT 16.5 ± 0.4 17.4 ± 0.2
ERCM-Mix 9.8± 0.1 11.8± 0.1

Table 5. Test error (%) ± standard devi-
ation comparison on 8A8O-Imagenet with
mismatch rate of 25% and 75%. Details of
8A8O-Imagenet are described in [22].

Method 25% 75%

Split-BN+MT 44.4 ± 0.5 47.9 ± 0.8
Split-BN+VAT 47.3 ± 0.0 49.3 ± 0.0
ERCM-MT 32.1 ± 0.5 32.7 ± 0.2
ERCM-VAT 32.5 ± 0.4 33.0 ± 0.6
ERCM-Mix 32.3 ± 0.6 33.4 ± 0.4

To compare with the recent work Split-BN [22] and ROIreg [9], which aims
to address the class mismatch issue, we conduct experiments on 6 classes (400
per class) of CIFAR-10 according to [16] and [22]. As shown in Table 4, ERCM-
MT and ERCM-VAT significantly outperform Split-BN+MT, Split-BN+VAT
and ROIreg+VAT when mismatch rates are 25% and 75%.1. Moreover, ERCM-
Mix performs best among these methods and achieves 11.8% test error when
mismatch rate is 75%.
1 Performances of Split-BN+MT, Split-BN+VAT and ROIreg+VAT are reported in

[22] and [9].
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SVHN: On SVHN [15], we evaluate traditional VAT and Mixmatch in var-
ious class-mismatch cases (0% –100%). We implement ERCM-SSL methods
with γ = 0.2. Table 2 reports the average test error on 250 labeled samples
and 20k unlabeled samples over random splits. With no class-mismatch prob-
lems, ERCM-SSL methods perform slightly worse than traditional SSL methods.
ERCM-SSL methods, however, achieve better performance in all class-mismatch
cases. For example, when the mismatch rate is 100%, ERCM-Mix achieves 11.2%
test error which is 3.4% lower than Mix*.

8A8O-Imagenet: We conduct evaluations on 8A8O-Imagenet (8 animals and 8
others), a subset of Imagenet [5] described in [22]. We select 600 labeled samples
per class for an 8-animals classifier. As shown in Table 5, the performances of
ERCM-MT, ERCM-VAT and ERCM-Mixmatch are better than Split-BN+MT
and Split-BN+VAT.

4.5 Auxiliary Loss

We explore the impact of our design on auxiliary loss (unsupervised loss). We
use 250 labeled samples and 20k unlabeled samples on CIFAR-10 when the
mismatch rates is 60%. As shown in Fig. 3, we select uniform batches to observe
the auxiliary loss term produced by the unlabeled samples of MT, Mix*, ERCM-
MT and ERCM-Mix every 216 steps during training. However, auxiliary loss
terms of ERCM-SSL methods are becoming lower than those of traditional SSL
methods. ERCM mitigates the harm caused by mismatched data and makes it
easier for auxiliary terms to be minimized.

Fig. 3. Auxiliary loss term of SSL methods with and without ERCM when the mis-
match rate is 60%. The smoothing rate is 0.95.

4.6 Ablation Study

We conduct ablation study on ERCM-Mix to figure out the importance of each
part by removing each part of ERCM separately. We carry out our experiments
on CIFAR-10 with 250 labeled and 20k unlabeled samples mentioned in Sect. 4.4
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when the mismatch rate is 60% (λM = 0.1, 0.25, 0.5). We measure the impact
of using original mixup mode, removing entropy repulsion loss, removing batch
annealing operation (i.e. setting α = 1 and LM = 0, equal to Mix*), and remov-
ing temporal pool.

5 Conclusion

In this work, we propose ERCM, a new technique that involves a novel entropy
repulsion loss together with a batch annealing and reloading mechanism to
empower traditional SSL approaches against class-mismatch problems. Com-
pared with the original SSL methods, ERCM-SSL methods can reduce the per-
formance degradation caused by class mismatch samples. Extensive experiments
demonstrate a clear performance improvement and strong portability of ERCM.
We believe that ERCM has the potential to be combined with more advanced
SSL approaches in the future.
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Abstract. Forecasting promotion efficiency is an important issue in the
fast-moving consumer goods sector. The objective of this paper is an
analysis of the forecasting performance of two key performance indicators
(KPI) used for the assessment of the sales process using machine learning
methods. The authors present results of the experiments which were
performed for 17 different products on real-life data from a large grocery
company. In the paper feature extraction and construction methods are
discussed also five different prediction algorithms are compared as well as
the feature importance analyses are also provided. Out of the compared
algorithms random forest leads and the feature importance are strongly
related with the KPI.

Keywords: Applications · Forecasting · Promotions · FMCG

1 Introduction

Promotions play an important role in the modern retail sector. Companies very
often are spending a large amount of money on this purpose and sales from
promotions make a significant part of a total sale [7].

Over the years many methods and methodologies have been proposed in order
to forecast the effect of promotions and optimise them. Very often companies
use judgmental forecasting. They try to forecast the promotion effect and based
on it plan future promotions. Other companies use a simple statistical forecast
with judgmental adjustment [8]. Even though many companies still use these
simple strategies, a study from 1986 pointed out that using only these kinds of
forecasting methods may bring bias [14].

In recent years, with the growing importance of a Data Science field,
more research connected with using Machine Learning (ML) methods or Deep
Learning (DL) methods were conducted regarding sales forecasting. Different
approaches to this problem were taken into consideration, for example, decision
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tree based method were considered in [18], extreme learning machine algorithm
was proposed in [20], neural networks were used in [4] and [2]. A comparison of
different methods regarding this problem can be found in [6] and [13]. However,
not so many studies were focused specifically on promotion forecasting using
ML or DL methods. Authors of [1] proposed regression trees for a problem of
a demand forecasting in the presence of promotions. Method using Principal
Component Analysis (PCA) was shown in the paper [19] in order to tackle this
problem.

A special kind of sales and promotion forecasting in retail sector is forecasting
for fast-moving consumer goods (FMCG). These are products that are consumed
quickly e.g. groceries. Forecasting frameworks for this sector was proposed for
example in the paper [16] and [10]. The exploratory research presenting the
benefits of Machine Learning in sales forecasting for FMCG products can be
found in [17].

The objective of this paper is an analysis of forecasting performance of two
key performance indicators (KPI) used for assessment of the sales process (a
larger group of KPI’s were described in [9]). These KPIs are later used for deter-
mining the final price of the products, but this aspect is out of the scope of
this paper. In the paper, both theoretical aspects and experiments on real data
are conducted. The experimental part consists of the data preparation process
indicating feature construction from the raw data. Additionally, some methods
for preprocessing attributes connected with time are described which are used
to increase performance. Finally, five prediction models are evaluated in order
to achieve the most accurate prediction.

The paper is organised as follows: the next section describes the problem
statement and the data preparation process. In Sect. 3 the explanation of the
experiments is provided. The paper ends with some conclusions and discussion
of the results.

2 Problem Statement and Data Preparation

In most grocery shops, which are a part of a bigger shop chain, promotions are
happening almost non-stop. There are multiple promotions at the same time and
they are changing rapidly. When creating a promotion, multiple goals should be
taken into consideration. This kind of event should not only make the consumer
buy a certain product or buy more of it, but also bring more clients to the shop
or encourage them to buy many different products.

In order to capture the effectiveness of a promotion, in [9] we proposed six
different indicators which also define the key performance indicators (KPI):

– Average number of sold units or kilograms each day (shortcut:
Avg. Amount) – This indicator shows how many units or kilograms of the
promoted product, on average, were sold during the promotion each day.

– Average value of a basket containing the promoted product
(shortcut: Avg. Basket) – This indicator says what an average value of a
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basket was where the promoted product appeared. Assuming that customers
went for shopping with the will to buy the specific product in promotion, the
indicator says how much money they spent in total. The higher the indicator,
the more products were bought or the more expensive products were chosen.

– Average value of a basket containing the promoted product but
disregarding the value of the promoted product (shortcut: Avg.
Basket Without Item) – This indicator is very similar to the previous
one. It shows what an average value of a basket was where the promoted
product appeared but the value of the promoted product was not taken into
account.

– Average number of receipts with the promoted product (shortcut:
Avg. Nb. Receipts) – The indicator explains in how many baskets the
promoted product appeared, on average, each day during the promotion. It
can be treated as an indicator of how many customers bought the product
each day.

– Average number of unique products in the basket (shortcut: Avg.
Nb. Unique Items) – It says how varied the basket is. The higher the value
of the indicator, the better – it means that the customer not only bought a
specific product but also many others.

– Average number of the baskets (shortcut: Avg. Nb. Clients) – The
indicator shows how many, on average, transactions were performed each day
during the promotion. It does not matter if the customer bought a promoted
product or not.

The values of indicators are calculated per promotion. It means that each
promotion can be described by the 6 proposed indicators. Due to the limited
size of the article and in order to present a more in-depth results, we focus only
on the first two of them: Avg. Amount and Avg. Basket. However, a similar
analyses can also be conducted for the rest of the indicators.

The forecasting of the promotion effect can be done for every product sepa-
rately or for a group of products which have a similar response to the promotion.
The first aspect is investigated in this paper, while the subsequent was investi-
gated in [9]. In general, having the history of the promotions and their effects,
we can model the characteristics of the promotion for the specific product and
it is possible to predict what the effect in the future will be. It is important to
define proper attributes which will be used to describe each promotion.

2.1 Feature Space of the Input Data

One of the key issues of forecasting the effect of the promotion is the selection of
a proper set of attributes. These attributes should cover various aspects such as:
being related to price, related to the time of the promotion, describing the adver-
tisement media (promotion channels), describing the store and its surroundings
and describing the impact of other promotions.

In the first category, 4 attributes were included: the regular and special price
of a product (special is a new price of the product), a change of the price, where
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Fig. 1. Finding matching record without promotion.

the change was represented as a relative value, and the reference value of the
KPI preceding the promotional period.

The next category represents time attributes, in particular the start day of
the promotion, from which we extracted: day of the week (DOW), day of the
month (DOM), day of the year (DOY), year.

Considering information about promotion channels, binary attributes were
added. They described if the promotion was advertised on TV or the radio, as
well as information whether it was specially designed (promotion special design).

The next type of promotion descriptors are attributes representing the store
and its surrounding including meta descriptors of the residents and their eco-
nomic situation. This set of attributes includes: population, the number of city
residents, the number of tourists per 1000 residents (in a case when the store
is located in the tourists’ area), population density, house prices, own parking,
the number of parking spaces, average turnover, the number of residents 500m
range, the number of residents 1000m range, the number of residents 10min car
drive, the number of residents 5min car drive, the number of cars per 1000 resi-
dents, the number of house transactions, unemployment rate, purchasing power
resident spendings, average gross salary, competitors rate, the number of com-
petitors, distance to competitors. The information about store ID, product ID,
product name, start date and end date of promotion were not included in the
data used to train the models, although they were used for data preprocessing.

2.2 Data Preparation

In order to properly forecast the promotion effect some of the attributes required
appropriate adaptation and transformation. As mentioned in the previous section
one of the attributes which requires to be extracted and adapted from the raw
data is the reference value of the KPI preceding the promotional period. This
value requires to define the matching period preceding the promotional, in our
calculation, it needed to meet the following conditions:

– It considered the same store.
– It had to last as many days as the considered promotion.
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– It had to start on the same weekday as the promotion.
– The considered product was not in promotion on any given day.
– The period without promotion could occur maximum 4 weeks and minimum

1 week before the promotion.

The illustration of finding the matching periods is shown in Fig. 1. The match-
ing period was not found for all promotions because of the lack of meeting the
requirements. These samples were removed from the data. Similarly, promotions
preceding holiday periods have been omitted because they have different char-
acteristics, which will constitute outliers affecting the training process.

One of the important limitations associated with the data representation for
the prediction systems is representing cyclical attributes such as weekday, day
of the month or day of the year. In this case, typical solutions consist either of
a direct numerical representation where, for example, weekday is represented as
a number between 1 and 7, or in symbolic form, where weekday is coded using
7 binary attributes, one for each day respectively. Unfortunately, such solutions
result in the loss of valuable information. For example, it is not possible to
determine the similarity between neighbouring days – for binary representation,
the distance between Monday and Friday is identical compared to the distance
between Friday and Saturday, and similarly, for numerical representation, the
last day of the week is the most dissimilar to the first day of the week (maxi-
mum distance = 7). Therefore, the so-called Fourier transformation consisting in
replacing a single attribute with a pair of sin( 2Πtime

period ) and cos( 2Πtime
period ) attributes

was considered. Where time is the value which should be represented in a cyclic
form, and period is the value of the period. For example for a week period = 7.
As a consequence of such transformation, the time values are distributed on a
circle as shown in Fig. 2.

Fig. 2. The effect of day of week transformation.

The final transformation which was applied to the data is within store nor-
malisation. Here the z-score standardisation was used for the attributes repre-
senting the KPIs, but for each store separately. The reason for using standard-
isation for those indicators was that they were referring to the specific values
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connected with the sale characteristics of a considered product in a given store.
For example, the location of the store or other parameters may influence its
value.

3 Experiments

The experiments were conducted on a single group of products namely fruits.
This group consists of 17 independent products like bananas, apples (3 different
apple species, each as a separate product), lemons etc. In order to keep privacy
in the remaining part of the article numerical indicators will be used to represent
particular products. All of the experiments were conducted for each product inde-
pendently, so for each product we created a separate prediction model. Initially,
we decided to use algorithms that belong to 4 popular and well-known families:
tree-based (Random Forest), distance-based (kNN ), neural networks and lin-
ear model. We followed the principle popular in meta-learning, where instead of
making experiments for a wide range of methods we picked some basic ones to
assess them and pick the most promising one. Then the most promising family is
evaluated deeper. In our experiments the best results (see Tables 2 and 3) were
obtained for the Random Forest. As a consequence, we extended the evaluation
by an additional tree-based method namely Gradient Boosted Trees. In total we
evaluated:

– Random Forest (RF) [3] - decision tree based ensemble, where the ensemble
members collectively vote for the final prediction

– Gradient Boosted Trees (GBT) [5] - boosting based approach where the deci-
sion trees are constructed one by one in order to minimize some cost function

– kNN [12]- k-nearest neighbours
– Generalized Linear Models (GLM) [15] - linear model with automatic param-

eters running model
– Neural networks (MLP) [11] - an MLP neural network

The size of the evaluated data varies from 5000 samples up to 20000 samples.
Each dataset consists of all of the attributes discussed in Sect. 2.2.

3.1 Prediction Model Pipeline

The experiments were carried out according to the scheme shown in Fig. 3. It
starts from loading the raw data and extracting the attributes, then the input
attributes are normalised. Here the Z-score was used where the variables after
the transformation had a mean value equal to 0, and a standard deviation value
equal to 1. Next, the output variables, so the KPIs, were normalised for each
shop separately as described in Sect. 2.2. After this, the date variables were
transformed with the Fourier transform. This applies to day of the week, day of
the month, and day of the year, the date representation also included a year which
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Table 1. Parameters used for model optimization within the grid-search procedure.

Model Parameter Values

Random Forest #trees {50, 60,. . . , 100 }

Gradient Boosted Trees #trees {50, 60,. . . , 100 }

kNN k {1, 3, 5,. . . , 30}

Generalized Linear Models Auto Internally optimized (H2O package)

MLP Learning rate 0.01
Momentum 0.1
Epochs 2000
Architecture {[10], [10, 5], [15], [15, 5]}

could be useful for long term trend prediction, although this variable consists
of only 5 unique values (2015, 2016, 2017, 2018 and 2019). After this stage, the
parameter optimisation procedure was applied. Here the grid search was used
where the parameters of the evaluated models are presented in Table 1. For the
assessment of the quality of models, the grid search procedure included internal
5-fold cross-validation. All of the already described stages were wrapped within
the outer cross-validation test which was used to determine the performance of
each of the evaluated models. The performance of models was measured using
two different metrics namely:

– Root mean square error RMSE =

√
1
n

N∑
i=1

(y − ȳ)2

– Correlation R =

N∑

i=1
(y−mean(y))(ȳ−mean(ȳ))

std(y) std(ȳ)

where N is the number of samples in the data, y is the true output and ȳ
is the predicted value. These two measures complement each other and help
to understand the value of error. In these experiments different products have
different characteristics. Some are sold by the piece and others are measured
in kilograms, so for example the RMSE = 5 can have a different meaning for
different products, while correlation measure (or the coefficient of determination
when squared) has fixed range which can be easily interpreted, but it ignores
the bias. Thus in the model optimisation stage, the RMSE was optimised.

3.2 Performance Prediction of the KPI

Obtained results are presented in Tables 2 and 3. They show the results obtained
for each product along with its performance, separately for each KPI.

The obtained results indicate that out of the evaluated models Random Forest
usually leads. In most of the cases, it outperforms other models and competes
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Fig. 3. Scheme of the process of carrying out the experiments.

with the MLP network which takes the second place. We can also observe that for
the best models the correlation coefficient is relatively high. For Avg. Amount
on average R � 0.93, and for Avg. Basket R̄ � 0.8, and only for some products
it drops to 0.64, while for other it is over 0.96. The issue of the large variance
of results for different products has been analysed in more details, and it points
out that one of the factors which influence prediction performance is the size
of the data. As shown in Fig. 4 the correlation R correlates with the size of the
data, and the correlation coefficient is corr(datasetSize,R) = 0.62.

Table 2. Prediction results for Avg. Amount for 17 products and 5 prediction models.

Product Id GBT kNN RF GLM MLP
RMSE R RMSE R RMSE R RMSE R RMSE R

101 53.08 0.919 54.77 0.909 44.79 0.940 61.15 0.885 44.15 0.942
102 3.25 0.753 3.29 0.745 3.12 0.774 3.30 0.743 3.19 0.765
103 11.42 0.928 9.56 0.935 7.95 0.956 10.93 0.914 8.19 0.953
104 9.79 0.876 9.46 0.880 8.46 0.905 9.88 0.871 8.53 0.904
105 53.82 0.950 47.60 0.933 33.63 0.966 54.45 0.908 33.25 0.967
106 17.14 0.928 15.07 0.935 12.30 0.957 15.93 0.928 12.05 0.960
107 4.81 0.888 4.49 0.892 3.88 0.920 5.80 0.813 3.98 0.917
108 41.70 0.894 44.37 0.864 35.43 0.915 54.31 0.787 35.40 0.917
109 31.53 0.908 30.97 0.895 24.22 0.936 33.23 0.876 24.53 0.935
110 16.44 0.917 16.89 0.898 12.88 0.942 20.53 0.844 12.96 0.941
111 20.41 0.917 21.36 0.878 15.04 0.940 24.81 0.825 15.42 0.936
112 12.59 0.896 12.40 0.883 9.92 0.925 13.42 0.859 9.88 0.927
113 12.75 0.926 12.94 0.900 8.88 0.952 13.01 0.895 9.11 0.950
114 14.31 0.898 15.02 0.873 12.11 0.922 15.77 0.861 12.33 0.921
115 107.74 0.928 103.52 0.908 73.33 0.955 108.69 0.899 75.34 0.953
116 11.79 0.895 11.35 0.896 9.64 0.926 12.61 0.869 10.20 0.919
117 15.36 0.938 15.11 0.907 10.55 0.954 19.87 0.826 10.95 0.951
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Table 3. Prediction results for Avg. Basket for 17 products and 5 prediction models.

Product Id GBT kNN RF GLM MLP
RMSE R RMSE R RMSE R RMSE R RMSE R

101 4.40 0.953 4.11 0.959 3.83 0.964 4.54 0.950 3.83 0.965
102 21.48 0.625 21.14 0.640 21.10 0.641 21.13 0.640 21.47 0.628
103 8.78 0.867 8.54 0.874 8.18 0.885 8.71 0.869 8.26 0.883
104 15.40 0.751 15.23 0.757 14.89 0.769 15.27 0.756 15.12 0.763
105 8.96 0.886 8.61 0.893 8.09 0.906 9.21 0.877 8.08 0.907
106 5.17 0.946 4.85 0.952 4.55 0.958 5.41 0.941 4.48 0.960
107 15.36 0.697 15.31 0.700 15.03 0.712 15.26 0.702 15.14 0.708
108 10.29 0.815 9.82 0.834 9.91 0.832 10.34 0.816 10.27 0.821
109 8.79 0.828 8.85 0.825 8.48 0.840 9.09 0.814 8.59 0.837
110 7.18 0.891 7.12 0.893 6.85 0.901 7.14 0.892 6.89 0.900
111 15.49 0.779 15.29 0.783 14.86 0.798 15.22 0.786 15.08 0.793
112 13.46 0.781 13.55 0.779 13.12 0.795 13.70 0.774 13.17 0.795
113 17.99 0.678 17.98 0.677 17.41 0.702 17.85 0.683 17.59 0.695
114 15.13 0.731 15.01 0.737 14.61 0.752 15.15 0.730 14.75 0.748
115 7.44 0.895 7.43 0.895 6.90 0.910 7.97 0.879 6.94 0.909
116 15.35 0.764 15.11 0.772 14.81 0.783 15.05 0.776 15.11 0.777
107 15.44 0.788 15.66 0.779 14.62 0.811 15.36 0.789 14.72 0.809

Moreover, obtained results show that the performance obtained by the Gen-
eralized Linear Models in comparison to the best models is lower. It indicates
that the relation between the input variables and the outputs is nonlinear.

Fig. 4. Relation between dataset size and R performance measure.
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3.3 Feature Importance

Next to the prediction quality, one of the most significant factors from the eco-
nomical point of view is feature importance. It is especially valuable because it
indicates which elements of the dataset influence the performance the most. For
that reason, we took the Random Forest model and extracted feature weights.
This procedure was performed independently for each output variable and each
product. Then feature importance weights were averaged over products to obtain
aggregated indicators separately for each KPI. The obtained results are presented
in Fig. 5 and Fig. 6.
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Fig. 5. Feature importance for Avg. Amount.

In both figures, the most significant is the variable indicating the value before
promotion. This is reasonable because it defines the reference value. According
to these figures, the following most significant features are the meta attributes
indicating the welfare and size of the population along with the competitors
rate. Surprisingly, for Avg. Amount, the date variables are not very important,
while for Avg. Basket the day of month and day of year are among the upper
half of features. Moreover, for the Avg. Basket special price and price change
are the fourth and fifth of the most valuable variables. This is an important
factor which indicates the significance of the promotion. In both figures, the
least important are variables describing how the advertisement was published
like TV or radio. These are binary variables which do not tell how intensive was
the advertisement or which media was used, whether it has a global or local
range, or was it a prime time or not etc. We believe that this is the reason why
their usability is so limited.
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Fig. 6. Feature importance for Avg. Basket.

4 Conclusion and Discussion

Forecasting plays an important part in the retail sector and promotions fore-
casting has a big impact on a total sale in a company. Good understanding of
the promotions and being able to optimise them is very crucial for maximizing
profit in the FMCG sector.

This study has attempted to compare different algorithms for forecasting
the efficiency of the promotions. The paper takes into consideration modelling
promotions for every product separately. Authors focused on two KPI in order
to describe promotions: Avg. Amount and Avg. Basket. Five different algo-
rithms were investigated and the experiments were conducted for 17 different
products (fruits). In the result, the authors got a comparison of the efficiency
of different models for these products and for two indicators. The results show
that Random Forest in most of the cases outperforms other models. This may be
because some attributes were binary and tree-based algorithms handle them very
well. Methods based on distances, e.g. kNN, would require appropriate weighting
of the attributes and this may be the reason for obtaining worse results for these
algorithms. However, these are the authors’ assumptions and would require a
more in-depth analysis to confirm them.

The paper precisely describes the process of data set preparation. It shows
how the records were created and what set of attributes was used. The paper
explains also an important process of representing time in order to keep the
information about a cyclical characteristic of time attributes. A meaningful part
of this paper is a feature importance description. The plots similar to these
showed on Figs. 5 and 6 can be used by practitioners and business people to gain
knowledge on promotions in their company and to find features that influence the
performance the most. This kind of information can be used to optimise future
promotions because the user knows which parameters are the most important
for the final result.
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In conclusion, this paper provides analyses of the forecasting performance
of two KPIs that describe the efficiency of the promotions. The experiments
were conducted on real-life data. The comparison of different algorithms was
presented and the practical aspect of this study was also provided.
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Abstract. Recent recommendation strategies attempt to explore rela-
tions among both users and items, applying techniques of graph learning
and reasoning for solving the so-called information isolated island limi-
tations. However, the graph-based ranking algorithms model the interac-
tions between the user and item either as a user-user (item-item) graph
or a bipartite graph that capture pairwise relations. Such modeling can-
not capture the complex relationship shared among multiple interactions
that can be useful for item ranking.

In this paper, we propose to leverage hypergraph random walk into the
ranking process. We develop a new recommendation framework Hyper-
graph Rank (HGRank), which exploits the weighting methods for hyper-
graph on both hyperedges and vertices. This leads to the expressive mod-
eling of high-order interactions instead of pairwise relations. Specifically,
we take social trust and reliability into the hypergraph weighting process
to improve the accuracy of the algorithm. Extensive experimental results
demonstrate the effectiveness of our proposed approach.

Keywords: Social trust · Reliability · Hypergraph ranking · Random
walk

1 Introduction

Recommendation has been widely applied in various online services, including E-
commerce, content sharing, social networking, forum etc. Over the past decade,
a vast number of algorithms have been proposed to tackle the top-N recommen-
dation task, aiming at identifying a ranked list of N items users may likely be
interested in based on the historical interactions like purchases, view, like etc.

The methods dealt with the top-N recommendation task broadly fall into
two classes: the latent space ones and the graph ranking based (which focus
c© Springer Nature Switzerland AG 2020
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Fig. 1. An example illustrates the advantages of hypergraphs over normal graphs in
capturing user-item complex relationships

either on users or items or both). The latent space methods [3,13] take users’
scoring information in the form of a matrix, and compute a low-rank factor-
ization thus the user and the item are represented by a latent vector through
the decomposition of the matrix. The inner product is adopted to describe the
pairwise relationship and prediction the score. The graph-based methods [5,7]
assume that user-user connections can be established via social relations or sim-
ilar attributes while user-item interactions involve either implicit feedback or
explicit feedback. These investigated objects are usually endowed with pairwise
relationships, which can be illustrated as graphs, based on which graph learning
and reasoning approaches are applied.

In many real-world problems, however, relationships among the objects of our
interest are more complex than pairwise. Simply squeezing the complex relation-
ships into pairwise ones will inevitably lead to loss of information which can be
expected valuable for recommendation tasks however. Put it another way, rep-
resenting a set of complex relational objects as graph is incomplete. Given an
item, assuming that the only information we have is which user has interacted
with this item. An undirected graph can be constructed in which two vertices are
joined together by an edge if there is at least one common user have interacted
with these items, and then a graph based ranking approach can applied. Despite
their effectiveness, we argue that these methods are not sufficient to yield sat-
isfactory recommendation results because such graph representation obviously
misses the information on whether the same users joined interacting with three
or more items or not. In the recommendation system, an interaction v1 : u1 in
the history indicates that user u1 has interacted with item v1(click, purchase,
etc). And we built two interaction sets to illustrate this problem. For differ-
ent interactions{v1 : u1, u2; v2 : u1, u3; v3 : u2, u3, u4}, {v1 : u1, u3; v2 : u2, u3; v3 :
u3, u4}, they have the same structure on the item co-occurrence graph. However,
a hypergraph can capture the differences in this complex interaction, as shown
in Fig. 1. Such information loss is unexpected and hence utilizes the information
is useful for our ranking task.

On the other hand, consideration of user ratings alone may not be sufficient
to accurately characterize user similarities. In other words, users may initially
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be biased toward certain users. Existing studies address the above problems to
some extent by integrating additional information into a recommendation sys-
tem [8]. And they obtained good recommended results. At present, the rapid
development of social networking platforms provides information sources for the
construction of social relationships among users. In social networks, social rela-
tions between users often seem as whether users trust other, which to some
extent provides users’ preference information. Therefore, on the basis of hyper-
graph modeling, we use the user’s trust relationship to give the explicit coding
of user preference. That is, we believe that a higher similarity weight should be
assgined for users trusted by the user to be recommended. In addition, in order
to make full use of social information and rating data, we model the hyperedge
weight using three parts: authority, reliability and the similarity. In addition,
algorithm performance can be improved by adjusting the relationship among
these three through hyperparameters.

In this paper, we aim to build a recommendation system based on Hyper-
graph Ranking (HGRank), which can explicitly encode high-order connectivity
between items. The theory of hypergraph ranking generalizes the traditional
notion of graph ranking, whereby the interaction is now defined over more than
a pair of vertices. The proposed recommendation framework have elaborately
designed the weighting strategies for both hyperedge and hypervertexes. In par-
ticular, social trust and user reliability are considered for hyperedge weighing.
Social relations between users often serve as whether users trust each other,
which to some extent provides users’ preference information whereas the relia-
bility of a user refers to the accuracy of its recommendation, i.e., to what extent
a user’s recommendations to another user are accurate.

Our major contributions are summarized as follows:

1. We propose a novel hypergraph ranking approach, which can model user-
item interaction on the hypergraph instead to completely represent complex
relationships among the items of our interest;

2. We provide a principled approach to jointly capture both social trust and
reliability for hyperedge weighting;

3. We demonstrate the effectiveness of the proposed framework on various real-
world datasets.

The rest of our paper is organised as follows. We summarize the related work
in Sect. 2. Then, shortly recapitulate the details of hypergraph and make a brief
statement about our task in Sect. 3. Based on this, we give a detailed description
about our method in Sect. 4 and Sect. 5. Then, we introduce the datasets, exper-
imental settings and discuss the effectiveness of proposing algorithm in Sect. 6.
Finally, we conclude this work in Sect. 7.

2 Related Work

We review the existing approaches that work on trust information and high-order
connectivity, which are most relevant with our method. Then we summarize these
methods and briefly explain the differences from our method.



336 Y. Jiang et al.

Social recommendation, which is capable of conquering the data sparsity
problem of traditional recommended systems by considering social information,
has attracted a broad range of interest of researchers. With the rapid develop-
ment of social media data, a large amount of valuable social information can be
utilized to effectively solve these problems by modeling the interactions between
users. SoRec is considered to be a heuristic work in the field of social recommen-
dation, in which users’ rating information and trust information are represented
by a vector. Based on SoRec, SocialMF [9] re-formalizes the contributions of
trust user to active users, rather than direct predictions of the items. In other
words, user preferences are built on the basis of the preferences of friends they
trust. TrustSVD [4] is the first work to extend SVD++ with social information.
And the method considers that the explicit(true value of ratings and trust) and
implicit (who rates what and who trusts whom) effects of user-item score will
influence the generation prediction. DSR [10] learns binary codes in a unified
framework for users and items, considering social information. It improves the
performance of recommendations by learning the binary codes for users and
items in a single-stage method.

Due to the prevalence and success of graph neural network technology, many
recent studies in the recommendation fields have turned their attention to model-
ing high-order connectivity. NGCF [14] first constructs the message propagation
mechanism and then explicitly integrates the collaborative signal of high-order
connectivity into the embedding layer by stacking multiple embedding propa-
gation layers. In addition, due to the advantages of the random walk method
in capturing the high-order connectivity of the graph. Researchers also model
the high-order connectivity through a random walk. Hop-rec [15] extends the
approximate representation of indirect high-order connections to the training set
through the random walk, and then applies the matrix decomposition method
to recommend.

Although our approach also leverages trust information and makes recom-
mendations by capturing high-order connectivity. We are different from the
above methods, they focus more on the unilateral factors. Our approach takes
into account both. In this paper, we capture high-order connectivity by repre-
senting a user-item bipartite graph as a hypergraph and applying a hypergraph
random walk by incorporating the authority and reliability derived from the
trust social relationships and rating information into the hypergraph weighting.

3 Preliminaries and Problem Statement

We first review the formalize definition of hypergraph and its related concepts,
followed by the definition of the task we study and some commonly used nota-
tions.

A simple graph is a representation of a set of vertices that each edge connects
two vertices, while hyperedges in a hypergraph are generalizations of edges in
a simple graph, a special type of edges that can connect any number of hyper-
vertices [11]. And we follow the nomenclature of [1]. A hypergraph HG = (V,E)
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contains vertices set V and hyperedges set E. The hyperedge e ∈ E is essen-
tially a subset of the hypervertices set(i.e.

⋃
e∈E = V ). For the convenience

of description, we use vertices to represent hypervertices in the following. And
then, a hypergraph HG is represented by an indicator matrix H with entries
h(v, e) = 1 if v ∈ e and 0 otherwise. For a weighted hypergraph WHG, a weight
w(e) is associated with each hyperedge e. And the weights of the vertices on
different hyperedges are different. w(ve) indicates the weights of the vertices v
on specific hyperedges e. Similarly, we use the weighted indicator matrix Hw to
represent the weighted hypergraph and the weights hw(v, e) = w(ve). In addi-
tion, the degree d(e) of a hyperedge e is defined as the sum of all the weights
of vertices on the hyperedge e, i.e., d(e) =

∑
v∈V w(ve)h(v, e). The degree of a

vertex d(v) is defined as the sum of all the weights of the hyperedges containing
v, i.e., d(v) =

∑
e∈E w(e)h(v, e).

In the recommendation system, since users are rating in the same item space
and the rating for a item is discriminative for different users, it is intuitive to view
a user u as a hyperedge and the vertices on this hyperedge represent the item
rated by u. By convention, we assume that this recommendation system contains
a set of n users U = {u1, u2, · · · , un} and a set of m items V = {v1, v2, · · · , vm}.
And A = [Aij ]n×m is the user-item rating matrix, containing the items that the
users have rated. Similarly, we define a trust matrix T = [Tij ]n×n with Tij = 1
if ui trust uj and 0 otherwise.

We first generate the hypergraph indicator matrix based on the rating data,
and then integrate the trust relationship into the hypergraph weighting process
by calculating user authority and reliability. After this, a random walker is used
to navigate the generated hypergraph, resulting in a list of length m, each ele-
ment of which represents the preference of user u. And we can get the top-N
recommendation for user u by truncate ordered list.

4 Weighting Strategy

As described, the rules used to weight the hyperedges and the vertex are the
essential to a hypergraph. To address this key point, we design the following
principle to weight a hypergraph.

4.1 Hyperedges Weighting

When we incorporate social data such as trust information into the recommen-
dation system, for a recommending hyperedge(user) ui the weight of another
users uj can be considered to be determined by the authority of uj , the trust
relationship and similarity between ui and uj . In this paper, we define the above
three indicators as Rauth(uj), R

(ui)
reli (uj) and R

(ui)
sim(uj), respectively. Generally

speaking, the user trusted by most other users are more authoritative. Trust
data is usually represented by a directed graph, so we can do a random walk on
this directed matrix T to get an sorted list r about authority of all the users
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to use in the next step of the algorithm. Therefore, the authority of uj can be
defined as the uj-th element of r,

Rauth(uj) = ruj
(1)

Since the authority of uj is certain for all of users, we omit the superscript
ul. Then, we can construct a function to describe the reliability of user uj for
user ul as,

R
(ul)
reli (uj) = I(ul, uj)e

− 1
1+|Nuj

| (2)

Where I(ul, uj) is an indicator function that implies whether user ul trusts user
uj(i.e.I(ul, uj) = 1 when ul trusts uj). If ul indeed trusts uj , we can calculate
the reliability through the above equation. And the |Nuj

| denotes the number
of items rated by uj . That is, we assume that the more users make ratings, the
more reliability they are.

The similarity between the ul and uj can be intuitively defined according to
the cosine similarity of the user’s rating vector for all items as,

R
(ul)
sim(uj) =

1 + cos(Aul
,Auj

)
2

(3)

Finally, the hyperedge weights are calculated as follows,

wul(uj) = w1Rauth(uj) + w2R
(ul)
reli (uj) + w3R

(ul)
sim(uj) (4)

Where w1, w2 and w3 denote the smoothing factor of the three indicators, which
are constrained of: w1 + w2 + w3 = 1. Adjust the hyperedge weights according
to the different parameters values of w1, w2, w3, and we will explore the optimal
selection of them in Sect. 6.2.

4.2 Vertices Weighting

Inspired by the text-word weight strategy, we weight the vertices(items) by the
co-occurrence, correlation, and the co-occurrence distance(i.e. similarity of rat-
ing) on a particular hyperedge. Let ul as the user to be recommended. Since
the following metrics are different for different users, for the sake of clarity, we
omit the superscript ul that represent the current user to be recommended for
all non-critical locations. Given items vi , vj and vi, vi ∈ us, their co-occurrence
cous

(vi, vj) for user us can be calculated as,

cous
(vi, vj) = wul(us) × e−distus (vi,vj) (5)

where distus
(vi, vj) = (Asi − Asj)2 denotes the square of the difference in user

ratings between the two items, which the larger rating gap between the two
items indicate the lower similarity between them, and then multiplied by the user
weight to imply the co-occurrence of items for us. The co-occurrence between
any two items vi and vj is the sum of cous

(vi, vj) for all users:

co(vi, vj) =
n∑

s=1

cous
(vi, vj). (6)
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Furthermore, we define the unilateral correlation degree ucor(vi, vj) to rep-
resent the probability of associating vj by observing vi as,

ucor(vi, vj) =
co(vi, vj)∑m
k=1 co(vi, vk)

× log2
m

NEI(vj)
(7)

Where the right-hand side of the formula is used to penalize the vj that are
common to a lot of items, and NEI(vj) represents the number of items that
have co-occurred with vj .

In the same way, the unilateral correlation of ucor(vj , vi) can be calculated.
Hence, the correlation between vi and vj is defined as the mean of the unilateral
correlation between ucor(vi, vj) and ucor(vj , vi) as,

cor(vi, vj) =
1
2
(ucor(vi, vj) + ucor(vj , vi)) (8)

The associative weight cow(vi, ul) is reflected in the representativeness of
vertex vi in a specific hyperedge ul. the higher the associative weight of vi means
that when vi appears, the higher the probability of other vertices vj appearing in
hyperedge us. Further, calculate the correlation weight of an item in a particular
user as,

cow(vi, us) =

∑m
j=1 cor(vi, vj) ∗ H(vj , us)

|Nus
| (9)

The correlation weight is combined with the global statistical weight, that is,
inverse frequency statistics (if) considers that items with fewer global statistics
have higher weights for the users interacting with them. Based on this, the weight
calculation formula of vertex vi on hyperedge us is as follows,

w(vi, us) = cow(vi, us) × log2
1 + m

1 + |Nvi
| (10)

5 Hypergraph Random Walk

Unlike simple graphs, a hypergraph usually contains more than two vertices on
a single hyperedge. Therefore, a more general random walk method is needed for
hypergraphs. Bellaachia et al. generalized the random walk method on hyper-
graphs [1]. Its random walk process is as follows: First, select the starting vertex
u, and select a specific hyperedge e containing the current vertex u in propor-
tion to the probability of the size of the hyperedge weight w(e); Then, in the
determined hyperedge, the transfer is carried out according to the calculated
probability of the weight of vertices. Let P be the probability matrix of the
random walk of the hypergraph. And the calculation method is as follows,

P (vi, vj) =
∑

u∈U

w(u)
h(vi, u)

∑
û∈Nvi

w(û)
hw(vj , u)

∑
v̂∈u hw(v̂, u)

(11)



340 Y. Jiang et al.

For the convenience of calculation, [1] gave the matrix form calculation method
as,

P = D−1
v HWeD−1

e HT
w (12)

where Dv,De is the degree diagonal matrix of vertices and hyperedges, H is
the hypergraph indicator matrix, We is the diagonal matrix of the hyperedge
weights and Hw is the weighting hypergraph indicator matrix.

Once the transition matrix is constructed, the obstacles that prevent the
random walk process are all removed. First set the initial distribution vector
v0 equally probabilistically. Then, after iterating a number of steps according to
Eq. 13, v will no longer change significantly, that is, the convergence is completed.
β is the smoothing factor.

vi+1 = βPTvi + (1 − β)v0 (13)

After the iteration finally stops, we can sort the convergent vector v to get the
first N items that the recommended user might be interested in.

6 Experiments

We implement our method in Python, and all the experiments are implemented
on a computer with a 4.0 GHz CPU and 32 GB memory. In this section, we
perform experiments on two real-world datasets to evaluate our proposed method
and answer the following research questions:

– RQ1 How does our proposed method as compared with state-of-the-art meth-
ods?

– RQ2 How can we benefit from modeling authority and reliability?

6.1 Datasets

For evaluate the effectiveness of our method, we conduct series of experiments
on two datasets:Filetrust and CiaoDVD, which are publicly accessible and we
summarize the characteristics of the two datasets in Table 1.

Table 1. Statistics of the datasets

Dataset User# Item# Rating# Trust# Density (Rating/Trust)

Filmtrust 1,508 2,071 35,497 1,853 0.011400/0.000815

CiaoDVD 17,615 16,121 72,665 40,133 0.000256/0.000129

The two datasets are widely used in previous studies [2,12]. We adopt the
leave-one-out protocol, for each dataset we randomly select one of historical
positive ratings of each user to constitute the training set.
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6.2 Experimental Settings

Evaluation Metrics. Following the neural collaborative filtering [6], we use Hit
Rate(HR@k) and Normalized Discount Cumulative Gain (NDCG@k) to measure
the performance of different recommendation algorithms.

Baselines. To demonstrate the effectiveness our proposed method, we compare
it with the following methods:

– MF: This is the most classical personalized recommendation algorithm based
on latent factor factorization.

– SocialMF [9]: This method assumes that the user’s preference information is
largely dependent on the preference information of the trusted friend

– Hop-rec [15]: This is a graph-based model, where high-order neighborhood
generated by random walk is used to enrich user-item interaction data.

– NGCF [14]: This is a new recommendation framework based on graph neu-
ral network, which model the collaborative signal in the form of high-order
connectivities by performing embedding propagation.

Parameter Settings. The latent factor size is fixed to 32 for all MF-based mod-
els. For NGCF, we use the proposed epoch of 10 and set the number of embedded
propagation layers to 3. For our method, there are three non-negative parame-
ters in the hyperedge weighting process:w1, w2, w3, considering w1+w2+w3 = 1,
we only need to consider two independent parameters. To this end, we use grid
search to find the optimal parameters of w1 and w3. The results are visualized
in Fig. 2. We find that the best Settings for parameters were [0.2, 0.1, 0.7] on the
Filmtrust dataset. And the best parameter in CiaoDVD is similar. In addition,
we use the recommended value of 0.85 for the random walk parameter β.

6.3 Performance Comparison

We first compare the performance of all the baselines. To be fair, we experiment
three times and reported the average results of the performance comparison in
the Table 2. From the result, We summarize several important observations.

ww

Fig. 2. Impact of parameters[w1, w2, w3] on HGRank performance
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1) Social information can help improve recommendation performance. In gen-
eral, adding more attributes to a recommendation system can improve rec-
ommendation performance. Social recommendation methods capture more
relationships between users and users than normal recommendation meth-
ods that only consider rating information. As the results show, social recom-
mendation is superior to the MF approach. Experimental results from both
datasets demonstrate that incorporating social information into recommen-
dations improves accuracy.
2) Capturing the high-order connectivity is more efficient. Hop-rec and NGCF
are two of the latest recommendation models to capture high-order connectiv-
ity, and the difference between them is how to model the high-order connec-
tivity. Specifically, Hop-rec performs a random walk on a bipartite graph to
obtain the user’s interaction with multi-hop neighbors. NGCF use a GNN to
propagate the embedding representation to capture the information of high-
order connectivity. Thus, high-order propagation is explicitly coded in model
training. In all cases, Hop-rec and NGCF have achieved performance improve-
ments that demonstrate the importance of capturing high-order connectivity
rather than local information on interactive bipartite graph.
3) Hypergraphs have advantages over simply bipartite graphs. Our method
performed best on most of the results, demonstrating the effectiveness of using
the side information of the trust relationship and building bipartite graph of
user-item interactions as hypergraphs. Experimental results show that by
representing bipartite graphs as hypergraphs, we can capture more complex
relationships between user-items to improve recommendation performance.

However, in CiaoDVD, HGRank underperformance NGCF w.r.t. ndcg. The
reason might be that our random-walk approach, compared to NGCF, which
captures high-order connectivity through a multi-layer messaging mechanism,
transfers the weight correlation of all nodes at each iteration. And without con-
sidering the connectivity of each layer, this can lead to suboptimal results.

6.4 Effect of Social Information

We now investigate the second question, i.e., how can we benefit from modeling
authority and reliability? In our proposed hypergraph design, the trust and reli-
ability factors are incorporated into recommendation systems. Three variations
of HGRank are used for this ablation study. Their performance on Filmtrust is
included in Table 3, Results on CiaoDVD show the same observations.

– HGRank-1. HGRank without using authority factor in hyperedges weighting
process.

– HGRank-2. hyperedges weighting strategy of HGRank with reliability factor
removed.

– HGRank-3. An extremely simplified version of HGRank, which combine the
above two variants means removing both the authority and reliability factors.

From the results in Table 3, we have the following observations:
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Table 2. The performance of all methods on all the two datasets

Filmtrust CiaoDVD

hr@20 ndcg@20 hr@50 ndcg@50 hr@20 ndcg@20 hr@50 ndcg@50

MF 0.1406 0.0567 0.2248 0.0762 0.0079 0.0039 0.0125 0.0048

SocialMF 0.1916 0.0745 0.2865 0.1110 0.0230 0.0075 0.0354 0.0109

Hop-rec 0.1942 0.0824 0.3627 0.1242 0.0246 0.0089 0.0468 0.0143

NGCF 0.2056 0.0918 0.3804 0.1304 0.0298 0.0128 0.0499 0.0168

HGRank 0.2141 0.1003 0.4083 0.1353 0.0315 0.0119 0.0511 0.0183

impr.% 4.13% 9.26% 7.33% 3.76% 5.70% – 2.40% 8.93%

p-value 2.14e−3 7.01e−4 4.52e−5 2.34e−3 4.26e−2 – 4.35e−3 2.10e−2

Table 3. The performance of all variants on filmtrust in terms of k = 20

HGRank-1 HGRank-2 HGRank-3 HGRank

HR@20 0.1923 0.1856 0.1710 0.2141

NDCG@20 0.0938 0.0874 0.0811 0.1021

1) HGRank is consistently superior to all variants. We attribute this improve-
ment to the use of trust relationships, authority and reliability measures.
Thus, we verify the rationality and effectiveness of introducing trust relation-
ship and measuring reliability in the hyperedge weighting.
2) In all cases, HGRank-2 underperforms HGRank-1. This shows that con-
sidering authority alone is not enough to obtain better hyperedge weights to
improve recommendation performance without introducing the direct trust
relationships that help capture information about preferences between users.

7 Conclusion

The development of social network provides a new opportunity to improve the
recommendation algorithm. In this paper, in order to make full use of social
information, we design a new framework, which converts the user-item bipartite
graph of the traditional recommendation system into a hypergraph, and models
the user’s trust social relationship into a hyperedge weighting through authority
and reliability indicators. The constructed probability transfer matrix is applied
to the hypergraph random walk to capture the high-order connectivity. Through
these designs, our method can make the recommended results achieve higher
precision. The experimental results on the real datasets confirm the rationality
and effectiveness of our method.
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Abstract. Facial action units (AUs) intensity estimation is a funda-
mental task for facial expression analysis, emotion recognition and affec-
tive computing. Since AUs commonly appear in specific combinations
and are highly related to each other, modeling relations among multiple
AUs is expected to improve the estimation performance. In this paper,
we propose a novel end-to-end Graph Relation Networks approach to
efficiently capture hidden relations among AUs. Firstly, we model AU
intensity estimation tasks in a weighted directed graph. Secondly, we
design an attention-based graph relation framework to capture dynamic
relations and perform information sharing between tasks. To the best of
our knowledge, we are the first to introduce graph neural networks into
the AU intensity estimation. Experimental results on two public bench-
mark databases, BP4D and DISFA, show that our method achieves the
state-of-the-art performance.

Keywords: Facial expression analysis · Action units intensity · Graph
neural networks

1 Introduction

Facial expression recognition enjoys increasing attention due to their potential
applications in emotion recognition, affective computing and human-computer
interaction. Facial action units describe the facial expression locally, representing
movements of one or more muscles in the face. Facial Action Coding System
(FACS) [3] was designed to systematically depict those facial muscle movements.
It defines AUs as movements of one or a group of muscles, and a group of AUs
can code nearly any possible facial expression. FACS also divides AUs intensity
into six intensity levels: Neutral < Trace(A) < Slight (B) < Pronounced (C)
< Extreme (D) < Maximum (E). Given an input facial image, the goal of AU
intensity estimation is to predict the intensity level of each AU.
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Fig. 1. Facial action units are highly related to each other. For example, AU6 is highly
related to the intensity of AU12, and AU4 appears differently depending on whether
it occurs alone or in combination with AU1.

Since AUs are temporal actions and each AU is only related to different region
features, current works of AU detection and AU intensity estimation mostly focus
on temporal [6,21] or regional [1,8,17,23] feature extraction. Most of those works
consider each AU independently and ignore relations among AUs. Actually, facial
muscle interactions are controlled by certain anatomical mechanisms [3]. AUs are
highly related to each other and significantly affect each other’s appearance.

For example (Fig. 1), high intensity of AU12 (lip corner puller) always results
in AU6 (chin raiser). AU1, AU4 (eyebrow lower) and AU9 (nose wrinkler) are
associated with the group of muscles near the glabellae. And AU17 (chin raiser),
AU14 (dimpler), AU15 (lip corner depressor) are all related to the group of
muscles near the mouse and chin. Those AUs always occur in a group and appear
differently with or without others. Therefore, modeling relations among multiple
AUs is expected to achieve a more accurate estimation of the target AU intensity.

Researchers have recently begun to consider AU relations in AU recognition
and intensity estimation. Some multi-task learning approaches [19], additional
constraints approaches [4,22] and probabilistic graphical approaches [7,18] have
been investigated. The multi-task learning approaches simultaneously deal with
multiple AUs, while lacking a specific mechanism to capture relation represen-
tation within each AU. The additional constraints can only capture local or
fixed AU relations but are unable to model the variations in AU relations. The



Facial Action Units Intensity Estimation via Graph Relation Network 347

probabilistic graphical models can capture complex, and global AU relations
but cannot be trained end-to-end. In this paper, we adopt the end-to-end train-
able graph neural network structure to extract dynamic relations between AU
intensity estimation tasks.

Graph is a kind of data structure that models a set of objects (nodes) and
their relations (edges). Due to the great expressive power of graphs, analyzing
graphs with machine learning has been receiving more and more attention. Graph
neural networks (GNNs) are connectionist models that capture the dependence
of graphs via messages passing between the nodes of graphs. Unlike standard
neural networks, GNNs retain a state that can represent information from its
neighborhoods with arbitrary depth. Recent progress in network architectures,
optimization techniques, and parallel computation have enabled many ground-
breaking applications of GNNs [2,10,16].

The attention mechanism has been successfully used in many sequence-based
tasks such as natural language processing, machine translation, and so on. Driven
by the task goal, an attention mechanism can model dependency between the ele-
ments without knowing their locations and feature distributions. Graph attention
network (GAT) [16] incorporates the self-attention mechanism into the propa-
gation step, which simultaneously computes the hidden states of each node by
attending over its neighbors, following a multi-head attention strategy.

Inspired by the GAT, we propose a novel graph relation network structure,
which uses a self-attention mechanism to efficiently generate nodes relations
in graph structure. Then, the message propagates through the graph. Using
this graph relation network structure, we can easily model the relations and
information sharing between AU intensity estimation tasks.

Our contributions can be summarized as follows:

– We propose a novel graph relation network model to extract dynamic rela-
tions better and achieve information sharing between AU intensity estimation
tasks. To the best of our knowledge, it is the first time to introduce GNN into
AU intensity estimation.

– Our Graph Relation Network model is end-to-end trainable, and can be easily
plugged into most backbone networks.

– We show that our model achieves the state-of-the-art performance on two
public AU intensity estimation benchmark databases.

2 Related Work

2.1 Facial Action Units Analyses

Facial action units analysis works can be divided into two categories: AU recogni-
tion and AU intensity estimation. AU recognition task only predicts the appear-
ance of each AU, while AU intensity estimation also estimates AU intensity
level. Current deep learning works in AU detection and AU intensity estimation
mainly focus on temporal or regional feature extraction. Zhao et al. [23] designed
a region layer to model regional feature of AUs. Li et al. [8] improved VGG with
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an attention map for regional feature extracting of AUs. Hu et al. [6] designed a
cross-concat and temporal neural network to consider physical features and the
distribution differences of AUs. However, all above approaches ignored relations
between AUs.

2.2 Researchs on AU Relations

Recently, some researchers have begun to examine how AU relations could
improve AU recognition and AU intensity estimation. Zhao et al. [22] lever-
ages group sparsity by setting constraints to select a sparse subset of facial
patches for multiple AU recognition. Eleftheriadis et al. [4] proposed a multi-
conditional approach with Bayesian learning strategy based on Monte Carlo
sampling. Robert Walecki et al. [18] combined conditional random field (CRF)
with deep learning to encode AU pairs dependencies. Rudovic et al. [12] proposed
a conditional ordinal random field model for context-sensitive modeling of AU
intensity. Kaltwang et al. [7] proposed a generative latent tree model to repre-
sent the joint distribution of AU intensities and facial features. Although current
works explored AU relations for facial action units analyses works, few end-to-
end trainable deep learning approaches were proposed to capture dynamic and
global relations between AUs efficiently.

2.3 Graph Neural Networks

Graph neural networks (GNNs) are deep learning based methods that operate on
graph domain, to capture the dependence of graphs via message passing between
the nodes of graphs. Due to its convincing performance and high inductive ability,
GNNs have been widely applied in graph analysis tasks.

GNNs were first introduced in Gori et al. [5] and Scarselli et al. [13] as a gener-
alization of recursive neural networks that can directly deal with a more general
class of graphs. Recent researches mainly focus on spectral [2] and spatial [10,16]
Graph Convolutional Neural Networks(GCNs), which aim to generalize convolu-
tional neural networks to graph-structured data. CNNs intrinsically exploit the
regular grid-like structure of data defined on the euclidean domain (e.g. images),
GCNs extend this concept to non-regularly structured data (e.g. social/brain net-
works). Graph attention network(GAT) [16] is a GCN structure method which
incorporates the self-attention mechanism into the propagation step, simultane-
ously computes the hidden states of each node by attending over its neighbors,
following a self-attention strategy. Due to GNN’s interpreting ability and con-
vincing performance on dependence capturing, it is natural to introduce graph
neural network structure to model relations between AUs.

3 Proposed Methods

Figure 2 summarizes the overall structure of our graph relation networks. Firstly,
given an input face image, we apply a pre-defined convolutional network (VGG19
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Fig. 2. The overall architecture of the proposed graph relation network. The vgg19
backbone extracts deep features from input face images, then the features are sent
through our two layer structure graph relation network to generate global representa-
tion of each task, finally we use those representations to predict each AU’s intensities.

[14] in our experiments) to extract high semantic image features. Secondly, we
adopt 1 × 1 Convs on those image features to generate input nodes features
for each AU, since each AU relies on different semantic features from different
regions. Thirdly, we define the graph relation layer, which adopts relation cap-
turing and information sharing within graph structure. Then we stack graph
relation layers to construct the graph relation network. Fourthly, we send nodes
features through the graph relation network to get the final high representa-
tive global features for each task. Finally, the readout functions use those global
features to predict the intensities for each AU intensity estimation task directly.

3.1 Graph Relation Layer

Our graph relation layer takes nodes features as input, then builds a graph
structure to update those features. Formally, let G = (V, E) denotes the graph
structure we need to build. Nodes v ∈ V take unique values from {1, · · · , |V|}
(|V| equals to the number of AUs to estimate). Then we define edges as a matrix
E ( E ∈ R

|V|×|V|), and each element in matrix denotes relations between nodes.
Firstly, we adopt message generating functions Mv : R|f l| → R

|ml| for each
node v to compute incoming messages respectively. At each graph relation layer
l, the messages are computed as:

ml
v = Mv

(
f l
v

)
(1)

ml
v denotes messages of node v in the l − th layer, f l

v denotes input features of
node v in the l − th layer. In our experiments, we defined the message generate
functions Mv as convolutional layers with 1 × 1 kernels.
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Fig. 3. Self-attention based edge function El takes message tuples (v, u) as input to
calculate the importance (αl

vu) of the message of node ul to node vl

Secondly, with messages generated for each node, we adopt a self-attention
based edge function to generate directed edges for each node tuples to represent
relations between them. For each layer l, we define a shared self-attention based
edge function El : R

2|ml| → R to take messages from each nodes tuples and
compute attention coefficients:

elvu = El
(
ml

v,m
l
u

)
(2)

Figure 3 summarizes the structure of the edge function. This elvu indicates the
importance of node u’s message to node v. Then we normalize them across
all nodes using the softmax function. This step can be seen as generating the
graph topology structure. We define edge function El as a single-layer fully
connected neural network, parameterized by a weight vector a ( a ∈ R

2|ml|),
then apply an activation function σ (LeakyReLU in our experiments). The inputs
are concatenated node message vectors. So the edge function can be written as:

αl
vu = softmaxu

(
σ

(−→a T
[
ml

v‖ml
u

]))
(3)

where ‖ represents the concatenation operation and αl
vu is normalized elvu.

Once obtained, the normalized attention coefficients αl
ij are used to aggre-

gate messages from nodes set V, to generate output features for every node.
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Until now, our model allows every node to focus on every other node. In order
to learn a sparse graph structure focusing only on the most relevant nodes,
we adopt a top-k strategy to retain only k most important messages of each
node. In our experiments, we use a linear combination with activation function
σ (LeakyReLU) to implement this operation:

outputlv = σ

⎛

⎝
∑

u∈Vk
v

αl
vum

l
u

⎞

⎠ (4)

outputlv denotes the output features of node v in l − th layer, Vk
v denotes a set

consists of nodes with k largest attention coefficients to node v.
This step can be seen as message propagation through the graph. With the

topology structure generating step and message propagation step, the graph
relation layer obtains the ability of setting up node relations and share informa-
tion through each task. With the above definition, we can build graph relation
network by stacking graph relation layers.

3.2 Multi-head Attention Strategy

In our experiments, we build a two-layer graph relation network to generate high
representative global features for each AU. We employ the multi-head attention
strategy on the first graph relation layer to stabilize the learning process of self-
attention, since multi-head attention strategy can capture variable AU relations
parallelly [15,16]. The multi-head attention strategy allows the model to jointly
focus on information from different representation subspaces at different posi-
tions. To achieve this, we ensemble K independent graph relation layer, then
calculate K group independent feature vectors to generate the final output of
the first layer. We combine K groups of feature vectors by concatenation:

outputv = ‖Kk=1σ

⎛

⎝
∑

u∈Vk
v

αlk
vum

lk
u

⎞

⎠ (5)

where ‖Kk=1 denotes concatenating K feature vectors and σ denotes activation
function (LeakyReLU).

3.3 Intensity Regression

The second layer in graph relation network takes concatenated multi-head out-
puts as input, then calculates the final hidden representations of each AU inten-
sity estimation task. Finally, we use those hidden representations to generate the
final estimation results. Since we treat AU intensity estimation as a regression
task, we define readout functions Rv to directly output the predictions yv for
each AU intensity:

yv = Rv

(
f̂v

)
(6)
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Where f̂v denotes the final representation of AU v. We implement readout func-
tions by several fully connected layers(parameterized by WR) followed by an
activation function σ (LeakyReLU):

yv = Rv

(
f̂v

)
= σ

(
WRf̂v

)
(7)

3.4 Loss Function

We choose the Smooth L1 Losses to evaluate each estimation task, and sum
them up with equal weights to obtain the total training loss:

Loss =
∑

v∈V
Smooth L1(yv, ŷv) (8)

where V is the group of AUs to estimate, yv and ŷv denote the prediction and
the ground truth of AU v. The Smooth L1 Losses can be writen as:

Smooth L1(x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise (9)

Since our graph relation network structure enables the consistent, efficient
propagation of gradients in the complete pipeline, we can adopt any gradient-
based stochastic optimizer to train our model end-to-end.

4 Experiments

4.1 Settings

Datasets. We evaluate the proposed graph relation network on two large spon-
taneous benchmark datasets – Denver Intensity of Spontaneous Facial Action
(DISFA) [9] and BinghamtonPittsburgh 4D database (BP4D) [20]. BP4D con-
sists of 328 sequences from 41 subjects. Around 140, 000 frames are annotated
with AU intensity for 5 AUs. In our experiments, we use 27 subjects for training
and 13 for testing. DISFA consists of 27 sequences from 27 subjects. Around 130,
000 frames are annotated with AU intensity for 12 AUs. In our experiments, we
use 18 subjects for training and 9 for testing.

Pre-processing. Our data prepossessing includes face image cropping, image
normalization, and data augmentation. Firstly we register face images by using
facial landmarks provided in each database. Then, we crop the face image and
resize it into 224 × 224. For data augmentation, we randomly adopt rotation,
crop and horizontal flip to face images and perform contrast normalization to
alleviate the influence of illumination changes.

Implementation Metails. In our experiments, we train our model with mini-
batches of 64, initial learning rate of 0.001 and weights decay of 5e−4. All
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Table 1. Comparing with VGG19

Datasets BP4D DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

MAE VGG19 1.24 1.39 1.14 1.80 1.19 1.35 .68 .52 1.31 .16 .76 .59 .67 .43 .59 .47 1.33 .76 .69

Ours .65 .77 .53 .92 .63 .70 .18 .10 .29 .04 .25 .09 .23 .09 .31 .18 .26 .42 .20

Datasets BP4D DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

ICC(3,1) VGG19 .63 .61 .73 .25 .31 .51 .19 .14 .19 .02 .39 .33 .68 .14 .27 .03 .59 .38 .28

Ours .66 .72 .84 .28 .54 .60 .43 .57 .78 .40 .48 .59 .84 .47 .37 .02 .93 .48 .53

experiments are based on the pytorch toolbox, and are performed on NVIDIA
Tesla K40c GPU.

Evaluation Metrics. We use the Mean Absolute Error (MAE) and Intra-class
Correlation ICC(3,1) as the measures. MAE is widely used to evaluate regression
and ordinal classification performances. ICC(3,1) is widely used in behavioral
sciences to measure agreement between annotators (AU intensity labels and
output predictions).

Baseline Models. We compare our approach with the original VGG19 [14]
network with fully connected layers and other 6 state-of-the-art approaches:
CNN [1], OR-CNN [11], CCNN-IT [17], EAC [8], DRML [23] and KJRE [21].
All baselines compared enjoy the same pre-processing as we mentioned above.

4.2 Results

Our Model vs VGG19. Our model use convolutional layers of VGG19 as
image features extractor, then use the proposed graph relation network to predict
the intensities. So we compare our model with the original VGG19 to verify the
validity of the proposed graph relation network. As showen in Table 1, our model
achieve better performance on BP4D and DISFA datasets.

Multi-head Attention Strategy. To verify the validity of the Multi-head
attention strategy in our model, we evaluate our model with different number
of heads. As showen in Table 2, results on BP4D and DISTF datasets show that
mulit-heads attention strategy can achieve better performance than single-head
attention strategy.

Comparing with the State-of-the-art Models. As shown in Table 3, we
compare our method with the state-of-the-art ones on BP4D and DISFA
datasets. For the BP4D dataset, our method achieve the best performance on
average in MAE and achieves the best performance of AU10 and AU17 in
ICC(3,1). For the DISFA dataset, our method achieves the best performance
of most AUs and average both in MAE and ICC(3,1). Furthermore, compared
with baseline models, our method achieves better improvements on AU1, 2, 4,
9, which are highly related since they are all occurred by the group of muscles
near glabellae. In summary, our method uses graph relation structures to model
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Table 2. Comparison between graph relation networks with different number of heads.
(K denotes the number of heads)

Datasets BP4D DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

MAE K=1 .80 .91 .71 1.14 .75 .86 .21 .34 .51 .08 .37 .23 .35 .22 .38 .41 .31 .52 .33

K=4 .77 .79 .65 1.02 .68 .78 .19 .12 .23 .03 .28 .11 .30 .10 .33 .23 .23 .39 .21

K=8 .65 .77 .53 .92 .63 .70 .18 .10 .29 .04 .25 .09 .23 .09 .31 .18 .26 .42 .20

Datasets BP4D DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

ICC(3,1) K=1 .62 .60 .82 .22 .41 .52 .20 .23 .65 .34 .22 .38 .60 .31 .43 .03 .76 .46 .38

K=4 .65 .64 .83 .30 .43 .57 .24 .32 .70 .42 .30 .48 .80 .45 .46 .03 .88 .52 .46

K=8 .66 .72 .84 .28 .54 .60 .43 .57 .78 .40 .48 .59 .84 .47 .37 .02 .93 .48 .53

Table 3. Comparison with the state-of-the-art methods on the DISFA & BP4D
datasets. The best results are shown in bold and in brackets. The second best results
are shown in bold only.

Datasets BP4D DISFA

AU 6 10 12 14 17 avg 1 2 4 5 6 9 12 15 17 20 25 26 avg

CNN [1] 1.30 1.35 1.28 1.80 1.14 1.37 1.62 1.09 1.44 .23 .86 .71 .83 .50 .63 .47 1.71 .84 .91
OR-CNN [11] 1.37 1.39 1.37 1.80 1.19 1.42 1.05 .87 1.47 .17 .79 .70 .69 .44 .59 .50 1.33 .86 .79
CCNN-IT [17] 1.14 1.30 .99 1.65 1.08 1.23 .87 .63 .86 .26 .73 .57 .55 .38 .57 .45 .81 .64 .61

MAE EAC [8] .76 .86 .61 1.06 .72 .80 .48 .46 .85 .09 .40 .41 .44 .24 .37 .23 .50 .51 .42
DRML [23] .73 .86 .67 1.27 .71 .85 .44 .38 .80 .07 .35 .29 .36 .16 [.28] [.14] .53 [.38] .35
KJRE [21] .82 .95 .64 1.08 .85 .87 1.02 .92 1.86 .70 .79 .87 .77 .60 .80 .72 .96 .94 .91
Ours [.65] [.77] [.53] [.92] [.63] [0.70] [.18] [.10] [.29] [.04] [.25] [.09] [.23] [.09] .31 .18 [.26] .42 [.20]

Datasets BP4D DISFA

AU 6 10 12 14 17 avg 1 2 4 5 6 9 12 15 17 20 25 26 avg

CNN .67 .69 .77 .35 .33 .56 .05 .04 .36 .02 .44 .27 .67 .25 .08 .03 .46 .22 .23
OR-CNN .60 .61 .59 .25 .31 .47 .03 .07 .01 .00 .29 .08 .67 .13 .27 .00 .59 .33 .20
CCNN-IT [.75] .69 .86 [.40] .45 [.63] .18 .15 .61 .07 [.65] .55 .82 .44 [.37] [.28] .77 [.54] .45

ICC(3,1) EAC .70 .64 .84 .32 .45 .59 .08 .07 .30 .14 .46 .15 .70 .09 .27 .14 .82 .36 .30
DRML .73 .67 .81 .36 .47 .61 .09 .05 .41 .15 .40 .26 .71 .17 .18 .11 .80 [.54] .32
KJRE .71 .61 [.87] .39 .42 .60 .27 .35 .25 .33 .51 .31 .67 .14 .17 .20 .74 .25 .35
Ours .66 [.72] .84 .28 [.54] .60 [.43] [.57] [.78] [.40] .48 [.59] [.84] [.47] [.37] .02 [.93] .48 [.53]

relations among multiple AUs, and achieves the state-of-the-art performance on
BP4D and DISFA datasets.

5 Conclusion

In this paper, we introduce graph structure neural network into AU intensity
estimation tasks. The proposed graph relation network models AU intensity
estimation tasks in graph structure to adopt relation capturing and information
sharing through graph. Our method can extract highly related global features for
each AU, and then leads to a more accurate estimation of the target AU intensi-
ties. Evaluations on two benchmark AU datasets: BP4D and DISFA demonstrate
that our method can achieve the state-of-the-art performance on AU intensity
estimation tasks.



Facial Action Units Intensity Estimation via Graph Relation Network 355

References

1. Amogh, G., Tasli, H.E., Den Uyl, T.M., Maroulis, A.: Deep learning based facs
action unit occurrence and intensity estimation. In: 2015 11th IEEE International
Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol.
6, pp. 1–5. IEEE (2015)

2. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp. 3844–3852 (2016)

3. Ekman, P., Rosenberg, E.: What the Face Reveals: Basic and Applied Studies of
Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford
University Press, New York (1997)

4. Eleftheriadis, S., Rudovic, O., Pantic, M.: Multi-conditional latent variable model
for joint facial action unit detection. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 3792–3800 (2015)

5. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains.
In: Proceedings, 2005 IEEE International Joint Conference on Neural Networks,
vol. 2, pp. 729–734. IEEE (2005)

6. Hu, Q., Jiang, F., Mei, C., Shen, R.: CCT: a cross-concat and temporal neural net-
work for multi-label action unit detection. In: 2018 IEEE International Conference
on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

7. Kaltwang, S., Todorovic, S., Pantic, M.: Latent trees for estimating intensity of
facial action units. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 296–304 (2015)

8. Li, W., Abtahi, F., Zhu, Z., Yin, L.: EAC-Net: a region-based deep enhancing and
cropping approach for facial action unit detection. In: 2017 12th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 103–110.
IEEE (2017)

9. Mavadati, S.M., Mahoor, M.H., Bartlett, K., Trinh, P., Cohn, J.F.: DISFA: a spon-
taneous facial action intensity database. IEEE Trans. Affect. Comput. 4(2), 151–
160 (2013)

10. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for
graphs. In: International Conference on Machine Learning, pp. 2014–2023 (2016)

11. Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multi-
ple output CNN for age estimation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4920–4928 (2016)

12. Rudovic, O., Pavlovic, V., Pantic, M.: Context-sensitive dynamic ordinal regression
for intensity estimation of facial action units. IEEE Trans. Pattern Anal. Mach.
Intell. 37(5), 944–958 (2014)

13. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)
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Abstract. Although twin bounded support machine (TBSVM) has a
lower time complexity than support vector machine (SVM), TBSVM
has a poor ability to select features. To overcome the shortcoming of
TBSVM, we propose a sparse twin bounded support machine (STB-
SVM) inspired by the sparsity of the �1-norm. The objective function
of STBSVM contains the hinge loss and the �1-norm terms, both which
can induce sparsity. We find solutions in the primal space instead of the
dual space and avoid the operation of matrix inversion. All of these can
assure the sparsity of STBSVM, or the ability to select features. Exper-
iments carried out on synthetic and UCI datasets show that STBSVM
has a good ability to select features and simultaneously enhances the
classification performance.
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1 Introduction

With the development of big data technology, the amount of data has being grow-
ing rapidly, and the dimensionality of data is getting higher and higher. High-
dimensional data may contain some redundant features, which would increase
the complexity of processing data. Fortunately, feature selection techniques can
help us eliminate redundant features and retain valuable features, which can
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improve the efficiency of processing data [5]. In addition, feature selection has
been widely used in practical applications [6,7].

According to the relationship between feature selection algorithms and sub-
sequent learners, feature selection algorithms can be divided into three types:
filter, wrapper and embedded [1–3]. Filter methods are independent of subse-
quent learners and directly utilize the statistical performance of all training data
to evaluate features. Wrapper methods utilize subsequent learners to identify the
pros and cons of selected feature subsets. Each measurement of feature subsets
requires a training and test process. Embedded methods embed feature selec-
tion as a component into the learning algorithms, the most representative one is
support vector machine (SVM).

As a famous learner, SVM was proposed based on the statistical learning
theory [8,9]. However, the sparse performance of the traditional SVM seldom
achieves feature selection in practice, which is due to the model representa-
tion with kernel functions. To enhance the ability of SVM to select features,
�1-norm SVMs were proposed [4,10,11]. Moreover, SVM has an issue of com-
putational complexity. For a given learning task, SVM needs to solve a large
quadratic programming problem (QPP) if the number of training samples is
huge. To avoid solving a large QPP, twin support vector machine (TSVM)
solves two smaller QPPs, which results in a lower computational complexity
than SVM [12]. Further, in order to improve the performance of TSVM, many
variants of TSVM have been proposed, such as twin bounded support vector
machine (TBSVM) [13] and LS-TSVM [14]. TBSVM adds the term of minimizing
the �2-norm of model coefficients into TSVM, and then achieves the principle of
structural risk minimization [13]. LS-TSVM uses the square loss function instead
of the hinge loss function in TSVM [14]. To deal with multi-class tasks, Dou and
Zhang [15] developed a decision tree twin support vector machine (DTTSVM)
that uses the kernel K-means clustering to generate a decision tree and trains
a binary TSVM on each non-leaf node. Further, Ju and Jing [16] presented an
improved fuzzy multi-class twin support vector machine (IF-MTSVM) that is
insensitive to outliers.

To make TSVM-like methods having the ability to select features, some
methods have been proposed, such as �p-norm least square twin support vector
machine (�p-LSTSVM) [17], and new linear programming twin support vector
machines (NLPTSVM) [18]. �p-LSTSVM was proposed by using an adaptive
learning procedure with the �p-norm (0 < p < 1) [17]. However, the computa-
tional complexity of �p-LSTSVM is high owing to determining the optimal p.
NLPTSVM improves sparsity by using the �1-norm [18]. However, NLPSVM is
too sparse to get a bad performance.

To provide a better alternative method for embedded feature selection, this
paper proposes a sparse twin bounded support vector machine (STBSVM) by
introducing the �1-norm into TBSVM. STBSVM consists of three terms: the
average distance between positive (negative) samples to the positive (negative)
hyperplane, the �1-norm of model coefficients and the hinge loss. Both the �1-
norm and hinge loss can make models sparse. In addition, STSVM solves a pair of
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QPPs in the primal space instead of the dual space to prevent the disappearance
of sparsity. On the basis of those ways, STBSVM could has a sparse decision
model and implement feature selection.

The rest of this paper is organized as follows. Section 2 proposes STBSVM. In
Sect. 3, numerical experiments are given to demonstrate the ability of STBSVM
to select features. Finally, we conclude this paper in Sect. 4.

2 STBSVM

2.1 Notations

At first, we describe the framework of learning task and introduce main nota-
tions. Consider a binary classification task with a set X of n training samples.

Let X be the total sample matrix, X1 and X2 be the positive and neg-
ative sample matrices, respectively, where X1 = [x11, ...,x1n1 ]

T ∈ R
n1×m,

X2 = [x21, ...,x2n2 ]
T ∈ R

n2×m, xji ∈ R
m, m is the number of features, n1 and n2

are the number of positive and negative samples, respectively, and n = n1 + n2.
Without loss of generality, let yji denote the label of xji, where y1i = 1 and
y2i = −1.

Let enj
be a vector of all zeros with length nj , and 0nj

be to a vector of all
zeros with length nj . Function ‖ · ‖1 is the �1-norm and ‖ · ‖2 is the �2-norm.
On′×n′′ denotes the matrix of all zeros with the size of n′ × n′′ and In′×n′ is the
identify matrix with size of n′ × n′.

2.2 Objective Functions

The main idea behind TSVM-like algorithms is to find two hypothesis functions:

f1(x) = wT
1 x + b1 (1)

and
f2(x) = wT

2 x + b2 (2)

where w1 ∈ R
m and w2 ∈ R

m are the weight vectors for positive-class and
negative-class hypothesis functions, respectively, b1 and b2 are the thresholds for
these functions. To obtain these hypothesis functions, TBSVM tries to solve the
following optimization problems [13]:

min
w1,b1,ξn2

1
2
‖X1w1 + b1‖22 +

1
2
C1(‖w1‖22 + b21) + C2eT

n2
ξn2

s.t. − (X2w1 + en2b1) + ξn2 ≥ en2 , ξn2 ≥ 0n2

(3)

and
min

w2,b2,ξn1

1
2
‖X2w2 + b2‖22 +

1
2
C3(‖w2‖22 + b22) + C4eT

n1
ξn1

s.t. (X1w2 + en1b2) + ξn1 ≥ en1 , ξn1 ≥ 0n1

(4)
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where Ci > 0, i = 1, 2, 3, 4 are regularization parameters, and ξni
, i = 1, 2 are

slack variables.
By introducing the �1-norm into TBSVM, we propose STBSVM and have

the following optimization problems:

min
β∗

+,β+,γ∗
+,γ+,ξn2

1
2
||X1

(
β∗
+ − β+

)
+ en1(γ

∗
+ − γ+)||22

+ C1

(‖β∗
+‖1 + ‖β+‖1 + γ∗

+ + γ+
)

+ C2eT
n2

ξn2

s.t. − (
X2

(
β∗
+ − β+

)
+ en2

(
γ∗
+ − γ+

))
+ ξn2 ≥ en2

ξn2 ≥ 0n2 , β∗
+ ≥ 0m, β+ ≥ 0m, γ∗

+ ≥ 0, γ+ ≥ 0 (5)

and

min
β∗

−,β−,γ∗
−,γ−,ξn1

1
2
||X2

(
β∗

− − β−
)

+ en2(γ
∗
− − γ−)||22

+ C3

(‖β∗
−‖1 + ‖β−‖1 + γ∗

− + γ−
)

+ C4eT
n1

ξn1

s.t.
(
X1

(
β∗

− − β−
)

+ en1

(
γ∗

− − γ−
))

+ ξn1 ≥ en1

ξn1 ≥ 0n1 , β∗
− ≥ 0m, β− ≥ 0m, γ∗

− ≥ 0, γ− ≥ 0 (6)

where β∗
+ − β+ = w1, β∗

− − β− = w2, γ∗
+ − γ+ = b1, γ∗

− − γ− = b2,
β∗
+,β+,β∗

−,β− ≥ 0m ∈ R
m, γ∗

+, γ+, γ∗
−, γ− ≥ 0 ∈ R.

Since the formulation of (6) is similar to that of (5), we mainly discuss (5) in
the following for the sake of for simplicity. The first term in (5) is to minimize the
distance between the positive samples to the positive-class hyperplane f1(x) = 0,
the second term is to minimize the �1-norm of model coefficients and the third
term is to minimize the hinge loss.

The first term of (5) can be derived as follows:

1
2
||X1(β∗

+ − β+) + en1(γ
∗
+ − γ+)||22

= β∗
+

TXT
1 X1β

∗
+ − β+

TXT
1 X1β

∗
+ − β∗

+
TXT

1 X1β+ + β+
TXT

1 X1β+

+ β∗
+

TXT
1 en1γ

∗
+ − β∗

+
TXT

1 en1γ+ − β+
TXT

1 en1γ
∗
+ + β+

TXT
1 en1γ+

+ γ∗
+e

T
n1
X1β

∗
+ − γ+eT

n1
X1β

∗
+ − γ∗

+
TeT

n1
X1β+ + γ+

TeT
n1
X1β+

+ γ∗
+e

T
n1
en1γ

∗
+ − γ∗

+e
T
n1
en1γ+ − γ+eT

n1
en1γ

∗
+ + γ+eT

n1
en1γ+

=
1
2
α′TQ1α

′

(7)

where α′ =
[
β∗T
+ , βT

+, γ∗
+, γ+

]T , and

Q1 =

⎡

⎢
⎢
⎣

XT
1 X1 −XT

1 X1 0.5XT
1 en1 −0.5XT

1 en1

−XT
1 X1 XT

1 X1 −0.5XT
1 en1 0.5XT

1 en1

0.5eT
n1
X1 −0.5eT

n1
X1 eT

n1
en1 −eT

n1
en1

−0.5eT
n1
X1 0.5eT

n1
X1 −eT

n1
en1 eT

n1
en1

⎤

⎥
⎥
⎦
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Let α = [α′T , ξT
n2

]T =
[
β∗T
+ , βT

+, γ∗
+, γ+, ξT

n2

]T . The first term of (5) can be
further rewritten as:

1

2
||X1(β

∗
+−β+)+en1(γ

∗
+−γ+)||22 =

1

2
α

T

[
Q1 O(2m+2)×n2

On2×(2m+2) On2×n2

]
α =

1

2
α

TQα (8)

The second and third terms of (5) can be combined and represented as in
matrix form:

C1

(‖β∗
+‖1 + ‖β+‖1 + γ∗

+ + γ+
)

+ C2eT
n2

ξn2 =ζT α (9)

where ζ =
[
C11T

m, C11T
m, C1, C1, C2eT

n2

]T .
The inequality constraints in (5) can be rewritten as:

− (X2(β∗
+ − β+) + en2(γ

∗
+ − γ+)) + ξn2 ≥ en2

⇒ Pα ≥ en2

(10)

where P =
[−X2, X2, −en2 , en2 , In2×n2

]
. For the rest of bounded constraints,

we have
ξn2 ≥ 0n2 ,β

∗
+ ≥ 0m,β+ ≥ 0m, γ∗

+ ≥ 0, γ+ ≥ 0
⇒ α ≥ 0(2m+2+n2)

(11)

Thus, (5) can be rewritten as in matrix form:

min
α

1
2
αTQα + ζT

1 α

s.t. Pα ≥ en2 ,α ≥ 0(2m+2+n2)

(12)

Then f1(x) can be derived from α easily by solving (12). Further, using the
above way, we can also get f2(x).

2.3 Solutions and Property Analysis

The optimization problem (12) is a convex programming, that is to say, (12) has
a globally optimal solution. The Lagrange multiplier method, the interior point
method, and the effective set method [19] are sophisticated ways that can be
used to solve the optimization problem (12).

Creatively, we find the solution α to (12) in the primal space instead of the
dual space, which can avoid the operation of matrix inversion and the disap-
pearance of sparsity. Moreover, we use the hinge loss and the �1-norm, which
can induce the sparsity of α. Both of two aspects can guarantee the sparsity of
solution α. As a part of solution, the weight vector w1 is hence no doubt sparse,
which implements the task of feature selection. That is, STBSVM can deal with
feature selection and classification tasks at the same time.

For a given x ∈ R
m, we need to determine its label. Let ρ(x) = |f2(x)| −

|f1(x)| be the distance difference of x from the positive-class hyperplane to the
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negative-class hyperplane, which can be used to predict the label information
for x. Namely,

ŷ =
{

+1, if ρ(x) > 0
−1, otherwise

(13)

where ŷ is the estimated label for x. The separating hyperplane can be obtained
where ρ(x) = 0 for ∀x. According to (13), whether a training sample is misclas-
sified is determined by both positive-class and negative-class hypothesis function
values.

In fact, the negative (or positive) samples lied between H1 (or H2) and
f1(x) = −1 (or f2(x) = 1) have losses and the negative (or positive) ones
with f1(x) < −1 (or f2(x) > 1) have no loss. The closer the negative (or pos-
itive) sample is to the positive-class (or negative-class) hyperplane, the greater
the possible loss is. In conclusion, whether a training sample has a loss can be
determined by the opposition-class hypothesis function value. The relationship
between losses of negative samples and the positive-class hypothesis function can
be described as: {

f1(x2i) > −1, if ξ2i > 0
f1(x2i) ≤ −1, otherwise

(14)

Similarly, the relationship between losses of positive samples and the negative-
class hypothesis function is

{
f2(x1i) < 1, if ξ1i > 0
f2(x1i) ≥ 1, otherwise

(15)

3 Numerical Experiments

To validate the performance of STBSVM, we carry out experiments on one
artificial and 8 real-world datasets. All experiments are performed on a personal
computer with operation system 3.0 GHZ Intel Core and 8 G bytes of memory.
This computer runs Windows 10, with Matlab R2016a.

3.1 Toy Dataset

This section mainly analyzes the ability of STBSVM to perform feature selection
and compares it with TBSVM. First, we define the degree of feature selectivity
(FS) to measure this ability that can be described as:

FS =
(

1 − ||w1||0 + ||w2||0
length(w1) + length(w2)

)
× 100% (16)

where ‖ · ‖0 is the �0-norm, and the function length(·) is to find the dimension of
vector ·. Note that the greater FS is, the better the feature selection performance
is. In experiments, to eliminate the computational error, let wi = 0 if |wi| ≤ 10−8.
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Fig. 1. Data distribution of the toy dataset

Fig. 2. Values of w1 and w2 for TBSVM and STBSVM on the toy dataset.

To observe the ability of TBSVM and STBSVM to select features, we ran-
domly generate a toy dataset. This toy dataset contains 20 positive and 20 neg-
ative samples that have 1000 features, where the first two features are valid and
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the others are noise. The valid features of positive samples are drawn from the
uniform distribution with [−1, 0] × [−1, 0], and those of negative samples with
[0, 1] × [0, 1], while each noise feature is drawn from the Gaussian distribution
with zero mean and 0.01 variance. Figure 1 plots the first two valid features.

In a very general way, we empirically set Ci = 1, i = 1, · · · , 4 in both TBSVM
and STBSVM. The values of w1 and w2 obtained by TBSVM and STBSVM
on the toy dataset are shown in Fig. 2, where the dotted lines are the division
between the valid features and the noise ones. From Fig. 2, we can see that the
first two components in w1 and w2 of TBSVM and STBSVM have relatively
large absolute values. The weights of rest features are relatively small in TBSVM,
while the weights of rest features are zero in STBSVM. In addition, STBSVM
can obtain FS = 99.9% on the toy dataset, while TBSVM obtains FS = 0%.
The results indicate that the contribution of noise attributes to the STBSVM
model is negligible, and also imply that STBSVM has a better feature selection
performance than TBSVM.

3.2 UCI Datasets

In this section, we conduct experiments on 8 UCI datasets [20] and compare
the performance of STBSVM and the related methods, including SVM [8],
TSVM [12], TBSVM [13], �p-LSTSVM [17] and NLPTSVM [18]. Table 1 shows
the details of these datasets.

FS obtained by most methods can be computed by (16). But, the definition
of FS for SVM is slightly different. Namely,

FS =
(

1 − |SV |
n

)
× 100% (17)

where SV is the set of support vectors, and n is the number of training samples.
In order to obtain more effective results, we repeat 5 time experiments on the

partitioned datasets. Five-fold cross validation is used here to obtain the average
accuracy [21]. In each partition, regularization parameters in all algorithms are
determined from the set {2−3, ..., 23} by using the training sets.

Table 1. The details of UCI datasets

Dateset Australian Diabetes German Heart Sonar Tic tac toe Wdbc Wpbc

#Sample 690 768 1000 270 208 958 569 194

#Feature 14 8 24 13 60 9 30 33

# Class 2 2 2 2 2 2 2 2

The average test accuracy and FS obtained by six methods are shown in
Table 2, where the best performance among those algorithms is in bold type (so
do tables below). The experimental results in Table 2(a) shows the superiority of
STBSVM over other methods in four out of eight datasets. Observation on Table
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2(b) indicates that NLPTSVM has the highest FS, followed by STBSVM. But,
the classification accuracy of NLPTSVM is almost the worst among the com-
pared methods. It can be seen that the values of FS obtained by SVM, TBSVM,
TSVM, �p-LSTSVM are almost 0, which demonstrates that these methods have
a poor feature selection performance. It is concluded that STBSVM has a bet-
ter classification performance and a better ability to perform feature selection
according to Table 2.

Table 2. Mean of test accuracy (%) and FS(%) obtained by six linear methods

(a) Mean and standard deviation of test accuracy (%)

Datasets SVM TBSVM TSVM �p-LSTSVM NLPTSVM STBSVM

Australian 86.96± 2.98 87.25± 2.88 87.25± 2.75 87.54± 3.10 86.96± 2.98 88.27 ± 3.40

Diabetes 78.00± 1.37 78.26 ± 2.36 77.22± 4.12 78.25± 2.79 46.84± 16.52 77.47± 2.72

German 74.90± 1.75 77.40± 1.43 77.30± 1.75 77.40± 0.96 54.50± 21.23 78.20 ± 1.82

Heart 84.44 ± 1.66 82.59± 3.36 83.33± 2.62 82.59± 2.48 46.67± 4.97 84.44 ± 3.36

Sonar 77.47 ± 5.13 76.48± 7.31 75.44± 6.28 76.50± 8.37 53.37± 0.56 75.03± 4.43

Tic tac toe 65.34± 0.15 63.88± 7.83 67.75± 2.52 68.79± 1.48 65.34± 0.15 69.31 ± 1.92

Wdbc 97.54± 0.97 95.96± 1.71 97.37± 1.07 97.72 ± 0.99 91.91± 3.78 97.71± 1.19

Wpbc 81.98± 4.77 82.06 ± 6.21 78.41± 5.92 77.84± 2.91 76.30± 0.79 82.02± 5.55

(b) FS (%) and standard deviation

Datasets SVM TBSVM TSVM �p-LSTSVM NLPTSVM STBSVM

Australian 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 95.71 ± 1.60 2.14± 1.96

Diabetes 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 100.00 ± 0.00 1.25± 2.80

German 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 98.75 ± 1.14 0.83± 1.14

Heart 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 100.00 ± 0.00 8.46± 1.72

Sonar 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 55.83 ± 0.59 46.50± 4.31

Tic tac toe 0.00± 0.00 61.11± 21.15 45.56± 31.53 0.00± 0.00 100.00 ± 0.00 50.00± 0.00

Wdbc 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 11.33± 3.61 38.65 ± 9.75

Wpbc 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 60.61± 1.07 43.64 ± 9.49

In addition, we add 50 randomly generated noise characteristics to those eight
datasets to further test the feature selection performance of these six methods,
where each noise feature obeys the Gaussian distribution with zero mean and
0.01 variance. Table 3 shows the results. From Table 3(a), it can be seen that
STBSVM performs better on seven out of eight datasets. In theory, FS increases
as noise features increase since it requires excluding more features in such a
situation. Comparing Table 3(b) with Table 2(b), STBSVM shows the most
obvious increase of FS in the case of existing noise features. Although the ability
of NLPTSVM to select features is stronger than STBSVM, NLPTSVM is much
less sensitive to noise features than STBSVM. In other words, the ability of
STBSVM to remove noise features is stronger than that of NLPTSVM.

To graphically illustrate the advantage of STBSVM, we plot the weight vec-
tors obtained by TSVM-like algorithms on the Wpbc dataset in Figs. 3 and 4,
where the computational error threshold is still 10−8, and the dashed lines are
the boundaries between the original features of datasets and the added noise
features. From these figures, we can see that �p-LSTSVM, TBSVM and TSVM
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generate irregular weight values for noise features, while NLPTSVM and STB-
SVM can assign the value of zero or close to zero to the weights of noise features.
That reveals that NLPTSVM and STBSVM have a better feature selection per-
formance and are robust to noise. However, the solution of NLPTSVM is so
sparse that w1 is a vector with all zeros as shown in Fig. 3(b) that is abnormal.
Thus, extreme sparsity would lead to a bad classification performance.

Table 3. Mean of test accuracy (%) and FS(%) on UCI datasets with 50 noise features

(a) Mean and standard deviation of test accuracy (%)

Datasets SVM TBSVM TSVM �p-LSTSVM NLPTSVM STBSVM

Australian 86.96± 2.98 85.65± 3.12 86.09± 3.48 86.96± 3.08 86.23± 3.72 88.12 ± 2.30

Diabetes 76.30± 0.55 75.52± 1.66 74.87± 3.24 76.43± 1.39 77.48± 2.81 77.73 ± 2.70

German 73.80± 2.39 75.40± 1.47 73.90± 2.22 74.90± 1.19 74.70± 2.28 76.70 ± 2.93

Heart 85.56 ± 2.41 80.37± 5.94 82.59± 4.26 80.74± 5.49 81.85± 2.75 85.56 ± 3.04

Sonar 76.51± 7.01 61.09± 2.34 61.52± 3.47 73.48± 7.26 74.58± 8.59 78.51 ± 9.25

Tic tac toe 65.34± 0.15 59.07± 2.61 64.52± 2.68 66.81 ± 3.59 65.34± 0.15 64.51± 3.30

Wdbc 97.55± 1.28 95.26± 1.29 96.66± 1.91 97.01± 1.83 96.66± 1.92 97.71 ± 1.34

Wpbc 78.90± 3.58 76.30± 0.79 75.80± 2.60 76.84± 2.15 79.38± 6.33 79.90 ± 3.78

(b) FS (%) and standard deviation

Datasets SVM TBSVM TSVM �p-LSTSVM NLPTSVM STBSVM

Australian 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 91.56 ± 7.66 24.53± 17.84

Diabetes 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 43.79± 10.42 68.79 ± 12.73

German 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 55.00 ± 23.9 1.22± 0.74

Heart 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 70.16± 9.15 77.14 ± 1.30

Sonar 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 64.91± 9.70 75.55 ± 4.50

Tic tac toe 0.00± 0.00 9.32± 20.84 3.90± 8.25 0.00± 0.00 75.93± 22.02 89.32 ± 23.41

Wdbc 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 51.25 ± 14.71 47.25± 16.89

Wpbc 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 91.20 ± 0.54 60.48± 16.15

In a summary, we observe two situations and have some facts. In the situation
of datasets without noise features, STBSVM is superior to other methods on four
out of eight datasets, followed by SVM and TBSVM. In the situation of datasets
with 50 noise features, STBSVM is superior to other methods on seven out of
eight datasets, followed by �p-LSTSVM and SVM. Unlike NLPTSVM, STBSVM
does not one-sidedly focus on sparsity, disregarding classification performance.
Compared with other TSVM-like algorithms except for NLPTSVM, the ability
of STBSVM to select feature is rather strong.
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Fig. 3. Weight vector w1 obtained by TSVM-like methods on Wpbc with 50 noise
features

Fig. 4. Weight vector w2 obtained by TSVM-like methods on Wpbc with 50 noise
features

4 Conclusion

This paper proposes a novel algorithm named sparse twin bounded support vec-
tor machine for binary classification tasks, which has a good sparse solution to
implement feature selection. In STBSVM, sparsity is induced by introducing the
�1-norm and the hinge loss function, and by searching solutions in the primal
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space. Numerical experiments on synthetic and several UCI datasets show that
STBSVM can obtain a good classification performance and generate a proper
sparsity, that is STSVM has a favorable performance of feature selection, espe-
cially for the noise situation.

Moreover, it is also a promising avenue of research to expand STSVM to
its kernelized version to filter samples. In addition, how to improve the training
efficiency of STBSVM is an issue that needs to be solved in future.
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Abstract. Few-shot classification aims to recognize unlabeled samples
from unseen classes given only a small number of labeled examples.
Most methods addressing few-shot problem through meta-learning. They
focus on learning a generic classifier across a large number of multiclass
classification tasks and generalizing the model to a new task. However,
the low-data problem in the novel classification task still remains. In
this paper, we propose Transductive Data Clustering Transformation
(TDCT), a novel and simple method which can potentially be applied
to any metric-based few-shot classification approaches. TDCT exploits
the task-specific knowledge and enhances the data representations by
using a transformation that incorporates data clustering. This transfor-
mation implicitly does transductive inference by leveraging the relation-
ships between all samples within a task, alleviating the low data problem.
Extensive experiments show that TDCT is an effective and computation-
ally efficient method which can improve few-shot learning performance
by a large margin on two benchmarks.

Keywords: Few-shot classification · Transductive inference · Data
clustering transformation

1 Introduction

Deep learning has achieved impressive results in a variety of tasks, such as visual
recognition [6], machine translation [1] and speech modeling [11]. However, deep
learning methods always require a large number of labeled data. On the contrary,
humans can learn new concepts with very little supervision. For example, chil-
dren can learn the concept of “birds” from only a single picture (“one-shot”) in
a book.

Few-shot learning is proposed to tackle the learning problem with limited
labeled data. It aims to recognize unlabeled samples (the query set) from unseen
classes given only a small number of labeled examples (the support set). Most
approaches addressing this problem are based on the meta-learning(learning to
learn) paradigm which relies on an episodic training framework, we will detail it
in Sect. 2.
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Methods specifically designed for few-shot learning fall into two categories.
The first line of methods are based on optimization learning [3,14,16]. Instead
of training a learner on a single task, they train a meta-learner to control how
a classifier for the target task should be constructed. Most optimization-based
approaches are built on the basis of model-agnostic meta-learning (MAML) [3],
which aims to train a model’s parameters such that a small number of gradi-
ent updates will lead to fast learning on a new task. Afterward, LSTM-based
meta-learner model [14] is proposed to learn appropriate parameter updates
specifically for the scenario where a set amount of updates will be made. Meta-
SGD [7] has a much higher capacity than MAML by learning to learn not just the
learner’s initialization, but also the learner update direction and learning rate, all
in a single meta-learning process. Compared to the popular meta-learner LSTM,
Meta-SGD is conceptually simpler, easier to implement, and can be learned more
efficiently. Latent Embedding Optimization (LEO) [16], learns a low-dimensional
latent embedding of model parameters and performs optimization-based meta-
learning in this space.

Another line of approaches are based on metric learning [12,18,22,24]. They
aim to learn proper representations, which minimize intra-class distances and
maximize inter-class distances. Matching Networks [24] make use of advances
in attention and memory to learn to map a small labeled support set and an
unlabeled query data to its label. Prototypical networks [18] aim to learn a
metric space in which classification can be performed by computing Euclidean
distances to every class prototypes, which is computed as the mean of embedded
support examples for each class. In contrast to computing softmax over Euclidean
distance or cosine similarity, Relation network [22] is proposed to learn a relation
module that determines if the query embeddings and support set embeddings are
from the same categories or not. Task dependent adaptive metric (TADAM) [12]
aims to learn a task-dependent scaled metric via conditional batch normalization.
They introduce a task representation computed as the mean of the task class
centroids (class prototypes). Both lines of methods are framed in meta-learning
paradigm as we mentioned before.

Although meta-learning paradigms are effective for few-shot problem, the
fundamental difficulty of learning a novel classifier with scarce data remains. One
way to improve performance in the low-data regime is to consider relationships
between all samples (unlabeled data and labeled data), which is referred to as
transductive inference. We can explore the interrelationships among these data
points and make an assessment (perhaps preliminary) of their structure by data
clustering [4].

In this paper, we propose a novel method for few-shot classification called
TDCT (Transductive Data Clustering Transformation), which makes use of rela-
tionships between all samples within a task. By using a transformation that
incorporates data clustering technique, our model exploits task-specific knowl-
edge and enhances the data representations. With the enhanced representations
and ground truth labels of the query set, we compute the cross-entropy loss and
update all parameters in an end to end manner.
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Fig. 1. The overall architecture of our method. The backbone networks are basic net-
work in prototypical network. Our model is built on prototypical network and we use
data clustering module to enhance the original feature. The classification result in this
picture is [0, 1, 0, 0, 0]T .

Our proposed TDCT is effective and computationally efficient. It can poten-
tially be applied to any metric-based few-shot classification approaches. In this
paper, we build our model on top of prototypical network due to its simplicity.
Experiments show that it outperforms the baseline by a large margin. Besides,
our model can be easily extended to semi-supervised few-shot learning. Experi-
mental results also show that our proposed method achieves higher performance
than semi-supervised few-shot learning baselines.

2 Methodology

In this section, we first give the formal definition of the few-shot classification
tasks, then we do a small review about the prototypical network. Finally we
detail our proposed method.

2.1 Problem Statement

In few-shot classification tasks, we need to predict the classes for some unlabeled
query samples (Dquery) with only a small set of labeled examples (Dsupport).
Typically, the support set (Dsupport) includes N ×K labeled examples where N
denotes the number of classes, each class contains K different examples. This
few-shot problem setting is always called the N -way K-shot problem, and each
few-shot classification task is called an episode.

We follow the episodic paradigm [24] which is an effective training strategy
for the few-shot classification. It is commonly employed in various literature
[3,12,14,18,21]. Concretely, we have two different meta-sets for meta-training
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and meta-testing (Dmeta−training, Dmeta−testing). Each meta-set contains mul-
tiple regular datasets, i.e., episodes. In each meta-training iteration, we sample
episodes from Dmeta−training as “training samples” to mimic the situation that
will be encountered at test time. Then we evaluate its generalization performance
on Dmeta−testing.

Episodic training strategy is based on meta-learning and performs well on
few-shot classification tasks. However, the fundamental low-data problem in the
novel few-shot classification task still remains. This motivates us to assume a
transductive setting, in which we utilize the union of support set and query
set rather than predict each example independently. For simplicity, we build
our TDCT model on prototypical network [18]. And we consider two backbone
convolution networks as embedding function.

2.2 Review of Prototypical Network

Prototypical network is a classic metric-based method in few-shot learning liter-
ature. It aims to learn an embedding function f which maps examples into space
where examples from the same class are close and those from different classes
are far. Then the classification of query sample qt can be completed by finding
its nearest prototype. The following equation describes this process:

p(y = c|qt , P ) =
exp(−d(f(qt),pc))

∑N
k=1 exp(−d(f(qt),pk))

(1)

where P = {p1, ...pN } denotes the set of class prototypes. The prototype pc of
class c is the mean of support samples. d denotes the Euclidean distance. The
loss function can be cross-entropy loss.

We build our method on prototypical network for its simplicity, but it can
be applied to any metric-based few-shot learning approaches.

2.3 Method

Our method follows the transductive inference settings and incorporates the idea
of data clustering. Figure 1 illustrates how our method is built on the metric-
based methods, after origin feature embedding, we enhance the data represen-
tations by Transductive Data Clustering Transformation (TDCT), then utilize
these enhanced features to classify the query data.

Clustering is one of the most widely used techniques for exploratory data
analysis. We use data clustering as a post processing in our methods to enhance
the original feature. Spectral clustering has been used in many recent works [19,
20]. Here we use spectral clustering, but other data clustering methods are also
available. Readers can get more details about Spectral clustering in [9].

As described in [10], the spectral clustering process can be seen as a Markov
random walk process. So we can define a Markov Chain random walk process in
an episode to cluster these data. The concrete method is as follow:
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Suppose X ∈ Rn× d is the embedded data points (all samples in support set
and query set) of an episode. n denotes the number of data points, and d denotes
the dimensions of the feature vector. W is the weighted adjacency matrix. Each
element of W is defined as:

wij = exp(
xT
i xj

σ · ‖xi‖2‖xj‖2 ) (2)

wij represents the similarity between data points i and j. And σ is a temper-
ature parameter. We add an exponential operation on cosine similarity as our
similarity, cause we want to make the similarity positive. By normalizing the
rows of W to 1, we can easily find that this defines a Markov Chain random
walk process on a graph which is constructed with data points X. Specifically,
we use T denotes the normalized W , then T is a transition probability matrix
of a Markov Chain. The normalizing process can be completed by:

T = D−1W, (3)

where D is a diagonal matrix. The ith diagonal element of D is the degree
of data point i, i.e. di =

∑n
j=1 wij . This operation can be implemented by

applying softmax function on the pre-exponential weighted adjacency matrix S
(W = exp(S), in which exp() is element-wise exponential function).

In this random walk process. We use P (A → B) to represent the transition
probability from subset A to subset B in one step if the current state is A. For the
few-shot classification tasks, a subset A denotes the set of samples belonging to
class A. Then the transition probability P (A → Ā) is essentially the probability
that a sample belonging to class A getting misclassified. This probability was
called the evading probability in [10]. We follow their definition of this evading
probability as follow:

P (A → B) =

∑
i∈A,j∈B πiTij
∑

i∈A πi
. (4)

Wherein πi is defined as:

πi =
di∑

j,k∈X wjk
(5)

It is easy to verify that πi is a stationary distribution of the Markov Chain.
And here we assume that the random walk is started in its stationary distribu-
tion.

A small evading probability requires strong intra-class connections and weak
inter-class connections which is a desirable property in classification problem.
From the Markov walks view of point, a step of Markov walks can be seen
as a step of clustering. The evading probability in Eq. 4 can be minimized by
optimizing the cross-entropy loss after a step of clustering with standard SGD
in an end-to-end manner.



Few-Shot Classification with Transductive Data Clustering Transformation 375

Fig. 2. The illustration of clustering transformation operation. First, calculate the
pairwise similarity matrix with respect to the original features (left). Then calculate
the transition probability matrix by normalizing the similarity matrix. Finally do the
matrix multiply operation. Q can contains multiple samples.

Our Data clustering transformation can be implemented by a step of data
cluster, multiplying T with original features X, i.e.

Xenhanced = TX (6)

The transition probability matrix T contains the relationship information
between all samples within the episode. Data clustering operation using such
episode-specific information can enhance the original feature and boost the
model performance.

Detail of this clustering transformation operation can be found in Fig. 2.
We only apply one step of random walk operation. Because experimental results
show that one step is enough.

3 Experiment

3.1 Dataset

We validate TDCT on Mini-ImageNet and Caltech-UCSD Birds (CUB) 200-2011
dataset. The Mini-ImageNet dataset is originally proposed by Vinyals et al. [24].
It is a subset of the ImageNet dataset [2] that includes a total number of 100
classes and 600 examples per class. We follow the split provided by Ravi and
Larochelle [14]. CUB dataset is initially designed for fine-grained classification.
It contains 11788 images of birds over 200 species. We follow the split proposed
by Ye et al. [22].

For all images in the CUB dataset, we use the provided bounding box to
crop the images as a pre-processing [23]. And we use Euclidean distance as the
distance function in the nearest neighbor algorithm.

3.2 Implementation Detail

We consider two backbone convolution networks as embedding function. The first
is a four-layer convolution network (ConvNet) which has the same architecture
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used in several recent works [8,18,21,24]. It contains 4 repeated convolutional
blocks. In each block, there are a 64-filter 3× 3 convolution, a batch normaliza-
tion layer, a ReLU, and a max-pooling with size 2. And the input images are
resized to 84 × 84 × 3. The second is a wide residual network (ResNet) [12,16].
It consists of a convolutional layer with stride 1 and padding 1 and three resid-
ual blocks followed by a global average pool. Three residual blocks have chan-
nels 160/320/640, stride 2, and padding 2. And the input images are resized to
80 × 80 × 3.

We use an additional pre-training strategy, which is suggested by [12,16]. At
first, the backbone network is followed by a fully-connected layer with SoftMax.
It is trained to classify all classes in the meta-training set. The trained weights
are then used to initialize the embedding function.

Inspired by Oreshkin et al. [12], we use the metric scale technique which has
a great influence on the model performance. we set the metric scale coefficient to
32 and 64 for ConvNet and ResNet respectively. During the training, stochastic
gradient descent (SGD) with Adam [5] optimizer is employed, with the initial
learning rate set to be 1e−3. We use both the original features and the enhanced
features during training to make the training process steady. The original feature
and the enhanced feature share the same classifier. The temperature parameter
σ of the TDCT layer is set to 0.1.

We batch 15 query images per class in each episode for evaluation. The clas-
sification accuracies are computed by averaging over 10,000 randomly generated
episodes from the meta-test set.

Again, in this paper, we build our model on prototypical network [18] for
simplicity. But TDCT can also be applied on other metric learning based few-
shot learning methods.

3.3 Results and Discussion

From Table 1 and Table 2, we can see that our model improves performance
on both 1-shot and 5-shot settings on Mini-ImageNet and CUB dataset. Note
that some recent works such as TADAM [12] and LEO [16] use the pre-training
strategy as we do. Our model which built on prototypical network [18] can still
achieve competitive performance compared with them.

We can apply TDCT multiple times, but we can hardly observe improvement
when we apply TDCT more than once. So it is enough to apply TDCT only once.

Among the approaches we compared, TPN is the only approach that modeled
transductive inference explicitly. Both of us construct a graph on the support
set and the entire query set. However, we use TDCT on features directly rather
than propagate labels. Even without the example-wise temperature parameter
σ, our experimental results have higher accuracy. Moreover, compared to TPN,
our method is more computationally efficient cause we do not need to compute
the matrix inversion.

Our model can easily extend to the semi-supervised few-shot regime with-
out changing the structure of the model. In the semi-supervised few-shot set-
ting, when we sample support examples from the dataset, some extra unla-
beled samples are provided. We can directly make those extra unlabeled samples



Few-Shot Classification with Transductive Data Clustering Transformation 377

Table 1. Few-shot classification results with 95% confidence interval on Mini-
ImageNet.

Setups 5-way 1-shot 5-way 5-shot

Backbone ConvNet ResNet ConvNet ResNet

MatchNet [24] 43.40 ±0.78 – 51.09 ±0.71 –

MAML [3] 48.70 ±1.84 – 63.11 ±0.92 –

ProtoNet [18] 49.42 ±0.78 – 68.20 ±0.66 –

RelationNet [21] 51.38 ±0.82 – 67.07 ±0.69 –

PFA [13] 54.53 ±0.40 59.60 ±0.41 67.87 ±0.20 73.74 ±0.19

TADAM [12] – 58.50 ±0.30 – 76.70 ±0.30

LEO [16] – 61.76 ±0.08 – 77.59 ±0.12

TPN [8] 53.75 ±0.86 59.46 69.43±0.67 75.65

TDCT [Our] 55.35 ±0.22 62.56 ±0.22 71.23 ±0.16 78.53 ±0.15

52.08%

61.52%

55.35%

69.98%

30.00%

40.00%

50.00%

60.00%
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80.00%

MiniImagenet CUB

Stripped-Down Model Full Model

Fig. 3. Comparison of our full model and stripped down model on two datasets.

participate in the construction of the graph, then apply TDCT as usual. We use
the same semi-supervised settings and backbone networks(ConvNet) as TPN [8].
We construct the graph with only one query sample each time for fairness. Table
3 shows that with the same setting, TDCT outperforms other semi-supervised
methods.

We also compare our full model with a stripped-down version (without the
TDCT module) to further analyze the effectiveness of TDCT. The experimental
results are shown in Fig. 3. We evaluate these two trained models with 10,000
same tasks in the 5-way 1-shot setting. TDCT module increases the average
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Table 2. Few-shot classification results with 95% confidence interval on CUB with
ConvNet backbone.

Setups 5-way 1-shot 5-way 5-shot

MatchNet [24] 61.16 ± 0.89 72.86 ± 0.70

MAML [3] 55.92 ± 0.95 72.09 ± 0.76

ProtoNet [18] 51.31 ± 0.91 70.77 ± 0.69

RelationNet [21] 62.45 ± 0.98 76.11 ± 0.69

TDCT [Our] 69.98 ± 0.23 82.24 ± 0.16

Table 3. Semi-supervised Few-shot classification results with 95% confidence interval
on Mini-ImageNet. “w/D” means with distractors. Part of the unlabeled data does not
belong to any of the classes in the episode.

Model 1-shot 5-shot 1-shot w/D 5-shot w/D

k-Means [15] 50.09±0.45 64.59±0.28 48.70±0.32 63.55±0.28

k+1 Cluster [15] 49.03±0.24 63.08±0.18 48.86±0.32 61.27±0.24

k+Masked [15] 50.41±0.31 64.39±0.24 49.04±0.31 62.96±0.14

TPN-semi [8] 52.78±0.27 66.42±0.21 50.43±0.84 64.95±0.73

TDCT [Our] 54.63±0.22 69.09±0.16 52.47±0.21 66.93±0.15

classification accuracy from 61.52% to 69.98% on CUB dataset and increases the
average classification accuracy from 52.08% to 55.35% on MiniImagenet dataset.
The experimental results prove the effectiveness of TDCT.

4 Conclusion

In this paper, we introduce a novel and effective method called Transductive
Data Clustering Transformation for few-shot classification. Our method follows
the transductive inference settings and incorporates the idea of data cluster-
ing. It can potentially be applied to any metric-based few-shot classification
approaches. By leveraging the relationships between all samples within a task,
TDCT exploits the task-specific knowledge and enhances the data representa-
tions. Thus it boosts the performance of metric-based few-shot classification
methods. We also achieve higher performance in semi-supervised few-shot learn-
ing settings compared with some other semi-supervised few-shot classification
methods.
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Abstract. As a feature selection method, Laplacian score (LS) is widely
used for dimensionality reduction in the unsupervised situation. How-
ever, LS separately measures the importance of each feature, and does
not consider the association of features. To remedy it, this paper pro-
poses an improved version of LS, called forward iterative Laplacian score
(FILS). The goal of FILS is to maintain the local manifold structure of
original data with the least number of features. The proposed FILS intro-
duces a recursive scheme to pick up features one-by-one, and evaluates
the feature importance according to the joint locality preserving abil-
ity. Extensive experiments are conducted on UCI and microarray gene
datasets. Experimental results confirm that FILS can achieve a good
performance.

Keywords: Unsupervised learning · Feature selection · Laplacian
score · Manifold

1 Introduction

As a technique of dimensionality reduction, feature selection has attracted a lot
of attentions in pattern recognition, machine learning and data mining. Feature
selection can eliminate irrelevant and redundant features, which promotes the
computational efficiency, and keep the interpretation of reduced description [1,2].
According to the situations of data labels, feature selection methods can be
divided into three types: supervised, unsupervised and semi-supervised ones [3].

In supervised methods, the correlation between features and class labels can
be used to assess the importance of features [4,5]. Fisher score, for example, seeks
features by making the within-class distance of data as small as possible and the
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between-class distance of data as large as possible [6]. Semi-supervised feature
selection methods use a limited label information and the whole distribution of
data to evaluate features [7], such as semi-Fisher score [8] that combines the
local structure preserving criterion and the variance strategy. These two kinds
of feature selection methods, to some extent, depend on the label information
to guide the feature evaluation by encoding features’ discriminative information
in labels [9].

For unsupervised methods, feature correlation is assessed by the ability to
maintain specific features of data, such as the variance value [10], and Laplacian
score (LS) [11]. LS was proposed based on the spectral graph theory and uses
a neighborhood graph to determine optimal features. However, LS separately
measures the importance of each feature, and does not consider the association
of features. Zhu and Miao et al. [12] proposed an iterative Laplacian score (Iter-
ativeLS). This method progressively changes the nearest neighbor graph by dis-
carding the least relevant features in each iteration, and assesses the importance
of the feature by its local retention capabilities. In each iteration, IterativeLS
would reconstruct a nearest neighbor graph using the rest features. In doing so,
the local structure of the original data would be ruined.

To enhance both LS and IterativeLS, this paper presents a Forward iterative
feature selection based on Laplacian score (FILS) method for unsupervised fea-
ture selection. The goal of FILS is to maintain the local manifold structure of
original data with the least number of features. Inspired by IterativeLS, FILS
adopts a recursive scheme to select features one-by-one. The criterion of evaluat-
ing the feature importance in FILS is different from those in LS and IterativeLS.
A feature subset would be an optimal one if and only if this subset has the closest
local preserving ability to the whole featureset. In doing so, the selected feature
subset could maintain the local structure of data. Compared with IterativeLS,
FILS does not need to construct a nearest neighbor graph in each iteration. The
validity and stability of FILS is confirmed by experimental results.

The rest of this paper is organized as follows. In Sect. 2, we review two unsu-
pervised feature selection methods. Section 3 proposes the Forward feature selec-
tion based on Laplacian score. In Sect. 4, we conduct experiments on UCI and
gene datasets to compare the proposed method with LS and IterativeLS. This
paper is summarized in Sect. 5.

2 Related Methods

This section briefly reviews two unsupervised feature selection methods: Lapla-
cian score and iterative Laplacian score, which are very related to our work.

Assume that there has a set of unlabeled data X = {x1, · · · ,xu}, where
xi ∈ Rn, n is the number of features, u is the number of samples. Let F =
{f1, · · · , fn} be the feature set with features fk, k = 1, · · · , n and Z ∈ Ru×n be
the sample matrix with column feature vectors zk ∈ Ru, k = 1, · · · , n and row
sample vectors xi, i = 1, · · · , u.
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2.1 Laplacian Score

LS aims to maintain the local structure of data during the feature selection
process [11]. A key assumption of the LS algorithm is that samples from the
same class are closer to each other than samples of different classes, that is, LS
focuses on the local structure of data rather than the global structure.

For the given dataset X, LS first constructs a nearest neighbor graph G with
u nodes. The i-th node corresponds to the sample xi. We put an edge between
nodes i and j if xi is among K nearest neighbors of xj or xj is among K nearest
neighbors of xi. The graph G can be represented by the weight matrix S:

Sij =

{
exp

{−γ‖xi − xj‖2
}

, if (xi ∈ KNN(xj) ∨ xj ∈ KNN(xi))
0, otherwise

(1)

where γ > 0 is a constant to be tuned, and KNN(xi) denotes the set of K
nearest neighbors of xi.

In LS, the score for measuring feature fk can be computed by

JLS(fk) =

∑
i,j(zki − zkj)2Sij∑
i(zki − μk)2Dii

(2)

where zki denotes the kth feature of ith samples, μk = 1
u

∑u
i=1 zki denotes the

mean of all samples on feature fk, and D is a diagonal matrix with Dii =
∑

j Sij .
The smaller JLS(fk) is, the greater the contribution of the kth feature to

the local structural of the retained data, so LS always selects features with
smaller scores. The computational complexity of constructing S is O(u2), and
the computational complexity of calculating scores for n features is O(nu2).
Hence, the overall computational complexity of LS is O(nu2).

2.2 Iterative Laplacian Score

The iterative Laplacian score algorithm proposed by Zhu et al. [12] introduces
the iterative idea into LS. Experimental results in [12] indicated that IterativeLS
outperforms LS on both classification and clustering tasks.

The key idea of IterativeLS is to gradually improve the nearest neighbor
graph by discarding the least relevant features in each iteration. As with LS,
IterativeLS evaluates the importance of an feature by its locality preserving
ability. In Algorithm 1, we describe IterativeLS in details. For each iteration, the
computational complexity of constructing S is still O(u2), and computational
complexity of calculating scores for n features is O(nu2). Hence, the overall
computational complexity of the method is O(n2u2).

3 Forward Iterative Feature Selection Based on Laplacian
Score

This section presents the novel feature selection method: FILS, which is an exten-
sion of LS. Both LS and IterativeLS measure the importance of feature separately
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Algorithm 1: Iterative Laplacian Score
Input: Dataset X with n features, target feature number r and nearest neighbor
number K;

Output: feature subset with r features;
repeat

Construct the nearest neighbor graph G using the dataset X and calculate the
corresponding weight matrix S;

Compute the scores JLS for the features in X using LS (2);
Rank all features in ascending order according to scores JLS ;
Discard the last one feature and update the dataset X consisting of only the rest
features;

until X contains at most r features

and then maintain the local structure of data by the important features. Similar
to LS and IterativeLS, FILS also considers maintaining the local structure of
data. Unlike them, FILS measures the local preserving ability of feature subsets.
Similar to IterativeLS, FILS adopts a recursive scheme. The difference is that
IterativeLS discards the least relevant feature according to their current Lapla-
cian scores in each iteration, and FILS selects the most relevant feature to form
an optimal subset in each iteration. An feature subset would be an optimal one if
and only if this subset has the closest local preserving ability to the whole feature
set. In doing so, the selected feature subset could maintain the local structure
of data. Moreover, FILS does not need to reconstruct a nearest neighbor graph
in each iteration.

Quite simply, FILS requires constructing a nearest neighbor graph, and cal-
culating Laplacian scores of features sets respectively. First, we use the adap-
tive method [13] to construct the nearest neighbor graph, and have the weight
matrix S:

Sij = exp
(

−d2(xi,xj)
σiσj

)
(3)

where d(xi,xj) is the Euclidean distance between vectors xi and xj , σi is the
local scale and σi = d(xi,xK

i ), xK
i is the Kth nearest neighbor of xi.

Next, we discuss the Laplacian score of feature sets and give a definition
below.

Definition 1. Given a dataset X, an feature subset A ⊆ F the Laplacian score
of feature set A is defined as

J(A) =
trace(ZT

ALZA)

trace(Z̃
T

ADZ̃A

) (4)

Z̃
T

A = ZA − ZT
AD1

1TD1
,

where ZA is the sample sub-matrix of X with the feature set A, and L = D− S
is the Laplacian matrix of the dataset X with all feature, and 1 is the vector of
all ones.
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In the following, we describe the criterion of FILS. Assume that we have a
target feature subset A ⊆ F in the current iteration, the goal of FILS is to find
the most important feature fk from the complement set of A and add it into A,
where fk ∈ Ā = F −A. FILS uses the incremental search technique to determine
the optimal feature subset. In FILS, we define a new criterion to pick up the
most important feature:

f∗
k = arg min

fk

JFILS(fk) = arg min
fk

∣∣∣∣1 − J(A ∪ fk)
J(F )

∣∣∣∣ (5)

where J(A ∪ fk) and J(F ) are the Laplacian scores of feature set A ∪ fk and F ,
respectively.

In (4), J(F ) reflects the information on the local structure of original data,
which is the standard conforming to. J(A∪fk) is the degree of maintaining local
structure of original data if only a part of features are selected. If the Laplacian
score of the feature subset A ∪ fk is equal to that of feature set F , then we
thought that the feature subset A ∪ fk can represent the whole feature set F .
Thus, we except that J(A ∪ fk) is as close to J(F ) as possible. In other words,
the smaller the score JFILS(fk) is, the more important the feature fk is.

The detail algorithm description of FILS is shown in Algorithm 2. First, the
target subset A is initialized to be an empty set. F = {f1, · · · , fn} is the feature
set, A is the target feature subset, and Ā = F − A is the candidate feature
subset. The parameter r is used to terminate the main loop in this algorithm,
which needs to be set in advance. The parameter K is required for the nearest
neighbor graph. Step 2 constructs the nearest neighbor graph G using the dataset
X. Step 3 computes the weight matrix S by (3). Step 5 computes the Laplacian
score for feature set F by (4). Steps 6–10 calculate the importance of features in
the candidate feature subset Ā. Step 11 finds out the most important feature in
Ā with the minimum value JFILS(fk). Steps 12–17 update A and Ā when the
size of A is smaller than r or Ā is non-empty. The algorithm jumps out of the
loop when the termination conditions are satisfied. Step 19 returns the target
feature subset A.

The computational complexity of constructing S is O(u2). For each iteration,
the computational complexity of calculating the score in (4) for n features is
O(nu2). Hence, the overall computational complexity of FILS is about O(n2u2).
Therefore, FILS has the same computational complexity as IterativeLS.

4 Experimental Analysis

In order to verify the feasibility and effectiveness of FILS, simulation experi-
ments were carried out on UCI datasets [14] and microarray gene expression
datasets [15]. We compared FILS with both LS and IterativeLS and used the
nearest neighbor classifier to measure the discriminant ability of selected fea-
tures. In our experiments, we choose K = 5 to construct the nearest neighbor
graph G.
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Algorithm 2: Forward iterative feature selection based on Laplacian Score
(FILS)

Input: Dataset X, target feature number r and nearest neighborhood K;
Output: Target feature subset A;
1: Initialize A = ∅, F = {f1, · · · , fn}, Ā = F − A and start = 1;
2: Construct the nearest neighbor graph G using the dataset X;
3: Compute the weight matrix S by (3);
4: Compute the Laplacian score of the feature set F : J(F) by (4);
5: while star = 1 do
6: for each fk ∈ Ā do
7: Let Ak = A ∪ {fk};
8: Compute the Laplacian score for feature set Ak: J(Ak) by (4);
9: Compute JRFRLS(fk) by (5);

10: end for
11: Find fk with the minimum value JRFRLS(fk);
12: if (|A| < r) ∧ (Ā != ∅) then
13: A ← A ∪ {fk};
14: Ā ← F − A;
15: else
16: star = 0;
17: end if
18: end while
19: return A

4.1 UCI Dataset

We considered 8 UCI datasets here and compared FILS with LS and IterativeLS
algorithms. The related information of 8 UCI datasets, including Australian,
Heart, Pima, Segment, Spambase, Vehicle, Wdbc and Wine, is shown in Table 1.
For these UCI datasets, the original features are normalized to the interval [0, 1].
In order to obtain more convincing comparison results and eliminate accidental
errors, we used 10-fold cross-validation. That is to say, the original dataset is
randomly divided into ten equal-sized subsets. Then 9 subsets are used as the
training set and the rest one is used as the test set. The 10 subsets are used as
test sets in turn, and then the average of 10 times is calculated as the final result
of classification. Owing to the small number of UCI dataset features, r is set to
the number of features of each dataset. Namely, we perform feature ranking.

Figure 1 shows the classification accuracy vs. feature number on 8 UCI
datasets. Observation on Fig. 1 implies that the three methods have a similar
curve variation with the increase of feature number. For example, the accu-
racy increases with increasing feature number on most datasets, such as Pima,
Segment, Spambase, Vehicle and Wine. When the feature number grows to a
determinate value, the accuracy varies slightly. In this case, less features would
result in a fast test when holding the classification performance. Conversely, the
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Table 1. Description of UCI data sets

No Dataset #Sample #feature #Class

1 Australian 690 14 2
2 Heart 301 13 2
3 Pima 768 8 2
4 Segment 2310 19 7
5 Spambase 4601 57 2
6 Vehicle 846 18 4
7 Wdbc 569 30 2
8 Wine 178 13 3

Table 2. Accuracy (%) and standard deviation obtained of different methods on UCI
datsets

Dataset FILS LS IterativeLS

Australian 70.13 ± 3.31 (4) 66.96 ± 3.66 (13) 66.96 ± 3.60 (13)
Heart 66.71 ± 4.63 (10) 62.03 ± 2.27(10) 62.01 ± 2.62 (3)
Pima 62.63 ± 2.36 (6) 60.41 ± 2.38 (6) 60.41 ± 2.36 (6)
Segment 93.38 ± 15.93 (15) 93.20 ± 10.39 (19) 93.20 ± 11.48 (19)
Spambase 90.59 ± 5.19 (54) 86.57 ± 5.06 (56) 86.57 ± 5.55 (56)
Vehicle 67.23 ± 8.70 (11) 66.88 ± 5.12 (16) 66.88 ± 5.65 (16)
Wdbc 93.32 ± 1.72 (24) 90.87 ± 2.28 (17) 90.69 ± 2.28 (17)
Wine 82.46 ± 6.03 (9) 82.46 ± 6.61(10) 82.46 ± 6.67 (10)

*Numbers in parentheses are optimal feature ones.

accuracy fluctuates irregularly on Australian, Heart and Wdbc datasets, which
means that no all features help classification tasks.

Table 2 shows the highest average accuracy with the corresponding standard
deviation and optimal feature number of all compared algorithms, where the best
values among compared methods are in bold. We can see that FILS is superior
to LS and IterativeLS on all datasets. For example, FILS achieves the accuracy
93.32% on the Wdbc dataset, followed by LS 90.87%. In a nutshell, FILS can
effectively rank features and make discriminant ones at the top of feature list.

4.2 Microarray Gene Datasets

In this section, FILS was applied to microarray gene datasets, including
Leukemia [16], St. Jude Leukemia (SJ-Leukemia) [17], Lungcancer [18] and the
central nervous system (CNS) [19]. It is well-known that the number of fea-
tures is much greater than the number of samples in the gene datasets. The gene
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Table 3. Description of microarray gene data sets

No. Data set #Sample #feature #Class

1 Lungcancer 197 1000 4
2 SJ–Leukemia 248 985 6
3 Leukemia 38 999 3
4 CNS 42 989 5

expression datasets we used have been processed as described in [15]. Further bio-
logical details about these datasets can be found in the referenced papers. Most
data were processed on the Human Genome U95 Affymetrix c©microarrays. The
leukemia dataset was from the previous-generation Human Genome HU6800
Affymetrix c©microarray. The relevant information of these datasets is sum-
maries in Table 3, and the detail description of these gene datasets is given as
follows:

– Leukemia: Bone marrow samples were obtained from acute leukemia patients
at the time of diagnosis. The dataset includes 11 acute myeloid leukemia
(AML) samples, 8 T-lineage acute lymphoblastic leukemia (ALL) samples
and 19 B-lineage ALL samples.

– SJ-Leukemia: Diagnostic bone marrow samples were from pediatric acute
leukemia patients corresponding to 6 prognostically important Leukemia sub-
types. The dataset includes 43 T-lineage ALL, 27 E2A-PBX1, 15 BCR-ABL,
79 TEL-AML1, 20 MLL rearrangements and 64“hperdiploid>50” chromo-
somes.

– Lung cancer: This dataset includes 4 known classes: 139 adenocarcinomas
(AD), 21 squamous cell carcinomas (SQ), 20 carcinoids (COID), and 17 nor-
mal lung (NL). The AD class is highly heteroge-neous, and substructure is
known to exist, although not well understood.

– CNS: The embryonal tumors of CNS dataset include 10 medulloblastomas
(MD), 8 primitive neuroectodermal tumors (PNET), 10 atypical tera-
toid/rhabdoid tumors (Rhab), 10 malignant gliomas (Glio) and 4 normal
cerebellum (Ncer).

Here, we also compared FILS with the related methods: LS and IterativeLS.
In order to obtain convincing comparison results and eliminate accidental errors,
as in the previous section, we used 3-fold cross-validation. In each trail, we
randomly selected 2/3 of the samples as the training set, and the remaining 1/3
of samples as the test set. The experimental results were reported on the well-
defined test sets. According to the statement in [20], we can know that we need
400 genes at most to complete the classification task of microarray gene data.
Therefore, in order to save time, let r = 400 for all compared algorithms.

Figure 2 gives the classification accuracy vs. feature number on four microar-
ray gene datasets. From Fig. 2, we can see that FILS is obviously superior to
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Fig. 1. Accuracy vs. feature number on 8 UCI datasets

other two methods on both four gene datasets. In addition, FILS can quickly
achieve a better classification performance. We summarized the highest accuracy
of compared methods in Table 4 according to Fig. 2, where bold numbers are the
best results among compared methods. On the SJ-Leukemia datasets, FILS is
just 0.03% better than IterativeLS. FILS achieves much better accuracies on the
other three gene datasets. On the CNS dataset, for example, the accuracy of
FILS is almost 14.88% higher than LS.

4.3 Statistical Comparison on Multiple Datasets

In order to give a comprehensive comparison on UCI and gene datasets, we used
the Friedman test [21] and the Bonferroni-Dunn test [22]. The Friedman test with
the Bonferroni-Dunn test is used to test whether all the methods are equivalent,
which has the null hypothesis that all the methods are equivalent. If the ranks of
all methods are equal to each other, the test result accepts the null hypothesis;
otherwise the test result rejects the null hypothesis and the Bonferroni-Dunn
test is carried out to reveal the significant differences. The critical difference
between two methods is defined as:
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Table 4. Average accuracy and standard deviation comparison on four microarray
gene datasets

Dataset FILS LS IterativeLS

Lungcancer 93.39 ± 3.41 (331) 86.36 ± 3.59 (368) 75.58 ± 2.65(397)
SJ–Leukemia 95.14 ± 5.07 (102) 95.11 ± 5.51 (346) 95.11 ± 5.63 (255)
Leukemia 85.16 ± 4.71 (72) 63.90 ± 7.30 (276) 71.41 ± 5.01 (356)
CNS 76.41 ± 6.36 (326) 61.53 ± 3.93 (102) 53.08 ± 5.06 (171)
* The numbers in parentheses are optimal feature numbers.

Fig. 2. Accuracy vs. feature number on 4 gene datasets

CD = qα

√
j(j + 1)

6N
(6)

where j is the number of methods, N is the number of datasets, qα is the critical
value and α is the threshold value. In our experiments, j = 3 and N = 12.
Generally, let α = 0.1 [23,24]. Then we have qα = 1.96 [22]. Thus, the critical
difference in our experiment is CD = 0.79.

Table 5 gives the mean rank of three methods and the rank difference between
FILS and other two methods. According to the Friedman test, the results of mean
ranks from Table 5 can reject the null hypothesis, which means that the three
methods in comparison are not equivalent and there are significant differences
among different methods. The rank differences between FILS and both LS and
IterativeLS are greater than the critical difference 0.79, which means that FILS is
significantly better than these two methods in this current experimental setting.
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Table 5. Statistical comparison of three methods

Methods FILS LS IterativeLS

Mean rank 1 2.29 2.71
Rank difference 0.00 1.29 1.71

5 Conclusion

This paper concentrates on an unsupervised feature selection method and pro-
poses an algorithm called FILS. FILS aims to maintain the local manifold struc-
ture of original data with the least number of features. Different from existing
LS-like methods, FILS evaluates the locality preserving ability of feature subsets
instead of single features. In doing so, FILS can pick up the feature subset which
maintains the local structure of data as possible. On 8 UCI and 4 microarray
gene datasets, a series of experiments were conducted for evaluating the proposed
method. FILS retains the highest classification accuracy on most datasets. The
final statistical results confirm that FILS is significantly better than other LS-like
methods.

Although the classification accuracy of FILS on majority datasets have been
enhanced, the running time required by FILS would increase as the feature
dimension of data grows. In future, we try to reduce the time complexity of the
algorithm.
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Abstract. Functional data clustering analysis becomes an urgent and
challenging task in the new era of big data. In this paper, we propose
a new framework for functional data clustering analysis, which adopts
a similar structure as the k-means algorithm for the conventional clus-
tering analysis. Under this framework, we clarify three issues: how to
represent functions, how to measure distances between functions, and
how to calculate centers of functions. We utilize Gaussian processes to
represent the clusters of functions which are actually their sample curves
or trajectories on a finite set of sample points. Moreover, we take the
Wasserstein distance to measure the similarity between Gaussian distri-
butions. With the choice of Wasserstein distance, the centers of Gaussian
processes can be calculated analytically and efficiently. To demonstrate
the effectiveness of the proposed method, we compare it with existing
competitive clustering methods on synthetic datasets and the obtained
results are encouraging. We finally apply the proposed method to three
real-world datasets with satisfying results.

1 Introduction

Functional data analysis [18] is a branch of modern statistics that deals with
learning and inference problems of functional data. The atoms of functional data
are functions, and one sample in a functional dataset consists of random samples
of the underlying function. To get a flavor of functional data, let us consider an
electrical load analysis problem for example. Suppose we record the electrical
load of a city every 15 min for 50 days, and the electrical load records in one day
are regarded as a curve (versus time). We may want to analyze whether there
are certain patterns underlying this dataset. One possible way is to view each
curve as a vector of length 96(= 24 h × 4 records/hour). However, this point
of view has some severe drawbacks. Firstly, the dimension is relatively high,
thus the subsequent processing is challenging. Secondly, there may be missing
values or extra measurements due to technical reasons, which results in varying
lengths. Besides, there may exist a time-warping problem between curves, since
it is difficult to control the measurement time accurately in practice. It would
c© Springer Nature Switzerland AG 2020
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be better to regard each curve as a function mapping from R to R, mapping a
time variable t to the electrical load measured at t. In this way, we do not need
to bother with varying signal lengths, and there exists a variety of alignment
algorithms to sidestep the time-warping problem. In fact, there are many such
examples in data analysis and signal processing, which face similar problems
mentioned above and it is beneficial to view them as functional data to sidestep
these problems.

We mainly concern the functional data clustering problem in this work. Clus-
tering [8] is the main task in unsupervised learning, which aims to partition the
data into groups such that samples in the same group are similar. Back to the
example discussed above, we can discover intrinsic patterns of electrical loads by
applying functional data clustering to the electrical load dataset. For example,
we can discover in which days the electrical load trends are similar, and use such
information to help prediction.

There are various clustering algorithms for finite-dimensional (vector-valued)
data [8], but little is known about functional data clustering. The main challenge
of functional data analysis is the data is intrinsically infinite-dimensional, thus
classical clustering methods for finite-dimensional data are invalid in this cir-
cumstance. To tackle the difficulty caused by infinite dimension, one usually find
finite-dimensional representations for the functional data, then perform classical
clustering algorithms based on such representations. Popular dimension reduc-
tion methods include functional basis expansion, functional principal component
analysis, and subspace projection.

In this paper, we first formulate the functional data clustering problem in
a similar way as k-means. Then we point out that to devise a practical algo-
rithm based this formulation we need to consider three questions: how to find
finite-dimensional representations for the functional data, how to measure dis-
tance or similarity between functions based on the finite-dimensional represen-
tation, and how to solve the optimization problem, or more precisely, how to
calculate barycenters based on the representations and distance. We propose to
use Gaussian processes [19] to fit each function separately, and use the learned
parameters as the finite-dimensional representation. Gaussian processes are the
dominant Bayesian non-parametric non-linear model for inference over func-
tions. The key point is that Gaussian processes allow us to learn uncertainty
about posterior functions, and the information about posterior functions can be
efficiently retrieved from the learned parameters. After obtaining the representa-
tions, we propose to calculate approximate Wasserstein distance [11,16] between
Gaussian processes by their finite-dimensional distributions. Intuitively, finite-
dimensional distributions of the posterior functions provide us good approxi-
mations of functions as long as the number of sample points is large enough.
There are numerous criteria to measure the distance between Gaussians, such as
Kullback-Leibler divergence [6], Jensen-Shannon divergence [6] and so on, but
we choose the Wasserstein 2-distance. Wasserstein distances arise naturally in
the optimal transport theory [23], which aims to match two measures with the
least cost. In addition, Wasserstein 2-distance enables us to calculate the cen-



Functional Data Clustering Analysis 395

ters of functions easily, and the iteration process can be further accelerated by
Anderson acceleration [25] technique.

2 Functional Data Clustering: Problem Formulation

Suppose we have functional data D = {Di}N
i=1, where Di = {(xij ,yij)}Ni

j=1, and
xij ∈ R

Dx ,yij ∈ R
Dy . Usually we have Dx = Dy = 1 in real applications as dis-

cussed in Sect. 1, but we develop the theory here for general dimensions. The phi-
losophy of functional data analysis is to play with functions, or more concretely,
every Di is viewed as observations of an underlying function fi : RDx → R

Dy

which maps xij to yij . The goal of functional data clustering is to split the data
into K groups such that similar functions are in the same group. Formally, we
want to find a map c : {1, 2, · · · , N} → {1, 2, · · · ,K} such that c(i) = c(j) if and
only if fi and fj are “similar”. Note that different samples may have different
number of data-points, i.e., Ni may vary as i, which makes common clustering
algorithms invalid for functional data clustering. Nevertheless, we adapt the idea
of k-means, and formulate functional data clustering as the following optimiza-
tion problem:

min
c,m1,m2,··· ,mK

K∑

k=1

∑

c(i)=k

d2(fi,mk), (1)

where mk is the center (function) of k-th cluster and d(·, ·) is a distance function.
However, there are several vital problems in formulation (1). Firstly, it is

usually intractable to store and calculate {fi}N
i=1 directly in the computer,

and we must find effective finite-dimensional representations of these functions.
Secondly, how to measure the distance of two functions based on their finite-
dimensional representations? Indeed, there are various metrics for a different
type of functions as studied in functional analysis, but most of them are difficult
to calculate analytically, especially when only the finite-dimensional represen-
tations are given. One possible choice is to use metrics for finite-dimensional
vectors directly, such as Euclidean norm, Mahalanobis distance, and so on, but
this may loss certain global or temporal information of original functions. Last
but not least, problems like k-means and (1) are usually solved by the coor-
dinate descent algorithm, which optimizes the objective function with respect
to c and m1, · · · ,mK alternately. For problem (1), the sub-problem of finding
c is trivial (as long as the previously mentioned two problems are solved), but
the optimization with respect to m1,m2, · · · ,mK remains difficult and highly
dependent on the choice of representations and distance function.

3 Proposed Method

3.1 Gaussian Process Representation of Functional Data

The key-point in functional data analysis is to find a finite dimensional represen-
tation R(fi|Di) for function fi based on observations {(xij ,yij)}Ni

j=1. Traditional
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methods include basis function expansion, functional principal component anal-
ysis (FPCA) and so on. Once functional data is transformed to finite dimensional
representations, we can apply a variety of machine learning techniques to solve
functional data problems. We assume Dy = 1 temporarily. Functional principal
component analysis focus on model the correlation between {fi}N

i=1, and use this
relationship to find d eigen-functions {φl}d

l=1 that best explain the data, then
representation is given by coefficients as R(fi|Di) = [〈fi, φ1〉, · · · , 〈fi, φd〉]T.

Gaussian processes are a natural and fruitful way of specifying prior and infer-
encing over functions. Instead of considering the correlation between functions,
we propose to specify Gaussian process prior for each sample independently. For
each sample Di = {(xij ,yij)}Ni

j=1, we assume the underlying function fi is a
Gaussian process, i.e., fi ∼ GP(μ(x), k(x,x′)) where μ(x) and k(x,x′) are mean
function and covariance function respectively. In this work, we only consider zero
mean function and squared exponential covariance function as follows:

μ(x) = 0 , k(x,x′) = θ0 exp

(
−

∑dx

k=1 θk(xk − x′
k)2

2
+ σ2

I(x = x′)

)
. (2)

Let Kxx ∈ R
Ni×Ni with [Kxx]mn = k(xim,xin), then the Gaussian process

prior is equivalent to say we assume [yi1, · · · ,yiNi
]T ∼ N (0,Kxx). Therefore,

the parameters can be learned by the Type-II maximum likelihood method,
which has been implemented effectively in the GPML toolbox [20]. Once these
parameters are learned, given any new input {zk}D

k=1, let [Kzz]mn = k(zm, zn)
and [Kzx]mn = k(zm,xin), from the conditional property [4] of Gaussian distri-
butions we immediately have

[fi(z1), · · · , fi(zD)]T ∼ N (
KzxK−1

xx [yi1, · · · ,yiNi
]T,Kzz − KzxK−1

xxK
T
zx

)
.
(3)

Thus, we have access to any finite dimensional joint distribution of fi|Di. For
abbreviation, we use θi to denote all the parameters of the Gaussian process
learned from Di, then R(fi|Di) = θi is a reasonable representation of fi|Di

since we can restore all the information of fi|Di from θi. Therefore, we have
transformed the original functional data {Di}N

i=1 to a collection of Gaussian
process representations {θi}N

i=1.

3.2 Approximate Wasserstein Distance of Gaussian Processes

Then, we consider the problem of how to define the distance function d(·, ·) in
(1). Ideally, we hope the cluster centers {mk}K

k=1 are also Gaussian processes.
However, it’s still difficult to work with Gaussian processes directly. The trick
here is to approximate a Gaussian process by its finite-dimensional distributions,
which are multivariate Gaussian distributions, and thus we may view {mk}K

k=1 as
multivariate Gaussian distributions too. Let Z = {zk}D

k=1 be D equally-spaced
grids in the input region, then [fi(z1), · · · , fi(zD)]T can be seen as a good esti-
mation of fi|Di as long as {zk}D

k=1 are dense enough. We use fi(Z) to denote
the distribution of [fi(z1), · · · , fi(zD)]T as derived in (3), then the problem of
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defining d(·, ·) becomes how to measure the distance between two Gaussian distri-
butions fi(Z) and mk. Fortunately, optimal transportation theory [16] provides
us a powerful tool. The basic problem of optimal transportation is to investigate
how to match two measures with the least cost, and the corresponding cost is
called the Wasserstein distance, which is a distance function of the measures.
Formally1, suppose we have two Radon measures α, β ∈ M(X ), dX (·, ·) is a dis-
tance function on X , then the Wasserstein 2-distance between α and β is defined
as:

W2(α, β) =

(
inf

π∈U(α,β)

∫
X×Y

d2
X (x, y)dπ(x, y)

)1/2

, (4)

U(α, β) = {π ∈ M1
+(X × Y), π(A × Y) = α(A), π(X × B) = β(B), ∀A ⊂ X , B ⊂ Y}.

It has been proved [16] that for two Gaussian measures α = N (μα,Σα) and
β = N (μβ ,Σβ), the Wasserstein 2-distance when dX is Euclidean distance is

W2(α, β) =
(
‖μα − μβ‖22 + tr

(
Σα + Σβ − 2(Σ1/2

α ΣβΣ1/2
α )1/2

))1/2

. (5)

Therefore, we may use the Wasserstein 2-distance between Ni and mk as a
distance of fi and mk, i.e., d(fi,mk) := W2(fi(Z),mk). With this definition, the
functional data clustering formulation (1) becomes:

min
c,m1,m2,··· ,mK

K∑

k=1

∑

c(i)=k

W2
2 (fi(Z),mk). (6)

We point out that similar ideas have been suggested in [14]. However, our goal is
to cluster functional data, while the main purpose of [14] is to prove theoretical
results about Gaussian processes from the optimal transport perspective and
learn uncertain curves.

3.3 Barycenter Calculation

Th last problem is to derive how to optimize (6). Similar to k-means, we perform
optimization with respect to cluster labels c and centers m1, · · · ,mk alterna-
tively. The update of c is trivial: we only need to calculate pairwise distances
between fi and centers then assign c(i) = arg mink d(fi,mk). With a little abuse
of notation, we suppose {c(i) = k} = {1, 2, · · · , N}, then the problem of updat-
ing mk can be written as

min
mk

N∑
i=1

W2
2 (fi(Z), mk). (7)

In fact, this problem is equivalent to find the Wasserstein barycenter [16] of
Gaussian measures. In optimal transport theory, the concept of barycenter can
1 The details here are not so important, and the definition of Wasserstein 2-distance

of Gaussian measures is enough for the development of this work. We present the
formal definition here for completeness.
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be regarded as a natural extension of “mean” to measures. For a collection of
S Gaussian distributions {αs = N (μs,Σs)}S

s=1 and positive weights satisfying∑S
s=1 λs = 1, the Wasserstein barycenter is defined as

arg min
β

S∑

s=1

λsW2
2 (β, αs). (8)

Note that β can be any Radon measure by definition, but it has been shown
in [1] the Wasserstein barycenter of Gaussian distributions is itself a Gaussian
N (μ∗,Σ∗). Making use of (5), we can easily show that μ∗ =

∑S
s=1 λsμs, but

there is no closed formula for Σ∗. The first-order optimality condition shows
that Σ∗ satisfies

Σ∗ = Φ(Σ∗) where Φ(Σ) =
S∑

s=1

λs(Σ1/2ΣsΣ
1/2)1/2. (9)

Based on the optimality condition, we can perform the fixed-point iteration
Σ(t+1) = Φ(Σ(t)), and this iteration process has been proved to converge to Σ∗.
Back to our problem (8), we notice that this is equivalent to find the Wasserstein
barycenter of N Gaussian distributions fi(Z) with equal weights 1/N .

We need to calculate K barycenters in each iteration, which is very time
consuming since every barycenter calculation relies on a fixed-point iteration
over the covariance matrix. To reduce the computational burden and speed up
iteration, we apply the Anderson acceleration [25] technique, which is a gen-
eral acceleration scheme for fixed-point iteration. Anderson acceleration has a
close relationship with quasi-Newton method [15], and is essentially equivalent
to generalized minimal residual method [22] for linear problems [21,25] in numer-
ical linear algebra. However, no global or even local convergence guarantee has
been proved for general Anderson accelerated fixed-point iteration. Nevertheless,
Anderson acceleration usually has faster convergence speed in practice. Further-
more, this procedure can also be parallelized naturally.

3.4 Clustering Algorithm and Extensions

The framework of the proposed method is summarized in Algorithm 17. We refer
to this algorithm as GPWC, which means Gaussian Process and Wasserstein
distance based Clustering. The entire process is very similar to k-means, the
major difference is we are clustering Gaussian distributions here instead of vec-
tors. Similar to the k-means algorithm, in the initialization step, we should
choose Gaussian distributions that are relatively far from each other. Besides,
it is also possible to employ other clustering methods such as fuzzy c-means [3]
and hierarchical clustering [8].

Until now, we have developed the theory for the one-dimensional (Dy = 1)
case. It is natural to extend the method to deal with multivariate functional
data, i.e., where Dy > 1. Each component of mapping fi : R

Dx → R
Dy is a
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Algorithm 1. (GPWC) Functional data clustering based on Gaussian pro-
cesses and Wasserstein distance.
1: Input: Dataset D = {Di}N

i=1, Di = {(xij ,yij)}Ni
j=1, number of clusters K.

2: Output: cluster labels {c(i)}N
i=1 and cluster centers {mk}K

k=1.
3: // Learn finite-dimensional representations of functions.
4: for each i = 1, 2, · · · , N do
5: Learn a Gaussian process by fitting Di and obtain θi.
6: Approximate the posterior fi|Di by discretizing the Gaussian process on equally-

spaced grids Z to obtain fi(Z).
7: end for
8: // Update cluster labels and cluster means alternately.
9: Randomly choose K Gaussian distributions obtained above as K initial centers.

10: while Not converged do
11: for each i = 1, 2, · · · , N do
12: Assign c(i) = arg mink=1,2,··· ,K W2

2 (fi(Z), mk).
13: end for
14: for each k = 1, 2, · · · , K do
15: Update centers mk = arg minm

∑
c(i)=k W2

2 (fi(Z), m).
16: end for
17: end while

function f
(r)
i : RDx → R, and we can learn Gaussian processes for the compo-

nents {f
(r)
i }Dy

r=1 independently. In this case, the centers {mk}K
k=1 are no longer

Gaussian distributions, each center mk is a collection of Dy Gaussian distribu-
tions {mr

k}Dy

r=1 corresponds to Dy dimensions. As for the distance measure, we

simply define d(fi,mk) :=
(∑Dy

r=1 d2(f (r)
i ,m

(r)
k )

)1/2

. The optimization proce-
dure is similar to the univariate case discussed in Sect. 3.3, since the problem is
separable with respect to each dimension.

4 Experimental Results

4.1 On Synthetic Data

We first evaluate the proposed method on synthetic data. We generate three
datasets with K = 3, 5, 7 respectively, and each cluster contains 20 curves. With-
out loss of generality, we constrain the input domain to be [0, 1]. For each cluster,
the mean function is the predictive mean of a Gaussian process with 20 sam-
ples, and the covariance function is squared exponential covariance function as in
Eq. 2 with random parameters. Then, we generate curves using these Gaussian
processes, with each curve containing 25–40 observations. The synthetic dataset
is shown in Fig. 1a.
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Table 1. Performances of various clustering methods on the synthetic dataset. All the
results are averaged over 10 trials. Best results are in bold.

K Method RI ARI HI NMI χ2 Cramer MOC

3 CC (lrm) 0.7289 0.4567 0.4579 0.6679 60.3 0.7089 0.5026

CC (lrm) 1.0000 1.0000 1.0000 1.0000 120.0 1.0000 1.0000

CC (lrm b) 0.9373 0.8570 0.8746 0.8679 104.3 0.9325 0.8696

FPCA+k-means 0.9775 0.9495 0.9549 0.9592 114.0 0.9708 0.9501

FPCA+fcm 0.9436 0.8866 0.8872 0.9305 108.0 0.9414 0.9000

GPWC 1.0000 1.0000 1.0000 1.0000 120.0 1.0000 1.0000

5 CC (lrm) 0.9263 0.7794 0.8526 0.8480 316.8 0.8879 0.7919

CC (lrm d) 0.9037 0.7345 0.8073 0.8637 306.5 0.8732 0.7662

CC (lrm b) 0.8941 0.6947 0.7882 0.8225 284.1 0.8418 0.7103

FPCA+k-means 0.9524 0.8578 0.9047 0.8989 345.9 0.9283 0.8646

FPCA+fcm 0.9345 0.8076 0.8689 0.8835 331.0 0.9080 0.8275

GPWC 0.9645 0.9024 0.9290 0.9372 359.5 0.9439 0.8988

7 CC (lrm) 0.9515 0.8131 0.9029 0.9044 704.2 0.9147 0.8384

CC (lrm d) 0.9395 0.7780 0.8789 0.9047 657.5 0.8995 0.7964

CC (lrm b) 0.9469 0.7943 0.8939 0.9040 684.9 0.9024 0.8154

FPCA+k-means 0.9902 0.9624 0.9805 0.9844 811.0 0.9819 0.9655

FPCA+fcm 0.9789 0.9180 0.9578 0.9614 774.9 0.9592 0.9225

GPWC 0.9949 0.9803 0.9898 0.9923 826.0 0.9913 0.9833

For comparison, we consider five competing methods: CC (lrm), CC (lrm d),
CC (lrm b), FPCA+k-means and FPCA+fcm. The first three methods were
proposed in [10], corresponding to different transformations. The details can
be found in [9]. FPCA+k-means and FPCA+fcm first transform the curves to
vectors using functional principal component analysis, then perform k-means or
fuzzy c-means on the vectors. The dimension of vectors is determined by cross-
validation. For the proposed method, we set D = 30. The number of components
is set to the correct number of clusters in all methods.

To evaluate the clustering performance, we use Rand Index (RI), Adjusted
Rand Index (ARI), Hubert Index (HI), Normalized Mutual Information (NMI),
χ2-statistics (χ2), Cramer’s coefficient (Cramer), Measure of Concordance
(MOC) as evaluation metrics. Details about these metrics can be found
in [2,7,24]. In general, higher values correspond to better performances. We
report the results in Table 1. Since there is randomness in all these methods,
the reported results are averaged over 10 trials. From Table 1, we can see that
when K = 3, GPWC and CC (lrm) achieves perfect clustering results. As we
increase K to 5 and 7, the proposed method outperforms competing methods
significantly. We also show the clustering results of these methods and Gaussian
distributions with barycenters when K = 5 in Fig. 1.
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Fig. 1. Synthetic datasets and clustering results of various methods.

4.2 On Real-World Data

To further validate the performance, we apply the proposed clustering method
to three real-world datasets:

– Weather: the weather dataset [13] recorded temperatures from 1961 to 1994
in 35 Canadian weather stations. The 35 weather stations correspond to 35
curves, and each curve consists of 73 (365/5) observations, which are mean
temperatures of every five days within one year.

– Electrical load: the electrical load dataset was issued by the Northwest
China Grid Company. This dataset consists of 50 curves, corresponding to
50 days. In each day, the electrical load was recorded every 15 min and there-
fore each curve contains 96 (24 × 4) samples.

– Gait: the gait dataset [17] is collected by the Motion Analysis Laboratory
at Children’s Hospital, San Diego, CA. This dataset consists of the angles
formed by the hip and knee of each of 39 children over each child’s gait cycle.
There are 78 curves in total, half of them are hip angles and the rest are knee
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angles. Time is measured in terms of the individual gait cycle, which has been
translated into [0, 1].

We set D = 30 and K = 2 in this experiment. The clustering results are shown
in Fig. 2. For the weather dataset, the two components correspond to the obser-
vations of stations in the south and north of Canada respectively. For the gait
dataset, the two clusters correspond to hip angles and knee angles respectively.
This demonstrates the proposed curve clustering method can reveal information
and structure underlying observational data.
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Fig. 2. Clustering results of the proposed method on three real-world datasets.

5 Conclusions and Discussions

We propose a functional data clustering algorithm based on Gaussian processes
and Wasserstein distance. Experimental results on both synthetic and real-world
datasets demonstrate the effectiveness of the proposed method. There are sev-
eral promising research directions. For example, we can incorporate the mixture
of Gaussian processes [5] to fit non-stationary data, and employ sparse Gaussian
processes to accelerate the learning process. We can also consider automated
model selection techniques [12] to determine the number of clusters in prac-
tice. Finally, it is interesting to use multi-output Gaussian processes to model
multivariate functions.
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Abstract. Few-shot classification is a challenge in machine learning
where the goal is to train a classifier using a very limited number of
labeled examples. This scenario is likely to occur frequently in real life,
for example when data acquisition or labeling is expensive. In this work,
we consider the problem of post-labeled few-shot unsupervised learning,
a classification task where representations are learned in an unsuper-
vised fashion, to be later labeled using very few annotated examples. We
argue that this problem is very likely to occur on the edge, when the
embedded device directly acquires the data, and the expert needed to
perform labeling cannot be prompted often. To address this problem, we
consider an algorithm consisting of the concatenation of transfer learn-
ing with clustering using Self-Organizing Maps (SOMs). We introduce
a TensorFlow-based implementation to speed-up the process in multi-
core CPUs and GPUs. Finally, we demonstrate the effectiveness of the
method using standard off-the-shelf few-shot classification benchmarks.

Keywords: Brain-inspired computing · Self-Organizing Map ·
Few-shot classification · Post-labeled unsupervised learning · Transfer
learning · Feature extraction

1 Introduction

In the last decade, Deep Learning (DL) techniques have achieved state-of-the-
art performance in many classification problems. However, DL heavily relies
on supervised learning with abundant labeled data. With the fast expansion of
Internet of Things (IoT) devices, a huge amount of unlabeled data is gathered
everyday, but labeling these data is a very difficult task because of the human
annotation cost as well as the scarcity of data in some classes [4]. Finding meth-
ods to learn to generalize to new classes with a limited amount of labeled exam-
ples for each class is therefore a very active topic of research. This is the main
motivation for few-shot learning. Recently, three main approaches have been
proposed in the literature:
c© Springer Nature Switzerland AG 2020
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– Hallucination methods where the aim is to augment the training sets
by learning a generator that can create novel data using data-augmentation
techniques [4]. However, these methods lack precision which results in coarse
and low-quality synthesized data that can sometimes lead to very poor gains
in performance [29].

– Meta-learning where the goal is to train an optimizer that initializes the
network parameters using a first generic dataset, so that the model can reach
good performance with only a few more steps on the new dataset [26]. This
type of solution suffers from the domain shift problem [4] as well as the
sensitivity of hyper-parameters.

– Transfer learning where a model developed for a given task is reused as
the starting point for a model on a different task. In real-world problems, it
happens that we have a classification task in one domain of interest, but we
only have sufficient training data in another domain of interest. Therefore,
knowledge transfer would greatly improve the performance of learning by
avoiding much expensive data-gathering and data-labeling efforts [19]. Hence,
transfer learning has emerged as the new learning framework for the few-shot
classification task.

The problem becomes even harder when facing technical limitations, such as
using embedded implementations for real-time processing on the edge. As a mat-
ter of fact, in many real-world scenarios, the training data is acquired using the
same device that will later be used for training and inference, and labels could
be given at any time of the process. To encompass for this added difficulty, we
consider in this work the problem of post-labeled few-shot unsupervised learning.
In this problem, learning algorithms can be deployed using no annotated data,
for example to learn representations using the data acquired by the considered
device. These algorithms can later be adjusted using a few labeled samples so
that they become able to make predictions, at the condition that this adjust-
ment comes with almost no added complexity to the process, so that it can be
performed on the edge.

To address this problem, we propose a solution that combines transfer learn-
ing with a recently introduced algorithm [9] using Self-Organizing Maps (SOM).
On the one hand, transfer learning is used to exploit a Deep Neural Network
(DNN) trained on a large collection of labeled data as a “universal” feature
extractor. On the other hand, a post-labeled clustering algorithm is used to
leverage the obtained features and make predictions. This algorithm works in
two steps: in a first step, clusters prototypes are learned using no annotated
data, then the prototypes are named (labeled) using a few available annotated
samples.

The motivation for using the SOM, initially proposed in [11], comes from
the fact they are known to be a very effective clustering method. Indeed, it
has been shown that SOMs perform better in representing overlapping struc-
tures compared to classical clustering techniques such as partitive clustering
or K-means [2]. In addition, SOMs are well suited to hardware implementa-
tion based on cellular neuromorphic architectures [10,21,25]. Thanks to a fully
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distributed architecture with local connectivity amongst hardware neurons, the
energy-efficiency of the SOM is highly improved since there is no communica-
tion between a centralized controller and a shared memory unit, as it is the
case in classical Von-Neumann architectures. Moreover, the connectivity and
time complexities of the SOM become scalable with respect to the number of
neurons [21]. SOMs are used in a large range of applications [12] going from
high-dimensional data analysis to more recent developments such as identifica-
tion of social media trends [23], incremental change detection [18] and energy
consumption minimization on sensor networks [13].

This work is an extension of [9], where we used the SOM for MNIST [14]
classification with unsupervised learning, and compared different training and
labeling techniques. Here, we focus on the case of few-shot learning, and demon-
strate the ability of the proposed method in reaching top performance with the
challenging benchmark of mini-ImageNet classification task. We introduce a Ten-
sorFlow (TF) software implementation for the proposed method, and compare
execution times when using multi-core CPUs or GPUs.

The outline of the paper is as follows. Section 2 details the SOM training and
labeling algorithms and describes the transfer learning methods. Then, Sect.
3 presents the mini-ImageNet few-labels classification problem. Next, Sect. 4
presents the TF-based SOM implementation and shows the multi-core CPU and
GPU speed-ups. Afterwards, Sect. 5 presents the experiments and results on
transfer learning with few labels using a SOM classifier. Finally, Sect. 6 and
Sect. 7 discuss and conclude our work.

2 Proposed Methodology

In this section, we review the proposed methodology. We begin with the transfer
learning part, then how to train the SOM, and we finally explain the labeling
procedure.

Let us consider that we are given a dataset X = {x, x ∈ X}, that we initially
consider to be unlabeled. Our first step consists in extracting relevant features
from these inputs.

2.1 Transfer Learning

In this work, we follow the approach proposed by [8] and train a supervised
feature extractor fϕ that we call a backbone on a large annotated dataset. The
parameters of the backbone are then fixed and used to obtain generic features
from any input. In our case, we therefore transform X into V = fϕ(X) =
{fϕ(x), x ∈ X}.

2.2 Self-Organizing Maps Learning Procedure

The next step consists in training a SOM using the transformed representations
in V , i.e. the extracted features. To this end, we use a two-dimensional array
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of k neurons, that are randomly initialized and updated thanks to the following
algorithm, based on the one in [11]:

Initialize the network as a two-dimensional array of k neurons, where each
neuron n with m inputs is defined by a two-dimensional position pn and a
randomly initialized m-dimensional weight vector wn.
for t from 0 to tf do
for every input vector v do
for every neuron n in the network do
Compute the afferent activity an from the distance d:

d = ‖v − wn‖ (1)

an = e− d
α (2)

end for
Compute the winner s such that:

as =
k−1
max
n=0

(an) (3)

for every neuron n in the network do
Compute the neighborhood function hσ(t, n, s):

hσ(t, n, s) = e
− ‖pn−ps‖2

2σ(t)2 (4)

Update the weight wn of the neuron n:

wn = wn + ε(t) × hσ(t, n, s) × (v − wn) (5)

end for
end for
Update the learning rate ε(t):

ε(t) = εi

(
εf

εi

)t/tf

(5)

Update the width of the neighborhood σ(t):

σ(t) = σi

(
σf

σi

)t/tf

(6)

end for
It is to note that tf is the number of epochs, i.e. the number of times the

whole training dataset is presented. The α hyper-parameter is the width of the
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Gaussian kernel. Its value in Eq. 2 is fixed to 1 in the SOM training, but it does
not have any impact in the training phase since it does not change the neuron
with the maximum activity. Its value becomes critical though in the labeling
process. The SOM hyper-parameters are reported in Table 1.

At the end of the training process, each neuron of the SOM corresponds to a
cluster prototype in the considered problem. At this stage, these prototypes are
anonymous and cannot be directly used to perform predictions. The next step
explains the neurons labeling process for transforming the SOM into a classifier.

2.3 SOM Labeling

The labeling is the step between training and test where we assign each neuron
the class it represents in the training dataset. We proposed in [9] a labeling
algorithm based on very few labels. The idea is the following: we randomly
considered a labeled subset of the training dataset, and we tried to minimize its
size while keeping the best classification accuracy. Our study showed that we
only need 1% of randomly taken labeled samples from the training dataset for
MNIST classification. The labeling algorithm detailed in [9] can be summarized
in five steps:

– First, we calculate the neurons activations based on the labeled input samples
from the euclidean distance following Eq. 2, where v is the input vector, wn

and an are respectively the weights vector and the activity of the neuron n.
The parameter α is the width of the Gaussian kernel that becomes a hyper-
parameter for the method.

– Second, the Best Matching Unit (BMU), i.e. the neuron with the maximum
activity is elected.

– Third, each neuron accumulates its normalized activation (simple division)
with respect to the BMU activity in the corresponding class accumulator,
and the three steps are repeated for every sample of the labeling subset.

– Fourth, each class accumulator is normalized over the number of samples per
class.

– Fifth and finally, the label of each neuron is chosen according to the class
accumulator that has the maximum activity.

The complete GPU-based source code for the SOM training, labeling and
test is available in https://github.com/lyes-khacef/GPU-SOM.

3 Datasets and Implementation Details

3.1 mini-ImageNet Few-Shot Learning

In this work, we perform experiments using the mini-ImageNet [28] benchmark.
mini-ImageNet is a subset of ImageNet [22] that contains 60,000 images divided
into 100 classes of 600 images, each image has 84 × 84 pixels. Following the
standard approach [20], we use 64 base classes with labels to train the backbone

https://github.com/lyes-khacef/GPU-SOM
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and 20 novel classes to draw the novel datasets from. For each run, 5 classes are
drawn uniformly at random among these 20 classes, then q unlabeled inputs and
s labelled inputs per class are chosen uniformly at random among the 5 drawn
classes. The features of the (q + s) × 5 samples are used to train the SOM, then
the s labeled samples are used to label the SOM neurons. Finally, the Q = q × 5
unlabeled samples are classified and produce a classification accuracy for each
run. We run 10,000 random draws to obtain a mean accuracy score and indicate
confidence scores (95%) when relevant.

3.2 WRN Training

The feature extractor we use is the same as in [8]. It is mostly based on Wide
Residual Networks (WRN) [30] as a backbone extractor, with 28 convolutional
layers and a widening factor of 10. As a result, the output feature size (the
dimension of a vector v ∈ V ) is 640. Let us insist on the fact the backbone is
trained on a completely disjoint dataset with the tasks we consider thereafter.

3.3 Cosine Distance

In transfer learning, the backbone feature extractor is trained with 80 classes
that are different from the 20 classes we classify using the SOM. Hence, the
features amplitude is not relevant, and the Euclidean distance of the SOM does
not provide the best performance. Therefore, we replace the Euclidean distance
in Eq. 1 with the Cosine distance in Eq. 1.

d = 1 − cos(v, wn) = 1 − v.wn

‖v‖ × ‖wn‖ (1)

The Cosine distance is also used in the labeling and test phases. The com-
parison to Euclidean distance is discussed in Sect. 6.

4 SOM Software Implementation

4.1 TensorFlow-Based SOM

The SOM was implemented using TF [1] 2.1, an end-to-end open source platform
for machine learning that uses dataflow graphs to represent computation, shared
state, and the operations that mutate that state. It maps the nodes of a dataflow
graph across multiple computational devices including multi-core CPUs, general-
purpose GPUs and custom-designed ASICs known as Tensor Processing Units
(TPUs) [1]. TF facilitates the design of many machine learning models pro-
viding built-in functionalities such as convolution, pooling and dense (i.e. fully
connected) layers. However, TF does not provide computational neuroscience
models, and to the best of our knowledge, there is no efficient implementation
for SOMs using TF.



410 L. Khacef et al.

Fig. 1. SOM training speed on MNIST database for 10 epochs (i.e. 600,000 samples of
784 dimensions) VS. number of SOM neurons: (a) CPU (mono-core) implementation;
(b) TF-CPU (muti-core) implementation; (c) TF-GPU GeForce implementation; (d)
TF-GPU Tesla implementation.

4.2 CPU and GPU Speedups

The SOMs of different sizes were trained for 10 epochs on MNIST database,
i.e. 600,000 samples of 784 dimensions. The CPU mono-core implementation is
based on NumPy [27] and run on an Intel Core i9-9880H CPU (16 cores), while
the GPU implementation is based on TF 2.1 [1] and run on two different GPUs:
Nvidia GeForce RTX 2080 and Nvidia Tesla K80 freely available on Google
Colab cloud service [3]. Interestingly, the TF-based SOM can also run on the
multiple cores of the CPU, providing a speed-up even without access to GPU.

Figures 1-a , 1-b, 1-c and 1-d show that the time complexities of the CPU,
TF-CPU and TF-GPU implementations are all linear. It is to note that the
time complexity slope of the TF-CPU, TF-GPU GeForce and TF-GPU Tesla
implementations changes at 1600 neurons, 400 and 1024 neurons respectively,
which is due to their different degrees of parallelism.

As shown in Fig. 2, we achieved a minimum speedup of 12× (22×) and a
maximum speedup of 161× (138×) with the TF-GPU Tesla (TF-GPU GeForce)
implementation, with an increasing speedup with respect to the number of neu-
rons. Our GPU implementation is therefore scalable in simulation time with
respect to the SOM size, which is an important aspect to accelerate the simu-
lations and hyper-parameters exploration. In addition, we achieved a minimum
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Fig. 2. TF-CPU and TF-GPU speed-ups compared to CPU.

speedup of 11× times and a maximum speedup of 29× times with the TF-CPU
implementation, which runs the 16 cores of the CPU. Nevertheless, the gap
between the GPU and CPU speed-ups increases with the number of neurons,
which is expected due to the highly parallel computation of the GPU hardware.

Recent works have tried an other approach using CUDA acceleration on
Nvidia GPUs. They showed relative gains to CPU of 44× [17], 47× [6] and 67×
[16]. Our implementation reaches an average gain of 19× in a multi-core Intel
Core i9 CPU, 100× in a Nvidia Tesla GPU and 102× in a Nvidia GeForce GPU.
A fair comparison is difficult since we do not target the same hardware, but
the order of magnitude is comparable and our results are in the state of the art.
Another advantage of our TF-based approach is the easy integration of the SOM
layer into Keras [5], a high-level neural networks API capable of running on top
of TF with a focus on enabling fast experimentation.

5 Experiments and Results

The SOM training hyper-parameters for the different settings were found with
a grid search and are reported in Table 1.

Table 1. SOM training hyper-parameters.

Dataset εi εf ηi ηf Epochs α

mini-ImageNet 1 0.01 10 0.1 10 1

First, we investigated the impact of the SOM size on the classification accu-
racy for the commonly used number of unlabeled samples q = 15 and labeled



412 L. Khacef et al.

SOM neurons

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

50

60

70

80

90

0 250 500 750 1000

s = 1 s = 3 s = 5

Fig. 3. SOM classification accuracy on mini-ImageNet transfer learning for different
numbers of labeled samples s vs. number of SOM neurons.
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Fig. 4. SOM classification accuracy on mini-ImageNet transfer learning for different
numbers of labeled samples s vs. number of unlabeled samples to classify Q.

samples s = [1, 3, 5] [8]. Figure 3 shows that there is an optimal point at 25
neurons for s = 1 and 100 neurons for s = 3 and s = 5. There is a tradeoff
between the number of neurons that learn different prototypes and the quality
of the learning/labeling of these neurons. The more neurons we have, the more
potential to learn different prototypes of the data but the more fuzzy the pro-
totypes become, which makes the labeling part more difficult. For example, a
neuron may be assigned a class “A” with respect to the labeled subset, but will
be more active for a class “B” with respect to the test set. When we only have
one labeled sample per class, i.e. s = 1, then a SOM of only 25 neurons achieves
the best accuracy because more neurons will not converge as well.
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Next, we varied the number of unlabeled data Q = q × 5 with the above
mentioned SOM sizes. Figure 4 shows that even though the labels are only
used for the neurons class assignment and not in the training process, they
still have a large impact on the accuracy. Naturally, the more labeled data we
have, the better accuracy we get. A second remark is that the more unlabeled
data we have, the better accuracy we get too. This is not intuitive, because the
unlabeled data are the queries, i.e. the samples to classify, so the more we have
the harder the classification task becomes. However, since the SOM is trained
on these data, its adaptation capabilities makes the accuracy increase with the
number of unlabeled data for the same number of labels. The only exception
is when s = 1, where there is a small decrease in accuracy between Q = 250
(71.74% ± 0.21) and Q = 500 (71.27% ± 0.21). A third remark is that the SOM
reaches the same accuracy for [s = 5, Q = 25] and [s = 3, Q = 250], which means
that the lack of labeled data can be compensated by more unlabeled data. In
fact, it is a very interesting property since unlabeled data can be gathered much
more easily, and no extra-effort for labeling these data is needed.

6 Discussion
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Fig. 5. SOM classification accuracy on mini-ImageNet transfer learning with few labels
using Euclidean distance and Cosine distance.

The choice of using the Cosine distance in the SOM computation (training,
labeling and test) was inspired from the work of [8]. In fact, Fig. 5 shows that
replacing the Euclidean distance by the Cosine distance significantly improves
the SOM classification accuracy, with a gain of +5.9%, +4.96% and +4.68%
for s = 1, s = 3 and s = 5, respectively. It validates our hypothesis about the
non-effectiveness of the Euclidean distance when using transfer learning.
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Table 2. mini-ImageNet few labels transfer learning with q = 15 (Q = 75): state of
the art reported from [8].

Method Backbone Classifier 1-shot (%) 5-shot (%)

wDAE-GNN [7] WRN Supervised 61.07 ± 0.15 76.75 ± 0.11

ACC+Amphibian [24] WRN Supervised 64.21 ± 0.62 87.75 ± 0.73

BD-CSPN [15] WRN Supervised 70.31 ± 0.93 81.89 ± 0.60

Transfer+SGC [8] WRN Supervised 76.47 ± 0.23 85.23 ± 0.13

Transfer+SOM [Our work] WRN Unsupervised 71.53 ± 0.23 82.22 ± 0.15

Finally, Table 2 reports the recent works that proposed solutions to the mini-
ImageNet few labels classification problem using transfer learning with the WRN
backbone feature extractor. The SOM reaches top-2 accuracy for s = 1 and top-
3 accuracy for s = 5, which is a good result that proves the SOM ability to
handle complex datasets. Nevertheless, one has to keep in mind that while the
other works use the few labels in the training process, we only use them for
neurons labeling phase. Our accuracy performance is therefore obtained with
fully unsupervised learning followed by post-labeling, which we believe is the
right approach for the few-shot classification problem in the context of embedded
systems on the edge.

7 Conclusion and Further Works

We introduced in this work the problem of post-labeled few-shot unsupervised
learning and proposed a solution that combines transfer learning and SOMs.
Transfer learning was used to exploit a WRN backbone trained on a base dataset
as a feature extractor, and the SOM was used to classify the obtained features
from the target dataset. The SOM is trained with no label, then labeled with
the few available annotated samples. We show that we reach a good performance
on the mini-ImageNet few shot classification benchmark with an unsupervised
learning method. Furthermore, the SOM is suitable for hardware implementa-
tions based on a cellular neuromorphic architecture, which enables its application
on the edge. Finally, to speed-up the SOM simulation process, we proposed a
novel TF-based GPU implementation which is about 100× faster than the clas-
sical CPU implementation.
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Abstract. Adversarial images which can fool deep neural networks
attract researchers’ attentions to the security of machine learning. In this
paper, we employ a blind forensic method to detect adversarial images
which are generated by the gradient-based attacks including FGSM,
BIM, RFGSM and PGD. Through analyzing adversarial images, we find
out that the gradient-based attacks cause significant statistical changes
in the image difference domain. Besides, the gradient-based attacks add
different perturbations on R, G, B channels, which inevitably change the
dependencies among R, G, B channels. To measure those dependencies,
the 3rd-order co-occurrence is employed to construct the feature. Unlike
previous works which extract the co-occurrence within each channel, we
extract the co-occurrences across from the 1st-order difference of R, G,
B channels to capture the inter dependence changes. Due to the shift
of difference elements caused by attacks, some co-occurrence elements of
the adversarial images have distinct larger values than those of legitimate
images. Experimental results demonstrate that the proposed method per-
forms stable for different attack types and different attack strength, and
achieves detection accuracy up to 99.9% which exceeding state-of-the-art
much.

Keywords: Deep learning · Digital image forensics · Co-occurrence

1 Introduction

Deep Neural Networks (DNNs) have achieved excellent performances in image
classification tasks [1], and show great potential on many artificial intelligence
applications. However, recent works show that DNNs are vulnerable to adversar-
ial attacks [2–8]. An adversarial image is crafted by adding small imperceptive
yet effective perturbations on a legitimate image, and forces DNNs to give an
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error output class, i.e. either to a particular class (targeted attack) or to any
class rather than the original class of the legitimate image (un-targeted attack).
Cleverhans [3] listed some typical attack methods: fast gradient sign method
(FGSM) [4], randomized FGSM (RFGSM) [5], basic iterative method (BIM)
[6], Deep Fool [7], projected gradient descent (PGD) [21], and Carlini&Wagner
method (CW) [8]. FGSM, BIM, RFGSM, and PGD generate adversarial images
directly based on the gradient, which will be called as gradient-based attacks in
the following. Compared with CW and Deep Fool, the gradient-based attacks
are much faster, thus are more likely to be used to launch large-scale attacks.
The BIM and PGD approximate the optimal attack under L∞ constraint and
have been empirically identified as the most effective approach for L∞ attacks
[21]. Hence, the detection of the gradient-based attacks is of great interest for
the security of DNN model.

The defenses against adversarial attacks aim at developing robust DNN to
maintain the performances via classifying adversarial examples correctly [5,9,29].
However, constructing a robust DNN is difficult when contesting with a tricky
attacker [30]. One of the defense ways is to detect adversarial images and disallow
them as inputs to DNNs [10–15,26–28,31]. This defense is based on the discrep-
ancy between legitimate image and adversarial image, which does not need to
modify the architecture of DNN and is usually time efficient. Some works studied
statistically difference between adversarial images and legitimate images, such
as principle components analysis (PCA) [11,12], maximum mean discrepancy
(MMD) test [27]. Some works depended on the changes of DNN units (such
as ReLU, hidden nodes) caused by the adversarial attack to detect adversarial
images. Lu et al. [13] captured the patterns of the last ReLU in the network
to detect adversarial images. Metzen et al. [28] employed the values of hidden
nodes of DNN as inputs to train a binary classifier to detect adversarial images.
Meng et al. [10] first learned a manifold of legitimate images, and then predicted
the input which is far from the manifold as an adversarial image. Guo et al.
[15] found out that adversarial images have larger prediction differences for var-
ious DNN models than legitimate images have, and used those differences called
transfer-ability prediction difference to detect adversarial images. Assuming that
DNN model is robust against image manipulations, some works depended on the
consistency of predicted outputs of manipulated samples to detect adversarial
images. Xu et al. [14] proposed a feature squeezing method to modify an input
image, and compared predict outputs of original input and its modified version
to detect adversarial images. If these two outputs are different, the input image
will be considered as adversarial. Similarly, Liang et al. [26] utilized scalar quan-
tization and smooth spatial filter to detect adversarial images. Guo et al. [31]
applied bit-depth reduction, JPEG compression, total variance minimization,
and image quilting to counter adversarial images.

To further improve detection performance, some steganalysis methods which
aim at detecting subtle changes caused by steganography are employed to detect
adversarial images. Pascal SchÖttle et al. [16] first highlighted the parallels
between steganalysis and adversarial images detection. They proposed a sim-
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ilar version of early steganalysis method to detect PGD [21] adversarial images.
Fan et al. [17] proposed an integrated detector to detect attacks. They first
used subtractive pixel adjacency matrix (SPAM [18]) to detect FGSM, R-FGSM
and BIM adversarial images, and then used Gaussian noise injection detector to
detect legitimate images from DeepFool and CW adversarial images. Inspired
by spatial rich model (SRM [19]), Liu et al. [20] proposed an enhanced SRM
(ESRM) method. They considered the modification probability of each pixel
and allocated large weights to probably modified pixels when calculating co-
occurrences. The above-mentioned methods achieved great improvements for
the gradient-based attacks. However, their performances decrease sharply with
reducing attack strength, and thus are still needed to be improved for the attacks
using weak attack strength.

In this paper, we focus on detecting the gradient-based attacks with weak
attack strength. Such attack leaves behind weak visual traces which can hardly
be detected by human eyes (please see Fig. 1(b), (c), (e), (f)), yet can fool DNN
model with high probability. To do this, we propose to detect the gradient-based
adversarial images from the view of blind forensics which is also use to detect
visual fidelity forged images from pristine images. Such method can distinguish
the image is adversarial attacked or not without any prior knowledge. Along
with the pipeline of forensics, we first analyze the statistic property of adversarial
images, and find out that the gradient-based attacks would leave statistical traces
in the image difference domain. Based on these traces, we extract the 3rd-order
co-occurrences across from R, G, B channel as features, and construct a fast
yet effective detector. Experimental results show that the proposed detector can
accurately detect adversarial images generated by typical attacks.

2 Background

Given a legitimate image x with label y, an un-targeted adversarial attack seeks
to find an image x′ = x + z to mislead a DNN model F (.), subjecting to a
distortion constraint between x and x′. This can be formulized as an optimization
problem in (1), where d(.) is a Lp norm distance metric. To train the model
F (.), the gradient descent methods are used to update parameters, which aim
at minimizing the loss function value of samples. Intuitively, the attacker could
find the perturbations z along the direction of gradient, which probably increases
the loss function value of the adversarial image x′ and thus misleading the DNN
model F (.). Some typical gradient-based attacks are introduced in the sequel.

arg min d(x′, x), s.t.F (x′) �= y, d(x′, x) < ε

x′ (1)

Fast Gradient Sign Method (FGSM). Hypothesizing that DNNs are nearly
linear in the high dimensional space, Goodfellow et al. [6] proposed to directly
add the sign of gradient of the loss function J(.) onto the benign image x to
generate the adversarial image x′. To control the L∞ norm distortion, they
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limited the strength of perturbations by a parameter ε(0 < ε ≤ 255). Formally,
the un-targeted adversarial image x′ is generated as (2).

x′ = x + εsign(∇xJ(F (x), y)) (2)

FGSM is a fast method. However, it introduces large perturbations.

Randomized Fast Gradient Sign Method (RFGSM). To defeat adversarial
training defense [4], Tramèr et al. [5] proposed a simple yet effective method
called RFGSM. They first added a small random noise controlled by α(α < ε)
into the legitimate image x to generate x1st as (3), then generated x′ using
FGSM as (4).

x1st = x + αsign(rand(m,n)) (3)

x′ = x1st + (ε − α)sign(∇x1stJ(F (x1st), y)) (4)

In (3), rand(m,n) will generate a normally distributed random matrix of size
mn which has equal size with the image x.

Basic Iterative Method (BIM). Kurakin et al. [8] proposed an iterative version
of FGSM. Rather than adding large perturbation directly, they added a small
perturbation many times using FGSM, and clipped the perturbation within ε-
neighborhood to control the distortion.

x′
0 = x; x′

i+1 = x′
i + clipx,ε(αsign(∇′

xi
J(F (x′

i), y))) (5)

In (5), clipx,ε(.) tunes the perturbation to ε -neighborhood. BIM improves the
attacking success rate of FGSM, and produces smaller distortions than FGSM.

Projected Gradient Descent (PGD). Madry et al. [6] first added a random
initialization on x, and then used iterative attack as BIM to generate adversarial
image. PGD can be viewed as an iterative version of RFGSM.

3 The Proposed Method

3.1 Statistical Property of Adversarial Images

Inspired by the blind forensics and steganalysis [18,19,22,23], we analyze the
statistics of adversarial images in the difference domain. This domain benefits
to suppress image contents, thus stresses the perturbations and highlights the
statistical differences between legitimate images and adversarial images. The 1st-
order differences of horizontal direction s→

i,j = xi,j+1 −xi,j and vertical direction
s↑

i,j = xi,j+1 − xi,j are used, where xi,j is the pixel at the position (i, j).
The gradient-based attacks add some perturbations into a legitimate image

which will make some shifts between the legitimate image and its adversarial
image in the difference domain, thus change the distributions of the 1st-order
difference. Taken the difference s→

i,j for example, it will be shifted to s→′
i,j =

x′
i,j+1 − x′

i,j = s→
i,j + zi,j+1 − zi,j , where zi,j is the added perturbation. In

the following, we focus on analyzing the item zi,j+1 − zi,j . As the sign(.) value
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Fig. 1. A smooth(a)/textured(d) legitimate image, its FGSM image (b)/(e), BIM
image (c)/(f) and the histograms of the vertical 1st-order image differences of green
channel (g)/(h). Both FGSM and BIM use the attack strength ε = 5. (Color figure
online)

is 0, −1 or 1, it can be inferred from Eq. (2) that the FGSM attack adds the
perturbation zi,j with the value −ε , or ε or 0 into a legitimate image. As a result,
zi,j+1 − zi,j takes the value from the set{−2ε,−ε, 0, ε, 2ε}. For RFGSM, BIM
and PGD attacks, as these attacks add the perturbation using values from the
set{−ε,−ε+1, ..., 0, ε−1, ε}, zi,j+1−zi,j takes the value from the set {−2ε,−2ε+
1, ..., ,−1, 0, 1, ..., 2ε − 1, 2ε}. Those shifts change the histogram of the 1st-order
difference. For a smooth image (Fig. 1(a)) which has dominant 0 elements in the
1st-order difference, it has only one peak at zero bin (red plot in Fig. 1 (g)).
After attacks, the zero elements in s→

i,j will be shifted to non-zero elements (i.e.
−2ε,−2ε + 1, ..., 2ε − 1, 2ε) in the s→′

i,j of the adversarial image. As a result, the
histogram of the 1st-order difference for the adversarial image probably have
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peaks at these non-zero bins. Figure 1(g) shows that the FGSM (ε = 5) image
(green double dot plot) has two peaks at 2ε = 10 and −2ε = −10. Figure 1(g)
also shows that the BIM (ε = 5) image (blue dash dot plot) has four clear non-
zero peaks in the range of [−10, 10]. Obviously, one possible method for detecting
adversarial images is to check whether the histogram of the 1st-order difference
has clear peaks at non-zero bins. We tested such method on MNIST database
whose images are smooth (most of pixel values in the black area are equal to 0),
and obtained detection accuracy about 95%.

For the textured image (Fig. 1(d)), due to the peaks at non-zero bin is not
prominent or may be disappeared as shown in Fig. 1(h), we cannot directly
rely on the non-zero peaks to predicted whether it is an adversarial image or
not. However, for the legitimate images and their adversarial versions, there
are distinct statistical differences in the histogram of the 1st-order difference
as shown in Fig. 1(g) and (h). The gradient-based attacks make the histograms
become flat. It means that some zero bins shift to non-zero bins. Analogically,
the shifts also occur among non-zero bins. Consequently, such shift will cause
some unusual co-occurrence elements (nearly 0) become much larger. The co-
occurrence will be employed to construct the proposed feature. Considering that
most of elements of the 1st-order difference locate in [−2ε, 2ε], we will extract
the feature from the differences ranging in [−2ε, 2ε].

3.2 The Proposed Feature

In this subsection, the co-occurrence which can be viewed as a high order of
histogram is used to construct the feature. Unlike the methods proposed in
[17,20] which calculates the co-occurrence within each channel to capture the
intra dependencies, we form the co-occurrences across from R, G, B channels to
capture the inter dependencies. For color images, when calculating the gradient
∇xJ(F (x), y) to generate the adversarial image, the same loss value J(F (x), y) is
used for R, G, B channel, it causes ∇xrJ(F (x), y), ∇xgJ(F (x), y), ∇xbJ(F (x), y)
have different values, thus leading different perturbations on R, G, B channels.
It can be assumed that the gradient-based attacks will inevitably change the
inter dependencies among R, G, B channel in the legitimate image, which is
similar with the steganography done on RGB cover image [24]. Besides, since
the gradient-based attack treats each channel as an isolate channel, it makes the
correlations among the 1st-order differences of R, G, B channel become weak.
Such correlations are expected to be beneficial for constructing a stable feature
which is less affected by the changes of image content and attack strength.

Let us represent a RGB mn image x by x={R,G,B}={xr
ij , x

g
ij , x

b
ij}, xr

ij , x
g
ij ,

xb
ij ∈ {0, 1, . . . , 255}, 1 ≤ i ≤ m, 1 ≤ j ≤ n. We first calculate the 1st-order

difference s→
i,j , s

↑
i,j from each channel, and truncate these six differences into

[−T, T ]. Then calculate the 3rd-order co-occurrences C→
d0d1d2

and C↑
d0d1d2

as (6)
respectively. In (6), T is the truncating threshold, d0, d1, and d2 are the integer
bins which range in [−T, T ], [.] is the Iverson bracket which is 1 if satisfying the
conditions in the bracket, and 0 otherwise, s

→(r)
i,j is the 1st-order difference of
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horizontal direction for R channel, i.e. s
→(r)
i,j = xr

ij+1−xr
ij , the meaning of other

symbol can be obtained analogically.

C→
d0d1d2

=
m,n−1∑

i,j=1

[s→(r)
i,j = d0, s

→(g)
i,j = d1, s

→(b)
i,j = d2]/{M × (N − 1)}

C↑
d0d1d2

=
m,n−1∑

i,j=1

[s↑(r)
i,j = d0, s

↑(g)
i,j = d1, s

↑(b)
i,j = d2]/{(M − 1) × N}

F = (h(C→) + h(C↑))/2

(6)

To visually demonstrate differentiated ability of the proposed 3rd-order co-
occurrence, we select top three Fisher Criterion Scores (FCS) of C→

d0d1d2
to

draw scatter plots. FCS defined in (7) measures the differentiated ability of
feature element, where u1

k(u0
k) is the mean of the kth element of adversarial

(legitimate) class and σ1
k(σ0

k) is the respective standard variance. The feature
element with higher FCS usually means it has stronger differentiated ability.
We evaluate FCS via 1000 randomly selected images of the validation data-
set of ImageNet-1000(ILSVRC-2012) and their corresponding FGSM (ε = 1)
adversarial images. With setting T=3, C→

2,3,2, C→
−2,−3,−2, and C→

2,1,2 are selected
as the top three FCS elements. The plot in Fig. 2(b) demonstrates that most
of legitimate images and adversarial images are separated by these three feature
elements. Furthermore, the top one element C→

2,3,2 also can detect adversarial
images as shown in Fig. 2(a). Due to the shift among the 1st-order difference bins
caused by adversarial attack, most of the adversarial images have larger value at
C→

2,3,2 than legitimate images do. These two plots empirically indicate that the
proposed co-occurrence feature is effective in detecting adversarial images.

FCS(k) = (u1
k − u0

k)2/((σ1
k)2 + (σ0

k)2) (7)

The 3rd-order co-occurrence matrix C→ and C↑ each have (2T +1)3 elements.
Based on the symmetric property of co-occurrence [19], we use a dimension
reduction function h(.) to reduce the feature dimension. Please refer to Ref [19]

for more details. After applying h(.), the feature F has
3∑

k=0

(2T +1)k/4 elements.

We categorize the image into two parts, and concatenate the feature extracted

from these two parts to get the final feature which having
3∑

k=0

(2T + 1)k/2 ele-

ments. Specially, an image x of size m×n is equally divided into non-overlapped
blocks of size m/2 × n/2. These four blocks are categorized into two parts. The
first part is composed by the block which has the most 0 elements in the 1st-order
difference, while the second part is composed by the remaining three blocks. To
do this, we expect the first part will have distinctive properties (such as non-zero
peaks in Fig. 1(g)) to enhance the differentiated ability of the feature.

As discussed in Subsect. 3.1, the adversarial attacks cause statistical changes
mainly within [−2ε, 2ε], so we set T = 2ε. Considering that the strong attack
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will cause perceptible traces that can be detected by human eyes, we only focus
on the attack with ε ≤ 5. Under T = 10, the proposed feature has (1 + 21 +
212 + 213)/2 = 4862 dimensions in total. We use the FLD ensemble classifier
with default settings [25] to construct the proposed binary detector which detects
adversarial images from legitimate images.

Fig. 2. Scatter plots of the top one (a) and top three (b) FCS elements estimated
from the proposed 3rd-order co-occurrence.

4 Experimental Results

4.1 Experiment Settings

The proposed method is tested against typical gradient-based attacks by FGSM,
BIM, RFGSM and PGD. Like the previous work [20], the un-targeted attacks
with L∞ norm are used in experiments. We use the code provide by Weilin Xu
et al. [14] from to generate adversarial images. As the attack with strength ε > 5
may leave visually perceptual traces, we only consider ε = 1, 3, 5 for all attacks.
For BIM, we set the iteration attack strength with default value α = 1.

We randomly select 15000 RGB images of size 224 × 224 from the validation
data-set of ImageNet-1000(ILSVRC-2012) as legitimate images. All attacks take
Resnet-50 [1] as the target model. 9000 correctly predicted images are randomly
selected for attacking. Only the successfully attacked images and their legitimate
counterparts are tested in experiments. The number of adversarial images is
listed in Table 2. For all experiments, half of adversarial samples and legitimate
samples are used for training, the rest half is used for testing. Under equal priors,
we report the detection accuracy (Acc) in the test.

The truncated threshold T is an important factor for tuning feature dimen-
sion and detection accuracy. We test our method with setting T = 3, 5, 10 for
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FGSM using ε = 5. After attacks, we get 8644 successfully attacked images.
These 8644 adversarial images along with their corresponding 8644 legitimate
images are used in this test. The results in Table 1 show that T = 10 is the best
choice for our method, which verify that FGSM ε = 5 mainly causes statistical
changes within [−10, 10]. The results in Table 1 also tell us that the proposed
methods with T = 3, 5 still obtain satisfactory performance, and can be applied
in the low dimension feature required situations.

Table 1. The Acc (%) of the proposed method using different truncated threshold T .
All results are detected FGSM(ε = 5) images from legitimate images.

T Feature dimension Acc (%)

3 200-D 96.94

5 732-D 98.75

10 4862-D 99.92

4.2 Compared with Previous Works

We then test the proposed method for detecting FGSM and BIM with ε =
1, 3, 5. The steganalysis method SPAM [19] and SRM [19,20] are compared in
these tests. To our best knowledge, the SRM-based method ESRM [20] is state-
of-the-art. However, ESRM is more time-consuming than SRM but gains only
about 0.5% higher Acc than SRM for detecting attacks with ε ≤ 5 as reported
in [20], so we do not compare ESRM with our method directly. As done in
[17,20], SPAM/SRM is calculated within each R, G, B channel, and averaged
3 SPAM/SRM features to get the final feature with dimension 686-D/34671-D.
Feature squeezing (FS) [14] which detects adversarial images by comparing the
output consistence of the sample and its squeezed version is also tested. For FS,
the best joint detection method is used, where the threshold value is determined
by the false positive rate FPR<5%. The results in Table 2 show that the proposed
method achieves nearly perfect performance (Acc > 99.95%) in all tests, and
performs much better than SPAM, SRM and FS. We also test the SPAM using
T = 10 which has the same dimension with our method for detecting BIM with
ε = 1. This SPAM obtains Acc = 80.75%, which is also much lower than the
result of our method. As the proposed method achieves Acc > 99.95%, we can
infer that the proposed method also performs better than ESRM. SPAM [17],
SRM [19], ESRM [20] capture the intra dependency within each R, G, B channel,
wherein the modified degree of such dependence is decreased with decreasing
attack strength, so the detection accuracy is reduced when reducing the attack
strength. This phenomenon accords with the result that the steganalysis tool
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Table 2. The Acc (%) of detecting legitimate images from their adversarial images
generated by FGSM and BIM. The number in the bracket represents the total number
of adversarial images.

SPAM [17] SRM [20] FS [14] Proposed

FGSM, ε = 1(7659) 82.61 88.90 70.80 99.97

FGSM, ε = 3(8555) 92.54 96.62 62.49 99.98

FGSM, ε = 5(8644) 95.41 98.33 61.07 99.92

BIM, ε = 1(8850) 79.11 87.42 80.13 99.99

BIM, ε = 3(8992) 88.17 94.57 56.58 99.98

BIM, ε = 5(8996) 91.05 96.50 51.39 99.98

[18,19] obtains lower detection accuracy when lowering embedding rate. Rather
than intra dependence, the proposed method captures the inter dependency
across R, G, B channel, which is stable for different attack strength as shown in
Table 2. The other advantage of the proposed method against SRM and ESRM
lies in time efficiency. This is because we only need to calculate two kinds of the
3rd-order co-occurrence matrices, whereas SRM and ESRM need to calculate
78 kinds of the 4th-order co-occurrence matrices. As indicated by FS [14], FS is
well suited for the CW attack, but not for the gradient-based attacks. Hence, the
performance of FS is inferior to that of SPAM, SRM and the proposed method
in the experiments.

In practice, we probably do not know attack type and attack strength. To
solve this problem, a mixed detector is trained from samples generated by FGSM
and BIM with different attack strengths. Specially, both FGSM(ε = 1, 3, 5) and
BIM(ε = 1, 3, 5) are used for training. We select 8400 legitimate images and 8400
adversarial images (each attack has 1400 images), where the training set and
testing set have 4200 legitimate images and 4200 adversarial images respectively.
In this test, the proposed method achieves Acc = 99.90%. We also use this
mixed detector to detect unseen adversarial images, i.e. different attack type or
attack strength not used in the training set. The results in Table 3 show that
the proposed detector can accurately (Acc > 99.9%) detect the attack with same
type but different attack strength and the different attack types. Notice that the
RGSM with ε = 1, α = 1 just adds the Gaussian noise to the legitimate image
according to (3) and (4), so there are only a few successfully attacked images
in this test which is also indicated in [4] that adding random noise is hardly to
fool DNN model. The proposed method can also accurately detect the RGSM
with ε = 1, α = 1. All results indicate that the proposed method owns good
generalization ability, and can resist random noise attack to some extent.
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Table 3. The Acc (%) of the proposed mixed detector for detecting unseen adversar-
ial images which never be used in the training set. The bracket gives the number of
adversarial images.

Attack type Acc (%)

BIM, ε = 2(8989) 99.98

PGD, ε = 1(8883) 99.92

BIM, ε = 3(8996) 99.98

RFGSM, ε = 1(51) 100

RFGSM, ε = 3(8366) 99.98

5 Conclusion

This paper proposes a blind forensic method to detect gradient-based attacks
applied on RGB color images. Through analyzing the inter dependencies among
R, G, B channel which are disturbed by the attacks, we extract the feature from
the co-occurrences across from the difference of R, G, B channel. Experimental
results show that the proposed detector is fast and effective, and achieves stable
detection accuracy up to 99.9% for different attack types and attack strength.
It is expected that the proposed detector can enrich the arsenal for defending
against adversarial attacks. We will integrate the proposed detector along with
some other detectors to detect more attack types in the future.
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Abstract. Reinforcement learning has proved to be of great utility; exe-
cution, however, may be costly due to sampling inefficiency. An effi-
cient method for training is experience replay, which recalls past expe-
riences. Several experience replay techniques, namely, combined expe-
rience replay, hindsight experience replay, and prioritized experience
replay, have been crafted while their relative merits are unclear. In
the study, one proposes hybrid algorithms – hindsight-combined and
hindsight-prioritized experience replay – and evaluates their performance
against published baselines. Experimental results demonstrate the supe-
rior performance of hindsight-combined experience replay on an OpenAI
Gym benchmark. Further, insight into the nonconvergence of hindsight-
prioritized experience replay is presented towards the improvement of
the approach.

Keywords: Experience replay · Deep Q-Network · Reinforcement
learning · Sample efficiency · Hybrid algorithm

1 Introduction

Reinforcement learning [20] has been the subject of research. Its uncomplicated
formulation is capable of capturing a vast number of problems in artificial intel-
ligence. Fields such as resource management [13], traffic signal control [2], and
robotics [8] abound with practical applications.

Generally, the learning problem is to control a system so as to maximize a
numerical value representing a long-term objective [7]. One calls the learner the
agent and the agent is established to be in an environment. The standard rein-
forcement learning formalism, therefore, concurs with a decision making frame-
work consisting of an agent that interacts with an environment and improves its
performance based on feedback. At each time step, the agent is given a state and
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it selects an action; the environment then presents a reward and a new state. By
and large, the goal is to maximize the cumulative reward.

While reinforcement learning shows promise, implementation in real-world
contexts can be costly because of sampling inefficiency. This means that a mul-
titude of runs are needed for the algorithm to achieve success. A way to address
such a complication is through the utilization of experience replay [11], where
previous experiences are reused. As an aside, there are other methods through
which one may grapple with the problem. Recent alternatives include using
Gaussian processes [5] and using babbling [9,14] in speeding up learning. The
paper, notwithstanding, focuses on experience replay and its variants.

By experience replay, the agent remembers past events and presents them
to the algorithm as if to experience what it had before. More concretely, this
means maintaining a buffer memory of experiences. An experience or transition
is a quadruple (s, a, r, s′), meaning that doing action a given state s results
in reinforcement r and the new state s′ [11]. Batches of transitions are drawn
from the buffer and used for training the agent. With the replay technique, the
weights in the mapping function are amended not only once upon the completion
of the task. A batch update to the parameters is done via experiences sampled
randomly from the replay buffer which stores recent transitions.

The usefulness of experience replay primarily lies in its ability to speed up
the process of reward propagation [11]. It encourages sample-efficient training
by pulling experience from the memory [18]. On top of that, the agent may
get chances to refresh what it has learned before. When training a network, for
instance, if an input pattern is not encountered for quite a while, the network
usually forgets what it has learned for that pattern and hence would need to
relearn the output [11]. Lastly, applying the experience replay buffer breaks up
the correlation in data and improves network convergence [18]. Do note, nonethe-
less, that experience replay implementation is best suited for environments which
do not rapidly change over time. Should this be the case, past transitions may
become irrelevant or even misleading [11].

To date, three techniques for experience replay have been widely deemed
fundamental. These are combined experience replay [23], hindsight experience
replay [1], and prioritized experience replay [18]. The standalone methods are
well documented; nevertheless, the three have never been run on the same envi-
ronment and their combinations have yet to be put forward in literature.

Hybrid algorithms are an ongoing trend in reinforcement learning [4,12,21,
22]. A notable study, for example, has concluded that a straightforward com-
bination of the various modifications to the Deep Q-Network [17] resulted in
superior performance [6]. The idea of hybridization on the level of experience
replay then came to light. Rooted in this motivation, the study has the following
objectives:

– Incorporate a comprehensive buffer into reinforcement learning algorithms;
– Juxtapose variations of replay stemming from different combinations; and
– Evaluate the performance of the proposed hybrid algorithms.
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The succeeding sections are organized as follows. The second section looks
into the existing methods for experience replay in three subsections. In the third
section, one details the set-up and the experimentation process. Results on the
hybrid replay algorithms from the specified configurations are discussed in the
fourth section. To conclude, a synthesis is contained in the fifth section.

2 Literature

2.1 Prioritized Experience Replay

In baseline experience replay, all transitions are sampled uniformly, irrespective
of usefulness. Prioritized experience replay [18], as the name suggests, prioritizes
stored transitions by assigning greater weights to transitions with high expected
learning progress.

A focal aspect in prioritized experience replay is quantifying the importance
of a transition. How much one expects to learn from a transition may be esti-
mated by the temporal-difference error δ. For transition i, the weight is

wi =
(

1
N

· 1
P (i)

)β

,

where N is the batch size and β is a parameter between 0 and 1 determining
importance sampling. In addition, P (i) is the sample probability

pα
i∑

k pα
k

,

where pi > 0 is the priority. This is simply the last known temporal-difference
error added to a positive constant to avoid disregard should the error be 0. The
parameter α regulates how much prioritization is utilized, with α = 0 for uniform
sampling and α = 1 for proportional sampling.

2.2 Combined Experience Replay

Since the conceptualization of experience replay, a new hyperparameter – the
buffer size N – has required careful adjustment. As there has been neglect, inves-
tigations gave light to the fact that a large replay buffer may crucially influence
performance [23]. The stabilization of the training system is extremely sensitive
to the size of the replay buffer. Experiments show that learning in experiments
hiring larger replay buffers is hindered. A simple O (1) experience replay method
was then created in response to the O (log N) prioritized experience replay tech-
nique, resolving the negative effects of a large buffer size.

Treated inexactly a special case of prioritized experience replay is combined
experience replay [23]. While both assigns the larges priority to the latest transi-
tion, the distinction lies in the guarantee. Combined experience replay includes
the latest transition to the batch invariably and samples the rest uniformly.
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2.3 Hindsight Experience Replay

The key idea in hindsight experience replay [1] is that the machine can learn just
as much from undesirable outcomes as from desirable ones. Essentially, there are
two perspectives in an unsuccessful trajectory – the performed actions result
in a failure or would have been a success. Hindsight experience replay enables
the software agent to reason from the latter viewpoint. One takes an extended
input comprising the current state, action, reward, next state, and goal state.
The method is particularly useful in environments where a number of states may
be treated as a separate goal. It is also effective when rewards are binary.

For an episode with sequence of states s0, s1, s2, . . . , sT which does not hit
target g, one probes with a different goal to be assigned g′. Despite the fact
that the above transition did not reach original goal g, it holds information on
how to get to state sT or any other state in the sequence. The knowledge may
be gathered using an algorithm where one replaces g with g′ = si, 0 ≤ i ≤ T .
Rewards are modified as a result and learning becomes less complicated.

3 Methodology

3.1 Replay Techniques

Sampling methods include baseline experience replay, combined experience
replay, hindsight experience replay, hindsight-combined experience replay,
hindsight-prioritized experience replay, and prioritized experience replay. The
baseline and independent algorithms – combined, hindsight, and prioritized expe-
rience replay – had been made known in the previous section; thus, one elaborates
on the proposed hybrid replay approaches.

Hindsight-Combined Experience Replay. For the method of hindsight-
combined experience replay, what is done first is to activate hindsight experience
replay. As revealed in the literature review, hindsight experience replay adds a
new dimension to the transition (s, a, s′, r) by storing the additional information
of a goal g′. Typically, the transitions are sampled uniformly during training.
With the integration of combined experience replay, weights are assigned in
accord with combined experience replay after the inclusion of a goal dimension
to the transition. One puts sizeable priority on the latest extended transition.
Algorithm 1 describes the procedure. In the algorithm, the storing of an extended
tuple in line 9 and the generation of multiple goals in lines 10 to 14 are motivated
by hindsight experience replay. Combined experience replay is seen in line 16,
where one updates using a batch including the latest transition.

Hindsight-Prioritized Experience Replay. Comparable to the first hybrid
algorithm is the method of hindsight-prioritized experience replay. Upon the
transformation of transitions of four dimensions to five-dimensional ones via the
inclusion of g′, transitions are given weights following the conventional prioritized
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Algorithm 1. Hindsight-Combined Experience Replay
1: Initialize value function Q
2: Initialize ε-greedy policy P
3: Initialize replay buffer M
4: while not converged do
5: Sample goal G and get initial state S
6: while S is not the terminal state do
7: Select action A according to P with respect to Q
8: Execute A, get reward R, and next state S′

9: Store transition t = (S, A, R, S′, G) into M
10: Sample a set G of additional goals for replay
11: for G′ ∈ G do
12: Compute new reward R′

13: Store transition (S, A, R′, S′, G′) into M
14: end
15: Sample batch B from M
16: Update Q with B and t
17: S ← S′

18: end
19: end

experience replay – the greater the error, the less likely it is for the transition
to be recalled. One uses prioritization based on temporal-difference error. The
pseudocode is provided as Algorithm 2. Similar to Algorithm1, hindsight learn-
ing is activated in lines 10 to 15. The involvement of prioritized experience replay
is most apparent in lines 4 and 16, indicating prioritized sampling.

3.2 Learning Algorithm

In the experiments, the learning algorithm initiated is the Deep Q-Network [17].
A four-layer neural network architecture is hired. The replay buffer accommo-
dating all experience replay types is composed with the aid of a segment tree
structure. Refer to the accompanying repository for the complete implementa-
tion of both the algorithm and the memory.1

3.3 Testing Environment

The environment utilized is the Lunar Lander from the OpenAI Gym suite.2

Lunar Lander is a two-dimensional environment featuring a landing pad at the
origin. The goal is to move from the top of the screen to the landing pad without
crashing. It loses rewards if it moves away from the landing pad. An episode fin-
ishes when the lander crashes or comes to rest. A crash would yield an additional
-100 points and coming to rest would yield an additional 100. Each leg ground

1 This is found in: https://github.com/renzopereztan/HyER.
2 The link is: https://gym.openai.com/envs/LunarLander-v2.

https://github.com/renzopereztan/HyER
https://gym.openai.com/envs/LunarLander-v2
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Algorithm 2. Hindsight-Prioritized Experience Replay
1: Initialize value function Q
2: Initialize ε-greedy policy P
3: Initialize replay buffer M
4: Initialize weighting scheme ω
5: while not converged do
6: Sample goal G and get initial state S
7: while S is not the terminal state do
8: Select action A according to P with respect to Q
9: Execute A, get reward R, and next state S′

10: Store transition t = (S, A, R, S′, G) into M
11: Sample a set G of additional goals for replay
12: for G′ ∈ G do
13: Compute new reward R′

14: Store transition (S, A, R′, S′, G′) into M
15: end
16: Sample batch B from M following ω
17: Update Q with B
18: S ← S′

19: end
20: end

contact is 10 and firing the main engine is -0.3 points each frame. If the agent
solves the game then the reward is 200 points. This has states s ∈ R

8:

– The x and y positions;
– The x and y velocities;
– The lander angle and angular velocity; and
– The right and left leg ground contact information.

The actions are do nothing, fire left orientation engine, fire right orientation
engine, and fire main engine.

3.4 Machine Specifications

Experiments were done in the Python programming language. Concerning the
machine, the operating system was the Ubuntu 16.04 LTS, the central processing
unit was the Intel R© CoreTM i7-8565U processor working at 1.80 GHz, the graph-
ics card was the NVIDIA R© GeForce R© MX250, and the memory was 16 GB.

3.5 Investigation Outline

There are two main factors that may influence the results greatly – the hyper-
parameters chosen for weight assignment and the size of the buffer memory.
Hyperparameters determine the weight distribution for the transitions most evi-
dently during prioritized experience replay; the buffer size, on the other hand, is
the number of transitions to be included in the memory at a given time. Suitably,
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Table 1. First points of convergence in the initial experiment.

Experience replay First point of convergence

Training Testing

Baseline 4900 5500

Combined 3600 4000

Hindsight 4800 5000

Hindsight-Combined 2000 2000

Hindsight-Prioritized — —

Prioritized 4400 4500

one directs the analysis towards the management of the effects of the selected
hyperparameters and buffer size.

Hyperparameters for prioritized experience replay and hindsight-prioritized
experience replay are first derived from a set of optimal values [18]. An exhaustive
grid search based on the aforementioned environment confirms the sweet spot
being α = 0.60 and β = 0.40.

An initial experiment is then conducted. Every variation of experience replay
was maintained for 10000 episodes each. The buffer size is set at 100000 tran-
sitions. For each training run, one initializes testing mode every 500 episodes.
Convergence is checked for every algorithm.

A decrease in the buffer size is then put to effect afterwards. The memory
was limited to 10000 experiences. Apart from the reason of ensuring consistency,
a smaller buffer size is handled better by some of the chosen replay algorithms
[23]. Earlier suppositions may be confirmed and more comments may be made.

The runs are evaluated with a defined metric – the first point of convergence.
This is simply the number of the episode in training or testing on which the agent
has acquired a reward of greater than or equal to the target score.

4 Results

4.1 The Hybrid Replay Algorithms

For better comparison, the different algorithms are set side by side. The vari-
ability between the random initializations for each replay type is not substantial;
any such measure is omitted from the graph for visual brevity. Figure 1 shows
the average training and testing rewards of all algorithms. Moreover, Table 1
presents the first points of convergence for each experience replay type.

An immediate complication is the nonconvergence of the run with hindsight-
prioritized experience replay. For prioritized experience replay, a large buffer is
not suitable; this may prove to be a problem during endeavors in empirical algo-
rithmics. Furthermore, when both hindsight and prioritized experience replay
are activated, multi-goal learning is initiated and rewards may be noisy. In this
scenario, the temporal-difference error can be a poor estimate [18].



436 R. R. P. Tan et al.

Fig. 1. Training and testing curves with lines emphasizing convergence for the exper-
iment with buffer size N = 100000.

Table 2. Convergences for the implementation with reduced buffer.

Experience replay First point of convergence

Training Testing

Baseline 5100 5500

Combined 4300 4500

Hindsight 4800 5000

Hindsight-Combined 2400 2500

Hindsight-Prioritized — —

Prioritized 4200 4500

Setting that result aside, one sees that the outcome is consistent with exist-
ing study. The runs with published experience replay techniques fared better
than the baseline. Among the standalone algorithms, the run with combined
experience replay did best due to its suitability for a large memory. The run
with prioritized experience replay came in close second. To reiterate, this is
expected because of the buffer size. Hindsight experience replay did relatively
good according to what is written in literature [1].

The most interesting result, albeit up to verification in the next subsection,
is the extraordinary performance of hindsight-combined experience replay algo-
rithm. It reached convergence at least 2000 episodes ahead of the others.

4.2 The Effect of Buffer Size Reduction

The buffer size is decreased from 100000 to 10000 to validate the outcome in the
previous section. The objective of the subsection is to check whether the buffer
size significantly affects learning. The experiment has results shown in Table 2.
Figure 2 comprising the six learning curves presents an outcome consistent with
the previous subsection.
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Fig. 2. Training and testing curves with lines emphasizing convergence for the exper-
iment with buffer size N = 10000.

Runs with hindsight-prioritized experience replay perform as poorly as
before. Regardless the buffer size, the said hybrid algorithm does not yield good
results. The possibility of the large buffer size being the problem is eliminated;
hence for this observation, one may look into prioritization instead. Prioritiza-
tion variants are possible for prioritized experience replay [18]. This means to
say that the assignment of weights based on the temporal-difference error δ may
be altered and variations for prioritization emerge. With inconclusive results
are taking the derivative, considering the norm of the weight-change induced by
replay, introducing asymmetry to prioritize positive errors, basing prioritization
on episodic return, and others.

Another possible alternative could be a measure that would prioritize transi-
tions based on the error if the entire distribution instead of just the expectation.
This is tantamount to moving from considering the absolute value of the sum-
mation of differences to looking at the summation of the absolute value of each
difference. Should such a measure be found, the problem of noise brought about
by the combination of hindsight experience replay and prioritized experience
replay based on temporal-difference error could be solved. Instead of combining
hindsight experience replay with the conventional prioritized experience replay,
the former may be integrated with a modified prioritized experience replay that
prioritizes based on a different measure. A promising measure is the Wasserstein
metric [3], appearing in numerous machine learning papers.

There is improvement with the prioritized experience replay runs. Decreasing
the buffer size has helped the run with prioritized experience replay, enabling it
to be the best standalone method conforming to literature. Combined experience
replay yields the same in accord with its function.

Based on the point of convergence measures throughout the section, the
hybrid algorithm hindsight-combined experience replay shows promise. It has
once again converged almost twice as fast as the other variations. In summary,
the run with hindsight-combined experience replay continues to produce excep-
tional outcomes, proving to be more efficient and effective than the rest.
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4.3 A Change in Environment

As a remark, supplementary experiments were done on some Box2D and classic
control tasks from the OpenAI Gym to ensure greater consistency. In brief, it
is discovered that hindsight-combined experience replay steadily outperforms
the other methods and hindsight-prioritized experience replay fails to converge
across the chosen environments.

5 Conclusion

The paper has shown the integration of an extensive buffer into the Deep Q-
Network algorithm. The subsequent investigation exhibited progressive findings
with respect to both existing methods and proposed techniques. Once consistent
with literature, the exceptional performance of hindsight-combined experience
replay was confirmed.

While the other hybrid algorithm has not been effective, a direction for its
improvement was pointed out. A discussion on prioritization variants contends
that the use of another error measure in lieu of the temporal-difference error
may resolve the resulting noise when hindsight experience replay is combined
with the conventional prioritized experience replay.

For future work, the code base may manage the change in learning algorithm
and testing environment. The Advantage Actor-Critic [15,16] and Deep Deter-
ministic Policy Gradient [10,19] are comfortably implemented through the same
process as foray. This encourages the validation of both hindsight-combined and
hindsight-prioritized experience replay beyond the OpenAI Gym standard.
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Abstract. While distributed training significantly speeds up the train-
ing process of the deep neural network (DNN), the utilization of the
cluster is relatively low due to the time-consuming data synchronizing
between workers. To alleviate this problem, a novel Hierarchical Paral-
lel SGD (HPSGD) strategy is proposed based on the observation that
the data synchronization phase can be paralleled with the local train-
ing phase (i.e., Feed-forward and back-propagation). Furthermore, an
improved model updating method is unitized to remedy the introduced
stale gradients problem, which commits updates to the replica (i.e., a
temporary model that has the same parameters as the global model)
and then merges the average changes to the global model. Extensive
experiments are conducted to demonstrate that the proposed HPSGD
approach substantially boosts the distributed DNN training, reduces the
disturbance of the stale gradients and achieves better accuracy in given
fixed wall-time.

Keywords: Distributed training · Parallel SGD · Hierarchical
computation · Large scale · Optimization

1 Introduction

While the synchronous stochastic gradient descent (SSGD) remarkably reduces
the training time of the large-scale DNN on the complex dataset by allocat-
ing the overall workload to multiple workers, it is additionally required to syn-
chronize local gradients of the workers to keep the convergence of the mod-
els [2]. Hence, the introduced gradient synchronizing phase in the cluster will
consume much time, making the acceleration effect of the distributed training
non-linear and deteriorating the cluster’s scalability. Thus, the communication
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cost caused by the network I/O and transmission of the synchronization gen-
erally becomes the most significant bottleneck of the distributed DNN training
with the increasing number of workers and model parameters [14], especially
when the communication-to-computation ratio is high (e.g., Gate Recurrent
Unit (GRU) [1]).

Flourish developments have been made to overcome this problem, includ-
ing batch-size enlarging [7], periodically synchronizing [16] and data compress-
ing [8,13,19,21]. However, although these methods considerably reduce the com-
munication load, many side effects are brought by them to the distributed DNN
training process as well, respectively be it the generalization ability degrada-
tion [5], the added performance-influential hyper-parameter γ (i.e., configura-
tion of the interval between synchronizations) or the introduced time-consuming
extra phases during training (e.g., sampling, compressing, decompressing, etc.).
Moreover, they are all focused on reducing either the worker-to-worker communi-
cation rounds or the data transfer size, which limits the results they can achieve
since neither the round nor the size can be reduced to 0.

In this paper, we propose Hierarchical Parallel SGD (HPSGD) algorithm that
not only fully overlaps the synchronization phase with the local training phase
with hierarchical computation but also mitigates the gradients staleness prob-
lem and therefore achieves high performances. The desired timeline of HPSGD
is illustrated in Fig. 1, which implies that it also ensures synchronous training
progresses between workers (i.e., workers start to feed-forward at the same time).
The main challenge of all algorithms that separate the local training phase and
synchronization phase, including HPSGD, is the gradients staleness problem,
meaning the model is updated using stale gradients, which is a detriment to the
model convergence. However, Unlike previous literature that tries to counter-
act stale gradients’ effects [22], HPSGD treats these gradients as the features of
unknown global optimization surface and thus uses these features to optimize the
global training function. In this scenario, the local training phase that overlaps
with the synchronization phase helps the global training function collect valu-
able gradients information and optimize. As a result, the HPSGD algorithm fully
utilizes the computational performance, and also maintains model convergence.

The contributions of this paper are summarised as follow:

– We entirely overlap the synchronization phase with the local training phase by
utilizing hierarchical computation, which significantly boosts the distributed
training process.

– We utilize an optimized algorithm based on hierarchical computation to
address the gradients staleness problem, and therefore improving the training
speed, stability, and model accuracy of the distributed DNN training process.

– We demonstrate and verify the reliability and effectiveness of HPSGD by
applying it to sufficient experiments with various approaches to extensive
models. The source code and parameters of all experiments are open-sourced
for reproducibility1.

1 https://github.com/Soptq/Hierarchical Local SGD.

https://github.com/Soptq/Hierarchical_Local_SGD
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Fig. 1. In HPSGD, every worker has two processes. One of them is the local training
process doing continuous model training and the other one is the synchronizing process
doing continuous data exchanging. These two processes run in parallel.

The rest of this paper is organized as follows. The literature review is illus-
trated in Sect. 2, where some background information is introduced. In Sect. 3,
the structure and implementation of the proposed HPSGD algorithm are pre-
sented. Then the experimental design and result analysis are detailedly docu-
mented in Sect. 4. Finally, the conclusions of this paper are drawn in Sect. 5.

2 Literature Review

Synchronous and asynchronous SGD: Synchronous SGD (SSGD) is gener-
ally a distributed training’s model updating strategy that evenly distributes the
workload among multiple workers. Then, it updates the model parameters by
utilizing SGD algorithm with global gradients aggregated by averaging all local
gradients of the different workers. Particularly, the convergence of the model is
unaffected with SSGD since it ensures the synchronized gradients are the lat-
est. SSGD can be employed in both centralized [10,11] and decentralized [12]
architectures and the timeline of decentralized SSGD is drawn in Fig. 2a, where
it can be noticed that before starting synchronizing, there is a waiting phase
where some workers might have already finished local training and wait for the
slower workers to catch up, which leads to a wasted resource. Asynchronous
SGD (ASGD) overcomes this problem by allowing workers to work indepen-
dently. Specifically, fast workers instantly push the calculated local gradients
to the parameter servers once they finished training. The timeline of ASGD is
shown in Fig. 2b. Although ASGD eliminates the waiting time before synchro-
nizing, it can be utilized only in the centralized architecture, indicating that the
cluster is more likely to incur communication overload.

Moreover, as workers are not aware of other workers’ status, the gradients
staleness problem can be easily triggered. For example, workeri uses W0 to
compute local gradients ∇0 and synchronizes ∇0 to parameter servers to start
a global model updating operation. However, the global model is updated to
W1 during its synchronization phase due to the faster synchronization speed of
another worker. Thus workeri eventually updates the global model W1 to W2
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using ∇0 computed by W0, which will considerably impact the convergence of
the model.

(a) (b)

Fig. 2. (a) A worker waits for other workers to finish local training before starting
data exchanging. (b) A worker instantly exchanges data with the parameter server and
then steps into the next epoch.

It is worth noting that in both centralized and decentralized architectures,
synchronizations are processed in the worker’s main thread, implying the next
epoch’s training will be prevented until the current epoch’s synchronization
phase is completed. Consequently, in both SSGD and ASGD, the processing
units of the worker (e.g., CPU, GPU) are idle during the synchronization phase,
which is generally a much bigger waste of the worker’s performance compared to
the waiting phase in SSGD, considering synchronizing usually takes much more
time than waiting in practice.

Local SGD: Local SGD [16] is a well-known algorithm that utilizes periodically
model averaging to reduce the number of synchronization rounds. It is capable
of achieving good performance both theoretically and practically. Specifically, it
introduces a new hyper-parameter γ that configures the frequency of the model
synchronizing. When synchronizing, workers synchronize the model parameters
in place of gradients. However, there are several drawbacks of Local SGD and its
variations [3,18]. 1) Local SGD delivers a relatively slow convergence rate per
epoch, and the introduced hyper-parameter γ is required to be configured man-
ually to achieve the model’s best performance. 2) Although Local SGD reduces
the number of synchronization rounds, the computing performance is still idle
and not been fully utilized during synchronizing. The pseudo-code of the Local
SGD is illustrated in Algorithm1.

3 Methodology

In this section, we present the implementation of the proposed HPSGD
detailedly, which includes: 1) Spawning two process Ps and Pt to Perform data
synchronizing and local training, respectively. 2) Applying a model updating
algorithm to alleviate the gradients staleness problem.
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Algorithm 1. Local SGD
1: Initialization: Cluster size n. Learning rate μ ≥ 0. Max training epoch. Local

gradient ̂∇e. Synchronous period γ;
2: for all i ∈ 1, ..., n do in parallel
3: for e ∈ 1, ..., epoch do
4: Update local model: we+1

i = we
i − μ̂∇e;

5: if e mod γ == 0 then
6: Average model: we+1

i = AllReduce(we+1
i );

7: end if
8: end for
9: end for

3.1 Implementation of Hierarchical Computation

Hierarchical computation enables the synchronization phase to be fully over-
lapped with the local training phase and is achieved by spawning a dedicated
process Ps responsible for data synchronizing. Pt and Ps are located in the same
worker and they share the same rank in the distributed system. These two pro-
cesses connect and communicate via shared memory, and there are typically the
following variables that need to be shared.

– status: The variable that indicates the status of Ps. It has two states:
synchronizing and idling.

– replica: The replica of the latest global model, which will be detailedly dis-
cussed in Sect. 3.2.

– ∇a
i : The i-th worker’s accumulated gradients when workers are performing

local training.
– ̂∇e

i : The local gradients calculated by i-th worker at epoch e.
– counter: The integer that represents how many times has Pt trained locally.

specifically, when status is synchronizing, Pt will firstly make a replica of the
global model if the counter equals 0, then it will accumulated the calculated
gradients to the ∇a

i , updating replica and finally increasing the counter by 1.
On the other hand, Pt will activate Ps to start to synchronize and mark the
status as synchronizing when the status is idling, and Ps will firstly update
the global model using the global gradients which was synchronized in the last
time, and then AllReduceing the ∇a

i , resetting counter to 0, and finally marking
the status as idling. The workflow of the HPSGD algorithm is demonstrated as
Algorithm 2.

In step 14, StartSync is a function to activate Ps to start to synchronize. It
is an operation processed in Ps, which does not block the training process in Pt,
so that Pt can keep training instead of idling. Furthermore, StartSync function
also reduces the gradients staleness effects and will be explained in detail below.
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Algorithm 2. Hierarchical Parallel SGD Algorithm
1: Initialization: Cluster size n. Learning rate μ ≥ 0. Max training epoch;
2: for all i ∈ 0, ..., n − 1 do in parallel
3: for e ∈ 0, ..., epoch − 1 do
4: if state == synchronizing then
5: if counter == 0 then
6: Make replica: ri = clone(we

i );
7: end if
8: Update replica: ri = ri − μ̂∇e

i ;
9: Accumulate gradients: ∇a

i = ∇a
i + ̂∇e

i ;
10: Increase counter: counter = counter + 1;
11: else
12: Accumulate gradients: ∇a

i = ∇a
i + ̂∇e

i

13: Mark status: status = synchronizing;
14: Instruct Ps: StartSync(Ps);
15: end if
16: end for
17: end for

3.2 Gradients Utilization

HPSGD considers stale gradients advanced instead of stale and lets workers
make replicas of the current global model when starting to synchronize. When
performing local training, calculated ̂∇e

i will be applied to workers’ respective
replicas and be added to ∇a

i . Finally, when the synchronization completes, accu-
mulated ∇a

i during the local training will be committed to the previous global
model. The key concept of HPSGD’s model updating algorithm is that with the
increase of the dataset size, the local optimization surface modeled by a worker
with a sub-dataset becomes more similar to the global optimization surface.
Therefore, the local gradients of different workers on its own sub-dataset can
be utilized to help optimize the global training function, which is illustrated in
Fig. 3. The HPSGD’s model updating function can be formulated as:

W e2+1
i = W e1

i − μ

∑n
i=0

∑e2
e=e1

̂∇e
i

n
(1)

Where We denotes the model parameters at epoch e, n refers to the number
of workers in the distributed system and e1, e2 denote the epoch range of local
training. The equation can be further simplified to:

W e1
i − μ

∑n
i=0

∑e2
e=e1

̂∇e
i

n
=

∑n
i=0 W e2

i

n
(2)

Which suggests that HPSGD is generally a Local SGD’s deformation in the
form of gradients, thus the convergence of HPSGD can be proved by [16,20].
Although the formula is essentially the same for HPSGD and Local SGD,
HPSGD focuses on achieving a lock-free and highly paralleled model updat-
ing algorithm with minimal influence from gradients staleness problem while
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Fig. 3. Intersections on the surface represent sample points. The local optimization
surface with massive reduced number of sampling points still retains similar features
as the global optimization surface, including the coordinates of the extremums, the
variations of partial derivatives over an interval, etc.

Local SGD specializes in synchronization rounds reducing. In addition, since
the synchronization phase is overlapped with the local training phase, it is
deemed impossible to synchronize and update model parameters at the same
time, because the model parameters would then be written simultaneously by
Ps and Pt at the next epoch. Thus the simplified model updating function Eq. 2
can not be used in the real scenario and therefore the gradients are synchro-
nized between workers instead of model parameters to update the model with
Eq. 1 as gradients are generally intermediate data in the model update process
and do not need to be persisted. Furthermore, HPSGD eliminates the hyper-
parameter γ. Instead, it continuously performs synchronization in another pro-
cess (i.e, performs synchronizing whenever possible), making the synchronization
phase highly flexible and bringing two benefits to the distributed DNN train-
ing process: 1) Improved robustness. Methods like Local SGD fix γ, assuming
the synchronization time is stable throughout the training process, which is not
practical in real scenarios where exceptions are unpredictable. 2) the maximal
number of synchronizations, which improves the convergence rate and stability
of the distributed DNN training process.

For example, assume the local training time is ttrain seconds and synchro-
nization time is tsync seconds where tsync = k · ttrain. In Local SGD, a com-
plete loop that contains γ local trainings and one data synchronizing takes
((γ + 1) · ttrain + tsync) seconds. For the same period of time, HPSGD can
synchronize for averagely (γ+1

k +1) times and train locally for (γ + k +1) times,
suggesting that in a given fixed time, HPSGD could sample more features in
optimization surfaces and perform data synchronizing more times. Consequently,
HPSGD eliminates the hyper-parameter γ, while making the global model iter-
ate faster, sample more features and achieve better accuracy. The pseudo-code
of these behaviors is presented in Algorithm 3.

As the pseudo-code has shown, Ps AllReduces the gradients and will perform
global model updating with these synchronized gradients at the next synchro-
nization’s beginning. Thus, step 1 is used for ensuring that the synchronized
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Algorithm 3. Ps’s behavior
1: if e − counter > 0 then
2: Update global model: we+1

i = we−counter
i − μ̂∇e−counter

i

3: end if
4: AllReduce gradients: ̂∇e

i = AllReduce(∇a
i )

5: Reset the counter: counter = 0
6: Mark the status: status = idle

gradients exist when performing the first global model updating, since the first
epoch is almost certainly used for local training instead of synchronizing in
practice. Consequently, the global model updating operation is always 1 syn-
chronization delayed compared to the corresponding AllReduce operation due
to the above updating strategy of Ps.

4 Experiments

4.1 Experimental Setup

Hardwares: An Nvidia DGX-Station is employed to set up the environment
of the experiments with 4 Nvidia Tesla V100 32G GPU and Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20 GHz.

Softwares: All experiments are done in an nvidia-docker environment with
CUDA 9.0.176. Pytorch 1.6.02 is utilized to simulate the distributed training
process of the cluster by spawning multiple processes, whereas each stands for
an individual worker.

Methods: SSGD, HPSGD, Local SGD [16], and purely offline training (PSGD,
no communication between workers during training). PSGD will only be pre-
sented in the convergence rate comparison since it is utilized to only give a
reference of fast training speed.

Models: ResNet [4], DenseNet [6], MobileNet [15] and GoogLeNet [17].

Datasets: Cifar-10 [9] dataset, which consists of 60, 000 32 × 32 images in total
with both RGB channels.

Other Settings: Learning rate: 0.01, batch size: 128, γ of Local SGD: 8, epoch
size 100, loss function: cross entropy, optimizer: SGD.

4.2 Experiment Design and Analysis

Convergence and Training Loss: Various models have been trained with
different methods in order to verify the convergence of HPSGD. Accuracy curve
of 4 workers with different models and of different cluster size with the ResNet-
101 model is presented in Figs. 4a and b, respectively.
2 https://pytorch.org.

https://pytorch.org


448 Y. Zhou et al.

(a) (b)

Fig. 4. (a) Accuracy comparisons of various models each with different methods. (b)
The accuracy comparison with 4 workers, 8 workers, 12 workers and 16 workers.

As shown in Fig. 4a, the reached accuracy of HPSGD at epoch 100 is generally
identical to the SSGD’s among all experiments, suggesting HPSGD maintains
the convergence of the model by utilizing local gradients to help global train-
ing function optimize. Moreover, the accuracy curve of HPSGD is significantly
smoother than other methods, especially in GoogLeNet. This phenomenon is
caused by the fact that the global model in HPSGD is updated by gradients
that are repeatedly sampled on the sub-dataset between synchronizations, which
could considerably reduce the instability of mini-batch SGD.

Furthermore, in some cases, the accuracy of HPSGD even outperforms SSGD
(e.g., DenseNet-121). We believe it is mainly due to the HPSGD algorithm’s
characters that it is less likely to be trapped in a local optimum. Notably, as
HPSGD generally lets workers independently compute their solutions and lastly
applies them to the global model, it can be seen as the global model is simulta-
neously optimized toward multiple directions in the global optimization surface.
Thus, the probability of multiple models simultaneously trapping in their local
optimums is significantly reduced compared to a single model updating toward
one direction.

Scale Efficiency: The scale efficiency of different methods with the ResNet-101
is shown in Fig 5a. As the figure demonstrated, both HPSGD and Local SGD
have a much larger scale efficiency than SSGD when the number of workers
is relatively small with significantly reduced network traffic. However, with the
cluster size increase, Local SGD’s scale efficiency is drastically decreased, indicat-
ing the communication jam is triggered, and its synchronization interval γ needs
to be larger. However, enlarging the γ could lead to a slower convergence rate.
Meanwhile, the impacts on HPSGD are considerably smaller than other methods
when the number of workers increases. Specifically, HPSGD obtains the same
performance compared to Local SGD and 133% more performances compared
to SSGD when four workers participated in the training. When there are 16
workers, HPSGD obtains 75% more performance compared to Local SGD and
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(a) (b)

Fig. 5. (a) The scale efficiency of different cluster size with ResNet-101 model. (b) The
total time of different methods training Cifar-10 with ResNet-101.

(a) (b)

Fig. 6. a) Upper: Time breakdown for reaching 80% accuracy. Lower: Time breakdown
for reaching 40% accuracy. b) Total training time used to reach 80% and 40% accuracy
on different models with different methods.

250% more performance compared to SSGD. This is mainly because, theoreti-
cally, in HPSGD, there is no extra synchronizing time at all during distributed
DNN training procedure as it is entirely overlapped with the local training phase.
Thus, the main reason for the decreasing scale efficiency and the performance
loss for HPSGD is the increasing time spent in the waiting phase, which is caused
by different computational performance of workers (gray part in Fig. 1). This will
be left as our future optimization direction.

Convergence Rate: Figure 5b illustrates the cost time for each epoch with
different methods. Here LSGD refers to Local SGD due to tight space. PSGD
serves as the lower bound of the cost time of the distributed DNN training. The
time difference between HPSGD and PSGD is mainly due to the impact of lim-
ited CPU time and workers’ performance difference. The breakdown of the total
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training time is presented in Fig. 6a. It can be shown that the computation time
of SSGD and HPSGD is roughly the same when reaching either 80% accuracy
or 40% accuracy, suggesting that while HPSGD shares the same converge rate
as SSGD, it drastically reduce the non-computation-related time and thereby
boosting the distributed training process. On the other hand, although the total
time of Local SGD is shorter than SSGD when reaching either 80% accuracy
or 40% accuracy, the computation time is relatively longer, indicating that the
converge rate of Local SGD is lower than the SSGD and HPSGD. This phe-
nomenon matches and verifies the explanation in Sect. 3.2. To avoid chance, we
performed more experiments on total training time (wall time) of four different
models with the same configuration, which is illustrated in Fig. 6b

5 Conclusions and Future Work

In this paper, we propose a novel Hierarchical Parallel SGD (HPSGD) algo-
rithm that firstly overlaps the time-consuming synchronization phase with the
local training phase by deploying hierarchical computation across two processes,
which significantly boosts the distributed training. Then it alleviates the stale
gradients problem by utilizing the sub-gradients calculated by different workers
to help global model update. Detailedly, workers perform training on a replica of
the global model independently, recording local gradients and lastly committing
these gradients to the global model. In such circumstances, the sub-gradients
of different workers are not stale but advanced and can be taken advantage
of. Extensive experiments and comparisons turn out that the performance of
HPSGD surpasses SSGD and Local SGD, which actively verifies its effectiveness
and high efficiency. However, although HPSGD drastically drops the synchro-
nization time of the distributed training process, the waiting phase remains,
which is caused by workers’ imbalanced performances. In future work, we would
like to investigate methods capable of reducing such waiting costs and thereby
further improving the scalability of the cluster in distributed training.
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Abstract. Value function approximation has achieved notable success
in reinforcement learning. Many popular algorithms (e.g. Deep Q Net-
work) maintain a point estimation of the parameters in the value network
or policy network. However, the frequentist perspective is prone to over-
fitting and lacks uncertainty representation. In this paper, we perform
Bayesian analysis on the value function. Following the principle “opti-
mism in the face of uncertainty”, we conduct a posterior sampling of
the value or policy network which implicitly captures the posterior dis-
tribution via a Bayesian hypernetwork. Experimental results show that
the implicit posterior distribution for modeling the structural dependen-
cies between parameters can better balance exploration and exploitation,
and it is competitive to state-of-the-art methods on MuJoCo continuous
benchmark.

Keywords: Reinforcement learning · Bayesian optimization · Implicit
distribution

1 Introduction

Reinforcement learning can obtain flexible and powerful behaviors through trial
and error just by simple rewards guidance. Recently, deep reinforcement learn-
ing with parameterized neural networks has made remarkable progress across
many domains. Without experienced human experts providing training samples,
the agents can play video games from raw pixels [15], dexterously manipulate
robotics [13], and learn strategies to outperform humans by self-play at board
games [21]. Armed with the neural networks, the agents can confront higher
dimensional state spaces and tackle more complex action spaces. However, most
of the achievements made by deep reinforcement learning are under a frequen-
tist view. The value or policy networks generally keep a point estimate about
the cumulative expected reward or the underlying policy, where parameters are
treated as unknown constants. As more observations are collected, parameters
are prone to convergent to a mode where agents present a sub-optimal behavior.
Simultaneously the deterministic output is easy to overfitting and the agent is
under-explored.
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Over the past decades, artificial intelligence plays a central role in assisting
human beings for decision making. For building the safety AI and keeping driv-
ing force for exploration, maintaining uncertainty is indispensable in real life.
For instance, in healthcare, the computer-aided diagnosis system should keep a
certain degree of uncertainty estimate in his diagnosis to prevent over-confident
judgment and misdiagnosis of some rare diseases. A principled approach to the
aforementioned problems is the probabilistic motivated method. The uncertainty
in reinforcement learning primarily [16] originates from two parts: parameter
uncertainty and return uncertainty. The parameter uncertainty consists of exert-
ing perturbations into the parameter space [20] or explicitly obtains a posterior
distribution of the model parameters through theoretical Bayesian inference. The
return uncertainty does not account for parameter uncertainty but formulates
a probability distribution over the model outputs, learning a distribution over
the action value function, not just the mean [1]. Treating parameters as ran-
dom variables to explore in reinforcement learning is still an open question. A
fully-factorized posterior approximation [3] was employed on contextual Bandits
problems. Lipton et al. [14] applied a parameter-independent Bayes Q learning
approach to dialogue systems. Yet neural networks exhibit strong correlations
between parameters. The dependencies between parameters of the value network
and policy network are crucial and complex and seem to have an impact on the
final performance and learning speed.

In this paper, we are not limited to account for a simple form of the posterior
distribution e.g. a unimodal posterior. We build an implicit posterior sampling
method for the Q value network, which focuses on the correlations between
parameters. The implicit posterior distribution is approximated by a Bayesian
hypernetwork and can better balance exploration and exploitation. We evaluate
our approach against state-of-the-art methods on a series of continuous control
tasks and the results show that the expressive posterior distribution for the Q
value network is effective for challenging tasks.

2 Background

2.1 Markov Decision Process

Classical reinforcement learning is often modeled as a Markov Decision Pro-
cess (MDP), which is described as a tuple (S,A,P,R). S is the state space,
A is the action space, P is the environment transition probability, and R is
the reward function. For a robot locomotion task, the state s ∈ S contains the
joint angles and velocities of the robot, and the action a ∈ A is the correspond-
ing control torques applied to the robot. A policy π(a|s) is a distribution over
actions, which is a mapping from states to actions. An episode begins at an
initial state s0. At each time step, the agent selects an action at ∼ π(a|s) and
acts the action. Then the environment transitions to a new state st+1 accord-
ing to the dynamics p(st+1|st, at) and emits a reward rt. Thus a trajectory
τ : (s0, a0, r0, s1, ..., st, at, rt) is generated. The cumulative reward function is
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often decomposed as G(τ) =
∑T

t=0 r(st, at). The goal is to find the optimal
policy π� which maximizes the expected return. A core concept is the value
function, denoted as V π(s) = E [

∑∞
t=0 γtr (st, at) |s0 = s, π], which measures the

expected return from a state s following the policy π. Similarly, we can define
action value function, Qπ(s, a) = E [

∑∞
t=0 γtr (st, at) |s, a].

2.2 Deep Q Network

It is intractable for tabular reinforcement learning methods to solve continuous
tasks or large-scale MDP. It is necessary to use function approximation to tackle
high dimensional problems. Deep Q Network (DQN) [15] incorporates a neural
network to approximate action value Q(s, a), minimizing the Bellman residual
in Eq. (1). θ represents the parameters of the neural network and DQN seeks
to find a point estimate of the optimal action value function, Q(s, a). θ− is the
parameters of the target network and periodically copies from θ. D represents
the experience replay that stores the transition samples, e = (st, at, rt, st+1).
Samples drawn from the replay buffer are used to minimize Bellman residual.
Innovatively, experience replay breaks the correlation of the sequential samples
and the target network offers a stable supervision signal. The conventional explo-
ration method in DQN is ε-greedy where actions with the greatest value estimate
is chosen most of the time.

L(θ) = ED

[
(y − Q (s, a; θ))2

]
, (1)

where y = r + γ maxa′ Q (s′, a′; θ−).

3 Methodology

3.1 Posterior Reinforcement Learning

Some promising actions with poorly point estimates are difficult to be selected
in interaction with the environment. This inevitably brings difficulties to explo-
ration, and more samples and interaction times are needed to obtain a relatively
accurate estimate of Q(s, a) value. In Vanilla DQN [15], with a naive ε-greedy
strategy, an underestimated action may be executed after thousands of steps. In
fact, DQN obtains a human-like policy after millions of frames interacting with
video games. This problem can be mitigated by considering the uncertainty of
the value function estimate [18]. The variance brought by the uncertainty will
naturally trigger exploration and has a potential to improve policy (Fig. 1).

Posterior sampling methods are major ingredients for modeling uncertainty.
In this section, we conduct a fully Bayesian analysis about the Q(s, a) value,
considering a probabilistic representation. Bayesian reinforcement learning can
better incorporate prior knowledge and provide uncertainty for action selection.
Our goal is to fit the cumulative return when an agent takes an action at the
state s, and learn the conditional probability P (Q(s, a)|D;W) where W is the
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value netpolicy net

Fig. 1. Visualization of the architecture of implicit inference sampling. A sample z
from the latent space is as input to the hypernetwork, and then the hypernetwork
transforms it into the parameters of the policy network and value network. Finally the
policy network and value network use the parameters generated by the hypernet to
predict the action and action value function, Q(s, a).

parameters of the model. Hence, instead of parameterizing the Q function under
a specific parameter, we obtain a probabilistic expression of the Q function. We
marginalize the Q function over the entire posterior distribution in Eq. (2).

p(Q(s, a)|D) =
∫

P (Q(s, a)|w)P (w|D)dw (2)

The estimation is an ensemble averaging over all model parameters rather
than a single point estimation. With the Bayes’ rule, we can compute the exact
posterior through p(w|D) = p(w)p(D|w)/p(D), where p(w) is the prior over
the model, p(D) is the marginal likelihood. It suffers from a high dimensional
integral of the denominator. As more data is collected, the beliefs over model
parameters are also updated. Due to the expensive computation cost of integral,
performing an exact inference is intractable. A common alternative is to use
approximate inference methods such as Markov chain Monte Carlo (MCMC) or
variational inference. However, MCMC still takes a long time to converge to the
posterior distribution, and samples are heavily correlated [2]. In this paper, we
adopt variational inference to optimize the approximate posterior distribution
of the value network.

3.2 Implicit Inference for Model Parameter

In contrast with minimizing the Bellman residual, we optimize the evidence lower
bound (ELBO), also referenced as variational free energy in Eq. (3). q(w|θ) is
the approximate posterior and P (w|D) is the true posterior of the model. The
optimization objective includes two parts: the first term is to regularize the
approximate posterior distribution of the weight not too far from the prior with
KL divergence, the second term is a reconstruction error term which increases
the log-likelihood of the optimal Q function. Moreover, a better approximate
posterior expression can make the ELBO tighter, and improve the performance
of the model.
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θ∗ = arg min
θ

KL(q(w|θ)‖P (w|D))

= arg min
θ

∫

q(w | θ) log
q(w | θ)

P (w)P (Q(s, a) | D;w)
dw

= arg min
θ

KL(q(w|θ)‖p(w)) − Ew∼q(w|θ)[log P (Q(s, a)|w)]

(3)

Inspired by recent advances in Bayesian inference [12,19], we utilize Bayesian
hypernetworks to capture the posterior distributions of the value network and
policy network. The hypernetwork [9] is a neural network that generates the
model parameters of other networks. Similar to the generator in generative adver-
sarial networks (GANs) [8], the hypernetwork implicitly approximates the poste-
rior distribution via variational inference. Let w = Gθ(z), where w is the sample
of parameters of the policy network or value network, z ∼ Pz which is sampled
from a latent space, and Gθ is the hypernet which itself expresses the distribu-
tion. Compared with the previous Bayesian reinforcement learning framework
where the candidate posterior distribution is often limited to a specific paramet-
ric family of distributions, we utilize the hypernetwork to implicitly learn the
correlations between the parameters without a hand-crafted assumption.

− log (Q(s, a) | w) =
log σ2

2
+

(y − Q(s, a | w))2

2σ2
+ constant (4)

The parameters of the Q function are usually optimized by minimizing the mean
square Bellman error. In this paper, we minimize the negative log-likelihood of
the Q function modeled as a Gaussian distribution in Eq. (4). σ is a hyperpa-
rameter to tune and y = r+γQ (s′, a′;w−) which is a periodically fixed network.

Since we are using an implicit distribution approximated by neural networks,
an exact probability density is not available. It’s not tractable to compute the
analytical form of KL divergence between the posterior distribution and the prior
distribution. We employ a sample-based estimation in Eq. (5) to approximate KL
divergence [11] where m is the batch size of samples, d is the dimension of the
policy network or value network. For prior distribution, samples are sampled
from N(0, σI) distribution.

KL(q(w|θ)‖p(w)) =
d

n

n∑

i=1

log
minj

∥
∥wi

q − wj
p

∥
∥

minj �=i

∥
∥
∥wi

q − wj
q

∥
∥
∥

+ log
m

n − 1
(5)

Fig. 2. Visualization after 6M training steps. The agent learns a human-like running
posture.
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(c) HalfCheetah-v2

(a) Ant-v2 (b) Hopper-v2

(d) Walker2d-v2

Fig. 3. Plots show the performance curves on the continuous control tasks. The solid
line represents the mean and the shaded region corresponds to the variance of the
returns.

4 Experiments

In this section, we evaluate our implicit posterior sampling approach against the
state-of-the-art reinforcement learning algorithms on continuous control bench-
marks from OpenAI Gym [4] simulated in MuJoCo physical simulator [22]. We
test the algorithm on HalfCheetah-v2 (a cheetah like robot), Hopper-v2 (a single
legged robot), Walker2d-v2 (a bipedal robot), Ant-v2 (a four legged robot), and
Humanoid-v2 (a humanoid robot) (Fig. 2).

4.1 Task Descriptions

Locomotion Tasks. Training bipedal robotics to learn to walk has always been
a persistently hot topic under automatic control and reinforcement learning [5,6].
The well-trained robots can be capable to provide various reliable assistance
across many circumstances such as disaster relief. In OpenAI Gym continuous
tasks, the agents learn to manipulate locomotion from raw sensory inputs. In each
episode, the agents are allowed to interact with the environment up to 1000 steps.



458 S. Wang and B. Li

Tasks encourage agents to go forward as far as possible. A sufficient exploration is
required to avoid falling into a local optimum. Among all the legged robotics, the
humanoid robot is the most challenging due to its complexity. The observation
state (including joint coordinates, velocities, angles) is a 376-dimensional vector,
and the action state is a 17-dimensional vector. Discovering a good strategy in
such a large space is a very challenging task.

Baselines. To make a fair and comprehensive comparison, we compare our
method with the current state-of-the-art methods, including deep deterministic
policy gradient (DDPG) [13], a continuous variant of DQN; twin delayed deep
deterministic policy gradient algorithm (TD3) [7], an algorithm that tackles the
over-estimation of the Q function; soft actor critic (SAC) [10], an algorithm that
not only maximizes the cumulative reward but also optimizes the entropy of the
policy; proximal policy optimization (PPO), an effective on-policy method that
monotonically increases the performance of the policy (Fig. 4).

Fig. 4. The left is a humanoid agent without training. The agent does not know how
to control its limbs and lies on the ground to move randomly. The right is the learning
curves of the humanoid agent. After 3M training steps, under our method, the agent
learned to stand and gradually started to run.

Implementation. Our algorithm shares the same architecture and hyperpa-
rameter configuration across all the experiments. For baselines, we use the hyper-
parameters recommended in their papers. The discounted factor γ is 0.99. Our
algorithm builds on an off-policy actor critic framework [13]. The hypernet,
value, and policy networks are both parameterized by feedforward neural net-
works. The hypernet has 2 hidden layers with 32 and 16 units. The Q value
network has one hidden layer with 256 units. We use a double Q function trick
to provide an accurate Q target estimation. For fitting the Q value, we utilize
weighted squared Huber loss [17]. We train the BayesHypernet instead of the
Q value or policy network and it is optimized by Adam with a learning rate of
3e−4. In the first 10000 time steps, we use a purely random policy to explore
the environment.
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4.2 Results and Analysis

We present the learning curves in Fig. 3. Each experiment is executed on 4
instances of the environment with different random seeds. The x-axis shows
the interaction steps with the environment and the y-axis shows the average
cumulative rewards during the training steps. The results illustrate our method
is better than DDPG on all tasks and is competitive to state-of-art methods,
in terms of convergent performance and learning speed. Our method is superior
in the tasks of Ant and Walker2d and matches the performance in Hopper and
HalfCheetah. In the humanoid task, DDPG fails to get a good policy. When the
agent is hovering at the origin or marching forward slowly, the uncertain esti-
mate brought by Bayesian inference will help Q function improve exploration.
The implicit posterior can better capture the stochasticity of the environment
and use the structure information of parameters to enhance exploration. At the
same time, the uncertainty of each state is also updated and it provides a good
trade-off between exploration and exploitation.

5 Conclusion

In this work, we propose an implicit posterior sampling method for reinforcement
learning. Our method uses a Bayesian hypernetwork to inference the posterior
distribution of the value network and policy network, which learns an expressive
distribution. The experimental results confirm that our approach outperforms
previous algorithms on the continuous benchmark, especially for solving very
complex tasks, such as human gait tasks. More Bayesian inference methods can
be incorporated into reinforcement learning and using the model uncertainty to
explore is a promising direction for future research.
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Abstract. Learning-based methods have shown their strong competi-
tiveness in estimating voxel for multi-view stereo. However, due to the
modality gap between 2D and 3D space, the quality of the estimated 3D
object is limited by the reconstruction of some detailed structures. To
tackle this problem, we regard the 3D voxel reconstruction as a seman-
tic segmentation task where skip connections between the 2D encoder
and 2D decoder are usually utilized to incorporate significant contex-
tual, aiming to segment more details. Thus, we propose an approach to
improve the multi-view 3D voxel reconstruction via contextual 2D-3D
skip connection. In our method, a 2D-3D skip connection branch embed-
ded with feature visual hull is designed and plugged into the standard
2D encoder-3D decoder reconstruction architecture, which enables 2D
contextual information to be effectively transmitted into the 3D domain.
Then, an attention-guided module is designed to adaptively combine the
transmitted features with the original 3D decoded features. Finally, a
3D RNN layer is built at the end of network to aggregate individual 3D
features from different views. Extensive results have shown that the con-
textual information from our 2D-3D skip connections can significantly
improve the reconstruction performance, especially for the detailed struc-
tures recovering.

Keywords: Deep learning · 3D reconstruction · Skip connection

1 Introduction

Multi-view stereo (MVS) aims to estimate a geometric representation from a set
of images with known camera parameters. It is a fundamental issue in computer
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2D encoder 3D decoder

2D-3D skip connection

2D-2D skip connection

2D encoder 2D decoder

unprojection

(a)

(b)

Fig. 1. Motivation. View-based 3D voxel reconstruction can be regarded as a binary
segmentation task (foreground/background). Inspired by that semantic segmentation
usually utilizes contextual information via feature skip connections in (a), we intro-
duce a 2D-3D skip connection, which embeds with feature unprojection operation, to
improve 3D reconstruction quality with significant 2D contextual information in (b).

vision and graphics, which has a wide range of applications in robotics, virtual
reality, 3D shape recognition, etc. Recently, convolution neural network has been
extended in estimating voxel for multi-view stereo reconstruction and get great
success compared with the traditional methods. Most deep-learning-based multi-
view reconstruction methods use the standard encoder-decoder structure to infer
3D structure [5,9,15]. However the standard encoder-decoder structure cannot
fully utilize the shape information in 2D images and the gap between 2D and
3D space is difficult to be alleviated, which limits the reconstruction of shape
details.

To resolve the problems mentioned above, we treat the general 3D voxel
reconstruction as a segmentation task, segmenting foreground and background.
Reviewing on 2D segmentation field [2] in Fig. 1(a), the contextual information
of multi-level features is utilized to enhance the final segmentation because of the
clear geometric correspondence between 2D encoded features and 2D decoded
features. Similarly, for 3D reconstruction, it is believed that the contextual infor-
mation of 2D encoder can provide significant complementary information for the
3D decoder to recover more subtle structures. However, due to the model differ-
ence between 2D encoded features and 3D decoded representations, there is an
ill-conditioned geometric relationship between 2D-3D skip connections.

Motivated by recent visual hull based 3D reconstruction methods [8,9,15]
providing an explicit photo-consistence between rendered views and 3D shapes,
we employ the feature visual hull to achieve the skip connection between 2D
features and 3D features, which is computationally efficient and differentiable.
Figure 1(b) is a semantic description of our method. Specifically, given multiple
views and their corresponding camera poses, we firstly extract certain middle
image features from the 2D encoder which contains abundant part information,
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and such 2D features are unprojected into rough 3D features according to camera
poses. Then, a set of CNNs are adopted to further refine these rough 3D features
and combine them with the corresponding 3D decoded representations using an
attention combination module. Finally, the 3D features from different views are
fused by a 3D RNN structure and refined to be a final 3D volume. During
2D-3D skip connection, unprojection operation can offer a photo-consistence
correlation between 2D space and 3D world, effectively transmitting abundant
contextual information to the 3D domain. Traditional multi-view stereopsis is
able to recover both objects and scenes, while our network is only suitable for
objects reconstruction and the scenes reconstruction task is left for future work.
Compared to the existing visual hull based method following a cascaded pipeline,
our method aggregates the learned interpretation from image to shape based on
network, and projective geometry based on the visual hull for 3D reconstruction
in a unified end-to-end system.

In summary, our main contributions are as follows:

– We propose a novel approach leveraging significant contextual information of
2D images to improve the 3D voxel reconstruction for multi-view stereo.

– A flexible 2D-3D skip connection with unprojection and attention architec-
tures is presented to effectively transmit multi-scale 2D encoded features to
the corresponding 3D decoded representations with a feature visual hull.

– Extensive experiments prove the effectiveness of our 2D-3D skip connections
and demonstrate that utilizing abundant contextual information can signif-
icantly improve the reconstruction results, especially for detailed structures
recovering.

2 Related Work

Our method is related to two fields including learning-based 3D reconstruction
and visual hull. Next we discuss representative work in these areas.

Learning-Based 3D Reconstruction. Due to the impressive achievements made
by deep learning in image understanding [7,16] and 3D vision [11,12], deep learn-
ing methods have been widely introduced in the view-based 3D reconstruction
task. For example, [6] proposed TL-embedding network to build a predictive
and generative shape representation for 3D reconstruction. [19] constructed an
encoder-decoder network with a projection loss that minimized the difference
between the predicted silhouette and groundtruth silhouette of views. Further-
more, [14] incorporated a differentiable ray consistency term in the reconstruc-
tion scheme, leveraging different types of observations for learning 3D predic-
tion such as depth, color images and semantics. [13] firstly applied pose predic-
tion task to single-view reconstruction and unknown-pose natural images with
annotated masks can be used for training. [10] proposed a 3D reconstruction
framework based on a new 3D geometry representation which directly learn the
continuous space occupancy function.
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Fig. 2. An overview of the proposed method, which reconstructs 3D volume using one
or more views and camera poses. The 2D-3D skip connection can transfer abundant
2D encoded features to 3D decoded representation by feature unprojection operation
and Attention Combination Module (ACM).

In the multi-view setting, [5] presented a unified recurrent architecture for
single-view and multi-view reconstruction, learning a mapping from observations
of the object to underlying 3D shapes via RNN fashion. [3] efficiency fused 3D
geometry priors and 2D texture information into a feature-augmented point
cloud for multi-view reconstruction. [18] proposed a context-aware structure to
adaptively fuse 3D volumes from different views and a refiner to recover more
details.

Visual hull for 3D Reconstruction. Visual hull is able to provide the signifi-
cant regional correspondence between 3D shape structures and projected images
using pose information, which is beneficial to recover more 3D details. [9] use
the projective geometry of visual hull to differentially map 2D features to 3D
feature grids. SurfaceNet [8] learned photo-consistency and geometric context
for dense 3D reconstruction via color visual hull. [15] conducted a ‘soft’ visual-
hull embedding strategy for single-view 3D estimation. Compared to the above
stage-wise (cascaded) visual hull based 3D reconstruction methods, our method
is constructed in a simple and elegant one-stage training and testing manner.

3 Method

Our goal in this paper is to improve multi-view stereo reconstruction via making
use of the contextual information of 2D images. To this end, we propose an end-
to-end unified 3D reconstruction system to recover 3D shape from one or more
images and their corresponding camera poses. As shown in Fig. 2, the proposed
method consists of three parts, the Main Net which is a standard 2D encoder-
3D decoder with a 3D GRU layer, the 2D-3D Skip Connection embedding with
feature visual hull to pass detailed contextual information of multiple images
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Fig. 3. The architectures of the key components in our method. We introduce 2D-3D
skip connection (b) to transmit contextual 2D information to 3D space and combine
(b) with (a) using an attention combination module (c).

into 3D middle representations, and the Attention Combination Module which
aims to select complementary information from skip connections to enhance the
3D middle features from Main Net.

3.1 Main Net

The Main Net is composed of a 2D encoder and a 3D decoder. The architecture of
Main Net is adapted from 3D-R2N2 [5]. The main difference is that we replace the
middle LSTM layer with a fully connected layer and add a well-designed 3D GRU
layer adapted from [9] to the end of 3D decoder for multi-view stereo. Figure 3(a)
shows the detailed architecture of the Main Net. First, the 2D encoder encodes
the input images {I}ni=1 to the latent shape vectors and the decoder decodes
them to the 3D feature grids {Gm

i }ni=1. In this procedure, the multi-resolution
2D middle features {Mi}ni=1 and multi-level 3D middle features {Gm

i }ni=1 are
extracted for the parallel 2D-3D Skip Connection. Then, the 3D GRU layer
fuses the multiple 3D grids {Gi}ni=1 into a single grid Gf . The fused grid Gf is
further refined by a series of CNNs to generate the final voxel prediction V.

3.2 2D-3D Skip Connection

The goal of 2D-3D Skip Connection is to pass the detailed contextual infor-
mation of the multiple 2D images into the 3D decoder space with the help of
authentic geometric correlation. Figure 3(b) shows the detailed architecture of
the 2D-3D Skip Connection. Given 2D middle features {Mi}ni=1 and 3D mid-
dle grid features {Gm

i }ni=1, {Mi}ni=1 firstly feed into convolutional layers and
the learned features {Fi}ni=1 are unprojected to 3D world frame with a feature
visual hull method [9], which output rough feature visual hull {Gp

i }ni=1. The
rough unprojected 3D features {Gp

i }ni=1 are further refined to be fine-grained 3D
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features {G′
i}ni=1 with detailed contextual information. Finally, the 3D middle

grid features {Gm
i }ni=1 are combined with {G′

i}ni=1 utilizing attention mechanism
for the following decoder part of Main Net.

2D Feature Unprojection. As shown in Fig. 2, the target of the feature unpro-
jection operation [9] is to transfer 2D features into 3D voxel grid representations
via the perspective camera model. Considering a perspective camera model, a
3D point (X,Y,Z) is projected onto the image plane and the corresponding 2D
pixel location (u, v) is computed as

Z[u, v, 1]T = K[R|T ] · [X,Y,Z, 1]T (1)

where K =

⎡
⎣

f 0 u0

0 f v0
0 0 1

⎤
⎦ is the camera intrinsic matrix including the focal length

f and principle point (u0, v0). [R|T ] is an extrinsic camera matrix. We assume
that the camera intrinsic matrix and extrinsic camera matrix are known in our
method.

Given a 2D middle feature M(i), we replicate representation M(i)(x) of each
pixel x along the viewing ray into the corresponding location in the 3D voxel
grid to construct a rough feature visual hull G0. Specifically, we assign M(i)(x) =
G0(X), where we project each 3D location X onto the image feature plane of M(i)

by perspective transformation Eq. 1 with the scale ratio of feature and original
input, to obtain the corresponding pixel location x of feature M(i). The feature
unprojection process is differentiable and the gradients could backpropagate to
2D features along the skip connection branch. Similar to [9], we employ the
bilinear sampling to sample from discrete 2D features to make the obtained
feature visual hull G0 smooth and gradient stable.

Multi-scale Context Enhancement. In order to recover the full 3D shape, espe-
cially for some detailed structures, the network requires more contextual infor-
mation at different scales. We use three different scales {142, 282, 562} of 2D
middle features to skip connect to three different scales {83, 163, 323} of 3D
middle features in our work. Since the unprojected features are very rough, if
all unprojected features are connected to the final 323 3D voxel representation,
such global 3D voxel representation could not effectively capture multi-scale
contextual information.

3.3 Attention Combination Module

The 3D features from skip connection Gp are unprojected along the viewing
ray from 2D space, while the 3D grids from Main Net Gm are produced by a
latent vector using reshape operation. Considering that Gp and Gm have different
spatial distribution, directly add or concatenate them may negatively affect the
robustness of information.

Inspired by the reverse attention mechanism [4], we propose an Attention
Combination Module(ACM) to select the complementary spatial information
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from Gp to enhance Gm in the combination stage. As shown in Fig. 3 (c), We
first convert Gm to G′

m using a 3 × 3 convolution with a sigmoid function and
get the attention scores A. It is computed as:

A = 1 − sigmoid(G′
m) (2)

Then, the attention features Ga is generated as:

Ga = dot(A,Gp) (3)

Under the attention step, the unprojected features Ga and middle features Gm are
complementary. Futhermore, we add Ga and Gm and leverage a 3×3 convolution
to generate the final fused 3D features Gf .

3.4 Network Training

We employ a one-stage training manner to train the proposed network. The Main
Net and 2D-3D skip connections are jointly trained and optimized. With the help
of contextual information, the whole network could converge more quickly and
stable. Compared to other step-wise visual hull based method [8,15] where a 2D
feature extractor is firstly trained and then a global shape visual hull is refined
by 3D encoder-decoder network, our method is easy to implement and uses fewer
parameters.

Objective Loss Function. Since the voxel grid representation is a binary matrix,
we adopt the binary cross-entropy loss to supervise the proposed network. Let
the predicted output at each voxel n be Bernoulli distributions [1 − p(n), p(n)]
and the corresponding ground truth label be y(n) ∈ {0, 1}. The objective loss is
defined as

L =
1
N

∑
n

y(n) · logp(n) + (1 − y(n)) · log(1 − p(n)) (4)

where N is the number of the voxel cells.

4 Experiments

In this section, we evaluate the capability of our method to reconstruct a full
3D shape with extensive experiments using the large-scale 3D shape dataset.

4.1 Dataset and Implementation Details

Dataset. We use the ShapeNet dataset [1] to generate projected images and
camera poses. The ShapeNet dataset is a large 3D CAD models repository,
which consists of 44k shapes and 13 major categories. We use the ShapeNet
object images with clean background and camera poses released by [9] to train
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Fig. 4. Reconstruction comparison with the V-LSM-res on the test set of ShapeNet
objects. The left two columns show the results with clean background and the right
column shows the results with noisy background. It is shown that our method can
recognize more details than V-LSM-res in each view.

Table 1. Multi-view reconstruction performance on ShapeNet dataset compared by
Intersection-over-Union (IoU). Note that V-LSM-res is trained with a residual structure
which is adopted in our method. Ours w/bg indicates that the proposed network was
trained and tested on the images with noisy background from natural image crops.

Views 1 2 3 4

3D-R2N2 0.560 0.603 0.617 0.625

Pix2Vox 0.661 0.686 0.693 0.697

V-LSM 0.615 0.721 0.762 0.782

V-LSM-res 0.640 0.722 0.755 0.773

Ours 0.714 0.790 0.823 0.841

Ours w/bg 0.708 0.782 0.810 0.830

and test the proposed method. During the rendering process, the objects are
resized to place in the unit cube centered at the origin. Each model has 20
images sampled from a viewing sphere with θaz ∈ [0, 360) and θel ∈ [−20, 30]
degrees and lighting variations. Following [9], we use 70% 3D models for training,
10% for validating and the remaining 20% for testing. In order to evaluate the
reconstruction quality, we binarize the probability with threshold 0.4 and use
the voxel Intersection-over-Union (IoU) as the metric.

Implementation Details. Our network is trained to reconstruct a full 3D voxel
grid using multi-view RGB images and their corresponding camera poses. The
rendered image size is 224 × 224 × 3 and the output 3D voxel is 32 × 32 × 32.
During the training phase, the rendered images of the object and their corre-



Improving Multi-view Stereo with Contextual 2D-3D Skip Connection 469

sponding camera pose are fed to the network as input. The whole network is
end-to-end one-stage training and the Main Net does not need pre-training.

In our experiment, we employ batch size of 3 and 4 views per object to train
the proposed method for 70 epochs using ADAM solver. The initial learning rate
is set to 1e−4 and is dropped by 10 at 40 epochs and 60 epochs.

4.2 Results on ShapeNet Objects Reconstruction

In this section, we evaluate our method on the ShapeNet testing set consisted
of 8770 models in 13 major categories.

Baseline Setup. Our method is compared to the following baselines - V-LSM [9],
a proposed system which uses the feature visual hull to perform multi-view
reconstruction, V-LSM-res which is an extension of V-LSM where we modify
the original V-LSM to a residual structure adopted in our method for a fair
comparison. In addition, we compare our method with 3D-R2N2 and Pix2Vox
which perform multi-view reconstruction but do not use camera poses.

Table 2. The reconstruction performance (per category reconstruction IoU) of 4 views
on the test set of the ShapeNet dataset.

Category V-LSM V-LSM-res Main Net Ours

airplane 0.777 0.766 0.704 0.847

bench 0.723 0.709 0.649 0.811

cabinet 0.795 0.792 0.774 0.857

car 0.849 0.844 0.832 0.877

chair 0.757 0.751 0.670 0.834

display 0.749 0.750 0.638 0.815

lamp 0.698 0.686 0.532 0.761

speaker 0.773 0.775 0.687 0.797

rifle 0.832 0.821 0.681 0.888

sofa 0.810 0.809 0.752 0.861

table 0.745 0.739 0.684 0.833

telephone 0.859 0.851 0.830 0.899

watercraft 0.737 0.736 0.645 0.798

mean 0.777 0.771 0.698 0.837

Quantitative Results. Table 1 shows the mean voxel IoU (across 13 categories)
for sequences of {1, 2, 3, 4} views. The IoU increases with the number of views in
all methods, while the jump is less for the methods without camera poses such
as 3D-R2N2, Pix2Vox. Our method achieves the best performance in all number
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of views and get a boost of 5.9% IoU in 4 views compared with V-LSM. The
performance of V-LSM is limited for the rough geometric correlation of unpro-
jection operation, while our method could combine the learned interpretation
from 2D image to 3D grid based on Main Net and projective geometry based on
skip connection branches to enhance the final 3D output.

We also train our method using images with random crops of natural images
from Pascal 3D+ [17] and the bottom row in Table 1 shows that the performance
of our method with noisy background is only slightly decreased indicating the
robustness of our method. Table 2 shows the performance of 4-view reconstruc-
tion in each category. Our method obtains top performance in each category and
increases mean-category IoU over V-LSM by 6.0%.

Qualitative Results. Figure 4 presents some reconstruction results of our method
and V-LSM-res on ShapeNet testing set. It is observed that reconstruction qual-
ity improves as the number of views increases and our method recovers more
detailed structures. A typical example is the cabinet on the bottom left. The cab-
inet partitions are missed by V-LSM-res, while our method reliably recognizes
such local structure in 3D space with the help of abundant contextual infor-
mation. Moreover, the reconstruction performance is also robust to the noisy
background. For example, the V-LSM-res has failed to recover the skeleton of
lamp on the bottom right in 4 views, while our method can reconstruct this
structure using only 3 views.

Table 3. The reconstruction performance (mean voxel IoU) in different units. Note
that SC represents the proposed 2D-3D skip connection. SC w/o pose represents the
proposed skip connection without camera poses and the visual hull structure is replaced
by reshape operation. AVG and ACM represent two combination modules with average
summation and attention mechanism.

Conf (a) (b) (c) (d)

+SC
√ √

+SC w/o pose
√

+ACM
√ √

+AVG
√

ShapeNet

1 view 0.642 0.714 0.650 0.698

2 views 0.684 0.790 0.692 0.774

3 views 0.699 0.823 0.708 0.809

4 views 0.708 0.841 0.717 0.828

4.3 Ablation Study

Table 3 compares the influence of different units in our method. We first evalu-
ate the 2D-3D skip connection by method(a) and method(b). Method(a) is the
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Fig. 5. Reconstruction comparison with Main Net on ShapeNet test set. The color of
the voxels denotes the predicted confidence. Note that yellow refers to high confidence
and red means low confidence. (Color figure online)

baseline Main Net and method(b) is the proposed method. As shown in Table 3,
the baseline method(a) obtains an IoU of 70.8% in 4 views, while the method(b)
with 2D-3D skip connections get a boost of 13.3% IoU compared to method(a).
The significant improvement is caused by the abundant contextual information
transferred by the skip branch which alleviates the gap between 2D space and
3D world. Considering that the proposed 2D-3D skip connections use visual
hull to transform the space of features and adopt ACM to combine with Main
Net, we further perform two other comparisons method(c) and (d) to verify the
effectiveness of the visual hull and ACM. In the first experiment(c), we replace
the visual hull architecture with reshape operation and the IoU of 4 views is
decreased to 71.7% compared with method(b). This is because the projective
geometry of visual hull can establish consistency between 2D and 3D space and
help to explore more geometric structures in 3D domain. In the second exper-
iment(d), we replace the ACM with average summation fusion. It can be seen
that compared with method(d), the proposed method(b) get a improvement by
1.3% IoU of 4 views demonstrating that the ACM can adaptively select the com-
plementary spatial information from skip connection branch and enhance the 3D
decoded features.

In order to visually explore the enhancement of contextual information from
2D-3D skip connections, we visualize the estimated probability of foreground,
which is shown in Fig. 5. Note that yellow denotes high confidence and red means
low confidence. As we can see, the promotion of our contextual information to
Main Net is dedicated to two aspects. On one hand, contextual information
makes the network more confident to predict the foreground. For example, the
table object in row 3, although the Main Net predicts the shape of the table,
it has low confidence for the voxels on the border of the object. Our method
performs higher confidence for voxels on this location, demonstrating the overall
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improvement for the foreground. On the other hand, contextual information
helps to recover more detailed structures such as the table leg in row 2.

5 Conclusion

In this paper, we propose a novel approach to improve multi-view stereo for voxel
estimation by incorporating significant contextual information of 2D image fea-
tures. Moreover, a 2D-3D skip connection based on the feature visual hull is
designed to effectively convey useful 2D encoded features to 3D decoded rep-
resentations. Our future work is extending the proposed method to the area of
scene reconstruction.
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Abstract. The Self-Organizing Map (SOM) is a brain-inspired neural
model that is very promising for unsupervised learning, especially in
embedded applications. However, it is unable to learn efficient proto-
types when dealing with complex datasets. We propose in this work to
improve the SOM performance by using extracted features instead of raw
data. We conduct a comparative study on the SOM classification accu-
racy with unsupervised feature extraction using two different approaches:
a machine learning approach with Sparse Convolutional Auto-Encoders
using gradient-based learning, and a neuroscience approach with Spiking
Neural Networks using Spike Timing Dependant Plasticity learning. The
SOM is trained on the extracted features, then very few labeled samples
are used to label the neurons with their corresponding class. We investi-
gate the impact of the feature maps, the SOM size and the labeled subset
size on the classification accuracy using the different feature extraction
methods. We improve the SOM classification by +6.09% and reach state-
of-the-art performance on unsupervised image classification.

Keywords: Brain-inspired computing · Self-organizing map ·
Unsupervised learning · Feature extraction · Sparse convolutional
auto-encoders · Spiking neural networks

1 Introduction

With the fast expansion of Internet of Things (IoT) devices, a huge amount of
unlabeled data is gathered everyday. While it is a big opportunity for Artificial
Intelligence (AI) and Machine Learning (ML), the difficult task of labeling these
data makes Deep Learning (DL) techniques slowly reaching the limits of super-
vised learning [5,8]. Hence, unsupervised learning is becoming one of the most
important and challenging topics in ML. In this work, we use the Self-Organizing
Map (SOM) proposed by Kohonen [20], an Artificial Neural Network (ANN)
that is very popular in the unsupervised learning category [22]. Inspired from
the cortical synaptic plasticity and its self-organization properties, the SOM is
a powerful vector quantization algorithm which models the probability density
function of the data into a set of prototype vectors that are represented by the
neurons synaptic weights [34]. It has been shown that SOMs perform better in
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 474–486, 2020.
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representing overlapping structures compared to classical clustering techniques
such as partitive clustering or K-means [3].

In addition, SOMs are well suited to hardware implementation based on cel-
lular neuromorphic architectures [15,33,37]. Thanks to a fully distributed archi-
tecture with local connectivity amongst hardware neurons, the energy-efficiency
of the SOM is highly improved since there is no communication between a cen-
tralized controller and a shared memory unit, as it is the case in classical Von-
Neumann architectures. Moreover, the connectivity and computational complex-
ities of the SOM become scalable with respect to the number of neurons [33].
SOMs are used in a large range of applications [21] going from high-dimensional
data analysis to more recent developments such as identification of social media
trends [36], incremental change detection [28] and energy consumption mini-
mization on sensor networks [23].

This work is an extension of the work done in [14], where we introduced the
problem of post-labeled unsupervised learning: no label is available during train-
ing and representations are learned in an unsupervised fashion, then very few
labels are available for assigning each representation the class it represents. The
latter is called the labeling phase. In [14], we used the MNIST dataset [24] to
demonstrate the potential of this unsupervised learning method on the classifica-
tion problem and compared different training and labelling techniques. In order
to improve the classification accuracy of the SOM and be able to work with more
complex datasets, we need to extract useful features from the raw data that will
then be classified with the SOM. In the context of unsupervised learning, fea-
ture extraction can be done using two different approaches: a classical “machine
learning approach” using Sparse Convolutional Auto-Encoders (SCAEs), and a
“neuroscience approach” using Spiking Neural Networks (SNNs). The SCAE is
trained using gradient back-propagation while the SNN is trained using Spike
Timing Dependant Plasticity (STDP). The goal of this work is to compare the
performance of both approaches when using a SOM classifier. We also experi-
ment a supervised Convolutional Neural Network (CNN) with the same topology
for approximating the best accuracy we can expect from the feature extraction.

Section 2 describes the unsupervised feature extraction methods and details
the SOM training and labeling algorithms. Then, Sect. 3 presents the implemen-
tation details of each feature extractor. Next, Sect. 4 presents the experiments
and results on MNIST unsupervised classification. Finally, Sect. 5 and Sect. 6
discuss and conclude our work.

2 Related Work and Methodology

In this section, we review the related work and present the proposed methodol-
ogy. We begin with the unsupervised feature extraction learning part, then how
to train the SOM, and we finally explain the labeling procedure. Our first step
is to extract relevant features from the raw data using unsupervised learning.
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2.1 Unsupervised Feature Extraction

Sparse Convolutional Auto-Encoders (SCAEs). Introduced by Rumel-
hart, Hinton and Williams [35], AEs were designed to address the problem of
back propagation without supervisor via taking the input data itself as the super-
vised label [1]. Today, AEs are typically used for dimensionality reduction or
weights initialization in CNNs to improve the classification accuracy [19,26]. In
this work, we want to use AEs as feature extractors with unsupervised learning.
In such cases, the feature map representation of a Convolutional AE (CAE) is
most of the time of a much higher dimensionality than the input image. While
this feature representation seems well-suited in a supervised CNN, the overcom-
plete representation becomes problematic in an AE since it gives the autoencoder
the possibility to simply learn the identity function by having only one weight
“on” in the convolutional kernels [26]. Without any further constraints, each con-
volutional layer in the AE could easily learn a simple point filter that copies the
input onto a feature map [19]. While this would later simplify a perfect recon-
struction of the input, the CAE does not find any more suitable representation
for our data. To prevent this problem, some constraints have to be applied in
the CAE to increase the sparsity of the features representation.

The concept of sparsity was introduced in computational neuroscience, as
sparse representations resemble the behavior of simple cells in the mammalian
primary visual cortex, which is believed to have evolved to discover efficient
coding strategies [31]. It has been proven that encouraging sparsity when learning
the transformed representation can improve the performance of classification
tasks [11]. Indeed, the overcomplete architecture of a CAE allows a larger number
of hidden units in the code, but this requires that for the given input, most of
hidden neurons result in very little activation [30]. In a Sparse CAE (SCAE),
activations of the encoding layer need to have low values in average. Units in the
hidden layers usually do not fire [4] so that the few non-zero elements represent
the most salient features [30].

In order to increase the sparsity of the CAE’s feature representation, several
methods can be found in the literature. In [26], the authors use max-pooling to
enforce the learning of plausible filters, but the filters are then fine-tuned with
supervised learning for the classification. Since we do not want to use any label
in the training process, we apply additional constraints in the SCAE, namely
weights and activity constraints of types L2 and L1, respectively [29].

Spiking Neural Networks (SNNs). Spiking Neural Networks (SNNs) are a
brain-inspired family of ANNs used for large-scale simulations in neuroscience
[10] and efficient hardware implementations for embedded AI [6]. SNNs are char-
acterized by the spike-based information coding, a computational model of the
electrical impulses amongst the biological neurons. The amplitude and duration
of all spikes are almost the same, so they are mainly characterized by their emis-
sion time [17]. Furthermore, spiking neurons appear to fire a spike only when
they have to send an important message, which leads to the fast and extremely
energy-efficient neural computation in the brain.
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Moreover, SNNs have a great potential for unsupervised learning through
STDP [7], a biologically plausible local learning mechanism that uses the spike-
timing correlation to update the synaptic weights. Kheradpisheh et al. proposed
in [17] a SNN architecture that implements convolutional and pooling layers for
spike-based unsupervised feature extraction. The SNN processes image inputs as
follow. The first layer of the network uses Difference of Gaussians (DoG) filters
to detect contrasts in the input image. It encodes the strength of the edges in the
latencies of its output spikes, i.e. the higher the contrast, the shorter the latency.
On the one hand, neurons in convolutional layers detect complex features by inte-
grating input spikes from the previous layer, and emit a spike as soon as they
detect their “preferred” visual feature. A Winner-Take-All (WTA) mechanism
is implemented so that the neurons that fire earlier perform the STDP learning
and prevent the others from firing. Hence, more salient and frequent features
tend to be learned by the network. On the other hand, neurons in the pooling
layers provide translation invariance by using a temporal maximum operation,
and help the network to compress the flow of visual data by propagating the first
spike received from neighboring neurons in the previous layer which are selec-
tive to the same feature. However, in [17], the extracted features were classified
using a supervised Support Vector Machine (SVM). In this work, we use the
unsupervised SOM classifier to keep the unsupervised training from end to end.

2.2 Unsupervised Classification with Self-Organizing Maps (SOMs)

SOM Learning. The next step consists in training a SOM using the extracted
features. We use a two-dimensional array of k neurons, that are randomly ini-
tialized and updated thanks to the following algorithm based on [20]:

Initialize the network as a two-dimensional array of k neurons, where each
neuron n with m inputs is defined by a two-dimensional position pn and a
randomly initialized m-dimensional weight vector wn.
for t from 0 to tf do
for every input vector v do
for every neuron n in the network do
Compute the afferent activity an from the distance d:

d = ‖v − wn‖ (1)

an = e− d
α (2)

end for
Compute the winner s such that:

as =
k−1
max
n=0

(an) (3)
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for every neuron n in the network do
Compute the neighborhood function hσ(t, n, s):

hσ(t, n, s) = e
− ‖pn−ps‖2

2σ(t)2 (4)

Update the weight wn of the neuron n:

wn = wn + ε(t) × hσ(t, n, s) × (v − wn) (5)

end for
end for
Update the learning rate ε(t):

ε(t) = εi

(
εf

εi

)t/tf

(6)

Update the width of the neighborhood σ(t):

σ(t) = σi

(
σf

σi

)t/tf

(7)

end for
It is to note that tf is the number of epochs, i.e. the number of times the

whole training dataset is presented. The α hyper-parameter is the width of the
Gaussian kernel. Its value in Eq. 2 is fixed to 1 in the SOM training, but it does
not have any impact in the training phase since it does not change the neuron
with the maximum activity. Its value becomes critical though in the labeling
process. The SOM hyper-parameters are reported in Sect. 4.

SOM Labeling. The labeling is the step between training and test where we
assign each neuron the class it represents in the training dataset. We proposed in
[14] a labeling algorithm based on very few labels. We randomly took a labeled
subset of the training dataset, and we tried to minimize its size while keeping the
best classification accuracy. Our study showed that we only need 1% of randomly
taken labeled samples from the training dataset for MNIST classification. In this
work, we will extend the so-called post-labeled unsupervised learning to SOM
classification with features extracted by different means.

The labeling algorithm detailed in [14] can be summarized in five steps.
First, we calculate the neurons activations based on the labeled input samples
from the euclidean distance following Eq. 2, where v is the input vector, wn

and an are respectively the weights vector and the activity of the neuron n.
The parameter α is the width of the Gaussian kernel that becomes a hyper-
parameter for the method. Second, the Best Matching Unit (BMU), i.e. the
neuron with the maximum activity is elected. Third, each neuron accumulates
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its normalized activation (simple division) with respect to the BMU activity in
the corresponding class accumulator, and the three steps are repeated for every
sample of the labeling subset. Fourth, each class accumulator is normalized over
the number of samples per class. Fifth and finally, the label of each neuron is
chosen according to the class accumulator that has the maximum activity. The
complete GPU-based source code is available in https://github.com/lyes-khacef/
GPU-SOM.

3 Implementation Details

MNIST [24] is a dataset of 70000 handwritten digits (60000 for training and
10000 for test) of 28 × 28 pixels. In order to compare the feature extraction
performance, we use the following topologies for the two approaches: 28 × 28 ×
1 − 64c5 − Xc5 − p5 for the SCAE and 28 × 28 × 1 − 64c5 − p2 − Xc5 − p2
for the SNN, i.e. two convolutional layers of 64 maps and X maps respectively.
Each uses 5 × 5 kernels followed by a max-pooling layer. The reason for the
different pooling mechanisms is explained in Sect. 3.3. We explore the impact of
the number of features X on the classification accuracy.

3.1 CNN Training

The CNN is modeled in TensorFlow/Keras and trained with Adadelta [39]
gradient-based algorithm for 100 epochs with a learning rate of 1.0. Since the
goal is to estimate the maximum accuracy we can expect from each topology,
the CNN is trained with the labeled training set by using 10 neurons with a
Softmax activation function on top of the last pooling layer. This network is
noted as CNN+MLP in the following.

3.2 SCAE Training

The SCAE is also modeled in TensorFlow/Keras and trained using Adadelta [39]
gradient-based algorithm for 100 epochs with a learning rate of 1.0. However, no
label is used in the training process, as the goal of the SCAE is to reconstruct
the input in the output. The complete SCAE topology is 28 × 28 × 1 − 64c5 −
Xc5 − p5 − u5 − 64d5 − 1d5, where u stands for up-sampling and d stands for
deconvolution (or transposed convolution) layers. The complete architecture is
thus symetric. We add to every convolution and deconvoltion layer a weight con-
straint of type L2, and we add to the second convolution layer that produces the
features an activity constraint of type L1. The weights and activity regularisa-
tion rates are set to 10−4. Therefore, the objective function of the SCAE takes
in account both the image reconstruction and the sparsity constraints.

https://github.com/lyes-khacef/GPU-SOM
https://github.com/lyes-khacef/GPU-SOM
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3.3 SNN Training

The SNN is modeled in SpykeTorch [27], an open-source simulator of convolu-
tional SNNs based on PyTorch [32]. The SNN is trained with STDP layer by
layer, with a different pooling mechanism than the CNN and SCAE. Except for
the number of feature maps and kernel sizes, we kept the same hyper-parameters
as the original implementation of [17] that can be found on [27]. Hence, we used
a pooling layer of 2×2 after each convolutional layer, with a padding of 1 before
the second convolutional layer. The threshold of the neurons in the last convolu-
tional layer were set to be infinite so that their final potentials can be measured
[17]. Finally, the global pooling neurons compute the maximum potential at their
corresponding receptive field and produce the features that will be used as input
for the SOM. Our experimental study showed that the added padding and the
pooling mechanism proposed in [27] performs better than the one used in the
CNN and SCAE (i.e. no pooling and one polling layer), with a gain of 1.43% on
the maximum achievable accuracy.

4 Experiments and Results

The SOM training hyper-parameters were found with a grid search: εi = 1.0,
εf = 0.01, ηi = 10.0, ηf = 0.01, α = 1.0 and the number of epochs is 10.

Feature maps in the last convolutional layer
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Fig. 1. SOM classification accuracy using CNN, SCAE and SNN feature extraction vs.
number of feature maps with 256 SOM neurons and 10% of labels.

First, Fig. 1 shows the impact of the number of feature maps in the sec-
ond convolutional layer, using 256 neurons in the SOM and 10% of labels. We
deliberately use a large number of labels to avoid any bias due to the labeling
performance, and focus on the impact of the feature maps. The accuracy of
the CNN+SOM and SCAE+SOM is increasing with respect to the number of
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feature maps, reaching a maximum at 256 maps. Interestingly, the CNN+SOM
performs better with 8 maps (97.56%) than with 16 (97.25%), 32 (97.00%), 64
(97.26%) or 128 (97.31%) maps. This is due to the tradeoff between additional
information and additional noise induced by more feature maps according to
the SOM classification. In fact, the CNN+MLP supervised baseline accuracy is
increasing from 98.7% to 99% when the feature maps increase from 8 to 512. This
observation is more pronounced when we look at the SNN+SOM that reaches
a maximum accuracy for 64 maps then drastically decreases with more feature
maps. Following the approach of [17], we used a SNN+SVM supervised base-
line and its accuracy increases from 97% to 98% when the feature maps increase
from 64 to 512. It means that the increasing number of feature maps for the SNN
produces noisy features that do not affect the supervised classification but do
decrease the unsupervised classification accuracy, because the SOM prototypes
overlap and become less descriminative. Thus, we choose 256 maps for the CNN
and SCAE that produce a feature size of 4096, and 64 maps for the SNN that
produces feature maps of size 3136. We remark that the SNN features size is
different from the CNN/SCAE features size, which is due to the to the added
padding and the different pooling mechanism as explained in Sect. 3.3.

SOM neurons
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Fig. 2. SOM classification accuracy using CNN, SCAE and SNN feature extraction vs.
number of SOM neurons with the optimal topologies and 10% of labels.

Second, with the above mentioned topologies, we investigate the impact of
the SOM size with 10% of labels, from 16 to 10000 neurons. We see in Fig. 2
that the accuracy of the four systems is increasing with respect to the number
of neurons. We notice that the SNN-SOM reaches the same accuracy as the
SCAE+SOM starting from 1024 neurons. Nevertheless, for the next step of the
study, it is important to keep the same number of neurons. Hence, we have
chosen the number of neurons for which one of the SCAE+SOM or SNN+SOM
reaches the maximum accuracy, which is equal to 256 neurons with respect to
the SCAE+SOM accuracy.
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Labeled samples (% of the training subset)
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Fig. 3. SOM classification accuracy using CNN, SCAE and SNN feature extraction vs.
% of labeled data from the training subset for the neurons labeling with the optimal
topologies and 256 SOM neurons.
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Fig. 4. SOM classification accuracy using CNN, SCAE and SNN feature extraction vs.
summary of the comparative study with the optimal topologies, 256 SOM neurons and
1% of labels.

Third, using 256 neurons for the SOM, we investigate the impact of the label-
ing subset size in terms of % of the training set. Figure 3 shows that the accuracy
increases when the labeled subset increases. Interestingly, the CNN+SOM and
SCAE+SOM reach their maximum accuracy with only 1% of labeled data, while
the SNN+SOM and SOM need approximately 5% of labeled data. Since the
SCAE+SOM performs better than the SNN+SOM, we only need 1% of labeled
data. It confirms the results obtained in [14].

Finally, the comparative study of the four settings with the best topology
of each, using 256 neurons for the SOM and 1% of labeled data for the neu-
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Table 1. Comparison of unsupervised feature extraction and classification techniques
in terms of accuracy and hardware cost.

Feature extraction Classification Performance

Model Learning Model Learning Accuracy (%) Error (%) Hardware cost

CNN Supervised MLP Supervised 99.00 1.00 High

CNN Supervised SOM Unsupervised 97.94 2.06 Medium

SCAE Unsupervised SOM Unsupervised 96.90 3.10 Medium

SNN Unsupervised SOM Unsupervised 95.37 4.63 Low

Table 2. MNIST unsupervised learning with AE-based feature extraction: state of the
art reported from [12].

Method Accuracy (%)

AE + K-means [2] 81.2

Sparse AE + K-means [30] 82.7

Denoising AE + K-means [38] 83.2

Variational Bayes AE + K-means [18] 83.2

SWWAE + K-means [40] 82.5

Adversarial AE [25] 95.9

Sparse CAE + SOM [Our work] 96.9

rons labeling is summarized in Fig. 4. As expected, the SOM without feature
extraction has the worst accuracy of 90.91% ± 0.15 and the CNN+SOM with
supervised feature extraction reaches the best accuracy of 97.94% ± 0.22. More
interestingly, with fully unsupervised learning, the SCAE performs better than
the SNN (+1.53%), with 96.9% ± 0.24 and 95.37% ± 0.58 respectively.

5 Discussion

Table 1 shows the gap between supervised and unsupervised methods for fea-
ture extraction and classification. Interestingly, we only lose about 1% of accu-
racy when going from CNN+MLP to CNN+SOM, and another 1% when going
from CNN+SOM to SCAE+SOM. The gap is slightly higher when going from
SCAE+SOM to SNN+SOM, which is about 1.5%. In return, the hardware cost
decreases when using SOMs and SNNs, thanks to the brain-inspired computing
paradigm (distributed and local). Indeed, we showed in [13] that the SNN has a
gain of approximately 50% in hardware resources and power consumption when
implemented in dedicated FPGA and ASIC hardware.

Overall, the SCAE+SOM reaches the best accuracy of 96.9% ± 0.24 on
MNIST classification with unsupervised learning. As shown in Table 2, we
achieved state of the art accuracy compared to similar works that followed an
AE-based approach. The sparsity constraints of the SCAE through the weights
and activities regularization significantly improved the SOM classification
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accuracy. Indeed, without these constraints, the CAE+SOM with the same con-
figuration achieves an accuracy of 94.9% ± 0.24, which means a loss of −2%.

A similar study was conducted in [9], but it was limited to one layer SCAE
and SNN, and a supervised SVM was used for classification. The authors con-
cluded that the SCAE reaches a better classification accuracy. Our study extands
their finding to multiple convolutional layers by using unsupervised learning for
both feature extraction and classification. Nevertheless, the SNN+SOM remains
attractive due to the hardware-efficient computation of spiking neurons [13] asso-
ciated to the cellular neuromorphic architecture of the SOM [33].

6 Conclusion and Further Works

In the context of unsupervised learning, we conducted a comparative study for
unsupervised feature extraction, and concluded that the SCAE+SOM achieves a
better accuracy thanks to the sparsity constraints that were applied to the SCAE
through weights and activities regularization. However, the SNN+SOM remains
interesting due to the hardware efficiency of spiking neurons. We achieved state
of the art performance on MNIST unsupervised classification, using post-labeled
unsupervised learning with the SOM. The future works will focus on using the
feature extraction on more complex datasets to improve the accuracy of a mul-
timodal unsupervised learning mechanism [16] based on SOMs.

Acknowledgment. This material is based upon work supported by the French
National Research Agency (ANR) and the Swiss National Science Foundation (SNSF)
through SOMA project ANR-17-CE24-0036.
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Abstract. The trend of information technology outsourcing (ITO) to
service providers (SPs) is growing. SPs bring improvements through
transformation projects and migrate outsourced scopes to their service
delivery platforms (SDPs). For realizing economies of scales for them-
selves, and improving the information security and bringing efficiencies
for their clients, the SPs implement machine-learning-based automation
(MLA) for ITO service delivery on SDPs. However, MLA is not a sil-
ver bullet and exposes the outsourced scopes to new types of informa-
tion security risks (ISRs). This paper aims at exploring those ISRs and
understanding their implications. It applies agency theory to examine
differing viewpoints of multiple organizations engaged in an ITO rela-
tionship. The study investigates an ITO setup of three organizations in
the telecom industry. To gain insights into ISR implications, a quali-
tative approach was followed using a case study method and data was
collected through interviews. Adversarial attack scenarios, ISRs and ISR
implications on ITO service delivery are presented. To the best of our
knowledge, it is the first study investigating the ISRs of MLA in ITO
service delivery.

Keywords: Information technology outsourcing · Service delivery
platform · Machine learning-based automation · Information security
risk

1 Introduction

Businesses often delegate the delivery of their information technology (IT) ser-
vices to other organizations [11]. It is a popular practice, generally known as
information technology outsourcing (ITO), where client organizations outsource
to one or more service providers (SPs) [16]. ITO clients naturally prefer SPs
who specialize in delivering outsourced services in terms of their capacity, capa-
bility and compliance with the best practices [12]. Consequently, to meet the
expectations of clients, large-scale SPs tend to establish their own service deliv-
ery platforms (SDPs), which are usually cloud-based [2,24]. It also gives SPs
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 487–498, 2020.
https://doi.org/10.1007/978-3-030-63833-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63833-7_41&domain=pdf
http://orcid.org/0000-0001-5835-5507
http://orcid.org/0000-0002-0003-6682
http://orcid.org/0000-0001-6919-9474
https://doi.org/10.1007/978-3-030-63833-7_41


488 B. M. Bhatti et al.

the advantage of specialized capability, sufficient capacity and process maturity.
Since SPs invest significant effort and money in developing their SDPs, they
strive to implement industry best practices and service delivery models to attract
clients on their SDPs. Therefore, SPs enjoy economies of scale by migrating ITO
services of multiple clients to their SDPs [17]. For clients, migrating their ITO
services to SDP is an opportunity to transform their IT processes and achieve
compliance with the best practices. Hence, migrating the services to SDPs is a
win-win proposition for both, clients and SPs engaged in ITO relationship [23].

However, migration to SDP comes with challenges [14]. Soon the interests
of both types of parties, i.e., clients and SPs, may not remain aligned due to
conflicting priorities [5,9]. To understand the differing priorities that may arise,
this study applies agency theory. According to this theory, when a client (prin-
cipal) delegates work to the SP (agent), two potential issues may arise in this
relationship: (i) conflicting priorities or goals of principal and agent, and (ii)
difficulty for the principal to verify actual service delivery or performance of the
agent [5]. Figure 1 presents a summary of the contradicting scenarios and their
solution through MLA in ITO service delivery on SDPs. It illustrates strengths,
weaknesses, opportunities and threats (SWOT) analysis for migration of ITO
service delivery to SDP from clients’ and SPs’ perspectives. The automation of
ITO service delivery on SDP using machine-learning (ML) is the popular choice
and a solution to several concerns of clients and SPs [19,23].

Fig. 1. Using MLA in ITO service delivery on SDPs.

While MLA in service delivery is witnessing a sharp increase, its use comes
with challenges [19]. One of the most critical types of these challenges is the infor-
mation security risks (ISRs) emerging from MLA in ITO service delivery [24,26].
It is contrary to the common perception that MLA is the panacea to solve chal-
lenges without adding to issues [20]. MLA is an evolving field itself, and there-
fore new developments are coming rapidly. Consequently, unprecedented ISR
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scenarios resulting from new developments in MLA often come to surface [22].
Hence, many businesses discover them as a surprise, and several others struggle
to manage the problem [20]. Practitioners often look at the research literature
to seek solutions to this problem. But there is insufficient coverage in the liter-
ature on information security risk management (ISRM) of MLA in ITO service
delivery [18]. Hence, there is a need to identify the ISRs that result from MLA
and to learn to manage them.

This research aims at understanding the information security implications
of MLA in ITO service delivery and proposes solutions for the management of
resulting ISRs. To achieve this aim, the following research questions are investi-
gated in this study:

RQ1: How MLA in service delivery impacts information security in ITO?
RQ2: What are the ISRs of MLA in ITO service delivery?

This study brings visibility to the potential information security challenges
of MLA evolving in the industry practising ITO. It contributes new knowledge
by investigating ISRs of MLA in ITO service delivery and by proposing their
solutions. To the best of our knowledge, it is the first study to apply agency
theory to investigate ISRs arising from MLA in ITO service delivery. ITO clients
in the industry will be helped to realize their information security risk exposures
and strategize appropriate measures to manage those risks. SPs will be helped
to discover information security weakness in their SDPs and to improve the
reliability of their ITO service delivery.

2 Related Work

Organizations often rely on other business entities to deliver or manage their
IT services [11]. Figure 2 shows a typical ITO lifecycle [6]. When the client has
taken the business decision to go for ITO, it is reflected in the Business and IT
strategies of the organization, and the ITO lifecycle starts with ITO strategic
analysis. The clients then engage potential SPs through the procurement pro-
cess. A transition project is undertaken to handover the outsourced to the SP.
Upon completing the transition, SPs are fully accountable for the operations and
delivery of ITO services to the clients [1,4].

Fig. 2. Typical ITO lifecycle.
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2.1 ITO Service Transformation

Migration of ITO service delivery to SDP is an example of ITO service transfor-
mation projects. Its objectives are standardization and automation of services,
their consolidation, smooth integration, reduced investments, better utilization
of competence, geographic independence, increased operational efficiency, and
vendor and technology neutrality [4]. It is often easier to achieve these objec-
tives by migrating ITO services to SDP of SPs than to optimize ITO services
within client environments [23]. Hence, migrating to SDP of the SPs is a crucial
consideration for the clients. Modern SDPs leverage technologies, for example,
Artificial Intelligence (AI) through MLA [17,19].

2.2 ITO Service Delivery Automation Using ML

The collection of ITO services on an SDP depends on its setup, strategy and
design choices made by the SP [3,7,21]. The examples of candidate ITO services
for MLA are as follows:

– Fault management system collects, consolidates and correlates events and
alarms from clients’ information systems, irrespective of ownership [3].

– Trouble management system manages trouble tickets from creation
(based on input from fault management system), handling, escalation to clo-
sure. It enriches information from the inventory management system [3,19].

– Inventory management system records and maintains a consolidated
high-quality inventory of the physical and logical resources of clients [17,21].

– Workforce management system creates, schedules and handles work
orders for teams including subcontractors. It also issues job notifications [19].

– Data warehouse and business intelligence systems visualize, analyze
and generate reports for operational efficiencies and contract fulfillments.
They help to find bottlenecks in operational efficiencies [17,21].

– Performance management system monitors and assures service perfor-
mance by proactive surveillance, timely alarms’ generation, troubleshooting,
and planning and operations support [17].

– Service level management system manages service levels based on data
from alarms, KPIs and KQIs, trouble ticket and inventory. Service model-
ing, threshold-based warnings, root-cause analysis, impact analysis and SLA
monitoring are supported [3].

2.3 Lifecycle of MLA

The implementation of MLA follows a lifecycle approach [10], as shown in Fig. 3.
It starts with the preparation of input data on which the MLA training is
intended. In the first phase, the data is processed, cleaned and prepared in
the form of (input, output: labels). In the second phase, the model (the MLA
instance) is trained using this data. After training, the model is tested. In the
third phase, the trained model is deployed into operational use, where it receives
operational data and classifies (predicts) the output based on the training pro-
vided to it earlier. In view of the results, the lifecycle is repeated if desired [10].
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Fig. 3. MLA lifecycle.

3 Research Methodology

This study adopted a qualitative approach [8] for an in-depth investigation of the
research questions posed in Sect. 1. A literature review was conducted to grasp
the latest information security trends and issues in the field of MLA as they are
evolving rapidly. To gain qualitative insights into first-hand experiences faced in
the industry, a case study method was used [25]. Three organizations were chosen
from the ICT industry to gain industry-focused knowledge, and their relationship
is presented in Fig. 4. The first organization is an ITO client organization in the
ICT industry, anonymized as Telco. The second organization, named as Contrac-
tor, is a large-scale multi-national SP, who undertook ITO contract from Telco.
Contractor owns SDP and migrated ITO Service delivery of Telco to their SDP.
They implemented MLA in ITO service delivery of their clients, including Telco.
The third organization, called Subcontractor, is a medium-scale SP organiza-
tion with a focused capability on telecom billing systems. After due permissions
from Telco, the Contractor practised subcontracting by further outsourcing the
operations of billings systems of Teleco to Subcontractor. The Contractor in this
scenario had a dual role: SP to Telco, and the client to Subcontractor.

The data were collected through interviews based on a semi-structured, open-
ended questionnaire [8]. This design was intended to keep discussions on track
while allowing the participants to express their opinions freely. Five participants
were interviewed: two from Telco, two from Contractor, and one from Subcon-
tractor. All participants were technical experts having professional experiences
in the range of fifteen to twenty years in information security, automation, ITO
service delivery and machine learning. The typical duration of each interview
was around one-and-a-half hours. The interviews were audio-recorded and were
transcribed later. Coding was performed on the interview transcripts in NVivo
tool [15]. The codes were then interrelated and aggregated to identify themes
from the participants’ opinions [13].

Agency theory was used to understand the underlying perspectives of orga-
nizations. This theory is relevant because it helps to understand the differing
priorities of parties engaged in an ITO setup [5]. As depicted in Fig. 4, each
party has its obligations and rights concerning other parties. Moreover, it has
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Fig. 4. Organizations in ITO relations and agency theory perspectives.

its own interest as well. The self-interests of one party are often in conflict with
that of the other, which gives rise to distinct perspectives of information security
risks. For example, Telco does not want to share SDP with its competitors in the
market because of a possible compromise on data confidentiality. However, the
Contractor wants to migrate all its clients to SDP for economies of scale. There-
fore, agency theory was applied in identifying the problem, posing the research
questions, formulating the interview questionnaire, interpreting the views of par-
ticipants and understanding their opinions on the root-causes of ISRs of MLA
in ITO service delivery.

4 Findings and Analysis

This section presents the classification of adversarial attacks on MLA in ITO,
techniques used by the adversaries and the implications of resulting ISRs.

4.1 Classification of Attack-Based ISR Factors in MLA

The attack-based ISR factors of MLA in ITO can be classified as follows:

– Data poisoning. In this class, the training data of MLA instance (model)
is incorrectly altered to cause either weak classification or misclassification.

– Evasion. In service operations, inputs to MLA instances are altered to mis-
lead it, resulting in weak confidence or misclassification by the MLA instance.

– Model inversion or extraction. Using partial access or information about
the MLA instance during service operations, the adversary prepares another
MLA instance which gives similar results. Later, using new MLA instance,
they generate incorrect input data to evade the results of the original MLA
instance in operations.

– Trojaning or backdooring. The MLA instance is made to learn to misbe-
have on a targetted “backdoor” pattern. The MLA instance behaves normally
until it finds the specific “backdoor” pattern in the input data during service
operations.
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4.2 Adversarial Techniques on MLA in ITO

Common adversarial techniques to attack MLA instances in SDPs are:

– Data injection. No access of adversary to training data and internal archi-
tecture of MLA instance, but adds new data to training dataset and corrupts
training of MLA instance.
ITO service delivery attack scenario 1. Wrong training data (input: alarm,
output: action) about fault management system added by the adversary for
corrupting the training of MLA instance.

– Data modification. No access of adversary to the internal architecture of
the MLA, but they have access to training data. They poison the training
data by tampering it and corrupt the training of MLA instance.
ITO service delivery attack scenario 2. Training data (input: service level info,
output: action) about service level management system incorrectly modified
by the adversary for corrupting the training of MLA instance.

– MLA instance corruption. The adversary has access to the internal archi-
tecture of MLA instance and corrupts its internal architecture or weights.
ITO service delivery attack scenario 3. MLA instance re-modelled to later
generate false service alerts during operational use.

– White-box attack. The adversary has total knowledge of the MLA instance,
i.e., its internal architecture, weights and training data characteristics. Using
this knowledge and by contaminating the input data to the operational MLA
instance, the attack during operations is substantiated.
ITO service delivery attack scenario 4. The adversary replaces true ERP
system incident alarm with a normal service event to mislead MLA instance
during operations that no action is required.

– Black-box attack type-1 (using statistical characteristics of input
training data). The adversary has access only to statistical characteristics
of input training data. They train another MLA instance, which behaves
similar to the original MLA when the input training data with the same
statistical characteristics is used. Now, the adversary uses white-box attack
strategies to prepare corrupt input samples from this new model which give
similar outcomes as expected from the original model. The prepared corrupt
input sample is then fed to the operational (original) MLA instance, to lead
misclassification, i.e., produce wrong outputs.
ITO service delivery attack scenario 5. The adversary has access to the statis-
tical characteristics of training data (input: ticket, output: site access autho-
rization), which they use to mislead MLA instance during operations to create
a work order with wrong site authorization for site access.

– Black-box attack type-2 (using the functionality of MLA instance).
This attack type is similar to previous black-box attack with the difference
that the adversary has access only to the functionality of MLA instance.
Exploiting this access, they generate (input, output) dataset.
ITO service delivery attack scenario 6. The adversary misleads MLA instance
during operations to incorrectly correlate a service alert to the wrong classi-
fication in the fault management system.
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– Black-box attack type-3 (restrained). In this type of attack the adver-
sary has access to only observe information from the operational environment
on SDP to compile a factual (input, output) dataset. The remaining details
remain the same as that of adaptive black-box attack.
ITO service delivery attack scenario 7. The adversary misleads MLA instance
during operations to send Telco (client)’s dashboard data to Subcontractor
(cascaded SP).

The relationship of adversarial techniques with the classification of attacks
is presented in Table 1. The table is sorted on adversarial techniques, based on
the emphasis placed by the research participants.

Table 1. Adversarial attack techniques on MLA in ITO.

Adversarial
technique

Attacking
time

Attack classification Service delivery
attack scenario

Data injection Training Data poisoning Attack scenario 1

Data modification Training Data poisoning Attack scenario 2

MLA instance corruption Training Trojaning,
backdooring

Attack scenario 3

White-box attack Testing or
operations

Evasion Attack scenario 4

Black-box attack type-1 Testing or
operations

Inversion leading to
subsequent evasion

Attack scenario 5

Black-box attack type-2 Testing or
operations

Inversion leading to
subsequent evasion

Attack scenario 6

Black-box attack type-3 Testing or
operations

Inversion leading to
subsequent evasion

Attack scenario 7

4.3 Implications of ISRs on ITO Service Delivery

The occurrence of ISRs from MLA in ITO service delivery can have the following
implications, and their implication scenarios are presented in Table 2, sorted on
ISR implications from the viewpoint of research participants:

– Reduced confidence. The prediction confidence of MLA instance on SDP
can get deteriorated. An example of this implication is the automated classi-
fication of an alarm with low confidence in the fault management system.

– Misclassification. A worse outcome of occurrence of ISR from MLA in ITO
service delivery is when the MLA instance starts classifying incorrectly. For
example, system alarms denoting an incident start getting classified as normal
system events.

– Targeted misclassification. The outputs from MLA in ITO service delivery
get converged incorrectly to a targeted classification. For example, all alarms
and tickets get classified as incidents during an attack. It is misleading and
beyond the handling capacity of the incident management team.
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– Source and target misclassification. The MLA instance in this type only
impacts specific inputs and results in their misclassifications to specific out-
puts. For example, the SDP will behave normally, except for the incident
alarms from Customer Relationship Management (CRM) system of Telco. In
such a case, the MLA instance will create a work order for the Subcontractor’s
team to conduct corrective action in the billing system.

Table 2. ISR implication scenarios of ITO service delivery systems.

ITO Service Delivery
System

ISR implication scenario of adversarial attack

Fault management Alarms incorrectly classified

Trouble management Incident alerts from core router depicted normal status
events

Inventory Tickets enriched with incorrect data from inventory

Workforce management Work orders issued to irrelevant teams, or irrelevant
authorization issued to Subcontractor teams

Data warehouse and
business intelligence

Business intelligence system predicted need for capacity
expansion, but the request does not reach intended user

Performance
management

During incident, service alerts from Telco’s provisioning
system are evaded & normal alerts generated (false
positive)

Service level
management

SLA breach notifications suppressed & Contractor’s
operations staff incorrectly assume service levels are met

5 Discussion and Future Directions

5.1 Current Constraints of ISRM in MLA of ITO Service Delivery

The current ISRM strategies face the following challenges [22] when responding
to ISRs of MLA in ITO service delivery:

– Adversarial attacks on MLA instances. MLA instances on SDPs are
vulnerable to adversarial attacks, which may be formulated using a variety of
techniques, for example, data poisoning, evasion or model inversion.

– Unavailability of data sets for training and validation. Preparing a
response to adversarial ISRs essentially requires data sets from ITO service
delivery on SDPs for the training of MLA instances and the validation of ISR
response strategies. Such data sets are not yet available for research.

– Resource requirements. As perceived from a game-theoretic perspective,
the security considerations in MLA pose a competition with adversaries.
Hence, the ISRM of MLA in ITO service delivery requires significant resources
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of infrastructure (memory, data, processing capability) as well as skilled
human resources of ITO clients and SPs. The skilled human resources in
this specialized field are scarce.

– False alarms. In the current practice of MLA, a significant number of
false alarms are generated. The processing of false alarms wastes processing
resources, which may cause the MLA instance to miss an attack altogether.
The refinement of false alarms is a compromise between minimizing false
alarms versus the level of ISRM.

The practitioners of MLA in ITO service delivery must keep themselves updated
with these current constraints of ISRM, and the researchers are encouraged to
investigate ways to overcome these limitations.

5.2 Theoretical Perspective

Theories help to discover a complex and comprehensive understanding of a
field [8]. They give different perspectives to the researchers to explore and analyze
a concept. Game theory is the most popular choice of studies which investigate
adversarial attacks or propose their solutions in the field of MLA [20]. This study
employs agency theory to investigate ISRM in MLA. Agency theory is relevant
in this context because it helped to approach the problem from the perspectives
of ITO clients and SPs (contractors and their subcontractors). The application
of agency theory helped this research unfolding the information security con-
cerns and risks of multiple parties engaged in ITO service delivery relationship.
As shown in Fig. 4, an adversary may exploit conflicting self-interests of any
party. Similarly, the use of this theory can guide future studies to explore the
inter-party ISRs highlighted by this study.

5.3 Limitations

This study suffers the following limitations. Firstly, this study investigated a
single ITO setup comprising three organizations, i.e., Telco (client), Contractor
(SP) and Subcontractor (cascaded SP). To inform the body of knowledge with
experiences on diverse technologies and ITO practices employing MLA in ITO
service delivery, future studies can enrich their findings by examining a variety
of ITO setups. Secondly, this study conducted five interviews with expert prac-
titioners, and the results could be limited to their knowledge and experiences.
Thirdly, the use of MLA is still evolving as the technologies get mature, the
success of information security measures lies in staying ahead of the adversaries.
Hence, the knowledge needs to be abreast of the new ISR scenarios in MLA as
they emerge. Lastly, the research on ISRM in ITO is a fast-growing research area.
Although this study attempted to sufficiently cover the topic, more research is
need for comprehensive coverage of information security implications of MLA in
ITO service delivery.
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6 Conclusion

This paper investigates the perspective of information security when using MLA
in ITO service delivery. It uses a qualitative approach using a case study method
to investigate the research questions and collects data through interviews based
on a semi-structured, open-ended questionnaire. Agency theory is applied to
gain insights into the ISR viewpoints of multiple stakeholders involved in ITO
relationship. The first research question about the information security impact
of MLA in ITO service delivery is answered by exploring the classification of
attacks, the adversarial techniques experienced by the practitioners in the tele-
com industry and identifying ITO service delivery attack scenarios. The second
research question is answered by analyzing the ISR impact scenarios and exam-
ining the implication scenarios of those ISR of MLA in ITO service delivery.
Further research is recommended on exploring more ISR scenarios of MLA in
ITO service delivery, understanding their implications and proposing mitigation
to those ISRs.
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Abstract. Heterogeneous Information Networks (HINs), composed of
multiple types of node and relation, usually have more expressive abil-
ity for complex relational data. Recently, network embedding aiming
to project the network into a low-dimensional vector space has received
much attention. Most existing embedding methods for HINs utilize meta-
path to capture the proximity of node. However, these methods usually
ignore the inequivalence of different types of node and clustering struc-
ture of network, which are important characteristics of HINs. Hence,
we propose a key node based heterogeneous network embedding method
enhanced by the clustering information. In our method, we first utilize
a meta-path guided random walk to obtain general node representations
in terms of rich heterogeneous semantic features in HINs. To indicate
different equivalence of nodes, we define key nodes which are usually in
the essential location in HINs, such as paper in the bibliographic HINs.
Afterwards, we incorporate the clustering structure of the key nodes
into network embedding learning via Gaussian Mixture Model to fur-
ther enhance the representations of nodes. Lastly, we design a unified
objective function to mutually learn the two parts effectively. Extensive
experiments are conducted and the results validate the effectiveness of
our model.

Keywords: Network embedding · HINs · Cluster

1 Introduction

With the growth of network data, network analysis, such as node classification,
link prediction and clustering, has become an important research field. In order
to improve the efficiency and effectiveness of network analysis task, network
embedding, projecting the nodes into the low-dimensional space and preserv-
ing the network structure, has attracted more and more attention. Previous
c© Springer Nature Switzerland AG 2020
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network representation methods can be divided into three categories, matrix
decomposition, random walk and deep learning based. These methods usually
obtain the node embeddings by preserving the local [14], global proximities or
high-order [16] of networks. However, these algorithms are only designed for
homogeneous networks, which usually consist of only one type of nodes and
relations.

Author (A) Paper (P) Venue (V)

Key Node

Write citation publish

APVPA

Meta-path

APA

PP

Heterogeneous Information Network

Fig. 1. An illustration of a bibliographic HIN. The left are some meta-paths in the
HIN schema. The right is an example of bibliographic HIN, in which “paper” nodes
are key nodes.

In contrast to homogeneous networks, heterogeneous information networks
(HINs) contain multi-type nodes and relations. For example, as shown in Fig 1,
a bibliographic network contains multiple types of node (paper, author, venue,
etc.) and multiple types of relationship (citation, co-author, etc.) among these
nodes. Similar to homogeneous network embedding, an important step in HINs
embedding is to capture the proximities similarity of nodes in the same or differ-
ent types. Recently, Meta-path [12], a path consisting of a sequence of relations
defined between different node types, has been introduced to HINs embedding.
For example, in the bibliographic networks of Fig 1, APVPA (i.e., “Author-Paper-
Venue-Paper-Author”) represents two author’s papers are published in the same
venue, APA represents co-author relationship. Some works perform meta-path
based random walks to learn node embedding for HINS [2]. Especially, Metap-
ath2vec [2] exploits meta-path based walk to sample heterogeneous neighbors,
and leverages the skip-gram to learn node embeddings. In addition, there are
some other methods for HINs embedding. PTE [13] decomposes heterogeneous
network into three bipartite networks and performs representation learning on
these subnetworks via [14].

These methods have been successfully applied to heterogeneous network rep-
resentation learning. However, most existing methods ignore the inequivalence of
different types of node and the inherent clustering structure, which have poten-
tial to improve the network representations. On one hand, different types of
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node are usually inequivalent, and there is a type of node in a relative essential
position, i.e., key nodes, which should receive more attention than other types
nodes. As shown in Fig 1, node paper links with all other types of node in the
HINs schema, becoming a “bridge”, thus we denote it as the key nodes in HINs.
Hence, the different equivalence of different nodes should be exploited in network
embedding learning. On the other hand, similar to the homogeneous networks,
nodes of the same type in HINs usually present a clustering structure, within
nodes in each cluster are more similar than nodes in other clusters. For example,
the nodes (papers) are usually formed different clusters that correspond to dif-
ferent academic area, papers in the same area are more similar and so are their
embedding vectors, although there is no direct links between them. Hence it is
necessary to reflect the clustering structure for heterogeneous network embed-
dings. Nevertheless, most existing methods have ignored the prominent features
in HINs.

To this end, we propose a Key Nodes Cluster-Augmented (KNCA) model
to learn embeddings for heterogeneous information networks. Firstly, our model
exploits meta-path based random walk and heterogeneous skip-gram model to
learn the general embeddings for all nodes, which is capable of capturing the
heterogeneous features of HINs. Secondly, we define the key nodes which are on
critical location in HIN schema to highlight their important roles among different
types of nodes. Meanwhile, inspired by the effective ability of Gaussian Mixture
Model (GMM) in mining the cluster features of homogeneous networks, in our
model we introduce GMM to further integrate the clustering structure of the
key nodes into the network embedding learning phase above. Finally, we design
a principle and unified objective function which can effectively jointly optimize
the two phases in a mutual learning manner (i.e., meta-path random walk model
and the GMM). Besides, the key nodes clustering structure can inherently affect
the embeddings of other nodes with different types. We conduct extensive experi-
ments including node classification, link prediction and visualization to evaluate
our proposed method. And the results show that our KNCA can effectively
improve the quality of embeddings in HINs and outperform many competitive
baselines.

The main contributions of our works are: (1) we propose a key nodes based
and cluster-augmented (KNCA) heterogeneous network embedding model; (2)
we define key nodes and use key nodes clustering structure to enhance node rep-
resentation learning; (3) Extensive experimental results prove the effectiveness
of our model in various heterogeneous network mining tasks.

2 Related Work

Network representation learning or network embedding aims to automatically
learn low-dimensional representation for nodes or edges in network, which is
useful in a variety of applications such as node classification [14], link predic-
tion [18], recommendation systerm [5], text classification [13]. Recently, network
embedding has attracted a lot of attention and some methods have been pro-
posed to obtain embeddings for nodes or edges [4,6–8,16,18].
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Some prior works focus on homogeneous information network, which are
only able to capture network structure by preserving local, global or high-order
proximity of the network. For example, inspired by word2vec [10], DeepWalk [11]
and node2vec [4] learn feature vector for nodes via random walk over the network
and skip-gram model. LINE [14] preserve first-order and second-order neighbor
structure of nodes. Besides, SDNE [16] uses Deep Neural Network (DNN) to
preserve network properties.

However, different from homogeneous network, heterogeneous information
networks have multiple types of nodes and relations. Some existing methods
focus on heterogeneous network embedding and have achieved expected per-
formance in a various applications [2,3,13]. Most of methods for HIN embed-
ding are based on meta-path shema [12]. For example, Metapath2vec [2] exploit
meta-path based walk to sample heterogeneous neighbors. In addition, there
are some other methods for HINs embedding. PTE [13] decomposes hetero-
geneous network into three bipartite networks and learns representation sepa-
rately. SHINE [17] uses autoencoder to extract three kinds of embedding, and
gets the final embeddings by aggregating these embeddings. However, the above-
mentioned methods ignore the inequivalence of different types of nodes and the
clustering structure in HINs which can improve embedding model [1]. In this
paper, we propose a key nodes cluster-augmented (KNCA) heterogeneous net-
work embedding model, which learns node embeddings by meta-path guided
random walk and integrating the clustering structure of key nodes into embed-
ding learning.

3 Proposed Method

In this section, we present proposed model KNCA, a novel key nodes based and
cluster-augmented HIN embedding method. As shown in Fig 2, a meta-path
guided random walk model is utilized to capture the rich semantic relations in
terms of heterogeneous features. Secondly, we learn node embeddings with the
constrains of clustering structure of the key nodes via Gaussian Mixture Model
(GMM). Finally, we design a principle and unified objective function to jointly
optimize the two modules effectively.

3.1 Problem Definition

We first introduce the following definitions in our paper.

Definition 1. Heterogeneous Information Network is defined as G =
(V,E,A,R), where V and E denote the sets of nodes and edges respectively.
Each node v and each edge e is associated with a specific type with mapping
functions φ(v) → A and ϕ(e) → R, where A and R denote the sets of node and
edge types respectively. In heterogeneous networks, |A| + |R| >2.

Definition 2. Meta-Path P of length l is defined as a sequence of node types

Ai and edge types Ri in the form of A1
R1−→ A2

R2−→ · · · At
Rt−→ At+1 · · · Rl−1−→ Al,
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Fig. 2. Overview of the KNCA framework.

where Ai ∈ A, Ri ∈ R, R1 ◦ R2 ◦ · · · ◦ Rl−1 represents a composite relations
between node types A1, Al.

Definition 3. Key Nodes In a HIN G with multiple node types, key nodes H are
defined as a type of node which have maximum out degree(H) + in degree(H)
in heterogeneous network schema. Usually, Key nodes belong to the most critical
node type, such as paper nodes, linking all other types of node, are key nodes
in heterogeneous citation network schema.

Definition 4. Cluster Embedding With the assumption that there are K
clusters for key nodes, the embedding of the cluster k in d-dimensional space is
a multivariate Gaussian distribution N (ψk,

∑
k) , where k ∈ 1, . . . ,K, ψk ∈ R

d

is mean vector and
∑

k ∈ R
d×d is covariance matrix.

3.2 Meta-path Based Embedding for HINs

Meta-path-Based Walk. In heterogeneous networks, as demonstrated by [12],
random walks are biased to highly visible nodes and concentrated nodes. To
avoid this problem, we use meta-paths to guide random walks for HINs since the
meta-path can capture semantic and structural correlations between different
types of node. Specifically, given a meta-path scheme A1

R1−→ A2
R2−→ · · · At

Rt−→
At+1 · · · Rl−1−→ Al on the HIN, the transition probability of walk at step i is defined
as:

p(vi+1|vi
t,P) =

⎧
⎪⎨

⎪⎩

1
|Nt+1(vi

t)| , (vi+1, vi
t) ∈ E, φ(vi+1) = t + 1 ,

0, (vi+1, vi
t) ∈ E, φ(vi+1) �= t + 1 ,

0, (vi+1, vi
t) /∈ E ,

(1)

where vi
t ∈ At, vi+1 ∈ At+1 and Nt+1(vi

t) denotes vi
t’s neighborhood with the

At+1 type of node, which means vi+1 ∈ At+1. We generate nodes sequences
guided by meta-path P. For instance, if we get an author node, we need to
sample paper nodes in next step under the meta-path schema “Author-Paper-
Author”. This strategy ensures that we can obtain such node sequences that
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contains the underlying semantic features in HINs instead of randomly sampling
arbitrary nodes.

Heterogeneous Skip Gram. Inspired by [11] and [2], we adopt heterogeneous
skip gram model to learn the representation for all nodes. Given a collection of
meta-path-based walks WP , the loss for maximizing the probability of neighbor
nodes is defined as:

O1(X) = −
∑

w∈WP

∑

v∈w

∑

pu∈[pv−τ,pv+τ ],pu �=pv

logp(u|v,P), (2)

where X = {Xi}, τ is the context window size of node v, pv/pu indicates the
position of v/u in walk w. The conditional probability of reaching context node
u given a node v is defined as p(u|v,P) = exp(XuXv)∑

u′∈CP
XvXu′ , where Xu,Xv ∈ R

d is

the vector representation of u and v. CP denotes the set of all nodes in corpus
WP . In real networks, there are millions of nodes in corpus, the skip cost is
too expensive. Following PTE [13], we propose to apply heterogeneous negative
sampling approach, in which the sampling distribution is specified by targeted
node u’s type:

logp(u|v,P) ≈ logσ(XuXv) +
n∑

i=1

Eu′
i∼p(u′)[logσ(−XvXu′

i
)] , (3)

where u′
i is negative node sampled from a given noise distribution p(u′) on CP ,

and n negative nodes are sampled for each positive node v.

3.3 Key Nodes Cluster Augmentation

Clustering structure can be used to optimize the node embedding by introducing
a high-order proximity under a mesoscopic perspective. We first exploit the key
nodes clustering structure to enhance the node representation, since the key
nodes with the maximum degree in HIN schema can indirectly influence other
node embeddings. We suppose 1) each key node is assigned with a specific cluster.
2) each key node vh’s embedding Xh are generated by a multivariate Gaussian
distribution. For all key nodes in H, the likelihood is expressed as:

|H|∏

h=1

K∑

k=1

p(zh = k)p(vh|zh = k;Xh, ψk, Σk), (4)

where p(zh = k) is the probability that node vh belongs to k-th cluster, repre-
sented as πhk later and

∑K
k=1 πhk = 1. In addition, p(vh|zh = k;Xh, ψk, Σk) is

a multivariate Gaussian distribution that can be defined as N (Xh|ψk, Σk).
Suppose that we have got model parameters πhk and the cluster embedding

N (ψk,
∑

k) by Eq. 4. And key node embedding Xv as unknown, we can re-use
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Eq. 4 to optimize key node embeddings by setting key nodes embedding Xv as
unknown. In this way, we will make nodes within the same cluster closer to the
corresponding cluster center ψk. In other words, Nodes belonging to the same
cluster have similar embedding. Based on Eq. 4, We define the objective function
for key nodes cluster embedding as:

O2(X ′,Π, Ψ,Σ) =
|H|∑

h=1

log

K∑

k=1

πhkN (Xh|ψk, Σk), (5)

where X ′ = {Xh}, Π = {πhk}, Ψ = {ψk} and Σ = {Σk}. When a gaussian
component collapsed to a sample point, there exists the singularity issue that
diag(Σk) will become zero and further O2 will become negative infinity. Inspired
by ComE [1] we constrain diag(Σk) > 0.

3.4 A Unified Optimization Method

Finally, we propose to jointly optimize the two modules by minimizing the fol-
lowing combined loss function:

L = O1(X) + αO2(X ′,Π, Ψ,Σ), (6)

where α ≥ 0 is a trade-off hyper parameter.
We adopt the iterative optimization strategy to train KNCA. In each iter-

ation, we alternate the training between the meta-path based embedding and
key nodes cluster-augmented module. Specifically, we first fix node embedding
X ′ and update clustering embedding parameters (Π,Ψ,Σ) by EM algorithm
and thus improve key nodes cluster-augmented module. Next, we fix (Π,Ψ,Σ),
and optimize key node embedding X ′ by Stochastic Gradient Descent (SGD)
algorithm. We repeat the above process until the maximum iteration.

4 Experiments

In this section, we evaluate the performance of our model in three important het-
erogeneous network mining tasks: multi-class node classification, link prediction
and visualization.

4.1 Experimental Setup

Dataset. To evaluate our model, we use three datasets from different domains.
1) AMiner(CS) [15]: a bibliographic network in computer science, which contains
9,323,739 authors and 3,194,405 papers from 3,883 computer science venues. 2)
DBLP: an academic paper citation network extracted from DBLP, including
14,328 papers (P), 4,057 authors (A), 20 conferences (C), and 8,789 keywords
(T). In addition, in DBLP, four research fields are used as labels, if the author
has a publication at a venue in that field, a label corresponding to that field
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is assigned to the author for author classification. The meta-path set {APA,
APCPA, APTPA} is used for experiments. 3) IMDB: a movie network based on
movie reviews. It includes 4,780 films (M), 5,841 actors (A) and 2,269 directors
(D). In IMDB, movies are divided into three types: action, comedy and drama.
The meta-path set MAM, MDM is used for experiments.

Baselines. We evaluate KNCA against four competitive embedding methods.
Among them, DeepWalk and LINE are designed for homogeneous information
networks, PTE and Metapath2vec are designed for heterogeneous networks.
DeepWalk [11]: To learn node embeddings, DeepWalk gets node sequences by
random walk on network and uses skipgram to get d-dimensional node vec-
tors. LINE [14]: To preserve network properties, LINE considers first-order and
second-order neighborhood proximity of node. PTE [13]: PTE decomposes het-
erogeneous network into three bipartite networks (paper-author, paper-venue,
author-venue) according to edge types like PTE, and performs representation
learning on these subnetworks. Metapath2vec [2]: Based on meta-path guided
random walk, Metapath2vec uses skip gram to capture node similarity within a
fixed window size.

Parameter Settings. We set the dimension of the node vector X 128 for
all models. For the random walk based method, we set the window size to 5,
the walk length to 100, and the length of walk 100. For model optimized by
negative sampling, we set the number of negative samples n to 5. We use SGD
to optimize training and set the initial learning rate 0.025. For the proposed
KNCA, set α = 0.3, the number of cluster K = 7 for all the experiments. We
use meta-path “APA” and “APV PA” to guide random walk, in which “APA”
represent coauthor semantics and “APV PA” means that two author publish
papers at the same venue. Our experiment results show that node embeddings
learned through these meta-paths perform well in a variety of tasks.

4.2 Multi-label Classification

In this section, we evaluate the model on the multi-label classification task. After
learning node representations, we assign labels to training nodes and use their
embeddings as input to train a logistic regression classifier. We adopt micro-f1
score and macro-f1 score as evaluation metric.

In AMiner (CS) dataset, 8 field labels of venue are extracted from Google
Scholar Metrics (Computational Linguistics, Computer Graphics, Computer
Networks & Wireless Communication, Computer Vision & Pattern Recogni-
tion, Computing Systems, Databases & Information Systems, Human Computer
Interaction, and Theoretical Computer Science). After matching, 133 venues are
labeled. 282361 papers are labeled from the venue in which paper was submitted.
246,678 authors’ labels are assigned to the label with the majority of his / her
publications. In DBLP dataset, We extracted a total of 14,328 papers from 20
venues in 4 research fields (database, data mining, machine learning, information
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retrieval) from DBLP knowledge base. 4057 authors were labeled according to
four research fields, if the author has a publication at a conference in that field.
In the IMDB dataset, we extracted 4,780 movies based on three movie genres
(action, comedy and drama). In the movie dataset, there are 5,841 actors and
2,269 directors. We vary the ratio of the training data from 20% to 80% , and
the remaining nodes for the test.

Table 1. Node classification results on DBLP and IMDB

Dataset DBLP IMDB
Metric train% LINE DeepWalk PTE Metapath2vec KNCA train% LINE DeepWalk PTE Metapath2vec KNCA

Macro-F1

20% 0.8305 0.7743 0.8788 0.9016 0.9110 20% 0.4510 0.4072 0.400 0 0.4116 0.5601
40% 0.8395 0.8102 0.8936 0.9082 0.9164 40% 0.4690 0.4519 0.4247 0.4422 0.5943
60% 0.8467 0.8367 0.9086 0.9132 0.9216 60% 0.4822 0.4813 0.4331 0.4511 0.5802
80% 0.8502 0.8481 0.9122 0.9189 0.9280 80% 0.4831 0.5035 0.4320 0.4515 0.5894

Micro-F1

20% 0.8385 0.7937 0.8848 0.9153 0.9269 20% 0.3902 0.4638 0.3387 0.4565 06252
40% 0.8632 0.8273 0.8990 0.9203 0.9318 40% 0.4254 0.4999 0.3796 0.4824 0.6727
60% 0.8701 0.8527 0.9137 0.9248 0.9370 60% 0.4367 0.5221 0.3857 0.4909 0.6691
80% 0.8712 0.8626 0.9150 0.9280 0.9327 80% 0.4404 0.5433 0.3890 0.4881 0.6864

Table 2. Author node classification and paper node classification results on AMiner.

Dataset Author node classification Paper node classification
Metric training% LINE DeepWalk PTE Metapath2vec KNCA training% LINE DeepWalk PTE Metapath2vec KNCA

Macro-F1

20% 0.8911 0.7256 0.897 0.9292 0.9320 20% 0.9315 0.9428 0.9369 0.9923 0.9986
40% 0.8926 0.7273 0.8987 0.9309 0.9332 40% 0.9322 0.9433 0.9461 0.9928 0.9985
60% 0.8934 0.7273 0.8997 0.9315 0.9338 60% 0.9327 0.9437 0.9500 0.9931 0.9987
80% 0.8938 0.7275 0.9002 0.9319 0.9343 80% 0.9341 0.9451 0.9530 0.9933 0.9988

Micro-F1

20% 0.8993 0.7402 0.9051 0.9346 0.9376 20% 0.9456 0.9443 0.9550 0.9940 0.9989
40% 0.9007 0.7418 0.9066 0.9361 0.9385 40% 0.9461 0.9447 0.9611 0.9944 0.9989
60% 0.9015 0.7419 0.9075 0.9365 0.9387 60% 0.9467 0.9450 0.9636 0.9946 0.9990
80% 0.9018 0.7425 0.9079 0.9367 0.9388 80% 0.9469 0.9451 0.9658 0.9949 0.9990

Table 1 list the node classification results on DBLP and IMDB respectively.
Table 2 list the experiment results of author and paper classifications on AMiner
dataset. Overall, KNCA outperform all baselines in terms of both macro-f1 and
micro-f1 metrics.

Firstly, KNCA performs better than LINE and DeepWalk, because we con-
sider the heterogeneous structure and semantics in network embedding. Apply-
ing homogeneous network embedding methods on heterogeneous network leads
to loss of node type information and rich semantic relation hidden in the net-
work. For instance, the metapath “APA” represents coauthor semantics, but the
authors are not connected directly.

Secondly, we also observe that KNCA outperforms PTE which decomposes
network into several bipartite networks. It leads to the loss of structural and
semantic information in networks, especially PTE only preserves low-order prox-
imity of network. Besides, KNCA achieves better result than Metapath2vec on
paper and author node classification tasks, because KNCA learns node repre-
sentation with the constrains of clustering structure of paper nodes.
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4.3 Link Prediction

In this task, we conduct paper-author link prediction on AMiner. We randomly
hide 20%, 40% and 60% paper-author links from the original network in our
experiment as the ground truth or test set. Subsequently, we use the residual
subnetwork to learn network embedding. We use AUC to evaluate all models on
the link prediction problem based on the assumption that the node embeddings
similarity linked by real links should be larger than that linked by non-existent
links.

Fig. 3. Link prediction results.

As shown in Fig 3, KNCA significantly outperform other baseline models.
This is because that LINE and PTE only capture low-order similarity of neigh-
bors, and random walk-based method, DeepWalk and Metapath2vec, preserve
the neighborhood of nodes with more hops. The important clustering features
of networks have not been exploited. Our method can capture high-order simi-
larity from clustering structure of key nodes (i.e., paper nodes) to improve the
performance of node embeddings on link prediction.

4.4 Visualization

To evaluate the network representations intuitively, we visualize the paper node
embeddings in Aminer using the t-SNE [9] algorithm. We sample 600 paper
nodes in proportion to the number of papers in each academic area. There are
8 colors corresponded to 8 categories.

From Fig 4, we can see that LINE and DeepWalk cannot effectively identify
different academic areas on account of ignoring the heterogeneity. On the other
hands, PTE and Metapath2vec have significant improvement, but the boundary
is blurry. It is worth noting that Metapath2vec can not separate well purple
and orange-red nodes (Computing Systems and Theoretical Computer Science,
respectively), because the two academic areas are similar. However, our model
clearly clusters the paper nodes, since our model not only uses meta-paths to
capture semantic information, but also exploits the clustering structure to reg-
ularize the learning of node representations.
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Fig. 4. Visualization embedding on DBIS. Each point indicates one paper and its color
indicates the field. (a): LINE, (b): DeepWalk, (c): PTE, (d): Metapath2vec, (e): KNCA.

4.5 Parameter Analysis

In this part, we evaluate KNCA in paper node classification task to investigate
the influence of parameter settings to node representation learning. Specifically,
we explore the sensitivity of four parameters, including the trade-off factor α, the
length of the walk, the number of cluster and the dimension of node embedding.

(a) (b) (c) (d)

Fig. 5. Parameter sensitivity of KNCA. (a): trade-off factor alpha, (b): Length of walk,
(c): number of clusters, (d): Dimension of the embeddings.

Figure 5(a) shows that as the trade-off factor α increases, the performance of
our model first grows and becomes stable. In Fig. 5(b) and 5(c), it can be seen
that our model is not sensitive to length of walk and number of cluster k. As
shown in Fig. 5(d), the metric first increases and then decreases when embedding
dimension d increases. Thus, we set the dimension of node embedding 128 in our
experiment.

5 Conclusion and Future Work

In this paper, we propose a key nodes cluster augmented (KNCA) heteroge-
neous network embedding model. Our model utilizes random walk with selected
meta-paths to learn node embeddings. Meanwhile, we introduce Gaussian Mix-
ture Model (GMM) to further integrate the clustering structure of the key node
based on the learned embeddings above. Finally, we design a principle and unified
objective function which can effectively join the two phases. Expensive experi-
mental results have verified the effectiveness of KNCA on various tasks.
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Abstract. We investigate the problem of training neural networks from
incomplete images without replacing missing values. For this purpose, we
first represent an image as a graph, in which missing pixels are entirely
ignored. The graph image representation is processed using a spatial
graph convolutional network (SGCN) – a type of graph convolutional
networks, which is a proper generalization of classical CNNs operating
on images. On one hand, our approach avoids the problem of missing
data imputation while, on the other hand, there is a natural correspon-
dence between CNNs and SGCN. Experiments confirm that our approach
performs better than analogical CNNs with the imputation of missing
values on typical classification and reconstruction tasks.

Keywords: Graph convolutional networks · Convolutional neural
networks · Missing data

1 Introduction

Learning from missing data is one of the basic challenges in machine learning
and data analysis [7]. In a typical pipeline, missing data are first replaced by
some values (imputation) and next the complete data are used for training a
given machine learning model [13]. The above approach depends strictly on the
imputation procedure – if we accurately predict missing values, then the other
model that operates on completed inputs can obtain good performance. However,
it is not obvious how to select imputation method for a given problem, because it
is difficult to validate its performance in a real-life scenario. Thus, there appears
a natural question: can we learn from missing data directly without using any
imputation at the preprocessing stage?

While it is difficult to answer this problem in general, a few approaches
have already been designed for particular machine learning models [4,5]. In [1] a

A preliminary version of this paper appeared as an extended abstract [2] at the ICML
Workshop on The Art of Learning with Missing Values.
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modified SVM classifier is trained by scaling the margin according to observed
features only. In [8], the embedding mapping of feature-value pairs is constructed
together with a classification objective function. Pelckmans et al. [15] model
the expected risk, which takes into account the uncertainty of the predicted
outputs when missing values are involved. In a similar spirit, a random forest
classifier is modified to adjust the voting weights of each tree by estimating
the influence of missing data on the decision of the tree [19]. The authors of
[9] design an algorithm for kernel classification that performs comparably to
the classifier which has access to complete data. Goldberg et al. [6] treat class
labels as an additional column in the data matrix and fill missing entries by
matrix completion. The work [17] shows how to generalize fully connected neural
networks to the case of missing data given only an imprecise Gaussian estimate
of missing data. In the similar spirit, RBF kernel can be calculated for missing
data [16]. Liu et al. [12] introduce partial convolutions, where the convolution is
masked and renormalized to be conditioned on only observed pixels.

In this paper we interpret the image as a graph, in which each node coin-
cides with a visible pixel, while edges connect neighboring pixels, see Fig. 1. Since
missing values are not mapped to graph nodes, we avoid the problem of missing
data imputation. In order to efficiently process such an image representation,
we use spatial graph convolutional neural networks (SGCN) [3]. In contrast to
typical graph convolutions [10,18], which consider graph as a relational structure
invariant to rotations and translations, SGCN introduces a theoretically-justified
mechanism to take into account spatial coordinates of nodes. More precisely, it
has been proven that any layer of convolutional neural networks (CNNs) can be
represented as a spatial graph convolution. This fact allows us to think about
SGCN as a generalization of CNNs, which is able, in particular, to process incom-
plete images without imputation.

To verify the introduced procedure, we consider MNIST [11] and SVHN
[14] image datasets. Experimental results show that SGCN performs better
than typical CNNs with imputations on the tasks of image classification and
reconstruction.

2 Graph-Based Model for Processing Incomplete Images

In this section, we introduce our model for processing incomplete images. First,
we describe how to interpret images as graphs. Next, we recall basic idea of graph
convolutional networks (GCNs). Finally, we show the construction of SGCN and
discuss it from an intuitive point of view.

2.1 General Idea

Images can be interpreted as vectors (tensors) of fixed sizes. If the values of
selected pixels are unknown, then the vector structure is destroyed. To recover
this structure, we need to replace missing attributes with some values. Substi-
tuting unknown inputs carries the risk of introducing unreliable information and
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noise to initial data. This may have negative consequences on data interpreta-
tion as well as can decrease the performance of subsequent machine learning
algorithms applied to completed inputs.

Our idea is to interpret an incomplete image as a graph. Graphs represent
a relational structure, in which the number of nodes and edges is not fixed. If
some pixels in the image are unknown, then the corresponding graph contains less
nodes, but the way it is processed does not change. In consequence, graph-based
representation of incomplete images is more natural than using imputation.

It is well-known that CNNs are state-of-the-art feature extractors for images.
However, as explained above, it is not obvious how to apply CNNs to incomplete
data without replacing missing values. In this paper, we use SGCN, which is a
type of graph convolutional networks, that takes spatial coordinates of nodes
into account. It has been proven that SGCN can mimic any image convolution
and, in consequence, SGCN is able to work comparably to CNNs using analogical
network architecture (number of layers, size of filters, etc.).

2.2 Graph-Based Representation of Incomplete Images

Formally, the image is represented as a tensor H = (hijk) ∈ R
n×m×l, where

n,m denote height and width of the image, and l is the number of channels.
In the case of missing data, we do not have information about pixels values at
some coordinates. Thus the incomplete image is denoted by a pair (H, J), where
J ⊂ {1, . . . , n}×{1, . . . ,m} indicates pixels which are unknown. In other words,
hijk is unknown for every (i, j) ∈ J . Clearly, for a fully-observed image, J = ∅.

To construct a graph-based image representation, we create a node for every
visible pixel of H, i.e.

V = {vij : (i, j) ∈ J ′},
where J ′ is the set of indices of the observed components. The edge is defined
only for nodes that represent adjacent pixels. Formally,

E = {(vij , vpq) : (i, j) − (p, q) ∈ {−1, 0, 1}2}.

Observe that for a complete image, every “non-boundary” pixel (node) has
exactly 8 neighbors. In the case of incomplete data, the number of neighbors
can be smaller, as the unknown pixels are not converted to nodes and, in conse-
quence, the corresponding edge is not created, see Fig. 1. The information about
pixels brightness is supplied with a feature vector hij ∈ R

l that corresponds to
a node:

H = {hij : (i, j) ∈ J ′}.
For a gray-scale image, hij ∈ R, while for a color picture hij ∈ R

3.

2.3 Graph Convolutions

Let G = (V,E,H) be a graph (representing the image H) with n nodes. To avoid
multiple indexes in the following description, the node and the corresponding
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? ?
? ?

Fig. 1. Graph construction for an incomplete image of the size 4 × 4 with a missing
region of the size 2 × 2.
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2
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Fig. 2. Basic idea of GCNs. Every filter is responsible for defining a pattern used to
aggregate feature vectors from adjacent nodes.

feature vector are denoted by vi and hi, respectively, while eij is the edge between
vi and vj . To make a natural correspondence between graphs and images, we

put i =
(
ix
iy

)
to denote both pixel coordinates and index in graph.

Basic idea of GCNs is to aggregate the information of feature vectors from
neighboring nodes over multiple layers, see Fig. 2. To build a diverse set of
patterns, GCNs use filters for defining a specific aggregation. Information from
higher-level neighborhoods are fused by combining many layers together.

The above goal is realized by combining two operations. For each node vi,
feature vectors of its neighbors are first aggregated:

h̄i =
∑

(vi,vj)∈E

uijhj . (1)

Observe that the aggregation is performed only over neighbor nodes, i.e (vi, vj) ∈
E. The weights uij are either trainable [18] or determined from a graph [10].
Next, a standard MLP is applied to transform the intermediate representation
H̄ = [h̄1. . . . , h̄n] into the final output of a given layer:

MLP(H̄ ;W ) = ReLU(W T H̄ + b), (2)

where W ∈ R
I×O is a trainable weight matrix, b ∈ R

O is a trainable bias
vector (added column-wise), and I and O is the size of input and output layer
respectively. A typical GCN is composed of a sequence of graph convolutional
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Fig. 3. Convolutional kernel for images (left) can be translated to spatial graph con-
volutions. Vectors at different positions (see e.g. the orange vector in the figure) are
multiplied by different weights. In spatial graph convolutions (right) weights are modi-
fied by relative positions of graph neighbors to achieve different weights for each vector.
(Color figure online)

layers (described above). Finally, its output is aggregated to the network response
using a global pooling or a dense layer depending on a given task, e.g. node or
graph classification.

2.4 Spatial Graph Convolutions

In contrast to typical GCNs described above, SGCN uses spatial coordinates of
nodes, see Fig. 3. In the case of images, spatial coordinates allows to identify
a given pixel in the image grid, which is not possible using only the informa-
tion about neighborhood. What is more important, the convolution defined by
SGCN is constructed so that it is able to reflect any convolutional filter of typi-
cal CNNs. In other words, any image convolution can be obtained by a specific
parametrization of SGCN. This makes a natural correspondence between SGCN
and CNNs. This property cannot be obtained by simply adding spatial coordi-
nates to feature vectors in classical GCNs.

From a formal side, SGCN replaces (1) by:

h̄i(U ,b) =
∑

(vi,vj)∈E

ReLU
(
U

[(
jx
jy

)
−

(
ix
iy

)]
+ b

)
� hj , (3)

where U ∈ R
I×2, b ∈ R

I are trainable, and I is the dimension of the previous
layer vectors. The operator � is element-wise multiplication. The relative posi-
tions in the neighborhood are transformed using a linear operation combined
with non-linear ReLU function. This is used to weight the feature vectors hj in
a neighborhood. By the analogy with classical convolution, this transformation
can be extended to multiple filters. Let U = [U 1, . . . ,U k] and B = [b1, . . . ,bk]
define k-filters. The intermediate representation h̄i is a vector defined by:

H̄ i =
[
h̄i(U 1,b1), . . . , h̄i(U k,bk)

]
.

Finally, MLP transformation is applied in the same manner as in (2) to transform
these feature vectors.
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Fig. 4. Replicating two convolution operations by SGCN (top and bottom), see Exam-
ples 1 and 2 for details. On the left, the result of applying a convolutional filter M

to the image H. The positions grid p represents spatial coordinates of the pixels; the
neighbors are connected with edges. Analogous convolution can be applied to a spatial
graph representation, as shown on the right. In the first case (top) ReLU applied to
the linear transformation of the spatial features of the image graph (with u = (2, 2)T

and b = −3) allows to select (and possibly modify) the top-right neighbor. In the sec-
ond case (bottom), convolution operation can be obtained by extracting two opposite
corner values (with u1 = (2, 2)T , b1 = −3 and u2 = (−2,−2)T , b2 = −3) and summing
them.

2.5 Intuition Behind Spatial Graph Convolutions

As mentioned, the formulas of SGCN allow to imitate the filters of classical
CNNs. While the formal proof of this fact can be found in [3], in this section, we
demonstrate this property on toy examples, which help to better understand the
reasoning behind SGCN. Let us recall that the classical convolution operation
(without pooling) defined by the mask M = (mi′j′)i′,j′∈{−k..k} applied to the
image H = (hij)i∈{1..n},j∈{1..m} is given by

M ∗ H = G = (gij)i∈{1..n},j∈{1..m},

where
gij =

∑
i′=−k..k: i+i′∈{1..n},
j′=−k..k: j+j′∈{1..m}

mi′j′hi+i′,j+j′ .
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For simplicity, we consider gray-scale images with a single channel.
The following examples illustrate how to construct filters of SGCN that pro-

duce identical results to classical convolution operations.

Example 1. First, let us consider a linear convolution given by the mask

M =

⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦.

Observe that as the result of this convolution on the image H, every pixel is
exchanged by its right upper neighbor, see Fig. 4 (top). Now the image is
represented as a graph, where the neighborhood Ni of the pixel with coordi-

nates i =
(
ix
iy

)
is given by the pixels with coordinates j =

(
jx
jy

)
such that

j − i ∈ {−1, 0, 1}2.
Given a vector1 u ∈ R

2 and a bias b ∈ R the (intermediate) graph operation
is defined by

gi = h̄i(u, b) =
∑
j∈Ni

ReLU
(
uT

[(
jx
jy

)
−

(
ix
iy

)]
+ b

)
· hj .

Consider now the case when u = 2 ·1, b = −3, where 1 = (1, 1)T . One can easily
observe that

ReLU(uT z − b) =
{

0, for z �= 1

1, for z = 1,

where z = j − i ∈ {−1, 0, 1}2.
Consequently, we obtain that gi = hi+1, which equals the result of the con-

sidered linear convolution.

Example 2. Now, let us consider the mask, see Fig. 4 (bottom):

M =

⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦ .

This convolution cannot be obtained from graph representation using a single
transformation as in previous example.

To formulate this convolution, we define two intermediate operations for k =
1, 2:

h̄i(uT
k , bk) =

∑
j∈Ni

ReLU
(
uk

[(
jx
jy

)
−

(
ix
iy

)]
+ bk

)
· hj .

where u1 = 2 ·1, b1 = −3 and u2 = −2 ·1, b2 = −3. The first operation extracts
the right upper corner, while the second one extracts the left bottom corner, i.e.

h̄i(u1, b1) = 1 · hi+1 and h̄i(u2, b2) = 1 · hi−1.

1 For simplicity, we consider an image with a single channel.
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Finally, we put

H̄i =
[
h̄i(u1, b1)
h̄i(u2, b2)

]
=

[
hi+1

hi−1

]
.

Making an additional linear transformation defined by (2) with wi = (1, 1)T , we
obtain:

gi = wT
i H̄i = 1 · hi+1 + 1 · hi−1.

Following the above examples, to obtain the result of applying an arbitrary
3×3 filter, we may need at most 9 operations using (3) (one for replicating each
of 9 entries). SGCN is also capable of imitating larger filters, see [3] for details.

3 Experiments

In this section, we evaluate our model on two machine learning tasks and compare
it with related approaches.

3.1 Reconstruction

First, as a proof of concept, we take into account MNIST database and consider
the problem of restoring corrupted images, in which a part of data is hidden. To
prepare this task, for each image of the size 28×28, we remove a square patch of
the size 13 × 13. The location of the patch is uniformly sampled for each image.

The reconstruction models are instantiated using the auto-encoder architec-
ture (AE). In the case of our model, the encoder is implemented as SGCN with 5
spatial graph convolutional layers while the decoder is a typical deconvolutional
neural network, which returns the image in the form of tensor. We emphasize
that graph neural network is only needed for initial stage of processing (encoder)
to avoid replacing missing values. Subsequent stages, e.g. decoder, can be imple-
mented using typical non-graph networks. The result of our model is compared
to CNNs combined with typical imputation techniques: (i) mask, which is a
zero imputation with an additional binary channel indicating unknown pixels
(ii) mean imputation, where absent attributes are replaced by mean values for
a given coordinate (iii) k-nn imputation, which substitutes missing features with
mean values of those features computed from the k-nearest training samples (we
use k = 5). For a fair comparison, every architecture (SGCN and CNNs) has
the same structure, i.e. the number of layers and filters as well as the type of
regularization.

We assume that the complete data are not available in the training phase.
Therefore, for all models, the loss is defined as the mean-square error (MSE)
calculated outside the missing region. This makes the problem more difficult
than a typical inpainting task. To isolate the effect of processing incomplete
images and directly compare SGCN with CNNs, we do not introduce additional
losses and use only MSE in training.

It can be seen from the Fig. 5 that SGCN gives similar results to CNN
(mask). The reconstructions coincide on average with ground-truth and are free
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Fig. 5. Reconstructions obtained for MNIST dataset (the first 10 images of test set). To
demonstrate the influence of initial imputations on the final reconstructions returned by
CNNs, we show the results of applying mean and k-NN imputations (last two columns).

of artifacts. There was a problem in restoring digit “9” (last row), but the same
holds for other methods. The results produced by CNN (mean) and CNN (k-
NN) are sometimes blurry. To support the visual inspection with quantitative
assessment, we calculate MSE inside the missing region, see the first row of
Table 1. Surprisingly, CNN (k-NN) gives the highest resemblance with ground-
truth in terms of MSE. While the reconstructions look visually less plausible
than the ones returned by SGCN and CNN (mask), the pixel-wise agreement
with ground-truth is higher. SGCN gives the second best result. It is important
to observe the influence of initial imputation on the performance of CNNs. Since
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Table 1. Performance on three machine learning tasks (lower is better). The first row
shows mean-square error for reconstructing incomplete MNIST images, while the last
two rows present test errors for classifying incomplete MNIST and SVHN images.

Dataset SGCN GCN CNN (mask) CNN (mean) CNN (k-NN)

MNIST (MSE) 0.0755 − 0.0760 0.0787 0.0725

MNIST (Error) 4.6% 31.4% 4.9% 5.9% 5.7%

SVHN (Error) 16.6% 74.6% 18.6% 19.9% 22.4%

the k-NN imputation is significantly better than the mean imputation2, the
corresponding CNN model is able to restore input image more reliably. However,
it is evident that mistakes made by k-NN imputation also negatively affect the
performance of CNN (3rd and 9th rows). In contrast, our method is more stable,
because it does not depend on imputation strategy. In consequence, it may give
worse results than CNN when it is easy to predict missing values, but, at the
same time, it should perform better if the imputation problem is more difficult.
Another advantage is that SGCN is trained end-to-end (no preprocessing of
missing values).

3.2 Classification

In the second experiment, we consider the classification task, in which incomplete
data appear in both train and test phase. In addition to gray-scale handwritten
digits retrieved from MNIST database, we also use color house-number images
of the SVHN dataset. In the case of SVHN images of the size 32 × 32, we use
patches of the size 15 × 15.

For a comparison, we use CNN models combined with the same imputation
techniques as before, but, additionally, we consider “vanilla” GCN [10], which
is one of the simplest GCNs that ignores spatial coordinates3. Classification net-
work is composed of 8 convolutional layers. Each one contains 64 filters of the
size 3 × 3. Batch normalization is used after every convolutional layer. As men-
tioned, we use analogical architecture for both graph convolutions and typical
image convolutions.

It is evident from Table 1 (2nd and 3rd rows) that SGCN performs sig-
nificantly better than the other version of GCN. It is not surprising because,
in contrast to typical GCNs, SGCN introduces information about spatial coor-
dinates to the model. Next observation is that SGCN gives lower errors than
CNNs combined with imputation strategies. While the advantage of SGCN over
the second best method in the case of MNIST is slight, the difference in accuracy
is higher in the case of SVHN, which is significantly harder dataset to classify.
As mentioned earlier, it may be difficult to reliably predict missing values for

2 k-NN imputation obtains MSE = 0.0807 while mean imputation gives MSE = 0.1265.
3 We also experimented with graph attention network [18], but the results did not

improve.
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hard tasks, which, in consequence, negatively affects CNN models applied to
completed data. Moreover, it can be seen that k-NN imputation is not so benefi-
cial in classification problems as in reconstruction task – CNN (k-NN) performs
even worse than CNN (mean) on SVHN. As can be seen, the knowledge about
missing pixels is more important for the success of classification CNNs than
using specific imputation technique4. In contrast to CNN (mask), which uses an
additional binary channel to pass the information about unknown values to the
neural model, SGCN directly ignores missing pixels, which is more natural.

4 Conclusion

We presented an alternative way of learning neural networks from incomplete
images, which does not require replacing missing values at the preprocessing
stage. While graph representation of incomplete images avoids the problem of
imputation, applying SGCN allows us to reflect the action of classical CNNs.
Our model is trained end-to-end without any missing data preprocessing (impu-
tation) as in the case of CNNs. Since the proposed model completely ignores the
information about missing values, it is especially useful in the case of complex
tasks, where imputation strategies introduce noise and unreliable information.
The main disadvantage of our approach is the computational cost of using GCNs.
In contrast to classical CNNs, the current implementations of GCNs are less effi-
cient and it is difficult to manage large graphs created from high dimensional
images.
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Abstract. Multi-agent reinforcement learning (MARL) has made sig-
nificant advances in multi-agent systems. However, it is hard to learn
a stable policy in complicated and changeable environment. To address
these issues, a two-level attention network is proposed, which is composed
of across-group observation attention network (AGONet) and intentional
communication network (ICN). AGONet is designed to distinguish the
different semantic meanings of observations (including friend group, foe
group, and object/entity group) and extract different underlying infor-
mation of different groups with across-group attention. Based AGONet,
the proposed network framework is invariant to the number of agents
existing in the system, which can be applied in large-scale multi-agent
systems. Furthermore, to enhance the cooperation of the agents in the
same group, ICN is used to aggregate the intentions of neighbors in the
same group, which are extracted by AGONet. It obtains the understand-
ing and intentions of their neighbors in the same group and enlarges the
receptive filed of the agent. The simulation results demonstrate that the
agents can learn complicated cooperative and competitive strategies and
our method is superiority to existing methods.

Keywords: Graph attention network · Deep reinforcement learning ·
Multi-agent system

1 Introduction

Cooperation and competition widely exist in nature from bacteria, social ani-
mals, and humans, in which they consist of many roles including friend group,
foe group, object/entity group and so on. Individuals in the same group need
to cooperate to accomplish some tasks or to compete against foe groups. The
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research of cooperation and competition in multi-agent systems have promising
applications in engineering systems, such as smart grids [12], games [17], resource
management [7] and robot soccer, which have attracted a lot of attentions by
many researchers.

Recently, deep reinforcement learning (DRL) [14] has shown the human-
level or higher performance in sequential decision-making problems. With the
advance of DRL, it has been combined with multi-agent reinforcement learn-
ing (MARL) to solve complex and large-scale problems [11]. Based on the com-
mon paradigm of centralized learning with decentralized execution, some MARL
algorithms learn centralized critics for multiple agents and determine the decen-
tralized action solely based on local observation. However, they have some lim-
itations. On the one hand, the algorithms based on attention mechanisms [3,5]
can effectively extract valuable information from their neighbors via communi-
cation protocol. However, the observation of each agent is directly encoded into
a feature vector, where it never distinguishes different groups of observation and
ignores different underlying influences brought by different groups of observa-
tion. On the other hand, by creating a shared agent-entity graph, the agents
learn cooperative behaviors by exchanging messages with each other along the
edges of this graph in [1]. It is assumed that the entity can attend messages to
other agents, which is unsuitable in real applications that the entity only can be
observed.

To address the limitations mentioned above, a two-level attention network is
proposed in this paper for promoting the cooperative or competitive behav-
ior in multi-agent systems. The network is divided into two parts including
across-group observation attention network (AGONet) and intentional commu-
nication network (ICN). To distinguish different semantic meanings of observa-
tions including friend group, foe group, and object group, AGONet is designed
to extract different underlying information of different groups. It is helpful to
learn a stable policy and be applied to some cooperation and competitive envi-
ronments or more complex systems. With AGONet, the network framework is
invariant to the number of agents in the multi-agent system, which can be applied
in large-scale multi-agent systems. Furthermore, ICN is used to aggregate the
intentions of neighbors in the same group, aiming to enhance the cooperation of
the agents in the same group. By means of ICN, It can obtain the understanding
and intentions of their neighbors in the same group and enlarge the receptive
filed of each agent.

The effectiveness and superiority of the proposed framework is verified in
different environments including cooperation navigation, 3 vs. 1, and 5 vs. 2
predator-prey games. The simulation results indicate that our method enables
the agents to learn complicated cooperative and competitive strategies and sub-
stantially outperforms existing methods.

2 Related Work

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [9] is extended
from the Deep Deterministic Policy Gradient (DDPG) [8] to multi-agent
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systems for mixed cooperative-competitive environments. Counterfactual Multi-
agent (COMA) [2] is proposed to solve the multi-agent credit assignment by
isolating the effect of each agent’s action. MADDPG and COMA are based on
the framework of the centralized learning with decentralized execution, where
the observations and actions of all agents are used to compute a centralized
critic. They need to train an independent policy for each agent. Therefore, it
is hard to be applied in large-scale environments. To solve the limitation, the
Mean-Field approach [18] considers the mean action of agents to derive their
actions, which can be applied in large-scale environments. However, it ignores
different impacts from their neighbor agents.

Recently, due to the similarity of the graph structures and multi-agent sys-
tems, the combination of graph neural network and multi agent reinforcement
learning has attracted a lot of attention by many researchers, especially in the
graph convolutional network (GCN), which has been successfully applied in
many domains including social network [6], natural language processing [15],
and knowledge graph [19]. GCN is an effective framework to extract the locally
connected features from arbitrary graphs. Based on GCN, some achievements
have made in MARL. MAAC [3] models a centralized critic by using the attention
network and graph neural network and derives the decentralized actors with soft
actor-critic. Attentional Communication (ATOC) [5] enable agents to extract
information from their neighbors effectively via attention network mechanism.
DGN [4] uses the graph convolutional network for communication using a deep
Q-network [10] for training. These models prove that communication between
the agents is useful for cooperation based on GCN. However, they ignore underly-
ing structure of observation in multi-agent systems and encode the observation
of the agents into a feature vector without considering the correlation among
different groups of observation. HAMA [13] employs a hierarchical graph neu-
ral network to effectively model the inter-agent and inter-group relationships.
However, it ignores the communications between the agents in the same group.

To the best of our knowledge, none of existing work in MARL studies the
across-group observation attention network and intentional communication net-
work simultaneously, in which we consider the correlation among each group of
observation and intentional communication among the agents in the same group.

3 Background

3.1 Partially Observable Markov Game (POMG)

Partially observable markov game is an extension of partially observable markov
decision process. POMG for N agents is defined by a global state S, a set of local
observations O1, · · · , ON , and a set of actions A1, · · · , AN . The action for agent
i is determined by a learned policy πi. Giving the current states and actions of
the agents, the next states of the agents are determined by the transition model
T : S × A1 × · · · × AN → S′. The reward for agent i denoted as ri is computed
after all agents taking actions: S × A1 × A2 · · · × AN → R. The agent i aims to
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maximize its discounted return Ri =
∑T

t=0 γtrt
i with the learned policy, where

γ is a discount factor.

3.2 Proximal Policy Optimization (PPO)

PPO [14] holds the stability and reliability of trust-region methods while is easy
to implement. It strikes a balance between implementation, sample complexity,
and tuning, which tries to compute an update at each step that minimizes the
cost function while ensuring the deviation from the previous policy is relatively
small. Let

lt(θ) =
πθ(at|st)

πθold
(at|st)

(1)

is the likelihood ratio. πθ is the policy with network parameters θ. πθold
is the old

policy, so lt(θold) = 1. st, at denote the state and action of agent, respectively.
Then, PPO algorithm aims to optimize the following objective:

L(θ) = E[min(lt(θ)Âθold
t (st, at), clip(lt(θ), 1 − ε, 1 + ε)Âθold

t (st, at))] (2)

where Âθold
t (st, at) is an estimator of the generalized advantage, clip(lt(θ), 1 −

ε, 1+ε) limits the value of lt(θ) to (1−ε, 1+ε) with the parameters ε, which makes
the deviation between πθ and πθold

not too big. This ensures the rationality of
the importance sampling.

4 Method

In this section, a two-level attention network is proposed, which is composed
of across-group observation attention network (AGONet) and intentional com-
munication network (ICN) as shown in Fig. 1. First, AGONet is designed to
extract different underlying information of different groups by distinguishing
different semantic meanings of observation including friend group, foe group,
and object/entity group, which are represented as green, blue, black in Fig. 1,
respectively. Furthermore, ICN is used to aggregate the intentions of neighbors
in the same group, which are exacted by AGONet, aiming to enhance the coop-
eration of the agents in the same group. Finally, the captured node-embedding
vector for each agent is subsequently used as the input of the critic network and
the actor network.

4.1 Across-Group Observation Attention Network (AGONet)

For some complex tasks, the observation of each agent may contain some different
properties. In general, the observation of the agent can be divided into friend
group, foe group, object/entity group (obstacles or common goal) and so on.
Intuitively, each group of observation have different importance for policy at
different time. Therefore, to describe the different influences of different groups
of observation on the agent, the across-group observation attention network with
across-group softmax function is proposed, which is shown in Fig. 2.
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Fig. 1. Two-level attention network.

In multi-agent systems, the agents can be classified to R group with NR

agent or entity according to the property of tasks. Therefore, the observation
of agent also can be classified to R group with NR individuals. Considering a
partially observable environment, where at each time-step t, each agent i receives
an observation Ot

i = [o1i , o
r
i , . . . , o

R
i ], where or

i = [sr
1, s

r
i · · · , sr

Nr ] is the states set
of the agent in the r-th group. Then, the relationship between the agent i and
the agents of observation or

i in the r-th group can be represented as a graph
Gr = (Nr + 1, Er) called observation graph, consisting of the set of Nr + 1
nodes (the number of the node in the r-th group and agent i) and the set of Er

edges.

Fig. 2. Across-group observation graph attention network.

The features vector of agent i is encoded by a full connected layer denoted
as hi = f(si), where si is the state of agent i, including the position and the
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velocity. The features vector of the agent j of the observation or
i is also encoded

by a full connected layer denoted as hr
j = fr(sr

j), j ∈ Nr. Therefore, the attention
coefficient between agent i and the agent j of observations or

i is denoted as er
ij ,

which is computed as
er
ij = ar

G(WT
r hi,W

T
r hr

j), (3)

where Wr is a linear learnable weight matrix, ar
G is a single-layer feed forward

neural network.
To effectively express attention coefficients across different nodes, common

approach is to use the softmax function to normalize the attention coefficients
across different nodes for each group. However, it only represents the influence
from each node in the same group to the agent without from a global perspec-
tive, which ignores the influence from the agents of other groups to the agent.
Therefore, an across-group softmax is designed to normalize the attention coeffi-
cients across every nodes in the whole observation. The influence from each node
of observation to the agent is described, which is computed as following:

ar
ij =

exp(LeakyReLU(er
ij))∑

r∈R

∑
j∈Nr

exp(LeakyReLU(er
ij))

,
∑

r∈R

∑

j∈Nr

ar
ij = 1, (4)

where the LeakyReLU is a nonlinearity activate function with negative input
slope. Combining Eqs. 3 and 4, the whole observation embedding aggregated
from each node is given as

h
′
i = σ(

∑

r∈R

∑

j∈Nr

αr
ijW

T
r hr

j), (5)

where σ represents an optional nonlinearity. It concatenates the different groups
of observation with different weight matrix Wr. It is worth noted that to avoid
the state repeatedly, only the friend group consider the self-attention mechanism
while other groups not adopt the self-attention mechanism.

Giving the credit to AGONet, it describes different attentions from each
node of observation to the agent, which represents effectively the intentions and
understanding of current agent. It is noteworthy that AGONet can handle any
number of agent or entity, owing to distinguishing different semantic meanings
of observations, which enables the method to learn more complex task and be
applied in the large-scale multi-agent systems.

4.2 Intentional Communication Network (ICN)

The policy of the agent is influenced by the behaviors of neighbors in the same
group, which should be treated differently through some pattern for cooperation.
Based on AGONet, the understanding of the environments and intentions of
agent can be acquired. If other agents can know the understanding and intentions
of the neighbors, it can promote the cooperation behavior in multi-agent systems.
Hence, as shown in Fig. 3. ICN is used to extract the different understanding
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Fig. 3. Intentional communication network.

and intentions attended by neighbors, which quantifies the different importance
of the incoming messages.

For each agent that has the communication capacity in the same group,
the communication structure can also be represented as an undirected graph
Gc = (Vc, Ec) called communication graph, where Vc = {1, · · · , N} denotes the
set of nodes, which is composed of the agents in the same group, Ec ⊆ Vc × Vc

denotes the edge set. It is worthy highlight that the communication graph is
different from the above mentioned observation graph. The neighbors set of the
agent i is determined as N c

i = {j|(j, i) ∈ Ec}. By using linear weight matrices
WQ, WK , WV , the understanding and intentions h

′
i of the agent i that is the

output of AGONet are transformed to a different space denoted as Qi = WQh
′
i,

Ki = WKh
′
i, Vi = WV h

′
i to passing the information. After receiving the query-

value pair from the neighbors k ∈ N c
i , the attention coefficients ac

ik for agent k
to agent i is computed and the messages of the neighbors is aggregated according
to attention coefficients ac

ik as following:

ec
ik =

(WQh
′
k)(WKh

′
i)

dK
, ac

ik =
exp(ec

ik)
∑

k∈N c
i

exp(ec
ik)

, (6)

Ei = σ(
∑

k∈N c
i

ac
ikVk) (7)

where dK is the dimensionality of keys, Ei is the aggregated messages from
other agents with nonlinear activation function σ. Ref [16] shows that multi-head
attention is beneficial to learn the attention. Therefore, we aggregate messages
attended from other agents with multi-head as following:

Ei = ||nm=1σ(
∑

k∈N c
i

ac,m
ik V m

k ) (8)
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where || represents the concatenation operation, n is the number of the attention
heads, ac,m

ij is the attention coefficient of the m-th attention head and V m
k is the

features vector of the m-th attention head. Then, the agent i updates the embed-
ding information h

′′
i by a non-linear transformation of its current embedding

information h
′
i concatenated with Ei by using a neural network f . Furthermore,

K-hop communication is used to enlarge the receptive field of agent i, which is
expressed as h

′
i(1)→ICN →h

′′
i (1)→ICN →h

′′
i (2)→· · · →h

′′
i (K). With ICN, the

agent can know the intentions of the neighbors and enlarge the receptive field,
which is beneficial to the cooperation with other agents in the same group.

4.3 Training

Based on the two-level attention network, the embedding information h
′′
i can be

obtained to compute the actor network and critic network. The PPO algorithm
in the Actor-Critic framework is adopted to train the proposed method, which is
trained and executed both in a completely decentralized manner. What’s more,
the parameters sharing method is applied to train all the agents. It enables the
proposed method applied to the large-scale multi-agent systems.

5 Simulations

In this section, the effectiveness of the proposed framework is verified by several
simulations, which include three scenarios as shown in Fig. 4: cooperation nav-
igation, 3 vs. 1 predator-prey, and 5 vs. 2 predator-prey. These simulations are
implemented based on Multi-Agent Particle Environment [9], which has been
widely used in existing studies. For comparing the performance of our method
denoted (AGONet-ICN), the baseline algorithms TRANSFER [1] and a variant
of our method that only adopt the across-group observation attention network
(AGONet) are taken into consideration.

Fig. 4. Illustration of the simulation environments.
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5.1 Cooperation Navigation

In this scenario, all the agents are required to reach the landmarks without
colliding with each other, where only cooperation needs to be considered. It is
noted that the landmarks can not transmit any message about their state to
agent. Therefore, the agent can only observe state information of other agents
and landmarks. The observation of agent is composed of our group and entity
group, which means that the number of observation group R is 2.

Fig. 5. Simulation results in the cooperation navigation with three agents.

Figure 5 shows simulation results in the cooperation navigation with three
agents and three landmarks. As shown in Fig. 5, AGONet-ICN and AGONet
has a higher convergence rate and higher performance compared to TRANS-
FER. This is possible because AGONet-ICN and AGONet represent effectively
the features of each agent by considering each group of observation with across-
group softmax. Compared to AGONet-ICN, AGONet needs more time to learn
an effective policy, which ignores the intentions of neighbors of the agent in the
same group. It also indicates the effectiveness of AGONet and the superiority of
AGONet-ICN. Table 1 presents the evaluation results during tested with 1000
episodes with the trained models, which further shows the superior performance
of AGONet-ICN. Therefore, the performance difference among AGONet-ICN,
AGONet and algorithm demonstrates that the cooperative strategies trained
by AGONet-ICN can promote the cooperation and learn an effective strategy
quickly. To further verify the generalization of the proposed method, the policy
trained for five agents and five landmarks denoted m = 5 without any fine-tuning
is evaluated directly on different number of agents and landmarks. The general-
ization results are shown in Table 2 with evaluation index. These results indicate
that AGONet-ICN have satisfactory generalization success rate and steps. Fur-
thermore, the results manifest that the proposed method can handle any number
agents and easily transfer to more agents to complete more complicated tasks,
which is practical in large-scale multi-agent systems.
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Table 1. The evaluation results of cooperation navigation with three agents.

Algorithm Success rate(%) Steps Collisions(%)

TRANSFER 99.6 11.13 0.6

AGONet 100 10.34 0.5

AGONet-ICN 100 9.88 0.5

Table 2. Generalization results: policy trained for five agents is evaluated directly for
m agents and m landmarks without any fine-tuning.

Evaluation index m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

Success rate(%) 100 100 100 100 100 100 100 100 100

Steps 10.25 10.5 10.36 10.24 10.35 10.68 11.1 11.51 12.6

Collisions(%) 0 0.09 0.14 0.13 0.26 0.37 0.41 0.46 0.49

5.2 Predator-Prey

In this scenario, there are two groups of agents competing with each other and
one group of obstacles are hindering the agents. The predator group is aimed to
capture the prey and avoid the obstacle collisions, while the prey group needs to
escape from the predators and avoid the obstacle collisions. In the environments,
the predator move slower than the preys. For the predators, they need to learn
how to cooperate with each other. Each agent aims to maximize their accumu-
lated rewards, which results in the competition between predators and preys
and the cooperation among the predators. Two scenarios including the 3 vs. 1
and 5 vs. 2 predator-prey are designed to evaluate the performance of AGONet-
ICN. The preys are trained with TRANSFER. The predators are trained with
AGONet-ICN, AGONet, and TRANSFER, respectively.

Fig. 6. The training reward in predator-prey.

Figure 6 shows the training reward in predator-prey. It is indicated that
AGONet-ICN is slower to learn a policy compared to TRANSFER in the early
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Table 3. Evaluating results of 3 vs. 1 predator-prey

Algorithm Success rate(%) Steps Rewards Collisions(%)

TRANSFER 99.5 13.05 0.72 2.7

AGONet 99.7 12.99 0.71 1.3

AGONet-ICN 100 12.91 0.75 0.67

Table 4. Evaluating results of 5 vs. 2 predator-prey

Algorithm Success rate(%) Steps Rewards Collisions(%)

TRANSFER 95.9 18.94 0.90 4.16

AGONet 99.7 16.10 0.90 1.7

AGONet-ICN 99.9 15.31 0.95 1.65

stage. We think that is because the framework of our method is more complex,
which needs to learn more network parameters while learn an effective policy.
The final results demonstrate that AGONet-ICN is superiority to TRANSFER.
Although AGONet also can learn an effective policy, it is weaker than two-level
attention network. This is because the features of neighbors of the agent in the
same group is ignored in AGONet, which is useful to cooperation among the
agents in the same group. To further show the effectiveness of AGONet-ICN,
some evaluation results are conducted in Tables 3 and 4. The evaluation results
show that AGONet-ICN can perform better than TRANSFER and AGONet for
complex tasks. The performance difference among AGONet-ICN and TRANS-
FER in the evaluation index is salient in 5 vs. 2 predator-prey compared to 3 vs.
1 predator-prey. It further represents the power of AGONet-ICN when dealing
with the complex tasks. In addition, the performance of AGONet is better than
TRANSFER, which is owing to distinguishing each group of their observation
with across-group softmax.

6 Conclusion

In this paper, a two-level attention network is proposed for multi-agent coop-
eration and competitive. The two-level attention network distinguishes different
semantic meanings of observation and aggregates features from their neighbors
in the same group to promote the cooperation and competition. In addition, the
proposed framework exhibits the superiority performance and is invariant to the
numbers of agents existing in the system. In the future, large-scale multi-agent
system will be taken into consideration and be conducted in unmanned ground
vehicles.
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Abstract. Multi-view learning can cover all features of data samples
more comprehensively, so multi-view learning has attracted widespread
attention. Traditional subspace clustering methods, such as sparse sub-
space clustering (SSC) and low-ranking subspace clustering (LRSC),
cluster the affinity matrix for a single view, thus ignoring the prob-
lem of fusion between views. In our article, we propose a new Multi-
view Subspace Adaptive Learning based on Attention and Autoencoder
(MSALAA). This method combines a deep autoencoder and a method for
aligning the self-representations of various views in Multi-view Low-Rank
Sparse Subspace Clustering (MLRSSC), which can not only increase the
capability to non-linearity fitting, but also can meets the principles of
consistency and complementarity of multi-view learning. We empirically
observe significant improvement over existing baseline methods on six
real-life datasets.

Keywords: Multi-view learning · Subspace self-representation ·
Autoencoder · Attention · Spectral clustering

1 Introduction

In real-world machine learning problems, the same data consists of several dif-
ferent representations or views. For example, a traditional web page contains a
lot of information. We can use pictures as one view and text features as another
view. Therefore, each view reflects some properties of object. Although we can
utilize a single view for learning tasks, integrating supplementary information
from different views can reduce the complexity for a given task [1]. In recent
years, multi-view learning has attracted more attention. Multi-view learning
methods can learn each view with the help of consistency and complementarity
on multiple views. Therefore, Multi-view learning not only can effectively use
the special information of each view, but also take advantage of the common
information of multiple views.

In recent years, many multi-view learning algorithms have been developed.
For example, non-negative matrix factorization (NMF) [2] based multi-view
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learning algorithms [3–7]. These multi-view learning methods all consider con-
sistency and complementarity in multi-view. However, the subspace clustering
algorithm often ignores this information.

The subspace clustering algorithm is commonly divided into two stages. First,
we need to construct an affinity matrix for each pair of data points. Second,
we use this affinity matrix to implement spectral clustering. Of course, up to
now self-representation subspace clustering algorithm is the most representa-
tive one. Self-representation-based methods represent data points as a linear
combination of other points in the same subspace. These approaches are becom-
ing increasing popular due to their excellent performance. Most recent work
on self-representation-based method has focused on incorporating regularization
term to make the self-representation matrix more robust, which is better than
the factorization method, and can make full use of all data points to obtain a
better representation. In this decade, several attempts have been made in this
direction. The typical variants are Sparse Subspace Clustering (SSC) [8], Low
Rank Subspace Clustering (LRSC) [9], Consistent and Specific Multi-view Sub-
space Clustering (CSMSC) [10], Multi-view Low-Rank Sparse Subspace Cluster-
ing (MLRSSC) [11]. Among them, CSMSC realizes the principle of consistency
and complementarity by decomposing the self-representing coefficient matrix,
and MLRSSC explores the alignment of the self-representing coefficient matrix.
In addition, there are many methods for subspace self-representation learning
using deep neural networks, such as Generalized Latent Multi-view Subspace
Clustering (gLMSC) [12], Deep Subspace Clustering Networks (DSCN) [13].

In this paper, inspired by the autoencoder [16], attention mechanism [17] and
MLRSSC, we develop a new Multi-view Subspace Adaptive Learning based on
Attention and Autoencoder (MSALAA). First, we map different views to the
same dimension, fuse each view with other views through the attention mecha-
nism, and then construct the self-representation. Finally the self-representation
output of each view is input to the decoder to reconstruct the original data, which
are trained according to our designed loss function. Since the traditional sub-
space clustering algorithm needs to use ADMM algorithm to iteratively update
the training parameters, and our algorithm is implemented by neural network, we
only need to choose the optimization strategy, such as SGD, Adam, RMSProp,
etc., and the deep learning optimizer will can automatically help us to update
parameters. Our contributions in this article are as follows:

(1) We incorporate autoencoder with attention mechanism. The entire deep net-
work is divided into four consecutive parts: encoder layer, multi-view atten-
tion layer, self-representation layer, and decoder Layer. The off-the-shelf
optimizer of deep learning framework is used to automatically derive and
update network parameters.

(2) Inspired by MLRSSC, we fuse the encoders’ output with the same dimen-
sions, so that learning hidden representation for each view incorporates the
characteristics of hidden representation of other views. We improve the effect
of the self-representation matrix of each view by adapting each view with
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other views, and explicitly carry out the consistency and complementarity
in multi-view learning.

(3) We have conducted extensive experiments on six real-life datasets that have
different properties and scales to demonstrate the effectiveness and efficiency
of our proposed formulation.

2 Based Method

Before introducing our method, we will introduce some basic concepts and rep-
resentative methods of multi-view subspace clustering.

2.1 Self-representation of Data

We briefly introduce the self-representation method for training data. The mean-
ing of data self-representation is that each data point in a union set of subspace
can be effectively reconstructed by combining other points in the data set. More
precisely, each data point xi can be expressed as:

xi = Xci, cii = 0 (1)

where ci = [ci1, ci2, ..., ciN ] and N represents the number of samples. In addition,
cii = 0 represents a simple way of eliminating the linear combination of writing
points as themselves. In this way, we can represent each data point in the data
point matrix X as a linear combination of other data points. Since the above
problem has solution vectors of infinite number, incorporating constraint, the
problem (1) is transformed into the following minimizing problem:

min ‖ci‖q s.t. xi = Xci, cii = 0 (2)

where different choices forq have different effects in the obtained solutions, such
as L1 norm, kernel norm, and F-norm, etc. q = 1 is used in the SSC algorithm.
We can also rewrite the above problem in matrix form:

min ‖C‖q s.t. X = XC, diag(C) = 0 (3)

where C = [c1, c2, · · · , cN ] ∈ RN×N is a matrix of self-representation coefficients.

2.2 MLRSSC

Our work are inspired by MLRSSC, before we dive into the details of our pro-
posed framework, let’s briefly introduce MLRSSC based on pairwise similarity.
Because this one is intendedly designed for multi-view data, it has good reference
value. MLRSSC mainly concerns the similarity between matrix pairs represented
by self-representation matrices. MLRSSC solves the following joint optimization
problems with nν views:

min
C(1),C(2),··· ,C(nν )

nν∑

v=1

(β1‖C(v)‖∗ + β2‖C(v)‖1) +
∑

1≤v,w≤nv,v �=w

λ(v)‖C(v) − C(w)‖2F
(4)
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s.t.X(v) = X(v)C(v), diag(C(v)), v = 1, · · · , nv (5)

where C(v) ∈ RN×N is the self-representation matrix of the view v. β1, β2,
and λ(v) indicate the trade-off parameters between low-rank, sparse, and consis-
tency constraints between views, respectively. In order to solve the convex opti-
mization problem, MLRSSC used the alternating direction multiplier method
(ADMM) [14].

3 Our Proposed Framework

In this section we exposure our proposed multi-view subspace adaptive learn-
ing paradigm in which we incorporate autoencoder with attention mechanism.
The network structure in MSALAA is shown in Fig. 1. In Fig. 1, for simplic-
ity, we only take the v-th sample with 3 views as a demonstration. The entire
devised framework is divided into four consecutive stages: encoder layer, multi-
view attention layer, self-representation layer, and decoder Layer. First, let us
briefly explain some denotation. Suppose that training data set contains multiple
views, the v-th view is expressed as follows:

Xv = [xv
1 , x

v
2 , · · · , xv

n, · · · , xv
N ], Xv ∈ RFv×N , v ∈ {1, · · · ,M} , n ∈ {1, · · · , N} (6)

Fig. 1. Network structure of MSALAA.
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where v is the number of v-th view, and N is the number of samples. Fv repre-
sents the number of features for the v-th view.

3.1 Encoder Layer

In the training data set, the feature dimensions in different views are different.
hence we need to map examples in different views into the same dimension, so
that the examples for each view has the same dimensionR:

zv
n = f(W v

1,l · · · f(W v
1,2f(W v

1,1x
v
n + b1,1) + b1,2) · · · + b1,l) (7)

where Zv = [zv
1 , zv

2 , · · · , zv
n, · · · , zv

N ] ∈ RR×N . W v
1,1 ∈ RR×F v

, · · · ,W v
1,l ∈

RR×F v

and b1,1 ∈ RR, · · · , b1,l ∈ RR are the weight matrices and biases of the
fully connected layer, l is the number of network layers, and f(·) is the activation
function of the fully connected layer. Here we use the ReLu as activation function.

3.2 Multi-view Attention Layer

In this layer, we need to use attention mechanism to process each view in order
to achieve the fusion of the content of multiple views for each view. First, we
construct a query matrix Q, a key matrix K, and a value matrix V by following
identities:

Qv = W2,1Z
v,Kv = W2,2Z

v, V v = W2,3Z
v (8)

where Qv = [qv
1 , · · · , qv

n, · · · , qv
N ],Kv = [kv

1 , · · · , kv
n, · · · , kv

N ], Vv = [vv
1 ,

· · · , vv
n, · · · , vv

N ], qv
n, kv

n, vv
n ∈ RR×1, and W2,1,W2,2,W2,3 ∈ RR×R are the lin-

ear transform matrices. Secondly, we need to calculate alignment weight av
i for

the context vector hv
i of i-th sample in the v-th view. We first define the score

function:
score(q, k) = q · k (9)

The alignment weight is defined as follows:

av
i =

exp(score(qv
i , kv

i ))
∑M

j=1 exp(qv
i , kj

i )
(10)

By getting the alignment weight av
i we can derive the context vector hv

i :

hv
i = av

i vv
i (11)

3.3 Self-representation Layer

For the subspace clustering, we need to utilize self-representation coefficient
matrix Cv ∈ RN×N and Hv = hv

1, · · · , hv
N ∈ RR×N to obtain representation

recombination matrix Hv
sr = [hv

sr,1, h
v
sr,2, · · · , hv

sr,n, · · · , hv
sr,N ] ∈ RR×N , the for-

mula is as follows:
Hv

sr = HvCv (12)

What we need to note is that in subspace clustering, the self-representation
coefficient matrix Cv needs to satisfy the constraint diag(Cv) = 0.
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3.4 Decoder Layer

In this layer, we utilize the self-representation hv
sr,n as input of the fully con-

nected layer to reconstruct the original data xv
n of each view:

x̂v
n = f(W v

3,l · · · f(W v
3,2f(W v

3,1h
v
sr,n + b2,1) + b2,2) · · · + b2,l) (13)

where x̂v
nis reconstruction of xv

n. In addition, W v
3,1 ∈ RF v×R, · · · ,W v

3,1 ∈ RF v×R

and b2,1 ∈ RF v

, · · · , b2,l ∈ RF v

are the weight matrices and bias vectors of the
fully connected layer, and f(·) is the activation function of the fully connected
layer, which uses the ReLu as activation function. We concatenate x̂v

n, n ∈
{1, · · · , N} to form the matrix X̂v = [x̂v

1, x̂
v
2, · · · , x̂v

n, · · · , x̂v
N ] ∈ RF v×N .

3.5 Loss Function

This loss function can be divided into two parts. The first part is related to the
encoder and decoder:

M∑

v=1

1
2NM

∥∥∥Xv − X̂v
∥∥∥
2

F
+ β2Ω(W v

1,1, · · · ,W v
1,l,W

v
3,1, · · · ,W v

3,l) (14)

where Ω(·) is a regularization term, and its role is to constrain the parameters
in the encoder and decoder. In this paper, Ω(·) mainly have two forms, one is
L1 norm regularization term and the other is L2 norm regularization term, and
β2 is a trade-off parameter. The other part is related to the self-representation
of the subspace.

M∑

v=1

1
2N

‖Hv
sr − Hv‖2F + ‖Cv‖2F + β1

∑

1≤v,w≤M,v �=w

1
2N

‖Cv − Cw‖2F (15)

Here we first impose the alignment constraint for the self-representation matrices
of multiple views in the form of

∑
1≤v,w≤M,v �=w

1
2N ‖Cv − Cw‖2F , by imposing the

alignment constraint, the information of each view and other views can be fused
with each other, so that the multi-views are complementary. We introduce the
F norm for the self-representation coefficient matrix Cv. In the subspace self-
representation learning task, we can apply different regularization constraints on
the self-representation coefficient matrix Cv, for example, L1 norm regulariza-
tion term, kernel norm Constraints, and the F-norm constraints witch we use.
In addition, β1 is a trade-off parameter. Due to the use of deep autoencoder
architecture, an additional benefit is that we do not need to resort complex
optimization approaches, such as the ADMM algorithm for iterative updates,
which is used in SSC and LRSC. We can directly update the self-representation
coefficient matrix Cv by the off-the-shelf Stochastic Gradient Descent (SGD)
approaches in Tensorflow.
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Table 1. Characteristics of six datasets

Datasets M C N F v

ORL 3 40 400 [4096, 3304, 6750]

Reuters 5 6 600 [21526, 24892, 34121, 15487, 11539]

3-sources 3 6 169 [3560, 3631, 3068]

Yale 3 15 165 [4096, 3304, 6750]

UCI digit 3 10 2000 [216, 76, 64]

Prokaryotic 3 4 551 [438, 3, 393]

4 Experimental Results

In this section, we design a series of experiments to demonstrate the effective-
ness of MSALAA on real-world data sets. We first introduce the data set we use.
Secondly, we describe the baseline methods, and finally we elaborate the con-
figuration of hyper-parameters, and perform spectral clustering with MSALAA
and six baseline methods on six data sets.

4.1 Datasets

To explore the performance of our proposed network, we have performed com-
parative experiments on six datasets, which are ORL, Reuters, 3-sources, Yale,
UCI-digit, and Prokaryotic dataset. The characteristics of six datasets are sum-
marized in Table 1. Where M,C,N and F v represents the number of views,
the sample category, the number of samples, and the feature dimensions of each
view, respectively.

4.2 Baseline Methods

To demonstrate the efficiency of our proposed MSALAA, some state-of-the-art
subspace clustering methods are chosen as the baseline methods: SSC, LRSC,
LMSC [15], CSMSC, and MLRSSC and its three improved variants (MLRSSC-
Centroid, KMLRSSC, KMLRSSC-Centroid).

4.3 The Configuration of Hyper-parameters

In our experiments, we only need to set the number of layers of the network and
the number of neurons in each layer, and determine whether to perform batch
normalization. In this article, all our datasets are initialized with the LeCun
normal distribution. We choose Adam optimization algorithm as optimizer, the
learning rate is 0.001, and the decay value of learning rate is 0.99. In addition,
we set the trade-off parameters β1 and β2 to 0.1. In the experiment, we will
get the self-representation matrix of multiple views. Here we will use the self-
representation matrixCv of the best experimental view to construct the affinity
matrix Av = |Cv| + |Cv|T for spectral clustering. In addition, we performed
residual processing on the network to prevent the gradient from disappearing.
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Fig. 2. Visualization of Hv on UCI-digit.

Table 2. Experimental comparison results on three datasets

Method for ORL ACC NMI ARI Precision Recall F-score

SSC 72.13%(0.017%) 87.33%(0.001%) 63.26%(0.023%) 74.25%(0.023%) 72.13%(0.017%) 70.84%(0.022%)

LRSC 72.23%(0.027%) 84.06%(0.005%) 59.82%(0.032%) 74.78%(0.041%) 72.23%(0.027%) 71.79%(0.033%)

LMSC 82.18%(0.136%) 92.74%(0.018%) 77.39%(0.188%) 81.25%(0.148%) 82.18%(0.136%) 80.21%(0.168%)

CSMSC 84.55%(0.004%) 92.74%(0.001%) 79.78%(0.004%) 85.30%(0.006%) 84.55%(0.004%) 83.78%(0.005%)

MLRSSC 63.68%(0.116%) 81.a32%(0.029%)52.41%(0.136%) 63.97%(0.108%) 63.68%(0.116%) 62.27%(0.113%)

MLRSSC-C 78.03%(0.075%) 91.65%(0.008%) 72.88%(0.085%) 78.46%(0.106%) 78.03%(0.075%) 76.11%(0.101%)

KMLRSSC 78.55%(0.166%) 90.27%(0.026%) 72.05%(0.175%) 79.32%(0.163%) 78.55%(0.166%) 77.43%(0.177%)

KMLRSSC-C 78.25%(0.094%) 90.71%(0.007%) 72.06%(0.069%) 79.34%(0.153%) 78.25%(0.094%) 77.16%(0.123%)

MSALAA 86.40%(0.009%) 93.16%(0.009%) 80.91%(0.032%) 86.43%(0.023%) 86.40%(0.009%) 85.38%(0.015%)

Method for Reuters ACC NMI ARI Precision Recall F-score

SSC 50.85%(0.000%) 35.05%(0.002%) 24.69%(0.000%) 51.93%(0.001%) 50.85%(0.000%) 44.89%(0.000%)

LRSC 31.12%(0.000%) 14.18%(0.000%) 3.257%(0.000%) 58.52%(0.000%) 31.12%(0.000%) 28.13%(0.000%)

LMSC 41.53%(0.010%) 33.04%(0.024%) 17.34%(0.039%) 40.56%(0.014%) 41.53%(0.010%) 33.46%(0.005%)

CSMSC 42.42%(0.000%) 32.63%(0.000%) 18.28%(0.000%) 46.20%(0.000%) 42.42%(0.000%) 34.49%(0.000%)

MLRSSC 52.95%(0.108%) 38.22%(0.024%) 28.18%(0.070%) 50.09%(0.308%) 52.95%(0.108%) 48.30%(0.259%)

MLRSSC-C 51.35%(0.124%) 36.96%(0.013%) 26.76%(0.070%) 48.36%(0.160%) 51.35%(0.124%) 45.89%(0.216%)

KMLRSSC 57.12%(0.054%) 37.38%(0.037%) 30.41%(0.040%) 61.79%(0.135%) 57.12%(0.054%) 56.67%(0.088%)

KMLRSSC-C 55.12%(0.057%) 35.69%(0.026%) 29.38%(0.027%) 59.05%(0.208%) 55.12%(0.057%) 53.97%(0.071%)

MSALAA 57.88%(0.034%) 40.69%(0.020%) 31.02%(0.013%) 65.14%(0.025%) 57.88%(0.034%) 57.00%(0.043%)

Method for UCI digit ACC NMI ARI Precision Recall F-score

SSC 78.02%(0.004%) 79.08%(0.007%) 71.06%(0.011%) 79.41%(0.001%) 78.02%(0.004%) 77.59%(0.001%)

LRSC 64.19%(0.001%) 68.61%(0.000%) 56.01%(0.003%) 65.54%(0.003%) 64.19%(0.001%) 63.20%(0.001%)

LMSC 74.11%(0.446%) 74.63%(0.112%) 65.19%(0.274%) 74.56%(0.591%) 74.11%(0.446%) 72.98%(0.582%)

CSMSC 83.22%(0.114%) 78.48%(0.017%) 72.29%(0.048%) 83.30%(0.182%) 83.22%(0.115%) 82.78%(0.157%)

MLRSSC 88.08%(0.374%) 85.15%(0.048%) 81.37%(0.251%) 87.71%(0.485%) 88.08%(0.374%) 87.34%(0.496%)

MLRSSC-C 89.27%(0.298%) 85.32%(0.054%) 81.81%(0.253%) 89.14%(0.399%) 89.27%(0.298%) 88.74%(0.395%)

KMLRSSC 89.35%(0.244%) 86.08%(0.033%) 82.60%(0.193%) 88.76%(0.360%) 89.35%(0.244%) 88.61%(0.342%)

KMLRSSC-C 90.97%(0.212%) 86.51%(0.033%) 84.03%(0.155%) 91.03%(0.257%) 90.97%(0.212%) 90.64%(0.284%)

MSALAA 96.07%(0.000%) 91.31%(0.001%) 91.48%(0.001%) 96.12%(0.000%) 96.07%(0.000%) 96.08%(0.000%)

4.4 Experimental Results and Analysis

We perform spectral clustering with MSALAA and six baseline methods on six
data sets. In order to verify the performance of our method, we selected six
metric criteria to measure the effect of spectral clustering: Accuracy (ACC),
Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), Precision,
Recall and F-score. From the experimental results in Table 2, we can clearly
see that our method has obvious advantages over other baseline comparison
methods, validate that MSALAA can find better data self-representation. On
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the data set UCI-digit, MSALAA can reach more than 90% on multiple metric
criteria.

In addition, we also visualize the matrix Hv generated by the attention mech-
anism. Here we use t-SNE. In the visualization experiment, we use t-SNE to
embed feature matrix Hv into a 2D latent feature matrix for clustering. We use
t-SNE to derive a 2D latent feature matrix and depict it with a scatter plot. As
shown in Fig. 2, this process is performed on the data set UCI-digit, and we can
clearly see that each clustering can be easily distinguished.

5 Conclusion and Future Work

We propose a new Multi-view Subspace Adaptive Learning based on Atten-
tion and Autoencoder (MSALAA) combined with mutual subspace alignment in
subspace clustering. Our method takes into account the two important factors
of consistency and complementarity in multi-view learning, and also utilizes the
neural network to increase the nonlinear representation ability of the model. The
experiments on several real-world datasets showed that the proposed MSALAA
mostly outperformed the other baseline methods, which validate that our pro-
posed MSALAA can use self-representation of multi-views to subspace adaptive
learning.

In future work, we will investigate some variants for MLRSSC. We will try
to build a common self-representation matrix C∗ and align C∗ with all views to
see the influence of performance for multi-view subspace Learning. In addition,
we can improve the basic fully connected network to achieve better performance
on multi-view data.
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Abstract. Nowadays, artificial intelligence is limited by privacy and
security problems. Compared with the ordinary machine learning, feder-
ated learning (FL) enables multiple participants to collaboratively learn
a shared machine learning model while keeping all the training data on
local devices. However, most of the current secured federated learning
systems (FLSs) are built up with high computational and communication
costs. On the other hand, optimizing the network structure of federated
learning systems can reduce communication complexity by considering
the correlation of the transmission channels.

In this paper, we propose Network Coding Federated Learning Sys-
tems (NC-FLSs). Specifically, it considers the whole communication net-
work by connecting all the clients and the server. Applying a linear NC
scheme to construct a linear combination of the original messages, which
is transmitted over the network instead of the messages themselves.
Based on NC-FLSs, the communication cost is halved and both data
privacy and security are improved with the imperceptibly higher compu-
tational cost. Moreover, considering that the network coding structure
is independent of the FL model, any FLSs can also be upgraded to its
corresponding NC-FLSs. We also implement differential privacy on an
NC-FLS to train an image classifier while keeping clients’ local data
secure and private, which achieves superior performance and efficiency.

Keywords: Network coding · Federated learning · System security

1 Introduction

Machine learning faces two major challenges. One is that user data often exists
in the form of isolated islands. The other is that data privacy and security are
becoming increasingly important. Luckily, this requirement can be satisfied by
Federated Learning [11,14]. Federated Learning is proposed for the protection
of data privacy and decentralized machine learning, where each client’s local

This paper is supported by National Key Research and Development Program of China
under grant No. 2018YFB1003500, No. 2018YFB0204400 and No. 2017YFB1401202.

c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 546–557, 2020.
https://doi.org/10.1007/978-3-030-63833-7_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63833-7_46&domain=pdf
https://doi.org/10.1007/978-3-030-63833-7_46


Network Coding for Federated Learning Systems 547

data is used to train the learning models on its own device, and the data will
not be exposed to the others (including the server) [10]. Thus, only the models’
parameters (such as gradients and loss) can be transmitted. In addition, the
transmitted parameters should be encrypted beforehand. Here are some state-of-
the-art secure FLSs. [16] uses additively homomorphic encryption [2] where each
client encrypts the uploaded gradients before averaging for preventing indirect
leakage. In [18], differential privacy (DP) [6] is applied. Most existing FLSs are
built to improve communication efficiency by reducing the communication costs
(especially the uplink communication costs). These FLSs do not consider the
structure of the transmission network.

On the other hand, the throughput of a network can be significantly improved
by applying network coding [12]. The security of network coding was designed so
that the message can be sent to the receiver without leaking any information to
the eavesdropper [3]. Thanks to the security and high communication efficiency,
network coding has been applied to network monitoring [8] and distributed stor-
age systems [5].

This paper proposes secure NC-FLS, by invoking constructive results in net-
work coding. In NC-FLSs, when a set of models parameters needs to be trans-
mitted, the sender(the server or a client) will send a linear combination of these
model parameters. These transmitted vectors are linearly independent and are
transmitted over different links respectively. Thus, when the receiver (a client or
the server) receives these vectors, it can obtain the original model parameters.
Meanwhile, if there exists an eavesdropper who can obtain the messages from
one link of the transmission network, it cannot obtain any model parameter.
Compared with existing FLSs, NC-FLSs have the following three advantages:

– Security and Privacy: Most existing secure FLSs require high computa-
tional or communication costs. However, NC-FLSs only require negligibly
higher computational and communication costs than the FLS which doesn’t
encrypt the transmission parameters at all. Meanwhile, NC-FLSs can also
prevent information leakage, even if there is an eavesdropper who can obtain
the transmitted messages from one link of the transmission network.

– Communication Efficiency: Existing FLSs only try to reduce the commu-
nication costs without considering the structure of the transmission network.
While NC-FLSs can reduce the communication rounds typically. In the section
of Related Work, we will give an example to prove that the communication
rounds are halved by applying network coding.

– Applicability (bonus): In NC-FLSs, the construction of network coding is
independent of FLS. Any other FLS can be upgraded to its NC-FLS version
which has all the properties of the original FLS, and also have the proper-
ties of NC-FLS (higher security, higher privacy and higher communication
efficiency).
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2 Related Work

2.1 Federated Learning (FL)

The learning task in a federated learning system is solved by a loose federation
of participating clients which are coordinated by a central server. Each client
applies its local data to compute and sends out the model parameters with
the local data kept private and secure. Based on the distribution characteristics
of clients’ data, [19] categorizes federated learning into horizontal, vertical and
federated transfer learning.

Horizontal federated learning applies to the scenarios that clients’ data has a
lot of overlap on features but a little on IDs. Thus, all the clients would share the
same model. Based on Asynchronous SGD [4,17], proposed a horizontal feder-
ated learning system for Google Gboard updates. Considering that the updated
models may reveal information on local data, [16], based on additively homo-
morphic encryption, introduced an FLS to protect the privacy of these updated
models. The public key is known to the server and all the clients. However, only
do the clients know the secret key. NC-FLS can be applied to all of these three
categories. We only consider the horizontal federated learning in this paper.

2.2 Network Coding (NC)

The basic idea of network coding [15] is to improve security and communication
efficiency by mixing information in the middle of a transmission network. To
improve the robustness and throughput of the transmission network, the data
transmitted between devices are encoded on the sender device and decoded on
the transmission destination device by network coding techniques, which can be
simply algebraic algorithms. The encoding and decoding algorithms on the data
can accumulate various kinds of transmission tasks. The encoded data requires
fewer transmissions than sending the original data, but also need more processing
at intermediary and terminal nodes. The raw idea of Network coding is proposed
to improve the throughput of two-way communication through a satellite and
recent works [9,13] focus on improving network coding transmission efficiency
and security.

2.3 Differential Privacy (DP)

Differential privacy ensures that any change of an item of a dataset doesnot
(substantially) affect the mechanism outcome information to protects privacy.
A random mechanism M : D → R satisfies (ε, δ)-differential privacy [7], which
influences the intensity of security protection which will affect the accuracy per-
formance and efficiency. if for all local data sets D1,D2 ∈ D differing on at most
one element, and all S ⊂ R,

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ. (1)

In this paper, we will employ the differentially private stochastic gradient
descent algorithm (DP-SGD) proposed by [1]. We propose an NC-FLS based on
DP-SGD, to show that NC-FLS is compatible with the other system.
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Fig. 1. Examples of NC-FLS, (a) downlink, (b) uplink.

3 A Simple NC-FLS for Two Clients

In this section, based on horizontal federated learning, we design a simple NC-
FLS to show that NC-FLSs can improve data security, data privacy and trans-
mission efficiency. In this system, each client updates the model parameters
using its local data and then uploads a combination of these model parameters
to the server (Uplink Transmission). After that, the server calculates the aver-
ages of the model parameters of the two clients, and then sends a combination
of these averages back to both the clients (Downlink Transmission). Compared
to the replicate-and-send method, network coding allows the intermediate nodes
to generate output parameter by encoding previously received input parame-
ters. Thus, two parameters can be sent out at once, i.e., half of the download
transmission time could be saved by applying network coding.

3.1 Downlink Transmission

We firstly consider the downlink transmission. Although the traditional trans-
mission scheme can be used to improve the transmission rate, it cannot be used
directly, since the data security is too weak. For example, if the eavesdropper
can obtain the messages from the link connecting Node 1 and Client A, then it
can obtain half of the model parameters.

In order to improve the data security, we have designed a new transmission
scheme, shown in Fig. 1(a). Firstly the server calculates the average of the model
parameters w1 and w2 of all the clients, where w1 and w2 can be two real numbers
or two-column vectors with the same length. Then it does not transmit w1 and
w2 to Nodes 1 and 2 directly (before). Instead, the server encrypts the w1 and w2

beforehand. Specifically, the server sends mS,1 = w1 + w2 and mS,2 = w1 + 2w2

to Node 1 and 2 respectively.
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[
mS,1 mS,2

]
=

[
w1 w2

]
[
1 1
1 2

]
(2)

For the intermediate nodes except Node 3, since the number of the messages that
they receive are all 1, each of them simply needs to replicate and sends out the
message it receives from upstream. For the Node 3, it receives the two messages
from Node 1 and 2. It needs to send out the summation of these two messages.
Finally, Client A receives two messages m1,A = w1 + w2 and m4,A = 2w1 + 3w2,
shown in a matrix.

[
m1,A m4,A

]
=

[
w1 w2

]
[
1 2
1 3

]
(3)

Then Client A can decrypt the messages, shown as following.

[
w1 w2

]
=

[
m1,A m4,A

]
[
1 2
1 3

]−1

=
[
m1,A m4,A

]
[

3 −2
−1 1

]
(4)

Similarly, Client B receives

[
m1,A m4,A

]
=

[
w1 w2

]
[
1 2
2 3

]
(5)

From the Max-flow Min-cut Theorem, which proves there exits a minimum
cut that the capacity equals to the maximum flow of the system, the information
rate received by Client A or B cannot exceed 2. Thus, the transmission system
has obtained the optimal communication efficiency. This system can also guar-
antee the security of the data. Because even if there is an eavesdropper who can
obtain the message from one of the links in the transmission network, it cannot
obtain w1 or w2.

3.2 Uplink Transmission

Now we consider the uplink transmission. Our goal is to design a system which
can satisfy the following three requirements.

– Security and Privacy. Prevent the model parameters from revealing to the
eavesdropper who can obtain the messages from one link. Also, prevent the
model parameters from revealing to the server.

– Communication Efficiency. In order to obtain the maximum rate 2, each
client needs to update two model parameters at once and the server is ensured
to be able to calculate two averages.

Specifically, Client A sends out encrypted model parameters u1
A and u2

A, and
Client B sends out encrypted model parameters u1

B and u2
B These four model

parameters mention above are all real numbers or two column vectors with
the same length. Finally, the server need to calculate two averages u1

A+u1
B

2 and
u2
A+u2

B

2 .
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The uplink transmission system satisfying the three requirements above is
shown in Fig. 1 (b). Firstly, Client A computes the updated model parameters
u1

A and u2
A, and Client B computes the updated model parameters u1

B and u2
B.

These four parameters can be four real numbers or column vectors with the same
length. Then, Client A sends mA,1 = uA

1 + uA
2 and mA,4 = uA

1 + 2uA
2 to Node 1

and 4 respectively, and Client B sends mB,2 = −uB
1 −uB

2 and mB,4 = 2uB
1 +3uB

2

to Node 2 and 4 respectively. For the intermediate nodes except Node 4, each
of them simply needs to replicate and sends out the message it receives from
upstream. For the Node 4, it receives the two messages from Client A and B.
It needs to send out the summation of these two messages. Finally, the server
receives two messages m1,S = 2uA1 + 3uA2 + 2uB1 + 3uB2 and m2,S = uA1 +
2uA2 + uB1 + 2uB2 , shown in a matrix.

[
m1,S m2,S

]
=

[
uA1 uA2 uB1 uB2

]

⎡

⎢
⎢
⎣

2 1
3 2
2 1
3 2

⎤

⎥
⎥
⎦ =

[
uA1+uB1

2

uA2+uB2
2

] [
4 2
6 4

]
. (6)

Then we can obtain the two averages by following equation.
[
uA1+uB1

2

uA2+uB2
2

]
=

[
m1,S m2,S

] [
4 2
6 4

]−1

(7)

Based on Eqs. 2 and 7, we have

[
mS,1 mS,2

]
=

[
m1,S m2,S

]
[
4 2
6 4

]−1 [
1 1
1 2

]

=
[
m1,S m2,S

]
[

1
2

0
−1
2

1
2

] (8)

We have shown that this uplink system can be used to upload model param-
eters from the client to the server. Now we prove this uplink system can satisfy
the three requirements.

– Security and Privacy. As shown in Fig. 1 (b) for any link connecting two
node, the message of the link is not a model parameter. Thus, even if the
eavesdropper can obtain the message from one of the links, it cannot calculate
any model parameter. In this uplink system, the server cannot decrypt any
model parameters. The proof is shown as followed. The server can only obtain
m1,S and m2,S , and the relationship between these two messages and the
model parameters. When uA1 , uA2 , uB1 and uB2 are four real numbers, by
solving Eq. 6, we have

⎡

⎢
⎢
⎣

uA1

uA2

uB1

uB2

⎤

⎥
⎥
⎦ = c1

⎡

⎢
⎢
⎣

1
0

−1
0

⎤

⎥
⎥
⎦ + c2

⎡

⎢
⎢
⎣

0
1
0

−1

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

η1
η2
η3
η4

⎤

⎥
⎥
⎦ , (9)

where c1, c2, η1, η2, η3, η4 ∈ R, c1, c2 can be any two real numbers, and
(η1, η2, η3, η4) is one of the solutions of this equation.
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– Communication Efficiency. At once, the server can calculate two averages.
Thus the upload system has already obtained the maximum rate 2.

4 Implementation

In this section, we implement DP-SGD on a two-client NC-FLS. We follow
the system design of NC-FLSs proposed in Sect. 3 using differential privacy on
machine learning algorithms, which we deployed DP-SGD to protect each client’s
local data from the other client. The training process is shown as followed:

Algorithm 1. NC-FLS Server
Require: θ(0) model initialization, the length of θ(0) is 2l

w
(0)
1 ← θ(0)[: l],

w
(0)
2 ← θ(0)[l :]

Send m
(0)
S,1 ← w

(0)
1 + w

(0)
2 to Node 1

Send m
(0)
S,2 ← w

(0)
1 + 2w

(0)
2 to Node 2

for t = 1, 2, . . . do
Wait for m

(t)
1,S , m

(t)
1,S from Node 1 and 2 respectively

Send m
(t)
S,1 ← 1

2
m

(t)
1,S − 1

2
m

(t)
2,S to Node 1

Send m
(t)
S,2 ← 1

2
m

(t)
2,S to Node 2

end for

Step 1. The server initializes model parameters θ(0), and sends out encrypted.
Step 2. Each client receives the model parameters from the server, and then
decrypts it and updates the model using local data by DP-SGD. After that, each
client encrypts the updated model parameters and sends them out.
Step 3. The server receives the messages from two clients, and then computes
the new model parameters. After that, the new model parameters are encrypted
and sent out.
Step 4. Back to Step 2.

The details are shown in Algorithms 1–2, where the detailed process on client B
is similar to client A and omitted.

5 Experimental Results

We conduct experiments on the standard MNIST dataset for handwritten digit
recognition. These samples are divided into two parts, allocating to Client A
and Client B. Specifically, Client A has half of these data consisting of a training
set of NTr

A = 30000 examples, and a test set of NTe
A = 5000 samples. Client

B has the remaining half, i.e., NTr
B = 30000 and NTe

B = 5000. The digits have
been size-normalized and centered in a fixed-size image with size 28 × 28. [1]
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Algorithm 2. NC-FLS Client A

Require: Dataset X
Require: Superparameters of Differentially private SGD

for t = 0, 1, . . . do
Receive and Decryption
Wait for m

(t)
1,A, m

(t)
4,A from Node 1 and 4 respectively

θ(t)[: l] ← 3m
(t)
1,A − m

(t)
4,A

θ(t)[l :] ← −2m
(t)
1,A + m

(t)
4,A

Differential private SGD
θ
(t+1)
A is obtained by training θ(t) based on X

Encryption and Send
Divide θ

(t+1)
A into two vectors u

(t+1)
A1

, u
(t+1)
A2

:

u
(t+1)
A1

← θ
(t+1)
A [: l]

u
(t+1)
A2

← θ
(t+1)
A [l :]

Send m
(t+1)
A,1 ← u

(t+1)
A1

+ u
(t+1)
A2

to Node 1

Send m
(t+1)
A,4 ← u

(t+1)
A1

+ 2u
(t+1)
A2

to Node 4
end for

only demonstrated the training of deep neural networks with centralized data.
While in this paper, we will demonstrate the training with local data and with
NC-FLS respectively.

This section is divided into two parts: “without Differential Privacy” and
“with Differential Privacy”. In each part, we will respectively show the train-
ing with local data and with FL. There are four experiments using the same
convolutional neural network (CNN). The network architecture consists of two
convolutional layers followed by one fully connected layer. The first convolutional
layers use 8 × 8 convolutions with stride 2, followed by a ReLU and 2 × 2 max
pools, with 16 channels. The second convolutional layers use 4 × 4 convolutions
with stride 2, followed by a ReLU and 2 × 2 max pools, with 32 channels. The
first convolution outputs a 11 × 11 × 16 tensor for each image, and the second
outputs a 2 × 2 × 32 tensor. The latter is fattened to a vector that gets fed into
a fully connected layer with 32 units.

For each client, we set the batch size L = 300, so the ratio q = L/NA = 0.01
and the number of epochs E = Tq, where T is the number of training steps.

5.1 Without Differential Privacy

Training with Local Data. We first show the training using Client A’s local
data without DP. The number of the training data is NA = 30000. The training
result is shown in Fig. 2(a). In 15 epochs (1500 steps), the testing accuracy can
reach 98.45%.

Training with FLS non-NC. we show the training with all the data with
federated learning with non-NC,. The number of the training data is NA + NB .
The training result is shown in Fig. 2(b). In 15 epochs (1500 steps), the testing
accuracy can reach 99.07%.
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Fig. 2. Results on the accuracy for different models without differential privacy. (a) is
trained using Client A’s local data only (non-FL). While (b) is trained on FLS without
using NC and (c) is trained by NC-FLS without uploading local data. With learning
rate η = 0.15, we achieve an accuracy 98.45%, 99.07% and 99.05%, respectively.

Training with NC-FLS. Now we show the training using NC-FLS, which is
depicted in Sect. 3. In this model, two clients collaborate train the same model
without uploading the local data. The training result is shown in Fig. 2(c). In 15
epochs (1500 steps), the testing accuracy is improved to 99.05%, which can be
considered as the same accuracy as Fig. 2(b).

5.2 With Differential Privacy

Now we consider the models with SGD-DP. Similar to the part above, we will
also show the training with only local data and with NC-FLS respectively. In
each experiment, we will show the results on the accuracy of different noise levels:
σ = 4, 2, 1.

Training with Local Data. In this non-FL model (with SGD-DP), only is
Client A’s data used. The training results for different noise levels are shown in
Figs. 3(a), 3(d) and 3(g).

Training with FL-non-NC. In this FL model (with SGD-DP) without using
network coding, with both data on Client A and Client B. The training results
for different noise levels are shown in Figs. 3(b), 3(e) and 3(h).

Training with NC-FLS. This NC-FLS (with SGD-DP) is depicted in Sect. 4.
In this model, Client A trains the model with the help of Client B whose local
data is kept secure and private. The training results for different noise levels are
shown in Figs. 3(c), 3(f) and 3(i).

Compare the training with only local data, FL-non-NC and NC-FLS, we can
observe the following results.

1. NC-FLS can achieve as good accuracy as FL-non-NC while having a more
fluent raise curve of training and testing performance. The NC-FLS on SGD-
DP saves about 15% training time than FLS without network coding by
reducing communication costs.
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Fig. 3. Results on the accuracy for different noise levels on MNIST. (a), (d) and (g) are
trained only using Client A’s data (non-FL), (b), (e) and (f) are trained on FL without
using network coding. While (c), (f) and (i) is trained by NC-FLS without uploading
local data. For the non-FL models, with δ set to 10−5, we achieve testing accuracy
89.8%, 93.8% and 95.5% with σ being 4, 2 and 1, respectively. For FL-non-NC and
NC-FLS, with δ set to 10−5, we achieve testing accuracy 92.7%, 95.8% and 97.1% for
FL-non-NC and 92.9%, 95.8% and 97.2% for NC-FLS. In all cases, the slot size is set
to 300 (q = 0.01) for each client.

2. When the δ is fixed, with decreasing noise level, the testing accuracy grows
and the privacy of the data is better (ε is smaller) on all three systems.

3. When the noise level is fixed, the testing accuracy of the non-FL model is
around 2% lower than systems using FL. The raise of the accuracy of the
non-FL model has a greater fluctuation than NC-FLS.
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Table 1. The overview experimental accuracy performance and time budget of training
with SGD-DP on non-FL, FL-non-NC and NC-FLS. As shown, the NC-FLS can achieve
the same accuracy while saving training time by reducing communication cost between
devices.

Accuracy σ = 4 σ = 2 σ = 1

non-FL(client A) 89.8% 93.8% 95.5%

FL-non-NC 92.9% 95.8% 97.2%

NC-FLS 92.7% 95.7% 97.1%

Traning Time (min) σ = 4 σ = 2 σ = 1

non-FL(client A) 8.33 8.16 8.07

FL-non-NC 46.55 46.58 45.83

NC-FLS 39.58 38.78 37.25

6 Conclusion and Future Work

We propose new a federated learning system suitable for all kinds of decentral-
ized privacy-preserving and security machine learning models, NC-FLS, which
is a bridge between network coding and federated learning. NC-FLS is helpful
to improve the network throughput, data privacy and data security with the
imperceptible higher computational cost on the local device while saving more
communication time which is shown around 15% of time-saving in our exper-
iment. Since our approach applies directly to gradient transmission, it can be
adapted to any other FLS, and the properties of the original FLS are preserved.
Thus, the NC-FLS is a promising way to solve the high communication cost
problem which is a bottleneck of FL. We also demonstrate a CNN with NC-
FLS, and the accuracy of the model using NC-FLS is around 2% higher than
the model only using local data and no accuracy loss than FLS without network
coding.

This paper only considers two-party FLSs with a fixed NC scheme. For more
participants, communication cost is more significant for system design and time
budget. In the future, a more powerful NC-FLS matching more numbers of clients
applying the random network coding scheme can be implemented.
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Abstract. In this paper, we propose a new privacy-preserving machine
learning algorithm called Federated-Learning XGBoost (FL-XGBoost),
in which a federated learning scheme is introduced into XGBoost, a
state-of-the-art gradient boosting decision tree model. The proposed FL-
XGBoost can train a sensitive task to be solved among different entities
without revealing their own data. The proposed FL-XGBoost can achieve
significant reduction in the number of communications between entities
by exchanging decision tree models. In our experiments, we carry out the
performance comparison between FL-XGBoost and a different federated
learning approach to XGBoost called FATE. The experimental results
show that the proposed method can achieve high prediction accuracy
with less communication even if the number of entities is increase.

Keywords: Machine learning · Federated learning · Privacy
preserving · Big data analysis · Ensemble tree classifier

1 Introduction

When we analyze big data owned by multiple entities, conventional data mining
technology can effectively work on conditioned that all the entities cooperatively
share their own data each other. In reality, however, this condition does not
always hold. On the other hand, there exist many social problems that should
be cooperatively solved by sharing sensitive data among multiple entities for
such as crime deterrence, medical care, and health care for elderlies. Obviously,
solving such sensitive tasks could provide a big impact to our society. On the
contrary, we should keep in mind that it could expose us to great danger, causing
serious incidents of personal data leak. Recently, to alleviate the current diffi-
culty in big data analysis, privacy-preserving data mining (PPDM) has attracted
considerable attention.

There have been developed several PPDM approaches such as homomor-
phic encryption [5] and differential privacy [2]. The former allows us to conduct
c© Springer Nature Switzerland AG 2020
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specific calculations (e.g., addition and multiplication) over encrypted data. The
latter provides us a mechanism of adding noise to ensure a certain level of privacy
from a statistical point of view. On the other hand, however, the above PPDM
approaches may sacrifice accuracy in prediction or impose us some restriction
in data usage. Different from the conventional PPDM approaches where data
are collected and processed at a place, federated learning gives a new possibility
to learn cooperatively among different entities without revealing their own data
[11]; that is, each entity conduct the learning of data locally and provide only
their model updates to a center server. Then, the center server distributes the
whole update information to each entity. If data include confidential information,
a rigorous process is generally required to follow some regulations, resulting in
reducing usability and convenience. However, if only model update information
is shared in learning, it would facilitate to carry out the analysis of sensitive
data.

In many practical machine learning methods, Gradient Boosting Decision
Tree (GBDT) [3] is applicable to many situations. Chen et al. proposed XGBoost
[1] as a more scalable and accurate GBDT method, which improved the compu-
tation speed by using the sparsity-aware algorithm for sparse data and weighted
quantile sketch for approximate tree learning. Unlike other black box approaches
such as deep learning models, the prediction by XGBoost can give a certain
level of explainability, because it gives importance score for feature conditions
in decision trees. Yang et al. [10] introduces federated learning into XGBoost
where gradient information on each tree nodes should be frequently communi-
cated between a center server and entities of data owners. FATE (Federated
AI Technology Enabler) [9], an open-source federated learning framework devel-
oped by WeBank, incorporated secret computation into the Yang et al.’s method.
Although FATE achieves both secure and accurate computations, it generally
requires frequent communications among entities to build each of decision trees.
When the depth of a decision tree is d, it is estimated that about 2d − 1 times
communications are required to carry out model update. Zhao et al. [12] intro-
duced federated learning and differential privacy into GBDT by communicating
models. Although this method can train a model with only tree-by-tree commu-
nication, the noise mechanism to ensure differential privacy often deteriorates
the prediction accuracy of a model.

To solve the above-mentioned problems, we propose a new privacy-preserving
machine learning algorithm called Federated-Learning XGBoost (FL-XGBoost).
The contribution of this paper lies in the development of a practical federated
learning scheme that reduces communications among entities without scarifying
prediction accuracy. In the proposed FL-XGBoost, only one-time communication
is necessary for keep high prediction accuracy in the model update.

This paper is organized as follow. Section 2 provides the preliminaries for
the proposed federated learning approach. Then, we present the proposed FL-
XGBoost in Sects. 3, In Sect. 4, after explaining experimental setups, we show
the performance comparison between FATE and the proposed FL-XGBoost for
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some benchmark data sets. We also give a security analysis in Sect. 5, and Sect. 6
gives our conclusions and future work.

2 Preliminaries

2.1 XGBoost

XGBoost [1] is a novel GBDT method, and it is faster and more accurate
than traditional methods. Since GBDT is composed of multiple decision trees,
the update is performed by determining the split points and leaf weights. For
XGBoost, it performs update using the gradient information of loss function,
instead of the feature values of data. The following Eq. (1) shows the calculation
of the gradient information, denoted by gi, hi.

gi = ∂
ŷ
(k−1)
i

l
(
yi, ŷ

(k−1)
i

)
, hi = ∂2

ŷ
(k−1)
i

l
(
yi, ŷ

(k−1)
i

)
. (1)

The loss function l
(
yi, ŷ

(k−1)
i

)
calculates the error between the current predic-

tion and the true value. In the conventional GBDT methods, the split points are
determined by using the gradient information as impurity and the leaf weights
are determined to minimize errors. Differently, in XGBoost, the split points are
determined to minimize the cost function L(k) (fk) as in Eq. (2), and the leaf
weights ω̂j are analytically determined by quadratic approximation as shown in
Eq. (3).

L(k) (fk) =
n∑

i=1

[
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(
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i

)
+ gifk (xi) +

1
2
hif

2
k (xi)

]
+ Ω (fk) . (2)

ω̂j = − Σi∈Ijgi

Σi∈Ijhi + λ
. (3)

Furthermore, the data set in each node is divided into left and right nodes,
and the gradient information of the nodes are summed up to calculate GL,HL

and GR,HR, respectively. As shown in Eq. (4), these values are used to calculate
score, and the split point is where maximizes this score.

score =
G2

L

HL + λ
+

G2
R

HR + λ
− G2

H + λ
. (4)

2.2 Related Works

FATE [9] uses a scheme consisting of multiple data owners and a central server,
and aggregates the gradients of loss functions at the central server to realize fed-
erated learning of GBDT model. This approach requires the feature values to be
discretized in advance with a common criterion among the data owners. The dis-
crete feature values are discretized candidate split points. Therefore, as the width
of the discretization is reduced, the number of candidate split point increases and
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the loss is reduced, but the security is also reduced, correspondingly. Each data
owner calculates the sum of the gradients of all the data divided at each can-
didate split point and sends it to the central server. The central server sums
these results up and determines the split point. To prevent the central server
from obtaining information from the data owners, the process to aggregate the
gradient information is under encrypted form. What the algorithm depends on
is not the amount of data held by each data owner, but the total amount of
data from all data owners. However, this scheme requires the same times of
communications as XGBoost’s nodes to train the model.

Zhao et al. [12] achieved federated learning of the GBDT model in a scheme
consisting of multiple data owners only, by learning a common model in turn.
Specifically, each data owner updates the model with its own data set and sends
the updated model to the next data owner. Since only its own data and the
updated model are required for model training, the only information required
for communication is the model information. However, there is still a problem
that the model prediction accuracy is sacrificed due to the noise added to satisfy
the differential privacy requirement.

3 Overview of FL-XGBoost

In this section, the details of the proposed FL-XGBoost are described. The
proposed scheme consists of multiple data owners U = {u1, u2, u3, ..., uD} and
the central server S. Throughout this paper, we use the symbols defined in
Table 1.

Table 1. The notations used in this paper.

Notation Description

S Central server

D Number of data owners

U Data owners set

utr Data owner to train the model

Ti The model updated for i times

iter Target number of model updates

Encpk(·) Encryption with a public key pk

Decsk(·) Decryption with a secret key sk

Zhao et al. [12] realized federated learning and differential privacy by commu-
nicating models among the data owners. This method can train the model with
less communication than existing federated GBDT schemes. However, in this
study, the model is assumed to be shared only among data owners. Therefore,
the focus should be on the performance of the model rather than differential
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Fig. 1. The outline drawing of FL-XGBoost. Ti denotes the model that has been
updated for i times.

privacy guarantees. Based on that, we propose a practical federated learning
scheme for XGBoost that significantly reduces the number of communications
with minimal loss. To accomplish this, we implemented a method to guarantee
security without impacting the performance of the model and an algorithm to
select the best data owner for the next training.

3.1 Secure Model Updates Among Multiple Data Owners

The scheme of Zhao et al. [12] consists of multiple data owners only and updates
the model in a predetermined order. Therefore, it is possible to identify the data
owner that updated the model. Furthermore, each data owner can easily obtain
statistical information of other data owners, since each decision tree is learned
by a single data owner and such trees are generally considered as statistical
information.

In order to solve the above problems, we propose a scheme in which a central
server S is introduced. The outline of FL-XGBoost is shown in Fig. 1. In FL-
XGBoost, u ∈ U learns Ti from its own data set, similar to the method of Zhao
et al.

The difference is that the communication is done via S to prevent identifying
data owner utr who updated the model. Since this utr is selected from U by S
according to the algorithm described below, the other u ∈ U cannot identify utr.
The model is learned by repeatedly communicating model information between
S and each utr selected by S to update the model. Here, all data owners share
the encryption keys in advance and send the encrypted information to S so
that S cannot obtain the information. In addition, communication is performed
using a secure communication channel, and the communication content is not
intercepted.

3.2 FL-XGBoost with Random and Uniform Data Owner Selection

Random selection is the simplest way for S to select utr from U . However, such
selection of utr may contain a bias, impacting the performance of the trained
model. Therefore, utr needs to be selected uniformly from U . Different from
that, Zhao et al.’s method selects utr in a predetermined order, and each data
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Algorithm 1: Learning algorithm of FL-XGBoost-R
1.1: for i ← 1 to iter do
1.2: if i is a multiple of D then
1.3: S creates Uorder.
1.4: end
1.5: S selects utr according to Uorder.
1.6: S sends Encpk(Ti−1) to utr.
1.7: utr decrypts Encpk(Ti−1) to obtain Ti−1.
1.8: utr updates Ti−1 with its own data to obtain Ti.
1.9: utr encrypts Ti and obtains Encpk(Ti).

1.10: utr sends Encpk(Ti) to S.

1.11: end

owner is selected for the same number of times. This is risky because it is easy
to obtain a set of trees trained by the same data owner.

Based on the above, we propose FL-XGBoost-R, which uses an algorithm
to randomly and uniformly select the data owners. Algorithm 1 shows details.
First, S creates Uorder, where U is randomly sorted. Then, select utr according
to Uorder until all data owners are covered. Such cycle is repeated.

3.3 FL-XGBoost with Data Owner Selection Based on Prediction
Confidence

Even if S selects utr from U uniformly, the model’s learning may not proceed
equally for all u ∈ U . To obtain an unbiased trained model for the U , we propose
FL-XGBoost-G, which selects utr using |g|, the absolute value of g.

The gradient of the loss function is denoted by g, and |g| represents the
magnitude of the error between the predicted and true values. Hence, the sum
of |g| of the data held by u ∈ U represents the confidence of the prediction of
that data set.

Data sets with low confidence is considered to be untrained, so u ∈ U with a
small

∑ |g| should be selected preferentially. However, for an imbalanced dataset
where the number of data per class of labels varies greatly, the data with majority
class will dominate

∑ |g|. Also, the comparison is difficult when the amount of
data owned by each u ∈ U is different, since

∑ |g| depends on the amount of
data owned. Considering the above problems, we use Gave, the mean value of |g|
per class of labels, to be the selection index, as shown in the following equation
(5).

Gave =
Gpos

pos
+

Gneg

neg
. (5)

Here, pos, neg denote the amount of positive and negative data, respectively.
Gpos and Gneg denote

∑ |g| for positive and
∑ |g| for negative data, respectively.
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Algorithm 2: Learning algorithm of FL-XGBoost-G
2.1: for i ← 1 to iter do
2.2: if i ≤ D then
2.3: S selects utr with FL-XGBoost-R.
2.4: end
2.5: else
2.6: S selects u ∈ U with the largest Gave as utr.
2.7: end
2.8: S sends Encpk(Ti−1) to utr.
2.9: utr dectypts Encpk(Ti−1) and gets Ti−1.

2.10: utr updates Ti−1 with its own data to obtain Ti.
2.11: utr encrypts Ti and obtains Encpk(Ti).
2.12: utr computes Gave.
2.13: utr sends Encpk(Ti) and Gave to S.

2.14: end

Algorithm 2 shows details. FL-XGBoost-R is used for the first round. Then
utr transmits Encpk(Ti) as well as Gave to S. This implies that after the first
round, S has Gave of all u ∈ U . Thereafter, S selects u ∈ U with the largest
Gave as utr.

4 Experiments

In this section, we describe experiments using open data sets to verify the use-
fulness of the proposed methods. In the scheme of the proposed methods, all
elements of U own independent datasets and share the same feature space and
label space. For this purpose, we divided the dataset into D subsets horizontally,
and performed the experiments assuming that each subset is a dataset owned by
u ∈ U . We also compared the proposed methods with the federated XGBoost
implemented in FATE and the XGBoost trained on the whole dataset.

The experimental environment is UBuntu 18.04 with 64[Gb] RAM, and the
programming language is Python.

4.1 Data Set

Table 2 shows information on the four binary classification datasets used in the
experiment. For brevity, we named the datasets as ‘Arcene’ for the Arcene Data
Set [6], ‘Biodeg’ for the QSAR biodegradation Data Set [8], ‘Credit’ for the
Credit Card Fraud Detection [4], ‘German’ for the German Credit Data [7] in
this paper. Basically, accuracy is the evaluation index for the models, but only
for ‘Credit’, we use the F1-score to take account for the imbalance of the number
of data per class.
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Table 2. Information of the dataset used in the experiment.

Dataset Number of data Number of features

Arcene [6] 729 10000

Biodeg [8] 854 41

Credit [4] 230693 30

German [7] 810 20

4.2 Results

We conducted verification experiments with open data sets for the existing and
proposed methods and the results of the experiments are shown in Table 3.
Table 3a shows the results of XGBoost trained on the entire dataset, and Table 3b
shows the results of FATE’s federated XGBoost with the number of candidate
split points set to 10000. The number of candidate split points is a hyperparam-
eter, which controls the trade-off between security and prediction accuracy and
was set as 10000 because the result was almost the same as Table 3a at 10000.
Table 3c shows the results for FL-XGBoost-R and Table 3d shows the results
for FL-XGBoost-G. The proposed methods were tested for various values of D
because D is considered to affect the results.

First, we compared the results of the proposed methods. From Table 3c and
Table 3d, FL-XGBoost-G shows better results for all datasets in case D ≤ 10.
However, in case D = 15, 20, FL-XGBoost-R shows better results depending on
the dataset. This is because the effect of outliers on the value of Gave increases
as D increases. Some data sets have outliers that deviate from the distribution
of other data, and generally such data are prone to large prediction errors. The
number of outlier data is generally small and does not affect Gave in large data
sets, but in the case of small data sets, such as when D is large, the outlier
affects Gave. Therefore, the data owner with outliers is preferentially selected.
This may deteriorate accuracy depending on the dataset.

Next, we compared the results of the existing methods with those of the pro-
posed methods. FATE’s federated XGBoost realized model training with little
or no loss, given that the results in Tables 3a and 3b are almost identical. Com-
paring this with Tables 3d, FL-XGBoost-G achieves the same level of prediction
accuracy when D is small. However, as the value of D increases, the prediction
accuracy of the proposed methods deteriorates in all datasets.

This is because the impact of outliers on Gave increases as D increases.
Some data sets have outliers that deviate from the overall data distribution, and
generally such outliers may lead to large prediction errors. The number of outlier
data is generally small and does not affect Gave in large data sets, but when D
is large and the entire data set is divided into subsets containing fewer data, the
outlier in a subset may have more impact on Gave. Therefore, the data owner
with outliers is preferentially selected. This may deteriorate accuracy depending
on the dataset.

This is because the proposed methods uses a single owner’s data to update
the model, and therefore the amount of data available for updating is reduced.
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Table 3. Experiment results of prediction accuracy for the existing and proposed
methods using open data sets. (a) and (b) show the result of the existing methods, and
(c) and (d) show the result of the proposed methods.

(a) The results of XGBoost trained on the entire dataset

Arcene 0.850 ± 0.00

Biodeg 0.826 ± 0.01

Credit 0.850 ± 0.00

German 0.790 ± 0.01

(b) The result of the federated XGBoost implemented in FATE

Arcene 0.850 ± 0.00

Biodeg 0.826 ± 0.01

Credit 0.850 ± 0.00

German 0.792 ± 0.02

(c) The results with FL-XGBoost-R

D 3 5 10 15 20

Arcene 0.850 ± 0.00 0.690 ± 0.00 0.740 ± 0.02 0.700 ± 0.00 0.650 ± 0.00

Biodeg 0.831 ± 0.01 0.828 ± 0.02 0.826 ± 0.02 0.842 ± 0.01 0.840 ± 0.01

Credit 0.841 ± 0.00 0.841 ± 0.00 0.838 ± 0.00 0.838 ± 0.00 0.828 ± 0.01

German 0.772 ± 0.02 0.750 ± 0.02 0.750 ± 0.01 0.724 ± 0.02 0.716 ± 0.02

(d) The results with FL-XGBoost-G

D 3 5 10 15 20

Arcene 0.850 ± 0.00 0.700 ± 0.00 0.740 ± 0.02 0.750 ± 0.00 0.650 ± 0.00

Biodeg 0.848 ± 0.01 0.830 ± 0.00 0.826 ± 0.01 0.828 ± 0.00 0.818 ± 0.01

Credit 0.861 ± 0.01 0.841 ± 0.00 0.843 ± 0.01 0.840 ± 0.01 0.812 ± 0.01

German 0.774 ± 0.02 0.764 ± 0.04 0.759 ± 0.02 0.731 ± 0.01 0.720 ± 0.01

In contrast, FATE’s federated XGBoost algorithm is unaffected by the amount
of data owned by each data owners as long as the total amount is the same.
Improving the accuracy with large D is an issue for future works.

5 Security Analysis

In this section, with the precondition that a secure communication channel is
used so that the transmitted contents are not intercepted, we provide security
analysis of the proposed FL-XGBoost with the following assumptions of attack-
ers.

– Server S being honest-but-curious
– Data owners U being honest-but-curious
– Passive Attack being the only attack method

Here, Passive Attack means that there is no collusion among the participants of
the scheme, and each attacker attacks based on the information obtained through
correctly following the scheme. In addition, the purpose of each attacker is as
follows.

1. S aims to obtain:
• model information of Ti,
• personal labels and feature values, and/or
• number of data per class of label of u ∈ U .

2. U aim to obtain:
• utr for each update, except where the attacker data owners themselves

are utr,
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• number of data per class of label of u ∈ U other than the attacker data
owners themselves, and/or

• labels and feature values of individuals belonging to u ∈ U other than
the attacker data owners themselves.

Here, the trained models are intended to be shared only with u ∈ U , so they
do not want this information to be known by S. Also, each tree in the model is
considered to be statistical information of u ∈ U , so it is necessary to prevent
the identifying the data owner who trained each tree.

In addition, the information received by each attacker is assumed to be as
follows.

1. Information received by S:
• utr for each update,
• Encpk(Ti)(i = {0, 1, 2, ...}),
• Gave (only in FL-XGBoost-G).

So we need only consider security of FL-XGBoost-G.
2. Information received by U :

• Ti (i = {0, 1, 2, ...}).

5.1 Security Against the Central Server

The Gave and model information transmitted in FL-XGBoost is calculated from
the gradient information of the loss function. Therefore, we first consider the
information leaked from the gradient information. In the case of binary clas-
sification, when the prediction is ypred and the true label is y, the gradient
information g is given by following Eq. (6).

g = ypred − y. (6)

ypred represents probability and 0 ≤ ypred ≤ 1. It can be inferred that the sign
of g represents y, since g ≥ 0 if y = 0 and g < 0 if y = 1.

No useful information from what S receives can be obtained from the
encrypted information Encpk(Ti) without a key. Also, since Gave in equation
(5) is the sum of the mean values of all classes of label of |g|, it is not possible
to obtain the sign of g and the number of data used in the calculation from its
value. Hence, S cannot get the desired information.

5.2 Security Against the Data Owners

First, we consider whether it is possible to identify utr who updated the model.
Since utr is selected by S, no one other than utr and S are informed of the
selected u ∈ U . However, in the case of D = 2, utr can be identified by excluding
its own learned trees. Apart from that, in the case of D > 2, u ∈ U cannot
identify utr because of its indistinguishability. From the above, it is not possible
to obtain information on specific data owners from the trained models. Hence,
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the attacker cannot even get the number of data per class of labels that u ∈ U
owns.

Next, we examine the risk of personal information leakage from the model
information. Specifically, we divide the model information into thresholds and
leaf weights, and consider the information that can be leaked from each.

The thresholds are determined from the feature values, and thus the values
correspond to the feature values of any individual. Therefore, if a feature value
is unique, we can identify whose data were used to train the model.

Since λ and h in Eq. (3) which shows the leaf weights are larger than 0, the
sign of the leaf weights is determined by

∑
g of the data in the leaf data set.

Therefore, the sign of individual g cannot be identified from
∑

g, as long as the
number of data in the leaf data set is sufficiently large. However, in an extreme
case where there is only one data in the leaf data set, the sign of the leaf output
can indicate the label of that individual. As a result, if such individuals can be
identified, the attacker can obtain the desired information.

6 Conclusion

In this study, we propose a practical federated learning scheme for XGBoost that
significantly reduces the number of communication cycles compared to existing
federate approaches. The proposed method achieves the same level of prediction
accuracy as existing methods when each data owner has a sufficient amount of
data. However, as the amount of data owned by individual data owners decreases,
the performance of the models deteriorates. It is also found that in extreme cases,
there is a risk of leakage of sensitive personal information from thresholds and
leaf weights. This needs to be resolved by imposing some constraints on the
training of the model.

Our future work is to refine the scheme to be more practical by solving the
above-mentioned problems and by implementing a method of sharing encryption
keys and a secure way of utilizing Gave.
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Abstract. Identified the specific features from the instances belong to
a certain class label is meaningful, the “purified” feature representation
contains such label information can be shared with other feature learning.
Besides, it is essential to distinguish the sample association relationship
behind the multi-label da-tasets, which is conducive to improve the per-
formance of the algorithm. However, most algorithms aim to capture the
mapping between instances and labels, while ignoring the information
about instance relations and label cor-relation hidden in the data struc-
ture. Motivated by these issues, we leverage the deep network to learn the
special feature representations without aban-doning overlapped features.
Meanwhile, the Euclidean metric matrices are leveraged to construct the
diagonal matrix for the diffusion function, it en-sures that the results
of model training by similar instance features are con-sistent. Further,
considering the contributions of these feature representation are different
and have influences on the final prediction results, thus the self-attention
mechanism is introduced to fusion the other label specific in-stance fea-
tures to build the new joint feature representation, which derive dynamic
weights for multi-label prediction. Finally, experimental results of the
real data sets show promising availabilities of our approach.

Keywords: Multi-label learning · Diffusion · Self-attention · Feature
representation

1 Introduction

Multi-label learning has a wide range of application scenarios such as recom-
mendation system, spam classification, etc [4,12]. Meanwhile, they also bring
with them all sorts of challenges with development. One of the most basic con-
cerns is how to find suitable implicit features of instances, which are corre-lated
to corresponding multi-label, to predict the multi-label of unseen instances. Ide-
ally, the feature representations should have the properties that contains the
common features that associate with multi-label and the special features that
are only related to one label [7]. It is intractable to perfect separate the special
fea-tures of each label from the entire multi-label set. Hence we more prefer
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to learn a special feature representations, which partially contain the common
representa-tion apart from the unique characteristics corresponding to the multi-
label com-ponent, both consistent and diversity properties should consider in
such partially disentangled way [5].

In summarize, the feature representation obtained in incompletely disentan-
gled approach has the following advantages: (a) consistency and diversity: the
learned latent features emphasized the consistency on the entire multi-label, and
meanwhile the diversity of the individuals of each instance are not ignored [1,3].
(b) order independence: generally speaking, for traditional multi-label learning
algorithms, rearranging the label set as a new sequential set to obtain the feature
mapping may lose the certain generalization ability. However, our method main-
tains the generalization ability to fit those unseen test instances [6]. (c) rotation
invariance: the inputs are mapped to special features of the hidden layers in
deep network, then we use the Euclidean distance matrix to find the new rota-
tion invariance representation of special features [11]. making full use of instance
relations provide a new idea to tackle with the multi-label learning, which has
become a worthy research directions of machine learning.

As mentioned by [8,12,13], we assume that multiple labels are sampled from
one or more underlying unknown distribution, which could derive the spe-cial fea-
ture representation and united it as a new joint representation. Features learning
from multi-label may play a different role during the training process. Therefore,
we assign a different weight to each special feature in each task, and intuitively,
these weights are the measure of the importance of features for dif-ferent multi-
label components.

In our algorithm, to address the special feature representation, we utilize an
in-completely disentangled method to conduct the supervised learning. First, we
propose to use each class label to train the latent special features through the
deep neural networks and effective increase the tolerance of variation of deep
neural network. In fact, the underlying assumption reveals the special features
sharing with the self-attention weights and preserving their special features from
different instances, but the latent common information is retained without re-
movement. They can be reappeared through self-attention from other features
[14]. On that basis, we propose a Partially Disentangled Latent Relations for
Mul-ti-label Deep Learning that we call PDLRMDL. In details, our method also
utiliz-es a deep neural network to encode the complementary of multi-label sets,
and maintain the similar instance with the similar label sets through graph-
based dif-fusion function [10]. The self-attention weight associates the entire
feature repre-sentation with predictive current label. Finally, we also give the
experiments of PDLRMDL to verify the effectiveness of our method. The main
contributions of this paper described as follows:

(1) The PDLRMDL extract the special representation without abandoning the
common information and share the other latent feature representation with
cur-rent feature learning. In order to reconstruct the joint feature represen-
tation, we adopt the self-attention to help improve the performance of the
model.
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(2) Specifically, the diffusion function helps the PDLRMDL encourage the con-
sistency of similar instances and corresponding label sets. It spread the in-
stance information to the predicted label set, which encourage the similar
in-stances have the similar label sets.

(3) We calculate the instance distance through the Euclidean distance metric to
construct the symmetric adjacency matrix with zero diagonal. In this way,
the back propagation in diffusion function can be ensured.

2 Problem Formulation

Given whole multi-label example set X :=
{
xi ∈ R1×d

}N

i=1
, select the first l

examples as the training instance set Xtr :=
{
xi ∈ R1×d

}l

i=1
, and the corre-

sponding multi-label set is Ytr :
{
yi = (y1

i , y
2
i , · · · , yK

i )
}l

i=1
, where yi ∈ {0, 1}K

,each training ex-ample is belong to a discrete label subset for K classes. The
remaining U = N −L examples xi,i ∈ {l+1, · · · , N}, denoted the testing exam-
ple set Xte :=

{
xi ∈ R1×d

}N

i=l+1
, they are unlabeled. Our goal in the multi-label

learning is to utilize the known information to train the classifier, which needs
to predict the accurate mapping relations between the unseen testing instances
and the corresponding multi-label.

3 Partially Disentangled Latent Relations for Multi-label
Deep Learning

In this section, we present the simple neural network to perform the multi-label
classification. The procedures of PDLRMDL can divide into the following stages.
First, we construct multiple classifiers to fit each training class label for extract-
ing special features; second, the Euclidean distance are adopted to keep the
dis-tance information of similar latent features unchanged, which also provide
the smoothness of the back propagation. Third, the diffusion function graph-
based encourage the smoothness so that the nearby instances would have the
similar predicted label sets. Finally, the self-attention co-regularizes the feature
repre-sentation that carves up the special features into new joint features. This
following section mainly elaborates the problem definition.

3.1 The PDLRMDL for Multi-label Learning

Deep neural networks have been widely adopted in various fields, and it can
penetrate the multi-label classification task. We are interest in leveraging the
capacity of nonlinear function approximating of deep neural networks, to learn
the special feature representation with the labeled training set automatically
[9]. In this way, it also can reduce the inadequacy caused by artificial design
features. Most importantly, it has achieved excellent classification performance,
which is superior to the existing multi-label classification algorithm in the appli-
cation scenarios that meet specific conditions. The PDLRMDL is divided into
the following parts, which will be discussed separately in the following sections
as illustrated by Fig. 1.
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Fig. 1. The illustration of the novel Deep Networks for Multi-Label Observations that
we call PDLRMDL, where i=1,. . . . . . , l.

3.2 Special Representation Learning

The PDLRMDL is composed with K neural networks. Each neural network is a
binary classifier. Each neural network has one input layer, three hidden layers,
and one output layer. The sets of weight matrices Wi and bias vectors bi of
each neural network are denoted as parameter θi, and θi =

(
θ1i , θ

2
i , · · · , θKi

)�,
where superscript i is the index value of neural net-work, e.g., the index value of
class label component. Input of each neural network is sampled from the training
instance set Xtr, The corresponding class label of the training instance is derived
from components of multi-label of the instance itself, e.g., For the k-th neural
network , xi is labeled with the value of k th component of thexi corresponding
to multi-label.

The K outputs of the first two hidden layer are denoted H1,i =
(h1

1,i, h
2
1,i, · · · hK

1,i), H2,i = (h1
2,i, h

2
2,i, · · · hK

2,i) respectively, the K outputs Zi =
{z1i , z

2
i , · · · zKi } of the last hidden layer are the K special representations of

instances.
Through the above methods, we learn the special representation of each in-

stance corresponding to each class label, meanwhile preserve the effect of over-lap
feature representations. The learned special feature representation must main-
tain complementary information as large as possible, and it will suffer extreme
sensi-tivity to instance’s translation and rotation during the training process.
It means the algorithm we propose should maintain the instance’s relations is
invariance. Then, we share the special feature representation with other fea-
tures corre-sponding to other multi-label components in the subsequent learning
process. Therefore, it is tractable to capture instance relations and multi-label
relations in multi-label classification task.
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3.3 Invariant Special Representation to Translation and Rotation

In order to build the diagonal matrix that meets the requirements of diffusion
function, we first get the Euclidean distance matrices, which is used to calculate
matrix used in diffusion function in the subsection 3.4. In particular, the method
takes K dimensional vector {Zi}li=1 as inputs, and each hidden layer implements
the task that calculate the distance among latent features. The general idea
is to produce a zeros on the diagonal symmetric initial matrix D̃ and then

constrain the initial matrix D̃ through a term D̃j,k
i ∈

∥
∥
∥zji − zki

∥
∥
∥
2

2
for i = 1, · · · , l,

j, k = 1, · · · ,K and it is equivalent to − 1
2WD̃W , where W = − 1

2WD̃WT. Next,
through the above equivalent matrix transformation, a posi-tive semi-definite
matrix L ∈ R(K−1)×(K−1) of EDM D̃ can be obtained. Thus, the gram matrix
M ∈ RK×K corresponding to the distance matrix can be calculated by the
following identity:

M jk
i =< dji , d

k
i >2 =

1
2
(D1k

i + Dj1
i − Djk

i ) (1)

where dji = zji − z1i , j = 1, · · · ,K, i = 1, · · · , l, and conversely, the distance
matrix can be derived as:

Djk
i = (Mkk

i + M jj
i − 2M jk

i ) (2)

It should be noted that the gram matrix have the specified structure with stack-
ing the arbitrary symmetric matrix L ∈ R(K−1)×(K−1)and zero, which can be
seen in [2]. In fact, we obtain the gram matrix M and distance ma-trix D, which
is derived from the output of the last hidden layers zi,k. Hence, the symmetric
matrix L̃ = 1

2 (Zi + Zi
T) is parameterized and transformed into a positive semi-

definite L through the equation L = sp(L̃), where the sp = g(.) denotes the
softplus activation function, It should be noted that sp = g(.) can also be derived
from preserving the K-1 largest eigenvalues and explicitly setting the rest to 0.
The procedures of EDMs are depicted in Fig. 2.

Through the above process, we know that the gram matrix M and distance
matrix D corresponding to the special representation can be obtained from
the Eq.(1) and Eq.(2) respectively. Besides, for gram matrix M we introduce
a penalty term 1

l

∑l
i=1

∑l
k=d+1 λ2

k to our total objective function that drives
gram matrix M towards a specific rank, and for distance matrix D we intro-
duces a penalty term 1

l

∑l
i=1

∑d
k=1 relu(−μk) on negative eigenvalues [2], where

μk and λk represent the eigenvalues of the matrix D and matrix M respectively.
More specifically, the loss term J1for constraining the dimension of the latent
outputs and Euclidean distance matrix respectively are written as follow:

J1 = α1
1
l

∑l

i=1

∑d

k=1
relu(−μk) + α2

1
l

∑l

i=1

∑l

k=d+1
λ2
k (3)

In details, the network is trained by optimizing parameter θi with respect to �J1.
Moreover, it is worth to note that for constraining the rank of M , we select that
the dimension of the hidden layer is automatically less than dimension d, and
the parameter θi updating process does not need to consider the rank constraint.
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Fig. 2. The Derived Processes of the Euclidean distance matrices in PDLRMDL

3.4 The Diffusion Method for Transmitting the Instance Relations

Based on the distance matrix D, we can calculate a symmetric adjacency matrix
A = D+DT, A is a l×K×K symmetric matrix with the main diagonal elements
zero, where the elements of the A are non-negative and ajk

i measure the distance
between the latent vec-tor zji from and the latent vector zki . Further, the weight
Ω for the diffusion method can be calculated from the symmetrically normalized
A by the formula:

Ω = S−1/2 AS1/2 , S = diag(A1K), · · · , diag(AlK) (4)

where S denotes l column vectors with dimension K according to the above
Eq.(4). Then the diffusion function compute latent representation with estimated
label sets Ŷ can be written as:

Z̃ = (I − βΩ)−1
Ŷ (5)

Where 0 ≤ β < 1 is a parameter and Z̃ ∈ Rl×l. Finally, we obtain the class latent
information Z̃i = {z̃1i , z̃

2
i , · · · z̃Ki } for the training instance xi,i ∈ (1, · · · , l). So

far, the final feature representation Z̃i = {z̃1i , z̃
2
i , · · · z̃Ki } has been obtained and

the derived processes are shown in Fig. 3. We are now at the position to fusion
components of feature representation Z̃i = {z̃1i , z̃

2
i , · · · z̃Ki } corresponding to xi,

the self-attention is used to realize this task in the followings.

3.5 The Self-Attention Layer for Multi-label Learning

The most important is we need to share the current special latent feature corre-
sponding to each multi-label component with all the other special features corre-
sponding to remaining multi-label components. In order to deal with such prob-
lem, we introduce the self-attention as a measure of uncertainty to alignment
weight, which defined by:

wj
i =

∑K

j=1
qji tanh(

∑K

k=1
vk
i × z̃ji + bji ) (6)
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Fig. 3. The illustration of the Derived Processes of Diffusion Function in PDLRMDL

wj
i =

exp(wj
i )∑K

j=1 exp(wj
i )

(7)

where z̃ji is the special latent feature corresponding to xi derived from the pre-
vious diffusion method, and parameter vj

i present the alignment weight, which
represent the importance of the j-th special features. Besides, other parameters
qji , and bji are belong to the current label , not depend on the other label di-rectly,
but also can be adjusted from the back propagation of the deep neural network.
Given the above definitions of each latent special features z̃ji and parameters
obtained from the training datasets in an unsupervised way, the self-attention
layer can catch the global connection in multi-label learning and learn the long-
distance multi-label dependence, and the most important thing is that it can
carry out parallel calculation. Meanwhile, in order to spread the latent instance
relations to the self-attention layer in deep neural network, we leverage the diffu-
sion function with transductive learning to transmit the latent instance relations
to our self-attention layer.

3.6 The Proposed Objective Function

According to the basic principle of back propagation and gradient descent etc,
we can obtain the corresponding information during the transfer process and
recon-struction the distance matrix D. Besides, we consider the supervised multi-
label learning and construct the loss term for each single label in multi-label of
the form. There are other standard options for the loss function in multi-label
classifica-tion, such as cross-entropy loss. Now, we formulate our total objective
function. The objective function can be divided into three parts, supervised,
unsupervised and regularization part, the fourth term constrains the diffusion
function to en-sure the smoothness, and the similar instances have similar label
sets.
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J = α1
1
l

∑l

i=1

∑d

k=1
relu(−μk) + α2

1
l

∑l

i=1

∑l

k=d+1
λ2
k

+ α3

∑l

i=1

∑K

k=1

∥
∥yk

i − ŷk
i

∥
∥
2

2
+ α4

l∑

i,j=1

wi,j

∥
∥
∥
∥
∥

Z̃i√
dii

− Z̃j√
djj

∥
∥
∥
∥
∥

2

2

+ α5 ‖θ‖22 (8)

For multi-label learning, our first goal is to get the special feature representa-
tion corresponding to single class label, and then according to these special fea-
ture representations, we leverage the Euclidean distance matrix to learn the new
diagonal matrix with zero, and convey the instance relations to the diffusion di-
agonal matrix. In particular, the diffusion method maintains the consistency of
the similar instances, e.g., maintains the similar instances have the similar labels.
Finally, we utilize the self-attention mechanism to fusion the special features.
More simply, the hidden special feature representation that we incompletely dis-
entangle the by the deep neural network are equivalent to construct a set of the
base vectors, which are corresponding to the multi-label information. Finally,
the training the weight coefficient processes make full use of information corre-
sponding training label sets.

4 Experiments and Discussion

In this section, we present the characteristic of the six real world datasets used
in our experiments and discuss the effectiveness of PDLRMDL. The experimen-
tal results are listed in the Table 1. Then, it is necessary to restore the above
experimental settings and details to facilitate the comparison of experiments fair
comparison. We conduct the experiments to illustrate the impact of different fac-
tors involved in multi-label learning and compare with the other state of the art
methods.

4.1 Datasets

Scene and Flags. The two datasets are coming from the images domain. In par-
ticular, the scene dataset consists of 2407 samples and 6 labels with distinct val-
ue 15 and density value 0.179; and the flags dataset consists of 194 samples and
7 labels with distinct value 54 and density value 0.485. We divide the datasets
into the training and testing sets. The number of epoch is 300 and 100, and we
repeat the experiments for 10 times. We calculate the mean error and standard
deviation of the algorithm, which are shown in Table 1.

Genbase and Yeast. The two datasets are coming from the biology domain.
In particular, the genbase dataset consists of 662 samples and 27 labels with
distinct value 32 and density value 0.046; and the yeast dataset consists of 2417
samples and 14 labels with distinct value 198 and density value 0.303.

Medical and Emotions. The two datasets are coming from the text and music
domains respectively. In particular, the medical dataset consists of 978 samples
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and 45 labels with distinct value 94 and density value 0.028; and the emotions
dataset consists of 593 samples and 6 labels with distinct value 27 and density
value 0.311.

Table 1. Experiments results for different methods(Mean±Variance).

Medical Accuracy Fscore Hamming Scene Accuracy Fscore Hamming

MLKNN 41.35 ± 1.74% 2.77 ± 0.10% 1.87 ± 0.45% MLKNN 57.48 ± 0.76% 18.10 ± 0.01% 9.68 ± 0.61%

KISAR 54.62 ± 50.02% 5.57 ± 0.52% 54.62 ± 49.93% KISAR 31.59 ± 0.35% 17.25 ± 0.98% 68.41 ± 0.35%

MANIAC 52.17 ± 1.83% 33.24 ± 2.76% 9.27 ± 1.23% MANIAC 60.27 ± 1.56% 17.18 ± 0.19% 28.33 ± 0.20%

C2AE 83.39 ± 0.19% 78.70 ± 0.06% 4.12 ± 4.06% C2AE 53.51 ± 6.51% 64.79 ± 4.39% 14.99 ± 3.70%

PDLRMDL 83.72 ± 1.62% 18.56 ± 0.24% 16.29 ± 0.162% PDLRMDL 78.41 ± 4.01% 15.27 ± 9.97% 31.00 ± 3.76%

Emotions Accuracy Fscore Hamming Flags Accuracy Fscore Hamming

MLKNN 13.06 ± 1.68% 26.64 ± 0.71% 29.59 ± 1.30% MLKNN 4.29 ± 1.27% 48.48 ± 1.09% 34.27 ± 2.09%

KISAR 51.68 ± 27.42% 37.19 ± 5.58% 48.32 ± 27.42% KISAR 51.59 ± 22.75% 40.09 ± 27.55% 48.47 ± 22.68%

MANIAC 53.89 ± 0.11% 31.14 ± 19.86% 33.27 ± 3.23% MANIAC 61.39 ± 3.98% 15.24 ± 2.11% 40.30 ± 0.01%

C2AE 46.70 ± 4.46% 61.00 ± 3.81% 27.20 ± 5.75% C2AE 52.07 ± 1.67% 47.41 ± 2.77% 34.87 ± 0.67%

PDLRMDL 63.45 ± 2.46% 27.23 ± 5.27% 36.55 ± 2.45% PDLRMDL 65.91 ± 0.16% 39.92 ± 1.40% 34.09 ± 0.16%

Yeast Accuracy Fscore Hamming Genbase Accuracy Fscore Hamming

MLKNN 14.95 ± 1.04% 30.37 ± 0.01% 20.15 ± 0.89% MLKNN 74.79 ± 1.05% 4.73 ± 0.12% 1.37 ± 0.14%

KISAR 44.81 ± 29.77% 38.45 ± 7.89% 55.19 ± 29.77% KISAR 51.54 ± 22.71% 41.03 ± 26.44% 48.45 ± 22.71%

MANIAC 52.71 ± 1.27% 23.00 ± 0.01% 20.23 ± 3.15% MANIAC 52.18 ± 2.20% 41.03 ± 26.44% 48.45 ± 22.71%

C2AE 46.91 ± 0.59% 40.22 ± 0.96% 24.55 ± 0.29% C2AE 67.68 ± 12.50% 48.83 ± 4.57% 3.50 ± 1.78%

PDLRMDL 75.30 ± 1.52% 40.44 ± 3.92% 24.70 ± 1.52% PDLRMDL 88.13 ± 1.41% 18.45 ± 1.47% 30.24 ± 0.98%

4.2 Comparison Experiments and Discussion

It can be seen from the Table 1, the PDLRMDL we proposed are comparative to
several methods on six datasets in terms of the accuracy index. It also can be seen
that the algorithm has achieved good results in terms of the recall on medical
dataset, which indicates that our predicted results pay more attention on the
nearby instance information and the diversity of features. Thus the performance
of PDLRMDL on scene dataset with fewer labels and lower dis-tinct values
are lower than that of the BR algorithm, but the performance is already quite
competitive by contrast. Compare with other deep neural networks such as C2AE
and MANIC, our method is more suitable for datasets with the abundant label
relations information, even with some unrelated information.

5 Conclusion

In this paper we leverage the simple deep forward neural networks as the frame-
work to tackle with the multi-label classification task. This idea constructs the
different special feature learning classifier for each label. However, the special fea-
ture learning also contains the information should be shared with other latent
feature representations. To motivate it, the self-attention gives dynamic weights
for sharing other feature representation with current features. Besides, in order
to ensure the consistency of the instance correlations for multi-label learning, we
adopt the diffusion function to encourage similar instances contain similar label
information. Taking account the back propagation into the building model, the
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Euclidean distance metric is adopted to ensure the latent feature distance and
provide the diffusion possible for the latter procedures. Finally, the experiment
results also prove that our method is feasible.
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Abstract. Catan is a strategic board game with many interesting prop-
erties, including multi-player, imperfect information, stochasticity, a
complex state space structure (hexagonal board where each vertex, edge
and face has its own features, cards for each player, etc.), and a large
action space (including trading). Therefore, it is challenging to build AI
agents by Reinforcement Learning (RL), without domain knowledge nor
heuristics. In this paper, we introduce cross-dimensional neural networks
to handle a mixture of information sources and a wide variety of outputs,
and empirically demonstrate that the network dramatically improves RL
in Catan. We also show that, for the first time, a RL agent can outper-
form jsettler, the best heuristic agent available.

Keywords: Machine learning · Board game · Catan · Imperfect
information · Hexagonal grid · Reinforcement learning

1 Introduction

Among the challenges toward practical real-world AI agents, this paper focuses
on three:

– learning a task with a general method and no prior domain-specific knowledge
– handling information sources of different kinds (e.g. not only images)
– acting robustly even when only a part of the world can be observed

Games have long served as testbeds for AI research, and recently AlphaZero [10]
presented a general reinforcement learning method that successfully mastered
chess, shogi, and Go, without human knowledge. However, these are determin-
istic perfect information games where agents can use Monte-Carlo tree search
(MCTS), and with simple square-grid representations easily handled by stan-
dard imaging techniques (e.g. CNN). Therefore, that method may not work in
harder domains with imperfect information, stochasticity, or complex state rep-
resentation, where neither MCTS nor CNN are applicable. This paper focuses
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on Catan1 – a famous Euro-style board game that has sold more than 22 mil-
lion copies, and with frequent international tournaments – as a representative of
such complex domains. Catan is an imperfect information and non-deterministic
game, in which agents need to handle not only various observations (hexagonal
board, cards for each player, etc.) but also hidden information and uncertainty
depending on opponents’ private cards and randomness. We integrate a stan-
dard policy gradient method in deep reinforcement learning with self-play, and
introduce cross-dimensional network, a network structure supporting multiple
input and output shapes in a flexible manner, that empirically outperforms the
baseline jsettler.

2 Background and Related Work

2.1 Deep Reinforcement Learning in Two-Player Games

We follow standard notation of reinforcement learning; where an agent learns
via interaction with an environment. For details, readers are referred to a text-
book [11]. Usually, an environment is modeled as Markov Decision Process
(MDP), (S,A, T,R, γ), though many applications of RL are not conforming
Markov property in practice. At each time step t, an agent observes a state
st ∈ S, and chooses an action a ∈ A. The environment changes its state to
st+1 following transition function T , and the agent receives a reward rt. The
policy π : S × A �→ R of an agent is a probability distribution over actions given
an observation. The (ultimate) goal of the learning is to identify the optimal
policy π∗ that maximizes the expected cumulative rewards Ea∼π∗ [

∑
t γt−1rt],

where γ ∈ [0, 1] denotes the discount factor. The Value function Vπ : s �→ R

denotes estimated cumulative rewards, starting at state s and following policy
π. In deep reinforcement learning, policy π and value function V is handled by
using a (deep) neural network as a function approximator, because the state and
action space, S,A, are prohibitively large in most interesting tasks.

Suppose a neural network parameterized by θ takes state s as its input and
yields a probability distribution on actions π(s) as well as an estimate of value
function v(s) as its output. Given a set of state transitions 〈st, at, rt, st+1〉, (one-
step) Advantage Actor Critic updates θ for such direction that increases the
probability of a good action and moves v(st) closer to rt + γv(st+1):

∇θJπ(θ) = ∇θ ln(π(at|st; θ))A(st, at; θ),
∇θJv(θ) = −∇θv(st; θ) (rt + γv(st+1) − v(st))

where A(st, at) is advantage of taking action at at state st, and A(st, at) =
Q(st, at)−V (st) ≈ rt +γv(st+1)−v(st). To prevent premature convergence, the
entropy of the policy is often added to the objective function [7,14].

1 Previously named The Settlers of Catan, renamed for the 5th Edition (2015).
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Application to Two-Player Games. In typical application of RL to two-
player board games, the “agent” stands for the player who is learning, and
the “environment” includes both the opponent, and the rules of a game. The
reward is given only at the termination of a game, as 1, 0, −1 for win, draw, loss,
respectively. Given that agents are not enhanced by game-specific knowledge, the
agent as well as its opponent must start as random players. AlphaZero [10] begins
by gathering game records of random players, then gradually updates the agent
by their experiences and periodically replace the opponent by the learn agent.
Although changing the opponent along during learning makes the environment
non-stationary and may introduce difficulty in training, it is effective to explore
the challenging part of the state space and to improve the agent’s strength. In
our work, we applied reinforcement learning to two-player games in a similar
way as AlphaZero.

There are several major achievements in imperfect information games, includ-
ing Texas Hold’em, Marjong, and StarCraft II. However, their playing strength
is supported by human game records in the target domain [5,13], or by methods
based on counterfactual regret minimization [1] that is usually not applicable to
games due to an intractable number of information sets growing almost expo-
nentially along with the length of a game history.

Residual Convolutional Neural Network. A Convolutional Neural Network
(CNN) is standard technique to handle images. It is also used for making RL
agent in video games to understand the game screen such as Atari [6]. Residual
Neural Networks [4] – or ResNet – is an enhancement for CNN to make learning
efficient by adding residual path between layers. AlphaZero incorporated ResNet
for RL agents in Go, Chess, or Shogi. We introduced alternative network for
Catan and use ResNet as a baseline in comparison.

2.2 Rules of Two-Player Catan

The rules of Catan used for our research, as well as the naming conventions,
matches the official 5th edition [2], but with only two players and no trading
between them. In this game, both players compete to colonize an island repre-
sented by a board of hexagonal tiles. There are 5 resource types – Brick, Lumber,
Ore, Grain, and Wool – which can be spent to make various actions. The first
player to reach 10 Victory Points (VP) or more is considered the winner. VP can
be acquired by various means: placing settlements (1VP) or cities (2VP) on the
board, having the longest road or largest army (2VP), or special development
cards (1VP).

The island of Catan is represented as a board of 19 land hexagonal tiles called
hexes, randomly placed when setting up the game. Tiles can either represent a
desert, or produce one of the 5 resources, in which case they will be assigned a
number between 2 and 12. We will call the edge of a hex a path, and its corner
an intersection.

At the beginning of the game, each player places 2 settlements, each with
an adjacent road, in the following order: player A, player B, player B, player A.
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Table 1. Actions in Catan. The first column denote the type of each action: ‘dice’
means it is mandatory and once, ‘+’ can be performed in any order and any number
of times after ‘dice’, ‘*’ indicates it is allowed only once, but at any time

Type Effect

dice Roll two 6-sided dice. If the sum is 7, every player with 7 or more resources must
discard half of them, and the current player moves the robber. Otherwise, every
hex with the corresponding sum will produces resources, giving one resources to
each settlement adjacent to it, and two for cities.

+ Buy a Road. Spend Brick + Lumber to place one on a path, next to another road.

+ Buy a Settlement. Spend Brick + Lumber + Grain + Wool to place a settlement
next to a road, on an intersection surrounded by unoccupied intersections.

+ Buy a City. Spend 3 Ores + 2 Grains to upgrade a settlement into a city.

+ Buy a Development Card. Spend Ore + Grain + Wool to draw one card from the
development pile, look at it, and add it to your hand at the end of your turn

+ Trade resources with the bank. The default ratio is four of the same resource for
any one resource, but having a settlement or city on a harbor can reduce the rate
to 3:1 or 2:1.

* Use a Development Card. The card is revealed and consumed (see Table 2).

Settlements must be placed on intersections and can not be next to one another.
During each turn, a player can take a sequence of actions under constraints, listed
in Table 1. The robber is a piece located on a hex that prevents production on
it. After rolling a 7 or using a Knight development card, the current player
must move the robber to a new hex. If the other player has a settlement or
city adjacent to this new location, the current player forcibly takes a random
resource. Development cards are shuffled into a face down pile at the beginning
of the game. Each has one of the effects listed in Table 2.

Table 2. Development cards

Knight card Move the robber (see the robber), and increment army size

Road building Place two roads for free

Year of Plenty Take two resources from the bank

Monopoly The opponent gives you all their resources of a stated type

Victory Point Get one victory point

Challenges of Catan. There is no simple winning strategy. To obtain VP,
players should aim for a stable and varied production of resources, by placing
settlements next to high production hexes (with numbers around 7), and near
other promising areas or harbors. What resources are produced also determines
what actions can be used, so players should anticipate them (e.g. to Buy Settle-
ment, a player must setup roads to a suitable intersection in advance). However,
all this is very dependent on the board configuration, the random dice rolls,
and the actions of the opponents (e.g. contention in acquiring empty paths and
intersections), so a good player must constantly adjust his strategy.
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2.3 JSettlers and Research on Catan

JSettlers [8] is an open-source Java implementation of the Catan rules. Among
the many features the environment offers, it contains a hand-coded heuristic-
based agent very often used as a base-line in Catan research. In this study, we
used version 2.2.00 (released on the 3rd of March 2020), and kept the default
agent type proportions: 30% of “smart-bots” and 70% of “fast-bots”. In the rest
of the paper, we will call this agent jsettler. We used JSettlers only for evaluation
purpose (not in training) due to its slow execution speed. Note that its rules do
not perfectly match the official rules (e.g. it doesn’t include the 19 resources
limit), but “official” agents can play in JSettlers with minor adjustments.

The earliest agent used Model Trees trained through self-play [9]. It hasn’t
been compared to JSettlers, but against a human, the author of the paper.

Szite et al. used Monte-Carlo Tree Search in a perfect-information variation
of the game [12]. Their agent reaches 27% winrate with 1000 simulations, and
49% winrate with 10000 simulations, when playing against 3 jsettlers. However,
this method cannot be applicable in the original (i.e. imperfect information) rule.
Additionnaly, it used a hand-coded heuristic, thus domain knowledge.

We have found two papers that used Deep Reinforcement Learning, but they
focused only on a subset of actions: trading. They both used a jsettler agent as
a base and replaced its trading behavior, and compared its performance against
3 jsettlers: one achieved 49% winrate with Deep Q-Learning [3], the other 52%
winrate with online Deep Q-Learning with LSTM [15].

In this paper, our agents do not learn trading – refusing all offers and never
initiating negotiation – due to the limitation in our computational resources. We
assert it is still fair as it does not introduce any advantage for our agents. We
also limit the number of players to two instead of three or more. We argue that
the task is still challenging, and to our best knowledge, this is the first study
in which agents trained by reinforcement learning without domain knowledge
successfully outperform jsettlers.

3 Our Approach

3.1 Training Process

Modified Advantage Actor Critic. Our agent is mostly based on Advantage
Actor Critic. However, to speed up the learning and diversify experiments, some
parallelism has been added. (Although there are similarities, it isn’t A3C [7].)

Instead of playing one game on a single thread, experiences are acquired by
16 parallel workers, each playing 8 games at the same time. Each worker will
cycle through its games, playing one move and saving the experience. Once a
batch of 64 moves has been generated, the worker sends it to the trainer.

Simultaneously, another process is training the neural network on the batches
it receives. After each update, the trainer propagates the weights to all workers.

Since a batch is not sent until it is full, some of the earliest experiences
it contains were played with a slightly older policy. However, since this only
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represents a fraction of the batch, and the tardiness is of only a dozen of training
steps, the off-policy aspect can be considered negligible.

Self-play Against Past Versions. Our agent is trained against a past version
of itself, but each worker uses a different time stamp. Every 50 training steps
(50 × 1000 × 64 moves, around an hour), the worker with the oldest opponent
will update its policy to the most recent one.

This has many different advantages, and its efficiency has been shown in
Fig. 10. This way, the opponents:

– change “slowly”: every 50 steps, only one agent among 16 is changed.
– are varied: they have the behaviors the past trained agent had spanning over

750 steps (∼18 h).
– match the level of the trained agent: the newest opponents are at a level very

close to that of the trained agent.

Policy Activity Loss. In order to encourage exploration, we can add an
entropy gradient as mentioned in 3.2. However entropy only affects legal actions,
as the others being masked. In Catan, some actions are very rare and might be
playable only once every couple of games (e.g. Monopoly). In order to prevent
these actions’ probabilities from drifting into near-zero during the many weights
updates, we added a L2 activity loss on the policy layer. This loss is applied
directly on the logits {pi}i, the raw output before a softmax activations maps
them to probabilities. Thus, it will control the policy by pulling the average
towards 0 and curbing absurdly high or low probabilities. Its empirical effect on
the stability of the learning is shown in Fig. 9.

This final gradient is (with empirical hyper-parameters defined in Table 5):

∇θJ = απ∇θJπ(θ) + αv∇θJv(θ) + αH∇θ

∑

a

π̃(a|s) ln π̃(a|s) + αp∇θ

∑

i

p2i

3.2 Encoding and Network Structure

Brick Coordinate: Adapted CNN for Hexagonal Board. A regular board
of catan contains 19 hexes, 72 paths and 54 intersections. This number being
large for fully-connected networks, we would like to take advantage of the regu-
larity of the board by using Convolutional Neural Network (CNN) layer. How-
ever, typical CNN are tailored specifically for grid-like layouts. There exist some
tricks to fit a hexagonal grid into a regular grid, but the existing ones are not
directly applicable in Catan as we also need to represent the paths (edges) and
intersections (vertices).

Our idea, that we called “brick coordinate” (Fig. 2) was inspired by the double
coordinate method (Fig. 1). By using a 5 × 3 kernel, the neighbors in brick
coordinate considered by the CNN are very similar to the actual neighbors on
the hexagonal board (Fig. 3).
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Fig. 1. Double coordinate Fig. 2. Brick coordinate

Fig. 3. 5 × 3 kernel on brick coordinate

Furthermore, unlike board games like chess or go, where every position rep-
resents the same type of cell, Catan has hexes, paths and intersections that have
radically different behaviors, neighbors, and features. To prevent the convolution
from processing them equivalently, we separate features or actions of different
types in different channels.

Cross Dimensional Neural Network. In most games where CNN can be used
to efficiently process the input state, non spacial features that don’t correspond
to any position can be added as extra channels (e.g. turn channels in AlphaZero).
However, Catan has a lot of such features, as well as actions that are completely
unrelated to a position on the board (e.g. playing a development card, trading,
or ending one’s turn).

Intuitively, we would want to handle them using fully connected layers, but
doing two networks in parallel degenerates performance. To overcome this prob-
lem, we propose using Cross Dimensional Neural Network. The idea is to combine
two networks in parallel, each tailored for processing neurons of different dimen-
sions, and inter-connect them to propagate information from one type into the
other.

For example, in Catan, we would have one series of layers for the 2-
dimensional features, one for scalar features, and interconnections between them
(Fig. 4).

In order to connect features of different dimensions (i.e. brick coordinate
channels and non-spacial features), we will need to either “inflate” or “deflate”
them, and adjust the shape with dense layers. In this paper, we used the
following:

– For inflation, each scalar value is converted to a channel filled with that value.
– For deflation, each channel is reduced to two scalars: its average and variance.
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Fig. 4. Base Cross Dimensional (Xdim)
layer used in our experiment: � is defla-
tion, � is inflation, A is activation

Fig. 5. Residual Cross Dimensional
layer model

Then, we can get the values for each head of the Cross dimensional neural
network by summing the output of both sources and applying an activation.

As shown in Fig. 5, it is also possible to incorporate Residual paths into Cross
Dimensional layers. Note that the sum is made before the activation.

Encoding of Features and Actions. A summary of how the state space and
action space can be seen on Table 3 and Table 4 respectively.

We can see that Catan needs a much more complex representation for state
and actions than those of Chess and Shogi used in AlphaZero. For discards
(after a roll of 7), we introduced a “keep 4 resources” abstraction, using only
70 representative actions, rather than the 1 599 979 discarded resources actions
(the cardinal of

{
b, l, o, g, w ∈ {0, 1 . . . 19}5 | 3 ≤ b + l + o + g + w ≤ 47

}
, where

each of b, l, o, g, w stands for a resource type). The 70 actions perfectly covers
usual situations, where only four resources are kept. Even in rare cases (when
holding 9 or more resources), the agent behaves robustly by randomly picking
additional resources, after having saved the best four.

4 Experiments and Results

For the experiments, 3 different types of neural network architecture were used,
each with 6, 8, and 10 layers (alternating tanh and leaky-ReLU activations):

– CNNRes, baseline, a 40-channel CNN with ResNet (without Xdim)
– Xdim, our method, using 15 2D-channels and 40 non-spacial neurons

(C = 15 and N = 40 on Fig. 4)
– XdimRes, variation of our method with Residual paths (Fig. 5)

The board and positional-related actions were encoded on a 21 × 11 grid using
brick coordinate (Figs. 2, 3). Namely, CNN layers are dimensioned 21 × 11 × C.
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Table 3. Input - Observable State

Board (num. of 2D channels) 17

Hexes 7

Is Desert 1

Production for each resource 5

Thief 1

Paths 2

Road for each player 2

Intersections 8

Harbors 6

Settlement or city for each player 2

Others (dim. of vector) 45

Self 27

Resources 5

Pieces left 3

Army size 1

Held development cards (new + old) 10

Access to each harbor 6

Largest Army and Longest Road 2

Opponent 8

Resource and Development card total 2

Pieces left 3

Army size 1

Largest Army and Longest Road 2

General 6

Bank resources 5

Development Card Pile 1

Phase 4

Has Rolled 1

Has development card been played 1

Using RoadBuilding or YearOfPlenty 2

Table 4. Output - Prob of Actions

Board (num. of 2D channels) 5

Hexes 2

Move thief and steal 1

Move thief without stealing 1

Paths 1

(Buy and) Place road 1

Intersections 2

(Buy and) Place Settlement 1

Buy and Place City 1

Others (dim. of vector) 117

Phase 2

Roll dice 1

End turn 1

Resources 90

Discard (4 cards to keep) 70

Bank trade 20

Development Card 22

Buy development card 5

Activate Knight 5

Activate Road Building 1

Activate Year of Plenty 1

Choose free resource 5

Play Monopoly (each resource) 5

Table 5. Hyper Parameters

Learning rate

Initial value 3 × 10−3

Inverse decay / training step 2 × 10−3

Reward

Winning reward ±0.75

VP difference reward ±0.02

Gradient Factor

Policy απ 1 × 100

Value function αv 1 × 103

Entropy αH 1×10−4

Policy activity loss αp 1×10−8

Weight L2-regu αθ 1×10−4
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The hyper parameters used are described in Table 5. The reward is given
once a game is finished, and is +0.75 for winning (resp. −0.75 for loosing) and
+0.02 for every VP over the opponent’s (resp. −0.02 for every VP behind).

We used Tensorflow 2.1 compiled for CUDA 10.2, and the code was run on a
32 Core CPU2 with two GeForce GTX1080Ti 11GB GPU. In order to generate
experiences quickly, we implemented a minimal environment of Catan in the Rust
language, focusing on execution speed. To use it seamlessly with Tensorflow, we
also turned it into a Python module using the PyO3 bindings. The code is open
source and can be found at https://github.com/swynfel/rust-catan.

On the following figures, one training corresponds to processing 1000 batches
of 64 experiences each.

4.1 Learning Curves

First, we looked at the learning curves of each model (Fig. 6).

Fig. 6. Improvements of winrate against jsettler during early training, comparisons of
architectures (left) and comparisons of layer count for each architecture (right)

Unsurprisingly, models with less layers learn faster, especially in the early
steps of training. When comparing architectures of different types, CNNRes is
lagging behind, but the other two models seems close. It is notable that even if
ResNet are supposed to accelerate the early steps of training, we don’t see such
impact when used in conjunction with Xdim. It is even counter-productive for
models with few layers. Our hypothesis is that using Xdim already introduces
a sort of shortcut (information can cross from 2D values to scalar, and back
to 2D). This makes ResNet not as useful for networks that aren’t very deep.
However for models with 10 layers, we can see its impact again.

2 AMD Ryzen Threadripper 2990WX.

https://github.com/swynfel/rust-catan
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Fig. 7. Evolution of winrate against jsettler during long training

Fig. 8. Distribution of VP in 10 000 games opposing XdimRes-8 after 30 000 training
steps (left) vs jsettler (right)

4.2 Long Term Training Results

Since CNNRes are not promising even in the early stages of training, we only
kept training the models using Cross-dimensional NN. In the first 15000 training
steps (around 3 weeks), we can see that the 8-layer models start catching up to
the 6-layers one, and that using Residual layers does help in the long run. We
can also confirm that Xdim-6, Xdim-8, XdimRes-6, and XdimRes-8 all passed
over 50% win-rate (Fig. 7). When focusing on XdimRes-8 after 30000 training
steps (approximately 5 weeks), we see even reached 56.5% (Fig. 8). Thus we can
confidently say our agent outperforms jsettler in 1vs1.

Fig. 9. Learning curves of XdimRes-8
with and without policy activity loss

Fig. 10. Learning curves with self-play
(our method) and with fixed opponent
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4.3 Ablation Studies

We conducted two ablation studies. Figure 9 illustrates how removing the policy
activity loss makes the training unstable. Figure 10 shows the importance of
self-training against various opponents. The agent trained only against a fixed
“good” opponent – a copy of our agent after 10000 training steps – has trouble
learning at first as the opponent is too strong, only to overfit and play poorly
against jsettler, an unknown agent.

5 Conclusion and Future Works

In this paper, we have shown how we can successfully overcome the difficulties
of Catan: The hexagonal board can be processed with CNN by using brick
coordinate encoding; and the mix of positional and scalar features and actions
can be handled with Cross Dimensional layers. Combining these techniques, we
created a Deep RL-based agent that reached 56.5% win-rate against jsettler with
no prior target domain specific knowledge, trained only by self-play.

We believe the methods introduced, in particular Cross-dimensional Neural
Network, could be applied to real-world cases: e.g. for robots needing to combine
a 2D image input with other sensory information (pressure, temperature, etc.).
Thus, it would be interesting to test its effectiveness in such direction.
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Abstract. With the proliferation of Internet of Things (IoT), the dam-
age brought by cyber-attacks abusing the resources of malware-infected
IoT devices is becoming more serious. Darknet monitoring, which con-
stantly observes packets sent from malware-infected hosts to unused IP
address space, has been proven effective for countermeasuring indiscrim-
inate cyber-threats. In this paper, we presents a new machine learn-
ing scheme to track attack activities and evolving process of infected
devices observed on the darknet. First, we perform feature extraction
using FastText to explore the underlying correlation between targeted
network services as indicated by the destination ports of scanning pack-
ets. Then, we employ a nonlinear dimension reduction technique, UMAP,
to project hosts into a 2-D embedding space for a visualization purpose.
Finally, we perform clustering analysis based on DBSCAN to automat-
ically identify groups of infected hosts with similar attack behaviors. In
the experiments, we use a one-month darknet traffic trace collected from
a/16 darknet sensor to demonstrate the efficacy of the proposed scheme.
We show that groups of Mirai variants, potentially infected by the same
botnets, can be successfully detected by the proposed approach. In par-
ticular, a Mirai variant targeting vulnerabilities on TCP port 9530 are
newly discovered during the observation period.

Keywords: Cybersecurity · Representation learning · Malware scan ·
Malware behavior analysis · Darknet analysis

1 Introduction

Cyber-attacks exploiting the vulnerabilities on IoT devices are on the rise. Com-
promised IoT devices are then forced to join the army of zombie devices, i.e., bot-
nets, to perform cyber-attacks towards critical infrastructures. As a well-known
example, Mirai [1], a notorious malware primarily targeting online consumer
devices such as IP cameras and home routers, was first discovered in 2016. Mirai
sends TCP/SYN packets to randomly IP addresses to perform a network scan
searching for running services. It then intrudes the IoT devices by exploiting
c© Springer Nature Switzerland AG 2020
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vulnerabilities therein and infects them to form a large-scale botnet. After the
botnet is formed, DDoS attacks are performed by sending a large number of
packets to a targeted server as instructed by the C&C server. The release of the
Mirai source code on GitHub in September 2016 led to a burst of attacks abus-
ing the botnet, followed by a large number of modified variants targeting other
vulnerabilities. This trend is unabated and new variants are still being created
so far. It is expected that early information on characterizing features such as
the targeted vulnerabilities can help to reduce the damage from Mirai variants
and other new malware alike.

Analyzing network traffic of infected devices to identify the cyber-threat
therein belongs to the category of dynamic analysis. It is effective for obtaining
the behavioral features of the malware especially when the malware program
is not available. One way to collect the network traffic data is to capture the
packets delivered to an unused IP address space, namely, a darknet. A darknet
can capture packets which are closely related to malware infected devices, e.g.,
network scan packets and re-bouncing packets caused by DDoS attacks. The
behavior of scanning malware can be analyzed based on these darknet packets.
One of the benefits to adopt darknet analysis is its global view: darknet can
observe packets coming from any host on the Internet, which reflects the trend
of cyber-attacks occurring world wide. As shown in Table 1, a large number of
packets (up to 327.9 billion in 2019) are observed on a darknet of 300K IP
addresses operated by National Institute of Information and Communications
Technology (NICT) [2]. To identify the tendency of ever-evolving attacks and
detect new types of malware as early as possible from this enormous network
traffic, machine learning plays an important role. Recently, assorted machine-
learning based approaches have been devised to perform darknet traffic analysis
[3]. In [4], the authors proposed to extract the behavior of malware as rules by
using association rule analysis. In [5], IP2Vec is proposed to model the similar-
ity between IP addresses from co-occurrence of IP addresses, destination port
numbers, and protocols in packet data by using Word2Vec [6], a popular text
mining method.

In this paper, we collect and analyze TCP/SYN packets observed on a dark-
net in order to understand the trends of port scanning from malware infected
hosts. Our analysis is based on the exploration of the underlying correlation in
the destination port numbers – the identifiers of the targeted network services of
the scans. A quick view of the IoT related scan activities shows that destination
port number pairs such as (23/TCP, 2323/TCP) and (80/TCP, 8080/TCP) are
commonly spotted among related malware variants. This is caused by the cog-
nitive habits of human beings that one tends to keep some lexical similarity in a
newly assigned port numbers when replacing an existing one. Taking advantage
of this convention, similarity between malware variants can be inferred from
occurrence of common sub-words1 in destination port numbers, and then rela-
tionships between malware variants can be modeled and evaluated. We come

1 A p-piece, a.k.a., p-gram, is a sub-string of length p of a port number considered as
a decimal digit string.
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Table 1. Statistics of observed darknet packets per year with the NICT darknet sensor.

Year 2015 2016 2017 2018 2019

#Packets (×108) 545 1,281 1,504 2,121 3,279

#IP address (×103) 280 300 300 300 300

Fig. 1. Learning steps to obtain port-piece embedding vectors from a port-set using
2-gram FastText.

up with port-piece embedding with FastText to build a vector representation of
port numbers that are frequently targeted by the scans, and measure the sim-
ilarity between two destination-port sets based on this representation. We also
perform visualization analysis based on the presentation and use it to detect the
appearance of new malware variants.

2 Port-Piece Embedding for Darknet Traffic Analysis

In this section, we propose a method for quickly and accurately grasping the
tendency of malware. When malware is updated, the newly assigned port num-
bers tend to maintain some lexical similarity due to human cognition habits.
Destination port number pairs that maintain this similarity are common among
related malware variants. The proposed method makes use of this convention and
clusters scan activities by acquiring port-piece embedding vectors. Port-piece
embedding vectors are created from the co-occurrence between port numbers
and the relationship of sub-words obtained by decomposing port numbers.

2.1 Creating Port-Sets

In order to group malware-infected hosts with similar scan activities, a source
IP address and a destination port number (hereafter referred to as a port) are
first extracted from a TCP/SYN packet obtained by the darknet sensor. Since
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Table 2. Result of clustering 9,581 port-sets including 75 Mirai-infected port-sets
extracted on February 15, 2020. Port embedding vectors are obtained by FastText,
TF-IDF, Word2Vec.

Cluster
no.

FastText TF-IDF Word2Vec

#Port-sets #Mirai
Port-sets

#Port-sets #Mirai
Port-sets

#Port-sets #Mirai Port-
sets

1 2,428 65 671 3 4,439 0

2 494 2 27 0 237 0

3 7 0 449 0 444 0

4 40 0 87 0 23 0

5 110 0 46 0 4 0

6 9 0 1 0 3 0

Outlier 6,763 8 8,570 72 4,701 75

an individual service is assigned to a unique port, a port observed in darknet
packets represents a service targeted by malware. Therefore, it is considered that
a set of such ports features scan activities by a malware-infected host. We call
such a set of ports a port-set. In the following, we try to discovery clusters of
malware-infected hosts based on the similarity of port-sets.

2.2 Port-Piece Embedding Vectors

(23/TCP, 2323/TCP) and (80/TCP, 8080/TCP) are common port pairs among
related malware variants that are exploiting network services hosted on similar
but different ports. The similarity between the ports in these pairs are apparent
due to the human convention to maintain some degree of likeness by keeping iden-
tifying morphemes – consecutive digit sequences – in related numbers. Similar
malware variants can be grouped by taking advantage of this fact. By applying
FastText – a popular text mining method – to the port sets, embedding vectors
that take account of the identifying morphemes in port numbers can be obtained.

Figure 1 shows the procedure to obtain port-piece embedding vectors in the
proposed method. To apply FastText to the port-sets, a port-set is taken as a
statement in document analysis. First, port vectors, which are created from the
original ports, are obtained. Then, each port is divided into n-grams (hereafter
referred to as port pieces). Then, port-piece vectors, which are created for the
port pieces contained in a port, are obtained. Then, the port-piece vector of a
port is obtained by averaging the port vector and port-piece vectors that are
contained in the port. The port-set vector for a port set is obtained by averaging
the port-piece vectors of the ports that appear in the port set.
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2.3 Visualization of Scan Activities

We adopt UMAP to observe the distribution of malware-infected hosts, and see if
the proposed port-piece embedding gives a good interpretation for scan activities
of malware. In UMAP, data vectors in a high-dimensional space are first repre-
sented as a graph. Then, the graph structure in the embedding low-dimensional
space is optimized to approximate that in the high-dimensional space. This
allows UMAP to perform fast and high-performance dimension reduction.

2.4 Clustering of Scan Activities

By clustering the port-set vectors, infected host groups with the same attack
pattern can be identified automatically. We apply DBSCAN – a density-based
clustering method – to the port-set vectors. DBSCAN consists of three steps. In
the first step, DBSCAN finds the points which falls into its ε neighborhood for
each point and identifies the points with more than k neighbors as core points.
Here, ε is a distance threshold and k is a numerical threshold. They control the
density of the points that are identified as clusters in DBSCAN. In the second
step, DBSCAN finds the connected components of core points on the neighbor
graph by ignoring all non-core points. In the last step, for each non-core point,
it is assigned to a nearby cluster if the cluster contains points in its ε neighbor,
otherwise it is assigned to noise. By applying DBSCAN to port-set vectors, it is
possible to automatically identify groups of infected hosts which show the same
attack pattern. This overcomes the difficulty of pre-determining the number of
clusters in other conventional clustering algorithms.

3 Experiments

In this section, to evaluate the effectiveness of the proposed port-piece embed-
ding, we examine the scan behaviors of the well-known IoT malware called Mirai.
To assign a label to the port set exploited by a host, we check the packets from
the host against the following three conditions:

– Destination IP address equals the sequence number;
– Destination port numbers include 23/TCP;
– Source port number is greater than 1024.

If more than 90% of the packets sent from the host satisfy these three conditions,
we label its port set as Mirai.

In the following experiments, we used 9,875,671,868 packets from February
1st, 2020 to February 29th, 2020 observed on a/16 darknet sensor operated by
National Institute of Information and Communications Technology (NICT).
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Fig. 2. Top 10 port-sets with high cosine similarity to port-set (23, 80, 2323, 5555,
8080, 37215). On each x-axis tick, the left is the FastText port-set, the center is the
TF-IDF port-set, and the right is the Word2Vec port-set.

3.1 Similarity Measure of Port-Sets

In general, a good representation of an embedding space allows us to have a
good interpretation when we try to understand observed phenomena. It also
often leads to good performance in classification accuracy and/or meaningful
clustering results. Therefore, we evaluate the proposed port-piece embedding
from the perspective whether embedding vectors for Mirai-featured port-sets
give us a good measure in similarity for Mirai variants.

In the following experiments, we carry out performance comparison among
three feature representation methods: TF-IDF [10] features, Word2Vec embed-
ding, and port-piece embedding. Since 62,817 ports are observed in the
TCP/SYN packets from February 9th to February 15th, 2020, a TF-IDF feature
is defined as a 62,817-dimensional vector. To obtain a Word2Vec embedding vec-
tor, we consider a 62,817-dimensional one-hot vector for each port set and train
a skip-gram [11] network to obtain 200-dimensional Word2Vec embedding vec-
tors. For the proposed port-piece embedding, we use FastText to set up a 65,533-
dimensional one-hot vector consisting of 62,817 ports and their sub-words, and
use skip-gram to reduce its dimension to 200.

To evaluate the three feature representation methods, we adopt an example
of the following port-set: (23, 80, 2323, 5555, 8080, 37215). Hosts with such a
port-set were observed on February 15th and their packets matched the Mirai
signature. Therefore, we can consider that hosts with a port-set of similar port
numbers above are likely to be infected by Mirai variants. Such similar port-sets
must be represented by similar representation vectors.



Port-Piece Embedding for Darknet Traffic Features 599

Fig. 3. Visualization of Mirai-featured (×) and Mirai-benign (◦) port-sets using (a)
FastText, (b) TF-IDF, and (c) Word2Vec. (Color figure online)

We calculated the cosine similarity between port sets (23, 80, 2323, 5555,
8080, 37215) and similar port sets in the embedding space obtained by the three
representation methods. Figure 2 shows the top 10 port-sets with the highest
cosine similarity. The port-piece embedding method yields a cosine similarity of
0.99 or higher for the top 10 port sets. It also retrieves port sets with similar
port numbers in the top 10, indicating that similar port-sets will have similar
representation vectors. On the other hand, the other two representation methods
yield significantly degenerated cosine similarities. This result indicates that the
proposed method has a favorable performance for port set representation.
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Fig. 4. Frequency of port numbers contained in port-set cluster 1 on February 10 and
February 11. Ports with a frequency more than 500 as of February 10 and with a
frequency increment less than 6 are omitted.

3.2 Clustering of Scan Activities

We cluster the scan activities using the same data and compared it with other
methods in Sect. 3.1. To confirm the clustering accuracy of scan activities, the
port-set on February 15, 2020 was labeled as Mirai. Mirai-featured port-sets were
found in 75 out of the 9,581 port-sets extracted on February 15, 2020.

Table 2 shows the clustering results and Fig. 3 shows the visualization results
for each method of FastText, TF-IDF, and Word2Vec. Outliers refer to points
that are neither the core point nor points assigned in clusters in DBSCAN. The
visualization results show only cluster 1, cluster 2, and outliers, with Mirai-
featured port-sets shown in red.

The visualization result in Fig. 3(a) also shows that most Mirai-featured port-
sets are contained in cluster 1. The Mirai-featured port-sets clustered in Clus-
ter 2 contains 7547/TCP which is not included in the port-sets in Cluster 1,
indicating the discovery of a major variant. An further investigation revealed
that 7547/TCP is the port number targeted by a Mirai variant, which is first
reported since December 2019 with a bust of increment in scanning activities.
Mirai-featured port-sets assigned as outliers because they contain ports that
rarely appear, e.g., 0/TCP, 654/TCP, 55717/TCP.

As for TF-IDF and Word2Vec, the visualization results in Fig. 3(b) and (c)
show that the Mirai-featured port-sets are scattered into more clusters than the
proposed method, with most of them assigned as outliers. This indicates TF-IDF
and Word2Vec do not perform well in grouping similar port-sets into the same
clusters.

The above experiment shows that the proposed method can detect Mirai-
featured port-sets more appropriately than the other two referenced methods,
and is therefore effective in clustering scan activities.
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Fig. 5. Visualization of port-sets including 9530/TCP (×) and port-sets not including
9530/TCP (◦) on February 10th and February 11th.

3.3 Detection of New Vulnerabilities

Due to the release of Mirai source code, the emergence of Mirai variants targeting
new vulnerabilities becomes a challenging problem. By counting the frequency
of ports existing in the scan activities clustered by the proposed method, we
can discover the emergence of Mirai variants targeting new vulnerabilities. As a
result, we were able to discover the communication to 9530/TCP which seems
to be caused by a new Mirai variant started from February 11, 2020.

The port-sets on February 10 and February 11 were clustered into 8 clusters:
cluster 1 to cluster 7 together with an outlier cluster. The port-sets in cluster 1
contain 23/TCP, 2323/TCP, 80/TCP, 8080/TCP with high frequency, and thus
cluster 1 is assumed to mainly consist of Mirai variants. To catch the emergence
of Mirai variants targeting new vulnerabilities, we count the frequencies of ports
contained in this cluster and show it in Fig. 4. The frequency of 9530/TCP was
only 1 as of February 10, but was increased to 16 on February 11. In the figure,
ports with a frequency more than 500 and ports with a frequency increment less
than 6 are omitted as they are less likely to be from new Mirai variants. The
visualization results in Fig. 5 also shows that the port-sets including 9530/TCP
formed compact groups and increased substantially in volume.

The increased access to 9530/TCP from February 2020 is reported to be
caused by a new Mirai variant in the NICTER blog published by NICT. In
order to confirm that the increased access to 9530/TCP caused by new Mirai
variants is not temporary, we show the transition of the daily frequency of port-
sets including 9530/TCP in Fig. 6. In the figure, we can confirm that the number
of port-sets has increased since February 11. This result demonstrates the pro-
posed method can catch the emergence of Mirai variants that encompass new
vulnerabilities.
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Fig. 6. Changes in the number of port-sets including 9530/TCP (lines) and changes in
the number of hosts that exploit the port-sets (bars).

4 Conclusions

In this paper, we proposed a new approach to darknet traffic analysis where port-
piece embedding using FastText is utilized to explore the similarity of partial
patterns of the destination port numbers among malware variants. By applying
FastText to TCP/SYN packets observed in the darknet, the relationship is mea-
sured based on the co-occurrence between frequent pieces of port numbers, and
the clustering of scanning features is conducted in a obtained port-piece embed-
ding space. In our experiments, darknet packet traffic collected from February
1 to 29, 2020 on a/16 network were analyzed. As a result, it is shown that
the proposed method using FastText can cluster the characteristics of scanning
activities of Mirai variants better than the port embedding vector obtained by
TF-IDF or Word2Vec. Furthermore, the frequencies of destination port numbers
were examined for the hosts in a Mirai cluster. We demonstrated that it was pos-
sible to early detect the access to 9530/TCP by the Mirai variant that started
to increase from February 11, 2020. From the above results, it is expected that
the proposed method works effectively to monitor malware variants which target
similar port numbers.

Our future work is to improve port-piece embedding vector representation
so that the accuracy of malware clustering and detection can be enhanced. In
this paper, we used a Mirai signature to evaluate the accuracy of generated
clusters. However, for malware other than Mirai, it is necessary to find means
to accurately identify its variants and continue to verify the effectiveness of
the proposed port-piece embedding representation. If malware can be correctly
clustered, infected hosts acting simultaneously can be identified, leading to the
detection of botnets. In addition, by monitoring the activities of such botnets,
we believe that it will be possible to develop a system that can detect symptoms
of new cyber-attacks.
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Abstract. Model-free reinforcement learning algorithms have been suc-
cessfully applied to continuous control tasks. However, these algorithms
suffer from severe instability and high sample complexity. Inspired by
Averaged-DQN, this paper proposes a recency-weighted target estima-
tor for actor-critic settings, which will construct a target estimator with
more weight placed on recently learned value functions, obtaining a more
stable and accurate value estimator. Besides, delaying policy updates
with more flexible control is adopted to reduce per-update error because
of value function errors. Furthermore, to improve the performance of pri-
oritized experience replay (PER) for continuous control tasks, Phased-
PER is proposed to accelerate training in different periods. Experimental
results are given to demonstrate that using the same hyper-parameters
and architecture the proposed algorithm is more robust and achieves
better performance, surpassing the existing methods on a range of con-
tinuous control benchmark tasks.

Keywords: Deep reinforcement learning · Value estimation · Delayed
policy updates · Prioritized experience replay

1 Introduction

In recent years, deep reinforcement learning (DRL) [9] has maintained a rapid
development with powerful representation of deep neural networks and increasing
computing ability. As a result, RL has been applied to more and more fields,
such as games, natural language processing, recommendation systems, robotic
control tasks and so on [14].
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As a model-free value-based RL algorithm, deep Q-network (DQN) [10] suc-
cessfully combines deep neural networks with RL algorithms, using deep neural
networks as value function approximators. Two novel techniques, target network
and experience replay, were proposed to tackle the instability and correlation of
RL problems. However, DQN still suffers from severe instability and poor sam-
ple efficiency. In order to reduce the approximation error variance in the target
values, Averaged-DQN [2] averages across previously learned value estimates,
leading to more stable training procedure and improved performance. Besides,
PER [12] improves the sample efficiency by prioritizing replaying transitions with
high learning value. However, DQN cannot handle tasks with continuous action
space, which are of great importance in reality, due to the maximum operation
over Q-functions.

As a model-free actor-critic RL algorithm, soft actor-critic (SAC) [5] achieves
state-of-the-art performance in continuous control, but the instability and poor
sample efficiency limit its further application to reality. In order to reduce tar-
get approximation error variance and make SAC more stable, we draw on the
ideas underlying Averaged-DQN and further improve it by placing more weight
on recently learned target values. Although the target estimates are improved,
value function errors still exist. Therefore, delaying policy updates is adopted
to prevent the policy deviation caused by value function errors. In addition, to
improve the sample efficiency of SAC, we further propose Phased-PER, so that
the algorithm can learn quickly and stably while maintaining the original distri-
bution. With the recency-weighted acceleration (RWA) framework comprised of
these improvements applied to SAC, the resulting algorithm called accelerated
recency-weighted delayed soft actor-critic (ARW-DSAC) achieves higher sample
efficiency and better final performance in several control tasks. The contributions
of our work can be summarized as:

– The delayed recency-weighted model is proposed, where the target value esti-
mates are calculated over previously learned target Q-networks by emphasis-
ing recently learned value estimates. Besides, the model adopts delayed policy
updates in a way that allows for more flexible control.

– Adapted from PER, Phased-PER is adopted to accelerate training process,
which is comprised of three periods, enabling fast learning in the first period
and stable learning in the third period.

– Experiments show that our proposed algorithm exceeds existing algorithms
in both sample efficiency and final performance in several continuous control
tasks.

2 Related Work

2.1 Value Estimation

Value estimation is one of the most distinguished features in RL [14]. Q-
learning [16] is a popular value-based RL algorithm, but it has overestimation
problems. To tackle the overestimation of Q-learning, double Q-learning [6] uses
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a double estimator approach to determine the value of the subsequent state, but
it has the underestimation problem. Weighted Double Q-learning [17] balances
the overestimation in the single estimator and the underestimation in the dou-
ble estimator, showing great potential for application [18]. In addition to the
overestimation, value estimation often suffers from instability. Averaged-DQN
stabilizes training by averaging across recent Q-networks, but it ignores relative
importance which is verified necessary for actor-critic algorithms, e.g. SAC.

Twin delayed deep deterministic policy gradient (TD3) [4] demonstrated that
overestimation not only existed in value-based algorithms (e.g. DQN), but also
persisted in actor-critic settings, and proposed clipped double Q-learning. How-
ever, few work has been done to improve the stability of actor-critic algorithms.
In addition, TD3 adopted delaying policy updates, which consists of only updat-
ing the actor and target critic networks every 2 iterations. However, this method
of controlling frequency of policy updates lacks flexibility.

2.2 Experience Replay

Experience replay not only breaks the limitation of the relevance of RL problems,
but also improves the sample efficiency [11]. Based on PER, distributed prior-
itized experience replay [8] establishes a distributed architecture, which makes
full use of the advantages of parallel computing by separating exploration pro-
cesses from learning processes. Hindsight experience replay [1] can automatically
learn from the failed experiences of binary rewards, which can be seen as a form
of implicit curriculum. However, few of them focuses on directly boosting sample
efficiency of actor-critic algorithms for continuous control.

3 Preliminaries

3.1 Reinforcement Learning

RL can be described as a process where an agent interacts with an environment
with the goal of maximizing the accumulative rewards. Markov decision process
framework is employed to model the environment, which is defined by a tuple
(S,A,R,P, γ), where S is a state space, A is an action space, R : S×A → R is a
stochastic reward function, P(s′ | s, a) is a transition function which gives distri-
bution over next state s′ given a state action tuple (s, a), and γ ∈ [0, 1) is a dis-
count factor. The goal of the agent is to search a policy π (a | s) that maximizes
the expected sum of discounted future rewards represented by Rt =

∑∞
i=t γi−tri.

The action-value function is defined as Qπ(s, a) = Ea∼π(·|st) [Rt | st = s, at = a].

3.2 DQN and Variants

DQN uses deep neural networks as function approximators to represent value
function Qθ(s, a). Sampling from experience buffer, DQN updates the value func-
tion by stochastic gradient descent with the loss function constructed as below:

L (θ) = E(s,a,r,s′)∼B
[
yDQN − Qθ (s, a)

]2
. (1)
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Here the target of DQN is yDQN = E(s,a,r,s′)∼B [r + γ maxa′∈A Qθ− (s′, a′)],
where θ− is the parameters of the target network, which is consistent during
a fixed time interval, and B is the distribution from experience buffer.

Averaged-DQN stabilizes training process by averaging across the last K
previously learned Q-networks. Its target estimates are calculated as below:

yAveraged-DQN = E(s,a,r,s′)∼B

[

r + γ max
a′∈A

1
K

K∑

m=1

Qθm (s′, a′)

]

, (2)

where θm is the m-th recently learned target value function in the past.
Instead of uniform sampling, PER prioritizes replaying transitions of high

priority measured by temporal difference error. Stochastic prioritization makes
sure that the probability of sampling is monotonic by the transition’s priority,
while guaranteeing non-zero probability even for transitions of the lowest priority.
However, PER inevitably introduces bias because of the prioritization. And PER
corrects this bias through importance-sampling weight Wi = ( 1

N · 1
P (i) )

β , where
P (i) is the priority of transition i, N is the total time step, and β is the parameter
controlling correction level of importance sampling. Concretely, PER linearly
anneals from its initial value β0 to 1.

3.3 Soft Actor-Critic

SAC is a state-of-the-art RL model-free algorithm based on the maximum
entropy framework, where the objective of an agent is augmented with an entropy
term. Therefore, the Q-function of SAC is calculated as below:

Qπ (s, a) =
∞∑

t=1

Eat∼π(·|st) [R (st, at) + αH (π (· | st))] , (3)

where α is the temperature parameter that trades off exploration and exploita-
tion and H (π (· | st)) is the entropy of policy π at state st. The specific update
rule is presented in Algorithm 1. For more detail please refer to [5].

4 Recency-Weighted Acceleration Framework

In this section, the recency-weighted acceleration (RWA) framework is proposed.
Firstly, we will introduce the recency-weighted model combined with delayed
policy updates (short for DRW model) and present its algorithm pseudocode.
Then Phased-PER is introduced to further accelerate its training process.

4.1 Delayed Recency-Weighted Model

To reduce target approximation error variance, instead of using only the last
target Q-network, the DRW model makes use of last K target networks for
value estimation. Moreover, instead of simply averaging over all the Q-networks,
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Fig. 1. The schematic diagram of the DRW model. This model has two innovations.
Firstly, recency-weighted target estimator (RWTE) is made up of an FIFO structure.
It maintains the recent K target networks based on the arrival time with parameters
transferred to next network after one iteration, providing estimates for the critic to be
updated upon. Qθ1 is the most recent Q-network. Specifically, after one iteration of
critics update, the parameters of Qθ1 network are transferred to Qθ2 , at the same time
the parameters of Qθ2 are transferred to Qθ3 , and so on. Secondly, the DRW model
adopts delaying policy updates in a more flexible approach, where d controls the ratio
of the frequency of policy updates to critic updates.

this model places more weight to the more recent networks, because the latest
target networks tend to have more precise estimation. The schematic diagram of
the DRW model is shown in Fig. 1. As it shows that an agent adopting the actor-
critic framework interacts with an environment, storing transitions (s, a, r, s′) to
experience buffer. Mini-batches are sampled from the experience pool to update
parameters of actor and critic.

In order to put more emphasis to recently learned target estimates, recency-
weighted coefficient σ is introduced to discount less recent target estimates. The
weight of the most recent target network Qθ1 is represented by ω1, and that of
the second is ω2, and so on. And the weights meet the following requirements:

⎧
⎪⎪⎨

⎪⎪⎩

ωm+1 = σωm, m = 1, 2...,K − 1,

K∑

m=1

ωm = 1.
(4)

Here σ ∈ (0, 1] is a constant controlling the relative importance of target Q-
networks. In particular, the RWTE model will be recovered to the averaged
target estimator, when σ equals to 1. With the model applied to SAC, its target
values are calculated as below:
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Fig. 2. (a) PER makes little improvement on SAC and even makes it degenerate. (b)
Phased-PER. The original method employed by PER to correct the distribution bias
is through the importance sampling weight method, where β anneals linearly from its
initial β0 to 1. The phased update strategy for β is divided into three stages, where the
growth rate of the first and third periods is relatively low, while the rate of the second
period is high.

yRW-DSAC = E(r,s′)∼B

[

r + γ

K∑

m=1

ωm

(

min
i=1,2

Qθm
i

(s′, a′) − α log (πφ (a′|s′))
)]

.

(5)

Delayed Policy Updates. As an off-policy actor-critic algorithm, SAC is also
affected by value function errors. When the critic is inaccurate, it may lead to
wrong direction of policy improvement. Here, a more general method of delaying
policy updates is proposed, with d calculated as:

d =
Fpolicy

Fcritic
, (6)

where Fpolicy represents the frequency of policy updates and Fcritic denotes
the frequency of critic updates. Therefore, d ∈ (0, 1] controls the ratio of the
frequency of policy updates to critic updates.

With the DRW model applied to SAC, the pseudocode of recency-weighted
delayed SAC (RW-DSAC) is presented in Algorithm 1. Lines 1–3 initialize the
parameters of actor, critic and their target networks. Line 4 calculates the
weights of target networks. Lines 8–10 represent that the agent interacts with
the environment, storing experience transitions to its replay buffer. In lines 11–
14, mini-batches are sampled from replay buffer to update the critic. In line 15,
delay(t, d) is introduced to determine whether to update the policy based on
iterations t and delaying parameter d. Specifically, delay(t, d) ensures that the
ratio of the frequency of policy updates to critic updates is d. Lines 16–22 update
policy and target networks as well as the temperature coefficient α.
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Algorithm 1: RW-DSAC
Input: Randomly initialized critic networks θ1, θ2, actor network φ

1 Initialize recency-weighted coefficient σ, and delaying parameter d;
2 Initialize array of target critic networks (θm

1 , θm
2 ) ←(θ1, θ2) (m = 1, . . . , K);

3 Initialize experience replay buffer B;
4 Set weight vector ωm so that it satisfies equation (4);
5 for episode = 1 → M(the final episode) do
6 Reset initial observation state to s1;
7 for t = 1 → T do
8 Select action at ∼ πφ (· | st);
9 Execute at and observe reward rt moving to subsequent state st+1;

10 Store transition (st, at, rt, st+1) in B;
11 Sample mini-batch of transitions (s, a, r, s′) from B;
12 Calculate recency-weighted target ytarget using equation (5);
13 Update critic by minimizing the loss:;

14 Loss = E(s,a)∼B
[
ytarget − Qθi (s, a)

]2
, for i ∈ {1,2};

15 if delay(t, d) then
16 Update actor network using:;

17 Jπ(φ) = Es∼B
[
Ea∼πφ(·|s) [α log (πφ (a|s)) − Qθi (s, a)]

]
;

18 Update temperature parameter α using the following objective:;

19 J (α) = Ea∼πφ

[−α log πφ (a|s) − αH]
; 	 H represents the

environment-specific entropy target

20 Transfer and update target networks:;

21 θm
i ← θm−1

i (m = 2, . . . , k), for i ∈ {1, 2};
22 θ1

i ← τθi + (1 − τ) θ1
i , for i ∈ {1, 2} ; 	 τ is the smoothing

coefficient

23 end

24 end

25 end
Output: Learned actor network πφ and critic networks Qθ1 , Qθ2

4.2 Phased-PER

PER is one of the two most important ingredients that lead to biggest improve-
ment in Rainbow [7]. However as Fig. 2(a) reveals, when applied to continuous
control settings, PER has no obvious improvement effect for the actor-critic
algorithms. So Phased-PER is proposed to improve the performance of PER.

PER makes algorithms prioritize replaying samples with high learning value,
but it changes the original sample distribution, which makes it prone to diverge.
The original method employed by PER is to linearly anneal β from its initial
value β0 to 1 using importance weight. However, the linear strategy of changing
β ignores the characteristics of different stages of learn process. So we modify
this strategy in order to improve its effect and propose Phased-PER. As is shown
in Fig. 2(b), the resulting change curve of β has lower value in the first stage and
higher value in the third stage compared with the original method. Therefore,
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Fig. 3. Comparative results of different algorithms over continuous control tasks.
Learning curves are obtained by 4 seeds where the solid curves represent the mean
and the shaded regions correspond to a standard deviation. Here, RAA-DSAC is our
self-implemented version of SAC applied with RAA with d equal to 0.7.

this strategy allows for fast learning in the first stage and stable training in the
final stage. Specifically, the first and third periods of training account for one-
eighth of the total change of β respectively, with remaining proportion of change
filled by training of the second period.

5 Experiments

In order to verify the effectiveness of our proposed framework, comparative
experiments are conducted in the continuous control tasks. Then empirical
results are shown followed by our analysis. Finally, ablation studies are carried
out to further investigate each ingredient which leads to improved performance.

5.1 Experiment Setup

We employ Gym [3] as environment interface, using MuJoCo [15] physics engine
to simulate continuous control tasks. Specifically we choose Hopper, HalfChee-
tah, Walker and Ant as experimental environments to test our algorithms. Sta-
bility, sample efficiency and final performance are the criteria to evaluate the
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performance of the proposed algorithms. To make our experiments more con-
vincing, we also choose the regularized anderson acceleration (RAA) [13] frame-
work for comparison, which is a state-of-the-art off policy RL algorithm. It is
an effective approach to accelerating the solving of fixed point problems with
perturbations, which also uses previous learned target networks. For more detail
please refer to [13].

Our algorithm will be compared with two baseline algorithms, one is SAC
against which comparison will show the improvement of the RWA framework,
the other is RAA against which comparison will reveal the utilization efficiency
of multiple target Q-networks. Each task will be run for 3 million time steps
except Hopper for 1 million with evaluations every 5000 time steps, where each
evaluation logs the averaged return across 10 episodes. In order to solely verify
the utilization efficiency of multiple target Q-networks of the DRW model, we
also conduct RW-DSAC experiments without the acceleration of Phased-PER.

5.2 Comparative Evaluation

For the sake of fairness, common hyper-parameters of the four algorithms are
from [5], while exclusive hyper-parameters between ARW-DSAC and RAA-
DSAC stay the same. Specifically, the num of previous estimates m is set to
5. Also, RAA-DSAC adopts delayed policy updates the same as ARW-DSAC,
using delaying parameter d = 0.7. In addition, the growth rates of the first period
i1 and third period i3 are both 0.375, while the rate of the second period i2 is
2.25. Hype-parameters and architectures of RW-DSAC and RAA-DSAC are the
same except the calculation of target value estimates.

As shown in Fig. 3, our proposed algorithm ARW-DSAC has better sample
efficiency and final performance than SAC and RAA-DSAC over all 4 tasks.
Most notably in the Ant task, the ARW-DSAC only takes 1 million time steps
to reach the competitive performance with SAC with less variance, exceeding
both the SAC and RAA-DSAC by a wide margin. In the remaining three tasks,
the proposed algorithm also has a significant improvement effect.

Compared with RAA-DSAC, RW-DSAC achieves better results demonstrat-
ing that our DRW model has better utilization efficiency of multiple target Q-
networks. Compared with RW-DSAC, ARW-DSAC makes a huge progress in
sample efficiency, demonstrating the acceleration effect of Phased-PER over the
DRW model.

5.3 Ablation Studies

In order to analyze the contribution of each component in the RWA framework,
ablation experiments are conducted to further investigate their respective effects.
Due to limited space, we only choose Ant, Hopper and HalfCheetah as our
experimental environments.
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Fig. 4. (a, b) Learning curves of different σ on Ant and Hopper. (c) Ablation analysis
about different m on HalfCheetah.

Fig. 5. Performance comparison on continuous control tasks with different d. Worse
performance is obtained by d of smaller value (e.g. 0.3, which means the frequency of
policy updates is 0.3 times that of critics updates), while appropriate d in particular
0.7 greatly enhances the performance of the algorithm.

Recency-Weighted Coefficient. σ controls the degree of favouritism ten-
dency of RWTE towards the more recent target networks by discounting the
less recent value estimates. As shown in Fig. 4(a, b), different tasks have differ-
ent sensitivities towards σ. Employment of RWTE through appropriate σ greatly
improves the performance of SAC especially in the Ant task, surpassing aver-
aged estimation (σ = 1.0) by a big margin at the same time maintaining smaller
variance.

The Number of Previous Estimates. RWTE is calculated through m target
networks. From Fig. 4(c), we can see that as m grows bigger, training becomes
more stable and attains better final performance because of approximation error
variance reduction. In consideration of increasing computing resource with larger
m, we choose m = 5 for all algorithms.

Delayed Policy Updates. d controls the degree of delaying policy updates,
with d = 1 meaning the algorithms without delayed policy updates. Various
tasks have different sensitivities towards d. It can be concluded from the Fig. 5
that delayed policy updates further improve performance of the RWA framework,
mitigating the influence of function approximation errors.
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Fig. 6. Evaluations of Phased-PER. PER-SAC suffers from big variance and even has
poorer performance, while Phased-PER leads to improved performance because of the
adoption of phased update strategy.

Phased-PER. The acceleration effect of Phased-PER in the ARW-DSAC algo-
rithm has been verified by previous experiments. In this part, we design experi-
ments to compare the improvement effect of Phased-PER and PER on the SAC
algorithm individually. Empirical results from Fig. 6 reveal that instead of the
desired effect of accelerating training process, PER-SAC suffers from big vari-
ance and even has adverse effect, while Phased-PER obtains better results in
terms of sample efficiency and final performance, which is the reason why we
choose Phased-PER to be incorporated into our framework.

As ablation experiments reveal that the DRW model greatly improves perfor-
mance of actor-critic algorithms. By adopting delayed policy updates, the DRW
model makes further progress by becoming less prone to function approximation
errors. Besides, acceleration effect caused by Phased-PER is verified.

6 Conclusion

The Instability issue not only exists in value-based control algorithms, but also
persists in actor-critic settings. In order to tackle the instability issue in actor-
critic settings, we draw on the idea underlying Averaged-DQN and propose the
delayed recency-weighted model, which greatly reduces approximation error vari-
ance in the target value and become less prone to function approximation errors.
In addition, further acceleration is attained by Phased-PER. Empirical results
demonstrate that by reducing target approximation error variance and increas-
ing sample efficiency, the RWA framework proposed in this work substantially
enhances the actor-critic algorithms for continuous control.

Although the recency-weighted acceleration framework has brought vast
improvement on off-policy algorithms such as SAC, but the DRW model still
requires initialized parameters. It is promising to build an automatic framework
that can adjust its model parameters according to its approximation errors in
the training process, which is the focus of our future work.
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Abstract. Canonical correlation analysis (CCA) is a popular and pow-
erful technique for two-view dimension reduction and feature extraction.
But, CCA is not able to directly handle more than two view data and
has a rigorous assumption that all the samples from two different views
are paired. However, practical multiple view data are often semi-paired.
To address this problem, we in this paper propose a novel semi-paired
multiview dimension reduction approach, which takes cross-view neigh-
borhood relationship among semi-paired data and within-view global
structure information into consideration. The proposed approach can
not only deal with multiview (more than two) data, but also take suffi-
cient advantage of unpaired multiview data and then mitigate overfitting
effectively caused by the limited paired data. Experimental results on
two benchmark data sets demonstrate the effectiveness of our proposed
method.

Keywords: Canonical correlation analysis · Multi-view learning ·
Neighborhood correlation · Semi-paired data

1 Introduction

In practice, one often meets such a case where an object is represented by two
or more types of feature representations. For instance, a face can be depicted
by color, texture, profile, and component features; a handwritten digit can be
described by pixel average, moment, and morphological features. In the litera-
ture, such data with multiple representations are dubbed multiple view data [1].
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Multi-view data are supposed to be complementary to each other and capable
of describing an object more fully. Different from single-view data learning that
has been investigated for at least several decades, multiple view data learning
is a young research direction. Although there have been a number of dedicated
feature reduction methods for multi-view high-dimensional data, how to learn a
discriminative low-dimensional representation is still a challenging problem.

In dimensionality reduction (DR), the most typical techniques are, unques-
tionably, principal component analysis (PCA) [3], linear discriminant analysis
(LDA) [3], and locality preserving projection (LPP) [4]. PCA is the widely used
unsupervised dimension reduction method. It reduces the dimension of the data
by extracting the leading components and removing the redundant information
as much as possible. LDA is a supervised dimension reduction method, which
searches for a set of projection directions by maximizing the ratio of interclass
scatter to intraclass scatter. LPP is a linearizable version derived from Lapla-
cian eigenmap (LE) [2]. Unlike LE, LPP can yield an explicit projection matrix
by computing a generalized eigenvalue problem. Despite the effectiveness of the
foregoing DR methods, they are inapplicable to multi-view DR and data repre-
sentation.

For multi-view data learning, canonical correlation analysis (CCA) [5] is one
of the most well-known multi-view dimension reduction methods. CCA computes
pairs of projection directions by maximizing the correlation between two sets of
high-dimensional data. An implicit characteristic to use CCA is that multi-view
training samples need to be paired. However, in practice, there is usually no
shortage of unpaired data but paired are expensive. A feasible way is to make
a small number of multi-view training samples paired and the rest unpaired.
Such data are referred to as semi-paired data. In the semi-paired situation, it is
difficult to directly employ CCA for multi-view DR.

In recent years, a number of studies have focused on semi-paired scenario. For
instance, Blaschko et al. [6] proposed semi-supervised Laplacian regularization
of kernel CCA (SemiLRKCCA) via considering paired and unpaired samples
simultaneously, which can find highly correlated as well as high variance projec-
tion directions. Kimura et al. [7] presented a semi-paired version of CCA dubbed
SemiCCA that incorporates unpaired samples into CCA model to reduce over-
fittng. Chen et al. [8] focused on semi-paired as well as semi-supervised scenario
and developed a novel multi-view feature extraction method called S2GCA. It
should be pointed out that the foregoing semi-paired CCA’s variants make use of
the unpaired data only in a single-view way. That is, they only take into account
the intra-view information of unpaired data and do not consider the latent rela-
tionship between two views of unpaired data. To solve this problem, Zhou et
al. [9] presented a novel CCA’s variant named neighborhood correlation analy-
sis (NeCA) for semi-paired two-view learning, which exploits the neighborhood
relation between two-view unpaired samples.

The aforementioned methods such as SemiCCA and NeCA are only appli-
cable to two-view scenario. When more than two views occur, they are not
able to work well. To solve this problem, we propose a novel dimensional-



618 Y.-H. Yuan et al.

ity reduction approach for semi-paired multi-view data, which incorporates
between-view neighborhood relationship among semi-paired data into multiset
CCA [10] and then combines it with principal component analysis (PCA). The
proposed method is referred to as PCA-regularized multiset neighborhood cor-
relation analysis (PRMNeCA). Experimental results show that PRMNeCA is
encouraging.

2 Background

2.1 Multiset Canonical Correlation Analysis

Multiset canonical correlation analysis (MCCA) [10] is a statistical technique to
analyze the linear relation among several sets of random variables. To be spe-
cific, suppose there are m sets of zero-mean variables {x(i) ∈ Rdi}m

i=1, where di

denotes the dimension of x(i). MCCA aims to find a set of projection directions
{ωi ∈ Rdi}m

i=1 that maximize the sum of all pairwise correlations between mul-
tiset canonical variables {ωT

i x(i)}m
i=1. The optimization problem of MCCA is as

follows:
max

ω1,··· ,ωm

m∑

i,j=1
i�=j

ωT
i Sijωj

s.t.
m∑

i=1

ωT
i Siiωi = 1,

(1)

where Sij = E(x(i)x(j)T ) (i �= j) is the between-set covariance matrix of
x(i) and x(j), Sii = E(x(i)x(i)T ) is the within-set covariance matrix of x(i),
i = 1, 2, · · · ,m, and E(·) is the expectation operator. Through the Lagrangian
multiplier method, the solution to MCCA can be obtained by a generalized
eigenvalue problem.

2.2 Semi-supervised Laplacian Regularization of MCCA

The multiview generalization of SemiLRKCCA has been developed in [6], which
is based on the so-called kernel matrices and thus belongs to nonlinear learning
category. Here, we give a linear multiview extension along the idea from SemiL-
RKCCA, called semi-supervised Laplacian regularization of MCCA (SemiLRM-
CCA). Suppose m sets (views) of training data are given as X(1), X(2), · · · , X(m),
where X(i) = [X(i)

p ,X
(i)
u ] ∈ Rdi×N with X

(i)
p = [x(i)

1 , x
(i)
2 , · · · , x

(i)
p ] ∈ Rdi×p as

paired data and X
(i)
u = [x(i)

p+1, x
(i)
p+2, · · · , x

(i)
N ] ∈ Rdi×(N−p) as unpaired data, di

is the dimension of training data, p is the number of paired data, and N is the
total number of paired and unpaired data in each set. A set of directions {ωi}m

i=1

of SemiLRMCCA can be found by the following optimization problem:

max
ωi,··· ,ωm

m∑

i,j=1
i�=j

ωT
i Sp

ijωj

s.t.
m∑

i=1

ωT
i Ŝiiωi = 1

(2)
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where Sp
ij = X

(i)
p X

(j)T
p (i �= j), Ŝii = X

(i)
p X

(i)T
p + γiX

(i)LiX
(i)T with γi as the

tradeoff parameter and Li = D(i)−1/2
(D(i) − W (i))D(i)−1/2

as the normalized
graph Laplacian matrix, W (i) is the weight matrix of N paired and unpaired
samples in i-th set, D(i) is a diagonal matrix whose diagonal entry as the row
(column) sum of W (i), i.e., [D(i)]jj =

∑N
k=1[W

(i)]jk, j = 1, 2, · · · , N .
With the Lagrange multiplier method, it is easy to show that optimization

problem in (2) can be solved by the following generalized eigenvalue problem:

⎡

⎢
⎢
⎢
⎣

0 Sp
12 · · · Sp

1m

Sp
21 0 · · · Sp

2m
...

... . . .
...

Sp
m1 Sp

m2 · · · 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ω1

ω2

...
ωm

⎤

⎥
⎥
⎥
⎦

= λ

⎡

⎢
⎢
⎢
⎣

Ŝ11

Ŝ22

. . .
Ŝmm

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ω1

ω2

...
ωm

⎤

⎥
⎥
⎥
⎦

(3)

2.3 Semi-paired Learning of MCCA

In two-view scenario, SemiCCA considers the paired data as well as unpaired
data under a regularization framework, which searches for pairs of projection
directions by the generalized eigenvalue problem. Here, we extend SemiCCA into
a multiview version that we call SemiMCCA for multi-view feature extraction,
as follows.

Aω = λBω, (4)

where ωT = [ωT
1 , ωT

2 , · · · , ωT
m], λ is the eigenvalue associated with eigenvector ω,

A =

⎡

⎢
⎢
⎢
⎣

0 Sp
12 · · · Sp

1m

Sp
21 0 · · · Sp

2m
...

...
. . .

...
Sp

m1 Sp
m2 · · · 0

⎤

⎥
⎥
⎥
⎦

+ κ

⎡

⎢
⎢
⎢
⎣

S11

S22

. . .
Smm

⎤

⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎣

Sp
11

Sp
22

. . .
Sp

mm

⎤

⎥
⎥
⎥
⎦

+ κ

⎡

⎢
⎢
⎢
⎣

Id1

Id2

. . .
Idm

⎤

⎥
⎥
⎥
⎦

with κ denoting the tradeoff parameter, Sp
ii = X

(i)
p X

(i)T
p , and Idi

∈ Rdi×di as
the identity matrix. Clearly, when κ = 0, (4) reduces to ordinary MCCA, as
described in Sect. 2.1. Note that since we build SemiMCCA directly using the
eigen-form of SemiCCA, we do not give its optimization problem. In fact, the
optimization model corresponding to (4) can be formulated as

max
ω1,··· ,ωm

m∑

i,j=1
i�=j

ωT
i Sp

ijωj + κ
m∑

i=1

ωT
i Siiωi

s.t.
m∑

i=1

ωT
i Sp

iiωi + κ
m∑

i=1

ωT
i ωi = 1.

(5)
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3 Proposed Approach

3.1 Within-View Weight Matrix Construction

Using the locality idea from LPP [4], we are able to construct a neighborhood
graph in each view X(i). To be specific, let Nk(x(i)

l ) denote the set of k nearest
neighbors of sample point x

(i)
l . Then, the neighborhood graph G(i) in i-th view

can be defined as G(i) = {X(i),W (i)}, where X(i) = [X(i)
p ,X

(i)
u ] ∈ Rdi×N denotes

the di-dimensional vertices and W (i) = [w(i)
lt ] ∈ RN×N denotes the edge weight

matrix. Here, we make use of the commonly used radial basis function (RBF)
to define the weight matrix, as follows:

w
(i)
lt =

{
exp(−||x(i)

l − x
(i)
t ||2/2σ2

i ),
0,

x
(i)
t ∈ Nk(x(i)

l ) or x
(i)
l ∈ Nk(x(i)

t ),
otherwise,

(6)

where || · || is the 2-norm of a vector, σi denotes the width parameter of RBF,
and i = 1, 2, · · · ,m. Through (6), all the m edge weight matrices, one for each
view, are able to be computed. Note that the edge weights depict the similarity
of different within-view sample points in k-nearest neighborhood.

3.2 Cross-View Weight Matrix Construction

Since the samples come from multiple different views and partial pairwise infor-
mation is also not available, it is difficult to directly measure the similarity
among semi-paired multi-view data. Inspired with the idea from minimizing-
disagreement [11], we design a simple but effective cross-view weighted graph
construction to compute the similarities (weights) among semi-paired multi-view
data. The central idea is to use the within-view weights as defined in Sect. 3.1
to calculate the affinity weights with the help of shared pairwise samples.

Concretely, for any two samples x
(i)
l and x

(j)
t in i-th and j-th views (i �= j),

let us denote the paired samples they share as {x̃
(i)
s , x̃

(j)
s }Ns

s=1, where Ns denotes
the number of shared pairwise samples and Ns ≤ p. Then, the weight of samples
x
(i)
l and x

(j)
t is defined by

w
(ij)
lt =

Ns∑

s=1

w
(i)
ls w

(j)
ts , i, j = 1, 2, · · · ,m and i �= j, (7)

where w
(i)
ls (w(j)

ts ) denotes the affinity weight between samples x
(i)
l and x̃

(i)
s (x(j)

t

and x̃
(j)
s ) computed by (6), l, t = 1, 2, · · · , N . Clearly, (7) reveals that if x

(i)
l and

x
(j)
t share more paired samples, their weight w

(ij)
lt should be larger. With (7),

the cross-view weight matrix W (ij) can be formed as W (ij) = [w(ij)
lt ] ∈ RN×N ,

i, j = 1, 2, · · · ,m and i �= j.
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3.3 Model and Solution

According to [12], the between-set covariance matrix in MCCA can be expressed
in a pairwise manner. Using (7) together with pairwise expressions, we are able
to incorporate the between-view neighborhood information among semi-paired
multiview data. That is, our proposed method minimizes the following

O =
m∑

i,j=1
i�=j

N∑

l=1

N∑

t=1

w
(ij)
lt ‖ωT

i x
(i)
l − ωT

j x
(j)
t ‖2

=
m∑

i,j=1
i�=j

N∑

l=1

N∑

t=1

w
(ij)
lt (ωT

i x
(i)
l − ωT

j x
(j)
t )(ωT

i x
(i)
l − ωT

j x
(j)
t )T

=
m∑

i,j=1
i�=j

(ωT
i X(i)D(ij)

r X(i)T ωi − 2ωT
i X(i)W (ij)X(j)T ωj

+ ωT
j X(j)D(ij)

c X(j)T ωj)

=
m∑

i,j=1
i�=j

[
ωT

i X(i)(D(ij)
r + D(ji)

c )X(i)T ωi − 2ωT
i X(i)W (ij)X(j)T ωj

]

(8)

where D
(ij)
r ∈ RN×N is a diagonal matrix with l-th diagonal element as l-th row

sum of weight matrix W (ij) and D
(ij)
c ∈ RN×N is a diagonal matrix with l-th

diagonal entry as l-th column sum of W (ij).
Let us denote

S̃ij = X(i)W (ij)X(j)T

S̃ii = X(i)

⎛

⎜
⎝

m∑

j=1
i�=j

(D(ij)
r + D(ji)

c )

⎞

⎟
⎠ X(i)T .

If we impose
∑m

i=1 ωT
i S̃iiωi = 1, then minimizing the objective in (8) is equiva-

lent to the following maximization problem:

max
ω1,··· ,ωm

m∑

i,j=1
i�=j

ωT
i S̃ijωj

s.t.
m∑

i=1

ωT
i S̃iiωi = 1

(9)

Similar to SemiMCCA, combining optimization model in (9) with PCA leads
to the resulting optimization problem of the proposed method that we refer to
as PCA-regularized multiset neighborhood correlation analysis (PRMNeCA), as
follows:

max
ω1,··· ,ωm

m∑

i,j=1
i�=j

ωT
i S̃ijωj + κ

m∑

i=1

ωT
i Siiωi

s.t.
m∑

i=1

ωT
i S̃iiωi + κ

m∑

i=1

ωT
i ωi = 1,

(10)
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where {Sii}m
i=1 are defined in (1) and κ is the balance parameter.

Through the Lagrange multiplier method, the optimization problem in (10)
can be solved by the following generalized eigenvalue problem:

Ãω = λB̃ω, (11)

where ωT = [ωT
1 , ωT

2 , · · · , ωT
m],

Ã =

⎡

⎢
⎢
⎢
⎣

0 S̃12 · · · S̃1m

S̃21 0 · · · S̃2m

...
...

. . .
...

S̃m1 S̃m2 · · · 0

⎤

⎥
⎥
⎥
⎦

+ κ

⎡

⎢
⎢
⎢
⎣

S11

S22

. . .
Smm

⎤

⎥
⎥
⎥
⎦

,

B̃ =

⎡

⎢
⎢
⎢
⎣

S̃11

S̃22

. . .
S̃mm

⎤

⎥
⎥
⎥
⎦

+ κ

⎡

⎢
⎢
⎢
⎣

Id1

Id2

. . .
Idm

⎤

⎥
⎥
⎥
⎦

.

We select the top r (≤ min{d1, · · · , dm}) generalized eigenvectors of (11)
to form the projection matrices {Pi = [ωi1, ωi2, · · · , ωir] ∈ Rdi×r}m

i=1 of all
the views. For any given sample x(i) ∈ Rdi from i-th view, its low-dimensional
representation can be obtained in the form of PT

i x(i), which is used to represent
the original x(i) for classification purpose.

4 Experiments

In this section, we perform several experiments to compare the performance
of PRMNeCA with MCCA, SemiLRMCCA, and SemiMCCA. We adopt two
widely used data sets which are the FERET and Yale face databases. The nearest
neighbor classifier is used in all our experiments.

4.1 Parameter Selection

There are several important parameters in SemiLRMCCA, SemiMCCA, and our
PRMNeCA. We empirically set these parameters’ values. In SemiLRMCCA and
PRMNeCA, the neighborhood parameter k is chosen from the set {1, 2, · · · , Nc},
where Nc is smaller than the number of training samples in each class, and the
width parameter σi of RBF is set to 1. In addition, the parameter γi (i =
1, 2, · · · ,m) in SemiLRMCCA is searched from the set {2−14, 2−13, · · · , 22} for
the best result. In SemiMCCA and PRMNeCA, the parameter κ is chosen from
{2−14, 2−13, · · · , 22}.
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4.2 Results on the FERET Database

The FERET database1 contains 14126 face images of 1199 individuals. A subset
of the FERET database is used in our experiment. This subset includes 1400
face images of 200 individuals with variations in facial expression, illumination
and pose. There are seven images per individual with a resolution of 80 × 80.

Table 1. Average accuracy (%) across ten runs of each method on FERET database.

Method 1st view 2nd view 3rd view

MCCA 35.78 38.59 38.83

SemiMCCA 43.75 43.60 44.37

SemiLRMCCA 36.57 40.18 39.30

PRMNeCA 46.52 46.58 46.92

In this experiment, we down-sample original face images to low-resolution
images with size 40×40, and then recover them to the images with 80×80 pixels.
These recovered images are taken as the first view. The wavelet transformation
(i.e., Symlets wavelet) is adopted to extract facial features from original images
that are regarded as the second view. The third-view data are generated by
performing a 3×3 mean filter on original face images. To avoid the small sample
size problem, PCA is used to reduce the dimension of each view to 120.

On this subset, four images per individual are randomly selected for training
and the rest for testing. In training set, two samples per class in each view are
used as paired samples and the rest as unpaired samples. Ten independent tests
are run and the average results are computed for the performance evaluation.
Table 1 summarizes the average recognition accuracy across ten runs of each
method under nearest neighbor classifier.

From Table 1, we can see that PRMNeCA performs better in each view than
MCCA, SemiMCCA, and SemiLRMCCA. SemiMCCA performs the second best
and MCCA achieves the worst results. An important reason is that MCCA does
not consider the unpaired data in learning low-dimensional projections. This
makes MCCA possible to encounter the problem of overfitting.

4.3 Results on the Yale Database

The Yale face database2 contains 165 grayscale images of 15 individuals. There
are 11 images per subject with a resolution of 80 × 80, one per different facial
expression or configuration: center-light, with glasses, happy, left-light, without
glasses, normal, right-light, sad, sleepy, surprised, and winking.

1 https://www.nist.gov/itl/products-and-services/color-feret-database.
2 http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html.

https://www.nist.gov/itl/products-and-services/color-feret-database
http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
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Table 2. Average accuracy (%) across ten runs of each method with p = 2 on the Yale
face database.

Method Coi view Dau view Sym view

MCCA 58.17 59.17 59.67

SemiMCCA 63.50 64.17 63.83

SemiLRMCCA 57.33 58.50 59.00

PRMNeCA 70.17 69.67 69.83

Table 3. Average accuracy (%) across ten runs of each method with p = 3 on the Yale
face database.

Method Coi view Dau view Sym view

MCCA 58.50 60.00 60.83

SemiMCCA 64.17 70.17 70.17

SemiLRMCCA 59.83 59.17 59.33

PRMNeCA 71.83 71.67 71.50

In this experiment, we employ three kinds of different wavelet transforma-
tions, i.e., Coiflets, Daubechies, and Symlets wavelets, to extract three-view fea-
tures from original face images, respectively denoted as Coi, Dau, and Sym.
As used in Sect. 4.2, we also perform PCA to reduce each view’s dimension to
120 before evaluating each method. In this test, seven images per individual
are randomly selected for training, while the remaining four images for testing.
In addition, p (p = 2 and 3) samples of each individual in each view are used
as paired samples and the rest as unpaired samples. Ten recognition tests are
independently run and the average results are computed for the performance
comparison. Tables 2 and 3 list the average recognition results of each method
across ten runs under nearest neighbor classifier with different values of p.

From Tables 2 and 3, we can see that our PRMNeCA method achieves the
best results among all the methods with different views, irrespective of the varia-
tion of paired samples. SemiMCCA performs the second best, whether the value
of p is 2 or 3. These results demonstrate again that our PRMNeCA method is
effective for semi-paired multi-view dimension reduction and feature extraction.

5 Conclusion

In this paper, we have proposed a novel semi-paired multiview dimension reduc-
tion approach dubbed PRMNeCA, which not only makes full use of unpaired
multiview samples, but also considers cross-view neighborhood relationship
among semi-paired data and within-view global structure information. In addi-
tion, we introduce the idea from PCA to regularize our optimization model.
Experimental results on two popular databases demonstrate the effectiveness of
our proposed PRMNeCA method.
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Abstract. In this paper, we propose a Sampling Adversarial Networks
(SAN) framework to improve Zero-Shot Learning (ZSL) by mitigating
the hubness and semantic gap problem. The SAN framework incorpo-
rates a sampling model and a discriminating model, and corresponds
them to the minimax two-player game. Specifically, given the semantic
embedding, the sampling model samples the visual features from the
training set to approach the discriminator’s decision boundary. Then,
the discriminator distinguishes the matching visual-semantic pairs from
the sampled data. On the one hand, by the measurement of the match-
ing degree of visual-semantic pairs and the adversarial training way,
the visual-semantic embedding built by the proposed SAN decreases
the intra-class distance and increases the inter-class separation. Then,
the reduction of universal neighbours in the visual-semantic embedding
subspace alleviates the hubness problem. On the other, the sampled
rather than directly generated visual features maintain the same mani-
fold as the real data, mitigating the semantic gap problem. Experiments
show that the sampler and discriminator of the SAN framework outper-
form state-of-the-art methods both in conventional and generalized ZSL
settings.

Keywords: Zero-Shot Learning · Sampling Adversarial Networks ·
Hubness problem · Semantic gap

Image classification tasks have achieved great success due to the prosperous
progress of deep learning [8]. However, most deep learning methods require label-
ing extensive training data, which is both labor-intensive and unscalable [19]. To
tackle this limitation, Zero-Shot Learning (ZSL) is proposed to recognize new
categories that have never seen during training, i.e., the categories in the training
and test set are disjoint [20,22]. According to the categories included in the test,
two ZSL settings are defined: conventional ZSL and Generalized ZSL (GZSL).
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Specifically, only the unseen classes are used to evaluation in the conventional
ZSL setting. The GZSL provides a more practical point of view, where both seen
and unseen categories are involved for testing.

There are two fundamental challenges in ZSL: visual-semantic embedding [20]
and domain adaption [5]. The knowledge can be transferred from the seen domain
to the unseen domain by building a visual-semantic embedding. However, since
the seen and unseen classes are different and potentially unrelated, the domain
shift problem is triggered when the visual-semantic embedding is directly applied
to the unseen data [5]. Thus, compared with the fully-supervised image classifi-
cation tasks, the performance of ZSL is still far from perfect [3].

Most previous cross-modal embedding methods solved ZSL in two steps.
First, project both visual features and semantic features to the embedding
space [9]. Then, utilize nearest neighbour search in the embedding space to
match the projection of visual or semantic feature vector against that of an
unseen instance [28]. However, [17] proposed that there are many ‘universal’
neighbours, namely hubs, when performing nearest neighbour search in a high-
dimensional space. They also showed that the hubness is an inherent property
of data distributions in the high-dimensional vector space. Therefore, the cross-
modal embedding methods always lead to the well-known hubness problem [3].
That is, a few unseen class prototypes will become the nearest neighbours of
many hubs.

Recently, a new branch of methods target to ZSL by generative models [27].
They directly generate the unseen features from random noises which are condi-
tioned by the semantic descriptions. With the generated unseen samples, zero-
shot learning can be transformed to a supervised image classification task. How-
ever, since both the true and generated visual features contain intrinsic mani-
fold structures, the manifold alignment is very challenge, especially in the high-
dimension [18]. The semantic gap problem, i.e., the manifold of samples in the
visual feature space is inconsistent with that of categories in the semantic space,
often leads to model collapse, especially for the approaches [14] based on Gen-
erative Adversarial Networks (GAN) [6].

In this paper, we propose a novel Sampling Adversarial Networks (SAN)
framework to improve ZSL by mitigating the hubness and semantic gap problem.
The SAN framework proposes a new perspective for tackling ZSL by combin-
ing a sampling model and a discriminative model. The sampler aims at picking
matching visual features given a semantic input. The discriminator focuses on
measuring relevancy given a visual-semantic pair. These two models correspond
to the minimax two-player game. On one hand, the discriminator guides the
sampler to fit the underlying relevance distribution over visual features given
the semantic presentation. On the other hand, the sampler tries to select visual
features closing to the discriminator’s decision boundary to confuse the discrim-
inator. Our main contributes of this paper are summarized as follows:

– For the hubness problem, we construct a visual-semantic embedding by the
adversarial training way. We utilize the discriminator to measure the match-
ing degree of the visual-semantic pairs, rather than distinguish whether the
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visual features are real or fake. The proposed method considers the intra-class
consistency and inter-class diversity, which alleviates the hubness problem.

– For the semantic gap problem, we propose to utilize the encoded attributes to
sample visual features of seen classes, instead of directly generating visual fea-
tures. Then, the sampled visual features space is not affected by the semantic
gap between attribute and visual feature space.

– Extensive experiments demonstrate that both the sampler and discriminator
of the proposed SAN framework outperform state-of-the-art methods both in
the conventional and generalized ZSL setting.

1 Related Work

ZSL aims to classify images of new classes that have never been seen before, i.e.,
the training and test classes are disjoint. With the shared attributes annotated
on class level, the ZSL is achieved by building the visual-semantic embedding to
transfer the knowledge from seen classes to unseen classes [23]. GZSL is a more
realistic setting, where the same information as ZSL is available at training phase,
but both seen and unseen classes are classified during testing [2,26]. With the
development of deep learning, many effective methods have been proposed to
target to ZSL.

The cross-modal embedding models usually project either visual features or
semantic features from one space to the other, or project both features into an
intermediate space. Then, the compatibility function between visual and seman-
tic features vectors is learned by using the ranking loss. ESZSL [18] learns a
bilinear compatibility function between visual features, semantic features, and
class labels with the square loss. LATEM [25] directly maps the visual feature to
semantic space, and learns a bilinear compatibility function. SYNC [1] embeds
both the visual and semantic features into another common space, and also learns
a bilinear compatibility. SAE [9], following the Auto-Encoder, reconstructs the
visual features in the semantic space. RethinkZSL [12] reformulates ZSL as a
conditioned visual classification problem, i.e., classifying visual features based
on the classifiers learned from the semantic descriptions.

The generative models reformulate ZSL as a standard fully-supervised clas-
sification task. GAZSL [29] takes noisy text descriptions about an unseen class
as the input of generative model, and generates synthesized visual features for
this class. f-CLSWGAN [27] synthesizes visual features conditioned on class-
level semantic information, and pairs a Wasserstein GAN with a classification
loss. LisGAN [24] trains a conditional Wasserstein GANs to directly generate
the unseen features from random noises which are conditioned by the semantic
descriptions.

Benefit from the synthesized missing features for unseen classes, the gener-
ative models achieve better results for unseen classes both in ZSL and GZSL.
However, the manifold of samples in the visual feature space is inconsistent with
that of categories in the semantic space. The semantic gap results in the distur-
bance of the generated unseen visual features to the original seen visual space.
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Therefore, the generative models seem kind of “confused” for the accuracy of
seen classes in the GZSL setting. Building on ideas from these many previous
works, we develop a simple and effective SAN framework incorporating sampler
and discriminator, and corresponding them to the minimax two-player game.

2 Sampling Adversarial Networks

Fig. 1. The framework of the proposed SAN. ai and xi denote the attribute and the
corresponding visual feature. x̃1, x̃2,..., x̃k denote the sampled visual features from all
training visual instances X . Sθ and Dϕ are the sampler and discriminator, respectively.

Here we firstly introduce some notations and the problem definition. Let
S = {(x, y, a)|x ∈ Xs, y ∈ Ys, a ∈ As} and U = {(x, y, a)|x ∈ Xu, y ∈ Yu, a ∈
Au} where S and U denote training data of seen classes and testing data of
unseen classes, respectively. X and A are the visual features and the semantic
information in the form of attributes. Ys and Yu are the corresponding class
labels. There is no overlap between seen and unseen classes, i.e., Ys ∩ Yu = ∅.
The goal of ZSL is to transfer the visual-semantic embedding learned in S to
U , and learn a classifier f : Xu → Yu. As for GZSL, we learn the classifier
f : Xs,Xu → Ys ∪ Yu. Figure 1 shows the overview of our method. We construct
the sampling model Sθ and discriminative model Dϕ as follow:

Sampling Model. The sampler Sθ : A → X is a multi-layer perceptron. The
sampling model pθ(x|a) tries to approximate the true relevance distribution over
visual features as much as possible, and confusing the discriminator’s training
next round. First, we utilize the sampler Sθ to encode the input attribute ai as an
index vector fθ(ai) with the same dimension as the visual feature. Then, the sam-
pling process of the sampling model is selecting K visual features {x̃1, x̃2, ..., x̃K}
according to cosine similarity over discrete candidate pool. The candidate pool
of each input semantic information is composed of N visual features randomly
sampled from the whole trained seen visual features.
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Discriminative Model. The discriminative model aims at distinguishing the
well-matched semantic-visual features from the sampled negative data. For each
attribute, K visual features of the same categories as the attribute and K fake
visual features sampled by the sampler are selected. Then we can get K pairs
matching semantic-visual features as the positive samples and K pairs mismatch-
ing semantic-visual features as the negative samples. In order to calculate the
cosine similarity between semantic and visual information, we first encode the
attribute ai by the discriminator Dϕ. The discriminator Dϕ : X × A → [0, 1] is
also a multi-layer perceptron, where the last layer is the cosine similarity between
visual and semantic features. The Dϕ is designed for estimating the probability
of visual feature x being relevant to the semantic information a, i.e., they belong
to the same category. The discriminative score D(x, a) can be defined as follow:

D(x, a) = cos(fϕ(a), x). (1)

Objective Function. Overall, as with the training procedure of GAN, the
sampler Sθ and discriminator Dϕ of the proposed SAN framework play the two-
player minimax game with the following objective function V (S,D):

min
θ

max
ϕ

V (S,D) = Ex∼pdata(x)[log D(x, a)] + Ex∼pθ(x|a)[log(1 − D(x, a))], (2)

where a is the attribute vector, x ∼ pdata(x) is the visual feature of the same
categories as the attribute a, and x ∼ pθ(x|a) is the visual feature sampled by the
sampler Sθ. The discriminator Dϕ tries to maximize the loss, and the sampler
Sθ tries to minimizes it. Following a replacing trick in [6], the optimal ϕ∗ and
θ∗ can be obtained as follow:

ϕ∗ = arg max
ϕ

(Ex∼pdata(x)[log D(x, a)] + Ex∼pθ(x|a)[log(1 − D(x, a))]). (3)

θ∗ = arg min
θ

(Ex∼pdata(x)[log D(x, a)] + Ex∼pθ(x|a)[log(1 − D(x, a))])

= arg max
θ

Ex∼pθ(x|a)[− log(1 − D(x, a))]
︸ ︷︷ ︸

denoted as J S(a)

. (4)

It is worth mentioning that the sampler is utilized to directly select known
visual features from the candidate pool. Thus, the sampling of the visual features
is discrete, which means that we cannot directly optimise the sampling model
by gradient descent. Following [7], we use policy gradient [21] based on rein-
forcement learning to derive the gradient of J S(a). Given a query attribute a,
the sampler is modeled as a reinforcement learning policy to sample a candidate
visual feature xn at the state, and is trained via policy gradients. The gradient
of J S(a) can be derived as follows:
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∇θJ S(a) = ∇θEx∼pθ(x|a)[− log(1 − D(xn, a))]

=
N

∑

n=1

∇θpθ(xn|a)[− log(1 − D(x, a))]

=
N

∑

n=1

pθ(xn|a)∇θ log pθ(xn|a)[− log(1 − D(xn, a))]

= Ex∼pθ(x|a)[∇θ log pθ(x|a)(− log(1 − D(x, a)))]

	 1
K

K
∑

k=1

∇θ log pθ(xk|a)
︸ ︷︷ ︸

the action

(− log(1 − D(xk, a)))
︸ ︷︷ ︸

the reward

,

(5)

where xn denotes the n-th visual feature in the candidate pool, and xk denotes
the the k-th visual feature approximately sampled from the current version of
sampler pθ(x|a). Inspired by the reinforcement learning terminology, we use the
term log pθ(x|a) to denote taking an action x in the environment a, and the term
(− log(1 − D(x, a))) to denote the reward for the policy [21].

Specifically, for the policy gradient based on reinforcement learning, we first
calculate the cosine similarity between the N visual features xn in candidate
pool and corresponding index vector fθ(a) encoded by the sampler Sθ. Then, the
probability pθ(xn|a) is obtained by softmax operation on the N cosine similarity
values cos(fθ(a), xn). After that, we choose the probability value pθ(xk|a) and
corresponding visual feature vector xk of the top K probability value. Then,
the log value of k probability value pθ(xk|a) is defined as the action value
log(pθ(xk|a)), and the value of −log(1 − D(xk, a)) based on the discriminative
score cos(fϕ(a), xk) is defined as the reward value. Finally, the average value of
the product of the action value and reward value is the loss of the sampler.

Moreover, in order to reduce the expression differences of sampler and dis-
criminator when they encode the attribute into the visual feature space, we
introduce the classification loss Lcls based on the score function of discrimina-
tor. We apply the SoftMax classifier to both the real visual features and the
sampled fake visual features. The classification loss Lcls is defined as follow:

Lcls = −
∑

i

yi ln p(y = i|x) = −
∑

i

yi ln
exp(D(x, ai))

∑

cs
exp(D(x, acs

))
, (6)

where cs denotes the number of the seen categories. p(y = i|x) represents the
probability that the visual feature x belongs to category i. Specifically, we utilize
LS

cls and LD
cls to represent the classification loss for real visual features and

sampled fake visual features, respectively.
We take the classification losses as the regularizer for enforcing the sampler to

select discriminative features, and promoting the disciminator to consider both
inter-class and intra-class distance. Over full objective can be derived as follows:

min
θ

max
ϕ

V (S,D) + αLS
cls + βLD

cls, (7)
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Table 1. The details of five benchmark datasets.

Dataset SUN CUB AWA1 AWA2 aPY

A 102 312 85 85 64

N 14340 11788 30475 37322 15339

S + U 645+72 150+50 40+10 40+10 20+12

N s 10320 7057 19832 23527 5932

N u 1440 2967 5685 7913 7924

N s→ts 2580 1764 4958 5882 1483

where α and β are the hyperparameters weighting the classifiers of sampler and
discriminator, respectively.

Through multiple iterations of training, both sampler S and discriminator D
can be used to classification. Given the attributes of all the unseen classes, i.e.,
Au, all the test index vector fθ(Au) can be obtained by the sampler S. Then, we
calculate the cosine similarity between any test visual feature x and the index
vector fθ(Au). For the query image feature x, the label y of a ∈ Au with the
highest compatibility score is the classification result. As for the discriminator
D, we can directly get the compatibility scores between any query image x and
all the test attributes Au by Eq. 1. By finding the attribute with the highest
cosine value, we can get the label of the query image.

3 Experiments

3.1 Experimental Setup

Dataset. We employ the most widely-used ZSL datasets for performance evalua-
tion, that is, SUN Attribute Database (SUN) [16], Caltech-UCSDBirds 200-2011
(CUB) [15], Animals with Attributes 1 (AWA1) [10], Animals with Attributes 2
(AWA2) [26], Attribute Pascal and Yahoo (aPY) [4]. The GBU train/test split
setting proposed in [26] is adopted to evaluate both the conventional ZSL set-
ting and GZSL setting. Table 1 shows the details of five benchmark datasets. A
denotes the dimension of attributes. S and U are the categories numbers of seen
and unseen classes. N presents the number of images. Ns and Nu are the num-
ber of images of seen and unseen classes. Note that Ns→ts denotes the images’
number of seen classes during test in the GZSL setting.

Evaluation Metrics. To compare the performance with the existing method,
we use the unified evaluation protocol, i.e., Mean Class Accuracy (MCA), pro-
posed in [26]. MCA averages the correct predictions independently for each class
before dividing the number of classes. In the GZSL setting, we adopt MCAS

on seen test classes, MCAU on unseen test classes, and their harmonic mean
H = 2 ∗ MCAS ∗ MCAU/(MCAS + MCAU ) as the evaluation metrics.
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Table 2. Comparisons in conventional settings. The best results are in bold. SAN-D
and SAN-S present the discriminator and sampler of SAN model, respectively.

Method SUN(%) CUB(%) AWA1(%) AWA2(%) aPY(%)

ESZSL [18] 54.5 53.9 58.2 58.6 38.3

LATEM [25] 55.3 49.3 55.1 55.8 35.2

SYNC [1] 59.1 55.6 54.0 46.6 23.9

SAE [9] 40.3 33.3 53.0 54.1 8.3

RethinkZSL [12] 62.6 54.4 70.9 71.1 38.0

GAZSL [29] 61.3 55.8 68.2 70.2 41.1

f-CLSWAGN [27] 60.8 57.3 68.2 – –

LisGAN [11] 61.7 58.8 70.6 – 43.1

SAN-D 62.9 57.0 71.4 69.7 43.4

SAN-S 62.7 55.7 70.3 68.1 40.3

Implementation Details. We use the 2048-dimensional top-layer pooling units
with ReLU activation of the 101-layered ResNet as the visual features following
the pre-trained method in [26]. The sampler and discriminator are Multi-Layer
Perceptron (MLP) with ReLU activation. The dimension of the input layer of the
MLP is the attribute’s dimension of the corresponding dataset. For all datasets,
the dimensions of the hidden layer and output layer are 1600 and 2048, respec-
tively. We use Adam optimizer with learning rate 0.00005 to train the SAN
framework. The pool size N of candidate pool is set as 100, and we sample
K = 3 visual features from the candidate pool each time across all the datasets.
We apply α = β = 1 and develop our method based on PyTorch1.

3.2 Comparisons in Conventional Setting

We compare our method with the cross-modal embedding models and generative
models in the conventional ZSL setting. Table 2 shows the experimental results.
In the legacy challenge of zero-shot learning, both discriminator (SAN-D) and
sampler (SAN-A) provide competitive performance, i.e., 62.9% on SUN, 71.4%
on AWA1, 43.4% on aPY. We analyze this striking improvements owing to the
visual-semantic embedding space built by the adversarial training way, which
decreases the intra-class distance and increases the inter-class separation.

Compare to the cross-modal embedding models, e.g., ESZSL [18], SYNC [1],
which map the visual or semantic features to the fixed anchor points in the
embedding subspace, the sampler of the proposed SAN framework directly sam-
ples the unseen features. Moreover, the discriminator distinguishes whether the
sampled visual features match the input attribute, rather than whether the sam-
pled visual features are true or fake. The sampler supplies the training unseen
classes, and the visual-semantic embedding built by the adversarial training way
1 The source code is provided at: https://github.com/TCvivi/Zero-Shot-Learning.

https://github.com/TCvivi/Zero-Shot-Learning


634 C. Tang et al.

decreases the intra-class distance and increases the inter-class separation. Then,
the hubness problem is mitigated by reducing the universal neighbours surround-
ing the embedding vectors of unseen classes.

Compare to the generative models based on GAN, e.g., GAZSL [29], and f-
CLSWGAN [27], we propose to utilize the encoded semantic features to sample
true visual features of seen classes, instead of directly generating visual fea-
tures. Thus, the sampled visual features space is not affected by the semantic
gap between attribute and visual feature space. Experimental results show that
the proposed method is better than the the generative models based on GAN.
Moreover, both the sampler and discriminator of the proposed SAN are able to
achieve good classification results.

3.3 Comparisons in Generalized Setting

Although the generative methods have much better generalization ability than
the cross-modal methods on the conventional setting, the performances of these
two methods both degrade dramatically on the generalized ZSL. Table 3 shows
the experimental results in the generalized ZSL setting. An interesting observa-
tion is that the cross-model methods, e.g., ESZSL [18] and SYNC [1], perform
well on seen test class (S), but work poorly on the unseen test classes (U).
More interesting observation can be found that the generative methods, e.g.,
GAZSL [29] and f-CLSWGAN [27], perform well on the unseen classes in the
GZSL setting, but their classification accuracy for the seen classes is worse than
the cross-model methods. From the Table 3, we can see that the proposed SAN
framework performs competitive on seen classes, unseen classes, as well as har-
monic mean, i.e., H = 41.0% on SUN, H = 67.1% on AWA2.

Table 3. Comparisons in generalized settings. The best results are in bold. U =
MCAU , S = MCAS , and H is the harmonic mean.

Method SUN(%) CUB(%) AWA1(%) AWA2(%) aPY(%)

U S H U S H U S H U S H U S H

ESZSL [18] 11.0 27.9 15.8 12.6 63.8 21.0 6.0 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6

LATEM [25] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2

SYNC [1] 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3

SAE [9] 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 0.4 80.9 0.9

RethinkZSL [12] 36.3 42.8 39.3 47.4 47.6 47.5 62.7 77.0 69.1 56.4 81.4 66.7 26.5 74.0 39.0

GAZSL [29] 22.1 39.3 28.3 31.7 61.3 41.8 29.6 84.2 43.8 35.4 86.9 50.3 14.2 78.6 24.0

f-CLSWAGN [27] 42.6 36.6 39.4 43.7 57.7 49.7 57.9 61.4 59.6 – – – – – –

LisGAN [11] 42.9 37.8 40.2 46.5 57.9 51.6 52.6 76.3 62.3 – – – 34.3 68.2 45.7

SAN-D 45.6 37.2 41.0 48.6 49.4 49.0 61.5 76.5 68.2 57.6 80.4 67.1 32.8 68.9 44.5

SAN-S 41.3 38.5 39.8 48.6 46.1 48.5 58.3 76.7 66.3 55.6 79.3 65.4 31.0 68.8 42.8

The cross-modal methods transfer the knowledge learned from seen classes
directly to unseen classes. Thus, the visual-semantic embedding subspace con-
structed by the seen classes can maintain a high supervised classification accu-
racy on the seen classes. Obviously, when the search space includes both seen and
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unseen classes, the images of unseen classes are easily divided into the seen train-
ing categories. The generative methods based on GAN build a more complete
visual-semantic embedding subspace by generating the pseudo data of unseen
class, so as to solve the problem of low recognition accuracy on unseen classes
in the GZSL setting. However, due to the semantic gap between attribute and
visual feature space, with the improvement of the subspace’s ability to recognize
unseen classes, it is inevitably sacrifice the classification ability on seen classes.

3.4 Model Analysis

Visualisation of the Learned Representation. To visually investigate the
effectiveness of the proposed SAN framework, we adopt the t-SNE [13] app-
roach to embed the representation of the visual features and attributes into a
two-dimensional visualisation plane for the AWA1 dataset in Fig. 2. Compare to
the distribution of original attributes in Fig. 2(a), the semantic representation
of embedded attributes by the discriminator of our method of both seen (blue
‘+’) and unseen (red ‘×’) classes in Fig. 2(b) is more spatially dispersed, which
proves that the proposed SAN framework considers the inter-class separation for
all classes. Figure 2(c) shows the attribute features encoded by discriminator of
all classes and visual features embedding of unseen classes. We can see that the
discriminator is able to model the discrimination between samples from different
semantic categories of unseen classes, and effectively separates the representa-
tions into several semantically clusters. It demonstrates that intra-class consis-
tency and inter-class diversity are considered. Figure 2(d) shows the attributes
and visual features embedding of all test classes. Although the proposed method
is able to separates the representations of all test classes into several clusters, the
distributions of seen classes and unseen classes are too close or even overlapped.
It’s explains that all methods is fail to achieve perfect results in GZSL setting.

Fig. 2. The visualization of the learned representation of AWA1 dataset. (color figure
online)

Class-Wise Accuracy. We use the confusion matrix to show the experimental
result of ZSL in a more fine-grained scale. Figure 3 shows the confusion matrix
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of both sampler Sθ (Fig. 3(a)) and discriminator Dϕ (Fig. 3(b)) in the proposed
SAN framework on the evaluation of AWA2 dataset. As shown in Fig. 3, sampler
Sθ and discriminator Dϕ of the proposed method generally have better accuracy
on most of the test categories. For classes such as ‘seal’ and ‘bat’, the low recog-
nition accuracy of the both sampler Sθ and discriminator Dϕ mainly due to the
fact that no similar categories have been seen during training. Therefore, when
the visual-semantic embedding constructed in the seen classes is transferred to
the novel classes, the model tends to perform poorly on these categories.

Fig. 3. The confusion matrixes on the evaluation of AWA2 dataset.

4 Conclusion

In this paper, we propose the SAN framework to improve ZSL by mitigating the
hubness and semantic gap problem. For the hubness problem, we construct a
visual-semantic embedding by the adversarial training way. Moreover, we utilize
the discriminator to measure the matching degree of the visual-semantic pairs,
rather than distinguish whether the visual features are real or fake. The proposed
method considers both the intra-class consistency and inter-class diversity, which
alleviates the hubness problem. For the semantic gap problem, we propose to
utilize the encoded attributes to sample visual features of seen classes, instead
of directly generating visual features. Then, the sampled visual features space
is not affected by the semantic gap between attribute and visual feature space.
Extensive experiments on five most widely-used datasets demonstrate that both
the sampler and discriminator of the proposed SAN framework outperform state-
of-the-art methods both in the conventional and generalized ZSL setting. In the
future, we intend to perform SAN for the transductive setting as well. By adding
the visual features of the unseen classes to candidate pool of the sampler, the
model can learn a more comprehensive visual-semantic embedding space.
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Abstract. In the real-world scenario of data stream classification, label
scarcity is very common. More challenges are data streams always
include concept drifts. To handle these challenges, an algorithm of semi-
supervised classification of data streams based on adaptive density peak
clustering (SSCADP) is proposed. In SSCADP, to generate concept clus-
ters at leaves in a Hoeffding tree, a density peak clustering method and
a change detection technique are combined to adaptively locate the clus-
tering centers. Concerning concept drift detection, we argue that the
change of cluster with higher density more likely reflect the change of
data distribution. Hence, to detect concept drifts, an adaptive weighting
method for density change detection is proposed to calculate the devi-
ations between the history concept clusters and new ones. Experiments
on synthetic and real datasets confirm the advantages of SSCADP.

Keywords: Semi-supervised classification · Data stream · Decision
tree · Clustering · Concept drift

1 Introduction

The classification of data steams with concept drift is one of the main challenges
of data mining [1–3]. In various real-applications, including network intrusion
detection, spam filtering and credit card fraud detection[4] etc., due to labeling
cost and time consuming, it is unrealistic that all instances are labeled by expert.
Therefore, a semi-supervised classification algorithm which can handle concept
drifts plays a critical role in addressing the issue of data stream mining.

To overcome these challenges, many researches have been reported in recent
years. However, there are still some limitations. Firstly, many existing methods
[5,6] commonly take clustering methods to label the unlabeled instances which
should assign the number of clusters in advance and keep it constant during the
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processing of data streams. Secondly, many methods ignore the impact of high
density clusters on concept drift detection [5,7].

Specifically in SUN [5], firstly, K-modes is used to form clusters and label the
unlabeled data. However, using K-modes requires setting the number of clusters
in advance and keeping it unchanged during the processing of data streams,
which is unreasonable in many real-applications. Since the dynamic feature of
data streams, new concept clusters may appear while old may disappear. Sec-
ondly, the average deviation between the history and new concept clusters is
adopted to detect concept drifts, which ignores changes in high-density clusters
which are more likely result in concept drifts.

In light of these limitations, an approach of semi-supervised classification
of data streams based on adaptive density peak clustering (SSCADP) is pro-
posed. The framework of SSCADP is the same as SUN, but there are two main
differences.

Firstly, to generate concept clusters at the leaves in a Hoeffding tree, a density
peak clustering method [8] and a change detection technique [9] are combined
to adaptively locate the cluster centers, instead of using K-modes. Secondly, we
consider that the change of clusters with higher density is more likely to reflect
the change of data distribution. And hence an improved detection method based
on SUN is proposed that an adaptive weighted average strategy is adopted to
assign higher weight value to the higher density clusters.

The rest of this paper is organized as follows. Section 2 presents some related
work. Section 3 describes the proposed algorithm in detail including adaptively
locating the cluster centers, labeling the unlabeled samples, and concept drift
detection method. Experiments and results are shown in Sect. 4. Finally, Sect. 5
summarizes this paper and future work.

2 Related Work

The proposed approaches for semi-supervised classification of data stream with
concept drifts can be broadly divided into decision tree-based and non-decision
tree-based methods. The decision tree-based methods like SUN [5] and REDLLA
[7] adopt a Hoeffding tree as base classifier. During the construction of the base
classifier, unlabeled data are labeled by clustering in leaves, and then added into
the detection of concept drifts and the updating of the base classifier. Concept
drifts are detected based on the deviation between history concept clusters and
the new ones. Others like Sco-forest [10] extends Co-forest algorithm to handle
evolving data streams. The concomitant ensemble is used to select samples with
high classification confidence and label these samples to update the correspond-
ing base classifier. If a concept drift is detected by Adwin2 [11], the base classifier
with the worst accuracy will be discarded.

The non-decision tree-based methods usually take cluster model for data
streams classification. Reasc [12] maintains an ensemble of cluster-based classi-
fiers. When updating the ensemble, the cluster-based classifier with the worst
accuracy will be removed out. SPASC [6] maintains a classifier pool which is
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composed of weighted clusters-based model. The weight value will be adjusted
adaptively according to the correctness of classification. SCBELS [13] maintains
an ensemble of cluster-based classifiers which are constructed by BIRCH [14]
and incrementally updated during the classification of data stream. Local struc-
tural information of data is taken into account to deal with concept drifts. [15]
proposed to dynamically maintain a set of micro-clusters, each instance is used
to update the model, outdated or micro-clusters with low reliability are removed
to adapt to the evolving concepts of data streams.

Other models like ECU [16], it constructs an ensemble model which com-
bines both classifiers and clusters for classification. [17] proposed a neural net-
work framework for streaming data classification that each layer consists of a
generative network, a discriminant structure and a bridge.

3 Proposed Algorithm

3.1 The Framework of the Proposed Algorithm

In this paper, a data stream is represented as D = {D0,D1,D2 . . . ,Dt, . . .}, in
which Dt = {x t

1,x
t
2, . . . ,x

t
m} indicates the data batch collected at the time t.

SSCADP1 is described in the algorithm 1. It employs a Hoeffding tree as its base
classifier. After Dt is classified by the Hoeffding tree, each instance in it is sorted
into a leaf, the corresponding statistics of the leaf are updated. If the number
of instances arrived at the tree meets dp, all the labeled instances in a leaf l are
utilized to label the unlabeled instances in it, and then concept drift detection is
installed to detect drift at the leaf. Then, a pruning strategy is adopted on the
Hoeffding tree, and if the number of instances in a new leaf meet nmin, the leaf
attempts to split. After splitting, the updated Hoeffding tree is ready for new
concept.

3.2 Adaptively Locate Cluster Centers and Label Unlabeled
Instances

If a detection period is reached, a clustering method named Clustering by fast
search and find of density peaks (CFSDP) [8] and a change detection technique
[9] are combined to adaptively locate the cluster centers. After concept clusters
at each leaf are created, graph-based label propagation [18] is installed to label
the unlabeled data in each cluster. If a cluster without any labeled instance, all
unlabeled instances in it will be assigned the majority label of the closest cluster.

The basic idea of CFSDP is that the clustering centers should be in the
region with high data density and far away from each other. CFSDP is based on
two quantities: (1) ρi, the local density of the i-th instance; (2) δi, the minimum
distance between the i-th instance and the instances which have higher density
than the i-th instance. ρi and δi are defined as

ρi =
∑

j∈Is/{i}
exp{−(dij/dc)

2}, δi = min
j:ρj>ρi

(dij). (1)

1 Source code: https://gitee.com/ymw12345/sscadpsrc.git.

https://gitee.com/ymw12345/sscadpsrc.git
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Algorithm 1: SSCADP
Input: A data stream in the form of chunk:D = {D0,D1,D2...,Dt, ...} and

parameters of nmin, dp, α
Output: The predicted labels of Dt

1 Initialize a leaf for tree T , t = 0;
2 while data chunk Dt is available do
3 if t > 0 then
4 T .classify(Dt);

5 for each xi ∈ Dt do
6 sort x i into a leaf l ;
7 update the statistics of the leaf l according to it is labeled or unlabeled;
8 if the number of arrived instances at T meets dp then
9 for each leaf l from bottom to top do

10 D l = get data(l);
11 labeling unlabeled data(D l, α);
12 concept drift detection(l);

13 Installing pruning;
14 if the number of arrived instances at a leaf l meets nmin then
15 Installing split-test and growing child leaves ;

16 t + +;

where dij refers to the Euclidean distance between i-th and j-th instance. dc

represents the cutoff distance, which is set the same as CFSDP according to
experience. Is is the set of all instances indexes. Hence, a cluster center has such
characteristic that ρi and δi are as large as possible. The ρi − δi plot (decision
graph) can provide a visual way to determine the number of clusters.

In the function 1, γi = ρiδi is computed for each instance and then all γi

are sorted in ascending order. CFSDP assumed that the sorted γi(γ) follows the
power-law distribution, and hence jump point of the sorted γi can be found.

After the cluster centers are determined, the clustering is installed, and then
label propagation is conducted.

In order to find the jump point of the sorted γi, we refer to the idea of change
detection in SAND [9], in which a change detection method is proposed to detect
the location of the most significant changes in a series of values along a direction.
Then, we further assume that the sorted γi follows a Pareto distribution. After
the jump point is found, the number of clusters can be determined. As shown
in the Fig. 1, the point in the red circle are jump point, the points above it are
the center points.

The probability density function of Pareto distribution can be expressed as
f(x, a, k) = akax−(a+1) where a is the shape parameter and k is the proportion
parameter. The corresponding logarithmic probability density function can be
expressed as log f(x, a, k) = a log(k) + log(a) − (a + 1) log(x). Define a random
variable γ ∼ Pareto(a, k), and {γi} is the observed value of γ. The maximum
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Function 1: labeling unlabeled data

Input: Data D = {x 1, x 2, ..., xn}; Confidence parameter α
Output: The expanded labeled data D ′; Concept clusters set C

1 D ′=null, labeled data are added to D ′;
2 Construct distance matrix on D based on dij and record it as M ;
3 Calculate ρi and δi for each data x i based on M ;
4 Normalize ρi and δi, γi = ρiδi and sort the elements in γ in ascending order;
5 JumpPoint = jump point detection(γ, α), CN = n − JumpPoint;
6 The instances corresponding to the first CN values in γ are selected as the

cluster centers. {Ci}CN
i=1 denotes the corresponding clusters;

7 for each xi ∈ D′ do
8 if xi is not a cluster center then
9 x i is assigned to the cluster the same as its nearest higher density point

belongs to;

10 for each Ci ∈ C do
11 Label unlabeled data at Ci by graph-based label propagation;
12 Labeled data are added to D ′;

13 return D ′, C;

likelihood estimation of the parameters are calculated as follow, where N is the
total number of observed values.

k̂MLE = min
1≤i≤N

{γi}, âMLE = N/
∑N

i=1
(ln γi − ln k̂MLE) (2)

Fig. 1. Jump point detection.

To detect the jump point, in the function 2, γ is divided into two sub-windows
by k from N/2 to N − 3. The k value corresponding to the maximum statistical
difference between the two sub-windows is the index of the jump point.
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Function 2: jump point detection

Input: Array γ with elements in ascending order; Confidence parameter α
Output: The corresponding index of the jump point e

1 N = size(γ);
2 e = −1, wn = 0;
3 for k = N/2 : N − 3 do
4 ma = mean(γ[1 : k]), mb = mean(γ[k + 1 : N ]);
5 if ma < αmb then
6 Pareto[scalea, shapea] < −estimateParam(γ[1 : k]);
7 Pareto[scaleb, shapeb] < −estimateParam(γ[k + 1 : N ]);
8 sk = 0;
9 for i = k + 1 : N do

10 ta = logf(γ[i], scalea, shapea), tb = logf(γ[i], scaleb, shapeb);
11 sk+ = log(tb/ta);

12 if sk > wn then
13 wn = sk, e = k;

14 return e;

3.3 Concept Drift Detection

A concept drift detection method is installed at each leaf. Before introducing
the detail of concept drift detection, many variables should be defined. Respec-
tively, rhist and rnew denote the radius of the set of history concept clusters
Chist and the new ones Cnew, nhist and nnew represents the number of clus-
ters in Chist and Cnew. rk denotes the radius of a cluster and is computed
as the average Euclidean distance from all instances in the cluster to its cen-

ter: rk =
∑|Ck|

i=1

√∑D
j=1 (ckj − xij)2/ |Ck|, where xi= {xi1,xi2, . . . ,xiD} ∈ Ck

is the i-th instance in cluster Ck. D represents the attribute dimension. ck

refers to the cluster center of Ck and |Ck| is the total number of instance
in Ck. rhist=

∑nhist

i=1 ri/nhist. Similarly, rnew is calculated by this way. dist is
used to measure the average distance between these two concept cluster sets.

dist = (
∑nnew

i=1 min[
√∑D

j=1 (cij − ckj)
2
, ck ∈ Chist, 1 ≤ k ≤ nhist])/nnew, where

ck and ci denote cluster centers in Chist and Cnew, respectively. In SUN, the
value of dist greater than max(rhist, rnew) means concept drift.

However, in our algorithm, it is assumed that the change of points with higher
density is more likely to reflect the change of data distribution. Therefore, dist
is redefined as dist =

∑nnew

i=1 widisti to capture the distribution change of data
more accurately. disti and wi are calculated by (3) and (4) respectively. disti
refers to the distance of the cluster center ci to Chist. ρci refers to the average
density of the clusters Ci and Ck which is the closest cluster to Ci in Chist , and
ρcij refers to the density of j-th instance belonging to Ci, ni and nk mean the
total number of data in Ci and Ck respectively. And hence larger wi and disti
mean concept drift. Like SUN, if the value of dist is more than max(rhist, rnew),
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a real concept drift is considered. The process of drift detection is described in
the function 3.

disti = min[

√∑D

j=1
(cij − ckj)

2
, ck ∈ Chist, 1 ≤ k ≤ nhist] (3)

wi = ρci

/∑nnew

i=1
ρci , ρci = (

∑ni

j=1
ρcij +

∑nk

j=1
ρckj

)/(ni + nk). (4)

Function 3: concept drift detection

Input: Concept clusters set Cnew and Chist saved in leaf l
Output: Flag

1 Flag = False;
2 if Chist = ∅ then
3 Chist = Cnew

4 else
5 calculate rhist, rnew and dist using Chist and Cnew;
6 if dist > max(rhist, rnew) then
7 Flag = True

8 return Flag

dist can be utilized to detect concept drifts caused by the change of P(x).
In addition, considering concept drift can be caused by the distribution change
of class labels, the class labels of history concept clusters and new ones are
compared when concept drift is not detected. If the class labels of Chist and
Cnew are completely opposite, it is also defined as a real concept drift.

After the bottom-up search is implemented to find all drift leaves, a pruning
method is installed for adjusting the tree to cope with concept drifts. Each level
of the tree will be traversed once to check concept drift of each leaf from bottom
to top until the root is reached. If all child nodes of a node are detected concept
drift, these child nodes are pruned and the new leaf node maybe split again.

4 Experiments

In this paper, all synthetic datasets are generated by MOA [19]. xxx-abr, xxx-gra
and xxx-inc represent the concept drift types of abrupt, gradual and incremental,
respectively. In the dataset with gradual drifts, it takes 5000 instances to change
from one concept to another. In addition, to verify the performance of SSCADP
on the datasets where the number of clusters varies apparently, we generate a
Gaussian dataset with clusters change dynamically and concept changes, which
are shown in Fig. 2(a), (b) and (c) represent three different distributions which
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Fig. 2. Changes in clusters.

evolve along the time sequence, with the positive instances in red ‘+’ and the
negative instances in green ‘×’, each figure contains 600 instances.

Table 1 shows the properties of all datasets. For Sea, four concepts are gen-
erated by setting θ = 8, 9, 7, and 9.5. For Sine, the definition of Sine is if
a ∗ sin(b ∗ x1 + θ) + c > x2, the label is 0, otherwise is 1, four concepts are
generated by setting a = b = 1 and c = θ = 0, a = b = 1 and c = θ = 0
with class labels are changed oppositely, a = 0.3, b = 3π, c = 0.5, θ = 0
and a = 0.3, b = 3π, c = 0.5, θ = 0 with class labels are changed oppositely.
For HyperPlane-abr and HyperPlane-gra, four concepts are generated by setting
w1 = (0, 0.5, 0.5), w2 = (0, 1, 0), w3 = (1, 0, 0) and w4 = (0.5, 0, 0.5), while for
HyperPlane-inc, d = 10. For Agrawal, function 1, 2, 5, 6 are selected as the con-
cepts of 1, 2, 3, 4. The Weather and Electricity dataset are used in this paper.
For each synthetic data, 10 copies are randomly generated while for each real
dataset labeled instances are randomly selected 10 runs.

In this paper, nmin refers to the minimum number of instances when a leaf
attempts to do split-test and it is set to 200. dp means the detection period and
dp = 200 empirically. α = 0.95 is the confidence used in the clustering algorithm.

4.1 Experimental Results

SSCADP is compared with three baseline methods including SUN, SPASC, and
Reasc. Three groups of experiments are conducted to evaluate the accuracy, the
impact of label ratio, and concept drift tracking. In the first and last groups of
the experiments, in order to simulate the situation of limited labeled data in real
applications, the label ratio of all datasets are set to 0.1.

Accuracy. The accumulative accuracy is utilized to evaluate the performance
of baseline methods and SSCADP. Table 2 shows the detailed results. For all
datasets, each result is obtained by averaging the results of 10 runs.

It can be observed that SSCADP performs better than other baseline algo-
rithms on almost of all datasets. The Friedman test is conducted on the results
in Table 2, and the average rank is shown in Table 2, SSCADP achieves the best.
Test statistic FF = 10.654, the critical value for α = 0.05 is 2.892, hence we can
reject the null-hypothesis that there is no difference among the performance of
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Table 1. Properties of the datasets

Datasets Attributes Instances Classes Chunk size Concept change

Sea-abr 3 80000 2 1000 1-2-3-4-1-2-3-4

Sea-gra 3 115000 2 1000 1-2-3-4-1-2-3-4

Sine-abr 4 80000 2 1000 1-2-3-4-1-2-3-4

Sine-gra 4 115000 2 1000 1-2-3-4-1-2-3-4

HyperPlane-abr 3 80000 2 1000 1-2-3-4-1-2-3-4

HyperPlane-gra 3 115000 2 1000 1-2-3-4-1-2-3-4

HyperPlane-inc 10 80000 2 1000 Unknown

Agrawal-abr 9 80000 2 1000 1-2-3-4-1-2-3-4

Agrawal-gra 9 11500 2 1000 1-2-3-4-1-2-3-4

Gaussian 2 3600 2 600 1-2-3-1-2-3

Weather 8 18159 2 360 Unknown

Electricity 8 45312 2 1000 Unknown

all algorithms. Furthermore, in Nemenyi test CD = 1.35 which means SSCADP
performs significantly better than SUN and Reasc. There is no significant differ-
ence in the performance between SSCADP and SPASC.

Table 2. Accumulative accuracy (%) on all datasets.

Datasets SUN SPASC Reasc SSCADP

Sea-abr 78.58 ± 2.64 83.36 ± 1.41 83.17 ± 1.58 83.48± 1.02

Sea-gra 81.16 ± 2.50 82.83 ± 1.10 82.45 ± 0.86 84.45± 0.51

Sine-abr 51.68 ± 2.37 57.15± 2.91 51.98 ± 0.31 51.92 ± 2.20

Sine-gra 53.21 ± 1.82 55.35± 1.76 51.03 ± 0.37 51.06 ± 1.40

HyperPlane-abr 64.47 ± 1.86 66.57 ± 2.29 51.38 ± 1.47 67.14± 0.82

HyperPlane-gra 65.54 ± 1.10 66.92 ± 1.99 51.17 ± 1.06 68.31± 1.73

HyperPlane-inc 74.15 ± 4.66 62.02 ± 3.38 50.06 ± 0.34 74.34± 7.53

Agrawal-abr 52.37 ± 1.03 57.78 ± 0.45 43.73 ± 0.32 58.88± 0.62

Agrawal-gra 53.36 ± 0.98 57.09 ± 0.53 44.34 ± 0.28 57.86± 0.46

Gaussian 52.64 ± 3.05 58.93 ± 5.86 50.38 ± 6.31 62.17± 6.37

Weather 67.89 ± 0.76 66.77 ± 1.21 67.95 ± 0.00 68.53± 0.67

Electricity 57.73 ± 5.04 54.75 ± 1.15 57.12 ± 1.49 70.52± 3.03

Average rank 3.00 2.25 3.41 1.33
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Impact of Label Ratio. Considering the influence of labeling ratio on classifi-
cation accuracy, we simulate the real scene to compare the algorithms by setting
the label ratio to 0.05 and 0.2. Detailed results are shown in Table 3. In the case
of 0.05, Friedman test is conducted and FF = 3.175, critical value for α = 0.05 is
2.892. This results indicate that the performance of all the algorithms is signifi-
cantly different. Furthermore, in Nemenyi test CD = 1.35, and hence it can be
concluded that SSCADP performs significantly better than SUN. These results
indicate that even there are very limited labels available, SSCADP can achieve
better performance, and it is suitable for semi-supervised classification of data
stream.

In the case of 0.2, Friedman test is conducted and FF = 6.567, critical value
for α = 0.05 is 2.892. This results indicate that the performance of all the
algorithms is significantly different. Furthermore, in Nemenyi test CD = 1.35,
and hence it can be concluded that SSCADP performs significantly better than
SUN and Reasc. There is no significant difference in the performance between
SSCADP and SPASC in the cases of 0.05 and 0.2.

Table 3. Impact of the label ratio on accumulative accuracy (%).

SUN SPASC Reasc SSCADP

0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

Sea-abr 69.87 81.28 80.81 84.04 82.09 84.23 79.56 84.51

Sea-gra 74.07 82.53 80.89 84.78 83.13 85.18 77.33 85.22

Sine-abr 51.11 51.95 56.67 61.66 52.12 51.86 50.40 51.67

Sine-gra 52.19 52.28 57.81 54.36 53.01 53.05 52.22 50.16

H-abr 63.29 65.83 65.83 66.79 50.66 50.69 66.00 66.94

H-gra 64.22 66.97 66.04 68.32 51.39 50.65 67.28 68.86

H-inc 72.15 77.61 60.34 65.90 50.03 49.95 73.31 78.99

Agr-abr 51.69 52.98 56.87 58.82 43.69 43.80 57.63 59.30

Agr-gra 52.48 53.66 57.19 58.64 44.41 44.38 57.60 58.75

Gaussian 52.84 58.40 56.60 59.88 49.96 52.79 57.16 61.45

Weather 67.59 67.58 65.25 68.05 67.85 67.93 68.23 68.65

Electricity 59.36 70.56 53.67 56.15 59.69 57.38 68.09 70.82

Rank 3.16 3.00 2.25 2.25 2.83 3.25 1.75 1.50

Concept Drift Tracking. The drift tracking performance of all algorithms
on all datasets with abrupt drift type are shown in Fig. 3. The number at bot-
tom represent the kind of concept, and the vertical line indicate the location of
concept drift. In the dataset of Sea, when new concepts arrive, the accuracy of
SSCADP declined less in most cases, especially in concept 3 and 4 which are
quite different. In the dataset of HyperPlane, SSCADP performed well in most
cases except concept 2. In the dataset of Agrawal, the accuracy of SSCADP also
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declined less in most cases. In the dataset of Sine, SSCADP performed not well
since it is a single model and the large differences exist between each concept.
SPASC adopts ensemble model as well as can deal with recurring drifts which
can achieve better performance.

Fig. 3. Drift tracking graph.

5 Conclusions

In this paper, we propose a method of SSCADP to handle the semi-supervised
classification of data streams. SSCADP can adaptively locate the cluster centers
by considering both the local density and the distance between two points, and
detect concept drifts by combining both the density of clusters and the distance
between the historical clusters and the new ones. Experimental results illustrated
that SSCADP can achieve better performance than the baseline algorithms in
most datasets. In future, we will focus on how to effectively combine labeled
data with unlabeled data to detect concept drift. We will also explore how to
deal with recurring concept drift more effectively.
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Abstract. In recent years, a variety of tasks have been accomplished
by deep reinforcement learning (DRL). However, when applying DRL
to tasks in a real-world environment, designing an appropriate reward
is difficult. Rewards obtained via actual hardware sensors may include
noise, misinterpretation, or failed observations. The learning instability
caused by these unstable signals is a problem that remains to be solved
in DRL. In this work, we propose an approach that extends existing DRL
models by adding a subtask to directly estimate the variance contained
in the reward signal. The model then takes the feature map learned by
the subtask in a critic network and sends it to the actor network. This
enables stable learning that is robust to the effects of potential noise. The
results of experiments in the Atari game domain with unstable reward
signals show that our method stabilizes training convergence. We also
discuss the extensibility of the model by visualizing feature maps. This
approach has the potential to make DRL more practical for use in noisy,
real-world scenarios.

Keywords: Deep reinforcement learning · Uncertainty · Variance
branch

1 Introduction

Although deep reinforcement learning (DRL) has been shown to have high per-
formance in various fields, some challenges remain regarding the stability of
training. In applications such as games [13,19], by designing the score as a reward
value, it is possible to obtain a model that obtains a performance comparable
to that of a human. However, many DRL studies [11,12] only conducted exper-
iments with simple reward signals designed by the experimenter. There is a gap
between these scenarios and real environments, which often have unstable reward
signals. This is an essential issue for DRL because its performance is sensitive
to reward design. Therefore, a learning method that is robust to noise in the
reward signals is needed.
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Fig. 1. There are several sources of noise in the reward of DRL in a real-world envi-
ronment. If noisy signals are used as target signals, they delay convergence in training.

Noise in the DRL reward function can occur for several reasons; a typical
example is the errors that occur during observation. In the real-world, reward
functions are not perfect. The rewards derived from the actual environment via
hardware sensors may include noise, misinterpretations, and observation failures.
When misinterpretations or observation failures occur, the reward value may be
calculated as an entirely different value. Another case in which noise may occur
is the use of feature values as signals for training a neural network. A deep neural
network extracts low-dimensional feature vectors from high-dimensional sensor
information. Furthermore, we can use extracted features as the target signals of
another network. For example, some studies use the feature values of images of
target values as a signal to optimize robot behaviors [8,21]. When employing a
reward signal to acquire advanced behavior, a variety of noise types not intended
by the experimenter will occur (Fig. 1).

Among the types of unstable reward signals listed above, in this study, we
focus on fine-grained noise in the signals, which has been referred to as “sensory
error” in previous research [5]. In this case, we assume that the reward value is
a continuous value rather than a binary signal. These unstable reward signals
may inhibit DRL training; for instance, delaying convergence during training.
Therefore, a DRL model needs a learning method that considers the uncertainty
of the signals and updates its parameters appropriately.

Hence, we propose a stable learning method for DRL with unstable reward
signals by directly estimating the variance of the rewards and adjusting the
parameter update amount. We incorporate an estimation of the variance of the
target signals into the model as a subtask. This makes it possible to extend the
original model without significant changes to its configuration. In addition, we
use an attention branch network (ABN) [6] structure that incorporates the fea-
ture map of the subtasks into the main task. This conveys the learning results
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of the subtask to the policy network. We evaluated our method on the Atari
game domain in the Open AI Gym [3]. To verify the model can stabilize train-
ing convergence in an environment where rewards are unstable, we conducted
experiments in which we added artificial noise to the reward signals. The results
show that our extension to the base model improves performance. The primary
contributions of this study are as follows.

1) A model is proposed to stabilize training convergence that incorporates a
subtask that estimates the variance in the rewards signals.

2) An evaluation of the performance of models trained with disturbed rewards
shows that the proposed approach improves performance.

2 Related Works

Several methods have been proposed to improve the convergence and stability
of DRL, and they fall into two main types. One approach optimizes training,
whereas the other one reduces variance. The method proposed in this study uses
the latter approach.

To increase the convergence and stability of DRL, many optimization meth-
ods have been proposed. RMSprop [22] is an approach based on AdaGrad [4],
which adjusts the learning rate with respect to the frequency of each parameter
update and results in a rapidly decreasing learning rate. Adam [2] is a further
improvement on traditional optimization methods and is used in many stud-
ies on deep learning. Furthermore, in terms of variance control, methods such
as SAG [17], SDCA [18] and stochastic variance reduction (SVR) [9] have also
been proposed. SVR-DQN [24] reduces the variance resulting from approximate
gradient estimation. These optimizers are essential advances in the convergence
and stability of DRL. However, in many studies, experimenters empirically use
what is appropriate for the model.

Several previous studies consider the uncertainty of the target signals. The
authors of [5] define a Markov decision process in the presence of misinterpre-
tations of the rewards and observation failures and propose a way to deal with
rewards that are not correct through sampling. However, the study remains
an investigation of table-style rewards and does not consider a continuous con-
trol method. There is also a study that addresses the overestimation error in
Q-learning. Double DQN uses separate Q-networks for action selection and Q-
function value calculation [7]. The model is able to deal with overestimation
errors that replace positive bias with negative bias. Another approach is to
reduce the target approximation error. An efficient way to reduce this is to
use the average of multiple models. The average DQN estimates the current
action value using the previously computed K-value [1]. In contrast, an estima-
tor has been proposed to reduce the variance of the reward signal [16]. This
model updates the discount value function instead of the sampled rewards.

In this study, we propose a model extension that uses a mechanism to esti-
mate the variance of the reward signals directly. The model estimates the mean
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and variance of the rewards obtained from the environment, and it can be easily
integrated with the base model as a subtask. Using the estimated variance, the
model updates its parameters to reduce the effects of noise. To apply the above
approach, we adopt an actor-critic type network that predicts the policy and
state value using the actor and critic, respectively.

3 Method

To solve the problem described above, we extend the DRL model to solve sub-
tasks that predict the variance of reward signals. Figure 2 shows an overview of
the proposed network architecture. The model consists of a base neural network
model and an extended branch network. We describe the base model in Sect. 3.1
and the proposed extension in Sect. 3.2.

3.1 Base Model: ABN-A3C

As the base model, we adopt a DRL model that combines the ABN [6] and
asynchronous advantage actor critic (A3C) [14]. We choose an actor-critic type
network so that we may incorporate a subtask that predicts the variance of
the reward signals. Moreover, the ABN enables us to visualize the focus of the
subtask using a feature map. The base model, ABN-A3C, consists of a feature
extractor that extracts features from the input image, a value branch that out-
puts state values, and a policy branch that outputs actions. The policy branch
also uses the feature map f(st) of the value branch as input. Feature map f(st) is
extracted from the current state st, and the value branch outputs the maximum
value of feature map f(st) using global max pooling. This emphasizes the more
distinctive pixels in the feature map of a subtask when it is incorporated with
the main task. The details of each model are described below.

A3C: The training of an A3C is stabilized by using various policy searches
while running multiple agents in parallel. In asynchronous learning in multiple
environments, there is a globally shared parameter and a separate parameter
for each thread. Each worker’s parameters are copied from the global network’s
parameters. The parameters learned by agents under different environments are
reflected asynchronously in the global network. The gradient exponential moving
average of RMSprop, which is used as the optimizer, is also shared globally.

A3C takes advantage of its ability to train online and updates the state value
using an estimation of the reward several steps in the future as opposed to a
method that estimates the reward in the next step only. As a result, learning is
more stable because a more likely estimation error of the current state value is
used. The value of adv, which is used to update the estimated value, is calculated
by the following equation.

adv =
k−1∑

i=0

γirt+1 + γkV (st+k) − V (st) (1)
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where k indicates how many future steps are used in the prediction. We decided
on the prediction step that gave the best results by trying some experimental
settings. In our experiment, we set the prediction step k = 5.

The A3C trains two models: an actor network, which represents the behavior
of the agent, and a critic network, which predicts the expected rewards. An
actor network is trained to predict the probability of taking action in a certain
state π. The critic network is trained to predict the estimated value of state V .
Because the estimated values are independent, they are easy to learn even when
the action is continuous.

ABN: An ABN is a model that makes it possible to visualize the areas of focus
and improve the accuracy of the network by incorporating feature maps of the
subtask into the main task.

In ABN, we compute a new feature map g′(st) from the feature map f(st)
of the value branch and the output of the feature extractor using the following
residual mechanism [23]:

g′(st) = (1 + f(st)) ∗ g(st) (2)

The state value in the current state is reflected in the action, and the loss of the
original feature map is suppressed. The action is predicted by inputting g′(st) to
the LSTM network of the policy branch. Here, feature map f(st) represents the
features for optimizing a subtask. By visualizing the feature map overlaid on the
input image, it is possible to show where the network is focusing its attention in
the input image.

Variance
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Grayscale
images

g(st)

f(st)

g′(st)
+×
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pooling

global average
pooling

LSTM,
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(Variance branch)
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(ABN-A3C)

negative
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Fig. 2. Overview of the proposed network for predicting the uncertainty of signals as
a subtask. The red frame indicates the base model, and the blue frame indicates the
proposed extended branch. (Color figure online)
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3.2 Variance Branch for Predicting Uncertainty in Rewards

To stabilize the learning convergence, we extend the base model described in
the previous section. The aim is to optimize the model’s parameters while ignor-
ing the effects of reward noise. Here, the reward signal with noise is assumed to
have been generated according to some probability distribution from an unknown
generative model. We assume a Gaussian distribution in this study. We use the
branching structure of ABN to add a new branch called the variance branch,
which takes the feature map as input. The variance branch is similar to a stochas-
tic multi-time scale recurrent neural network (SMTRNN) [15].

The SMTRNN is a type of recurrent neural network that enables the pre-
dictive learning of probability distributions based on likelihood maximization.
The model extends the conventional learning method of point prediction based
on squared-error minimization. It learns to minimize the negative log-likelihood
and obtains the stochastic structure that underlies the target signals. To esti-
mate the variance of the prediction of state value V π(st), the probability density
p(rt|st, θ) of reward rt at time step t during an episode is dened as

p(rt|st, θ) =
1√
2πνt

exp

(
− (V π(st) − rt)2

2νt

)
(3)

and the log-likelihood L is defined as

L =
T∏

t=1

p(rt|st, θ) (4)

where θ denotes the model parameters. This process is equivalent to minimizing
the weighted prediction error by dividing the output error by predicted variance
v. The model learns while ignoring errors in rewards that contain large variance,
i.e., large noise. As a result, the training for the state value is stabilized.

In our method, the squared-error calculation of the state value and reward
is replaced by the above function. In addition, the configuration of the vari-
ance branch is based on the value branch. To smooth the entire feature map
of the variance branch, we adopt global average pooling in the final layer. The
stabilization of the state value prediction caused by the variance prediction is
reflected in the stability of the behavioral prediction in the policy branch. This is
a result of the incorporation of the feature-map mechanism of ABN described in
the previous section. Visualization of the added branch network is also possible.

4 Experiments

4.1 Model and Environment Setup

To evaluate our method, we used the model to learn to play the Atari games in
the Open AI Gym [3]. We used three games: Break Out, Sea Quest, and Pong.
As the input image for each game, we used 84×84 grayscale images of four time
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steps, and for the training, we used RMSprop [22] as the optimizer. Its learning
rate is 7 × 10−4, and the discount rate is 0.99. The number of workers in the
A3C is 32. Table 1 lists the parameters of our model. We determined the above
parameters by trial-and-error, choosing the parameter set that yielded the best
results.

Table 1. Structures of the networks

Network Dimensions

Feature extractor conv@16chs - BN - Relu -

conv@32chs - BN - Relu

Value branch conv@32chs - BN - Relu -

conv@64chs - BN - Relu -

conv@1chs - BN - MaxPooling

Policy branch Eq. (2) - conv@32chs - BN - Relu -

LSTM@256 - FC@ActionNum

Variance branch conv@32chs - BN - Relu -

conv@64chs - BN - Relu -

conv@1chs - BN - AvePooling -exp

BN: Barch normalizaion, FC: Fully connect

4.2 Evaluation Metrics

To evaluate the effectiveness of the proposed method, we added artificial noise to
the reward signals in the experiments. The noise followed a Gaussian distribution
of variance σ2. In our experiments, we set σ2 to 0.0, 0.03, and 0.05. When
σ2 = 0.0, there is no noise in the reward signals, and the noise increases as
σ increases. We compared the proposed method with a base model that does
not have a mechanism for estimating the variance in the reward signals. We
performed experiments in each game environment five times while changing the
initial weights of the model.

5 Results and Discussion

In this section, we present the results of experiments in multiple game environ-
ments to evaluate the robustness of the proposed method to noise in the reward
signals. We also present a feature map of the model and analyze the points of
focus in each game. Finally, we discuss the suitability of the proposed method
for other deep neural network models.
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Fig. 3. Change in score during training under each condition (i.e., the type of game
and level of reward signal noise). The vertical axis of each figure shows the score, and
the horizontal axis shows the total number of worker epochs. Each color area shows the
maximum and minimum range of the score. The red lines indicate the results of our
method, and the blue lines indicate the results of the ABN-A3C base model. (Color
figure online)

5.1 Atari Game Performance

The scores during the training of the proposed and base models for each game are
shown in Fig. 3. The results show that the variance in the results increases with
the variance in the reward signals. The time to convergence increases because the
teaching signal given to the model is not stable. The proposed method converges
faster than the ABN-A3C base model, regardless of the size of the variance.
However, the maximum score of the proposed method is about the same as that
of the base model. These results show that the proposed method predicts the
mean of the reward signal and converges to the same results as the base model
in less time.

The proposed method converges faster than the base model in all games,
regardless of the level of noise in the reward signal. This is also true when
there is no noise (σ2 = 0.0). Although rewards are given discrete values in the
standard games in the Atari game domain, the results suggest that predicting
the mean of the rewards is an effective strategy. We think that was because
atari’s ordinary rewards include uncertainty. For example, in atari games, not
all rewards given are valid. Our method may learn to ignore temporary rewards
that cannot maximize cumulative rewards.

When the levels of noise are low (σ2 = 0.03), the results of the proposed and
base model differ the most. The final convergence score of the base model varies
depending on the initial weight values, which are randomly chosen. In contrast,
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the performance of the proposed method does not depend on these values. The
proposed method adequately learns the variance in the rewards and stabilizes
the training of the policy network. However, when the level of reward noise
increases (σ2 = 0.05), the results of the proposed method are also worse. When
the noise reaches a certain level, the training is substantially disturbed. These
results demonstrate the robustness of the proposed DRL method to unstable
reward signals. In our experiment, the noise added to the reward was artificially
set; hence, the impact of realistic reward noise on learning needs to be considered
in future work.

5.2 Visualization of the Feature Map

Next, we visualize the feature map of the proposed model to ensure that the
model focuses on the appropriate areas of the feature map. The feature map for
each condition superimposed on the input image is shown in Fig. 4. In Break
Out, the feature map shows that the model focuses on the movement of the
ball. Furthermore, when the number of blocks decreases, the area of attention
moves to the blank regions above the blocks (see the results for σ2 = 0.03). The
variance branch’s feature map is similarly active, focusing mainly on areas of
significant change on the screen. In Sea Quest, the feature map indicates focus
on agents, enemies, and the bars representing the remaining oxygen. There is
less movement in the feature map than in Breakout, which may be because this
is a game in which the agent employs a waiting strategy. In contrast, in Pong,
the feature map is not informative in most cases, even when the obtained scores
reach their upper bounds. Reviewing the gameplay after training, we found that
the agent repeated a specific pattern of behavior to score points. This may be
because Pong itself does not require any complex behavior.
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Fig. 4. Examples of visualization of feature maps for each condition. The input image,
the feature map of the value branch, and the feature map of the variance branch are
shown, respectively. The value of each feature map is higher as it becomes red. (Color
figure online)
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The above results confirm the effectiveness of our proposed method. The
model paid attention to the appropriate areas on the feature map, even in envi-
ronments with unstable reward signals. Furthermore, the regions of focus of the
variance branch feature maps differ from those of the value branch feature maps.
In other words, each branch plays a different role in the network.

5.3 Scalability

The proposed method is broadly applicable to many conventional networks
because it does not require significant changes to the configuration of the orig-
inal model. However, because the subtask for predicting variance requires the
prediction of state values, the network to be extended should be an actor-critic
type network. Because the network is extended using a branch structure, the
computational complexity of the network increases; however, parallel computa-
tion is possible. Hence, the learning and prediction times should not be much
different from those of the original network.

The combined method of variance prediction and feature-map visualization
could be used in applications other than DRL. We are investigating an extension
to recurrent neural networks for end-to-end robot control [10,20]. Robot control
is a particularly promising application because it is often affected by real-world
noise.

6 Conclusion

In this study, we proposed a stable reinforcement learning method for scenarios in
which the reward signal contains noise. We incorporated a subtask into an actor-
critic-based DRL method. The model directly estimates the variance included in
the reward obtained from the environment. Moreover, we input the feature map
learned by the subtask in the critic network to the actor network. We evaluated
our method in the Atari game environment of the Open AI Gym. Our method
enables us to stabilize the convergence of learning in an environment in which
rewards are unstable. In future work, we plan to extend our method to real robot
tasks.
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JAX190I, Japan.

References

1. Anschel, O., Baram, N., Shimkin, N.: Averaged-DQN: variance reduction and sta-
bilization for deep reinforcement learning. In: The International Conference on
Machine Learning (2017)

2. Ba, J., Kingma, D.P.: Adam: a method for stochastic optimization. In: Proceedings
of International Conference on Learning Representations (2015)

3. Brockman, G., et al.: OpenAI Gym. arXiv preprint arXiv:1606.01540 (2016)

http://arxiv.org/abs/1606.01540


Stable DRL Method by Predicting Uncertainty in Rewards as a Subtask 661

4. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

5. Everitt, T., Krakovna, V., Orseau, L., Hutter, M., Legg, S.: Reinforcement learn-
ing with a corrupted reward channel. In: 26th International Joint Conference on
Artificial Intelligence, IJCAI-17, pp. 4705–4713 (2017)

6. Fukui, H., Hirakawa, T., Yamashita, T., Fujiyoshi, H.: Attention branch network:
learning of attention mechanism for visual explanation. In: International Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2019)

7. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-
learning. In: Proceedings of the 13th AAAI Conference on Artificial Intelligence
(2016)

8. Jang, E., Devin, C., Vanhoucke, V., Levine, S.: Grasp2Vec: learning object repre-
sentations from self-supervised grasping. In: Conference on Robot Learning (CoRL)
(2018)

9. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive
variance reduction. In: Advances in Neural Information Processing Systems, pp.
315–323 (2013)

10. Kase, K., Suzuki, K., Yang, P.C., Mori, H., Ogata, T.: Put-in-box task generated
from multiple discrete tasks by a humanoid robot using deep learning. In: Proceed-
ings of the IEEE International Conference on Robots and Automation (2018)

11. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. Int. J.
Robot. Res. 37(4–5), 421–436 (2017)

12. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res. 17(39), 1–40 (2016)

13. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

14. Mnih, V.: Asynchronous methods for deep reinforcement learning. In: International
Conference on Machine Learning (ICML) (2016)

15. Murata, S., Namikawa, J., Arie, H., Sugano, S., Tani, J.: Learning to reproduce fluc-
tuating time series by inferring their time-dependent stochastic properties: appli-
cation in robot learning via tutoring. IEEE Trans. Auton. Ment. Dev. 5, 298–310
(2013)
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Abstract. Multi-agent cooperation is one of the attractive aspects in
multi-agent systems. However, during the process of cooperation, com-
munication among agents is limited by the distance or the bandwidth.
Besides, the agents move around and their neighbors appear or vanish,
which makes the agents hard to capture temporal dependences and to
learn a stable policy. To address these issues, a Spatial-Temporal Graph
Attentional Long Short-Term Memory (LSTM) Scheme (STGA-LSTM),
which is composed of spatial capture network and spatiotemporal LSTM
network, is proposed. The spatial capture network is designed based on
graph attention network to enlarge the agents’ communication range
and capture the spatial structure of the multi-agent system. Based on
the standard LSTM, a spatiotemporal LSTM network, which is in com-
bination with graph convolutional network and attention mechanism, is
designed to capture the temporal evolutionary patterns while keeping
the spatial structure learned by spatial capture network. The results of
simulations including mixed cooperative and competitive tasks indicate
that the agents can learn stable and complicated strategies with STGA-
LSTM.

Keywords: Multi-agent systems · Graph attention mechanism ·
LSTM

1 Introduction

The cooperation in a multi-agent system has shown great success in various
fields, such as smart grid control [15], resource management [11]. To control
such complex systems composed of many interacting components, researchers
have studied multi-agent reinforcement learning (MARL) for a long time.

Recently, the advances achieved by deep reinforcement learning (DRL) [12]
promote the combination between DRL and MARL to solve complex problems.
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Nevertheless, when these algorithms are applied to realistic environments, there
still exist several issues. First, the large number of agents results in the curse of
dimensionality and the difficulty of learning a stable policy. Second, the infor-
mation obtained from other agents is limited by the bandwidth and range of
the communication, which affects the agents’ cooperative behavior. Finally, the
communication status of the agents keeps changing over time, which makes it
difficult for the agents to learn dynamic strategies to adapt to this change.

Although a variety of MARL algorithms have been proposed to solve the
issues above, they still suffer from different limitations. Some MARL algo-
rithms [4,12] follow a common paradigm of centralized learning with decentral-
ized execution to promote the cooperative behavior among the agents. These
algorithms suffer from the difficulty of transferability and scalability because
they directly use the state or observation in constructing critic or actor networks.
The mean-field approach [18] is proposed to address the problem of scalabil-
ity. However, it ignores the fact that different agent’s observation has different
influences. To deal with the limitation, the algorithms based on attention mech-
anisms [3,7,9] are proposed. They can effectively extract valuable information
via the communication control. However, they are still limited by the commu-
nication bandwidth and ignore the multi-agent system’s underlying structure.
Considering the structure of the multi-agent system, the algorithms based on
graph network [1,8,13] are proposed. Nevertheless, they do not consider the
time-varying topology of the multi-systems’ graph, which makes them difficult
to acquire satisfying performance in the environments with dynamic graph struc-
ture.

To address the limitations mentioned above, a Spatial-Temporal Graph
Attentional LSTM scheme (STGA-LSTM) is proposed. The model can be
divided into two parts including a spatial capture network and a spatiotempo-
ral LSTM network. The spatial capture network mainly focuses on learning the
spatial structure among the agents and obtaining more agents’ information. It
is designed based on graph attention networks (GAT) [17] to capture the spatial
structure and relationship among the agents and enlarge the agents’ receptive
field or communication field through the chain propagation characteristics of
graph neural networks. The spatiotemporal LSTM network mainly focuses on
the temporal dependency of dynamic graph of the multi-agent system. Based
on standard LSTM, the spatiotemporal LSTM network combines with graph
convolutional network and attention mechanism to overcome the limitation of
ignoring spatial correlation caused by fully-connected operator within the stan-
dard LSTM. With the spatiotemporal LSTM network, the agent’s features and
interactions can be captured in spatial configuration and temporal evolvement.

To verify the ability of STGA-LSTM, it is evaluated in different environments
including formation control, 3v1 and 5v2 predator-prey games. The simulation
results demonstrate that the agents can learn complicated cooperative strategies
in mixed cooperative and competitive tasks.



STGA-LSTM 665

2 Related Works

2.1 Multi-agent Reinforcement Learning

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [12], which fol-
lows a common paradigm: centralized learning with decentralized execution, is
proposed for mixed multi-agent cooperative-competitive environments. Counter-
factual multi-agent (COMA) [4] also utilizes a centralized critic and computes
a counterfactual advantage function which handles the problem of multi-agent
credit assignment by marginalizing the effect of each agent’s action. However,
the centralized critic takes the observations and actions of all agents as input,
which makes the algorithms more difficult to apply in large-scale environments.
To better adapt to the environment with a large number of agents, the mean-field
approach [18] is used to capture the interaction of agents by mean action. How-
ever, it ignores the fact that different agent’s observation has different influences.
Besides, [7] and [9] enable agents to obtain information effectively via attention
mechanism. Nevertheless, they ignore the underlying structure of multi-agent
systems and concatenate simply other agents’ states and various features of the
environment.

2.2 Graph Convolution Network (GCN)

Recently, graph-based methods have drawn much attention in many important
real-world applications, such as social networks [10], action-recognition [16], and
transportation forecasting [2], due to the effective representation of graph struc-
ture data. Graph convolution network (GCN) is a framework proposed to extract
locally connected features from arbitrary graphs. Using GCN, interaction net-
works can reason the objects, relations and connection in complex systems, which
has been proven difficult for CNNs. Earlier works such as [14,17] focus on static
graph and are not designed to model temporal evolution patterns in dynamic
graphs. To adapt to dynamic graphs, several methods in different areas, such
as traffic forecasting [2] and human trajectory prediction [6] are proposed. But
there are few interaction frameworks that have been proposed to address the
dynamic graph structure in multi-agent systems. The existing methods based
on the graph structure of the multi-agent systems is MAGnet [13], TRANS-
FER [1] and DGN [8]. But the former two algorithms regard the graph structure
as static, which is not available in realistic environments. Although DGN takes
the dynamic graph into consideration, it doesn’t take the communication limited
by distance and bandwidth into consideration. Inspired by the graph convolu-
tional LSTM, which is an extension of GCNs to have a recurrent architecture,
STGA-LSTM is proposed to learn inherent spatiotemporal representations from
the dynamic graph structure.
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3 Preliminaries

3.1 Problem Definition

Let ot
i denote the local observation of agent i including its position, velocity.

There are N agents and M obstacles in this environment. We assume that at time
t, the position of agent i is pt

i = [ptx

i , pty

i ], the velocity of agent i is vt
i = [vtx

i , vty

i ],
the formation center position is pt

c = [ptx

c , pty

c ] and the position of obstacle j is
pt

oj = [ptx

oj , p
ty

oj ]. Besides, the action space for each agent is discrete. Each agent
can move one step in both X and Y directions.

The connected status among the agents can be represented in an undirected
graph G = (V,E). Specifically, V = {1, . . . , N} denotes the nodes consisting
of the agents. E ⊆ V × V denotes the edge set consisting of communication
status among the agents where an edge from node i to node j is denoted as
(i, j) ∈ E. Besides, h is a set of node features, h =

{−→
h 1,

−→
h 2, . . . ,

−→
h N

}
,
−→
h i ∈

R
F , where F is the number of features in each node. Moreover, Ni is a set

of neighbours communicating with node i in the graph. Only when the distance
between agent i and agent j is less than c, agent j belongs to the set of neighbours
Ni. As indicated by (1), there is an adjacency matrix A where aij = 1 if j ∈ Ni

otherwise aij = 0. Besides, the cooperative behavior is decided not only by its
neighbourhoods’ information but also by its own information. Therefore, there
is a self-loop for each agent.

aij =
{

1
0

if dist (ai, aj) ≤ c or i = j
if dist (ai, aj) > c

(1)

where dist is a 2-dimensional Euclidean norm to calculate the distance
between agent i and agent j, and c represents the predefined communication
threshold.

3.2 Partially Observable Markov Games

The environment in this paper is regarded as partially observable Markov Games
which is an extension of the framework of Markov Games. It is defined by a
global state S, a set of actions A1, · · · , AN , and a set of local observations
O1, . . . , ON . To choose actions, each agent uses a learnable policy πi : Oi →
Pa (Ai), which produces the next state according to the state transition func-
tion T : S × A1 × · · · × AN → Pt(S

′
) that defines the probability distribution

over possible next states, given current states and actions for each agent. Each
agent obtains rewards Ri from the environment after all agents take actions:
S × A1 × . . . × AN → R. The agents aim to learn a policy that maximizes their
expected discounted returns,

Ji(πi) = Ea1∼π1,...,aN∼πN ,s∼T

[∑∞
t=0

γtrit (st, a1t, . . . , aNt)
]

(2)

where rit is the reward that agent i obtains at time t, st represents the global
state S at time t. γ ∈ [0, 1] is the discount factor that determines how much the
policy favors immediate reward over long-term gain.
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Fig. 1. STGA-LSTM scheme

4 Method

In this section, the Spatial-Temporal Graph Attentional LSTM scheme (STGA-
LSTM) is designed to promote the multi-agent behavior under restricted and
time-varying communication. STGA-LSTM is composed of a spatial capture net-
work and a spatiotemporal LSTM network. As shown in Fig. 1, the historical time
series data are treated as input. The inputs are embedded as graphs via Multi-
Layer Perceptron (MLP). Then the spatial capture network captures the spatial
structure and latent representation of the multi-agent systems and enlarges the
agents’ communication field by leveraging the chain propagation characteristics
of GCN. The latent representation learned from the spatial structure network
is feed as input to the spatiotemporal LSTM network, which captures the spa-
tiotemporal feature and the temporal evolution of the graph. Finally, the cap-
tured node-embedding vector for each agent is subsequently used to evaluate the
critic and update the actor network.

4.1 Spatial Capture Network

Usually, each agent should require all the other agents’ information about their
observations and actions to behave cooperatively better. However, it is not avail-
able for each agent to obtain information of all the other agents due to the lim-
itation of communication. With the increase of the agent number, the influence
caused by the limitation of communication becomes more serious.

Considering the fact that the communication status among agents can be
represented as a graph naturally, the chain propagation characteristics of the
graph convolution layers can be adopted to enlarge the communication range of
the agents. Moreover, the attention mechanism can assign different importance
to different agents. Therefore, the spatial capture network (SCN) based on graph
attention network [17] is designed. It can not only enlarge the communication
range of the agents by leveraging the graph convolution layers, but also han-
dle the complex relationship to promote the cooperative behavior by utilizing
attention mechanism.

We define a graph G = (V,E), where each node i ∈ V denotes an agent, and
there exists an edge eij ∈ E between agent i and agent j if they can communicate
with each other. As indicated by (1), only when the distance between agent i
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and agent j is less than the communication threshold c, they can communicate
with each other.

For the enlarging of the communication field, SCN utilizes the chain propa-
gation characteristics of the graph convolution. Multiple SCN layers are stacked
to enlarge the agents’ receptive field. In addition to enlarging the receptive fields
of agent i and capturing the spatial structure, the neighbour agents need to
be treated differently by agent i for promoting cooperation. Different neigh-
bour agents have different influences on agent i. Specifically, one of the neigh-
bour agents may be farther away from agent i than the other agents, which
means agent i will be influenced differently due to the different distance among
the agents. With the increase of the agent number, the relationship among the
agents become more complex. Therefore, the attention mechanism in SCN layers
is used to allow agent i to treat the other agents’ states differently. Following
an attention strategy, SCN operates on graph-structured data and computes the
features of each graph node by attending over its neighbors. The hidden states
of the agents are used to calculate the attention coefficients eij from agent j to
agent i and its normalized form αij :

eij = ak
G

(
W k

Ghi,W
k
Ghj

)
(3)

αij = softmax(eij) =
exp (LeakyReLU (eij))∑

k∈Ni
exp (LeakyReLU (eij))

(4)

where ak
G is a single-layer feedforward neural network, W k

G is a learnable weight
matrix and LeakyReLU is a nonlinear activation function. [17] indicates that the
import of multi-head attention is beneficial to stabilize the learning process of the
attention. Moreover, each agent can extract different state representation of the
nearby agents from different representation subspace with multi-head setting.
Therefore, the multi-head is adopted in SCN. The output of one SCN layer with
multi-head attention for node i at t is given by:

ht
′

i =
∥∥K

m=1 σ
(∑

j∈Ni

αm
ij Wm

G ht
i

)
(5)

where || represents the concatenation, K represents the number of the heads, αm
ij

represents the normalized attention coefficient of the m-th attention mechanism
and Wm

G represents the weight matrix of the m-th linear transformation.
Furthermore, after the final SCN layer SCN3, the hidden states are concate-

nated, and they are fed into the fully-connected layer 3 (FC3) as shown in Fig. 1.
Since the hidden state could disappear during the process of graph convolution,
these hidden states are concatenated in the final layer to stabilize the training
process.

ht6

s = σ
([

ht5

s

∥∥∥ht2

s

∥∥∥ht0

s

]
W 3

F + b3F

)
(6)

where || represents the concatenation, W 3
F and b3F are weight matrix and bias of

FC3 to be learned.
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4.2 Spatiotemporal LSTM Network

In the practical engineering, the location of the agents and the communication
status among the agents keep changing over time, which means that the graph
G formed by the agents is dynamic and evolves over time. Due to the complex
time-varying graph structures, the dynamic state representation of the agents is
difficult to learn.

To address the temporal sequence problem, common approach is to use
a recurrent network. There are many studies which have demonstrated that
LSTM [5], as a variant of RNN, has an amazing ability to model long-term
temporal dependencies. However, direct use of LSTM does not help the agents
to learn the dynamic state representations. The fully connected operator within
LSTM ignores the spatial structure of the multi-agent systems, which causes that
the spatial structure learned by SCN is useless. Considering the GAT mentioned
in Sect. 4.1 has the ability to learn the structure and the traditional LSTM can
handle temporal dependencies, the spatiotemporal LSTM network (ST-LSTM)
is designed by combining GAT and traditional LSTM. Compared with standard
LSTM, ST-LSTM can not only capture discriminative features in spatial con-
figuration and temporal evolution, but also explore the different influences from
different agents (Fig. 2).

Output gateInput gate

Cell

Forget gate

)

)

)

)

)

Fig. 2. ST-LSTM cell

ST-LSTM contains three gates: an input gate it, a forget gate ft and an
output gate ot. These gates are obtained with the graph attention operator.
The input ht, hidden state Ht and cell memory Ct of ST-LSTM are graph-
structured data. The details of the units and the structure of ST-LSTM are
illustrated in Fig. 3. Due to the graph attention operator within ST-LSTM, the
cell memory Ct and hidden state Ht are able to exhibit temporal dynamics,
as well as contain spatial structural information. Moreover, the graph attention
operator can make the agents adaptively focus on the neighbours, which means
they can obtain more effective state representations in addition to the spatial
structural and temporal information. The functions of ST-LSTM cell are defined
as follows:



670 H. Wang et al.

it = σ (Wxi∗Ght + Whi∗GHt−1 + bi)
ft = σ (Wxf∗Ght + Whf∗GHt−1 + bf )
ot = σ (Wxo∗Ght + Who∗GHt−1 + bo)
ut = tanh (Wxc∗Ght + Whc∗GHt−1 + bc)
Ct= ft � Ct−1 + it � ut

Ht = ot � tanh(Ct)

(7)

where ∗G denotes the graph convolution operator and � denotes the Hadamard
product. σ (·) is the sigmoid activation function. ut is the modulated input. Ht is
an intermediate hidden state. Wxi∗GXt denotes a graph convolution of Xt with
Wxi, which can be written as (5)–(7).

It is worth noting that only one graph convolution layer for the graph atten-
tion operator is used, because the function of the graph attention operator within
ST-LSTM is to capture and keep the spatial structure instead of enlarging the
agents receptive field. With the increase of the convolution layers, the cost of
computing greatly increases and the state representation is difficult to be learned.
Therefore, the number of the graph convolution layer for the graph attention
operator is 1.

4.3 Policy Optimization

After the states are extracted by STGA-LSTM, they are utilized to optimize the
policy of the agents. As shown in Fig. 1, all the agents’ information is extracted
with STGA-LSTM as ht7

s . As mentioned above, STGA-LSTM can let the agents
obtain more agents’ information. Therefore, ht7

s is a function related to all the
other agents’ states. After ht7

s is obtained, PPO is implemented in an actor-critic
framework. According to the objective function of PPO, it is changed as (8) and
(9) after the concatenation of all the states. Although the agents are trained
with information from their nearby agents, they can obtain all the other agents’
information by STGA-LSTM. Owing to STGA-LSTM, each agent can obtain
more agents’ information to promote the cooperation behaviour. Moreover, to
scale up to more agents, the parameters sharing method is applied to train all
the agents in a decentralized framework.

lt(θ) =
πθ(at |(h1,h2, · · · , hN ) )
πθk(at |(h1,h2, · · · , hN ) )

(8)

L(θ) = E[min(lt(θ)Âθk

t (h1, h2, · · · , hN ),
clip(lt(θ), 1 − ε, 1 + ε)Âθk

t (h1, h2, · · · , hN )]
(9)

5 Simulations

In this section, the performance of STGA-LSTM is evaluated in four different
scenarios as shown in Fig. 3. Scenario (a) and (b) focusing on the formation con-
trol tasks are designed to evaluate the effectiveness of STGA-LSTM. Moreover,



STGA-LSTM 671

Formation center
Obstacle
Agent
Communication range
Detective range

(a) Formation control-
3 agents

Formation center
Obstacle
Agent
Communication range
Detective range

(b) Formation
control-6 agents

Prey
Obstacle
Predator
Communication range
Detective range

(c) 3 vs.1 Predator-
prey

Prey
Obstacle
Predator
Communication range
Detective range

(d) 5 vs.2 Predator-
prey

Fig. 3. The illustration of the simulation environments

(a) Training rewards-3 agents (b) Training rewards-6 agents

Fig. 4. The training rewards in formation control

scenario (c) and (d) focusing on the predator-prey are designed to evaluate the
decision ability of STGA-LSTM in complex environments. In the simulations,
STGA-LSTM is compared with MADDPG [12], TRANSFER [1] and STGAT-
LSTM2. The first algorithm MADDPG relies on access to the global state of
the system during training instead of the partial observation state and the com-
munication among the agents. The second algorithm TRANSFER ignores the
temporal relationship among the agents. The final algorithm STGAT-LSTM2 is
another vision of STGA-LSTM with standard LSTM.

5.1 Formation Control

STGA-LSTM are compared with those algorithms in two different formation
control environments which include scenario (a) with 3 agents and scenario (b)
with 6 agents and larger environment size. In these scenarios, all the agents are
required to be evenly distributed around the formation center without colliding
with each other. The reward for each agent is composed of the distance reward
and the collision reward. Specifically, the distance reward is related to the dis-
tance from the agent to the formation center. Besides, if an agent collides with
another agent, the reward it obtains is −10. All the agents only observe the
formation center location and their own state. The only way to obtain the other
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Table 1. Evaluating results of formation control with 3 agents

Algorithms Success (%) Steps Rewards Collision (%)

MADDPG 100 18.62 −0.73 1.25

TRANSFER 100 12.75 −0.58 0

STGA-LSTM2 100 10.68 −0.61 0.86

STGA-LSTM 100 9.22 −0.47 0

agents’ states is through communication. Given the limitation of communication
in reality, each agent communicates with up to two nearest neighboring agents
only if their distance is less than the pre-defined threshold.

The learning curves of all the approaches in terms of mean rewards are
presented in Fig. 4. In Fig. 4(a), STGA-LSTM has a similar performance with
the other algorithms but has a higher convergence rate. Moreover, as shown in
Fig. 4(b), STGA-LSTM obtains higher mean reward and converges faster than
the other algorithms. In scenario (a), the communication status among the agents
is almost fully connected, which means that the spatial graph structure of the
multi-agent system can be regarded as static. Under this situation, the ability
of handling the dynamic graph of STGA-LSTM is not fully reflected. On the
contrast, the graph structure changes more frequently in scenario (b). Owing to
the proposed scheme, the agents not only adapt to the dynamic communication
status, but also enlarge their receptive field based on the chain propagation char-
acteristics of GAT. Moreover, STGA-LSTM2 performs worse than STGA-LSTM,
which means that the traditional LSTM cannot process the spatial-temporal data
and even prevent the cooperative behavior because its fully connected operator
disrupts the spatial structure learned by GAT.

In addition to the data of the training process, the evaluation results in
Table 1 and 2 present the similar results with Fig. 4. The agents trained by
STGA-LSTM have higher rewards and efficiency than MADDPG and TRANS-
FER in scenario (b). The performance difference between STGA-LSTM and
other algorithms demonstrates that STGA-LSTM can capture both the spatial
interactions and temporal evolution of the multi-agent systems.

5.2 Predator-Prey Games

Two scenarios including 3v1 and 5v2 predator-prey games are designed to evalu-
ate the performance of our scheme. In these scenarios, the predator moves slower
and needs to capture the prey, and the prey moves faster and needs to escape
from the predators. For the predators, they need to learn how to cooperate with
each other. The predators can only observe their own location and velocity, and
can obtain the prey’s location if any prey is in their detective field. On the con-
trary, the preys can observe all the predators’ location and velocity. If a prey
is caught by one predator, the prey will obtain −10 reward. The predator can
receive +20 reward when all the preys are caught. Each agent aims to maxi-
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Table 2. Evaluating results of formation control with 6 agents

Algorithms Success (%) Steps Rewards Collision (%)

MADDPG 0 60 −1.52 25.80

TRANSFER 98.70 13.52 −0.63 2.60

STGA-LSTM2 97.64 12.46 −0.85 9.70

STGA-LSTM 100 10.86 −0.42 0

(a) Training rewards-3v1 (b) Training rewards-5v2

Fig. 5. The training rewards in predator-prey games

(a) Steps = 1 (b) Steps = 10 (c) Steps = 22 (d) Steps = 31

(e) αij at step 1 (f) αij at step 10 (g) αij at step 22 (h) αij at step 31

Fig. 6. The illustration of the cooperative strategy in 5V2 predator-prey games

mize their accumulated rewards, which means there is a competition between
the predators and the preys, and a cooperation among the predators.

As shown in Fig. 5 and Tables 3–4, STGA-LSTM outperforms all the baselines
during the training and the evaluation process. Especially in the scenario (d),
SGTA-LSTM converges twice as fast as TRANSFER and obtains at least 30%
rewards higher than the other methods.

To further describe our strategy, the dynamic evolution of cooperative behav-
ior is shown in Fig. 6. In Fig. 6, five predators learn to divide themselves into two
groups to chase two preys. Each predator needs to interact with the other preda-
tors to obtain the information about the preys under restricted and time-varying
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Table 3. Evaluating results of 3v1 predator-prey games

Algorithms Success (%) Steps Rewards Collision (%)

MADDPG 84.2 35.26 0.54 13.60

TRANSFER 95.6 22.37 0.95 0

STGA-LSTM2 92.7 23.63 0.86 0.80

STGA-LSTM 96.7 22.13 1.12 0

Table 4. Evaluating results of 5v2 predator-prey games

Algorithms Success (%) Steps Rewards Collision (%)

MADDPG 76.3 44.18 1.25 10.24

TRANSFER 96.20 36.25 2.18 1.2

STGA-LSTM2 95.64 38.6 1.72 2.3

STGA-LSTM 98.6 32.97 2.76 0.8

communication. The final results show that the predators have learned a reason-
able cooperative strategy through STGA-LSTM. Moreover, the attention value
αij in (6) for different predators can be obtained in Fig. 6. For predator 1, α11

is 0.91 at step 1, which indicates that it mainly focuses on its own state. As the
game progresses, predator 1 gets close to predator 2, and α12 increases from 0.09
to 0.88 at step 10, which means the communication with predator 2 becomes
more important. Then predator 1 moves away from predator 2 and transfers its
attention into the prey and predator 3 at step 22. α12 decreases from 0.88 to
0.21 and α13 increases from 0 to 0.16. Finally, it can be seen that α11 increases
from 0.63 to 0.82, α10 increases from 0 to 0.05, and α13 decreases from 0.16
to 0.13, which indicates that the predator 1 pays more attention on itself, and
cooperates with predator 0 and 3 to capture the prey. It can be concluded that
STGA-LSTM can enhance the agents’ cooperative ability through capturing the
spatial structure and the temporal evolution.

6 Conclusions

In this paper, we present a novel STGA-LSTM scheme for multi-agent coopera-
tion under restricted and time-varying topology. STGA-LSTM not only enlarges
the agents’ communication range, but also captures the temporal evolution while
keeping the spatial structure. The scheme is shown to perform a satisfying strat-
egy and adapt to the dynamic graph structure of the multi-agent system. Future
work will take the time-delay phenomenon into consideration and conduct it in
unmanned ground vehicles.
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Abstract. For the current neural network models, in order to improve
the accuracy of the models, we need efficient plug-and-play modules.
Therefore, many efficient plug-and-play operations are proposed, such
as Asymmetric Convolution Block (ACB). However, the introduction of
multi-branch convolution kernels in ACB increases the trainable param-
eters, which is an extra burden to the training of large models. In this
work, SuperConv is proposed to reduce the trainable parameters while
maintaining the advantages of ACB. SuperConv utilizes the method in
single-path NAS to encode the convolution kernels of different sizes in
multiple branches into a super-kernel, so that the convolution kernels can
share some weights with each other. In addition, we introduce Super-
Conv into MixConv and propose SuperMixConv (SP-MixConv). To ver-
ify the effectiveness of SP-MixConv, ACB, MixConv and SP-MixConv
are inserted into the Cifar-quick model and the model with SP-MixConv
gets the best accuracy on CIFAR-10 and CIFAR-100. And SuperConv
and SP-MixConv will not add extra burden in inference. Simultane-
ously, SuperConv is very easy to implement, using existing tools such
as Pytorch, and is also an interesting attempt for the design of efficient
plug-and-play convolution block.

Keywords: Weight sharing · Strengthening the kernel skeletons ·
Super-MixConv

1 Introduction

Deep learning has made great progress and has been widely used in computer
vision and natural language processing [30,31]. But with the increasing of vari-
ous tasks, the design of network architecture becomes a more difficult problem.
Although model architecture search has made great progress, it still needs a
lot of guidance from model design experience. For example, the gradient-based
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approaches [12,14–18], still impose some prior restrictions on the search space.
Practice shows that the performance of the model is affected by many factors,
such as the architecture of the model and the local receptive fields and so on.
ACNet [3] utilizes BN fusion and Branch fusion mechanisms to fuse convolution
kernels of different sizes. And it uses 13 and 31 non-square convolution kernels
to enhance the skeletons of the 33 convolution kernel. Experiments [3] show that
ACNet can improve the performance of the models and provide ideas for the
design of the model. While ACNet improves the performance of the model, it
also increases the trainable parameters for the model.

Single-Path NAS [2] proposes a single path model architecture search method
by means of the small convolution kernel and the large convolution kernel sharing
some parameters. This method is faster and has fewer trainable parameters than
the multi-path model architecture search method. This fine-grained method of
weight sharing can be used in many ways. In this paper, we combine it with
Asymmetric Convolution Block (ACB) [3] and propose SuperConv. SuperConv
utilizes weight sharing and multiple branches to enhance the skeletons of the
square convolution kernel.

MixConv [4] is a very clever technique for reducing the parameters in large
convolutional kernel networks and achieving an effective balance between effi-
ciency and performance. MixConv split the input and output channels into dif-
ferent groups, each using different size kernel. MixConv then concats the results
of the branches to get the final result. However, the results of MixConv may
depend on the number of groups and how channels are partitioned. Therefore,
we try to introduce SuperConv to enhance MixConv. Our experiments show that
SP-MixConv improves the accuracy of the model and increases limited trainable
parameters.

In this paper, we propose SuperConv, a novel method that uses weight shar-
ing and multiple branches to enhance the skeletons of the square convolution
kernel. Our key improvement is shown in Fig. 1. We find that utilizing shar-
ing weights, SuperConv can reduce the additional trainable parameters brought
by ACNet [3]. We also combine SuperConv with MixConv [4] to obtain SP-
MixConv. Our experiments show that SuperConv and SP-MixConv achieving
an effective balance between efficiency and performance. For details, see the
experiment section.

Our contributions are as follows:

1. SuperConv: We propose a SuperConv (SP-Conv) by combining Super-
Kernel [2] and ACB [3]. SuperConv takes advantage of weight sharing to reduce
the trainable parameters in ACB. This way of sharing the weights in the con-
volution kernel is more fine-grained, which is also an interesting attempt for the
design of efficient plug-and-play convolution block.

2. State-of-the-art results: Although, SuperConv is a simple improvement
over ACB [3], it can also improve the accuracy of the model. In our experiments,
the model with SP-MixConv gets the best accuracy on CIFAR-10 and CIFAR-
100.
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(a) Single-Path NAS proposed super-kernel (b) Our proposed SuperConv (c) Our proposed SP-MixConv

Fig. 1. SuperConv and Super-MixConv (best viewed in color). (a) Super-Kernel [2]
encodes the small convolution kernels into the large convolution kernel by sharing
weights. The choice of the size of the convolution kernel and the number of chan-
nels are determined by the threshold values. (b) we propose SuperConv by combining
ACNet [3] and Super-Kernel. SuperConv includes the non-square convolution kernels
and the small square convolution kernel in ACNet. But in order to reduce the train-
able parameters, these convolution kernels inherit the local weights from the maximum
convolution kernel. (c) we try to introduce SuperConv to enhance MixConv [4]. Exper-
iments show that SP-MixConv not only improves the accuracy of the model, but also
increases limited trainable parameters (Color figure online).

3. Inference eciency: Like SuperConv, SP-MixConv can improve the accuracy
of the model, but at the same time have fewer trainable parameters. Simultane-
ously, SuperConv and SP-MixConv will not add extra burden in inference.

4. Reproducibility: SuperConv is very easy to implement, using existing tools
such as Pytorch [24], and can be plug-and-play without having to make special
adjustments to the model.

2 Related Work

SuperKernel. Single-Path NAS [2] encodes the small convolution kernel into
the large convolution kernel by sharing parameters to search the neural network
architecture. It proposes an novel single-path search space and the search model
is state-of-the-art. Shared convolutional kernel parameters and one single-path
over-parameterized ConvNet are used to reduce trainable parameters and search
costs [2]. Single-path NAS can search the size of the convolution kernel and the
number of channels in the Super-kernel. The search choice are determined by
the threshold values. Furthermore, in Single-Path NAS, the threshold values are
trainable parameters, which facilitate the search of the model structure.

ACNet. For the current neural network models, in order to improve the perfor-
mance of the models, we need efficient plug-and-play modules [1,10,11,26], and
high-efficiency model architectures [5–9,19,25,27–29]. [3] introduces BN fusion
operation and Branch fusion operation, and through these two techniques can
improve the model’s inference speed. Then, [3] prove that the accuracy of the
model can be improved without increasing the inference cost of the original model
by increasing the branches of convolution kernel and enhancing the skeletons of
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ordinary convolution by using BN fusion operation and Branch fusion operation.
At the same time, by enhancing the skeletons of the square convolution kernel,
it is more robust to the input images. Experimental results show that ACNet
have better effect on the rotated input images than the normal convolution ker-
nel [3]. Moreover, adding BN operation [23] to the branch will also improve the
accuracy of acnet model. The SuperConv we proposed also has BN operation in
each branch, and we believe that BN operation plays a very important role in
SuperConv.

MixConv. MixConv [4] achieves an effective balance between accuracy and effi-
ciency by combining the different sizes of convolution kernels. [4] study the two
channel partition methods: equal partition (MixConv) and exponential parti-
tion (MixConv+exp). Then [4] combine the neural network architecture search
method and obtain the model with good performance and efficiency. This way of
mixing the different sizes of convolution kernels has fewer parameters than single
large convolution kernels, and also introduces a smaller receptive field. Moreover,
the experiments prove that MixNets perform very well on other commonly used
data sets [4].

3 Method

3.1 ACNet and Super-Kernel Convolution

In order to reduce the additional parameter burden caused by ACNet [3], we pro-
pose a Super-Kernel Convolution (SuperConv). SuperConv retains the advan-
tages of ACNet while reducing trainable parameters.

BN Fusion. A normal convolution kernel can be enhanced by additional non-
square convolution kernels [3]. Although the trainable parameters increased in
the training stage, by combining BN fusion and Branch fusion, the prediction
accuracy can be maintained without extra computations cost during the test
phase. BN fusion is the fusion of BN operations [23] and convolution operations,
and then processing the input. This clever approach not only increases the speed
of inference, but also maintain model accuracy as before the fusion.

Branch Fusion. The Branch fusion [3], after the BN fusion, is to merge the con-
volution operations and BN operations [23] of the different branches. The exper-
iments prove that similar results can be obtained by integrating the non-square
convolution kernels into the large ordinary convolution kernel skeletons [3]. In
this way, the precision of the model can be improved without increasing the
inference cost.

Super-Kernel. Although ACNet [3] improves the model accuracy, it also
increases the training cost. So we encode the small convolution kernels into the
large convolution kernel, like Single-Path NAS [2]. This provides an idea for us to
introduce Super-Kernel into the ACNet [3] and MixConv [4]. The Super-Kernel
is shown in the Fig. 1(a). Its weights are divided into inner weights and outer
weights. The small convolution kernel uses the inner weights and the large kernel
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convolution uses the inner and outer weights. Intuitively, this method uses the
weight sharing of convolution kernels to reduce network burden.

3.2 How to Get the Weights of the Super-Kernel

Fig. 2. Weight Sharing in
Super-Kernel (best viewed in
color). (Color figure online)

For the update of Super-Kernel weights, we con-
sider three ways of updating.

First, the inner weights are updated by the
branch of the small convolution kernel, and the
outer weights are updated by the branch of the
large convolution kernel. This method of updat-
ing the weights does not reduce the trainable
parameters, but only needs to store the weight
parameters of Super-Kernel. For the update
details of method 1, see Eq. (1), (2), and (3).

wsp = winner + wouter, (1)

w5×5 = wcenter + w5×5/center, (2)

updatewinner
← updatew3×3 , updatewouter

← updatew(5×5/center) . (3)

Where the weights of the Super-Kernel denoted as wsp, consists of two parts:
winner and wouter. w5×5, w3×3 denote the weights of the 5×5 kernel branch, the
weights of the 3× 3 kernel branch, respectively. wcenter and w3×3 have the same
dimensions, and w(5×5/center) are the outer part of the 5 × 5 kernel convolution.

Second, the inner weights are updated by the branch of the small convolution
kernel and the branch of the large convolution kernel, and the outer weights are
updated by the branch of the large convolution kernel. In order to balance the
update ratio, control weight parameters are added to the branch of the large
convolution kernel and the branch of the small convolution kernel. For the update
details of method 2, see Eq. (4)and (5).

updatewinner
← α ∗ (updatew3×3) + β ∗ (updatewcenter

), (4)

updatewouter
← updatew(5×5/center) . (5)

Where α and β denote the control parameter.
Third, the inner weights and outer weights are updated by the branch of

the large convolution kernel, and the small convolution kernel inherit the local
weights of the large convolution kernel. This method reduces trainable parame-
ters and only needs to store the weight parameters of Super-Kernel. This way of
encoding the small convolution kernel into the large convolution kernel, is easy
to implement and can also get good model accuracy. Therefore, the experiments
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in this paper are based on this way to update the weights. For the update details
of method 3, see Eq. (6) and (7).

updatewinner
← updatewcenter

, (6)

updatewouter
← updatew(5×5/center) . (7)

Intuitively, method one and method two, the update of weights of the Super-
Kernel requires gradient back propagation of the convolution kernels in two
branches. But in method three, we only need to update the weights of the large
convolution kernel, and the small convolution kernel inherits the weights from
the large convolution kernel. Although method three is the most coarse-grained,
we adopt method three to balance the precision and the cost. While ACNet [3]
belongs to a simplified version of method two, the related parameters of BN are
the control parameters. The weight sharing of Super-Kernel is shown in Fig. 2.
SuperConv adds non-square convolution kernels to strengthen the skeletons. The
way of weight sharing is the same as Fig. 2 (Fig. 3).

Fig. 3. Training-time SuperConv (best viewed in color). Only the weight parameters
of SP-Conv 3 × 3 need to be trained. SP-Conv 1 × 3 and SP-Conv 3 × 1 inherit the
local weights from SP-Conv 3 × 3. (Color figure online)

However, according to ACNet [3], it is not necessary to update the weights of
the Super-Kernel at each iteration, we can update them through BN fusion [3]
and Branch fusion [3] after the training is completed. Moreover, due to the weight
sharing among convolution kernels of different sizes, the trainable parameters are
reduced.

3.3 SuperConv

Inspired by Single-Path NAS [2], we propose SuperConv by combining ACNet [3]
and Super-Kernel [2]. SuperConv has fewer trainable parameters and good per-
formance. SuperConv is shown in Fig. 1(b).
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SuperConv includes the non-square convolution kernels in ACNet [3] and
the small square convolution kernels. In order to reduce the trainable param-
eters, these convolution kernels inherit the local weights from the maximum
convolution kernel. However, SuperConv should have some requirements on the
size of convolution kernel. It can be concluded that if only the 33 convolution
kernels is replaced, SuperConv and ACNet have the same number of BN oper-
ations [23] and branches, so SuperConv cannot achieve similar accuracy, which
is understandable. In an ideal state, by sharing the convolution kernel weights
and increasing the number of branches and BN operations, a similar precision
can be achieved while the parameters can be reduced. So, in some cases, we
can combine SuperConv and ACNet and make some inner convolution kernels
have fewer learnable parameters. The choice of the inner convolution kernels in
SuperConv can also depend on the requirements of the model. In addition, we
try to introduce SuperConv into MixConv [4], because it has large convolution
kernels and it requires lightweight operations.

3.4 Super-MixConv

MixConv [4] is a very clever technique for reducing parameters in large convo-
lution kernel networks and achieving an effective balance between efficiency and
performance. MixConv splits the input and output channels into different groups,
each using different size convolution kernels. This branch mechanism is more fine-
grained, making it possible to reduce model parameters while maintaining model
accuracy. However, the results of MixConv may depend on the number of groups
and how channels are partitioned. Therefore, we try to introduce SuperConv to
enhance MixConv. Experiments show that SP-MixConv improves the accuracy
of the model, but increases limited trainable parameters. Note that when Super-
Conv is inserted into MixConv, it should be in the same branch, meaning that
the input should be the same. Super-MixConv is shown in Fig. 1(c).

4 Experiments1

4.1 CIFAR-10

The CIFAR-10 [13] dataset consists of 60k 32 × 32 color images of 10 classes, each
with 6k images. It has 50k training images and 10k test images. The dataset is
divided into five training batches and one test batch, each with 10k images. The
test batch contains 1000 randomly selected images from each category.

ACB and SuperConv. First, we compare ACB [3] and SuperConv on
CIFAR10. In experiments, we only need to replace the original convolutions
with ACB and SuperConv, which is very easy to implement. For the implemen-
tation details of the experiments, please refer to the paper [3]. From the Table 1,
1 For fairness and lack of computing resources, the accuracy given by our all

experiments is the average of the verification accuracy of the last tenth of the whole
epochs.
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Table 1. Accuracy of the models with SuperConv or ACB on CIFAR10.

Models Params ACB SuperConv CIFAR10 (Ave)

Cifar-quick 117290 � � 85.5720

Cifar-quick 119850 (+2.18%) � � 86.8420

Cifar-quick 137322 (+17.08%) � � 86.8830

WRN-16-8 10970170 � � 95.5356

WRN-16-8 11013370 (+0.39%) � � 95.7450

WRN-16-8 18202138 (+65.92%) � � 95.9206

ResNet-56 860026 � � 94.5630

ResNet-56 876282 (+1.89%) � � 94.6285

ResNet-56 1441818 (+67.65%) � � 94.9015

the model Cifar-quick [20] with ACB or with SuperConv achieve similar model
accuracy. But the model with ACB increases about 17% more parameters, while
SuperConv increases only about 2%. However, ResNet-56 [21] and WRN-16-
8 [22] with SuperConv have limited improvement in model accuracy, since the
size of convolution kernel we replace is 33. According to our analysis, Super-
Conv has a small number of parameters, so it is a kind of weak enhancement
for the skeletons and receptive field of the model. Therefore, we suggest using
SuperConv on large convolution kernels or mixed convolution.

Table 2. Accuracy of the models with SP-MixConv or ACB on CIFAR10.

Models #P 3 × 3-ACB 5 × 5-ACB MixConv Shuffle CIFAR10 (Ave)

Cifar-quick 65146 � � 3 × 3, 5 × 5 � 83.296

Cifar-quick 73658 � 1 × 5, 5 × 1 3 × 3, 5 × 5 � 83.867

Cifar-quick 78874 1 × 3, 3 × 1 1 × 5, 5 × 1 3 × 3, 5 × 5 � 84.027

Cifar-quick 78874 1 × 3, 3 × 1 1 × 5, 5 × 1 3 × 3, 5 × 5 � 83.707

Models Params 3 × 3-SP-Conv 5×5-SP-Conv MixConv Shuffle CIFAR10(Ave)

Cifar-quick 65146 � � 3 × 3, 5 × 5 � 83.296

Cifar-quick 66426 � 1×5, 5×1, 1×
3, 3 × 1, 3 × 3

3 × 3, 5 × 5 � 84.046

Cifar-quick 66938 1 × 3, 3 × 1 1×5, 5×1, 1×
3, 3 × 1, 3 × 3

3 × 3, 5 × 5 � 84.503

MixConv and SP-MixConv. Then, we combine SuperConv and MixConv [4]
and propose SP-MixConv. In order to facilitate the experiments, we do not
strictly follow the implementation details of MixConv. Instead, ordinary con-
volution kernels are used. See details about MixConv [4]. To verify the useful-
ness of SP-MixConv, we insert MixConv and SP-MixConv into the Cifar-quick
model [20]. From the Table 2 and Fig. 4, SP-MixConv increases a small number
of parameters relative to ACB [3] and gets the best accuracy. At the same time,
it is important to note that in a MixConv model, the way that the channels are
divided and the number of groups will affect the accuracy of the model [4]. For
the division of channels, we use a simple experiment to illustrate, see [Ablation
study].
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Fig. 4. MixConv, SP-MixConv and
ACB performance on CIFAR10.

Fig. 5. MixConv, SP-MixConv and
ACB performance on CIFAR100.

4.2 CIFAR-100

The CIFAR-100 [13] dataset is like CIFAR-10, except that it has 100 classes,
each containing 600 images, each category has 500 training images and 100
test images. 100 classes are divided into 20 superclasses. We have done some
simple experiments on the CIFAR-100 dataset and find that SP-MixConv could
still obtain the best model accuracy. See Table 3 and Fig. 5 for the details of
experimental results.

Table 3. Accuracy of the models with SP-MixConv or ACB on CIFAR100.

Models #P 3 × 3-ACB 5 × 5-ACB MixConv Shuffle CIFAR100 (Ave)

Cifar-quick 70996 � � 3 × 3, 5 × 5 � 52.924

Cifar-quick 84724 1 × 3, 3 × 1 1 × 5, 5 × 1 3 × 3, 5 × 5 � 54.499

Models #P 3 × 3-SP-Conv 5 × 5-SP-Conv MixConv Shuffle CIFAR100(Ave)

Cifar-quick 70996 � � 3 × 3, 5 × 5 � 52.924

Cifar-quick 72788 1 × 3, 3 × 1 1×5, 5×1, 1×
3, 3 × 1, 3 × 3

3 × 3, 5 × 5 � 54.678

Table 4. Accuracy of the model with/without Channel shuffle on CIFAR10.

Models Params 3 × 3-ACB 5 × 5-ACB MixConv Cha-shuffle CIFAR10 (Ave)

Cifar-quick 78874 1 × 3, 3 × 1 1 × 5, 5 × 1 3 × 3, 5 × 5 � 84.027

Cifar-quick 78874 1 × 3, 3 × 1 1 × 5, 5 × 1 3 × 3, 5 × 5 � 83.707

4.3 Ablation Studies

Channel Split. In our experiments, we simply split the input and output chan-
nels of the Cifar-quick model [20]. When the number of channels divided by the
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number of groups has a remainder, add the remaining channels to the channel-
split[0]. We can find that even if the model is small, the number of channels will
still affect the accuracy of the model. So in this case, SuperConv can be used to
enhance MixConv [4]. The channel-split codes come from Github2. In most of
our other experiments, the number of channels in the 5 × 5 convolution kernel
is channel-split[0] (Table 5).

Table 5. Accuracy of the modules with different channels-split on CIFAR10.

Models #P 3 × 3-ACB 5 × 5-ACB MixConv Shuffle Split[0] CIFAR10 (Ave)

Cifar-quick 65146 � � 3 × 3, 5 × 5 � 5 × 5 83.296

Cifar-quick 64890 � � 3 × 3, 5 × 5 � 3 × 3 83.381

Channel Shuffle. A Channel shuffle operation is used in ShuffleNet [5,6] to mix
channel information. We think it will be a great help to MixConv [4] as well.
From Table 4, we find that adding Channel shuffle after MixConv will increase
the accuracy of the model, so Channel shuffle is added by default in all MixConv
experiments. We use some open codes3.

4.4 Discussions and Future Work

Although SuperConv reduces trainable parameters, adding branches increases
computation. We believe that the features obtained by different branches may
be redundant. So the correct choice of the branches may reduce the calculation
without reducing the accuracy of the model. In future work, we will try to make
different branches share BN operation [23] and reduce branches. In addition, we
are going to study whether BN fusion [3] and Branch fusion [3] are effective in
the above cases.

5 Conclusion

In order to reduce the trainable parameters of ACNet, we propose SuperConv
by combining ACB and Super-Kernel. In the model of large convolution ker-
nels, the insertion of SuperConv can significantly improve the accuracy of the
model. In addition, we introduce SuperConv into MixConv and propose Super-
MixConv (SP-MixConv). In the experiments of SP-MixConv, the model accuracy
is improved significantly when a small number of trainable parameters are added.
Simultaneously, SuperConv is very easy to implement, using existing tools such
as Pytorch, and can be plug-and-play without having to make special adjust-
ments to the model. This way of sharing the weights in the convolution kernel is
more fine-grained, which is also an interesting attempt for the design of efficient
plug-and-play convolution block.
2 https://github.com/HaiPhan1991/mixconv pytorch.
3 https://github.com/Randl/ShuffleNetV2-pytorch.

https://github.com/HaiPhan1991/mixconv_pytorch
https://github.com/Randl/ShuffleNetV2-pytorch
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Abstract. Imitation learning provides a family of promising frame-
works that learn policies from expert demonstrations directly. However,
most imitation learning methods assume that the expert demonstrations
come from the same expert and have a single modality. In fact, the
expert demonstrations may be generated by different experts in different
modalities. Auxiliary classifier generative adversarial imitation learning
(AC-GAIL) uses an auxiliary classifier to classify samples according to
modalities, so that the generator can perform different actions according
to different modalities, and obtain a multi-modal policy. However, we
find that AC-GAIL’s objective function missing a conditional entropy,
and this conditional entropy cannot be calculated directly. Missing the
conditional entropy can result in a decrease in the performance of the
learned policy. In this paper, we propose a method that can deal with the
problem of missing conditional entropy in AC-GAIL, named twin auxil-
iary classifiers GAIL (TAC-GAIL). Specifically, we add another auxiliary
classifier to the framework of AC-GAIL, which is used to classify the gen-
erated samples. We theoretically prove the effectiveness of this method,
and the experimental results on MuJoCo tasks show that TAC-GAIL can
effectively improve the performance of the learned multi-modal policy.

Keywords: Imitation learning · Multi-modal · Adversarial

1 Introduction

The ability to learn from data is a key factor for agent to build decision models.
In recent years, there have been many learning frameworks [2,3,8] that present
promising results. Reinforcement learning (RL) [1] is one of these frameworks
that learns to make decisions based on trial-and-error search in environments
with a specified reward function. However, designing such an idea reward func-
tion manually is difficult, especially when the environment becomes more com-
plex and uncertain, e.g., for autonomous driving where there is a need to balance
safety, comfort and efficiency.
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Imitation learning provides a method for learning decision models directly
from expert demonstrations. Compared to RL, imitation learning does not
require an explicit reward function, which increases its scope of application.
And imitation learning has achieved remarkable successes in a wide range of
problems. At present, imitation learning can be divided into two categories. The
first category is behavioral cloning [21], which is a supervised learning method.
It learns expert policy by directly mimicking the state-action mapping of the
expert demonstrations. Behavior cloning is a relatively simple imitation learning
method. When expert demonstrations can cover the entire state space, behav-
ioral cloning can achieve good performance. However, when there are few expert
demonstrations, the agent cannot learn the optimal decision in each state. More-
over, since long-term effects are not considered, subtle errors will be gradually
amplified in the sequential decision-making process, resulting in compounding
errors [22]. The second category is inverse reinforcement learning (IRL)[9,10].
IRL will learn a reward function so that the expert demonstrations have the
highest probability of occurrence, and then use RL to learn an optimal policy
based on the reward function. The policy learned by IRL has better generaliza-
tion capabilities and requires fewer expert demonstrations. However, since the
inner loop of IRL includes the RL process, it will increase the computational
cost. Generative adversarial imitation learning (GAIL) [4] combines IRL with
generative adversarial nets (GANs) [13]. GAIL is an efficient imitation learning
method, and it can be extended to more complex environments.

However, most of the current imitation learning methods [5–7] assume that
the expert demonstrations has only one modality. We hope that the agent can
learn from multi-modal expert demonstrations and get a policy with multiple
modalities. Take the example of human walking, when we are walking, we will
reduce our pace and frequency, but when we are in a hurry, it is another modality,
we may walk very fast, or even run.

Recently, some works [17] have emerged to solve multi-modal imitation learn-
ing tasks. Among them, auxiliary classifier GAIL (AC-GAIL) [16] can learn
multi-modal policy from multi-modal expert demonstrations. It adds an aux-
iliary classifier to the framework of GAIL. This auxiliary classifier is used to
classify state-action pairs according to modalities, so that the generator can per-
form different actions according to different modalities. However, we find that
AC-GAIL’s objective function missing a conditional entropy, and this conditional
entropy cannot be calculated directly. The lack of this conditional entropy will
cause a mismatch between the classification results of the classifier and the real
data, affecting the performance of the learned multi-modal policy.

In this paper, inspired by Twin Auxiliary Classifiers GAN [15], we propose
a method to deal with the lack of conditional entropy in AC-GAIL, named
twin auxiliary classifiers GAIL (TAC-GAIL). TAC-GAIL adds an additional
auxiliary classifier to the framework of AC-GAIL to classify the state-action pairs
generated by the generator. In subsequent sections, we will further explain how
additional auxiliary classifiers can improve the performance of the learned policy.
Moreover, experimental results on several MuJoCo tasks also show that our
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method can outperform some existing multi-modal imitation learning methods,
e.g. AC-GAIL, InfoGAIL [19].

2 Background

2.1 Preliminaries

An infinite-horizon, discounted Markov decision process (MDP) can be defined
as (S,A, P,R, ρ0, γ), where S represents the state space, A represents the action
space, P : S × A × S → [0, 1] denotes the transition probability distribution,
R : S × A → R denotes the reward function, ρ0 : S → [0, 1] is the distribution
of the initial state s0, and γ ∈ [0, 1] is a discount factor that determines the

importance of future rewards. We use Vπ(s0) = Eπ

[
T∑

t=0
γtR(st, at)|at ∼ π(st)

]

to denote the cumulative reward obtained by the agent following policy π, where
a ∼ π(s), and T denotes the terminal of an episode. The goal of RL is to find a
policy π∗ that maximizes the cumulative rewards.

2.2 Imitation Learning

Imitation learning does not require a reward function R, it directly learns
how to perform a task from expert demonstrations. The set of expert demon-
stration trajectories is defined as {τ1, τ2, · · · , τN}, where τi = {(s0, a0),
(s1, a1), · · · , (sT , aT )} is a sequence of state-action pairs, i = 1, 2, 3, · · · , N .

Generative Adversarial Imitation Learning. GAIL is a model-free, online
imitation learning method, which can be well generalized to high-dimensional
and complex environments. GAIL ignores the process of seeking reward functions
in IRL, and directly extracts a policy from expert demonstrations.

By combining imitation learning with GANs, GAIL transforms the imita-
tion learning problem into a matching problem of the state-action distributions
between expert demonstrations and generated trajectories. Where the optimum
is achieved when the distance between these two distributions is minimized as
measured by Jensen-Shannon divergence (JSD). The formal objective of GAIL
is denoted as

min
πθ

max
Dω

Eπθ
[log(Dω(s, a))] + EπE

[log(1 − Dω(s, a))] − λH(πθ), (1)

where πθ is a policy network parameterized by θ, also known as the generator,
which interacts with the environment to generate trajectories. Dω is a discrim-
inator network parameterized by ω, which is used to discriminate state-action
pairs come from the expert trajectories or the generated trajectories. H(πθ) is
the causal entropy of the policy πθ. Optimization over the GAIL objective is
performed by alternating a gradient step to increase Eq. 1 w.r.t. ω, and a trust
region policy optimization (TRPO) [14] step to decrease Eq. 1 w.r.t. θ.
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2.3 Multi-modal Imitation Learning

Recently, some works have emerged to solve multi-modal imitation learning
tasks, and these works can be roughly divided into two categories. One is to
learn multi-modal policies from expert demonstrations without modal labels:
Info-GAIL [19] distinguishes modal information in an unsupervised manner by
maximizing the mutual information between state-action pairs and latent vari-
ables; Burn-InfoGAIL [18] uses maximum mutual information from the perspec-
tive of Bayesian inference. However, such methods lack modal label information
in expert demonstrations, and they may produce unexplainable behaviors. The
other is to learn multi-modal policies from expert demonstrations with modal
labels: VAE-GAIL [20] uses a variational autoencoder to infer modal labels to
learn multi-modal policies; AC-GAIL adds an auxiliary classifier. This auxiliary
classifier classifies the state-action pairs according to modalities, and is used to
guide the generator to perform correct actions in each modality.

3 Twin Auxiliary Classifiers GAIL

In this section, We first explain the problems in AC-GAIL from the perspective
of distribution matching. Based on our understanding of this problem, we pro-
pose TAC-GAIL to further improve the performance of multi-modal imitation
learning.

3.1 Insight of AC-GAIL

In order to learn from the multi-modal expert demonstrations, AC-GAIL adds
an auxiliary classifier to the framework of GAIL. The auxiliary classifier is used
to classify the state-action pairs according to modalities, and its output is the
probability that each state-action pair belongs to the corresponding modal label.
This classifier optimizes itself based on the cross entropy between the distribution
of the given data P (c|s, a) and the distribution specified by the auxiliary classifier
Q(c|s, a). Assuming that there are K modalities, C = {c1, c2, ......, cK}, AC-
GAIL defines the prior distribution of these modalities as c ∼ p(c), and p(c1) =
p(c2) = ...... = p(cK). For simplicity, we denote the samples generated by policy
πθ in modality c as Ec,πθ

[·], and the samples generated by policy πE in modality
c as Ec,πE

[·]. The objective function of AC-GAIL(For brevity, we omit the policy
entropy term −λHH(πθ)) is as follows:

LAC−GAIL = min
πθ,Cψ

max
Dω

Ec∼p(c),πθ
[log(Dω(s, a))] + Ec∼p(c),πE

[log(1 − Dω(s, a))]︸ ︷︷ ︸
1

−λ1Ec∼p(c),πE
[log Cψ(c|s, a)]︸ ︷︷ ︸
2

−λ1Ec∼p(c),πθ
[log Cψ(c|s, a)]︸ ︷︷ ︸
3

.

(2)
In the above formula, λ1 is a hyperparameter used to balance the origi-
nal GAIL loss and the auxiliary classifier classification loss. Further, we can
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divide the objective function into 3 parts. The first part is the JSD between
the expert trajectories and the generated trajectories. The second part is the
cross entropy between the distribution PπE

(c|s, a) of expert demonstrations
and the distribution QπE

(c|s, a) specified by auxiliary classifier. We can intu-
itively think of Part 2 as minimizing the Kullback-Leibler (KL) divergence
between PπE

(c|s, a) and QπE
(c|s, a). If we add a negative conditional entropy

−HπE
(c|s, a) = Ec∼p(c),πE

[log PπE
(c|s, a)] to the second part of the formula, we

can get:

Ec∼p(c),πE
[log PπE

(c|s, a)] − Ec∼p(c),πE
[log Cψ(c|s, a)]

=Ec∼p(c),πE
[log PπE

(c|s, a)] − Ec∼p(c),πE
[log QπE

(c|s, a)]

=Ec∼p(c),πE
[log

PπE
(c|s, a)

QπE
(c|s, a)

]

=KL(PπE
(c|s, a)||QπE

(c|s, a)).

(3)

Minimizing the second part of the equation is equivalent to minimizing the KL
divergence between PπE

(c|s, a) and QπE
(c|s, a), because −HπE

(c|s, a) is a con-
stant. The third part is the cross entropy between the distribution Pπθ

(c|s, a) of
the generated trajectory and the distribution Qπθ

(c|s, a) specified by auxiliary
classifier. Similarly, after adding negative conditional entropy −Hπθ

(c|s, a) =
Ec∼p(c),πθ

[log Pπθ
(c|s, a)] to the third part of the formula, we get the following

results:
Ec∼p(c),πθ

[log Pπθ
(c|s, a)] − Ec∼p(c),πθ

[log Cψ(c|s, a)]
=KL(Pπθ

(c|s, a)||Qπθ
(c|s, a)).

(4)

When minimizing the third part of the equation w.r.t. the classifier C, nega-
tive conditional entropy −Hπθ

(c|s, a) can be regarded as a constant term, and
therefore is equivalent to minimizing the KL divergence between Pπθ

(c|s, a) and
Qπθ

(c|s, a). However, when minimizing the third part of the equation w.r.t. the
generator G, the conditional entropy −Hπθ

(c|s, a) can no longer be regarded
as a constant term, because Pπθ

(c|s, a) is the conditional distribution deter-
mined by the generator G. Therefore, in the process of optimizing G, AC-GAIL
ignores the conditional entropy −Hπθ

(c|s, a) and only minimizes the third part
of the equation, so it cannot minimize the KL divergence between Pπθ

(c|s, a)
and Qπθ

(c|s, a).

3.2 Twin Auxiliary Classifiers GAIL (TAC-GAIL)

Based on the analysis in the previous section, we may think of adding the missing
−Hπθ

(c|s, a) to the objective function to solve the problem. However, we cannot
directly estimate −Hπθ

(c|s, a) because we do not know the value of Pπθ
(c|s, a).

Therefore, we deal with this problem by adding a new adversarial part to the
minimax game.

Its main idea is to introduce an additional auxiliary classifier Cφ to classify
the generated data. Similar to GAIL, there is an adversarial between the gener-
ator and Cφ. Next, we will explain the relationship between adding classifier Cφ

and minimizing −Hπθ
(c|s, a).
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Proposition 1. Minimizing −Hπθ
(c|s, a) is equivalent to minimizing the

following two indicators: (1) The mutual information between data and
modal labels; (2) The JSD between conditional distributions {P (s, a|c =
1), ..., P (s, a|c = K)}.
Proof. The first is because the entropy of the modal label is a constant. The
second one is as follows:

Iπθ
(c, (s, a)) =H(c) − Hπθ

(c|s, a) = Hπθ
(s, a) − Hπθ

(s, a|c)

= − 1
K

K∑
k=1

Ec=k,πθ
[log P (s, a)] +

1
K

K∑
k=1

Ec=k,πθ
[log P (s, a|c = k)]

=
1
K

K∑
k=1

KL(P (s, a|c = k)||P (s, a))

=JSD(P (s, a|c = 1), ......, P (s, a|c = K)).
(5)

Based on the relationship between −Hπθ
(c|s, a) and the aforementioned JSD,

we further expand the minimax game in AC-GAIL. We add another auxiliary
classifier Cφ to the AC-GAIL framework to minimize the JSD, and Cφ is used
to classify the generated data. We get the following minimax game:

LCφ
= min

πθ

max
Cφ

Ec∼p(c),πθ
[log(Cφ(c|s, a))]. (6)

Theorem 3 can illustrate that the minimax game can effectively minimize the
JSD between {P (s, a|c = 1), ......, P (s, a|c = K)}.

Proposition 2. For a fixed generator G, the optimal classifier Cφ is

Cφ((s, a), c = k) =
P (s, a|c = k)∑K

k′=1 P (s, a|c = k′)
. (7)

The proof of Proposition 2 is in the appendix.

Theorem 3. The global mininum of the minimax game LCφ
is achieved if and

only if P (s, a|c = 1) = P (s, a|c = 2) = ... = P (s, a|c = K).

Proof. If we add log K to the minimax game, we can obtain:

min
πθ

max
Cφ

Ec∼p(c),πθ
[log(Cφ(c|s, a))] + log K

=
1
K

K∑
k=1

Ec=k,πθ
[log

P (s, a|c)∑K
c′=1 P (s, a|c′)

] + log K

=
1
K

K∑
k=1

Ec=k,πθ
[log

P (s, a|c)
1
K

∑K
c′=1 P (s, a|c′)

]

=
1
K

K∑
c=1

KL(P (s, a|c)|| 1
K

K∑
c′=1

P (s, a|c′))

=JSD(P (s, a|c = 1), ..., P (s, a|c = K)).

(8)
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Then we get:

LCφ
= − log K + JSD(P (s, a|c = 1), ......, P (s, a|c = K)). (9)

Because the JSD between multiple distributions is non-negative, and is zero when
multiple distributions are the same. When LCφ

is equal to − log K, this minimax
game reaches the global minimum, at this point P (s, a|c = 1) = P (s, a|c = 2) =
...... = P (s, a|c = K).

Combining the objective function of AC-GAIL and LCφ
, we get the objective

function of TAC-GAIL:

LTAC−GAIL = LAC−GAIL + λ2LCφ
. (10)

Because of other terms in the objective function of TAC-GAIL, LCφ
cannot

reach its global minimum. Although TAC-GAIL cannot completely remove the
influence of missing conditional entropy, it can reduce the difference between
the generated trajectories and the expert trajectories, and further improve the
performance of the learned multi-modal policy. The optimization procedure of
TAC-GAIL is shown in Algorithm 1.

Algorithm 1: Twin Auxiliary Classifier GAIL
input : Expert trajectories τE ∼ πE , initial policy parameters θ0,

discriminator parameters ω0, and classifier parameters ψ0, φ0.
output: Learned policy πθ.

1 for i = 0, 1, 2, ... do
2 Sample a modal-label ci ∼ p(c);
3 Sample trajectories τi ∼ πθi(ci);
4 Sample state-action pairs Xi ∼ τi and XE ∼ τE with same batch size;
5 Update the discriminator parameters from ωi to ωi+1 with the gradient:

Δωi = EXi [∇ωi log(Dωi(s, a))] + EXE [∇ωi log(1 − Dωi(s, a))]
6 Update the discriminator parameters from ψi to ψi+1 with the gradient:

Δψi = EXi [∇ψi log Cψi(c|s, a)] + EXE [∇ψi log Cψi(c|s, a)]
7 Update the discriminator parameters from φi to φi+1 with the gradient:

Δφi = EXi [∇φi log Cφi(c|s, a)]
8 Take a policy step from θi to θi+1, using the TRPO update rule with

the following objective: EXi

[
log Dωi+1(s, a)

]
+

λ1EXi

[
log Cψi+1(c|s, a)

] − λ2EXi

[
log Cφi+1(c|s, a)

]

9 end

4 Experiments

In this section, we first introduce the experimental environment, then give the
experimental steps and parameter settings, and finally compare the experimental
results of various imitation learning methods.
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4.1 Experimental Environments

We evaluate TAC-GAIL in a series of challenging high-dimensional simulated
robotic tasks in MuJoCo. (1) Hopper is a simulation of single-legged robot jump-
ing. Its state space size is 11, and its action space size is 3, both of which are
continuous spaces; (2) HalfCheetah is a simulation of a two-legged cheetah run-
ning. Its state space size is 17 and its action space size is 6, all of which are
continuous spaces. (3) Walker2d is a simulation of a two-legged robot walking.
Its state space size is 17, and its action space size is 6, both of which are con-
tinuous spaces. The goal of these tasks is to move the robot forward as fast as
possible.

4.2 Experimental Setup

To get expert demonstrations, we first use the true reward function defined
in OpenAI gym to obtain expert policies of different modalities through RL
method, and then use these policies to generate expert demonstrations of differ-
ent modalities. We get 500 expert demonstration trajectories for each modality,
and each trajectory contains 1000 state-action pairs. The detailed information
of the experimental environments and the expert demonstrations are shown in
Table 1.

Table 1. Information of the experimental environment and expert demonstrations.

Task State space size Action space size Expert label 0 Expert label 1

Hopper-v2 11 3 3351 2107

HalfCheetah-v2 17 6 4184 2521

Walker2d-v2 17 6 4955 3463

In the framework of TAC-GAIL, it mainly includes the following parts: gen-
erator, discriminator and two auxiliary classifiers, all of which are implemented
by multi-layer neural networks. The network structure is similar to that of AC-
GAIL, with two hidden layers, each containing 100 units. We update the gen-
erator through TRPO algorithm, using Adam [12] to update the discriminator
and two auxiliary classifiers. We set hyperparameters λ1 = 0.75 and λ2 = 0.5.

4.3 Results

In order to satisfy the demand of significance test, we set 4 random seeds for
each task. In Fig. 1, we show the learning curves of AC-GAIL, TAC-GAIL and
InfoGAIL over 6,000 iterations in each task.

Expert label 0 and expert label 1 represent two different modal expert demon-
strations. The goal is to learn a policy with these two modalities. In Hopper and
HalfCheetah, AC-GAIL and TAC-GAIL can match the expert demonstrations
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Fig. 1. The learning curves of AC-GAIL (left), TAC-GAIL (middle) and InfoGAIL
(right).

in each modality. In Walker, neither AC-GAIL nor TAC-GAIL can match the
expert demonstrations accurately. It is worth noting that in these three tasks,
TAC-GAIL can match the expert demonstrations more accurately, which shows
that the learned policy is closer to the expert policy. At the same time, the pol-
icy learned by TAC-GAIL is more stable than the policy learned by AC-GAIL.
However, InfoGAIL cannot match the expert demonstrations in every task.

We use the expected error rate of the average return between the generated
trajectories and the expert trajectories as the criterion. The calculation of the
expected error rate is as follows:

Err =
K∑

c=1

p(c)
|r̄πθ

(c) − r̄πE
(c)|

r̄πE
(c)

, (11)

where r̄πθ
(c) represents the average return of trajectories generated by policy

πθ in modality c. For the average return of generated trajectories, we use the
average of 5000–6000 iterations in the learning curve. The average error rates of
TAC-GAIL and AC-GAIL in each task are shown in Table 2.
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Table 2. Average error rates of TAC-GAIL and AC-GAIL.

Task

Error rate algorithm
AC-GAIL TAC-GAIL InfoGAIL

Hopper-v2 9.52% 5.96% 26.86%

HalfCheetah-v2 10.56% 2.62% 17.37%

Walker2d-v2 11.35% 9.68% 15.44%

5 Conclusion

In this paper, we first theoretically analyze that the absence of conditional
entropy in the objective function of AC-GAIL will affect the performance of the
learned multi-modal policy. Further, we propose TAC-GAIL to deal with this
problem. Its main idea is to introduce an additional auxiliary classifier in the
framework of AC-GAIL to minimize the impact of missing conditional entropy.
Experiments on the MuJoCo tasks also show that our method can effectively
improve the performance of multi-modal imitation learning.

A Appendix

A.1 Proof of Proposition 2

Proof. For a fixed G, Eq. 6 reduces to maximize the value function V (G,Cφ)
w.r.t. Cφ(s, a|c = 1), ..., Cφ(s, a|c = K):

{C∗
φ(s, a|c = 1), ..., C∗

φ(s, a|c = K)}

= arg max
Cφ(s,a|c=1),...,Cφ(s,a|c=K)

K∑
k=1

Q(s, a|c = k) log(Cφ(s, a|c = k))

s.t.
K∑

k=1

Cφ(s, a|c = k) = 1,

(12)

where the constraint is because Cφ is forced to have probability outputs that
sum to 1. By applying Lagrange multipliers, we obtain the following problem:

{C∗
φ(s, a|c = 1), ..., C∗

φ(s, a|c = K)}

= arg max
Cφ(s,a|c=1),...,Cφ(s,a|c=K)

K∑
k=1

Q(s, a|c = k) log(Cφ(s, a|c = k))

+ λ(
K∑

k=1

Cφ(s, a|c = k) − 1).

(13)

Setting the derivative of Eq. 14 w.r.t. Cφ(s, a|c = k) to zeros, we obtain

C∗
φ(s, a|c = k) = −Q(s, a|c = k)

λ
. (14)
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We get λ by substituting Eq. 15 into the constraint, λ = −
∑K

k=1 Q(s, a|c = k).
Then we obtain the optimal solution

C∗
φ((s, a), c = k) =

P (s, a|c = k)∑K
k′=1 P (s, a|c = k′)

(15)
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Abstract. The ever increasing development of P2P lending accumu-
lates tremendous transaction data, a central question on these platforms
is how to align the right products with the right investors. Most of the
existing methods adapt some well-studied strategies for recommenda-
tion, we argue that an inherent drawback of such methods is that, the
unique characteristics in the P2P lending scenario, such as the profile of
investor, is not fully investigated. As such, the resultant recommendation
may easily lead to suboptimal performance.

In this work, we propose to integrate the investor’s profile into the
recommendation process. We develop a new recommendation framework
enhanced Hybrid graph Ranking using Investor Profile (HRIP), which
exploits a hybrid random walk-based recommendation via investor’s pro-
file from both the social and psychology aspects. This leads to the expres-
sive modeling of representation of investor in investor-product hybrid
graph, which can effectively deal with cold start users. Comprehensive
analysis verifies the importance of the representation of investor, justi-
fying the rationality and effectiveness of HRIP.

Keywords: P2P lending · Recommendation · Investor profile · Hybrid
graph

1 Introduction

P2P lending is the practice of lending money to individuals or businesses through
online services that match investors with borrowers. Online lending has experi-
enced significant growth since the first P2P lending platform (i.e., Zopa1) was
established in 2005. It is now an essential financing method for individual bor-
rower to reach individual investor. As a fast-growing financial form, the gradual
1 https://www.zopa.com.
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popularization of P2P lending in the industry has led to the accumulation of
massive transaction data. For example, LendingClub, the world’s largest P2P
lending platform, can offer a plethora of historical data with over $59.2 billion
by 03/31/2020 [1].

The research topic on the platform covers a variety of topics from the fields
of economics, information technology and social sciences to investigate the rela-
tionship between lenders and borrowers. Among them, some researches have
been devoted for guiding lenders to benefit from the P2P lending [2]. A rec-
ommender system is one solution that can alleviate the information overload
problem by providing investor with personalized information [3]. Some recom-
mendation strategies [4] have been presented to predict investors’ interest by uti-
lizing the available data information, thus helping investors find wanted projects
as early as possible. In social lending context, products recommendation can help
investors to find products that interest them, by aligning the right products with
the right investors. However, as compared with traditional product recommenda-
tion, there are several challenges in designing recommender systems for products
on social lending platforms.

On one hand, many factors may affect investors’ funding decisions, the rec-
ommendation algorithm cannot simply rely on straightforward features that are
directly available from the projects. On the other hand, product descriptions and
investor descriptions must be analyzed so that investors’ profile can be estab-
lished for recommendation to address data sparsity and cold start problems.

To this end, we present a hybrid random walk-based recommendation app-
roach to identify the potential interesting products for investor, which is capable
of addressing data sparsity and cold start problem in product project recommen-
dation. Specifically, we name our method as Hybrid graph Ranking using Investor
Profile, i.e., HRIP, for this task. In experiments, we systematically evaluate our
method on real-world dataset, and the experimental results demonstrate the
effectiveness and robustness of HRIP. The contributions of this paper are sum-
marized as follows:

– Both Profile modeling methods for product and investor are presented. Prod-
uct profile is modelled via the risk and return, while the investor’s profile
is established not only from the perspective of his social and psychological
state, but also his purchase history.

– A heterogeneous graph is constructed based on the interactions between
investors and products, as well as the similarity between investors, based
on which the hybrid graph ranking is performed.

– We conduct extensive experiments on real-world datasets. The experimental
results clearly demonstrate the effectiveness and robustness of our approach.

The rest of the paper is organized as follows. Section 2 reviews the related
works that are most relevant with our work. Section 3 describes the details of our
proposed HRIP method. Section 4 designs experiments to evaluate our approach.
Finally, Sect. 5 concludes the paper and suggests future research directions.



702 Y. Liu et al.

For the ease of description, we define terms that are interchangeably used
throughout the literature and this paper – (a) we refer to a loan, a item or an
investment as a product, (b) an investor is synonymous with a lender or a user.

2 Related Work

We review existing works on graph-based approaches for top-n recommendation,
and recommendation systems in P2P lending, which are the most relevant works
with ours.

2.1 Graph-Based Approaches for Top-N Recommendation

Top-n recommendation algorithms provide ranked lists of items tailored to the
particular tastes of the users, as depicted by their past interactions within the
system. There are a lot of graph-based approaches used for top-n recommenda-
tion that have been shown to have good recommended quality. The graph-based
approaches perform a random walk on the user-item graph into one vector that
represent user’s preference for the item.

In particular, He et al. [5] developed user-item-aspect tripartite graph and
used smoothness and fitting constraints on the graph for recommendation.
Eksombatchai et al. [6] introduced the user-specific multi-pin transition prob-
ability on the ‘pin-board’ graph for recommendation. Nikolakopoulos et al. [7]
proposed RecWalk, adding the item-item relationship to basic user-item bipar-
tite graph.

Despite great success, we argue that these top-n recommendation methods
are insufficient to capture the unique characteristics of the P2P lending, since
these methods are general method.

2.2 Recommendation System in P2P Lending

With the burgeoning growth of P2P lending, a great deal of researches has
been proposed to guide investors to recommend from the P2P lending. Here we
highlight the differences with HRIP.

Zhao et al. [4] studied the project recommendation problem in P2P lend-
ing by managing risk through integrating portfolio theory into a personalized
recommendation technique. Later, Zhao et al. [8] studied the loan recommenda-
tion problem in P2P projects from a multi-objective perspective. However, their
work didn’t construct product and investor profile in a comprehensive manner.
In particular, they did not consider the social and psychological information of
investors and failed to perform recommendation on a graph. Zhang et al. [9]
studied the investor recommendation problem in P2P lending via a hybrid ran-
dom walk approach, combining both collaborative filtering and content-based
filtering. Although this work performed recommendation on the graph, it totally
ignored investors’ profile.
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Fig. 1. An illustration of the investor-project hybrid graph construction process. The
node u1 is the target investor to provide recommendations for.

3 Hybrid Graph Ranking Method

In this section, we introduce the detail of the proposed HRIP model. An invest-
ment bipartite graph G = (U, V,E) models the relationship between investors
U and investment products V , associated with edges E connecting investors
and their invested products in the past. Figure 1 illustrates the hybrid graph
construction process. The investor of interest for recommendation is u1, labeled
with the red color. The first part shows the investor-project bipartite graph. The
red edge is constructed if there is a purchase interaction between the investor
and the product. For example, investor u1 has invested project v1, an edge is
built between u1 and v1. Z11 represents the amount of money u1 has invested
in v1. And the weight on the edge, denoted as τij , is the proportion of money
ui invested in vj divided by the total money ui has already invested, such as

τ11 = Z11

/∑
j Z1j . The second part shows the investor similarity model that

denoting the investor-investor connections. The similarity between investors is
quantified on investor profile as discussed in Sect. 3.2. The third part displays
the hybrid graph which is composed of the first two parts.

3.1 Product Profile

In this subsection, we show the way of assessing products’ profiles on multiple
characteristics. According to the previous study [10], there are three most impor-
tant factors that investors take into account when deciding to invest a product:
Interest Rate, Non-Default Probability, as well as Fully-Funded Probability. A
natural idea is that products’ profile can be portrayed with these three aspects.

Interest Rate (denoted as T v
j ). In P2P lending, borrower usually sets the prod-

uct repayment rate (expressed as Rev
j ) during the auction. The T v

j of the product
can be replaced as Rev

j , since Rev
j are clearly given before they are released in

P2P lending.
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Non-Default Probability (denoted as Dv
j ). The Dv

j refers to the possibility
that the borrower can repay the principal or interest of the project. The following
method is considered to estimate Dv

j , since we don’t have relevant attributes to
portray it directly.

We summarize two kinds of features: the products’ features (Amount,
LendRate, Category etc.) and the borrowers’ features (Credit, DebtToIncome
etc.). With training historical data, we can estimate Dv

j of products in V based
on product features using logistic regression model. Specifically, for any vj ∈ V ,
we denote its features as vj = (1; vj,1; vj,2; . . . ; vj,d), then the Dv

j of vj can be
modeled as:

Dv
j = exp(−δT · vj)

/
(1 + exp(−δT · vj)) (1)

where δ = (δ0, δ1, δ2, . . . , δd) are the coefficients that to be learned. ∀vj ∈ V , if
it is paid in time by the borrower, the label of vj on this object yj = 0, else
label yj = 1. Given all these training data of products V , the logistic regression
model learns the weight of δ by maximum likelihood estimation.

Fully-Funded Probability (denoted as F v
j ). F v

j suggests an estimate of the
probability that the product will receive sufficient bids during the auction period.
According to the ‘all -or -nothing ’ trading rule, the transaction will only be valid
if the borrowed product receives sufficient bids during the auction period. There-
fore, F v

j is another important aspect of evaluating the product. Similar to Dv
j ,

we can get F v
j through logistic regression model.

In summary, product vj ’s profile can be represented as a three-element vector
P v

j =
[
T v

j ;Dv
j ;F v

j

]
, where the first term is the interest rate, the second term

is the non-default probability, together with the third term is the fully-funded
probability.

3.2 Investor Profile

In this subsection, we show the way of assessing the profiles. It is generally
believed that social and psychological attributes of investors will affect the
investor’s investment decision. Besides, the profile of the investor can also be
characterized via products purchased history of the investor.

Society and Psychology-Based. Shyng et al. [11] classify personal investment
as either conservative, moderate or aggressive. They established the main cate-
gories for each one and highlight the principal factors related to these types of
investment, i.e. social and psychological factors. Social attributes of the investor
include gender, incomes and marital status etc. Apart from that, psychologi-
cal aspects include self-esteem, emotion during risk and so on. We adopt the
same way [12] for quantifying investor’s social and psychological attributes into
a two-dimensional matrix. Put is another way, we construct user’s profile as a
two-element vector [socu

i ; psyu
i ].

Historical Purchase-Based. Besides social and psychological attributes,
investor’s investment preference P u

i = [Tu
i ;Du

i ;Fu
i ] can be characterized

through profile of products that investors have invested in history, i.e. P u
i . Gen-

erally speaking, the preference terms of P u
i can be defined as the weighted
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average of the corresponding profile terms of the investor has invested: Tu
i =∑

vj∈V Ui
τijT

v
j , Du

i =
∑

vj∈V Ui
τijD

v
j , Fu

i =
∑

vj∈V Ui
τijF

v
j , where τij is the

ratio of ui’s investment in vj , V Ui is the set of products that investor ui has
invested.

Based on these two aspects, a natural idea is that an investor’s profile can
be portrayed with the above two parts, i.e. P u

i = [Tu
i ;Du

i ;Fu
i ; socu

i ; psyu
i ].

3.3 Hybrid Graph Ranking Using Investor Profile

In this subsection, we introduce how HRIP performs the random walking pro-
cess. Since the recommendations of potential products are for all investors, i.e.
ui ∈ U , HRIP starts from a target investor ui at each time. For each investor
ui, HRIP works as follows:

At any time, HRIP may be at either an investor node ui or a product node
vj . For any node position, HRIP has two options for the next move:

– with probability β (0 < β < 1), HRIP restarts from the starting investor node
ui;

– with probability 1 − β, HRIP continues walking.

If HRIP is at an investor node ui. HRIP will choose to move to investors
(blue lines) or products (red lines). In HRIP, the line selection follows a ran-
dom variable R with a Bernoulli distribution: R = 1 means HRIP will choose
blue lines, whereas R = 0 means HRIP will choose red lines. As is known dif-
ferent investor nodes should have different Bernoulli distributions which might
be mainly influenced by funds held by investors. Intuitively, if an investor has
few funds, the probability of moving to an investor should be higher since there
are only less investor-product line options; on the contrary, for a lot of funds,
it should have a higher probability of moving to a product. Consequently, the
line selection probability of HRIP at an investor node ui can be calculated as
follows:

p(R = 0 |ui ) = α(ui, ω) = 2e−ωMi
/
1 + e−ωMi (2)

p(R = 1 |ui ) = 1 − α(ui, ω) = 1 − e−ωMi
/
1 + e−ωMi (3)

where Mi represents funds held by ui and ω ∈ R
+ is a parameter that can be

used to adjust the value of α(.). When HRIP is at a node ui, it will (1) move to
other investors along the blue lines with probability p (R = 1); (2) move to other
products which has invested in vj along the red lines with probability p (R = 0).

If HRIP selects the blue lines when R = 1, the probability of moving from
investor node ui to another specific investor node uk is calculated based on their
similarity:

p(uk |ui , R = 1) = simi,k

/∑
ut∈U

simi,t (4)

where simi,k is the consine similarity between ui and uk.
By contrast, if HRIP selects a particular product vj when R = 0, the prob-

ability of moving from ui to vj can be calculated as follows:

p(vj |ui ) = Zi,j

/∑
vk∈V Ui

Zi,k (5)
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where Zi,j is the financial amount that investor ui invests in product vj .
If HRIP is at a product node vj . HRIP will move to the investors that

ui invest in the past. The probability of selecting a particular investor ui from
product vj is defined as similar to the move from investor node to product node:

p(ui |vj ) = Zi,j

/∑
uk∈UVj

Zk,j (6)

where UVj represents investors who invested in the product vj .
Then the probability of HRIP visiting node ui or node vj can be deduced:

p(t+1)(ui) =
∑

uk∈U

p(ui

∣∣∣uk, R = 1)p(t)(uk)p(R = 1 |uk) +
∑

vj∈V Ui

p(ui

∣∣∣vj)p(t)(vj) (7)

p(t+1)(vj) =
∑

ui∈UVj

p(vj

∣∣∣ui, R = 0)p(t)(ui) p(R = 0 |ui) (8)

The above formulas can be transformed into vector-matrix forms:

p(t+1)
u = S(I − A)p(t)

u + ZT
V U p(t)

v (9)

p(t+1)
v = ZT

U V Ap(t)
u (10)

where p
(t)

u =
[
p
(t)
u1 ; p(t)u2 ; . . . ; p(t)u|U|

]
and p

(t)

v =
[
p
(t)
v1 ; p(t)v2 ; . . . ; p(t)v|V |

]
represents the

probability vector of visiting investor and product nodes at time t respectively.
ZU V is a |U | × |V | matrix, (ZU V )i,j = p(vj |ui, R = 0); ZV U is a |V | × |U |
matrix, (ZV U )j,i = p(ui|vj); In the same form, S is a |U | × |U | matrix with
(S)i,k = p(uk|ui, R = 1). A is a |U | × |U | diagonal matrix with Ai,i = α(ui, ω).
Equations.(9), (10) provide the major concepts by which HRIP approximates the
result. Then we can implement the random walk process by rewriting Eqs.(9),
(10), i.e.,

p(t+1)
u = (1 − β)[S(I − A)p(t)

u + F T
V U p(t)

v ] + βp(0)
u (11)

p(t+1)
v = (1 − β)F T

U V Ap(t)
u + βp(0)

v (12)

HRIP performs random walks by Eqs.(11), (12), when the iteration is over
and pu reaches a stationary distribution, the stationary results p∗

u and p∗
v can

be calculated. Let matrices X and Y be defined as follows:

X = (I − A) (13)

Y = F T
U V F T

V U A (14)

we can obtain p∗
u and p∗

v by p
(t+1)
u = p

(t)
u = p

(t−1)
u = p∗

u as follows:

p∗
u = βΨp0

u (15)

p∗
v = β(1 − β)F T

uvAΨp0
u + βp0

v (16)

where Ψ = [I − (I − A)(X + Y )]−1.
Thus, the above approach can rank investors by the vector p∗

u . Top-n ranked
products have the highest probabilities of investing and will be recommended.
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4 Experiments

In this section, we design experiments on real-world dataset to evaluate our
approach. We aim to answer the following research questions:

– RQ1: How do different parameters settings (e.g.., β parameter, ω parameter)
affect HRIP?

– RQ2: How does HRIP perform as compared with state-of-the-art recommen-
dation algorithm in P2P Lending?

– RQ3: How to solve the cold start problem?

Table 1. Data Statistics of the Prosper Dataset

#products #investors #records #TrR #TeR

19,077 34,210 2,616,877 2,093,501 523,376

4.1 Experiments Setting

To evaluate the effectiveness of HRIP, we perform experiments on real-world
dataset Prosper. We summarize the data statistics in Table 1. We choose Prosper,
because Prosper has been in operation for more than 10 years, and hence, can
offer a plethora of historical data that is necessary for training and testing. Other
researchers who study P2P lending also use the same dataset from Propser [5],
which makes it possible for us to compare our work with the current state-of-
the-art techniques. We mainly use three tables of this data for our experiments.

Evaluation Metrics. For each investor in the test set, we treat all the products
that the investor has not interacted with as the negative products. Then each
method outputs the investor’s preference scores over all the products, except
the positive ones used in the training set. To evaluate the effectiveness of top-n
recommendation and preference ranking, we adopt three widely-used evaluation
protocols [13]: precision@n, recall@n and F1-score@n. By default, we set n=20.
We report the average metrics for all investors in the test set.

Baselines. To demonstrate the effectiveness, first, the probability matrix is
filled by calculating the percentage of the invest amount, then we compare our
proposed HRIP with the following methods:

HRIP 1, HRIP 2 and HRIP 3 are variant methods of HRIP, where HRIP 1
only performs random walk on the bipartite investment graph, and it not con-
siders similarity between investors; HRIP 2 executes random walk on the hybrid
graph, but it only considers social and psychological attributes of the investor;
HRIP 3 runs random walk on the hybrid graph, but it only considers historical
purchase relationship between investor and product.
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RecWalk [7] added the item-item relationship to the basic user-item bipar-
tite graph. Pixie [6] introduced the user-specific multi-pin transition probability
on the ‘pin-board’ graph for recommendation. And RWH [9] is a hybrid recom-
mendation framework tailored for loan recommendation with both collaborative
filtering and content-based filtering. This method adds loan-loan routes into a
loan-lender ranking framework.

(a) The recall effect under different ω as
parameter β change

(b) The precision effect under different ω
as parameter β change

Fig. 2. The effect of parameters on experimental results

4.2 Parameter Affect (RQ1)

The HRIP method contains two important parameters, β and ω. In our app-
roach, the β control restart probability to determine HRIP coming back to the
starting node according to probability. And variable R˜Bernoulli(α(vi, ω)) is
introduced to determine whether HRIP should move to another investor node
or a product node from the current investor node. This section discusses how
to set these two important parameters in the experiment. The values of the
parameters β and ω are estimated by the influence on the algorithm results.

Figure 2 plots the precision and recall of experimental results under different
β and ω respectively on the dataset1. Specifically, Fig. 2(a) demonstrate the
recall experimental result under different ω as parameter β change with n = 20,
whereas Fig. 2(b) shows the precision experimental result under different ω as
parameter β change with n = 20. It is clear that the performance of the algorithm
increases first and then decays as β increases, and performance of the algorithm
is optimal around β = 0.15. Also, when ω increases from 3 to 15, HRIP exhibits
obvious improvements in both precision and recall. When ω continues to increase
to 20, the performance of HRIP get steady state. For the best performance, we
set ω = 15 in our experiments.
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Table 2. Overall Performance Comparison

n 5 10 15 20 30 40 50

Precision HRIP 0.231 0.197 0.161 0.134 0.109 0.101 0.097

HRIP 1 0.185 0.157 0.134 0.117 0.094 0.085 0.083

HRIP 2 0.203 0.176 0.143 0.121 0.094 0.086 0.085

HRIP 3 0.228 0.189 0.150 0.124 0.096 0.094 0.092

RecWalk 0.192 0.178 0.149 0.127 0.101 0.096 0.095

RWH 0.227 0.187 0.148 0.122 0.094 0.092 0.091

Pixie 0.083 0.078 0.069 0.052 0.042 0.036 0.034

Recall HRIP 0.041 0.081 0.111 0.139 0.155 0.161 0.164

HRIP 1 0.032 0.049 0.065 0.082 0.110 0.132 0.138

HRIP 2 0.038 0.054 0.074 0.084 0.112 0.134 0.143

HRIP 3 0.039 0.060 0.076 0.084 0.121 0.141 0.147

RecWalk 0.040 0.079 0.083 0.115 0.143 0.150 0.151

RWH 0.038 0.059 0.074 0.082 0.119 0.140 0.143

Pixie 0.034 0.034 0.038 0.042 0.053 0.063 0.067

4.3 Performance Comparison (RQ2)

In this subsection, we mainly report the experimental results from the aspects of
effectiveness. Table 2 reports the performance comparison results. We have the
following observations:

The precision of the all methods decreases as top-n increases while the recall
of all methods increases with the increasement of top-n.

Pixie and HRIP 1 achieves the poorest performance across all cases. This
indicates that the sparsity of the dataset is insufficient for Pixie to capture the
complex relations between investors and products, further limiting its perfor-
mance. and RWH consistently outperform Pixie and HRIP 1 across all cases,
demonstrating RecWalk and RWH have advantages over Pixie and HRIP 1 by
merging loan’s profile into interactive relationship between lenders and loans.
Moreover, RecWalk obtains slightly better performance than RWH. The reason
might be that RecWalk defines item-item relationship in a way to enforce locality
in the relations between the items, which is also easy to compute.

What’s more, RecWalk and RWH achieves the better performance than
HRIP 2. The reason might be that there are less social and psychological
attribute data in the dataset. Also, HRIP 3 consistently outperforms RecWalk
and RWH in the most cases, demonstrating the importance of the characteristics
of P2P lending.

Compared to other algorithms, the performance of HRIP incorporating P2P
lending characteristics can improve the recommendation performance to some
extent. Besides, HRIP performs better than HRIP 1, HRIP 2 and HRIP 3. The
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reason might be that HRIP not only exploits the advantages of each of them,
but also combines advantages of them.

4.4 Cold Start Affect (RQ3)

Cold Start is a common problem of recommender systems that new users or
items have not yet gathered sufficient information to recommend or be recom-
mended [14]. Here we focus on these investors and examine the performances of
our model on cold-start problem of new investors.

Indeed, new investor has no interactions to be pretrained and recommender
systems cannot predict investor preference. That makes many recommendation
methods cannot work, especially profile-based method. However, for the HRIP,
we can use social and psychological attributes of investors to predict investor
preference. Here we test the recommendation results on 10 times from the begin-
ning of the 0 in the interactions of the target new investor.

Fig. 3. Recommendation performances of new investor cold-start

The results are shown as Fig. 3. In all cases, HRIP and its variant methods
perform better than Recwalk and Pixie. At the beginning of the investor interac-
tions, HRIP and HRIP 2 can get relatively good results because they can infer
investor preferences based on the social and psychological attributes of investors.
And with the increase of investors’ investment times, HRIP 2 has deteriorated
to HRIP 3 because the investor’s historical the investor’s historical investment
records play more important role for investors’ investor preferences than social
and psychological attributes. Consequently, the results indicate the effectiveness
for cold start investor of HRIP method.

From the above experimental results, we can see that our approach, i.e. HRIP,
can provide the best results with P2P lending characteristics. In particular, HRIP
is robust and adapted to cold start investor. This is because HRIP conduct a
random walk on the constructed hybrid graph. The hybrid graph is constructed
from investor history purchase records and investor profile, thus retaining the
characteristics of the P2P lending for better recommendations.
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5 Conclusions and Future Work

We have presented a Hybrid graph Ranking using Investor Profile method
(HRIP) to model top-n recommendation for P2P lending. Particularly, we pro-
vide a consistent framework to jointly capture interactions in the investor-
product graph and relationship between investors. Our experiments reveal that
P2P lending characteristics plays a crucial role in the improvement of recom-
mendation in P2P lending. Experimental results on real-world dataset show that
HRIP can outperform state-of-the-art baselines.

Currently, we only incorporate the hybrid graph that combine bipartite
investment graph and relationship graph between investors into recommenda-
tion, while real-world industries are associated rich other side information on
items relationship. For example, products and products are associated with rich
attributes. Therefore, exploring multi-hybrid network for recommendation with
products relationship would be an interesting future direction.
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Abstract. Deep deterministic policy gradient has been successfully
applied to continuous control problems, but its function approxima-
tion errors will cause the overestimation problem and limit its perfor-
mance. Existing methods alleviate the overestimation problem. How-
ever, because taking the minimum value between a pair of critics for
updates, the method sometimes underestimates the values. We propose
a new algorithm, which uses weighted value of two critics to alleviate
the underestimation and overestimation problems caused by function
approximation error. Simultaneously, in order to improve the sampling
efficiency of the algorithm, we propose an improved prioritized experi-
ence replay mechanism by modifying the priority definition instead of
the original random sampling. Experiments show that, compared with
two state-of-the-art algorithms, our algorithm has better performance on
the MuJoCo continuous control tasks.

Keywords: Reinforcement learning · Continuous control · Function
approximation error · Sampling efficiency.

1 Introduction

In recent years, deep reinforcement learning has made remarkable achievements
in decision-making problems and attracted a lot of attention in the field of artifi-
cial intelligence [6,7,19,22]. DeepMind uses a deep network to represent the value
function, combined with Q-learning, designed the Deep Q-Network (DQN) [6],
which is the first case of successfully combining deep learning and reinforcement
learning. DQN performs well on discrete action space, but it performs poorly on
continuous control tasks such as robot control. To solve the problem that DQN
cannot handle the continuous action space, deep deterministic policy gradient
algorithm (DDPG) [7] uses the Actor-Critic (AC) method, which contains a pol-
icy network to generate actions, and a Q-value network to evaluate the value of
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actions. DDPG differs from other actor-critic algorithms (e.g..,A3C, A2C) [5] in
that it uses a deterministic policy which outputs a deterministic action [3].

The overestimation problem in reinforcement learning mainly appears in Q-
learning, and the reason behind it is the maximum operation is used in the
update process. Double Q-learning uses two estimators, and each estimator will
use the value of the other estimator to update the value function, which alle-
viates the overestimation problem in the discrete action space. Fujimoto et al.
prove that overestimation bias also occur in the actor-critic methods [1]. Twin
Delayed Deep Deterministic policy gradient algorithm (TD3) [1] uses clipped
double Q-learning based on double Q-learning. It also uses two Q-funtions. The
difference is that clipped double Q-Learning takes the minimum value between
the two estimates. Such an update rule minimizes the effect of overestimation
bias, but it may induces an underestimation bias [13]. In this paper, we pro-
pose the Weighted Double Deep Deterministic policy gradient algorithm (WD3),
which also uses two critics. Rather than taking the minimum value of two esti-
mates, WD3 takes weighted value of two Q-estimates. This update rule greatly
alleviates the underestimation and overestimation problems caused by function
approximation error.

Experience replay mechanism of DDPG and TD3 is randomly sampling,
which cannot more effectively use important samples to learn. Prioritized Expe-
rience Replay (PER) [2] proposes a new replay mechanism based on samples’
priorities to make the algorithm more efficient. The priorities of samples is
defined by TD error, which indicates how surprising or unexpected the sam-
ple is [2]. However, future rewards cannot be ignored for the importance of
samples. Therefore, We modify the priority definition of the PER algorithm
by considering n-step TD error and propose the Modified Prioritized Experience
Replay algorithm (MPER). Finally, we combine WD3 with the improved MPER
and propose Weighted Double Deep Deterministic policy gradient with Modified
Prioritized Experience Replay algorithm (WD3-MPER) to alleviate the overes-
timation and underestimation problems and to improve sampling efficiency of
experience replay.

2 Background

In this section, we introduce the basic definition of reinforcement learning, dou-
ble Q-learning, deep deterministic policy gradient algorithm, twin delayed deep
deterministic policy gradient algorithm and prioritized experience replay.

2.1 Reinforcement Learning

Reinforcement learning can be described as a process that an agent interacts with
environment through the trial and error to maximize the cumulative reward, usu-
ally modeled as a Markov decision process (MDP) [9,20]. An MDP is represented
by the tuple M = (S,A, P, γ,R). S represents the state set, with s ∈ S, and si

represents the state of the i-th step. A represents a set of actions, with a ∈ A,



WD3-MPER: A Method to Alleviate Approximation Bias in Actor-Critic 715

and ai represents the action at step i. P (s, a) represents the probability distri-
bution over next state after the agent executes action a in state s. For example,
when performing action a in state s, the probability of transition to next state
s′ can be expressed as p(s′|s, a). R is the reward function. If (s, a) moves to next
state s′, then the reward function can be written as r(s′|s, a). If the next state s′

corresponding to (s, a) is unique, then the reward function can also be written
as r(s, a). γ is a discount factor and represents the importance of future rewards.

2.2 Double Q-Learning

The overestimation problem refers to finding the maximum value of a series of
numbers first, and then averaging these numbers, usually greater than or equal
to finding the average value first and then the maximum value [12].

E (max (X1,X2, . . . , Xn)) ≥ max (E (X1) ,E (X2) , . . . ,E (Xn)) (1)

where X1,X2, . . . , Xn are all sets of numbers and E (X) is expectation of a
number set X. The overestimation problem mainly appears in Q-learning, and
the reason behind it is the maximum operation is used in the update process of
the following formula:

Q (s, a) ← Q (s, a) + α
(
r + γ max

a
Q (s′, a) − Q (s, a)

)
(2)

where α is step-size parameter and Qt (s, a) is state action value for (s, a) at time
t. The overestimation bias generated by the maximize operation will seriously
affect the accuracy of value evaluation. To solve the overestimation problem,
double Q-learning uses two estimators, which are represented by two functions
Q1 and Q2, and each Q-function takes the value of another Q-function to update.
Both of Q-functions must be learned from different experience buffers, but you
can use two value functions at the same time to select the action to be performed.

Q1(s, a) ← Q1(s, a) + α
(
r + γQ2 (s′, a∗) − Q2(s, a)

)
(3)

Q2(s, a) ← Q2(s, a) + α
(
r + γQ1 (s′, a∗) − Q2(s, a)

)
(4)

where a∗ is the action with the largest Q-value.

2.3 DDPG

DDPG adopts the framework of the AC method and is applied to continuous
control problems. DDPG differs from other actor-critic algorithms in that it uses
a deterministic policy. Deterministic policy μ means that the action performed
in a state is deterministic. Stochastic policy π outputs the probability distribu-
tion of performing actions in a state. Therefore, the deterministic policy changes
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the output process of action, and only outputs an action instead of probabil-
ity distribution of actions. After the policy becomes deterministic, the Bellman
equation of the state-action value function also changes:

Qπ (st, at) = Ert,st+1∼S
[
r (st, at) + γEat+1∼π [Qπ (st+1, at+1)]

]
(5)

Qμ (st, at) = Est+1∼S [r (st, at) + γQμ (st+1, μ (st+1))] (6)

where μ(st+1) outputs a deterministic action. Therefore, compared to the
stochastic policy, deterministic has no expectation function for actions. Due
to the maximum operation of Q-learning, overestimation bias is obvious, but
the presence of overestimation bias is less clear in the actor-critic setting. Fuji-
moto et al. proved the presence and effect of overestimation bias in actor-critic
settings [1].

2.4 TD3

In double DQN, the authors propose using the target network as one of the
value estimates, and obtain a policy by greedy maximization of the current
value network rather than the target network [1,11].

Qtarget = r + γQθ′ (s′, πφ (s′)) (7)

where Qθ′ is a target critic network, Qtarget is the learning target of action value,
and πφ is a policy network.

But in fact, due to the slow change of policy in actor-critic methods, the
current and target networks are too similar to make an independent estimation.
Therefore, TD3 uses original double Q-learning instead of double DQN. How-
ever, the critics are not completely independent because of TD3 uses two critics
and the same replay buffer. Such a problem induces critics to overestimate Q-
values. To solve this problem, clipped double Q-learning is proposed to take the
minimum value between two critics.

Qtarget = r + γ min
i=1,2

Qθ′
i
(s′, πφ (s′)) (8)

Next, TD3 uses two tricks to alleviate the function approximation errors.
One is delayed policy updates, which delays the update of the target network
and policy to avoid the cumulative error during the update process. The second
is target policy smoothing, which adds noise to the target action for smoothing
value function. Although this setting minimizes the effect of overestimation bias,
it sometimes underestimates.

2.5 Per

In order to break the association among samples, DDPG and TD3 use a replay
buffer with the random sampling mechanism. However, in the case of sparse



WD3-MPER: A Method to Alleviate Approximation Bias in Actor-Critic 717

rewards, rewards are only available after multiple correct actions. There will be
few samples that can incentivize agent to learn correctly. In this case, the effi-
ciency of random sampling is very low because many samples are rewarded with
0. PER samples experience based on samples’ priorities, but not just valuable
experience. Since it will cause overfitting. Therefore, the lowest value also have
a small probability to be sampled. In PER, the way to measure the priorities of
samples is TD error. If TD error is relatively large, it means that the current
Q-function is still far away from the target Q-function, and it should be trained
more [11].

δt = r + γ max
a

Q (st+1, a) − Q(st, at) (9)

where δt is TD error. In DDPG, because of the output action is deterministic,
TD error becomes the following form:

δ′
t = r + γQ (st+1, a) − Q(st, at) (10)

In order to avoid overfitting, we need to ensure that the sample with TD
error is equal to zero also has a small probability to be sampled. Thus, we set

P (i) =
pi∑
j pj

(11)

where pi = |δi + ε| is the priority of transition i. ε is a small positive constant
that prevents the sample with TD error is zero not being revisited [2].

3 Method

We propose a weighted double DDPG method to alleviate the overestimation
and underestimation problems caused by function approximation error and an
improved PER method to improve the sampling efficiency of the replay buffer
in this section. Then we combine WD3 with the modified PER to propose the
WD3-MPER algorithm.

3.1 Weighted Double DDPG

Due to the function approximation error caused by the maximum operation,
Q-learning usually overestimates the action values. Double Q-learning alleviates
the problem of overestimation in discrete spaces by using two independent esti-
mators. Clipped double Q-learning uses the minimum value between a pair of
critics to minimize the effects of overestimation bias in actor-critic. But clipped
double Q-learning sometimes underestimates the action value. To alleviate this
problem, we propose a weighted double Q-learning algorithm for actor-critic.
WD3 also uses two estimators. Unlike clipped double Q-learning, we update the
value function by using the weighted value of maximum value and minimum
value. Therefore, WD3 alleviates the overestimation problem in Q-learning and
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the underestimation problem that sometimes occurs in clipped Q-learning by
setting

Qtarget = r+γ

(
w × min

i=1,2
Qθ′

i
(s′, πφ (s′)) + (1 − w) max

i=1,2
Qθ′

i
(s′, πφ (s′))

)
(12)

where w is a predefined parameter, usually in the range of [0.5, 1]. We did not
directly use the weighted values of two critics to update the value function.
Instead, we first calculate the maximum value and minimum value of the two
Q-values, and then calculate the weighted value of these two values to update the
value network. The value calculated for updating in this way is different from the
value directly weighting the two Q-values. If the latter is used for updating, the
algorithm performance may be poor. In general, we pay more attention to the
minimum value so that we can better avoid the overestimation problem caused
by function approximation error [13,21].

3.2 MPER

When using the one-step TD method, we update the value function at each
step, which allows us to fully consider changes in the environment. However, in
many cases, the environment will not change immediately. Only after a period of
time the environment will change significantly. For example, the robot’s behavior
pattern has certain coherence between actions, and the effect of one-step update
is not very good. In these cases, the n-step update usually performs better.
Therefore, we propose a new method for adjusting the priorities of samples by
using n-step TD error. It is worth noting that we only use n-step TD error to
adjust the priority, instead of using n-step return to update the value function.
n-step returns have more information than instant rewards because of the former
pays more attention to future rewards. Therefore, n-step TD error also illustrates
the learning degree and importance of samples. In summary, we improve the PER
by using the n-step TD error return of the state action pair to adjust the priority
of samples.

Gt:t+n = rt+1 + γrt+2 + · · · + γn−1rt+n + γnQt+n−1 (st, at) (13)

δnew = δ′
t + β × (Gt:t+n − Q(st, at)) (14)

where β is a parameter used to adjust the proportion of n-step TD error in the
newly defined priority δnew, and is usually set to 1/n. Gt:t+n is the n-step return
of state-action pair at time step t.

Next, we use the number of this transition was sampled to adjust its priority.
This setting is to ensure the trainings times of each transition to avoid overfitting
caused by insufficient training times. Although the sample with TD error is 0
also has a lower probability to be sampled, we still hope that a strong limit
can be imposed so that each sample can be trained multiple times. We map the
training times of samples to an interval, and the replay buffer uses it to adjust
the priorities of samples:
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Algorithm 1: WD3-MPER
Input: Initialize critic networks Qθ1 , Qθ2 , actor network πφwith random

parameters θ1, θ2, φ, and target networks θ′
1 ← θ1, θ

′
2 ← θ2, φ

′ ← φ
Output: Qθ1 , Qθ2 , πφ

1 for t=1:T do
2 Select action with exploration noise and observe reward r and new state s′

3 Set λ = t + n − 1
4 if λ ≥ 0 then

5 G =
∑min(λ+n,T )

i=λ+1 γi−λ−1ri, β = 1/n

6 else
7 G = r, β = 1
8 end
9 Store tuple (s, a, r, s′, G, count) in replay buffer

10 Sample N tuples (s, a, r, s′, G, count) from replay buffer
11 ã ← πφ′ (s′) + ε, ε ∼ N (0, σ)
12 Qtarget =

r + γ
(
w mini=1,2 Qθ′

i
(s′, πφ (s′)) + (1 − w)maxi=1,2 Qθ′

i
(s′, πφ (s′))

)

13 G = G + γ
(
w mini=1,2 Qθ′

i
(s′, πφ (s′)) + (1 − w)maxi=1,2 Qθ′

i
(s′, πφ (s′))

)

14 δnew = Qtarget − Qθ1(s, a) + β(G − Qθ2(s, a))
15 Use δnew, count to update samples’ priorities

16 Update critics θi ← argminθi
N−1 ∑

j

(
Qj

target − Qθi(sj , aj)
)2

17 Update φ by the deterministic policy gradient:

18 ∇φJ(φ) = N−1 ∑
j ∇aQθ1(s, a)

∣
∣
∣
aj=πφ(sj)

∇φπφ(s)

19 Update target networks:
20 θ′

i ← τθi + (1 − τ)θ′
i

21 φ′ ← τφ + (1 − τ)φ′

22 end

count → N,N ∼ [0, ρ] (15)

where count is the training times of samples and N is a interval in the range [0,
ρ]. We generally set an upper limit. When the training times of a certain sample
reach this upper limit, we will not give priority reward to this sample. The setting
of upper limit and Eqn. 9 in PER largely guarantee minimum training times of
the samples and avoid the overfitting problem.

3.3 WD3-MPER

We proposed WD3 in the previous section, which is based on TD3 and DDPG.
The purpose is to alleviate the overestimation problem in Q-learning and the
underestimation problem sometimes caused by taking the minimum values
between the two estimators in clipped Q-learning. Next, an improved PER
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method is introduced to improve the sampling efficiency. WD3-MPER is sum-
marized in Algorithm 1.

In Algorithm 1, we first initialize two critic networks and an actor network
by using random parameters, and copy these parameters to the corresponding
target network. In each time step, we use a policy network with exploration noise
to select action and observe reward and next state given by the environment.
We store tuple (s, a, r, s′, G, count) in replay buffer and initialize the priority
of each sample to the maximum priority, which is generally 2.0. We initialize
count to 0. When n-step return cannot be calculated, we simply set G to r and
set β to 1. MPER degenerates into PER in this setting. When n-step return
can be calculated, we set β to 1/n. n-step TD error is generally much larger
than TD error. Therefore, in order not to ignore TD error, we need to reduce
the proportion of n-step TD error in δnew. After calculating δnew, we use δnew
and count to update the priorities of samples. When the training number of
samples is small, we give the sample a larger priority reward to encourage it
to be trained again. The priority reward decreases as count increases. When
it exceeds the limit we set, the priority reward drops to 0. Finally, we update
actor-critic networks and corresponding target network.

4 Experiments

In the first part of this section, we completely used the experimental settings
in [1] to compare our algorithm with TD3 and DDPG on the MuJoCo continuous
control task [14]. In the second part, we modify the hyper-parameters to show
the advantages of our algorithm.

4.1 Experimental Evaluation

In order to evaluate the performance of MD3-MPER, we put it on six MuJoCo
continuous control tasks of Open AI Gym [16]. Because of WD3 is improved on
the basis of DDPG and TD3, we compare the performance of WD3-MPER with
these algorithms.

Table 1. Comparison of the maximum average return of three algorithms running 1
million time steps on 5 random seeds. Maximum value for each task is bolded.

Environment Algorithm

WD3-MPER TD3 DDPG

Ant-v2 5118 ± 525 4320 ± 981 460 ± 185

HalfCheetah-v2 10742 ± 1136 9760 ± 920 10166 ± 985

Hopper-v2 3484 ± 173 3499 ± 159 1518 ± 357

Reacher-v2 −4.12 ± 0.75 −3.95 ± 0.60 −5.42 ± 1.27

InvertedPendulum-v2 1000 ± 0 1000 ± 0 600 ± 200

InvertedDoublePendulum-v2 9337 ± 22 8506 ± 840 1869 ± 65
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The DDPG in experiment used the modified DDPG in [1], named OurDDPG.
OurDDPG also uses a two layer feedforward neural network of 400 and 300 hid-
den nodes respectively, with rectified linear units between each layer. OurDDPG
differs in that the critic receives both the state and action as input to the first
layer, and such a setting is advantageous for DDPG to handle continuous control
tasks. TD3 uses a two layer feedforward neural network of 256 and 256 hidden
nodes respectively, with rectified linear units between each layer. Both network
parameters are updated using Adam [8] with a learning rate of 10−3.

Fig. 1. Learning curves of three algorithms running 1 million time steps on 5 random
seeds for the MuJoCo continuous control tasks.

We compare our algorithm with DDPG and TD3 without any parameter
modification. Our results are presented in Fig. 1 and Table 1. In Table 1, we
compare WD3-MPER with two benchmark algorithms by using the maximum
average return. The results show that WD3-MPER outperforms DDPG in six
MuJoCo continuous control tasks. WD3-MPER is significantly superior to TD3
in Ant-v2, HalfCheetah-v2, and InvertedDoublePendulum-v2, and achieves the
same performance as TD3 in InvertedPendulum-v2. Although the maximum
average return of WD3-MPER in Hopper-v2 and Reacher-v2 is slightly lower
than TD3, the difference is very small. Figure 1 shows the comparison of learning
curves between WD3-MPER and these two benchmark algorithms. In summary,
WD3-MPER matches or outperforms DDPG and TD3 in both final performance
and learning speed across all tasks.
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4.2 Experimental Comparison

Fig. 2. The learning curves of TD3 and WD3-MPER at batch sizes of 128 and 64.

Batchsize is the number of sample sets sampled during training, which is directly
related to the training times of samples. We set the batchsize to 256 in the
previous part of the experiment. Under this setting, TD3 has between 0 and
450 training times for each sample, and the training times for more than half of
the samples are concentrated between 200 and 300. In addition to the samples
stored later, each sample can be trained enough, which makes it difficult to show
the advantages of MPER. Next, we set the batchsize of WD3-MPER and TD3
to 128, 64, which reduces training times of samples. Such experimental settings
can better show the performance of the algorithm.

In Fig. 2, the three graphs on the left are learning curves for TD3 and WD3-
MPER with batchsize is 128. Under this setting, compared to the case of batch-
size is 256, the performance of WD3-MPER has not degradation significantly,
but TD3 has dropped a lot. This is because reducing the batchsize is equivalent
to reducing training times of samples. As the training times of samples decrease,
it means that training times of some samples may be insufficient, so random
sampling has more randomness. Once the training times of important samples
are small or even zero, the performance of algorithm will eventually be poor,
thereby lowering the average performance of the algorithm. Figure 2 shows that
when the batchsize is 64, compared to batchsize is 128, the performance gap
between WD3-MPER and TD3 is narrowing. We believe that it is because we
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have imposed a strong limit on training times of samples in order to avoid over-
fitting, thus ensuring the minimum training times of samples. Therefore, in the
case where batchsize is too small, the distribution of training times of samples
sampled by WD3-MPER will be close to that of TD3.

5 Summary

This paper proposes a new algorithm called weighted double deep deterministic
policy gradient with modified prioritized experience replay. We propose a method
between single estimator and double estimator that take minimum value between
two critics, which is to use the weighted value of two Q-values. This method
greatly alleviates the overestimation and underestimation problems. Then WD3
combines with improved MPER to improve sampling efficiency of experience
replay. Experiments prove the effectiveness of our algorithm on the MuJoCo
continuous control tasks. Next, we prove the advantage of prioritized sampling
compared to random sampling by modifying experimental parameters.

In the future, in order to further improve the accuracy of function approx-
imation and the sampling efficiency of replay buffer, we will strive to find a
more accurate method of estimating Q-value and a better definition of sample’s
priority.
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Abstract. Percutaneous coronary intervention (PCI) has become a
common method for the treatment of cardiovascular diseases (CVDs).
However, the accumulated X-ray radiation during the procedures greatly
increases the probability of medical staff suffering from cataracts and
brain tumors. This study bases on an existing vascular robotic system
designed in our previous work. The main component of this robotic sys-
tem is a bio-inspired Dual-finger Robotic Hand (DRH), which consists
of a pair of bionic thumb and forefinger to imitate the surgical manipu-
lations of interventionalists. This study is to evaluate the performance of
the robotic system through a series of experiments: advancing a guidewire
at different speeds and accelerations. The mean root mean square error
(RMSe) of the actual and desired axial movements is 0.72± 0.49 mm,
demonstrating the effectiveness and robustness of the robotic system.

Keywords: Vascular robotic system · PCI · Performance evaluation

1 Introduction

Cardiovascular diseases (CVDs) are No. 1 killer of the world. In 2016, more than
17.9 million people died of CVDs, accounting for 46% among all noncommuni-
cable diseases. The number of CVDs deaths is predicted to rise to 22.2 million
by 2030 [1]. Coronary heart disease is a main CVD, accounting for 45% of CVDs
deaths [2]. The main treatments for coronary heart disease are coronary artery
bypass graft (CABG) and percutaneous coronary intervention (PCI). The for-
mer needs to open the patient’s chest, resulting in tremendous trauma and a
long recovery period. As a minimally invasive procedure, PCI has become the
popular treatment for coronary heart disease.
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During the conventional PCI procedures, X-ray imaging is used to locate
interventional devices. Hazards of being exposed to X-ray radiation include an
increased risk of cataract and a possible association with the development of
head and neck tumors [3]. Therefore, medical staff have to wear heavy lead
aprons to prevent them from high-dose radiation. However, there are evidences
showing that long hours of working by wearing lead aprons also leads to cervical
and lumbar disc diseases among interventionalists [4].

To address these problems, various robotic systems are developed to assist
interventionalists to deliver interventional devices during PCI procedures [5].
Beyar et al. proposed a remote navigation system (RNS), which is commercial-
ized by Corindus Inc. [6]. Its latest generation is named CorPath GRX, which
consists of two major components: an interventional cockpit and a bedside unit.
Its safety and feasibility are testified through human trials and recognized by
the Food and Drug Administration (FDA) [7,8]. Magellan robotic system is
developed by Hansen Medical Inc., which is mainly used to conduct peripheral
vascular intervention [9]. Cha et al. designed a new catheter driving system that
can provide surgeons with less X-ray exposure and convenient user interface [10].
Su et al. presented a master-slave tele-operation system for percutaneous inter-
ventions under continuous magnetic resonance imaging (MRI) guidance [11]. The
Niobe magnetic navigation system (Stereotaxis, MO, USA) uses a magnetic field
to steer a specialized catheter with magnets at the tip [12,13]. Marcelli et al.
developed a highly compact and versatile robotic system for remote navigation of
standard tip-steerable electrophysiology (EP) catheters [14]. Guo et al. designed
a new robotic catheter system with a master-slave structure for vascular interven-
tion [15,16]. Tavallaei et al. presented a new compact and sterilizable telerobotic
system that allows remote navigation of conventional tip-steerable catheters [17].
Bao et al. developed a novel method that provides higher operation efficiency
than a previous prototype and allows for complete sterilization[18]. Kesner et al.
proposed an actuated catheter tool which can compensate for the motion of heart
structure by servoing a catheter guidewire inside a flexible sheath [19]. Cercenelli
et al. developed a telerobotic system to remotely manipulate standard steerable
EP catheter during the cardiac interventional procedures [20].

There are some problems in the current vascular intervention robotic systems.
For example, the torsion of guidewire is caused by unreasonable structural design
of the belt [10]. The inadequacy of grasper structure lies in the inconvenience for
loading and unloading of interventional devices in clinical practice. In addition,
some of them can only deliver a single catheter, not satisfying the delivery of
other devices. The magnetron robotic system in [11–13] uses special magnetic
devices, not suitable for patients implanted with ferruginous medical devices.

To address these problems, a bio-inspired Dual-finger Robotic Hand (DRH)
was designed in our previous work [21]. Its open structure facilitates the loading
and unloading of different interventional devices. Besides, it can deliver both
guidewires and balloon/stent catheters.

The main contributions of this research include: 1) The effectiveness and
robustness of the robotic system are evaluated. 2) Extensive comparative
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Bionic thumb Guidewire gripper Bionic forefinger

Fig. 1. The Dual-finger Robotic Hand includes a guidewire gripper, a bionic thumb,
and a bionic forefinger.

experiments and statistical analysis highlights the importance of speed for high-
precision delivery.

The rest of this paper is organized as follows. Section 2 describes the archi-
tecture of the DRH. Section 3 evaluates the performance of the robotic system
through a series of experiments. Finally, we conclude in Sect. 4.

2 System Architecture

In PCI procedures, the guidewire is clamped by the interventionalist’s right
thumb and forefinger. To achieve guidewire translation, the interventionalist
needs to push the guidewire by right-to-left translation of the right hand and
retract the guidewire by left-to-right translation.

Inspired by the manipulations of interventionalists, the bio-inspired DRH (see
Fig. 1) is developed. It mainly consists of two rollers: bionic thumb and bionic
forefinger, which are controlled by two stepper motors. The bionic fingers realize
the translation manipulation to deliver interventional devices by rotating around
their own axes. Different from human hands, they can deliver interventional
devices continuously. Meanwhile, the clamping force between two fingers can be
adjusted via controlling the current of a DC motor, making it convenient to
load and unload interventional devices. By fixing the guidewire with a guidewire
gripper, this structure can be compatible with other interventional devices (e.g.
catheter, balloon/stent) with different diameters.

Aiming to improve the accuracy and stability of delivery, a control algorithm
is designed in a 32-bit ARM microcontroller (STM32F4, STMicroelectronics,
USA) to control the movement of two bionic fingers. Mathematically, the trans-
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Fig. 2. The experimental setup.

lational displacement of interventional devices can be calculated by the following
formula:

Γ =
πnpθsRroller

180isir
(1)

where Γ is the translational displacement, np is the number of pulses generated
by the controller, θs is the step angle of the stepper motor, is is the subdivision
number of the stepper motor drivers, ir is the reduction ratio of the gearboxes,
and Rroller is the radius of rollers.

3 Experiments and Results

3.1 Experimental Setups

Due to the small diameter of coronary arteries, guidewire delivery requires high
precision, which can reduce the contact force between the guidewire and ves-
sel wall. Recent studies show that the high-precision delivery is critical to the
success of PCI procedures [21]. In order to evaluate the performance of robotic
system, extensive comparative experiments are designed at different speeds and
accelerations.

As shown in Fig. 2, the experiments are performed on an electromagnetic
(EM) tracking system (Aurora, Northern Digital Inc. Canada) which can offer
a way to measure guidewire translation data. It includes an EM field generator,
a signal processing unit, and a sensor. The EM field generator is positioned
under an acrylic table. The displacement of the guidewire is acquired with a
5DOF sensor. In order to ensure the accuracy of measured data, the sensor is
connected with the tip of the guidewire coaxially. Therefore, the displacement
of the guidewire is equal to that of the sensor. Furthermore, an acrylic tube is
fixed on the acrylic table to simulate coronary arteries.
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Fig. 3. The dynamic tracking trajectories of advancing the guidewire at different speeds
(a = 20 mm/s2). The dotted lines are desired trajectories, and the solid are actual ones.

The sample rate of the EM tracking system 40 Hz. The delay between two
samplings is acceptable in a closed-loop control for real-time applications. Data
acquisition program simultaneously collects the number of pulses of the robotic
system and the displacement of the EM sensor. Normally, the root mean square
error (RMSe), one of the most commonly used performance metrics, is selected
to evaluate the performance of the robotic system. Mathematically, the RMSe
between actual trajectories and desired ones can be calculated by the following
formula:

RMSe =

√∑N
i=1 (Zi − Ki)

2

N
(2)

where Zi is the ith actual displacement acquired by the EM sensor, Ki denotes as
the ith desired displacement calculated by Eq. (1), N is the number of samples.

3.2 Experiment: Advancing the Guidewire at Different Speeds and
Accelerations

In PCI procedures, the performance of the robotic system at different speeds
and accelerations are the basis for high-precision delivery. In this part, differ-
ent constant speeds (10–30/s, increased by 5 mm/s between two adjacent ones)
are selected for advancing the guidewire. 20 mm/s2, 40 mm/s2 and 60 mm/s2 are



732 S.-Y. Wei et al.

Fig. 4. The dynamic tracking trajectories of advancing the guidewire at different speeds
(a = 40 mm/s2). The dotted lines are desired trajectories, and the solid are actual ones.

selected as low, medium and high accelerations, respectively. Guidewire displace-
ment is set to 100 mm in this experiment.

The results of advancing the guidewire under different constant speeds at the
low acceleration are shown in Fig. 3. Theoretically, the delivery process can be
divided into three stages. The first stage is to accelerate the speed to 10 mm/s,
15 mm/s, 20 mm/s, 25 mm/s, and 30 mm/s within 0.5 s, 0.75 s, 1 s, 1.25 s, and
1.5 s, respectively. The subsequent stage is the constant-speed stage. The third
stage is the deceleration stage to reduce the speed to 0 at −20 mm/s2.

Moreover, the RMSe between actual and desired trajectories are given in the
Table 1, where the corresponding minimum and maximum are indicated in blue
and red, respectively. According to the first row of Table 1, the minimum RMSe is
0.27 mm achieved by the speed of 10 mm/s, and the maximum is 0.49 mm yielded
by the speed of 30 mm/s at the acceleration stage. For the constant-speed stage,
the minimum and maximum RMSe are 0.40 mm at the speed of 15 mm/s and
0.85 mm at the speed of 10 mm/s, respectively. Finally, the minimum (0.33 mm)
and maximum (3.86 mm) are implemented by the speed of 10 mm/s and 30 mm/s
at the deceleration stage, respectively.

Similarly, the dynamic performance at the medium acceleration (40 mm/s2)
and the high acceleration (60 mm/s2) under different constant speeds are shown
in Fig. 4 and 5. Moreover, the RMSe between actual and desired trajectories are
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Fig. 5. The dynamic tracking trajectories of advancing the guidewire at different speeds
(a = 60 mm/s2). The dotted lines are desired trajectories, and the solid are actual ones.

given in the second and third row of Table 1, respectively. Besides, the corre-
sponding minimum and maximum are also highlighted in blue and red, respec-
tively.

For each of the comparative experiments executed under three acceleration
states (e.g. low, medium and high acceleration states), statistical significance is
assessed with the Pearson correlation analysis and one-way ANOVA for quanti-
tative features. The Pearson correlation coefficient between the speed and RMSe
is shown in Figs. 6(a−c). In most cases (e.g. 20 mm/s2 and 40 mm/s2), the RMSe
displays statistically significant difference between different speeds (P < 0.05).
Figures 6(d−h) show no statistical significance between the acceleration and
RMSe (P > 0.05).

The one-way ANOVA results of speed and RMSe are shown in Fig. 7(Left).
According to the results, the RMSe is statistically significant difference between
different speeds (P < 0.01). As shown in Fig. 7(Right), the one-way ANOVA
results of acceleration and RMSe shows no statistical significance (P > 0.05).

In general, all experiments are designed after considering several practi-
cal factors:1) The first purpose is to ensure the quality of the collected data.
The Pearson correlation analysis and one-way ANOVA shows that the RMSe
increases with delivery speed rises linearly. 2) The second is the consideration
of applications. The purpose of this study is to assist interventionalists with
guidewire delivery. The movements of guidewire are usually slow.
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Table 1. The RMSe (mm) of advancing the guidewire at different speeds and acceler-
ations.

Accel-
eration

Acceleration Stage Constant-Speed Stage Deceleration Stage

10 15 20 25 30 10 15 20 25 30 10 15 20 25 30

mm/s mm/s mm/s mm/s mm/s mm/s mm/s mm/s mm/s mm/s mm/s mm/s mm/s mm/s mm/s

20mm/s2 0.27 0.29 0.36 0.37 0.49 0.85 0.40 0.80 0.72 0.79 0.33 0.73 1.49 2.29 3.86

40mm/s2 0.27 0.29 0.38 0.42 0.48 0.37 0.22 1.20 1.17 1.22 0.05 0.31 0.45 0.82 1.39

60mm/s2 0.25 0.29 0.42 0.39 0.89 1.05 0.22 0.26 0.62 3.19 0.27 0.10 0.23 0.32 0.94

Fig. 6. The Pearson correlation coefficient of the speed and RMSe under 20 mm/s2(a),
40 mm/s2(b), and the 60 mm/s2(c). The Pearson correlation coefficient of the accelera-
tion and RMSe under 10 mm/s(d), 15 mm/s(e), 20 mm/s(f), 25 mm/s(g), 30 mm/s(h).

3.3 Discussion

The performance of the robotic system are evaluated through various compara-
tive experiments: advancing the guidewire at different speeds and accelerations.
Specifically, there are a total of three movement states are the low, medium
and high acceleration states. Each states of movement is subdivided into three
different forms: acceleration stage, constant-speed stage and deceleration stage.
Furthermore, for the error that affected the accuracy of the translation manip-
ulation, six practical factors are considered, including the roundness error, the
sensitivity of stepper motor, friction error, vibration error, the elastic deforma-
tion of rubber sheath and the performance of the EM sensor. These factors also
exist in clinical practice. Therefore, it is necessary to analyze the robotic system’s
delivery performance under the noise environment.

On the one hand, the RMSe between actual and desired trajectories presents
a continuous upward trend at acceleration and deceleration stages with the rise
of constant speed. Table 1 shows the RMSe decreases firstly and then increases
with the speed climbs steadily during constant-speed stage. Moreover, the RMSe
decreases with the speed climbs from 10 mm/s to 15 mm/s, while the RMSe
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Fig. 7. The one-way ANOVA results of the speed and RMSe (Left), acceleration and
RMSe (Right). Tukey HSD, Bonferroni and LSD are used as post-hoc tests for one-way
ANOVA.

increases with the speed climbs to the 20 mm/s. After that, the smallest RMSe
for each experiment is selected by comparing the changing trend on the table
data. Specifically, the minimum RMSe is achieved by the speed of 10 mm/s.

In most cases, the RMSe decreases with the decline of guidewire speed (P <
0.05). These promising results indicate the potential of the robotic system for
facilitating the future development of PCI for coronary heart disease treatment.
It is worth mentioning that the roundness error of the bionic fingers causes
the RMSe to some extent during delivery. Theoretically, the bionic fingers are
designed as ideal cylinders, however, there are radius errors actually. Because the
delivery distance is equal to the length of the bionic finger arc. Consequently,
the radius errors could directly affect delivery accuracy.

According to the Table 1, the RMSe is maximum when the guidewire is
advanced at the constant speed of 30 mm/s. There are several reasons: 1) The
elastic deformation of rubber sheath. After a long time of use, there are obvious
wear marks on the surface of rubber sheath, resulting in losing the elasticity of
the rubber sheath. 2) The accuracy of the EM sensor. Specially, the EM sensor
could not accurately acquire guidewire motion data at high speeds.

Furthermore, the RMSe does not show consistent changing trends in
constant-speed stage with the rise of delivery speed. The main reason for this
includes: 1) The sensitivity of stepper motor. The lack of proper lubrication fre-
quently causes overheating and excessive wear on motor bearings, resulting in
that the RMSe does not change significantly with the rise of speed in the exper-
iments. 2) The sensitivity of EM sensor. Limited by the sensitivity of the EM
sensor, it is difficult to accurately measure the subtle change of guidewire move-
ment caused by the increased speed. 3) The friction between the acrylic tube
and the guidewire. The guidewire is relatively flexible, and is easily affected by
the friction during translation process, which increases the RMSe to a certain
extent.
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In the experiment with 20 mm/s2, a slight vibration occurs when the
guidewire moves at low speed. The vibration disappears when guidewire speed
rises steadily. The main reason for this is the low pulse frequency of the stepper
motor. The low pulse frequency will vibrate the stepper motor, leading to the
vibration of the guidewire.

4 Conclusion

This study evaluates the effectiveness and robustness of the robotic system
through a series of experiments: advancing the guidewire at different speeds
and accelerations. The mean RMSe of the actual and desired axial movements
is 0.72± 0.49 mm. Extensive experiments indicate that the guidewire should be
advanced as slowly as possible in fragile coronary arterys. Meanwhile, high accel-
eration can not only reduce surgical time but also guarantee delivery accuracy,
thus can decrease medical staff’s exposure to ionizing radiation. In the subse-
quent work, several updated processing techniques will be used to reduce the
radius errors of the bionic fingers. Similarly, some advanced filtering methods
will be utilized to eliminate the noise in the measurement data for closed-loop
control. The ergonomics, sterilization, as well as control algorithms of the robotic
system will be further exploited and improved in future work. Rather than con-
trolled and predictable setups, further research will be conducted through clinical
trials.
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Abstract. Interactive teaching from a human can be applied to extend
the knowledge of a service robot according to novel task demands. This
is particularly attractive if it is either inefficient or not feasible to pre-
train all relevant object knowledge beforehand. Like in a normal human
teacher and student situation it is then vital to estimate the learning
progress of the robot in order to judge its competence in carrying out the
desired task. While observing robot task success and failure is a straight-
forward option, there are more efficient alternatives. In this contribution
we investigate the application of a recent semi-supervised confidence-
based approach to accuracy estimation towards incremental object learn-
ing for an inventory assistant robot. We evaluate the approach and
demonstrate its applicability in a slightly simplified, but realistic set-
ting. We show that the configram estimation model (CGEM) outper-
forms standard approaches for accuracy estimation like cross-validation
and interleaved test/train error for active learning scenarios, thus mini-
mizing human training effort.

Keywords: Incremental learning · Active learning · Accuracy
estimation · Household robots · Mobile object recognition

1 Introduction

The application of autonomous home service robots is nowadays still limited
to constrained tasks like vacuum cleaning or lawn mowing. The main reason
for this is the unresolved difficulty of robust sensory perception in dynamic
environments [2]. One possible remedy for this limitation is keeping the human
in the loop for supervisory control and occasional take-over of responsibility for
actions or decisions of the robot. This approach can be formulated as a problem of
complementary human-machine function allocation in automation [17] or viewed
as a human-robot cooperation framework [10,15,16,24].
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An attractive means for equipping robots with the knowledge they need for
successful operation within a working domain is incremental learning from a
human teacher [7,8]. This differs from the standard concept of batch or offline
training where basically all perceptual and action knowledge has to be extracted
from exhaustive training data before its actual application on the robot. While
standalone recognition performance increases with larger batch training data
sets, generalization to real situated robot applications remains challenging [2,
18], due to the infinite combinatorial variations of environment and situation
conditions. It may also be an explicit part of the robot task to acquire new
knowledge about objects, which are not known beforehand.

If we consider human and robot as a cooperative team, they should contribute
towards a joint goal with their individual competences. In order to enhance
the robot competence the human can engage in incremental teaching of the
robot. It is then vital to monitor the learning success during teaching, like in a
human student-teacher situation. A straightforward approach would be judging
the success of learning simply by observing the robot performing the planned
task and counting its failure and success events. Adverse consequences of errors
and inefficiency of this try and error approach, however, call for more advanced
methods. Consider for example a robotic lawn mower that is trained by the owner
to avoid children toys and precious flowers on the lawn while still required to
mow over weeds and leaves (investigated by [13] for an online learning setting).

In this contribution we are interested in the continuous performance estima-
tion of an incremental learning classifier that is the basis for a cooperative task
scenario. We assume a typical (albeit simplified) inventory scenario as it has to
be done in thousands of shops around the world on a regular basis: There are a
number of different products in the shop present on displays and shelves where
all instances have to be localized and counted. This is a tedious task where the
support of a mobile robot that could assist in visually identifying large numbers
of objects would be certainly helpful. Let us assume the shop keeper teaches the
target objects based on images taken by the robot facing the shelves and dis-
play tables. In order to make this teaching as efficient as possible the following
questions have to be answered:

– Since labeling takes considerable human effort, how can we provide the most
efficient set of training data?

– How good is the expected performance of the robot object classifier under
the constraint that a certain task error rate shall not be exceeded?

The answer to the first question has been addressed in the established research
field of active learning [6], where most popular methods select samples with low-
est classifier confidence to achieve the greatest gain per each human training
input. The second question is typically answered by performing cross valida-
tion, i.e. separating a small subset of the labeled training data and evaluating
the test performance on this hold-out set. It was already demonstrated, how-
ever, that for incremental learning these two approaches are incompatible [12].
The uncertainty-based selection strategy of active learning accumulates difficult
labeling examples which in turn induce a much too pessimistic cross-validation
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error estimate. Limberg et al. [12] have developed an approach using confidence-
based semi-supervised accuracy estimation (CGEM) that can resolve this issue.

In the remainder of this manuscript we review related work in Sect. 2, rede-
fine the configram accuracy estimation approach (CGEM) from [12] in Sect. 3,
investigate its application to a teachable inventory assistant robot in Sect. 4 and
give our conclusions in Sect. 5.

2 Related Work

Estimating the competence of the interaction partner has been discussed as an
important factor for efficient and successful human-robot cooperation. Robot
errors typically have a severe impact on human trust in cooperative scenar-
ios [22], emphasizing the need for robust performance estimators.

Incremental learning for object recognition in robots has been studied as
an interesting alternative to standard batch learning approaches using offline
learning, where applicability to real robot scenarios has remained rather lim-
ited [2,18]. Kirstein et al. [8] developed a vision architecture for incremental
learning of multiple visual categories based on interactive in-hand object train-
ing. The architecture is capable of intuitive error-correction in real-time based on
corrective speech-based user feedback. The architecture was extended by recent
CNN-based feature architectures and investigated by Hasler et al. [7]. Losing
et al. [13] explored the interleaved test/train error as a means for evaluating
learning progress in an interactive training scenario for a garden robot.

Fig. 1. Illustration of our accuracy estimation
approach.

Accuracy estimation for batch
learning approaches was analyzed
by Platanios et al. [19] who esti-
mate classifier accuracy by consid-
ering the agreement rate of mul-
tiple classifiers of different types
trained with independent features.
Another recent approach by Don-
mez et al. [3] also works with a sin-
gle classifier but requires the label
distribution p(y) for evaluating a
maximum likelihood. This is appli-
cable e.g. for medical diagnosis or
handwriting recognition, where the
marginal frequency of each class is
known. Welinder et al. [26] showed
that it is possible to estimate binary
classifier precision and recall class-
wise by fitting a mixture model per
class in a histogram of confidences
and sample those mixture models
with various techniques. Aghazadeh and Carlsson [1] proposed a method to
determine the quality of a train and test set by evaluating local and global



Accuracy Estimation for an Incrementally Learning Cooperative 741

moments for each class, like intra-class variation and connectivity. They evalu-
ated this fully supervised approach via a leave one out cross validation on Pascal
VOC 2007 and could predict the final mean absolute error (MAE) of the held
out class with about 4–5% accuracy error.

Kreger et al. [9] apply a meta-learner using alternative features for predicting
the performance in a road-terrain detection for autonomous navigation.

To unite the requirements of active and incremental learning Limberg et
al. [12] have proposed a new approach to accuracy estimation based on training
an estimation model using distance information from an instance based classifier.
Further they demonstrated the advantage over cross-validation and interleaved
test/train error on benchmark data. Building on this work, we here investigate
the application of a more general approach using any classifier capable of gen-
erating confidence estimates to our scenario of a cooperative inventory robot.

3 Accuracy Estimation with CGEM

Fig. 2. A domain D contains data pools
S,S′. Our estimation model is trained on
training pool S to further monitor trainings
on test pool S′ or further pools S′′,S′′′ etc.
(not depicted).

We implement our accuracy estima-
tion approach (Fig. 1) for an incre-
mental classification learning setting,
where we use a standard incremental
learning paradigm [14] for training an
online classifier. The samples chosen
for training can be either selected ran-
domly or using active learning, where
we select new samples for labeling
based on maximal uncertainty of the
current classifier [6].

Our assumption is, that training
a sequence of labeled samples will
improve the accuracy of the classifier
over time. For improving label effi-
ciency, we may want to stop training
if the estimated accuracy of the classi-
fier falls below a desired threshold. In
an offline setting, detecting accuracy

changes can be done by querying several labeled samples. This strategy, however,
may be too inefficient and imprecise in our task setting, where human labels are
usually expensive. Because of this, our goal is to construct an estimator that
takes the usually high number of unlabeled samples into account.

For formal definition we denote by D the data set that characterizes our
domain (see Fig. 2). Data pools S and S′ are distinct subsets within D, where
each subset consists of an unlabeled and a labeled pool (U, L and U′, L′ respec-
tively).

We start training with an empty L. A querying function is used to select
samples in minibatches with size B from U. This can be done either randomly or
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uncertainty-based. These minibatches are labeled by an oracle, which is typically
a human annotator or another ground truth source. While training, samples
from the unlabeled pool U become labeled and moved into the labeled pool L.
In parallel, the classifier C is trained online with the new samples. We train the
classifier with a number of minibatches N .

Formally, our classifier – in the following denoted as working classifier – is
given as a function y = Cθ (u) that maps unlabeled data item u into its class label
y and θ denotes the adaptive classifier parameters. Also, our working classifier
needs to have a confidence measure cp(u,θ) ∈ [0, 1] that describes how reliable
input u can be classified, when preceding training led to classifier parameters θ.

The generation of accuracy estimator M is done for a particular working
classifier as a separate learning or regression task. Once constructed, it can be
applied to monitor trainings of various instances of the same kind of working
classifier. The regression model is trained with statistics of some initial incre-
mental training runs of a number of working classifier instances for generating
the ground truth data for training the regression model M .

The statistics, denoted as φ(U,θ), have to map to the working classifiers
accuracy predicting samples from pool U. This accuracy value is then the desired
output a = M(φ(U,θ)) of the accuracy estimation model M . For the input fea-
ture vector φ(U,θ) we use confidence histograms (“configrams”) that we com-
pute from the working classifier’s confidence measure. The established approach
of Platt et al. [20] consists of fitting a sigmoidal transfer function to the distri-
bution of confidences. You may consider our approach as fitting the regression
model M to the higher-dimensional space of configrams φ(U,θ).

The configrams are computed as follows: we create J-dimensional confidence
histograms over “confidence bins” of width K = 1/J in the confidence inter-
val [0,1], based on sampling a “representative” subset of our data pool. The
histogram count φj of bin j, j=1..J , is thus given as

φj =
∑

u∈U

D(u, j) with the bin membership indicator function

D(u, j) =

{
1 if (j − 1) · K ≤ cp(u,θ) < j · K

0 else

and U a suitably large subset of D. Each histogram φ(U,θ) will be a single
input point for the regression model M . To determine this model, we need many
such points.

Also the model should be capable of predicting working classifiers in any
training state. Therefore we are not collecting a single histogram per classifier
instance, but rather a sequence of n=1,2,..N histograms covering various states of
training. This sequence is obtained in a similar fashion as in the later application:
samples are queried in minibatches which are counted by the index n. Each
new minibatch leads to an incremental update of the working classifier with
changed adaptive parameters θn and corresponding histogram counts φnj that
now depend on training state n together with bin number j. In this way, we get
a sequence of input feature vectors φn, component-wise given as:
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φnj =
∑

u∈U

Dn(u, j) with the bin membership indicator function

Dn(u, j) =

{
1 if (j − 1) · K ≤ cp(u,θn) < j · K

0 else

Finally, for each training state n and sample u we need to know whether the
prediction ŷu = Cθn

(u) coincides with the true label yu or not:

L0/1(y, ŷ) =

{
0, if y = ŷ

1, else
; Their average an(U, Cθn) =

1

|U|
∑
u∈U

1 − L0/1(yu, ŷu)

represents the ground truth accuracy that is linked to histogram vector φn. Note,
that this step requires access to all ground truth labels of set U. Finally, we are
stacking all φn(U,θ) and an(U, Cθ ) into two vectors. To generate more of these
configram-accuracy pairs, we are training not only one classifier instance but
a classifier ensemble with Q instances C1..Q of the same working classifier but
trained from different initializations (random queries from U).

After training the ensemble of classifiers and collecting configram sets, they
are stacked to a feature vector Φ. Analogously the ground truth accuracies are
stacked to a vector A. Our accuracy estimator M is an arbitrary regression
model, trained with (Φ,A) as features and target values. We tested various
common regression models [4] where Nearest neighbor regression (NNR) was
the most reliable approach on our data, so we select NNR to be used in our
further evaluation.

save

Working Classifier

Accuracy Estimation Model

train

Sample Batch Querying on
Training Set

repeat

Calculation of Configrams
and Ground Truth Accuracy

train

Configrams and Ground
Truth Accuracy

2. Train Accuracy Estimation Model

3. Apply Accuracy Estimation Model

test

Working Classifier

train

Sample Batch Querying on
Testing Set

repeat

Accuracy Estimation Model

1. Collect Training Data

Fig. 3. Workflow of accuracy estimation

Once the Configram Estimation Model (CGEM) M has been obtained, it
can be applied to working classifiers trained on pool U′ whose statistics (confi-
grams) may differ from pool U, based on which M was trained. The model will
then extrapolate what is has learned from U about the relationship between
configrams and output accuracy of an incrementally trained working classifier
instance and thereby permit on U′ very quick accuracy predictions. Another
advantage is that we do not have to query any labels from U′ for the accuracy
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estimation to be applicable. However, the extrapolation assumes that the domain
D is sufficiently homogeneous so that new pools drawn from D have a high like-
lihood to be sufficiently similar to the model training pool S to admit the above
accuracy extrapolation through the model M . The workflow of training and
applying M is shown in Fig. 3.

Also note, that we deal with two different quality measures namely the accu-
racy of Cθ , defined as Working Classifier Accuracy (WCA). However, more inter-
esting for us is the error estimating with M on test set U′, namely Accuracy
Estimation Error (AEE).

4 Experimental Evaluation

Our robot is a Scitos G5 from Metralabs [7] (see Fig. 4 left). With the attached
Kinect 2 RGBD-camera, it is capable of recognizing its environment in RGB-
color with additional depth information. This, together with the self-localization
capabilities of the robot, can then be used for extracting global spatial coordi-
nates of detected objects.

4.1 Setup

Let us define our inventory assistant robot setup:

Fig. 4. Left: Our service robot capturing
objects in a cluttered shelf. Right: Some
class representatives from our recorded real
world object data set CUPSNBOTTLES.
The number of a class’s object samples is
given in brackets.

i) Before the actual inventory
task the CGEM accuracy estimation
model is trained on a set of example
object classes (set S) which are not
necessarily used later in the task (we
actually exclude them in our exper-
iment). The purpose of this train-
ing is to learn the typical mapping
from generic confidence histograms to
the actual classifier accuracy for this
generic object classification task.

ii) At the start of the inventory
task the robot drives around and
takes a few images covering a typi-
cal share of the work space containing
all objects to be inventorized and thus
having to be detected and classified.

iii) A human iteratively labels an
automatically selected (active learn-
ing or random sampling) set of object
samples (from set U′ ) for training classifier C ′. CGEM estimates the accuracy
and the human continues labeling until a desired threshold accuracy is reached.

iv) Using the trained classification model from step iii), the robot drives
around the location and takes further images containing object samples (set U′)
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covering the complete area to be scanned. Then, it detects, classifies and counts
all target object instances.

To allow controlled and repeatable experiments we emulate the steps i)-iv)
using one collected set of images (see Fig. 4 right), which we split into different
subsets used in steps i)-iv). Each image contains object region proposals which
we call object samples and which have an estimated 3D position. We want to
count the number of object instances of a particular object class. To count the
class instances in the room we cluster the object sample spatial coordinates into
object clusters (see Fig. 5) and we predict a cluster label by taking a majority
vote on the classified labels within the cluster.

By comparing the estimated number of object instances to the ground truth
number of instances, we can calculate a task performance measure how well
the inventory was done. Our goal is also to evaluate how the task performance
depends on the estimated accuracy.

4.2 Experiments

Fig. 5. Spatial positions of recorded object
samples, labeled with ground truth classes.
Samples are clustered only based on their
spatial position and classified by an incre-
mentally trained classifier. Each cluster’s
label is then defined by majority vote. The
task performance is calculated by compar-
ing the clusters labels to ground truth num-
ber of class instances.

Our evaluation data set was recorded
with our service robot in a cluttered
laboratory environment (see Fig. 4).
We used the robot to approach five
way points to record objects that were
located on different kind of furni-
ture. On each way point, the robot
did a -30◦ followed by a 60◦ turn
for acquiring more images from dif-
ferent viewing angles. All the time,
the robot is patrolling its prede-
fined path, we compute axis aligned
bounding box object region proposals
using the YOLO object detector [21],
pre-trained on the COCO data set.
From the bounding box region pro-
posals, visual object features are cal-
culated online by VGG19 deep con-
volutional net [25], which was pre-
trained on imagenet data. Classifica-
tion is trained incrementally based on

this feature output.
Since the robot moves quite fast, there are blurry object samples within the

data set. However, while the robot is turning at a waypoint, by empirical obser-
vation we make sure that all object instances are detected by YOLO and there
are at most single frames where an object instance is missed. For simplifying our
experiments, we include only object samples which have the YOLO-classes cup
or bottle, however we consider these as meta categories which can be divided into
different kind of e.g. bottles (see Fig. 4 right). Also, we exclude object samples
with a YOLO-confidence with less than 20% and a distance greater than 2 m.
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The total number of frames is 515 with 2179 resulting object samples in the data
set. We published the data set for the community on an open access repository1.

As mentioned earlier, our robot can locate the recognized object samples
spatially in a 3d map. For instance the spatial position of the recorded object
samples from the shelf (Fig. 4) can be seen in Fig. 5 at xy-coordinates (-6,-2). We
cluster this spatial samples, to further count object instances, using constrained
DBSCAN [23], where we add cannot-link-constrains of different object samples
within the same camera frame. This represents the assumption that each present
object is detected only once within a frame, which is satisfied by the YOLO
output according to our parameter choices. Based on this clustering, we define
the class of an actual cluster based on the majority vote of its contained samples.

Note that the region proposals generated by YOLO are not perfect and there
can also be clutter. In our data set, there is a share of 5.5% remaining clutter
images. Those images are exceeding the YOLO confidence threshold but they
are containing other than the target objects, multiple objects or the bounding
box is not centered correctly. To simulate a real world application, all algorithm
(including CGEM) have to work also in the presence of clutter in the data set.
Since clutter can not be avoided completely, we want to address this also in our
evaluation, where clutter images are not used for classifier training (neither by
Cθ or Cθ ′), since we assume that human labelers only label images of the target
classes (and reject possible clutter images). However, clutter can be contained in
the unsupervised training data (set U′) for the accuracy estimator. The clutter
images then contribute to the configram feature vectors, typically with lower
confidences than proper object samples. We have investigated the effect on the
accuracy estimation if either i) clutter samples are both contained in U and U′:
denoted as CC, ii) only in U and not in U′: denoted as CN, iii) not in U and only
in U′: denoted as NC, or iv) neither in U nor U′ :NN. It would be reasonable
to assume that training and testing conditions should match, so cases CC and
NN should be expected to provide best results.

In our evaluation, we define our domains S and S′ by splitting up the 10
recorded object classes into random splits of 5 classes. The clutter class was
randomly split up between S and S′. Another experimental dimension is the
querying technique for selecting samples for human labeling. We consider the two
alternatives of random sampling or active learning using maximum uncertainty
sampling. For the latter we use the classifier to calculate confidence estimates
for all samples within the unlabeled pool and select the sample with the least
confidence for labeling/training.

For our evaluation we trained 100 single-sample mini batches by a k nearest
neighbor (kNN) classifier. We chose kNN since it is a robust classifier which is
flexible in incremental learning based on deep feature outputs with high accu-
racy [5,11]. As baseline models we choose a 5-fold cross validation (CV) and also
we use interleaved test/train error with a window size of 20 samples. We choose
to have Q = 5 classifiers in our ensemble and we repeat each experiment W = 15
times for averaging our results.

1 https://ieee-dataport.org/open-access/cupsnbottles.

https://ieee-dataport.org/open-access/cupsnbottles
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We calculate the clustering, with constrained DBSCAN as described above,
on the samples from S′. To make sure that an optimal task performance of 100%
can be attainable, we check if the correct number of class instances can be found
if all the samples were labeled with ground truth data.

4.3 Results

The data set evaluation results can be seen in Table 1 in condensed form.

Table 1. Experimental results of accuracy estimation with cross validation (CV),
interleaved test/train error (ITT) and CGEM on our inventory object data set. For
testing, 5 different objects were used, that were not in the train set. The presence of
clutter (CC/NN/NC/CN) has no significant effect on the accuracy estimation quality.

Random sampling CC NN NC CN Average

Accuracy Estimation Error CV 0.071 0.07 0.073 0.073 0.072

ITT 0.093 0.093 0.097 0.095 0.094

CGEM 0.048 0.045 0.048 0.045 0.047

Final classifier accuracy 0.978 0.974 0.975 0.976

Uncertainty sampling CC NN NC CN average

Accuracy Estimation Error CV 0.3 0.298 0.297 0.294 0.297

ITT 0.353 0.358 0.345 0.364 0.355

CGEM 0.037 0.038 0.038 0.039 0.038

Final classifier accuracy 1.0 1.0 1.0 1.0

We see that CGEM is capable of predicting KNN’s accuracy with the best
precision in this realistic task compared to CV and ITT. The effect of having
clutter samples in S or S′ is not significant in our experiment, probably due to
the low share of clutter samples (5.5%).

From Table 1 one can also clearly see that the baseline models are highly
affected by active learning since they only depend on set L′, where the most
uncertain sample is selected by the uncertainty-based querying strategy. So the
performance of Cθ ′ on L′ is very different from U′. CGEM can adapt to this
since it is also taking unlabeled samples from U′ into account.

The advantage of uncertainty-based over random sampling can also be seen
by comparing the left versus the right plot of Fig. 6, which both depict training
on the NC data set condition. Using uncertainty sampling, the task is done
(task error below 5%) in less than 40 trained samples whereas random sampling
requires nearly 60 samples to achieve the same task performance. This further
motivates using an active querying of samples.

It can also be seen that the task performance directly depends on the accuracy
estimate. This effect is even more visible by looking at the averaged plots. By
defining a threshold for a minimum desired classifier accuracy, one can predict
that the task is done with a certain performance.
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Fig. 6. Incremental classifier training using random sampling (left) and uncertainty
sampling (right). Ground truth accuracy of classifier Cθ ′ on testing set S′ together
with evaluated approaches for estimating the classifier’s accuracy (AEE) are displayed.
The results were averaged over 15 repetitions with random object classes in the train
and test splits (S, S′).

5 Conclusion

We have demonstrated the application of the CGEM accuracy estimation model
towards a simplified inventory assistant robot task setting. We could show that
in using a generic accuracy estimator we can predict the classification perfor-
mance after incremental teaching by a human labeler using an active learning
approach. This makes human teaching maximally efficient because we can limit
the necessary training towards the desired accuracy of the task.

In our scenario we tested a limited number of objects and instances. We
also excluded situations of strong object occlusion and crowding. A realistic
application would of course naturally also contain these more difficult conditions.
However, for the range of scenarios where these difficult conditions are absent
even the robot assistant with the present algorithm could already be useful.
Apart from that, if the general detection and recognition performance can be
enhanced, the configram estimation approach can still be applied, if the classifier
delivers meaningful confidences (cp. results on benchmarks data sets in [12]).
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Abstract. In the current exploring of interpreting human activities of
daily living (ADLs), rarely we can see a specific model for training robot
helpers, which in some domains has shown promising prototypes. In our
proposed scenario, we aim to build a model for training a robot helper
to assist human being to conduct certain activities, and for this, we are
interested in (1) which objects will the subject interact with; (2) how will
the subject interacts the object, or in this paper, how will the objects
moving; So that in limited conditions the robotic helper can help the
human conduct such interactions. The setting also includes a fixed IR
based stereo camera and based on its RGB-D stream feed we utilise a
generative adversarial network (GAN) for the objective movement pre-
diction. Then object detection is applied to the produced future frame,
which is compared with the last input frame, to resolve the movement
of the object. IR frame is also handled, to produce the 3D distance of
the object to the camera, leading to the actual 3D location of the object
in the certain feature time frame. Experiment results show promising in
our model.

Keywords: Future frame prediction · RGB-D video · Robotic helper ·
GAN

1 Introduction

Evolving from early forms of automatons and human resembling mechanisms,
in the last decades, various projects have been done to mimic human beings to
some extent in their appearances, actions, and speaking. Apart from the fancy
androids and the fantasy of building human-like robots, there evolving one more
practical kind, industrial or specialised robots, which has less restriction, at the
current stage are more common. Despite their shapes and behaviours can be
largely different from humans, the ultimate goals of such robots is acting as
helpers and working or even living along with us.

While as the maturing of robotics technologies today, studies has emerged to
bring robot helpers in various forms to homes and daily livings [22]. However,
in their current stage, although there exist some interactions with human, it is
still far from intimate collaboration.
c© Springer Nature Switzerland AG 2020
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Nevertheless, one key part of such a system would be resolving what the
subject is doing or what will happen next. Current studies on behaviour or
intention prediction are promising and can handle various input sources such
as environmental sensors, the status of home appliances and wearable sensors.
Yet, they often targeted to get the general idea of what kind of activity would
happen next, and it is still hard to have a refined prediction on what immediate
move would happen. Although this may be good enough for a helper robot to
finish the task by its own, an intimate collaboration with the subject can be
challenging in such granularity.

Initial studies of intimate collaborative robots can be found, while most are
focused on specialised services, especially for the elders or telecare. Few studies
on collaborative robots can be found, while rarely they are designed for everyday
activities. Hence here in this paper, we propose a general framework for predict
human intention specifically for robot helpers in Activities of Daily Living (ADL)
scenario. Instead of in verbatim output what the subject is doing, we aim to
jointly predict/infer what object and how will the object be interacted by the
subject.

On the other hand, recent popping up GAN based frame prediction has been
showing considerable good results for relatively near future. And this short-
term basis prediction matches exactly what is lacking in traditional activity
prediction. Thus, this approach can be useful in our scenario, and specifically,
we propose to adopt a fixed IR-based stereo camera, such as Microsoft Kinect
or Intel RealSense Depth Camera, to capture RGB-D data, which often have
built-in sensors for human skeleton recognition, i.e. human pose information.
Along with recently developed rapid object recognition algorithms, specifically
in our case ‘Mask R-CNN’ [5], we can easily list the interactable objects in the
scene. Our objectives here are specifically: (1) which objects will the subject
interact with; (2) how will the subject interacts the object. In the current stage,
we propose to predict human action in the scenario of training robotic helper of
Activities of daily living (ADL), thus the objective 2 will come down to how the
objects will move, so that in limited conditions the robotic helper can help the
human conduct such interactions. Based on the RGB-D stream feed from the
camera, we utilise a generative adversarial network (GAN) for the prediction.
Given a time range of single human-object interaction, the first step is to select
the most likely object the subject will be interactive with, which can be easily
discriminated by comparing the actual feature frames with the previous one
when training; And the second step will be training a generator produce the
following states of the object been interacted, i.e. the 3D location of the object
in the certain feature time frame.

The rest of this paper is organised as follows: Sect. 2 sum up some important
related works and briefly talks about some insights on how this framework is
designed; Sect. 3 overviews the framework with detailed explanations; Sect. 4
introduces the evaluation dataset and setups, as well as discussion on experiment
results; Sect. 5 conclude this paper with a summary and some thoughts on future
works.
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2 Related Works

Early studies on human intentions start with human and object recognition,
often rely on pictures or 2D video clips [4,16] and focus on modelling events,
while later transited to study human actions in 3D spaces [3,30]. At this stage
modelling and representation of human actions emerged [18,25] along with more
complex sensors such as depth cameras [23,24]. Representation for human inten-
tions is rarely seen and limited to very definite states, often modelled by ontolo-
gies [20] and built to purposes at this stage. It has not been widely developed
until recent booming of machine learning technologies [9,31]. Still, most stud-
ies are perfecting recognising human actions by various sources of input, while
very limited works focus on inferring the intention of the subjects, which can
be argued at least equally worthy investigating, especially in critical situations
where pre-emptive actions are essential.

In the current exploring of interpreting human intentions, gaze estimation has
been the interests of researchers [7,15,19]. While it is very effective for intention
recognition for the moment of current inputs [28], such methods are often quite
computing intensive already, which potentially can be used for intention predic-
tion, yet that would make the model sensitive to parameter tuning, computation
cost exponential and limit its application. Considering studies in Human Activity
Recognition (HAR) often utilise wearable Inertial Measurement Units (IMUs)
to estimate the poses of human subjects, to recognises elementary and complex
activities, and achieved desirable results, we can adopt a similar approach for
our objectives, and using human poses as one of our fundamental features. Yet
in those studies, the objects been interacted with are usually either pre-equipped
with sensors or associated with sensors to monitoring their status. And this is
often not feasible and require specialisations to set up.

As for future frame prediction, it is popping up with a recent wave of neural
networks. Starting from applying Deep RNN such as ConvLSTM, such prediction
has been largely avoided blurry artefacts, and PredNet [10] by Lotter et al. can
be one successful example. Adversarial training also proved effective in this task,
and received many attentions, Vondrick et al. in [26] shows GAN can produce
meaningful and vivid short video clips, and Mathieu et al. [13] further alleviate
the blurry issue by introducing a gradient difference Loss. Motion constrains [2,
6,17] are also considered to produce more temporal sensible results [1,8].

3 Methodology

3.1 Overview

The general idea of our proposed work is to predict future RGB-D frames based
on the stereo camera input, and compare them to the current frames in RGB-
D, so that we can get the idea which object (active object) will be moved and
where would it be moved to. Then the current position of the active object
and its possible short-term destination can be resolved and sent to our robot
helper. Figure 1 shows the idea of our framework. Specifically, our input is Human
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Fig. 1. The framework of our GAN for prediction (a). Here we adapt U-Net as our
generator G, and pre-trained SpyNet to calculate the optical flow for motion constrain.
(b) demonstrates the outcome of our whole system in RGB Frames, as the object is
detected in the prediction results following frames in sequences where the movement
and the active object can be inferred. The depth position can be worked out in the
same manner.

performs ADLs in RGB-D data recorded by active IR-based stereo cameras, such
as Microsoft Kinect or Intel RealSense Depth Camera. Given a timestamp, the
input consists of an RGB frame, an IR frame containing depth information. And
in our setting, we assume the camera is fixed.

Formally, we noted Tasks in ADLs as T = {T1, T2, . . . , TN}, and each task
is made up with a sequential of elementary activities A = {a1, a2, . . . , aM}. I is
the input which according to frames have tuples I = {(It,Dt)|t = 1, 2, . . . , T }
where on frame t, It is the RGB frame and Dt is the depth inclusive IR frame.
We can infer a point has the position in 3D P by combining a projected 2D
position in RGB frame and IR frame.

Suppose in the scene we found a set of objects o = o1, . . . o2, . . . , oK . The
general objectives in this work is now to find 1)the object ok in elementary task
am is touched continuously by one of the hands h ∈ H in the certain frames
from t1 to t2, and 2) the object ok moved from its location Pt to Pt+τ . Here we
utilize Mask R-CNN [5] for object recognition in the 2D space.

Generative adversarial networks (GAN) has been widely studied recently
in short-term future frame predictions, which predicts a few future frames
based on recent ones. Especially Least Squares Generative Adversarial Networks
(LSGAN) by Mao et al. [12], has a modified loss function for the discriminator
and been proved effective in stably generating high-quality images. Following
the work by Liu et al. [8], we also adapt LSGAN with a U-Net based prediction
network as our generator plus optical flow as constrain, which is illustrated in
Fig. 1a. The discriminator D in this model is standard convolutions with fully
connected layers and ReLu non-linearities as in [13].
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LSGAN Discriminator Training. The Target of discriminator D is to dis-
tinguish the ground truth I = (It+1;Dt+1) and Î = ( ˆIt+1; ˆDt+1). Denote the
output of discriminator as D(·), true as class 1 and false as class 0, i, j is the
spatial patches indices, given the weights of generator fixed, we can have a Mean
Square Error (MSE) Loss:

LD(I, Î) =
∑

i,j

1
2
MSE(D(I)i,j , 1) +

∑

i,j

1
2
MSE(D(Î)i,j , 0) (1)

LSGAN Generator Training. As the generator is set to fool discriminator,
i.e make the D classify Î into class 1. The simple goal of training G can be an
MSE loss as:

LG
a(Î) =

∑

i,j

1
2
MSE(D(Î)i,j , 1) (2)

In practice, this adversarial pair of loss will result in an overall unstable model
as the training will continue, where a regularisation is needed to constrain it.
We added a LP loss in this case. As in the study by Liu et al. [8] and Mathieu
et al. [13], apply Image Gradient Difference Loss as constrain can yield closer
results to truth and sharpen the image, it is also combined to our model, and
which is defined as:

Lgd(I, Î) =
∑

i,j

|||(Î)i,j − Î)i−1,j)| − |I)i,j − I)i−1,j |||1

+|||(Î)i,j − Î)i,j−1)| − |I)i,j − I)i,j−1|||1
(3)

Although most future frame generation works can deliver meaningful and
sensible results, few have motion relation between frames explicitly considered.
This may not so desirable not only for critical event detection such as in [8],
but also may add odd in our scenario in terms of human-robot collaboration.
Given the architecture of GAN is already quite complex and costly to train,
we propose to utilize a relatively lightweight and fast Spatial PYramid Network
(SpyNet) [17] as the motion constrain. Even pre-trained, the SpyNet is reportedly
faster than their previous works such as Flownet [2] and Flownet 2.0 [6] Denote
the pre-trained SpyNet as Fop, we have:

Lop( ˆIt+1, It+1, It) = ||Fop( ˆIt+1, It) − Fop(It+1, It)||1 (4)

With parameters, we can now combine the loss for training G, as:

LG = λaLG
a + λpLp + λgdLgd + λopLop (5)

4 Experiment

4.1 Dataset

We use NTU RGB+D dataset [21] to train and test our proposed framework.
The dataset is rather large with 56,880 videos for 60 action classes, 40 subjects,
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Fig. 2. Sample of visualization of RGB-D frames and optical flows in Setup 1, Camera
1, Subject 8, Repeat 2 for Action 6: (a) shows RGB frame 15, 16 and their optical flow,
(b) shows IR Frames respectly; So is (c) and (b) for frame 16, 17.

and 80 viewpoints. The RGB-D video is collected by Microsoft Kinect v2, with
RGB, Depth, IR and 3D human joints (skeleton) available. Since in our scenario,
we assume the camera is fixed, we selected camera 001 as our viewpoint and step
up number 001 as our scenario. This left us 960 pairs of RGB and IR videos,
including 8 subjects, 60 actions with 2 repeats each. It is also worth mentioning
that some actions may not have object involved. We also included such actions
to fully evaluated our prediction networks, while in our last step, the detected
objects shall have no move between frames.

4.2 Hyper-parameter Tuning

Hyper-parameter settings usually can largely affect experiment results and can
be crucial to machine learning approaches. Despite relatively complex fusion in
our setting for training our Generator G, the total number of hyper-parameters
are still manageable and we can safely apply Orthogonal Array Testing here.
Namely we have λa, λp, λgd and λop for fusion of loss functions in training G,
Learning rate lrD, lrG for optimizing D and G respectively. Detailed results can
be found in Table 1.
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Table 1. Comparison of different hyper-parameter settings.

Test # Hyper-parameters Metrics PSNR

λa λp λgd λop lrG lrD

1 0.02 0.5 0.5 1.5 0.0002 0.0005 19.23

2 0.05 0.5 0.5 1.5 0.0002 0.0005 22.30

3 0.08 0.5 0.5 1.5 0.0002 0.0005 22.18

4 0.05 1.0 0.5 1.5 0.0002 0.0005 26.41

5 0.05 1.5 0.5 1.5 0.0002 0.0005 22.30

6 0.05 1.0 1.0 1.5 0.0002 0.0005 27.77

7 0.05 1.0 1.5 1.5 0.0002 0.0005 27.60

8 0.05 1.0 1.0 2.0 0.0002 0.0005 27.31

9 0.05 1.0 1.0 2.5 0.0002 0.0005 29.13

10 0.05 1.0 1.0 2.0 0.0005 0.0005 29.84

11 0.05 1.0 1.0 2.0 0.0008 0.0005 29.82

12 0.05 1.0 1.0 2.0 0.0005 0.0010 29.33

13 0.05 1.0 1.0 2.0 0.0005 0.0015 30.10

Best 0.05 1.0 1.0 2.0 0.0005 0.0010 30.10

4.3 Experiment Settings

To train our prediction GAN, we cropped all video frames to the short edge size
of IR video, that is 424 pixels, as the input to the U-Net in our settings. D is
As for the input frames, we set the t to 4, i.e. using 4 previous frames to predict
next one; Adam SDG is used for learning parameters, where the learning rate
is set for G and D to 0.0005 and 0.001; λa, λp, λgd and λop is set to 0.05, 1, 1,
and 2 respectively. Noted that in this study the RGB frame and Depth Frame
is treated separately.

Table 2. Comparison of quality of produced images based on the same set of data
described in Sect. 4.1.

RGB IR

PSNR SSIM Sharpness PSNR SSIM Sharpness

ConvLSTM [29] 26.24 0.73 0.31 22.97 0.48 0.27

ConvVRNN [11] 27.80 0.76 0.37 21.20 0.44 0.28

PredNet [10] 24.60 0.71 0.34 20.61 0.52 0.23

Ours 30.10 0.74 0.36 21.84 0.40 0.19
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4.4 Quantitative Evaluations

Since it is notably difficult and not quite feasible to quantitatively evaluate
robot actions, as well as the system will produce fresh results and correct itself
during the runtime, in this study, we focus on evaluating the quality of the
produced frames by our GAN module. This is critical because that the generated
frames must be clear and sensible enough for the next step, in particular, the
comparisons to the original frames to find out which object is moved and how
it is moving. Noted that we observed that in practice small runtime error can

Fig. 3. Sample of ground truth and output of RGB-D frames in Setup 1, Camera 1,
Subject 8, Repeat 2 for Action 6: (a–f) shows RGB frames and (g–l) shows IR Frames.
Respectively the upper image is Ground Truth while the lower is our output.

Fig. 4. Sample of output errors with ground truth. Respectively the upper image is
Ground Truth while the lower is our output.
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be tolerated as the system is running lively and the inputs are continuously
updating.

The quality of image predictions are usually measured with Peak Signal to
Noise Ratio (PSNR) and sharpness (CPBD) [14] between the ground truth and
generated ones.

PSNR(Y, Ŷ ) = 10log10
max2

Ŷ
1
N

∑N
i=o(Yi − Ŷi)2

(6)

Also, Structure Similarity Index Measure (SSIM) by Wang et al. [27] is also quite
popular.

Detailed comparison on quality of produced image frames can be found in
Table 2, where the number in bold is the best in the column. It can be observed,
for RGB frames, our method is, in general, the best, which slightly merit over
PredNet by Cox Lab in Berkeley, while in terms of IR frames, our model produces
fewer noises, but not so sharp output. By visualizing the optical flow, this was
further supported, as it can be easily told that the model picked up much more
‘motions‘ in IR frame than the RGB ones, which in our observation are essentially
recording noises.

Some samples of side-by-side comparison of ground truth and output of RGB-
D frames are shown in Fig. 3, where most of the outputs are quite similar to the
ground truth, given minor blurry sections presented and some minor differences
in the subject poses.

Noted that in our observations, there exist some outputs are different to the
ground truth (see in Fig. 4), especially in IR frames: saying the groud truth is
picking up objects from the ground, while the predictions showing the subject is
standstill; Or there are some kind of “ghost images” presented as in the output
there may have a second person partly overlapped with the primary subject. It
could be caused by different subject acting patterns are changing in the training
data, while further studies may be required to confirm it. These are expected
limitations on our proposed method, which is rare and can be treated as outliers.
The overall effectiveness is still promising.

4.5 Use Case

We combined the working model with human activity predictions system in a
real-life scenario for better demonstration and evaluation. As shown in Fig. 5,
here we deploy a robot arm in a scene with the proposed approach, which can
move according to instructions, grip and release. Also, we employed a visual
tracking based behaviour recognition system as the input for semantic intention
inferring, which will be decomposed into fine procedures and carried on by the
robotic arm.

In this scenario, the subject wants to make a cup of tea: Firstly, the subject
walks towards the testbed, where a robot arm is set on the desk with RGB-D
stereo cameras towards the scene. When the system detects the subject put down
mug near the robot arm, tea bag and teaspoon with hot water, the intention of
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making tea is clear. Thus the system directs robot arm put a tea bag into the
mug, followed by the spoon. For a better understanding of the scenario, the
demonstration is available in the link1.

Fig. 5. Applying case of this proposed framework: Working with intention prediction
in ADL to help make a tea.

5 Conclusion

In this paper, we present an RGB-D video frame prediction-based approach to
estimate human promoted object movement, for robot helper in ADL scenario.
The proposed framework was tested on a real-world dataset. The evaluation
shows the effectiveness of RGB-D video frame prediction and the feasibility of
using it for object movement estimations. The main advantage of this approach
is the system is easy to set up and require no pre-installed environmental sensors
or wearable sensors, which often may not desirable. While we also understand
of the limitation of the proposed framework and extensive further study may be
required: The testing dataset is still in a fine controlled scenario with limited
objects on sight, which is quite different to the daily living scenario, especially
considering part of our approach involving object detection; In the future study
we are also looking to coupling optical flow for the reasoning of target object
movement, to simplify the procedures of the whole system; Also the in a live
test of robot helper, as a moving object itself insight, it can be influential to our
optical flow module, which requires further evaluation.

Acknowledgements. This research was supported by grant ONRG NICOP N62909-
19-1-2009.
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Abstract. Soft robotics is an area that is promising with its vast appli-
cation space. One of the challenging aspects of this branch of robotics
is the control of soft structures. This paper proposes a neural central
pattern generator (CPG) based control architecture using an amplitude-
adaptive oscillator for the movement of a low cost, pneumatically actu-
ated soft robotic tentacle with three air chambers. The CPG is created
using an SO(2) oscillator that generates half-sinusoidal outputs for pneu-
matic control. Through the use of an adaptation mechanism, the Dual
Integral Learner (DIL), the parameters of the CPG are modulated to
generate oscillatory signals of larger or smaller amplitude upon external
perturbations to the system. The proposed neural control is implemented
on the physical system and its validity is tested through physical restric-
tion of the pneumatic air supply to the soft robotic tentacle.

Keywords: Soft robotics · Neurorobotics · Adaptive control ·
Neurodynamics · Plasticity

1 Introduction

Over the past decade, the interest in soft robotics has been on the rise due to ever
increasing demands of safe, human-friendly cobots [1]. Still, the control of such
systems is a highly complex matter, due to the compliant nature of the materials
and lack of modelling hereof. Robots consisting of soft materials can in theory
exhibit infinite degrees of freedom, and are very difficult to model kinematically,
leading to the need for novel approaches to traditional control theory [2].

For a rigid robot, the joint positions can be processed by forwards kinemat-
ics to determine the configuration of the robot and position of the end-effector,
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and inverse kinematics can be used to determine joint positions given a desired
placement of the end-effector. Similar calculations are not appropriate for their
soft counterparts. Additionally, soft robots made entirely of elastomers are typ-
ically under-actuated, as they also hold many passive degrees of freedom and
when actuated by fluids, the soft robots are not able to fully compensate for
the gravitational loading due to limited available input pressure of the fluid [2].
Just as with rigid articulated robots, accurate control of soft robots requires
model-based prediction of every possible configuration. Therefore such models
are complex and computationally heavy.

Currently, many soft robots are either empirically open-loop controlled or
manually controlled. This is partly due to sensing in soft robotics still being
a rather new field, with few studies on data interpretations, as well as current
shape reconstruction algorithms being oversimplified [1]. However, efforts are
made to advance simulation, modelling and control of soft robots [3–5]. Addi-
tionally, artificial neural networks and machine learning approaches are gaining
increased attention to obtain data-driven models of soft robots [6–8]. Nonethe-
less, a common problem with data-driven algorithms is that they are domain-
specific, which entails an ineffective learnt model if the domain changes slightly
[9]. Furthermore, such control algorithms rely on large data sets for training the
model, which, when working with a physical system, are difficult to obtain. For
this reason, it is beneficial to develop a model free approach to the control of
soft robots.

Towards this goal of model free learning in soft robots through the use of
sensory feedback, this paper seeks to combine the rythmic motions generated by
a central pattern generator (CPG) with an adaptive mechanism, known as the
Dual Integral Learner (DIL)[10] for movement generation and online adaptation
of a soft robotic tentacle. For the present setup, pressure sensors are used as
sensory feedback and the DIL will adapt the amplitude of the oscillations of the
CPG online, which directly translates to a change in the amplitude of movement
in the tentacle. The adaptive control system was successfully implemented on
a physical setup, with which several experiments were conducted to test the
performance of the proposed adaptive control architecture.

2 Soft Robotic Tentacle

The soft robotic tentacle is inspired by soft continuum structures found in natu-
ral organisms such as the octopus’ arm. In nature, the octopus arm is remarkably
capable of both shortening and elongation, while having the ability to bend and
twist in any direction. To mimic this compliant structure, a silicone tentacle
[11] has been fabricated with three parallel volumes for pneumatic actuation as
depicted in Fig. 1. The tentacle is cast in blue Ecoflex 00-30, in which fiber rein-
forcements in the form of braided fishing line in the outer wall of the tentacle have
been implanted to prevent the parallel volumes from expanding radially. The ten-
tacle is hung from a laboratory stand with a 3D-printed mount as depicted in
Figs. 1a and 1b. To actuate the three air chambers of the robot, a control board
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was assembled based upon the Soft Robotics Toolkit Control Board [12], which
is an open source hardware platform for controlling soft actuators. The control
board contains power MOSFETs to control the on/off switching of the on-board
solenoid valves. This enables the use of pulse width modulation (PWM) to con-
trol the air flow to the valves by regulating the pulses sent to the valves, opening
and closing them rapidly. Varying the length of the pulses will affect the amount
of time the valve is either open or closed, which in turn leads to an adjustment in
chamber pressure. Three pressure sensors are placed on the control board that
is interfaced with an Arduino Mega 2560 to feed back pressure sensor readings
at 100 Hz. The control board alongside the soft robotic tentacle is depicted in
Fig. 1a.

(a) (b) (c)

Fig. 1. The soft robotic tentacle and the test bench. (a) The setup with the blue
tentacle connected with tubing to the control board. (b) The tentacle seen from the
back, where the three PVC tubes supplying air for actuation are visible. (c) A 3D
rendered cross-sectional view of the tentacle. (Color figure online)

3 Adaptive Neural Control and Implementation

The soft robotic tentacle is controlled by an adaptive neural CPG-based control,
which utilizes feedback from the aforementioned pressure sensors to modulate
the actuation amplitude generated by the CPG. An overview of the neural con-
troller is depicted in Fig. 2. The neural controller consists of a CPG implemented
as an SO(2) oscillator, highlighted in red in Fig. 2. The periodic CPG signal is
post-processed to obtain a PWM-signal used for the solenoid valves controlling
the air flow to the tentacle. The pressure sensors measure pressure in the tubes
connected to the tentacles’ three chambers during actuation. The measured pres-
sure is post-processed to obtain a signal similar to that of the CPG signal. The
error between the post-processed sensor signal and the post-processed CPG-
signal is calculated, where values below a set error threshold are neglected. The
error is then fed into the fast and slow learners of the adaptation mechanism
called the Dual Integral Learner (DIL), highlighted in blue in Fig. 2. It is used
to adapt the α-value of the CPG online and hence, the amplitude of movement
of the tentacle.
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Fig. 2. Overview of the adaptive neural control system. The system combines an SO(2)
oscillator (red highlighted area) and an adaptation mechanism, the DIL (blue high-
lighted area). The post-processed CPG signal is sent as PWM-commands to the ten-
tacle, which pneumatically actuates the three chambers of the robot. Pressure sensors
measure the pressure within the tentacle’s chambers, and the post-processed sensor
signal is subtracted from the CPG signal, yielding the error feedback. The error is fed
into the two learners of the DIL that will adapt the α-value of the CPG. (Color figure
online)

3.1 Central Pattern Generator (CPG) for Periodic Movement
Generation

The CPG has been implemented as a two-neuron oscillator (SO(2)) which is
a versatile recurrent neural network that can exhibit various dynamical behav-
iors (e.g., periodic patterns, chaotic patterns, and hysteresis effects [13,14]) by
changing its synaptic weights. The dynamical behaviors of the network can also
be exploited for complex movement behaviors. The SO(2)-based CPG has been
depicted in Fig. 2, highlighted in red. The two neurons are fully interconnected
with the synapses w11, w12, w21 and w22. Each neuron sums up the weighted
inputs (oj) and the fixed bias term (bi) and passes the final value through an
activation function given by:

ai(t + 1) =
n∑

j=1

wijoj(t) + bi i = 1, ..., n, (1)

where ai(t+1) is the activity of neuron i at time t+1, n is the number of inputs,
wij denotes the synaptic weight associated with neuron j connected to neuron
i, oj(t) refers to the input at time t, and bi is the bias term.
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The final output oi is yielded by passing the activity through an activation
function, which is given by the hyperbolic tangent transfer function (tanh):

tanh(ai) =
2

1 + e−2ai
− 1. (2)

Fully connecting the two neurons H1 and H2, and building upon Eqs. 1 and 2,
setting tanh(ai) = σ(ai), the resulting two-neuron dynamics is described by:

a1(t + 1) = w11σ(a1(t)) + w12σ(a2(t)),
a2(t + 1) = w21σ(a1(t)) + w22σ(a2(t)).

(3)

The associated weight matrix of the SO(2)-oscillator network is given by:

w =
(

w11 w12

w21 w22

)
= α ·

(
cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

)
, (4)

where α defines the slope of the transfer function tanh. By varying α and ϕ,
the amplitude and frequency of the oscillations produced by the network will
be changed. According to [15], nearly sine-shaped waveforms will occur with
α = 1.0 + ε and ε << 1. Increasing ε will increase the oscillation amplitude.

The initial parameters chosen for the SO(2) oscillator are α = 1.2 and ϕ =
0.25, which will yield sinusoidal outputs with a phase shift of π/2 and a frequency
of approximately 0.7 Hz. The output diagram is shown in Fig. 3a.

0 50 100 150 200

−0.5

0

0.5

Time

A
m
pl
it
ud

e

Output H1
Output H2

(a)

0 50 100 150 200
0

20

40

Time

A
m
pl
it
ud

e

Delay-line output 1
Delay-line output 2
Delay-line output 3

(b)

Fig. 3. Raw CPG outputs and post-processed CPG outputs. (a) The generated CPG
outputs with parameters α = 1.2 and ϕ = 0.25. (b) The post-processed CPG-signals
to be used for PWM-control of the valves, including delay-line, zero cut-off and gain.

CPG Post-processing. After implementing the CPG to generate stable ryth-
mic signals, a delay line has been introduced in order to apply a signal to each
actuation chamber of the robot. The delay line consists of a time shifted signal
of the output from the neuron H1, where the first delay is 7 timesteps and the
second delay is 14 timesteps with respect to the initial output. The current actu-
ation pattern causes the robot to move in a near-circular motion by actuating one
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chamber at a time with a slight overlap. Additionally, all signals driving the robot
are mapped to the range of 0–100 to be used for duty cycle percentage in the
PWM-signals sent to the solenoid valves. To do so, a cut-off at zero has been intro-
duced, leading to all negative values of the CPG output being neglected. Lastly,
a gain is added to the scaled signals to produce signals with an amplitude of 40
which is deemed appropriate for the given setup. The final post-processed CPG-
output with delay line, zero cut-off, and gain is depicted in Fig. 3b.

3.2 Adaptation Mechanism for Online Movement Adaptation

To adapt the actuation patterns governed by the CPG in accordance with the
perturbations experienced by the robot, an adaptation mechanism is needed. Thor
and Manoonpong [10] proposed an adaptation method called the Dual Integral
Learner (DIL), which is used for reducing tracking error between a setpoint and
a system output. The rules of the DIL are given by Eqs. 5, 6, 7 and 8:

xf (n) = Af · xf (n − 1) + Bf · e(n) + Cf ·
∫

e(n), (5)

xs(n) = As · xs(n − 1) + Bs · e(n) + Cs ·
∫

e(n), (6)

x(n) = xf (n) + xs(n), (7)

e(n) = f(n) − x(n), (8)

where xf (n) is the fast learner output, xs(n) is the slow learner output, x(n)
is the combined learner system output, e(n) is the error given by the difference
between the learner system output and a setpoint f(n). Bf and Bs are the
learning rates while Af and As are the retention factors of the learners. Cf

and Cs (Cf > Cs), are the integrator components, reducing steady state errors.
The learning rates and the retention factors are chosen such that Bf > Bs

and Af < As. According to this setup, the fast learner will learn quicker and
forget faster and vice versa for the slow learner. The DIL is depicted in the blue
highlighted area in Fig. 2.

The DIL will adapt the α-value of the CPG (Eq. 4), which in turn will adjust
the amplitude of the tentacle movements. The DIL was implemented with the fol-
lowing, experimentally obtained parameters: Af = 0.7, As = 0.9, Bf = 0.85,
Bs = 0.45, Cf = 0.01, and Cs = 0.005. The given error at each timestep n is
the difference between the pressure sensor feedback and the CPG-signal, and the
error is used as input to the two learners, that will adjust the α-value of the CPG.

Figure 4 depicts the DIL’s ability to adapt to an external sinusoidal signal
with the given parameters. The signal plotted in black is the reference signal,
which is generated by an SO(2) oscillator with decrementing values of α, while
the signal plotted in red is obtained by using the DIL to modulate the α of a
second SO(2) oscillator to mimic the signal plotted in black. As seen in Fig. 4,
the DIL is able to adjust the α-value of the second SO(2) oscillator relatively fast
when the amplitude of the reference signal changes, due to the online tracking
error reduction executed by the DIL.
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Fig. 4. CPG adaptation based on the DIL. The DIL parameters are as follows: Af =
0.7, As = 0.9, Bf = 0.85, Bs = 0.45, Cf = 0.01, and Cs = 0.005. Upper plot (black)
shows the reference signal where the α-value is decremented with 0.1 for every 250th
timestep, lower plot (red) shows the adaptation of the CPG through the DIL to follow
the change of the reference signal. (Color figure online)

Figure 5 depicts the DIL’s ability to adapt to a non-periodic external signal
given by rotations of one of the on-board potentiometers. The oscillations of the
CPG are almost non-existent at timestep 80, but when rotating the potentiome-
ter at this point, the DIL is able to restart the oscillations of the CPG (red
highlighted area). At approximately timestep 100, the potentiometer is turned
to zero, causing the DIL to lower the amplitude of the oscillations, which is
visible from the plotted α-values of approximately timestep 120 to 180, and the
corresponding CPG-values (blue highlighted area). This shows, that the DIL is
able to adapt the amplitude of the CPG based on an external non-periodic sig-
nal. Furthermore, once the oscillatory movements generated by the CPG have
ceased, it is possible to restart the oscillations by turning the potentiometer.

Sensor Signal Post-processing. The air flow to the soft robot is controlled
by the PWM signals originating from the CPG. The duty cycle of the PWM
signals define the relative open/close operation of the solenoid valves. Although
the method is simple and efficient, it introduces noise to the measured pressure
response [7]. Noisy feedback will interfere with the accuracy of the adaptation
mechanism that relies on comparison of the sensor data and the CPG signal. To
overcome this issue, a three-point moving average filter was applied to the mea-
sured sensor values, amplified by a factor of 4.0. After the averaging operation,
it is checked whether the averaged sensor response is above or below a threshold
of 7. If below, the average sensor response is set to zero, otherwise, the response
remains the same. This action is performed to eliminate slight oscillations in the
measured pressure (background noise), even when the robot is not actuated. To
mimick the sinusoidal half-wave of the CPG-signal and to further smooth the
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Fig. 5. Adaptation of α based on non-periodic potentiometer readings through DIL. In
the highlighted red area, the DIL is able to use the reference signal of the potentiometer
to restart the oscillations of the CPG. In the highlighted blue area, the DIL is able to
decrease the amplitude of the CPG as a result of the potentiometer being turned to
zero. (Color figure online)

sensor response, the averaged sensor response is filtered through another moving
average filter and the result hereof is multiplied by an amplification gain of 1.7.

4 Experimental Results

The emergent behaviour of the tentacle when interacting with its environment
has been investigated in two experiments, where the tentacle senses external per-
turbations through the use of the on-board pressure sensors. Both experiments
are performed on the physical setup seen on Fig. 1a. The implemented neural
controller generates an oscillatory movement in the tentacle through the use of
the CPG, while adapting the movement amplitude, i.e. bending angle, through
the DIL mechanism. All processing and control is performed online, onboard the
Arduino Mega 2560.

The first experiment entails a tight grasping of the soft robotic tentacle
with the hand, restricting its movement. Figure 6 depicts this experiment. Ini-
tially, two rounds of unhindered movement is performed by the tentacle, after
which the tentacle is grasped tightly, generating a large pressure response in the
pressure sensors, due to the lowered volume inside the air chambers of the tenta-
cle. The restriction period is highlighted in red in the figure. After restricting the
tentacle, the amplitude of the CPG increases due to the increase in α, and hence,
the bending angle of the tentacle is increased. Due to lower pressure readings
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after the restriction period, the DIL decreases the amplitude of the CPG, which
makes the tentacle return to its initial state. Restricting the tentacle once more
in the second, red highlighted area causes the DIL to increase the amplitude
once again.

The second experiment has been executed to better demonstrate the
behaviour that occurs when the tentacle is blocked. For this experiment, the air
supply tube has been pinched right above the push fitting on the control board,
which generates a larger increase in pressure when the solenoid valve opens, caus-
ing a larger error in the adaptation mechanism, which in turn will cause a larger
adaptation response to the stimulus. Figure 7 depicts this experiment. Initially,
two periods of unhindered movements are performed, followed by the pinching of
the air supply tube (highlighted red area). Figure 7 shows, that when the pres-
sure supply is blocked by an external perturbation, the DIL tries to compensate
for this by increasing the amplitude of the CPG. Once the perturbation is no
longer present, the amplitude is slowly decreasing, due to the equivalently lower
pressure responses. When compared to the previous experiment, this experiment
shows a more definite adaptation due to the larger tracking error at the time of
the perturbation.

5 Discussion

The experiments show that an adaptive behaviour in the soft robotic tentacle
emerges, when pressure sensor feedback is applied. The most successful exper-
iment hereof is the experiment of clamping the pressure supply tubes, since
this action yields the largest error in the DIL mechanism. When the pressure
increases, so does the movement of the robot in an effort to compensate for
the error. In the experiment where the tentacle is held firmly, the pressure sen-
sors are able to detect a slight increase in pressure due to the lowered volume
inside the air chamber. This leads to an increased amplitude in the tentacle
movement, somewhat reminiscent of the escaping behaviour seen in fish; when
a fish is caught, it will try to wiggle to escape [16]. In that sense, when the
tentacle is “caught”, it will try to expand itself to be released, which is an inter-
esting behaviour. With the proposed control, the movement of the tentacle thus
increases when it bumps into an obstacle. This is also reminiscent of the reflex-
ive behaviour seen in insects when they encounter obstacles during locomotion.
Brooks’ [17] reactive legged robots were inspired by this mechanism; when one
of the robot’s legs was blocked, it would try to swing the leg higher in order to
overcome the faced obstacle.
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Fig. 6. Adaptation of α to restriction of the tentacle using the DIL. The red highlighted
area indicates where the tentacle is restricted, causing a slightly larger pressure reading,
which in turn causes the DIL to adjust the amplitude of the CPG slightly. Slowly, the
tentacle returns to its initial state. Restricting the tentacle once more (second red,
highlighted area) causes the amplitude to rise once again. (Color figure online)

From the experiments performed it is clear, that the sensor responses are
not completely regular from one period to the next, even under the same ampli-
tude configuration. For example in Fig. 6 a coincidental low pressure reading at
timestep 180 causes the DIL to decrease the amplitude of the tentacle, which is
not intended and is only due to the irregularities of the pressure response. This
shows the need for a different or added sensorizing approach, such as embedding
the tentacle with liquid metal strain sensors as in [4]. It is also possible, that
obtaining a sensor model through the use of regression or an artificial neural
network could improve the performance of the current control architecture, with
the drawback of making the solution domain-specific.
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Fig. 7. Adaptation of α to blocking the pressure supply using the DIL. At timestep 80
(highlighted red), the pressure supply tube is pinched. The DIL increases the amplitude
of the CPG due to the sudden high error, after which the amplitude is slowly decreased
once the perturbation is removed in response to the correspondingly lower pressure
readings. (Color figure online)

While the control approach shown in this study is only able to generate oscil-
latory movements, it can be extended to include another post processing network
such as a radial basis function (RBF) network with reward-based (model free)
learning for more complex pattern generation. An integrated CPG-RBF network
framework with reward-based learning has recently been proposed by [19]. It is
generic and can be applied to (soft) robot control. Thus, in the future we will
apply the framework to the soft robotic tentacle for more complex movements
towards the goal of real-world applications of human-soft robot interaction.

6 Conclusion

In this paper, a CPG implemented as an SO(2) oscillator has been applied on a
physical setup consisting of a control board with an onboard Arduino Mega 2560,
electrical pump and a soft robotic tentacle with three air chambers constructed
from silicone. An adaptation mechanism, the DIL, was implemented that adapts
the α-parameter of the SO(2) oscillator online based on an external reference
signal. Sensory feedback of the tentacle was obtained from pressure sensors.
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Experiments with this control architecture were performed on the physi-
cal setup, focusing on restriction of the movement of the tentacle as well as
restriction of the air supply to the tentacle. The tentacle does exhibit adaptive
behaviour upon external perturbations such as clamping the pressure supply
tubes or restriction by holding the tentacle firmly. However, the experimental
results show, that the perturbations need to be quite large for the DIL to effec-
tively adapt α, due to the filtering of the measured pressure values.

Hence, further work includes the addition of a mapping function to the con-
trol architecture proposed in this paper. The mapping function would serve as
translation from pressure sensor values to CPG-signal, and could eliminate the
fluctuations of the error in the DIL mechanism, which will ultimately lead to a
steadier control and adaptation mechanism. Besides this, it would be interesting
to investigate the potential use of multiple (coupled) CPGs; one for each air
chamber. This allows for independent adaptation of movement along the three
actuation paths of the tentacle. In [18], coupled CPGs have been used for simula-
tion of a soft robotic tentacle, where several different movements of the tentacle
were achieved.

Additionally, embedding the tentacle with soft sensors such as liquid metal
strain sensors could endow the soft robotic tentacle with greater propriocep-
tive capabilities and allow for additional experiments on emergent behaviors
in confined environments. This in turn, could lead to both obstacle avoidance
capabilities and an ability to reach a desired target position. Taken together,
this study not only proposes an integration of online adaptive control and sensor
feedback in a soft robot, but also paves the way forward for achieving motion
intelligence in soft robotics in general.
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Abstract. Walking animals show impressive locomotion. They can also
online adapt their joint compliance to deal with unexpected perturbation
for their robust locomotion. To emulate such ability for walking robots,
we propose here adaptive neuromechanical control. It consists of two main
components: Modular neural locomotion control and online adaptive com-
pliance control. While the modular neural control based on a central pat-
tern generator can generate basic locomotion, the online adaptive com-
pliance control can perform online adaptation for joint compliance. The
control approach was applied to a dung beetle-like robot called ALPHA.
We tested the control performance on the real robot under different con-
ditions, including impact force absorption when dropping the robot from
a certain height, payload compensation during standing, and disturbance
rejection during walking. We also compared our online adaptive compli-
ance control with conventional non-adaptive one. Experimental results
show that our control approach allows the robot to effectively deal with
all these unexpected conditions by adapting its joint compliance online.

Keywords: Computational intelligence · Muscle models · Robot
control · Bio-inspired robotics · Adaptive locomotion · Walking robots

1 Introduction

Insects show fascinating locomotion capabilities and effectively deal with unex-
pected conditions. Such capabilities emerge from the neuromechanical interac-
tion between neural control and biomechanical properties [1]. However, mimick-
ing neuromechanical control in an insect-like redundant robot is a challenging
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and un-fully solved problem due to neural and biomechanical complexities [2].
To address this problem, Full and Koditschek (1999) proposed a dynamic model
(i.e., template) for trimming the locomotor complexities away [3]. A template is
a simplified locomotor model reducing neural, muscle, and mechanical complex-
ities. The template principles have been applied to many insect-like robots such
as RHex [4]. For instance, the simplified mechanical design and coordinated con-
troller enable the RHex robot to produce robust walking behaviors over comlpex
terrains such as sands. Those robot designs and controllers are characterized by
bio-inspired engineering. On the other hand, the mechanical designs and con-
trollers are too simple to reveal locomotor principles in a robot-inspired biology
perspective [5]. For example, energy-efficient insect-like walking emerges from
redundant neuromusculoskeletal interactions that simplified leg design and con-
trol fail to emulate. Such emulation requires an anchor model for mimicking
redundant neuromechanical control, as Full and Koditschek suggested [3]. An
anchor model is an elaborate dynamic model embedded within insect-like wak-
ing behaviors. Naris et al. (2020) proposed an anchor (i.e., neuromechanical)
model to explore the role of common inhibitor motor neurons in insect locomo-
tion [6]. However, most existing anchor models are validated in neuromechanical
simulations owing to physical control and design complexities. To anchor physi-
cal insect-like walking, Dürr et al. (2019) proposed a neuromechanical model for
energy-efficient walking [7]. The energy-efficiency is enhanced by the muscle-like
actuation of the proposed model. However, such actuation is designed in a hybrid
and complicated way, therefore leading to heavy (i.e., 7.2 kg) and bulky actu-
ators. Therefore, an elaborate (i.e., neuromechanical) model for an insect-like
(i.e., redundant) robot remains a challenging problem.

To address this problem, we have developed a neuromechanical controller for
emulating physical redundant insect-like walking [8]. The controller consists of
a modular neural network (MNN) for coordinating 18 joint motions, and virtual
agonist-antagonist muscle-like mechanisms (VAAMs) for variable compliant joint
motions. As a result, such coordinated and compliant joint motions enable the
insect-like robot AMOS to generate adaptive and energy-efficient walking behav-
iors over rough terrains such as gravels. However, a proximal-distal gradient has
been applied to simplify the neuromechanical controller where proximal joint
compliance gains are fixed. Such simplification leads to the trade-off between
joint coordination and compliance. In this paper, we replace the VAAMs by
proposing online compliance adaptation for all joints of a dung beetle-like robot.
In the adaptation, the 36 joint compliance gains (K, D) are online tuned to adapt
different perturbed robot behaviors. Such adaptation relies only on simple actu-
ator position feedback, rather than complex force/torque feedback and physical
compliant mechanisms (e.g., springs). Moreover, the pure software implementa-
tion can be applied to torque control of lightweight actuators, therefore greatly
reducing actuator dependency and bulkiness. As a result, the modified neurome-
chanical controller (called here adaptive neuromechanical controller) enables the
robot to achieve more robust behaviors against unexpected perturbations (such
as impact force, payload, and pulling force), compared to a conventional con-
troller. The proposed controller paves a way for implementing neuromechanical
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Fig. 1. (a) The dung beetle-like robot ALPHA. The inset shows the South African
dung beetle (Scarabaeus galenus). The robot legs are numbered as L0, L1, L2, L3, L4,
and L5 are the left front, left middle, left hind, right front, right middle, and right hind
legs, respectively. Joints are numbered similarly starting from the left front to right
hind legs (i.e., TC0, CF0, and FT0 belong to L0, until TC5, CF5, and FT5 belong to
L5). (b) The block diagram of our adaptive neuromechanical control.

control in robust insect-like behavior. Taken together, the main contributions of
the study are as follows: 1) an adaptive neuromechanical controller that combines
modular neural locomotion control and online adaptive compliance control, 2)
the compliance control, providing muscle-like function, relies only on simple joint
feedback, rather than force/torque feedback and physical compliant mechanisms
(e.g., spring), and 3) real robot demonstration of the control performance.

2 Dung Beetle-Like Robot ALPHA

In this work, we used the dung beetle-like robot ALPHA as our robot experimen-
tal platform (see Fig. 1 (a)). ALPHA was designed based on the South African
dung beetle (Scarabaeus galenus) [11]. It consists of six legs. Each leg has three
joints (three degrees of freedom (DOFs)). The first joint is the Thorax-Coxa
(TC) joint connecting the leg to the body. It allows for forward and backward
movements of the leg. The second joint is the Coxa-Femur (CF) joint. It allows
for upward and downward movements of the leg. The last one is the Femur-Tibia
(FT) joint. It allows for flexion and extension of the tibia part. Besides the leg
joints, the robot has also additional two body joints, which provide the flexibil-
ity to the body for object manipulation and transportation tasks, and one head
joint to move its head up and down for active obstacle sensing. In this study,
we kept the body and head joints fixed to certain angles since we only focus
on locomotion and adaptive leg compliance. All in all, ALPHA has 21 active
joints which are driven by the Dynamixel motors (XM430-W350-R) producing a
torque around 4.8 Nm. The motors provide joint angle and current sensory sig-
nals which are used for our adaptive compliance control and system performance
monitoring, respectively. The weight of the fully equipped robot (including 21
motors, all electronic components, and battery packs) is approximately 4 kg. The
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Fig. 2. (a) The modular neural locomotion control (MNC) consisting of four submod-
ules (CPG, PSM, VRMs, and PMN). It is for locomotion generation. (b) The online
adaptive compliance control (OAC). It is for joint compliance or stiffness adaptation.

robot is connected to a PC via a Dynamixel motor controller board with a USB
interface.

3 Adaptive Neuromechanical Control

The adaptive neuromechanical control of ALPHA (Fig. 1(b)) is based on the
control system proposed in [8]. It is divided into two main control units: Mod-
ular neural locomotion control (MNC) and online adaptive compliance control
(OAC). The MNC is a biologically inspired, CPG-based neural network. It can
generate different gaits and control walking direction and speed of the robot.
The OAC is derived from an impedance control method [9]. It uses the desired
motor positions generated by the MNC and joint angle feedback to online control
and adapt leg joint stiffness. The OAC will generate final motor torque outputs
to control all leg joints. Each control unit is explained in detail below.

3.1 Modular Neural Locomotion Control (MNC)

The MNC is a gait generation network (Fig. 2(a)). It has four different submod-
ules: I) a CPG module, II) a phase switching module (PSM), III) two velocity
regulation modules (VRMs), and IV) a premotor neuron module (PMN). The
MNC is a fundamental control unit of the neuromechanical control, but it is not
the key contribution of this paper. Therefore, it will be briefly explained. Further
details of this control can be seen at [12]. All neurons of the MNC are modeled
as discrete-time non-spiking neurons. The activation of each neuron is described
by Eq. 1:

Ai(t) = Σm
j=1Wij · Oj(t − 1) + Bi, i = 1, ..,m, (1)
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where m is the number of neurons, Bi an internal bias to neuron i, and Wij

the synaptic weight between neurons j and i. The output Oj of each neuron is
calculated as the hyperbolic tangent (tanh) of the activation Ai(t).

The CPG, which generates basic periodic signals, is formed by two fully
connected neurons, with two internal bias terms (B1,2 = 0.01) as an initial drive
of the CPG. It creates periodic signals for walking. The connection weights
between the neurons can be adjusted according to a modulatory input MI while
the self connection weights are fixed (see Fig. 2(a)-I). Different values of MI
produce different gaits [8]. The PSM is a feed-forward network with three hidden
layers (Fig. 2(a)-II). It receives the CPG signals and generates outputs to the CF
and FT motor neurons. This network can reverse the CPG signals for sideways
walking. The VRMs are feed-forward networks (Fig. 2(a)-III) which are used for
controlling walking directions, like turning left/right or curve walking in forward
and backward directions. They receive a copy of the PSM outputs and translate
them to control the TC motor neurons. The PMN (Fig. 2(a)-IV) distributes the
outputs of the PSM and VRMs to the different joints by means of motor neurons.
The outputs of the MNC are mapped into a proper motor range of the robot
and constitute the desired joint positions qi,d(t). The joint positions are further
transmitted to the OAC which will convert them into joint torques for joint
stiffness or compliance adaptation.

3.2 Online Adaptive Compliance Control (OAC)

The OAC is to generate the joint torque τi based on a Proportional-Derivative
(PD) rule[9],

τi = −fi(t) − Ki(t) · ei(t) − Di(t) · ėi(t), i = 1, 2...18, (2)

where Ki(t) and Di(t) denote the compliance gains of the i -th joint of the dung
beetle-like robot. fi(t) denotes the force term (gravity compensation). Finally,
ei(t) and ėi(t) represent the joint position and velocity errors given by,

ei(t) = qi(t)−qd,i(t), ėi(t) = q̇i(t)− q̇d,i(t), εi(t) = ei(t)+βėi(t), β = 0.05, (3)

where εi(t) denotes the joint tracking error. The desired positions qd,i(t) are
generated by the MNC (see Fig. 2(b)). The OAC is to co-minimize the compliance
efforts and motion errors of the i -th joint of the dung beetle-like robot over the
time period T [9,10],

Jo(t) = Jc(t) + Jp(t),

Jc(t) =
1
2

∫ t

t−T

(Ki(t))2 + (Di(t))2,

Jp(t) =
1
2

∫ t

t−T

V (t), V (t) = Ii(εi(t))2,

(4)
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where Ii denotes the inertial scalar of the robot i -th joint. The OAC’s co-
minimization leads to the robot joint compliance adaptation given by,

Ki(t) = fi(t)ei(t), Di(t) = fi(t)ėi(t),

fi(t) =
εi(t)
γi(t)

, γi(t) =
a

1 + bεi(t)2
,

(5)

where γi(t) is an adaptation scalar with the positive scalars a = 0.2 and b = 5.
All scalars as well as the derivation of Eqs. (4) and (5) refer to our developed
human-like impedance controller [9]. The values of these parameters a and b, as
well as that of β in Eq. 3, were obtained from [9].

4 Experiments and Results

We performed three main experiments in order to test the performance of our
adaptive neuromechanical control approach. The experiments include 1) impact
force absorption when dropping the robot from a certain height, 2) payload
compensation during standing, and 3) disturbance rejection during walking. We
also compared the performance of our approach with non-adaptive impedance
control, where we set the stiffness and damping parameters to constant values
(e.g., K = 25 and D = 15).

In the first experiment, the robot was dropped from a certain height. This
is to investigate the performance of the control approach that can online adjust
the joint compliance to deal with impact force. The robot was set on the ground
initially; then, it was picked up and suspended at a height 10 cm over the table
and, finally, dropped. The results of the experiment are shown in Fig. 3. Plots (I)
and (II) show stiffness and damping adaptation. Plots (III) and (IV) show the
current consumption (in mA) for both the adaptive neuromechanical controller
and the non-adaptive impedance controller. Here, the signals of the CF3 and
FT3 joints of the right front leg (L3) are provided while the signals of other
joints having similar patterns to these joints are not shown. A sequence of the
experiment can be seen in the sub-figures below.

The highlighted interval corresponds to the landing moment. From the cur-
rent consumption plots, we can observe that the adaptive neuromechanical con-
troller was able to reduce the peak current of the motors and stabilize the robot
posture faster when impact force was applied, compared to the non-adaptive con-
troller. In the moment of the impact, the impedance gains (Ki(t), Di(t)) of the
OAC were quickly adapted to allow the robot a fast recovery to its normal state.
When the robot returned to the normal state, the stiffness (Ki(t)) and damp-
ing (Di(t)) values were automatically decreased to nearly zero (i.e., relaxation
state). This effect was produced by the adaptation rule in Eq. (5). In principle,
each impedance gain is adapted as a product of the force term fi(t) and the
difference between desired and actual joint position/speed signals (ei(t), ėi(t)).
At the steady state, the joint position and speed are almost constant. Therefore,
the difference becomes nearly zero. As a consequence, the motor torque is mainly
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Fig. 3. Results of the first experiment. Plots show the variation of the stiffness (I),
damping (II), and current consumption (III) of the joints FT3 (red) and CF3 (blue)
of the adaptive neuromechanical control. Plot (IV) shows the current consumption of
the non-adaptive impedance control. The video clip of this experiment can be seen at
http://manoonpong.com/ICONIP2020/video1.mp4. (Color figure online)

modulated by the force term (gravity compensation, Eq. (2)), meaning that the
robot joint compliance is able to adapt to the robot weight.

In the second experiment, the additional loads were incrementally applied
to the robot during standing. This is to investigate the performance of the con-
trol approach that can online adjust the joint compliance to deal with different
payloads. Initially, we let the robot stand. Afterwards, we incrementally added
weights on it (i.e., first, the 3-kg weight and then the additional 2-kg weight).
In total, the payload was 5 kg (i.e., 1.25 times body weight). The results of the
experiment are shown in Fig. 4. Plots (I) and (II) show stiffness and damping
adaptation. Plots (III) and (IV) show the current consumption (in mA) for both
the adaptive neuromechanical controller and the non-adaptive impedance con-
troller. Here, the signals of the CF3 and FT3 joints of the right front leg (L3)
are provided while the signals of other joints having similar patterns to these
joints are not shown. A sequence of the experiment can be seen in the sub-figures
(1)–(4).

http://manoonpong.com/ICONIP2020/video1.mp4
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Fig. 4. Results of the second experiment. Plots show the variation of the stiffness (I),
damping (II), and current consumption (III) of the joints FT3 (red) and CF3 (blue)
of the adaptive neuromechanical control. Plot (IV) shows the current consumption of
the non-adaptive impedance control. The video clip of this experiment can be seen at
http://manoonpong.com/ICONIP2020/video2.mp4. (Color figure online)

The first highlighted interval corresponds to the own body weight adaptation.
In this state, the OAC adapted the impedance gains (Ki(t), Di(t)) to stabilize
the robot standing posture. Once the robot had reached its stable standing
posture, the impedance gains were automatically decreased to nearly zero (i.e.,
relaxation state) due to our adaptation rule (Eq. (5)). The second and third
highlighted intervals correspond to the following phases where the 3-kg weight
and then another 2-kg weight were applied. After the last interval, all weights
were removed. Therefore, the robot returned to its initial stiffness (i.e., elastic
recovery). The result shows that the adaptive neuromechanical control allows
the robot to online adapt its joint compliance to deal with different payloads
in a faster and more stable manner, compared to the non-adaptive impedance
control. Note that for the non-adaptive impedance control, after adding the
payloads, the robot became unstable and its motors drawn too much current
(see high peak). As a consequence, the robot collapsed.

In the third experiment, the robot was disturbed during walking. This is to
investigate the performance of the control approach that can online adjust the
joint compliance to deal with unexpected disturbance during locomotion. Two

http://manoonpong.com/ICONIP2020/video2.mp4
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Fig. 5. Results of the third experiment (first scenario). The effect after applying distur-
bance to the tibia of the leg L4 during walking. Plots (I) and (II) show the stiffness and
damping adaptation of the CF4 (blue) and FT4 (red) joints. Plots (III) and (IV) show
the current consumption for both adaptive and non-adaptive control cases. Finally, plot
(V) shows the deviation from the walking trajectory along the x direction. The adap-
tive neuromechanical control is represented in red, while the non-adaptive impedance
control is represented in blue. The video clip of this experiment can be seen at http://
manoonpong.com/ICONIP2020/video3.mp4. (Color figure online)

scenarios were performed. For the first one, we attached a string to the tibia of
the middle right leg L4 (Fig. 1(a)) and horizontally pulled the leg sideways, in
parallel to the ground. For the second one, we attached a string to the femur of
L4 (Fig. 1(a)) and vertically pulled the leg upwards perpendicular to the ground.

The results of the experiment for the first and second scenarios are shown
in Figs. 5 and 6. Each figure contains subplots. Plots (I) and (II) show stiff-
ness and damping adaptation of the CF4 and FT4 joints of the right middle
leg (L4) where the disturbance was given. Plots (III) and (IV) show the current
consumption (same joints). Plot (V) of Fig. 5 shows the deviation from walking

http://manoonpong.com/ICONIP2020/video3.mp4
http://manoonpong.com/ICONIP2020/video3.mp4
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Fig. 6. Results of the third experiment (second scenario). The effect after applying
disturbance to the femur of the leg L4 during walking. Plots (I) and (II) show the
stiffness and damping adaptation of the CF4 (blue) and FT4 (red) joints. Plots (III)
and (IV) show the current consumption for both adaptive and non-adaptive control
cases. Plots (V) and (VI) show the vertical trajectory of L3 foot (red) and L4 foot
(blue). The video clip of this experiment can be seen at http://manoonpong.com/
ICONIP2020/video3.mp4. (Color figure online)

trajectory along the x (lateral) direction. Plots (V) and (VI) of Fig. 6 show the
trajectory along the y (vertical) direction of the L3 and L4 feet. A sequence of
the experiment can be seen in the sub-figures (1)–(3). The highlighted intervals
correspond periods that the robot leg was pulled. Using the adaptive neurome-
chanical controller, the individual joints of the leg were able to produce a fast
reaction similarly to muscle reflexes. This can be seen from peaks of stiffness
and damping (plots (I) and (II)) of Figs. 5 and 6. In other words, the robot
tried to adaptively reject the disturbance such that it can maintain its stable
locomotion. In contrast, using the non-adaptive impedance controller, the robot
had a difficulty to deal with the disturbance since the stiffness and damping
parameters were not adapted to the spontaneous unexpected disturbance. As a
consequence, the motors drawn too much current to work against the distur-
bance and the robot eventually collapsed (indicated by blue dots “FAILED” in
plots (V) of Figs. 5 and 6.

http://manoonpong.com/ICONIP2020/video3.mp4
http://manoonpong.com/ICONIP2020/video3.mp4
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5 Conclusions and Future Work

In this paper, we introduced a bio-inspired adaptive neuromechanical controller,
applied to the dung beetle-like robot ALPHA. This controller is based on a
combination of modular neural locomotion control and online adaptive compli-
ance control. It can generate robot locomotion as well as quickly online adapt
the robot joint compliance to deal with unexpected situations. We performed a
series of experiments including dropping the robot from a height 10 cm above the
ground, adding weights to the robots, and disturbing it during walking by pulling
its leg. We also compared our control approach with a conventional non-adaptive
impedance control (i.e., fixed K and D impedance gains).

The results show that the proposed control approach with the online compli-
ance adaptation can improve the performance of the robot such that the robot
can effectively deal with the unexpected situations in all experiments. Further-
more, the approach can reduce the peak current consumption of the motors
(see Fig. 3) and generate fast elastic recovery and muscle reflexes, compared to
the conventional one. Consequently, it will prolong the motor lifetime and pre-
vent the robot from collapsing or sustaining damage. The results shown here
also go beyond the previous works [8,10–12] in the following aspects. Here we
demonstrate all joint compliance implementation on non-uniform leg structures
(i.e., all 18 joints with in total 36 joint compliance gains) while in [8,12] joint
compliance was implemented on only 12 joints (i.e., 24 joint compliance gains)
where six proximal joints did not have compliance for simplification. Addition-
ally, we use a torque control-based muscle model with fast real-time adaptation
which cannot be achieved by the method in [8]. Furthermore, we demonstrate
online joint compliance adaptation in more complex and multiple tasks in a
real complex system (i.e., impact force absorption, payload compensation, and
disturbance rejection in the 18-joint walking robot with 18 muscle models) com-
pared to the one which was investigated in [10] (i.e., horizontal arm movements
in the two-joint arm with six muscle models in simulation). Our control strategy
is different from [11]. In [11], reinforcement learning was used to optimize neural
control parameters for (stiff) walking without adaptive compliance in simula-
tion. It also requires several learning trials to obtain optimal control parameters
while here the controller can generate locomotion based on modular neural con-
trol and quickly adapt joint compliance based on online adaptive compliance
control to deal with unexpected conditions without several learning trials. Thus,
the proposed control strategy is more practical for real robot implementation
with online adaptation. The work carried out for this paper is the first step
toward future improvements on ALPHA. In the future, we will introduce online
gait adaptation [13] to the control method for efficient locomotion on rough
terrain.

Acknowledgement. This research was supported by the Human Frontier Science
Program under Grant agreement no. RGP0002/2017.
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Abstract. Moving target tracking and grabbing is a common task for
industrial robots. Usually, industrial robot complete complex actions
through programming and teaching technologies, which suffers from the
limitations of complicated programming logic and low scalability. Based
on this, a flexible strategy combining deep learning and Kalman filter
is proposed for eye-to-hand robotic tracking and grabbing. Firstly, the
classic YOLOv3 algorithm is applied for target detection, and the bound-
ing box of the target on the conveyor belt is obtained. Secondly, the
target motion model is built up to obtain the system parameter matri-
ces. Thirdly, the prediction equations can be given by Kalman filtering,
and the target prediction position can be calculated and feedback to the
robotic arm for the grabbing task. Finally, the experimental results show
that the proposed strategy can improve the robustness of industrial robot
tracking and grabbing, and its scalability is also improved compared with
traditional methods.

Keywords: Deep learning · Object detection · Kalman filter · Target
tracking

1 Introduction

Industrial robots have traditionally required a precisely defined environment,
with pre-planning and programming to achieve the complex movements, which
means efficiency and flexibility of their work will be greatly limited by the work-
ing environment and the target objects [1,2]. While the vision-based grab control
system of manipulator can automatically identify different kinds of objects and
realize automatic sorting, which will liberate people from laborious and repeti-
tive labor.
c© Springer Nature Switzerland AG 2020
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In recent years, deep learning has developed rapidly and is widely used in
various fields. Meanwhile, with the improvement of computer performance, it
is possible to apply deep learning to robot system. K. Song et al. designed a
deep neural network (DNN) approach to object recognition and combined with
point cloud segmentation to enhance 3D object-pose estimation for grasping [3].
J. Zhang et al. proposed a three-dimensional positioning method based on the
improved deep learning algorithm and using a monocular structured light cam-
era to search for the target [4]. S. Wang et al. presented a vision-based robotic
system to handle the picking problem involved in automatic express package
dispatching. For the purpose of package recognition, the deep network frame-
work YOLO is integrated [5].

Among the existing target detection and tracking algorithms, the detection
accuracy of the deep learning based visual target detection methods has been
greatly improved. However, these methods usually require expensive computing
resources to achieve real-time effect due to the algorithm complexity, which hits
a bottleneck for the commercialization of deep learning [6]. Especially for the
target recognition and tracking in the moving scene, the recognition lag or even
target loss may often occur, which may not provide stable tracking target for
the manipulator. Hence, the robustness of the moving target tracking algorithm
is facing challenges.

For the contradiction between real-time and accuracy in target tracking and
grabbing, this paper proposes a moving target tracking and grabbing method
combining deep learning target detection and Kalman filtering.

The main contributions of this work can be summarized as follows:

1) The YOLOv3 target detection algorithm is utilized to realize the moving
target detection, which will make the robot system more intelligent.

2) The moving target position is filtered and estimated by Kalman filtering and
so achieve more stable target tracking and motion prediction.

The remainder of this paper is organized as follows. Section 2 presents the
framework of moving target tracking and grabbing strategy. Section 3 completes
the target recognition based on the YOLOv3 algorithm. Section 4 implements
target tracking prediction based on Kalman filter algorithm. For verification,
Sect. 5 conducts a series of experiments and corresponding subjective/objective
analysis.

2 Framework of Moving Target Tracking and Grabbing
Strategy

Moving target tracking and grabbing has the following characteristics. Firstly,
the target images collected at different angles have different postures, which may
not be stably located the object. Secondly, the image sampling rate as well as
the image process speed are much lower than the control period of the robot
system, therefore there is a delay in tracking process.
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In view of the above characteristics, this paper proposes a moving target
tracking and grabbing strategy combining deep learning target detection and
Kalman filter. The framework of the tracking and grabbing strategy is shown
in Fig. 1. First, the YOLOv3 algorithm is used to locate the target. Then the
hand-eye calibration parameters are obtained by the Eye-to-Hand calibration
steps. After that, the Kalman filter is utilized to predict the possible position
of the target in the image, which reduces the impact of the image delay on the
real-time performance of the system. Finally, the robot start tracking according
to the planed trajectory.

Fig. 1. Framework of tracking and grabbing strategy

3 Target Recognition Based on YOLOv3 Algorithm

The target detection networks based on deep learning mainly include SSD series,
RCNN series and YOLO series [7–9]. Compared with the first two networks, the
YOLOv3 algorithm takes the target detection speed and accuracy into account.
Due to the high real-time requirements of moving target recognition, this paper
applied YOLOv3 to realize the target recognition.

As an End-to-End target detection algorithm, YOLOv3 is mainly composed
by the Darknet-53 backbone network and multi-scale fusion feature network, as
shown in Fig. 2. The backbone network Darknet-53 is mainly used to extract
image features. Con2d layer represents a convolutional layer, and each convolu-
tional layer is connected to a batch normalization (BN) layer and a Leaky ReLU
activation function.

The multi-scale fusion feature network makes full use of deep and shallow
information by fusing feature maps of three scales (i.e., small, medium, and
large scale), so that the model can achieve the target location more accurately.
The network first detects the 32-fold down-sampled feature map. Because the
deeper feature map has a larger receptive field, it is suitable for detecting larger
objects. Secondly, the 16-fold down-sampled feature map after fusion is detected,
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since the feature map is in the middle of the network so that the receptive field
is suitable for detecting medium-sized objects. Finally, the fused 8-fold down-
sampled feature map is used to detect small objects.

Fig. 2. Structure of YOLOv3 algorithm

YOLOv3 algorithm obtains a priori anchor box for target detection through
clustering the bounding boxes in the training set. Therefore, the difficulty of the
position optimization is reduced. The distance formula of K-means clustering
are as follows:

d(b, b
′
) = 1 − IOU(b, b

′
) (1)

IOU(b, b
′
) =

area(b ∩ b
′
)

area(b ∪ b′)
(2)

where b and b
′

represent the bounding box and clustering center, respectively.
d denotes the distance between b and b

′
, and IOU denotes the intersection over

union of the predicted boundary box and the manual labeling boundary box. In
YOLOV3 algorithm, k-means clustering algorithm generates a total of 9 prior
anchor boxes, which are divided into three scales. Three larger prior anchor boxes
are applied on the 13× 13 feature map, three medium prior anchor boxes are
applied on the 26× 26 feature map, and three smaller prior anchor boxes are
applied on the 52× 52 feature graph.
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The loss function of YOLOv3 algorithm consists of three parts: position error,
confidence loss and classification loss. The expression is as follows:

Loss = λcoord

N2
∑

i=0

K∑

j=0

Iobjij

[
l(xi, x

′
i) + l(yi, y

′
i)

]

+ λcoord

N2
∑

i=0

K∑

j=0

Iobjij

[
(
√

wi −
√

w
′
i)

2
+ (

√
hi −

√
h

′
i)

2
]

+
N2
∑

i=0

K∑

j=0

Iobjij l(Ci, C
′
i) + λnoobj

N2
∑

i=0

K∑

j=0

Inoobjij l(Ci, C
′
i)

+
N2
∑

i=0

Iobji

∑

c∈classes

l(pi(c), p
′
i(c))

(3)

l(a, a′) = −ai log a
′
i + (1 − ai)log(1 − a

′
i) (4)

where parameter λcoord is used to increase the weight of the bounding box posi-
tion loss, and parameter λnoobj is used to suppress the confidence of the bound-
ing box of undetected objects. N2 is the total number of the grids in the input
image, and K is the number of bounding boxes predicted in each grid. Iobjij means
that the jth bounding box in the ith grid detects the target. Meanwhile, Inoobjij

means that the jth bounding box in the ith grid does not detect the target.
(x

′
, y

′
, w

′
, h

′
) is the predicted coordinates of the bounding box, and (x, y, w, h)

is the actual value.p
′
i(c) is the predicted probability of the grid i belonging to the

category c target. pi(c) is the actual value. C
′
i is the prediction confidence while

Ci is the actual value. The confidence calculation formula is given as follows:

C = Pr(object) ∗ IOU(b, gt) (5)

where b is the prediction bounding box, and gt is the manually marked box.
When the center point of the real box falls in the prediction box, it is considered
that there is a target in the prediction box, then Pr = 1, otherwise, Pr = 0.

4 Target Tracking Algorithm

The Kalman filter is widely used in visual tracking systems, which will estimate
the future state of moving objects more accurately, and then guide the robot
to complete the dynamic grasping task [10–12]. Due to the fact that the target
detection in the video stream usually has the problems of bounding box beating,
missing detection and wrong detection, etc., this paper applied Kalman filtering
related theory to optimize the target tracking of the conveyor belt. Conveyor belt
moving target generally performs linear motion at a constant speed. Therefore,
the motion state of the target can be represented by speed and position. During
the tracking process, the time interval between two adjacent frames is short,
and the motion state of the target changes relatively little, so it is assumed that
the target moves at a uniform speed within a unit time interval, and the speed
parameter is sufficient to reflect the target’s movement trend. Define the system
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state by a four-dimensional variable xk = (xsk, ysk, xvk, yvk), which represents
the position and velocity of the target in the x and y directions. The system
states should have the following relations:

{
xsk = xsk−1 + xvkdt
ysk = ysk−1 + yvkdt

(6)

where the system model is established as follows, dt is the time interval between
tk−1 and tk: ⎛

⎜
⎜
⎝

xsk
ysk
xvk
yvk

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

xsk−1

ysk−1

xvk
yvk

⎞

⎟
⎟
⎠ + wk (7)

xk = Fxk−1 + wk (8)

In formula (8) , xk and xk−1 are the optimal state estimates at time k and
time k−1, F is the state transition matrix of the system, wk is the process noise
of the kth frame.

Because only the position of the target can be observed in the image, the
observation model zk is:

zk =
(

xsk
ysk

)

=
(

1
0

0
1

0 0
0 0

)
⎛

⎜
⎜
⎝

xsk
ysk
xvk
yvk

⎞

⎟
⎟
⎠ + vk (9)

zk = Hxk + vk (10)

where xk is the system optimal state estimates at time k, H is the observation
matrix of the system, and vk is the observation noise at time k.

Assuming that both process noise and detection noise obey Gaussian distri-
bution, their covariance matrices are W and V , and Kalman filtering consists of
two parts: prediction and update.

1) Prediction section: According to the detection bounding box of the system,
when the target is detected in consecutive fmin(threshold value of detector)
frames and above, it indicates that the target is a correctly detected one. As
is shown in (11), the target state is predicted through the previous state.

x̂−
k = F x̂k−1 (11)

where x̂−
k and x̂k−1 is the target predicted state obtained at time k and k−1,

the corresponding covariance matrix can be mathematically expressed by:

P−
k = FPk−1F

T + W (12)

where P−
k and Pk−1 is the covariance matrix of x̂−

k and x̂k−1.
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2) Update section: When the matching relationship between the detection
bounding box and the tracking bounding box is established in the system and
the continuously lost detection target does not exceed the fmax(threshold
value of detector) frame, it means that the target is not really lost, and the
target position and its covariance matrix need to be updated every frame.

Kk = P−
k HT (HP−

k HT + V )−1 (13)

x̂k = x̂−
k + Kk(zk − Hx̂−

k ) (14)

Pk = (I − KkH)P−
k (15)

where Kk is the Kalman gain at time k, x̂k is the optimal estimated state at
time k, Pk is the covariance matrix of xk, and I is the identity matrix.

The general process of iterating according to the above prediction part and
update part are as follows (Fig. 3):

Fig. 3. Kalman filtering process

5 Experiments and Results

5.1 Train the YOLOv3 Network

The hardware and software environment of the experiment is as follows: A server
with Ubuntu 16.04, GTX1080Ti GPU with 11 GB memory, deep learning frame-
work Tensorflow 1.6.0, Python 3.6, OpenCV 3.4.1 and Darknet.

Before the network training, the target image must be collected as the train-
ing data set. Through the camera installed above the conveyor belt, video
streams of target objects in different positions are collected. The video reso-
lution is 640 × 480 and the frame rate is 30 fps. Finally, a total of 4200 images
were extracted for model training, and 500 images were used for model test-
ing. The images are manually annotated with Labellmg and saved in PASCAL
VOC format. The marked rectangular frame is used for the classification and
identification of target objects.
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5.2 Analysis of Recognition Results

Figure 4 is the trend curve of Loss change when the YOLOv3 model is trained.
From the figure, when the iteration exceeds 200 times, the loss value tends to
stabilize, and finally drops to about 0.38.

Fig. 4. Loss function curve

Figure 5(a) is the original image obtained by the camera. Figure 5(b) is the
feature map extracted from the original image by the YOLOv3 network (Stage
2 to Stage 4). Based on the extracted features, the detect object bounding box
is obtained, and the result is shown in Fig. 5(c).

Fig. 5. YOLOv3 detect results

5.3 Kalman Filter Target Trajectory Tracking Simulation

According Sect. 4, a Kalman filter model is established in Matlab to track the
identified target position curve. As shown in Fig. 6(a), the experimental result of
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frame-by-frame estimation of the target position is given. The blue dots indicate
the target coordinates measured by the YOLOv3. It can be seen that the discrete
coordinate information is fluctuated, which may interfere with subsequent track-
ing and grabbing. After the Kalman filtering, the optimal estimation labeled by
orange triangles is obtained, the results show that the estimated value and the
measured value are basically consistent, and the estimated value is smoother
than the measured value.

Fig. 6. Kalman filter simulation results (Color figure online)

However, it takes time for the robot arm to move to the target point, so the
frame-by-frame prediction does not meet the actual situation. In order to verify
whether the object movement trend predicted by Kalman filtering is effective,
the update rate of the Kalman filter is set to 500 ms, and the tracking result
is shown in Fig. 6(b). The result shows that the estimation curve obtained by
Kalman filtering tracks to the target stably, so that it can be used to predict the
possible position of the target within a short time.

5.4 Experiment of Robotic Arm Tracking and Grabbing

Platforms for performing Tracking and Grabbing experiments include hardware
and software. Hardware: a computer with Ubuntu 16.04, camera, and a UR3
robotic arm. Software: ROS (robot operating system), MoveIt! (motion plan-
ning library), VISP (visual servo software) [13–15]. The experimental scenario
is shown in Fig. 7.

The process of tracking and grabbing according to the predicted position of
the target is mainly divided into the following two parts:

1) First set the grab point according to the predicted position obtained by
Kalman filtering, and next a movement trajectory that reaches the grab point
is planned by MoveIt!. Then control the UR3 move to the grab point by UR3
controller, when the gripper arrived at the grab point, the movement between
the gripper and target is synchronized.
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Fig. 7. Grabbing experimental scenes

2) The gripper does not directly grab the target at grab point, instead of per-
forming a synchronous displacement movement at the same speed as the tar-
get. When the gripper and the target has reached relative rest, then controls
the gripper completes the grabbing action.

Finally, the actual robot control program combined with the Algorithm
YOLOv3 and Kalman Filtering is developed in ROS, the actual robot track-
ing and grabbing experiment results are shown in Fig. 8.

Fig. 8. Tracking and grabbing experiment

In order to illustrate the performance advantages of the proposed strategy
further, this paper conducted a comparative simulation. The specific results are
shown in Table 1:
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Table 1. Performance comparative results

Methods Aq/% Ae/% Al/%

Traditional method [16] 82.4 5.37 10.2

Deep learning method [17] 85.5 7.3 6.5

Proposed method 88.3 4.7 3.2

Note: Aq is the average quality of grabbing, %;
Ae is the average error of tracking, %; Al is the
average target loss rate of target, %.

6 Conclusion

This paper investigates the deep learning based strategy for Eye-to-Hand robot-
ic tracking and grabbing. Specifically, the YOLOv3 algorithm is used to identify
moving targets on the conveyor belt, and the Kalman filter algorithm is used to
track and predict the target position. Then through the calibration parameters
of the Eye-to-Hand system and the target position predicted by the Kalman
filter, the tracking and grabbing experiment based on UR3 is carried out. The
experimental results show that the proposed strategy can provide more reliable
data for the tracking and grabbing of moving target in the industry and help
the robot industry achieve intelligence.
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Abstract. Many CPG-based locomotion models have a problem known
as the tracking error problem, where the mismatch between the CPG
driving signal and the state of the robot can cause undesirable behaviours
for legged robots. Towards alleviating this problem, we introduce a mech-
anism that modulates the CPG signal using the robot’s interoceptive
information. The key concept is to generate a driving signal that is eas-
ier for the robot to follow, yet can drive the locomotion of the robot. This
can be done by nudging the CPG signal in the direction of lower tracking
error, which can be analytically calculated. Unlike other reactive CPG,
the proposed method does not rely on any parametric learning ability to
adjust the shape of the signal, making it a unique option for a biological
adaptive motor control. Our experiment results show that the proposed
method successfully reduces the tracking error. We also show that the
CPG signal, regulated by the proposed method, is robust to perturbation
and can smoothly return back to the default pattern.

Keywords: Central Pattern Generators · Locomotion control · PID
controller

1 Introduction

Central Pattern Generators (CPG) has been extensively used for robot loco-
motion control thanks to their ability to generate coordinated high-dimensional
rhythmic patterns [1,7,9,11,21]. The pattern generated from a CPG is generally
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used as a high-level command signal for a low-level controller (e.g. a reference
signal for a PID controller). However, it is the low-level controller that drives
the robot’s actuators into the correct configuration (See Fig. 1).

Fig. 1. The standard setup of the CPG controller consists of four main components.
Firstly, the CPG neural oscillator generates a rhythmic signal. Then, the signal is trans-
formed with the post-processing function F (·) to create the desired locomotion pattern.
The transformed signal is then used as the setpoint for the PID controller. Finally, the
PID controller drives the robot movement into the desired position or the setpoint. The
robot actual movement is fed back into the PID to correct the tracking error.

One of the weaknesses of this setup is that it assumes a perfect low-level
controller. However, in the real use cases, there are tracking errors between
the actual system motion and the CPG driving patterns. A lack of power or an
increased joint load can result in the PID being unable to adjust the robot to the
target configuration. This lead to undesired behaviours such as energy-inefficient
locomotion, unwanted movement and motor collapse [21]. Current solutions to
this problem are to improve the responses of the low-level controller [2,22] or
allowing the robot to perceive the environments and adjust the CPG driving
signals accordingly [3,9,21].

In this work, we propose a novel mechanism for adjusting the high-level
CPG signals with interoceptive perception. The main idea is to directly adjust
the dynamics of the CPG to remove the tracking error by resetting the state
of the CPG dynamics to a new position. Regardless of the dynamical state, the
CPG dynamics falls back to its natural patterns due to the limit cycle behaviour.
These fall-back dynamics creates a command signal that closely guides the PID
controller to the desired locomotion pattern. We show in our experiment that the
method can successfully provide the desired locomotion pattern while reduces
the tracking error that would be large otherwise. This results in efficient and
adaptive locomotion pattern.

1.1 Related Works and Contributions

According to Buchli et al. [6], there are two main characteristics of CPG: (i)
Reactive CPG and (ii) Adaptive CPG. A reactive CPG [8,18] changes the
dynamics of the signal only temporally while an adaptive CPG [5,13] creates
lasting changes to the dynamics. This work can be categorised as a reactive
CPG.
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Reactive CPGs are designed such that some properties of the oscillators are
temporally adjusted. Many works consider adjusting the phase of the oscillators
[8,18]. Others consider adjusting the amplitude of the oscillations [15]. The most
related works are the ones that consider adjusting the shape of the signal [12,
14,17,19].

The main contribution of this work is in the formulation of the dynamical
state forcing CPG (DSF-CPG). The proposed DSF-CPG acts as a reactive CPG
that can temporally adapts the geometry/shape of the CPG signal without using
any learning parameters [14,17]. Instead it exploits the entrainment-like dynam-
ics for the CPG shape adaptation. This happens via the direct perturbation of
the neural activities rather than some synaptic weights. Other CPG systems
that can adapt the shape of their signals typically rely on additional CPG shap-
ing networks with learning [14,17] or multiple CPG circuits [12,19]. Our system
is simple and reactive. It does not rely on any learning ability neither require
high-level computational effort, which makes it a unique possible option for a
biological locomotion adaptive motor control.

2 Central Pattern Generator

Central Pattern Generator (CPG) is a mathematical model of coupled neural
oscillators, which is govern by coupled differential equations (continuous time)
or difference equations (discrete time). There are several properties that make
CPG useful for locomotion (as describes by Ijspeert (2008) [10]):

1. It exhibits limit cycle behaviour.
2. It is suitable for distributed implementation, which can be used for modular

robots.
3. It allows a small number of control parameters, which can reduce a high-

dimensional locomotion control problem to a low-dimensional control prob-
lem.

4. It is suited for sensory feedback integration, allowing coupling between the
CPG and the robot mechanical system.

While there are many models of CPG, in this work, we use the SO(2)-network
[16]. SO(2)-network can be described as a coupling of two neurons (as illustrated
in Fig. 2). The activities of the neurons a1 and a2 follow the following discrete-
time dynamics:

a1(t + 1) = w11 tanh(a1(t)) + w12 tanh(a2(t)), (1)
a2(t + 1) = w21 tanh(a1(t)) + w22 tanh(a2(t)). (2)

The weight matrix for an SO(2)-network is in the following form:

w = α ·
(

cos(φ) sin(φ)
− sin(φ) cos(φ),

)
(3)

where α and φ are the parameters of the system dictating the oscillating fre-
quency, amplitude and shape of the oscillation.
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We utilise the signal generated from the SO(2)-network by transforming the
output signal x = tanh(a) into desired motor pattern using a post-processing
function. This can be done using any function F (·), which can be used to shape
the signal pattern in the form that is suited for locomotion. In this work, we
only consider an invertible function F (·), which is an only restriction we need
for the dynamical state forcing mechanism.

Fig. 2. SO(2)-Network is a system of coupled neurons (a). Under a certain condition of
parameters W , the dynamics of the neural activities follow the limit cycle behaviour.
This behaviour produces rhythmic pattern suited for driving locomotion control. The
limit cycle dynamics exhibits the fallback pattern, i.e. the state fallback to the natural
dynamics when it is reset to any point in the state-space (b).

3 Dynamical State Forcing on CPG

The tracking error happens when the robot actuator has not yet reached the
target signal. This could be due to the lack of power, or an obstacle is pushing
back the robot.

In the open-loop CPG control, the pattern keeps going, while the actual
system struggles to keep up. This lead to inefficient use of energy because the
proportional controller increases the gain as the tracking error increases.

Dynamical state forcing mechanism reset the current position of the CPG,
i.e. the neural states of a1 and a2. The main idea is to reset the neural state
such that it removes the tracking error. To this end, we need to find the neural
state a1 and a2 that matches the current robot position. Let’s denote r1 and r2
as the target robot position:

r1 = F (tanh(a1)) (4)
r2 = F (tanh(a2)) (5)
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Let’s denote the current robot actual position as r′
1 and r′

2. The neural activity
that matches the current position can be written as:

a′
1 = tanh−1(F−1(r′

1)) (6)

a′
2 = tanh−1(F−1(r′

2)) (7)

The activities a′
1 and a′

2 map to the current robot configuration. Therefore,
if the dynamical states is reset to these values, the tracking error will be zero.

However, the complete removal of tracking error could result in the actuator
being in the halt state. To avoid this problem, we choose to only slightly perturb
the activities of the neurons in the direction of error reduction (instead of the
complete removal of error). Therefore, instead of resetting the activities, we could
update the activities with the following update rule:

a1(t + 1) = (1 − γ)[w11 tanh(a1(t)) + w12 tanh(a2(t))] + γa′
1(t) (8)

a2(t + 1) = (1 − γ)[w21 tanh(a1(t)) + w22 tanh(a2(t))] + γa′
2(t) (9)

where γ ∈ [0, 1]. The mixing rate γ dictates how much the update mechanism
removes the tracking error. It completely removes the tracking error when γ = 1
and becomes the vanilla CPG at γ = 0.

However, this update rule leads to the continuous decreases of oscilla-
tor amplitude. The dynamics slowly converges to zero. This behaviour occurs
because the mechanism would changes the system dynamics in the direction that
the robot can easily reach, and that is the halt state (a fixed point). In order to
overcome this problem, we introduce an outward force term that prevents the
dynamics from falling to zeros.

a1(t + 1) = (1 − γ)[w11 tanh(a1(t)) + w12 tanh(a2(t))] (10)
+ γa′

1(t) + βa1(t)
a2(t + 1) = (1 − γ)[w21 tanh(a1(t)) + w22 tanh(a2(t))] (11)

+ γa′
2(t) + βa2(t)

The additional terms βa1(t) and βa2(t) increase the value of a1 and a2 in each
update step, where β is another hyper-parameter adjust the strength of the
outward force.

Figure 3 illustrates this process as a feedback from robot back to the CPG
pattern generator. We show later in the experiment that this mechanism can be
used to adapt the dynamics of CPG to the environment.

4 Experiment

4.1 Investigation of Dynamical State Forcing CPG on a Single
Motor

We investigate the behaviour of our method on a single motor. The setup includes
a 3D-printed platform (as shown in Fig. 4a), which is mounted with the motor
and a rot. We implement a vanilla CPG setup and the dynamical state forcing
CPG (DSF-CPG) to drive the rot in an oscillating motion.
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Fig. 3. The dynamical state forcing helps PID controller by propagating the error
signal back to the DSF-CPG pattern generator. This mechanism creates a feedback
loop, which enables the coupling between the DSF-CPG and the environment.

Fig. 4. Experimental Setup. A motor is mounted on a 3D-printed platform and
attached to rotating rot (a). A bolt can be attached to the platform to force stop the
motion of the rot. The oscillating motion can be controlled by either the SO(2)-network
setup (b) or the dynamical state forcing CPG (c). For ease of comparison, we adjust the
parameters such that they exhibit similar amplitude and frequency. For SO(2)-network,
we set φ = 0.28 and α = 1.011. For DSF-CPG, we set φ = 0.45, α = 1.00, γ = 0.3
and β = 0.2. The signal is transformed with F (x) = 2200x+2000. The parameters are
selected such that the signal from CPG behaves similarly to the signal from DFS-CPG,
while the oscillating pattern is slow enough for an easy intervention.

The oscillating pattern and the actual dynamics of the motor is visualised
in Fig. 4b, c. We can see that both vanilla CPG and the DSF-CPG can produce
similar oscillating motions. Next, we force-stop the moving rod by attaching a
bolt on the platform. We can see in Fig. 5 that the actual motion of the system
as read by the motor became stationary. However, for the vanilla CPG, the
driving signal continues to oscillate. In contrary, the driving signal of the DSF-
CPG slowly decreases as the actual system stop. After the bolt is removed, the
dynamics of the driving CPG signals go back to their normal pattern. We can
see that this behaviour reduces the tracking error when the actual system is
forced to be in the state that is difficult for the motor.
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Any motor that is controlled using current proportional to the error would,
theoretically, benefit from the behaviour of the DSF-CPG because the lower error
equates to lower current in these controllers. As the tracking error is reduced,
the current usage would also be smaller, which potentially lead to a more energy-
efficient locomotion control.

Next, we examine the behaviour of the system when the rot is forced to move
to a new position. This represents a scenario when an external force is hitting
a robot. The result is shown in Fig. 5. We can see that the DSF-CPG adjust
itself to the perturbation. We can also see that the tracking error of DSF-CPG
is significantly smaller than the error of the vanilla CPG.

4.2 Investigation of Dynamical State Forcing on a Simulated Robot

In this experiment, we demonstrate that the DSF-CPG can be used to drive
robot locomotion and investigate its adaptive behaviour. We simulate the MORF
hexapod robot [21] using the CoppeliaSim [20]. The locomotion of the robot is
driven with a single CPG, where the output is transformed with hard-wired
functions as shown in Fig. 6b.

There are 18 motors in this robot corresponding to the 18 joints (see Fig. 6b).
The CPG signal is transformed with linear post-processing functions as detailed
in Fig. 6b:

F (x) = wix + bi (12)

where {w1, w2, w3} = {10, 4, 10} for vanilla CPG, {w1, w2, w3} = {2, 0.8, 2} for
DSF-CPG, and {b1, b2, b3} = {1.92,−0.03, 0} for both of them. Since the DSF-
CPG has a higher oscillating amplitude than vanilla CPG, we scale up the signal
by using larger weights in the post-processing function. The parameters of CPG
are selected such that the robot can walk reliably and the parameters of DSF-
CPG are chosen such that the signal generated is resemble the signal from the
vanilla CPG.

As shown in Fig. 71, DSF-CPG is able to drive the robot with similar pattern
to the normal CPG. After the heavy box is loaded onto the robot, the dynamics
of DSF-CPG stops because the load is too heavy for the CF0 joint to lift the
robot up. The dynamics springs back to the normal pattern after the heavy load
is removed. We compare the tracking error of the DSF-CPG and the vanilla
CPG in Fig. 7c.

5 Discussion

This paper introduces a novel CPG-based control method. The main benefit
of this method is the reduction of tracking error by adapting the target CPG
pattern to follow an unexpected condition of the system, e.g. loading condition.

1 see also https://youtu.be/uMxDPPg1Q9A.

https://youtu.be/uMxDPPg1Q9A
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Fig. 5. Dynamics of the vanilla CPG and the DSF-CPG under influences from external
forces. When the rot is fasten still, the dynamics of DSF-CPG slowly reduces to the
tracking error. The driving signal goes back to the normal pattern when the rot is
released. When the rot is moved from the normal position, the DSF-CPG dynamics
follows the position of the rot and smoothly bring the system position back to the
normal pattern. The shaded areas represent the time when the interventions happen
(i.e. fasten or move the rot).
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Fig. 6. Simulated MORF hexapod robot. We simulate a CPG-driven hexapod robot
on the CoppeliaSim. The robot walks in a straight line [21]. At the middle of its path,
we simulate a heavy box placed on top of the robot, which is lifted up shortly after.
The propose of this experiment is to visualise the ability of DSF-CPG to generate a
walking pattern and its adaptability. The feedback to the DSF-CPG comes from the
configuration of the CF0 joint. CF0 joint is responsible of lifting the robot upwards
and, therefore, sensitive to the carrying load of the robot.

We see that the DSF-CPG can adapt to its proprioceptive feedback, while
also manage to smoothly fall-back to its original pattern. Importantly, this
method can shape the geometry of the signal without any learning parameter,
which makes it a unique possible option for biological adaptation mechanism.

In future work, we will explore DSF-CPG in the setup of multiple weak-
coupling or decoupling CPGs. Several works propose to use multiple CPGs to
drive robots’ locomotions [3,4]. This multiple CPG setup removes the strong
coupling restriction between each joint. This could benefit the DSF-CPG by
allowing feedback to influence selectively on each joint, creating a richer reper-
toire of adaptive behaviours.
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Fig. 7. The dynamics of the hexapod robot. We drive the MORF hexapod robot using
the vanilla CPG and the DSF-CPG. The DSF-CPG manages to drive the robot with
a similar pattern to the vanilla CPG, while also able to adapt the target pattern to
external forces reduces the tracking error. See also Fig. 7b and a video clip at https://
youtu.be/uMxDPPg1Q9A.

DSF-CPG naturally promotes robot’s compliance, by changing the target
dynamics to follow external perturbations. Therefore, a careful design of the
feedback effect could potentially be used to design a novel compliant locomotion
pattern. Since an adaptive compliant control [22] has been shown to improve
energy efficiency in a robot, we hope to see whether the adaptive locomotion of
DSF-CPG can also be used to further improve in that direction.
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robot simulation and acknowledge financial support by the VISTEC research grant on
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Abstract. High-quality detection of the benthonic organism is a cru-
cial step to implement autonomous picking for the underwater robot.
But there have been few studies on the underwater organism detection in
recent years. Directly fine-tuning the generic object detector on an under-
water dataset is limited by the domain shift, and thus cannot achieve a
good performance. Then we propose a customized two-stage detector
named by GSDCN and featured Guided Anchoring mechanism, Sam-
pling Balanced strategy, and Deformable Convolutional module, which is
dedicated to overcoming three challenges, i.e., geometric variations, lim-
ited underwater visibility range, and the imbalance of object samples.
Extensive experiments conducted on the URPC2018 dataset (Publicly
available in http://www.cnurpc.org/index.html.) show that our GSDCN
improves the detection mAP of our baseline algorithm by 3.40%, and
surpasses the state-of-the-art underwater object detector ROIMix [12]
by a large margin to 5.39%.

Keywords: Robot perception · Underwater object detection ·
Autonomous robot manipulation

1 Introduction

Benthonic organisms, such as echinus, scallops, and holothurians, have high com-
mercial value. As a multi-billion dollar industry, the development of the off-shore
fisheries relies on grasping efficiency. Nevertheless, for the time being, human
divers sacrifice health for picking the organisms in the deep water. Automati-
cally capturing the benthonic organism by underwater robots would be an ideal
solution in such adverse working circumstances. Undoubtedly, the precision of
the detection results is of particular importance to the autonomous grasping
process.

There are three main challenges in real-world underwater object detection
using deep neural network (Fig. 1):
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12533, pp. 811–820, 2020.
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Fig. 1. Real-world underwater images of the Zhangzidao. The top images indicate the
flexible holothurians, the tall holothurians, and the wide scallops. The bottom images
show the imbalance of foreground and background samples.

(1) The geometric variations of holothurians and scallops. For
instance, the holothurians and scallops are nonrigid, whose geometric variations
may result in the low precision of these subcategories. (2) Limited under-
water visibility range. Phytoplankton affects the visibility range of seawater
in different seasons. When closing to the targets, we observe some tall or wide
objects from the robot’s perspective. While few images, including unduly long or
wide targets in the URPC dataset, are hard to train the detector substantially.
(3) The imbalance of object samples. The benthos lives on the sediments
randomly. Due to the uneven distribution of benthos inhabiting the seabed, the
serious imbalance of foreground and background samples in images collected by
the robots restraints the detecting performance.

Considering the above challenges in the underwater marine organism detec-
tion, we propose a novel two-stage underwater object detector named GSDCN.
Notably, by introducing the modulated deformable convolutional module, we
enhance the detection accuracy of ductility holothurians and scallops. Moreover,
to relive the influence of visibility range, we guide the feature maps to raise
high-quality proposals, which is especially beneficial for detecting the wide or
long objects in one image. Besides, we carefully distill the sampling strategy to
handle the uneven distribution of benthos, which results in the sampling imbal-
ance severely. We evaluate our detector on the challenging URPC2018 dataset,
and our method beats both the on-shore and off-shore object detectors on the
URPC2018 test dataset and achieving the state-of-the-art performance without
bells and whistles.
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2 Related Works

In sharp contrast to the flying-speed improvement of the land generic object
detection, the underwater object detection makes less progress. Existing works
in the literature fall into two categories: the hand-craft feature with a classifier
and the CNN (Convolutional neural network) based methods. Limited by space,
we focus on the CNN-based underwater detectors, while the classic underwater
detectors are out of scope.

Recently, CNN-based detectors have dominated on-shore object detection.
Following the typical milestone of two-stage and one-stage methods, plenty of
classic on-shore detection algorithms are employed in the underwater tasks.
Thanks to the success of the R-CNN [5] architecture, which combines a pro-
posal generator with a region-wise classifier. To reduce the redundant CNN
computations in the R-CNN, the Fast R-CNN [4] introduced the region-wise
feature extractor. Li et al. [10] applied the Fast R-CNN to the complex under-
water fish detection, acquiring the better accuracy and the shorter time than
Fast R-CNN. Later, the Faster R-CNN [20] further speed-up and perform bet-
ter by presenting the Region Proposal Network(RPN). Mandal [16] combine the
Faster R-CNN with three classification networks for fish species detection. In
[13], Faster R-CNN was employed for detecting underwater docking. What is
particular, ROIMix mixed proposals of different images and achieved the state-
of-the-art mAP on the URPC2018 dataset. Alternatively, considering the high
efficiency, one-stage detectors have become popular. Minor modifications were
based on YOLO [19] for the real-time fish detection [23], which outputs the
sparse detecting results only need once forward computation. The work in [27]
is based on a well-known detector SSD [14], which use multi-feature maps at
different resolutions to detect various objects. The modified SSD was focused on
the fish species detection in poor conditions, especially for the North and Baltic
Sea.

Most underwater detection works mentioned above are based on the frame-
works proposed four years ago or earlier. Otherwise, generic object detection is
progressing quickly due to the emergence of key-point based detectors [15,26],
center-based detectors [8,24,25], anchor refinement and matching [1,28], high-
resolution representation learning [22], gradient harmonizing mechanism [9] and
training from scratch [29]. However, the above methods suffer the three chal-
lenges mentioned before, their precision comparative low consequently.

3 Methodology

In this section, we first elaborate on the three introduced modules to figure out
the three challenges. Then we discuss how the parts alleviate the problems. The
details are presented as follows, and the overall architecture is shown in Fig. 2.

3.1 Deformable Convolutional Module

The nonrigid holothurians and scallops change their appearances dynamically
according to the external stimuli. When the robot gets close to the benthic crea-
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Fig. 2. Overview of the proposed GSDCN, which integrates three components: (a)
Modulated DCN (b) Guided anchoring RPN and (c) IOU balanced sampling.

tures, the geometric variations of benthos influence the performance of the detec-
tor immensely. To solve the geometric variations’ problem, deformable convolu-
tional networks(DCN) [3] was proposed. Our previous work [7] firstly introduced
DCN into marine objects detection. The output feature map y is calculated as

y(p) =
K∑

k=1

wk · x (p + pk + Δpk) (1)

where wk denotes the learnable weight, Pk is the pre-specified offset, pk + Δpk
is the irregular and offset sampling locations. However, as shown in the Eq.(1),
the main weakness of [7] is that it lacks the spatial support, which results in the
learned features that could be contaminated by irrelevant contents. Nowadays,
DCN v2 [30] performs better on the COCO dataset than DCN. Intuitively, the
stronger version of DCN seems to visualize the benthos better.

We firstly introduce parts of DCN v2 to the underwater detecting task and
integrated it into our proposed detector. To enhance the spatial support, stacking
more deformable convolution layers is a good solution. Intuitively, we replace the
3 × 3 Conv layers of the ResNet-50 to the deformable convolutions in the conv3,
conv4, and conv5 stages. Besides, the modulated mechanism is necessary for
sampling precisely, which is expressed as

y(p) =
K∑

k=1

wk · x (p + pk + Δpk) · Δmk (2)

where Δpk is the modulation scalar, Δmk is the learnable offset for the k-th
position, x(p) is the input feature map, while y(p) is the output feature map.
The module is thus given the capability to adapt to the relative influence of its
samples more efficiently.

3.2 Guided Anchoring Mechanism for Marine Organism

Phytoplankton affects the visibility range in different seasons. Furthermore, when
seawater is muddy, the robot (camera) has to be extremely close to the target,
which brings about the unduly long or wide targets in the images. Nevertheless,
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few images like these in the training dataset lead to terrible performance when
testing in such water quality.

Let us start with the fundamental question: how to detect the tall or wide
holothurians more effectively? To answer this question, we conduct experiments
to find the truth behind, which introduced the Guided Anchoring Mechanism
[25] into the baseline. The Guided Anchoring Mechanism consists of the anchor
generation module and the feature adaptation module. The anchor generation
module consists of two branches for predicting the location and shape, which
applies two 1×1 convolutional layers. Meanwhile, the feature adaptation module
regulates the feature in terms of the anchor shape. We firstly employ a 1 × 1
convolution to predict an offset and then apply a 3 × 3 deformable convolution
to the corresponding level feature map, and thus regulates the feature map. A
noticeable increase in the score of holothurian, which is listed on the ablation
study part, shows that guiding scales and aspect ratios of the anchors by the
semantic features can be extremely helpful in solving this problem.

3.3 Sampling Balanced Strategy with Noise Labels

Uneven distribution and reproduction of the benthos bring on one challenge,
which affects the training process. When sampling the underwater images for
training or testing, most images merely include few targets or none. The stan-
dard random sampling results in most of the hard positive samples that give way
to the easy samples, while hard examples are extraordinary import to upgrade
the detecting performance. While OHEM [21] is an alternative option yet OHEM
suppresses the capability when ensembled into the baseline. In particular, under-
water images and labels contain noise so that it is crucial to choose a robust
method.

Our work is inspired by the Libra R-CNN [17] that proposed three compo-
nents to solve the unbalanced samples problem. Contrary to intuition, we partly
agree that the modules are suitable for the underwater detection task, especially
the Balanced L1 loss. Consequently, this paper only extracts the IOU balanced
Sampling for hard mining, which is a simple but virtual component, especially for
underwater detection. Firstly, we divide the selected samples into K bins accord-
ing to their IOU. Then we elect samples from each bin uniformly. The chosen
probability of each sample under the introduced IOU balanced strategy is

pk =
N

K
∗ 1

Mk
, k ∈ [0,K) (3)

where K is set to 3 in our experiments, and Mk is the number of candidate
samples in the kth interval. N denotes the number of chosen samples.
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4 Experimental Results

We analyze the impact of achieving precise detections when combining the three
modules using our GSDCN detector.

4.1 Experimental Setting

If not otherwise specified, all methods listed below are based on the typical
ResNet-50 backbone network, FPN [11] neck, and ROIAlign [6]. All experiments
are conducted on the URPC2018 dataset, including 2901 train-Val and 800 test
images. For a fair comparison with other methods, the images were resized to
a maximum scale of 1300 × 800 and deleted the starfish from the dataset. We
employ Mean Average Precision (mAP) metric for the evaluation.

We implement our method and experiments by PyTorch [18] and MMdetec-
tion [2]. Besides, we conduct the training processes on a GTX Titan XP GPU
with 12G memory and testing on an RTX 2070 GPU with 8G memory allocated
with the robot.

4.2 Results

We compare our proposed methods with the outstanding generic object detec-
tors on the URPC test-dev. Through the overall pipeline elaborate design,

Table 1. Results of the outstanding detectors that were trained and tested on the
URPC2018 dataset

Methods Results

Holothurian Echinus Scallop mAP50

SSD [14] 11.6 81.1 2.1 31.6

Faster R-CNN [20] 73.8 91.0 57.1 74

Cascaded [1] 74.1 90.2 58.6 74.3

ROIMix [12] 73.3 86.8 56.0 72.0

GHM [9] 40.7 56.2 34.9 43.9

FCOS [24] 20.4 86.2 11.8 39.5

ScratchDet [29] 57.0 87.8 48.5 64.4

Grid R-CNN [15] 71.0 88.5 55.7 71.7

Free anchor [28] 66.5 90.2 40.8 65.8

RepPoints [26] 67.1 90.8 37.1 65

FoveaBox [8] 69.7 91.4 53.5 71.5

Libra R-CNN [17] 74.9 91.0 58.9 75

Hrnet [22] 35.2 88.8 28.9 51.0

Ours 77.3 91.8 62.9 77.4
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Table 2. Results of the ablation experiments

Methods Results

DCN Module GA Strategy BA Sampling Holothurian Echinus Scallop mAP

Baseline 73.8 91.0 57.1 74.0

� 76.3 92.3 59.2 75.9

� 75.6 90.9 60.2 75.6

� 74.7 90.9 57.2 74.2

� � 76.9 91.5 60.4 76.3

� � 75.5 90.6 62.6 76.3

� � 76.7 91.5 60.8 76.3

GSDCN � � � 77.3 91.8 62.9 77.4

GSDCN achieves 77.4% mAP, which is 3.4 points higher AP than the FPN
Faster R-CNN baseline. Furthermore, our method surpasses the state-of-the-
art underwater object detector by a large margin to 5.4 points. Particularly,
our GSDCN exceeds following outstanding generic object detectors by a distinct
margin(2.4%–45.8%). The primary reason is that our GSDCN customize a detec-
tor based on the three main challenges for the specific task. Consequently, the
improvement is uniquely suited for the benthonic organism detection (Table 1).

4.3 Ablation Experiments

The results of ablation experiments are shown in Table 2. First of all, we merely
bring in the DCN module, GA Strategy, and Balanced Sampling, respectively.
The significant improvements from the AP of holothurian and scallop validate
that introducing the DCN module and GA Strategy can upgrade the baseline
model, especially for detecting the nonrigid objects with geometric variations,
i.e., holothurian and scallop. In particular, when we employ the Balanced Sam-
pling on the baseline model, a slight improvement was made. Since the detector
suffers from the first two challenges a lot. Afterward, after adding the GA Strat-
egy on the baseline with the DCN module, the holothurian’s AP increased by
0.6%, and scallops’ rises 0.8%. Undoubtedly, attracting the GA strategy into
the baseline with the DCN module further improves the capability of detecting
hard categories. Last but not least, the problem of sampling unbalanced at this
time is the key factor in suppressing the performance of the detector. Naturally,
adding Balanced Sampling on the network mentioned before brings an increase
mAP of 1.1%.

Figure 3 visualizes partial detecting results of our GSDCN detector and the
baseline. As shown in Fig. 3, the baseline RPN Fast R-CNN fails to detect the
wide scallops and holothurians, especially for the curving holothurian, while our
GSDCN works well. The high AP of each kind, the mAP score, and the visual-
ization of results all illustrate that GSDCN alleviates the challenges efficiently.
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Fig. 3. Visualize the results of baseline and our GSDCN. The left column reveals the
results of the baseline, and the right one indicates our outstanding performance.

5 Conclusion

This paper discusses the special challenges of underwater detection, the geomet-
ric variations of holothurians, the influence of visibility range, and the imbal-
ance of objects’ distribution. Regarding the issues discussed above, we propose
a customized two-stage detector GSDCN to help underwater robots picking the
holothurians, echinus, scallops autonomously. To the best of our knowledge, this
is the first paper that researches the outstanding generic object detectors in
the underwater conditions over the past three years. The experimental results
demonstrate the promising performance of our GSDCN better than the state-
of-the-art detector with a large margin to 5.39%. We believe that this paper
would potentially provide new insights on designing new robust underwater
object detectors. Besides, we hope this paper could spur more research works on
underwater object detection.
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