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Abstract. The importance of clustering the single-cell RNA sequence
is well known. Traditional clustering techniques (GiniClust, Seurat, etc.)
have mostly been used to address this problem. This is the first work
that develops a deep dictionary learning-based solution for the same.
Our work builds on the framework of deep dictionary learning. We make
the framework clustering friendly by incorporating a cluster-aware loss
(K-means and sparse subspace) into the learning problem. Comparison
with tailored clustering techniques for single-cell RNA and with generic
deep learning-based clustering techniques shows the promise of our app-
roach.
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1 Introduction

The problem of clustering is well known; there are many reviews (such as [1])
on this topic. The general topic of clustering studies the formation of naturally
occurring groups within the data. The simplest (and still the most popular)
approach for the same is perhaps K-means [2]. K-means segments the data by
relative distances; samples near each other (pre-defined by some distance metric)
are assumed to belong to the same cluster. Owing to the linear nature of the
distance, the K-means was not able to capture non-linearly occurring groups.
This issue was partially addressed by the introduction of kernel K-means [3].
Instead of defining the distance between the samples, a kernel distance was
defined (Gaussian, Laplacian, polynomial, etc.) for clustering. Closely related
to the kernel K-means is spectral clustering [3]. The later generalizes kernel
distances to any affinity measure and applies graph cuts to segment the clusters.

K-means, kernel K-means, and spectral clustering are inter-related. A com-
pletely different approach is subspace clustering [4]. In the later, it is assumed
that samples belonging to the same group/cluster will lie in the same subspace.
There are several variants of subspace clustering, but the most popular one
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among them is the sparse subspace clustering (SSC) [5]. In SSC it is assumed
that the clusters only occupy a few subspaces (from all possibilities) and hence
the epithet “sparse”.

So far, we have discussed generic clustering techniques. In the single-cell anal-
ysis, cell type identification is important for the downstream analysis. Therefore,
clustering forms a crucial step in single-cell RNA expression analysis. Single-cell
RNA sequencing (scRNA-seq) measures the transcription level of genes. But, the
amount of RNA present in a single cell is very low due to which some genes did
not get detect even though they are present and this results in zero-inated data.
This data further gets compounded by trivial biological noise such as variability
in the cell cycle specic genes. Also, a large number of genes are assayed during an
experiment but only a handful of them are used for cell-type identification. This
leads to high feature-dimensionality and high feature-redundancy in single-cell
data. Applying clustering techniques directly on the high-dimensional data will
cause suboptimal partitioning of cells.

This triggers the need for customized techniques. The existing state-of-the-
art clustering techniques for single-cell data do not propose new algorithms for
clustering per se but apply existing algorithms on extracted/reduced feature sets.
One popular technique Seurat [6], instead of applying a distance-based clustering
technique on all the genes, selects highly variable genes from which a shared
nearest neighbor graph is constructed for segmentation. GiniClust [7] is similar
to the former and only differs in the use of the Gini coefficient for measuring
differentiating genes. Single-cell consensus clustering (SC3) [8] algorithm uses
principal component analysis (PCA) to reduce the dimensions and then applies
a cluster-based similarity partitioning algorithm for segmentation.

The success of deep learning is well known in every field today. What is inter-
esting to note is that success has been largely driven by supervised tasks; there
are only a handful of fundamental papers on deep dictionary learning-based clus-
tering [9]. Deep dictionary learning is a new framework for deep learning. In the
past, it has been used for unsupervised feature extraction [10], supervised clas-
sification [11], and even for domain adaptation [12]. However, it has never been
used for clustering. This would be the first work on that topic. The advantage
of deep dictionary learning is that it is mathematically flexible and can easily
accommodate different cost functions. In this work, we propose to incorporate
K-means clustering and sparse subspace clustering as losses to the unsupervised
framework of deep dictionary learning.

2 Proposed Formulation

There are three pillars of deep learning - convolutional neural network (CNN),
stacked autoencoder (SAE), and deep belief network (DBN). The discussion on
CNN is not relevant here since it can only handle naturally occurring signals with
local correlations. Moreover, they cannot operate in an unsupervised fashion, and
hence is not a candidate for our topic of interest. Stacked autoencoders have been
used for our purpose (deep learning-based clustering); the main issue with SAE
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is that it tends to overfit since one needs to learn twice the number of parameters
(encoder and decoder) compared to other standard neural networks. However,
SAE’s are operationally easy to handle with good mathematical flexibility. DBN
on the other hand learns the optimal number of parameters and hence does
not overfit. However, the cost function DBN is not amenable to mathematical
manipulations.

Deep dictionary learning keeps the best of both worlds. It learns the optimal
number of parameters like a DBN and has a mathematically flexible cost function
making it amenable to handle different types of penalties. This is the primary
reason for building our clustering on top of the deep dictionary learning (DDL)
framework. In our proposed formulation, we will regularize the DDL cost function
with clustering penalties, where X is the given data (X – in our case single cells
are along the columns and genes are along the rows), D is the dictionary learned
to synthesize the data from the learned coefficients Z.

min
D1,...DN ,Z

‖X − D1ϕ (D2ϕ(...ϕ(DNZ)))‖2F (1)

The first clustering penalty will be with K-means.

min
D1,D2,D3,Z,H

‖X − D1D2D3Z‖2F s.t.D2D3Z ≥ 0,D3Z ≥ 0, Z ≥ 0
︸ ︷︷ ︸

DictionaryLearning

+
∥

∥

∥Z − ZHT
(

HHT
)−1

H
∥

∥

∥

2

F
s.t.hij ∈ {0, 1} and

∑

j

hij = 1

︸ ︷︷ ︸

K−means

(2)

Note that we have changed the cost function for dictionary learning. Instead of
having activation functions like sigmoid or tanh, we are using the ReLU type
cost function by incorporating positivity constraints. The reason for using ReLU
over others is better function approximation capability [13]. The notations in
the K-means clustering penalty has been changed appropriately.

In this work, we will follow the greedy approach for solving (2). In the dictio-
nary learning part, we substitute Z1 = D2D3Z. This leads to the greedy solution
of the first layer of deep dictionary learning.

min
D1,Z1

|X − D1Z1| |2F s.t.Z1 ≥ 0 (3)

The input for the second layer of dictionary learning uses the output from the
first layer (Z1). The substitution is Z2 = D3Z . This leads to the following
problem

min
D2,Z2

‖Z1 − D2Z2‖2F s.t.Z2 ≥ 0 (4)

For the third (and final) layer no substitution is necessary; only the output from
the second layer is fed into it.

min
D3,Z

‖Z2 − D3Z‖2F s.t.Z ≥ 0 (5)
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All the problems (3)–(5) can be solved by non-negative matrix factorization
techniques; in particular, we have used the multiplicative updates [14]. Although
shown here for three layers, it can be extended to any number.

The input to K-means clustering is the coefficients from the final layer (Z).
This is shown as

min
H

∥

∥

∥Z − ZHT
(

HHT
)−1

H
∥

∥

∥

2

F
s.t.hij ∈ {0, 1} and

∑

j

hij = 1 (6)

The standard K-means clustering algorithm is used to solve it.
This concludes our algorithm to solve for the K-means embedded deep dictio-

nary learning algorithm. Owing to the greedy nature of the solution, we cannot
claim this to be optimal (owing to lack of feedback from deeper to shallower
layers); however, each of the problems we need to solve (3)–(6) have well-known
solutions.

Next, we show how the sparse subspace clustering algorithm can be embedded
in the deep dictionary learning framework.

min
D1,D2,D3,Z,C

‖X − D1D2D3Z‖2F s.t.D2D3Z ≥ 0,D3Z ≥ 0, Z ≥ 0
︸ ︷︷ ︸

DictionaryLearning

+
∑

i

‖zi − Zicci‖22 + ‖ci‖1,∀i in {1, ..., n}
︸ ︷︷ ︸

SparseSubspaceClustering

(7)

The solution to the deep dictionary learning remains the same as before; it can
be solved greedily using (3)–(5). Once the coefficients from the deepest layer are
obtained (Z), it is fed into the sparse subspace clustering. This is given by

min
ci′s

∑

i

‖zi − Zicci‖22 + ‖ci‖1,∀i in {1, ..., n} (8)

Once (8) is solved, the affinity matrix is created and is further used for
segmenting the data using Normalized Cuts.

3 Experimental Evaluation

3.1 Datasets

To evaluate the performance of the proposed method we used seven single-cell
datasets from different studies.

Blakeley: The dataset consists of three cell lineages of the human blastocyst
which are obtained using single-cell RNA sequencing (scRNA-seq). This scRNA-
seq data of the human embryo gives an insight into early human development and
was validated using protein levels. The study consists of 30 transcriptomes from
three cell lines, namely, human pluripotent epiblast (EPI) cells, extraembryonic
trophectoderm cells, and primitive endoderm cells [15].
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Cell Line: Microfluidic technology-based protocol, Fluidigm, was used to per-
form scRNA-seq of 630 single-cells acquired from 7 cell lines. Each cell line was
sequenced separately. Therefore, the original annotations were directly used. The
sequencing results in 9 different cell lines, namely, A549, GM12878 B1, GM12878
B2, H1 B1, H1 B2, H1437, HCT116, IMR90, and K562. The cell lines GM12878
and H1 had two different batches [16].

Jurkat-293T: This dataset consists of 3,300 transcriptomes from two different
cell lines - Jurkat and 293 T cells. The transcriptomes are combined in vitro
at equal proportions (50:50). All transcriptomes are labeled according to the
mutations and expressions of cell-type-specific markers, CD3D, and XIST [17].

Kolodziejczyk: This study reports the scRNA-seq of ∼704 mouse embryonic
stem cells (mESCs) which are cultured in three different conditions, namely,
serum, 2i, and alternative ground state a2i. The different culture condition of
the cells results in different cellular mRNA expression [18].

PBMC: This dataset constitutes ∼68,000 peripheral blood mononuclear cell
(PBMC) transcriptomes from healthy donors. They are annotated into 11 common
PBMC subtypes depending on correlation with uorescence activated cell sorting
(FACS)-based puried bulk RNA-Seq data of common PBMC subtypes. For this
study, we randomly sampled 100 cells from each annotated subtype and retained
the complete cluster in case the number of cells in it was less than 100 [17].

Usoskin: The data consists of 799 transcriptomes from mouse lumbar dorsal
root ganglion (DRG). The authors used an unsupervised approach to cluster
the cells. Out of 799 cells, 622 cells were classified as neurons, 68 cells had an
ambiguous assignment and 109 cells were non-neuronal. The 622 mouse neuron
cells were further classified into four major groups, namely, neurofilament con-
taining (NF), non-peptidergic nociceptors (NP), peptidergic nociceptors (PEP),
and tyrosine hydroxylase containing (TH), based on well-known markers [19].

Zygote: The RNA-sequencing data consists of 265 single cells of mouse preim-
plantation embryos. It contains expression proles of cells from zygote, early 2-cell
stage, middle 2-cell stage, late 2-cell stage, 4-cell stage, 8-cell stage, 16-cell stage,
early blastocyst, middle blastocyst, and late blastocyst stages [20].

3.2 Numerical Results

In the first set of experiments, we have compared the proposed algorithm with
the two state-of-the-art deep learning techniques. The first technique is a stacked
autoencoder (SAE) which comprises two hidden layers. The number of neurons
in the first hidden layer of SAE is 20 and the nodes in the second layer are the
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same as the number of cell types in the single-cell data. The second method
used as a benchmark is a deep belief network (DBN). Like SAE, DBN also has
two hidden layers with 100 nodes in the first layer and the number of nodes in
the second layer is the same as the number of clusters in the given dataset. For
our proposed deep dictionary learning (DDL) the number of nodes in the first
layer was 20 and those in the second one are the same as the number of cell
types (similar to the configuration of SAE). These configurations yielded the
best results. Both state-of-the-art techniques along with the proposed method
use the K-means algorithm on the deepest layer of features to determine the
clusters in the data.

To determine how SAE, DBN, and the proposed method can segregate dif-
ferent cell types using the respective deepest layer of features we employed two
clustering metrics: adjusted rand index (ARI) and normalized mutual informa-
tion (NMI), since the ground truth annotation (class) of each sample or cell is
known apriori (Table 1).

Table 1. Clustering accuracy of the proposed method and existing deep learning
techniques on single-cell datasets.

Algo Metric Blakeley Cell line Jurkat Kolodziejczyk PBMC Usoskin Zygote

DBN NMI .190 .567 .001 .032 .273 .015 .385

ARI .056 .430 .001 .171 .103 .007 .296

SAE NMI .181 .099 .925 .170 .573 .040 .107

ARI .011 .007 .958 .215 .377 .001 .006

Proposed method NMI .933 .873 .974 .694 .546 .647 .639

ARI .891 .801 .989 .645 .359 .642 .359

We see that the proposed method improves over existing deep learning tools
by a large margin. Only in the case of PBMC are the results from SAE a close
second.

In the next set of experiments, we used two well-known single-cell clustering
methods, namely, GiniClust [7] and Seurat [6] as benchmark techniques. For
both of our proposed methods (K-means and SSC) the configuration remains
the same as before.

GiniClust could not yield any clustering results for the Cell Line dataset. It
performs clustering by utilizing genes with a high Gini coefficient value. But, for
this particular dataset, the technique could not identify any highly variable gene
and hence could not cluster. Overall GiniClust almost always yields the worst
results.

Among the proposed techniques (K-means and SSC), we find that K-means
is more stable and consistently yields good results. Results from SSC fluctuate,
yielding perfect clustering for Blakely to poor results in Kolodziejczyk, PBMC,
and Usoskin. Only for the Kolodziejczyk and PBMC datasets does Seurat yield
results comparable to Proposed + K-means; for the rest, Seurat is considerably
worse than either of our techniques (Table 2).
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Table 2. Clustering accuracy of the proposed method and single-cell clustering algo-
rithms on single-cell datasets

Algo Metric Blakeley Cell line Jurkat Kolodziejczyk PBMC Usoskin Zygote

GiniClust NMI .277 – .007 .214 .153 .061 .282

ARI .037 – .000 .055 .030 .006 .025

Seurat NMI 0 .717 .946 .695 .585 .447 .453

ARI 0 .533 .974 .710 .296 .382 .123

Proposed + Kmeans NMI .933 .873 .974 .694 .545 .647 .639

ARI .891 .801 .989 .645 .359 .642 .359

Proposed + SSC NMI 1 .879 .889 .522 .481 .492 .623

ARI 1 .814 .821 .510 .303 .453 .317

4 Conclusion

This work proposes a deep dictionary learning-based clustering framework. Given
the input (where samples/cells are in rows and features/genes are in columns) it
generates a low-dimensional embedding of the data which feeds into a clustering
algorithm. The low dimensional embedding represents each transcriptome; it is
learned in such a manner that the final output is naturally clustered.

To evaluate the proposed method, we have compared against state-of-the-art
deep learning techniques (SAE and DBN) and tailored single-cell RNA clustering
techniques (GiniClust and Seurat). Our method yields the best overall results.

The current approach is greedy and hence sub-optimal; there is no feedback
between the deeper and shallower layers. In the future, we would like to jointly
solve the complete formulations (2) and (7) using state-of-the-art optimization
tools.
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