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Abstract. The new perspective in visual classification aims to decode
the feature representation of visual objects from human brain activi-
ties. Recording electroencephalogram (EEG) from the brain cortex has
been seen as a prevalent approach to understand the cognition process
of an image classification task. In this study, we proposed a deep learn-
ing framework guided by the visual evoked potentials, called the Event-
Related Potential (ERP)-Long short-term memory (LSTM) framework,
extracted by EEG signals for visual classification. In specific, we first
extracted the ERP sequences from multiple EEG channels to response
image stimuli-related information. Then, we trained an LSTM network
to learn the feature representation space of visual objects for classifica-
tion. In the experiment, 10 subjects were recorded by over 50,000 EEG
trials from an image dataset with 6 categories, including a total of 72
exemplars. Our results showed that our proposed ERP-LSTM frame-
work could achieve classification accuracies of cross-subject of 66.81%
and 27.08% for categories (6 classes) and exemplars (72 classes), respec-
tively. Our results outperformed that of using the existing visual classi-
fication frameworks, by improving classification accuracies in the range
of 12.62%–53.99%. Our findings suggested that decoding visual evoked
potentials from EEG signals is an effective strategy to learn discrimina-
tive brain representations for visual classification.
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1 Introduction

Visual classification is a computer vision task that inputs an image and out-
puts a prediction of the category of the object image. It has become one of the
core research directions of object detection and been developed rapidly with the
discovery of Convolutional Neural Networks (CNN) in the last decades. CNN
has been seen as a powerful network which is loosely inspired by human’s visual
architecture, however, some researchers are cognizant that there are still signif-
icant differences in the way that human and current CNN process visual infor-
mation [4]. Particularly, the performance of recognition of negative images [8]
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and generalisation towards previously unseen distortions [4] have further shown
the robustness of CNNs on object recognition are not at the human level.

For human beings, object recognition seems to be accomplished effortlessly in
everyday life, because the advantage of visual exteroceptive sense is distinct. For
example, someone usually directly looks at the objects they want to recognise to
make full use of the foveal vision. It has always been a challenging issue in cog-
nitive neuroscience to figure out the mechanisms that human employed for the
visual object categorisation [12]. Researchers have investigated that the brain
exhibits functions of feature extraction, shape description, and memory match-
ing, when the human brain is involving visual cognitive processes [3]. Subsequent
studies [6,15] have further revealed that analysing brain activity recordings, link-
age with the operating human visual system, is possible to help us understand
the presentational patterns of visual objects in the cortex of the brain. Inspired
from the above visual neuroscience investigations, some recent work considered
to process visual classification problems by analysing neurophysiology and neu-
roimaging signals recorded from human visual cognitive processes [1,7,9,10,16].
However, they are still limited to analyse the brain visual activities by using the
raw physiological signals without extracting a more representative input during
the signal preprocessing stage.

In addition, many existing visual classification studies have been focusing
on electroencephalography (EEG)-based visual object discriminations as we
explored above. EEG signals, featuring by a high temporal resolution in com-
parison with other neuroimaging, are generally recorded by electrodes on the
surface of the scalp, which has been applied in developing several areas of brain-
computer interface (BCI) classification systems [5], such as pictures, music, and
speech recognitions [2]. However, the raw waveforms of EEG signals are the
recorded spontaneous potential of the human brain in a natural state, which
is difficult to distinguish the hidden event-related information during the visual
cognitive process [3,11]. Thus, the event-related potential (ERP) was proposed to
identify the real-time evoked response waveforms caused by stimuli events (e.g.,
specific vision and motion activities), which usually performed lower values than
the spontaneous EEG amplitude [3] and extracted from the EEG fragments with
averaged superposition in multiple visual trials.

2 Related Work

Decoding image object-related EEG signals for visual classification has been a
long-sought objective. For example, the early-stage studies in [13,14] attempted
to classify single-trial EEG responses to photographs of faces and cars. An image
classification task [9] in 2015 considered a comprehensive linear classifier to tackle
EEG brain signals evoked by 6 different object categories, and achieved the
classification accuracy around 40%.

Afterwards, investigating the intersection between deep learning and decod-
ing human visual cognitive feature spaces has increased significantly. In 2017,
Sampinato et al. [16] proposed an automated visual classification framework to
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compute EEG features with Recurrent Neural Networks (RNN) and trained a
CNN-based regressor to project images onto the learned EEG features. How-
ever, the recent two studies in 2018 and 2020 [1,10] brought force questions to
Spampinato’s block design [16] employed in the EEG data acquisition, where all
stimulus of a specific class are presented together without randomly intermixed.
In particular, the latest study in 2020 [1] replicated the Spampinato’s experi-
ment [16] with a rapid-event design and analysed the classification performance
on the randomised EEG trials. In addition, we noted that a special structure
recurrent neural network, Long Short-Term Memory (LSTM) network, is com-
monly used in these studies to learn the representations of brain signals, which
have shown the feasibility to decode human visual activities and deep learning
for visual classification.

However, most of current machine learning approaches for visual classifica-
tion ignored to explore the EEG evoked potentials of spontaneous generation.
Even now deep learning is still difficult to recognise distinctive patterns of evoked
potentials from the raw waveforms of EEG signals with a visual stimulus, so we
assume that excluding visual related evoked potentials could be a fundamental
cause that leads to an uncertain feature representation space for visual classifi-
cation and place a restriction on the improvement of classification accuracy.

Thus, in this study, our work was inspired from two assumptions: (1) the
feature representations employed by human brains for visual classification will
be more pronounced learned from the purer ERP which conveys image stimuli-
related information; (2) the multi-dimensional ERPs can be decoded to obtain
a one-dimensional representation using RNN and do not require pre-selection of
spatial or temporal components. One special type of RNNs, the LSTM, presents
the strong capability in recognising long-term and short-term feature represen-
tations from time-series EEG signals.

With the above two assumptions, in this study, we proposed the first visual
evoked potential-guided deep learning framework, called ERP-LSTM framework,
to learn the discriminative representations for visual classification. The ERP-
LSTM framework is constituted by two stages: (1) acquiring the ERP waveforms
from multiple EEG trials with averaged superposition; (2) a parallel LSTM
network mapping the extracted ERPs into feature representation vectors and
involving an activation layer that classifies the derived vectors into different
classes.

3 Our Proposed Framework

The overview of our proposed ERP-LSTM framework is shown in Fig. 1, which
is separated into two stages for visual classification. In Stage 1, we employed
raw EEG signals recorded from the visual experiment and then extracted ERPs
from the raw EEG data to secure the visual stimuli-related signals. In Stage 2, we
trained an LSTM network to learn the representation space of the ERP sequences
and followed a Softmax classification trained to discriminate the different classes
of the images.
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Fig. 1. The overview of the ERP-LSTM framework

3.1 Stage 1: ERPs Extractions from EEG

The representative features of EEG signals play an essential role in classify-
ing image object categories. The first stage of our proposed framework aims to
extract representative visual-related features of ERPs by increasing the signal-
noise ratio (SNR) of the raw EEG signals with smooth-averaging measurement.
A number of EEG segments with the same trials are averaged out to a fused
waveform. In specific, during the averaging process, the consistent features of
the segments (the ERPs) are retained, while features that vary across segments
are attenuated (refer to the upper left corner of Fig. 1).

More formally, let dji =
{
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of the multi-channel temporal EEG signals, when one subject is viewing the jth
exemplar image. N is the number of EEG trials to be averaged, which contains
n of EEG trials, where trial T j

n ∈ R
c (c is the number of channels).

The averaging process is described by the following fomula:
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where eji is the ERP sequence averaged from dji .

Let E be the sum of extracted multi-channel ERPs, E =
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which will be the inputs of the LSTM encoder module we addressed in the next
subsection to learn discriminative feature representations for visual classification.
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3.2 Stage 2: Feature Representations and Classification

To further utilise the spatial and temporal information from extracted ERPs,
we applied an LSTM encoder module shown in the lower part of Fig. 1, which
refers to Spampinato’s “common LSTM + output layer” architecture [16]. The
inputs of the encoder are the multi-channel temporal signals - ERPs, which are
preprocessed in the previous subsection.

At each time step t, the first layer takes the input s(Δ, t) (the vector of
all channel values at time t), namely that all ERPs from multiple channels are
initially fed into the same LSTM layer. After a stack of LSTM layers, a ReLU
layer is added to make the encoded representations easy to map the feature space.
The whole LSTM encoder outputs a one-dimensional representation feature of
each ERP. After the representation vectors are obtained, a Softmax activation
layer is finally connected to classify the LSTM representative features to different
visual categories.

The LSTM encoder module is evaluated by the cross-entropy loss, which
measures the differences between the classes predicted from the network and
the ground-truth class labels. The total loss is propagated back into the neu-
ral network to update the whole model’s parameters through gradient descent
optimisation.

In the proposed ERP-LSTM framework, the LSTM encoder module is used
for generating feature representations from ERP sequences, followed by a Soft-
max classification layer to predict the visual classes.

4 The Experiment

4.1 The Dataset

In this study, we evaluated our model on the dataset proposed in [9]. There are
51840 trials of EEG signal that were collected from 10 subjects viewed 72 images,
where each subject completed 72 trials of each of the 72 images and conducted
a total of 5,184 trials per subject. The 72 images belong to 6 different categories
of images, which are Human Body, Human Face, Animal Body, Animal Face,
Fruit Vegetable, and Inanimate Object. In this study, each of the trials was
labelled to map the description of the visual evoked-related events, namely the
corresponding image category or the image exemplar number. Note that, we
excluded the associated dataset proposed in [16] because of the block design
problem in EEG data acquisition as mentioned in Sect. 2.

4.2 Settings

In this study, we randomly segmented the 72 EEG trials into 6 sets, and each
set contains 12 EEG trials. The trials in each set are averaged to extract an
ERP sequence with the same image and category label. Then, we obtained 6
ERP sequences of each image and also achieved E, the ERP space of the overall
extracted 124-channel ERP sequences. Of note, the ERP space E is split into
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the training set and the testing set with a proportion of 5:1, indicating that
80% ERP sequences for each image keep in the training set and the remaining
20% sequences are on the testing set. To further evaluate the performance of the
classification framework, we performed two types of data classification: cross-
subject and within-subject basis.

5 Results

5.1 Performance of Six-Category Visual Classification

As shown inTable 1,we presented the classification performance of the basic LSTM
using raw EEG (EEG-LSTM) [16] and our proposed ERP-LSTM frameworks. It
also illustrated the two types (cross-subject and within-subject) of classification
performance.Our findings showed that our proposedERP-LSTMframework could
reach about 66.81% accuracy for cross-subject type of visual classification and
achieve the highest classification accuracy of 89.06% for a single subject (subject
1). Both outcomes were outperformed that of EEG-LSTM framework, where the
classification accuracy improved 30.09% across 10 subjects, 53.99% for subject 1,
and 23.46% for averaged within-subject from 1 to 10.

Our findings suggested that the representation feature space encoded from
the extracted ERPs is more discriminative to classify image objects compared to
that of the raw EEG. Also, we suppose that the critical information for object
cognition of the brain signals did not miss during the averaging process. On the
contrary, the extracted ERPs have retained the spatial and temporal feature
that is related to the visual evoked potentials.

Table 1. Performance of six-category visual classification

Accuracy EEG-LSTM [16] ERP-LSTM (our) Improvement

Cross-subject 36.72% 66.81% 30.09%

Within-subject

Subject 1 35.07% 89.06% 53.99%

Subject 2 35.30% 60.94% 25.64%

Subject 3 45.25% 71.88% 26.63%

Subject 4 35.88% 50.00% 14.12%

Subject 5 48.03% 65.62% 17.59%

Subject 6 47.80% 75.00% 27.20%

Subject 7 40.74% 62.50% 21.76%

Subject 8 31.37% 45.31% 13.94%

Subject 9 39.12% 60.94% 21.82%

Subject 10 47.45% 59.38% 11.93%
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5.2 Performance of Exemplar-Level Visual Classification

Here, we further analysed the existing frameworks and our proposed ERP-LSTM
framework at the exemplar image level. It removed the categories as the classi-
fication labels, and instead, it aims to identify a specific image as an exemplar.
As shown in Table 2, we presented the existing two frameworks, Kaneshiro [9]
and EEG-LSTM [16], to identify the exemplars with 72 classes across all 10 sub-
jects. The findings showed that our proposed ERP-LSTM framework still could
achieve the classification accuracy of 27.08% at the exemplar level, which out-
performed 14.46% for Kaneshiro and 7.97% for EEG-LSTM. We also attached
the results of six-category level classification to get insights into the difference
between easy (category) and hard (exemplar) modes.

Table 2. Performance of category- and exemplar-level visual classification

Accuracy Kaneshiro [14] EEG-LSTM [16] ERP-LSTM (our)

Categories (6 classes) 40.68% 36.72% 66.81%

Exemplars (72 classes) 14.46% 7.97% 27.08%

Thus, relative to the existing model, our work denoted that the representation
feature decoded from the extracted ERPs is less confusion than raw EEG signals,
which benefits to learn a more discriminative feature space for visual classifica-
tion. Furthermore, our ERP-LSTM framework also achieved better performance
than a recent work in 2020 [1] (in which the reported classification accuracy on
6 categories is 17.1%), even if we used the different data source. This suggested
that the LSTM network is capable to encode the ERPs to obtain a represen-
tative feature space, as the advantages of LSTM network on tackling temporal
dynamics of time-series EEG signals.

6 Conclusion

In this paper, we proposed an evoked potential-guided deep learning framework,
called ERP-LSTM framework, for visual classification, which is separated into
two stages: (1) extracting ERP sequences from multi-trial EEG segments; (2) a
parallel LSTM network to encode a representation feature space for object cate-
gorisation as well as to classify EEG signal representations. Our proposed ERP-
LSTM framework achieved better performance compared to existing frameworks
both on the classification of 6 categories and 72 exemplar images. We believe our
findings are presenting the feasibility to learn representational patterns of visual
objects based on the recording of brain cortex activities, and an ERP-LSTM
framework could learn characteristic features for visual classification.
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