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Abstract. In the scenario of data stream classification, the occurrence
of recurring concept drift and the scarcity of labeled data are very com-
mon, which make the semi-supervised classification of data streams quite
challenging. To deal with these issues, a new classification algorithm for
partially labeled streaming data with recurring concept drift is proposed.
CAPLRD maintains a pool of concept-specific classifiers and utilizes his-
torical classifiers to label unlabeled data, in which the unlabeled data
are labeled by a weighted-majority vote strategy, and concept drifts are
detected by automatically monitoring the threshold of classification accu-
racy on different data chunks. The experimental results illustrate that the
transfer learning from historical concept-specific classifiers can improve
labeling accuracy significantly, the detection of concept drifts and clas-
sification accuracy effectively.

Keywords: Concept drift · Semi-supervised learning · Transfer
learning

1 Introduction

In the era of big data, data streams are very common, examples include financial
transaction of credit cards, network intrusion information, and so on. Concept
drift [1] often occurs in these data streams, in which the distribution of data is
not stationary and makes the traditional classification methods not applicable
to data stream [2,3]. Recurring concept drift is a special type of concept drift,
referring to the phenomenon that concepts appeared in the past may reoccur
in the future [4]. However, some algorithms like [5–7] don’t consider the occur-
rence of recurring concept. Furthermore, in many real applications, the labeled
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instances are always scarce, and the cost of labeling unlabeled instances is high.
Therefore, using transfer learning and semi-supervised methods to solve these
problems are promising.

In this paper, a new Classification Algorithm for Partially Labeled data
stream with Recurring concept Drift (CAPLRD)1 is proposed. CAPLRD can be
employed as a framework for semi-supervised classification of data stream with
recurring concept drifts. The main contributions of CAPLRD are as follows: (1)
a new algorithm of Semi-Supervised Learning with Node Ensemble (SSLNE) is
proposed to label unlabeled instances, which employs labeled instances to locate
the similar local areas among historical classifiers, and then employs these local
areas to assist labeling unlabeled instances. (2) A new simple method of Recur-
ring Concept Drift Detection (RCDD) is proposed. RCDD mainly finds the clas-
sifier that has the best classification accuracy on the current data chunk in the
ensemble classifiers. If the highest accuracy exceeds the preset threshold, the
current data chunk corresponds to a recurring concept, otherwise corresponds
to a new concept. It is very interesting that the threshold can be automatically
adjusted according to the number of labeled instances.

2 Related Work

This paper is related to semi-supervised classification of data stream and transfer
learning, therefore, we briefly discuss them.

The approaches for semi-supervised classification of data stream can be
broadly divided into recurring-concept-based and non-recurring-concept-based.
ReaSC [8] and SUN [9] are non-recurring-concept-based method. ReaSC utilizes
both labeled and unlabeled instances to train and update the classification model
and maintains a pool of classifiers. Each classifier is built over a data chunk as
a collection of micro-clusterings which are generated through semi-supervised
clustering, and an ensemble of these cluster-based classifiers is used to classify
instances. SUN employs a clustering algorithm to produce concept clusters at
leaves in an incremental decision tree. If a concept drift is detected, the trained
decision tree is pruned to adapt to the new concept.

SPASC [10] and REDLLA [11] are recurring-concept-based approaches.
SPASC maintains a pool of historical classifiers and detects the recurring concept
drifts by the similarity between the current data chunk with the best classifier.
REDLLA adopts decision tree as its classification model, and it detects concept
drift by deviations between history and new concept clusters.

Transfer learning is an important learning method and employed to address
data stream classification in recent years. Condor [12] reuses historical models
to build new model and update model pool, by making use of the biased regu-
larization technique for multiple model reuse learning. SCBELS [13] utilizes the
local structure mapping strategy [14] to compute local similarity around each
sample and combines with semi-supervised Bayesian method to perform concept
detection which borrows idea from transfer learning.
1 Source code: https://gitee.com/ymw12345/caplrdsrc.git.

https://gitee.com/ymw12345/caplrdsrc.git
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3 The Proposed Algorithm

3.1 The Framework of CAPLRD

Without loss of generality, this paper assumes that a data stream is processed
batch by batch in which some of them are randomly selected to be labeled by
a supervisor. For convenience, Bt = (xt
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t
2, ..., x
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m) is used to denote a batch of

instances collected in the time t. Bt
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denote the labeled samples in Bt and their labels, respectively, whereas Bt
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(xt
n+1, x

t
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t
m) denotes the remaining unlabeled instances.

CAPLRD is described in the Algorithm 1. CAPLRD employs VFDT (very
fast decision tree) [15] as the base model, and many concept-specific classifiers
are maintained in a pool. For each coming data chunk, the pool selects a classifier
as an “active classifier” to classify the current data chunk. And then, SSLNE is
employed to label the unlabeled instances. Next, RCDD is employed to detect
concept drifts. If a new concept is detected, a new model is trained and added
into the pool, otherwise, a historical model is updated.

Algorithm 1: CAPLRD
Input: a streaming data in the form of batches: Bt, Bt

L, Y t
L, Bt

U ; the
parameter: θ

Output: the predicted labels of all the instances in Bt

1 Initialization: activeClf=NULL; E=NULL; Bt=NULL;
2 activeClf=createTree(B1

L);
3 E = E ∪ activeClf ; r=0; act=r; t=2;
4 while a new data batch is available do
5 Bt=read next batch(); activeClf .classify(Bt);
6 (B′, Y ′

L)=SSLNE(Bt
L, Y t

L, Bt
U , E, θ);

7 index=RCDD(B′, Y ′
L, E, act);

8 if index == −1 then
9 curClf=createTree(B′, Y ′

L);
10 curClf.highestAcc=0; E = E ∪ curClf ; r++;
11 activeClf=curClf ; act=r;

12 else
13 acc=Eindex.classify(B′);
14 Eindex.highestAcc=max(acc, Eindex.highestAcc);
15 Eindex.update(B′, Y ′

L); activeClf=Eindex; act=index;

16 B′=NULL; Y ′
L=NULL; Bt=NULL; t++;

3.2 Employing Historical Classifiers for Transfer Learning

SSLNE are described in the Algorithm 2. SSLNE is proposed to expand the
labeled instances in the current data batch and hence alleviate the scarcity of
labeled data. There are many semi-supervised learning methods like the well-
known self-training [16] and tri-training [17] methods. However, in these meth-
ods, if the wrongly classified samples are added to the original training set, the
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errors will be accumulated in the subsequent training process. SSLNE is based
on the facts that even two data batches corresponding to different concepts,
their distributions may be similar in some subregions. A trained decision tree
can divide an instance space into many subregions, and hence we can use the
similar subregions among the historical trees to label the unlabeled instances.

Algorithm 2: SSLNE
Input: the pool of historical classifiers: E, the current data batch: BL,

YL, BU and the threshold θ
Output: the expanded labeled data chunk: B′

1 B′=NULL; B′ = B′ ∪ BL; Y ′
L=NULL; Y ′

L = Y ′
L ∪ YL;

2 for each Ei in E do
3 Ei.lnode.N=0; Ei.lnode.CN=0;
4 for each xl

i in BL do
5 Ei.lnode=Ei.sort into leaf(xl

i); Ei.lnode.N++;
6 if xl

i is classified correct then
7 Ei.lnode.CN++;

8 for each xu
i in BU do

9 for 1 ≤ j ≤ labelNum do
10 each class WSj=0;

11 for each Ei in E do
12 Ei.lnode=Ei.sort into leaf(xu

i );
13 if Ei.lnode.N==0 then
14 go to step 11;

15 else
16 label xu

i with Ei.lnode and obtain the predicted label c;
17 acc = Ei.lnode.CN/Ei.lnode.N ; T = acc − 1.0/labelNum;
18 if T > θ/labelNum then
19 WSc = WSc + T ;

20 WSk=max{WS1, WS2, ..., WSlabelnum};
21 if WSk > θ/labelNum then
22 xu

i is labeled with the label k; B′ = B′ ∪ xu
i ; Y ′

L = Y ′
L ∪ k;

23 return (B′, Y ′
L);

More specifically, for each historical classifier, all the labeled instances in
the current data batch are sorted into its leaves. In the process of traversing
the decision tree, lnode.N is saved for counting the number of instances that
are sorted into its corresponding leaf, while lnode.CN is saved for counting the
number of correct classified instances among them. Then, for each historical
classifier, each unlabeled instance in the current data batch is sorted into a leaf
of it. The value of lnode.CN/lnode.N to this leaf node can be used to present the
classification confidence of the historical classifier for this unlabeled instance. The
larger the value of lnode.CN/lnode.N , the higher the local similarity is between
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the historical classifier and the current data batch. At last, the historical trees
with the value of lnode.CN/lnode.N are ensembled to give the classification
result for the unlabeled instances, then the unlabeled instance with its predicted
class label is added into the set of labeled instances in the current data batch.

3.3 Recurring Concept Drift Detection

RCDD is described in the Algorithm 3. In RCDD, if the classification accuracy
of a historical classifier Ei on the current data batch is higher than the threshold

β (β = Ei.highestAcc−δ, δ =
√

2.0
w , w means the number of labeled instances in

B′), then the current data batch is considered include the same concpet with Ei.
The larger w means there are more labeled instances in the current data chunk,
and a classifier will be evaluated more accurately with more labeled instances.
And hence, we set the smaller the w and the larger the δ, even the δ is empirical.

Algorithm 3: RCDD
Input: the expanded labeled data batch: B′, the label: Y , the pool of

classifiers: E, the index of active classifier in E: r;
Output: the index of classifier that corresponds to the same concept as

B′ in E or -1 which means B′ corresponds to a new concept
1 Compute the classification accuracy acc of Er in B′;
2 if acc > (Er.highestAcc − δ) then
3 return r;

4 maxAcc=0; index=-1;
5 for each Ei ∈ E except Er do
6 Compute the classification accuracy acc of Ei in B′;
7 if acc > (Ei.highestAcc − δ) and acc > maxAcc then
8 maxAcc = acc; index = i;

9 return index;

4 Experiments

To evaluate the performance of SSLNE, the first group is conducted to compare
SSLNE with the self-training and tri-training algorithms under the framework
of CAPLRD. That is, in CAPLRD, SSLNE is replaced by the self-training and
tri-training algorithm in turn while the other codes remain the same.

To evaluate the performance of RCDD, the second group is conducted to
compare RCDD with CCPRD which is the recurring concept drift detection
method of CCP [4] under the framework of CAPLRD. That is, in CAPLRD,
RCDD is replaced by CCPRD while the other codes remain the same.

To evaluate the performance of CAPLRD, the third group is conducted to
compare CAPLRD with REDLLA and SPASC.

To evaluate the sensitiveness of θ to CAPLRD, in the fourth group, the values
of θ is set as 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 0.9, respectively.
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In this paper, The size of the pool is unlimited. The unlabeled ratio is set
as 0.9, which means 90% of labels are not available. These experiments are
repeated 50 times for the synthetic datasets and 20 times for the real datasets.
The parameters of CCPRD are set as follows: θ = 0.5, Cmax = 3. The paired t-
test at 95% confidence level has been conducted to detect whether the differences
between our approach and other compared methods are statistically significant.

4.1 Datasets

In Table 1, the synthetic datasets of sea and cir are generated by MOA [18], the
definition of sine is if a ∗ sin(b ∗ x1 + θ) + c > x2, the label is 0, otherwise is 1.
While the electricity dataset is collected from the Australia New South Wales
electricity market, the weather dataset comes from an air force base with a 50-
year time span and diverse weather patterns and the spam dataset is collected
from various kinds of email about advertisements for products/web sites etc.

Table 1. Datasets with concept drifts.

Datasets Drift value Instances Dim Class Chunk size

Cir A:a = 0 b = 0 R = 2,
B:a = 0 b = 0 R = 3
C:a = 2 b = 2 R = 2,
D:a = 2 b = 2 R = 3
A-B-C-D-A-B-C-D

40,000 2 2 200

Sea θ = 5-8-12-15-5-8-12-15 40,000 3 2 200

Sine b = 1-π-3π-1-π-3π, θ = 0,
a = 1, c = 0

30,000 3 2 200

Electricity Unknown 45,312 14 2 200

Spam Unknown 4,601 57 2 100

Weather Unknown 18,159 8 2 200

4.2 Experimental Results

From Table 2, it can be observed that the accumulative accuracy of CAPLRD
based on SSLNE is significantly better than it based on self-training or tri-
training in all synthetic and real datasets. These results illustrate that the
transfer learning from historical classifiers can bring effective improvement for
semi-supervised learning.

From Table 3, it can be observed that the accumulative accuracy of CAPLRD
based on RCDD is better than it based on CCPRD on all the datasets, except
slightly worse than on the weather dataset. The reason why RCDD is better than
CCPRD may be that CCPRD uses the distance between the concept vector and
the concept cluster to judge whether is it a recurring concept, which has a certain
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Table 2. The accumulative accuracy (%) of CAPLRD on each dataset when its module
for semi-supervised learning is replaced with SSLNE, self-training, and tri-training,
respectively. •/◦ indicates CAPLRD based on SSLNE is significantly better/worse
than the compared methods.

Datasets Cir Sea Sine Electricity Spam Weather

Self-training 77.03±0.10• 78.39±0.08• 66.16±0.15• 65.66±0.19• 60.22±0.32• 60.49±0.23•
Tri-training 80.66±0.09• 81.94±0.11• 69.18±0.15• 68.49±0.19• 63.40±0.43• 66.52±0.20•
SSLNE 82.47±0.22 87.76±0.12 81.46±0.18 73.70±0.21 71.93±0.87 68.45±0.12

Table 3. The accumulative accuracy (%) of CAPLRD on each dataset when its module
for concept drift detection is set as RCDD and CCPRD, respectively. •/◦ indicates
CAPLRD based on RCDD is significantly better/worse than it based on CCPRD.

Datasets Cir Sea Sine Electricity Spam Weather

CCPRD 81.45±0.16• 80.02±0.23• 77.76±0.26• 72.70±0.29• 70.65±1.03• 68.76±0.30◦
RCDD 82.47±0.22 87.76±0.12 81.46±0.18 73.70±0.21 71.93±0.87 68.45±0.12

ambiguity. For CCPRD, the effect of the classifier corresponding to this concept
is that the classification of current data chunk cannot be optimal. RCDD is
to find a corresponding classifier with the highest classification accuracy in the
ensemble model, so RCDD is more accurate than CCPRD detection.

From Table 4, it can be observed that CAPLRD achieves higher accumula-
tive accuracy than SPASC and REDLLA on the synthetic datasets, and per-
forms better than SPASC on real datasets. From Fig. 1, it can be observed that
CAPLRD can track concept drifts more accurately, and recover to a high classifi-
cation accuracy quickly on the first four datasets, REDLLA performs better than
CAPLRD on the weather and spam datasets. The reason for this phenomenon
may be that it is impossible to determine where the concept drift occurs for real
data steams, and the artificially dividing the data streams to chunks may cause
the current data chunk to be impure, that is it may contain other concepts.

Table 4. The accumulative accuracies (%) of CAPLRD, SPASC, and REDLLA. •/◦
indicates CAPLRD is significantly better/worse than SPASC and REDLLA.

Datasets Cir Sea Sine Electricity Spam Weather

SAPSC 78.00±0.20• 66.13±0.41• 67.63±0.23• 58.68±0.17• 63.22±0.36• 65.31±0.28•
REDLLA 81.74±0.12• 66.05±0.24• 71.67±0.11• 66.50±0.50• 75.26±0.35◦ 72.16±0.19◦
CAPLRD 82.47±0.22 87.76±0.12 81.46±0.18 73.70±0.21 71.93±0.87 68.45±0.12

Table 5 is about the influence of θ on the CAPLRD algorithm when the value
of θ was set to 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 0.9, respectively. From Table 5, it can
be observed that the accumulative accuracy of CAPLRD is not sensitive to θ.
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(a) cir. (b) sea. (c) sine.

(d) electricity. (e) spam. (f) weather.

Fig. 1. Drift tracking of CAPLRD, SPASC, and REDLLA on each dataset.

Table 5. Accumulative accuracy (%) of CAPLRD on all datasets with different θ.

Datasets Cir Sea Sine Electricity Spam Weather

θ = 0 81.71±0.23 86.78±0.15 79.98±0.18 73.08±0.25 74.69±0.93 68.77±0.15

θ = 0.2 82.16±0.20 87.09±0.15 80.27±0.16 73.28±0.17 73.50±1.25 69.08±0.17

θ = 0.4 82.40±0.19 87.26±0.14 80.90±0.19 73.70±0.21 72.20±1.09 68.78±0.20

θ = 0.5 82.46±0.23 87.76±0.12 81.45±0.17 73.70±0.21 71.93±0.87 68.45±0.12

θ = 0.6 82.30±0.23 87.61±0.15 81.08±0.19 73.11±0.18 73.47±1.13 68.94±0.20

θ = 0.8 83.01±0.23 88.06±0.13 81.35±0.15 73.61±0.16 72.77±1.03 68.38±0.12

θ = 0.9 82.88±0.21 88.17±0.14 81.76±0.17 73.33±0.21 74.89±1.07 68.66±0.15

5 Conclusion

The innovation of the proposed CAPLRD lies in that it includes two components
of SSLNE and RCDD. The experimental results demonstrate that the proposed
SSLNE can utilizes historical classifiers to label the unlabeled instances effec-
tively, which can expand the set of limited labeled instances and improve the
generalization ability. The proposed RCDD is sensitive to the recurring con-
cept drift detection and responds fast due to the threshold can be automatically
adjusted according to the number of labeled instances. Besides, CAPLRD per-
forms much better than REDLLA and SPASC. However it has the limitation
that the base learner has to be decision tree model. How to extend the semi-
supervised classification method so that any type of supervised classification
model can be adopted as base learner is still challenging and interesting for
future work.
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