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Abstract. With the rapid development of biomedical software and
hardware, a large amount of relational data interlinking genes, proteins,
chemical components, drugs, diseases, and symptoms has been collected
for modern biomedical research. Many graph-based learning methods
have been proposed to analyze such type of data, giving a deeper insight
into the topology and knowledge behind the biomedical data. However,
the main difficulty is how to handle high dimensionality and sparsity of
the data. Recently, graph embedding methods provide an effective and
efficient way to address the above issues. It converts graph-based data
into a low dimensional vector space where the graph structural prop-
erties and knowledge information are well preserved. In this paper, we
conduct a literature review of recent graph embedding techniques for
biomedical data. We also introduce important applications and tasks in
the biomedical domain as well as associated public biomedical datasets.
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1 Introduction

With the recent advances in biomedical technology, a large number of relational
data interlinking biomedical components including proteins, drugs, diseases, and
symptoms, etc. has gained much attention in biomedical academic research. Rela-
tional data, also known as the graph, which captures the interactions (i.e., edges)
between entities (i.e., nodes), now plays a key role in the modern machine learn-
ing domain. Analyzing these graphs provides users a deeper understanding of
topology information and knowledge behind these graphs, and thus greatly ben-
efits many biomedical applications such as biological graph analysis [2], network
medicine [4], clinical phenotyping and diagnosis [30], etc.

Although graph analytics is of great importance, most existing graph
analytics methods suffer the computational cost drawn by high dimensionality
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and sparsity of the graphs. Furthermore, owing to the heterogeneity of biomedi-
cal graphs, i.e., containing multiple types of nodes and edges, traditional analyses
over biomedical graphs remain challenging. Recently, graph embedding methods,
aiming at learning a mapping that embeds nodes into a low dimensional vector
space R

d, now provide an effective and efficient way to address the problems.
Specifically, the goal is to optimize this mapping so that the node representa-
tion in the embedding space can well preserve information and properties of the
original graphs. After optimization of such representation learning, the learned
embedding can then be used as feature inputs for many machine learning down-
stream tasks, which hence introduces enormous opportunities for biomedical
data science. Efforts of applying graph embedding over biomedical data are
recently made but still not thoroughly explored; capabilities of graph embed-
ding for biomedical data are also not extensively evaluated. In addition, the
biomedical graphs are usually sparse, incomplete, and heterogeneous, making
graph embedding more complicated than other application domains. To address
these issues, it is strongly motivated to understand and compare the state-of-
the-art graph embedding techniques, and further study how these techniques
can be adapted and applied to biomedical data science. Thus in this review, we
investigate recent graph embedding techniques for biomedical data, which give
us better insights into future directions. In this article, we introduce the general
models related to biomedical data and omit the complete technical details. For a
more comprehensive overview of graph embedding techniques and applications,
we refer readers to previous well-summarized papers [7,14,33].

2 Homogeneous Graph Embedding Models

In the literature, homogeneous graphs refer to the graphs with only one type of
nodes and edges. There are three main types of homogeneous graph embedding
methods, i.e., matrix factorization-based methods, random walk-based methods
and deep learning-based methods.

Matrix Factorization-Based Methods. Matrix factorization-based methods,
inspired by classic techniques for dimensionality reduction, use the form of a
matrix to represent the graph properties, e.g., node pairwise similarity. Generally,
there are two types of matrix factorization to compute the node embedding, i.e.,
node proximity matrix and graph Laplacian eigenmaps.

For node proximity matrix factorization methods, they usually approximate
node proximity into a low dimension. Actually, there are many other solutions to
approximate this loss function, such as low rank matrix factorization, regularized
Gaussian matrix factorization, etc. For graph Laplacian eigenmaps factorization
methods, the assumption is that the graph property can be interpreted as the
similarity of pairwise nodes. Thus, to obtain a good representation, the normal
operation is that a larger penalty will be given if two nodes with higher similarity
are far embedded. There are many works using graph Laplacian-based methods
and they mainly differ from how they calculate the pairwise node similarity.
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For example, BANE [44] defines a new Weisfeiler-Lehman proximity matrix
to capture data dependence between edges and attributes; then based on this
matrix, BANE learns the node embeddings by formulating a new Weisfiler-
Lehman matrix factorization. Recently, NetMF [28] unifies state-of-the-art
approaches into a matrix factorization framework with close forms.

Random Walk-Based Methods. Random walk-based methods have been
widely used to approximate many properties in the graph including node cen-
trality and similarity. They are more useful when the graph can only partially be
observed, or the graph is too large to measure. Two widely recognized random
walk-based methods have been proposed, i.e., DeepWalk [27] and node2vec [15].
Concretely, DeepWalk considers the paths as sentences and implements an NLP
model to learn node embeddings. Compared to DeepWalk, node2vec introduces
a trade-off strategy using breadth-first and depth-first search to perform a biased
random walk. In recent years, there are still many random walk-based papers
working on improving performance. For example, AWE [19] uses a recently devel-
oped method called anonymous walks, i.e., an anonymized version of the ran-
dom walk-based method providing characteristic graph traits and are capable
to exactly reconstruct network proximity of a node. AttentionWalk [1] uses the
softmax to learn a free-form context distribution in a random walk; then the
learned attention parameters guide the random walk, by allowing it to focus
more on short or long term dependencies when optimizing an upstream objec-
tive. BiNE [13] proposes methods for bipartite graph embedding by performing
biased random walks. Then they generate vertex sequences that can well preserve
the long-tail distribution of vertices in original bipartite graphs.

Deep Learning-Based Methods. Deep learning has shown outstanding per-
formance in a wide variety of research fields. SDNE [37] applies a deep autoen-
coder to model non-linearity in the graph structure. DNGR [8] learns deep low-
dimensional vertex representations, by using the stacked denoising autoencoders
on the high-dimensional matrix representations. Furthermore, Graph Convolu-
tional Network (GCN) [20] introduces a well-behaved layer-wise propagation rule
for the neural network model. Another important work is Graph Attention Net-
work (GAT) [36], which leverages masked self-attentional layers to address the
shortcomings of prior graph convolution-based methods. GAT computes normi-
alized coefficients using the softmax function across different neighborhoods by
a byproduct of an attentional mechanism across node pairs. To stabilize the
learning process of self-attention, GAT uses multi-head attention to replicate K
times of learning phases, and outputs are feature-wise aggregated, typically by
concatenating or adding.

3 Heterogeneous Graph Embedding Models

Heterogeneous graphs mean that there are more than one type of nodes or edges
within. The heterogeneity in both graph structures and node attributes makes it
challenging for the graph embedding task to encode their diverse and rich infor-
mation. In this section, we will introduce translational distance methods and
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semantic matching methods, which try to address the above issue by construct-
ing different energy functions. Furthermore, we will introduce meta-path-based
methods that use different strategies to capture graph heterogeneity.

Translational Distance Methods. The first work of translation distance mod-
els is TransE [6]. The basic idea of the translational distance models is, for each
observed fact (h, r, t) representing head entity h having a relation r with tail
entity t, to learn a good graph representation such that h and t are closely con-
nected by relation r in low dimensional embedding space, i.e., h + r ≈ t, using
geometric notations. Here h, r and t are embedding vectors for entities h, t and
relation r, respectively. To further improve the TransE model and address its
inadequacies, many recent works have been developed. For example, RotatE [34]
defines each relation as a rotation from the source entity to the target entity in
the complex vector space. QuatE [45] computes node embedding vectors in the
hypercomplex space with three imaginary components, as opposed to the stan-
dard complex space with a single real component and imaginary component.
MuRP [3] is a hyperbolic embedding method that embeds multi-relational data
in the Poincaré ball model of hyperbolic space, which can well perform in hier-
archical and scale-free graphs.

Semantic Matching Methods. Semantic matching models exploit similarity-
based scoring functions. They measure plausibility of facts by matching latent
semantics of entities and relations embodied in their representations. Target-
ting the observed fact (h, r, t), RESCAL [26] embeds each entity with a vector
to capture its latent semantics and each relation with a matrix to model pair-
wise interactions between latent factors. HolE [25] deals with directed graphs
and composes head entity and tail entity by their circular correlation, which
achieves a better performance than RESCAL. There are other works trying
to extend or simplify RESCAL, e.g., DistMult [43], ComplEx [35]. Another
direction of semantic matching methods is to fuse neural network architecture
by considering embedding as the input layer and energy function as the out-
put layer. For instance, SME model [5] first inputs embeddings of entities and
relations in the input layer. The relation r is then combined with the head
entity h to get gleft(h, r) = M1h + M2r + bh, and with the tail entity t to get
gright(t, r) = M3t+M4r+bt in the hidden layer. The score function is defined as
fr(h, t) = gleft(h, r)T · gright(t, r). There are other semantic matching methods
using neural network architecture, e.g., NTN [31], MLP [10].

Meta-path-Based Methods. Generally, a meta-path is an ordered path that
consists of node types and connects via edge types defined on the graph schema,

e.g., A1
R1−→ A2 · · · Rl−1−→ Al, which describes a composite relation between node

types A1, A2, · · · , Al and edge types R1, · · · , Rl−1. Thus, meta-paths can be
viewed as high-order proximity between two nodes with specific semantics. A set
of recent works have been proposed. Metapath2vec [11] computes node embed-
dings by feeding metapath-guided random walks to a skip-gram [24] model.
HAN [41] learns meta-path-oriented node embeddings from different meta-path-
based graphs converted from the original heterogeneous graph and leverages the
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attention mechanism to combine them into one vector representation for each
node. HERec [29] learns node embeddings by applying DeepWalk [27] to the
meta-path-based homogeneous graphs for recommendation. MAGNN [12] com-
prehensively considers three main components to achieve the state-of-the-art
performance. Concretely, MAGNN [12] fuses the node content transformation
to encapsulate node attributes, the intra-metapath aggregation to incorporate
intermediate semantic nodes, and the inter-metapath aggregation to combine
messages from multiple metapaths.

Other Methods. LANE [18] constructs proximity matrices by incorporating
label information, graph topology, and learns embeddings while preserving their
correlations based on Laplacian matrix. EOE [42] aims to embed the graph
coupled by two non-attribute graphs. In EOE, latent features encode not only
intra-network edges, but also inter-network ones. To tackle the challenge of
heterogeneity of two graphs, the EOE incorporates a harmonious embedding
matrix to further embed the embeddings. Inspired by generative adversarial net-
work models, HeGAN [16] is designed to be relation-aware in order to capture
the rich semantics on heterogeneous graphs and further trains a discriminator
and a generator in a minimax game to generate robust graph embeddings.

4 Applications and Tasks in Biomedical Domain

In recent years, graph embedding methods have been applied in biomedical data
science. In this section, we will introduce some main biomedical applications of
applying graph embedding techniques, including pharmaceutical data analysis,
multi-omics data analysis and clinical data analysis.

Pharmaceutical Data Analysis. Generally, there are two main types of appli-
cations, i.e., (i) drug repositioning and (ii) adverse drug reaction analysis. Drug
repositioning usually aims to predict unknown drug-target or drug-disease inter-
actions. Recently, DTINet [23] generates drug and target-protein embedding by
performing random walk with restart on heterogeneous biomedical graphs to
make predictions based on geometric proximity. Other studies over drug repo-
sitioning focused on predicting drug disease associations. For instance, Wang
et al. [39] propose to detect unknown drug-disease interactions from the medi-
cal literature by fusing NLP and graph embedding techniques. An adverse drug
reaction (ADR) is defined as any undesirable drug effect out of its desired ther-
apeutic effects that occur at a usual dosage, which now is the center of drug
development before a drug is launched on the clinical trial. Recently, inspired
by translational distance models, Stanovsky et al. [32] propose a deep learning
model to recognize ADR mentions in social media by infusing DBpedia.

Multi-omics Data Analysis. The main aim of multi-omics is to study struc-
tures, functions, and dynamics of organism molecules. Fortunately, graph embed-
ding now becomes a valuable tool to analyze relational data in omics. Concretely,
the computation tasks included in multi-omics data analysis are mainly about
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(i) genomics, (ii) proteomics and (iii) transcriptomics. Works of graph embed-
ding used in genomics data analysis usually try to decipher biology from genome
sequences and related data. For example, based on gene-gene interaction data, a
recent work [22] addresses representation learning for single cell RNA-seq data,
which outperforms traditional dimensional reduction methods according to the
experimental results. As we have introduced before, PPIs play key roles in most
cell functions. Graph embedding has also been introduced to PPI graphs for
proteomics data analysis, such as assessing and predicting PPIs or predicting
protein functions, etc. Recently, ProSNet [40] has been proposed for protein func-
tion prediction. In this model, they introduce DCA to a heterogeneous molec-
ular graph and further use the meta-path-based methods to modify DCA for
preserving heterogeneous structural information. As for transcriptomics study,
the focus is to analyze an organism’s transcriptome. For instance, Identifying
miRNA-disease associations now becomes an important topic of pathogenicity;
while graph embedding now provides a useful tool to involve in transcriptomics
for prediction of miRNA-disease associations. Li et al. [21] propose a method
by using DeepWalk to embed the bipartite miRNA-disease network to make
association prediction for miRNA-disease graphs.

Clinical Data Analysis. Graph embedding techniques have been applied to
clinic data, such as electronic medical records (EMRs), electronic health records
(EHRs) and medical knowledge graphs, providing useful assistance and sup-
port for clinicians in recent clinic development. To address the heterogeneity of
EMRs and EHRs data, GRAM [9] learns EHR representation with the help of
hierarchical information inherent to medical ontologies. ProSNet [17] constructs
a biomedical knowledge graph to learn the embeddings of medical entities. The
proposed method is used to visualize the Parkinson’s disease data set. Con-
ducting medical knowledge graph is of great importance and attention recently.
For instance, Zhao et al. [47] define energy function by considering the relation
between the symptoms of patients and diseases as a translation vector to further
learn the representation of medical forum data. Then a new method is proposed
to learn embeddings of medical entities in the medical knowledge graph, based
on the energy functions of RESCAL and TransE [46]. Wang et al. [38] construct
the objective function by using both the energy function of TransR and LINE’s
2nd-order proximity measurement to learn embeddings from a heterogeneous
medical knowledge graph to further recommend proper medicine to patients.

5 Conclusion

Graph embedding methods aim to learn compact and informative represen-
tations for graph analysis and thus provide a powerful opportunity to solve
the traditional graph-based machine learning problems both effectively and effi-
ciently. With the rapid development of relational data in the biomedical domain,
applying graph embedding techniques now draws much attention in numerous
biomedical applications. In this paper, we introduce recent developments of
graph embedding methods. By summarizing biomedical applications with graph
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embedding methods, we provide perspectives over this emerging research domain
for better improvement in human health care.
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