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Abstract. Extreme learning machine (ELM) is an efficient learning
algorithm for single hidden layer feed forward neural networks. Its main
feature is the random generation of the hidden layer weights and biases
and then we only need to determine the output weights in model learn-
ing. However, the random mapping in ELM impairs the discriminative
information of data to certain extent, which brings side effects for the
output weight matrix to well capture the essential data properties. In
this paper, we propose a factorized extreme learning machine (FELM)
by incorporating another hidden layer between the ELM hidden layer and
the output layer. Mathematically, the original output matrix is factor-
ized so as to effectively explore the structured discriminative information
of data. That is, we constrain the group sparsity of data representation
in the new hidden layer, which will be further projected to the output
layer. An efficient learning algorithm is proposed to optimize the objec-
tive of the proposed FELM model. Extensive experiments on EEG-based
emotion recognition show the effectiveness of FELM.

Keywords: Extreme learning machine - Factorized representation *
Group sparsity - Emotion recognition - EEG

1 Introduction

ELM is an efficient training algorithm for single hidden layer feed forward neu-
ral networks (SLFNNs) in which the input weights are randomly generated and
the output weights can be analytically obtained [6]. Compared with the back
propagation-based network weights tuning methods, the tedious process of itera-
tive parameter tuning is eliminated and the problems including slow convergence
speed and local minima are avoided. From the perspective of model optimiza-
tion, the consistency of ELM, SVM, least square SVM and proximal SVM has
been fully investigated [5]. ELM provides us a unified solution to generalized
SLFNNSs, including but not limited to neural networks, support vector networks
and regularized networks [5].
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In recent years, a lot of efforts have been made on ELM from perspectives of
theory and application. Huang et al. proposed the incremental ELM to enhance
the universal approximation performance of SLFNNs, which can randomly select
hidden nodes and adjust the output weights accordingly [3,4]. Zong et al. applied
ELM as a ranking algorithm from the pointwise and pairwise perspectives [12].
In order to reduce the influence of outliers, Horata et al. proposed a robust
ELM [2]. A fuzzy ELM was proposed to make different contributions to the
learning of output weights through inputs with different fuzzy matrices [11]. To
simultaneously utilize the benefits of £; and /> norms, an elastic net regularized
ELM was proposed to perform EEG-based vigilance estimation [10]. As a feature
extraction model, the discriminative extreme learning machine with supervised
sparsity preserving in which the constraints were imposed on the output weights
to preserve the sparsity achieved promising performance in data classification [8].
Besides, ELM has been widely employed in diverse fields such as face recognition,
human action recognition, speaker recognition and data privacy.

However, the random generation of input weights may cause some distortions
to the ELM hidden layer data representation in comparison with the original
structure information of data. Therefore, when given complicated data sets, it
will be hard to obtain a well-formed output weight matrix to get good gener-
alization performance. To this end, we propose a structured matrix factorized
extreme learning machine (FELM) in this paper. Our FELM model acts as the
matrix factorization on the output weight matrix by introducing another hidden
layer in which we enforce the group sparsity representation of data to achieve
local dependencies of hidden units. Particularly, the mixed-norm regularization
(¢1/€2 norm) is incorporated in the model to obtain the group sparsity. We ver-
ify the ability of FELM on EEG-based emotion recognition task. Experimental
results demonstrate that it can obtain better performance than SVM and ELM.

2 The Proposed FELM Model

Our proposed FELM model keeps the randomly generated input weights and
hidden biases unchanged as those of ELM. The difference between FELM and
ELM is the introduction of another hidden layer between the original ELM hid-
den layer and the output layer, which works as partitioning the original output
weight matrix into two matrices. Then, we can enforce the data representation
in the newly added hidden layer to have desirable properties which are beneficial
for improving the learning performance.

As shown in Fig. 1, FELM includes the input layer, hidden layer H1, hidden
layer H2 and output layer. The hidden layer H2 is the newly added one. Let
X = [x1,-+,xy] € RP*N represent the input data, where D is the number
of features and IV is the number of samples. The number of input units is D.
w; and b; represent the input weights and hidden bias respectively. They are

both randomly determined. Let W = [wy,--- ,wp| € RPXF represent the input
weight matrix. P is the number of units in the hidden layer H1. a; indicate the
input weights of the hidden layer H2, let A = [a;,--- ,ap|T € RF*? represent

the corresponding input weight matrix. b; indicate the output weights of the
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hidden layer H2 and B = [by,- -+ ,bg]T € R?XY represent the corresponding
output weight matrix. @ is the number of units in the hidden layer H2. f(X)
indicate the output data. Let T = [tq,---,ty] € RV indicate the expected

output data. C represents the number of categories and the output units.

Output layer

Hidden layer H2

Hidden layer H1
O'(Wl,bl.X) is J(WPabpwx)

Input layer CP e o (l?

Fig. 1. Schematic diagram of the FELM model.

Specifically, the representation of the hidden layer H1 can be calculated as
h(x) = o(w;, b;,x) = o(wlx+b), where o(a) = H% is the activation function
in sigmoid form. The matrix form representation in H1 can be denoted as H =
[h(x1), - ,h(xy)] € RPN, Then, the representation in hidden layer H2 can
be obtained by H = #(ATH). If ¢(a) = a represents a linear function, equation
(2) is equivalent to H = ATH. The mapping relationship between the hidden
layer H2 and the output layer is f(X) = BTH.

For convenience, let H = {1,2,--- , @} denote the set of all units in the hidden
layer H2. H can be partitioned into G groups and the gth group is represented
by Gy, where H = US_,G, and NS_,G, = 0. Therefore, H can be expressed
as H = [I:Igl’:; e ;I:ng,:; e ;I:IgG#]. Therefore, the objective function of the
FELM model can be expressed as follows:

min f = [BTH - T3 + a2(F) + 5B, M)

where « is a regularization constant of the activation of the units in the hidden
layer H2 and [ is a regularization parameter of the hidden layer H2 output weight
matrix B. Q(I:I) represents the imposed penalty on sparse representations H.
Luo et al. [7] pointed out that group sparse representation can learn the
statistical dependencies between hidden units, thereby improving model per-
formance. Therefore, in order to implement the dependencies, we divide the
units in the hidden layer H2 into non-overlapping groups on average to limit the
dependencies within these groups and constrain the hidden units in a group to
compete with each other. In addition, a mixed-norm regularization (¢; /¢3-norm)
can achieve group sparse representation. So, we conduct the mixed-norm regu-
larization Q2(H) = Zle ||I:Igg,:||172, where I:Igw is the representation matrix
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associated to the data within modality belonging to the gth group. The ¢; /(-
norm can be expressed as ||I:Igg7; 12 = Ef\il Zjegg ﬁ?l

Objective (1) has two variables, A and B. We can alternately optimize one
with the other fixed.

1) Update B. The objective O(B) is ming f = |BTH — T||% + 3||B||%, which
is a convex optimization problem with the closed-form solution as

B = (HH” + p1)'HT. (2)

2) Update A. The objective O(A) ismina f = |[BTH—T||%2 +af2(H). We can
use a gradient descent algorithm to solve the above squared error objective.
By deriving the gradient, we obtain

%J; — 2H[dp(H") o (BBTH — BT)7] + 20H[dp(HT) o AT o /AT], (3)

where o means element-wise multiplication, o/ means element-wise division. The
element of H is denoted as h;; = /3. jeg, A?i d¢(a) represents the gradient of
the function ¢(a). When it is a sigmoid function, d¢(a) = o(a) x (1 —o(a)) and

when it is a linear function, d¢(a) = 1. So in Eq. (3), d¢( Ty = 1. Equation (3)
can be further simplified as

g—i = 2H(BB"H — BT)” + 20H(H" o /HT). (4)
So, the update rule of A using the gradient defined in (4) is A = A — eg—};, where
€ is a learning rate. We summarize the optimization of FELM in Algorithm 1.

Algorithm 1 The optimization to FELM objective in equation (1)

Input: Data X, label T, parameters § = {a, 3, P, Q, €, G}.

Output: The output weight matrix A in the hidden layer H1 and the output weight
matrix B in the hidden layer H2.

Randomly initialize the input weights w;, bias b;, i =1,2,..., P, A and B and fix
w; and b;.

2: while not converged do

3 Update B according to (2);

4:  Update A according to A = A — EBA,

5: end while

Ju—

The optimization of each variable in FELM is iterative. The objective func-
tion in terms of variable B is a convex function and the solution obtained to B
is in closed-form. So the convergence of FELM mainly depends on the update
rule of variable A, which is based on the gradient descent method. As the num-
ber of iterations increases, the value of the objective function decreases along

the gradient until it converges. We terminate the iteration when the objective
llobs “* 1 —obj )5

74 . .
TFRGIE < 107* in the experiment.

function value
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The main complexity of FELM is the loop containing two blocks. The main
cost lies in calculating the inverse of () x ) matrices HHT + $I for the updating
of variable B, which needs O(Q?) complexity in each iteration. For the updating
to A, we need O(PQN) complexity to calculate in each iteration by a gradient
descent method. As a whole, the complexity for FELM is O(¢(Q*+ PQN)) where
t is the number of iterations.

3 Experiments

In the experiments, we evaluate the effectiveness of FELM on emotion recogni-
tion from EEG signals. The publicly available three-class emotional EEG data
set, SEED (http://bemi.sjtu.edu.cn/~seed/), was used in our experiments. The
differential entropy feature smoothed by the linear dynamic system is used due
to its effectiveness in expressing the emotional effect [1,9]. The EEG data of each
subject has three different sessions and there were about 3400 samples in each
session. We perform experiments in three different paradigms, which are with-
session and cross-session of the same subject, and cross-subject experiments.

We compare FELM with SVM and ELM in terms of the classification perfor-
mance on the given EEG data. Linear kernel was used in SVM and the regular-
ization parameter C was selected from 277 to 2'°. The regularization parameters
a and 3 in FELM were chosen from 10~* to 10%. If the dimension of input data
satisfied D < 100, the numbers of hidden units P and ) were searched from 100
to 500 with step size 100. If the dimension of input data satisfied 100 < D < 500,
P was chosen from 500 to 1000 and @ from 100 to 500. For simplicity, we set
the learning rate € to 0.01 and the group numbers G to 4. The input weights
and bias in ELM were the same as FELM which has P hidden units.

A. Experimental Paradigm 1. In order to test the ability of FELM model to
classify DE features on different frequency bands, we choose about 2000 samples
from one session of each subject as training set, the rest within the same session
as test set. Table 1 and 2 show the classification results of linear-SVM, ELM and
FELM models using the differential entropy features of delta, theta, alpha, beta
and gamma frequency bands as input, where the best results are highlighted
in boldface. We can find that the classification accuracies of FELM are higher
than those of ELM and SVM in most cases in Table 1. As shown in Table 2, the
average classification accuracy of FELM in each of the five frequency bands is
higher than that of ELM and SVM. In addition, the classification results on beta
and gamma frequency bands are higher than those of other frequency bands,
meaning that the variation of emotional states may be more closely related to
these two frequency bands.

Table 3 shows the average confusion matrices of three models based on the
310-dimensional feature vector of all frequency bands. We can find that positive
and neutral emotional states are easier to be identified than the negative state.
The FELM model estimates the negative state more accurately than both SVM
and ELM. The average classification accuracy of FELM for negative state is
60.31% which is much higher than those of ELM (55.43%) and SVM (58.73%).
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Table 1. Emotion recognition accuracies for six subjects A, B, C, D, E and F.

A Session 1 Session 2 Session 3

SVM | ELM | FELM |SVM |ELM |FELM | SVM | ELM |FELM
delta 49.93 | 53.76 | 54.55 | 37.57 | 40.53 | 40.53 | 46.75 | 48.84 | 49.64
theta 60.26 | 58.02 | 60.12 49.35 | 49.28 | 51.66 | 58.31 | 55.71 | 57.95

alpha 65.17 | 66.62 | 66.55 54.41 | 54.48 | 56.58 | 48.63 | 52.67 | 58.16
beta 84.10 | 81.29 | 81.00 65.46 | 63.08 | 64.96 57.15 | 63.08 | 67.12
gamma | 81.50 | 83.02 | 84.90 | 67.27 | 68.06 | 72.04 | 59.54 | 60.77 | 69.44
Total 82.59 | 83.74 | 81.14 75.65 | 64.74 | 67.63 59.90 | 61.27 | 65.39

B Session 1 Session 2 Session 3
SVM | ELM |FELM | SVM | ELM | FELM | SVM | ELM | FELM
delta 53.47 | 56.72 | 57.15 | 38.73 | 48.12 | 47.83 52.02 | 51.81 | 52.75
theta 57.59 | 60.12 | 60.55 | 55.92 | 57.15 | 59.47 | 52.38 | 59.18 | 59.90
alpha 72.83 | 82.01 | 83.74 | 65.75 | 64.45 | 67.85 | 65.10 | 70.30 | 72.04
beta 90.17 | 86.71 | 88.87 | 69.44 | 67.85 | 68.86 | 78.97 | 81.36 | 82.01
gamma | 89.52 | 87.57 | 91.26 | 70.66 | 66.33 | 66.91 77.24 | 75.07 | 76.23

Total 88.15 | 85.84 | 87.79 65.82 | 70.01 | 72.40 | 71.82 | 73.63 | 74.64

C Session 1 Session 2 Session 3
SVM | ELM | FELM |SVM |ELM |FELM |SVM | ELM |FELM
delta 50.79 | 54.26 | 55.20 | 35.77 | 39.38 | 41.19 | 44.73 | 45.52 | 42.34
theta 69.44 | 62.28 | 63.08 49.57 | 49.78 | 46.39 43.93 | 39.67 | 46.60
alpha 61.13 | 60.04 | 63.15 | 50.43 | 51.16 | 53.32 | 49.21 | 41.91 | 45.66
beta 77.24 | 70.38 | 72.25 90.03 | 90.82 | 90.39 58.60 | 47.83 | 59.68
gamma | 76.37 | 72.04 | 76.73 | 89.45 | 85.04 | 89.38 59.18 | 53.61 | 61.05
Total 76.52 | 74.64 | 75.14 91.11 | 88.80 | 87.50 61.20 | 50.43 | 60.12

D Session 1 Session 2 Session 3
SVM | ELM |FELM | SVM | ELM |FELM | SVM | ELM | FELM
delta 75.87 | T7.67 | 75.65 60.33 | 58.89 | 58.02 58.09 | 61.63 | 63.08
theta 73.92 | 69.22 | 69.94 | 56.00 | 57.88 | 62.07 | 55.78 | 54.62 | 65.32
alpha 70.16 | 80.78 | 83.38 | 80.56 | 76.01 | 81.07 | 80.27 | 89.45 | 87.79
beta 92.99 | 96.10 | 93.71 88.08 | 91.04 | 95.38 | 97.18 | 95.23 | 96.03
gamma | 90.68 | 93.93 | 95.23 | 91.98 | 92.49 | 94.58 | 96.32 | 95.74 | 95.88
Total 96.68 | 96.10 | 96.89 | 91.04 | 96.89 | 96.89 | 97.25 | 97.40 | 95.30

E Session 1 Session 2 Session 3
SVM | ELM | FELM |SVM |ELM |FELM | SVM | ELM |FELM
delta 58.89 | 51.16 | 50.65 55.85 | 55.06 | 53.97 48.70 | 49.28 | 50.00
theta 66.47 | 63.29 | 64.09 40.25 | 50.07 | 58.53 | 40.10 | 43.35 | 43.79
alpha 46.89 | 54.48 | 59.39 | 34.39 | 40.17 | 44.15 | 60.69 | 63.15 | 66.40
beta 67.12 | 71.53 | 75.14 | 53.90 | 65.97 | 72.18 | 63.08 | 67.34 | 78.11
gamma | 76.59 | 77.60 | 80.27 | 70.66 | 70.88 | 73.63 | 63.29 | 65.53 | 64.60

Total 70.01 | 69.87 | 72.18 | 60.19 | 68.50 | 69.51 | 73.99 | 67.20 | 76.81

F Session 1 Session 2 Session 3
SVM | ELM | FELM | SVM | ELM | FELM | SVM | ELM | FELM
delta 69.65 | 64.88 | 64.31 45.16 | 34.75 | 42.85 55.85 | 53.25 | 53.61

theta 58.24 | 58.24 | 57.73 46.82 | 49.78 | 51.52 | 63.44 | 60.62 | 60.26

alpha 60.48 | 62.64 | 62.57 53.11 | 48.55 | 52.24 66.84 | 65.53 | 67.63
beta 73.19 | 77.53 | 78.54 | 59.25 | 53.25 | 61.56 | 88.29 | 90.68 | 90.97
gamma | 69.80 | 82.01 | 85.26 | 58.82 | 57.30 | 61.05 | 93.86 | 91.26 | 95.30

Total 73.19 | 76.30 | 78.76 | 56.50 | 58.96 | 58.24 87.50 | 89.23 | 90.10
“Total” means concatenating features from all the five frequency bands.
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Table 2. Average performances of different algorithms in paradigm 1 (mean %+ std%).

Frequency band | mean + std (%)
SVM ELM FELM

delta 52.124+10.46 | 52.53 £9.90 |52.96 £ 8.94
theta 55.43+9.46 |55.46+7.32 |57.72+£7.05
alpha 60.34 +£12.07 | 62.47£13.70 | 65.09 £12.84
beta 75.24£14.00 | 75.62+14.44  78.71 +11.84
gamma 77.35+12.25|76.57 +13.07 | 79.65 + 12.28
Total 76.62+13.12|76.31 £13.92 | 78.14+12.10

Table 3. Confusion matrices of different algorithms in paradigm 1 (mean +std%).

SVM Positive Negative Neural
Positive |90.62 +£10.15|6.58 +7.75 2.80+4.08
Negative | 17.11£15.91 | 58.73 £31.53 | 24.16 £ 22.28
Neural |9.86+9.52 10.97+11.68 | 79.17+16.24
ELM Positive Negative Neural
Positive [91.22+£9.80 |5.10£6.45 3.68+£5.20
Negative | 17.65 £18.88 | 55.43 £28.36 | 26.92£19.22
Neural |9.61+14.76 9.65+11.17 80.75 +18.12
FELM | Positive Negative Neural
Positive |88.95+9.95 |7.53+7.41 3.52+5.03
Negative | 13.76 £13.55 |60.31 £27.19 | 25.93 £ 20.50
Neural |6.62+£7.79 9.53+9.95 83.85 +14.29

B. Experimental Paradigm 2. In order to identify the stable emotional patterns
across different times, we choose the EEG data from one session of one subject
as training set and the data from another session of such subject as test set.
This paradigm can be termed as ‘cross-session’ emotion recognition. Table 4
shows the recognition results of each subject respectively obtained by linear-
SVM, ELM and FELM models whose average performances are presented in
Table 5. Here A1-A1 means that all the training and test samples are from the
same session; specifically, we used the former 2000 of total 3400 samples as
training and the rest as test, which follows the pipeline in [9]. We can find from
Table4 that the recognition accuracies of FELM is the highest in most cases.
Generally, the classification accuracies by respectively choosing training and test
samples from different sessions are significantly lower than choosing both training
and test samples from the same session. This is caused by the non-stationary
property of EEG data even if it was collected from the same subject but at
different times. The average FELM classification accuracy for all subjects in the
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experimental paradigm 1 is 78.14% while it is 67.44% in experimental paradigm
2. Nevertheless, 67.44% is still a relatively good result for the three-class emotion
recognition task. This demonstrates that the transition of EEG patterns are
stable among different sessions of the same subject.

Table 4. Emotion recognition accuracies (%) of different algorithms in paradigm 2.

A1* A2 A3 B1 B2 B3
SVM | Al |82.59 53.48 | 44.49 | B1 | 88.15 | 32.62 | 54.10
ELM 83.74 | 57.25|64.79 85.84 | 59.75 | 57.75
FELM 81.14 55.24 | 57.04 87.79 | 61.43 | 61.87
SVM | A2 62.64 75.65 | 52.18 | B2 | 65.09 | 65.82 | 67.47
ELM 59.66 64.74 | 47.53 59.05 | 70.01 | 71.10
FELM 65.17 | 67.63 | 59.52 68.83 | 72.40 | 69.51
SVM | A3 36.21 55.83 | 59.90 | B3| 73.10 | 44.49 | 71.82
ELM 55.42 50.65 | 61.27 65.91 | 62.32 | 73.63
FELM 55.98 |57.31|65.39 71.66 | 67.21 | 74.64
ALG.s C1 C2 C3 D1 D2 D3
SVM | Cl1 76.52 |80.41 66.23 | D1 |96.68 | 80.55 | 83.50
ELM 74.64 80.32 | 66.82 96.10 | 82.20 | 90.28
FELM 75.14 78.99 | 73.10 96.89 | 84.00 | 82.12
SVM | C2 | 70.09 91.11 | 58.60 | D2 | 89.84 | 91.04 | 95.43
ELM 70.86 88.80 | 68.27 85.50 | 96.89 | 91.54
FELM 71.80 |87.50 | 63.20 84.03 | 96.89 | 93.64
SVM | C379.29 |81.35 61.20 | D3 | 81.08 | 93.25 | 97.25
ELM 56.48 72.04 |50.43 79.17 | 87.71 | 97.40
FELM 78.61 78.34 | 60.12 78.99 | 88.80 | 95.30
ALG.s E1 E2 E3 F1 F2 F3
SVM | El1 | 70.01 63.26 | 53.54 |F1|73.19 |55.57 | 56.84
ELM 69.87 59.78 | 48.26 76.30 | 54.71 | 53.89
FELM 72.18 | 63.67|62.32 78.76 | 51.94 | 53.95
SVM | E2 | 64.32 60.19 | 53.06 | F2 | 61.82 |56.50 | 69.27
ELM 46.32 68.50 | 54.57 66.97 | 58.96 | 65.00
FELM 65.91 | 69.51 | 52.83 61.14 | 58.24 | 71.69
SVM | E3  61.40 49.00 | 73.99 | F3 |43.69 |52.53 | 87.50
ELM 43.25 44.61 | 67.20 59.58 | 49.18 | 89.23
FELM 65.20* | 52.86 | 76.81 63.82 | 56.04 | 90.10

“A1” is the first session of subject A. For example, the value 65.20
in bottom left corner is obtained by FELM in using E3 as training
set and E1 as test set.
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Table 5. Average performances of different algorithms in paradigm 2 (mean +std%).

Session 1 Session 2 Session 3
SVM | Session 1|81.194+10.01 |60.98 +18.20 |59.78 +£13.55
ELM 81.084+9.44 |65.67+12.24 |63.634+14.75
FELM 81.98 +9.06 | 65.88 +£12.90 | 65.07 +10.59
SVM | Session 2 |68.97+10.63 | 73.39+15.15 | 66.00 4 16.08
ELM 64.73+£13.20 | 74.65+14.82 | 66.344+15.20
FELM 69.48 +7.98 | 75.36 +14.19 | 68.40 +14.12
SVM | Session 3|62.46 +18.90 |62.74+19.75 |75.28+14.70
ELM 59.97+11.97 |61.094+16.45 |73.19+17.55
FELM 69.04 +£9.06 | 66.76 +=14.27 | 77.06 = 13.65

4 Conclusion

In this paper, we proposed an improved extreme learning machine model based
on matrix factorization technique, termed as factorized ELM (FELM). This
model performed matrix factorization on the ELM output weight matrix by
adding an additional hidden layer between the hidden and output layers to mine
the structured information of high-dimensional data. The group sparse represen-
tations was adopted to learn the local dependencies of hidden units. We applied
FELM into emotion recognition from EEG signals. Based on the experimental
results, we had three observations: 1) the EEG features from beta and gamma
frequency bands might be more related to the transition of emotional states; 2)
the positive emotional state is easier to recognize than the neutral and negative
states; 3) there exist stable patterns in EEG features for performing cross-session
recognition. In comparison with the baseline ELM and SVM, FELM obtained
the best average classification performance.
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