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Abstract. In the past two decades, a plethora of efforts have been given
to the field of automatic classification of bird sounds, which can facilitate
a long-term, non-human, and low-energy consumption ubiquitous com-
puting system for monitoring the nature reserve. Nevertheless, human
hand-crafted features need numerous domain knowledge, and inevitably
make the designing progress time-consuming and expensive. To this line,
we propose a sequence-to-sequence deep learning approach for extracting
the higher representations automatically from bird sounds without any
human expert knowledge. First, we transform the birds sound audio into
spectrograms. Subsequently, higher representations were learnt by an
autoencoder-based encoder-decoder paradigm combined with the deep
recurrent neural networks. Finally, two typical machine learning mod-
els are selected to predict the classes, i.e., support vector machines and
multi-layer perceptrons. Experimental results demonstrate the effective-
ness of the method proposed, which can reach an unweighted average
recall (UAR) at 66.8% in recognising 86 species of birds.
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1 Introduction

Bird sound recognition refers to the identification of bird species by a given
audio. In recent years, the global climate has changed rapidly, and this drastic
climate change will lead to a large number of species decrease, which will seriously
affect the biological diversity. For this reason, people have come up with many
ways to track endangered species. Nevertheless, most of them are expensive for
human resources. For instance, observing birds through traditional telescopes
can be easily influenced by the weather, which makes the observation of birds
less accurate and inconvenient. To overcome the aforementioned challenges, the
wireless acoustic sensor networks (WASN) can not only cover the unattended
field and/or other places with harsh environment, but also alleviate the influence
of weather on bird observation.

In the past decade, numerous efforts have been given to the field of bird sound
classification. Many scholars began to use the information implied in bird sound
to classify bird species, so as to determine the distribution of birds in a certain
area. Large scale acoustic features feeding to an extreme learning machine was
introduced in [1,2], which demonstrated an efficient and fast way for recognising
bird species by using human hand-crafted features. For machine learning models,
SVM was found efficient in previous work [3–5]. There are also applications of
convolution neural networks to bird sound recognition. Piczak et al. used con-
volutional neural networks to do pure audio bird recognition [6]. Three different
CNN models were trained according to the difference of time-frequency repre-
sentations (TFRs): Mel-CNN, Harm-CNN, Perc-CNN. Also, trained a different
deep learning framework SubSpectralNet (Subnet-CNN), which is employed to
classify bird Sounds. Finally, experiments proved that the performance of classi-
fication can be improved by selectively combining the four models separately [7].

In this work, motivated by the success achieved in the field of natural lan-
guage processing, we propose a sequence-to-sequence deep learning model based
on recurrent neural network (RNN) for extracting higher representations from
the bird sounds without any human domain knowledge. Originally, the sequen-
tial to-sequence model is used to deal with speech-to-speech or text-to-speech
translation in [8,9]. Similar to the voice of the human, bird sound belongs to a
kind of time sequence data, and contains a plenty of semantic information.

For above considerations, sequence-to-sequence structure is introduced to the
higher representations learning of bird sounds. As show in Fig. 1, the specific
steps include (a) Preprocessing: transform the raw bird sound audio data to
spectrograms; (b) Autoencoder Training: the autoencoder-based RNN models is
trained by continuously reducing the loss between the prediction sequence and
the input sequence; (c) Higher Representations Extraction: the higher represen-
tations were learnt by autoencoder-based RNN models; (d) Classifiers Train-
ing: a classifier is selected for making the final prediction by the learnt repre-
sentations. We select two typical machine learning models, i.e., support vector
machine (SVM) and multi-layer perceptron (MLP) as the classifiers in this study.
(e) Classification Predictions: outputting the results using different classifier.
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The main contributions in this work are: Firstly, we introduce the unsuper-
vised sequence-to-sequence deep learning approach to the field of learning higher
representations from bird sound. Secondly, we investigate the effect by using dif-
ferent topologies of the deep neural networks. Finally, we analyze and discuss
the deep learnt features’ performances on recognising bird sounds. We hope this
study can facilitate the relevant work in finding more robust and efficient acous-
tical features from the bioacoustics in future.

(a) Raw audios and Preprocessing (b) Autoencoder Training
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Fig. 1. The framework of proposed Seq2Seq based higher representation learning sys-
tem for bird sound classification.

This paper is organized as follows: Firstly, we introduce the methods used in
Sect. 2. Section 3 introduces experimental design, including description of the
database, data preprocessing, experimental setting and results. And the discus-
sion will be given Sect. 4. Finally, we conclude this study in Sect. 5.



Learning Higher Representations from Bioacoustics 133

2 Methods

2.1 Sequence-to-Sequence Deep Learning Approach

Sequence to Sequence (Seq2Seq) learning was firstly proposed by Kyunghyun
Cho et al. [10], which has been demonstrated to be efficient in the field of machine
translation and speech recognition [11].

Here, we will describe the underlying framework of RNN Encoder-Decoder
briefly, which proposed by Sutskever et al. [12]. In the Encoder-Decoder frame-
work, encoder readers input sequence and transform it into a vector v. Here, we
assume X = (x1, x2, ..., xt) as input sequence, and Y = (y1, y2, ..., yt) as output
sequence, then

ht = f(xt, ht−1) (1)

Where f is the nonlinear function of RNN hidden layer, ht is the hidden state
at time t, which is calculated by the input xt at time t and the hidden state of
the previous layer ht−1.

v = q(h1, h2, ..., ht) (2)

Where in Eq. (2), encoder converts the hidden state at all moment into a
vector v through a nonlinear function q, vector v contains the key information
extracted from the input sequence.

The decoder is often trained to predict the output of next time yt, which
is obtain by vector v and all of the previous predictions y1, y2, ..., yt−1, such as
Eq. (3):

p(y1, y2, ..., yt|x1, x2, ..., xt)

=
t∏

t=1

p(yt|x1, x2, ..., xt−1, y1, y2, ..., yt−1)

=
t∏

t=1

p(yt|v, y1, y2, ..., yt−1) (3)

The decoder probability distribution at a given time can be expressed as

t∏

t=1

p(yt|v, y1, y2, ..., yt−1) = g(ht, yt−1, v) (4)

where g is a nonlinear, potentially multi-layered, function that outputs the
probability of yt, and ht is the hidden state of the RNN.

Motivated by the success of Seq2Seq, we introduce and propose an autoen-
coder based RNN model in bird sound classification task.

The Mel spectrum is a time-dependent sequence of frequency vectors, which
represents the amplitude of the MEL frequency band of a piece of audio. In
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the recurrent autoencoder, the Mel spectrum is fed to the multi-layer encoder
RNN firstly, and then updates the hidden state of the encoder according to the
input frequency vector. The final hidden state is reconstructed by a full connec-
tion layer that contains information about the entire input sequence. Finally, a
multi-layer decoder RNN reconstructs the original input sequence utilizing the
reconstructed features.

Here, we’ll mainly train a Seq2Seq model for the extraction of the higher
representations. Our aim is to extract the features of the full connection layer
from the trained Seq2Seq model, which is the key for the later retraining of the
classification model.

2.2 Evaluation Metrics Method

Considering the imbalanced distribution of the MNB database, we use the
unweighted average recall (UAR) as the evaluation metrics for this study. UAR
is defined as the averaged recall achieved by the model in recognising different
classes. Compared to the conventionally used accuracy, UAR is more rigorous in
the case of imbalanced data. For details of UAR, it can be referred to [13].

3 Experimental Design

3.1 Database

In this study, we use the database provided by the Museum für Naturkunde
Berlin (MNB)1, Berlin, Germany. To make an applicable training process, we
eliminated the species which contain less than 20 audio recordings, which resulted
in a database having 86 species in total (5 060 audio recordings with a whole
length of approximately 4.0 h). We split the whole database into three sets, i.e.,
train (60%), development (20%), and test (20%), respectively. All the hyper-
parameters of the classifiers will be tuned and optimised by the dev set, and
applied to the final test set.

3.2 Preprocessing

Since the sample time in the database is different, before extracting the spec-
trograms, we found that the high frequency part of bird song could be included
by converting the original audio into 4 s. Therefore, we adopted the following
processing: if the time is less than 4 s, fill it according to the silence; instead, it
only intercepts to 4 s.

In addition, because the sampling frequencies of bird sounds are not con-
sistent, so according to Nyquist’s sampling law: when the sampling frequency
fs is greater than 2 times of the highest frequency fmax in the signal, that is
fs > 2fmax, the sampled digital signal can completely retain the information
in the original signal. Based on this law, when extracting the spectrograms, the
1 http://www.animalsoundarchive.org/RefSys/Statistics.php.

http://www.animalsoundarchive.org/RefSys/Statistics.php
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highest frequency of all the audios are controlled to about half of the sampling
frequency. In this way, the extracted spectrograms contain the information of the
high-frequency part of the bird sound, so that the extracted features can contain
more effective information, thus ensuring the accuracy of subsequent training.

In order to reduce the influence of noise on the classification results, when
extracting the features of the spectrograms, we found that it was better to control
the amplitude below −50 db.

To conclude, the raw audio data of bird sound will be transformed to spec-
trograms with the window width w = 0.08 s, the window overlap 0.5w = 0.04 s,
and Nmel = 128 Mel frequency bands, with amplitude clipping below −50 db.

3.3 Experimental Setting

In the phase of Seq2Seq learning, we used the open source toolkit, i.e.,
auDeep [14,15]. When investigating the topologies of the deep learning models,
we firstly study the long short-term memory (LSTM) [12] and the gated recurrent
unit (GRU) [16] based RNNs. Then, we compare the different Encoder-Decoder
structures with the combinations of the unidirectional RNN and the bidirec-
tional RNN (BiRNN). Additionally, we change the hidden layer numbers with
2, 3, or 4 to find the differences in capacity of learning higher representations.
Our experiment is going to be performed for 64 batch size, learning rate 0.001
and 20% dropout.

When tuning the hyper-parameters of the models, we use a grid searching
strategy in development set and apply the optimised values to the test set. For
SVM, the kernels are selected from linear, radical basis function (RBF), poly,
and sigmoid. The Gama and C values are all tunned from 10−5, 10−4, . . . , 104,
105. For MLP, the Alpha value is tuned as the same grid as Gama and C values.
The hidden layer structures are optimised from [(500, 500, 500), (600, 600, 600),
(650, 650, 650), (700, 700, 700), (750, 750, 750), (800, 800, 800), (850, 850, 850),
(900, 900, 900), (950, 950, 950), (1000, 1000, 1000), (1200, 1200, 1200)]. Both of
the SVM and the MLP models are implemented in Python script based on the
scikit-learn library [17]. To eliminate the effects of outliers, all of the features
are standardised before fed into the classifiers.

3.4 Experimental Results

By adjusting the topologies of the autoencoder, network depth and various
parameters of the classifiers, the best parameters of the final experiment are
shown in the Table 1.

The results using LSTM and GRU based RNN models (two hidden layers)
are shown in Table 2 and Table 3, respectively. In this study, a two hidden layer
GRU (BiRNN-BiRNN as the Encoder-Decoder) based model can reach the best
performance. In particular, when fed into a MLP classifier, the UAR can be
reaching at 66.8% for recognising totally 86 species of birds.
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Table 1. The parameters of final model.

Hyperparameter Value

RNN cell GRU

Encoder depth 2

Decoder depth 2

Encoder Bidirectional

Decoder Bidirectional

Kernel rbf

C 100

Alpha 0.1

MLP hidden layers (850, 850, 850)

Table 2. The results (UAR: %) achieved by two-layer LSTM RNN models.

Encoder Decoder SVM MLP

Dev Test Dev Test

RNN RNN 33.2 33.7 34.6 31.9

BiRNN RNN 27.8 30.3 25.7 26.9

BiRNN BiRNN 55.1 52.8 49.0 46.8

RNN BiRNN 22.8 22.6 29.3 25.3

Figure 2 illustrates the comparison between different topologies of the models.
It is demonstrated that, a two-layer BiRNN-BiRNN structure can be the best
option in this work.

4 Discussion

As a pilot study on using Seq2Seq deep learning approach to extract higher
representations from the bird sounds, we can find that, it is feasible to build
an efficient framework for recognising bird sounds without any human hand-
crafted features. In addition, we may find that, the selection of the deep learning
topologies can effect the final model’s performances (see Table 2 and Table 3).
Among the experimental results in this study, GRU based RNN can be superior
to LSTM based RNN in learning higher representations from the bird sounds
(a significance level at p < 0.001 by one-tailed z-test). When adding the hidden
layers of the RNN models, we may find a decrease in final performance (see
Fig. 2). It is reasonable to think that due to the current limited size of the
database, the model seems to be vulnerable to be over-fitting. In future work, we
will implement our approach in larger size bird sound databases. An interesting
finding is that, when introducing the BiRNN structure, the performance can be
improved (see Table 2 and Table 3). Similar to human speech, bird sound may
also have the strong contextual information, which can be extracted not only
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Table 3. The results (UAR: %) achieved by two-layer GRU RNN models.

Encoder Decoder SVM MLP

Dev Test Dev Test

RNN RNN 62.0 60.3 60.9 58.9

BiRNN RNN 64.4 62.4 60.6 58.9

BiRNN BiRNN 68.0 65.7 63.3 66.8

RNN BiRNN 62.3 62.2 62.4 62.1

Fig. 2. The results (UARs: %) achieved by different topologies of the proposed model
(GRU RNN) evaluated by test set.

from the forward direction, but also the backward direction. We should make
efforts towards finding the contextual information through deeply understanding
of the bird vocalisations. Finally, when comparing the classifiers’ ability to make
the final predictions, we find both of the two machine learning models, i.e., SVM
and MLP, can be sufficient to fulfil the task.

5 Conclusion

In this work, we proposed a Seq2Seq deep learning approach for automatically
extracting higher representations from bird sounds. The proposed method was
demonstrated to be efficient to utilize longer term temporal information and
achieved 66.8% of UAR. Moreover, we investigated the effects to the final classi-
fication performance by using different deep learning topologies. We found that,
a BiRNN-BiRNN structure can reach the highest performance in this study.
Future work can be given to the direction of combining the convolutional neural
networks and autoencoders to extract more advanced features from the birds’
vocalisation. In addition, it is our interest to contribute more to understand in
depth about the relationship between the learnt representations and the birds’
behaviour activities.
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