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Abstract. Polymer dielectric-based humidity sensors used in the orchid
greenhouse monitoring system usually have a problem concerning the
accuracy when used continuously for some time. It is because those sen-
sors are exposed to high humid conditions regularly. In a sense, data
read from the humidity sensor is noisier than those from other sensors
deployed in the greenhouse. Therefore, this paper proposes a simple data-
driven technique based on two nested Kalman filters for sensor accuracy
improvement. It aims to minimize the difference between humidity val-
ues read from a humidity sensor and those from the more-accurate sen-
sor. The humidity values are estimated by a Kalman filter, of which its
prediction is made based on another different Kalman filter. The inner
Kalman filter delivers such the prediction by fusing information obtained
from surrounded sensors. Experimental results show that this technique
can improve measurement accuracy by 32.02%. This paper also discusses
the possibility of applying the proposed scheme in the case that the sen-
sor fails to operate normally, in which the Kalman gain will be adjusted
so that the Kalman filter relies more on the prediction.

Keywords: Kalman filtering · Sensor accuracy improvement · Orchid
greenhouse · Humidity sensor

1 Introduction

The value of the world orchid market is around 400 million US dollars in 2019,
and most of the orchid are tropical ones [1]. Also, more than 69 nations world-
wide have orchid markets in their countries, and significant exporters include
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Thailand, Japan, the United States, Vietnam, China, and India, which currently
account for 68.28% of the total export [1]. Among those countries, Thailand is
the world’s biggest exporter of the cut orchid. In Thailand, most orchid farms are
of traditional farming; that is, agriculture is done under opened and uncontrolled
environment. Therefore, to increase the yield and to industrialize the farming,
ICT and embedded system technologies have been suggested since 2003 [13].
Those technologies can be used in monitoring and controlling environmental
parameters concerning the cultivation, and with them, the intensive farming is
just a few steps ahead. The core idea of such monitoring and control systems
is intuitive and straightforward, i.e., the environment should be controlled to
match the plant’s needs concerning current environmental factors [2,14]. For
orchid farming, the factors that affect the quality and quantity of the product
are temperature, humidity, nutrients, air quality, and light intensity [12]. One
of the crucial and demanding factors in automatic monitoring is the air humid-
ity since the humidity sensor tends to degrade when it is continuously exposed
under a high humid condition [4]. As a consequence and in a sense, data read
from the humidity sensor are quite noisy. Therefore, as the first step toward
orchid greenhouse control, this work’s focus is to improve the accuracy of the
humidity sensor by using a data-driven approach.

One of the popular methods in sensor accuracy improvement is Kalman fil-
tering. For example, A. Lesniak et al. applied a Kalman filter to magnetotelluric
recordings to reduce noise in multichannel data and found that it is effortless and
useful in practice [6]. The Kalman filter has been used not only to improve the
accuracy of sensor data but also to extract a clean signal from a noisy one. M.
Fujimoto et al. used a Kalman filtering algorithm to remove noise from speech
signals and found that it worked comparably to traditional methods [3]. Besides
noise reduction or accuracy improvement, the Kalman filter has been adopted in
greenhouse control systems. For example, D. H. Park et al. used the Kalman fil-
ter to automatically control the greenhouse climate [9]. In their work, a feedback
control system with a Kalman filter was used to maintain the temperature and
humidity to the predefined values. Similarly, P. Shi et al. applied an extended
Kalman filter for the same purpose [11]. According to their model, the temper-
ature and humidity were controlled by controlling the heater, ventilation, and
foggy machine. The result of this work is impressive. It could minimize the error
between the values read from the sensors and those of the requirements. How-
ever, the focus of this work is different from ours since it did not aim to improve
the accuracy of the sensor itself.

To the best of our knowledge, no work has yet to apply the Kalman filtering
algorithm to improve the accuracy of the humidity sensor used in the orchid
agriculture domain. Therefore, this paper aims to investigate such the application
and to report experiments conducted to verify its effectiveness. This paper has
also studied the possibility of applying it in the case that the sensor fails to
operate normally. In this case, the Kalman gain will be adjusted so that the
Kalman filter believes more in the prediction model.
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2 Background

The overview of the monitoring system that was deployed to collect data used in
this work and, for the completeness in itself, the one-dimensional Kalman filter,
are introduced in this section.

2.1 Overview of an Orchid Greenhouse Monitoring System

The monitoring system for collecting data is installed at a commercial greenhouse
of the size of 6 × 20 square meters, which is located in Ratchaburi, Thailand.
The system consists of 21 humidity and temperature sensors, three dataloggers,
a gateway, some fan and foggy controllers, and a weather station. Each humidity-
temperature sensor is spatially separate to cover 2 × 2.5 square meters. Data
read from it are to be sent to a datalogger, of which its function is to re-format
the collected data and forward them to the gateway. The gateway then regularly
send data from all loggers to a database through a GPRS network. The user can
access those data via a web browser.

The humidity-temperature sensor used in the project is a digital sensor, called
SHT31, of the Sensirion company. It operates based on the principle of capaci-
tance measurement. According to the collected data under this project for more
than a year, we found that some sensors work improperly after eight months. For
example, data are noisier and drifted from the actual values. This is in part due
to the environment under which they are exposed. For instance, spraying liquid
such as water (for controlling humidity) or insecticide chemicals constantly for
some time could cause failure in relative humidity measurement. In such a high
humid condition, this problem with the polymer dielectric-based sensor has been
broadly observed [4].

2.2 One-Dimensional Kalman Filtering

According to the Kalman filtering, we can describe any linear system in
the steady-state by two equations: state equation and measurement equation
[5–8,10]. The state equation assumes that the state xk of a system at time k is
evolved from a linear combination of the previous state at time k−1, a control
input uk−1, and some zero-mean process noise wk−1 with a variance of Q. Thus,

xk = Axk−1 + Buk−1 + wk−1, (1)

where A is a known state-transition factor that applies the effect of the previous
state on the current state, and B is a control input factor that applies the effect
of the input on the state.

The output yk of the system that we can measure is assumed to be a linear
combination of the state xk that we want to estimate and some measurement
white noise vk with a variance of R. Thus,

yk = Cxk + vk, (2)
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where C is an observation factor that relates the state xk to the measurement
yk. In a nutshell, the Kalman filter estimates xk, which is denoted by x̂k and
called a posteriori estimate, by combining a predicted state estimate x̂−

k (a priori
estimate) and the difference between the measurement yk and a predicted mea-
surement ŷk. That difference is sometimes called a residual or a measurement
innovation. Thus, the state estimate can be expressed mathematically as

x̂k = x̂−
k + K(yk − ŷk) = x̂−

k + K(yk − Cx̂−
k ), (3)

where K is a blending factor, called the Kalman gain. The Kalman filtering
algorithm calculates the Kalman gain K such that the expectation of the square
of the difference between the state xk and the state estimate x̂k is minimized. The
difference (i.e., xk−x̂k) is called a posteriori estimate error, and the expectation
is a posteriori error variance, which is denoted by Pk.

The Kalman filtering algorithm consists of five steps as follows. First, given
the previous state estimate x̂k−1, it projects the state ahead from the equation

x̂−
k = Ax̂k−1 + Buk−1. (4)

Note that, for k=1, we denote the previous state estimate x̂k−1 by x̂0, which
is called the initial state.

Second, a priori error variance P−
k , which is defined by the expectation of

the square of the difference between the state xk and the predicted state estimate
x̂−
k , is projected ahead from the equation

P−
k = APk−1A + Q, (5)

where Pk−1 is the previous (a posteriori) error variance. For k=1, we denote the
previous error variance Pk−1 by P0, which is called the initial error variance. In a
sense, P−

k is a measure of the uncertainty in the state estimate x̂k due to a process
noise and the propagation of the uncertainty of the previous predicted state
estimate x̂−

k−1. The first two steps form the prediction stage of the algorithm.
Third, the Kalman gain K is computed by the equation

K =
P−
k C

CP−
k C + R

. (6)

Fourth, the Kalman gain K is used to scale the measurement innovation (i.e.,
yk−Cx̂−

k ), and the state estimate x̂k is updated by adding the scaled measurement
innovation to the predicted state estimate x̂−

k , i.e.,

x̂k = x̂−
k + K(yk − Cx̂−

k ). (7)

Last, the state error variance is updated by the equation

Pk = (1 − KC)P−
k . (8)

The steps from number three to number five form the measurement update
stage of the Kalman filtering algorithm, and it can be seen that given some
initial state estimate x̂0 and some initial error variance P0, the Kalman filter
can estimate the state xk for any k.
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3 Proposed Method

As mentioned in the previous section, the Kalman filtering algorithm calculates
the Kalman gain to weigh its belief between the prediction and the measure-
ment. In this work, the latter is data read from the humidity sensor at the
location of interest. The former used to estimate a humidity value is constructed
based on another Kalman filter. This second Kalman filter projects the humidity
value by assuming that the data read from neighbour sensors are a sequence of
measurements, and the predicted (a priori) state estimate is the previous state
estimate.

Figure 1 shows the structure of the proposed method. As an instance, in our
experiment, we want to accurately estimate the actual humidity value of the
sensor no. 4. The other sensors that surround the sensor no. 4 are the neighbour
sensors, as shown in Fig. 1(a). In this work, the state equation of the first Kalman
filter is formulated as follows.

xk = xk−1 + wk−1, (9)

where xk is the humidity value at the location of the sensor no. 4 at time k and
wk−1 is the process noise at time k−1. The measurement equation is

yk = xk + vk, (10)

where yk is the data read from the sensor no. 4 at time k and vk is the mea-
surement noise at time k. The predicted (a priori) state estimate x̂−

k is then
computed by

x̂−
k = x̂k−1, (11)

where x̂k−1 is the previous state estimate that is determined by the second
Kalman filter, which is called the inner Kalman filter in this work. Hence, the
first Kalman filter is the outer one.

The state equation and the measurement equation of the second Kalman
filter are as follows.

xp
l = xp

l−1 + wp
l−1, (12)

and
ypl = xp

l + vpl , (13)

where xp
l is the humidity value at time l (and it is to be used as the previous

state estimate x̂k−1 of the first Kalman filter), wp
l−1 is the process noise at

time l of the second Kalman filter, xp
0 is the initial state estimate of the second

Kalman filter, ypl is the measurement at time l of the second Kalman filter, and
vpl is the measurement noise of the second Kalman filter. Similarly, the predicted
(a priori) state estimate x̂p−

l is computed by

x̂p−
l = x̂p

l−1, (14)

where x̂p
l−1 is the previous state estimate and is assumed to be a constant for a

given k, which is the average value of ypl s.
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Let N be a set of indices of the neighbour sensors. For instance, in our
experiment, N = {1, 2, 6, 7}, as illustrated in Fig. 1(a). The proposed method
assumes that ypl for l = 1 to n(N), where n(N) is the cardinality of N , is a
sequence of yk,i, where yk,i is the data read from the neighbour sensor no. i for
i ∈N . Also, it assumes that the initial state estimate xp

0 is the average value of
the humidity values of yk,i for all is.

Fig. 1. Positions of sensors used in this paper and the diagram of nested Kalman filter.

4 Experiment and Results

4.1 Experimental Setup

In this work, humidity data are collected and sent to the database every 5 min.
Therefore, there are 288 datapoints a day. In our experiment, the duration for
data analysis is about 314 days, i.e., from 21 September 2018 to 31 July 2019.
The aim of this work is to apply the proposed method to estimate the actual
humidity value read by the sensor no. 4. Also, we assumed that that actual
humidity value could be approximated by the humidity value read by the sensor
no. 5. The reason for this assumption is that, according to our back analysis on
variances and drifts of data from all sensors, we found that the sensor no. 5 was
most stable and has the smallest drift. In addition, the sensors no. 4 and no. 5
are close to each other. As shown in Fig. 1, the neighbour sensors are sensors
no. 1, no. 2, no. 6 and no. 7.

We compared the proposed method with the average model Kalman filter
and interested sensor. The average model uses the average value from a nearby
sensor instead of the inner Kalman filter to be used as the prediction state.

4.2 Experimental Result

Figure. 2 shows the estimated values of the proposed method, compared to data
read from sensor no. 4, the average of data read from neighbour sensors, and
values estimated a Kalman filter, of which its prediction is the average of data
read from neighbour sensors (which is denoted by ‘average model’ in the figure).
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Fig. 2. Humidity data obtained from the proposed method in comparison with those
obtained from other methods.

Table 1. Comparison of the RMSEs of the proposed method and other methods.

With Kalman filter Without Kalman filter

Date Proposed method Average model Average value Sensor no. 4

21 – 30 September 2018 1.25545 1.53920 1.24245 1.58278

1 – 31 October 2018 1.45087 1.66113 1.61453 1.85758

1 – 30 November 2018 1.51279 1.79340 1.39390 1.38452

1 – 31 December 2018 1.67796 1.84608 1.44386 1.88464

1 – 31 January 2019 2.02165 2.01123 1.81751 2.46357

1 – 28 February 2019 1.50797 1.67928 1.41362 1.64797

1 – 31 March 2019 1.99078 2.20287 1.78755 2.28450

1 – 30 April 2019 2.03453 2.21354 1.62406 2.52173

1 – 31 May 2019 1.94417 2.16628 1.98743 2.25142

1 – 30 June 2019 2.73336 3.25308 5.41979 6.32111

1 – 31 July 2019 3.76175 3.32243 8.50690 8.00316

Average RMSE 1.99012 2.15350 2.56833 2.92754

In this work, we use the root-mean-square error (RMSE) to evaluate the error
between the reference sensor no. 5 and other methods. The comparison of the
RMSEs among different methods is shown in Table 1.

When the nested Kalman filtering was deployed in improving the accuracy of
the humidity measurement, the average RMSE dropped from 2.92754 to 1.99012,
i.e., the average RMSE dropped approximately 32.02%. The average RMSE of
the average model was 2.15350, which is 26.44% less than the average RMES of
sensor no. 4. It can be noticed that the RMSE values obtained from the proposed
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method were less than the average model by approximately 7.59%. Therefore,
the Kalman filtering with the proposed method could considerable improve the
accuracy of the humidity sensors.

5 Discussion

The proposed method not only can improve the accuracy of sensor but also
has a potential for estimating actual values when the sensor works improperly.
For example when a sensor is malfunction, as shown in Fig. 3, we can adjust
the variances of the measurement so that the Kalman filter relies more on the
prediction. The result from the adjustment is shown in Fig. 3.

Note that this adjustment was done based on back analysis of the collected
data by hand, not by automatic procedure, which is to be investigated further.

Fig. 3. Applying the proposed method to a malfunction sensor.

6 Conclusion

This paper proposed a method for accuracy improvement in humidity measure-
ment by using two nested Kalman filters. The outer Kalman filter is used to
estimate the actual values of humidity data read from one sensor, and the inner
Kalman filter is used as the prediction model of the outer Kalman filter. The
experimental results showed that this technique could improve the accuracy of
the humidity measurement considerably.
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