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Abstract. Deep speaker-embedding neural network trained with a dis-
criminative loss function is widely known to be effective for speaker ver-
ification task. Notably, angular margin softmax loss, and its variants,
were proposed to promote intra-class compactness. However, it is worth
noticing that these methods are not effective enough in enhancing inter-
class separability. In this paper, we present a ranked weight loss which
explicitly encourages intra-class compactness and enhances inter-class
separability simultaneously. During the neural network training process,
the most attention is given to the target speaker in order to encourage
intra-class compactness. Next, its nearest neighbor who has the great-
est impact on the correct classification gets the second most attention
while the least attention is paid to its farthest neighbor. Experimental
results on VoxCeleb1, CN-Celeb and the Speakers in the Wild (SITW)
core-core condition show that the proposed ranked weight loss achieves
state-of-the-art performance.

Keywords: Speaker verification · Speaker embedding · Intra-class
compactness · Inter-class separability

1 Introduction

Automatic speaker verification (ASV) is the process of automatically validating
a claimed identity by analyzing the spoken utterance from the speaker. Speaker
verification technology has been found important in various applications, such as,
public security, anti-terrorism, justice, and telephone banking. Over the past few
years, i-vector based representation [1], used in conjunction with a Probabilistic
Linear Discriminant Analysis [2] backend, has been the state-of-the-art technique
and has been deployed in most implementations.
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With the advancement in deep learning, performance of ASV has been greatly
improved due to the large learning capacity of the deep neural network. In
[3], a system based on convolutional neural network (CNN) outperforms the
i-vectors/PLDA system. The aim of a speaker-embedding neural network [4]
is to obtain a true representation (i.e., minimum intra-class differences) of a
speaker’s voice that is sufficiently different from other speakers (i.e., maximum
inter-class differences). Apart from the neural network architecture, the loss func-
tion plays an important role to achieve this goal. In this regard, two types of loss
functions, namely, metric-learning loss and classification loss, have shown to be
effective for training speaker-embedding neural networks. Metric-learning loss
[5,6] use pairwise or tripletwise training samples to learn discriminative features
based on distance metric learning. Triplet loss [6] achieves both optimizations
simultaneously by taking three training samples as input at one time.

The use of classification loss for speaker embedding neural network has been
a major topic of interest. Classification loss, which includes softmax loss and
its variants like angular softmax (A-Softmax) loss [7], additive margin softmax
(AM-Softmax) loss [8] and additive angular margin softmax (Arc-Softmax) loss
[9] have been proposed. A-Softmax loss and AM-Softmax loss introduce angular
margin and cosine margin into the softmax loss respectively that tend to focus on
encouraging intra-class compactness. Arc-Softmax loss incorporates the angular
margin in an additive manner, that is different from the multiplicative angular
margin in A-Softmax loss, to learn highly discriminative feature. These methods
are not only simpler to implement compared to the triplet loss, but also give
impressive performance in ASV tasks [10]. However, these variants of softmax
loss have not paid special attention to inter-class separability. Very recently, [11]
proposed the exclusive regularization to encourage inter-class separability for
face verification and achieved outstanding performance.

In this paper, we present a ranked weight loss which explicitly encourages
intra-class compactness and enhances inter-class separability simultaneously,
which are achieved by paying the most attention and less attention to the target
speaker and the speaker who is farther to the target speaker respectively during
the neural network training process. The efficacy of the proposed ranked weight
loss is validated on VoxCeleb1, CN-Celeb and SITW [3,12,13] corpora.

2 Prior Works

The proposed ranked weight loss is mainly inspired by the work of AM-Softmax
loss [8] and exclusive regularization [11], we start with the definition of them.

2.1 AM-Softmax Loss

The traditional softmax loss is presented as:

LS =
1
N

N∑

i=1

−log
eW

T
yi

xi+byi
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j=1

eW
T
j xi+bj

(1)
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where N and n denote the batch size and the number of classes respectively, xi

is the feature vector of the i-th sample that belongs to class yi and b is the bias
term. Wj is the weight vector of class j. Here, WT

yi
xi can be reformulated as

‖Wyi
‖‖xi‖cos(θyi,i).

However, the learned embeddings are not discriminative enough under the
supervision of softmax loss. To address this issue, AM-Softmax loss [8,10] intro-
duced an additive cosine margin into softmax loss to minimize intra-class dis-
tance. In AM-Softmax loss, the bias term b is discarded, weight W and feature x
are normalized, and a hyperparameter s is introduced to scale the cosine values.
AM-Softmax loss is given by:

LAM =
1
N

N∑

i=1

−log
es·(cos(θyi,i

)−m)

es·(cos(θyi,i
)−m) +

n∑
j=1;j �=yi

es·cos(θj,i)

(2)

in which m is a factor used to control the cosine margin.

2.2 Exclusive Regularization

Recently, [11] proposed the exclusive regularization to enlarge inter-class distance
by penalizing the angle between a target class and its nearest neighbor. The
formulation of exclusive regularization is defined as:

LR =
1
n

n∑

yi=1

max
j �=yi

cos(ψyi,j)

=
1
n

n∑

yi=1

max
j �=yi

Wyi
Wj

‖Wyi
‖ ‖Wj‖

(3)

where Wyi
∈ R

d is the yi-th column of the weight matrix W ∈ R
d×n, d repre-

sents the dimension of feature vectors and n is the number of classes. Wyi
can

be regarded as the cluster center of class yi, and ψyi,j is the angle between Wyi

and Wj .
When applying the exclusive regularization to cooperate with AM-Softmax

loss to supervise the model, the overall loss function (AME-Softmax loss) can
be represented as:

LAME = (1 − λ)LAM + λLR (4)

in which λ is the tradeoff between the AM-Softmax loss and the exclusive
regularization.

3 Ranked Weight Loss

As stated in Sect. 2, AM-Softmax loss [8] achieves the promising performance
in ASV tasks by encouraging intra-class compactness, and [11] further proposed
the exclusive regularization to enhance inter-class separability. Nevertheless, the
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exclusive regularization only considers the impact of the target speaker’s nearest
neighbor and ignores the impact from other speakers.

We propose a ranked weight loss to encourage intra-class compactness and
enlarge inter-class separability more fully. During the neural network training
process, our method pays the most attention to the target speaker, while the
corresponding attention is paid to its neighbors according to the inter-class dis-
tance. Wyi

is regarded as the cluster center of speaker yi in our proposed method.
For a training set with m speakers, the inter-class distance can be defined as:

d(yi, j) = 1 − Wyi
Wj

‖Wyi
‖ ‖Wj‖ , yi �= j (5)

In addition, we set d(yi, yi) = 0, and rank the distances in accending order as
follows:

d(yi, yi) < ... ≤ d(yi, j) ≤ ... ≤ d(yi,m) (6)

The ranked weights are then given by:

w
′
j =

1 − d(yi, j)∑m
k=1 (1 − d(yi, k))2

(7)

In order to ensure that the ranked weights are positive so as not to affect the
gradient direction of the loss function, we perform an exponential operation on
the ranked weight function, the ranked weight function is redefined as:

wj = ew
′
j (8)

Therefore, the ranked weights are sorted in descending order as:

wyi
> ... ≥ wj ≥ ... ≥ wm (9)

From Eq. (6) and Eq. (9), we observe that the target speaker yi gets the most
weight, while the smaller the inter-class distance, the greater the corresponding
class weight. Finally, we introduce the ranked weight into AM-Softmax loss,
leading to the ranked weight loss (RAM-Softmax loss), which is given by:

LRAM =
1
N

N∑

i=1

−log
ewyi

s·(cos(θyi,i
)−m)

ewyi
s·(cos(θyi,i

)−m) +
n∑

j=1;j �=yi

ewjs·cos(θj,i)

(10)

We see that the most weight and the corresponding weight are paid to increase
the value of cos(θyi,i) and reduce the value of cos(θj,i) respectively, which are
inversely related to intra-class distance (i.e., cosine distance of feature-to-center)
and inter-class distance, respectively.

4 Experimental Settings

4.1 Dataset

In our experiments, we validate the effectiveness of our proposed method on Vox-
Celeb1 [3] and CN-Celeb [12] datasets that are collected ‘in the wild’. CN-Celeb
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contains more genres and is more challenging than VoxCeleb1. Each utterance
in VoxCeleb1 is no less than 3 s long, while more than 30% of the utterances are
less than 2 s long in CN-Celeb. Both corpora are divided into development set
and test set, respectively. The development set of VoxCeleb1, contains 148,642
utterances from 1,211 speakers, is used for model training, and the test set of
VoxCeleb1 involves 4,874 utterances from 40 speakers. In CN-Celeb, 111,260
utterances from 800 speakers make up the first part CN-Celeb(T) (training set),
and the second part CN-Celeb(E) (test set) consists of 18,849 utterances from
200 speakers. In addition, the SITW core-core condition is also used to evaluate
the performance of the proposed ranked weight loss.

4.2 Implementation Details

In our experiments, the residual CNN (ResCNN) is used to training our model.
The ResCNN contains 4 residual modules, which is simliar to the architecture in
[6], but the depth of them are 2 instead of 3, then followed by an adaptive average
pooling of size 4 × 1. The 1024-dimensional speaker embeddings are extracted
from the fully connected layer.

During training, we randomly sample 3-s segments from each utterance
to generate the input spectrograms through a sliding hamming window, win-
dow width and step are 20 ms and 10 ms respectively. The model is trained
with a mini-batch size of 64. We used the standard stochastic gradient descent
(SGD) as the optimizer. The initial learning rate is set to 0.1. And the additive
cosine margin m is 0.2, while the angular margin terms are set to 2 and 0.2 in
A-Softmax loss and Arc-Softmax loss respectively. Cosine similarity and equal
error rate (EER) are used for back-end scoring method and performance evalu-
ation metric, respectively.

5 Experimental Results

5.1 Exclusive Regularization Vs. Ranked Weight

To compare the performance of exclusive regularization and our proposed ranked
weight, we conduct a series of experiments on CN-Celeb and VoxCeleb1. We
follow [8] to set the scale factor s to 30, and the balance factor λ in AME-Softmax
loss is set to different values (i.e., 0.1, 0.3 and 0.5) to show the effectiveness of
exclusive regularization comprehensively. AM-Softmax loss is used as baseline
method. Table 1 shows results of the above three methods. The ranked weight
loss (RAM-Softmax loss) achieves the lowest EER compared with AM-Softmax
loss and AME-Softmax loss. The relative reduction in EER amounts to 10.37%
and 9.05% on VoxCeleb1 while 13.95% and 12.83% on CN-Celeb, respectively.

To explore the distribution of embeddings under different loss functions. We
randomly sample 40 utterances for each speaker in the test set of VoxCeleb1,
the distance information of these embeddings are illustrated in Table 2. Here, the
intra-class distance refers to the average Euclidean distance from each sample to
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Table 1. Verification performance of different loss function based systems on Vox-
Celeb1 and CN-Celeb. λ refers to the balance factor in AME-Softmax.

Dataset Loss λ EER (%)

VoxCeleb1 AM-Softmax – 4.82

AME-Softmax 0.1 4.77

AME-Softmax 0.3 4.75

AME-Softmax 0.5 4.84

RAM-Softmax – 4.32

CN-Celeb AM-Softmax – 16.42

AME-Softmax 0.1 16.21

AME-Softmax 0.3 16.73

AME-Softmax 0.5 16.33

RAM-Softmax – 14.13

the center of the corresponding class, while the inter-class distance refers to the
average Euclidean distance between the centers of the classes. The center of class
is computed by the average position of samples from that class. The proposed
ranked weight loss achieves the largest inter-class distance and the smallest intra-
class distance compared with AM-Softmax loss and AME-Softmax loss.

Table 2. The distance statistics under different loss functions. ‘Intra’ refers to intra-
class distance, and ‘Inter (Top-k)’ refers to average distance between the target speaker
and its k nearest neighbors.

AM-Softmax AME-Softmax RAM-Softmax

Intra 7.94 7.70 5.00

Inter (Top-1) 13.68 14.12 14.85

Inter (Top-2) 15.78 15.96 16.64

Inter (Top-3) 17.38 17.35 18.28

Inter (Top-5) 20.25 20.27 21.32

Inter (Top-10) 26.31 26.72 27.95

Furthermore, we explore the performance of the above three methods on
SITW core-core test set. Note that the speakers that overlap with the VoxCeleb1
dev (development set) were removed. Verification results are presented in Table 3.
It is apparent that the proposed ranked weight loss achieves better performance
than AM-Softmax loss and AME-Softmax loss.
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Table 3. Verification performance on SITW core-core test set.

Training set Loss EER (%)

VoxCeleb1 dev AM-Softmax 10.95

AME-Softmax 10.72

RAM-Softmax 9.92

CN-Celeb(T) AM-Softmax 26.67

AME-Softmax 26.81

RAM-Softmax 22.78

5.2 Compared with Other Methods

Finally, we compare the performance of our ranked weight loss with the other
state-of-the-art methods in Table 4. It is worth noticing that deep speaker sys-
tems perform better than traditional i-vector system on VoxCeleb1 while the
i-vector system shows promising performance on CN-Celeb, which demonstrates
that CN-Celeb is significantly different from VoxCeleb1. However, our proposed
ranked weight loss achieves the best result on both datasets, it indicates that
our method is more robust than i-vector and other loss functions.

Table 4. Verification performance of different ASV systems.

Dataset Front model Loss Dims Back-end scoring EER (%)

VoxCeleb1 i-vector [3] – – PLDA 8.80

ResNet-34 [14] A-Softmax 128 PLDA 4.46

ResCNN Softmax 1024 Cosine 6.44

ResCNN Arc-Softmax 1024 Cosine 4.64

ResCNN A-Softmax 1024 Cosine 4.43

ResCNN RAM-Softmax 1024 Cosine 4.32

CN-Celeb i-vector [12] – 150 LDA-PLDA 14.24

TDNN [12] Softmax 150 LDA-PLDA 14.78

ResCNN Softmax 1024 Cosine 16.85

ResCNN A-Softmax 1024 Cosine 15.91

ResCNN Arc-Softmax 1024 Cosine 15.41

ResCNN RAM-Softmax 1024 Cosine 14.13

6 Conclusions

We have presented a ranked weight loss, which explicitly enhances intra-class
compactness and inter-class discrepancy simultaneously. This is achieved by pay-
ing the most attention to the target speaker and less attention to the speaker
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further apart from the target speaker during the neural network training pro-
cess. Extensive experiments on VoxCeleb1, CN-Celeb and SITW Core condition
corpora showed that the proposed ranked weight loss achieved the competitive
performance compared with the current state-of-the-art methods.
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