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Abstract. Action recognition plays a fundamental role in many appli-
cations and researches, including man-machine interaction, medical reha-
bilitation and physical training. However, existing methods realize action
recognition mainly relies on the background. This paper attempts to rec-
ognize the actions only through the motions. Hence, skeleton informa-
tion is utilized to realize action recognition. To fully utilize the skeleton
information, this paper proposes a discriminative spatio-temporal graph
convolutional network (DSTGCN) for background independent action
recognition. DSTGCN not only pays attention to the spatio-temporal
properties of the motions, but focuses on the inner-class distributions of
the actions. Experiments result on two motion oriented datasets validate
the effectiveness of the proposed method.
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1 Introduction

Human action recognition, which is playing a significant role in many applica-
tions such as video surveillance, and man-machine interaction [2], has raised the
great attention in recent years.

There are many approaches attempting to analysis that under the dynamic
circumstance and complicated background. In lots of cases, background informa-
tion deserved serious consideration. For example, when a person’s hand moves to
his mouth, it’s difficult to distinguish what he’s doing. The question will become
easy if there is a cup in the person’s hand, cause of additional information is
provided by the background.
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However, it would be not effective and even negative that putting the back-
ground information together in certain cases. For instance, in figure skating, a
person shows a wide range of exaggerated movements for performing. The chang-
ing background will disturb the action analysis, therefore, skeleton data without
background information is more appropriate in pure action recognition.

Earlier conventional methods [5,15] treat skeleton data as vector sequences,
which could not fully express the interdependency among the joints. Unlike recur-
rent neural networks (RNN) and convolutional neural networks (CNN), graph
convolutional networks (GCN) treats skeleton data as graphs that could fully
exploit the relationships between correlated joints.

GCN shows excellent performance in skeleton-based action recognition. How-
ever, most previous works [16,19] pay little attention on feature maps output
by the network and there’s room for improvement on datasets with unbalanced
categories. Therefore, we proposed a new approach to solve them. We use the
focal loss [10] instead of the cross entropy (CE) loss to adapt unbalanced cate-
gories. The focal loss can give different weights to different categories according
to difficulty of recognition. Above that, we added the center loss [18] working
for feature maps to make better distinction and make the network more robust.

In this paper, 1) we modify the loss function from the CE loss to the focal loss
to make network more adaptable to the datasets with unbalanced categories. 2)
We add the center loss on deep features to make better distinction. 3) On two
datasets for skeleton-based action recognition, our methods exceeds the state-
of-the-art on both.

2 Related Work

2.1 RGB-D Based Action Recognition

RGB-D based human action recognition has attracted plenty of interest in recent
years. Due to RGB-D sensors such as Kinect, RGB data and depth data, which
encoding rich 3D structural information, could easy to be obtained. Previous
works [8,17,20] leads the discovery of the information from visual features and
depth features. Instead of considering two modalities as separate channels, SFAM
[17] proposed the use of scene flow, which extracted the real 3D motion and also
preserved structural information. [20] proposed a binary local representation for
video fusion. BHIM [8] represents both two features in the form of matrix that
including spatiotemporal structural relationships. Those RGB-D based methods
focus on finding an appropriate way to fuse two features.

2.2 Skeleton Based Action Recognition

With the development of deep learning, lots of methods based on conventional
networks have been proposed, which learn the features automatically. Some
RNN-based methods [11,15] and CNN-based methods [7,12] have achieved high
performance on action recognition. Unlike the above methods, GCN-based meth-
ods [9,16,19] treat skeleton data as graph which could exploit the relationships
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between correlated joints better. ST-GCN [19] is the first to apply GCN on
skeleton-based action recognition. 2s-AGCN [16] is an approach to adaptively
learn the topology of the graph. AS-GCN [9] made attempts to capture richer
dependencies among nodes. Those GCNs automatically learning with informa-
tion of node location and structure.

3 The Proposed Approach

3.1 Graph Construction

Depending on devices and algorithms, skeleton data are usually represented as
the sequence of 2D/3D coordinates. A joint is established connection with others
by the graph along both the spatial and temporal dimensions. We construct the
graph with joints according to the method in ST-GCN [19]. As shown in the
left sketch of Fig. 1, a spatiotemporal graph is composed of the node set N and
the edge set E. The node set N contains all the joint coordinates in a sequence.
And the edge set E, composed of the spatial edge set ES and the temporal edge
set EF , represents that how the nodes connected with others. For the spatial
dimension, nodes connected with others as their natural connections in a frame.
For the second subset EF , nodes make connections among frames. The temporal
edges connect the same nodes between adjacent frames.

(a) (b)

Fig. 1. (a) The spatiotemporal graph used. (b) The spatial configuration partitioning
strategy.

3.2 Skeleton Oriented GCN

Deep graph convolutional network could be constructed based on the graph
above. ST-GCN [19] consists of the ST-GCN blocks, which contains a spatial
graph convolution and a temporal graph convolution.

The spatial graph convolution on node vi could be formulated as [19]

fout(vi) =
∑

vj∈Bi

1
Zij

fin(vj) · w(li(vj)) (1)
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where fout denotes the output feature and fin denotes the input feature. Bi

denotes the set of nodes which connected with node vi. w is the weight func-
tion, which is a little different from original convolutional operation, but both
provide the weights for input. The difference is that the number of nodes in
the neighbor set Bi is unfixed. To solve that, we use the spatial configuration
partitioning strategy, proposed in ST-GCN [19]. As shown in the right sketch of
Fig. 1, the block cross represents the gravity center of the skeleton. According to
the distance to the block cross, the strategy divide the set Bi into three subsets.
The normalizing term Zij denotes the cardinality of the subset which contains
the node vj . In fact, the feature map of the network could be represented as a
C × T × N tensor, where C denotes the number of channels and T denotes the
length of frame sequences. N denotes the number of nodes in a frame. For the
spatial configuration partitioning strategy, the Eq. 1 is transformed into

fout(vi) =
∑

j

Λ
− 1

2
j AjΛ

− 1
2

j finWj ⊗ Mj (2)

where Aj , a N × N tensor, denotes the divided adjacency matrix. Note that∑
j Aj = A + I, where A denotes the adjacency matrix, and I is an identity

matrix. Λii
j =

∑
k(Aik

j ) + α is a diagonal matrix designed for normalized. α is
set as 0.001 to avoid Λii

j being zero. Wj is the weight matrix, representing the
w function. Mj is an attention matrix, which denotes the importance of nodes.
⊗ denotes the element-wise product.

In the temporal dimension, we can easily apply graph convolution like tra-
ditional convolution. We chose a certain number of frames before or later than
the frame to make the number of the neighbors fixed. Therefore, the temporal
kernel size could be determined and the convolution operation could be applied
in the temporal dimension.

3.3 Loss Function

Focal Loss. The focal loss, an improved version based on the CE loss function,
aims to overcome the difficulties due to the imbalance among categories. The
formula for calculating the CE loss for binary classification is Eq. 3.

CE(p, y) =
{ −log(p) if y = 1

−log(1 − p) otherwise,
(3)

and we define pt as

pt =
{

p if y = 1
1 − p otherwise,

(4)

and CE(p, y) can be written as

CE(pt) = −log(pt) (5)

Based on the CE loss, [10] proposed the focal loss:

LF (pt) = −αt(1 − pt)γ log(pt) (6)
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where αt is a weighting factor to address the imbalance among categories. The
factor (1 − pt)γ could dynamically scale the loss. We set γ > 0, and the factor
could automatically reduce the weight of easy examples and increase the weight
of hard examples. Therefore, we considered that the focal loss is more suitable
to the small-scale datasets, and our experiments proved that.

Center Loss. For making the deeply learned features more discriminative as
shown in Fig. 2 and making network more robust, we add the center loss [18] in
our work. The center loss, which could be formulated as Eq. 7, makes features
discriminative by minimizing the intra class variance.

LC =
1
2

m∑

i=1

‖xi − cyi
‖22 (7)

Where cyi
denotes the deep features center of the yith class, and cyi

is dynami-
cally updated based on mini-batch as the deep features changed. The center loss
is proposed for face recognition task, due to separable features are not enough,
discriminative features are needed. We considered that it will work for action
recognition as well, and we proved that in our experiments.

Fig. 2. The center loss function makes deep features more discriminative.

4 Experiments

In this section, we evaluate the performance of our approach and compare with
some state-of-the-art methods on two human action recognition datasets: FSD-10
[14] and RGB-D human video-emotion dataset [13]. We evaluate the performance
of approaches by top-1 classification accuracies on the validation set.

We use SGD as optimizer in all models, the batch size is set as 64. The
learning rate is set as 0.1 and reduced by 10 in epoch 150 and 225. We use
LS = LF + λLC as loss function in our methods, and use the CE loss for
comparison.
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4.1 Evaluation on FSD-10

FSD-10. FSD-10 [14], a skating dataset consists of 1484 skating videos covering
10 different actions manually labeled. These video clips are segmented from
performance videos of high level figure skaters. Each clip is ranging from 3 s
to 30 s, and captured by the camera focusing on the skater. Comparing with
other current datasets for action recognition, FSD-10 focuses on the action itself
rather background. The information of background even bring negative effect.
We divided FSD-10 into a training set (989 videos) and a validation set (425
videos). We train models on the training set and calculate the accuracy on the
validation.

Comparisons and Analysis. For proving that the loss function LS = LF +
λLC is more suitable to FSD-10 than the CE loss, we run 2 groups of compar-
ative experiments on FSD-10. The one is based on ST-GCN [19]: we first train
ST-GCN with the CE loss, after getting the results, train it again with the loss
function LS . The other group is training on DenseNet [4] with the same opera-
tion. Besides, we compared the accuracy with the I3D [1], the STM [6] and the
KTSN [14]. Table 1 give the result of our experiments. Both on ST-GCN and
DenseNet, we see that the loss function LS give a better performance than the
CE loss on FSD-10.

Table 1. The result of our experiments on FSD-10.

Methods Top-1 accuracy (%)

I3D (Resnet-50) 62.55

I3D (Resnet-101) 78.82

STM 66.25

KTSN 82.58

ST-GCN + CE loss 84.00

ST-GCN + LS 87.52

DenseNet + CE loss 84.71

DenseNet + LS 85.17

4.2 Evaluation on RGB-D Human Video-Emotion Dataset

RGB-D Human Video-Emotion Dataset. RGB-D human video-emotion
data-set [13] consists of over 4 thousands RGB video clips and 4 thousands Depth
video clips, covering 7 emotion categories. Each clip is around 6 s, containing
the whole body of the actor. The background is green, without any information
for recognition. The training set has 741 skeleton data, and the validation set
has 644. We train models on the training set and calculate the accuracy on the
validation.
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Comparisons and Analysis. We performed our experiments on the video-
emotion dataset for proving that the loss function LS is suitable to the small-scale
datasets for action recognition. Like the comparative experiments on FSD-10,
we also run 2 groups of experiments based on ST-GCN [19] and DenseNet [4].
Besides, we compared the accuracy with the MvLE [13] and the MvLLS [3], the
methods based on muti-view for recognition on this dataset. Table 2 give the
result of methods. We see that the loss function is work on the video-emotion
dataset as well, and our methods perform better than the state-of-the-art on
this dataset.

Table 2. The result of our experiments on the video-emotion dataset.

Methods Top-1 accuracy (%)

MvLE 41.00

MvLLS 37.97

ST-GCN + CE loss 54.96

ST-GCN + LS 55.27

DenseNet + CE loss 52.32

DenseNet + LS 53.72

5 Conclusion

In this paper, we adapted the center loss and the focal loss to the human action
recognition. We use the focal loss aims to overcome the difficulties due to the
imbalance among categories. And we consider it’s more suitable to the small-
scale datasets with unbalanced categories. We add the center loss to learn more
discriminative features and to make better distinction on deep features. We
performed our experiments on the FSD-10 [14] and the RGB-D human video-
emotion dataset [13], and our methods achieved the state-of-the-art performance.
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