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Abstract. Unbalanced data is widespread in practice and presents chal-
lenges which have been widely studied in classical machine learning.
A classification algorithm trained with unbalanced data is likely to be
biased towards the majority class and thus show inferior performance
on the minority class. To improve the performance of deep neural net-
work (DNN) models on poorly balanced data, we hybridized two well-
performing loss functions, specially designed for learning imbalanced
data, mean false error and focal loss. Since mean false error can effec-
tively balance between majority and minority classes and focal loss can
reduce the contribution of unnecessary samples, which are usually sam-
ples from the majority class, which may cause a DNN model to be biased
towards the majority class when learning. We show that hybridizing the
two losses can improve the classification performance of the model. Our
hybrid loss function was tested with unbalanced data sets, extracted
from CIFAR-100 and IMDB review datasets, and showed that, overall,
it performed better than mean false error or focal loss.
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1 Introduction

Class imbalance occurs when the samples of each class are not equally repre-
sented, i.e. the numbers of representatives differ widely: many real-world datasets
show this imbalance [8,13,17,18]. Since this is extremely common in practice,
it has been widely studied in classical machine learning. Commonly, there are
two types of imbalance—long-tailed imbalance [15] and step imbalance [3]. In
step imbalance, classes are grouped into majority and minority classes. The two
classes have different numbers of samples, but the number of samples is equal
within majority classes and equal within minority classes. For long-tailed imbal-
ance, the class frequency distribution is long-tailed, the samples of a few classes
occupy most of the data, while samples of most classes rarely appear. In binary
classification, when a dataset is imbalanced, it is a step imbalance. This paper
focuses on binary classification.

Recently, deep neural networks (DNNs) have been used for various classifi-
cation tasks, e.g. image and text classification, and they have achieved excellent
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performance. However, DNNs perform poorly on imbalanced data due to ineffec-
tive learning [3,6]. In binary classification, when classification algorithms based
on DNNs are trained with unbalanced data, classifiers will prefer the negative
(majority) class and achieve high accuracy on it. However, it will show lower
accuracy on the positive (minority) class.

Existing methods use two strategies for dealing with imbalanced data [9]—
data sampling and algorithmic adjusting. There are two data sampling
techniques—over-sampling the positive class and under-sampling the negative
class. However, each techniques has disadvantages: over-sampling can easily
cause model over-fitting, due to repeatedly duplicated samples, whereas under-
sampling may throw away valuable information, and it is not practicable for
extremely unbalanced data. Algorithmic adjusting changes the learning process,
so that it can give higher importance to the positive class. One technique for
adjusting the algorithm is cost-sensitive learning, which considers the misclas-
sification costs [19]. If it is applied to a DNN model, the learning will jointly
optimize the network parameters and misclassification costs, instead of optimiz-
ing the network parameters alone [10,21]. It will be difficult to simultaneously
optimize the network parameters and misclassification costs, when the imbal-
ance is large [7]. However, recent work has addressed the class imbalance prob-
lem, without adding additional parameters [14,22]. Solutions proposed in [14,22]
allow the model to optimize just the network parameters. To clarify, they tried
to solve the problem by modifying just the existing loss functions and did not
alter the models. It was quite simple but effective. The essential advantage of
this strategy for solving the problem is that it is easy to implement and use with
existing DNN models.

Here, we studied two well-performing loss functions, namely mean false error
(MFE) [22] and focal loss [14], specially designed to combat the imbalance prob-
lem. These two loss functions used different perspectives to make learning the
model concentrate more on the positive class. Focal loss differentiates between
easy samples (samples with low losses) and hard samples (samples with high
losses), so that it can lower the weight of the loss contribution of easy samples
and focus training on hard samples. This gives more importance to the positive
class, because most easy samples are in the negative class. The mean false error
technique changes the total error by summing the negative and positive sam-
ple errors separately. This effectively balances between the loss contributions of
both classes and allows the positive class to have a substantial contribution in
calculating the total loss.

There is a drawback for each loss. For focal loss, the contribution of the
negative class (or easy samples class) to the total loss is reduced. However, the
total loss is an average over the whole data, so losses from negative samples can
still dominate it. For mean false error, although the total loss is calculated by
summing the average losses of both classes, the loss from the negative class can
still dominate the overall loss, because of the effect of the easy samples. Moreover,
mean false error will work best, if every batch of training data contains at least
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one positive sample. If there is no positive sample in a batch, the total loss will
be biased by the average of negative class, i.e. the easy samples.

To avoid the drawbacks, inspired by these two approaches, we formed a hybrid
solution and defined a new loss function—the hybrid loss—so that advantages
of each loss will compensate for the drawbacks of the other.

Our main contributions are: Firstly, we explored the ideas behind the mean
false error and focal loss ideas, to understand how they perform, when the data
is unbalanced. Secondly, we defined a hybrid loss function, a hybrid of mean
false error and focal loss solutions, which combines advantages of the two ideas,
and we showed that the two loss functions can be combined in an efficient way.
Lastly, we tested our hybrid function with image and text datasets. For each
dataset, a variety of imbalance levels was applied.

2 Related Works

2.1 Imbalanced Learning

Anand et al. [2] studied the effect of class imbalance and found that it adversely
affects the backpropagation algorithm. The loss of the negative class rapidly
decreased, whereas the positive class loss significantly increased in early itera-
tions and the network would often converge very slowly. This occurred because
the negative class completely dominated the network gradient used to update
the weights. To deal with this, we need to increase the positive class contribution
and correspondingly decrease the negative class contribution.

2.2 Focal Loss

Focal loss, FL(pt) = −αt(1 − pt)γ log(pt), was a modification of cross entropy
loss [14]. A modulating factor (1 − p)γ was added to the cross entropy loss. For
notational convenience, let p is the predicted probability and y is the ground-
truth class. pt will be p if y = 1 and be 1 − p for otherwise. By the equation of
focal loss, γ ≥ 0 is a tunable focusing parameter. In practice, αt will be α, if the
ground-truth class of sample is the positive class and be 1 − α for otherwise.

The motivation for defining the focal loss is that cross entropy loss is not
able to correctly balance the weights of positive and negative samples due to
the imbalance. Although adding a weighting factor α partially addresses the
problem, it cannot differentiate between easy samples and hard samples. Usually,
most of easy samples are from negative class, and they hugely contribute to the
total loss and dominate the network gradient. In general, hard samples add
more discriminative information than easy samples [23], so that learning from
hard samples is more effective than learning from easy ones. For this reason,
the contribution of easy samples needs to be reduced while learning, so that the
model can concentrate on learning hard samples.

Focal loss was designed to down-weight easy samples by adding a modu-
lating factor to the cross entropy loss. This factor reduces the loss contribu-
tion from easy samples and focuses training on hard negative samples. Define
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lFL = 1
n

∑n
i=1 −α

(i)
t (1 − p

(i)
t )γ log(p(i)t ), as a total loss form of an α-balanced

variant of focal loss, where n is the number of samples.
We considered focal loss as a reference for our improved method, described

in the next section.

2.3 Mean False Error

Mean false error was derived from a mean squared error (MSE) [22], by separat-
ing the calculation of the total MSE for all samples to a sum of an average losses
of negative and positive samples separately: lMFE = lMSE− + lMSE+ , where
lMSE− = 1

n−

∑n−
i=1

1
2 (y(i) − p(i))2 and lMSE+ = 1

n+

∑n+
i=1

1
2 (y(i) − p(i))2. Based

on the equations, y(i) is the ground-truth class of sample i and n− and n+ are
the numbers of negative or positive samples.

The motivation for introducing mean false error is that a MSE is not able to
capture losses from the positive class effectively. That is, loss contributions from
negative samples will overrule the contribution from positive samples, due to the
higher volume of negative samples. Thus it computes the total loss from a sum
of separate calculations of the average loss of each class. This allows the positive
class to more fully contribute to updating weights of the network. In experiments
on various benchmark datasets, Wang et al. [22] showed that mean false error
performed better than a simple MSE approach. They further improved mean
false error with mean squared false error (MSFE) [22]. Both of these variations
were compared with our hybrid method—see Sect. 5.

3 Our Method

The principal advantage of focal loss is that it can control the difference between
easy and hard samples and increase the loss contribution of the positive class by
reducing the importance of easy samples. A weighting factor was added to the
loss to balance the contribution of positive and negative samples. However, since
the total loss is an average for both positive and negative classes, the negative
class can still dominate the total loss. The mean false error solution diminishes
this effect, because it can make positive class more important during training.

We showed that the advantage of each loss can address the drawback of
the other. Hence, to more effectively learn unbalanced data, we mimicked the
mean false error total loss calculation, by summing average separately computed
losses from both classes: lHybrid = lFL−+lFL+ , where lFL− = 1

n−

∑n−
i=1 −α

(i)
t (1−

p
(i)
t )γ log(p(i)t ) and lFL+ = 1

n+

∑n+
i=1 −α

(i)
t (1−p

(i)
t )γ log(p(i)t ). lFL− and lFL+ are

the average losses of the negative and positive classes.
To use the hybrid loss in back-propagation algorithm, we need their deriva-

tives. For focal loss, let p = σ(x) = 1
1+e−x , be an output of a logistic function,

and x is an input of the logistic function. [14] define a quality xt = xy. Based on
the definition of pt in Sect. 2.2, pt = 1

1+exy . Using pt, the derivative for focal loss
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is: ∂lFL

∂x
(i)
t

= 1
n

∑n
i=1 y(i)(1 − p

(i)
t )γ(γp

(i)
t log(p(i)t ) + p

(i)
t − 1). For mean false error,

the derivative is: ∂lMFE

∂x(i) =
∂lMSE−

∂x(i) +
∂lMSE+

∂x(i) , where

∂lMSE−

∂x(i)
= − 1

n−

n−∑

i=1

(y(i) − p(i))p(i)(1 − p(i)), (1)

∂lMSE+

∂x(i)
= − 1

n+

n+∑

i=1

(y(i) − p(i))p(i)(1 − p(i)). (2)

Note that the derivative in (1) is used for the negative sample, while (2) is used
for the positive sample.

Using the mean false error derivative, we can define the derivative for the
hybrid loss by combining the derivatives of focal loss for negative and positive
classes: ∂lHybrid

∂x
(i)
t

=
∂lFL−
∂x

(i)
t

+
∂lFL+

∂x
(i)
t

, where

∂lFL−

∂x
(i)
t

=
1

n−

n−∑

i=1

y(i)(1 − p
(i)
t )γ(γp

(i)
t log(p(i)t ) + p

(i)
t − 1), (3)

∂lFL+

∂x
(i)
t

=
1

n+

n+∑

i=1

y(i)(1 − p
(i)
t )γ(γp

(i)
t log(p(i)t ) + p

(i)
t − 1). (4)

As in mean false error, these derivatives are used for the corresponding samples
from each class.

Our hypothesis is that our hybrid loss function will perform better than mean
false error and focal loss, because it allows the positive class to contribute in its
full extent to the total loss and differentiate between easy and hard samples at
the same time.

4 Experimental Framework

4.1 Datasets

We use two benchmark datasets, CIFAR-100 [12] and IMDB review [16]. Orig-
inally, both datasets were balanced, but we extracted various imbalanced sets
from them: (1) Unbalanced Sets from CIFAR-100: CIFAR-100 has 100 classes
and contains 600 images per class, including 500 training and 100 testing images.
For fair comparison, we created three different sets of data, labeled Household,
Tree 1 and Tree 2, by following the setting of Wang et al. [22]. Each set of
data had two classes and the representation of one class was reduced to three
different imbalance levels, 20%, 10% and 5%. (2) Unbalanced Sets from IMDB
Review: IMDB review is for binary sentiment classification: it contains 25,000
movie reviews for training and 25,000 for testing, and each set includes 12,500
positive and 12,500 negative reviews. We created three different sets of data by
leaving 20%, 10% and 5% of positive reviews.
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Table 1. Performance of ResNet-50 with different loss functions. The high F1-score
and AUC demonstrate that the loss function was suited for image classification on
unbalanced data

Dataset Imb.

level (%)

Metrics Method

MFE MSFE FL Hybrid

Household 20 F1-score 38.02 ± 0.03 40.15 ± 0.06 41.77 ± 0.02 43.38 ± 0.04

AUC 73.58 ± 0.01 74.86 ± 0.02 75.00 ± 0.02 75.24 ± 0.01

10 F1-score 13.06 ± 0.07 13.31 ± 0.06 22.01 ± 0.02 25.40 ± 0.05

AUC 60.78 ± 0.02 60.80 ± 0.01 60.61 ± 0.03 65.24 ± 0.02

5 F1-score 2.87 ± 0.04 6.99 ± 0.01 9.02 ± 0.05 10.06 ± 0.03

AUC 51.55 ± 0.03 55.74 ± 0.03 57.72 ± 0.03 54.80 ± 0.04

Tree 1 20 F1-score 38.86 ± 0.05 42.69 ± 0.08 34.12 ± 0.05 50.12 ± 0.06

AUC 80.09 ± 0.01 79.60 ± 0.02 78.98 ± 0.01 79.62 ± 0.02

10 F1-score 36.63 ± 0.10 40.63 ± 0.12 33.33 ± 0.13 42.49 ± 0.11

AUC 73.32 ± 0.03 74.82 ± 0.04 70.80 ± 0.02 76.08 ± 0.03

5 F1-score 32.38 ± 0.02 30.48 ± 0.02 26.67 ± 0.13 33.33 ± 0.05

AUC 80.68 ± 0.05 79.96 ± 0.04 72.20 ± 0.03 80.08 ± 0.03

Tree 2 20 F1-score 56.38 ± 0.05 57.71 ± 0.03 58.76 ± 0.03 61.66 ± 0.05

AUC 82.22 ± 0.02 82.46 ± 0.02 81.92 ± 0.02 82.53 ± 0.01

10 F1-score 53.48 ± 0.06 57.10 ± 0.08 57.13 ± 0.03 61.86 ± 0.08

AUC 80.90 ± 0.01 81.08 ± 0.03 79.58 ± 0.03 81.30 ± 0.03

5 F1-score 47.59 ± 0.07 43.59 ± 0.10 50.95 ± 0.09 55.71 ± 0.03

AUC 72.04 ± 0.07 78.88 ± 0.08 65.52 ± 0.09 71.88 ± 0.07

4.2 Experiment Settings

Each unbalanced data set was split into training, validation and test sets. All
three sets have the same imbalance ratio. As both CIFAR-100 and IMDR review,
already had training and test sets, we chose 20% of samples from the training
set for the validation set. The obtained training and validation sets are used for
training model, and the test set is used for evaluating the trained model. The
experiment was run five times with different random splits.

We used ResNet-50 [5] for image classification, and Transformer [20], that
is represented in Keras document for sentiment classification. Both models used
the Adam Optimizer [11]. We ran the experiments using TensorFlow [1] and
Keras [4].

5 Results and Discussions

Table 1 reports the classification performances of the methods used on the
CIFAR-100 sets. Our hybrid loss function performed better than the other losses
in most cases and achieved the highest F1-score in all cases.
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Table 2. Performances of Transformer on different loss functions. The high F1-score
and AUC demonstrated that the loss function is suited for the sentiment classification
on imbalanced data.

Imb.
level (%)

Metrics Method

MFE MSFE FL Hybrid

20 F1-score 65.56 ± 0.01 67.14 ± 0.01 67.19 ± 0.02 67.20 ± 0.05

AUC 91.67 ± 0.08 91.57 ± 0.09 91.68 ± 0.12 92.16 ± 0.09

10 F1-score 52.57 ± 0.01 54.50 ± 0.01 53.77 ± 0.01 54.83 ± 0.01

AUC 91.04 ± 0.03 90.80 ± 0.04 91.10 ± 0.02 91.32 ± 0.06

5 F1-score 38.07 ± 0.01 40.48 ± 0.01 39.93 ± 0.01 42.80 ± 0.02

AUC 88.93 ± 0.06 88.95 ± 0.02 88.71 ± 0.01 89.52 ± 0.04

We report the classification performances of Transformer trained using dif-
ferent loss functions in Table 2. The hybrid loss achieved the highest F1-score
and AUC at all imbalance levels.

6 Conclusion

We studied two loss functions, mean false error and focal loss for training deep
neural networks on unbalanced data. As each of the two losses has advantages
that can eliminate drawbacks of the other, we showed that hybridizing the two
losses in a hybrid loss function that imitates the calculation procedures of mean
false error’s total loss to focal loss. Tests on this hybrid loss, on image and text
classifications, at various imbalance levels, showed that the networks trained
with it were superior to mean false error, mean squared false error and focal loss
on the F1-score, but worse in a few cases on the AUC.

This work focused on improving DNN performance for binary classification:
future work will evaluate it on multi-class classification.
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