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Abstract. FM can use the second-order feature interactions. Some
researchers combine FM with deep learning to get the high-order interac-
tions. However, these models rely on negative sampling. ENSFM adopts
non-sampling and gets fine results, but it does not consider the high-
order interactions. In this paper, we add the high-order interactions to
ENSFM. We also introduce a technique called Order-aware Embedding.
The excellent results show the effectiveness of our model.

Keywords: Context-aware recommendation · Factorization machines ·
Non-sampling · The high-order interactions · Order-aware embedding

1 Introduction

ENSFM [1] achieves non-sampling, but only considers the second-order interac-
tions. In this paper, we continue to use non-sampling. On this basis, the third-
order and the fourth-order interactions are added. We also consider that the use
of shared embedding may cause some problems. Therefore, we adopt a technique
called Order-aware Embedding to solve these problems. Its main idea is to apply
different embeddings to different orders for feature interactions.

The main contributions of this work are summarized as follows: (1)We con-
sider that the high-order interactions have an important influence on perfor-
mance, so the third-order and the fourth-order interactions are added. (2)We
believe that the use of shared embedding will result in learned feature interac-
tions less effective, so we adopt Order-aware Embedding.

2 Preliminaries

2.1 Factorization Machines (FM)

FM is a machine learning algorithm based on MF. The model uses a low-
dimensional dense vector to represent the weight of a feature. The number of
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user features and item features are denoted by m and n, respectively. By using
the factorized parameters, FM captures all interactions between features:

ŷFM (x) = w0 +
m+n∑

i=1

wixi +
m+n∑

i=1

m+n∑

j=i+1

eTi ej · xixj (1)

2.2 Efficient Non-sampling Matrix Factorization

Although the performance of non-sampling matrix factorization is excellent,
its shortcoming is also obvious—inefficiency. In order to solve this problem,
researchers have proposed some effective solutions [2,11,12].

Theorem 1. A generalized matrix factorization whose prediction function is:

ŷuv = hT (pu � qv) (2)

where pu and qv are representation vectors of user and item, respectively. And
� denotes the element-wise product of two vectors. Its loss function is:

L(Θ) =
∑

u∈U

∑

v∈V

cuv (yuv − ŷuv)
2 (3)

where cuv is the weight of sample yuv. It is completely equivalent to that of:

L̃(Θ) =
∑

u∈U

∑

v∈V+

((
c+uv − c−

uv

)
ŷ2
uv − 2c+uv ŷuv

)

+
d∑

i=1

d∑

j=1

(
(hihj)

(
∑

u∈U

pu,ipu,j

)(
∑

v∈V

c−
uvqv,iqv,j

)) (4)

3 Our Model—ONFM

3.1 Overview

Using the FM form, ONFM is expressed as:

ŷFM (x) = w0 +
m+n∑

i=1

wixi + f2(x) + f3(x) + f4(x) (5)

f2(x) = hr

m+n∑

i=1

m+n∑

j=i+1

(
xie

2
i � xje

2
j

)
(6)

f3(x) = hs

m+n∑

i=1

m+n∑

j=i+1

m+n∑

k=j+1

(
xie

3
i � xje

3
j � xke

3
k

)
(7)
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f4(x) = ht

m+n∑

i=1

m+n∑

j=i+1

m+n∑

k=j+1

m+n∑

l=k+1

(
xie

4
i � xje

4
j � xke

4
k � xle

4
l

)
(8)

where f2(x), f3(x) and f4(x) denote the second-order, the third-order and the
fourth-order, respectively. Figure 1 shows the composition structure of ONFM.

There are five layers—Input, Order-aware Embedding, Feature Pooling,
Fully-connected and Output. The input of Input are some high-dimensional
sparse vectors obtained by one-hot encoding. We need to convert these special
vectors into low-dimensional dense vectors. The role of Order-aware Embedding
is to solve this problem. After Order-aware Embedding processing, we get three
different sets of low-dimensional dense vectors. The embedding vectors of feature
i for different orders can be formulated as [5]:

eji = W j
i X [starti : endi] (9)

Then these low-dimensional dense vectors directly enter Feature Pooling for
feature interaction processing. The target of this layer is to reconstruct FM
model in Eq. (5) into a completely equivalent generalized MF form:

ŷFM (x) = hT
aux (pu � qv) (10)

where pu, qv are two vectors obtained by Feature Pooling. They are only related
to the corresponding user and item, not to the objects they interact with.

Finally, the two vectors are input to Fully-connected. Then, we obtain the
final prediction ŷFM , which represents user u’s preference for item v.

3.2 ONFM Theoretical Analysis

The basic theory of ONFM is that the FM model incorporating the high-order
interactions in Eq. (5) can be transformed into a MF form in Eq. (10). Then we
will prove the correctness of the theory.

Recalling Eq. (5), we consider three parts—f2(x), f3(x), f4(x), they can be
transformed into the following form:

f2(x) = h1

⎛

⎝
m∑

i=1

m∑

j=i+1

(
xu
i eu,2i � xu

j eu,2j

)
+

n∑

i=1

n∑

j=i+1

(
xv
i e

v,2
i � xv

j e
v,2
j

)
⎞

⎠

+ h2

(
m∑

i=1

xu
i eu,2i �

n∑

i=1

xv
i e

v,2
i

) (11)

f3(x) = h3(a + b) + h4

⎛

⎝
m∑

i=1

m∑

j=i+1

(
xu
i eu,3i � xu

j eu,3j

)
�

n∑

i=1

xv
i e

v,3
i

⎞

⎠

+ h4

⎛

⎝
m∑

i=1

xu
i eu,3i �

n∑

i=1

n∑

j=i+1

(
xv
i e

v,3
i � xv

j e
v,3
j

)
⎞

⎠

(12)
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Fig. 1. The overall framework of ONFM.

a =
m∑

i=1

m∑

j=i+1

m∑

k=j+1

(
xu
i eu,3i � xu

j eu,3j � xu
keu,3k

)
(13)

b =
n∑

i=1

n∑

j=i+1

n∑

k=j+1

(
xv
i e

v,3
i � xv

j e
v,3
j � xv

ke
v,3
k

)
(14)

f4(x) = h5(c + d)

+ h6

⎛

⎝
m∑

i=1

m∑

j=i+1

m∑

k=j+1

(
xu
i eu,4i � xu

j eu,4j � xu
keu,4k

)
�

n∑

i=1

xv
i e

v,4
i

⎞

⎠

+ h6

⎛

⎝
m∑

i=1

xu
i eu,4i �

n∑

i=1

n∑

j=i+1

n∑

k=j+1

(
xv
i e

v,4
i � xv

j e
v,4
j � xv

ke
v,4
k

)
⎞

⎠

+ h7

⎛

⎝
m∑

i=1

m∑

j=i+1

(
xu
i eu,4i � xu

j eu,4j

)
�

n∑

i=1

n∑

j=i+1

(
xv
i e

v,4
i � xv

j e
v,4
j

)
⎞

⎠

(15)

c =
m∑

i=1

m∑

j=i+1

m∑

k=j+1

m∑

l=k+1

(
xu
i eu,4i � xu

j eu,4j � xu
keu,4k � xu

l eu,4l

)
(16)
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d =
n∑

i=1

n∑

j=i+1

n∑

k=j+1

n∑

l=k+1

(
xv
i e

v,4
i � xv

j e
v,4
j � xv

ke
v,4
k � xv

l e
v,4
l

)
(17)

Next, we will describe the training process of ONFM in detail by constructing
three auxiliary vectors—pu, qv and haux:

pu =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2,1u,d

p3,1u,d

p3,2u,d

p4,1u,d

p4,2u,d

p4,3u,d

pu,1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; qv =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q2,1v,d

q3,2v,d

q3,1v,d

q4,3v,d

q4,2v,d

q4,1v,d

1
qv,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;haux =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h2
aux,d

h4
aux,d

h4
aux,d

h6
aux,d

h7
aux,d

h6
aux,d

1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

For the auxiliary vector pu, it is calculated by module-1. The input of module-
1 are multiple sets of user feature embedding vectors. The first six elements have
a unified format—px,yu,d. They are used for the user-item feature interactions. The
last two elements are related to the global weight, the first-order features and
the self feature interactions. The form of each part is expressed as follows.

p2,1u,d =
m∑

i=0

xu
i eu,2i (19)

p3,1u,d =
m∑

i=0

xu
i eu,3i (20)

p3,2u,d =
m∑

i=0

m∑

j=i+1

(
xu
i eu,3i � xu

j eu,3j

)
(21)

p4,1u,d =
m∑

i=0

xu
i eu,4i (22)

p4,2u,d =
m∑

i=0

m∑

j=i+1

(
xu
i eu,4i � xu

j eu,4j

)
(23)

p4,3u,d =
m∑

i=0

m∑

j=i+1

m∑

k=j+1

(
xu
i eu,4i � xu

j eu,4j � xu
keu,4k

)
(24)

pu,1 = w0 +
m∑

i=0

wu
i xu

i + h1

m∑

i=0

m∑

j=i

(
xu
i eu,2i � xu

j eu,2j

)

+ h3

m∑

i=1

m∑

j=i+1

m∑

k=j+1

(
xu
i eu,3i � xu

j eu,3j � xu
keu,3j

)

+ h5

m∑

i=1

m∑

j=i+1

m∑

k=j+1

m∑

l=k+1

(
xu
i eu,4i � xu

j eu,4j � xu
keu,4k � xu

l eu,4l

)

(25)
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The second auxiliary vector qv is similar to the first one, but the element
position is adjusted accordingly. For the third auxiliary vector haux, h2

aux,d = h2,
h4
aux,d = h4, h6

aux,d = h6, h7
aux,d = h7.

3.3 Optimization Method

Now, we will introduce some optimization methods for ONFM. Firstly, the
theory we have proved shows that FM can be expressed as two uncorrelated
vectors—pu and qv. By precomputing the vectors, we can greatly improve the
training efficiency. Secondly, after transforming FM into generalized MF, the
prediction function of ONFM satisfies the requirements of Theorem 1, so the
loss function it proposes is available for ONFM:

L̃(Θ) =
∑

u∈B

∑

v∈V+

((
c+v − c−

v

)
ŷ(x)2 − 2c+v ŷ(x)

)

+
d∑

i=1

d∑

j=1

(
(haux,ihaux,j)

(
∑

u∈B

pu,ipu,j

) (
∑

v∈V

c−
v qv,iqv,j

)) (26)

where B indicates a batch of users, and V indicates all items.

4 Experiments

4.1 Experimental Settings

Datasets. The two publicly available datasets used are Frapple and Last.fm .
For Frapple , the number of user, item, feature and instance are 957, 4082, 5382,
96203. For Last.fm , the number are 1000, 20301, 37358 and 214574.

Baseline. We compare ONFM with the following baseline:

• PopRank: This model returns Top-k most popular items.
• FM [9]: The original factorization machines.
• NFM [6]: Neural factorization machine uses MLP to learn nonlinear and

high-order interactions signals.
• DeepFM [4]: This model combines FM and MLP to make recommendations.
• ONCF [7]: This model improves MF with outer product.
• CFM [10]: Convolutional Factorization Machine uses 3D convolution to

achieve the high-order interactions between features.
• ENMF [3]: Efficient Neural Matrix Factorization uses non-sampling neural

recommendation method to generate recommendations.
• ENSFM [1]: Efficient Non-Sampling Factorization Machines conducts non-

sampling training by transforming FM into MF.
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Table 1. The performance of different models on Frappe and List.fm.

Frappe HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20

PopRank 0.2539 0.3493 0.4136 0.1595 0.1898 0.2060

FM 0.4204 0.5486 0.6590 0.3054 0.3469 0.3750

DeepFM 0.4632 0.6035 0.7322 0.3308 0.3765 0.4092

NFM 0.4798 0.6197 0.7382 0.3469 0.3924 0.4225

ONCF 0.5359 0.6531 0.7691 0.3940 0.4320 0.4614

CFM 0.5462 0.6720 0.7774 0.4153 0.4560 0.4859

ENMF 0.5682 0.6833 0.7749 0.4314 0.4642 0.4914

ENSFM 0.6094 0.7118 0.7889 0.4771 0.5105 0.5301

ONFM-1 0.6149 0.7198 0.7927 0.4778 0.5119 0.5305

ONFM-2 0.6468 0.7623 0.8485 0.4978 0.5354 0.5574

ONFM-3 0.6743 0.7924 0.8703 0.5217 0.5601 0.5800

Last.fm HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20

PopRank 0.0013 0.0023 0.0032 0.0007 0.0011 0.0013

FM 0.1658 0.2382 0.3537 0.1142 0.1374 0.1665

DeepFM 0.1773 0.2612 0.3799 0.1204 0.1473 0.1772

NFM 0.1827 0.2678 0.3783 0.1235 0.1488 0.1765

ONCF 0.2183 0.3208 0.4611 0.1493 0.1823 0.2176

CFM 0.2375 0.3538 0.4841 0.1573 0.1948 0.2277

ENMF 0.3188 0.4254 0.5279 0.2256 0.2531 0.2894

ENSFM 0.3683 0.4729 0.5793 0.2744 0.3082 0.3352

ONFM-1 0.4400 0.5386 0.6294 0.3306 0.3625 0.3856

ONFM-2 0.5431 0.6220 0.6822 0.4190 0.4446 0.4601

ONFM-3 0.5673 0.6457 0.6946 0.4478 0.4733 0.4858

Evaluation Protocols and Metrics. ONFM adopts the leave-one-out eval-
uation protocol [8,10] to test its performance. For Frappe, we randomly choice
one transaction as the test example for each specific user context because of no
timestamp. For List.fm, the latest transaction of each user is held out for testing
and the rest is treated as the training set. The evaluate metrics are Hit Ratio
(HR) and Normalized Discounted Cumulative Gain (NDCG).

Parameter Settings. In ONFM, the weight of all missing data is set to c0
uniformly, the batch size is set to 512, the embedding size is set to 64, the
learning rate is set to 0.05, and the dropout ratio is set to 0.9. c0 is set to 0.05
and 0.005 for Frappe and Lisr.fm, respectively.
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4.2 Performance Comparison

Table 1 summarize the best performance of these models on Frappe and List.fm,
respectively. In order to evaluate on different recommendation lengths, we set the
length K = 5, 10, and 20 in our experiments. The experimental results show that
our model achieves the best performance on all datasets regarding to both HR
and NDCG. ONFM-1 adds the third-order interactions between features based
on ENSFM. It is noted that ONFM-1 uses shared embedding. Compared with
ENSFM, its performance is better, which indicates the effectiveness of the third-
order interactions. On the basis of ONFM-1, ONFM-2 introduces the technique
called Order-aware Embedding. The performance is improved, indicating that
using order-aware embedding is a better choice. ONFM-3 is the final form of our
model, which adds the third-order interactions and the fourth-order interactions
meanwhile, and also use Order-aware Embedding. Compared with ENSFM, the
performance of ONFM-3 is excellent.

5 Conclusion and Future Work

In this paper, we propose a novel model named Order-Aware Embedding Non-
Sampling Factorization Machines. The key design of ONFM is to transform
FM model incorporating the high-order interactions into a MF form through
mathematical transformation. Then we can get three auxiliary vectors—pu, qv

and haux. pu and qv are only related to the corresponding user and item. We
also use Order-aware Embedding. Finally, through some optimization methods,
we apply non-sampling to train ONFM. Extensive experiments on two datasets
demonstrate that ONFM obtains effective feature information successfully.

Although the results of ONFM illustrate the importance of the high-order
interactions, the way to calculate the high-order interactions is crude. In the
future, we will design a more excellent method to calculate the high-order inter-
actions. Moreover, different feature interactions have different influence on the
accuracy of the final prediction. So in order to better extract feature information,
we are also interested in applying attention mechanism to our model.
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