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Abstract. Non-Autoregressive neural machine translation (NAT) not
only achieves rapid training but also actualizes fast decoding. However,
the implementation of parallel decoding is at the expense of quality. Due
to the increase of speed, the dependence on the context of the target side
is discarded which resulting in the loss of the translation contextual posi-
tion perception ability. In this paper, we improve the model by adding
capsule network layers to extract positional information more effectively
and comprehensively, that is, relying on vector neurons to compensate
for the defects of traditional scalar neurons to store the position infor-
mation of a single segment. Besides, word-level error correction on the
output of NAT model is used to optimize generated translation. Exper-
iments show that our model is superior to the previous model, with a
BLEU score of 26.12 on the WMT2014 En-De task and a BLEU score of
31.93 on the WMT16 Ro-En, and the speed is even more than six times
faster than the autoregressive model.
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1 Introduction

Most neural machine translation (NMT) [1,2] models are sequentially autoregres-
sive models (AT) such as RNNs, Transformer [3] which have state-of-the-art per-
formance. The training process of Transformer is parallel, but in decoding phase,
it exploit the generated sequence to predict the current target word which will
cause severe decoding delay. In recent years, non-autoregressive neural machine
translation model (NAT) [4] is proposed to effectively speed up the decoding pro-
cess which exploits Knowledge Distillation [5] and fine-tuning to assist training.
Subsequently, there are some novel-innovative improvements based on the NAT
model, such as the work of regulating the similarity of hidden layer states by
two auxiliary regularization terms [6], the model reconstruct generative transla-
tion through iterative refinement [7] and Ghazvininejad put forward to partially
mask target translation through the conditional masked language model [8].
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In this work, we propose to utilize the Capsule Network [9] in the architecture
which has a significant impact on extracting more deeply positional features and
making the generated translation more advantageous in word order. Besides,
we adopt the word-level error correction method to reconstruct the generated
sentence which can alleviate the translation problems. Experiments show that
our model is superior to the previous NAT models. On the WMT14 De-En task,
the addition of the capsule network layers increases the BLEU score by more
than 6. More significantly, our word-level error correction method brings 1.88
BLEU scores improvement. We also perform case study on WMT14 En-De and
ablation study on IWSLT16 to verify the effectiveness of the proposed methods.

2 Background

2.1 Non-autoregressive Neural Machine Translation

Under the condition of given source sentence S = (s1, ..., sK) and target sentence
T = (t1, ..., tL), the autoregressive model utilizes a sequential manner to predict
the current word which will bring a certain degree of delay. Non-autoregressive
neural machine translation model (NAT) [4] is proposed to improve the decoding
speed which only predicts based on the source sequence and the target sequence
length Ly predicted in advance:

PNAT (T |S; θ) = P (Ly|S; θ) ·
Ly∏

l

P (tl|S; θ) (1)

where θ is a series of model parameters.

2.2 Neural Machine Translation with Error Detection

For error detection in NMT, the model first characterizes each word in the source
sentence as a word embedding vector and then feeds it to the bidirectional LSTM.
At each time step, the hidden state in both directions is combined and regarded
as the final output. In addition, the error correction model also constructs mis-
matching features, that is when there are wrong words in a output sequence, the
pre-trained model will give the correct word prediction distribution and there
will be a gap between their probability distributions. The model make the next
prediction according to this gap feature, as shown in Eq. 2.

argmin

T∑

k=1

XENT
(
gk,W

[−→
hk,

←−
hk,

−−→
hk+1,

←−−
hk+1

])
(2)

where XENT stands for cross-entropy loss, W represents the weight matrix,−→
hk,

←−
hk means the overall score of the sentence in the forward and backward

directions and gk is the gap label between k-th token and k+1st token.
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3 Approach

3.1 Model Architecture

Fig. 1. The architecture of the proposed
NAT-CN model. The encoder use child
layer to capture location information and
the decoder integrate information by par-
ent layer, then update the weights by
Dynamic Routing Algorithm (DRA).

Since the NAT model ignores the tar-
get words and context information,
we use the Capsule Network [9] to
improve, the model architecture is
shown in Fig. 1 which also composed
of encoder and decoder. The hidden
layer state of the encoder is shown in
the Eq. 2.

hj =
∑

i

αijF (ei, wij) (3)

where ei is the output of the self-
attention layer, α represents the cou-
pling coefficient of the capsule net-
work, and the final output of this layer
is hj .

Similar to the encoder side, we use
a child layer to extract source infor-
mation, but at decoder side we introduce an additional parent layer to inte-
grate information extracted by the previous layer (ie, child layer), and map it to
another form that is consistent with the parent’s representation:

sj =
M∑

i

F (hij , wij) (4)

where M represents the number of child capsules in the child capsule layer.
Then use the Squashing function to compress the modulus of the vector into the
interval [0, 1), each parent capsule will update the state as follows:

pj = Squash(sj) =
‖sj‖2

1 + ‖sj‖2
sj

‖sj‖ (5)

Integrate all the child capsules in the form described above to generate the
final parent capsule layer representation P = [p1, p2, ..., pN ]. After that, iterative
updating is used to determine what information in the N parent capsules will
be transmitted to the Multi-Head Inter-Attention sub-layer.

Attention(Qp,Kp, Vp) = softmax(
QpK

T
p√

dk
) · Vp (6)

where Qp is the output of the parent capsule layer, Kp, Vp are vectors from the
encoder, and they all contain rich position information.
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Position-Aware Strategy. Since there is no direct target sequence information
on the decoder side, we combine the extracted deeper information with the source
information to get the final word vector representation and feed it to the next
layer:

Embp(Qp,Kp, Vp) = (e1 + p1, ..., en + pn) (7)

where ei represents the original source word embedding and pi indicates the
position vector extracted by the capsule network layers. Besides, to accomplish
parallel decoding and advantage the decoder to infer, we calculate the ratio λ
between target and source sentence lengths in the training set and given a bias
term C. The target sentence length +*96 Ly = λLx + C, then predict it from
[λLx − B, λLx + B], where B represents half of the searching window.

3.2 Training

Objective Function. We utilize teacher model to guide the training of
NAT model to improve translation quality. In the capsule network layers, we
update the parameters through an iterative dynamic routing algorithm:bij =
bij + pjF (ui, wj), where ui is the previous capsule network output, pj is the
parent capsule network layer output and F (·) denotes the calculation of the
feed-forward neural network. We use cross-entropy to calculate the loss of NAT
model with position awareness during the training phase, as shown in Eq. 8.

LNAT (S; θ) = −
Ly∑

l=1

∑

tl

((logPNAT (tl|Ly, S) · logPAT (tl|t1, .., tl−1, S; θ)) (8)

We utilize the Sequence-Level Interpolation Knowledge Distillation
method [5] to assist training which makes the proposed NAT-CN model gen-
erate translations by selecting the output that is closest to the gold reference r
but has the highest probability under the guidance of distilled data. The training
process is shown in Eq. 9.

LIKD = (1 − α)LSEQ−NLL + αLSEQ−KD = −(1 − α)logp(r|s) − αlogp(t̂|s)
(9)

where α is a hyper-parameter and t̂ is the output under the guidance of teacher
model.

3.3 Word-Level Error Correction

Teacher Model. For the translation problem of the NAT model, we perform
word-level error correction on the generated translation by use bilingual teacher
model. As shown in Fig. 1, teacher model extracts features bidirectionally from
source sequences and generates the latent variable

←−
Z and

−→
Z , then integrates

encoded potential variables to predict the probability distribution of candidate
words as the gap feature. We use this gap to guide error correction and obtain
the output of teacher model by maximizing the expected probability.

p(t|z) =
∏

l

p(tl|←−zl ,−→zl );q(z|t, s) =
∏

l

q(←−zl |s, t<l,
−→zl |s, t>l) (10)
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where z denotes latent variable, we only need to construct two probabilities of
p(·) and q(·) by bidirectional transformer to get the maximum expectation.

Force Decoding. We can extract three kinds of matching features after training
teacher model, which consists of latent variable zl, token embedding Ep and
categorical distribution p(tk|·) ∼ Categorical(softmax(Ik)). Therefore, we can
construct 4-dimensional mis-matching feature fmis−match

k :

f
mis−match
k = (Ik,mk

, I
k,ikmax

, Ik,mk
− I

k,ikmax
,Ξmk �=imax ) (11)

where mk represents k − th token in the NAT-CN model output, ikmax =
argmaxiIk is the gap feature. These four items respectively represent:the prob-
ability of forced decoding into the current output token mk; the model does not
use forced decoding but retains the probability information of the most likely
word ikmax; the difference between the first two items; the probability distribu-
tion used to indicate whether the current word is consistent with the predicted
word.

Fig. 2. Use the output of the asynchronous bidirec-
tional decoding model to perform word-level error
correction on the translation of NAT-CN model.

Then we can use fk
to forcibly decode the cur-
rent token into the token
with highest probability. We
modified the original NAT
objective to get Eq. 12.

PNAT (T |S, fk; θ) = P (Ly|S; θ)

·
Ly∏

l=1

P (tl|S,Z, fk; θ)

(12)
As shown in Fig. 2, accord-

ing to this mismatching feature, it can be decided whether the translation of the
NAT-CN model is normally decoded to t or forcedly decoded to the reference
translation t∗.

4 Experiments and Results

4.1 Datasets and Setting

We use the following three machine translation tasks: WMT14 En-De (4.5M
pairs) and WMT16 En-Ro (610k pairs), IWSLT16 En-De (196k pairs). For
WMT16, we utilize newsdev2016 as the verification set and newstest2016 as the
test set. For IWSLT16, we employe test2013 as development set. For WMT14, we
utilize newstest2013 and newstest2014 as the validation set and test set respec-
tively. All datasets are tokenized by Moses1 and segmented into sub-word units

1 https://github.com/moses-smt/mosesdecoder.

https://github.com/moses-smt/mosesdecoder
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Table 1. Evaluation of translation quality on select translation tasks including BLEU
scores, decoding latency and training speed. Where “NAT-CN” represents the proposed
model with capsule network and “EC” refers to the NAT-CN model combined with
word-level translation error correction method. We use “KD” to empress the method
of knowledge distillation and “idec” stands for the number of iterations.

Models WMT14 WMT16 IWSLT16 Latency Speedup

En-De De-En En-Ro Ro-En En-De

Transformer 27.41 31.29 33.12 33.86 30.90 607ms 1.00×
NAT-FT 17.69 21.47 27.29 29.06 26.52 39ms 15.6×
NAT-FT(+NPD s = 10) 18.66 22.41 29.02 30.76 27.44 79ms 7.68×
NAT-IR(idec = 10) 21.61 25.48 29.32 30.19 27.11 404ms 1.5×
NAT-IR(adaptive refinements) 21.54 25.43 29.66 30.30 27.01 – –

NAT-LV 25.10 – – – – 89ms 6.8×
FlowSeq-base(+KD) 21.45 26.16 29.34 30.44 – – –

FlowSeq-large(+KD) 23.72 28.39 29.73 30.72 – – –

CMLM-small(idec = 4) 24.17 28.55 30.00 30.43 – – –

NAT-REG(rescoring 9) 24.61 28.90 – – 27.02 40ms 15.1×
NAT-CN(B=0,1 candidates) 23.10 25.25 28.50 29.87 26.59 45ms 13.47×
NAT-CN(B=4,9 candidates) 24.92 27.47 29.69 30.31 27.05 72ms 8.43×
NAT-CN(+EC,B=4) 26.12 29.35 30.26 31.93 27.79 98ms 6.18×

by BPE algorithm. We compare our model with strong baseline systems, includ-
ing the NAT with fertility and noisy parallel decoding (NAT-FT+NPD) [4]2 and
our model is modified on it, the NAT with iterative refinement (NAT-IR) [7],
the NAT with discrete latent variables (NAT-LV) [11], the conditional sequence
generation model with generative flow (FlowSep) [12], the Mask-Predict model
(CMLM) [8] and the NAT with auxiliary regularization (NAR-REG) [6].

On the dataset WMT, our parameter settings are the same as Transformer [3]
which are described in its paper. Because IWSLT is smaller, the word vector
dimension set to 278, the number of hidden layer neurons set to 507, layer depth
set to 5, and the attention head set to 2. We conduct experimental verification on
the development set and finally select 0.6 as hyper-parameter α in Eq. 9 and the
number of parent capsules N and child capsules M are both set to 6. Latency
is calculated as the average decoding time of each sentence on entire test set
without mini-batching and we test it on two NIVDIA TITAN X.

4.2 Analysis

Results. The experimental results are shown in Table 1. Specifically, on the
WMT En→De task, our NAT-CN model get 24.92 BLEU3 scores, which is an
improvement of 6.26 BLEU scores compared to the NAT-FT(+NPD) model.
After combining the word-level error correction method, we get 26.12 BLEU
scores which is an improvement of 1.02 compared with the best baseline NAT-
LV model and has a similar decoding speed, however, the difference is only

2 Source code of this work is available at https://github.com/salesforce/nonauto-nmt.
3 https://github.com/harpribot/nlp-metrics/tree/master/bleu.

https://github.com/salesforce/nonauto-nmt
https://github.com/harpribot/nlp-metrics/tree/master/bleu
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Table 2. Translation case studies on WMT14 De→En task. In order to compare under
the same conditions, we set B to 4 in the experiment.

Source
im jahr 2000 wurden weltweit etwa 100 milliarden fotos geschossen, aber nur
ein winziger teil davon wurde ins netz geladen.

Reference
around 100 billion photographs were taken worldwide in 2000,but only a tiny
part of them was uploaded.

AT
around 100 billion photos were taken worldwide in 2000, but only tiny part
of them was uploaded.

NAT-FT
taken worldwide in 2000 about 100 billion photos photos , but uploaded only
little part of them was was.

NAT-CN
about 100 billion photos photos taken worldwide in 2000, but only little part
of them was was uploaded.

NAT-CN(+EC)
around 100 billion photos were taken worldwide in 2000, but only little part
of them was [null] uploaded.

1.29 compared with the Transformer but the decoding speed is improved by
6.18 times. On the En-Ro task, the BLEU scores of 30.26 and 31.93 are finally
obtained, and the word-level error correction method on Ro→En also brings 1.62
BLEU scores improvement.

Case Study and Ablation Study. A translation case on WMT14 De-En
is shown in Table 2. We utilize Transformer [3] as AT model and set B to
4. Compared with the original NAT-FT model [4], our NAT-CN model has a
better ability to capture the global position information, and the effect of the
word-level error correction method is also significant. There is a gap in the word
order between the NAT-FT model translation and the reference and there are
also translation problems such as “photos photos” and “was was”. However, our
model corrects “photos” to “were” and “was” to “null”, that is the target word
at the current position is empty, and also corrects “about” to “around”. We
mark the corrected words in red font.

Table 3. Ablation study performance on
IWSLT16 development set.

Model variants BLEU Latency Speedup

NAT-BASE 21.69 36 ms 16.86×
NAT-BASE(+CN) 25.61 59 ms 10.28×
NAT-BASE(+EC) 28.24 74 ms 8.20×
NAT-BASE(+Both) 28.81 93 ms 7.31×

We perform ablation study
on the IWSLT16 translation task
to verify the impact of different
methods. As shown in Table 3,
after using the capsule network
layers, the BLEU score of our
model is increased by about 4 and
the decoding speed also improved
by 16.86 times. It is enough to see
the impact of the increase of the capsule network layers on the overall exper-
imental results. After combining the word-level error correction method, the
BLEU score improves 2.63 which also proves that this approach can make the
translation close to the output of the autoregressive model.
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5 Conclusion

We propose a novel NAT model architecture to extract the position feature
and its context of the word embedding by adding capsule network layers to the
vanilla NAT model. In addition, the word-level error correction method is used to
reconstruct the translation of the NAT model, which reduces the degradation of
the model while improving the decoding speed. Experiments show that our model
has a significant effect compared to all non-autoregressive baseline systems.
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