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Abstract. As the first step in automated natural language process-
ing, representing words and sentences is of central importance and has
attracted significant research attention. Despite the successful results
that have been achieved in the recent distributional dense and sparse
vector representations, such vectors face nontrivial challenge in both
memory and computational requirement in practical applications. In this
paper, we designed a novel representation model that projects dense vec-
tors into a higher dimensional space and favors a highly sparse and binary
representation of vectors, while trying to maintain pairwise inner prod-
ucts between original vectors as much as possible. Our model can be
relaxed as a symmetric non-negative matrix factorization problem which
admits a fast yet effective solution. In a series of empirical evaluations,
the proposed model reported consistent improvement in both accuracy
and running speed in downstream applications and exhibited high poten-
tial in practical applications.
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1 Introduction

With tremendous theoretical and practical values, the study of natural language
processing (NLP) techniques has attracted significant research attention in com-
puter science and artificial intelligence community for many years. A key step
in NLP is to represent language and text elements (words, sentences, etc.) in
a form that can be processed by computers. For this task, the classical vec-
tor space model, which treats the elements as vectors of identifiers, has been
routinely applied in tremendous applications for decades [26].

As an implementation of the vector space model, the one-hot method encodes
a word by a sparse vector with exactly one element being non-zero. Accordingly,
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to represent a sentence, the bag-of-words scheme is naturally applied on one-
hot vectors of words. Simple as it is, the representation scheme has reported
good empirical results [10]. Besides, people have designed various representation
methods, which try to encode each word into a low dimensional continuous
space either as a dense vector or as a sparse one, such as the work of [22,23,
25,32]. With these methods, a sentence vector is typically built as an average,
or a concatenation, of the vectors of all sentence words. All these methods have
achieved quite successful results in a variety of applications.

Despite the successful results reported, all existing encoding methods face
practical challenges. Motivated by both the success and the limitation of the
existing methods, we designed a novel word representation approach, called the
lifting representation. Our method projects dense word vectors to a moderately
higher dimensional space while sparsifying and binarizing the projected vec-
tors. Intuitively, comparing with one-hot word vectors, our encoding dimension
is lower yet with generally more than one non-zero elements in each vector.
Comparing with other word representation schemes, our encoding dimension is
typically higher while most elements are zero. In this way, the proposed approach
has the potential to encode the semantics of the words without bringing about
much computational burden.

Based on the proposed lifting word representation method, representing a
sentence is straightforward and natural. A sentence vector can be obtained in
the way of bag-of-words which sums up the lifting vectors of all sentence words.
In this way, the similarity and difference of any two sentences can also be easily
obtained by calculating their vector similarity or Euclidean distance.

2 Related Work

2.1 Word and Sentence Representations

With one-hot representation model, each word is encoded as a binary vector [26].
Only one vector element is 1 and all other elements are 0. The length of the vector
equals to the number of words in the vocabulary. The position of the 1 element in
a vector actually gives an index of a specific word in the vocabulary. Accordingly,
a sentence can be represented easily by the bag of its words, disregarding the
grammar and word order. Simple as it is, this bag-of-words representation is
commonly used in document classification and information retrieval, and has
reported quite successful empirical results [10].

The distributional hypothesis [21] attracted much attention in designing word
embedding methods. Starting from a summary statistics of how often a word co-
occurs with its neighbor words in a large text corpus, it is possible to project the
count-statistics down to a small and dense vector for each word [6,14], etc. More
recent development focuses on the prediction of a word from its neighbors in
terms of dense embedding vectors. Influential work includes the classical neural
language model, [2], the word2vec (Skip-gram and CBOW) models [22], and the
GloVe algorithm [25]. With such dense word vectors, a sentence is often processed
as a concatenation of all sentence words [8,11]. However, measuring the similarity
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or difference between dense sentence representations is non-trivial. Specialized
distance measures, such as the WMD distance [13], were designed, at the cost of
significantly increased computation. Another approach is to represent a sentence
by the weighted average of all its word vectors, and then use the average vectors
to calculate the sentence similarities [1].

Recent research investigated the possibility of sparse representations. Some
work starts from the co-occurrence statistics of words, including the NNSE
method [23], the FOREST method [32], and the sparse CBOW model [28]. Some
other work starts from the dense word vectors, including the work of [7] and [27].
In practice, such sparse word representations have been successfully applied and
achieved quite good empirical results [29]. Similarly to the dense word vectors,
to represent a sentence with these sparse vectors, people can resort to either the
concatenation-based approach or the average-based approach.

2.2 Dimension Expansion

Biological studies revealed strong evidence of dimension expansion for pattern
recognition. By simulating the fruit fly’s odor detection procedure, a novel fly
algorithm reported excellent performance in practical similarity retrieval appli-
cations [4]. Subsequent work along this line [17,18] designed a sparse lifting
model for dimension expansion, which is more directly related to our work. The
input vectors are lifted to sparse binary vectors in a higher-dimensional space
with the objective of keeping the pairwise inner product between data points
as much as possible. Then the feature values are replaced by their high energy
concentration locations which are further encoded in the sparse binary represen-
tation. The model reported quite good results in a number of machine learning
applications [20].

3 Model

3.1 Sparse Lifting of Dense Vectors

Our work leverages recent studies on dense word representations. It starts from
a word representation matrix X ∈ RN×d from either the word2vec or the GloVe
representation, with which each row gives a dense vector representation of a
word in a vocabulary and has been zero-centered.

Motivated by the idea of sparse lifting, we seek a matrix Z ∈ {0, 1}N×d′

which keeps the pairwise inner products between the row elements of X as much
as possible while satisfying the requirement that

∑
Zij = Nk where k is the

average number of non-zero elements in each row vector of Z.
The binary constraint on the desired matrix makes the problem hard to solve.

To provide a feasible solution, we resort to the following model by relaxing the
binary constraint and seeking a matrix Y ∈ RN×d′

to minimize the difference
between XXT and Y Y T in the Frobenius norm:

min
Y

1
2

∥
∥XXT − Y Y T

∥
∥2

F
, (1)
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subject to the element-wise constraint:

Y ≥ 0. (2)

This is a symmetric non-negative matrix factorization model [5]. In practice,
the non-negativity constraint on each element of Y in Eq. (2) implicitly provides
some level of sparsity on the solution Y ∗ [15]. When the solution Y ∗ is available,
we can recover the desired matrix Z of sparse-lifting word vectors, or lifting
vectors for short, trivially by setting Zij = 1 if Y ∗

ij is among the topmost Nk
elements of Y ∗, and setting Zij = 0 otherwise.

The lifting word representation can be easily extended to represent a sentence,
in a way that is much similar to that of bag-of-words. It leads to an attribute-value
representation of sentences by representing each sentence roughly as a sum of the
vectors of all its words [31]. With the lifting sentence representation, measuring
the similarity or difference between two sentences becomes straightforward and
trivial, which can be done just by calculating the inner product value or the
Euclidean distance between the two sentence vectors.

3.2 Algorithm

The optimization model formulated in Eq. (1) subject to the constraint in Eq. (2)
is a symmetric non-negative matrix factorization problem [5,15]. Different com-
putational approaches are possible to tackle the problem [16]. We resort to a
simple relaxation approach:

min
W,H≥0

∥
∥XXT − WHT

∥
∥2

F
+ α ‖W − H‖2F . (3)

Here we seek two matrices W , H of size N × d′, and α > 0 is a scalar parameter
for the trade-off between the approximation error and the difference of W and
H. With the relaxation, we force the separation of the unknown matrix Y by
associating it with two different matrices W and H. Given a sufficiently large
value of α, the matrix difference dominates the objective value and the solutions
of W and H will tend to be close enough so that the word vectors will not be
affected whether W or H are used as the result of Y .

The key to solving the problem in Eq. (3) is by solving the following two
non-negative least squares (NLS) sub-problems [12]:

min
W≥0

∥
∥
∥
∥

[
H√
αId′

]

WT −
[

XXT√
αHT

]∥
∥
∥
∥

2

F

, and min
H≥0

∥
∥
∥
∥

[
W√
αId′

]

HT −
[

XXT√
αWT

]∥
∥
∥
∥

2

F

,

where Id′ is the d′ × d′ identity matrix. Solving the sub-problems in the two
equations in an iterative way will lead to a stationary point solution, as long as
an optimal solution is returned for every NLS sub-problem encountered.
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4 Evaluations

4.1 General Settings

To evaluate the performance of the proposed word representation method, we
carried out a series of evaluations. Our lifting vectors were generated from the
dense word vectors released by the authors of word2vec and GloVe.

– CBOW: 300-dimensional word2vec vectors1.
– GloVe: 300-dimensional word vectors2.

We trained the lifting vectors with the 50, 000 most frequent words out of
the CBOW and GloVe word vectors respectively. The expanded dimension of the
trained vectors were set to d′ = 1, 000. After training, on average 20 elements of
each vector were set non-zero, i.e. the hash length k = 20. The results reported
in this paper are just based on this setting. Besides, we have also varied different
combinations of the parameters within the range of d′ = 1, 000/2, 000/5, 000 and
k = 10/20. The evaluation results are quite similar and are therefore omitted.

In the evaluation, six benchmark datasets were used.

– CUSTREV: A set of 3, 774 customers’ positive or negative reviews [9].
– MPQA: A set of 10, 606 articles with two opinion polarities [30].
– RT-POLARITY: A set of 10, 662 movies’ positive or negative reviews [24].
– STSA-binary: An extension of RT-POLARITY with 8, 741 sentences [24].
– TREC: A set of 5, 692 TREC questions with six question types [19].

In addition to the one-hot, CBOW and GloVe representations, our lifting
vectors were compared with the following representations:

– FOREST: 52-dimensional word vectors3.
– NNSE: 300-dimensional word vectors4.
– OVERCOMPLETE: 1, 000-dimensional sparse overcomplete word vectors5.

For one-hot and lifting methods, each sentence vector is represented as bag-
of-words. For other word vectors, we represent each sentence as an average of
fifty word vectors with zero-padding [1]. A concatenation-based representation
which treats each sentence vector as a concatenation of CBOW vectors was also
included in the experiment, combined with the Word Mover Distance (WMD)
to measure sentence similarities [13].

1 https://code.google.com/archive/p/word2vec/.
2 https://nlp.stanford.edu/projects/glove/.
3 http://www.cs.cmu.edu/∼ark/dyogatam/wordvecs/.
4 http://www.cs.cmu.edu/∼bmurphy/NNSE/.
5 https://github.com/mfaruqui/sparse-coding/.

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
http://www.cs.cmu.edu/~ark/dyogatam/wordvecs/
http://www.cs.cmu.edu/~bmurphy/NNSE/
https://github.com/mfaruqui/sparse-coding/
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Fig. 1. Sentiment classification accuracies.
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Fig. 2. Running time of NN classification and SVM classification on CUSTREV
dataset.

4.2 Sentiment Analysis

We investigated the performance of the sparse-lifting vectors on sentiment anal-
ysis applications on the six benchmark datasets. On each dataset, we trained
a classifier with different representations of sentences by the nearest neighbors
(NN) algorithm and the support vector machines (SVM) algorithm respectively.
For the SVM classification, we used the Gaussian radial basis function kernel,
with the default kernel and cost parameters [3].

The comparison was made against with a number of representation schemes,
including NNSE, GloVe, FOREST, CBOW, and OVERCOMPLETE (denoted
by oc cbow and oc glove in the figure) representations with Euclidean distance
measure. The classification accuracies are depicted in Fig. 1. Each result in the
table is an average accuracy of 10-fold cross validations.

The one-hot/bag-of-words representation reported acceptable results when
working with the SVM algorithm; but its results on NN classification were not
as good. This result is consistent with the previous studies [10]. The CBOW
and concatenation-based sentence vectors, when being combined with WMD,
reported quite good accuracies. The performances of the averaged sentence rep-
resentation with Glove/CBOW/NNSE/FOREST vectors, however, seemed not
satisfactory, only slightly better than a random guess on some NN classification
tasks.
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Our proposed representations (denoted by lifting glove and lifting word2vec
respectively) brought improved results in the experiments. Compared with
CBOW and concatenation-based sentence vectors with the WMD measure, our
proposed representations reported comparable (if not better) classification accu-
racies on most datasets; while on the TREC dataset which has six categories,
both of our representations reported much better results.

4.3 Running Speed

We recorded the query time of the NN classifier with 90% of samples used in
training and the rest 10% used in testing on CUSTREV dataset, which needs to
compute the distances between each pair of testing and training samples. The
experiment was performed in a computer server with 44 CPU cores. From Fig. 2,
we can see that with highly sparse representations, the query time of the lifting
representation and of the one-hot/BOW representation reported significantly
superior results over other methods.

We recorded the training time of an SVM classifier with the libSVM pack-
age [3] with 90% of samples on CUSTREV dataset used as the training set.
With a Gaussian kernel and the default setting of parameters, it took less than
10 seconds to train an SVM classifier with the lifting vectors and bag-of-words
sentence representation. Similar results were found on SVM training with the
Glove, CBOW and OVERCOMPLETE vectors and averaged sentence represen-
tations. All these results are tens of times faster than training with the CBOW
vectors and concatenation-based sentence representation in WMD distance.

5 Conclusion

Our work designed a novel sparse lifting word representation method which
projects given dense word vectors into a higher dimensional space while ensuring
the sparsity and binarization of the projected vectors. Comparing with existing
popular word and sentence vector representations, our proposed sparse-lifting
representation has been shown to be an appropriate representation for distance-
based learning tasks and has reported significantly improved results in sentiment
analysis tasks. The improvement provides us with high confidence to apply the
method in wider practical applications.
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