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Abstract. If all bounding hyper-spheres for training data of every class
are independent, classification for any test sample is easy to compute
with high classification accuracy. But real application data are very
complicated and relationships between classification bounding spheres
are very complicated too. Based on detailed analysis of relationships
between bounding hyper-spheres, a hybrid decision strategy is put for-
ward to solve classification problem of the intersections for multi-class
classification based on hyper-sphere support vector machines. First, char-
acteristics of data distribution in the intersections are analyzed and then
decision class is decided by different strategies. If training samples of
two classes in the intersection can be classified by intersection hyper-
plane for two hyper-spheres, then new test samples can be decided by
this plane. If training samples of two classes in the intersection can be
approximately linearly classified, new test samples can be classified by
standard optimal binary-SVM hyper-plane. If training samples of two
classes in the intersection cannot be linearly classified, new test samples
can be decided by introducing kernel function to get optimal classifica-
tion hyper-plane. If training examples belong to only one class, then new
test samples can be classified by exclusion method. Experimental results
show performance of our algorithm is more optimal than hyper-sphere
support vector machines with only one decision strategy with relatively
low computation cost.

Keywords: Hyper-sphere support vector classifier - Intersection
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1 Introduction

Support Vector Machine (SVM) is originally put forward to solve binary clas-
sification problem with the idea of maximum-margin hyper-plane separating
training samples. The classification hyper-plane is restricted with support vec-
tors, which are used for the decision of a new test sample. Many researchers have
successfully applied SVM in many fields [1,2]. To solve multi-class classification

© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, CCIS 1332, pp. 69-77, 2020.
https://doi.org/10.1007/978-3-030-63820-7_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63820-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-63820-7_8

70 S. Liu and P. Chen

problem in real applications, binary SVM needs to be extended or combined
together to complete the complex classification task. There are many methods
extending binary SVM to multi-class classification [3-5], such as one-against-
one, one-against-all, hierarchy SVM classifiers, or DAG SVM classifiers. But
because at least k(k —1)/2 quadratic programming (QP) optimization problems
needs to be combined together to solve k class classification problem, computa-
tion cost for these methods is relatively high.

For multi-class classification problem, sphere-structured SVM is one special
solution [6]. Based on one-class SVM, hyper-sphere SVM classifier tries to con-
struct a minimum bounding hyper-sphere restricting all training samples of one
class within it as much as possible. The bounding hyper-sphere for each class
is restricted with its center and its radius. Similar to binary SVM, this method
maximizes the gap between different hyper-spheres by the smallest radius. New
test samples are classified depending on the bounding hyper-spheres they falls
into. Since this method needs no combination of further computation and solves
multi-class classification problem with direct computation of all hyper-spheres
together, its computation complexity is less than all the above mentioned combi-
nation methods. Sphere-structured SVM has been studied a lot since its presen-
tation. To get good performance for hyper-sphere SVM, Liu et al. [7,8] proposed
one fuzzy hyper-sphere SVM and one multiple sub-hyper-spheres SVM for multi-
class classification. Most of these research focused on one decision rule and few
researchers adopted two or more decision rules.

As mentioned above, each training data is bounded within a bounding hyper-
sphere. If all bounding hyper-spheres for training data of every class are inde-
pendent and new test sample falls inside only one hyper-sphere, its classification
decision is easy to compute. But real application data are very complicated and
relationships between different classification bounding hyper-spheres are very
complicated too. When hyper-spheres for each class are intersected or not inde-
pendent, it is difficult for one simple decision function to get the right classifica-
tion result. Classification accuracy of test samples falling inside the intersection
will influence the final classification performance. Based on the analysis of data
distributions for such samples in the intersections, a hybrid decision strategy is
put forward in this paper. Section 2 introduces statistical analysis of the intersec-
tion data distribution, mathematical description of our hyper-sphere SVM and
implementation details of the proposed method. Section 3 discusses the experi-
mental results and Sect. 4 gives the conclusions.

2 Our Method

2.1 Mathematical Description of Hyper-Sphere Support Vector
Classifier

Similar with mathematic description of the original binary SVM, mathematic
principles of hyper-sphere SVM is as follows. Supposing there is a set of n-
dimensional training samples of m classes, the task is to compute the minimum
bounding hyper-sphere for each class. Here, the minimum bounding hyper-sphere
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refers to the smallest hyper-sphere that encloses all the training samples of one
class. Referenced by binary SVM, slack variables &j; are introduced by per-
mitting isolated points and a non-linear mapping function ¢ is introduced by
transforming the training samples into a high dimensional feature space to solve
nonlinear separation problems. So seeking the minimum bounding hyper-sphere
for each class is to find the minimum bounding hyper-sphere enclosing all the
training examples of that class. This process can be computed by solving the
following constrained quadratic optimization problem in Eq. (1).
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For class k, its minimum bounding hyper-sphere Sj is characterized by its
center ¢ and radius Ry. And C} is the penalty factor and &; > 0 are slack
variables.
By introducing Lagrange multipliers, Lagrange polynomial can be written as

Eq. (2).

Uj Uy i

L(Ry, ek, i, i, B:) = RE+ Cr Y &k — Y o (R + & — l|(@i) — exl®) =D Bidws
= i=1 i=1

(2)

By taking the partial directives of L with respect to Ry,c and &; and substi-
tuting them back to Eq. (2), the original optimization problem becomes its dual
optimization problem in the following format as Eq. (3).
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In Eq. (3), the kernel trick is adopted to compute inner products in the feature
space, that is, K (x;, ;) = ¢(x;)- ¢(x;). Support vectors are the vectors &; with
a; > 0. The Lagrange multipliers get the solutions after solving Eq. (3). So the
center can be computed by Eq.(4) and the resulting decision function can be
computed as Eq. (5). Then the radius Ry can be computed by equating fx(x)
to zero for any support vector. For class k, its minimum bounding hyper-sphere
Sk is obtained by the solution of its center and radius.
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Based on Eq. (5), the new point x falls inside of the hyper-sphere if fi(x) > 0.
@ falls outside of the hyper-sphere if fx(x) < 0 and x lies on the hyper-sphere

2.2 Analysis of Data in the Intersection of Hyper-Spheres

Ideally, all hyper-spheres are independent and each test sample is correctly clas-
sified by one hyper-sphere decision function. But it can happen that two or more
hyper-spheres intersect, that is, one sample falls inside several hyper-spheres. Or
a new test sample falls outside of all hyper-spheres. How to correctly classify
these data points influence the accuracy performance of the resulting classifier.
In Fig. 1, the minimum bounding sphere for class 1 and class 2 are S7 and S5. Si
of class 1 belongs to sphere Sy and Sé of class 1 belongs to sphere S;. 1 belongs
to Si and a2 belongs to Sé and they are both support vectors. For example, x4
is a support vector of class 2, so @2 belongs to class 2. But based on the decision
function, fa(z2) =0 and f1(z2) > 0, so z belongs to class 1. Obviously, it is the
wrong classification result. So when two or more hyper-spheres intersect, only
Eq. (5) is used as decision rule may lead to wrong decision results.

Fig. 1. Illustration of two hyper-spheres intersecting.

To solve this problem, one sub-hyper-sphere support vector machine is put
for-ward to classify samples in the intersections in [9]. In the research, same
error data hyper-sphere (data points belong to the same class of the mother
hyper-sphere) and different error data hyper-sphere (data points belong to dif-
ferent class of the mother hyper-sphere) are introduced. The decision process
is completed by them. In Fig.1, S-sphere and D-sphere are same error data
sub-hyper-sphere and different error data hyper-sphere for class 1. If a new test
sample lies in the intersection, S-sphere and D-sphere are used as the classifica-
tion rule to get the right class.
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But by introducing multiple QP optimization problems again, its computa-
tion complexity increases. To reduce computation complexity of QP optimization
problem, new decision rules are put forward in this paper. Given the training
data set, there will be three cases for position of the new test sample, that is,
inside one hyper-sphere or in the intersections or outside of all spheres after
computing hyper-spheres for all classes. It is easy to get decision class for the
inclusion case. If a new test sample xo falls outside of all spheres, Eq. (6) is
adopted as its class j decision (j =1,--- ,m).
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If a new test sample belongs to the intersections, there are three cases for
different data distribution as following.

(1) For the first case, the intersection hyper-plane can separate samples of
two classes directly. Intersection hyper-plane is easy to get from subtraction of
two spheres equations.

(2) For the second case, intersection hyper-plane cannot separate samples of
two classes directly, so binary optimal plane is used as separation plane for linear
and nonlinear cases as shown in Fig. 2.

Fig. 2. Case of binary classification plane as separation plane for linear (left) and
nonlinear (right) data.

(3) For the third case, there is only one class data in the intersection. For
this case, exclusion method is adopted as the decision rule.

As can be seen from the reference [6,9], training time complexity for the
sphere-structured SVM is O(n?). Testing time for the sphere-structured SVM
is decided by its decision process. For our new hybrid hyper-sphere SVM, its
training time complexity is O(n?). In testing phase, time complexity may be
O(1) for case of only one class data in the intersection, O(n) for case of binary
classification plane as separation plane and O(n?) for case of nonlinear classi-
fication plane as separation plane. The average time complexity is lower than
that of sub-hyper-sphere SVM with O(n?).
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2.3 Implementation Details of the Proposed Method

The proposed hyper-sphere support vector classifier with hybrid decision strat-
egy follows three steps to complete classification process, which are listed as
Algorithm 1. And testing process is described as Algorithm 2. Suppose there are
m classes needs to be classified.

3 Experimental Results and Analysis

In this section some experimental results are given to verify the efficiency of the
new improved classification rule and compare it with hyper-sphere SVMs and
sub-hyper-sphere SVMs. The first experimental datasets IRIS and glass come
from the UCI [10] Repository of machine learning databases. The second data
comes from one real application of action recognition in videos.

For three classes of IRIS data set, all samples are randomly grouped as three
parts and one part with number 15 is used as test, the other two 135 as training
set. For glass data set, a subset with three classes is selected and the same data
pre-processing is adopted as paper [6]. For hyper-sphere SVMs and sub-hyper-
sphere SVMs [9], C = 100,0 = 1.25 is used. For our new approach, RBF kernel
with parameter optimization search are used to get the best classification accu-
racy. Experimental results are shown in Table 1. All experiments were done for
10 times and data in Table 1 is the average value of each indicator. Experimental
results show our new hybrid classification rule is effective and easy to compute
for the simple multi-class classification problems.

The second experimental data set is one action recognition system from
videos collecting from the Internet. Extracted features consist of foregrounds
extraction, morphology operations and shape feature, KLT tracking points and
so on. These features are input into the proposed hybrid hyper-sphere SVM
classifiers. The dimension of the input image is 20 dimensions, the number of
categories is 6, and the size of data set is 9000. Among 9000 samples, datal con-
sists of 3000 randomly selected samples for each class and 600 testing samples,
and data2 with 3000 and 600, datad with 7800 and 1200 as datal.The exper-
iment was repeated 10 times and the average value was selected as the final
experimental result. The accuracy of our method is 86.15, 90.11 and 92.15 for
three datasets respectively. For the other two methods, the highest accuracy is
fuzzy hyper-sphere SVM, the values are 85.04, 89.19 and 90.67 for three datasets
and 83.98, 88.30, 89.33 for sub-sphere SVM. Performance of our new method is
better than the other two methods.
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Algorithm 1: Training Process for our HSSVM classifier with hybrid deci-
sion strategy

Stepl reads training data for each class.
for k=1 to m do
QP optimization problems are solved based on SMO algorithm, Lagrange
multipliers are obtained by QP solving, and sphere model is obtained based
on Lagrange multipliers;
end
Step2 computes position relations between any two spheres.
for i=1 to m do
for j=i+1 to m do
D, j = |lei — ¢;||*(Euclidean distance between center of the i-th and j-th
sphere);
if ‘Rz — R]| S Diﬂj S |Rz +RJ| then
| hyper-sphere S;, S; intersects and saves in SR;;
end
if Diﬂj > |R1 — Rj| then
| hyper-sphere S;, S; are independent and saves SRg;
end

end

end
Step3 sets decision rules for each pair of spheres in SR;. For class j, its corre-
sponding hyper-sphere is S;. Here, S; is the intersection of S; and S;. C; is data
set of different error samples in S;- and A; is data set of same error samples in S;.
if |Cj|=0] |A;] =0 then
all data in the intersection be-longs to one class and saves it as the exclusion
file; If new test sample falls in the intersection, its class decision is the class
with number of training samples larger than zero;
end
if |Cj| #0 and |Aj| # 0 then
if |Cj] > 1 and |A;| > 1 then
intersecting plane is computed for two spheres S; and S;. If samples of
two classes can be separated directly by the intersecting plane, it is saved
as decision classification plane. If data of two classes falls in two sides of
the intersecting plane, this intersecting plane is saved as decision plane;
end
if samples of two classes can not be separated directly by the intersecting plane
then
binary optimal SVM plane by introducing slack variables or map function
is computed and saved as the decision plane;
end
if ‘C]| ==1 and |A]| ==1 then
| two spheres are tangent and two classes are saved as classification result;
end

end
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Algorithm 2: Testing Process for our HSSVM classifier with hybrid decision
strategy

//computes classification results for test samples
for i=1 to M do
for j=1 to m do
distance dfj between sample i and S; is computed;
if dfj - Rf <0 then
| sample ¢ falls inside of Sj;
else
| sample ¢ falls outside of the sphere;
end
end
number N of hyper-spheres containing sample i is counted;
if N ==1 then
| sample i falls inside only one sphere, it belongs to this class;
end
if N ==0 then
| 4 falls outside of all spheres, use Eq.(6) as decision rule;
end
if N >1 then
Suppose sample i falls inside S;,5 =1,--- ,r;
for j=1tor do
for e=j+1 tor do
if Sj,Se € SR; then
if binary optimal plane exists then
| this binary optimal plane is used as decision plane;
end
if binary optimal plane exists then
| exclusion method is adopted as decision rule;
end
if ¢ € spherical surface of S;,Se then
| sample i belongs to two classes;

end
end
end
end
end
end
Table 1. Comparison result for IRIS classification.
Iris/glass Training time | No. of Support | Accuracy
Vector
Traditional hyper-sphere SVM | 4.56 s/5.89 s | 45/54 96.68%/62.15%
Sub-hyper-sphere SVM 5.78 s/7.35s |56/68 97.78%/65.96%
New hybrid hyper-sphere SVM | 3.556 s/4.785 s | 37/42 99.86%/68.75%
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4 Conclusions

To improve classification performance of traditional hyper-sphere SVM, one
hybrid decision strategy for hyper-sphere support vector classifier is put for-
ward in this paper. To get high classification performance for test samples and
decreases computation complexity of QP optimization problems, four decision
rules are discussed and detailed algorithm is given. Results on benchmark data
and real application data show our hybrid decision rule leads to better general-
ization accuracy than the existing methods, decreasing computation complexity
and saving training time.
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