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Abstract. Though deep neural networks have achieved quite impres-
sive performance in various image detection and classification tasks,
they are often constrained by requiring intensive computation and large
storage space for deployment in different scenarios and devices. This
paper presents an innovative network that aims to train a lightweight
yet competent student network via transferring multifarious knowledge
and features from a large yet powerful teacher network. Based on the
observations that different vision tasks are often correlated and comple-
mentary, we first train a resourceful teacher network that captures both
discriminative and generative features for the objective of image classi-
fication (the main task) and image reconstruction (an auxiliary task). A
lightweight yet competent student network is then trained by mimicking
both pixel-level and spatial-level feature distribution of the resourceful
teacher network under the guidance of feature loss and adversarial loss,
respectively. The proposed technique has been evaluated over a number
of public datasets extensively and experiments show that our student
network obtains superior image classification performance as compared
with the state-of-the-art.

Keywords: Knowledge distillation · Transfer learning · Model
compression

1 Introduction

Deep neural networks (DNNs) have demonstrated superior performances in
various research fields [2,15–17]. However, deeper and larger networks often
come with high computational costs and large memory requirements which have
impeded effective and efficient development and deployment of DNNs in various
resource-constrained scenarios. In recent years, knowledge transfer has attracted
increasing interest and several promising networks have been developed through
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knowledge distillation (KD) [5], attention transfer (AT) [11], factor transfer (FT)
[6], etc. On the other hand, the aforementioned works share a common constrain
of feature uniformity where the teacher network is trained with the task-specific
objective alone and so learn (and transfer) unitary features and knowledge only.
In addition, the teacher-learned features are usually optimal for the teacher’s
performance which may not be the case for the student network due to the large
discrepancies in network architecture, network capacity and initial conditions
between the teacher and student.

In this paper, we design an innovative network where a teacher network learns
and transfers multifarious and complementary features to train a lightweight yet
competent student network. The design is based on the observation and intu-
ition that different vision tasks are often correlated and complementary and
more resourceful and knowledgeable teachers tend to train more competent stu-
dents. Our proposed network learns in two phases: 1) knowledge capture; and
2) knowledge transfer as illustrated in Fig. 1. In the first phase, the teacher net-
work is trained under two very different tasks to capture diverse and complemen-
tary features. Specifically, an auxiliary image reconstruction task is introduced
with which the teacher network can capture structural knowledge and genera-
tive latent representations beyond the task-specific features. In the second phase,
the student network is trained under the image classification task in a super-
vised manner. Concurrently, its learned features are modulated and enhanced
by feature loss and adversarial loss that facilitate to thoroughly assimilate both
pixel-level and spatial-level distributions of the complementary knowledge dis-
tilled from the teacher network. With the transferred multifarious features, our
teacher can empower a more competent student network in a more efficient
manner, more details to be described in Experiments.

The contributions of this work can be summarized from three aspects. First,
it designs an innovative knowledge transfer network where a teacher learns and
transfers multifarious features to train a lightweight yet competent student. Sec-
ond, it proposes a novel knowledge transfer strategy where the student is capable
of absorbing multifarious features effectively and efficiently under the guidance
of feature loss and adversarial loss. Third, our developed network outperforms
the state-of-the-art consistently across a number of datasets.

2 Related Work

Knowledge transfer aims to train a compact student network by transferring
knowledge from a powerful teacher. Cristian et al. [1] first uses soft-labels for
knowledge transfer, and this idea is further improved by knowledge distilling
by adjusting the temperature of softmax activation function [5]. On the other
hand, knowledge distilling relies on label categories and it works only for softmax
function. This constraint is later addressed in different ways, e.g. by transferring
intermediate features [10,14] or by optimizing the initial weight of student [4].

While the aforementioned methods obtain quite promising results, they train
the teacher with a single task and objective and therefore can only transfer
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Fig. 1. Architecture of the proposed knowledge transfer network: 1) knowledge capture:
a teacher network is first pre-trained with complementary objectives to learn multifar-
ious features; 2) knowledge transfer: a student network is then trained to mimic both
pixel-level and spatial-level distribution of the transferred features under the guidance
of feature loss and adversarial loss, respectively. C and D denote the convolution oper-
ation and deconvolution module for feature alignment and image reconstruction.

task-specific unitary features. Our proposed method addresses this constraint
by introducing a reconstruction task to the teacher network for learning and
transferring the complementary and generative structural features beyond the
task-specific features alone.

3 Proposed Methods

3.1 Learning Multifarious Features

Given a labeled dataset (X,Y ), we first pre-train a teacher network T over the
dataset for learning multifarious yet complementary features under a classifi-
cation loss (CL) and a reconstruction loss (RL). The CL will drive T to learn
discriminative classification features, whereas RL will drive T to learn generative
reconstruction features, more details to be described in the following subsections.

Learning Discriminative Features: In the teacher network, we first include a
convolution layer with batch normalization (denoted as ‘C’ in Fig. 1) for feature
alignment. The convolution layer is followed by an averaged pooling and a fully
connected layer that produces classification probabilities. Similar to the conven-
tional metric in the classification task, we adopt the cross-entropy function E
against labels Y for evaluating the classification result:

Lt
C = E(Tf (X), Y ) (1)



574 X. Zhang et al.

where Tf (X) denotes the output of the fully connected layer and Y denotes the
one-hot image-level label of X.

Learning Generative Features: Let X̃ be the reconstructed image by the
teacher network that has the same size as the input image X. The RL can be
formulated as follows:

Lt
R = f(η(X̃), η(X)) (2)

where η denotes a normalizing operation (i.e. η(·) = ·
‖·‖2

) and f denotes a
similarity distance metric function.

In our implemented system, we evaluate the image similarity by using the
Kullback-Leibler (KL) divergence that measures how one probability distribu-
tion is different from another. Before computing the KL divergence, the cosine
similarity of each normalized vector (denoted as cos(η(.))) is first computed and
the RL can then be evaluated as follows:

Lt
R = KL(cos(η(X̃)), cos(η(X))) = − 1

n

n∑

i=1

cos(η(X̃i) log(
cos(η(Xi))
cos(η(X̃i))

) (3)

Learning under the classification and reconstruction tasks alternately thus
produces a resourceful and powerful teacher network, which is equipped with
multifarious and complementary features for training a lightweight yet compe-
tent student network as to be described in the ensuing subsection.

3.2 Transferring Multifarious Features

Once the teacher network converges, we freeze its parameters and train the
student network S to absorb the distilled knowledge that actually corresponds
to the learned features before the fully connected layer of the teacher network. As
illustrated in Fig. 1, the student network is trained with feature loss, adversarial
loss and classification loss simultaneously.

For the feature loss, the transferred knowledge T ∗(X) from the teacher and
the corresponding features S∗(X) from the student are aligned and normalized
(i.e. η(·) = ·

‖·‖2
) to calculate the feature metric as:

Ls
Fea = d(η(T ∗(X)), η(S∗(X))) (4)

Here, d can be evaluated by either L1 or L2 method to calculate the pixel-
level absolute distance between features.

For the adversarial loss, a discriminator D is introduced to distinguish
whether the input comes from teacher or student by maximizing the following
objective:

Ls
D = min

S∗(X)
max
D

ES∗(X)∼pS
[log(1 − D(S∗(X)))] + ET∗(X)∼pT

[log(D(T ∗(X)))]

(5)

where pT and pS correspond to the feature distribution of T ∗(X) and S∗(X),
respectively. Since the discriminator D is composed of fully connected layers with
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Table 1. Comparison results of Top-1 mean classification error rate (%) with the
unitary feature transferring methods on CIFAR10.

Student Teacher Student* CL+RL Teacher*

W/o Skip Skip-G1 Skip-G2 Skip-G3 Skip-G123

ResNet20, 0.27M ResNet56, 0.95M 7.18 6.24 5.92 6.22 6.13 5.89 5.78

ResNet20, 0.27M WRN40-1, 0.66M 7.18 6.54 6.24 6.10 6.30 6.21 5.94

VGG13, 9.4M WRN46-4, 11M 5.82 4.51 4.29 4.38 4.31 4.21 4.19

WRN16-1, 0.21M WRN16-2, 0.97M 7.77 7.42 7.21 7.17 7.25 7.15 5.72

Student Teacher Student* AT [11] KD [5] FT [6] AB [4] OFD [3] Ours

ResNet20, 0.27M ResNet56, 0.95M 7.18 7.13 7.19 6.85 6.49 6.32 5.89

ResNet20, 0.27M WRN40-1, 0.66M 7.18 7.34 7.09 6.85 6.62 6.55 6.10

VGG13, 9.4M WRN46-4, 11M 5.82 5.54 5.71 4.84 5.10 4.75 4.21

WRN16-1, 0.21M WRN16-2, 0.97M 7.77 8.10 7.70 7.64 7.58 7.50 7.15

convolutional operations, adversarial loss can direct the student to assimilate and
mimic the spatial-level relations in the transferred features.

The student network can thus be trained with the three losses as follows:

Ls
C = E(S(X), Y ) (6)

Ls = αLs
Fea + βLs

D + Ls
C (7)

Where α and β are balance weight parameters. During the student learn-
ing process, gradients are computed and propagated back within the student
network, guiding it to learn the teacher’s knowledge as defined in Eq. 7.

4 Experiments and Analysis

Our proposed network is evaluated over three datasets as follows: CIFAR10
[7] and CIFAR100 [8] are two publicly accessible datasets. They consist of
32 × 32 pixel RGB images that belong to 10 and 100 different classes, respec-
tively. Both datasets have 50,000 training images and 10,000 test images. Ima-
geNet refers to the large-scale LSVRC 2015 classification dataset, which consists
of 1.2M training images and 50 K validation images of 1,000 object classes.

4.1 Implementation Details

During training process, SGD is employed as optimization and weight decay is
set to 10−4. On CIFAR dataset, the teacher network is pre-trained with 300
epoch. The learning rate of student drops from 0.1 to 0.01 at 50% training and
to 0.001 at 75%. On ImageNet dataset, the student is trained for 100 epoch, with
the initial learning rate 0.1 divided by 10 at the 30, 60 and 90 epoch, respectively.



576 X. Zhang et al.

Table 2. Comparison results with
the adversarial learning based methods
over CIFAR100 dataset.

Model Top-1 error(%)

ResNet164,2.6M 27.76

ResNet20,0.26M 33.36

ANC [13] 32.45

TSCAN [18] 32.57

KSANC [12] 31.42

KTAN [9] 30.56

Ours 29.28

Table 3. Comparison results of Top-1 and
Top-5 mean classification error (%) on Ima-
geNet.

Student Teacher Test error(%)

ResNet18 ResNet34 Top-1 Top-5

Student* 29.56 10.60

Teacher* 26.49 8.51

AT [11] 29.3 10.0

FT [6] 28.57 9.71

AB [6] 28.38 9.68

Ours 28.08 9.49

4.2 Comparisons with the State-of-the-Art

CIFAR10: Comparison results are shown in Table 1, where Student* and
Teacher* provide Top-1 mean error rate of the student and teacher while trained
from scratch. Two conclusions can be drawn: 1) In the top sub-table, the teacher
pre-trained with skip connections ‘Skip-G#’ can empower the student to achieve
the lowest classification error. It is attributed to the skip connection that can sup-
plement the low-level information for the deconvolution modules, with which the
teacher can extract and transfer more discriminative features to the student. 2)
In the bottom sub-table, our proposed student network consistently outperforms
both the original student network ‘Student∗’ and the state-of-the-art results no
matter whether the teacher and student networks are of different types. These
outstanding performances are largely attributed to the fact that trained with
different yet complementary tasks, our teacher network can effectively learn and
transfer multifarious and complementary features to the student.

CIFAR100: To prove the generality of our technique, we compare it with the
adversarial learning strategy applied methods on CIFAR100. This experiment
involves ResNet164/ResNet20 with large depth gap to be teacher/student net-
work pair. All the adversarial learning strategy applied methods obtain rela-
tively good performance. Compared to the KTAN, our model makes noticeable
performance with 1.28% improvement. It is largely due to our teacher which
can learn multifarious knowledge by training with complementary tasks. As
described above, our student acquires the lowest error with the same number of
parameters, demonstrating that our model benefits from the multifarious knowl-
edge learning method, as well as different level feature transferring strategy.

ImageNet: We also conduct a large-scale experiment over ImageNet LSVRC
2015 classification task to study its scalability. As results shown in Table 3, the
proposed network outperforms the state-of-the-art methods consistently. In addi-
tion, our method helps improve the student’s Top-1 accuracy by up to 1.48%
as compared with the student trained from scratch in the Student* row. This
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Fig. 2. Teacher and Teacher* columns represent the results from the teacher trained
with both classification loss and reconstruction loss, or trained from scratch, respec-
tively. Similarly, results in Student and Student* columns represent the outputs from
the student network trained with our proposed teacher or trained from scratch.

Table 4. Ablation results of different transfer loss.

Transfer loss Test Error(%)

CIFAR10 CIFAR100

Ls
C 7.18 31.04

Ls
C + Ls

D 6.42 29.62

Ls
C + Ls

D + Ls
L2 6.17 28.97

Ls
C + Ls

D + Ls
L1 5.89 28.08

clearly demonstrates the potential adaptability of our proposed method, making
promising performance even on the more complex dataset.

4.3 Ablation Studies

Transfer Losses and Transfer Strategies: By comparing the first rows in
Table 4, it indicates that adding adversarial loss Ls

D to absorb the shared fea-
tures clearly improves the student’s performance. This is largely attributed to
the convolutional structure of the discriminator that can interpret the spatial
information in features. In addition, by incorporating the feature loss to mea-
sure pixel-level distribution distance, either Ls

L1
or Ls

L2
shown in the last two

rows, it can work as a complement to adversarial loss with distinct performance
improvement. By using both adversarial loss and feature loss to capture differ-
ent level distance between features, our student can assimilate the transferred
multifarious features thoroughly with promising performance.

4.4 Discussion

Feature Visualization: As Fig. 2 shows, the teacher network ‘Teacher’ pre-
trained with ‘CL+RL’ focuses on more multifarious features, whereas the same
network trained from scratch ‘Teacher*’ focuses on targeted features only (e.g.
bird’s beak), leading to the loss of rich contour details. Additionally, the fully



578 X. Zhang et al.

trained ‘Student*’ fails to learn the sufficient features for correct prediction,
resulting in the sub-optimal performance. In contrast, the student network ‘Stu-
dent’, under the guidance of the proposed ‘Teacher’, effectively pays attention to
discrimitive and complementary regions (e.g. both bird’s head and body parts),
indicating and demonstrating the powerful performance of our proposed method.

5 Conclusion

This paper presents a novel knowledge transfer network for model compression
in which the teacher can learn multifarious features for training a lightweight yet
competent student. The learning consists of two stages, where the teacher is first
trained with multiple objectives to learn complementary feature and the student
is then trained to mimic both pixel-level and spatial-level feature distribution of
the teacher. As evaluated over a number of public datasets, the proposed student
network can learn richer and more useful features with better performance.
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Central Universities under Grants No. XGBDFZ09.

References

1. Bucilua, C., Caruana, R., Niculescumizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 535–541 (2006)

2. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-
classification networks for unsupervised domain adaptation. In: Leibe, B., Matas,
J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 36

3. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul
of feature distillation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1921–1930 (2019)

4. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activa-
tion boundaries formed by hidden neurons. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 3779–3787 (2019)

5. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2014)

6. Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: network compression
via factor transfer. In: Advances in Neural Information Processing Systems, pp.
2760–2769 (2018)

7. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 dataset
8. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-100 dataset
9. Liu, P., Liu, W., Ma, H., Mei, T., Seok, M.: Ktan: knowledge transfer adversarial

network. In: 2020 International Joint Conference on Neural Networks (IJCNN),
pp. 1–7. IEEE (2018)

10. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Bengio, Y.: Fitnets: hints for
thin deep nets. arXiv preprint arXiv:1412.6550 (2015)

https://doi.org/10.1007/978-3-319-46493-0_36
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1412.6550


Training Competent Network via Transferring Complementary Features 579

11. Sergey, Z., Nikos, K.: Paying more attention to attention: improving the per-
formance of convolutional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928 (2017)

12. Shu, C., Li, P., Xie, Y., Qu, Y., Dai, L., Ma, L.: Knowledge squeezed adversarial
network compression. arXiv preprint arXiv:1904.05100 (2019)

13. Vasileios, B., Azade, F., Fabio, G.: Adversarial network compression. In: Proceed-
ings of the European Conference on Computer Vision (ECCV) (2018)

14. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast opti-
mization, network minimization and transfer learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4133–4141 (2017)

15. Yoshihashi, R., Shao, W., Kawakami, R., You, S., Iida, M.: Classification-
reconstruction learning for open-set recognition. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 4016–4025 (2019)

16. Zhang, X., Gong, H., Dai, X., Yang, F., Liu, N., Liu, M.: Understanding picto-
graph with facial features: end-to-end sentence-level lip reading of Chinese. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9211–
9218 (2019)

17. Zhang, X., Lu, S., Gong, H., Luo, Z., Liu, M.: AMLN: adversarial-based mutual
learning network for online knowledge distillation. In: Vedaldi, A., Bischof, H.,
Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 158–173.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2 10

18. Zheng, X., Hsu, Y., Huang, J.: Training student networks for acceleration with
conditional adversarial networks. In: BMVC (2018)

http://arxiv.org/abs/1612.03928
http://arxiv.org/abs/1904.05100
https://doi.org/10.1007/978-3-030-58610-2_10

	Training Lightweight yet Competent Network via Transferring Complementary Features
	1 Introduction
	2 Related Work
	3 Proposed Methods
	3.1 Learning Multifarious Features
	3.2 Transferring Multifarious Features

	4 Experiments and Analysis
	4.1 Implementation Details
	4.2 Comparisons with the State-of-the-Art
	4.3 Ablation Studies
	4.4 Discussion

	5 Conclusion
	References




