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Abstract. We present an approach for real-time estimation of 3D hand
shape and pose from a single RGB image. To achieve real-time per-
formance, we utilize an efficient Convolutional Neural Network (CNN):
MobileNetV3-Small to extract key features from an input image. The
extracted features are then sent to an iterative 3D regression module
to infer camera parameters, hand shapes and joint angles for project-
ing and articulating a 3D hand model. By combining the deep neural
network with the differentiable hand model, we can train the network
with supervision from 2D and 3D annotations in an end-to-end manner.
Experiments on two publicly available datasets demonstrate that our
approach matches the accuracy of most existing methods while running
at over 110 Hz on a GPU or 75 Hz on a CPU.
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1 Introduction

Our hands play an important role in our interaction with the environment.
Therefore, the ability to understand the hand shape and motion from color
images is useful for a myriad of practical applications such as hand sign recog-
nition, virtual/augmented reality, human-computer interaction, hand rehabilita-
tion assessment and many more. New opportunities could also be realized if the
hand tracking algorithm could run efficiently on mobile devices to take advantage
of its portability and ubiquitous nature.

Although some methods are capable of tracking 2D or 3D hand joints on
mobile devices [2,7], 3D hand shape and pose estimation is still restricted to
devices with GPU hardware. As compared to sparse prediction of hand joint
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Table 1. List of recent works on hand shape and pose estimation from color image

Authors
(Publication)

Type of CNN used
for feature extraction

Type/generation
of hand model

Runtime

Baek et al.
(CVPR’19) [1]

ResNet-50 MANO Nil

Boukhayma et al.
(CVPR’19) [3]

ResNet-50 MANO Nil

Ge et al.
(CVPR’19) [6]

Stacked hourglass,
residual network

Graph CNN 50Hz (GPU GTX 1080)

Hasson et al.
(CVPR’19) [10]

ResNet-18 MANO 20Hz (GPU Titan X)

Zhang et al.
(ICCV’19) [20]

Stacked hourglass MANO Nil

Kulon et al.
(CVPR’20) [14]

ResNet-50 Spatial mesh
conv. decoder

60Hz (GPU RTX 2080 Ti)

Zhou et al.
(CVPR’20) [22]

ResNet-50 MANO 100Hz (GPU GTX 1080 Ti)

This work MobileNetV3-Small MANO 110Hz (GPU RTX 2080 Ti)
75Hz (CPU 8-Core)

positions, dense recovery of 3D hand mesh is considerably more useful as it offers
a richer amount of information. Therefore, the design of an efficient method for
estimating 3D hand shape and pose remains an open and challenging problem.

In this work, we present an approach for real-time estimation of hand shape
and pose, by using a lightweight Convolutional Neural Network (CNN) to
reduce computation time. Although some tradeoff between speed and accuracy
is unavoidable, our experiments on two datasets demonstrate that while the
accuracy is comparable to most of the existing methods, the runtime of the
proposed network is the fastest among all competitive approaches. We also pro-
posed a simple joint angle representation to articulate a commonly used 3D hand
model, which helps to improve accuracy. The video demonstrations and soft-
ware codes are made available for research purposes at https://gmntu.github.
io/mobilehand/.

2 Related Work

The advance in deep learning and ease of using a monocular RGB camera to
capture hand motion, have motivated many previous works to use deep neural
networks to estimate 3D hand pose from a single RGB image [4,12,16,18,24].

But recent works as listed in Table 1, are moving towards the estimation of
hand shape together with pose because a 3D hand mesh is much more expressive.
For example, it allows the computation of contact loss from mesh vertices during
hand-object interaction [10], and also enables the rendering of 2D hand silhouette
to refine hand shape and pose prediction [1,3,20]. As shown in Table 1, while two

https://gmntu.github.io/mobilehand/
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Fig. 1. Framework overview: a cropped image of a hand is passed through a CNN
encoder to extract key features which are sent to an iterative regression module to
infer a set of parameters. The shape and joint angles are used by the hand model to
generate a 3D hand mesh which is projected to a 2D image plane using the camera
parameters. By incorporating the generative and differentiable hand model as part of
the deep learning architecture, the network can be trained end-to-end using both 2D
keypoints and 3D joints supervision.

of the methods generate a 3D hand mesh using Graph CNN [6] or spatial mesh
convolutional decoder [14], most of the methods employ a common parametric
mesh model (MANO [17]) to exploit the inherent geometric priors encoded in
the 3D hand model.

Although the runtimes of existing methods have achieved real-time rates
on a GPU, we show that it is possible to further improve the computational
performance and achieve real-time rates on CPU as well, making it suitable to
be extended for mobile phone applications.

3 Method

The proposed method as illustrated in Fig. 1, is inspired by the work on end-to-
end recovery of human body shape and pose [13]. To further improve the speed
and accuracy of the method for hand shape and pose estimation, we proposed
two key modifications: 1) an efficient CNN for image encoder and 2) a direct
joint angle representation to articulate a 3D hand model. More details on the
proposed framework are provided in the following sections.

3.1 Neural Network Architecture

The neural network architecture consists of two main parts: an image encoder
and an iterative 3D regression module with feedback.

Image Encoder: We utilize MobileNetV3-Small [11] to extract image features
as it is one of the latest generations of efficient and lightweight CNN targeted
for mobile devices. The encoder takes in an RGB image (224 by 224 pixels) and
the structure of MobileNetV3-Small is used up to the average pooling layer to
output a feature vector φ ∈ R

576.



MobileHand: Real-Time 3D Hand Shape and Pose Estimation 453

Iterative Regression: With the extracted feature vector φ ∈ R
576, it is possi-

ble to use a fully connected layer to directly regress the camera, hand shape and
joint angle parameters Θ = {s,R, t, β, α} ∈ R

39 [3]. However, it is challenging
to regress Θ in one forward pass, due to large semantic gap [20] and especially
when Θ includes rotation parameters R and α [13].

Thus, we use an iterative regression module [13,20] to make progressive
changes to an initial estimate. This helps to simplify the learning problem as
the module only needs to predict the change to move the parameters closer to
the ground truth [5]. More specifically, the feature vector φ and current param-
eter vector Θt are concatenated and fed into a fully connected network that
outputs the residual ΔΘt. The residual is then added to the current parameter
to obtain a more accurate estimate Θt+1 = Θt + ΔΘt. The initial estimate Θ0

is set as a zero vector 0 ∈ R
39, and the number of iterations is kept at three as

additional iteration has little effect on accuracy.
In this work, the regression block consists of an input layer with 615 nodes

(576 features and 39 pose parameters), followed by two hidden layers with 288
neurons in each layer, and an output layer with 39 neurons. It is also important
to insert dropout layers with a probability of 0.5 after the first and second layers
to prevent overfitting.

3.2 3D Hand Model

The output parameters from the neural network are used by the 3D hand model
MANO [17], to generate a triangulated hand mesh M(β, θ) ∈ R

3×N , with N =
778 vertices. The underlying 3D joints J(β, θ) ∈ R

3×K , where K = 15 joints,
are obtained by linear regression from mesh vertices M .

MANO has been used in the majority of recent works on hand mesh recovery
[1,3,10,20,22], as it offers simple control of the hand shape (finger length, palm
thickness, etc.) and pose (3D rotation of the joints in axis-angle representation)
with β ∈ R

10 and θ ∈ R
3K respectively.

However, pose θ ∈ R
45 contains redundant dimensions, resulting in infeasi-

ble hand pose (such as twisting of finger joint) if it is not constrained during
the optimization process. This issue can be partially addressed by reducing the
dimensionality of pose θ to θPCA ∈ R

10 [3] which is based on the Principal
Component Analysis (PCA) of the pose database used to build MANO [17].
Nevertheless, θPCA may not be expressive enough and some works prefer the
original pose representation, but manually define the pose limits [9] or impose
geometric constraints [20].

Joint Angle Representation: Contrary to other methods, we propose a sim-
ple and effective joint angle representation α ∈ R

23 with a total of 23 degrees of
freedom (DoF): four DoF for each finger and seven DoF for the thumb. In fact,
joint angles have been used in other types of 3D hand model [15,21], where the
rotation angles are bounded within a feasible range based on anatomical studies.

In order to maintain compatibility with MANO, we compute rotation matri-
ces that transform our local joint angles to match MANO pose. By combining
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all the rotation matrices to form a sparse matrix T ∈ R
45×23, all the joint angles

α ∈ R
23 can be mapped to MANO pose θ ∈ R

45 in a single step:

θ = Tα (1)

The advantage of using joint angle representation is further discussed in
Sect. 4.1 which compares the results of using α, θ and θPCA representations.

Camera Model: The camera parameters {s,R, t} represent the scaling s ∈ R
+

in image plane, global rotation matrix R ∈ SO(3) in axis-angle representation,
and translation t ∈ R

2 in image plane. A weak perspective camera model is used
to project the 3D joints into the 2D image plane:

x = sΠ(RJ(β, θ)) + t, (2)

where Π is simply an orthographic projection to remove the dependency on
camera intrinsics for supervising with 2D keypoint annotations.

3.3 Loss Functions

The loss function consists of three main terms:

L = λ2DL2D + λ3DL3D + λregLreg (3)

where the hyperparameters λ2D, λ3D, and λreg, are empirically set to 102,
102 and 103 respectively.

The first and second terms share a similar formulation to minimize the mean
squared difference between the estimated 2D keypoints/3D joints and ground
truth 2D/3D annotations:

L2D/3D =
1
n

n∑

i=1

‖Estimatedi − Groundtruthi‖22 (4)

where n = 21 includes the 15 hand joints J , with the addition of a wrist joint
and five fingertips extracted from the mesh vertices M [3].

The last term acts as a regularizer to prevent mesh distortion by reducing
the magnitude of shape β, where β = 0 ∈ R

10 is the average shape. The joint
angle α is also constraint within a feasible range of upper U ∈ R

23 and lower
L ∈ R

23 joint angle boundaries [15]:

Lreg = ‖β‖22 +
23∑

i=1

[max(0, Li − αi) + max(0, αi − Ui)] (5)
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4 Experiments

Datasets: We evaluate our method on two publicly available real-world
datasets: Stereo Hand Pose Tracking Benchmark (STB) [19] and FreiHAND
dataset [23].

The STB dataset is commonly used to benchmark performance on 3D hand
joint estimation from a single RGB image. Since the ground truth annotations are
obtained manually, it only features a single subject posing in a frontal pose with
different backgrounds and without object. Thus, this basic dataset serves as a
useful starting point to test different variations of our proposed model. Following
previous works [3,16,24], we split the dataset captured with a RealSense camera
into 15k/3k for training/testing. To match the palm center annotation used in
the STB dataset, we take the midpoint of MANO’s wrist joint and middle finger
metacarpophalangeal (MCP) joint as the palm center.

The FreiHAND dataset is the first dataset that includes both 3D hand pose
and shape annotations based on MANO, which allows the evaluation of hand
mesh reconstruction. It contains challenging hand poses with varied viewpoints,
32 different subjects, and hand-object interactions. There are a total of 130,240
and 3,960 images for training and testing respectively. To ensure consistent
reporting of results, the evaluation is performed online through a centralized
server where the test set annotations are withheld.

Metrics: To evaluate the accuracy of 3D hand pose estimation, we report two
metrics: (i) 3D PCK: plots the percentage of correct keypoints below different
threshold values; (ii) AUC: measures the area under the PCK curve. For evalu-
ation on the STB dataset, the thresholds for PCK curve range 20 mm to 50 mm
to allow comparison with previous works, but for the FreiHAND dataset, the
threshold starts from 0 mm.

To evaluate the prediction of hand shape, we report two metrics: (i) Mesh
error: measures the average endpoint error between corresponding mesh vertices;
(ii) F-score: the harmonic mean of recall and precision at two distance thresholds
5 mm (fine scale) and 15 mm (coarse scale) [23].

Similar to previous works [13,23,24], a common protocol of aligning the pre-
diction with ground truth is performed using the Procrustes transformation [8]
to remove global misalignment and evaluate the local hand pose and shape.

Implementation Details: We implemented our models using PyTorch frame-
work and the experiments are performed on a computer with a Ryzen 7 3700X
CPU, 32GB of RAM, and an Nvidia RTX 2080 Ti GPU. The network is trained
using an Adam optimizer with a learning rate of 10−3 and reduced to 10−4

after 50 epochs when training with the FreiHAND dataset. Using a batch size of
20, the training on the STB dataset takes around 1.5 h for 120 epochs and the
training on the FreiHAND dataset takes around 30 h for 400 epochs. We also
augment the data with random scaling (±10%) and translation (±20 pixels) for
better generalization to unseen data.
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Table 2. Self-comparison on joint angle, pose and PCA pose representations

Method Joint angle
(23 DoF)

PCA pose
(10 DoF)

PCA pose
(23 DoF)

PCA pose
(45 DoF)

Pose (45 DoF)

AUC ↑ 0.994 0.991 0.992 0.982 0.972

Table 3. Quantitative result of 3D mesh reconstruction on FreiHAND dataset

Authors (Publication) Mesh Error
(cm) ↓

F-score at
5mm ↑

F-score at
15mm ↑

Kulon et al. (CVPR’20) [14] 0.86 0.614 0.966

Zimmermann et al. MANO CNN (ICCV’19) [23] 1.09 0.516 0.934

Ours 1.31 0.439 0.902

Boukhayma et al. (CVPR’19) [3] 1.32 0.427 0.894

Hasson et al. (CVPR’19) [10] 1.33 0.429 0.907

Zimmermann et al. MANO fit (ICCV’19) [23] 1.37 0.439 0.892

Zimmermann et al. Mean shape (ICCV’19) [23] 1.64 0.336 0.837

4.1 Evaluation on STB Dataset

We compare our results with deep learning-based methods [3,4,12,16,18,22,24]
and our PCK curve and AUC score (0.994) are comparable with most of the
existing results as shown in Fig. 2. Although a few other works reported higher
AUC score of 0.995 [1,20] and 0.998 [6], the results on STB dataset are saturated
due to its relatively small size with a large number of similar frames [20,22].

Therefore, a recent method [22] did not include the STB dataset in training
and to maintain a fair comparison with the method, we also provide an additional
result that was trained on only FreiHAND dataset and evaluated on STB dataset.
Our AUC score of 0.908 is also slightly better than 0.898 [22].

Comparison of Joint Angle Representation: We used the STB dataset
to conduct a self-comparison on the use of joint angle, pose and PCA pose
representations. As shown in Table 2, our proposed joint angle representation
yields the highest AUC score, whereas over-parametrizing the hand pose with
45 DoF has a negative impact on the AUC score.

4.2 Evaluation on FreiHAND Dataset

Figure 2 and Table 3 show the result of 3D hand pose and shape estimation
respectively. Our PCK curve and AUC score are also comparable with most
of the existing results except for MANO CNN [23]. Furthermore, Kulon et al.
[14] achieved the best results with the lowest mesh error as they proposed an
additional dataset of hand action obtained from YouTube videos to train their
network, whereas we only train the network using the FreiHAND dataset.

Additional qualitative results on the STB and the FreiHAND datasets are
also provided in Fig. 3.
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Fig. 2. (Left) Quantitative results on STB dataset, note that all the methods used the
STB dataset for training, except for the last two methods with an “*” on the AUC
score. (Right) Quantitative results on FreiHAND dataset.

Input image Estimated 2D 
keypoints

Estimated 3D 
hand mesh

Input image Estimated 2D 
keypoints

Estimated 3D 
hand mesh

Fig. 3. Qualitative results: First two rows show the results on the STB dataset and
the last two rows show the results on the FreiHAND dataset which contain hand-
object interactions. The last row shows failure cases for challenging hand poses with
the presence of another hand (bottom left) and extreme viewpoint where the hand is
heavily occluded (bottom right).
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5 Conclusion

In this paper, we present an efficient method to estimate 3D hand shape and
pose that can achieve comparable accuracy against most of the existing meth-
ods, while the runtime of our method is the fastest on a GPU as well as a
CPU. The proposed joint angle representation to articulate the hand model also
helps to improve accuracy. Future works include increasing the robustness of the
predictions and extending the method to run on mobile devices.
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