
A Malware Classification Method Based
on Basic Block and CNN

Jinrong Chen1,2(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
chenjinrong@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Aiming at solving the three problems ranging from consider-
able consumption of manpower in manual acquisition, to excessively high
feature dimension and unsatisfying accuracy caused by manual feature
acquisition, which will occur when using the current malware classifi-
cation methods for feature acquisition. This paper proposes a malware
classification method that is based on basic block and Convolutional
Neural Network (CNN). The paper will firstly get the assembly code
file of the executable malware sample, then extract the opcodes(such as
“mov” and “add”) of disassembled file of malware based on the label of
basic block, and in the next, it will generate SimHash value vectors of
basic blocks through these opcodes and a hash algorithm. Finally, the
classification model is trained on the training sample set through using
CNN. As we have carried out a series of experiments, and through these
experiments, it is proved that our method can get a satisfying result
in malware classification. The experiment showed that the classification
accuracy of our method can achieve as highest as 99.24%, with the false
positive rate being as low as 1.265%.

Keywords: Malware classification · Opcode · Basic block ·
Convolutional Neural Network

1 Introduction

The rapid development of information technology has not only brought a great
deal of convenience to us, but has also brought potential security problems to
networked computers. Among these problems, the most typical one is the attack
and overflow of malicious code. Malware is a program or code that can spread
through storage media and network, and can damage the integrity of computer
system without our authorization and authentication [5]. Their types include
viruses, worms, trojans, backdoors and spywares, etc. In recent years, the growth
rate of malicious code is getting faster and faster, and the amount of malicious
code is getting larger and larger. According to the threat report released by
McAfee in August 2019 [9], more than 60 million cases of malicious code were

c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, CCIS 1332, pp. 275–283, 2020.
https://doi.org/10.1007/978-3-030-63820-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63820-7_31&domain=pdf
https://doi.org/10.1007/978-3-030-63820-7_31

276 J. Chen

added just in the first quarter of 2019. This has imposed great pressure on
security vendors in analyzing and dealing with malicious code. And a fast and
efficient method to classify malicious code could reduce the burden for many
security vendors to analyze and deal with malicious code.

At present, there are still some problems exist in the malicious code clas-
sification technology. Firstly, when the malicious code classification technology
uses machine learning to classify the malicious code, it needs to obtain the char-
acteristics of the malicious code manually, and as a result, which will render
the workload of obtaining the characteristics quite onerous. Secondly, because
the classification model of malicious code relies on features acquired manually,
which will lead to deficiencies in the comprehensiveness and effectiveness of fea-
ture acquisition, with the final classification accuracy being lower than expected.
Therefore, we need to find a simple but effective method for malicious code classi-
fication, which could not only reduce the manual work in the process of obtaining
classification features, but also ensure that the acquired features are conductive
to the final classification accuracy. Aiming at solving problems existing in the
current malicious code classification technology, this paper proposes a malicious
code classification method that based on gray images that is generated through
studying a large number of malicious codes and neural network technology. By
considering basic blocks used by malware, we turn the malware classification
problem into image recognition problem, then we prove its effectiveness through
experiments. The main contributions of this paper are as follow:

(i) Proposed a basic block generation method and a reasonable method for
generating gray image based on basic block;

(ii) Based on the gray image generating from malicious code, a suitable hash
algorithm is found to generate basic block for classification of malicious code.

The paper is structured as follows. A survey on the related work is presented
In Sect. 2. And in Sect. 3, we describe how we extract opcodes and generate
the basic block. Then our experiments and discussion are presented in Sect. 4.
Finally in Sect. 5 we conclude the paper.

2 Related Work

2.1 Malware Classification

Natalia Stakhanova et al. [16] proposed a malware classification method that
is based on the value of network activity in 2011. And experimental study on
a real-world malware collection demonstrated that their approach was able to
group malware samples that behaved similarly. In 2012, Nikos Karampatziakis
et al. [8] proposed a new malware classification system based on a graph induced
by file relationships. Experiment showed that their method could be applied to
other types of file relationships, and its detection accuracy can be significantly
improved, particularly at low false positive rates. In 2013, Rafiqul Islam et al. [7]
presented the first classification method of integrating static and dynamic fea-
tures into a single test. Their approach had improved the previous results that

A Malware Classification Method Based on Basic Blcok and CNN 277

was based on individual features and had reduced half the time that was needed
to test such features separately. In 2016, Ke Tian et al. [17] proposed a new
Android repackaged malware detection technique that was based on code het-
erogeneity analysis. They had performed experimental evaluation through over
7,542 Android apps, and their approach can achieve a false negative rate of 0.35%
and a false positive rate of 2.97%. In 2019, Di Xue et al. [18] proposed a classifi-
cation system Malscore that was based on probability scoring and machine learn-
ing. And by carrying out experiments, they proved that the system of combining
static analysis with dynamic analysis can classify the malware very efficiently.

2.2 Deep Learning

The recent success in deep learning research and development has drawn a lot of
our attention [15]. In 2015, Google released TensorFlow [1], which is a framework
of realizing deep learning algorithm. Deep learning is a specific type of machine
learning with a lot of work on it [6,10]. The most well-known deep networks is
convolutional neural network (CNN). CNN is composed of hidden layers, fully
connected layers, convolution layers, and pooling layers. The hidden layers are
used to increase the complexity of the model. And CNN is now being widely
applied to the image recognition, and has achieved a good performance [2–4,19].

3 Model Construction

3.1 Extracting Basic Block

In this part, we mainly describe how to extract the basic block from the disas-
sembled file of malware.

loc_415A81:
33 C0 xor eax, eax
locret_415A83:
C3 retn

sub_414076 proc near
33 C0 xor eax, eax
C3 retn
Sub_414076 endp

__ismbbkalnum_1:
8B FF mov edi, edi
5D pop ebp
C3 retn

Fig. 1. Some labels of basic block

The malware we are studying is given by Microsoft [12]. And according to
our study, a disassembled file of malware mainly contains multiple subroutines,
and most of them start with “proc near”, and end with “endp”. Inside the
subroutine, its branches are usually marked with “loc ” or “locret ”. Outside
the subroutine, the basic block is often marked with “XXX: ”(X is a letter or
symbol), as can be seen in Fig. 1.

We first extract these identifiers and opcodes that belong to them from the
disassembled file according to the labels.

278 J. Chen

3.2 Applying Hash Algorithm to the Basic Block

We use SimHash algorithm to process the opcode to generate the basic block of
malware. Simhash is a fingerprint generation algorithm or fingerprint extraction
algorithm mentioned in [11]. And it is widely used by Google in the filed of
removing duplicate pages. As a kind of locality sensitive hash, its main idea
is to reduce dimension. Take the following popular case for an instance. After
Simhash dimensionality reduction, a certain number of text content may only
get a 32 or 64 bit binary string composed of 0 and 1.

For example in this paper(please see the right side of Fig. 1), we extract
the opcodes that belong to a basic block of malware, then perform a 4-bit hash
function h to explain the SimHash calculation process, Supposing this below:

D = (w1 = “mov”, w2 = “pop”, w3 = “retn”)T (1)

Then, we can get each above keyword’s hash value as follow:

h(w1) = (1, 0, 0, 0)T (2)
h(w2) = (1, 0, 0, 1)T (3)
h(w3) = (1, 0, 1, 0)T (4)

In the SimHash algorithm of our paper, the opcode of each instruction belong-
ing to the basic block is regarded as keywords when being referred to SimHash.
To achieve simplicity, we treated each opcode on the same footing. Therefore, all
have the same weight of 1. Then, we can get the weight vector (WV) through
weight and hash value as follows:

WV (w1) = (1,−1,−1,−1)T (5)
WV (w2) = (1,−1,−1, 1)T (6)
WV (w3) = (1,−1, 1,−1)T (7)

Then, we got a SimHash vector by adding up each WV and converting it into
binary SimHash. In this example, we obtained the SimHash vector and SimHash
value that is equal to “1000”.

SimHash Vector = (3,−3,−1,−1)T (8)

Finally, opcode sequence (OpcodeSeq) of each basic block of the malware
is encoded to an n-bit SimHash value that has the same length relating to the
selected hash algorithm.

According to the characteristics of the SimHash algorithm, each basic block
will hash to similar SimHash values. Then we convert each SimHash bit into a
pixel value (0 → 0, 1 → 255). That is, when the bit value is 0, then the pixel
value will be 0; and when the bit value is 1, then the pixel value will be 255.
Then by arranging the n pixel dots in a matrix(each row of the matrix is a basic
block), we convert the SimHash bits into a gray scale image. And in order to
find out the appropriate hash algorithm for generating basic blocks of malicious
code, we use some different hash algorithms (including multiple cascading hash
functions) to generate the basic block, as shown in Table 1.

A Malware Classification Method Based on Basic Blcok and CNN 279

Table 1. Different hash algorithms versus image width

SimHash type Cascading mode Image width

SimHash128 MD5 128

SimHash256 SHA256 256

SimHash384 SHA384 384

SimHash512 SHA512 512

SimHash768 SHA512+SHA256 768

SimHash896 SHA512+SHA256+MD5 896

SimHash1024 SHA512+SHA384+MD5 1024

4 Evaluation

4.1 Malware Dataset

We use the dataset of [12], with each sample in the data set containing two
files. Of which, one is hexadecimal file and the other is disassembled file. And as
the disassembled file is generated from the IDA, we don’t need to disassemble
malware samples. The dataset has 10,868 disassembled files in 9 large malware
families, and these samples have already been labelled the type of their families.

4.2 Evaluation Metrics

To evaluate the classifier’s capability, True Positive Rate (TPR), False Positive
Rate (FPR) and Accuracy are measured. TPR is the rate of malware samples
correctly classified. FPR is the rate of malware samples falsely classified. The
formulas of True Positive Rate (TPR), False Positive Rate (FPR) and Accuracy
are given by Eq. 9, Eq. 10 and Eq. 11.

TPR =
TP

TP + FN
(9)

FPR =
FP

FP + TN
(10)

Accuracy(%) =
TP + TN

TP + FN + FP + TN
∗ 100 (11)

Where TP is the number of malware samples correctly classified in their class,
FP is the number of malware samples incorrectly classified in another class, FN
is the number of malware samples incorrectly classified in their class, and TN is
the number of malware samples correctly classified in other classes.

280 J. Chen

4.3 Experimental Results and Discussion

The CNN structure [14] is demonstrated in Fig. 2. And it is clearly shown in
Fig. 2, as an input, each malware image needs to go through three convolution
layers, two subsampling layers and three full connection layers. And over the
processes of convolutions (C1, C2, C3), each convolutional layer will involve 32
learnable filters of the size of 2 × 2. During the processes of subsamplings (S1,
S2), the max pooling with window size 2 × 2, is applied to reducing training
parameters. And after each max pooling, a dropout layer with probability 0.5
could avoid overfitting from happening. After the second subsampling layer (S2),
we flatten the output feature map, then link it to other three fully connected
layers of dimensions 512, 256, and 9 (number of malware categories) respectively.
Then, the first two fully connected layers will take tanh as activation function
with the last one utilizing softmax as activation function.

Convolutions
C1 C2 C3S1

S2(Flatten) Full connectionConvolutions

Subsampling

Convolutions

Subsampling

Fig. 2. CNN structure for malware image training

98
98.2
98.4
98.6
98.8

99
99.2
99.4

1 2 3 4 5

Ac
cur

acy
(%

)

Experiment

SHA128

SHA256

SHA384

SHA512

SHA768

SHA896

SHA1024

Fig. 3. Accuracy of hash algorithm

After preprocessing, 10,798 samples remained. 90% of them will be used for
training, with the rest for testing. Experimental programs are written in Python,
and the hardware environment is Intel R©Xeon(R) CPU E5-2640 v3 @ 2.60GHz
× 32 with 62.8 GB main memory. We repeat a number of times for each hash
algorithm and select the top5 experimental results from them, as shown in Fig. 3,
Fig. 4 and Fig. 5.

A Malware Classification Method Based on Basic Blcok and CNN 281

Table 2. Experimental results of SHA256

Experiment Accuracy TPR FPR

1 98.67 99.17 0.675

2 98.77 99.61 0.740

3 98.80 99.59 1.718

4 99.05 99.60 1.290

5 99.24 100 1.265

From Fig. 3, we could know that in terms of accuracy, the best result is
the hash algorithm SHA256, ranging from 98.6% to 99.3%, and the highest
result is 99.24%. The experimental results of SHA256 are shown in Table 2.
The worst result is the hash algorithm SHA768, and the accuracy of the rest
of the hash algorithms(SHA128, SHA384, SHA512, SHA986 and SHA1024) are
between 98% and 99%. According to our enlargement of Fig. 3, the order of
the hash algorithms in terms of accuracy is as follows: SHA256 > SHA128 >
SHA512 > SHA896 > SHA1024 > SHA384 > SHA768.

97.5

98

98.5

99

99.5

100

1 2 3 4 5

TP
R(%

)

Experiment

SHA128

SHA256

SHA384

SHA512

SHA768

SHA896

SHA1024

Fig. 4. True positive rate of hash algorithm

From Fig. 4, we could know that in terms of TPR, the best result seems
to be achieved by hash algorithm SHA256, and the worst result is obtained by
the hash algorithm SHA1024, and the TPR of other hash algorithms is between
98% and 100%. From Fig. 5, we could know that in terms of FPR, the best
result is obtained by the hash algorithm SHA256, with its average FPR being
1.1376%. And the FPR of other hash algorithms is between 0.5% and 4%. From
the analyses of Fig. 3, Fig. 4, and Fig. 5, we could know that SHA256 is the
most suitable hash algorithm to generate the basic block of malicious code.

From Fig. 3, we could know that the difference between SHA256 and SHA384
is greater than that between SHA896 and SHA1024. From Table 1, we could
know that the only difference between SHA896 and SHA1024 is that the for-
mer has cascaded SHA256, while the latter has cascaded SHA384. Therefore,
it could be seen from Fig. 3 and Table 1, SHA256 is more negatively affected
than SHA384 in the cascading hash function. A comparison of the gap between

282 J. Chen

0

1

2

3

4

5

1 2 3 4 5

FP
R(

%)

Experiment

SHA128

SHA256

SHA384

SHA512

SHA768

SHA896

SHA1024

Fig. 5. False positive rate of hash algorithm

SHA256 and SHA768, as well as the comparison of the gap between SHA512
and SHA768 can also lead to this conclusion.

For comparison with our method, we choose the method proposed in Nataraj
et al. [13] which has adopted GIST features of malware images and K-Nearest
Neighbor (KNN, K = 3) classification. In the algorithm, GIST feature of 512
dimensions and KNN are used to classify these samples. The algorithm repeats
5 times for random sampling, and in the end, average accuracy of GIST-KNN
algorithm on the test set of 9 families is 95.595%, the best accuracy of GIST-
KNN algorithm gets 95.974%, and the average FPR of GIST-KNN algorithm is
4.31%. Compared with their method, ours is obviously more accurate.

5 Conclusion

Malware classification has become a major topic for research and concern owing
to the continuing growth of malicious code in recent years. Aiming at tackling
the problems caused by manual feature acquisition in the current malicious code
classification method, we propose a method of malware classification that is
based on basic block and convolutional neural network. Specifically, we propose
a method for representing malware that relies on gray image that is generated
from opcodes of the basic block. And experiments show that this method could
achieve brilliant accuracy as high as 99.24%. Based on the method, the newly
discovered malicious code samples can be accurately classified and their analysis
efficiency can be improved.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283. USENIX Association, Savannah (2016)

2. Alex, K., Ilya, S., Hg, E.: ImageNet classification with deep convolutional neural
networks, pp. 1097–1105, January 2012

3. Gibert, D., Mateu, C., Planes, J., Vicens, R.: Classification of malware by using
structural entropy on convolutional neural networks. In: Thirty-Second AAAI Con-
ference on Artificial Intelligence (2018)

A Malware Classification Method Based on Basic Blcok and CNN 283

4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (2014)

5. Grimes, R.A.: Malicious Mobile Code. Oreilly & Associates Inc. (2001)
6. Heaton, J., Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. Genet. Pro-

gram. Evol. Mach. 19(1–2), 1–3 (2017)
7. Islam, M.R., Tian, R., Batten, L., Versteeg, S.: Classification of malware based

on integrated static and dynamic features. J. Netw. Comput. Appl. 36, 646–656
(2013). https://doi.org/10.1016/j.jnca.2012.10.004

8. Karampatziakis, N., Stokes, J.W., Thomas, A., Marinescu, M.: Using File Rela-
tionships in Malware Classification. Springer, Heidelberg (2012)

9. Labs, M.: Mcafee labs threat report. McAfee Labs Threat Report (2019). https://
www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.
pdf

10. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
11. Manku, G.S., Jain, A., Das Sarma, A.: Detecting near-duplicates for web crawl-

ing. In: Proceedings of the 16th International Conference on World Wide Web,
WWW 2007, pp. 141–150. Association for Computing Machinery, New York (2007).
https://doi.org/10.1145/1242572.1242592

12. Microsoft: Microsoft malware classification challenge. Microsoft Malware Classifi-
cation Challenge (2015). http://arxiv.org/abs/1802.10135

13. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.: Malware images: visual-
ization and automatic classification, July 2011. https://doi.org/10.1145/2016904.
2016908

14. Ni, S., Qian, Q., Zhang, R.: Malware identification using visualization images and
deep learning. Comput. Secur. 77(AUG), 871–885 (2018)

15. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

16. Stakhanova, N., Couture, M., Ghorbani, A.A.: Exploring network-based malware
classification. In: 2011 6th International Conference on Malicious and Unwanted
Software (2011)

17. Tian, K., Yao, D., Ryder, B., Tan, G.: Analysis of code heterogeneity for high-
precision classification of repackaged malware. In: 2016 IEEE Security and Privacy
Workshops (SPW), pp. 262–271, May 016

18. Xue, D., Li, J., Lv, T., Wu, W., Wang, J.: Malware classification using probability
scoring and machine learning. IEEE Access PP(99), 1 (2019)

19. Yan, Z., et al.: HD-CNN: hierarchical deep convolutional neural networks for large
scale visual recognition. In: IEEE International Conference on Computer Vision
(2016)

https://doi.org/10.1016/j.jnca.2012.10.004
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://doi.org/10.1145/1242572.1242592
http://arxiv.org/abs/1802.10135
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2016904.2016908

	A Malware Classification Method Based on Basic Block and CNN
	1 Introduction
	2 Related Work
	2.1 Malware Classification
	2.2 Deep Learning

	3 Model Construction
	3.1 Extracting Basic Block
	3.2 Applying Hash Algorithm to the Basic Block

	4 Evaluation
	4.1 Malware Dataset
	4.2 Evaluation Metrics
	4.3 Experimental Results and Discussion

	5 Conclusion
	References

