
An Empirical Study to Investigate
Different SMOTE Data Sampling
Techniques for Improving Software

Refactoring Prediction

Rasmita Panigrahi1(B), Lov Kumar2, and Sanjay Kumar Kuanar1

1 GIET University, Gunupur, Odisha, India
{rasmita,sanjay.kuanar}@giet.edu

2 BITS Pilani Hyderabad, Hyderabad, India
lovkumar505@gmail.com

Abstract. The exponential rise in software systems and allied applica-
tions has alarmed industries and professionals to ensure high quality with
optimal reliability, maintainability etc. On contrary software companies
focus on developing software solutions at the reduced cost corresponding
to the customer demands. Thus, maintaining optimal software quality at
reduced cost has always been the challenge for developers. On the other
hand, inappropriate code design often leads aging, smells or bugs which
can harm eventual intend of the software systems. However, identifying
a smell signifier or structural attribute characterizing refactoring prob-
ability in software has been the challenge. To alleviate such problems,
in this research code-metrics structural feature identification and Neural
Network based refactoring prediction model is developed. Our proposed
refactoring prediction system at first extracts a set of software code met-
rics from object-oriented software systems, which are then processed for
feature selection method to choose an appropriate sample set of features
using Wilcoxon rank test. Once obtaining the optimal set of code-metrics,
a novel ANN classifier using 5 different hidden layers is implemented on
5 open source java projects with 3 data sampling techniques SMOTE,
BLSMOTE, SVSMOTE to handle class imbalance problem. The perfor-
mance of our proposed model achieves optimal classification accuracy,
F-measure and then it has been shown through AUC graph as well as
box-plot diagram.

Keywords: Software refactoring prediction · Code smell · Artificial
Neural Network

1 Introduction

In the last few years, software has emerged as one of the most important form of
technology to meet major decision-centric computational demands pertaining to
business, Defence, communication, industrial computing and real-time control,
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, CCIS 1332, pp. 23–31, 2020.
https://doi.org/10.1007/978-3-030-63820-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63820-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-63820-7_3

24 R. Panigrahi et al.

security, healthcare, scientific research etc. Undeniably, the existence of mod-
ern human life can’t be expected without software computing environment. The
efficacy and unavoidable significance of software technologies have broadened
the horizon for scientific, social as well as business communities to exploit it
for optimal decision-making purposes. Being a significant need of modern socio-
economic and scientific needs, software industry has taken a broadened shape
inviting gigantically large-scale business communities to explore better technolo-
gies for better and enhanced productivity. Refactoring is the rework of existing
code into well-designed code, and therefore assessing a code for its refactoring
probability can be of utmost significance to ensure quality-software solution.
Refactoring can help developers identifying bugs, improper design and vulnera-
bility to strengthen the quality of the software product by means of enhanced
logic-programme and complexity-free development. Though, authors have made
different efforts to deal with refactoring problem such as analyzing structural
elements, graphs, code metrics etc, identifying an optimal signifier has always
remained a challenge. Recently, authors found that among the major possible
solutions, exploiting software code-metrics can be vital to assist method-level
refactoring proneness estimation. Refactoring can be defined as the modification
of non-functional parameters without altering its desired output. Refactoring
can be method level, class level, variable level, etc. Our work is all about the
method level refactoring. We have considered seven different method level refac-
toring operations for our analysis such as: Extract Method, Inline Method, Move
Method, Pull up Method, Push down Method, Rename Method and Extract and
Move method.

In this paper a multi-purposive effort is made which intends to identify
most suitable code-metrics and classification environment to perform method-
level refactoring prediction or assessment. As a solution in this research a novel
refactoring prediction model is developed for real-time software systems which
obtains a set of source code metrics from software system by source meter tool.
The obtained features are further processed to get the optimal code metrics by
appropriate feature selection technique. After getting the significant features one
of the statistical test will be conducted to select appropriate set of significant
features (i.e. Wilcoxon test). This paper implements Artificial Neural Network
for refactoring prediction at method level as well as to improve the prediction
different SMOTE data sampling techniques are used with an empirical study.

– Q1: Whether the model gives any different results depending upon a different
number of layers.

– Q2: which data sampling technique gives the optimal solution?
– Q3: All features or significant features give a good result.

2 Related Work

Martin Fowler has published a book “Refactoring: Improving the design of code”
on1999. After its publication it has become the challenge for every researcher.

Predicting Refactoring at Method Level 25

Earlier Mens and Tourwe [1] have done the survey on refactoring activities, tools
support and supporting techniques. They have focused on the necessity of refac-
toring, code refactoring and design refactoring. Specifically, authors have shared
their viewpoint on the impact of refactoring towards to software quality. Rosziati
lbrahim et al. [2] has proposed a tool named as DART(Detection and refactor-
ing tool) to detect the code smell and implement its corresponding refactoring
activities without altering the system’s functionality. Over the years empirical
studies have recognized a correlation between code quality and refactoring oper-
ations. Kumar et al. [3] worked on a class-level refactoring prediction by apply-
ing machine learning algorithm named Least Squares Support Vector Machines
(LSSVM) with different kernels and principal component analysis (PCA) as a
feature extraction technique. To deal with data imbalance issue, authors applied
synthetic minority over-sampling (SMOTE) technique. Employing different soft-
ware metrics as refactoring-indicator authors performed refactoring prediction,
where LSSVM with radial basis function (RBF) was found performing than the
other state-of-art methods.

3 Study Design

This section presents the details regarding various design setting used for this
research.

3.1 Experimental Data Set

There was a repository known as tera-PROMISE, which is publicly assessable by
any researcher. The tera-promise repository contains open source projects related
to software engineering, effort estimation, faults, source code analysis. Our data
set has been downloaded from the tera-PROMISE repository, which makes our
work easy. The tera-PROMISE repository is the standardized repository, which
is manually validated by Kedar [4] and shared the data set publicly. We have
taken five open source java projects which are present in GitHub Repository
with subsequent releases.

3.2 Research Contribution

The presented work in this paper shows a novel and something different research
contributions. In this paper, we are computing source code metrics at the
method level. Basing up on the existing work, our study is on refactoring
prediction at method level on 5 open source java projects (i.e. Antr4, titan,
junit, mct, oryx) using Artificial Neural Network with 5 different hidden layers
(ANN+1HL, ANN+2HL, ANN+3HL, ANN+4HL, ANN+5HL) and to improve
the efficiency of software prediction different data sampling techniques (i.e.
SMOTE, BLSMOTE, SVSMOTE).

26 R. Panigrahi et al.

4 Research Methodology

This section describes the model followed by an experiment implementing the
Artificial Neural Network with 5 different hidden layers for refactoring predic-
tion at method level with 3 different data sampling techniques. Figure 1 shows
the outline of the proposed model for refactoring prediction at the method level
by considering 5 open source java projects. Figure 2 identifies that the approach
which we have proposed contains a multi step. 1st of all data set has to be
collected from the tera-PROMISE repository. The source meter tool is imple-
mented for source code metrics calculation. Significant features are to be selected
through the Wilcoxon rank test, and Min-Max normalization is to carried for
feature scaling, and then Data imbalance issues can be sorted through 3 data
sampling techniques. ANN classifier is used for training the model, and lastly, the
performance of the model is evaluated through different performance parameters
(i.e., AUC, Accuracy, and F-measure). During the first phase, the data has to
be pre-processed, where significant features are to be extracted by the Wilcoxon
rank-sum test. Model building is the second phase, which consists of data nor-
malization that may cause data balancing. Data unbalance issues can be solved
by 3 data sampling techniques (i.e., SMOTE, BLSMOTE, and SVSMOTE).

Antlr4 junit

mct oryx

titan

SMOTE

BLSMOTE

SVSMOTE

ANN+1HL ANN+2HL

ANN+3HL ANN+4HL

ANN+5HL

Accuracy AUC

F-Measure

Hypothesis test

Box-Plot

Data Set
Wilcoxon

rank-sum test

Data Set

Fig. 1. Proposed model for refactoring prediction at the method level

5 Experimental Results

In this paper, we have used the ANN technique for refactoring prediction at
the method level, and then it’s performance has been improved by SVSMOTE
data sampling technique and this has been represented in 3 performance mea-
sures (AUC, ACCURACY, F-measure). If we will talk about the performance
in terms of ACCURACY of ANN gives likely same result irrespective of num-
ber of hidden layers. Like this, the performance of ANN in terms of AUC and
F-measure gives the same type of result irrespective of a number of hidden lay-
ers. From the above table we can conclude that increasing or decreasing number

Predicting Refactoring at Method Level 27

of hidden layers of ANN technique does not affect to its performance. Table 3
focuses on the ANN technique’s performance in 3 different performance measures
(ACCURACY, AUC) (Table 1).

Table 1. Performance Value: Classification Techniques

Accuracy AUC

1HL 2HL 3HL 4HL 5HL 1HL 2HL 3HL 4HL 5HL

ORG AM antlr4 98.85 98.47 98.85 98.73 98.6 0.95 0.91 0.95 0.98 0.7

ORG AM JUnit 99.38 99.43 99.38 99.47 99.43 0.5 0.59 0.53 0.65 0.43

ORG SG antlr4 98.51 98.66 98.57 98.7 98.73 0.66 0.74 0.69 0.62 0.64

ORG SG JUnit 99.03 99.38 99.38 99.29 99.38 0.66 0.74 0.6 0.46 0.52

SMOTE AM antlr4 99.71 99.31 86.28 90.13 79.88 1 1 0.95 0.96 0.89

SMOTE AM JUnit 81.03 81.18 81.27 80.67 77.79 0.89 0.9 0.88 0.89 0.86

SMOTE SG antlr4 77.05 79.03 78.38 80.73 81.06 0.85 0.86 0.87 0.88 0.89

SMOTE SG JUnit 65.45 67.42 66.78 66.33 71.82 0.78 0.79 0.78 0.77 0.81

5.1 Artificial Neural Network Classifier Results

In this paper we have focused on ANN classifier with 5 different hidden layers.
In consideration of ANN classifier with its five hidden layers performance, we
get all the hidden layers performance is likely the same depending upon different
performance measures (AUC, Accuracy, F-measures). AUC performance of all
the hidden layers of ANN is coming within a range .75 to .8, which is less than
the mean AUC value. Accuracy performance of ANN with all hidden layers is
in a range 80 to 85%, which is more than the mean accuracy. When we are
considering F-measure performance, all are achieving more than .8, and that is
more than their mean F-measure value. Figure 2 shows the performance of the
ANN classifier in the form of the Box-plot diagram.

A
N
N
-1
H
L

A
N
N
-2
H
L
#

A
N
N
-3
H
L

A
N
N
-4
H
L

#A
N
N
-5
H
L

60

65

70

75

80

85

90

95

100

A
cc

u
ra
cy

(2.1) Accuracy

A
N
N
-1
H
L

A
N
N
-2
H
L#

A
N
N
-3
H
L

A
N
N
-4
H
L

#A
N
N
-5
H
L

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F-
M
ea

su
re

(2.2) F-Measure

A
N
N
-1
H
L

A
N
N
-2
H
L
#

A
N
N
-3
H
L

A
N
N
-4
H
L

#A
N
N
-5
H
L

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U
C

(2.3) AUC

Fig. 2. Performance evaluation of ANN with different Hidden layer

28 R. Panigrahi et al.

5.2 Data Imbalance Issue Results

Classifier building is very difficult if data is imbalanced. There is a technical test
for the researcher to build an efficient model for refactoring prediction when data
is unbalanced. This problem can be solved by an efficient technique i.e. Synthetic
minority over sampling (SMOTE). SMOTE combines both the under-sampled
as well as over-sampled. BLSMOTE is another over sampling technique which
considers only boarder-line samples. SVSMOTE is one kind of over-sampling
technique which uses SVM (support vector Machine) algorithm for the sam-
ples which is near to boarder-line. The performance of the sampling techniques
(SMOTE, BLSMOTE, SVSMOTE) has been shown through the Box-plot dia-
gram in Fig. 3. In the diagram we can see that SMOTE and SVSMOTE perform
well that is more then its mean F-measure, But BLSMOTE gives 0.76 result
which is less than mean F-measure performance. The performance result in terms
of AUC of all the three imbalancing technique gives less than the mean AUC
value. SVSMOTE gives the better performance the other SMOTE techniques.
Research answer Q2:- From the experiment, we obtained that ORG means
original data, and out of all three sampling techniques, SVSMOTE outperforms
well.

O
R
G

S
M
O
T
E
#

B
L
S
M
O
T
E

S
V
S
M
O
T
E

60

65

70

75

80

85

90

95

100

A
cc

u
ra
cy

(3.1) Accuracy

O
R
G

S
M
O
T
E
#

B
L
S
M
O
T
E

S
V
S
M
O
T
E

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
-M

ea
su

re

(3.2) F-Measure

O
R
G

S
M
O
T
E
#

B
L
S
M
O
T
E

S
V
S
M
O
T
E

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U
C

(3.3) AUC

Fig. 3. Performance evaluation of data imbalance issue

5.3 Significant Feature Results

During model construction feature selection is an important factor. Feature selec-
tion enables the machine learning algorithm to train the model faster. It reduces
the model complexity and increases the model accuracy. It decreases the over-
fitting problem. Feature selection is useful due to its unlock capability for the
potential uplifting of the model. Feature selection is used for dimensionality
reduction to improve the accuracy and performance in a high dimensional data
set. Feature importance plays a vital role during feature selection in a predictive
modelling project. Feature importance means to class of techniques to assign the
score to input featuresfor a predictive model. In this work we have focused two
types of considerations with all features and significant features. We have got the
experimental result that significant features gives well performance as compare

Predicting Refactoring at Method Level 29

to all features. We have measured the model’s performance in terms of AUC,
Accuracy and F-measure in this article. During F-measure computation we have
found that significant features and all features give the result, which is more
than the mean F-measure value. Where as AUC computation all features gives
the result of less than the mean AUC value. Both all features and significant
features give same result as mean Accuracy. All the performances of all features
and significant features have been shown on Fig. 4 in terms of box-plot diagram.
Research Answer Q3: - Model Proposed gives good results with significant
features as a comparison to all features.

A
M

S
G
M

60

65

70

75

80

85

90

95

100

A
cc

u
ra
cy

(4.1) Accuracy

A
M

S
G
M

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
-M

ea
su

re

(4.2) F-Measure

A
M

S
G
M

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U
C

(4.3) AUC

Fig. 4. Performance of all feature and significant features

5.4 Statistical Description of Significance Test Results

The learning efficiency, allied classification capacity makes ANN a potential solu-
tion for major Artificial Intelligence (AI) purposes or decision-making purposes.
In this article, ANN, with its five different hidden layers, was used as a classifier.
The statistical description of the performance of ANN with 5 different layers has
been represented in Table 2. ANN with different layers does not effect on the
model’s performance. During the significance test of data sampling techniques,
all the benefits in Table 2 are less than 0.5. It means a very less number of sam-
ples are imbalanced. So, it gives the optimal result for refactoring prediction at
the method level. Table 3 provides the effect that significant features give a good
result, so the model is accepted (Table 4).

Table 2. Statistical Significance test of ANN with different Hidden Layer

ANN-1HL ANN-2HL ANN-3HL ANN-4HL ANN-5HL

ANN-1HL 1.00 0.61 0.96 0.88 0.72

ANN-2HL 0.61 1.00 0.68 0.77 0.42

ANN-3HL 0.96 0.68 1.00 0.88 0.72

ANN-4HL 0.88 0.77 0.88 1.00 0.62

ANN-5HL 0.72 0.42 0.72 0.62 1.00

30 R. Panigrahi et al.

Table 3. Statistical Significance test of SMOTE with its versions

ORG SMOTE BLSMOTE SVSMOTE

ORG 1.00 0.00 0.00 0.00

SMOTE 0.00 1.00 0.13 0.11

BLSMOTE 0.00 0.13 1.00 1.00

SVSMOTE 0.00 0.11 1.00 1.00

Table 4. Statistical Significance test of features

AM SGM

AM 1 0.027961344

SGM 0.027961344 1

6 Conclusion

In this paper, an explorative effort was made to identify an optimal computing
environment for refactoring prediction purposes that, as a result, could help to
achieve cost-efficient and reliable software design. In the proposed method, dif-
ferent code-metrics features, including object-oriented code metrics, were taken
into consideration to characterize each code-class as refactoring prone or non-
refactoring. With this motive obtaining a large number of code-metrics which
describes different programming aspects or code-characteristics such as coupling,
cohesion, complexity, depth, dependency, etc. A set of metrics were obtained,
which were subsequently processed for significant feature selection. The proposed
model intended to retain only significant features for eventual classification and
to achieve a feature selection method was applied. On the other hand, real-
izing the data imbalance problem, three different sampling methods, including
SMOTE, BLSMOTE, SVSMOTE in conjunction with original samples, provided
sufficient training data for classification. This research introduced a classifica-
tion algorithm, including ANN, with its five different hidden layers. Thus, as
a contributing solution, this research recommends implementing ANN with any
number of hidden layers that will give us the same type of results. ANN is used to
achieve optimal and automatic refactoring prediction systems that, as a result,
can help firms or developers to design software with better quality, reliability,
and cost-efficiency.

References

1. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.
30(2), 126–139 (2004)

2. Ibrahim, R., Ahmed, M., Nayak, R., Jamel, S.: Reducing redundancy of test
cases generation using code smell detection and refactoring. Journal of King Saud
University-Computer and Information Sciences, 32(3), pp. 367–374 2018

Predicting Refactoring at Method Level 31

3. Kumar, L., Sureka, A.: Application of lssvm and smote on seven open source projects
for predicting refactoring at class level. In: 2017 24th Asia-Pacific Software Engi-
neering Conference (APSEC), pp. 90–99. IEEE (2017)

4. Kádár, I., Hegedus, P., Ferenc, R., Gyimóthy, T.: A code refactoring dataset and
its assessment regarding software maintainability. In: 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), 1, pp.
599–603. IEEE (2016)

	An Empirical Study to Investigate Different SMOTE Data Sampling Techniques for Improving Software Refactoring Prediction
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Experimental Data Set
	3.2 Research Contribution

	4 Research Methodology
	5 Experimental Results
	5.1 Artificial Neural Network Classifier Results
	5.2 Data Imbalance Issue Results
	5.3 Significant Feature Results
	5.4 Statistical Description of Significance Test Results

	6 Conclusion
	References

