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Abstract. The collaborative filtering (CF)-based recommender systems
provide recommendations by collecting users’ historical ratings and pre-
dicting their preferences on new items. However, this inevitably brings
privacy concerns since the collected data might reveal sensitive informa-
tion of users, when training a recommendation model and applying the
trained model (i.e., testing the model). Existing differential privacy (DP)-
based approaches generally have non-negligible trade-offs in recommen-
dation utility, and often serve as centralized server-side approaches that
overlook the privacy during testing when applying the trained models
in practice. In this paper, we propose PrivRec, a user-centric differential
private collaborative filtering approach, that provides privacy guaran-
tees both intuitively and theoretically while preserving recommendation
utility. PrivRec is based on the locality sensitive hashing (LSH) and the
teacher-student knowledge distillation (KD) techniques. A teacher model
is trained on the original user data without privacy constraints, and a
student model learns from the hidden layers of the teacher model. The
published student model is trained without access to the original user
data and takes the locally processed data as input for privacy. The exper-
imental results on real-world datasets show that our approach provides
promising utility with privacy guarantees compared to the commonly
used approaches.
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1 Introduction

Collaborative filtering (CF) leverages the historical interactions between users
and items to predict their preferences on a new set of items [12]. It provides rec-
ommendations by modeling users’ preferences on items based on their historical
user-item interactions (e.g., explicit five-star rating and implicit 0-1 feedback
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on items) [5]. However, the direct collecting and modeling on the original data
might reveal personally sensitive data and brings privacy concerns, since a neu-
ral model generally overfits on specific training examples in the sense that some
of these examples are implicitly memorized.

Recently, many researches focus on DP-based recommendation approaches.
Differential privacy (DP) has emerged as a strong privacy notation with a prov-
able privacy guarantee. McSherry et al. [8] applied differential privacy theory
to recommender systems for the first time, and Nguyén et al. [9] applied local
differential privacy (LDP) to help users to hide their own information even from
first-party services during the data collection process. However, existing DP-
based models generally focus on the training data privacy but overlook the data
privacy in practice while applying trained models (namely during testing). A
DP-based CF model needs to be retrained when applying it on new users that
are not in the training data, which is computationally expensive. Intuitively, an
LDP-based method can protect user privacy during testing by applying random
response from the client side. However, LDP can only guarantee the accuracy of
the statistical result while avoiding individual record disclosure, leading to the
fact that a single input from the client is often flooded with too much random
noises, which reduces the recommendation utility.

In this work, we propose PrivRec, a user-centric differentially private col-
laborative filtering approach, that preserves recommendation utility. PrivRec
leverages a user-centric privacy enhancing algorithm to privately model users
from the client sides, which protects the data privacy of both training data and
the data during testing. Specifically, an LSH-based user data modeling process is
applied to generate user representations with intuitive privacy, and the Laplace
mechanism is leveraged to provide theoretical privacy. Moreover, a knowledge
distillation architecture is applied for further privacy guarantee, as the released
model does not have the access of the original sensitive user information in the
training data. Our contributions can be summarized as follows:

e We propose PrivRec, a user-centric differentially private collaborative filtering
approach that protects user privacy, while retaining recommendation utility.

o We address the challenge of the privacy-enhanced client-side utility-preserving
user modeling with a locality sensitive hashing-based user representation algo-
rithm that applies Laplace mechanism.

o We prevent the privacy disclosure from the potential overfitting of the models
by introducing the knowledge distillation architecture. The released student
model is trained without any access to the original sensitive data.

e Experimental results on two real-world datasets demonstrate that PrivRec
outperforms other neural collaborative filtering-based methods on retaining
recommendation utility with privacy guarantees.
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2 Preliminaries

2.1 Differential Privacy

Differential privacy (DP) [3] has become the de facto standard for privacy pre-
serving problems. Local differential privacy (LDP) is a special case of DP where
the random perturbation is performed by the users on the client side.

Definition 1. A randomized mechanism M satisfies e-differential privacy (e-
DP) if for any adjacent sets d, d' differing by only one record for any subset S
of outputs S C R,

PrM(d) € S] < e - PrM(d') € 9], (1)

where Pr denotes the probability and € is positive. Lower values of € indicates
higher degree of privacy.

Laplace Mechanism is the most commonly used tool in differential privacy
and has been applied in a number of works on differential privacy analysis [8,15].

Definition 2. For a real-valued query function q : D™ — R with sensitivity A,
the output of Laplacian mechanism will be,

2, 2

M(d) = q(d) + Lap(
where Lap(A) is a random variable drawn from the probability density function

1 x
Lap(z) = ﬁe_%ﬁx € R. (3)

2.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [4] is an effective approach for approximate
nearest neighbor search and has been applied in many privacy-preserving tasks
[14]. The main idea of LSH is to find a hashing function or a family of hashing
functions such that a hash collision occurs on similar data with higher probability
than others, i.e., it is likely that, (i) two neighboring points are still neighbors
after hashing, and (ii) two non-neighboring point are still not neighbors after
hashing. For data in domain S with distance measure D, an LSH family is
defined as:

Definition 3. A family of hashing functions H = {h : S — U} is called
(d1,da, p1, p2)-sensitive, if for any x,y € S,

If D(z,y) < di, then Pr[h(z) = h(y)] = p, (4)

If D(z,y) > da, then Pr[h(x) = h(y)] < p2. (5)
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MinHash. Minwise hashing [2] is the LSH for resemblance similarity, which is
usually leveraged to measure text similarity. MinHash applies a random permu-
tation (i.e., hashing function) 7 : {2 — 2 on the given set S, and stores only the
minimum value of the results of the permutation mapping. Specifically, a permu-
tation mapping randomly shuffles all possible items of the input, and returns the
corresponding indices of input items. Formally, the result of MinHash (namely
signature) is defined as,

B(S) = min(x(S)): (6)

Given sets S7 and Ss, the probability of that the two sets have the same signature

is shown as,
; ; |51 S|
Pr(h""(S1) = A" (S9)) = , 7
( ( 1) ( 2)) |51U52| ( )
By applying multiple independent MinHash permutations, the probability of
the two sets having the same MinHash signature is an unbiased estimate of their

Jaccard similarity [13].

2.3 Knowledge Distillation

Knowledge Distillation (KD) is introduced by Hinton et al. [6], to transfer
“knowledge” from one machine learning model (the teacher) to another (the
student). The main idea of KD is that the student model can learn the distilled
information directly from the teacher model, in order to reduce the amount
of parameters while retain the performance. Specifically, the teacher model is
trained on the original training data with ground-truth labels, and then the stu-
dent model is fed with the same input but set the outputs of hidden layers in
the teacher model as targets.

3 Threat Model

We are addressing two major privacy threats, training data privacy and privacy
in practice. The training data privacy is the common problem since the identity-
revealing user representations are stored in the first-party service providers or
memorized by the potential overfitting of machine learning models. The poten-
tial data breach brings privacy threats on the training data. When applying a
trained machine learning model, the privacy in practice is often overlooked. Con-
sider a client-server scenario, a client-side user is faced with one of the following
problems: (i) if the user is an existing user whose historical data are in the train-
ing set, it is expected to send its identifier (e.g., user ID, cookies) so that the
server can retrieve the corresponding representations, which reveals its identity;
(ii) if the user is a new user, it cannot get personalized recommendations since
they are not modeled, or it has to send its historical data for the server to infer
its preferences, which brings threats of privacy disclosure.
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4 Design of PrivRec

4.1 Framework

Our approach follows the teacher-student knowledge distillation (KD) structure.
We illustrate the visualized framework of PrivRec in Fig. 1. It consists of two
parts: the teacher model and the student model. We leverage a multi-layer per-
ceptron (MLP) to perform neural collaborative filtering (NCF) by predicting
the interaction between a user and an item. It is the prototype of many recent
researches on CF-based neural recommender systems [1,5,7,11]. Next, we will
present the specifics of the PrivRec.

LSH-based alcul: Sigmoid
Signatures ‘ < m”h,“m Layer » Hidden Output
User Factor ‘ Item Factor trained by Teacher
MinHash Algorithm ﬁu Loss ﬁ
L2 Loss
Ground-truth Label
l

Embedding + Projection /
Item Item Factor Item Bias — Fully-connected layer
Concatenate

Student-specific
Teacher-specific

Fig. 1. The general framework of our approach. The teacher-only modules are replaced
with the student-only modules in the student model.

4.2 Components

Teacher. The teacher model is a naive NCF model trained on the training data
without any privacy constraints. Consider a user u and an item v, the network
structure is described as follows. The model takes the identifiers v and v as input
and embeds them to the d, and d,-dimensional latent spaces with embedding
layers emb,, : u — p, and emb, : v — p,. Then, p, and p, are projected to matrix
factorization spaces with the same dimension d,,, denoted as m,, : p, — f, and
My : Py — fo. The calculation layer concatenates the summed dot-product of
the factors dot(f., f,) and the results of two bias layers bias : f — b for the two
factors. Finally, the result of the calculation layer is passed to a regression layer
composed by a fully-connected layer with the sigmoid activation for the final
prediction o : l,, — T4. Overall, the teacher learns the latent representation
of users and items for the prediction. The teacher model is not published for
privacy of the training data. Formally, we have:

fu = mu(embu(u))a fv = mv(embv(v))a (8)
Fuw = o(calc(fu, fo)) = o(cat(dot(fu, fv), bias(fu), bias(fy))). (9)
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Student. The structure of the student model is similar with the teacher’s,
but takes different inputs and targets. It is this model that be published to
the deployment environment in practice. We reuse the item embeddings p,
in the teacher model, since they do not reveal user-specific information. The
user embedding layer is replaced by a differentially private locality sensitive
hashing(LSH)-based representation procedure described in Algorithm 1. The
MinHash functions are publicly available and identical for all user, so that the
permutations stay unchanged both in server-side training process and in client-
side practice. The hashing signatures are arranged into a vector, where each
entry represents a perspective of the user data. Accordingly, the user represen-
tation can be computed completely on the client side with the publicly available
LSH permutations and the user’s private positive item set.

Algorithm 1: Differentially private LSH-based user representation.

Input: User set U, item set V', expected dimention of vector representation K,
global privacy sensitivity A, overall privacy budget e.
Output: Representation vectors of users.
Initialize k independent MinHash random permutations © = {m, w2, -, 7k };
foreach u € U do
Select the subset of items that u rated over its average Su = {u|ru,v > Tu};
foreach m; € m do
Generate a MinHash signature h7"" (u) = min(m;(S4));
R (u) = h™™(u) mod 2; // A hashing result itself has no numerical
significance for additive noises. A “mod 2” operation is leveraged to
binarize the signatures, so that applying Laplace mechanism on MinHash
stgnatures will not completely invalidate the user representation.
B () = B () + Lap(2);

Concatenate the k signatures h,, = [h7"""(u), h5"" (u), - - - , A" (u)];
A fully-connected layer FC is applied on h,;
| Append h, as u’s representation vector to result;

Return the user representation vectors.

The remaining difference between the teacher model and the student model
is that the student is not trained on the ground-truth labels. Instead, it learns
from the output of the teacher’s user factorization layer f, and the last hidden
output [,,v. The LSH-based user representation sig, obtained from the above
algorithm is projected to a fully-connected layer as the student’s user factor
fc: sigy — fi,, and the output of the calculation layer is ], .

We summarize the working process of the student model as follows. (i) It
projects user u’s identifier into a latent space with the LSH-based algorithm for
the MinHash signatures sig, as Algorithm 1; (ii) The signatures are fed into a
fully-connected layer to get the student’s user factor fec : sig, — f.; (iii) the
item v’s factor f, is obtained from the teacher model; (iv) the factors f! and f,
are passed to the calculation layer; (v) finally, the regression layer is applied to
produce the final prediction.
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Detailed privacy analysis of PrivRec is omitted due to page limit. Please refer
to the extended version on arXiv.

5 Experiments

5.1 Experimental Settings

Datasets. We conduct our experiments on the commonly used MovieLens 1M
dataset of movie ratings and the Jester dataset of joke ratings. We filter out the
invalid data, including the users and items with no ratings in the dataset, and
the users that rate equally on all items.

Metric. To measure the effectiveness of knowledge distillation . The recommen-
dation utility is measured as the accuracy of rating prediction. We adopt mean
absolute error mae(Ypredict, Yeruth) = E|Ypredict — Yerutn| as the metric of the rec-
ommendation accuracy. A lower mae indicates a more precise rating prediction
on collaborative filtering.

Baselines. We evaluate our model by comparing with several widely used base-
line methods. Specifically, neural collaborative filtering models with following
pretrained user representations are considered:

e NCF': The original Neural Collaborative Filtering method that models users
and items into representation vectors. It is the prototype of our teacher model
without privacy constraints.

e SVD: Singular Value Decomposition, a matrix factorization method, is one
of the most popular collaborative filtering methods. It takes user-item inter-
action matrix as input, and returns the low-dimensional representations of
users.

e LDA: Latent Dirichlet Allocation is an unsupervised learning algorithm for
natural language processing initially, and discover topics based on contents.
We employ LDA to learn a user’s latent preference as its representation.

e LSH: Locality Sensitive Hashing is the prototype of our LSH-based user rep-
resentation. It applies multiple MinHash signatures on a user’s historical data
as the user’s representation vector.

e DP-SVD, DP-LDA and DP-LSH: We apply the differentially private Laplace
mechanism on the baselines above to explore the utility preservation of our
LSH-based differentially private user representation.

5.2 Results

We compare our PrivRec with the mentioned baselines for the neural collabora-
tive filtering recommender systems. As shown in Fig. 2(a), by comparing the first
six methods in the legend ([DP-]SVD, [DP-]LDA, [DP-]LSH), we observe that
Laplace mechanism significantly degrades the recommendation service utility
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of SVD and LDA, while LSH-based method is having less trade-off in apply-
ing differential privacy. This demonstrates that the LSH-based user representa-
tion implies more user preferences than traditional methods after introducing
the same amount of noises. According to the last three methods in the leg-
end (DP-LSH, NCF, PrivRec), the knowledge distillation (KD) architecture of
our PrivRec substantially improves the recommendation utility of the DP-LSH
method. PrivRec shows comparable averaged recommendation utility with the
baselines, with the same privacy budget of differential privacy and intuitively
stronger privacy within its knowledge distillation training process.

N
MovieLens

HEN -  — =
A\ E ‘ ——=

=== T

Jester Jester Jester
(a) Comparisons on mean (b) The influence of privacy (c) The influence of different
absolute error of CF budget € (eps = —log e for amount of MinHash
precision. simplicity). signatures (K).

Fig. 2. Experimental results.

Further experimental results on the influence of the noise scale and the
amount of MinHash signatures are shown in Figs. 2(b) and (c). The influence on
€ is measured with the averaged result on different K, and vice versa. A greater
eps indicates smaller ¢, which introduces more noises into MinHash signatures
and provides stronger guarantee on user privacy, while slightly downgrading pre-
diction accuracy. A larger K implies more facets of hashing and more information
of user data, and further reduces rating prediction error.

6 Conclusion

In this work, we focus on both training data privacy and the privacy in practice
during testing in neural collaborative filtering. The proposed PrivRec is an early
effort to protect user privacy in practice from the client side. It manages to model
a user locally and privately with a LSH-based algorithm and the DP principle.
PrivRec shows promising results with privacy guarantees on NCF. In the future,
we will extend it to more variety of recommender systems.
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