®

Check for
updates

MrPC: Causal Structure Learning
in Distributed Systems

Thin Nguyen'®™) Duc Thanh Nguyen?, Thuc Duy Le?, and Svetha Venkatesh'

1 Applied Artificial Intelligence Institute (A2I2), Deakin University,
Melbourne, Australia
thin.nguyen@deakin.edu.au
2 School of Information Technology, Deakin University, Melbourne, Australia
3 School of Information Technology and Mathematical Sciences,
University of South Australia, Adelaide, Australia

Abstract. PC algorithm (PC) — named after its authors, Peter and
Clark — is an advanced constraint based method for learning causal struc-
tures. However, it is a time-consuming algorithm since the number of
independence tests is exponential to the number of considered variables.
Attempts to parallelise PC have been studied intensively, for example,
by distributing the tests to all computing cores in a single computer.
However, no effort has been made to speed up PC through parallelis-
ing the conditional independence tests into a cluster of computers. In
this work, we propose MrPC, a robust and efficient PC algorithm, to
accelerate PC to serve causal discovery in distributed systems. Along-
side with MrPC, we also propose a novel manner to model non-linear
causal relationships in gene regulatory data using kernel functions. We
evaluate our method and its variants in the task of building gene regu-
latory networks. Experimental results on benchmark datasets show that
the proposed MrPCgains up to seven times faster than sequential PC
implementation. In addition, kernel functions outperform conventional
linear causal modelling approach across different datasets.

Keywords: Causality - Explainable Al - Causal structure learning -
Distributed systems

1 Introduction

PC is an important algorithm in learning causal structures for observational
data [1,8]. However, the algorithm is also well-known for its high computational
complexity as the number of independence tests is exponential to the number of
considered variables in the worst case. This limits the applicability of the PC
algorithm in practice. To address this issue, parallelising the algorithm is often
applied, such as in [4], where the authors distributed the independence tests as
tasks fed into a multi-core computer. However, there is no method speeding the
PC algorithm in distributed systems, for example, on a cluster of computers.

© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, CCIS 1332, pp. 87-94, 2020.
https://doi.org/10.1007/978-3-030-63820-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63820-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-63820-7_10

88 T. Nguyen et al.

1.1 Related Work

There have been several causal discovery and causal inference methods that use
PC as the core component and therefore they will be benefited from an efficient
PC. Some methods have been proposed to improve the efficiency of PC by
introducing heuristic methods, but they rather compromise the accuracy [7].
Meanwhile, others [4] aimed to parallelise the conditional independence tests
into different cores of a computer, limiting the scale of the parallelisation.

Advances in cluster computing can help parallelise the conditional indepen-
dence tests in PC algorithm into a set of connected computers. Among the most
popular architectures is MapReduce [2], a distributed computing programming
model, designed to enable and simplify parallel programming. The framework
has been implemented and extended in several distributed systems, including
Apache Spark [9], where RDD (Resilient Distributed Dataset) is proposed to
keep data in-memory for faster computation.

To verify the independence/dependence of variables from coincident data,
conditional independence tests are conducted. Conventionally, independence
tests are performed via correlation matrices [6], which implicitly impose a linear
relationship between the factors. However, this assumption is not always true in
reality and unknown generally.

1.2 Contributions

In this paper, we investigate learning causal structures in distributed systems.
The contributions of our work are two-fold as follows.

— First, we propose MrPC to perform the PC algorithm [1] on Apache Spark
[9], a cluster computing framework supporting parallel, distributed computa-
tion and storage on multiple computers. Extending MapReduce and equipping
it with in-memory computing capacity, Apache Spark speeds up the execution
of iterative jobs. This framework fits well the task of distributed computation
of independence tests for PC algorithm.

— Second, we propose to estimate conditional independence between variables
using kernel functions. Kernel functions allow to capture non-linear and com-
plex relationships. We investigate various kernel types and prove that con-
ventional correlation metric used in causal discovery is a special case.

To evaluate our method, we firstly experimented MrPC on six datasets pro-
vided in [4] to examine how a distributed algorithm could help speed up the PC
algorithm. Experimental results showed that on the same computing infrastruc-
ture, MrPC can gain up to seven times faster than PC-stable [1], a sequential
PC implementation. We then investigated how kernel functions work in captur-
ing gene regulatory networks of Escherichia coli (E. coli) and Saccharomyces
cerevisiae (S. cerevisiae), provided in the DREAMS5 network inference challenge
[5]. We found that kernel functions perform better than conventional correlation
metric on both the datasets.

MrPC: Causal Structure Learning in Distributed Systems 89

2 Proposed Method

2.1 Distributed Computation

The PC algorithm [8] has two main steps. In the first step, it learns from data
a skeleton graph, which contains only undirected edges. The orientation of the
undirected edges is performed in the second step to form an equivalence class
of Directed Acyclic Graphs (DAGs). As the first step of the PC algorithm con-
tributes to most of the computational costs, we only focus on the modification
of this step in this paper.

The skeleton learning step of the PC algorithm starts with a complete, undi-
rected graph and deletes recursively edges based on either marginal, I(X,Y), or
conditional, I(X,Y|S), independence tests. For example, the edge between two
causal factors X and Y is removed if we can find a set of other factors that does
not include X and Y, and when conditioning on S, X and Y are independent.
In the worst case, the running time of the PC algorithm, is exponential to the
number of nodes (variables), and thus it is inefficient when applying to high
dimensional datasets.

In this paper, we model the dependency between two causal factors as an
edge in a graph, where each node represents a causal factor. Under Spark, a
MapReduce-enabled framework, to perform parallel computations of conditional
independences, each edge being tested for conditional independence is considered
as a single element in the mappers and is parallelly distributed to the mappers
via executers (Map operations). The executers run the tests and return whether
the input edges are independent in the current graph. The driver aggregates
and summarises all the outputs from the mappers, updates the learning causal
structures and decides the next step (Reduce operations).

The original PC algorithm [8] have the benefit of lesser number of tests, in
comparison with PC-stable [1], as it updates the learning graph after every
independence test. However, the structures returned by the original version [8]
are dependent on the order of the couples of variables to be tested. To achieve
order-independent structures, PC-stable [1] proposed to update the graph after
completing all the tests at a level, which is a number of factors conditioned on. We
parallel PC-stable [1] to use up the capacity of computing systems, their cores
and all computers in the cluster, which is unused in the original approach. We
summarise our parallel implementation of PC-stable algorithm in Algorithm 1,
MrPC (abbreviated for MapReduce PC).

2.2 Kernel-Based Relation

Independence tests, either marginal or conditional, for the input variables are
often conducted via correlations/partial correlations which are calculated from
correlation matrices. Conventionally, a correlation matrix of factors implies a lin-
ear relationship between the factors. However, this assumption is neither always
held in reality nor applied for all kinds of data distributions. Inspired by the
work in [10], in this paper, we propose to calculate the correlation between

90

T. Nguyen et al.

Algorithm MrPC()

Input : A dataset where each sample is encoded by V features and the
significant level a.

Output: A graph G encodes the conditional independence among V'
features in the dataset.

G = fully connected graph of V nodes

[= 0: number of variables to be conditioned on

while True do
continued = False

The driver ships all edges of current graph G to every executor.
The executors process each edge (X,Y) by the function
independenceTest(X,Y) and send tuples (X,Y,independence,continued)
back to the driver
The driver updates:

removes from G the edge (X,Y) with independence=True

sets continued=True if there exists a tuple with continued=True
l+=1
if continued = False then

break
end

end
return

Procedure independenceTest(X,Y)

independence = False
continued = False
N =neighbor(X)\ {Y}
if |[N| > [then
if [N| > [then
| continued = True
end
for ZCN and |Z| =1 do
if I(X,Y]|Z) then
independence = True
break
end
end

end
return X,Y,independence,continued

Algorithm 1: MrPC (MapReduce PC).

causal factors using kernel functions. Suppose that we have a dataset including
N samples. Suppose that there are d different factors involved in each sample,
i.e., each sample is encoded by a vector f; = [fi1, fi2,..., fi.a) € R% We can
construct a matrix M with d rows and N columns for the dataset as follow,

i faq o fya
M= (1)
fia fo,d - fna

MrPC: Causal Structure Learning in Distributed Systems 91

Based on M, we define a vector f € R? which contains the mean values of
factor types over N samples and a vector v € R? which contains the variance
values of factor types. Then, we define a centric-normalised matrix M which
is obtained by translating M by f and normalising its k-th row by Vg In
particular, we compute

fii—fi fou—h1 fna—f

R Vi VOV
= . L 2)
fr.a—fa f2.a—fa fn.a—fa
NGl N

Finally, we define a kernel-based correlation matrix C of d x d in which each
element C; ; is the result of a kernel function K applied on rows ¢ and j of M.
In particular, let M (i) and M(j) respectively denote the i-th and j-th row of
M , C; ; is calculated as,

Ciy = K (M (0), 31 (j)) = (@ (31 () @ (21 (7))) 3)

where @ (x) is an implicit function that maps a vector x in a low dimensional
space L (for example, of d dimensions) to a high dimensional space H and (-, -) is
the inner product of two vectors. There are several kernel functions proposed in
the literature [3]. In this paper, we investigate common kernel functions including
polynomial, sigmoidal, and Gaussian radial basis function (RBF).

Polynomial Kernel
K (M1 Gy, 31 G)) = (31), 11 G)) ()

where p is the degree of the kernel. Note that when p = 1, K (M (7) M (j))

induces to the conventional correlation of two factors types ¢ and j. This shows
that the polynomial kernel is a generalised form of the conventional correlation,
which only captures linear relationships. Indeed, when p = 1, we have,

1N o f o f.

K (M (z),M(])) _ N Dkt (flvk fl) (fy»k f])
NONG

where Corr(i, j) is the correlation between variables ¢ and j.

Gaussian Radial Basis Function (RBF) Kernel

= Corr(i,j) (5)

i)~ 31)|

202

K@NWMODM>‘ (6)

where ||-||, is the Lo- norm and o is a user parameter set to 0.1 in our experiments.

92 T. Nguyen et al.

Sigmoidal Kernel

K (NI (i), (j)) = tanh (N (3), ML (5))) (7)

where tanh (z) = 2:72:

Finally, we compute the partial correlations p; ; for every pair of factors as,
-1
(5)

pij = ———
—1,—1
VCii Gy

where C~! is the inverse matrix of C.

3 Experiments

3.1 MrPC (distributed) V. PC-stable (sequential)

In the first experiment, we evaluated MrP C on six benchmark datasets provided
in [4]. On each dataset, we also compared the running time of MrPC with that
of the sequential approach PC-stable in [1]. The same parameter setting was
used in both approaches, such as the significant level («) is set to 0.01 in both
settings. Also, the same computing infrastructure was used in both approaches.

Table 1. Running time (in minutes) of MrPC v. the sequential version (PC-stable
[1]) on six datasets [4].

Dataset #samples | #variables | PC-stable | MrPC | Ratio
NCI-60 47 1,190 4.57 1.66 2.75
BR51 50 1,592 31.34 10.64 |2.95
MCC 88 1,380 25.73 9.63 2.67
Scerevisiae 63 5,361 79.15 22.65 |3.49
Saureus 160 2,810 197.71 57.97 |3.41
DREAMS5-Insilico | 805 1,643 1301.32 177.11 1 7.35

The running time needed for the PC algorithm by MrPC and the sequential
approach PC-stable [1] is shown in Tablel. On six datasets experimented,
MrPC performs between 2.75 and 7.35 times faster than the PC-stable [1].
Through experiments, we found that the gain is less on small datasets as the
majority of running time is spent for Spark’s initialisation, for example, locating
and distributing resources to computing elements (executors). However, on larger
datasets, the same amount of time and computation is spent for preprocessing
but this amount is much smaller than the total running time, as the number of
independence tests often increases with the size of the datasets. In summary, the
larger the dataset is, the more benefit MrPC gains, and as shown in Table1,
the speed is improved up to seven times on DREAMS5-Insilico dataset.

MrPC: Causal Structure Learning in Distributed Systems 93

Table 2. Performance of different kernel functions in capturing gene regulatory net-
works of for E. coli and S. cerevisiae [5]. The best performances are in bold, the worst
are in italics.

Kernel AUROC| AUPR | | Kernel AUROC| AUPR

Correlation 0.50233 | 0.01402 Correlation 0.49918 | 0.01720

Polynomial (p = 2)| 0.50836 | 0.01689 Polynomial (p = 2)| 0.50069 | 0.01749

Polynomial (p = 3)|0.51813/0.02892 Polynomial (p = 3)| 0.50055 | 0.01747

RBF 0.50349 | 0.01436 RBF 0.501020.01756

Sigmoidal 0.50238 | 0.01404 Sigmoidal 0.49922 | 0.01720
a.E. coli dataset. b. S. cerevisiae dataset.

3.2 Kernel Functions

In the second experiment, we implemented MrPC with different kernel func-
tions and compared these kernels with the conventional correlation computation,
in building gene regulatory networks (GRN) for E. coli and S. cerevisiae. We
conducted the experiment on the datasets provided in the DREAMS network
inference challenge [5], which aimed to reconstruct GRN from high-throughput
data. Area under receiver operating characteristic (AUROC) and area under the
precision-recall (AUPR) curves were used as performance measures [5].

We report the performance of the proposed MrPCwith different kernels in
building GRN for E. coli and for S. cerevisiae in Table 2(a) and Table 2(b) respec-
tively. Experimental results show that, cubic polynomial kernel (p = 3) performs
best on E. coli dataset in both AUROC and AUPR measures (see Table2(a)).
The second place also belongs to polynomial kernel but square polynomial kernel
(p = 2). We found that both cubic and square polynomial kernels outperform
the conventional correlation, which is proven as a case of polynomial kernels
with p = 1. RBF kernel takes the third place while sigmoidal kernel slightly out-
performs the conventional correlation. We note that this ranking is consistent in
both AUROC and AUPR measures.

On S. cerevisiae dataset (see Table2(b)), RBF kernel shows superior perfor-
mance and achieves the first place. Cubic and square polynomial kernels perform
similarly yet surpass the conventional correlation. Like FE. coli dataset, there is
slight difference in the performance of sigmoidal kernel and the conventional cor-
relation on S. cerevisiae dataset. However, it is still clear to see the improvement
of sigmoidal kernel compared with the conventional correlation.

4 Conclusion

Discovering causal links for observational data is an important problem with
implications in causal discovery research. PC is a well-known tool for that task
but is also a time-consuming algorithm. In an attempt to parallelise PC, thanks
to advancements in distributed/cluster computing, we propose MrPC to accel-
erate PC for causal discovery in distributed systems. In addition, equipped with

94

T. Nguyen et al.

MrPC, we propose to model non-linear causal relationships by using kernel
functions to build gene regulatory networks from gene expression data. Experi-
mental results on benchmark datasets show that the proposed MrPC is faster
than sequential PC implementation, and kernel-based modelling outperforms
conventional linear causal modelling in constructing gene regulatory networks.

References

10.

Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal struc-
ture learning. JMLR 15(1), 3741-3782 (2014)

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

Hofmann, T., Scholkopf, B., Smola, A.J.: Kernel methods in machine learning.
Ann. Stat. 36(3), 1171-1220 (2008)

Le, T., Hoang, T., Li, J., Liu, L., Liu, H., Hu, S.: A fast PC algorithm for high
dimensional causal discovery with multi-core PCs. IEEE/ACM Trans. Comput.
Biol. Bioinform. 16(5), 1483-1495 (2019)

Marbach, D., et al.: Wisdom of crowds for robust gene network inference. Nat.
Methods 9(8), 796 (2012)

Shimizu, S., Hoyer, P.O., Hyvérinen, A., Kerminen, A.: A linear non-Gaussian
acyclic model for causal discovery. JMLR 7, 2003-2030 (2006)

Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining
causal structures. Data Min. Knowl. Disc. 4(2-3), 163-192 (2000)

Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D.: Causation, Prediction,
and Search. MIT Press, Cambridge (2000)

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the USENIX Conference on Hot
Topics in Cloud Computing, pp. 10 (2010)

Zhang, K., Peters, J., Janzing, D., Scholkopf, B.: Kernel-based conditional inde-
pendence test and application in causal discovery. In: Proceedings of UAI, pp.
804-813 (2011)

	MrPC: Causal Structure Learning in Distributed Systems
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Proposed Method
	2.1 Distributed Computation
	2.2 Kernel-Based Relation

	3 Experiments
	3.1 MrPC (distributed) V. PC-stable (sequential)
	3.2 Kernel Functions

	4 Conclusion
	References

