
Chapter 4
Prediction Theory

4.1 Introduction

In the classical design-based inference theory, the population is fixed and the prob-
ability distribution of interest is determined by the random mechanism employed
to extract the sample. As there are many ways of extracting a sample, the sampling
design plays a relevant role and the finding of good estimators depends on it. On
the other hand, the prediction theory treats the values of the target variable in all
the units of the population as the realization of a random vector. The probability
distribution of the population target vector is introduced by a statistical model and
the inference procedures are optimized with respect to that distribution.

The prediction theory for finite populations relies on the so-called superpopu-
lation models in which values of the target variables on population elements are
considered as realizations of random variables having joint distributions. The model
selection, fit, and diagnostic is the first and important step when applying a statistical
methodology based on the prediction theory. Contrary to what happens under the
sampling design theory, under the prediction theory there is no true model in
applications to real data. There will only be useful models that adequately describe
the behavior and relationships between the target variables and the auxiliary
variables. The emphasis of this approach is thus on the analysis of data rather than
on the design of samples. For more information about the prediction theory for finite
populations, see e.g. the books of Cassel et al. (1977) Bolfarine and Zacks (1992)
or Valliant et al. (2000).

This chapter gives a description of the prediction theory for finite populations.
Section 4.1 introduces the basic notation and gives an illustrative example. Sec-
tion 4.2 deals with the problem of predicting linear population parameters under
a general linear model. Section 4.3 proves the general prediction theorem under a
superpopulation linear model. Section 4.4 derives the best linear unbiased predictors
of population totals under some linear models. It also shows that some of the
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obtained predictors are widely used estimators in the statistical inference of finite
populations. Finally, Sect. 4.5 gives the corresponding R codes.

4.2 The Predictive Approach

Let N be the known number of units in a finite population and let yj be the numeric
value of the target variable measured at the population unit j . Without loss of
generality, we write the population in the form U = {1, 2, . . . , N}. A sample is
a subset of U , i.e. s ⊂ U .

The general problem is to select sample s ⊂ U of size n and to use the numerical
values y1, . . . , yn, associated to the units of s, for estimating

h(y1, . . . , yN),

where the functional form of h is known (for example a linear function).
The predictive approach treats the numerical values y1, . . . , yN (y-values) as

realizations of random variables Y1, . . . , YN . After observing the sample, estimating
h(y1, . . . , yN) is in fact predicting the value of a function of the non-observed vari-
ables Yj . The predictive approach models the relationships between the variables
through the joint probability distribution of (Y1, . . . , YN). The predictions are done
with respect to that distribution (the model distribution).

We use the term “prediction” in the sense of “guessing,” with statistical tech-
niques, the values of the non-observed random variables Y . We do not use this term
in the sense of “guessing” future values that might occur (like in time series).

Let r ⊂ U be the set of non-sampled population units, i.e. U = s ∪ r . The y-
values in s are known, but the ones in r are not. The prediction effort is addressed
to the y-values in r , or to a function of them. By using together what is known, for
individuals in s, and what is predicted, for individuals in r , we can get predictions
for the population U . The following example follows the same steps as the one
appearing in Section 1.2 of Valliant et al. (2000).

Example 4.1 For a given region and time period, Table 4.1 shows data from
hospitals. We want to estimate T = ∑N

j=1 yj . We have a sample s of size n = 10,
excluding the case 11. Note that

∑
j∈s yj is known and that

T =
∑

j∈s

yj + y11.

Therefore, estimating T is equivalent to predicting y11.
Let us assume that a simple regression model M holds, i.e.

EM [Yj ] = βxj , j = 1, . . . , N, covM(Yj , Yk) =
{

σ 2xj if j = k,

0 otherwise,
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Table 4.1 Data from
hospitals

Hospital N. of beds (x) N. of discharges (y)

1 56 180

2 59 269

3 75 236

4 83 222

5 114 361

6 117 400

7 119 337

8 121 394

9 151 600

10 209 506

11 251 617

Total for N = 11 1355 4122

Totals for n = 10 1104 3505

where β is an unknown parameter that we have to estimate. The best linear unbiased
estimator (BLUE) can be obtained by minimizing the weighted sum of squared
errors

SWSE =
∑

j∈s

1

σ 2xj

(yj − βxj )
2.

By taking derivatives and equating to zero, we have

0 = ∂SWSE

∂β
= −

∑

j∈s

2(yj − βxj )xj

σ 2xj

⇐⇒ β̂ =
∑

j∈s yj
∑

j∈s xj

= 3505

1104
= 3.175.

In a conventional regression analysis we should calculate a confidence interval for
β or we should test the hypothesis H0 : β = 0. In this case β̂ is only an intermediate
step for arriving to the final target: the estimation of T .

In hospital 11, we have x11 = 251, the corresponding prediction is ŷ11 = β̂x11 =
3.175 · 251 = 796.88 and

T̂ =
∑

j∈s

yj + ŷ11 = 3505 + 796.88 = 4301.88.

In this case the relative error is

|T̂ − T |
T

100% = |4301.88 − 4122|
4122

100% ≈ 4.36%,

which is rather moderate.
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Example 4.1 can be extended to the case

T =
∑

j∈s

yj +
∑

j∈r

yj .

In this context, the estimator of T is

T̂ =
∑

j∈s

yj +
∑

j∈r

β̂xj =
∑

j∈s

yj +
∑

j∈s yj
∑

j∈s xj

∑

j∈r

xj =
(∑

j∈s yj
∑

j∈s xj

)
∑

j∈s

xj +
(∑

j∈s yj
∑

j∈s xj

)
∑

j∈r

xj

=
(∑

j∈s yj
∑

j∈s xj

)
∑

j∈U

xj = Nys

x

xs

� T̂R (ratio estimator),

where ys = 1
n

∑
j∈s yj , xs = 1

n

∑
j∈s xj and x = 1

N

∑N
j=1 xj . Section 4.3 extends

these ideas to the prediction of linear parameters.

4.3 Prediction Theory Under the Linear Model

Let us consider a finite population U = {1, . . . , N}. Let y = (y1, . . . , yN)′ be the
vector containing the values of a variable Y in all the population units. The target is
to estimate a linear combination of y1, . . . , yN , γ ′y, where γ = (γ1, . . . , γN)′ is a
vector containing N known constants. For example,

• If γj = 1, j = 1 . . . , N , then γ ′y = ∑N
j=1 yj is the population total,

• If γj = 1
N

, j = 1 . . . , N , then γ ′y = 1
N

∑N
j=1 yj is the population mean.

Let us consider a sample s ⊂ U of n ≤ N units. Let r = U − s be the set of non-
sampled units. Without loss of generality, we renumber the population units and we
write y = (y′

s , y
′
r )

′, where

• ys is the vector of size n containing the values of Y in the observed units,
• yr is the vector of size N − n containing the values of Y in the non-observed

units.

Similarly, we write γ = (γ ′
s , γ

′
r )

′ and γ ′y = γ ′
sys + γ ′

ryr . Note that the problem
of estimating γ ′y is equivalent to the problem of predicting the value of the non-
observed random variable γ ′

ryr .

Definition 4.1 A linear estimator of θ = γ ′y is θ̂ = g′
sys , where gs =

(g1, . . . , gn)
′ is a vector of n coefficients.

Definition 4.2 The estimation error of the estimator θ̂ = g′
sys is θ̂ − θ = g′

sys −
γ ′y.
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We can write the estimation error as a function of the observed and non-observed
measurements, i.e.

θ̂ − θ = g′
sys − γ ′y = (g′

s − γ ′
s)ys − γ ′

ryr = a′ys − γ ′
ryr , with a = gs − γ s .

Note that

• The first component, a′ys , depends only on the sampled units and its value can
be calculated after observing the sample s.

• The second component depends on the non-sampled units and its value should
be predicted.

• An “ideal” best estimator has the property 0 = θ̂ − θ = a′ys − γ ′
ryr . Therefore,

using g′
sys for estimating γ ′y is equivalent to using a′ys for predicting γ ′

ryr .
This is to say, finding a good “gs” is equivalent to finding a good “a.”

In this section we study the prediction problem under the general linear model M:

EM [y] = Xβ, varM(y) = V , (4.1)

where XN×p is the matrix of auxiliary variables, βp×1 is the vector of unknown
regression parameters and V N×N is a known positive definite covariance matrix.
We assume that the values of the auxiliary variables are known in all the population
units, i.e. XN×p is known.

We sort the population units and we express the matrices X and V in the
following block form:

X =
(

Xs

Xr

)

, V =
(

V s V sr

V rs V r

)

,

where Xs is n×p, Xr is (N −n)×p, V s is n×n, V r is (N −n)× (N −n), V sr

is n × (N − n), and V rs = V ′
sr . We further assume that V s is positive definite and

Xs has a full rank.

Definition 4.3 The estimator θ̂ is unbiased for θ under the model M if and only if
EM [θ̂ − θ ] = 0. We can also say predictively unbiased or unbiased with respect to
the model distribution.

Note that EM [θ̂ ] = θ is not correct because θ is random.

Definition 4.4 The error variance (prediction variance) of θ̂ under M is varM(θ̂ −
θ).

If θ̂ is predictively unbiased, then its error variance is equal to its mean squared
error, i.e. varM(θ̂ − θ) = EM [(θ̂ − θ)2].
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Example 4.2 (Ratio Estimator) We show that the ratio estimator of the total T =∑N
j=1 yj , T̂R = Nys

x
xs
, is the best linear unbiased predictor (BLUP) if we work

under the model

EM [Yj ] = βxj , j = 1, . . . , N, covM(Yj , Yk) =
{

σ 2xj if j = k,

0 if j 
= k.

Here, the best estimator means the estimator which minimizes the error variance. For
a sample s, we have T = ∑

j∈s yj + ∑
j∈r yj . If we should know the value of the

parameter β (which is unknown), then we could estimate T with T ∗ = ∑
j∈s yj +

β
∑

j∈r xj , because EM [T ∗ − T ] = 0. On the other hand, every estimator T̂ of T

can be written as

T̂ =
∑

j∈s

yj +
[

T̂ −∑
j∈s yj

∑
j∈r xj

]
∑

j∈r

xj ,

so that T̂ has the same form as T ∗ and (T̂ − ∑
j∈s yj )/

∑
j∈r xj estimates β. We

can write

T̂ =
∑

j∈s

yj + β̂
∑

j∈r

xj and T̂ − T = β̂
∑

j∈r

xj −
∑

j∈r

yj .

Therefore, T̂ is predictively unbiased if

EM

[
β̂
∑

j∈r

xj −
∑

j∈r

yj

]
= (

EM [β̂] − β
)∑

j∈r

xj = 0.

This is to say, T̂ is predictively unbiased for T if and only if β̂ is predictively
unbiased for β.

The error variance of T̂ = ∑
j∈s yj + β̂

∑
j∈r xj is

varM
(
T̂ −T

) = varM
(
β̂
∑

j∈r

xj −
∑

j∈r

yj

)
=
(∑

j∈r

xj

)2
varM

(
β̂
)+ varM

(∑

j∈r

yj

)
.

For minimizing the error variance of T̂ we have to minimize the variance of β̂.
Assume that we are restricted to linear unbiased estimators of β, i.e.

β̂ =
∑

j∈s

aj yj , EM [β̂] = β
∑

j∈s

aj xj = β,
∑

j∈s

aj xj = 1.
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The variance of β̂ is

varM(β̂) = σ 2
∑

j∈s

a2j xj .

We find the best linear unbiased estimator (BLUE) of β by applying the Lagrange
multiplier method. The Lagrangian function is

L = σ 2
∑

j∈s

a2j xj + λ

⎛

⎝
∑

j∈s

aj xj − 1

⎞

⎠ .

By taking derivatives, we have

0 = ∂L

∂aj

= 2σ 2ajxj + λxj , j ∈ s, (4.2)

0 = ∂L

∂λ
=
∑

j∈s

aj xj − 1, (4.3)

and

0 =
∑

j∈s

∂L

∂aj

= 2σ 2
∑

j∈s

aj xj + λnxs = 2σ 2 + λnxs,

which implies

λ = −2σ 2

nxs

.

By substituting in (4.2), we get

aj = −λ
1

2σ 2
= 2σ 2

nxs

1

2σ 2
= 1

nxs

.

The BLUE of β is

β̂ =
∑

j∈s

1

nxs

yj = ys

xs

.

The BLUP of the total T , obtained from the BLUE of β, is

T̂ =
∑

j∈s

yj + β̂
∑

j∈r

xj =
∑

j∈s

yj + ys

xs

∑

j∈r

xj

= nys

xs

xs + ys

xs

∑

j∈r

xj = N
x

xs

ys = T̂R (ratio estimator).
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The estimation error is

T̂R − T = Nx

nxs

∑

j∈s

yj −
∑

j∈U

yj =
(

Nx

nxs

− 1

)∑

j∈s

yj −
∑

j∈r

yj

= (N − n)xr

nxs

∑

j∈s

yj −
∑

j∈r

yj ,

where xr = 1
N−n

∑
j∈r xj . The error variance is

varM
(
T̂R − T

)
=
(

(N − n)xr

nxs

)2

nxsσ
2 + (N − n)xrσ

2

= (N − n)2x2
r

nxs

σ 2 + (N − n)xrσ
2 = (N − n)xrσ

2
(

(N − n)xr

nxs

+ 1

)

= (N − n)xrσ
2 (N − n)xr + nxs

nxs

= (N − n)N

n

xrx

xs

σ 2

= N2

n
(1 − f )

xrx

xs

σ 2, where f = n

N
.

4.4 The General Prediction Theorem

The following theorem gives the best linear unbiased predictor of a linear parameter
under a superpopulation linear model (4.1). It also gives the corresponding predic-
tion variance. For more details, see Chapter 2 of Valliant et al. (2000).

Theorem 4.1 Among linear predictively unbiased estimators θ̂ = g′
sys of θ = γ ′y,

the error variance is minimized by

θ̂opt = γ ′
sys + γ ′

r

[
Xr β̂ + V rsV

−1
s (ys − Xs β̂)

]
, (4.4)

where β̂ = (X′
sV

−1
s Xs)

−1X′
sV

−1
s ys . The error variance of θ̂opt is

varM(θ̂opt − θ) = γ ′
r (V r − V rsV

−1
s V sr )γ r

+ γ ′
r (Xr − V rsV

−1
s Xs)(X

′
sV

−1
s Xs)

−1(Xr − V rsV
−1
s Xs)

′γ r .
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Proof The error variance is

EM

[
(g′

sys − γ ′y)2
]

= EM

[
(a′ys − γ ′

ryr )
2
]

= varM
(
a′ys − γ ′

ryr

)+ (
EM

[
a′ys − γ ′

ryr

])2

= a′V sa − 2a′V srγ r + γ ′
rV rγ r + [

(a′Xs − γ ′
rXr )β

]2
,

where a = gs − γ s . Since we are assuming that θ̂ = g′
sys is unbiased, then

EM

[
g′

sys − γ ′y
] = EM

[
a′ys − γ ′

ryr

] = (a′Xs − γ ′
rXr )β = 0,

i.e. the last term in the previous equation vanishes. The Lagrangian function for
minimizing the error variance with respect to a is

L = L(a,λ) = a′V sa − 2a′V srγ r + 2(a′Xs − γ ′
rXr )λ.

By taking derivatives with respect to λ and equating to zero, we get

0 = ∂L

∂λ
= 2a′Xs − 2γ ′

rXr . (4.5)

By taking derivatives with respect to a, we get

0 = ∂L

∂a
= 2V sa − 2V srγ r + 2Xsλ (4.6)

and

a = V −1
s (V srγ r − Xsλ). (4.7)

On the other hand, from (4.6) we have

Xsλ = V srγ r − V sa. (4.8)

Pre-multiplying (4.8) by X′
sV

−1
s , and taking into account that X′

sa = X′
rγ r , we get

X′
sV

−1
s Xsλ = X′

sV
−1
s V srγ r −X′

sa = X′
sV

−1
s V srγ r −X′

rγ r = (X′
sV

−1
s V sr −X′

r )γ r

and

λ = A−1
s (X′

sV
−1
s V sr − X′

r )γ r , where As = X′
sV

−1
s Xs .
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By substituting λ in (4.7) we obtain the optimal value of a, i.e.

aopt = V −1
s

[
V sr + XsA

−1
s (X′

r − X′
sV

−1
s V sr )

]
γ r .

The best linear unbiased estimator of γ ′
ryr is

a′
optys = γ ′

r

[
V ′

sr + (Xr − V ′
srV

−1
s Xs)A

−1
s X′

s

]
V −1

s ys

= γ ′
r

[
V ′

srV
−1
s ys + XrA

−1
s X′

sV
−1
s ys − V ′

srV
−1
s XsA

−1
s X′

sV
−1
s ys

]

= γ ′
r

[
Xr β̂ + V rsV

−1
s (ys − Xs β̂)

]
,

where

β̂ = A−1
s X′

sV
−1
s ys = (X′

sV
−1
s Xs)

−1X′
sV

−1
s ys .

Therefore, we obtain

θ̂opt = γ ′
sys + a′

optys = γ ′
sys + γ ′

r

[
Xr β̂ + V rsV

−1
s (ys − Xs β̂)

]
.

Finally, the error variance is

VM = varM(θ̂opt − θ) = a′
optV saopt − 2a′

optV srγ r + γ ′
rV rγ r

= γ ′
r

[
V rs + (Xr −V rsV

−1
s Xs)A

−1
s X′

s

]
V −1

s

[
V sr + XsA

−1
s (X′

r −X′
sV

−1
s V sr )

]
γ r

− 2γ ′
r

[
V rs + (Xr − V rsV

−1
s Xs)A

−1
s X′

s

]
V −1

s V srγ r + γ ′
rV rγ r

= γ ′
r

(
V r − V rsV

−1
s V sr

)
γ r + γ ′

r

[
V rsV

−1
s XsA

−1
s (X′

r − X′
sV

−1
s V sr )

]
γ r

+ γ ′
r

[
(Xr − V rsV

−1
s Xs)A

−1
s X′

sV
−1
s XsA

−1
s (X′

r − X′
sV

−1
s V sr )

]
γ r

− γ ′
r

[
(Xr − V rsV

−1
s Xs)A

−1
s X′

sV
−1
s V sr

]
γ r

= γ ′
r

(
V r −V rsV

−1
s V sr

)
γ r + γ ′

r (Xr −V rsV
−1
s Xs)A

−1
s (Xr −V rsV

−1
s Xs)

′γ r .

�

Corollary 4.1 The estimator β̂ = (X′
sV

−1
s Xs)

−1X′
sV

−1
s ys minimizes the

weighted sum of squared residuals SSE = (ys − Xsβ)′V −1
s (ys − Xsβ).

Proof It holds that

SSE = y′
sV

−1
s ys + β ′X′

sV
−1
s Xsβ − 2β ′X′

sV
−1
s ys .



4.4 The General Prediction Theorem 83

Therefore, we have

0 = ∂SSE

∂β
= 2X′

sV
−1
s Xsβ − 2X′

sV
−1
s ys and β̂ = (X′

sV
−1
s Xs)

−1X′
sV

−1
s ys .

(4.9)

Since

∂2SSE

∂β2 = 2X′
sV

−1
s Xs

and we assume that V s is symmetric and positive definite matrix, it follows that
V −1

s as well as X′
sV

−1
s Xs are positive definite matrices and thus β̂ is the point of

minima of the function SSE. �
The equations X′

sV
−1
s Xs β̂ = X′

sV
−1
s ys , appearing in (4.9), are called normal

equations. They are p equations with p unknowns β1, . . . , βp, where β =
(β1, . . . , βp)′. Further, the estimator β̂ of β is called least squares estimator.

Corollary 4.2 If V rs = 0, then the BLUP and the error variance are

θ̂opt = γ ′
sys + γ ′

rXr β̂, varM(θ̂opt − θ) = γ ′
r

(
V r + XrA

−1
s X′

r

)
γ r .

Therefore, it holds that θ̂opt = γ ′
sys + γ ′

r ŷr , where ŷr = Xr β̂.

Proposition 4.1 Among the linear predictively unbiased estimators θ̂ of θ , the
variance is minimized by θ̂∗ = γ ′Xβ̂, where β̂ = (X′

sV
−1
s Xs)

−1X′
sV

−1
s ys . The

estimator variance is

varM(θ̂∗) = γ ′XA−1
s X′γ , with As = X′

sV
−1
s Xs .

Proof Let θ̂ = g′
sys be a linear estimator of θ = γ ′y. The variance of θ̂ is

varM(θ̂) = g′
sV sgs . As θ̂ is predictively unbiased, it holds that

0 = EM

[
θ̂ − θ

] = g′
sXsβ − γ ′Xβ = (g′

sXs − γ ′X)β.

The Lagrangian function is

L = g′
sV sgs + 2(g′

sXs − γ ′X)λ.

It holds that

0 = ∂L

∂gs

= 2V sgs + 2Xsλ. (4.10)
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From (4.10) we get gs = −V −1
s Xsλ. Pre-multiplying (4.10) by X′

sV
−1
s , and taking

into account that X′
sgs = X′γ , we obtain

0 = X′
sV

−1
s V sgs + X′

sV
−1
s Xsλ = X′γ + Asλ.

Therefore, we have

λ = −A−1
s X′γ and g∗

s = V −1
s XsA

−1
s X′γ .

By substituting the expressions of θ̂ and varM(θ̂), we get

θ̂∗ = g∗′
s ys = γ ′XA−1

s X′
sV

−1
s ys = γ ′Xβ̂,

varM(θ̂∗) = g∗′
s V sg

∗
s = γ ′XA−1

s X′
sV

−1
s V sV

−1
s XsA

−1
s X′γ = γ ′XA−1

s X′γ ,

which completes the proof. �
The following remarks give some comments of interest about the best linear

unbiased predictors.

Remark 4.1

1. The estimator θ̂opt can be expressed in the form

θ̂opt = γ ′
sys +γ ′

rXr β̂ +γ ′
rV rsV

−1
s (ys −Xs β̂) = γ ′

sys +γ ′
r ŷr +γ ′

rV rsV
−1
s es .

Therefore, θ̂opt uses the sampling units to reconstruct the “sample part” of the
parameter θ = γ ′y. The term ŷr predicts the values of y in the non-sampled
units and uses these predictions for reconstructing the non-sample part of the
parameter. Finally, it uses the sample residuals es = ys − Xs β̂ for correcting the
bias and obtaining the predictive unbiasedness.

2. The estimator θ̂∗ = γ ′Xβ̂ = γ ′ŷ does not use explicitly the observed sample
values and it reconstructs the parameter by using only the predictions of the y-
values.

Remark 4.2 Let us assume that V rs = 0. If the target parameter is yj = η′y, with
η = (0, . . . , 0, 1(j), 0, . . . , 0), then the BLUP is

ŷj =
{

yj if j ∈ s,

xj β̂ = ỹj if j ∈ r,

where xj is the row j of matrix X. For any other parameter θ = γ ′y, we have

θ̂opt = γ ′
sys + γ ′

rXr β̂ =
∑

j∈s

γj yj +
∑

j∈r

γjxj β̂ =
∑

j∈s

γj yj +
∑

j∈r

γj ỹj ,

θ̂∗ = γ ′Xβ̂ =
∑

j∈U

γjxj β̂ =
∑

j∈U

γj ỹj .
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The estimator θ̂opt is called predictive and the estimator θ̂∗ is called projective.

4.5 BLUPs for Some Simple Models

In some cases the BLUPs are classical estimators appearing in survey sampling
methods for finite populations. In the following examples, we assume that

1. The prediction target is T = ∑N
j=1 yj ; this is to say, T = θ = γ ′y with γ =

(1, . . . , 1)′N×1.

2. The notation ej ∼ (a, b) is used for indicating that ej is a random error with
E[ej ] = a and var(ej ) = b. For vector and matrices, we use the notation

1n =
⎛

⎜
⎝

1
...

1

⎞

⎟
⎠

n×1

, In =
⎛

⎜
⎝

1 . . . 0
...

. . .
...

0 . . . 1

⎞

⎟
⎠

n×n

, 1n×n =
⎛

⎜
⎝

1 . . . 1
...

. . .
...

1 . . . 1

⎞

⎟
⎠

n×n

.

Example 4.3 (Expansive Estimator) Let us consider the model yj = μ + ej , j =
1, . . . , N , with uncorrelated random errors ej ∼ (0, σ 2). In the framework of the
general linear model, EM [y] = Xβ, varM(y) = V , we have that β = μ, X =
1N, V = σ 2IN . Therefore, we have

β̂ = (X′
sV

−1
s Xs)

−1X′
sV

−1
s ys =

(
σ−21′

nIn1n

)−1
1′
nσ

−2Inys = 1

n

n∑

j=1

yj = ys.

The BLUP is

T̂ = γ ′
sys + γ ′

rXr β̂ = nys + (N − n)ys = Nys.

The error variance is

varM(T̂ − T ) = γ ′
r (V r + Xr (X

′
sV

−1
s Xs)

−1X′
r )γ r

= 1′
N−n

(
σ 2IN−n + 1N−n

σ 2

n
1′
N−n

)
1N−n

= 1′
N−nσ

2
(
IN−n+ 1

n
1(N−n)×(N−n)

)
1N−n = σ 2

[
(N − n)+ 1

n
(N − n)2

]

= σ 2(N − n)N

n
= N2(1 − f )σ 2

n
, where f = n

N
.

Example 4.4 (Linear Regression Estimator) Let us consider the model yj = a +
bxj + ej , j = 1, . . . , N , with uncorrelated random errors ej ∼ (0, σ 2). Under the



86 4 Prediction Theory

general linear model, EM [y] = Xβ, varM(y) = V , we have

β =
(

a

b

)

, X =
⎛

⎜
⎝

1 x1
...

...

1 xN

⎞

⎟
⎠ , V = σ 2IN.

Therefore, we have

β̂ =
(

â

b̂

)

= (X′
sV

−1
s Xs )

−1X′
sV

−1
s ys =

(
n

∑n
j=1 xj

∑n
j=1 xj

∑n
j=1 x2

j

)−1 ( ∑n
j=1 yj

∑n
j=1 xj yj

)

=

( ∑n
j=1 x2

j −∑n
j=1 xj

−∑n
j=1 xj n

)( ∑n
j=1 yj

∑n
j=1 xj yj

)

n
(∑n

j=1 x2
j

)
−
(∑n

j=1 xj

)2 =

⎛

⎜
⎜
⎜
⎜
⎝

(∑n
j=1 yj

)(∑n
j=1 x2j

)
−
(∑n

j=1 xj

)(∑n
j=1 xj yj

)

n
(∑n

j=1 x2j

)
−
(∑n

j=1 xj

)2

n
(∑n

j=1 xj yj

)
−
(∑n

j=1 xj

)(∑n
j=1 yj

)

n
(∑n

j=1 x2j

)
−
(∑n

j=1 xj

)2

⎞

⎟
⎟
⎟
⎟
⎠

.

The estimators of b and a are

b̂ =
(
1
n

∑n
j=1 xjyj

)
−
(
1
n

∑n
j=1 xj

) (
1
n

∑n
j=1 yj

)

(
1
n

∑n
j=1 x2

j

)
−
(
1
n

∑n
j=1 xj

)2 =
1
n

∑n
j=1(xj − xs)(yj − ys)

1
n

∑n
j=1(xj − xs)2

,

â =
[
ys

(
1
n

∑n
j=1 x2

j

)
− ysx

2
s

]
−
[
xs

(
1
n

∑n
j=1 xjyj

)
− ysx

2
s

]

(
1
n

∑n
j=1 x2

j

)
− x2

s

= ys − xs

(
1
n

∑n
j=1 xjyj

)
−
(
1
n

∑n
j=1 xj

) (
1
n

∑n
j=1 yj

)

(
1
n

∑n
j=1 x2

j

)
− x2

s

= ys − xs b̂.

The BLUP is

T̂ = γ ′
sys + γ ′

rXr β̂ = nys + 1′
N−n

⎛

⎜
⎜
⎝

1 xn+1
...

...

1 xN

⎞

⎟
⎟
⎠

(
ys − xs b̂

b̂

)

= nys +
⎛

⎝(N − n),

N∑

j=n+1

xj

⎞

⎠

(
ys − xs b̂

b̂

)

= nys + (N − n)ys − (N − n)xs b̂

+ (Nx − nxs)b̂ = Nys + N(x − xs)b̂ = N
[
ys + (x − xs)b̂

]
.
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The error variance is

VM = varM(T̂ − T ) = γ ′
r (V r + Xr (X

′
sV

−1
s Xs )

−1X′
r )γ r = σ 21′

N−n

·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

IN−n +

⎛

⎜
⎜
⎝

1 xn+1

.

.

.
.
.
.

1 xN

⎞

⎟
⎟
⎠

( ∑n
j=1 x2

j −∑n
j=1 xj

−∑n
j=1 xj n

)

n
(∑n

j=1 x2
j

)
−
(∑n

j=1 xj

)2

(
1 . . . 1

xn+1 . . . xN

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1N−n

= σ 2(N − n) + σ 2

⎛

⎝N − n,

N∑

j=n+1

xj

⎞

⎠

( ∑n
j=1 x2

j −∑n
j=1 xj

−∑n
j=1 xj n

)

n
∑n

j=1(xj − xs)2

(
N − n

∑N
j=n+1 xj

)

= σ 2(N − n)

⎧
⎪⎨

⎪⎩
1 +

(N − n)
∑n

j=1 x2
j − 2

∑n
j=1 xj

∑N
j=n+1 xj + n

N−n

(∑N
j=n+1 xj

)2

n
∑n

j=1(xj − xs)2

⎫
⎪⎬

⎪⎭

= σ 2(N − n)

{

1 + A

B

}

.

By taking into account that n
∑n

j=1 x2
j −

(∑n
j=1 xj

)2 = n
∑n

j=1(xj − xs)
2 and

that f = n/N , we get

A = (N − n)

n∑

j=1

(xj − xs)
2 + N − n

n

⎛

⎝
n∑

j=1

xj

⎞

⎠

2

− 2
n∑

j=1

xj

⎛

⎝
N∑

j=1

xj −
n∑

j=1

xj

⎞

⎠

+ n

N − n

⎛

⎝
N∑

j=1

xj −
n∑

j=1

xj

⎞

⎠

2

= 1

n(N − n)

⎧
⎪⎨

⎪⎩
n(N − n)2

n∑

j=1

(xj − xs)
2 + (N − n)2

⎛

⎝
n∑

j=1

xj

⎞

⎠

2

− 2n(N − n)

⎡

⎢
⎣

N∑

j=1

xj

n∑

j=1

xj −
⎛

⎝
n∑

j=1

xj

⎞

⎠

2
⎤

⎥
⎦+ n2

⎡

⎢
⎣

⎛

⎝
N∑

j=1

xj

⎞

⎠

2

− 2
N∑

j=1

xj

n∑

j=1

xj +
⎛

⎝
n∑

j=1

xj

⎞

⎠

2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

= 1

n(N − n)

⎧
⎪⎨

⎪⎩
n(N − n)2

n∑

j=1

(xj − xs)
2 + N2

⎛

⎝
n∑

j=1

xj

⎞

⎠

2

− 2nN

N∑

j=1

xj

n∑

j=1

xj + n2

⎛

⎝
N∑

j=1

xj

⎞

⎠

2
⎫
⎪⎬

⎪⎭
.

Therefore, we have

VM = σ 2(N − n)

⎧
⎪⎨

⎪⎩

N

n
+

N2
(∑n

j=1 xj

)2 − 2nN
∑N

j=1 xj

∑n
j=1 xj + n2

(∑N
j=1 xj

)2

n2(N − n)
∑n

j=1(xj − xs)2

⎫
⎪⎬

⎪⎭

= σ 2(N − n)N

n

{

1 + n2Nx2
s − 2n2Nxsx + n2Nx2

n(N − n)
∑n

j=1(xj − xs)2

}
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= N2

n
(1 − f )σ 2

[

1 + (xs − x)2

(1 − f ) 1
n

∑n
j=1(xj − xs)2

]

.

4.6 R Codes for BLUPs

This section gives R codes for calculating the expansive estimator and the linear
regression estimator described in Examples 4.3 and 4.4, respectively. The target
is estimating the population average of variable INCOME from the survey data
file LFS20.txt. Let us note that there is a small difference with respect to
Examples 4.3 and 4.4 since in the application we estimate population means instead
of population totals. That means that the derived formulas for BLUP and error
variance must be divided by N and N2, respectively.

The following code reads the data file:

# Survey data
dat <- read.table("LFS20.txt", header=TRUE, sep = "\t", dec = ".")
# Sample size
n <- nrow(dat); n
# Rename variables
y <- dat$INCOME; x <- dat$REGISTERED
# Auxiliary data
dataux <- read.table("Nds20.txt", header=TRUE, sep = "\t", dec = ".")

Continuation of Example 4.3 (Expansive Estimator of the Average Income)

mod1 <- lm(y~1) # Assumed model
sigma12 <- as.numeric(anova(mod1)[3]) # Model error variance
beta1 <- as.numeric(mod1$coefficients) # Regression parameter
Npop <- sum(dataux$N) # Population size
f <- n/Npop; f # Sampling fraction
Mincome1 <- beta1 # Expansive estimator
Mincome1; mean(y) # Checking
varMincome1 <- (1-f)*sigma12/n # Estimator error variance

Continuation of Example 4.4 (Linear Regression Estimator of the Average Income)

mod2 <- lm(y~x) # Assumed model
sigma22 <- anova(mod2)[2,3] # Model error variance
beta2 <- mod2$coefficients # Regression parameters
Npop <- sum(dataux$N) # Population size
f <- n/Npop; f # Sampling fraction
ymean <- mean(y); xmean <- mean(x) # Sample means of y and x
Xmean <- sum(dataux$reg)/sum(dataux$N) # Population mean of x
Mincome2 <- as.numeric(ymean+(Xmean-xmean)* # Linear regression estimator

beta2[2])
xvar <- (n-1)*var(x)/n; xvar # Sample variance of x
varMincome2 <- ((1-f)*sigma22/n)*

(1+((xmean-Xmean)^2/((1-f)*xvar))) # Estimator error variance

The R code to save the results is

model1 <- c(beta1, NA, sigma12, Mincome1, varMincome1)
model2 <- c(beta2, sigma22, Mincome2, varMincome2)
labels <- c("intercept", "beta1", "sigma2", "Mincome", "Mincome variance")
output <- data.frame(labels, model1, model2)

For model 1 (introduced in Example 4.3) and model 2 (introduced in Example 4.4),
Table 4.2 presents the estimated intercept (intercept), covariate regression coeffi-
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Table 4.2 Results of
expansive estimator (model
1) and linear regression
estimator (model 2) of the
average income

model 1 model 2

intercept 46,925.32 47,709.49

beta1 −9686.78

sigma2 157,023,019.44 150,178,380.43

Mincome 46,925.32 46,881.85

Mincome variance 148,684.02 142,241.59

cient (beta1), error variance (sigma2), average income (Mincome), and variance of
average income estimator (Mincome variance).

For estimating the population average income, the linear regression estimator
(derived under model 2) has lower estimated variance than the expansive estimator
(derived under model 1).
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