Chapter 2 ®
Design-Based Direct Estimation Qs

2.1 Introduction

Survey samples provide useful information about a population and avoid the need
of carrying out the more expensive and time-consuming censuses. Sampling theory
covers sampling designs and inference procedures for finite populations. If the
population is partitioned in domains, the estimators of parameters of the global
populations can be adapted and applied to estimate domain parameters. This can
be done by treating the domains as independent new populations. This approach to
small area estimation yields to design-based direct estimators.

The estimation of small area parameters, like domain means, totals, or ratios
of a target variable, is an inference problem in finite populations. Historically,
the first estimators of population parameters defined at the domain level were
adaptations of the corresponding estimators defined for the global population. Direct
estimators use only the data of the target variable in the domain of interest, and their
properties are studied and optimized with respect to the probability distribution of
the sample design. They do not use data from other domains or time periods. Since
direct estimators are simple and intuitive, researchers use them as a benchmark to
establish comparisons and to measure the efficiency gain obtained by using more
sophisticated small area estimators.

This manuscript dedicates an initial chapter to introduce the basic concepts and
tools of sampling and inference in finite populations. Inclusion probabilities and
their inverses (sampling weights) play here a relevant role. For estimating means
and totals, two types of direct estimators are considered. They were introduced by
Horvitz and Thompson (1952) and Hajek (1971), respectively. For estimating ratios,
plug-in estimators are employed. They are defined by substituting totals by their
corresponding direct estimators.

The chapter gives a short introduction to the survey sampling theory and
describes some properties of direct estimators, with special emphasis on estimators
of means, totals, and ratios. For each estimator, the design-based expectation and
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14 2 Design-Based Direct Estimation

variance are calculated and a direct estimator of the variance is given. In many
practical cases, only first order inclusion probabilities are available, and therefore
it is not possible to calculate unbiased direct estimators of variances. This is why
the chapter also presents design-based resampling methods, like bootstrap and
Jackknife, for variance estimation. The last section contains some examples giving
R codes, including functions for calculating domain-level direct estimators.

2.2 Survey Sampling Theory

A finite population is a collection of different units, such as people, companies,
households, hospitals, and so on. The survey sampling theory deals with the
selection of samples (subsets of the population), the observation of characteristics
of sampled units, and the use of the obtained data for doing inferences about the
population.

Survey sampling is interested in a fixed population from which a part is observed.
In other branches of statistics, observations are realizations of random variables, and
the inferences are not referred to any actual population, but to a probability law on
the random variables. The following example clarifies this point.

Example 2.1 An industry is interested in determining if the units of a production
line fulfill some given specifications. By assuming the general approach to statistics,
we can model the data (CORRECT = 0 and DEFECTIVE = 1) as realizations of
independent and identically distributed Bernoulli variables with parameter 6. The
statistical target is the estimation of the probability 6 of making a defective unit.
The problem becomes a finite population survey sampling problem if we are only
interested in the units produced during a given day. In the last case, we are interested
in estimating the proportion

number of defective units produced during the day

p= number of units produced during the day
In survey sampling, there are two main approaches. The first one assumes that the
data obey the probability distribution given by the random extraction of samples
from the population. This is the design-based approach. In the second case, the
scores of the target variable are assumed to be the realization of a random vector
with distribution given by a statistical model. This is the model-based approach. The
inference procedures are built and studied depending on the assumed probability
distribution.

Under the design-based approach, the vector containing the values of a variable
y in all the population units (yq, ..., yn) is the basic parameter. A probabilistic
sampling plan (or design) is a scheme for choosing the samples, such that each
subset s of the population U has a known selection probability p(s). Let us consider
a population parameter 7 and its estimator T based on s. The definitions of bias and
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variance of T are based on p(s), i.e.

BIAS: E, T -T]= doscU p(S)[f(s) -T1,
VARIANCE: vary (T) = Y,y p(5)(T(s) — Ex[T1)".

We use the notations E,; and var, to emphasize the fact that we have expectations
and variances with respect to the design-based probability distribution p(s). Expec-
tations and variances with respect to a model-based distribution are denoted by E s
and varyy.

In general, the calculation of p(s) is not an easy task. Some simple cases are
the simple random samplings with replacement (SRSWR) and without replacement
(SRSWOR), i.e.

p(s) = # for a SRSWR sample s of size n,
p(s) = (%) for a SRSWOR sample s of size n.

n

However, many calculations only require the inclusion probabilities 7; and 7;;, i.e.

i, =P@les)= ZSES(Z-) p(s), where s(i) = {s C U : i € s} is the set of samples
containing the unit 7,

mij =Pl €s, jes)= Zses(i’j) p(s), where s(i, j) ={s C U : i, j € s}is the
set of samples containing the units i and j.

For example, under the SRSWOR, the inclusion probabilities are

nn—1)

7Ti=I’l/N, ﬂijzm

fori, j €U, i # j.

The following definition will be useful in some of the proofs.

Definition 2.1 The sampling design indicator functions are

5 (s) = 1 if the u.nlt i is in the sample s 4 Bernoulli ).
0 otherwise

It holds that

(1) Y 8i(s) =n, Q) PGi(s)=1)=1=P@Oi(s) =0)=m;,
B PGi(s)=1,8;(s) =1) =m;j, D mi; =4,

(5) Ex[8i()] = Ex[87()] = i, (6) Ex[8i(5)8,(s)] = mij,

(7) vary (8 (s)) = mi (1 — m;), (8) covy (8i(s), 8 (s)) = mjj — 7).
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In what follows, we simplify the notation and write §; instead of §;(s). Further,
we consider only sampling without replacement, and we use the following notations:

e [Indexes: s denotes a sample, andd = 1,...,D, j = 1,...,N,and g =
1,..., G denote domains (or small areas), units (or individuals), and groups,
respectively.

* Population and sample: U = Ufi):l U, for population and s = UdD:l sq for
sample, where Uy and s; are population and sample in domain d, respectively.

e Sizes: N for population and n for sample. When N and n have subindexes,
they denote the corresponding size of the indexed set. For example, Ny is the
population size of domain d.

e Totals: Y and X denote the population totals of variables y and x, respectively.
If Y and X have subindexes, then they denote the corresponding totals of the
indexed set.

e Means: Y and X denote the population means of variables y and x, respectively.
If Y and X have subindexes, then they denote the corresponding means of the
indexed set. For example, Y4 denotes the population mean of domain d.

* Sampling weights: w; are the theoretical weights of the sampling design. They
are the inverses of the inclusion probabilities, i.e. w; = 1/7;.

Example 2.2 For any individual j, interviewed at a labor force survey, some
variables of interest are

1 if j is unemployed, 1 if j is employed, ; 1 if j is inactive,
j= . zj= . j= .
Vi 0 otherwise, / 0 otherwise, / 0 otherwise.
Some target parameters are the totals of unemployed, employed, and inactive people
and the unemployment rate, i.e.

Yy Y,
Yy = E Yjs» Za= E zj, Ty= E tj, and Ry = =)
jeuy jeUy jeUq Yao+Zs Yi+2Z4

where Yy = Y;/Ny, Zq = Z4/Ny, and Ny is the size of area d.

The following sections give estimators of the domain total and mean of a variable
y,i.e.

_ 1
Yo= ) v Yd:N_ZW‘
jeUq 4 jeuy

Let us note that we assume that the units in U; can be numbered, and in what
follows, we sometimes use the notation

Ng
dovi=D i
j=1

JjeUq
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2.3 Direct Estimator of the Total and the Mean

Horvitz and Thompson (1952) proposed the following direct estimators of the total
Y; and the mean Y4 of domain d:

~dirl  ydirl

1 ~
dzrl d
—vyi, Y = , 2.1
Zw/y/ Z ij d N 2.1

Jj€sa Jj€sa d

where N, is assumed to be known. Properties of these estimators are summarized
in the following propositions.

Proposition 2.1 Ifn; > 0, Vj € Uy, then

(a) Ex[V{""] =Y,
(b) vary Yd”1 Z Z(m, n,n/)yl yj and

ieUy jeUy
A T ;7T yi
(c) varn(Yg”l) E E uyl =L is an unbiased estimator of
i T
i€sq jESq Tij )

vary ()A’firl).

Proof We give two proofs of (a). The first one works directly with the probability
distribution of samples s. Let s4(j) be the set of all samples such that j € s; =
s N Uy. It holds that

Zy’ Zp(s)Zy’ D DO DO

JEsda JE€Sd sesq (1) s€sq(2)
YN
T Y CEDIE ST SEye)
sesq(N) jeUy Tj jeUy

since s4(j) = @ for j ¢ Uj.
An alternative and more simpler proof is obtained by applying the indicator
functions §;, i.e.

5 dir Yj i
En [T ) = Bn | 302 | =B | 3 20 | = 20 T Ea b= Y= Ya
l

jesa T ieUy ieUy iely
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(b) By using the indicator functions, we get

var, (Y1) = var, (Z yj) = var, ( ) Z Z &—covjT (61, 6)
i ieUy Ti

T
JESq J ieUy jEU,[

= Z Z(nu ﬂl”])*y*{
T T

ieUy jeUy

(c) By using the indicator functions, we have

E. [\Ta\rn dzrl ] Z Z Tij .7-71771 Yj y] E [8 5 ]

ieUy jeUy
Z Z (mij — n,n])y—y—J_ = Varﬂ(Yd”l)
ieUy jeUy
O
Corollary 2.1 If; > 0, Vj € Uy, then
~dirl _
(a) Ex[Y, _]=Y
(b) Var,,(yd 2 Z Z(Ttu T /)
d jeUy jeUy
— Ld‘rl 7T1]_7717Tj yl YJ
c) varg (Y = is an unbiased estimator o
(c) Vare(Yy ) ZZZ o f
lE?d Jes‘d
~dirl
varn(Yd )

Let us consider now a simple random sampling design without replacement inside
each domain (SRSWORD). This is to say, we consider a stratified random sampling
design where the strata are the domains and the domain samples, ny, ..., np, are
fixed. Fori, j € Uy we have

ngtng—1) ... .
i =ng/Ng, i =m; =nq/Nq, ﬂij=mlfl75]-

Proposition 2.2 Under a SRSWORD design, the variance of the direct estimator of
the total is

(1= fON;

vary, (?[‘fi’l) = oy

2
Syd ’ Syd

=Y fa=—.
lEUd
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Proof 1t holds that

Ng Ng
iy
vary (V4r1) = Z(m,— +ZZ(m, ) ’,
T i=1 j=1
i#]
N (kSR M L AT
=2, NaNa—1) N2 2 W
i=1 i=1 j=1
i#]
N Na N,
-SSR
2 L (Ng = Dng
i= i=l j=
i#]
Ng Ng Ng Ng
Ng —ng Ng —ny
Sl PO = HRS (1
i—1 1= 1j=1 d i—1
i#]j

_ WNa—na)Na o _ (1= fa)Nj

= s2 .
ng yd ng yd

In sampling designs with 7;; = 7;7;, i # j,and 7;; = 7}, it holds that

A 1 —m;
vary (P7) = 3 L33 = 3" ;= ),

jeva JjeUq
A g 1—m;
— dirly __ J 2 . R 2
var (Yg'") = Z 22 Vi Z wj(w; — Dyj.
J€Ssq J JESq

For the estimator of the domain mean, we have

~dirl Aa'trl

Varﬂ(Yd :N Z(w]—l)y, var, Yd ZZwJ(w/

d jeUy d jesq

2
N,
1 iy' _ (Ng—ng)Ng | 1 Sy R
; = :
Nyg—1 = ng N;—1 P ! Nis(Ng — 1)

19

(2.2)

(2.3)

y3.

(2.4)
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The equalities 7;; = m;mj, i # j, hold for the Bernoulli sampling (BS) design
and the SRSWR design. In sampling designs with 7;; ~ mm; if i # j (ie.
under SRSWOR), the above formulas are approximations. If a SRSWORD design is
employed, the approximation (2.2) is an upper bound of the variance of the estimator
of the total, i.e.

N, Ny N,
Zl—f[]y2_2d:1__ Z nq 2 (1_fd)lezd
o o na/Na o g

(1— fd)N[? Ng—1 , =2 (11— fd)Nd 2 dirl
— N, Sya+Yq Z T v = Vam = (V4).

where the inequality holds if N is large enough and Y is not too close to zero.
Sérndal et al. (1992, p. 170), present the following formula for the covariance
between two direct estimators:

1 5dirl Tij — Wity
covn(Yd” zZ3" = Z Z ViZj-

T
ieUy jeUy Tl

An unbiased estimator of the covariance is

Jjj — TTTTj
COV (Ydlrl Zdtrl) _ Z Z ij Ity Viz).

jTCTT
zevd/evd lj v

Remark 2.1 In sampling designs with 7r;; = m;7;, i # j,and m;; = 7, we have

1—7Tj

COV;T(Y;;”], Zjlrl) — Z
Jj€Uq

— YiZj
J

T n 1—m;
Cov, (Y4irt, zdirly — Z —— Lyjzj = Z wi(w; —1)y;z;,

jesq J J€Esa
~dirl ~dirl 1 1—7;j
covy (Y, ,Z; )= Iz Z Vit
d jGUd J
~dirl Adtrl
cove (Y, 22 y,z, ZZwJ(wJ Dyjzj.

jGAd jGAd

Remark 2.2 For calculating f’\gi "1 we need the sampling weights and the locations
of sampled units. This is to say, we need the data y;, w;, Iy,(j), j € s, where
Iy, (j) is the indicator function, i.e. Iy, (j) = 1if j € Uy and Iy, (j) = 0 otherwise.
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2.4 Estimator of the Ratio

In applications of statistical inference in finite populations, we often find situations
where the target parameter is a ratio. Examples of ratio-type parameters are the
unemployment rate or the domain mean when the population size in the denominator
is unknown. This section gives some properties of estimators defined as a ratio of
direct estimators of domain totals. Let us consider the domain ratio Ry = Yy/Zg4,
where Y,; = ZjeUd yj and Z; = ZjeUd zj, and the ratio estimator R; =

YA'girl/Zgirl'
Proposition 2.3 The standardized bias of Ry Sfulfills the inequality

_ (Ex[Ra] = R)* _ varr(Z'")
varg (Rg) z;

(B2 [R4))?

Proof 1t holds that
covr (Rg, 23y = EZ[Ry 29" — Ex[R41Ex 237
= Ex[V]"'] = Ex[RAE[2""]
=Yy = ExlRilZa = —Zq (ExlRa) = Rq).
Therefore,

covy (Rg, 241y

Ex[Rsl — Ri = — 7

By squaring both sides of the equality and using the symbol p, for correlation with
respect to the design-based probability, we obtain

2
D Zdirl ~ N A~ A g.
[eove (Ra. ZED]™ 2Ry, 24 vary (Royvar (2471)

(Ex[Rq] — Ra)* = - -
Zd Zd

_ varz (Rg)varr (Z§")
- 2
Zd

)

which proves the stated result. O

Proposition 2.3 gives the following conclusion: if

Br[Risl  Ex[Rsl— Ry

B[R] = - = A
(varg (Rg)1/2 (vary (Rg))!/?
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is the standardized bias of the ratio estimator Iéd, then

N var (Zdirl)
(Brf[Ra)? = ——5—
d

Note that if the relative standard error (sampling error),

L/ vary (23”1)

Zq

’

of the denominator of ﬁd tends to zero when the sample size increases, then the
relative bias of R, also tends to zero. This is an important property for building
ratio estimators.

Proposition 2.4 If )}gir U and 23” U are consistent estimators of Yq and Zg,
respectively, then

(a) Ry is approximately unbiased.
(b) Ifng is large enough, an approximation to the variance of Ry is

— Ryzi yi — Raz;
Varn’(Rd) ~ = Z Z (7le 7Tt7T] - L2 o
i

d ieUy jeUy T
Proof The estimator Ry is a function of two variables, i.e.
gt
Rq = 2t = fv{™!, Z3"h.
Zd
As the partial derivatives of f are af = and af = le a first order Taylor series
expansion of f(Ydd”l, ZZ”I) around (Yd, Za) y1elds to
of Ya, Za)
Ro= fO 240 ~ [ (o Za) + == =2 0 = Yo
of Ya, Za)  5q; | RS Yy n.
+ —BZ (2" = Zo) = Ra+ - (0" = Ya) = —5 (247" = Za)
d
Sdirl 5dirl 1 Yj — Razj
=R+ — (Y —RaZ{"™) = Ra+ — ) 2.5)
d J€sa J

(a) By taking expectations in (2.5), we have

A 1
Ez[Rq] ~ Rg + Z—d(Yd —RyZy) =
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(b) By taking variances in (2.5) and using the sampling design indicator function
d;j, we get

5 1 yi — Razi yj — Raz;
varg Ry~ — Y Y =—— L Sy — i),
1

T
d ieUy jeUy J
|
An estimator of the approximated variance of Ry is
A wij — T Yi — Razi yj — Razj
Vi (R)) = =50 ) . (2.6)
(Zdlrl)2 Tii i T
d i€sq j€sa J J

The gstimator \Z (ﬁd) is approximately unbiased if En[ﬁd] ~ R; and
vary, (ijl”l) ~ 0. Otherwise, it is biased.

2.5 Other Direct Estimators of the Mean and the Total

Hajek (1971) proposed the following direct estimators of the domain mean and total:

i vdirl . v i
2dirz  ydrt Z]EM Wy, ?dirz_N?der ”q
d = —= = > d = WNdt g . ( . )
Nq D jesq Wi

These estimators have the following properties.

Proposition 2.5 Ifng is large enough and wj > 0V j € Uy, then
~dir2 _
(a) ExlY, 1~Yq4and
2dir2 1 T — T — —
(b) varz(Yy ) ~ —3 22 T i Yo - Y.

d icUy jeUy )

Proof Letz; =1Vj e Uy, then Zy; = Ny and

Y, Y, —
Ri=2="12=7,
Zqg Ny
The ratio estimator of Ry is

vdirl v ndi
]/é Yd” Zjexd w;yj 7dlr2
d = ~ n = = d
dirl .
Zdlr Zjesd wj

Since the Hdajek estimator is consistent, the proof follows immediately from
Proposition 2.4. O
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~dir2
An estimator of the approximated variance of Y ; is

2dir2 ~dir2 ~dir2
V?r”( ) A2 ZZ Ll mn} Vi—=Ys )oi—=Ys ) (2.8)

JT;iTT;TT §
dzesdjesd Aataar)

Corollary 2.2 Ifng is large enough and wj > 0V j € Uy, then
(a) Ex[Y{"*1~ Yy and

pdi 2 Tij — Ty
(b) vars (Vi) ~ 30 3 = —— (i = Yo)j = V).

ieUy jeUy Tt

An estimator of the approximated variance of f’ji 2 s

A N\ 2 R ~dir2 ~dir2
iy (P472)] = (Nd> Yy % i =Yy Yo=Y, ). (29
d i€sq jesq Aty

Remark 2.3 Inthe case mjj = mimj, i # j,and 7j; = ), we get

~dir2 — T
vary (¥ )~— LN o)
d jeUy
1—m; _
vary, (der2) Z — J (yj _ Yd)Z’
JjeUy J
_ adir2 1 — o ~dir2 2
var, (Y, )= ZZ (=Y, )
d Jj€sa /
1 ~dir2
=% Yowiwi =Dy =Y, ),
d jesg
. N2 ~dir2
o dir2 d 2
vary (Yg'"%) = N2 Z wj(w; =Dy =Y )"
d jesg

Estimators of the covariance between two direct estimators of domain means and
totals, respectively, are

o ~dir2 Adlr2 ~dir2 ~dir2
cov. (Y, Zw](w]—l) =Yy Nz -2, ),
d Jj€sa

i A N2 ~dir2 ~dir2
e (742, 247 = & 5wyt =00y~ Ve Ve =7 ).
d jesg



2.5 Other Direct Estimators of the Mean and the Total 25

Under the SRSWORD design, it holds that

. Ny
2dir2 Z]esd n; nd
Yy =—= Zj:_zy]—dea

Zjesd ng /GSd J€Sd
_ adir 1 Ng Ng —ny _ fd 1 _
var, (Y, )= N2 n—(Yj — Jas)* = Z(y] — Jas)?
d jesq d d jESd

S2d
~ (1 - fo)==
n

where

2
Syd = Z()’J — Jas)*.

Jj€sa

As the direct estimator is approximately unbiased, the mean squared error and its
estimator are

~dir2 ~dir2 ~dir ~dir2
MSE(Y,; )~vare (Y, ), mse(Yd )—Varﬂ(Yd ).

For more details, see Sdrndal et al. (1992, pp. 185, 391), or Rao (2003, p. 12).
~dir2
Although it is difficult to establish general conditions under which Y, is
~dirl
preferred to Y; , Sérndal et al. (1992, pp. 183-184), show some facts in favor
of the first one.
~dir2
1. By comparing the variances of both estimators, we have that Y,  is preferred
when the values of y; — Y tend to be small. An extreme caseis y; = cVj € Uy.

In this case, it holds that

_ ~dirl D jesy Wi Ny ~dir2 N,
Yi=c, Y, =c—————=c—, Y, =c——=c.
Na Na Ny
~dir2 ~dir2 . ~dirl . A
As vary (Yd ) =0,Y,; ispreferredtoY,; if vary(Ng) > 0.
~dir2 ~dirl

2. The estimator Y;  behaves better than Y,  when the sample size varies. If

the sample size realization, ng = n4(s), is larger than the average sample size,
then the numerator and the denominator have many summands in ?ZWZ. In the
opposite case, the numerator and the denominator have few summands in ?erz
In this way, the ratio has some kind of stability. However, ?Zwl does not present

this stability because its denominator is a known constant.
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In the case of the Bernoulli sampling where each individual is included in the
sample independently with probability 7; = 7, if y; = ¢ Vj € Uy, it holds that

Ldirl n Ky Ldir2
Yd =cC d( ), Yd =C.
nNg
~dirl
Therefore, the variability of Y, is only ought to the variability of n, for
~dirl ~dir2
different samples s. In this case, var, (Y, ) > var (Y, )=0.
~dir2 ~dirl

. Another situation where Y';  is preferred to Y';  is when the sample contains
large values y; of the target variable associated to small inclusion probabilities
7j. In this case, the value of the numerator of both estimators tends to be quite
large. This fact is compensated by 73”2 because its denominator also tends to be
~dirl
large. This compensation produces stability. However, the denominator of 7d
is constant and does not compensate the extreme values of the numerator.
Sérndal et al. (1992, p. 184), give the following example that illustrates the
above described situation. Let us consider a domain d with Ny = 10 units y; =
...=y9 = ce yjo = 2c. Forestimating Y; = 1.1c, we draw a random sample of
size ng = 1 with inclusion probabilities 71 = ... = 19 = 0.11 and 719 = 0.01.
Therefore, the unit 10 has the largest value of y and the smallest value of 7. It
holds that

A _fe ifs=(1),.... 9} A [y if s = {1009,
d 2¢ if s = {10}, d 20c if s = {10}.
~dir2

Obviously, with Y; , we avoid the possibility of obtaining absurd estimates of
Yqs=1.1c.

2.6 Bootstrap Resampling for Variance Estimation

In this section we present a basic bootstrap procedure for estimating the variance of
an estimator.

Let us consider samples s drawn at random from a population U according to a
given sampling design. Let 6 be the estimator of the population parameter 6. Sdrndal

et al. (1992, p. 442), describe the following basic bootstrap procedure:

1. From the sample s, build an artificial population U* mimicking U. This can be

done by replicating each sample register as many times as the calibrated sample
weight w; (elevation factor).
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2. Extract B independent bootstrap samples from U* by using the same sampling
de51gn as the one used for obtaining s from U. For each bootstrap sample s,, b =
1,..., B, calculate the estimator Hb in the same form as 6 was calculated for s.

3. The observed distribution of 9] e 9; imitates the distribution of 4.

4. The bootstrap estimator of the variance of 6 is

B B
oA 1 A A2 A 1 A
varp(0) = z— ;(9; — 6%, where 0* = 5 Ze;‘.
5. The bootstrap estimator of the mean squared error of 6 is
| B
AN A% A\2
mseg(9) = ﬁI;(eb )2

6. Given two population parameters 6 and ¢, with respective estimators 6 and @,
the bootstrap estimators of the covariance and the crossed mean squared error
of 6 and ¢ are

B
. 1 re A e
V(0. 9) = 52— D 6y — (@5 — ¢,
b=1
1 B
mses®,§) = =— 3 O =)@} — ).
b=1

This bootstrap method has the disadvantage of requiring the construction of an
artificial population for reproducing the original sampling design. In the case of
complex sampling designs with strata and clusters, like the ones implemented in
some labor force surveys, rebuilding the geographic structure of the population,
within the bootstrap procedure, implies the construction of artificial populations
with the same or similar cluster and strata sizes as the original one. In many cases,
this is simply impossible to perform.

2.7 Jackknife Resampling for Variance Estimation

The jackknife method was developed by Quenouille (1949, 1956) as a technique
for bias reduction in finite populations. Tukey (1958) suggested that jackknife could
also be used for variance estimation, and Durbin (1959) applied this idea in infinite
populations. The jackknife method is similar to the leave-one-out cross-validation
procedure, and it can also be considered as a method for data partitioning. In what
follows, the basic ideas for applying the Jackknife resampling are given. For more
details, see Sdrndal et al. (1992, pp. 437-442).
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Let s be a sample of n units drawn at random by a SRSWOR design. Let 6 be an
estimator of the population parameter 6. The jackknife resampling procedure gives
an estimator of var(@). The jackknife steps are

1. Partition at random the sample s in A groups of equal size m = n/A.

2. For each groupa, a =1, ..., A, build the subsample s, by eliminating from s
the units of group a. Based on s, calculate the estimator é(a) of 6 in the same
way as 6 was calculated for s.

A
. . . N 1 A
3. The jackknife estimator of 6 is 6; = 1 E 1 Oa)-
a=

A
4. The jackknife variance estimator is vary; = u (é(a) -6 1)2.
A a=1
In practice, vary is used as estimator of Var(é) and var(é 7). An alternative
estimator is

A
A—-1 A ~\ 2
varjy = T E (9(a) —9) .

a=1

It holds that varj, > varyg.
5. The jackknife bias estimator is bias; = (A — 1)(8; — 0).

Remark 2.4 Sirndal et al. (1992, pp. 437-442), introduce the jackknife estimator
of the variance by using the pseudovalues

0, =A0 —(A—1)0), a=1,...,A.

They define the jackknife estimator of 6 as bias-corrected estimator, i.e.
A
bk = leea=A9—(A—1)9j=e—(A—1)(9,—9) — 6 — bias, .
a=

Further, they give the variance estimator

1 A \2
Varjklsz(ea—ejK) 5

a=1

which is equal to var, because

(0 - éJK)2 - [[Aé —(A— 1)9@] - [Aé —(A- 1)@,]}2 = (-1 (0 - 0})2 .
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For applying the jackknife method, we have to fix a number of groups A. For
having a variance estimator with a good accuracy, we could take as many groups
as possible, i.e. A = n and m = 1. On the other hand, because of the computational
burden, we prefer working with few groups. The extreme cases are A = 2 and
m = n/2. In practice, it is quite common to take a value of A between the extreme
cases A =nand A = 2.

Remark 2.5 1If é(a), a =1,...,A, were uncorrelated random variables with the
same expectation, then var ;| should be unbiased for var(é 7). However, the é(a) ’s are
correlated, and therefore the unbiasedness property does not hold. The properties of
the jackknife estimators of a general type parameter 6 under a complex sampling
design have not been studied in the literature. Under a SRS and linear target
parameter, the jackknife variance estimator has, in general, a good behavior.

2.7.1 Delete-One-Cluster Jackknife for Estimators of Domain
Parameters

The delete-one-cluster jackknife method (see e.g. Rao and Tausi 2004) generates
jackknife samples by deleting a cluster each time. There are as many jackknife
samples as clusters are in the sample. Consider the jackknife sample, s(*d*c*),
obtained by excluding the cluster c, of the domain d, from the sample s, and denote
the corresponding domain d and cluster ¢ subsample by sjc( dyey) et Dy be the

number of domains in s, mg be the number of clusters in 54, C = Za?;] mq, mq,
be the number of clusters in d, and m ;,4, be the number of clusters in the jackknife
subsample sfd* ) The jackknife weight of individual j, cluster ¢, and domain d in

% .
S(d*C*) 18

wy. /w) ifd =dy, c # cy,

Wdcj(duey) = Wdejbde(d,e)s  bdedoen) = {1 ifd +d
k9

_ mq . ¥ __ mq
where wa. = > 0%} ey, wdej and wy = 300y L D0 JES o)

that the case d = d, and ¢ = c, does not appear in the jackknife sample s(*d*c*).

wycj. Note

The jackknife resampling method for estimating the variance of an estimator 6 of a
population parameter 6 is

1. By using the procedure described above, use sample s to draw jackknife samples
s(*d*c*), d. =1,...,Ds, cx =1,..., my,. For every jackknife sample, calculate
é(*d* ) in the same way as 6 was calculated, but using the jackknife weights

Wdcj(dscy)-
2. The observed distribution of {9("‘[,*0*) cde = 1,...,Dg,c = 1,...,my,} is

expected to imitate the distribution of estimator 6.
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3. The jackknife estimator of 6 and bias(é) is

r mdy md,
RS 5D 3L IV SIS YA}
d*—l ce=1 di=1 cy=1
A (2.10)
4. The design-based variance of 6 can be approximated by
Dy m mdy
A mjd, —1
var; (9) = Z o Z( e — ) (2.11)
dy= * cx=1

2.8 R Codes for Design-Based Direct Estimators

This section presents some R codes illustrating the use of the studied estimators.

2.8.1 Horvitz—Thompson Direct Estimators of the Total and the
Mean

We first read the auxiliary and sample data files and rename some variables.

# Auxiliary data

dataux <- read.table("Nds20.txt", header=TRUE, sep = "\t", dec = ".")
# Sort dataux by sex and area:

dataux <- dataux|[order (dataux$sex, datauxS$Sarea), ]

# Sample data

dat <- read.table("LFS20.txt", header=TRUE, sep = "\t", dec = ".")
# number of rows (cases) in dat:

n <- nrow(dat)

# Rename some variables

vl <- dat$UNEMPLOYED; y2 <- dat$EMPLOYED

w <- dat$SWEIGHT

area <- datS$AREA; sex <- dat$SEX

This section describes the following activities. For domains defined as AREA crossed
by sex, do:

Al. Estimate the totals of unemployed and employed people.
A2. Estimate the variances and the coefficients of variation.
A3. Repeat A1-A2 for means.

A4. Calculate the domain unemployment rates

AS5. Estimate the variance of the unemployment rate estimator.
A6. Repeat A1-AS for domains defined by AREA.
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Al. For estimating the totals of unemployed and employed people by AREA and SEX,
we apply formula (2.1), i.e.

dwl
Z wjyj-

j€sd

The R code is

dirl.ds <- aggregate (wxdata.frame(yl,y2), by=1list (Area=area, Sex=sex), sum)
# Assign column names
names (dirl.ds) <- c("area", "sex", "yltot", "y2tot")

A2. For estimating the variance of l?j"r !, we apply the formula (2.4), i.e.

Vai (V) =Y wjw; — Dy7.

Jjesa

The R code is

vardirl.ds <- aggregate (wx (w-1)xdata.frame(y1*2,y272),
by=1list (Area=area, Sex=sex), sum)

# Assign column names

names (vardirl.ds) <- c("area", "sex", "ylvar", "y2var")

We build a table with direct estimates of totals, variances, and coefficients of
variation.

# Add columns ylvar and y2var

dirl.ds <- cbind(dirl.ds, vardirl.dsS$ylvar, vardirl.ds$y2var)

# CV for yl

ylev <- 100+sgrt(vardirl.dssSylvar) /abs(dirl.dssyltot)

# CV for y2

y2cv <- 100+sgrt (vardirl.dssSy2var) /abs (dirl.dssy2tot)

# Add columns ylcv and y2cv

dirl.ds <- cbind(dirl.ds, ylcv, y2cv)

# Change column names for dirl.ds

namesds <- c("area", "sex", "yltot", "y2tot", "ylvar", "y2var", "ylcv",
"YZCV")

names (dirl.ds) <- namesds

A3. We calculate the estimators of the means and their variances by using the
formulas (2.1) and (2.4), i.e.

5dirl “1pdirl o (T 2~ (Odirl
Y, =N, Y;7, Var,,(Yd ):Nd varn(Yd )

# Add column with population sizes

dirl.ds <- cbind(dirl.ds, dataux$N)

# Add columns with HT estimates of means

dirl.ds <- cbind(dirl.ds, dirl.dsSyltot/datauxsN,
dirl.ds$y2tot/dataux$N)

# Variance estimates of HT estimator

dirl.ds <- cbind(dirl.ds, dirl.ds$ylvar/datauxs$N”2, dirl.ds$y2var/

datauxs$N™2)
# Change column names for dirl.ds
names (dirl.ds) <- c(namesds, "Nds", "ylmean", "y2mean", "ylmeanvar",

"y2meanvar")
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A4. For estimating the unemployment rates (in %), we employ the ratio estimator

Ydtrl

RIT = 2 100
vdirl vdirl ’
Yia +Ya

where Yd”1 and Y d”l are the direct estimators of the totals of unemployed and
employed people respectlvely The R code is
# Include estimates of unemployment rates in table dirl.ds

dirrate.ds <- 100xdirl.ds$yltot/(dirl.ds$yltot + dirl.ds$y2tot)
dirl.ds <- cbind(dirl.ds, rate=dirrate.ds)

AS5. For estimating the covariances &)V()A’l‘{"d” d”l) we apply the corresponding
formula of Remark 2.1, i.e.

oV (V{7 YY) = " wj(w; — Dyijya.j.

J€sa

The R code is

covardirl.ds <- aggregate (wx (w-1)*data.frame (ylxy2),
by=1ist (Area=area, Sex=sex), sum)

# Column names

names (covardirl.ds) <- c("area", "sex", "covar")

For estimating the variance of the unemployment rate estimator, we apply the
formula (3.10) of Chap. 3, i.e.

72 Y2
s 2.d 1.d
Var(Ry) = ———%— var(Y1,4) + AR Y vai(¥,q)
Mg+ Y2.4) (Y1,a + Y2,0)
2?1,d?2,d — o
— ——————¢cov(Y1.4, Y2.0),

(1?1,01 + Y2.0)*

where )A’Ld = )?ldidrl and f’z’d = )A’zd’;i’ ! The following R code calculates @(ﬁd)

# Summands in formula of covariance estimator

sl.ds <- dirl.ds$y2tot”2xdirl.dsSylvar/(dirl.dsS$yltot+dirl.ds$y2tot) 4

s2.ds <- dirl.ds$yltot”2s+dirl.ds$y2var/(dirl.ds$yltot+dirl.ds$y2tot) 4

s12.ds <- 2xdirl.dsSyltotxdirl.dsSy2totxcovardirl.dssScovar/
(dirl.ds$yltot + dirl.ds$y2tot)”4

# Estimates of variances and coefficients of variation

dirl.ds$vrate <- 10%4x(sl.ds+s2.ds-s12.ds)

dirl.ds$cvrate <- 100%sgrt(dirl.dsSvrate) /abs(dirl.dsSrate)
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Table 2.1 DIRI estimates of labor status indicators for sex=1 (left) and sex=2 (right)

area |yltot | y2tot | ylvar y2var rate | yltot | y2tot | ylvar y2var rate
1 344 5422 [ 117,992 | 1,548,184 | 5.97 |452 3637 | 112,068 | 960,992 | 11.05

2 206 |1782 | 42,230 | 433,104 |10.36 222 |1674 | 49,062 |331,572 | 11.71
3 0 3452 0| 676,846 | 0.00 | 165 |1320 | 27,060 |220,026 |11.11
4 |179 |3388 | 31,862 | 613,772 | 5.02 | 187 2798 | 34,782 | 500,522 | 6.26
5 0 2549 0 | 421,576 | 0.00 | 137 |2065 | 18,632 | 337,506 @ 6.22
6 |381 3658 | 72,380 | 695,074 @ 9.43 | 200 735 | 39,800 | 108,008 |21.39
7 |137 2857 | 18,632 | 555,234 @ 4.58 0 |3121 0 | 606,322 | 0.00
8 188 2863 | 35,156 | 500,160 | 6.16 0 2625 0 | 452,400 | 0.00
9 600 |6641 135,138 |1,243,378 | 8.29 |346 3124 | 64,512 | 514,402 | 9.97
10 | 156 |1655 | 24,180 | 282,474 | 8.61 0 |1313 0 233,774 | 0.00

The R code to save the results is

outputl <- data.frame(dirl.ds[,1:6], rate=round(dirrate.ds,2))
head (outputl, 10)
A6. This activity is an exercise.

For the ten first areas, Table 2.1 presents some of the contents of the data frame
dirl.ds. The columns yltot and y2tot contain the direct estimates, )% f{’; Iand I?zgfid’ L
of totals of unemployed and employed people. The columns ylvar, y2var, and rate
give the variance estimates var, ()A’ld”'d’ ") and Vat, (Y§i"!) and the unemployment
rates estimations Iéj’” = ?{‘{’;1 / (?ﬁ’;{ 1y f@‘f’; 1). The left (right) part of Table 2.1
contains the results for sex=1 (sex=2). In domains with null sample size, the dirl
estimator is not calculable, and we deliver the value of 0.

2.8.2 Hdjek Direct Estimator of the Mean and the Total

This section describes the following activities. For domains defined as AREA crossed
by sex, do:

B1. Estimate the proportions of unemployed and employed people.
B2. Estimate the variances and the coefficients of variation.

B3. Repeat B1-B2 for totals.

B4. Estimate the unemployment rates.

B5. Estimate the variance of the unemployment rate estimator.

B6. Repeat B1-B5 for domains defined by AREA.
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B1. By applying the formula (2.1), we calculate the estimator I?G‘,”” of the totals of
unemployed and employed people by arRea and sex. The R code is

dir <- aggregate (wxdata.frame(l/w,1,yl,y2), by=list (Area=area,Sex=sex), sum)
# Column names
names (dir) <- c("area", "sex", "nds", "hatNds", "yltot", "y2tot"

We calculate the direct estimates of means by AREA and SEx by applying the formula
2.7), 1.e.

: Sdirl v,
2dir2 ya B ZjESd w;yj

d =5 =
Nq D jess Wi

The R code is

dir2.ds <- data.frame (area=dir$Sarea, sex=dir$sex, nds=dirS$nds,
hatNds=dirs$hatNds)

# Estimates of means of unemployed people

dir2.ds$ylmean <- dir$yltot/dirs$hatNds

# Estimates of means of employed people

dir2.dsS$y2mean <- dirSy2tot/dir$hatNds

~dir2
B2. For estimating the variance of Y ; , we apply the third formula of Remark 2.3,

i.e.

g ~dir2 1 ~dir2
Varn(Yd ):mej(wj—l)(yj—Yd )2,
d jesg

The R code for the numerator is

# Define all the necessary objects
differencel <- difference2 <- numeratorl <- numerator2 <- wwl <- list()
for(d in 1l:nrow(dir2.ds))
# Create a logic vector with the indexes of the corresponding domains
condition <- paste (datSAREA,dat$SEX,sep="")==paste(dir2.dsSarea,
dir2.dsS$sex,sep="") [d]
# Calculate the difference between data and mean of each domain
differencel[[d]] <- yl[condition]-dir2.dsS$Sylmean [d]
difference2[[d]] <- y2[condition]-dir2.dsSy2mean [d]
wwl[[d]] <- wl[condition] (w[condition]-1)
numeratorl [[d]] <- wwl[[d]]xdifferencel[[d]]"2
numerator2 [[d]] <- wwl[[d]]xdifference2[[d]]"2

~dir2
The following R code calculates Var; (Y, ) by AREA and SEX:

dir2.ds$ylmeanvar <- sapply(numeratorl, sum)/dir2.ds$hatNds”2
dir2.ds$y2meanvar <- sapply(numerator2, sum)/dir2.ds$hatNds”2

~dir2
We include in dir2.ds the estimated coefficients of variationcv =cv(Y,; ).

# cv of yl-mean (in %)
dir2.ds$ylcv <- 100xsgrt(dir2.ds$ylmeanvar) /abs (dir2.dsSylmean)
# cv of y2-mean (in %)
dir2.dsS$y2cv <- 100+sqgrt (dir2.dsSy2meanvar) /abs (dir2.ds$y2mean)
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B3. We repeat steps 1 and 2 for estimating the totals of unemployed and employed
people. We use the estimators (2.7) and the fourth formula of Remark 2.3, i.e.

~dir2 N2 ~dir2
odir2 v = (ydir2 d v 2
Vi = NaYy o, V() = 28 ) Jwitw; = DOy =Yg )%
d jesq
This is done with the R code
dir2.dsSyltot <- dir2.dsS$Sylmeanxdataux$N
dir2.dsSy2tot <- dir2.dsS$Sy2meanxdataux$N

dir2.dssyltotvar <- dir2.ds$ylmeanvarxdatauxsN”™2
dir2.ds$y2totvar <- dir2.ds$y2meanvarsdatauxsN”™2

B4. The unemployment rate and its direct estimator are

vdir2
Y14 - Yi'a

Rd -0 d = < -
Yia+Y2a ydirz 4 ydir2

The following R code estimates the unemployment rates (in %):

dir2.dsSrate <- 100xdir2.dssSyltot/(dir2.ds$yltot + dir2.dsSy2tot)
B5. For estimating the covariances cov(Y ld’; 2, I?zd’; %), we apply the last formula of
Remark 2.3, i.e.

A g A g N2 ~dir2 ~dir2
— dir2 vydir2 d
oV (V2,3 = =43 " wjw; = DO = Yy g )02 = Yag)-
d jesq
The R code is
wwlsls2 <- mapply(wwl, mapply(differencel, difference2, FUN="x"),
FUN=||*II)

sumcovardir2 <- sapply(wwlsls2, sum)
covardir2.ds <- sumcovardir2xdataux$N*2/dir2.ds$hatNds”2

For estimating the variance of the unemployment rate estimator, we apply the
formula (3.10) of Chap. 3, i.e.

V2 V2

—_ A Y2 d —~ > Yl d —~ >
Var(Ry) = ——29 Gar(V1.g) + ——%— Var(Va.q)
(Y1.a + Y2.0)* (Y1.a+ Y2,0)*

2Y1.4Y2.4

T Giat ot cov(Y1.4, Vo),
1.d + Y24
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where )?1,,1 = )?Idid’Z and ),}de = )A’Z"Z 2 The following R code calculates @(ﬁd):

# Summands in formula of covariance estimator

sl.ds <- dir2.ds$y2tot”2xdir2.dsSyltotvar/(dir2.ds$yltot+
dir2.dssy2tot) “4

s2.ds <- dir2.dsS$yltot”2xdir2.dsS$y2totvar/(dir2.dsSyltot+
dir2.dsSy2tot) *4

s12.ds <- 2xdir2.ds$yltotxdir2.dsS$y2totxcovardir2.ds/
(dir2.ds$yltot+dir2.dssSy2tot) 4

# Estimates of variances and coefficients of variation

dir2.ds$vrate <- 10%4+(sl.ds+s2.ds-s12.ds)

dir2.dsS$Scvrate <- 100+sqgrt (dir2.dsS$Svrate) /abs(dir2.dsSrate)

The R code to save the results is

output2 <- data.frame(dir2.ds[,1:2], round(dir2.ds[,11:141]1),

rate=round(dir2.ds[,15],2))

head (output2, 10)

B6. This activity is an exercise.

For the ten first areas, Table 2.2 presents some of the contents of the data frame
dir2.ds. The columns y1tot and y2tot contain the direct estimates, )% ld’d’ 2 and ?2‘{’; 2
of totals of unemployed and employed people. The columns ylvar, y2var, and rate
give the variance estimates var, (l? ]d”; 2) and vary, (?Zd’d’z) and the unemployment
rates estimations 12’3”2 = ?f{;’z/(?ﬁijz + 1?2‘1”;1’2). The left (right) part of Table 2.2
contains the results for sex=1 (sex=2). In domains with null sample size, the dir2
estimator is not calculable, and we deliver the value of 0. By comparing the results
presented in Tables 2.1 and 2.2, we conclude that dir2 estimators of totals have, in
general, smaller variances than dirl estimators. However, they both give the same
estimates of unemployment ratios.

Comparing the results presented in Tables 2.1 and 2.2 one can observe that the
Hijek type estimator dir2 has lower variance estimates than the Horvitz—Thompson
estimator dirl, particularly in the columns denoted as y2var.

Table 2.2 dir2 estimates of labor status indicators for sex=1 (left) and sex=2 (right)

area |yltot | y2tot | ylvar y2var rate yltot | y2tot | ylvar y2var rate
347 | 5470 | 114,455 | 610,953 | 5.97 |453 3648 | 107,441 568,195 | 11.05

—_

2 |209 1809 | 41,081 |192,151 |10.36 225 |1694 | 47,076 | 194,190 | 11.71
3 0 3521 0 122,182 | 0.00 | 165 |1317 | 25,787 | 142,520 |11.11
4 182 |3436 | 31,534 173,090 | 5.02 | 189 |2828 | 34,115 217,891 | 6.26
5 0 | 2456 0 | 84,070 | 0.00 | 137 |2069 | 18,176 | 163,088 | 6.22
6 391 |3758 | 70,745 | 213,647 | 9.43 | 194 712 | 33,309 | 71,319 |21.39
7 138 | 2885 | 18,584 | 142,130 | 4.58 0 3071 0 | 150,426 | 0.00
8 189 2878 | 33,612 | 115,024 | 6.16 0 2648 0 139,145 | 0.00
9 |595 |6587 | 124,176 450,588 | 8.29 |348 |3142 | 62,643 350,470 | 9.97
10 | 159 | 1687 | 24,034 | 144,069 | 8.61 0 1289 0 | 133,244 | 0.00
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2.8.3 Jackknife Estimator of Variances

This section describes the following activities. For domains defined by AREA, do:

C1. Estimate the totals of unemployed and employed people.
C2. Calculate direct estimators of variances and coefficients of variation.
C3. Calculate jackknife estimators of variances and coefficients of variation.

We first calculate some auxiliary parameters of the sample data file LFS20.txt.

# Number of domains
D <- length(unique (dat$AREA))
# Domain sample sizes
nd <- tapply(rep(1l,n), INDEX=1ist (dat$SAREA) , FUN=sum)
# Clusters
nCLUSTER <- unique (dat$CLUSTER)
# Number of clusters
J <- length(unique (dat$CLUSTER))
md <- vector()
# Number of clusters by domains
for (d in 1:D)
md[d] <- length(unique (dat$CLUSTER [dat$SAREA==d]))

C1. By applying the formula (2.1), we calculate the direct estimates, dirl, of the
totals of unemployed and employed people, i.e.

dir.d <- aggregate (wxdata.frame(yl,y2), by=1list (dat$SAREA), sum)
# Assign column names
names (dir.d) <- c("area", "yltot", "y2tot")

C2. By applying the formula (2.3), we calculate the direct estimators of the
variances, 1.e.

vardir.d <- aggregate (wx (w-1)«data.frame(y1*2,y2%2), by=list (dat$SAREA), sum)
# Assign column names
names (vardir.d) <- c("area", "ylvar", "y2var")

The direct estimators of the coefficients of variations are

cvdirl <- round(100+sqgrt (vardir.d$ylvar) /abs(dir.dsSyltot),2) # CV for vyl
cvdir2 <- round(100+sgrt (vardir.dS$y2var) /abs(dir.dsSy2tot),2) # CV for y2

C3. For calculating the jackknife estimators of the variances, we define the auxiliary
arrays

jackdirl <- jackdir2 <- matrix (0, nrow=D, ncol=J)

We run the following jackknife loop:

for (j in 1:J)
set <- subset(dat, dat$CLUSTER!=nCLUSTER[j], na.rm=TRUE)
# Jackknife weights
if (length(dat$AREA[dat$CLUSTER==3])>0) {
domjack <- unique (dat$AREA [dat$CLUSTER==3j])
jfactor <- sum(dat$WEIGHT [dat$AREA==domjack])/
sum (set SWEIGHT [set SAREA==domjack])
setSWEIGHT [set SAREA==domjack] <- set$WEIGHT [set$AREA==domjack] *
jfactor

# Direct estimators
jdir.d <- aggregate (set$SWEIGHT+data.frame (set SUNEMPLOYED,
set$SEMPLOYED) , by=1list (set$SAREA), sum)
# Assign column names
names (jdir.d) <- c("area","yltot","y2tot")
jackdirl[,j] <- jdir.dsyltot
jackdir2[,j] <- jdir.dsy2tot

}

We calculate the jackknife means.
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jmeandirl <- rowMeans (jackdirl)
jmeandir2 <- rowMeans (jackdir2)

We apply the formulas of Sect. 2.7.1, for calculating the jackknife variances and
coefficients of variation.

# Number of clusters by jackknife domain
md.J <- list()
for (d in 1:D){

md.J[[d]] <- md

md.J[[d]][d] <- md.J[[d]]I[d]l-1

factor <- Map(f="/", lapply(md.J,1,FUN="-"), md.J)

# Jackknife variances

diff.cuad.l <- (jackdirl-jmeandirl) "2

diff.cuad.2 <- (jackdir2-jmeandir2)*2

group <- rep(l:D, md)

jvardirl <- jvardir2 <- vector () # declare objects for indexing

for (d in 1:D) {
jvardirl[d] <- sum(sapply(split(diff.cuad.l([d,],group), sum)=xfactor[[d]])
jvardir2[d] <- sum(sapply(split(diff.cuad.2[d,],group), sum)=xfactor[[d]])

# Jackknife coefficients of variation
jeovdirl <- round(100*sqgrt (jvardirl) /jmeandirl, 2)
jeovdir2 <- round(100%sqgrt (jvardir2) /jmeandir2,2)

The R code to save the results is
output3 <- data.frame(nd, yl=dir.d$yltot, v.yl=vardir.d$ylvar,
vJ.yl=round(jvardirl), cv.yl=cvdirl, cvJ.yl=jcvdirl,
y2=dir.dS$y2tot, v.y2=vardir.dS$y2var,
vJ.y2=round (jvardir2), cv.y2=cvdir2, cvJ.y2=jcvdir2)
head (output3, 10)
Table 2.3 presents the results for the 10 first domains (area). The labels y; and
y2 denote the dirl direct estimates of the totals of unemployed and employed
people, respectively. The direct estimates of the variances of the direct estimators
of totals are denoted by v(y1) and v(y2). The corresponding jackknife estimates are
v;(y1) and v;(y2). The direct estimates of the coefficients of variation of the direct
estimators of totals are denoted by c(y;) and c(y2). The corresponding jackknife
estimates are ¢y (y1) and cy(y2). The direct and jackknife estimators of variances
and coefficients of variation follow the same pattern. In any case, a finer analysis
cannot be done because the data used is simulated and does not come from a real

survey.

Table 2.3 dirl estimates of unemployment (left) and employment (right) totals by area

d |ng [y |[v(y1) vy e es)y2 | v(y2) vy (y2) c(y2)| cs(y2)
1 60 |796 230,060 | 329,637 60.26/ 72.19 | 9059| 2,509,176 | 1,365,062 |17.49| 12.90
2| 371428 91,292 | 70,084 |70.59 61.84 | 3456/ 764,676 674,173 |25.30/ 23.76
3| 471|165 27,060 | 26,103 99.70/97.87 |4772| 896,872 253,103 [19.85/ 10.54
4| 55|366 66,644 46,415|70.53|58.87 | 6186| 1,114,294 313,081 [17.06| 9.05
5] 50137, 18,632 | 17,774 199.63/97.30 1 4614| 759,082 617,055 |18.88|17.03
6| 43581 112,180 | 307,334 |57.65/95.49 | 4393| 803,082 50,480 120.40| 5.11
7| 48137 18,632 17,338 |99.63|96.15 | 5978| 1,161,556 284,300 [18.03| 8.92
8| 48 | 188 35,156 | 33,465 99.731 97.30 | 5488| 952,560 198,549 |17.78| 8.12
911251946 199,650 | 242,903 |47.23|52.09 | 9765| 1,757,780 622,368 |13.58 8.08

—_
]

41 | 156 24,180 | 22,714 199.68|96.63 | 2968 516,248 491,492 |24.21) 23.62
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2.8.4 Functions for Calculating Direct Estimators

The function dir1l calculates the Horvitz—Thompson direct estimators of the mean
and the total. The R code is

dirl <- function(data, w, domain, Nd) {
if (is.vector (data)) {
last <- length(domain) + 1
Nd.hat <- aggregate (w, by=domain, sum) [,last]

nd <- aggregate(rep(l, length(data)), by=domain, sum) [,last]
tot <- aggregate (wxdata, by=domain, sum)
names (tot) <- c(names (domain), "tot")

var.tot <- aggregate (w+ (w-1)*data™2, by=domain, sum) [, last]
if (missing (Nd)) {
} return (cbind (tot, var.tot, Nd.hat, nd))
elsef
mean <- tot[,last]/Nd
var.mean <- var.tot/Nd”2
return (cbind (tot, var.tot, mean, var.mean, Nd.hat, Nd, nd))

}

else{
warning ("Only a numeric or integer vector must be called as data",
call. = FALSE)
}
}

The function dir2 calculates the Hajek direct estimators of the mean and the total.
The R code is

dir2 <- function(data, w, domain, Nd) {
if (is.vector (data)) {
last <- length(domain) + 1
Nd.hat <- aggregate(w, by=domain, sum) [,last]
nd <- aggregate(rep(l, length(data)), by=domain, sum) [,last
Sum <- aggregate (wxdata, by=domain, sum)
mean <- Sum[,last]/Nd.hat
dom <- as.numeric (Reduce ("paste0", domain))
if (length (domain)==1) {
domain.unique <- sort (unique (dom))

else{
domain.unique <- as.numeric (Reduce ("pasteO", Sum[,1l:length(domain)]))

difference <- list()
for(d in 1:length(mean)) {
condition <- dom==domain.unique [d]
difference([[d]] <- wlcondition] (w[condition]-1)* (datal[condition]-mean[d]) "2

var.mean <- unlist (lapply(difference, sum))/Nd.hat”2
if (missing (Nd)) {

return (data.frame (Sum[, -last], mean, var.mean, Nd.hat, nd))
else{

tot <- meanxNd

var.tot <- var.meansNd"2
return (data.frame (Sum[,-last], tot, var.tot, mean, var.mean, Nd.hat, Nd, nd))

else(
warning ("Only a numeric or integer vector must be called as data",
call. = FALSE)

}

The following R code illustrates the use of both functions, dirl and dir2, to the
data set used in this chapter. We first read the sample data files and rename some
variables.

# Auxiliary data
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dataux <- read.table("Nds20.txt", header=TRUE, sep = "\t", dec = ".")
# Sort dataux by sex and area:

dataux <- dataux|[order (dataux$sex, datauxS$Sarea), ]

# Sample data

dat <- read.table("LFS20.txt", header=TRUE, sep = "\t", dec = ".")

# number of rows (cases) in dat:

n <- nrow(dat)

# Rename some variables

vyl <- datSUNEMPLOYED

w <- dat$SWEIGHT

Note that data and w must be a vector R object and that domains must be introduced
as a list R object. The following R code calculates the direct estimator for the totals
and means of unemployed people:

# Horvitz-Thompson direct estimator for unemployed people

directl <- dirl(data=yl, w=datS$SWEIGHT, domain=list (area=dat$AREA,
sex=dat$SEX), Nd=dataux$N)

head(directl, 10)

# Hajek direct estimator for unemployed people

direct2 <- dir2(data=yl, w=dat$SWEIGHT, domain=list (area=dat$AREA,
sex=dat$SEX), Nd=dataux$N)

head (direct2, 10)
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