
Chapter 2
Design-Based Direct Estimation

2.1 Introduction

Survey samples provide useful information about a population and avoid the need
of carrying out the more expensive and time-consuming censuses. Sampling theory
covers sampling designs and inference procedures for finite populations. If the
population is partitioned in domains, the estimators of parameters of the global
populations can be adapted and applied to estimate domain parameters. This can
be done by treating the domains as independent new populations. This approach to
small area estimation yields to design-based direct estimators.

The estimation of small area parameters, like domain means, totals, or ratios
of a target variable, is an inference problem in finite populations. Historically,
the first estimators of population parameters defined at the domain level were
adaptations of the corresponding estimators defined for the global population. Direct
estimators use only the data of the target variable in the domain of interest, and their
properties are studied and optimized with respect to the probability distribution of
the sample design. They do not use data from other domains or time periods. Since
direct estimators are simple and intuitive, researchers use them as a benchmark to
establish comparisons and to measure the efficiency gain obtained by using more
sophisticated small area estimators.

This manuscript dedicates an initial chapter to introduce the basic concepts and
tools of sampling and inference in finite populations. Inclusion probabilities and
their inverses (sampling weights) play here a relevant role. For estimating means
and totals, two types of direct estimators are considered. They were introduced by
Horvitz and Thompson (1952) and Hájek (1971), respectively. For estimating ratios,
plug-in estimators are employed. They are defined by substituting totals by their
corresponding direct estimators.

The chapter gives a short introduction to the survey sampling theory and
describes some properties of direct estimators, with special emphasis on estimators
of means, totals, and ratios. For each estimator, the design-based expectation and
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variance are calculated and a direct estimator of the variance is given. In many
practical cases, only first order inclusion probabilities are available, and therefore
it is not possible to calculate unbiased direct estimators of variances. This is why
the chapter also presents design-based resampling methods, like bootstrap and
Jackknife, for variance estimation. The last section contains some examples giving
R codes, including functions for calculating domain-level direct estimators.

2.2 Survey Sampling Theory

A finite population is a collection of different units, such as people, companies,
households, hospitals, and so on. The survey sampling theory deals with the
selection of samples (subsets of the population), the observation of characteristics
of sampled units, and the use of the obtained data for doing inferences about the
population.

Survey sampling is interested in a fixed population from which a part is observed.
In other branches of statistics, observations are realizations of random variables, and
the inferences are not referred to any actual population, but to a probability law on
the random variables. The following example clarifies this point.

Example 2.1 An industry is interested in determining if the units of a production
line fulfill some given specifications. By assuming the general approach to statistics,
we can model the data (CORRECT = 0 and DEFECTIVE = 1) as realizations of
independent and identically distributed Bernoulli variables with parameter θ . The
statistical target is the estimation of the probability θ of making a defective unit.
The problem becomes a finite population survey sampling problem if we are only
interested in the units produced during a given day. In the last case, we are interested
in estimating the proportion

p = number of defective units produced during the day

number of units produced during the day
.

In survey sampling, there are two main approaches. The first one assumes that the
data obey the probability distribution given by the random extraction of samples
from the population. This is the design-based approach. In the second case, the
scores of the target variable are assumed to be the realization of a random vector
with distribution given by a statistical model. This is the model-based approach. The
inference procedures are built and studied depending on the assumed probability
distribution.

Under the design-based approach, the vector containing the values of a variable
y in all the population units (y1, . . . , yN) is the basic parameter. A probabilistic
sampling plan (or design) is a scheme for choosing the samples, such that each
subset s of the population U has a known selection probability p(s). Let us consider
a population parameter T and its estimator ̂T based on s. The definitions of bias and
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variance of ̂T are based on p(s), i.e.

BIAS: Eπ [̂T − T ] = ∑

s⊂U p(s)[̂T (s) − T ],
VARIANCE: varπ (̂T ) = ∑

s⊂U p(s)
(

̂T (s) − Eπ [̂T ])2.

We use the notations Eπ and varπ to emphasize the fact that we have expectations
and variances with respect to the design-based probability distribution p(s). Expec-
tations and variances with respect to a model-based distribution are denoted by EM

and varM .
In general, the calculation of p(s) is not an easy task. Some simple cases are

the simple random samplings with replacement (SRSWR) and without replacement
(SRSWOR), i.e.

p(s) = 1
Nn for a SRSWR sample s of size n,

p(s) = 1
(

N
n

) for a SRSWOR sample s of size n.

However, many calculations only require the inclusion probabilities πi and πij , i.e.

πi = P(i ∈ s) = ∑

s∈s(i) p(s), where s(i) = {s ⊂ U : i ∈ s} is the set of samples
containing the unit i,

πij = P(i ∈ s, j ∈ s) = ∑

s∈s(i,j) p(s), where s(i, j) = {s ⊂ U : i, j ∈ s} is the
set of samples containing the units i and j .

For example, under the SRSWOR, the inclusion probabilities are

πi = n/N, πij = n(n − 1)

N(N − 1)
for i, j ∈ U, i �= j.

The following definition will be useful in some of the proofs.

Definition 2.1 The sampling design indicator functions are

δi(s) =
{

1 if the unit i is in the sample s

0 otherwise
d= Bernoulli(πi).

It holds that

(1)
∑N

i=1 δi(s) = n, (2) P (δi(s) = 1) = 1 − P(δi(s) = 0)=πi,

(3) P (δi(s) = 1, δj (s) = 1) = πij , (4) πii = πi,

(5) Eπ [δi(s)] = Eπ [δ2i (s)] = πi, (6) Eπ [δi(s)δj (s)] = πij ,

(7) varπ (δi(s)) = πi(1 − πi), (8) covπ (δi(s), δj (s)) = πij − πiπj .
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In what follows, we simplify the notation and write δj instead of δj (s). Further,
we consider only sampling without replacement, and we use the following notations:

• Indexes: s denotes a sample, and d = 1, . . . , D, j = 1, . . . , N , and g =
1, . . . ,G denote domains (or small areas), units (or individuals), and groups,
respectively.

• Population and sample: U = ⋃D
d=1 Ud for population and s = ⋃D

d=1 sd for
sample, where Ud and sd are population and sample in domain d, respectively.

• Sizes: N for population and n for sample. When N and n have subindexes,
they denote the corresponding size of the indexed set. For example, Nd is the
population size of domain d.

• Totals: Y and X denote the population totals of variables y and x, respectively.
If Y and X have subindexes, then they denote the corresponding totals of the
indexed set.

• Means: Y and X denote the population means of variables y and x, respectively.
If Y and X have subindexes, then they denote the corresponding means of the
indexed set. For example, Yd denotes the population mean of domain d.

• Sampling weights: wj are the theoretical weights of the sampling design. They
are the inverses of the inclusion probabilities, i.e. wj = 1/πj .

Example 2.2 For any individual j , interviewed at a labor force survey, some
variables of interest are

yj=
{

1 if j is unemployed,
0 otherwise,

zj=
{

1 if j is employed,
0 otherwise,

tj=
{

1 if j is inactive,
0 otherwise.

Some target parameters are the totals of unemployed, employed, and inactive people
and the unemployment rate, i.e.

Yd =
∑

j∈Ud

yj , Zd =
∑

j∈Ud

zj , Td =
∑

j∈Ud

tj , and Rd = Yd

Yd + Zd

= Yd

Y d + Zd

,

where Yd = Yd/Nd, Zd = Zd/Nd , and Nd is the size of area d.

The following sections give estimators of the domain total and mean of a variable
y, i.e.

Yd =
∑

j∈Ud

yj , Y d = 1

Nd

∑

j∈Ud

yj .

Let us note that we assume that the units in Ud can be numbered, and in what
follows, we sometimes use the notation

∑

j∈Ud

yj =
Nd
∑

j=1

yj .
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2.3 Direct Estimator of the Total and the Mean

Horvitz and Thompson (1952) proposed the following direct estimators of the total
Yd and the mean Yd of domain d:

Ŷ dir1
d =

∑

j∈sd

wjyj =
∑

j∈sd

1

πj

yj , Ŷ
dir1

d = Ŷ dir1
d

Nd

, (2.1)

where Nd is assumed to be known. Properties of these estimators are summarized
in the following propositions.

Proposition 2.1 If πj > 0, ∀j ∈ Ud , then

(a) Eπ

[

Ŷ dir1
d

] = Yd ,

(b) varπ
(

Ŷ dir1
d

) =
∑

i∈Ud

∑

j∈Ud

(πij − πiπj )
yi

πi

yj

πj

, and

(c) v̂arπ
(

Ŷ dir1
d

)] =
∑

i∈sd

∑

j∈sd

πij − πiπj

πij

yi

πi

yj

πj

is an unbiased estimator of

varπ
(

Ŷ dir1
d

)

.

Proof We give two proofs of (a). The first one works directly with the probability
distribution of samples s. Let sd(j) be the set of all samples such that j ∈ sd =
s ∩ Ud . It holds that

Eπ

⎡

⎣

∑

j∈sd

yj

πj

⎤

⎦ =
∑

s

p(s)
∑

j∈sd

yj

πj

= y1

π1

∑

s∈sd (1)

p(s) + y2

π2

∑

s∈sd (2)

p(s)

+ · · · + yN

πN

∑

s∈sd (N)

p(s) =
∑

j∈Ud

yj

πj

πj =
∑

j∈Ud

yj = Yd,

since sd(j) = ∅ for j /∈ Ud .
An alternative and more simpler proof is obtained by applying the indicator

functions δj , i.e.

Eπ

[

Ŷ dir1
d

]

= Eπ

⎡

⎣

∑

j∈sd

yj

πj

⎤

⎦ = Eπ

⎡

⎣

∑

i∈Ud

yi

πi

δi

⎤

⎦ =
∑

i∈Ud

yi

πi

Eπ [δi] =
∑

i∈Ud

yi = Yd.
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(b) By using the indicator functions, we get

varπ
(

Ŷ dir1
d

) = varπ

⎛

⎝

∑

j∈sd

yj

πj

⎞

⎠ = varπ

⎛

⎝

∑

i∈Ud

yi

πi

δi

⎞

⎠=
∑

i∈Ud

∑

j∈Ud

yi

πi

yj

πj

covπ

(

δi , δj

)

=
∑

i∈Ud

∑

j∈Ud

(πij − πiπj )
yi

πi

yj

πj

.

(c) By using the indicator functions, we have

Eπ

[

v̂arπ
(

Ŷ dir1
d

)

]

=
∑

i∈Ud

∑

j∈Ud

πij − πiπj

πij

yj

πj

yj

πj

Eπ

[

δiδj

]

=
∑

i∈Ud

∑

j∈Ud

(πij − πiπj )
yi

πi

yj

πj

= varπ
(

Ŷ dir1
d

)

.

�	
Corollary 2.1 If πj > 0, ∀j ∈ Ud , then

(a) Eπ

[

Ŷ
dir1

d

] = Yd ,

(b) varπ
(

Ŷ
dir1

d

) = 1

N2
d

∑

i∈Ud

∑

j∈Ud

(πij − πiπj )
yi

πi

yj

πj

, and

(c) v̂arπ
(

Ŷ
dir1

d

) = 1

N2
d

∑

i∈sd

∑

j∈sd

πij − πiπj

πij

yi

πi

yj

πj

is an unbiased estimator of

varπ
(

Ŷ
dir1

d

)

.

Let us consider now a simple random sampling design without replacement inside
each domain (SRSWORD). This is to say, we consider a stratified random sampling
design where the strata are the domains and the domain samples, n1, . . . , nD , are
fixed. For i, j ∈ Ud we have

πi = nd/Nd, πii = πi = nd/Nd, πij = nd(nd − 1)

Nd(Nd − 1)
if i �= j.

Proposition 2.2 Under a SRSWORD design, the variance of the direct estimator of
the total is

varπ
(

Ŷ dir1
d

) = (1 − fd)N2
d

nd

S2
yd , S2

yd = 1

Nd − 1

∑

i∈Ud

(yi − Yd)2, fd = nd

Nd

.
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Proof It holds that

varπ
(

Ŷ dir1
d

) =
Nd
∑

i=1

(πii − π2
i )

y2
i

π2
i

+
Nd
∑

i=1

Nd
∑

j=1
i �=j

(πij − πiπj )
yi

πi

yj

πj

=
Nd
∑

i=1

nd

Nd

(

1 − nd

Nd

)

N2
d

n2d

y2
i +

Nd
∑

i=1

Nd
∑

j=1
i �=j

(

nd(nd − 1)

Nd(Nd − 1)
− n2d

N2
d

)

N2
d

n2d

yiyj

=
Nd
∑

i=1

Nd − nd

nd

y2
i +

Nd
∑

i=1

Nd
∑

j=1
i �=j

(nd − Nd)

(Nd − 1)nd

yiyj

= Nd − nd

nd

⎡

⎢

⎢

⎢

⎣

Nd
∑

i=1

y2
i − 1

Nd − 1

Nd
∑

i=1

Nd
∑

j=1
i �=j

yiyj

⎤

⎥

⎥

⎥

⎦

= Nd − nd

nd

⎡

⎣

Nd
∑

i=1

y2
i

(

1 + 1

Nd − 1

)

− 1

Nd − 1

⎛

⎝

Nd
∑

i=1

yi

⎞

⎠

2
⎤

⎥

⎦ = (Nd − nd)Nd

nd

⎡

⎣

1

Nd − 1

Nd
∑

i=1

y2
i − Y 2

d

Nd(Nd − 1)

⎤

⎦

= (Nd − nd)Nd

nd

S2
yd = (1 − fd)N2

d

nd

S2
yd .

�	
In sampling designs with πij = πiπj , i �= j , and πjj = πj , it holds that

varπ
(

Ŷ dir1
d

) =
∑

j∈Ud

1 − πj

πj

y2
j =

∑

j∈Ud

(wj − 1)y2
j , (2.2)

v̂arπ
(

Ŷ dir1
d

) =
∑

j∈sd

1 − πj

π2
j

y2
j =

∑

j∈sd

wj (wj − 1)y2
j . (2.3)

For the estimator of the domain mean, we have

varπ
(

Ŷ
dir1

d

) = 1

N2
d

∑

j∈Ud

(wj − 1)y2
j , v̂arπ

(

Ŷ
dir1

d

) = 1

N2
d

∑

j∈sd

wj (wj − 1)y2
j .

(2.4)
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The equalities πij = πiπj , i �= j , hold for the Bernoulli sampling (BS) design
and the SRSWR design. In sampling designs with πij ≈ πiπj if i �= j (i.e.
under SRSWOR), the above formulas are approximations. If a SRSWORD design is
employed, the approximation (2.2) is an upper bound of the variance of the estimator
of the total, i.e.

∑

j∈Ud

1 − πj

πj

y2
j =

Nd
∑

j=1

1 − nd

Nd

nd/Nd

y2
j =

Nd
∑

j=1

Nd − nd

nd

y2
j = (1 − fd)N2

d

nd

1

Nd

Nd
∑

j=1

y2
j

= (1 − fd)N2
d

nd

[

Nd − 1

Nd

S2
yd + Y

2
d

]

>
(1 − fd)N2

d

nd

S2
yd = varπ

(

Ŷ dir1
d

)

,

where the inequality holds if Nd is large enough and Yd is not too close to zero.
Särndal et al. (1992, p. 170), present the following formula for the covariance
between two direct estimators:

covπ (Ŷ dir1
d , Ẑdir1

d ) =
∑

i∈Ud

∑

j∈Ud

πij − πiπj

πiπj

yizj .

An unbiased estimator of the covariance is

ĉovπ (Ŷ dir1
d , Ẑdir1

d ) =
∑

i∈sd

∑

j∈sd

πij − πiπj

πijπiπj

yizj .

Remark 2.1 In sampling designs with πij = πiπj , i �= j , and πjj = πj , we have

covπ (Ŷ dir1
d , Ẑdir1

d ) =
∑

j∈Ud

1 − πj

πj

yj zj ,

ĉovπ (Ŷ dir1
d , Ẑdir1

d ) =
∑

j∈sd

1 − πj

π2
j

yj zj =
∑

j∈sd

wj (wj − 1) yj zj ,

covπ (Ŷ
dir1

d , Ẑ
dir1

d ) = 1

N2
d

∑

j∈Ud

1 − πj

πj

yj zj ,

ĉovπ (Ŷ
dir1

d , Ẑ
dir1

d ) = 1

N2
d

∑

j∈sd

1 − πj

π2
j

yj zj = 1

N2
d

∑

j∈sd

wj (wj − 1) yj zj .

Remark 2.2 For calculating ̂Ydir1
d , we need the sampling weights and the locations

of sampled units. This is to say, we need the data yj , wj , IUd
(j), j ∈ s, where

IUd
(j) is the indicator function, i.e. IUd

(j) = 1 if j ∈ Ud and IUd
(j) = 0 otherwise.
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2.4 Estimator of the Ratio

In applications of statistical inference in finite populations, we often find situations
where the target parameter is a ratio. Examples of ratio-type parameters are the
unemployment rate or the domain mean when the population size in the denominator
is unknown. This section gives some properties of estimators defined as a ratio of
direct estimators of domain totals. Let us consider the domain ratio Rd = Yd/Zd ,
where Yd = ∑

j∈Ud
yj and Zd = ∑

j∈Ud
zj , and the ratio estimator R̂d =

Ŷ dir1
d /Ẑdir1

d .

Proposition 2.3 The standardized bias of R̂d fulfills the inequality

(Brel
π [R̂d ])2 = (Eπ [R̂d ] − Rd)2

varπ (R̂d)
≤ varπ (Ẑdir1

d )

Z2
d

.

Proof It holds that

covπ (R̂d , Ẑdir1
d ) = Eπ [R̂d Ẑdir1

d ] − Eπ [R̂d ]Eπ [Ẑdir1
d ]

= Eπ

[

Ŷ dir1
d

] − Eπ [R̂d ]Eπ [Ẑdir1
d ]

= Yd − Eπ [R̂d ]Zd = −Zd

(

Eπ [R̂d ] − Rd

)

.

Therefore,

Eπ [R̂d ] − Rd = −covπ (R̂d , Ẑdir1
d )

Zd

.

By squaring both sides of the equality and using the symbol ρπ for correlation with
respect to the design-based probability, we obtain

(Eπ [R̂d ] − Rd)2 =
[

covπ (R̂d , Ẑdir1
d )

]2

Z2
d

= ρ2
π (R̂d , Ẑdir1

d )varπ (R̂d)varπ (Ẑdir1
d )

Z2
d

≤ varπ (R̂d)varπ (Ẑdir1
d )

Z2
d

,

which proves the stated result. �	
Proposition 2.3 gives the following conclusion: if

Brel
π [R̂d ] = Bπ [R̂d ]

(varπ (R̂d))1/2
= Eπ [R̂d ] − Rd

(varπ (R̂d))1/2
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is the standardized bias of the ratio estimator R̂d , then

(Brel
π [R̂d ])2 ≤ varπ (Ẑdir1

d )

Z2
d

.

Note that if the relative standard error (sampling error),

√

varπ (Ẑdir1
d )

Zd

,

of the denominator of R̂d tends to zero when the sample size increases, then the
relative bias of R̂d also tends to zero. This is an important property for building
ratio estimators.

Proposition 2.4 If Ŷ dir1
d and Ẑdir1

d are consistent estimators of Yd and Zd ,
respectively, then

(a) R̂d is approximately unbiased.
(b) If nd is large enough, an approximation to the variance of R̂d is

varπ (R̂d) ≈ 1

Z2
d

∑

i∈Ud

∑

j∈Ud

(πij − πiπj )
yi − Rdzi

πi

yj − Rdzj

πj

.

Proof The estimator R̂d is a function of two variables, i.e.

R̂d = Ŷ dir1
d

Ẑdir1
d

= f (Ŷ dir1
d , Ẑdir1

d ).

As the partial derivatives of f are ∂f
∂y

= 1
z
and ∂f

∂z
= − y

z2
, a first order Taylor series

expansion of f (Ŷ dir1
d , Ẑdir1

d ) around (Yd, Zd) yields to

R̂d = f (Ŷ dir1
d , Ẑdir1

d ) ≈ f (Yd, Zd) + ∂f (Yd, Zd)

∂y
(Ŷ dir1

d − Yd)

+ ∂f (Yd, Zd)

∂z
(Ẑdir1

d − Zd) = Rd + 1

Zd

(Ŷ dir1
d − Yd) − Yd

Z2
d

(Ẑdir1
d − Zd)

= Rd + 1

Zd

(Ŷ dir1
d − RdẐdir1

d ) = Rd + 1

Zd

∑

j∈sd

yj − Rdzj

πj

. (2.5)

(a) By taking expectations in (2.5), we have

Eπ [R̂d ] ≈ Rd + 1

Zd

(Yd − RdZd) = Rd.
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(b) By taking variances in (2.5) and using the sampling design indicator function
δj , we get

varπ (R̂d) ≈ 1

Z2
d

∑

i∈Ud

∑

j∈Ud

yi − Rdzi

πi

yj − Rdzj

πj

(πij − πiπj ).

�	
An estimator of the approximated variance of R̂d is

v̂arπ (R̂d) = 1

(Ẑdir1
d )2

∑

i∈sd

∑

j∈sd

πij − πiπj

πij

yi − R̂dzi

πi

yj − R̂dzj

πj

. (2.6)

The estimator v̂arπ (R̂d) is approximately unbiased if Eπ [R̂d ] ≈ Rd and
varπ (Ẑdir1

d ) ≈ 0. Otherwise, it is biased.

2.5 Other Direct Estimators of the Mean and the Total

Hájek (1971) proposed the following direct estimators of the domain mean and total:

Ŷ
dir2

d = Ŷ dir1
d

N̂d

=
∑

j∈sd
wjyj

∑

j∈sd
wj

, Ŷ dir2
d = NdŶ

dir2

d . (2.7)

These estimators have the following properties.

Proposition 2.5 If nd is large enough and πj > 0 ∀j ∈ Ud , then

(a) Eπ [Ŷ dir2

d ] ≈ Yd and

(b) varπ
(

Ŷ
dir2

d

) ≈ 1

N2
d

∑

i∈Ud

∑

j∈Ud

πij − πiπj

πiπj

(yi − Yd)(yj − Yd).

Proof Let zj = 1 ∀j ∈ Ud , then Zd = Nd and

Rd = Yd

Zd

= Yd

Nd

= Yd.

The ratio estimator of Rd is

R̂d = Ŷ dir1
d

Ẑdir1
d

=
∑

j∈sd
wjyj

∑

j∈sd
wj

= Ŷ
dir2

d .

Since the Hájek estimator is consistent, the proof follows immediately from
Proposition 2.4. �	
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An estimator of the approximated variance of Ŷ
dir2

d is

v̂arπ
(

Ŷ
dir2

d

)

= 1

N̂2
d

∑

i∈sd

∑

j∈sd

πij − πiπj

πijπiπj

(

yi − Ŷ
dir2

d

)(

yj − Ŷ
dir2

d

)

. (2.8)

Corollary 2.2 If nd is large enough and πj > 0 ∀j ∈ Ud , then

(a) Eπ [Ŷ dir2
d ] ≈ Yd and

(b) varπ
(

Ŷ dir2
d

) ≈
∑

i∈Ud

∑

j∈Ud

πij − πiπj

πiπj

(yi − Yd)(yj − Yd).

An estimator of the approximated variance of Ŷ dir2
d is

v̂arπ
(

Ŷ dir2
d

)] =
(

Nd

N̂d

)2
∑

i∈sd

∑

j∈sd

πij − πiπj

πijπiπj

(

yi − Ŷ
dir2

d

)(

yj − Ŷ
dir2

d

)

. (2.9)

Remark 2.3 In the case πij = πiπj , i �= j , and πjj = πj , we get

varπ
(

Ŷ
dir2

d

) ≈ 1

N2
d

∑

j∈Ud

1 − πj

πj

(yj − Yd)2,

varπ
(

Ŷ dir2
d

) ≈
∑

j∈Ud

1 − πj

πj

(yj − Yd)2,

v̂arπ (Ŷ
dir2

d ) = 1

N̂2
d

∑

j∈sd

1 − πj

π2
j

(

yj − Ŷ
dir2

d

)2

= 1

N̂2
d

∑

j∈sd

wj (wj − 1)
(

yj − Ŷ
dir2

d

)2
,

v̂arπ (Ŷ dir2
d ) = N2

d

N̂2
d

∑

j∈sd

wj (wj − 1)
(

yj − Ŷ
dir2

d

)2
.

Estimators of the covariance between two direct estimators of domain means and
totals, respectively, are

ĉovπ (Ŷ
dir2

d , Ẑ
dir2

d ) = 1

N̂2
d

∑

j∈sd

wj (wj − 1)
(

yj − Ŷ
dir2

d

)(

zj − Ẑ
dir2

d

)

,

ĉovπ (Ŷ dir2
d , Ẑdir2

d ) = N2
d

N̂2
d

∑

j∈sd

wj (wj − 1)
(

yj − Ŷ
dir2

d

)(

zj − Ẑ
dir2

d

)

.
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Under the SRSWORD design, it holds that

Ŷ
dir2

d =
∑

j∈sd

Nd

nd
yj

∑

j∈sd

Nd

nd

=
Nd

nd

Nd

∑

j∈sd

yj = 1

nd

∑

j∈sd

yj = ȳds ,

v̂arπ (Ŷ
dir2

d ) = 1

N2
d

∑

j∈sd

Nd

nd

Nd − nd

nd

(yj − ȳds)
2 = 1 − fd

nd

1

nd

∑

j∈sd

(yj − ȳds)
2

≈ (1 − fd)
s2yd

nd

,

where

s2yd = 1

nd − 1

∑

j∈sd

(yj − ȳds)
2.

As the direct estimator is approximately unbiased, the mean squared error and its
estimator are

MSE(Ŷ
dir2

d ) ≈ varπ
(

Ŷ
dir2

d

)

, mse(Ŷ
dir2

d ) = v̂arπ (Ŷ
dir2

d ).

For more details, see Särndal et al. (1992, pp. 185, 391), or Rao (2003, p. 12).

Although it is difficult to establish general conditions under which Ŷ
dir2

d is

preferred to Ŷ
dir1

d , Särndal et al. (1992, pp. 183–184), show some facts in favor
of the first one.

1. By comparing the variances of both estimators, we have that Ŷ
dir2

d is preferred
when the values of yj −Yd tend to be small. An extreme case is yj = c ∀j ∈ Ud .
In this case, it holds that

Yd = c, Ŷ
dir1

d = c

∑

j∈sd
wj

Nd

= c
N̂d

Nd

, Ŷ
dir2

d = c
N̂d

N̂d

= c.

As varπ
(

Ŷ
dir2

d

) = 0, Ŷ
dir2

d is preferred to Ŷ
dir1

d if varπ (N̂d) > 0.

2. The estimator Ŷ
dir2

d behaves better than Ŷ
dir1

d when the sample size varies. If
the sample size realization, nd = nd(s), is larger than the average sample size,

then the numerator and the denominator have many summands in Ŷ
dir2

d . In the

opposite case, the numerator and the denominator have few summands in Ŷ
dir2

d .

In this way, the ratio has some kind of stability. However, Ŷ
dir1

d does not present
this stability because its denominator is a known constant.
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In the case of the Bernoulli sampling where each individual is included in the
sample independently with probability πj = π , if yj = c ∀j ∈ Ud , it holds that

Ŷ
dir1

d = c
nd(s)

πNd

, Ŷ
dir2

d = c.

Therefore, the variability of Ŷ
dir1

d is only ought to the variability of nd for

different samples s. In this case, varπ (Ŷ
dir1

d ) > varπ (Ŷ
dir2

d ) = 0.

3. Another situation where Ŷ
dir2

d is preferred to Ŷ
dir1

d is when the sample contains
large values yj of the target variable associated to small inclusion probabilities
πj . In this case, the value of the numerator of both estimators tends to be quite

large. This fact is compensated by Ŷ
dir2

d because its denominator also tends to be

large. This compensation produces stability. However, the denominator of Ŷ
dir1

d

is constant and does not compensate the extreme values of the numerator.
Särndal et al. (1992, p. 184), give the following example that illustrates the

above described situation. Let us consider a domain d with Nd = 10 units y1 =
. . . = y9 = c e y10 = 2c. For estimating Yd = 1.1c, we draw a random sample of
size nd = 1 with inclusion probabilities π1 = . . . = π9 = 0.11 and π10 = 0.01.
Therefore, the unit 10 has the largest value of y and the smallest value of π . It
holds that

Ŷ
dir2

d =
{

c if s = {1}, . . . , {9},
2c if s = {10}, Ŷ

dir1

d =
{

c
1.1 if s = {1}, . . . , {9},
20c if s = {10}.

Obviously, with Ŷ
dir2

d , we avoid the possibility of obtaining absurd estimates of
Yd = 1.1c.

2.6 Bootstrap Resampling for Variance Estimation

In this section we present a basic bootstrap procedure for estimating the variance of
an estimator.

Let us consider samples s drawn at random from a population U according to a
given sampling design. Let θ̂ be the estimator of the population parameter θ . Särndal
et al. (1992, p. 442), describe the following basic bootstrap procedure:

1. From the sample s, build an artificial population U∗ mimicking U . This can be
done by replicating each sample register as many times as the calibrated sample
weight wj (elevation factor).
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2. Extract B independent bootstrap samples from U∗ by using the same sampling
design as the one used for obtaining s fromU . For each bootstrap sample sb, b =
1, . . . , B, calculate the estimator θ̂∗

b in the same form as θ̂ was calculated for s.
3. The observed distribution of θ̂∗

1 , . . . , θ̂∗
B imitates the distribution of θ̂ .

4. The bootstrap estimator of the variance of θ̂ is

v̂arB(θ̂) = 1

B − 1

B
∑

b=1

(θ̂∗
b − θ̂∗)2, where θ̂∗ = 1

B

B
∑

b=1

θ̂∗
b .

5. The bootstrap estimator of the mean squared error of θ̂ is

mseB(θ̂) = 1

B − 1

B
∑

b=1

(θ̂∗
b − θ̂ )2.

6. Given two population parameters θ and ϕ, with respective estimators θ̂ and ϕ̂,
the bootstrap estimators of the covariance and the crossed mean squared error
of θ̂ and ϕ̂ are

ĉovB(θ̂, ϕ̂) = 1

B − 1

B
∑

b=1

(θ̂∗
b − θ̂∗)(ϕ̂∗

b − ϕ̂∗),

mseB(θ̂ , ϕ̂) = 1

B − 1

B
∑

b=1

(θ̂∗
b − θ̂ )(ϕ̂∗

b − ϕ̂).

This bootstrap method has the disadvantage of requiring the construction of an
artificial population for reproducing the original sampling design. In the case of
complex sampling designs with strata and clusters, like the ones implemented in
some labor force surveys, rebuilding the geographic structure of the population,
within the bootstrap procedure, implies the construction of artificial populations
with the same or similar cluster and strata sizes as the original one. In many cases,
this is simply impossible to perform.

2.7 Jackknife Resampling for Variance Estimation

The jackknife method was developed by Quenouille (1949, 1956) as a technique
for bias reduction in finite populations. Tukey (1958) suggested that jackknife could
also be used for variance estimation, and Durbin (1959) applied this idea in infinite
populations. The jackknife method is similar to the leave-one-out cross-validation
procedure, and it can also be considered as a method for data partitioning. In what
follows, the basic ideas for applying the Jackknife resampling are given. For more
details, see Särndal et al. (1992, pp. 437–442).
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Let s be a sample of n units drawn at random by a SRSWOR design. Let θ̂ be an
estimator of the population parameter θ . The jackknife resampling procedure gives
an estimator of var(θ̂). The jackknife steps are

1. Partition at random the sample s in A groups of equal size m = n/A.
2. For each group a, a = 1, . . . , A, build the subsample s(a) by eliminating from s

the units of group a. Based on s(a), calculate the estimator θ̂(a) of θ in the same
way as θ̂ was calculated for s.

3. The jackknife estimator of θ is θ̂J = 1

A

A
∑

a=1

θ̂(a).

4. The jackknife variance estimator is varJ1 = A − 1

A

A
∑

a=1

(

θ̂(a) − θ̂J

)2
.

In practice, varJ1 is used as estimator of var(θ̂) and var(θ̂J ). An alternative
estimator is

varJ2 = A − 1

A

A
∑

a=1

(

θ̂(a) − θ̂
)2

.

It holds that varJ2 ≥ varJ1.
5. The jackknife bias estimator is biasJ = (A − 1)(θ̂J − θ̂ ).

Remark 2.4 Särndal et al. (1992, pp. 437–442), introduce the jackknife estimator
of the variance by using the pseudovalues

θ̂a = Aθ̂ − (A − 1)θ̂(a), a = 1, . . . , A.

They define the jackknife estimator of θ as bias-corrected estimator, i.e.

θ̂JK = 1

A

A
∑

a=1

θ̂a = Aθ̂ − (A − 1)θ̂J = θ̂ − (A − 1)
(

θ̂J − θ̂
)

= θ̂ − biasJ .

Further, they give the variance estimator

varJK1 = 1

A(A − 1)

A
∑

a=1

(

θ̂a − θ̂JK

)2
,

which is equal to varJ1, because

(

θ̂a − θ̂JK

)2 =
{[

Aθ̂ − (A − 1)θ̂(a)

]

−
[

Aθ̂ − (A − 1)θ̂J

]}2 = (A−1)2
(

θ̂(a) − θ̂J

)2
.
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For applying the jackknife method, we have to fix a number of groups A. For
having a variance estimator with a good accuracy, we could take as many groups
as possible, i.e. A = n and m = 1. On the other hand, because of the computational
burden, we prefer working with few groups. The extreme cases are A = 2 and
m = n/2. In practice, it is quite common to take a value of A between the extreme
cases A = n and A = 2.

Remark 2.5 If θ̂(a), a = 1, . . . , A, were uncorrelated random variables with the
same expectation, then varJ1 should be unbiased for var(θ̂J ). However, the θ̂(a)’s are
correlated, and therefore the unbiasedness property does not hold. The properties of
the jackknife estimators of a general type parameter θ under a complex sampling
design have not been studied in the literature. Under a SRS and linear target
parameter, the jackknife variance estimator has, in general, a good behavior.

2.7.1 Delete-One-Cluster Jackknife for Estimators of Domain
Parameters

The delete-one-cluster jackknife method (see e.g. Rao and Tausi 2004) generates
jackknife samples by deleting a cluster each time. There are as many jackknife
samples as clusters are in the sample. Consider the jackknife sample, s∗

(d∗c∗),
obtained by excluding the cluster c∗ of the domain d∗ from the sample s, and denote
the corresponding domain d and cluster c subsample by s∗

dc(d∗c∗). Let Ds be the

number of domains in s, md be the number of clusters in sd, C = ∑Ds

d=1 md, md∗
be the number of clusters in d∗, and mJd∗ be the number of clusters in the jackknife
subsample s∗

(d∗c∗). The jackknife weight of individual j , cluster c, and domain d in
s∗
(d∗c∗) is

wdcj (d∗c∗) = wdcjbdc(d∗c∗), bdc(d∗c∗) =
{

wd./w
∗
d. if d = d∗, c �= c∗,

1 if d �= d∗,

where wd. = ∑md

c=1

∑

j∈sdc
wdcj and w∗

d. = ∑md

c=1,c �=c∗
∑

j∈s∗
dc(d∗c∗)

wdcj . Note

that the case d = d∗ and c = c∗ does not appear in the jackknife sample s∗
(d∗c∗).

The jackknife resampling method for estimating the variance of an estimator θ̂ of a
population parameter θ is

1. By using the procedure described above, use sample s to draw jackknife samples
s∗
(d∗c∗), d∗ = 1, . . . , Ds, c∗ = 1, . . . , md∗ . For every jackknife sample, calculate

θ̂∗
(d∗c∗) in the same way as θ̂ was calculated, but using the jackknife weights

wdcj (d∗c∗).
2. The observed distribution of {θ̂∗

(d∗c∗) : d∗ = 1, . . . , Ds, c∗ = 1, . . . , md∗} is

expected to imitate the distribution of estimator θ̂ .
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3. The jackknife estimator of θ and bias(θ̂) is

θ̂J = 1

C

Ds
∑

d∗=1

md∗
∑

c∗=1

θ̂∗
(d∗c∗), biasJ (θ̂) =

Ds
∑

d∗=1

(mJd∗ − 1)
md∗
∑

c∗=1

(

θ̂∗
(d∗c∗) − θ̂J

)

.

(2.10)
4. The design-based variance of θ̂ can be approximated by

varJ (θ̂) =
Ds
∑

d∗=1

mJd∗ − 1

mJd∗

md∗
∑

c∗=1

(θ̂∗
(d∗c∗) − θ̂J

)2
. (2.11)

2.8 R Codes for Design-Based Direct Estimators

This section presents some R codes illustrating the use of the studied estimators.

2.8.1 Horvitz–Thompson Direct Estimators of the Total and the
Mean

We first read the auxiliary and sample data files and rename some variables.
# Auxiliary data
dataux <- read.table("Nds20.txt", header=TRUE, sep = "\t", dec = ".")
# Sort dataux by sex and area:
dataux <- dataux[order(dataux$sex, dataux$area),]
# Sample data
dat <- read.table("LFS20.txt", header=TRUE, sep = "\t", dec = ".")
# number of rows (cases) in dat:
n <- nrow(dat)
# Rename some variables
y1 <- dat$UNEMPLOYED; y2 <- dat$EMPLOYED
w <- dat$WEIGHT
area <- dat$AREA; sex <- dat$SEX

This section describes the following activities. For domains defined as AREA crossed
by SEX, do:

A1. Estimate the totals of unemployed and employed people.
A2. Estimate the variances and the coefficients of variation.
A3. Repeat A1–A2 for means.
A4. Calculate the domain unemployment rates
A5. Estimate the variance of the unemployment rate estimator.
A6. Repeat A1–A5 for domains defined by AREA.
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A1. For estimating the totals of unemployed and employed people by AREA and SEX,
we apply formula (2.1), i.e.

Ŷ dir1
d =

∑

j∈sd

wjyj .

The R code is

dir1.ds <- aggregate(w*data.frame(y1,y2), by=list(Area=area,Sex=sex), sum)
# Assign column names
names(dir1.ds) <- c("area", "sex", "y1tot", "y2tot")

A2. For estimating the variance of Ŷ dir1
d , we apply the formula (2.4), i.e.

v̂arπ
(

Ŷ dir1
d

) =
∑

j∈sd

wj (wj − 1)y2
j .

The R code is

vardir1.ds <- aggregate(w*(w-1)*data.frame(y1^2,y2^2),
by=list(Area=area,Sex=sex), sum)

# Assign column names
names(vardir1.ds) <- c("area", "sex", "y1var", "y2var")

We build a table with direct estimates of totals, variances, and coefficients of
variation.

# Add columns y1var and y2var
dir1.ds <- cbind(dir1.ds, vardir1.ds$y1var, vardir1.ds$y2var)
# CV for y1
y1cv <- 100*sqrt(vardir1.ds$y1var)/abs(dir1.ds$y1tot)
# CV for y2
y2cv <- 100*sqrt(vardir1.ds$y2var)/abs(dir1.ds$y2tot)
# Add columns y1cv and y2cv
dir1.ds <- cbind(dir1.ds, y1cv, y2cv)
# Change column names for dir1.ds
namesds <- c("area", "sex", "y1tot", "y2tot", "y1var", "y2var", "y1cv",

"y2cv")
names(dir1.ds) <- namesds

A3. We calculate the estimators of the means and their variances by using the
formulas (2.1) and (2.4), i.e.

Ŷ
dir1

d = N−1
d Ŷ dir1

d , v̂arπ
(

Ŷ
dir1

d

) = N−2
d v̂arπ

(

Ŷ dir1
d

)

.

# Add column with population sizes
dir1.ds <- cbind(dir1.ds, dataux$N)
# Add columns with HT estimates of means
dir1.ds <- cbind(dir1.ds, dir1.ds$y1tot/dataux$N,

dir1.ds$y2tot/dataux$N)
# Variance estimates of HT estimator
dir1.ds <- cbind(dir1.ds, dir1.ds$y1var/dataux$N^2, dir1.ds$y2var/

dataux$N^2)
# Change column names for dir1.ds
names(dir1.ds) <- c(namesds, "Nds", "y1mean", "y2mean", "y1meanvar",

"y2meanvar")
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A4. For estimating the unemployment rates (in %), we employ the ratio estimator

R̂dir = Ŷ dir1
1,d

Ŷ dir1
1,d + Ŷ dir1

2,d

100,

where Ŷ dir1
1,d and Ŷ dir1

2,d are the direct estimators of the totals of unemployed and
employed people, respectively. The R code is

# Include estimates of unemployment rates in table dir1.ds
dirrate.ds <- 100*dir1.ds$y1tot/(dir1.ds$y1tot + dir1.ds$y2tot)
dir1.ds <- cbind(dir1.ds, rate=dirrate.ds)

A5. For estimating the covariances ĉov(Ŷ dir1
1,d , Ŷ dir1

2,d ), we apply the corresponding
formula of Remark 2.1, i.e.

ĉovπ (Ŷ dir1
1,d , Ŷ dir1

2,d ) =
∑

j∈sd

wj (wj − 1)y1,j y2,j .

The R code is

covardir1.ds <- aggregate(w*(w-1)*data.frame(y1*y2),
by=list(Area=area,Sex=sex), sum)

# Column names
names(covardir1.ds) <- c("area", "sex", "covar")

For estimating the variance of the unemployment rate estimator, we apply the
formula (3.10) of Chap. 3, i.e.

v̂ar(R̂d) = Ŷ 2
2,d

(Ŷ1,d + Ŷ2,d )4
v̂ar(Ŷ1,d ) + Ŷ 2

1,d

(Ŷ1,d + Ŷ2,d )4
v̂ar(Ŷ2,d )

− 2Ŷ1,d Ŷ2,d

(Ŷ1,d + Ŷ2,d )4
ĉov(Ŷ1,d , Ŷ2,d ),

where Ŷ1,d = Ŷ dir1
1,d and Ŷ2,d = Ŷ dir1

2,d . The following R code calculates v̂ar(R̂d)

# Summands in formula of covariance estimator
s1.ds <- dir1.ds$y2tot^2*dir1.ds$y1var/(dir1.ds$y1tot+dir1.ds$y2tot)^4
s2.ds <- dir1.ds$y1tot^2*dir1.ds$y2var/(dir1.ds$y1tot+dir1.ds$y2tot)^4
s12.ds <- 2*dir1.ds$y1tot*dir1.ds$y2tot*covardir1.ds$covar/

(dir1.ds$y1tot + dir1.ds$y2tot)^4
# Estimates of variances and coefficients of variation
dir1.ds$vrate <- 10^4*(s1.ds+s2.ds-s12.ds)
dir1.ds$cvrate <- 100*sqrt(dir1.ds$vrate)/abs(dir1.ds$rate)
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Table 2.1 DIR1 estimates of labor status indicators for sex=1 (left) and sex=2 (right)

area y1tot y2tot y1var y2var rate y1tot y2tot y1var y2var rate

1 344 5422 117,992 1,548,184 5.97 452 3637 112,068 960,992 11.05

2 206 1782 42,230 433,104 10.36 222 1674 49,062 331,572 11.71

3 0 3452 0 676,846 0.00 165 1320 27,060 220,026 11.11

4 179 3388 31,862 613,772 5.02 187 2798 34,782 500,522 6.26

5 0 2549 0 421,576 0.00 137 2065 18,632 337,506 6.22

6 381 3658 72,380 695,074 9.43 200 735 39,800 108,008 21.39

7 137 2857 18,632 555,234 4.58 0 3121 0 606,322 0.00

8 188 2863 35,156 500,160 6.16 0 2625 0 452,400 0.00

9 600 6641 135,138 1,243,378 8.29 346 3124 64,512 514,402 9.97

10 156 1655 24,180 282,474 8.61 0 1313 0 233,774 0.00

The R code to save the results is

output1 <- data.frame(dir1.ds[,1:6], rate=round(dirrate.ds,2))
head(output1, 10)

A6. This activity is an exercise.
For the ten first areas, Table 2.1 presents some of the contents of the data frame

dir1.ds. The columns y1tot and y2tot contain the direct estimates, Ŷ dir1
1,d and Ŷ dir1

2,d ,
of totals of unemployed and employed people. The columns y1var, y2var, and rate
give the variance estimates v̂arπ

(

Ŷ dir1
1,d

)

and v̂arπ
(

Ŷ dir1
2d

)

and the unemployment

rates estimations R̂dir1
d = Ŷ dir1

1,d /
(

Ŷ dir1
1,d + Ŷ dir1

2,d ). The left (right) part of Table 2.1
contains the results for sex=1 (sex=2). In domains with null sample size, the dir1
estimator is not calculable, and we deliver the value of 0.

2.8.2 Hájek Direct Estimator of the Mean and the Total

This section describes the following activities. For domains defined as AREA crossed
by SEX, do:

B1. Estimate the proportions of unemployed and employed people.
B2. Estimate the variances and the coefficients of variation.
B3. Repeat B1–B2 for totals.
B4. Estimate the unemployment rates.
B5. Estimate the variance of the unemployment rate estimator.
B6. Repeat B1–B5 for domains defined by AREA.
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B1. By applying the formula (2.1), we calculate the estimator Ŷ dir1
d of the totals of

unemployed and employed people by AREA and SEX. The R code is

dir <- aggregate(w*data.frame(1/w,1,y1,y2), by=list(Area=area,Sex=sex), sum)
# Column names
names(dir) <- c("area", "sex", "nds", "hatNds", "y1tot", "y2tot")

We calculate the direct estimates of means by AREA and SEX by applying the formula
(2.7), i.e.

Ŷ
dir2

d = Ŷ dir1
d

N̂d

=
∑

j∈sd
wjyj

∑

j∈sd
wj

.

The R code is

dir2.ds <- data.frame(area=dir$area, sex=dir$sex, nds=dir$nds,
hatNds=dir$hatNds)

# Estimates of means of unemployed people
dir2.ds$y1mean <- dir$y1tot/dir$hatNds
# Estimates of means of employed people
dir2.ds$y2mean <- dir$y2tot/dir$hatNds

B2. For estimating the variance of Ŷ
dir2

d , we apply the third formula of Remark 2.3,
i.e.

v̂arπ
(

Ŷ
dir2

d

) = 1

N̂2
d

∑

j∈sd

wj (wj − 1)(yj − Ŷ
dir2

d )2.

The R code for the numerator is

# Define all the necessary objects
difference1 <- difference2 <- numerator1 <- numerator2 <- ww1 <- list()
for(d in 1:nrow(dir2.ds)){

# Create a logic vector with the indexes of the corresponding domains
condition <- paste(dat$AREA,dat$SEX,sep="")==paste(dir2.ds$area,

dir2.ds$sex,sep="")[d]
# Calculate the difference between data and mean of each domain
difference1[[d]] <- y1[condition]-dir2.ds$y1mean[d]
difference2[[d]] <- y2[condition]-dir2.ds$y2mean[d]
ww1[[d]] <- w[condition]*(w[condition]-1)
numerator1[[d]] <- ww1[[d]]*difference1[[d]]^2
numerator2[[d]] <- ww1[[d]]*difference2[[d]]^2

}

The following R code calculates v̂arπ (Ŷ
dir2

d ) by AREA and SEX:

dir2.ds$y1meanvar <- sapply(numerator1, sum)/dir2.ds$hatNds^2
dir2.ds$y2meanvar <- sapply(numerator2, sum)/dir2.ds$hatNds^2

We include in dir2.ds the estimated coefficients of variation cv = cv(Ŷ
dir2

d ).

# cv of y1-mean (in %)
dir2.ds$y1cv <- 100*sqrt(dir2.ds$y1meanvar)/abs(dir2.ds$y1mean)
# cv of y2-mean (in %)
dir2.ds$y2cv <- 100*sqrt(dir2.ds$y2meanvar)/abs(dir2.ds$y2mean)
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B3. We repeat steps 1 and 2 for estimating the totals of unemployed and employed
people. We use the estimators (2.7) and the fourth formula of Remark 2.3, i.e.

Ŷ dir2
d = NdŶ

dir2

d , v̂arπ (Ŷ dir2
d ) = N2

d

N̂2
d

∑

j∈sd

wj (wj − 1)(yj − Ŷ
dir2

d )2.

This is done with the R code

dir2.ds$y1tot <- dir2.ds$y1mean*dataux$N
dir2.ds$y2tot <- dir2.ds$y2mean*dataux$N
dir2.ds$y1totvar <- dir2.ds$y1meanvar*dataux$N^2
dir2.ds$y2totvar <- dir2.ds$y2meanvar*dataux$N^2

B4. The unemployment rate and its direct estimator are

Rd = Y1,d

Y1,d + Y2,d
, R̂d = Ŷ dir2

1,d

Ŷ dir2
1,d + Ŷ dir2

2,d

.

The following R code estimates the unemployment rates (in %):

dir2.ds$rate <- 100*dir2.ds$y1tot/(dir2.ds$y1tot + dir2.ds$y2tot)

B5. For estimating the covariances ĉov(Ŷ dir2
1,d , Ŷ dir2

2,d ), we apply the last formula of
Remark 2.3, i.e.

ĉovπ (Ŷ dir2
1,d , Ŷ dir2

2,d ) = N2
d

N̂2
d

∑

j∈sd

wj (wj − 1)(y1,j − Ŷ
dir2

1,d )(y2,j − Ŷ
dir2

2,d ).

The R code is

ww1s1s2 <- mapply(ww1, mapply(difference1, difference2, FUN="*"),
FUN="*")

sumcovardir2 <- sapply(ww1s1s2, sum)
covardir2.ds <- sumcovardir2*dataux$N^2/dir2.ds$hatNds^2

For estimating the variance of the unemployment rate estimator, we apply the
formula (3.10) of Chap. 3, i.e.

v̂ar(R̂d) = Ŷ 2
2,d

(Ŷ1,d + Ŷ2,d )4
v̂ar(Ŷ1,d ) + Ŷ 2

1,d

(Ŷ1,d + Ŷ2,d )4
v̂ar(Ŷ2,d )

− 2Ŷ1,d Ŷ2,d

(Ŷ1,d + Ŷ2,d )4
ĉov(Ŷ1,d , Ŷ2,d ),
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where Ŷ1,d = Ŷ dir2
1,d and Ŷ2,d = Ŷ dir2

2,d . The following R code calculates v̂ar(R̂d):

# Summands in formula of covariance estimator
s1.ds <- dir2.ds$y2tot^2*dir2.ds$y1totvar/(dir2.ds$y1tot+

dir2.ds$y2tot)^4
s2.ds <- dir2.ds$y1tot^2*dir2.ds$y2totvar/(dir2.ds$y1tot+

dir2.ds$y2tot)^4
s12.ds <- 2*dir2.ds$y1tot*dir2.ds$y2tot*covardir2.ds/

(dir2.ds$y1tot+dir2.ds$y2tot)^4
# Estimates of variances and coefficients of variation
dir2.ds$vrate <- 10^4*(s1.ds+s2.ds-s12.ds)
dir2.ds$cvrate <- 100*sqrt(dir2.ds$vrate)/abs(dir2.ds$rate)

The R code to save the results is

output2 <- data.frame(dir2.ds[,1:2], round(dir2.ds[,11:14]),
rate=round(dir2.ds[,15],2))

head(output2, 10)

B6. This activity is an exercise.
For the ten first areas, Table 2.2 presents some of the contents of the data frame

dir2.ds. The columns y1tot and y2tot contain the direct estimates, Ŷ dir2
1,d and Ŷ dir2

2,d ,
of totals of unemployed and employed people. The columns y1var, y2var, and rate
give the variance estimates v̂arπ

(

Ŷ dir2
1,d

)

and v̂arπ
(

Ŷ dir2
2,d

)

and the unemployment

rates estimations R̂dir2
d = Ŷ dir2

1,d /
(

Ŷ dir2
1,d + Ŷ dir2

2,d ). The left (right) part of Table 2.2
contains the results for sex=1 (sex=2). In domains with null sample size, the dir2
estimator is not calculable, and we deliver the value of 0. By comparing the results
presented in Tables 2.1 and 2.2, we conclude that dir2 estimators of totals have, in
general, smaller variances than dir1 estimators. However, they both give the same
estimates of unemployment ratios.

Comparing the results presented in Tables 2.1 and 2.2 one can observe that the
Hájek type estimator dir2 has lower variance estimates than the Horvitz–Thompson
estimator dir1, particularly in the columns denoted as y2var.

Table 2.2 dir2 estimates of labor status indicators for sex=1 (left) and sex=2 (right)

area y1tot y2tot y1var y2var rate y1tot y2tot y1var y2var rate

1 347 5470 114,455 610,953 5.97 453 3648 107,441 568,195 11.05

2 209 1809 41,081 192,151 10.36 225 1694 47,076 194,190 11.71

3 0 3521 0 122,182 0.00 165 1317 25,787 142,520 11.11

4 182 3436 31,534 173,090 5.02 189 2828 34,115 217,891 6.26

5 0 2456 0 84,070 0.00 137 2069 18,176 163,088 6.22

6 391 3758 70,745 213,647 9.43 194 712 33,309 71,319 21.39

7 138 2885 18,584 142,130 4.58 0 3071 0 150,426 0.00

8 189 2878 33,612 115,024 6.16 0 2648 0 139,145 0.00

9 595 6587 124,176 450,588 8.29 348 3142 62,643 350,470 9.97

10 159 1687 24,034 144,069 8.61 0 1289 0 133,244 0.00
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2.8.3 Jackknife Estimator of Variances

This section describes the following activities. For domains defined by AREA, do:

C1. Estimate the totals of unemployed and employed people.
C2. Calculate direct estimators of variances and coefficients of variation.
C3. Calculate jackknife estimators of variances and coefficients of variation.

We first calculate some auxiliary parameters of the sample data file LFS20.txt.

# Number of domains
D <- length(unique(dat$AREA))
# Domain sample sizes
nd <- tapply(rep(1,n),INDEX=list(dat$AREA),FUN=sum)
# Clusters
nCLUSTER <- unique(dat$CLUSTER)
# Number of clusters
J <- length(unique(dat$CLUSTER))
md <- vector()
# Number of clusters by domains
for (d in 1:D)

md[d] <- length(unique(dat$CLUSTER[dat$AREA==d]))

C1. By applying the formula (2.1), we calculate the direct estimates, dir1, of the
totals of unemployed and employed people, i.e.

dir.d <- aggregate(w*data.frame(y1,y2), by=list(dat$AREA), sum)
# Assign column names
names(dir.d) <- c("area", "y1tot", "y2tot")

C2. By applying the formula (2.3), we calculate the direct estimators of the
variances, i.e.

vardir.d <- aggregate(w*(w-1)*data.frame(y1^2,y2^2), by=list(dat$AREA), sum)
# Assign column names
names(vardir.d) <- c("area", "y1var", "y2var")

The direct estimators of the coefficients of variations are
cvdir1 <- round(100*sqrt(vardir.d$y1var)/abs(dir.d$y1tot),2) # CV for y1
cvdir2 <- round(100*sqrt(vardir.d$y2var)/abs(dir.d$y2tot),2) # CV for y2

C3. For calculating the jackknife estimators of the variances, we define the auxiliary
arrays

jackdir1 <- jackdir2 <- matrix(0, nrow=D, ncol=J)

We run the following jackknife loop:
for (j in 1:J) {

set <- subset(dat, dat$CLUSTER!=nCLUSTER[j], na.rm=TRUE)
# Jackknife weights
if (length(dat$AREA[dat$CLUSTER==j])>0) {

domjack <- unique(dat$AREA[dat$CLUSTER==j])
jfactor <- sum(dat$WEIGHT[dat$AREA==domjack])/

sum(set$WEIGHT[set$AREA==domjack])
set$WEIGHT[set$AREA==domjack] <- set$WEIGHT[set$AREA==domjack]*

jfactor
}
# Direct estimators
jdir.d <- aggregate(set$WEIGHT*data.frame(set$UNEMPLOYED,

set$EMPLOYED), by=list(set$AREA), sum)
# Assign column names
names(jdir.d) <- c("area","y1tot","y2tot")
jackdir1[,j] <- jdir.d$y1tot
jackdir2[,j] <- jdir.d$y2tot

}

We calculate the jackknife means.
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jmeandir1 <- rowMeans(jackdir1)
jmeandir2 <- rowMeans(jackdir2)

We apply the formulas of Sect. 2.7.1, for calculating the jackknife variances and
coefficients of variation.

# Number of clusters by jackknife domain
md.J <- list()
for (d in 1:D){

md.J[[d]] <- md
md.J[[d]][d] <- md.J[[d]][d]-1

}
factor <- Map(f="/", lapply(md.J,1,FUN="-"), md.J)
# Jackknife variances
diff.cuad.1 <- (jackdir1-jmeandir1)^2
diff.cuad.2 <- (jackdir2-jmeandir2)^2
group <- rep(1:D, md)
jvardir1 <- jvardir2 <- vector() # declare objects for indexing
for (d in 1:D) {

jvardir1[d] <- sum(sapply(split(diff.cuad.1[d,],group), sum)*factor[[d]])
jvardir2[d] <- sum(sapply(split(diff.cuad.2[d,],group), sum)*factor[[d]])

}
# Jackknife coefficients of variation
jcvdir1 <- round(100*sqrt(jvardir1)/jmeandir1,2)
jcvdir2 <- round(100*sqrt(jvardir2)/jmeandir2,2)

The R code to save the results is
output3 <- data.frame(nd, y1=dir.d$y1tot, v.y1=vardir.d$y1var,

vJ.y1=round(jvardir1), cv.y1=cvdir1, cvJ.y1=jcvdir1,
y2=dir.d$y2tot, v.y2=vardir.d$y2var,
vJ.y2=round(jvardir2), cv.y2=cvdir2, cvJ.y2=jcvdir2)

head(output3, 10)

Table 2.3 presents the results for the 10 first domains (AREA). The labels y1 and
y2 denote the dir1 direct estimates of the totals of unemployed and employed
people, respectively. The direct estimates of the variances of the direct estimators
of totals are denoted by v(y1) and v(y2). The corresponding jackknife estimates are
vJ (y1) and vJ (y2). The direct estimates of the coefficients of variation of the direct
estimators of totals are denoted by c(y1) and c(y2). The corresponding jackknife
estimates are cJ (y1) and cJ (y2). The direct and jackknife estimators of variances
and coefficients of variation follow the same pattern. In any case, a finer analysis
cannot be done because the data used is simulated and does not come from a real
survey.

Table 2.3 dir1 estimates of unemployment (left) and employment (right) totals by area

d nd y1 v(y1) vJ (y1) c(y1) cJ (y1) y2 v(y2) vJ (y2) c(y2) cJ (y2)

1 60 796 230,060 329,637 60.26 72.19 9059 2,509,176 1,365,062 17.49 12.90

2 37 428 91,292 70,084 70.59 61.84 3456 764,676 674,173 25.30 23.76

3 47 165 27,060 26,103 99.70 97.87 4772 896,872 253,103 19.85 10.54

4 55 366 66,644 46,415 70.53 58.87 6186 1,114,294 313,081 17.06 9.05

5 50 137 18,632 17,774 99.63 97.30 4614 759,082 617,055 18.88 17.03

6 43 581 112,180 307,334 57.65 95.49 4393 803,082 50,480 20.40 5.11

7 48 137 18,632 17,338 99.63 96.15 5978 1,161,556 284,300 18.03 8.92

8 48 188 35,156 33,465 99.73 97.30 5488 952,560 198,549 17.78 8.12

9 125 946 199,650 242,903 47.23 52.09 9765 1,757,780 622,368 13.58 8.08

10 41 156 24,180 22,714 99.68 96.63 2968 516,248 491,492 24.21 23.62
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2.8.4 Functions for Calculating Direct Estimators

The function dir1 calculates the Horvitz–Thompson direct estimators of the mean
and the total. The R code is

dir1 <- function(data, w, domain, Nd) {
if(is.vector(data)){

last <- length(domain) + 1
Nd.hat <- aggregate(w, by=domain, sum)[,last]
nd <- aggregate(rep(1, length(data)), by=domain, sum)[,last]
tot <- aggregate(w*data, by=domain, sum)
names(tot) <- c(names(domain), "tot")
var.tot <- aggregate(w*(w-1)*data^2, by=domain, sum)[,last]
if(missing(Nd)){

return(cbind(tot, var.tot, Nd.hat, nd))
}
else{

mean <- tot[,last]/Nd
var.mean <- var.tot/Nd^2
return(cbind(tot, var.tot, mean, var.mean, Nd.hat, Nd, nd))

}
}
else{

warning("Only a numeric or integer vector must be called as data",
call. = FALSE)

}
}

The function dir2 calculates the Hájek direct estimators of the mean and the total.
The R code is

dir2 <- function(data, w, domain, Nd) {
if(is.vector(data)){

last <- length(domain) + 1
Nd.hat <- aggregate(w, by=domain, sum)[,last]
nd <- aggregate(rep(1, length(data)), by=domain, sum)[,last]
Sum <- aggregate(w*data, by=domain, sum)
mean <- Sum[,last]/Nd.hat
dom <- as.numeric(Reduce("paste0", domain))
if(length(domain)==1){

domain.unique <- sort(unique(dom))
}
else{

domain.unique <- as.numeric(Reduce("paste0", Sum[,1:length(domain)]))
}
difference <- list()
for(d in 1:length(mean)){

condition <- dom==domain.unique[d]
difference[[d]] <- w[condition]*(w[condition]-1)*(data[condition]-mean[d])^2

}
var.mean <- unlist(lapply(difference, sum))/Nd.hat^2
if(missing(Nd)){

return(data.frame(Sum[,-last], mean, var.mean, Nd.hat, nd))
}
else{

tot <- mean*Nd
var.tot <- var.mean*Nd^2
return(data.frame(Sum[,-last], tot, var.tot, mean, var.mean, Nd.hat, Nd, nd))

}
}
else{

warning("Only a numeric or integer vector must be called as data",
call. = FALSE)

}
}

The following R code illustrates the use of both functions, dir1 and dir2, to the
data set used in this chapter. We first read the sample data files and rename some
variables.

# Auxiliary data
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dataux <- read.table("Nds20.txt", header=TRUE, sep = "\t", dec = ".")
# Sort dataux by sex and area:
dataux <- dataux[order(dataux$sex, dataux$area),]
# Sample data
dat <- read.table("LFS20.txt", header=TRUE, sep = "\t", dec = ".")
# number of rows (cases) in dat:
n <- nrow(dat)
# Rename some variables
y1 <- dat$UNEMPLOYED
w <- dat$WEIGHT

Note that data and w must be a vector R object and that domains must be introduced
as a list R object. The following R code calculates the direct estimator for the totals
and means of unemployed people:

# Horvitz-Thompson direct estimator for unemployed people
direct1 <- dir1(data=y1, w=dat$WEIGHT, domain=list(area=dat$AREA,

sex=dat$SEX), Nd=dataux$N)
head(direct1, 10)
# Hajek direct estimator for unemployed people
direct2 <- dir2(data=y1, w=dat$WEIGHT, domain=list(area=dat$AREA,

sex=dat$SEX), Nd=dataux$N)
head(direct2, 10)
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