Chapter 12 ®
EBPs Under Two-Fold Nested Error ek
Regression Models

12.1 Introduction

For the estimation of complex domain parameters such as certain poverty indicators,
Molina and Rao (2010) proposed the empirical best (EB) method, based on
assuming that a one-to-one transformation of the target variable follows the unit-
level nested error model of Battese et al. (1988) with random effects for the domains
of interest. Under that model, EB method gives approximately the “best” estimator
in the sense of being unbiased with minimum variance error.

When the target population is naturally divided in subpopulations at two nested
aggregation levels (e.g. in provinces and counties within provinces), or when the
sampling design has two stages, as it is usual in many household surveys, it is
reasonable to assume a two-fold nested error regression model including random
effects at the two levels of aggregation, domains and subdomains. Marhuenda et al.
(2017) developed the EB method for predicting additive parameters under the two-
fold nested error regression model.

This chapter describes the EB methodology given by Marhuenda et al. (2017)
for predicting additive parameters and provides analytical expressions for the EB
predictors (EBP) of poverty proportions, poverty gaps, and average incomes. It
gives Monte Carlo algorithms for approximating the EB predictors of more complex
domain or subdomain parameters. The case of using only categorical explanatory
variables is also treated, because it does not require the use of an auxiliary census
data file. The obtained EB estimates of subdomain parameters have the good
property of being consistent with the corresponding domain estimate.

For estimating the error variances of the EBPs, a parametric bootstrap procedure
is given. The EBP methodology is illustrated with an application to the survey data
file LFS20.txt. The given R codes calculate EBPs of poverty proportions, poverty
gaps, and average incomes by areas and age groups.
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12.2 Two-fold Nested Error Regression Models

This section considers vectors y = (yi,..., yy) containing the values of a
target random variable associated with N units of a finite population. Let y,
be the sub-vector of y corresponding to sample elements and y, the sub-vector
of y corresponding to the out-of-sample elements; that is, y = (¥, y.). The
inference problem is to predict the value of a real-valued function § = h(y) of
the random vector y using the sample data y,. The best predictor of § is given by
st = E y, (81ys), where the expectation is taken with respect to the conditional
distribution of y, given y,.

The population of interest is hierarchically divided in domains and subdomains.
More concretely, let U be a population of size N partitioned into D domains or
areas Uy, ..., Up of sizes Ny, ..., Np, respectively. Additionally, each domain
Uy is partitioned into My subdomains Uy, ..., Ugpm,, of sizes Ngi, ..., Namy,
respectively, d = 1, ..., D. The components of vector y are referenced with three
subindexes. This is to say, y4;; denotes the value that the study variable takes on the
sample unit j of subdomain # and domain d.

12.2.1 The Population Model

At the population level, the two-fold nested error regression model is

—-1/2 .
Ydij =xdtjl3+u1,d+uz,dz+wd,/ epj,d=1,....,D,t=1,... .My, j=1,..., Ng,
(12.1)

where x4;; is a Tow vector containing p auxiliary variables, wq;; > 0 is a
known heteroscedasticity weight, and the random effects and errors are all mutually
independent and such that u; 4 ~ N(O, 012), urqr ~ N(O, 022), and ey;; ~
N(0, o).

The population model (12.1) can be written in the matrix form as (without taking
into account reordering with respect to sampled and non-sampled elements)

y=XB+ Ziuy + Zour + W12, (12.2)

where u; = u1 px1 ~ N(0, 0'121[)), Uy = Uy pMxi1 ™~ N(O,UZZIM), and e =

enxi ~ N(0.og1y) are independent, y=yy,q = col ( col gl Ga)),

B =By, X = Xnxp = 15CU?SID(I;IQW(lfj;glth(xdt,,'))) with rank(X) = p,

M = Zz?:l Mg, N = Zz?:l Na, Na = Z?/Izdl Nai, Z) = diag (In,)NxDs

Z, = diag ( diag (1n,))nxm. 14 is the a x a identity matri)i,iij?s the a x 1
I<d<D 1<t<My
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vector with all its elements equal to 1, W = diag (Wy,), Wy = diag (Wy,),
1<d<D 1<t<My
Wa = diag (warj)n, <N, With known heteroscedasticity weights wg;; > 0,
1<j<Na:

d= l,...,]D,t: 1,...,Mg,j=1,..., Ng.

Without loss of generality we can reorder the population so that the target vector
takes the form y = (y}, y,.)’. We describe the two corresponding sub-models more
in detail.

12.2.2 The Sample Model

In practice, inference is carried out based on a sample drawn from the population.
We assume that a sample s; of size ng is drawn from domain Uy, d = 1, ..., D. Let
s4; be the subsample from subdomain Uy, t = 1, ..., My. We allow the existence
of subdomains with no observations in the sample. Without loss of generality, we
assume that these are the last M; — m; subdomains; that is, sg; = @, formg + 1 <
t < My whereas sq; # @, for 1 <t < my. The sample sub-vector y, follows the
marginal model derived from the population model (12.1), i.e.

—12 .
Ydrj = XdjB +u1,4 + u2 dr +wd,j/ eqij, d=1,....D,t=1,...,mq, j=1,...,n4;,
(12.3)

where we change M, My and N, N4, and Ng4; by the sample counterparts m, my
and n, ng, and ng4;, respectively. In matrix notation, the model is

—1/2
¥, = XB + Zisuy + Zogus, + Wy e, (12.4)

where u; = uypxi ~ N(0,021p), usy = Uzgmx1 ~ N(0,0}1,), and e, =

es.nx1 ~ N(0, 0021,,) are independent, y; = y; 1, B = ﬂpxl, Xy = Xsuxp =
col ( col ( col (xg;))) withrank(Xs) = p, Z1; = diag (1n,)nxp, Z2s =

1<d<D 1<t<mg 1<j<ng 1<d<D

diag ( diag (1uy,))nxm, m = Zd:l myg,n = Zdzl ng, ng = Z;idl ng;, Wy =

l<d<D 1<t<my

diag (Wys), Was = diag (Was), Wars = diag (Warj)ng, xng, With known

1<d<D 1<t<mq l<j<ng

heteroscedasticity weights wyg;; > 0,d =1,...,D,t =1,...,mq,j=1,...,n4.

12.2.3 The Non-sample Model

Let r be the subset of units not appearing in the sample s. The corresponding sub-
vector y, follows the model (12.1), with the immediate modifications. For d =
I,....,D,t=1,...,My, j =ng4 + 1, ..., Ng, the non-sample model is

—12
Ydij = XdijB +ura +uzar +wy, e,
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where we change N, Ny and N4, by N —n, Ny — ng, and Ng; — ng;, respectively.
In matrix notation, the model is

Yy = X, B+ Zi,uy + Zojus, + W' e, (12.5)
where u; = wuipx1 ~ N©,0{Ip), usr = uz mx1 ~ N(0,051y), and
e, = e, (N—mx1 ~ N(0, a(%IN_n) are independent, y, =y, (N=nm)x1> B = ﬂpxl,
X, = X, (w—mxp = col ( col ( col (x4:j))) with rank(X,) = p,

1<d<D 1<t<My ngi+1<j<Ng:
Zy, = diag (Ayy—ny)(N—nyxD> Z2r = diag ( diag (Any—ny ) (N-—n)yxm> Wy =

1<d<D 1<d<D 1<t<My
dlag War),War = dlag Warr), Wayr = dlag (wdtj)(Nd,—nd,)x(Nd,—nd,)
1<d<D 1<t<Mgy ngr+1<j=<Na

with known wg;; > 0,d =1,...,D,t =1,..., My, j =ng; +1,..., Ng, and
ng: =0ift > my.

12.2.4 The Inverse of the Variance Matrix

Let V denote the covariance matrix of the sample vector y,. Direct calculation of
VS_1 is not computationally efficient because it requires the inversion of the n x n

matrix V. This is why we apply the inversion formula (cf. Appendix A)

A luvy'A~!
A+ur) =41 "= 12.6
( ) 14+vA (120

for deriving an expression for Vs_l. Note that variance of y, is

Vs = var(y,) = Zigvarui) 2\ + Zogvar(ua,) Zy +og Wit = diag(Vis, ..., Vpy),
(12.7)
where

Vas = ofn 1), +03 diag (In, 1, )+od Wl = ofl,,1, +Rys. d=1.....D,

1<t<my

Ry = diag (031n,1), +0dW,;) = diag (Rary). d=1.....D.

1<t<my 1<t<my
Ford =1,...,D,t =1,...,mg, we introduce the notation w,,, = Wg:;1,, =
/ 1/ _ ndt .

(Warty - - - wdmdt)ndlxl’ Wy = lnd,wndz = Zj:] wgyj and

o of (12.8)

Vit = ————5 > $d = 5 ~—7g . .
022 + u%) oy + 0o Z(=1(1 — Yde)Wde-
-
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—1
ls >
use twice the formula (12.6), first to calculate R;,ls and second to obtain VJSI. For

For calculating VS_1 = diag(V . Vl_)i) it is necessary to obtain R(Zvl. Here we

calculating R;tls = (0221,% l;dt + UOZW;S)’I, we put A = 002 W;tls, u = 0221,1{1,,
v' =1, and we get

R; =

dts —

’ 2
022 W ars lnd, lnd, W irs 1 Oy Wpy, w;ld,
dts — —4 =3 Was — ——F5——

1

? 0, 022 / _O' 2 022

0 0 1+¥1ndth,51nd, 0 oo(l—i—%wdt.)
1

- (Wd,s—ﬂw,,d[w/ ) d=1,....D, t=1,....my.

) n
oy Wy a

If we define Bg;s = Wais — ﬁwnd, w),, , we have

R =

N

diag (Bars).

1
002 1<t<mgq

For calculating V;SI = (olzlndlild—i—RdS)_l, weput A = Ryy,u = aflnd, vV = I;ld
in (12.6) and we obtain

1
—1 .
Vol = — diag (Bass) (12.9)

0 1=st<my

_ Yar / /o _ Yt /
o Lo [wnd, war wdr~wnd,] ol [wnd, war. wdrwnd,]
% 1+ 2L (T wae — X4
0—3( 11 Wde- =1 YdeWwde.)

Iro
= [ diag Baiy) — 9 [ = vanwa, ] ol [ = yaw], ] |

col
00 1<t<myg I<t<my

By applying (12.9), no matrix inversions are needed in programs. We also give an
alternative formula for V;Y1 requiring the inversion of a my x my4 matrix. Let us note

that Vg = Glzlndl;d + R, where

RdS = 0’22 dlag (lnd,)lmd dlag (I;Idl) +0'02WL;_¥1'

I1<t=mgq 1<t<mgq
For calculating R;; , we apply the formula (cf. Appendix A)

(A+CBD)'=A"'—A"'cB~'+DA"'C)"'DATT,
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with A = of W, C = o} diag (1), B = I,,,,and D = diag (1) ). We
1<t<my 1<t<my

obtain

R} =0y Wy — 0y 203 Wy, diag (1)

I<t<mgq

-1
) |:Imd + 05 %07 diag 1, )Wy, diag (1,,(,)} o, % diag 1, ) Ws.

1<t<my 1<t<myqy 1<t<my

For calculating V;SI, we use the formula (12.6) with A = Ry, u = 0121,1(,, vV =
1,,,. Finally, we obtain

2
o
Vi =R, - ———R, /1,1, R,/ (12.10)
1 +021, Ry,

12.3 The Conditional Distribution of y, given y;

Due to the normality assumptions of the population model (12.1), the vector y =
(¥, ¥,) is normally distributed with mean vector p = (u;, #,.)’ and covariance

matrix
Vs er>
V= ,
(Vrs Vr
where V = var(y,), V, = var(y,), Vs = cov(y,, ¥,), and Vs = V.. Thus, the

conditional distribution of y, |y, is

yr|ys ~ N(”'rlss Vrls)v

where the conditional mean vector and covariance matrix are (see e.g. Theorem 2.2E
in Rencher (1998))

Res =X B+ ViV iy, —XB), Vo=V, =V ViV, (12.11)

12.3.1 Conditional Mean Vector

This section derives a programmable formula for the conditional mean p, ;. We

know that V;l = diag (V;SI), where V;SI is given in (12.9) or alternatively
l<d<D
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in (12.10). Since the population vector y follows the model (12.1), it holds that
y—Elyl=&XB+Zui+Zury+e)— X =Zu + Zrup +e.
Therefore, the covariance V,; = cov(y,, y,) is
Vs = E[(Z1,uy + Zyruor + €.)(Zisuy + Zosupg + €)'
= Z1,0 I pZ\, + Zy Elupub ) Z). .
Let us now calculate the M x m matrix E[uzru’zs]. As Eluz gn,u2,dy1,] = 0 if

dy # dyort) # tr, we get

E[uzru’ZS]zE[ col ( col (uzgq4;)) col’ ( col (uz,d,))]
1<d<D 1<t<my

1<d<D 1<t<My

= diag <E |:col{ col (u2.41), col  (uzar)} col (uqu,)i|)
My 1<t<mgy

1<d<D 1<t<my mag+1<t<

= 022 diag (COI{Imd,OMrmdxm,,})~
1<d<D

As Z, = diag (diag| diag (Iy,—n,), diag (ln,)}), we get

1<d<D 1<t<my mg+1<t<Mgy

Zy, E[”Zrués]z/zs

o5 diag < diag (Iny—ng )OIy, Orty—mgxmy | diag (1,%))

1<d<D \1<t<My 1<t<my

=0} diag <c01{ diag (Ing—ng ) ONg—Ngoxmy | diag (1;%“))

1<d<D 1<t<my 1<t<my

=0} diag <c01{ diag (1th—”dt1;Ld,)’ONd—NdsX”d})’

1<d<D I1<t<my

where Ny, = Z'[":dl Ng;. We have obtained that V,; = diag (V 4,4), with
1<d<D

Virs = O'lled ndlnd —‘1-001{0'22 diag (1th*"dt1;zd,)’ O(Nd—Nd;)Xnd} =A+ B.

1<t<mgy
(12.12)
Moreover, formula (12.9) can be written in the form

1
~ 7 ¢a, ol [(1 = yar)way, | lsctc;lr’nd [(1 = yaw),, ]=C—D,
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where By;s = W5 — 24 ““w,, wy,, . Then VsVl = diag (Vi V;YI), where
1<d<D

Vd,SV;SI =(A+ B)(C—D)=(AC —AD)+ (BC — BD).
The intermediate calculations are

Vd
AC—ollNd ndlcol 1y, ) 5 diag (Wdts—w_’wndlw;ld[)

0y 1<t<my dt.
= 021N wa ol [1 (Wars — 22w, w), )]
O_O d— d1<t<md ngr § War. dt U ngy
2 2
_ O _ 01 / /
= 021Nd ndlftglmd[w,,d Yarw,,, | = %1]\]"_""150;051;11(1[(1 — Yaw,, |,
_ 2 ’ N / /
AD = o} lN"’”"15Cz051md(1”df)g_glgcgnd [ =yar)wn,, ] Lo [A=yaDw,, ]
2 mq
=T, > = vt way, ) col [ = yaow), ]
= 0-02 ©Pd Ng—ny Yde nge P nde | <t<my Ydt ndr
(=1 -
0,2 mq
== (dee (- ydz))lzvd —na, o [ = yanw),, ]
0 =1

BC = 001{022 diag (1w, —ng lézd,)’ O(Nd—Nds)Xnd}

1<t<my
1 . Ydt
. — diag (Wars — ——wy, w), )
w dt
UO 1<t<mgy dt.
o5 Vd
2 . 1 !
= —2001{ diag (lth—ndtwnd, - lth—"dr Wds. nd,)’ O(Nd—Nds)Xnd}
g 1<t<my Wi,

1<t<my

_ % ol ai 1 .0
= ;CO 1ag ((1 — Ydr) th—"dtwnd,)’ (Na—Ngs)xnq (>
0

BD = colo? diag (g 1y, ONa—Nuyrxns |

1<t<mgyg
RSS! [(1 = yar)wy, ] col [(I_th)w ]
02 I<t<my dt my Ndt

= col{a2 diag (Inyng 1y,), €Ol [(1 = a1, Oy 1 |

1<t<my
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2

0y ¢Pd
col' [(1—ya)w),] =22
I<t<mq 0’0

: col{ col (1N, —ng, (1 = yar)war.l, Oy~ Ndsm] col' [(1—ya)wy,,1
1<t<mgq

1<t<mgy

Note that

2 mg 2 2 mq
o o o Sy wae (1 = Yae)
Ot = g0 3 wae 1 = | = 5 [1 - T2t |

% =1 9 og + o Y (1 = yao)wae.
of
= 2 2 mq = @d-
oy +oi 2l (1= Yao)wae.
Therefore,
02 ,
AC — AD = 21Nd —na, & col [(1 — )/dt)w,,d,]
99
2 mq
- _12 (de@ (- Vd£)>1Nd —na, COI Ja- Y w),, ]
0 =1
o2 my
= 0—12[ ¥d del (1 - ]/de)]lNd —na | COl [(1 — Yawy,, ]
0 =1

= q)led—nd COl [(1 - J/dt)w;d[]
1<t<mgy

and

VsV, = (AC = AD) + BC = BD = ¢y 1y, €0l [(1 = yanw),]
=i=mgq

2
U .
+ —22col{ diag (1 = Ya) INg—ng W)y, ), O(N[,mend}

9 1<t<my

0, @d
— o2 col 1<cc<>1 [war. (1 = Ya)INg—ng s ONg—Ng5)x1

col' [(1 - yaw), 1.

1<t<myg
The conditional mean vector is g, = col (pg|s), where
1<d<D
Raris = XarB + Vars VJSI (Yas — XasB) = col  (Rgsris)
1<t<My

= COl thrﬂ] + Vdrs V;SI col [ydts - thsﬂ]
1<t<my

1<t<
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and, correspondingly to the notation of this chapter, y,, = ) col  (Varj),
<j=<na:
Yas = ol (yarg)s Xars = col (xarj), Xas = col (Xars), Xarr =
1<t<myq l<j<ng 1<t=<myq

col (x4sj), and X4 = col (Xg;r). By doing some algebra, we get
ng+1<j<Ng: 1<t<My

mq

Harts = | o0l [XarrB1+ @a 1y, ;(1 — YaO W), (Yaos — XaesB)

2
0.
+ —22 col{ col [(1 = ya)Ing —ng W, Vars — XarsB)]. 0<Nd—Nds>x1}

o; 1<t<my
2
9%
pi col {1<nglmd[wdt'(1 = Ya) Ny —ng 1, O(NdeS)x]}
fi <i<

mq
> A= vaow),, (Yaes — XaesB).

=1
Note that
o3 o3
Il —ya =1~ — war. (1 = Yar),  Yar = war. (1 — th)—2
90 %0

- -1 = -1
and let'us denote by yaus = wy, Zjew Waej Ydej anc.l?cdgs = Wy, Zjem WaejXdej
the weighted sample means of the response and auxiliary variables in subdomain ¢
from domain d. For 1 < ¢ < my, the conditional mean vector is

mq
Rarrs = XarrB + Wy —ng 02 Y (1 = vao)wae. Gaes — EaesB)

(=1
2
02 _ _
+ 1Ny —na 0—2(1 = Ya)War. Yars — XdisB)
0
o2 mq
2 , ,
— Ny —ng, " @awar. (1 = var) Y (1 = yao)wae. (Faes — Eaes B)
0 =1
mgq 02
= XairB+1INy—ny9a Y_(1=vae)war. (Faes —fusﬂ)[l - a—zzwdt.(l _)/dt)]
=1 0
2
oy _
+ 1Ny —ng war.(1 — th);(ydts — XdrsB)
0

2

o
= XarB + 1Ny —ng war.(1 — de)a—z2
0
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005
5 Y (1= Yao)wae. (Faes — J_Cdzsﬂ)}
Wdt.0y , =4

: {ydts — XarsB +

4 mq
_ _ 0y ¥d _ _
=X B+ 1th—ndr th{ydts —XasB + 0_(4)1 Wy E vae Yaes — XaesB) }
2 t. =1

Formg + 1 <t < My, the conditional mean vector is

mq
Rarrs = XaorB + Iy, 0a Y (1= vao)war. Gaes — EaesB)
(=1
02 2d
= XarB + v, =5 ¢ Z vae (Yaes — XaesB) -
9% =

Finally, if my = 0 or equivalently if n; = 0, the conditional mean vector is the
marginal mean vector, i.e.

”’dtr|s=”'dt=Xa’tﬂy t=1,..., M.

In summary, formg > 0 and j € rgy = {ng: + 1, ..., Ngt}, we have
‘73 Yd i
Mdtjls =Xarj B + de{)_’dts — XaisB + o4 wy > Vde()_’dis—-’_cdisﬂ)}, Il <t <my,
2 Al oy
2 my
a5 _ _
Wdijls =Xdij B + 2% > vae Gaes — XaesB) . ma+1=<t < Mg
2 (=1

Formg = 0and j € Uy, we have pg;jis = XarjB-

12.3.2 Conditional Covariance Matrix

This section derives a programmable formula for the conditional covariance matrix
V,s. By (12.11),since V,, V¢, and V;l are all block-diagonal, it holds that V .|y =

diag (V4rs), where
1<d<D

Varis = Var — Vars VJSI Visr.
Under the non-sample model (12.5), we have

Var = 0gWy! + 0 lnyn Ay, _p, + 037 diag (Ing—ngly, ).  (12.13)
1<t<My
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Moreover, using the expression of V4, given in (12.12), we have

VarsVl Vasr = (A+ BV (A+ BY
= AV A + AV !B + BV A"+ BV !B
=Lg1 +Lag+ Lg3 + Lyg. (12.14)

The first term on the right hand side of (12.14) is

Lgy = AV A =01y, 0,1, V10,1

Ng—ng
= ot (1, Vi L ) Ung—n Uy, s (12.15)
where
1, Vi, = Zlntdm s
0 t=1
— QIZM 001 ((I—th)wnd,) 001 ((I—de)wnd,) ng- (12.16)
Note that

Vdt ’
By = Wars — — Wpy, Wy,
Wi,

col' ((1 = yar)wy,, )y, = det(l—m) (12.17)

1<t<my

’ / Ydt ’
lndz Bdtslnd, = lndz (Wdts - _wd wn,;,wnd,) lnd,
I

Yd
= wa — —— w2, =wa. (1 = yar). (12.18)
Wy,

Replacing (12.17) and (12.18) in (12.16), we get

1, Vill, = = [det (1 = yar) —wd{zwdt a —th)} :|
0

t=1

1
= 22%(1 —yd,)!l —wad,(l —m)}

% =1 t=1

mg
d
- j_% > war. (1= yar). (12.19)
t=1
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Replacing (12.19) in (12.15), we finally obtain

d
Ly = 012 Pd Z wyr. (1 — th)lNd—"dl;Vd—nd'
t=1

The second term on the right hand side of (12.14) is

Ly = Gllerndl VJ:COI/{O'Z diag (1,,1y ) Ondx(NdeS)}

1<t<mgyg

=oto; diag (Iny—ns)lu,1,,V 7, col’{ diag (1nd,),0ndx(Mdmd)}

1<t<My 1<t<my

diag (11\,(711_,101)_0102 diag (Iny,—ng ) 1My, col’ (lnd)
1<t<My 1<t<My I<t<=mq

1
: Go[ diag (Bary)—¢a col [(l—ydz)wnd,]lfc%l;d [(l—ydt)wi,d,]}

1<t<my

: cov{ diag (1nd,),0ndX(Md_md)} diag (I, _,.)

1<t<mg 1<t<Mjy
612022 : / / /
2 dlag (lthfnd,)lMd col col (1nd Bdtslndt)v OIX(Md—md)
1<t<my d

0y 1<t=My

- COI/{‘Pd dee (1- de)) 001 (wdt (L' = Yar))s O1semy— md)}:|

=1

diag (T, , ).

1<t<My

Using (12.18), we obtain
Ly = diag (Iy,—ng) 1, 05 @a 001’{ col’ (war. (1 — yar)), olx(Md—m,])}
1<t<My 1<t<mgy

diag (T, ., )-

1<t<My
The third term satisfies Lgy3 = L:lz. The last term on the right hand side of (12.14)

is

Ld4 = U;COI{ dlag (lth_"dt 1’/1dt)’ O(Nd_Nds)xnd } V[;sl

1<t<mgq

. Col{ diag (lndle,, nd’) OndX(Nd_Nds)}

1<t<mgq
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4

U . . .

= % diag (lNd,_nd[)dlag{ diag (1, Bass1y,,)
00 1<t<My 1<t<my

/
§0d1§([3(§)1md(wdt.(l Vdr))léoflmd(wdr.(l Ydr)), O(Md—md)x(Md—md)}

diag (lth_ndT)

1<t<My

Using (12.18) again, we obtain

4
o . . .
Loy = = diag (y,,—n,)diag{ diag (war.(1 = yar))
Op 1<t<My 1<t<my

— @d COl (wdt 1 - th)) 001 (wdt (I = var))s Omy—mg)xMy— md)}

1<t<

diag (1, .-

1<t<My

Summarizing, we have obtained

my
Lay = 0{¢a de’-(l - yd’)lNd—”dl/Nd*nd’
=1

Ly = diag (Iyy—n,)Voa diag (Iy, ). Laz = Ly,

1<t<My 1<t<My

Lys = diag (Iny—n,)Vaa diag (y, _, ).

1<t<My 1<t<My

where

Vaa = 1y, 03 ¢u col’{ col’ (war.(1 — yar)), le(Md—md)} ,
1<t<my

of .
Vg = 0—22 diag { diag (wgr (1 — var))

0 1<t<my

1<t<m

— @4 col (wdt (1 _th)) 001 (wdt (I = var)s Oty—my)xMy— md)}

Recalling (12.13), we obtain

Vars = Var = VarsV 3 Vasr (12.20)

d

= ogW,! +o} [1_‘/’dzwdt(l_ydl)=11vd naWNy—ng
=1
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+ diag (I ) (0310, = Vaa = Vi = Vaa) diag (y, )
1<t<My I1<t<My

2yw—1 2 I : . /
() Wdr + 00 ¥d lNd—nd lNdfnd + dlag (lNdz—ndt)Tdr|S dlag (lN,hfndf)’
1<t<My 1<t<My

where

Tars =031y — (Vaa + Vhy) — Vag.

12.3.3 Conditional Variances

For any subdomaint =1, ..., My and unit j = ng, + 1, ..., Ny, let vgsj|5 be the
corresponding diagonal element in the matrix V4, |s. The diagonal elements can be
written in the form

/ / / !/
Varils = @.,:Varis@aqri, Wwhere a, .= col (8 col 8/
dtjls drj Varis@dij dij 1<e<Md( tlnd(-i-lsisng( ij))

and §;; is the delta of Kronecker, i.e. §;; = 1 if i = j and §;; = 0if i # j. Thus,
a’dtj is a 1 x (Ng — ng) vector with a 1 in the position (¢, j) and with 0’s in the
remaining positions. Replacing the expression of V 4, given in (12.20), we have

o 2yw—1 2 /
Vdijls = Qgyj [Uo W, +05 @aIng—nsdn,—n,

+ diag (1y,y—ny)Tar)s diag (1;W_ndl)]ad,,-.
1<t<My 1<e<My

By defining a/;, = col’ (&), it holds
<t<

— /
1<t<My

/ —1 R | / l -
agj Wy aarj = Wy @i AN —ng Ay, —ny@arj = 1,

/ . . / /
ag; diag (Angy—ng)Tarjs diag Ay, _, daarj = ayTarjs@ar.
1<0<My 1<t<My

Consequently, we get
Vajls = 0g (W5 + 9a) + @y, Tar|s@as- (12.21)
Further, we have
@ Tarsaan = al (03w, = Vaa = Vi = Vaa) aay

2
=0y ay Iy aa —2a,,Vaaaa — a,,Vigaa. (12.22)
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Moreover, for any My x My matrix A, the product a/,, Aay; gives the ¢-th diagonal
element of A. Then a;tIMdad, = 1 for any ¢ and

/ i / / /
a;,Vogaq =a;Vyaq =ayVygas =0 for mg+1<t=< M,y

On the other hand, by defining bg; = wg; (1 — yg;), we getfor 1 <t < my

al,Vaaaa: = 05 g aly, 1y, col { col’ (war.(1 — yar)), le(Md—md)} aq;

1<t<my
= 03 9a bar, (12.23)
o3
ay,Viqaq = —za;tdiag{ diag (war.(1 = yar)) — §0d1<0l(<)lmd(wdt‘(1 ~ Ydr))

) 1<t<my

ol g (1= ). O g g [
4

(og
=2 [wdt.(l — Yar) — pa wg, (1 — de)z]
%

4

O,
= 2 bar(1 = @abar). (12.24)
%

Substituting (12.23) and (12.24) in (12.22), and recalling that by; = wg;. (1 —yar) =
2

g .
Yd: =%, we obtain
[of
2

/ 2 022
ay, Ty saq =05 {1 — 204 bar — ?bdt(l — @d bdt)}
0

2 2
_ .2l % _ _ %
=051 = 2¢avar— — Var\1 — ¢a Yar —
0'2 0‘2
= 022 - 2<Pd1/dt002 - th022 + yf,wdag
= 03 @aVar(Var —2) + o5 (1 = Var).-

Replacing this expression in (12.21), we finally obtain for 1 <t <mgandng;+1 <
j < th that

Varjls = 04 (W, + @a) + 03 @avar (var —2) + 03 (1 = yar)

ot [ way + 94 (1 + var (ras = DY + 031 = yan).
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Formg +1 <t < My, we have

Vdtj|s =<702(wd7,.1,~ +@a)+ o3, j=1,...,Na.

If my = 0 or equivalently if n; = 0, the conditional variance is the marginal
variance, i.e.

-1 2 2 2 .
Vdijls = Vdij = Wgy; 0 +of+oy, t=1,....,My, j=1,..., Ng.

12.4 Monte Carlo EBP of an Additive Parameter

12.4.1 Introduction

The target of this section is to estimate a small area additive parameter of the form

Mg Ng;

=— Z > hGaip),

t=1 j=1
where £ is a known measurable function. The best predictor of 8, is

Mg Ny

0 = £, [ 3 huly, |

tljl

_Z{Zh(yd,])—i- 2. Eyr[h()’dtj)|ys]].

= JEsar J€Uar—sar

The conditional distribution of y, |y, depends on the vector § = (8, 00 , cr1 , )’
of unknown model parameters, which must be estimated, that is,

Ey [haip)|ys] = Ey, [H(aij)lys; 0]

Let § = (,B 00, 81, 62) be an estimator based on sample data y,. The result

of replacing 6 by 0 in the formula of the best predictor is called empirical best
predictor, that is,

A”’”-—Z{ S hoap+ Y Ey [hGuply: 0],

= JEsdr J€Uar—sar
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For a general function X(-), the expected value above might be not tractable
analytically. When this occurs, the following Monte Carlo procedure can be
applied.

(a) Estimate the unknown parameter 0= (B, cro , crl , )’ using sample data y,.

(b) Replacing @ = (8, oo,al, ) by the estimate § = /3 602,612,02)’ obtained
in (a) draw L copies of each non-sample variable yg;;. That means, for
d =1....,D,t = 1,...,My, j € Ug — sq;, £ = 1,..., L, generate
¢ A N A N . . A
y((hj N (fLazjis> Varjis) With figsjs and 94,5 obtained by replacing 6 by 6

in the formulas for (4| and vg;j|s, where

4
Marj|ls=Xdrj B+ Var {)_’dts —XaisB —idmﬂ)}, 1<t<my,
oy Wdr (=
of
Mdijls = XarijB + —5 2 ®d Z Yae Yaes — XaesB), if mg+1 <1< My,
% o

Mdijls = XdijB, if mg =0,

20, —1 2
g [warj + @atl + var(var — 2D} +05(1 = yap), 1 <t < mq,
2,0 —1 2
Vdtjls = Uo(wdtj + ¢a) + 05, mg + 1<t<My,
1.2, 2, 2 _
wy,;0) +of +03, mg =0,
_ -1 = -1
Vdos = Wap D jesy, WdtjYdej> Xdes = Wyy D ey, WdejXdej and
2 2
9] )

ol + o2 Y (1= yao)war.

Pd = =5
0y + 0y /War.

(c Ford = 1,....,D,t = 1,...,My, j € Ug — sa:, the Monte Carlo
approximation of the expected value is

L
" 1 ¢
Ey [h(yaiplys: 0]~ © > hg))
=1

and the Monte Carlo approximation of the EBP of the additive domain
parameter 8 is

S;"P~ Z|Zh(ydn>+ 3 ( Zh( e Za“’

t=1  j€sa J€Uar—sar
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where
M,
W= 2| T+ 3wl
d _Nd Ydtj yd;]
t=1 jesq J€Uar—sar

If we were interested in estimating the subdomain additive parameter

Nar

8ar = — Zh()’dtj)

the corresponding Monte Carlo approximation of the EBP is

. 1 & 1 &
S d{Zh(ydUH 3 (Z;h@;‘i’,))}:Z;ag’,

JESdr J€Uar—sar

where

) = | Zhvap+ Xm0},

JEsar J€Uar—sar

Remark 12.1 If the selected two-fold NER model contains continuous auxiliary
variables and there is no available census file, it is possible to use a design-based

approximation to 51(;;) when ng4; > 0. This approximation is

1
S0 = 3 2 () = hOgD) + 3 wash O . (12.25)

JESdr JESdr
where wy;;’s are the calibrated sample weights and

¢ . . .
y;& N(faijis, Varjis),  Jj €Sar, t=1,....mq, d=1,...,D, £=1,..., L,

with fl4sj|s and ¥g;j|s obtained by replacing 6 by 6 in the formulas for Mdij|s and
Vqyj|s given above. Let us note that the second sum in the formula (12.25) stands
in fact for summation over the whole population, this is why the sum of h(y(g))
over the sample is subtracted. For more details concerning use of the descrlbed

approximation we refer to Remark 10.2.

12.4.2 Auxiliary Variables with Finite Number of Values

In many practical cases the values of the auxiliary variables are not available for
all the population units. If in addition some of the variables are continuous, the
EBP method is not applicable. An important particular case, where this method is
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applicable, is when the model is homoscedastic and the number of values of the
vector of auxiliary variables is finite. More concretely, suppose that the covariates
are categorical such that x4;; € {x1, ..., xg} and that wy,; = 1foralld, ¢, j. Then,

we can calculate 853) as

, mqg K naw Nark .
IR ) 303 STTIRED 3 DD SEVILC B) ENNIEEY
t=1 k=1 j=1 t=1 k=1 j=ng+1

where Ngix = #{j € Uas : Xa1j = Xt} is supposed to be available from external

data sources (aggregated auxiliary information), ngix = #{j € Sar : Xarj = Xx},

14 ~ ~
yf,tl, ~ N(itgigs: dangs)- k = 1. K.t = 1,... . Mg.d = 1,....D, £ =

1, ..., L. Further,

Xkﬂ+)/dt{ydm—xgmﬂ + (AT% DS VaeGaes — TaesB)), 1 <1 <my,

Hdikis =\ x B + &_2 Ga 0, DaeGaes — %aesB), ma+1<1< My,
~ 2
xiB, mg =0,

65[1+ @all + Par Par — DY + 651 — Par), 1 <t < my,

Vae|s = &g(1+¢d)+622, mg+1<t<M,,
A2 _
99 +o + ‘72’ mg =0,
where
K nai 1 K
Yais = Zzydtkw Xais = —— anthk
k=1 j=1 dt 2
and
~ 012 A na’zCATzz
V=3 52 > s Y=g
65 + 61 > (1 = Par)nae n463 + 63

Similarly, we can calculate &, (@)

K nai K Nk

S = [Zzh()’dtkj)‘FZ > h ff;}q} (12.27)

k=1 j=1 k=1 j=ngu+1
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12.5 EBPs of Poverty Indicators

Let z4;j be a welfare variable (e.g. income or expenditure) for individual j from
subdomain ¢ within domain d and let z be the poverty line. For a given power o > 0,
the FGT poverty indicator of order o (Foster et al. 1984) for subdomain ¢ within
domain d is defined as

Nar
Z = Zdij\®
Faar = +— Z Foatj,  Foarj = (TU) I(zarj < 2), (12.28)

where I(z4;j < z) = 1if zgsj < z and I(z4r; < z) = 0 otherwise. For o = 0, we
obtain the subdomain poverty proportion, which measures the proportion of people
in the subdomain whose welfare is below the poverty line z. For « = 1, we obtain
the subdomain poverty gap, measuring the degree of poverty of the people in that
subdomain. These indicators are defined analogously for domains.

For estimating these indicators in domains or subdomains, we assume that a one-
to-one transformation of the welfare variable for each unit, ys;; = T (z4;;), follows
the two-fold nested error model (12.1). Then, using the inverse transformation
Zdtj = T_l(yd, ), we can express Fy 4¢; in terms of the model response variables

Ydtj as

—_7-1 N«
Faay = (F22) 10 ) < 2) = hata), (12.29)

which means that Fy 4/ is an additive parameter. Therefore, the best predictor of
Fa’d[ iS

Abp _ bp
adt_Nd{ZFadtj+ Z Fadt]}

JESar J€U4r—Ssar
where F7P wdi
T, the expectation EPr w,dej €an be calculated analytically, avoiding Monte Carlo
simulation.

= E, [ w,dtjlYss 0]. For « = 0, 1 and for certain transformations

12.5.1 Poverty Proportion

For the poverty proportion, « = 0, we have ho(yqj) = I(T_l(ydtj) < z) =
I(yarj < T(2)).If T is a nondecreasing monotonous function, we obtain

Fo dtj = = Ey, [FO dijlys; ] Ey, [hO(ydtj)|ys§ 0] =Ey, [I(ydzj < T(z))lys; 0]

=Py (yarj < T(2)|ys:0) = P(N©O, 1) < agrj) = P(otar),
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where

_ T(2) — Haijis
adlj - 1/2

Vdtjls

and @ denotes the cumulative distribution function of a standard normal random
variable.

12.5.2 Poverty Gap

—T - (ys
For the poverty gap, @ = 1, we have h1(yqj) = M I(T_l(yd,j) < z).In
this section we assume that y = T(z) = log(z +c¢) or z = T~ (y) = ¥ — c. First,
we obtain

b

F{%i; = Ey, [Fraij|ys: 0] = Ey, [ (yai)1y,: 0]
_ T_l .

[zzw ys;0:|

1
3 0] = By, [T 0u (v < T)

I(yarj < T(2))

= By, [1(vay < T@) vii6]
1

=S — =5,
<

We have proved that the first summand is

S1= Ey, [ 10y < T)

ys;0] = O (agsj)-

For calculating S>, we simplify the notation, i.e. y4:; = ¥, ldrj|s = M, v%jzls =o0,
and oy;; = « and in the integrals below we apply the following changes of variables:

X = , y=ox+4+u, dy=odx, y=T@) &x=

3

r@-—um_,
— =

U=x—0, x=u-+o, dx=du, x=a<u=uo-—o.

It holds that

T(2)

vt = [T 0 e dy

—00

$» = Ey, [T_l()’dtj)f(ydtj <T(2)

o
= / T 'ox + ) fn o2y (0x + 1) odx

—00
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o 1 1
= e explox) —c expl — —x*l odx
[—oo ( plox}—c) V2m o P [ 2

:—c(b(ot)+e”/a !
—oo V27

1 o
= —c®(a) +eXP{§ o’ +M}/ IN@.1(x)dx
—0o0

ex L, 2 1,
p 2(x 20x +0°) exp 20 dx

1 oa—0
:—c¢(a)+exp{502+u}/ Sno.y ) du.
—0o0
Therefore
L,
S = —cP(x) + exp {5 o+ M]CD(oz —0)
and

Fr _ o . ! 1 . . Ap . 172 ® .
Ldtj = (@arj) — Z eXp 5 Vdrjls + Mdtjls { P(@arj — vdtjls) — c®(aqrj)

Z+c

1 1 1/2
D (atqrj) — Zoxp {5 Vdtjls + Mdtj\s}cb(adtj - vdms)-

12.6 EBPs of Average Income Indicators

Let z4;j be a welfare variable (e.g. income or expenditure) for individual j from
subdomain ¢ within domain d. The average income of subdomain ¢ within domain
dis
1 Nar
Zdt = —— ) Zdij-
Ny ]2:;

This indicator is defined analogously for domains. For estimating the average
incomes in domains or subdomains, we assume that a one-to-one transformation
of the welfare variable for each unit, ys;; = T (z4:j), follows the two-fold nested
error model (12.1). Then, using the inverse transformation we can express zq;; in
terms of the model response variables y,;; as

zaj = T Garj) = h(arj),
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which means that 74, is an additive parameter. Therefore, the best predictor of zy; is
2bp 1 ~bp
S = 3 DR TR DR B
JEsadr J€Udt—sar

where

~b _
dej = Ey, [zatjlys. 0] = Ey, [h(yarj)|y,: 0] = Ey [T Yarj)yy; 01.

Let us now assume that y = T(z) = log(z +c¢) or z = T_l(y) = ¢’ — c. For
. Abp Lo . . - 12
calculating Zqpj0 We simplify the notation, i.e. ya; = ¥, tarj|s = M» Vgrjls = © and

in the integral below we do the following change of variables:

_ T(7) —
x:y ,u, y=o0x+u, dy=odx, y=T(z)¢>x=M=a
o o

It holds that
b o0 o0
fdfj = / T_l(y)fN(,L,JZ)()’) dy Z/ T N ox + W) fyuo2)(0x + @) odx
—0 —00
[ eston -0 w57 ou
= et explox} —c Xp1 — —x“{ odx
—00 P 2 o P 2
:—c—i—e“/oo : expi—l(xz—Zax—i—az)}exp[laz}dx
—ooVZ?T 2 2

1, © 1,
:—c—i—exp[za +M} fN(U,l)(x)dx:—c—i—exp[Ea +u}.
—0oQ

Therefore

~b, 1
Zdlt]j = —c +exp {5 Vdtj|s + I‘Ldtjls}-

12.7 Parametric Bootstrap MSE Estimator

Analytical approximations to the MSE of empirical best predictors are difficult to
derive in the case of complex parameters such as the FGT poverty measures. We
therefore present a parametric bootstrap MSE estimator by following the bootstrap
method for finite populations of Gonzédlez-Manteiga et al. (2008a). This bootstrap
method can be readily applied to other complex parameters not necessarily of the
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additive form as the FGT measures. Steps for implementing this method are given
now.

1. Fit the model (12.1) to sample data (y,, X;) and obtain an estimator 0 =
(B, 62,62,62) of 0 = (ﬂ 02,02, 02).
2. Repeat Btimes (b =1,..., B):
(@ Ford =1,....D,t =1,...,My, j = 1,..., N4, generate indepen-
denty uj 4 ~ N(0,670), u3 4, ~ N(0,67) and €j,; ~ N(0, &3).
) Ford =1,....,D,t =1,...,My, j = 1,..., Ny, generate indepen-
dently the bootstrap population

*(b) _ —1/2 «
Yarj = xaijB +ui 4+ u3 g + Wyrj €arj

and calculate the bootstrap population parameters

Mg Ng

llj]

(c) From the bootstrap population generated in Step (b), take the sample with
the same indices s C U as the initial sample, and calculate the bootstrap EBPs,
52P*(®) and (Sebp *®) as described in Sect. 12.4 using the bootstrap sample data

84
y*® and the known values x 4, i

3. Output: the bootstrap estimators of M SE (Sebp yand MSE (c‘SEbp )

ebp)

mse* (3 ( febpr®) _ *(b)>2

Uc |

ebp) _ ( febpx®) _ *(b)>2

mse* (8

Ud |

Remark 12.2 The described bootstrap estimator is applicable if a census file fulfill-
ing properties (A), (B), and (C), given in Remark 10.1, is available. Nevertheless, it
can be easily modified to the cases that only a census file fulfilling property (A) is
available or no census file is available but the auxiliary variables are categorical and
the sizes of the population classes are known. This modification can be done in the
same manner as described in Sect. 10.8 for the NER model.

12.8 R Codes for EBPs

This section gives R codes for fitting the NER2 model to the survey data file
LFS20.txt. We employ the R package 1me4. The domains are defined by the
variable AREA and the subdomains are obtained by crossing this variable with the
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age groups. The age groups (ageG) are defined by ageG = 1 if AGE < 25, ageG = 2
if 25 < AGE < 54, and ageG = 3 if AGE > 54. The first target parameters are
the proportions of poor people by domains or subdomains. The second and the
third target parameters are the domain and subdomain poverty gaps and average
incomes, respectively. As auxiliary variables, we take the dichotomic variables
defining the three categories of the variable EDUCATION (primary or less, secondary
and superior). The categories are named edul, edu2, and edu3, respectively. The
following R code reads the unit-level data files, load some R packages and defines
some variables.
if (lrequire (Matrix)) {

install.packages ("Matrix")
library (Matrix)

if (lrequire (1lme4)) {
s (

install.packages ("lme4")
library (1lme4)
dat <- read.table("LFS20.txt", header=TRUE, sep = "\t", dec = ".")

z0 <- 36500 # poverty threshold

ns <- nrow(dat) # global sample size

poor <- as.numeric (dat$INCOME<z0) # variable poor

gap <- (z0-dat$INCOME) xpoor/z0 # variable gap

one <- rep(l,nrow(dat)) # variable one

Ga <- cut (dat$AGE, breaks=c(0,25,54,max(datS$SAGE)), labels=c(1,2,3),
right=TRUE)

ageG <- as.numeric(Ga) # age group

edu2 <- as.numeric (dat$EDUCATION==2) # secondary education

edu3d <- as.numeric (dat$SEDUCATION==3) # superior education

y <- log(dat$SINCOME) # variable y=log(income)

The following code reads the auxiliary data file and renames some variables.

aux <- read.table("Ndsa20.txt", header=TRUE, sep = "\t", dec = ".")
# Sort aux by sex, age and area
aux <- aux[order (aux$sex, aux$Sage, auxS$Sarea), |

We calculate sample sizes, counts, and means by subdomains.

# Sizes

ndt <- tapply(X=one, INDEX=1list (dat$AREA,ageG), FUN=sum)
# Sample counts of edu3

ndtedu3 <- tapply(edu3, list (dat$SAREA,ageG), sum)
# Sample counts of edu2

ndtedu2 <- tapply(edu2, list (dat$AREA,ageG), sum)
# Sample counts of edul

ndtedul <- ndt - ndtedu3 - ndtedu2

# Sample counts of poor people

ndtpoor <- tapply(poor, list (datS$AREA,ageG), sum)
# Sample poverty proportion

mdtpoor <- ndtpoor/ndt

# Sample sum of gap variable

ndtgap <- tapply(gap, list (datSAREA,ageG), sum)

# Sample poverty gap

mdtgap <- ndtgap/ndt

# Sample sum of log-income

ndty <- tapply(y, list (dat$SAREA,ageG), sum)

# Sample log-income mean

mdty <- ndty/ndt
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We calculate direct estimators of sizes, poverty proportions and gaps and income
means by subdomains, by using dir2 function described in Sect. 2.8.4.

dir.poor <- dir2(data=poor, w=dat$SWEIGHT, domain=1list (area=datS$AREA,

ageG=ageG) )

dir.gap <- dir2(data=gap, w=dat$WEIGHT, domain=1list (area=dat$AREA,
ageG=ageG) )

dir.income <- dir2(data=dat$INCOME, w=dat$SWEIGHT, domain=1list (area=dat$AREA,

ageG=ageG))

hatNdt <- dir.poors$Nd.hat # sizes

dirp <- dir.poorSmean # poverty proportions

dirg <- dir.gap$mean # poverty gaps

diri <- dir.incomeSmean # income means

We fit a two-fold nested error regression model (NER2) to the variable y =
log(INCOME) under the assumption wg;; = 1 for all d, ¢, j. We apply R function
lmer with the REML fitting method.

lmm <- lmer (formula=y ~ edu3 + edu2 + (1\AREA/ageG), data=dat, REML=TRUE)
summary (1lmm) # summary of the fitting procedure
anova (1lmm) analysis of variance table
beta <- fixef (1lmm) # regression parameters
bedu3 <- betall] + betal2] # beta for x1=1, x2=1, x3=0 (edu3)
bedu2 <- beta[l]l + betal3] # beta for x1=1, x2=0, x3=1 (edu2)
bedul <- betall] # beta for x1=1, x2=0, x3=0 (eduoO)
var <- as.data.frame (VarCorr (lmm)) # variance parameters
sigmau2 <- var$sdcor[1] # standard deviation of uﬁIZ,dt}

#

#

#

#

#

)

£

sigmaul <- var$sdcor[2] standard deviation of u_{1,d}
sigmae <- var$sdcor[3] residual standard deviation
ranef (1mm) modes of the random effects
ypred <- fitted(lmm) predictions

residuals <- resid(lmm) residuals

p.values <- 2xpnorm(abs (coef (summary (lmm)) [,3]), low=F) # p values

Table 12.1 gives the estimates of the regression parameters. The standard deviations
of uy,q, uz,4r, and egyj are oy = 0.02114, 0 = 0.02321, and o¢ = 0.27282.

Figure 12.1 (left) plots a dispersion graph of model residuals. The residuals are
situated symmetrically around zero. Figure 12.1 (right) plots an histogram of the
model residuals that shows some lack of normality.

We first calculate the means and the variances of unobserved values of the income
variable conditioned to observed ones. The following R code calculates y;;, ¢4, and
Vdijs-

# Calculation of gammadt, gammadt, by subdomains

gammadt <- sigmau2”2xndt/ (sigmau2”2+ndt+sigmae”2)

# Calculation of deltad

gammad <- apply((l-gammadt)sndt, 1, sum)

# phid by domains

phid <- sigmaul®2/ (sigmae”2+sigmaul”2xgammad)

# Calculation of the conditioned variances, vdt, by subdomains
vdt <- sigmae”2x (1+phid« (1+gammadt« (gammadt-2))) + sigmau2”2* (1-gammadt)

Table 12.1 Estimated

Parameter | Estimate | Std. error | z-value | p-value
parameters of NER2 model

Intercept | 10.5406 |0.01475 |714.8 |0.00
edu3 0.4282 | 0.02454 17.4 10.00
edu2 0.2275 |0.01888 12.0 1 0.00
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Fig. 12.1 Dispersion graph and histogram of residuals

The following R code calculates pq;; and o;j. We recall that for each area d and
age group ¢, there are only three different values of wg4;; corresponding to edu3,
edu2, and edul, respectively. The same happens for a;;.

# Preliminary calculations

mdtxbeta <- (bedu3xndtedu3 + bedu2+ndtedu2 + bedulsndtedul) /ndt
gammayxd <- apply(gammadt* (mdty-mdtxbeta), 1, sum)

uudt <- gammadts (mdty-mdtxbeta+ (sigmae”2/sigmau2”2) 2« (phid/ndt) +gammayxd)
# Calculation of the conditioned means

muedu3 <- beduld + uudt; muedu2 <- bedu2 + uudt; muedul <- bedul + uudt
# alphadt

y0 <- log(z0)

alphadedu3 <- vdt”™(-1/2)* (y0-muedu3)

alphadedu2 <- vdt™(-1/2)x (y0-muedu2)

alphadedul <- vdt”(-1/2) % (y0-muedul)

The following R code calculates ®(cy;;) and the EBPs of the poverty proportions
by subdomains.

# Normal CDF

noredu3 <- pnorm(alphadedu3, mean=0, sd=1)

noredu2 <- pnorm(alphadedu2, mean=0, sd=1)

noredul <- pnorm(alphadedul, mean=0, sd=1)

# Populations sizes by subdomains

Ndt <- tapply(X=aux$N, INDEX=list (aux$area,aux$age), FUN=sum) # global

Nedu3 <- tapply(aux$edu3, list (aux$area,aux$age), sum) # edu3

Nedu2 <- tapply(auxs$edu2, list (auxS$area,aux$age), sum) # edu2

Nedul <- Ndt - Nedu3 - Nedu2 # edul

# Poverty proportion EBPs by subdomains

ebpptot <- ndtpoor + (Nedu3-ndtedu3)xnoredu3 + (Nedu2-ndtedu2)sxnoredu2 +
(Nedul-ndtedul) xnoredul

ebp.poor <- ebpptot/Ndt; ebp.poor

The following R code calculates the poverty gaps by subdomains.

gap3 <- noredu3 - exp (vdt/2+muedu3) xpnorm(alphadedu3-vdt*{1/2})/z0
gap2 <- noredu2 - exp (vdt/2+muedu2) +pnorm(alphadedu2-vdt™{1/2})/z0
gapl <- noredul - exp (vdt/2+muedul) «pnorm(alphadedul-vdt*{1/2})/z0

# Poverty gap EBPs by subdomains

ebpgtot <- ndtgap + (Nedu3-ndtedu3)xgap3 + (Nedu2-ndtedu2)*gap2 +
(Nedul-ndtedul) xgapl

ebp.gap <- ebpgtot/Ndt; ebp.gap

The following R code calculates the income means by subdomains.

inc3 <- exp (vdt/2+muedu3l)
inc2 <- exp (vdt/2+muedu2)
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incl <- exp (vdt/2+muedul)

# EBPs of income means by subdomains

ebpitot <- ndty + (Nedu3-ndtedu3)xinc3 + (Nedu2-ndtedu2)xinc2 +
(Nedul-ndtedul) xincl

ebpi <- ebpitot/Ndt; ebpi

Summary of results for poverty proportions

outputl <- data.frame(nl=ndt[,1], n2=ndt[,2], n3=ndt[,3],
ebppl=round (ebp.poor[,1],4), ebpp2=round(ebp.poor(,2],4),
ebpp3=round (ebp.poor[,3],4), dirpl=round (subset (dir.poor,
dom.ageG=="1") Smean, 4), dirp2=round (subset (dir.poor,
dom.ageG=="2") Smean, 4), dirp3=round (subset (dir.poor,
dom.ageG=="3") $Smean, 4) )

head (outputl, 10)

Summary of results for poverty gaps

output2 <- data.frame(nl=ndt[,1], n2=ndt[,2], n3=ndtl[, 3],
ebpgl=round (ebp.gapl,1],4), ebpg2=round(ebp.gapl,2],4),
ebpg3=round (ebp.gap[,3],4), dirgl=round (subset (dir.gap,
dom.ageG=="1") Smean, 4), dirg2=round (subset (dir.gap,
dom.ageG=="2") Smean, 4), dirg3=round (subset (dir.gap,
dom.ageG=="3") Smean, 4) )

head (output2, 10)

Summary of results for income means

output3 <- data.frame(nl=ndt[,1], n2=ndt[,2], n3=ndtl[,3],
ebpil=round(ebpil,1],0), ebpi2=round(ebpil,2],0),

ebpi3=round(ebpil,3],0), diril=round (subset (dir.income,
dom.ageG=="1") Smean, 0) , diri2=round (subset (dir.income,
dom.ageG=="2") Smean, 0) , diri3=round (subset (dir.income,

dom.ageG=="3") Smean, 0) )

head (output3, 10)
Table 12.2 (left) gives the sample sizes by subdomains (AREA crossed by ageG). We
note that sample sizes are very small. The columns labeled by ebppl, ebpp2, and
ebpp3 contain the EBPs of poverty proportions by areas and age groups 1, 2, and
3, respectively. The columns labeled by dirpl, dirp2, and dirp3 contain the direct
estimates of poverty proportions by areas and age groups 1, 2, and 3, respectively.

Table 12.3 gives the EBPs of poverty gap by subdomains. The columns labeled
by ebpgl, ebpg2, and ebpg3 contain the EBPs of poverty gaps by areas and age
groups 1, 2, and 3, respectively. The columns labeled by dirgl, dirg2, and dirg3

Table 12.2 EBPs and direct estimates of subdomain poverty proportions

ni ny n3 ebppl ebpp2 ebpp3 dirpl dirp2 dirp3
9 36 15 0.2813 0.2372 0.4019 0.4229 0.1098 0.2662
9 13 15 0.2737 0.2278 0.4192 |0.2049 0.2576 | 0.3303
5 23 19 0.2341 0.1922 0.2846 | 0.0000 0.1330 |0.1614
14 31 10 0.2627 0.2385 0.3659 0.3113 0.1481 0.2961
10 31 9 0.1628 0.2233 0.4273 0.1868 0.0900 | 0.3060
9 24 10 0.1369 0.2519 0.3670 | 0.0000 0.1699 0.1719
10 23 15 0.1834 0.2281 0.3848 0.0816 0.2272 | 0.2660
10 27 11 0.3040 | 0.3358 0.3513 0.1972 0.2774  10.2622
20 68 37 0.1688 0.2021 0.3246 | 0.1295 0.1169 0.1421
10 20 11 0.2163 0.2768 0.4002 0.0797 0.1889 0.6420
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Table 12.3 EBPs and direct estimates of subdomain poverty gaps

d ni ny n3 ebpgl ebpg2 ebpg3 dirgl dirg2 dirg3
1 9 36 15 0.0459 | 0.0371 0.0704 |0.1017 |0.0120 |0.0710
2 9 13 15 0.0434 0.0343 | 0.0732 | 0.0070 | 0.0205 | 0.0849
3 5 23 19 0.0362 | 0.0297 0.0462 | 0.0000 |0.0238 |0.0252
4 14 31 10 0.0426 | 0.0382 1 0.0623 | 0.0196 | 0.0301 0.0279
5 10 31 9 0.0227 0.0339 | 0.0745 |0.0105 |0.0109 |0.0779
6 9 24 10 0.0175 0.0392 | 0.0620 | 0.0000 |0.0273 |0.0414
7 10 23 15 0.0256 | 0.0361 0.0658 |0.0160 | 0.0421 0.0296
8 10 27 11 0.0507 | 0.0569 0.0603 | 0.0322 | 0.0633 | 0.0446
9 20 68 |37 0.0234 | 0.0311 0.0541 0.0243 |0.0141 0.0155
10 10 20 11 0.0322 |0.0454 | 0.0701 0.0182 |0.0440 |0.1315

Table 12.4 EBPs and direct estimates of subdomain income means

d ni ny n3 ebpil ebpi2 ebpi3 diril diri2 diri3
1 9 36 15 45,690 47,671 40,832 42,479 49,380 40,651
2 13 15 45,450 47,216 40,073 45,717 48,783 40,990
3 5 23 19 47,249 50,873 45,895 50,648 51,913 50,338
4 14 31 10 46,994 48,262 42,302 43,178 49,605 42,803
5 10 31 9 50,928 47,672 39,560 53,155 47,561 42,339
6 9 24 10 51,667 46,360 41,912 53,973 46,726 44,807
7 10 23 15 48,929 48,586 41,576 49,804 48,159 44,327
8 10 27 11 44,948 43,477 43,236 44,286 42,933 43,187
9 20 68 37 49,995 50,100 44,219 49,650 50,432 44,069
10 10 20 11 47,694 46,111 40,910 46,483 47,648 37,116

contain the direct estimates of poverty gaps by areas and age groups 1, 2, and 3,
respectively.

Table 12.4 gives the EBPs of income means by subdomains. The columns labeled
by ebpil, ebpi2, and ebpi3 contain the EBPs of income means by areas and age
groups 1, 2, and 3, respectively. The columns labeled by diril, diri2, and diri3
contain the direct estimates of income means by areas and age groups 1, 2, and
3, respectively.

In general, the EBP method produces estimates that are, across domains,
smoother than direct estimates. This in an interesting property when dealing with
real data applications for doing poverty mapping.
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