
Reinforcement Learning for N-player
Games: The Importance of Final

Adaptation

Wolfgang Konen(B) and Samineh Bagheri

Cologne Institute of Computer Science, TH Köln, Gummersbach, Germany
{wolfgang.konen,samineh.bagheri}@th-koeln.de

Abstract. This paper covers n-tuple-based reinforcement learning (RL)
algorithms for games. We present a new algorithm for temporal difference
(TD) learning which works seamlessly on various games with arbitrary
number of players. This is achieved by taking a player-centered view
where each player propagates his/her rewards back to previous rounds.
We add a new element called Final Adaptation RL (FARL) to this algo-
rithm. Our main contribution is that FARL is a vitally important ingre-
dient to achieve success with the player-centered view in various games.
We report results on seven board games with 1, 2 and 3 players, includ-
ing Othello, ConnectFour and Hex. In most cases it is found that FARL
is important to learn a near-perfect playing strategy. All algorithms are
available in the GBG framework on GitHub.

Keywords: Reinforcement learning · TD-learning · Game learning ·
N-player games · n-tuples

1 Introduction

1.1 Motivation

It is desirable to have a better understanding of the principles how computers
can learn strategic decision making. Games are an interesting test bed and rein-
forcement learning (RL) is a general paradigm for strategic decision making. It
is however not easy to devise algorithms which work seamlessly on a large vari-
ety of games (different rules, goals and game boards, different number of players
and so on). It is the hope that finding such algorithms and understanding which
elements in them are important helps to better understand the principles of
learning and strategic decision making.

Learning how to play games with neural-network-based RL agents can be seen
as a complex optimization task. It is the goal to find the right weights such that
the neural network outputs the optimal policy for all possible game states or a
near-optimal policy that minimizes the expected error. The state space in board
games is usually discrete and in most cases too large to be searched exhaustively.

c© Springer Nature Switzerland AG 2020
B. Filipič et al. (Eds.): BIOMA 2020, LNCS 12438, pp. 84–96, 2020.
https://doi.org/10.1007/978-3-030-63710-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63710-1_7&domain=pdf
http://orcid.org/0000-0002-1343-4209
http://orcid.org/0000-0003-2488-8000
https://doi.org/10.1007/978-3-030-63710-1_7


Reinforcement Learning for N-player Games 85

These aspects pose challenges to the optimizer which has to generalize well to
unseen states and has to avoid overfitting.

In this paper we describe in detail a new n-tuple-based RL algorithm. N-
tuples were introduced by Lucas [13] to the field of game learning. Our new
learning algorithms extend the work described in [1,8,19] and serve the purpose
to be usable for a large variety of games. More specifically we deal here with
discrete-time, discrete-action, one-player-at-a-time games. This includes board
games and card games with N = 1, 2, . . . players. Games may be deterministic
or nondeterministic.

N-tuple networks are shown to work well in a variety of games, (e.g. in Con-
nectFour [1,19], Othello [13], EinStein würfelt nicht [3], 2048 [18], SZ-Tetris [7]
etc.) but the algorithms described here are not tied to them. Any other function
approximation network (deep neural network or other) could be used as well.

All algorithms presented here are implemented in the General Board Game
(GBG) learning and playing framework [9,10] and are applied to several games.
The variety of games makes the RL algorithms a bit more complex than the
basic RL algorithms. This paper describes the algorithm as simple as possible,
yet as detailed as necessary to be precise and to follow the implementation in
GBG’s source code, which is available on GitHub1.

A work related to GBG [9,10] is the general game systems Ludii [14]. Ludii is
an efficient general game system based on ludeme library implemented in Java,
allowing to play as well as to generate a large variety of strategy games. Currently
all AI agents implemented in Ludii are tree-based agents (MCTS variants or
AlphaBeta). GBG on the other hand offers the possibility to train RL-based
algorithms on several games.

The main contributions of this paper are as follows: (i) It presents a unifying
view for RL algorithms applicable to different games with different number of
players; (ii) it demonstrates that a new element, named Final Adaptation RL
(FARL), is vital for having success with this new unifying view; (iii) it incorpo-
rates several other elements (afterstates, n-tuples, eligibility with horizon, tem-
poral coherence) that are useful for all games. To the best of our knowledge, this
is the first time that these elements are brought together in a comprehensive
form for game-learning algorithms with arbitrary number N of players.

1.2 Algorithm Overview

The most important task of a game-playing agent is to propose, given a game
state st, a good next action at from the set of available actions in st. TD-
learning (Sect. 2.5) uses the value function V (st) which is the expected sum of
future rewards when being in state st.

It is the task of the agent to learn the value function V (s) from experience
(interaction with the environment). In order to do so, it usually performs multiple
self-play training episodes, until a certain training budget is exhausted or a
certain game-playing strength is reached.

1 https://github.com/WolfgangKonen/GBG.

https://github.com/WolfgangKonen/GBG


86 W. Konen and S. Bagheri

The nomenclature and algorithmic description follows as closely as possible
the descriptions given in [6,18]. But these algorithms are for the special case of
the 1-player game 2048. Since we want to use the TD-n-tuple algorithm for a
broader class of games, in this paper we present a unified TD-update scheme
inspired by [15] which works for 1-, 2-, . . ., N -player games.

Our new RL-algorithm is partly inspired by [6,15] and partly from our own
experience with RL-n-tuple training. The key elements of the new RL-logic – as
opposed to our previous RL-algorithms [1,8] – are:

– New afterstate logic [6], see Sect. 2.2.
– Eligibility method with horizon [6], see Sect. 2.3.
– Generalization to N -player games with arbitrary N [15], see Sect. 2.4.
– Final adaptation RL (FARL) for all players, see Sect. 2.6.
– Weight-individual learning rates via temporal coherence learning (TCL) [1,2].

More details are described in an extended technical report [11].

2 Algorithms and Methods

2.1 N-tuple Systems

N-tuple systems coupled with TD were first applied to game learning by Lucas
in 2008 [13], although n-tuples were introduced already in 1959 for character
recognition purposes. The remarkable success of n-tuples in learning to play
Othello [13] motivated other authors to benefit from this approach for a number
of other games. The main goal of n-tuple systems is to map a highly non-linear
function in a low dimensional space to a high dimensional space where it is easier
to separate ‘good’ and ‘bad’ regions. This can be compared to kernel trick in
Support Vector Machines (SVM). An n-tuple is defined as a sequence of n cells
of the board. Each cell can have m values representing the possible states of that
cell. Therefore, every n-tuple will have a (possibly large) look-up table indexed
in form of an n-digit number in base m. An n-tuple system contains multiple
n-tuples.

2.2 Afterstate Logic

For nondeterministic games, Jaśkowski et al. [6,18] describe a clever mechanism
to reduce the complexity of the value function V (s).

Consider a game like 2048 (Fig. 1): An exemplary action is to move all tiles
to the right, this will cause the environment to merge adjacent same-value tiles
into one single tile twice as big. This is the deterministic part of the action and
the resulting state is called the afterstate s′. The second part of the action
move-right is that the environment adds a random tile 2 or 4 to one of the
empty tiles. This results in the next state s′′.

The naive approach for learning the value function would be to observe the
next state s′′ and learn V (s′′). But this has the burden of increased complexity:
Given a state-action pair (s, a) there is only one afterstate s′, but 2n possible



Reinforcement Learning for N-player Games 87

Fig. 1. For nondeterministic games it is better to split a state transition from s to s′′

in a deterministic part, resulting in afterstate s′, and a random part resulting in next
state s′′ (taken from [18]).

next states s′′, where n is the number of empty tiles in afterstate s′.2 This makes
it much harder to learn the value of an action a in state s. And indeed, it is not
the specific value of V (s′′) which is the value of action a, but it is the expectation
value 〈V (s′′)〉 over all possible next states s′′.

It is much more clever to learn the value V (s′) of an afterstate. This reduces
the complexity by a factor of 2n̄, where n̄ is the average number of empty tiles.
It helps the agent to generalize better in all phases of TD-learning.

For deterministic games there is no random part: afterstate s′ and next state
s′′ are the same. However, afterstates are also beneficial for deterministic games:
For positional games (like TicTacToe, ConnectFour, Hex, . . .) the value of taking
action a in state s depends only on the resulting afterstate s′. Several state-action
pairs might lead to the same afterstate, and it often reduces the complexity of
game learning if we learn the mapping from afterstates to game values (as we
do in TD-learning, Sect. 2.5).

2.3 Eligibility Method

Instead of Sutton’s eligibility traces [17] we use in this paper Jaśkowski’s eligibil-
ity method [6]. This method is efficiently computable even in the case of long RL
episodes and it can be made equivalent to eligibility traces in the case of short
episodes. For details the reader is referred to Appendix A.3 of the extended
technical report [11] or to [6].

2.4 N Players

We want to propose a general TD(λ) n-tuple algorithm which is applicable not
only to 1- and 2-player games but to arbitrary N -player games.
2 In the example of Fig. 1 we have n = 9 empty tiles in afterstate s′, thus there are

2n = 18 possible next states s′′. The factor 2 arises because the environment can
place one of the two random tiles 2 or 4 in any empty tile.



88 W. Konen and S. Bagheri

Algorithm 1. TDFromEpisode: Perform one episode of TD-learning, starting
from state s0. States s′

t−1, st, s
′
t and actions at are for one specific player pt. rt is

the delta reward for pt when taking action at in state st. At is the set of actions
available in state st.
1: function TDFromEpisode(s0)
2: t ← 0
3: repeat
4: Choose for player pt action at ∈ At from st using policy derived from V
5: � e.g. ε-greedy: with probability ε random, with prob. 1 − ε using V
6: Take action at and observe reward rt, afterstate s′

t and next state s′′.
7: V new(s′

t−1) = rt + γV (s′
t) � target value for pt’s previous afterstate

8: Use NN to get the current value of previous afterstate: V (s′
t−1)

9: Adapt NN by backpropagating error δ = V new(s′
t−1) − V (st−1)

10: t ← t + 1
11: st ← s′′

12: until s′′ is terminal

The key difference to the TD-learning variants described in earlier work [1,8]
is that there each state was connected with the next state in the episode. This
required different concepts for TD-learning, depending on whether we had a 1-
player game (maximize next state’s value) or a 2-player game (minimize next
state’s value). Furthermore it has a severe problem for N -player games with N >
2: We usually do not know the game value for all other players in intermediate
states, but we would need them for the algorithms in [1,8]. In contrast, van
der Ree and Wiering [15] describe an approach where each player has a value
function only for his/her states st or state-action-pairs (st, at). The actions of
the opponents are subsumed in the reaction from the environment. That is, if
st is the state for player pt at time t, then st+1 is the next state of the same
player pt on which (s)he has to act. This has the great advantage that there is no
need to translate the value of a state for player pt to the value for other players
– we take always the perspective of the same player when calculating temporal
differences.

In the next section we describe the application of these ideas to TD-learning,
which will result in the (new) TD-FARL n-tuple algorithm valid for all N -player
games.

2.5 TD Learning for N Players

We set up a TD-learning algorithm connecting moves to the last move of the
same player. This is done in Algorithm1 (TDFromEpisode). Algorithm 1
shows the TD-learning algorithm in compact form. It thus makes the general
principle clear. But it has the disadvantage that it obscures one important detail:
What is shown within the while loop is what has to be done by player pt in state
st. After completing this, we do however not move to the next state st+1 of the
same player pt (one round away), but we let the environment act, get a new state



Reinforcement Learning for N-player Games 89

Algorithm 2. TD-FARL-Episode: Perform one episode of TD-learning, start-
ing from state s0. Similar to Algorithm 1, but with Final-Adaptation RL (FARL).
We connect afterstate s′ via player pt with the previous afterstate slast[pt] of
this player. Note that slast and r are vectors of length N (number of players).
1: function TD-FARL-Episode(s0)
2: t ← 0;
3: slast[p] ← null ∀ player p = 0, . . . , N − 1 � last afterstates
4: repeat
5: pt = player to move in state st
6: Choose action at from st using policy derived from V � e.g. ε-greedy
7: (r, s′, s′′) ← MakeAction(st, at) � s′: afterstate (after taking at)
8: � r is the delta reward tuple from the perspective of all players p
9: AdaptAgentV(slast[pt], r[pt], s

′)
10: slast[pt] ← s′ � the afterstate generated by pt when taking action at

11: t ← t + 1
12: st ← s′′

13: until (s′′ is terminal)
14: FinalAdaptAgents(pt, r, s′) � use final reward tuple to adapt all agents

15:
16: � Update the value function (based on NN) for player pt

17: function AdaptAgentV(slast[pt], r
′, s′)

18: if (slast[pt] �= null) then � Adapt V (slast[pt]) towards target T
19: Target T = r′ + γV (s′) for afterstate slast[pt]
20: Use NN to get V (slast[pt])
21: Adapt NN by backpropagating error δ = T − V (slast[pt])

22:
23: � Terminal update of value function for all players
24: function FinalAdaptAgents(pt, r, s′)
25: for (p = 0, . . . , N − 1, but p �= pt) do
26: if (slast[p] �= null) then � Adapt V (slast[p]) towards target r[p]
27: Use NN to get V (slast[p])
28: Adapt NN by backpropagating error δ = r[p] − V (slast[p])

29: � Adapt V (s′) → 0 (s′: terminal afterstate of player pt)
30: Use NN to get V (s′)
31: Adapt NN by backpropagating error δ = 0 − V (s′)

s′′
t for the next player, and then this next player does his/her pass through the

while loop.
To make these details more clear, we write the algorithm down in a form

where the pseudocode is closer to the GBG implementation. This is done in
Algorithm 2 (TD-FARL-Episode). Some remarks on Algorithm 2:

– Now the sequence of states s0, s1, ..., sf is really the sequence of consecutive
moves in an episode. The players usually vary in cyclic order, 0, 1, ..., N −
1, 0, 1, ..., but other turn sequences are possible as well.

– In each state the connection to the last afterstate of the same player p is made
via slast[p]. Thus the update step is equivalent to Algorithm1.



90 W. Konen and S. Bagheri

– In contrast to Algorithm 1, this algorithm has the final adaptation step FARL
(function FinalAdaptAgents) included. FARL is covered in more detail in
Sect. 2.6.

Algorithm 2 is simpler and at the same time more general than our previous
TD-algorithms [1,8] for several reasons:

1. Each player has its own value function V and each player seeks actions that
maximize this V . This is because each V has in its targets the rewards from
the perspective of the acting player. So there is no need to set up complicated
cases distinguishing between minimization and maximization as it was in
[1,8].

2. The same algorithm is viable for arbitrary number of players.
3. There is no (or less) unwanted crosstalk because of too frequent updates (as

it was the case for some variants in [1,8]).3

4. Since states are connected with states one round (and not one move) earlier,
positive or negative rewards propagate back faster.

2.6 Final Adaptation RL (FARL)

Once an episode terminates, we have a delta reward tuple for all players. A draw-
back of the plain TD-algorithm is that only the current player (who generated
the terminal state) uses this information to perform an update step. But the
other players can also learn from their (usually negative) rewards. This is what
the first part of FinalAdaptAgents (lines 26–28 of Algorithm 2) does: Collect
for each player his/her terminal delta reward and use this as target for a final
update step where the value of the player’s state one round earlier is adapted
towards this target.4

One might ask whether it is not a contradiction to Sect. 2.4 where we stated
that the value for other players is not known for N > 2. This is not a contra-
diction: Although intermediate values are usually not known for all players, the
final reward of a game episode – at least for all games we know of – is available
for all players. It is thus a good strategy to use this information for all players.

Second part of FinalAdaptAgents, lines 29–31: A terminal state is by def-
inition a state where no future rewards are expected. Therefore the value of that
state should be zero. However, crosstalk in the network due to the adaptation
of other states may lead to non-zero values for terminal states. Jaśkowski [6]
proposes to make an adaptation step towards target 0 for all terminal states.

3 With crosstalk we mean the effect that the update of the value function for one
state has detrimental effects on the learned values for other states.

4 The target has only the delta reward r[p] and does not need the value function
V (s′) because the value function for a terminal s′ is always 0 (no future rewards are
expected).



Reinforcement Learning for N-player Games 91

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.1

0.2

0.3

0.4

0.5

0 10 20 30

episodes [*103]

w
in

 ra
te

● TD−FARL no−FARL

Fig. 2. Different versions of TD-learning on TicTacToe. Each agent is evaluated by
playing games from different start positions in both roles, 1st and 2nd player, against
the perfect-playing Max-N agent [12]. The best achievable result is 0.5, because Max-N
will win at least in one of the both roles. Shown is the mean over 25 training runs. The
error bars depict σmean.

3 Results

We show detailed results of our algorithms on two games. In preliminary experi-
ments we tested various settings for parameters, namely the learning rate α, the
random move rate ε and the eligibility rate λ. We selected for TicTacToe param-
eter α linearly decreasing from 1.0 to 0.5 and the n-tuple system consisted just of
one 9-tuple. For ConnectFour we used α = 3.7 and an n-tuple system consisting
of initially randomly chosen but then fixed 70 8-tuples. For both games we had
ε linearly decreasing from 0.1 to 0.0, λ = 0.0 and we used the TCL scheme as
described in [1,11]. Note that due to TCL the effective learning rate adopted by
most weights can be far smaller than α. The detailed parameter settings for all
other games are given in the extended technical report [11].

3.1 TicTacToe

Figure 2 shows the learning curves of TD-learning. The red curve shows the full
Algorithm 2 (TD-FARL-Episode). The blue curve shows the results when we
switch off FinalAdaptAgents: The decrease in performance is drastic.

3.2 ConnectFour

Figure 3 shows learning curves of our TD-FARL agent on the non-trivial game
ConnectFour. Two modes of evaluation are shown: The red curves evaluate
against opponent AlphaBeta (AB), the blue curves against opponent AlphaBeta-
Distant-Losses (AB-DL). The AlphaBeta algorithm extends the Minimax algo-
rithm by efficiently pruning the search tree. Thill et al. [19] were able to imple-
ment AlphaBeta for ConnectFour in such a way that it plays perfect in situations



92 W. Konen and S. Bagheri

where it can win. AB and AB-DL differ in the way they react on losing states:
While AB just takes a random move, AB-DL searches for the move which post-
pones the loss as far (distant) as possible. It is tougher to win against AB-DL
since it will punish every wrong move. The final results for our TD-FARL agent
are however very satisfying: 49.5% win rate against AB, 46.5% win rate against
AB-DL. It is worth noting that two perfect-playing opponents (AB and AB-DL)
are not necessarily equally strong.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
0.0

0.1

0.2

0.3

0.4

0.5

1000 2000 3000 4000 5000

episodes [*103]

w
in

 ra
te

algorithm

FARL

no−FARL

evaluation mode

● AB

AB−DL

Fig. 3. TD-learning on ConnectFour. During training, agent TD-FARL is evaluated
against the perfect-playing agents AlphaBeta (AB) and AlphaBeta-with-distant-losses
(AB-DL). Both agents play in both roles (first or second). Since ConnectFour is a
theoretical win for the starting player, the ideal win rates against AB and AB-DL are
0.5. The solid lines show the mean win rates from 10 training runs with FARL. The
dashed curves no-FARL show the results when FARL is turned off. Error bars depict
the standard deviation of the mean.

It is a remarkable success that TD-FARL learns only from training by self-
play to defeat the perfect-playing AlphaBeta agents in 49%/46% of the cases.
Remember that TD-FARL has never seen AlphaBeta before during training.
The result is similar to our previous work [1]. But the difference is that the new
algorithm can be applied without any change to other games with any N .

There is also a striking failure visible in Fig. 3: If we switch off FinalAdapt-

Agents (curves no-FARL), we see a complete break-down of the TD agent: It
loses nearly all its games. We conclude that the part propagating the final reward



Reinforcement Learning for N-player Games 93

of the other player back to the other player’s previous state is vitally important.5

If we analyze the no-FARL-agent we find that it has only 0.9% active weights
while the good-working TD-FARL agent has 8% active weights. This comes
because the other player (that is the one who loses the game since the current
player created a winning state) has never the negative reward propagated back to
previous states of that other player. Thus the network fails to learn threatening
positions and/or precursors of such threatening positions.

Table 1. Results for Algorithm 2 (TD-FARL-Episode) on various games. In Nim(3P)
hxs, there are initially h heaps with s stones. For each game, 10 training runs with
different seeds are performed and the resulting TD agent is evaluated by playing against
opponents as indicated in column 3 (two such opponents in the case of Nim3P). Each
agent plays all roles. Shown are the TD agent’s win rates or scores (rewards): mean
from 10 runs plus/minus one standard deviation of the mean.

Game N
evaluated win rates or scores

other RL research
vs. FARL no-FARL

2048 1 142 000± 1 000 122 000± 900 [6] 80 000

TicTacToe 2 Max-N10 [12] 49%± 5% 18%± 6%

ConnectFour 2
AB [19] 49.5%± 0.5% 3.5%± 0.1% [4] 0.0%± 0.0%

AB-DL [19] 46.5%± 0.5% 0.0%± 0.1%

Hex 6x6 2 MCTS10000 81%± 5% 0.0%± 0.2%

Othello 2
Edaxd1 [5] 55%± 1% 53%± 1%

Bench [15] 95%± 0.3% 96%± 0.2% [15] 87.1%± 0.9%

Nim 3x5 2 Max-N15 [12] 50%± 1% 12%± 6%

Nim3P 3x5 3
Max-N15 [12] 0.33± 0.03 0.03± 0.01

MCTS5000 0.78± 0.02 0.09± 0.02

3.3 A Variety of Games

In Table 1 we show the results for seven games with varying number of players
(1, 2, or 3). While there exist many well-known games for 1 and 2 players, it
is not easy to find 3-player games which have a clear winning strategy. Nim3P,
the 3-player-variant of the game Nim, is such a game. Each player can take any
number of pieces from one heap at his/her turn. The player who takes the last
piece loses and gets a reward of 0.0, then the successor is the winner and gets
a reward of 1; the predecessor gets a reward of 0.2. This smaller reward helps
to break ties in otherwise ‘undecided’ situations. The goal for each player is to
maximize his/her average reward. Nim3P cannot end in a tie.

All games are learned by exactly the same TD-FARL/no-FARL algorithm.
The strength of the resulting agent is evaluated by playing against opponents,
5 It is really the first part of FARL which is important: We conducted an experiment

where we switch off only the second part of FARL and observed only a very slight
degradation (1% or less).



94 W. Konen and S. Bagheri

where all agents play in all roles. The opponents are in many cases perfect-
playing or strong-playing agents. If all agents play perfect, the best possible
result for each agent is a win rate of 50% for 2-player games and a score of
0.4 for the game Nim3P (one third of the total reward 1.2 distributed in each
episode). Max-Nd is an N-Player tree search with depth d [12], being a perfect
player for the games TicTacToe, Nim, Nim3P. For ConnectFour, AB and AB-
DL [19] are perfect-playing agents introduced in Sect. 3.2. Edaxd1 [5] is a strong
Othello program, played here with depth 1. Bench [15] is a medium-strength
Othello agent. MCTSa is a Monte Carlo Tree Search with a iterations.

As can be seen from Table 1, TD-FARL reaches near-perfect playing strength
in most competitions against (near-)perfect opponents and it dominates non-
perfect opponents. The most striking feature of Table 1 is its column ‘no-FARL’:
it is in all games much weaker, with one notable exception: In Othello the results
for TD-FARL and TD-no-FARL are approximately the same. This is supported
by the results from van der Ree and Wiering [15] who had good results on
Othello with their no-FARL algorithms. We have no clear answer yet why Othello
behaves differently than all other games.

3.4 Comparison with Other RL Research

For some games we compare in Table 1 with other RL approaches from the liter-
ature. Jaśkowski [6] achieves for the game 2048 with a similar amount of training
episodes and a general-purpose baseline TD agent scores around 80 000. It has to
be noted that Jaśkowski with ten times more training episodes and algorithms
specifically designed for 2048 reaches much higher scores around 600 000, but
here we only want to compare with general-purpose RL approaches.

Dawson [4] introduces a CNN-based and AlphaZero-inspired [16] RL agent
named ConnectZero for the game ConnectFour, which can be played online.
Although it reaches a good playing strength against MCTS1000, it cannot win a
single game against our AlphaBeta agent. We performed 10 episodes with Con-
nectZero starting (which is a theoretical win), but found that instead AlphaBeta
playing second won all games. This is in contrast to our TD-FARL which wins
nearly all episodes when starting against AlphaBeta.

Finally we compare for the game Othello with the work of van der Ree and
Wiering [15]: Their Q-learning agent reaches against Bench (positional player)
a win rate of 87% while their TD-learning agent reaches 72%. Both win rates
are a bit lower than our 95%.

3.5 Discussion

Looking at the results for ConnectFour, one might ask the following question: If
FARL is so important for RL-based ConnectFour, why could Bagheri et al. [1]
learn the game when their algorithm did not have FARL? – The reason is, that
both algorithms have different TD-learning schemes: While the algorithm in [1]
propagates the target from the current state back to the previous state (one move
earlier), our N -player RL propagates the target from the current state back to



Reinforcement Learning for N-player Games 95

the previous move of the same player (one round earlier). The N -player FARL is
more general (it works for arbitrary N). But it has also this consequence: If for
example a 2-player game is terminated by a move of player 1, the value of the
previous state slast[p2] of player 2 is never updated. As a consequence, player 2
will never learn to avoid the state preceding its loss. Exactly this is cured, if we
activate FARL.

4 Conclusion and Future Work

In summary, we collected evidence that Algorithm 2 (TD-FARL-Episode) pro-
duces good results on a variety of games. It has been shown that the new ingre-
dient FARL (the final adaption step) is vital in many games to get these good
results.

Compared to [1], TD-FARL has the benefit that it can be applied unchanged
to all kind of games whether they have one, two or three players. The algorithm
of [1] cannot be applied to games with more than two players.

We see the following lines of direction for future work: (a) More 3-player
games. Although Nim3P with a clear winning strategy provided a viable testbed
for evaluating our algorithm, taking more 3-player or N -player games into
account will help us to investigate how well our introduced methods general-
ize. (b) Can we better understand why Othello is indifferent to using FARL or
no-FARL? Are there more such games? If so, an interesting research question
would be whether it is possible to identify common game characteristics that
allow to decide whether FARL is important for a game or not.

References

1. Bagheri, S., Thill, M., Koch, P., Konen, W.: Online adaptable learning rates for
the game Connect-4. IEEE Trans. Comput. Intell. AI Games 8(1), 33–42 (2015)

2. Beal, D.F., Smith, M.C.: Temporal coherence and prediction decay in TD learning.
In: Dean, T. (ed.) International Joint Conference on Artificial Intelligence (IJCAI),
pp. 564–569. Morgan Kaufmann (1999)

3. Chu, Y.R., Chen, Y., Hsueh, C., Wu, I.: An agent for EinStein Würfelt Nicht!
using n-tuple networks. In: 2017 Conference on Technologies and Applications of
Artificial Intelligence (TAAI), pp. 184–189, December 2017

4. Dawson, R.: Learning to play Connect-4 with deep reinforcement learning (2020).
https://codebox.net/pages/connect4. Accessed 21 Aug 2020

5. Delorme, R.: Edax, version 4.4 (2019). https://github.com/abulmo/edax-reversi.
Accessed 1 Aug 2020

6. Jaśkowski, W.: Mastering 2048 with delayed temporal coherence learning, multi-
stage weight promotion, redundant encoding, and carousel shaping. IEEE Trans.
Games 10(1), 3–14 (2018)

7. Jaśkowski, W., Szubert, M., Liskowski, P., Krawiec, K.: High-dimensional function
approximation for knowledge-free reinforcement learning: a case study in SZ-Tetris.
In: Conference on Genetic and Evolutionary Computation, pp. 567–573 (2015)

https://codebox.net/pages/connect4
https://github.com/abulmo/edax-reversi


96 W. Konen and S. Bagheri

8. Konen, W.: Reinforcement learning for board games: the temporal differ-
ence algorithm. Technical report, TH Köln (2015). http://www.gm.fh-koeln.de/
ciopwebpub/Kone15c.d/TR-TDgame EN.pdf

9. Konen, W.: General board game playing for education and research in generic AI
game learning. In: Perez, D., Mostaghim, S., Lucas, S. (eds.) Conference on Games
(London), pp. 1–8 (2019). https://arxiv.org/pdf/1907.06508

10. Konen, W.: The GBG class interface tutorial V2.1: general board game play-
ing and learning. Technical report, TH Köln (2020). http://www.gm.fh-koeln.de/
ciopwebpub/Konen20a.d/TR-GBG.pdf

11. Konen, W., Bagheri, S.: Final adaptation reinforcement learning for N-player
games. Technical report, TH Köln - Cologne University of Applied Sciences (2020).
http://www.gm.fh-koeln.de/ciopwebpub/Konen20 TR.d/TR-FARL.pdf

12. Korf, R.E.: Multi-player alpha-beta pruning. Artif. Intell. 48(1), 99–111 (1991)
13. Lucas, S.M.: Learning to play Othello with n-tuple systems. Aust. J. Intell. Inf.

Process. 4, 1–20 (2008)
14. Piette, É., Soemers, D.J.N.J., Stephenson, M., Sironi, C.F., Winands, M.H.M.,

Browne, C.: Ludii - the ludemic general game system. CoRR abs/1905.05013
(2019). http://arxiv.org/abs/1905.05013

15. van der Ree, M., Wiering, M.: Reinforcement learning in the game of Othello:
learning against a fixed opponent and learning from self-play. In: Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL), pp. 108–115 (2013)

16. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550(7676), 354–359 (2017)

17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

18. Szubert, M., Jaśkowski, W.: Temporal difference learning of n-tuple networks for
the game 2048. In: 2014 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 1–8. IEEE (2014)

19. Thill, M., Bagheri, S., Koch, P., Konen, W.: Temporal difference learning with
eligibility traces for the game Connect-4. In: Preuss, M., Rudolph, G. (eds.) Inter-
national Conference on Computational Intelligence in Games (CIG), Dortmund
(2014)

http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Kone15c.d/TR-TDgame_EN.pdf
https://arxiv.org/pdf/1907.06508
http://www.gm.fh-koeln.de/ciopwebpub/Konen20a.d/TR-GBG.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Konen20a.d/TR-GBG.pdf
http://www.gm.fh-koeln.de/ciopwebpub/Konen20_TR.d/TR-FARL.pdf
http://arxiv.org/abs/1905.05013

	Reinforcement Learning for N-player Games: The Importance of Final Adaptation
	1 Introduction
	1.1 Motivation
	1.2 Algorithm Overview

	2 Algorithms and Methods
	2.1 N-tuple Systems
	2.2 Afterstate Logic
	2.3 Eligibility Method
	2.4 N Players
	2.5 TD Learning for N Players
	2.6 Final Adaptation RL (FARL)

	3 Results
	3.1 TicTacToe
	3.2 ConnectFour
	3.3 A Variety of Games
	3.4 Comparison with Other RL Research
	3.5 Discussion

	4 Conclusion and Future Work
	References




