
Refining the CC-RDG3 Algorithm
with Increasing Population Scheme
and Persistent Covariance Matrix

Dani Irawan1(B) , Margarita Antoniou2 , Boris Naujoks1,
and Gregor Papa2

1 Institute for Data Science Engineering and Analytics, TH Köln,
Gummersbach, Germany

{dani.irawan,boris.naujoks}@th-koeln.de
2 Jožef Stefan Institute, Ljubljana, Slovenia
{margarita.antoniou,gregor.papa}@ijs.si

Abstract. The cooperative coevolution framework has been used exten-
sively to solve large scale global optimization problems. Recently, the
framework is used in CC-RDG3 where it uses recursive differential group-
ing and covariance matrix adaptation evolution strategies (CMA-ES). It
was shown that the algorithm performs well on the CEC2013-LSGO
benchmark functions. In this study, some modifications to the CC-
RDG3 algorithm are proposed to improve performance. The modifica-
tions should be applied differently depending on the modality of the
problem at hand.

Keywords: Cooperative coevolution · Large scale optimization ·
Evolutionary algorithms

1 Introduction

The cooperative coevolution (CC) framework [15] is a popular framework for
solving large scale global optimization (LSGO) problems. The framework uses
a divide-and-conquer concept where the large scale problem is decomposed into
smaller problems with fewer variables, that are further optimized. However, the
decomposition step in using the CC framework is still a challenge despite the
various decomposition methods that have been proposed before.

One of the most popular decomposition schemes is the differential group-
ing (DG) [13,14] and its family, such as the extended DG (XDG) [19], and the
recursive DG (RDG) and RDG3 [17,18], which decomposes the problem based on
variable interaction. The variable interactions are detected based on the second-
order differentials. The rationale behind these schemes is that tightly-interacting
variables should be in the same group while interactions among distinct subcom-
ponents should be weak [4]. Some algorithms indeed rely on separability between
the subproblems and their performance may deteriorate if the decomposition
produces bad grouping [16].
c© Springer Nature Switzerland AG 2020
B. Filipič et al. (Eds.): BIOMA 2020, LNCS 12438, pp. 69–83, 2020.
https://doi.org/10.1007/978-3-030-63710-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63710-1_6&domain=pdf
http://orcid.org/0000-0002-4213-941X
http://orcid.org/0000-0002-0239-5857
http://orcid.org/0000-0002-0623-0865
https://doi.org/10.1007/978-3-030-63710-1_6

70 D. Irawan et al.

Once the problem is decomposed, the optimal values of the subproblems
should be found by an optimizer. Many evolutionary algorithms (EAs) have
been used as optimizers in the context of the CC framework for LSGO. The
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm pro-
posed in [8], is an evolution strategy that relies on the adaptation of the full
covariance matrix of a normal search distribution. This algorithm performs well
on unimodal functions, but its performance deteriorates in multimodal functions.
To tackle this problem, Auger et al. [1] suggested a CMA-ES with an increas-
ing population (IPOP-CMA-ES), where the algorithm adopts a restart strategy
with successively increasing the population size giving promising results.

The CMA-ES has been used together with RDG3 within the CC framework
and named as the CC-RDG3 algorithm. In this work, we refine the CC-RDG3
algorithm that uses a standard CMA-ES optimizer, by using IPOP-CMA-ES.
Furthermore, instead of a complete restart of the CMA-ES in every cycle, we
use a persistent covariance matrix instead.

Another important aspect after the decomposition and during the optimiza-
tion is the budget allocation. The simplest method in this context is, after the
problem is decomposed, to use a round-robin method to assign the computa-
tional time equally to each subproblem, ignoring the different effects that each
subproblem can have to the general problem. The contribution based budget
allocation CC (CBCC) [12] and CC with a sensitivity analysis-based budget
assignment method (SACC) [10] investigate the influence of each subcomponent
and allocate accordingly the number of iterations for the optimization. In this
study, the SACC method is also tested.

The combinations of the various modifications are tested on numerous test-
functions from standard LSGO benchmark suites and compared with the base
CC-RDG3 algorithm. The results of each combination vary and depend hugely
on the characteristics of the test problem, especially on the modality.

The remainder of this paper is organized as follows. Section 2 contains a
short description of the CC framework and the RDG3 decomposition method
used. Section 3 explains the proposed refinement of the CC-RDG3 algorithm.
Section 4 presents the numerical experiments and the benchmark used, the
obtained results along with their comparison and analysis. Lastly, Sect. 5 con-
cludes this paper and shows future directions.

2 Cooperative Coevolution with Recursive Differential
Grouping

CC framework was first proposed by [15] in 1994. The main two steps of the
general CC framework can be summarized as follows: 1. Decomposition: Decom-
pose the problem into several subproblems, by dividing a given high-dimensional
problem into a number of low-dimensional subcomponents and 2. Optimisation:
Optimise each subproblem cooperatively with the use of an optimizer.

The existing decomposition methods are classified by [18] as manual or auto-
matic (or blind and intelligent as proposed later in [20] as more appropriate ter-
minology). The manual (or blind) decomposition method ignores the underlying

Refining the CC-RDG3 Algorithm 71

structure of variable interaction, and the number and the size of the subcompo-
nents are manually designed. Examples of such methods is uni-variable grouping
[15], Sk grouping [2] and random grouping [21], and have been proved to work
well in fully separable problems. In the automatic decomposition, the variable
interactions are identified and the problem is decomposed accordingly.

The Recursive Differential Grouping (RDG) is one of the most effective auto-
matic methods, capable of quickly grouping variables based on interaction. The
grouping is done recursively and requires O(d log d) function evaluations. There
are several versions of RDG and the most recent is RDG3 [17]. Compared to
previous versions, the RDG3 scheme puts emphasis on handling overlapping
variables. The differential grouping schemes usually put groups with overlap-
ping variables into a single, big group. This means that there are many variables
that are not directly interacting (also termed “weak interactions”) in the group.

In RDG3, when groups have overlapping variables, a size-limit-threshold is
imposed. When the threshold is exceeded, no further overlapping variables are
grouped together. This allows some overlapping variables to be grouped together,
while also preventing the groups to grow too big. A small size-threshold will
prevent variables with weak interactions from being grouped together, while a
larger size-threshold will allow more weak interactions.

The RDG3 has been used in the CC framework in CC-RDG3 [17], paired
with the covariance matrix adaptation-evolution strategy (CMA-ES) [8] as the
solver. The algorithm shows exceptional results on the CEC2013 problems for
LSGO [9], especially on overlapping problems.

3 Proposed Algorithm

The proposed modifications to the CC-RDG3 algorithm are described in this
section. Each modification can be applied separately.

3.1 CMA-ES with Increasing Population

The CMA-ES algorithm explore the search space using the multivariate normal
distribution N (μ,Σ). The search at generation g + 1 follows the equation

x(g+1) = N (x(g), (σ(g))2C(g)), (1)

where x(g+1) is the offspring, x(g) is the current best point, while σ(g) and C(g)

are the step size (scaling factor) and the covariance matrix at current generation
g, respectively. The CMA-ES adapts the σ and C.

The performance of CMA-ES on multi-modal functions depends strongly on
population size [7]. To address this, Auger, et al. [1] proposed a restart strategy
with increasing population. When some stopping criteria is triggered, the CMA-
ES is restarted and the population size is increased hence promoting exploration
of the search space. In this work, the same stopping criteria as in [1] are used,
except that the equalfunvalhist stopping criterion only check for flat fitness.

72 D. Irawan et al.

In regards with the CC framework, when any stopping criteria is triggered,
the optimization on the current group is stopped and it will be restarted in
the next cycle with double population size up to 8 times the original size (see
Algorithm 1). The size limit is imposed to prevent the population size growing
too large. When the size limit is reached, the step size σ is doubled instead. For
brevity, algorithms that use the IPOP-CMA-ES strategy will be marked with
“IPOP” in the name.

Algorithm 1. CC-RDG3-IPOP
G ← Group variables using RDG3
Set initial population size λ = λ0 and CMA-ES step size σ = σ0

while Budget still available do
for i = 1 : |G| do

Use CMA-ES with step size σ, other parameters at default on f(xi)
Update xi

Check termination code
if CMA-ES terminated due to IPOP restart criterion then

if λ ≤ λ8 then λ ← 2λ
elseσ ← 2σ
end if

end if
end for

end while

3.2 Persistent Covariance Matrix

The CMA-ES algorithm will continuously adapt the covariance matrix, step
size, and also records the evolution path through cumulation. Every time the
algorithm is restarted, these information are usually lost and only the initial
values of x are updated. With regards to the CC framework, a restart would
happen after each cycle finishes.

We propose to use a persistent covariance matrix and step size. Persistent
means that the covariance matrix, step size, and also the evolution path are
not reset at each restart (see Algorithm 2). All values are retained and the next
restart will start with these values. The function landscape may change after
each cycle, but the information retained may help to kick-start the optimization
in the subsequent cycles. The procedure will promote exploitation of potential
areas in the search space.

Due to the conflicting nature between the persistent covariance matrix strat-
egy against the IPOP-CMA-ES strategy, they are set to be mutually exclusive
when used together (see Algorithm 3). The covariance matrix (and other val-
ues) are only retained if the stopping criteria in Sect. 3.1 are not triggered and
the CMA-ES ends because it reaches maximum number of iterations. When
any stopping criteria in Sect. 3.1 is triggered, the IPOP-CMA-ES will be used
instead. Algorithms that use the persistent covariance strategy are marked with
“KC” (keep covariance) in the name.

Refining the CC-RDG3 Algorithm 73

Algorithm 2. CC-RDG3-KC
G ← Group variables using RDG3
Set initial CMA-ES step size σ = σ0, and covariance matrix Λ = 1
while Budget still available do

for i = 1 : |G| do
Use CMA-ES with σ and Λ, other parameters at default on f(xi)
Update xi, σ, and Λ

end for
end while

Algorithm 3. CC-RDG3-IPOP-KC
G ← Group variables using RDG3
Set λ = λ0, σ = σ0, and Λ = 1
while Budget still available do

for i = 1 : |G| do
Use CMA-ES with step size σ, other parameters at default on f(xi)
Update xi

Check termination code
if CMA-ES terminated due to IPOP restart criterion then

if λ ≤ λ8 then λ ← 2λ
elseσ ← 2σ
end if

else
Update σ, and Λ

end if
end for

end while

3.3 Sensitivity Analysis Based Budget Allocation

Equation 2 is an example where the variables have imbalanced effects. A small
perturbation on x1 has much larger effects on f(x) compared to a perturbation
on x2 (104 times larger).

f(x) = 106x1 + 102x2 (2)

The differential analysis (DA), also known as Morris method, is a sensitivity
analysis (SA) method based on the first order differential. Sensitivity analysis
methods assess the extent of the variables’ effect on the objective function. The
DA has been used previously for LSGO problem in [10,11].

For DA, the search space is divided into p intervals in each variable. A grid
jump Δ = N ∗ 1

(p−1) , with N ∈ Z>0 < p − 1. Elementary effect (EE) for each
variable can then be calculated using Eq. 3

EEj(x) =
f(x1, . . . , xj−1, xj + Δ, . . .) − f(x)

Δ
, j = 1, ..., d (3)

The x is picked randomly within the search space such that x+Δ is still within
the search space. Several EEj are sampled with sample size r. The distributions

74 D. Irawan et al.

of EEj can be obtained. Further, we compute the mean of the absolute value
of EEj , μ∗, to rank the importance of each variable following Eq. 4, with s the
sample number. Higher μ∗ signifies higher impact/contribution to the objective
value [3]. The budget allocated to a group can then be allocated based on μ∗.
In this work, the portion ps for group s follows Eq. 5.

μ∗
j =

∑r
s=1 |EEj(x)|s

r
(4)

ps =

{
1 + log

∑
i∈S μ∗

i , if
∑

i∈s μ∗
i > 1

1, otherwise
(5)

In [8], the maximum number of iterations is set at 30 × d. In this study, d is
the number of variables in the main problem (without decomposition). The ps
is used to scale the number of iteration for each group with respect to 30 × d,
i.e. each group will have a budget of 30ps × d in each cycle. Algorithms that use
the sensitivity analysis budget allocation strategy will be marked with “SA” in
the name. Algorithms without “SA” assume μ∗ for all variables are equal to 1.

4 Numerical Experiments

4.1 Setup of Experiments

To analyze the performance of the proposed algorithms, we compared the algo-
rithms with the base CC-RDG3 algorithm. For each function, all algorithms
are run 15 times and compared to the CC-RDG3 algorithm using the pairwise
Wilcoxon test.

The test functions used in this study are a subset of the CEC2013 LSGO
benchmark suite [9] f1 − f14. Problem f15 is omitted from this study because
the algorithm implementation used in this study cannot find a feasible solution,
most likely due to step size divergence. The problems use 1 000 input variables,
except f13 − f14 with only 905 variables. The budget is set at 3 000 000 function
evaluations for each run for these functions.

Moreover, the test functions f16 − f19 and f21 − f24 from BBOB-largescale
benchmark suite [5] are used to further assess the algorithms’ performances
on multimodal functions. The BBOB benchmark functions are configured to
accept 160 input variables and each optimization run cannot use more than
1 600 000 function evaluations. In Table 1, the test functions and their properties
are reported. Note that we keep the original numbering of each benchmark suite.

4.2 Numerical Results

Performances of the algorithms on the test problems can be observed in Table 2
and Table 3 and boxplots Fig. 1 to Fig. 4. For the boxplots, the data ranges are
normalized to the range [0,1]. Due to the normalization, small differences may be
exaggerated, and vice versa. Additionally, in Table 2 it can be seen that for f3,

Refining the CC-RDG3 Algorithm 75

Table 1. Test Functions and their properties. Properties listed are modality (U =
Unimodal, M = Multimodal), additive separability, number of input variables d, and
special features of the functions.

CEC2013 Modality Add. Sep. d Features

f1: Elliptic U Separable 1 000

f2: Rastrigin M Separable 1 000

f3: Ackley M Separable 1 000

f4: 7 Elliptic U Partial 1 000

f5: 7 Rastrigin M Partial 1 000

f6: 7 Ackley M Partial 1 000 Deceptive

f7: 7 Schwefel 1.2 U Partial 1 000

f8: 20 Elliptic U Partial 1 000

f9: 20 Rastrigin M Partial 1 000

f10: 20 Ackley M Partial 1 000 Deceptive

f11: 20 Schwefel 1.2 U Partial 1 000

f12: Rosenbrock M Non-Separable 1 000 Overlapping

f13: Schwefel 1.2 U Non-separable 905 Overlapping, conforming

f14: Schwefel 1.2 U Non-separable 905 Overlapping, conflicting

BBOB Modality Add. Sep. d Features

f16: Weierstrass M Non-separable 160

f17: Schaffers M Non-separable 160

f18: Schaffers M Non-separable 160 Ill conditioned

f19: Griewank-Rosenbrock M Non-separable 160

f21: Gallagher’s 101 Peaks M Non-separable 160

f22: Gallagher’s 21 Peaks M Non-separable 160

f23: Katsuura M Non-separable 160

f22: Lunacek bi-rastrigin M Non-separable 160

f6 and f10 (Ackley functions), all algorithms have similar performances which
are not far off from their starting points. This is because the Ackley function
has a landscape similar to the needle-in-haystack problem where directed search
strategies are expected to fail [1].

From Table 2 and Table 3, it can be seen when an algorithm with SA strat-
egy performs well, the corresponding algorithm without SA strategy also shows
a significant advantage over CC-RDG3. The SA strategy does not provide a
significant improvement to the algorithms.

On unimodal functions, the KC strategy shows its superiority. In Fig. 1,
Fig. 3, and Fig. 4, the CC-RDG3, and CC-RDG3-IPOP algorithms perform much
worse on all unimodal functions. The KC strategy will consistently push the
search to a local optima wherein in unimodal functions, any local optima is also
a global optimum. Combined with the high grouping accuracy of RDG3, the
performance of these algorithms on unimodal functions will be boosted.

However, on the highly multimodal f2, f5 and f9 functions (see Fig. 2), the
RDG-KC and RDG-KC-SA algorithms are not performing so well. On these

76 D. Irawan et al.

Table 2. Median of the best values obtained by the algorithms on CEC2013 test
problems. Each algorithm is run 15 times on each function. Bold texts indicate the
best results, • indicates better performance than the base CC-RDG3 algorithm, while
� indicates worse performance.

Fn CC-RDG3 IPOP KC IPOP-KC KC-SA IPOP-KC-SA

f1 1.16+07 1.16E+07 3.68+05 • 3.68+05 • 3.68+05 • 3.68+05 •
f2 6.01E+03 1.28E+03 • 6.21E+03 1.28E+03 • 6.21E+03 1.28E+03 •
f3 2.05E+01 2.05E+01 2.04E+01 2.04E+01 2.04E+01 2.04E+01

f4 1.61E+08 1.49E+08 1.41E+06• 3.64E+06 • 1.42E+06 • 3.330E+06 •
f5 1.66E+06 5.17E+05 • 2.46E+06 � 4.90E+05 • 2.52E+06 � 4.74+05 •
f6 1.00E+06 1.01E+06 9.96E+05 • 9.96E+05 • 9.96E+05 • 9.96E+05 •
f7 1.44E+04 1.84E+04 2.06E-19 • 2.07E-07• 4.13E-18 • 2.62E-07 •
f8 1.23E+12 3.20E+12 � 2.03E+06 • 3.09E+07 • 1.73E+06 • 3.81E+07 •
f9 1.18E+08 4.40E+07• 1.54E+08 � 4.87E+07 • 1.70E+08 � 4.56E+07 •
f10 9.12E+07 9.12E+07 9.05E+07 • 9.05E+07 • 9.05E+07 • 9.05E+07 •
f11 1.99E+08 2.05E+08 1.56E+00 • 1.07E+02 • 1.54E+00 • 1.06E+01 •
f12 1.57E+03 1.58E+03 9.50E+02 • 8.93E+02 • 8.54E+02 • 8.42E+02 •
f13 4.57E+09 4.32E+09 1.90E+05 • 3.33E+06 • 1.77E+05 • 1.76E+06 •
f14 2.27E+09 2.56E+09 1.36E+08 • 2.92E+08 • 1.09E+08 • 2.74E+08 •

Table 3. Median of the difference-to-optimum values obtained by the algorithms on
BBOB-largescale test problems. Each algorithm is run 15 times on each function. Bold
text indicates the best performance. Bold texts indicate the best results, • indicates
better performance than the base CC-RDG3 algorithm, while � indicates worse per-
formance.

Fn CC-RDG3 IPOP KC IPOP-KC KC-SA IPOP-KC-SA

f16 7.404E-01 8.113E-01 1.258E+00 � 1.347E+00 � 1.318E+00 � 1.200E+00 �
f17 3.707E-01 4.062E-01 1.173E+00 � 8.908E-01 � 1.043E+00 � 1.175E+00 �
f18 1.778E+00 1.737E+00 4.067E+00 � 3.798E+00 � 3.162E+00 � 2.944E+00 �
f19 2.503737e-01 2.503737e-01 1.659E-02 • 1.659E-02 • 1.659E-02 • 2.291E-02 •
f21 2.922E-08 1.198E-08 6.730E+00 � 1.451E-08 6.740E+00 � 1.340E-08

f22 2.596E+00 3.299E+00 4.640E+00 2.448E+00 2.438E+00 3.114E+00

f23 1.897E-02 1.884E-02 2.138E-02 2.452E-02 � 2.392E-02 2.040E-02

f24 9.999E+01 9.316E+01 1.511E+02 � 1.445E+02 � 1.479E+02 � 1.445E+02 �

functions, the KC strategy will likely lead to early convergence which may trap
the search at local optima. This can be observed in Fig. 7 for f9 where the
algorithms with KC strategy become flat very early. In multimodal functions,
algorithms with IPOP strategy show better performances. This indicates that
the observation in [7] holds true in large scale settings, a larger population will
improve CMA-ES performance on multimodal functions.

Refining the CC-RDG3 Algorithm 77

Fig. 1. Boxplot of the best values obtained on CEC2013 elliptic test problems.

Fig. 2. Boxplot of the best values on CEC2013 test problems based on Rastrigin
function.

Fig. 3. Boxplot of the best values obtained on CEC2013 test problems based on Schwe-
fel function.

78 D. Irawan et al.

Fig. 4. Boxplot of the best values obtained on CEC2013 test problems with overlapping
variables.

Fig. 5. Boxplot of the distance-to-optimum values obtained by the algorithms on
BBOB-largescale test problems with adequate global structure.

Fig. 6. Boxplot of the distance-to-optimum values obtained by the algorithms on
BBOB-largescale test problems with weak global structure.

Refining the CC-RDG3 Algorithm 79

Fig. 7. Convergence plots for CEC2013 test problems. Each line is the mean achieved
values for different algorithms after certain numbers of function evaluations.

The test results presented in Table 3 further confirm the dread of KC strat-
egy and potency of IPOP strategy for multimodal functions. In most of the
multimodal BBOB functions, the IPOP strategy has an advantage over the KC
strategy. However, unlike on the f3, f5, and f10, the improvement obtained from
the IPOP strategy is insignificant on the BBOB problems. This may be because
the restart is triggered too late and a too small budget to see the effect of
increasing population. In a similar study for smaller problems, Hansen [6] used
CMA-ES with a different population adaptation scheme called BIPOP-CMA-
ES. The study in [6] uses more stopping criteria (hence it may stop earlier) and
number of function evaluations up to 3 × 105d.

Looking at Fig. 6, the CC-RDG3, and CC-RDG3-IPOP algorithms seem to
perform terribly on f19. If we look into Table 3, although they are indeed worse,
the distance-to-optimum value on both algorithms are actually very low. How-
ever, we can still analyze why it performs worse than other algorithms.

By assessing the convergence history, we found that the two algorithms can-
not find better solutions than the initial samples, hence the flat line in Fig. 8

80 D. Irawan et al.

Fig. 8. Convergence plots for BBOB test problems. Each line is the mean distance-to-
optimum values for different algorithms after certain numbers of function evaluations.

for f19. In such a case, the search is restarted from the same initial point and
the CMA-ES is also restarted with the same covariance matrix and step size
as the previous cycle, repeating a failed search over and over. The problem
with such restart is that the step size resets to a large value while what is

Refining the CC-RDG3 Algorithm 81

needed in this case is a local search. The IPOP strategy also promotes a more
global search instead of a local search hence the CC-RDG3-IPOP also does not
perform well. On the other hand, with the introduction of the KC strategy, the
step size will normally decrease in every cycle leading to a local search. The KC
strategy clearly improves performance in such cases. However, the risk of early
convergence to local optima still holds for the KC strategy.

In general, control over whether the search should be local or global is crucial
in solving multimodal function. The two strategies provide a way to control it.
The IPOP strategy will lead to a more global search, while the KC strategy will
lead to a local search. To take full advantage of the strategies, a fitness landscape
analysis can be conducted before choosing the strategies.

5 Conclusion and Future Work

In this study, three strategies to improve the CC-RDG3 algorithm are proposed
and tested: persistent covariance, increasing population, and budget allocation
based on sensitivity analysis. The budget allocation based on sensitivity analysis
does not seem to provide significant improvement.

For unimodal functions, a persistent covariance strategy will improve perfor-
mance while the IPOP strategy does not produce improvement on such functions.
On multimodal functions, on the other hand, the persistent covariance could be
detrimental as it leads to early convergence. On these functions, the IPOP strat-
egy could potentially improve performance as the restart strategy prevents local
entrapment. However, more tests on larger problems are needed. Furthermore,
we identified a special case where the KC strategy is good for multimodal func-
tion: when a good candidate solution is found early and a local search is needed.
To fully take advantage of the proposed strategies, a fitness landscape analysis
should be conducted. How the landscape analysis will be integrated into the CC
framework and the algorithms are left as future work.

Acknowledgment. This work is partly funded by the European Commission’s H2020
program, UTOPIAE Marie Curie Innovative Training Network, H2020-MSCA-ITN-
2016, under Grant Agreement No. 722734. The authors also acknowledge the financial
support from the Slovenian Research Agency (research core funding No. P2-0098) as
well as the DAAD (German Academic Exchange Service), Project-ID: 57515062 “Multi-
objective Optimization for Artificial Intelligence Systems in Industry”.

References

1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popula-
tion size. In: Congress on Evolutionary Computation, vol. 2, pp. 1769–1776. IEEE
(2005)

2. Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm
optimization. Trans. Evol. Comput. 8(3), 225–239 (2004)

3. Campolongo, F., Cariboni, J., Saltelli, A., Schoutens, W.: Enhancing the Morris
method. In: Sensitivity Analysis of Model Output, pp. 369–379 (2005)

82 D. Irawan et al.

4. Chen, W., Tang, K.: Impact of problem decomposition on cooperative coevolution.
In: Congress on Evolutionary Computation, pp. 733–740. IEEE (2013). https://
doi.org/10.1109/CEC.2013.6557641

5. Elhara, O., et al.: COCO: the large scale black-box optimization benchmarking
(BBOB-largescale) test suite. arXiv preprint arXiv:1903.06396 (2019)

6. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function
testbed. In: Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009,
pp. 2389–2396. ACM, New York (2009). https://doi.org/10.1145/1570256.1570333

7. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test
functions. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 29

8. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

9. Li, X., Tang, K., Omidvar, M.N., Yang, Z., Qin, K., China, H.: Benchmark func-
tions for the CEC 2013 special session and competition on large-scale global opti-
mization. Gene 7(33), 8 (2013)

10. Mahdavi, S., Rahnamayan, S., Shiri, M.E.: Cooperative co-evolution with sensitiv-
ity analysis-based budget assignment strategy for large-scale global optimization.
Appl. Intell. 47(3), 888–913 (2017)

11. Mahdavi, S., Rahnamayan, S., Shiri, M.E.: Multilevel framework for large-scale
global optimization. Soft Comput. 21(14), 4111–4140 (2017). https://doi.org/10.
1007/s00500-016-2060-y

12. Omidvar, M.N., Kazimipour, B., Li, X., Yao, X.: CBCC3 – a contribution-based
cooperative co-evolutionary algorithm with improved exploration/exploitation bal-
ance. In: Congress on Evolutionary Computation, pp. 3541–3548, July 2016.
https://doi.org/10.1109/CEC.2016.7744238

13. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential
grouping for large scale optimization. Trans. Evol. Comput. 18(3), 378–393 (2014).
https://doi.org/10.1109/TEVC.2013.2281543

14. Omidvar, M.N., Yang, M., Mei, Y., Li, X., Yao, X.: DG2: a faster and more accurate
differential grouping for large-scale black-box optimization. Trans. Evol. Comput.
21(6), 929–942 (2017). https://doi.org/10.1109/TEVC.2017.2694221

15. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58484-6 269

16. Salomon, R.: Re-evaluating genetic algorithm performance under coordinate rota-
tion of benchmark functions. a survey of some theoretical and practical aspects
of genetic algorithms. Biosystems 39(3), 263–278 (1996). https://doi.org/10.1016/
0303-2647(96)01621-8

17. Sun, Y., Li, X., Ernst, A., Omidvar, M.N.: Decomposition for large-scale optimiza-
tion problems with overlapping components. In: Congress on Evolutionary Com-
putation, pp. 326–333. IEEE (2019). https://doi.org/10.1109/CEC.2019.8790204

18. Sun, Y., Kirley, M., Halgamuge, S.K.: A recursive decomposition method for large
scale continuous optimization. Trans. Evol. Comput. 22(5), 647–661 (2017)

19. Sun, Y., Kirley, M., Halgamuge, S.K.: Extended differential grouping for large
scale global optimization with direct and indirect variable interactions. In: Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO 2015, pp. 313–320. ACM, New York (2015). https://doi.org/10.
1145/2739480.2754666

https://doi.org/10.1109/CEC.2013.6557641
https://doi.org/10.1109/CEC.2013.6557641
http://arxiv.org/abs/1903.06396
https://doi.org/10.1145/1570256.1570333
https://doi.org/10.1007/978-3-540-30217-9_29
https://doi.org/10.1007/s00500-016-2060-y
https://doi.org/10.1007/s00500-016-2060-y
https://doi.org/10.1109/CEC.2016.7744238
https://doi.org/10.1109/TEVC.2013.2281543
https://doi.org/10.1109/TEVC.2017.2694221
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1016/0303-2647(96)01621-8
https://doi.org/10.1016/0303-2647(96)01621-8
https://doi.org/10.1109/CEC.2019.8790204
https://doi.org/10.1145/2739480.2754666
https://doi.org/10.1145/2739480.2754666

Refining the CC-RDG3 Algorithm 83

20. Sun, Y., Omidvar, M.N., Kirley, M., Li, X.: Adaptive threshold parameter esti-
mation with recursive differential grouping for problem decomposition. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 889–896
(2018)

21. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-
tive coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

	Refining the CC-RDG3 Algorithm with Increasing Population Scheme and Persistent Covariance Matrix
	1 Introduction
	2 Cooperative Coevolution with Recursive Differential Grouping
	3 Proposed Algorithm
	3.1 CMA-ES with Increasing Population
	3.2 Persistent Covariance Matrix
	3.3 Sensitivity Analysis Based Budget Allocation

	4 Numerical Experiments
	4.1 Setup of Experiments
	4.2 Numerical Results

	5 Conclusion and Future Work
	References

