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Abstract. In this paper, we introduce some new methodologies in a gen-
eral path problem. Finding a good path is always a desirable task and it
can be also crucial in emergency and panic situations, in which people
tend to assume different and unpredictable behaviors. In this paper, we
analyse an escape situation in which the environment is a labyrinth and
people are agents that act as two different kinds of ant colonies. In par-
ticular, we assume that people act according to opposite behaviors: (i)
cooperatively, helping each other and the group; (ii) non cooperatively,
helping just themselves, and no caring about the rest of the group. So,
we use in a path problem an Ant Colony Algorithm based on two breeds
of colonies: a cooperative and a non-cooperative one. We imagine that
their task is to find the exit of the labyrinth making decisions according
to the ACO rules and according to their breed. Every breed has, in fact,
two different strategies. Via a game theory approach, we investigate how
these two strategies affect the final payoff of each breed.

Keywords: Game theory · Ant Colony Optimization · Swarm
intelligence · Optimization · Metaheuristics

1 Introduction

Throughout history, humans have been interested in natural disasters and the
topic of evacuation, because optimizing the evacuation’s strategies has vital
importance in reducing the human and social harm, and saving the aid time.
During evacuation, there are more than a few decisions which have to be made in
a very short period of time, and in the most appropriate way. Significant research
efforts have been made in the literature, (see [9]), to deal with evacuation opti-
mization on the basis of deterministic optimization model, nevertheless the coop-
erative or non-cooperative behavior’s aspects of real-world evacuation have not
been taken into account comprehensively. In [5] the authors focused their ideas
on the evacuation routes; whereas, in our work we focused on the minimum path
and also on the behavior of the crowd. A suitable way to find optimum evac-
uation routes, during an emergency, is using Ant Colony Optimization (ACO)
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algorithms [6,7,16]. Indeed, humans have faced complex optimization problems
such as finding the shortest path between various points, evacuation simulations
and optimization, allocating the optimum amount of resources, determining the
optimum sequence of the processes in a production line, among others. Ant
Colony Optimization algorithms are approximate techniques, belonging to the
Swarm Intelligence methods, which imitate the cooperative behavior of real ants
to solve optimization problems. Each artificial ant is inspired by the behavior
of a real ant and can be seen as an agent of a multi-agent system. Real ants
are eusocial insects and use collective behavior to achieve complex task, such
as finding shortest paths between food sources and their nest. Using a simple
communication mechanism like a chemical trail (pheromone), an ant colony is
able to find the shortest path between two points. Initially, ant colony optimiza-
tion algorithms have been applied to many combinatorial optimization problems,
achieving good results in solving different problems, such as graph coloring [2],
scheduling [13,17] and assignment problems [1]. Nowadays, ACO algorithms have
also been applied to problems belonging to the class of dynamic optimization
problems, in which topology and costs can change during the execution of the
algorithm. Routing in telecommunications networks is an example of such a
problem [8]. Game theory has been widely used in the research of various sci-
entific disciplines, from biological systems to economic and social networks [4].
With the help of game theory, researchers can conduct extensive studies on the
pedestrian and evacuation dynamics [3,19]. However, game-theoretical models
are focused on the study of the crowd’s behavior in evacuation process. Indeed,
in [18] the authors study a game-theoretical model to underline the relationship
between cooperative and competitive agents in a crowd. Also, [12] discusses the
basic principles of multiple robot cooperative system using Game Theory and
Ant Colony Algorithms.

The aim of this research work is to study and analyse the collective behav-
ior of a little social group that tries to escape from a disaster situation, such
as earthquakes, volcanic eruptions, and/or hurricanes, trying to reach a safe
location in the shortest possible time. Therefore, an ACO algorithm has been
taken into account to study the behavior of different agents in strictly dynamic
situations. Specifically, two different agents have been considered, which act dif-
ferently: cooperative and non-cooperative agents. Ants colonies are recognized
to be the best organized and cooperative social system, able to make their social
community work at the best, and able to perform complex tasks, such as, for
instance, discovering the shortest path between food and anthill, or defend the
own anthill from attack by predators [11]. Moreover, any action of any ant, is
related only to its local environment, local interactions with other ants, simple
social rules, and in total absence of centralized decisions. These last features,
that we find own in catastrophic situations, convinced us to consider ACO as
the simulation model suitable for our study, because a sophisticated collective
behavior based on local interactions, social rules, and in absence of centralized
decisions, becomes crucial in reaching safe locations. Finally, the relationship
between ACO and Game Theory aims to find a good solution in the case where



230 C. Crespi et al.

agents with different ideas and strategies have to share a particular situation.
As happens in an emergency scenario for the crowd, the same happens with a
group of ants that tries to achieve the exit as safe as possible.

2 The Model

The Ant Colony Optimization algorithm is a well-known procedure that takes
inspiration from the ants’ behavior, when they look for a path between any food
source and their anthill. It has been observed that they can identify the shortest
path, and communicate it to the others through chemical signals released along
the path, called pheromones. In recent years, this behavior has been translated
into mathematical and computer language and used to solve different kinds of
optimization problems through different versions of the algorithm itself. Despite
the different contexts where it has been applied, the mathematical description of
the algorithm is quite the same for most of the problems. In particular, the ant’s
environment is considered as a graph G = (N,L), where N is the set of nodes
and L is the set of links. A generic ant k is supposed to be placed on a node i, and
she must choose a destination node according to her behavior in real life; that
is, preferring a path with some pheromone traces. However, this behavior is not
deterministic so a proportional transition rule pk

ij(t) is defined as in Eq. (1).
It states that an ant k, on a node i and at a time t will choose a destination node
j with a probability that is proportional to the quantity of pheromone on the
link connecting i with j, if the link j belongs to the set of possible displacements
for k. The probability is 0 otherwise. In formulas, we have:

pk
ij(t) =

⎧
⎨

⎩

τij(t)
α·ηβ

ij
∑

l∈Jk
i

τil(t)α·ηβ
il

if j ∈ Jk
i

0 if j /∈ Jk
i .

(1)

As said previously, Jk
i is the set of possible movements of the ant k. Moreover,

ηij is the visibility of node j (defined as the inverse of the distance between two
nodes), τij(t) is the pheromone intensity on a path at a given iteration, while α
and β are two parameters that determine the importance of pheromone intensity
with respect to the visibility of a path. Once the ant k arrives at a destination
node j, she updates the pheromone trace by releasing at a time t an amount of it
proportional to the inverse of the length of the path Lk(t) (eventually multiplied
by a Q-factor) if the link (i, j) belongs to the path T k(t) of the ant at time
t. It is 0 otherwise. In this way, the greater the length of a path is, the less
pheromone will be present on it. This feature is described by Eq. (2) in which
Δτk

ij(t) represents the amount of pheromone deposited by the ant k.

Δτk
ij(t) =

{
Q

Lk(t)
if (i, j) ∈ T k(t)

0 if (i, j) /∈ T k(t).
(2)

Finally, a global updating rule τij(t + 1) is applied as in Eq. (3). It states
that the intensity of pheromone will be updated considering the intensity τij(t)
of it at a previous step, and decreasing it with an evaporation factor ρ.
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τij(t + 1) = (1 − ρ) · τij(t) +
m∑

k=1

Δτk
ij(t). (3)

Now, starting from this procedure we have modified and extended ACO rules
to fit them in our model. In particular, we have tried to mix concepts of game
theory with concepts of optimization, to explore and highlight some novel fea-
tures still not completely understood. To do this, we have imagined a generic risk
situation like the one a group of ants is forced to live if it must solve a labyrinth.
In other words, we assume that ants must find the exit of the labyrinth from a
certain entrance as soon as possible to survive. We have modelled this escape
situation like a game in which every ant can adopt two different strategies to
exit from the labyrinth. We have chosen a labyrinth structure, since it gener-
alizes and makes more interesting and challenging the optimization problem of
finding the shortest path in a graph. We have realized this model using NetLogo
[15], an agent-based model software that allowed us not only to build materially
the structure of the labyrinth itself and implement the algorithm, but also to
see what was happening during the simulation thanks to an opportune dedicate
tab. We have built the labyrinth modifying an existing model proposed in [14].
We have fixed the seed of the random numbers to regenerate, at each run, the
same labyrinth. Then, we have created a network underneath the labyrinth and
realized more complex labyrinths by strictly modifying the procedure proposed
in [14]. This upgraded version can add other links between some nodes with at
least two first neighbors and other nodes with at least two first neighbors, in
order to prevent the loss of the dead ends. We have repeated this procedure for
different kinds of labyrinths with different sets of nodes and links, and grouped
them in order to increase complexity. Finally, we have selected for all of them
one node on the left part of the labyrinth to be the entrance, and one node on
the right part to be the exit. We underline that the entrance and the exit are
chosen on the left and on the right, respectively, to give an example to focus on a
sample of the labyrinth. In order to generalize the problem, we can put the exit
wherever we want or we can rotate the labyrinth, as suitably as we need. Then,
we have created two different kinds of ants that act differently, and each of them
follow a different strategy to escape from the labyrinth. In particular, we have
imagined what would happen if some ants acted cooperatively, while other ants
acted non cooperatively. Thus, at first we initialize the set of the whole colony
and then, by means of a cooperation parameter f , we establish the fraction of
ants who will act cooperatively. It follows that the remaining fraction (1 − f) of
ants will act non cooperatively. In detail, we set the two strategies, that cannot
be changed once the fraction of cooperative ants is defined, as follows:

– Non-Cooperative: they block a random node of their path. In Fig. 1, non-
cooperative ants are colored in blue, while a blocked node is represented as a
fire.

– Cooperative: if they find a damaged node close to their path, they repair it.
In Fig. 1, cooperative ants are colored in red.
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Fig. 1. In this model the entrance is fixed (always on the left part of the labyrinth),
whilst the exit changes, in any position of the labyrinth, in according to the number
of prizes on it. Bigger black nodes represent end nodes, i.e. dead ends roads; fires
indicate the damaged nodes by the non-cooperative ants; and the black labels on the
edges indicate the intensity of pheromone on that route. With red are showed the
cooperative ants, and in blue the non-cooperative ones. (Color figure online)

Both of them become safe if and only they arrive at the exit. Every kind of
ant is “equipped” with the same transition rule. In other words, each ant chooses
the next target node according to the same rule, even if it belongs to different
families and acts differently. In particular, the transition rule in (4) defines the
probability pk

ij(t) of an ant to go from a starting node i to a destination node
j as follows: during the first iteration, the ants explore randomly the labyrinth.
They choose to visit a link according to the intensity of pheromone on it that,
in the first iteration, is equal to 1 for all the links of the labyrinth.

The first ant of each kind that arrives at the exit releases a trace of pheromone
Δτij along every link of her path. For simplicity, in our model, the intensity of
pheromone released by each ant on every link of her path is Δτij = 1.5. After
that, the other ants of the same kind die, the global updating rule (5) is applied
and a new generation is launched. In formulas, we define the transition rule as:

pk
ij(t) =

⎧
⎨

⎩

τij(t)∑
l∈Jk

i
τil(t)

if j ∈ Jk
i

0 otherwise,
(4)

with τij intensity of pheromone on the link (i, j) and Jk
i is the set of allowed

links. Finally, the global updating rule is defined as:

τij(t + 1) = (1 − α) · τij(t) + Δτij , (5)

where α is the evaporation rate, τij is the pheromone intensity on the link (i, j)
at the previous step and Δτij is the amount of deposited pheromone by the
winning ant, at each turn, on the same link. In this model, we have also imposed
that, once the quantity of pheromone falls below a certain threshold, it remains
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fixed and does not decrease further. This choice is to prevent the stagnation of
the algorithm around a local optimum. Thus, within this situation, we want to
analyze how two different strategies evolve in time during a critical situation,
namely, in finding the shortest path from the entrance to the exit in the shortest
possible time. In the next section, we will discuss about some game theory def-
initions used in the model. We decide not to consider the gain of a single link,
but the aim of one ant is to reach the exit as soon as possible. In fact, the exit,
or in our case the shelter, has a capacity that in the algorithm is represented by
a prize in the exit. If there are no more prizes on the exit, i.e. capacity in the
shelter, the exit will move (with the same budget of prizes) to another edge node
of the graph, except the ones on the left part of the labyrinth. We are ruling
out the possibility that the exit and the entrance are on the same side of the
graph. It is a dynamic case in which not only the ants must be able to find the
exit from the maze through the shortest path, but from time to time, they must
also have the ability to organize themselves for a new objective that gives the
opportunity to collect prizes.

2.1 Evacuees’ Game

Game theory allows one to define how much an agent can gain from its actions
and decisions. Indeed, agents are defined to be rational and intelligent and try to
reach the highest value of the profit function. In game theory, the profit function
models reality so as to give a value to the emotional or economic gain to the
agent who adopts a certain strategy. A strategy space for a player is the set
of all possible strategies of a player; whereas, a strategy is a complete plan of
action for every stage of the game. Formally, we define a payoff function for a
player as a map from the cross-product of players’ strategy spaces to reals, i.e.
the payoff function of a player takes as its input a strategy profile and yields a
representation of payoff as its output.

In this model, we consider an N -players game (N ≥ 2). The evacuees rep-
resent the players of the game, who have to reach a safe area. We suppose that
evacuees can chose either to cooperate (C) or not to cooperate (NC), when
attempting to arrive a desired safe area after or during a disaster. Each player
starts from the same node and tries to reach an exit using the minimum path.
A little group of evacuees tries to arrive in a safe area, which has a capacity K,
but only one member of the group can reach that place. When the shelter is full
or is not enough safe, we consider a new shelter, placed in another node of the
graph, which the evacuees have to reach.

Let G = (N,L) be the graph associated with the game, where N is the set
of nodes and L the set of links. The payoff of the player that finally reaches
the safe area depends on a parameter, the pheromone τij on the edge (i, j)
used in the Ant Colony Algorithm. According to the strategies we define two
different payoff functions, which depend on the strategy that an agent chooses.
As a consequence, we define the payoff function of an agent k, who chooses the
cooperative strategy aC

k :
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uk(aC
k , a−k) =

f · ∑
i,j τij

n
, 0 < f ≤ 1. (6)

We define the payoff function of an agent k, who chooses the non-cooperative
strategy aNC

k :

uk(aNC
k , a−k) =

(1 − f) · ∑i,j τij

n
, 0 ≤ f < 1. (7)

We denote f as the percentage of cooperative players and n as the number of
evacuees of a group. We consider

∑
i,j τij as the sum of the pheromone on the

links of the agent path. We underline that ak is a generic strategy, that an agent
k can choose from (C) or (NC) and we denote a−k the strategies of all agents,
except k.

We group for all k, the cooperative (C) and the non-cooperative ants (NC)
respectively, as:

uC = f ·
∑

i,j

τij , 0 < f ≤ 1; uNC = (1 − f) ·
∑

i,j

τij , 0 ≤ f < 1.

Finally, we denote the profit function of the game as the sum of the payoff of all
cooperative ants plus the payoff of all non-cooperative ants, i.e. U = uC + uNC .

3 Experiments and Results

In our simulations, we use ant shape agents according to the implemented algo-
rithm, but this is just a graphic feature that doesn’t affect the correctness of
the procedure. It follows that a generation of ants represents a group of people
who try to arrive at a shelter or a safe area. At the end of each generation, only
one ant of each kind survives. After several preliminary experiments, we choose
a set of n = 10 agents and perform 10 different simulations for different values
of f , starting from f = 0 to f = 1 and increasing f at a regular interval of
0.20. For our purposes, we consider the trend of ten generations. Figure 2 shows
the trend of the average profit function over 10 simulations at different values
of f (and correspondingly (1 − f)). In each plot, the x-axis indicates the gen-
erations number, while in the y-axis are displayed the average profits obtained,
respectively, by the cooperative agents (Fig. 2a) and by the non-cooperative ones
(Fig. 2b). In particular, the figure represents the comparison of the values of
the profit function for each evacuee referred to the percentage of cooperative
agents (f). We notice that when the number of cooperative agents increases,
the value of profit function increases too, following a linear trend. Furthermore,
for f = 0.8 and f = 1.0, after a few generations, the average profit function
grows similarly, reaching the same value after 10 generations. This suggests that
a non-cooperative behavior of a few agents can increase the profit of the other
ones. In the same way, the plot in Fig. 2b shows that a non-cooperative strategy
is good if and only if a lot of agents choose that particular strategy. Also, in this
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(a) (b)

Fig. 2. Comparison of the average profit obtained by cooperative agents (plot (a)),
compared to obtained one by non-cooperatives (plot (b)).

case, the average profit function reaches the best values for f = 0.2 and f = 0.4,
leading to the same evaluation of the previous case.

In Fig. 3 we can see the average profit function comparison for f = 0.2
and f = 0.8, both for cooperative evacuees and non-cooperative evacuees. In
Fig. 3a, we find the value of f for which are present 2 cooperative evacuees
and 8 non-cooperative evacuees, and in Fig. 3e the symmetric situation. The
same distinction is present also in Fig. 3 for f = 0.4 in Fig. 3b, and f = 0.6 in
Fig. 3d, but with 4 and 6 different kinds of evacuees in two symmetric situations.
For these plots, the average profit function is higher for the larger groups (non-
cooperative for f < 0.5 and cooperative for f > 0.5). This can be explained
because these plots are calculated for a percentage of cooperation less than
f = 0.5. In fact, at f = 0.5 something special happens. In Fig. 3c the trend of
the average profit function for cooperative evacuees starts to be lower than the
one for the non-cooperative evacuees, but as the generations increase, the two
functions tend to reach the same value.

The Chicken Game supports our considerations. Indeed, the main feature
of this game is that players try to avoid appearing as a “chicken”. So each
player taunts the others to increase the risk of shame in giving up. However,
when a player surrenders, the conflict is avoided and the game is mostly over.
Furthermore, the fact that the profit function is the same when half of the
population is cooperative and the other is not, leads to compare the Chicken
Game with the particular case f = 0.5. In fact, the balance of the game is
obtained when one player chooses strategy (C) and the other the strategy (NC),
that is the opposite strategy. In this situation, no player is considered a “chicken”
until the moment when the value of f decreases, and hence the competitive
strategy takes advantage. We observe, however, that the game of chicken is
considered as a social dilemma [10].

To better investigate the meaning of these data, we calculate the average
values of the profit function over 10 simulations for each group of evacuees and
for each value of f . Figure 4 shows what we have obtained. As we can see, as
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(a) (b)

(c) (d)

(e)

Fig. 3. Average profit function comparison obtained by the cooperative and non-
cooperative agents, at different values of f and (1 − f).

the percentage of f increases, the average value of the profit function has two
different trends. The one for cooperative evacuees increases as f increases. The
one for non-cooperative evacuees decreases. In particular, the average value of
the profit function for f ≥ 0.50 is higher than the ones for f ≤ 0.50. This means
that the average values calculated for two opposite and symmetric configurations
are not the same. The two curves are not symmetrical. In fact, the two curves are
not symmetrical because they are the outcome of different dynamic scenarios,
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Fig. 4. Average profit function comparison over 10 simulations and over 10 generations
for cooperative and non-cooperative evacuees.

where the two kinds of agents (cooperative and non-cooperative) act differently.
Of course, these effects are strongly affected by the number of the former com-
pared to the latter, and in particular, higher values of the profit function (u) are
strictly related to higher values of the parameter f . This, in general, is not a
surprising result since is quite common that cooperation means, in most cases,
better performances. It is important to say that in game theory there are several
examples in which players can choose whether to adopt a more or less coopera-
tive strategy. Let’s consider the classic game of hawks and doves as an example.
These sample-animals represent couples of the same type of animals and same
population that fly on a prey. Each animal can choose to behave like a hawk or
a dove: hawk (strategy H) or dove (strategy D) behavior indicates aggressive or
peaceful behavior, respectively. In this example, if the players choose the same
strategy then they divide the loot, otherwise, if they both choose the same strat-
egy, one will get the maximum profit the other the minimum profit. From this
example we can see how in situations where there is total collaboration, a greater
profit is obtained than in a situation in which only one can obtain a good profit.
However, in this context, we imagine that better performances can be linked or
explained with one evacuee’s willing to improve its profit. It is presumable that
in real-life escape situations people tend to act in the same way that is, trying
to improve their profit function. Therefore, our results suggest that to do this
they should prefer a cooperative strategy.

4 Conclusions

In this paper we analyse the affinity between the behavior of ants and people in a
particular situation. Indeed, in an emergency situation, a crowd seems to move in
a messy way but inside the crowd there are little groups that try to decide their
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behavior inside that group. As a consequence, we investigate the cooperative or
non-cooperative agents’ choice inside each single group. This original approach
consists of correlation between ants and people, that give us the possibility to
underline some interesting factors, as the importance of using the sum of the
pheromone into the profit function. The payoff’s values, for each agent, lead to
significant observations regarding the cooperative and competitive behaviors of
the agents, in a difficult situation, where an evacuee has to decide as fast as
he can. Furthermore, the idea to insert the percentage of cooperative agents in
the profit function represents another innovative aspect that allows us to better
understand both the behavior of the agents and the profit they may have as
we explain in Sect. 3. In fact, for the first time is used a game theory approach
to an evacuation model using an ACO algorithm, to find the solution of the
profit function of the game. The quality and safety of the chosen path is directly
proportional to the sum of the pheromone along this path. This leads to a profit
function that reflects the safety and efficiency of the path chosen by the evacuees.
Moreover, during the comparison over 10 simulations and over 10 generations
for cooperative and non-cooperative evacuees, we notice that if a lot of evacuees
choose cooperative strategies, then the value of the function is higher than the
same number of evacuees can gain playing a competitive strategy. The results
presented in this paper are just a small part of a bigger study that is still under
work. Further studies and simulations have to be made. Especially because our
model considers just one winner at each run, which is not a desirable situation
in real life.
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