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Edmondo Minisci
Massimiliano Vasile (Eds.)

LN
CS

 1
24

38

9th International Conference, BIOMA 2020
Brussels, Belgium, November 19–20, 2020
Proceedings

Bioinspired Optimization 
Methods and 
Their Applications



Lecture Notes in Computer Science 12438

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Bogdan Filipič • Edmondo Minisci •

Massimiliano Vasile (Eds.)

Bioinspired Optimization
Methods and
Their Applications
9th International Conference, BIOMA 2020
Brussels, Belgium, November 19–20, 2020
Proceedings

123



Editors
Bogdan Filipič
Jožef Stefan Institute
Ljubljana, Slovenia

Edmondo Minisci
University of Strathclyde
Glasgow, UK

Massimiliano Vasile
University of Strathclyde
Glasgow, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-63709-5 ISBN 978-3-030-63710-1 (eBook)
https://doi.org/10.1007/978-3-030-63710-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4428-4255
https://orcid.org/0000-0001-9951-8528
https://orcid.org/0000-0001-8302-6465
https://doi.org/10.1007/978-3-030-63710-1


Preface

Welcome to the proceedings of the 9th International Conference on Bioinspired
Optimization Methods and Their Applications (BIOMA 2020), held during November
19–20, 2020, Brussels, Belgium.

BIOMA was launched in 2004 as an international scientific forum for presenting
new ideas in bioinspired optimization and reporting on the applications of this
methodology. It is held biennially and known among the attendees for its collaborative
atmosphere and networking opportunities. However, organizing the conference this
year, we were faced with an unforeseen challenge, the COVID-19 pandemic. After
considering the options of either postponing the meeting or adapting to the new reality,
we decided for the latter and held the conference virtually, with online presentations.
While from the scientific quality point of view it was carried out in its best tradition, the
social dimension was certainly different as we had to rely on the distance conferencing
technology. Nevertheless, it was a learning experience that both the organizers and
attendees can build upon under the new circumstances.

The conference was held jointly with the international conference on Uncertainty
Quantification and Optimization (UQOP), organized by the H2020 UTOPIAE network.
While the two forums share optimization as a common topic, BIOMA specializes in
bioinspired algorithms as a means for solving the optimization problems. As such, it
benefited from the paper submissions contributed by the UTOPIAE members studying
and applying these algorithms. The event received 68 submissions. These were eval-
uated by the members of the Program Committee in a single-blind peer-review pro-
cedure where each paper was evaluated by three reviewers. Based on the evaluation
scores, 24 papers, contributed by 73 authors from 14 countries, were accepted for
presentation at the conference and publication in the LNCS proceedings. They come in
two categories: theoretical studies and methodology advancements on the one hand,
and algorithm adjustments and their applications on the other.

The conference mission of building on the synergy between theoretical research and
practical aspects of bioinspired optimization was also reflected in the two invited
keynotes that complemented the program of regular paper presentations. Gabriela
Ochoa from the University of Stirling, UK, talked about recent advances in local
optima and search trajectory networks, and Enrique Alba from the University of
Málaga, Spain, on bioinspired algorithms for smart cities. We are grateful to them for
accepting our invitation to present some of the the most recent achievements in the field
to our forum.

We want to thank all of you who made BIOMA 2020 possible: the authors for
submitting the papers, the members of the Program Committee and additional
reviewers for reviewing, the Organizing Committee members for preparing and run-
ning the conference under demanding conditions, as well as the invited speakers, paper



presenters, and other attendees for making the virtual event lively and interactive. We
are glad to see the community is adapting to new circumstances and staying connected.

October 2020 Bogdan Filipič
Edmondo Minisci

Massimiliano Vasile

vi Preface
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Synthetic vs. Real-World Continuous
Landscapes: A Local Optima

Networks View

Marco A. Contreras-Cruz1 , Gabriela Ochoa2(B) ,
and Juan P. Ramirez-Paredes1

1 Electronics Engineering Department, University of Guanajuato, Salamanca, Mexico
{ma.contrerascruz,jpi.ramirez}@ugto.mx

2 Computing Science and Mathematics, University of Stirling, Stirling, UK
gabriela.ochoa@stir.ac.uk

Abstract. Local optima networks (LONs) are a useful tool to analyse
and visualise the global structure of fitness landscapes. The main goal
of our study is to use LONs to contrast the global structure of synthetic
benchmark functions against those of real-world continuous optimisation
problems of similar dimensions. We selected two real-world problems,
namely, an engineering design problem and a machine learning prob-
lem. Our results indicate striking differences in the global structure of
synthetic vs real-world problems. The real-world problems studied were
easier to solve than the synthetic ones, and our analysis reveals why; they
have easier to traverse global structures with fewer nodes and edges, no
sub-optimal funnels, higher neutrality and multiple global optima with
shorter trajectories towards them.

Keywords: Local optima networks · Funnel structures · Fitness
landscapes · Real-world optimisation problems

1 Introduction

The structure of fitness landscapes is known to relate to the performance of
optimisation algorithms. Several tools and metrics have been proposed to char-
acterise fitness landscapes [12], however, few of them deal with the landscapes’
global structure. Local optima networks (LONs) help to fill this gap, by pro-
viding information about the number, distribution, and connectivity patterns
of local optima [14]. LONs were inspired by work in theoretical/computational
chemistry, where the structure of energy landscapes (derived from the atomic
interactions in clusters and molecules) is modelled as a graph [5]. The central
idea of LONs is to compress the search space into a graph where nodes are local
optima and edges are possible transitions between optima with a given search
operator. Several topological network features can be extracted from LONs [14];
recent work have also studied the landscapes’ funnel structure [15,16]. The notion
of funnels comes from the study of energy landscapes; according to Doye et al.
c© Springer Nature Switzerland AG 2020
B. Filipič et al. (Eds.): BIOMA 2020, LNCS 12438, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-63710-1_1
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[6] a funnel “is a region of configuration space that can be described in terms of a
set of downhill pathways that converge on a single low-energy structure or a set
of closely related low-energy structures.” Funnels are important global structure
features, a single global funnel will facilitate optimisation, but the presence of
sub-optimal funnels will hinder it.

Network-based models of fitness landscapes have only recently been applied
to continuous optimisation problems outside the realm of molecular energy min-
imisation, examples are [1,2,17]. Our work extends these results in order to
contrast the global (funnel) structure of synthetic vs. real-world continuous opti-
misation problems, we also develop some aspects of the methodology. Our main
contributions are to:

– Apply the LON model to real-world continuous optimisation problems
(including engineering design and machine learning) and contrast their struc-
ture against the structure of synthetic benchmark functions.

– Contrast two initialisation methods, uniform and Latin hypercube, when sam-
pling the fitness landscapes to extract the LON models.

– Explore the effect of increasing the problem dimension on the global (funnel)
structure of the underlying landscapes.

2 Definitions

We start by formalising the notions of fitness landscapes and local optimum,
before defining the local optima network models considered in our study. We
use two models to discover the global structure of continuous optimisation prob-
lems: the Monotonic LON model, and the Compressed Monotonic LON model,
introduced in [16].

Fitness Landscape. In the context of continuous optimisation, a fitness land-
scape is a triplet (X, N, f) where X ∈ R

n is the set of all real-valued solutions
of n dimensions, i.e., the search space; N is a function that assigns to every
solution x ∈ X a set of neighbors N(x); and f : Rn → R is the fitness function.
A potential solution x is denoted as vector x = (x1., x2, . . . , xn), and the neigh-
bourhood is based on hypercubes. Formally, the neighbourhood of a candidate
solution xk is defined as, xj ∈ N(xk) ↔ |xki − xji| < si, i = {1, . . . , n} where
s = (s1, s2, . . . , sn) is a vector that represents the size of the neighbourhood in
all dimensions.

Local Optimum. A solution x∗ ∈ X such that ∀x ∈ N(x∗), f(x∗) ≤ f(x).

Monotonic LON Model. The monotonic LON is the directed graph MLON =
(L,ME ) where the nodes L are local optima and the edges ME ⊂ E are mono-
tonic perturbation edges.
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Monotonic Perturbation Edges. There is a monotonic perturbation edge from a
local optimum l1 to a local optimum l2, if l2 can be obtained from a random
perturbation of l1 followed by a local minimisation process, and f(l2) ≤ f(l1).
The edge is called monotonic because the transition between two local optima
is non-deteriorating. In this model, the edges are weighted with the number of
times a transition between two local optima occurred.

Compressed Monotonic LON Model. This is a coarser model that com-
presses connected local optima at the same fitness into single nodes. The purpose
is to facilitate modelling landscapes with neutrality.

Compressed Monotonic LON. It is the directed graph CMLON = (CL,CE )
where the nodes are compressed local optima CL, and the edges CE ⊂ ME are
aggregated from the monotonic edge set ME by summing up the edge weights.

Compressed Local Optimum. A compressed local optimum is a single node that
represents a set of connected nodes in the MLON model with the same fitness
value.

Monotonic Sequence. A monotonic sequence is a path of connected local optima
where their fitness values are always decreasing. Every monotonic sequence has
a natural end, which represent a funnel bottom, also called sink in graph theory.

Funnel. We can characterise funnels in the CMLON as all the monotonic
sequences ending at the same compressed local optimum (funnel bottom or sink).

3 Methodology

Our methodology for sampling and constructing the networks is based on the
basin-hopping (BH) algorithm, proposed in the context of computational chem-
istry [18]. BH is an iterative algorithm, where each iteration is composed of a ran-
dom perturbation of a candidate solution, followed by a local minimisation process
and an acceptance test. In this study, we adopted a variant of the BH algorithm
called monotonic basin-hopping (MBH) proposed in [10] (see in Algorithm 1),
where the acceptance criterion considers only improving solutions.

To construct the network models a number of runs are conducted. Each run
on a given problem instance produces a search trajectory, which is recorded as
a set of nodes (local minima) and edges (consecutive transitions), and stored
in the sets L, and ME , respectively. Note that different runs can in principle
traverse the same nodes and edges, even if they start from different initialisation
points. The MLON network is constructed in a post-processing stage where the
trajectories generated by a fixed number of runs (100 in our implementation)
are aggregated to contain only unique nodes and edges.
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We compared two techniques to generate the initial candidate solutions (x0

in Algorithm 1) during the sampling process: uniform and Latin hypercube sam-
pling. The uniform sampling generates initial solutions following a uniform dis-
tribution within the problem bounds, whereas the Latin hypercube sampling
(LHS) technique partitions the search space into equally probable bins and posi-
tions the samples at each axis-aligned hyperplane.

Algorithm 1. Monotonic basin-hopping sampling.
Require: search space X ∈ R

n, fitness function f(X), step size p
1: Initial random solution x0 ∈ X
2: x ← LocalMinimization(x0)
3: L ← {x}
4: repeat
5: x′ ← Perturbation(x, p)
6: y ← LocalMinimization(x′)
7: if f(y) ≤ f(x) then
8: L ← L ∪ {y}
9: ME ← ME ∪ (x,y)

10: x ← y
11: end if
12: until Stopping criterion is not reached
13: return L,ME

As the local minimiser we used the Limited-memory Broyden-Fletc.her-
Goldfarb-Shanno algorithm (L-BFGS) [13], which is an extension of BFGS, a
well-known quasi-Newton algorithm. L-BFGS is scalable to higher dimensions
because it avoids storing a fully dense approximation of the Hessian matrix.

The step size p has to be appropriately selected for each problem. If p is
too small, the candidate solution can be easily trapped in a low quality local
optimum and unable to escape from its basin of attraction; whereas if p is too
large, the candidate solution can move drastically to regions of worse quality,
degenerating into random search and losing the progress attained, especially if
the search has already reached relatively low fitness solutions. In order to select
p, we followed the suggestion in [10], which indicates to vary p until roughly half
of the steps attempted escape the starting basin of attraction. In continuous
space, there is a precision issue to decide if two solutions correspond to the same
local optimum. In this work, we used a position threshold ε that depends on the
optimisation problem. Two solutions represent the same local optimum if the
absolute difference between each of their components is less than ε.

Once the models are constructed, we can extract different metrics to bring
insight into the search difficulty and the global structure of the studied land-
scapes. Table 1 describes the metrics used in this study. The network metrics
were gathered from the CMLON model. Note that when there is little neutrality
in the search space, the number of nodes in the CMLON model is close to the
number of local optima in the underlying landscape, whereas when neutrality is
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high, the number of nodes in the CMLON is smaller than the number of underly-
ing landscape optima. The ratio between the number of compressed optima over
the total number of local optima is captured by the neutral metric described in
Table 1.

Table 1. Performance and network metrics.

Performance metrics

Success Proportion of runs that reached the global minimum.

Deviation Mean deviation from the global minimum.

Network metrics

Nodes Number of nodes in the CMLON (compressed local optima).

Funnels Number of sinks (CMLON nodes without outgoing edges).

Neutral Proportion of CMLON nodes to the number of local optima.

Strength Normalized incoming strength of the globally optimal sinks.

4 Experimental Setup

4.1 Synthetic Functions

We consider three classical test functions, modified Ackley (Ackley 4), Griewank,
and Schwefel 2.26, which are all differentiable, separable, scalable, and multi-
modal, but are known to differ in their global structures. Figure 1 shows 3D
visualisations of the functions with two variables. The Ackley 4 function [7] has
two global minima close to the origin, presents a single pronounced funnel toward
both minima, and evaluates within the range [−35, 35]. The Griewank function
has a single funnel structure, many local optima almost at the same fitness
level than the single global optimum (located at the origin), and evaluates in the
range [−600, 600]. The Schwefel 2.26 function has multiple funnels, a single global
optimum located far from the origin, at f(x∗) = f(420.9687, . . . , 420.9687), and
evaluates in the range [−500, 500]. For each function, we considered 3 instances
with n = {3, 5, 8}.

Fig. 1. 3D visualization of the selected synthetic benchmark functions with two
variables.
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4.2 Real-World Functions

Engineering Design Problem. We selected the radar pulse modulation
problem named “spread spectrum radar polly phase code design problem”, as
described and implemented in the CEC2011 “Competition on Testing Evolu-
tionary Algorithms on Real-World Optimisation Problems” [4]. This problem
can be scaled to n dimensions and belongs to the class of continuous min-max
global optimisation problems. In both problems, the global optima are known.
We selected 3 instances with n = {3, 5, 8}, to allow a closer comparison with the
synthetic functions. In what follows, we call this the Radar function.

Machine Learning Problem. We used the sum of squares clustering problem
from the “Machine Learning and Data Analysis” problem set [9]. The problem
is to determine the position of k cluster centres in order to minimise the sum of
squared distances between each data point (in a dataset) and its nearest cluster
center. Let us denote C = {c1, c2, . . . , ck} as the set of centers where cj ∈ R

q;
and D = {d1,d2, . . . ,dm} as the dataset, with di ∈ R

q. A candidate solution
is represented as a vector x ∈ R

qk that concatenates the centers coordinates.
Several test instances can be generated, changing the value of k and the dataset.
We selected the Ruspini dataset that contains 75 observations in a 2-dimensional
space (di ∈ R

2). Since the observations are in a 2-dimensional space, and the
problem representation concatenates the cluster centres, instances can only be
generated with an even dimension. In order to closely compare with the other
benchmark functions, we selected 3 instances with n = {4, 6, 8} (correspond-
ing respectively to k = {2, 3, 4}). In what follows, we call this the Clustering
function.

4.3 Parameter Settings and Experiments

To extract the networks, 100 runs of the monotonic basin-hoping sampling algo-
rithm (Algorithm 1) were conducted on each function with a stopping criterion
based on a predefined number of cycles. The number of cycles was determined
experimentally for each problem, by observing the convergence behavior of 30
runs. Table 2 summarises the parameters used for each function.

Table 2. Parameter settings for each function.

Function Dimensions Step size Cycles ε

Ackley 4 3, 5, 8 1.63 300 10−2

Griewank 3, 5, 8 3.60 200 10−2

Schwefel 2.26 3, 5, 8 151.00 4000 10−2

Radar 3, 5, 8 1.27 100 10−1

Clustering 4, 6, 8 48.64 100 1.0
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All the experiments were conducted in an Intel Core i7 computer, with a pro-
cessor running at 3.5 GHz and 16 GB of RAM. We used the basin-hopping imple-
mentation provided in the Python package Scipy [8]. For constructing models,
computing the metrics and visualising the networks we used the igraph pack-
age [3] with the R statistical language. For visualising the networks, we used
force-directed graph layout algorithms as provided in igraph.

5 Results

5.1 Synthetic Functions

Performance and Network Metrics. Figure 2 reports the performance and
network metrics described in Table 1 for the synthetic functions with n =
{3, 5, 8}. Results are shown for both initialisation methods, which are indicated
using the subscript uni for the uniform initialisation and lhs for the hypercube
sampling.

Fig. 2. Network and performance metrics on the synthetic functions. For each func-
tion, the subscripts uni and lhs denote uniform initialisation and hypercube sampling,
respectively.

Let us first consider the performance metrics (Success and Deviation). The
Ackley 4 and Griewank functions are easy to solve by the MBH algorithm,
regardless of the initialisation method used. However, the MBH algorithm shows
a reduction in the success rate in the Schwefel 2.26 function as the problem
dimension increases. For n = 3, the uniform initialisation showed a higher success
rate than the success rate of the LHS. However, with n = 5, it is the other way
around, supporting that LHS might be beneficial for high dimension problems.
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The problem becomes very hard to solve with n = 8, where MBH with both
initialisation methods failed to find the global optimum in most runs. We can also
verify the difficulty of the Schwefel 2.26 function, looking at how the deviation
from the optimum increases with n.

With respect to the network metrics, the number of nodes in the CMLON
model increases with the problem dimension for Ackley 4 and Schwefel 2.26.
For the Griewank function, the trend is reversed, the number of nodes decreases
when the problem dimension increases. These results are aligned with the earlier
findings by Locatelli et al. [11], where the Griewank function was found to behave
closer to its convex quadratic function as n increases. Theoretically, the number
of local optima in the Griewank function increases exponentially with n due to its
oscillatory non-convex part; however, local optimisers (such as L-BFGS) can only
capture a lower number of optima because the convex quadratic function is more
pronounced than the oscillatory non-convex component. The number of funnels
indicates that Ackley 4 and Griewank feature a single funnel structure for all the
studied problem dimensions; which helps to explain that these functions are not
difficult to solve. For the Schwefel 2.26 function, as the dimension increases, some
sub-optimal funnels appear, which helps to explain the deterioration in the MBH
performance. The neutral metric represents the proportion of connected local
optima with the same fitness value. In an analysis per function, we can observe
that Schwefel 2.26 shows higher neutrality than the other functions. Finally, the
strength metric measures the incoming weighted degree of the global optimum
node. We can appreciate visually that this metric correlates well with the success
rate. For Ackley 4 and Griewank, the strength is the highest possible value (1.0),
and it does not seem to be affected by n. For Schwefel 2.26, an increase in n
represents a reduction in strength.

Network Visualisation. Visualisation is a useful tool to get insight into the
structure of networks. Figure 3 shows the CMLONs for the synthetic functions
with n = {3, 5, 8}; the plots captions indicate the success rate for each instance.
Due to space restrictions, we only show networks generated with uniform ini-
tialisation. However, both initialisation methods produced similar visual results.
The graphs decorations highlight relevant features of the search dynamics; node
sizes are proportional to their incoming strength, and edges to their weight, i.e.
the number of times a transition between two nodes occurred in the sampling
process. Pink nodes correspond to global funnels, and blue nodes to sub-optimal
funnels. The global optima is highlighted with bright red, while the sub-optimal
funnel bottoms with dark blue nodes. The Ackley 4 function shows a single fun-
nel structure for all dimensions, with the number of nodes increasing with n.
The Griewank function also shows a single funnel for all dimensions; however,
the number of nodes decreases with n as discussed above, and also due to the
higher neutrality observed in this function. For the Schwefel 2.26 function, sub-
optimal funnels (blue nodes) start to emerge as n increases, which explains the
success rate deteriorating with n.
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To illustrate the advantage of modelling the search space with LONs, we
used 3D visualisations of the networks to gain insight into the landscapes funnel
structure. Figure 4 shows 3D networks of the synthetic functions with n = 5,
where the fitness values are added as the third dimension to the 2D graph lay-
outs. We can observe that Ackley 4 shows a deep funnel towards a single global
optimum. Griewank also shows a single funnel, but with a flatter structure; we
can see the several local optima are located almost at the same fitness level
than the global optimum. Schwefel 2.26 shows multiple funnels, where the sub-
optimal funnel bottoms (dark blue nodes) are at different fitness levels. Con-
trasting the standard 3D visualisation, only possible for functions with n = 2
(Fig. 1), with the network visualisations for n = 5 (Fig. 4), we can observe that
the overall shape of the functions global structure is maintained. The networks

Fig. 3. CMLON visualisations for the synthetic instances with n = {3, 5, 8}. Node
sizes are proportional to their incoming strength. Pink nodes belong to the funnel
containing the global optimum (red node), while blue nodes belong to sub-optimal
funnels (bottoms coloured in a dark blue). (Color figure online)
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visualisations, therefore, offer a novel way of visualising the structure of functions
of higher dimensions.

5.2 Real-World Problems

Performance and Network Metrics. Figure 5 reports the performance
and network metrics described in Table 1 for the real-world functions with
n = {3, 5, 8} for the radar function and n = {4, 6, 8} for the clustering func-
tion.

Fig. 4. 3D visualisation of the CMLON networks for the three synthetic functions with
n = 5. The fitness value represents the third dimension. Nodes sizes are proportional to
their incoming strength. Pink nodes belong to the funnel containing the global optimum
(red node), while blue nodes belong to sub-optimal funnels (bottoms coloured in a dark
blue). (Color figure online)

Fig. 5. Network and performance metrics on the real-world functions. For each func-
tion, the subscripts uni and lhs denote uniform initialization and hypercube sampling,
respectively.
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Results are shown for both initialisation methods, which are indicated using
the subscript uni for the uniform initialisation and lhs for the hypercube sam-
pling. The performance metrics (Success and Deviation) indicate that the real-
world problems are easy to solve for all the dimensions and initialisation meth-
ods considered. The strength network metric (1.0 in all cases) clearly correlates
with the performance metrics, supporting that the studied problems are easy to
solve. Looking at the other network metrics, we can see that the number nodes
increases with the dimension for both problems, and it is lower for the clustering
problem. When contrasting with the synthetic functions (Fig. 2), we can see that
the real-world problems produced much lower number of nodes. For the cluster-
ing function, a single global funnel is observed in all dimensions. The number of
funnels increases with the dimension for the radar function, but all these funnels
are global, there are no sub-optimal funnels in the studied real-world problems.
This is consistent with the good performance of MBH in these problems. The
differences between the two sampling methods are not marked for most metrics,
with uniform sampling showing higher values for some of them. The neutral
metric clearly indicates higher values for the real-world problems as compared
with the synthetic functions (Fig. 2). Specially the radar function shows very
high neutrality. Finally, another marked difference we found between the syn-
thetic and real-world functions was the total number of different global optima.
The synthetic functions revealed a very low number of global optima in all the
studied dimensions (two for the Ackley 4 function, and one for the Griewank
and Schwefel 2.26 functions) whereas the real-world functions produced a larger
number of global optima. For example, for the uniform sampling, the number of
global optima for the radar function was: 7014, 6477, and 1934, for n = 3, 5, and
8, respectively; whereas for the clustering function the number of global optima
was 2, 6 and 24, for n = 4, 6, and 8, respectively.

Network Visualisation. Figure 6 shows the CMLONs for the real-world func-
tions. For consistency with Fig. 3, the captions also indicate the success rate,
which was 1.0 in all cases. We can observe that the networks for the real-world
problems (Fig. 6) are much smaller (in terms of the number of nodes and edges)
than the synthetic functions (Fig. 3); their overall structure is also different. The
radar function with n = 3 has several thousands of global optima (7014 in our
sampling process), however they are all connected and compressed into a single
node in the CMLON model (red node in Fig. 6(a)). The CMLON in this case
shows a single easy to traverse funnel structure, where one or two hops (edges)
are sufficient to reach a global optimum. As n increases (Fig. 6(b) and (c)) the
number of funnel sinks (nodes without outgoing edges) increases, but they are
all global sinks (red nodes). Moreover, from none to three edges are sufficient
to reach a global optimum (no edges means that the first optimum attained is
a global optimum), whereas more steps are required to reach a global optimum
for the easy to solve synthetic functions (Fig. 3(a)–(f)). The clustering function
(Fig. 6(d)–(f)), shows small networks with a single global funnel and short paths
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Fig. 6. CMLON visualisations for the real-world problems with different dimensions.

lengths to attain the global optimum. The networks for this problem increase in
size (number of nodes and edges) with increasing problem dimension.

6 Conclusions

We extracted and analysed basin-hoping network models from synthetic and real-
world continuous optimisation problems, and explored the effect of alternative
initialisation methods as well as the problem dimension. Our main goal was to
analyse and contrast the global (funnel) structure of the studied landscapes.
The number of funnels tend to increase with the problem dimension, however,
only one of the studied synthetic functions, Schwefel 2.26, showed sub-optimal
funnels. We found striking differences between the synthetic and the real-world
functions. Surprisingly, the real-world functions were easier to solve than the
synthetic functions and our network analysis and visualisation revealed why this
is the case.

The real-world problems produced much smaller network models (in terms
of nodes and edges) and optimal funnels with shallow depth; a few hops were
sufficient to reach a global optimum. The real-world problems also have many
global optima, as opposed to one or two as observed in the synthetic functions,
and much higher levels of neutrality measured as the proportion of connected
local optima at the same fitness level. These findings indicate that designing and
improving algorithms according to their performance on synthetic functions may
be misleading. Our approach offers a novel way of visualising and analysing the
global structure of continuous functions with more than two variables. Future
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work will explore higher dimensions and additional real-world problems. The
new set of metrics extracted from network models can also be used to guide
parameter tuning and automatic algorithm selection in real-world engineering
and machine learning optimisation problems.
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Abstract. In self-organizing multi-agent systems, inter-agent variation
is known to improve swarm performance significantly. Response dura-
tion, the amount of time that an agent spends on a task, has been pro-
posed as a form of inter-agent variation that may be beneficial. In the
biological literature, variability in agent response duration in natural
swarms for desynchronizing agent actions has been discussed for some
time. This form of variation, however, is not well understood in artificial
swarms. In this work, we explore inter-agent variation in response dura-
tion as a desynchronization technique. We find that variation in response
duration does desynchronize agent behaviors and does improve swarm
performance on a two-dimensional tracking problem in which the swarm
must push a tracker, staying as close as possible to a moving target. By
preventing agents from reacting identically to task stimuli and keeping
some agents on task longer, response duration helps smooth the swarm’s
path and allows it to better track the target into path features such as
corners.

Keywords: Multi-agent system · Inter-agent variation · Response
duration · Response threshold

1 Introduction

In this paper, we investigate variable response duration as a mechanism for
promoting effective self-organization in a decentralized swarm. The decentral-
ized and redundant structure of swarms make them potentially very robust and
adaptable. These same qualities, however, also make the task of coordinating
agents within a swarm a challenging problem. For a swarm to address any rea-
sonably interesting problem, the agents in the swarm must be able to distribute
themselves intelligently among multiple tasks, even in problems where task stim-
uli are globally sensed by all agents. Such coordinated responses can be difficult
to achieve when all agents act independently. A significant body of work has stud-
ied how variation in when agents are triggered to act, i.e. variation in response
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threshold, can desynchronize agent actions enough to generate effective division
of labor [6,15,16,20,21,23,24]. Biological studies hypothesize that variation in
how long agents work before they stop to re-assess their actions can also con-
tribute to desynchronizing decentralized swarms of agents [22]. This work exam-
ines the effectiveness of variable response duration on swarm self-organization
and its strengths and weaknesses relative to and in conjunction with variable
response thresholds.

Effective self-organization of decentralized swarms requires desynchroniza-
tion of the agents within a swarm to achieve diversity in agent actions. If agents
make action decisions at different times, they are likely to encounter different
stimuli and, thus, have the potential to act differently. A commonly used method
of desynchronization is variation in response threshold. Giving each agent a dif-
ferent threshold for each task stimulus causes agents to be triggered at different
times by a given stimulus. As a result, agents enter the workforce gradually
rather than all at the same time and entry into the workforce may stop after
task needs have been fully addressed by a subset of agents. Simply assigning
agents randomly generated thresholds over a uniform distribution is sufficient
to generate division of labor in a swarm [15,23]. Studies have examined both
static distributions of thresholds [8,12,15,18,19,23,24] and dynamically evolved
thresholds [2–7,9,10,13,14,19,21].

Weidenmuller’s [22] study on honeybee thermoregulation points out that a
different factor may also contribute to the desynchronization of agent actions in
a decentralized swarm: variation in response duration. Response duration refers
to the amount of time that an agent works on a task before stopping to re-assess
its actions. Instead of all agents evaluating task demands and selecting an action
in every unit of time, agents may work differing numbers of time units on a task
before stopping to reconsider task demands. The varying durations cause agents
to be desynchronized with respect to when they evaluate task stimuli, increasing
the chance that they will sense different stimuli and react diversely.

Active adjustment of the amount of time agents spend on tasks is not new
to swarm self-organization studies. Factors such as the amount of time that
agents have been resting or active [1,17], agent success rate or productivity on
task [25], and perceived relative task demands [11] have been used to affect
when agents start and stop work on tasks. In all of these approaches, however,
response durations are tied in part to external forces, e.g. the availability of jobs
or density of jobs. As such, even though agents act independently, there exists
the possibility that the external forces that are driving their response durations
could inadvertently synchronize agents.

We are interested in response duration as an inherent characteristic of an
agent and whether variation in agent response duration within a swarm can
contribute to more effective self-organization. We study the performance of a
decentralized swarm on a collective tracking problem. We first examine whether
the desynchronizing effects of variable response duration is able to improve a
swarm’s ability to self-organize. We then explore the implications of varying the
average expected response duration lengths of the agents. Finally we present
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interesting results combining two mechanisms for desynchronizing decentralized
swarms: variable response durations combined with variable response thresh-
olds. Our results indicate that variable response duration is a viable method for
improving self-organization in swarms and suggest that the interaction of multi-
ple forms of inter-agent variation may result in richer behavior than any single
form alone.

2 Problem Description

In seminal work on inter-individual variation in bumblebees [22], Weidenmuller
explores collective nest thermoregulation. In that problem, individual bees
choose between two tasks, flapping their wings or shivering, to lower or raise
the temperature in the hive, respectively. Thermoregulation is a one-dimensional
problem in which the two tasks are in opposition. For the testbed in this work,
we use a two-dimensional tracking problem in which the swarm attempts to
move an object to track, as closely as possible, a target. The target’s path is
unknown to the agents comprising the swarm. Superficially very different from
thermoregulation, this problem is quite similar though more complex.

A simulation is divided into a predetermined number of time steps. During
each time step, the target moves a fixed distance in a direction determined by
the underlying path. Random paths may change direction as often as every time
step, creating frequently changing task demands, while periodic paths create
periods of nearly constant task demands followed by brief periods of abrupt
changes.

To track the target, each agent can undertake one of four tasks in each
timestep: push NORTH, push SOUTH, push EAST, or push WEST. Task demands for
the swarm are determined by movement of the target. Agents are aware of the
demands in the form of the task stimuli, the distances between the target and
tracker in each dimension. Let Δx = target.x − tracker.x and Δy = target.y −
tracker.y. Task stimuli are defined as: σN = −Δy, σE = −Δx, σS = Δy, and
σW = Δx.

Whether an agent acts in a given time step is determined by the task stimuli
and one or more forms of inter-agent variation described previously. Without
inter-agent variation, agents respond in lockstep to stimuli, inhibiting the ability
of the swarm to perform a variety of tasks.

Performance of a swarm is measured relative to the following two domain
goals:

Domain Goal 1. Minimize the average positional difference, per time step,
between the target location and the tracker location.

Domain Goal 2. Minimize the difference between total distance traveled by tar-
get and the total distance traveled by the tracker.

We note that neither criterion alone is sufficient to gauge the swarm’s success.
Consider using only Goal 1. The tracker could remain close to the target while



20 K. Engholdt et al.

alternately racing ahead or falling behind. This would result in a good average
difference but a path length that is significantly greater than that traveled by
the target. Alternately, using only Goal 2, the tracker could travel a path that
is the same length as that of the tracker while straying quite far, taking a very
different path.

Both the honeybee thermoregulation problem and the tracking problem are
examples of decentralized task allocation problems. There are certainly more
effective methods to achieve tracking and the focus of this work is not on that
problem domain. Rather the tracking problem is used here because it is an exam-
ple of a decentralized task allocation problem in which task demands and contri-
butions are clearly defined and measured, dynamic variation in task demand over
time can be systematically described, and overall performance can be accurately
measured as well as visually assessed.

3 Experimental Details

To examine the effect of response duration, we vary the time period for which
an agent performs a task. This is done via a parameter named Prob check.
This parameter represents the probability that in any time step an agent will
undergo task selection. If an agent does not undergo task selection, it continues
working on its current task. It is important to note that Prob check is inversely
proportional to response duration. That is, a high Prob check value results in
less time spent on a task (more frequent task selection) while low Prob check
values result in more time spent on a task (less frequent task selection). We
perform experiments with Prob check values in [0.1, 1.0] in increments of 0.1.

We perform experiments using two target paths, circle and serpentine.

– circle: Target continuously revolves about a central point at a fixed distance,
resulting in a circular path with radius r. This creates continuously changing
task demands and requires the swarm to perform all tasks equally.

– serpentine: A periodic path that oscillates up and down, moving from west to
east. The motion is defined by amplitude and period values. Path amplitude
dictates how far the target moves in the north and south directions.
Path period controls the distance between peaks in the waveform.

The bottom of Table 1 shows parameters that allow some variation in the
circle and serpentine paths. These include seven radii for circle and four pairs
of amplitudes and periods for serpentine. With these parameter values, we can
affect the rate at which task demands change.

The top of Table 1 lists parameters that are fixed for all experiments. These
include the number of agents in the swarm and the number of time steps in each
simulation. Two other parameters require some explanation. When selecting a
task, agents may choose push NORTH, push SOUTH, push EAST, or push WEST.
Urgent task selection means that agents will select the task with the greatest
task demand. In each time step, the target moves a fixed distance defined by
Target step len. This value is fixed at 3 for these experiments. The maximum
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Table 1. Parameters with values fixed across all experiments (top) and those with
values that vary by experiment (bottom).

Parameter Value

Population size 200

Time steps 500

Task selection Urgent

Target step len 3

Step ratio 1.5

Prob check [0.1, 1.0] by 0.1

Radius (circle) 3, 5, 10, 15, 20, 25, 30

Path amplitude (serpentine) 6, 9, 12, 15

Path period (serpentine) 10, 20, 30, 40

distance the tracker can move is defined by the Target step len times the
Step ratio. With a Step ratio of 1.0, all agents would have to push in the right
direction in order for the tracker to keep up with the target. Higher Step ratio
values allow for some agents to remain idle or undertake a wrong task without
severe consequences for the swarm.

Each experiment consists of 100 runs. We average data across all runs and
calculate 95% confidence intervals. We measure swarm performance by two data,
average positional difference between the target and tracker (Goal 1) and differ-
ence between target and tracker path lengths (Goal 2).

– Average Positional Difference: This is the mean over all time steps of the
Euclidean distance between the target and the tracker positions. This mea-
sures the deviation between the target and tracker paths over the course of
the run. The optimum value for this metric is zero.

– Path Length Difference: This is a measure of the difference between the total
path lengths traveled by the tracker and the target. A negative value for this
metric indicates that the tracker did not travel as far as the target, where as
a positive value means the tracker traveled a longer path than did the target.
The optimum value for this metric is zero.

4 Results

4.1 Can Variable Response Duration Improve Self-organization?

We begin by asking the general question: does the desynchronization of agents
that results from variable response duration improve a swarm’s ability to self-
organize? Figure 1 shows two example instances of a tracker’s attempt to follow
a target along a circular path and a serpentine path. The left column shows
the results for Prob check = 1.0, which is uniform response duration. The right
column shows the results for Prob check = 0.4, where each agent has a 40%
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chance of re-assessing its current action in each timestep and a 60% chance of
ignoring current task demands and continuing with its current task. The top row
shows a circular path. The bottom row shows a serpentine path.

Fig. 1. Examples of tracker paths with Prob check = 1.0 (left column) and
Prob check = 0.4 (right column) following target on a circular path (top row) and
serpentine path (bottom row).

The plots in the left column show that, without any other mechanisms to
diversify agent actions, all agents act identically in every timestep because they
all perceive the same task demands in each timestep. As a result, the tracker
only moves in the four cardinal directions and the path it traces as it follows the
target is very blocky. The plots in the right column provide evidence that vari-
able response duration can have a desynchronizing effect that diversifies agent
actions. The Prob check value less than 1.0 causes only a subset of agents to
re-assess their actions in each timestep. Even though all of those agents may
select the same task, the swarm as a whole has a diversity of agent actions in
each timestep because of the agents that maintain their current task. As a result,
the tracker is able to move in more than just the four basic directions and is able
to follow the path of the target more closely and trace a smoother path. Thus,
the desynchronization effect of variable response duration can produce diversity
in agent actions that can improve self-organization.
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4.2 Implications of Variable Response Duration

While variable response duration appears to desynchronize agent actions, it also
causes the swarm to react less promptly to task demands as swarms in which all
agents re-assess their actions in every timestep. As a result, the desynchroniza-
tion benefits of variable response duration may come at a cost of lowered swarm
responsiveness to changing task demands. That suggests that a problem with
frequently changing task demands will be more difficult for smaller Prob check
values (longer durations) than larger Prob check values (shorter durations). We
explore this hypothesis by examining the full range of Prob check values and
how they respond to paths that require increasing levels of responsiveness.

For a given Prob check value d, we can estimate the expected duration that
agents will stay on a task before re-assessing its actions. Let τ be the number of
time steps that an agent performs a task. For Prob check value d, the expected
value of τ is given by E(τ) = 1/d. We then calculate the average number of
time steps that agents act for each Prob check value in an example run of the
tracking simulation. Table 2 shows that the empirically observed durations from
a sample tracking run closely match the expected (E(τ)) value for all of the
Prob check values.

Table 2. Expected and observed number of time steps for an agent with a given
Prob check value to consider changing tasks.

Prob check d E(τ) Observed duration Prob check d E(τ) Observed duration

0.1 10.00 10.150221 0.6 1.67 1.664558

0.2 5.00 5.003253 0.7 1.43 1.431783

0.3 3.33 3.335890 0.8 1.25 1.249157

0.4 2.50 2.500249 0.9 1.11 1.111148

0.5 2.00 1.998521 1.0 1.00 1.000000

Figure 2 shows the Path Length Difference and Average Positional Difference
measures averaged over 100 simulation runs for Prob check values from 0.1 to
1.0 on circle paths with radii ranging from 30 down to 3. The x-axes of each
plot indicates Prob check values. The y-axes of the left column of plots indicate
Path Length Difference. The y-axes of the right column of plots indicate Average
Positional Difference. Each row of plots gives the results for a circular target
path with radii ranging from 30 down to 3. As a target path’s radius decreases,
required swarm responsiveness is expected to increase and we expect higher
Prob check values to be needed to maintain performance.

The left column of Fig. 2 shows the average Path Length Difference aver-
aged over 100 runs with 95% confidence interval. Recall that the optimal Path
Length Difference is zero; a positive value indicates that the tracker travels
farther than the target; a negative value indicates that the tracker travels a
shorter distance than the target. Looking at the top plot in the left column
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Fig. 2. Path Length Difference (left column) and Average Positional Difference (right
column) measures averaged over 100 runs with 95% confidence intervals. Rows show
results from circles with path radii from 30 to 3.
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of Fig. reffig:comparespsdurations, we see that, on a circle of radius 30, tracker
and target path lengths are most similar at the lowest Prob check values. As
Prob check values increase, the tracker travels increasingly longer distances rel-
ative to the target. These extra distances are due to the overshooting that occurs
when too many agents respond, as seen in the blocky movements of the left plot
in Fig. 1. As we move down the rows in Fig. 2, the plots show data from smaller
and smaller circles. As the circle radii shrink, the optimal Path Length Differ-
ence values are found at increasingly higher Prob check values. At radius 10,
optimal Prob check is between 0.2 and 0.3; at radius 3, optimal Prob check is
between 0.5 and 0.6. Also as the circle radii shrink, lower Prob check values
start producing more and more negative Path Length Difference values due to
swarm responsiveness being too low for the tracker to keep up with the tar-
get. Thus, as the target path (and task demands) change more quickly, higher
Prob check values are needed to achieve optimal performance because agents
need to re-assess and adjust their actions more frequently to keep up with the
target movement.

The right column of Fig. 2 shows the Average Positional Difference averaged
over 100 runs with 95% confidence interval. The optimal Average Positional Dif-
ference is zero. The top right plot of Fig. 2 shows that all Prob check values
except for Prob check = 0.1 achieve Average Positional Difference of approxi-
mately 2 or less. As we move down the rows in Fig. 2, Prob check = 0.1 results
improve but still lag behind higher Prob check values. The change in the results
for Prob check = 0.2 and 0.3 as circle radius decreases is more interesting. At
high circle radii, these values are relatively low. At radii of 15 and 10, the Aver-
age Positional Difference for Prob check = 0.2 and 0.3, respectively, increase
significantly. As radii continue to decrease, the results for both slowly drop back
down to values around 2. Higher Prob check values consistently achieve low
Average Positional Difference values.

Examination of individual runs explains these observed results as follows. At
high circle radii, the change in task demand is low from one time step to the
next. As a result, even trackers with relatively low Prob check values can follow
the target path. As circle radii decrease, the change in task demand from one
time step to the next increases. The increased change requires a more responsive
swarm for the tracker to be able to keep up with the target. When the target
task demand changes become too great for given Prob check value to keep up,
we see an increase in the Average Positional Difference. At this point, the tracker
lags so far behind the target that significant corner-cutting occurs. Because the
example runs presented are on a circular path, the corner cutting by the tracker
leads it to travel in a circular path within the target’s circular path. As the circle
radii continue to decrease, the change in task demand becomes more frequent.
Although the swarm has difficulty keeping up with the target, the decreasing
radii results in lower Average Positional Difference because the tracker is con-
stantly moving within the target path due to corner cutting. This behavior is
not unique to the circular target path; similar degradation trends are observed
in other path results.



26 K. Engholdt et al.

4.3 Combining Response Duration and Response Thresholds

While the results above show that variation in response duration can benefit
a swarm’s ability to self-organize, they also suggest that the effectiveness of
this mechanism may depend on a good pairing of Prob check value with the
dynamism of the path being tracked. In other words, optimal use of response
duration is only possible with a priori knowledge of the problem to which a swarm
is applied. Because a priori information is not always available, we explore other
situations where variation in response duration may be generally beneficial.

Specifically, we find that combining variable response durations with variable
response thresholds can provide added benefits. Variable response thresholds
have been shown to be a successful method for desynchronization of decentralized
agents. When agent resources are insufficient for addressing all problem demands,
however, such systems will fall behind and task attendance may lag task demand.
In the tracking problem such lags often manifest as corner cutting. Empirical
studies show that the lowered responsiveness that emerges from longer response
durations often results in a delayed reaction that resembles “inertia” in agent
task choices. Figure 3 shows an example of a serpentine path with a swarm using
variable response thresholds alone (left) and a swarm using variable response
thresholds combined with variable response duration (right). While the path on
the left cuts corners, in the path on the right, the delayed response generated
by variable response duration pushes the tracker further into each turn and
reduces the corner cutting effect. Thus, while both variable response thresholds
and variable response durations may be used to desynchronize the actions of
decentralized agents, they do so using different mechanisms and there appear to
be potential advantages to combining multiple mechanisms.

Fig. 3. Effects of combining variable response duration with variable response thresh-
olds. Left: Variable response thresholds alone results in corner cutting. Right: When
variable response thresholds is combined with variable response duration, the delayed
reaction resulting from longer response durations mitigates corner cutting.

5 Conclusions

In this work, we examine the impact of variable response duration on the abil-
ity of a decentralized swarm to self-organize. We demonstrate that inter-agent
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variation in response duration serves to desynchronize agent actions, improving
self-organization. A side effect of variable response duration is delayed response
to changing task demands when compared to swarms in which all agents undergo
task selection in every timestep. We can mitigate this effect with knowledge of
the target path. Tracking of paths with more frequent changes in task demands
benefits from higher prob check values (more frequent task selection).

A priori knowledge of a problem is not always possible and we may not be able
to choose effective prob check values. Thus, we combine variation in response
duration with variation in response thresholds. We show that these forms of
inter-agent variation are complementary due to using different mechanisms for
desynchronization. The delayed response due to response duration counters the
tendency to cut corners caused by use of response thresholds alone. Thus, for
the tracking problem, this combination appears to be beneficial.

One limitation of this work is that we consider only a single problem domain.
In future work, we plan to use additional problems to test the utility of response
duration. In addition, we will explore combinations of response duration with
other forms of inter-agent variation to determine if similar synergies exist.
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Abstract. In this paper we review several parameter-based scalarisation
approaches used within Multi-Objective Optimisation. We propose then
a proof-of-concept for a new memetic algorithm designed to solve the
Constrained Multi-Objective Optimisation Problem. The algorithm is
finally tested on a benchmark with a series of difficulties.
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1 Introduction

Many real-word problems involve several competing objectives that have to be
concurrently optimised. Most everyday decisions are based on intuition and com-
mon sense. However areas as engineering, physics, economics, etc. require more
rigorous mathematical modelling and programming [14,20,25]. This paper deals
with Multi-Objective Optimisation Problems (MOPs) and in particular with
deterministic and continuous Constrained Multi-Objective Optimisation Prob-
lems (CMOPs) [22].

There are mainly three approaches for Multi-Objective Optimisation (MOO)
[13,22]. The a posteriori methods, based on the definition of a partial order, cal-
culate a set of equally valuable solutions. The decision maker then, informed of
this trade-off, chooses within the set. In the a priori methods the decision maker
is required to specify additional preferences to define a total order between differ-
ent options, for example by defining an utility function. The optimisation even-
tually finds a single minimal solution. The interactive methods finally require
feedback and preferences from the user multiple time during the execution of
the algorithm. We are here interested in the posterior approaches for which the
whole set of possible solutions can be generated by two algorithmic methods: the
direct multi-objective approach or the parameter-based scalarisation procedure.
For the former, the interested reader can find useful information in [6,8] while
we dedicate this paper to the latter. By scalarisation we mean that the differ-
ent objectives are aggregated and then a Single-Objective Optimisation Problem
(SOP) is solved. By using different parameters of the aggregation function finally
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the MOP is translated to a number of SOPs and the set of optimal solutions is
reconstructed [17].

We propose the use of Evolutionary Computation (EC) for the solution of the
scalarisation problem. This methodology has indeed become popular showing
excellent performance. Many dialects of EC have been developed and in this
paper we present an advancement of the memetic algorithm Multi–Population
Adaptive Inflationary Differential Evolution Algorithm (MP-AIDEA) [10] where
Weighted Chebyshev Scalarisation (WCS) is combined with Pascoletti-Serafini
Scalarissation (PSS) together with a novel constraint handling approach.

A review of the possible approaches to Constrained Optimsation Problem
(COP) in general is in [11] and to penalty functions in particular is in [23]. We
propose here an indirect approach with an adaptive exterior penalty function for
hard constraint handling.

The assessment of the quality of a MOO algorithm is a delicate matter.
Useful indications on how to categorise difficulties in MOPs have been described
in [7]. A benchmark based on these information has been defined in [26] while
the complexity introduced by a constrained search space has been included in
[9]. Taking inspiration from [5] we finally extend the test cases in [26] introducing
constraint functions that disconnect the objective space.

The paper is structured as follows. Section 2 presents an overview of basic
concepts about MOP and MOO. In particular, Sect. 2.1 presents the criteria
used to order different solutions, Sect. 2.2 defines the optimisation problem that
is analysed in the following of the paper and Sect. 2.3 presents the normalisa-
tion procedure. Section 3 reviews the most common and promising approaches
for parameter-based scalarisation. Section 4 describes our approach. Section 5
presents the benchmark and the algorithm tuning. Section 6 gives the results.
Section 7 finally concludes.

2 Basic Concepts

We start by giving some basic definitions from MOO that will be used in the
following.

2.1 Ordering Criteria

Consider the two generic non empty sets K ⊂ R
s and S ⊂ R

s, with s ∈ N.

Definition 1 (Cone). The set K is called a cone if k ∈ K, λ ≥ 0 =⇒ λk ∈ K.
Pointedness of K means that K ∩ −K = {0R}. The set S is said to be bounded
below with respect to the cone K if there exist s ∈ R

s such that S ⊂ s + K.

Definition 2 (Dominance). A point s ∈ S is said to be K-minimal for S if
(s−K)∩S = {s}. It is instead defined weakly K-minimal if (s− int(K))∩S = {s}
where int(K) is the interior of K. It is finally defined properly K-minimal (in the
sense of Benson [2]) if it is a minimal point for S and also 0R is a minimal
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point of cl(cone(S+K− {s})) where cl(S) is the closure of S. The set of all the
(weakly) K-minimal points is called the (weakly) efficient set (εw(S)) ε(S).

In the case K = R
m
+ the K-minimal points are also called Edgeworth-Pareto

(EP)-minimal points and the K-dominance become the more famous Pareto
dominance.

2.2 Problem Statement

The scalarisation approaches presented in the paper are applied to the following
CMOP:

minimise f(x) = [f1, f2, ..., fm]T

subject to ci(x) ≤ 0, i = 1, ..., n

x ∈ X

(1)

with X ⊂ R
n the parameter space, m,n ∈ N, m ≥ 2 and Y = {f(x) s.t. x ∈ X,

gj(x) ≤ 0, j = 1, ..., n} the feasible objective space. We require that fi and gj

are locally C2.
In the following we will assume that the closed convex pointed cone K intro-

duces an anti-symmetric partial order ≤K in the objective space Y. The cone
K is then used to define the efficient set in the objective space ε(Y) and the
corresponding efficient set in the parameter space ε(X).

2.3 Normalisation

In case of prior knowledge about the reference points z∗ (best) and z∗∗ (worst),
the objective functions f can be normalised in order to reduce the difference in
the order of magnitude between the components fi:

f̄ =
f − z∗

z∗∗ − z∗ . (2)

z∗ and z∗∗ can be defined as reference solutions by the decision maker. However
z∗ usually corresponds to the ideal point zideal or to the utopian point zutopian
while z∗∗ corresponds to the nadir point znadir. A visualisation of zideal, zutopian
and znadir is in Fig. 1 for a MOP with two objective functions f1 and f2. They are
theoretic points that collapse the extreme behaviour of the different solutions in
the Pareto front. zideal is the combination of the best solutions for the different
objectives. znadir represents instead the worst possible combination of points.
zutopian, is finally defined by means of an ε from zideal. The points zideal and
znadir will be used in the following of the paper while zutopian has been here
introduced for the sake of completeness.
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Fig. 1. Representation of utopian, ideal and nadir points for a generic bi-objective
optimisation problem.

3 Review of Scalarisation Strategies

This section reviews the most important parameter-based scalarisation
approaches: Epsilon-Constraint Scalarisation (ECS), Weighted-Sum Scalarisa-
tion (WSS), Benson Scalarisation (BS), WCS and PSS.

We consider a generic preference vector ω = [ω1, ..., ωm]T for the objective
functions f = [f1, f2, ..., fm]T and a generic reference point a = z∗. ω and a can
be either defined a priory by the decision maker or (as stated in Sect. 1 and used
in Sect. 4) made varying in order to reconstruct the entire efficient set.

The scalarisation methods are compared in Table 1 as in [19] where the follow-
ing criteria have been considered: the possibility to use different ordering cones,
the necessity or not of boundedness and convexity conditions, the provability for
obtaining properly efficient solutions, the use of reference and preference infor-
mation and the introduction by the method of additional constraint functions.

Table 1. Characteristics of six scalarisation methods

Method WSS ECS BC WCS PSS CS

Ordering cone any R
m
+ R

m
+ R

m
+ any any

Boundedness from below − − − + − −
Convexity + − − − − −
Proof of properly efficient solutions + − − − − +

Preference weights + − − + − +

Reference points − − − − + +

Additional constraints or variables − + + + + −
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3.1 Epsilon Constraint Scalarisation

The ECS was introduced by Haimes et al. in 1971 [18]. In this approach, one of
the functions in f in Eq. (1) is maintained as the objective while the remaining
functions are treated as inequality constraints

min
x∈X

fi

s.t. fk ≤ εk k ∈ {1, ...,m} \ {i}
cj ≤ 0 ∀j ∈ {1, ..., n}

(3)

The boundedness from below for the ECS is not an essential condition. How-
ever, the set of thresholds εk has to be decided carefully by the decision maker.
A wrong selection, indeed, could bring to a not finite optimal solution or to an
infeasible solution. The ECS can be applied only in the case when the order-
ing cone equals R

m
+ . The method does not require convexity condition on the

problem under consideration. It generates weakly efficient solutions and does not
provide conditions for generating properly efficient solutions. Decision maker’s
preferences, namely weights of objectives and reference points, are not taken into
account. Finally, the problem size increases due to adding the constraints.

3.2 Weighted-Sum Scalarisation

The WSS was suggested by Gass and Saaty [16] in 1955 and it is probably
the most commonly used scalarization technique for MOP. Here the Eq. (1)
translates to:

min
x∈X

n∑

i=1

ωifi (4)

As for the ECS the boundedness below is not required but in that case the
weights ω have to be chosen carefully. Weakly and properly efficient solutions
are guaranteed under the convexity condition. Weights of objectives are used but
reference points are not considered. The method does not introduce additional
constraints.

3.3 Benson’s Scalarisation

The method was introduced in [1]. Here an initial guess x0 is given by the decision
maker. The sum of the deviations li is maximised to find a new dominating point:

max
x∈X

∑n
i=1 li

s.t. fi(x0) − li − fi(x) = 0 i = 1, ...,m
l ≥ 0
cj ≤ 0 ∀j = 1, 2, ..., n

(5)

The BS requires the ordering cone K to equal Rm
+ . The boundedness below is

not a requirement, however if the condition is not satisfied, more attention has to
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be put on the selection of x0. There is no necessity for the problem to be convex.
BS provides necessary and sufficient conditions to converge to efficient solutions,
but not to properly efficient solutions. Preferences from the decision maker are
not taken into account. Finally, besides functions cj , additional constraints are
considered.

3.4 Weighted Chebyshev Scalarisation

The idea of the WCS is first presented in [3]. The Eq. (1) translates to:

min
x∈X

‖f − zideal‖ω
∞

s.t. cj ≤ 0 ∀j = 1, 2, ..., n
(6)

where ‖f − zideal‖ω
∞ is the weighted Chebyshev distance maxi{ωi(fi − zideal,i}

between f(x) ∈ Y and the ideal point zideal.
The linearisation is often considered:

min
x∈X,t∈R

t

s.t. ωi(fi − zideal,i) ≤ t, ∀i = 1, 2, ...,m
cj ≤ 0, ∀j = 1, 2, ..., n

(7)

The WCS requires the cone K to be R
m
+ . The bondedness below is a neces-

sary condition for the existence of zideal. Instead the convexity assumption is not
needed. The method assures generation of weakly efficient solutions and efficient
solutions. However it is not guaranteed to generate properly efficient solutions.
The preference vector ω over the objective space is considered. The ideal point
could be considered as a special case for the reference point. However the solu-
tions are not guaranteed to be close to the reference point. In the linearised
version, the size of the problem is increased by new constraints.

3.5 Pascoletti-Serafini Scalarisation

A first description of the PSS is given by Gerstewitz in [4]. As stated in [12], the
PSS is a generalisation of ECS, WSS and WCS and it can be represented as:

min
x∈X

t

s.t. a + tr − f(x) ∈ K

cj ≤ 0, ∀j = 1, 2, ..., n

(8)

Equation (8) can be interpreted as the process where the ordering cone K

is moved in the direction −r along the line a + tr minimising the intersection
(a + tr − K) ∩ f(X) until it becomes the empty set.

An arbitrary ordering cone can be adopted. The boundedness below and the
convexity are not required conditions. The method guarantees to get at least
weakly efficient solutions but it does not provide conditions to generate properly
efficient solutions. It does use reference points but not preference vectors. Finally
it uses additional functional constraints.
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3.6 Conic Scalarisation

The Conic Scalarisation (CS) method was first introduced by Gasimov in [15]
where beside the preference weighted vector ω and the reference point a, the
augmentation parameter α is considered:

min
x∈X

∑
i ωi(fi − ai) + α

∑
i |ωi(fi − ai)|

s.t. cj ≤ 0 ∀j = 1, 2, ..., n
(9)

As stated in [19], CS is a generalisation of WSS, BS and PSS. An arbitrary
ordering cone can be used. The boundedness below is not an essential condition.
No convexity is required. There are also conditions that guarantee to generate
properly efficient minimal points. Preference and reference information is used.
Finally, no additional constraints are required.

4 Memetic Strategy for the Constrained Scalarisation

We make the reasonable assumptions that the MOP is bounded below, which
is usually satisfied for engineering problems, that no other cone than R

m
+ is

necessary and that we are interested in efficient solutions and not necessary in
proper efficient solutions. For these reasons we have implemented in the memetic
optimiser MP-AIDEA [10] a combination of WCS and PSS in order to solve
CMOPs with the scalarisation approach.

4.1 Scalarisation Approach

We briefly describe here the extension of MP-AIDEA [10] highlighting the dif-
ferences that have been introduced. The general structure of the algorithm is
summarised in Algorithm 1. A set of Npop different populations with npop ele-
ments each are first initialised: either a first guess is used or they are defined
randomly. The optimisation process then hybridises the Differential Evolution
(DE) step (line 3) where the Npop populations are evolved and the local search
(line 6) where their best candidate solutions are refined. The number of local
refinements is adapted within MP-AIDEA allowing them to be run only if the
converged solution in the DE is outside the basins of attraction of the previous
recorded local minima which depend on the distances between previous best solu-
tions of the DE and best solutions of the local search. More information about
this point can be found in [10]. The DE is then locally and globally restarted
(line 10) until the maximum number of evaluations nfeval,max (considering both
DE and local search) of the objective function is achieved (termination condition
in line 2). In particular, the number of local restarts nLR for each population
and the corresponding dimension of the bubble δlocal where the starting vector is
initialised are both auto-adapted within the algorithm. The radius of the bubble
for the global restart δglobal and the convergence threshold ρ of DE are instead
defined by the user.
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More details about the DE step are in Algorithm 2. The building blocks
that make any Evolutionary Algorithm (EA) are: initialisation (line 2), varia-
tion (line 6), evaluation (lines 3 and 7), selection (line 8) and termination (line
4). In particular, the population at the first generation (G = 1) is defined from
Algorithm 1. Within the main loop (lines 4–10) all the agents at the current
generation G are selected as parents and are subjected to the variation step
for the definition of generation G+1. The two schemes DE/Rand/1/bin and
DE/CurrentToBest/2/bin [24] have been implemented for the parent’s varia-
tion. The best for each agent between the corresponding parent at generation G
and offspring at generation G+1 is finally selected. The differences here intro-
duced in the DE to solve the scalarisation problem affect only the evaluation of
the fitness function of the candidate solutions. To translate the MOP presented
in Eq. (1) to a single objective problem we propose, within the DE, to apply the
WCS described in Sect. 3.4:

min
x∈X

maxi{ωi(fi − zideal,i)} ∀i = 1, 2, ...,m

s.t. gj ≤ 0 ∀j = 1, 2, ..., n
(10)

when the problem is not normalised, and

min
x∈X

maxi{ωif̄i} ∀i = 1, 2, ...,m

s.t. cj ≤ 0 ∀j = 1, 2, ..., n
(11)

when it is normalised. During the local search, instead, the PSS described in
Eq. (8) is implemented because a differentiable fitness function is required. The
following constrained minimisation problem is then considered

min
x∈X,t∈R

t

s.t. ωi(fi − zi) ≤ t, ∀i = 1, 2, ...,m
cj ≤ 0, ∀j = 1, 2, ..., n

(12)

when the problem is not normalised and

min
x∈X,t∈R

t

s.t. ωi(f̄i − z̄i) ≤ t, ∀i = 1, 2, ...,m
cj ≤ 0, ∀j = 1, 2, ..., n

(13)

when it is normalised. In Eqs. (12) and (13) zi (z̄i) is the best candidate solution
fi (f̄i) obtained in the previous DE. As stated in [12], Eqs. (12) and (13) could be
considered as a reformulation (a linearisation) of the WCS where an additional
variable is introduced and where the direction ri = 1/ωi. However we consider
here a different reference than the ideal point zideal.

4.2 Constraint Handling

Within the DE step and with reference to [11,23] we propose the following
indirect approach with an adaptive exterior penalty function for hard constraint
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Algorithm 1. MP-AIDEA for the scalarisation problem
1: Initialisation
2: while nfeval < nfeval,max do
3: Run the DE step (Algorithm 2)
4: for p ∈ [1, 2, ..., Npop] do
5: if xp,best not in the basin of attraction of previous solutions then
6: Run local search (Eq. (12)) with x0,p = xbest,p, t0,p = 0 and the reference

vector zp: min
x∈X,t∈R

t s.t. ωi(fi(x)−zi) ≤ t∧cj(x) ≤ 0, ∀i = 1, 2, ..., m, ∀j = 1, 2, ..., n

7: update xp,best from the local search.
8: end if
9: end for

10: Initialise populations for local or global restart in the next DE step [10].
11: end while

Algorithm 2. DE step
1: for p ∈ [1, 2, ..., Npop] do

2: Initialise (input) the genotype x
(G)
p,q for the p-population at generation G = 1

where q = 1, 2, ..., npop

3: Evaluate the phenotype of each candidate solution: f
(G)
s,p,q (Algorithm 3)

4: while the population is not contracted do
5: Select parents: all generation G;
6: Variate the parent’s genotype: two strategies randomly alternated

(DE/Rand/1/bin, DE/CurrentToBest/2/bin) define generation G+1;

7: Evaluate new candidates f
(G+1)
s,p,q (Algorithm 3):

8: Select between parents and children with a greedy criterion
9: update generation: G = G+1.

10: end while
11: xp,best = arg mini f

(end)
s,p,q (xp,q);

12: zp = {f1(xp,best), f2(xp,best), ..., fm(xp,best)}.
13: end for

Algorithm 3. DE, Evaluation
1: for each q-agent in the population, with q ∈ [1, 2, ..., npop] do
2: fs,p,q = maxi{ωi(fi(xp,q) − zideal,i)}, i ∈ [1, 2, ..., m]
3: cp,q = maxj{cj(xp,q)}, j ∈ [1, ..., n]
4: end for
5: for each q-agent with k ∈ [1, 2, ..., npop] do
6: if cp,q > 0 then
7: fs,p,q = maxi{fs,p,q} + cp,q
8: end if
9: end for

handling where hardness refers to the absolute satisfaction of the constraint. By
‘indirect approach’ we mean that the COP is translated to a Free Optimisation
Problem (FOP): this type of constraint handling is done before the EA run. The
following mapping is used:
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fs(xp,q) =

{
fs(xp,q) if maxi ci(xp) ≤ 0
maxq{fs(xp,q)} + maxj{cj(xp,q)} else

(14)

where, for a generic population, fs is the scalarised value of f for the given
agent q in the population p, maxq{fs(xp,q)} is the maximum of fs over the
current population and maxj{cj(xp,q)} is the maximum constraint violation for
the considered element q. Algorithm 3 summarises the fitness evaluation within
the DE step including also the constraint handling.

For the local search (line 6 of Algorithm 1) instead the constraints in Eqs. (12)
and (13) are directly handled within the nonlinear programming solver fmincon
[21].

5 Testing Procedure

5.1 Benchmark

The test functions used in this paper have been selected from [26] where a
benchmark for unconstrained MOPs is defined. A set of constraints c inspired
by [5] has been further introduced to increase the complexity by disconnecting
the feasible set Y. A similar benchmark generation can be found in [9].

The general structure of each bi-objective optimisation problem is:

minimiseT = [f1, f2]T

where f1 = f1(x1)
f2 = g(x2, ..., xm)h(f1(x1), g(x2, ..., xm))

s.t. ci ≤ 0, i = 1, ..., n

x ∈ Ω

(15)

where for all the test cases it is considered that i ∈ {1, 2} and the constraint
functions are:

c1 : 1.69x2
1 + 1.01(gh)2 − 2.6x1(gh) − 0.02 ≥ 0

c2 : (x1 − 0.5)2 + (gh − 0.5)2 − 0.5 ≤ 0.
(16)

The objective functions T1,2,3 are presented in the following.

Test Case 1. T1 has a convex Pareto front

f1(x1) = x1

g(x2, ..., xm) = 1 + 9/(m − 1)
∑m

i=2 xi

h(f1, g) = 1 −
√

f1/g
(17)

where m = 30 and xi ∈ [0, 1]. The Pareto optimal front is at g(x) = 1.
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Test Case 2. T2 is the non-convex counterpart of T1

f1(x1) = x1

g(x2, ..., xm) = 1 + 9/(m − 1)
∑m

i=2 xi

h(f1, g) = 1 − (f1/g)2
(18)

where m = 30 and xi ∈ [0, 1]. The Pareto optimal front is at g(x) = 1.

Test Case 3. T3 presents the discreteness: the Pareto front is divided in several
non continuous convex parts:

f1(x1) = x1

g(x2, ..., xm) = 1 + 9/(m − 1)
∑m

i=2 xi

h(f1, g) = 1 −
√

f1/g − (f1/g) sin(10πf1)
(19)

where m = 10 and xi ∈ [0, 1]. The Pareto optimal front is at g(x) = 1.

5.2 Tuning

This section presents the tuning procedure applied to the modified version of
MP-AIDEA presented in Sect. 4.1 and its results. The maximum number of
function evaluations for each test problem has been fixed to nfeval,max = 5e4. The
combination of the following parameters instead have been tuned: the number
of populations Npop ∈ {2, 4}, the number of agents in each populations npop ∈
{30, 45}, the dimension of the bubble for the global restart δglobal ∈ {0.15, 0.25}
and the convergence threshold ρ ∈ {0.05, 0.15} for the DE step. The efficient set
of each problem has been uniformly discretised using 10 trigonometric couple of
weights wf1 = cos θ

cos θ+sin θ and wf2 = sin θ
cos θ+sin θ with θ ∈ [0, π

2 ]. Each combination
of parameter setting and weights have been repeated 10 times. The results have
been compared with the analytical Pareto front of T1,...,3 and finally the setting
with the minimum average error has been selected. The tuning’s results are
presented in Table 2.

Table 2. MP-AIDEA tuning results

T Npop npop δglobal ρ

1 2 45 0.25 0.05

2 2 45 0.25 0.05

3 4 45 0.25 0.05

6 Results

The efficient sets for T1,2,3 are finally plotted in Fig. 2 for 10 equally spaced
preferences weights wf1 = cos θ

cos θ+sin θ and wf2 = sin θ
cos θ+sin θ where θ ∈ [0, π

2 ]. As it
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can be seen in the figures, the approach proposed in Sect. 4.1 is capable to find
the efficient set for the MOP satisfying the constraint functions. In particular it
has been noted that the implementation of the multi-population restart within
MP-AIDEA is of fundamental importance for such problems, as this benchmark,
that have a disconnected objective space.

Fig. 2. Efficient sets for T1 (a), T2 (b) and T3 (c). The shaded area represents the
unfeasible domain. The black line is the sub-domain containing the global efficient set.
Red points are the solution of the proposed method.(Color figure online)

7 Conclusions

In this paper we have presented a review of the most important scalarisation
methods for MOPs highlighting the corresponding advantages and disadvan-
tages. We have proposed then a new memetic approach for the solution of
CMOPs. A combination of WCS and PSS has been implemented in the memetic
optimiser MP-AIDEA in order to translate the MOP to a corresponding set of
SOPs. A novel adaptive exterior penalty function has been used for the con-
straint handling. The approach has been tested demonstrating its capability
of finding efficient points. Future steps will regard further analysis of the per-
formance of the proposed algorithm with both comparison between different
scalarisation techniques and different optimisation solvers. Finally, besides the
parameter-based scalarisation approach, also the direct multi-objective selection
will be considered.
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Abstract. More and more, optimization methods are used to find
diverse solution sets. We compare solution diversity in multi-objective
optimization, multimodal optimization, and quality diversity in a sim-
ple domain. We show that multiobjective optimization does not always
produce much diversity, multimodal optimization produces higher fit-
ness solutions, and quality diversity is not sensitive to genetic neutrality
and creates the most diverse set of solutions. An autoencoder is used
to discover phenotypic features automatically, producing an even more
diverse solution set with quality diversity. Finally, we make recommen-
dations about when to use which approach.

Keywords: Evolutionary computation · Multimodal optimization ·
Multi-objective optimization · Quality diversity · Autoencoder

1 Introduction

With the advent of 3D printing and generative design, a new goal in optimization
is emerging. Having the option of choosing from different solutions that are good
enough to fulfill a task can be more effective than being guided by single-solution
algorithms. The optimization field should aim to understand how to solve a
problem in different ways.

Three major paradigms for multi-solution optimization exist. The major dif-
ference between multi-objective optimization (MOO), multimodal optimization
(MMO) and quality diversity (QD) is the context in which solution diversity
is maintained. In MOO the goal is to find the Pareto set, which represents the
trade-offs between multiple criteria. MMO finds solutions that cover the search
space as well as possible. QD finds combinations of phenotypic features to max-
imize the variation in solutions’ expressed shape or behavior - a new focus in
evolutionary optimization [17].
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We analyze the diversity of solution sets in the three paradigms and introduce
a new niching method that allows comparing genetic and phenotypic diversity
(Sect. 2). State of the art diversity metrics (Sect. 3) are used in a new prob-
lem domain (Sect. 4) to evaluate all paradigms (Sect. 5) after which we make
recommendations when to use which approach (Sect. 6).

2 Diversity in Optimization

The intuitive understanding of diversity assumes that there are more ways to
“do” or to “be” something and involves the concepts of dissimilarity and dis-
tance. Evidence can be found in the large number of approaches and metrics, and
the lack of agreement in when to use which one. This section gives an overview
over three paradigms that have arisen in the last decades.

Finding solutions that are diverse with respect to objective space has been
a paradigm since the 1970s. Multi-objective optimization tries to discover the
Pareto set of trade-off solutions with respect to two or more objectives. The
method has no control over the diversity of genomes or their expression other
than the expectation that trade-offs require different solutions. The most suc-
cessful method is the Non-dominated Sorting Genetic Algorithm (NSGA-II) [5].

The first ideas to use genetic diversity in optimization were not used to find
different solutions, but to deal with premature convergence to local optima. The
concept of niching was integrated into evolutionary optimization by introducing
sharing and crowding [6,8]. In the 1990s, multi-local or multimodal optimiza-
tion came into focus. This paradigm has the explicit goal to find a diverse set of
high quality locations in the search space, based on a single criterion. Various
algorithms have been introduced, like basin hopping [26], topographical selec-
tion [23], nearest-better clustering [16] and restarted local search (RLS) [15].

The introduction of novelty search [11] led to studying the search for novel,
non-optimal solutions. QD, reintroducing objectives [3,12], finds a diverse set of
high quality optimizers by performing niching in phenotypic space. In applica-
tions for developing artificial creatures and robot controller morphologies [3,12],
QD only allows solutions that belong the same phenotypic niche to compete. To
this end it keeps track of an archive of niches. Solutions are added to the archive
if their phenotype is novel enough or better than that of a similar solution.

This work does not aim at giving an exhaustive overview over all methods,
for which we refer to some of the many survey papers [1,4,15,21,22,27]. We
consciously choose not to talk about methods that combine ideas from the three
paradigms, but rather compare the three paradigms in their “purest” form.

2.1 Niching with Voronoi Tessellation

To remove variations in the search dynamics when comparing different algo-
rithms, we introduce a niching variant using ideas from Novelty Search with
Local Competition (NSLC) [12] and CVT-Elites [25]. Voronoi-Elites (VE)
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accepts all new solutions until the maximum number of archive bins is sur-
passed (Algorithm 1). Then the pair of elites that are phenotypically closest to
each other are compared, rejecting the worst-performing. An example archive is
shown in Fig. 6 at step five). By locating selection pressure on the closest solu-
tions, VE tries to equalize the distances between individuals. The generators of
the Voronoi cells do not have to coincide with the centroids, like in CVT-Elites,
and the boundaries of the archive are not fixed. VE can be used to compare
archive spaces of different dimensionality. When the genetic parameters are used
as archive dimensions, VE behaves like an MMO algorithm by performing nich-
ing in genetic space. When we use phenotypic descriptors, VE behaves like a QD
algorithm.

Algorithm 1. Voronoi-Elites
Initialize population
for iter 1 to n do

Select parents P randomly
Mutate P using normal distribution to create offspring O
Evaluate performance and descriptors of O
Add O to archive A
while |A| > maxSize do

Find pair in A with smallest distance
Remove individual (in pair) with lowest fitness

end while
end for

2.2 Related Work

A number of survey and analysis articles have appeared in the last decade.
In [1] a taxonomy for diversity in optimization was introduced. [28] investigates
how genetically diverse solution sets in MOO are found and shows that quality
indicators used in MOO can be applied to MMO. [24] compares two algorithms
from MMO to two QD algorithms in a robotics task, showing that clearing’s
performance can be comparable to that of QD. Finally, [13] discusses 100 solution
set quality indicators in MOO and [22] discusses diversity indicators for MOO.

3 Metrics

From the large number of diversity metrics available we only consider metrics
that do not depend on precise domain knowledge, because no knowledge about
actual local optima is available in real world applications. Three commonly used
distance-based metrics are selected to evaluate the experiments in this work. The
Sum of Distances to Nearest Neighbor (SDNN) measures the size of a solution
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set as well as the dispersion between members of that set. Solow-Polasky Diver-
sity (SPD) measures the effective number of species by using pairwise distances
between the species in the set [20]. If the solutions are similar with respect to
each other, SPD tends to 1, otherwise to N . The sensitive parameter θ, which
determines how fast a population tends to N with increasing distance, needs to
be parameterized for every domain. It is set to 1 for genetic distances and to
100 for phenotypic distances in this work. Pure Diversity (PD) is used in high-
dimensional many-objective optimization [21,27]. It does not have parameters,
which makes it more robust, and depends on a dissimilarity measure (L0.1-norm).

Publications in the field of QD have focus on a small number of metrics.
The total fitness is used directly or through the QD-score [18], which calculates
the total fitness of all filled niches in a phenotypic archive. To achieve this, the
solutions from a non-QD algorithm are projected into a fixed phenotypic niching
space. This score is domain-dependent and does not allow comparing QD algo-
rithms that have different archiving methods. A comparison between archives
created from different features introduces a bias towards one of the archives.
The collection size indicates the proportion of the niching space that is covered
by the collection, but again can only be used on a reference archive [4]. Archive-
dependent metrics do not generalize well and introduce biases. We therefore
only use distance-based diversity metrics. The high dimensionality of phenotypic
spaces is taken into account by using appropriate distance norms.

4 Polygon Domain

We construct a domain of free form deformed, eight-sided polygons. The genome
(Fig. 1a) consists of 16 parameters controlling the polar coordinate deviation
of the polygon control points. The first eight genes determine the deviation
of the radius of the polygon’s control points, the second eight genes determine
their angular deviation. Since the phenotypes can be expressed as binary bitmap
images (Fig. 1b and c, resolution of 64 × 64 pixels) we use the Hamming distance
in the diversity metrics to circumvent the problem of high dimensionality [7].

Fig. 1. Free form encoding of polygons. The genome (a) consists of 16 parameters that
define axial and radial deformations (b). The phenotype is considered to be the pixel
representation of the polygon (c). Shown is a 20 × 20 phenotype, although we use
64 × 64 pixels. Features/criteria are shown in (d).



An Analysis of Phenotypic Diversity in Multi-solution Optimization 47

Three aspects describing the polygons are defined that can be used either as
criteria or as features (Fig. 1d): the area of the polygon A, its circumference l
and point symmetry P through the center. The polygon is sampled at n = 1000
equidistant locations on the polygon circumference. The symmetry error Es is
calculated as the sum of distances of all n/2 opposing sampling locations. The
symmetry metric is calculated as shown in Eq. 1.

fP (xi) =
1

1 + Es(xi)
, Es(xi) =

n/2∑

j=1

||xj
i , x

j+n/2
i || (1)

5 Evaluation

We ask which paradigm (objective space, search space or phenotype space) pro-
vides the highest phenotypic diversity of shapes. We compare VE, RLS and
NSGA-II in multiple experiments. Throughout these experiments we fix the
number of function evaluations and solutions and use five replicates per configu-
ration. In NSGA-II the features are used as optimization criteria, maximizing A
and minimizing l. The true Pareto set consists of circles with varying sizes. The
number of generations is set to 1024 and mutation strength to 10% of the param-
eter range. The probability of crossover for NSGA-II is 90% and probability of
mutation 1

dof = 0.0625%, with dof = 16 degrees of freedom. VE’s archive size
is varied throughout the experiments. The number of children and population
size is set to the same value. RLS uses as many restarts as the size of the VE
archive, the step size is set to ρ = 0.065 (after a small parameter sweep) and
L-BFGS-B is used as a local search method (within the bounds of the domain).
The initial solution set for VE and NSGA-II is created with a Sobol sequence -
the initial RLS solution is in the center of the parameter range but RLS’ space
filling character assures a good search space coverage.

5.1 Genetic or Phenotypic Diversity

Biology has inspired evolutionary optimization to compose a solution of a
genome, its encoding, and a phenotype, its expression. The phenotype often
is a very high-dimensional object, for example a high-resolution 2D image, and
can involve the interaction with the environment. Since the phenotypic space is
usually too large, a low-dimensional representation, the genome, is used as search
space. An expression function is constructed that turns a genome into its pheno-
type. Although the expression function should ideally be a bijective mapping, it
often does not prevent multiple genomes to be mapped to the same phenotype.
The phenomenon of such a surjective mapping is called genetic neutrality, which
is not the same but akin to genetic neutrality in biology. In biology, a neutral
mutation is understood to be a mutation that has no effect on the survivability
of a life form. In evolutionary computation, genetic neutrality is referred to as
genetic variants that have the same phenotype [9].
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Fig. 2. Genetic neutrality. The same phenotype is expressed when rotating the control
points by a π

8
angle (left) or by translating the control points as shown (right).

Fig. 2(a) shows an example polygon. If the angle θ equals 0°or 45°, phenotypically
speaking, these shapes are the same. In this case, eight genomes all point to
the same phenotype. Similarly, Fig. 2(b) shows how, through translations of the
keypoints, a similar shape can appear based on different genomes. We postulate
the first hypothesis: diversity maintenance in a neutral, surjective genetic space
leads to lower phenotypic diversity than when using phenotypic niching.

While diversity is often thought about in terms of the distribution of points in
the search space, we make a case to measure diversity in phenotypic space, which
is independent of the encoding and does not suffer from the effects of genetic neu-
trality. Phenotypes may also include other factors that are not embodied within
the solution’s shape itself, but emerge through interaction with the environment.
This is taken advantage of in several publications on neuroevolution [11,12]. In
this work we only analyse the narrow interpretation of phenotypes, which does
not include behavior.

Fig. 3. Voronoi-Elites (VE) performed in 16D genetic and 2D phenotypic space. Top:
genetic diversity (SDNN = Sum of Distances to Nearest Neighbor, SPD = Solow-
Polasky Diversity, and PD = Pure Diversity) and median fitness, bottom: phenotypic
diversity. The number of bins/solutions is increased (x-axis).
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The Voronoi tessellation used in VE makes it easy to compare archives of dif-
ferent dimensionality by fixing the number of niches. We apply VE as an MMO
algorithm, performing niching in 16-dimensional genetic space, and as a QD algo-
rithm with a two-dimensional phenotypic space. The number of bins is increased
to evaluate when differences between genetic and phenotypic VE appear (Fig. 3).
At 25 solutions, the approaches produce about the same diversity, but genetic
VE finds higher quality solutions. As the number of bins is increased, based on
where niching is performed (genetic or phenotypic space), the diversity in that
space becomes higher. Phenotypic VE beats genetic VE in terms of phenotypic
diversity, which gives us evidence that the first hypothesis is valid. At the same
time, the average fitness values of genetic VE are higher than that of phenotypic
VE, although the difference gets lower towards 400 solutions.

Table 1. Parameter settings in order of increasing genetic neutrality.

Case Axial min Axial max Radial min Radial max Neutrality

A 0 1 −0.05 0.05 −
B 0 1 −0.125 0.125 +

C −0.25 1 −0.25 0.25 ++

D −0.5 1 −0.5 0.5 +++

E −1 1 −1 1 ++++

We compare phenotypic VE to NSGA-II and RLS. When we bound dr
between 0 and 1 and dθ between +/−0.125 × π, we can minimize genetic neu-
trality. Neutrality is increased by expanding those bounds (Table 1). In contrast
to VE, the phenotypic diversity of RLS’ solutions is expected to decrease as
genetic neutrality increases. Since there is no mechanism to distinguish between
similar shapes with different genomes, there is an increasing probability that
RLS finds similar solutions. We expect that the solution set produced by RLS
due to its space filling character is more diverse than using NSGA-II.

Finally, it can make more sense to treat objectives as features and, instead of
searching for the Pareto set, allowing all combinations of features and increasing
the diversity of the solution set. We expect NSGA-II to easily find the Pareto set,
which consists of circles of various scales, maximizing the area while minimizing
the length of the circumference, while QD should find a variety of shapes that can
be any combination of large and small A and l. We postulate the second hypoth-
esis: allowing all criteria combinations, instead of using a Pareto approach, leads
to higher diversity, while still approximating the Pareto set.

The number of solutions is set to 400. A result similar to Fig. 3 appears
for the standard algorithms in Fig. 4. Phenotypic diversity is highest for VE,
especially after the genetic neutrality threshold is crossed (at B). Diversity of
NSGA-II is lowest, as is expected for this setup. Although diversity of VE is
higher than that of RLS, the latter’s solutions are all maximally symmetric (see
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Fig. 4. Genetic (top) and phenotypic (bottom) diversity, and median fitness. Right of
red marker: neutrality increases, using parameter bounds shown in Table 1.

fitness plots), making RLS much more appropriate when quality is more impor-
tant than diversity. These results confirm the first part of the second hypothesis.
The Pareto set can be calculated a priori, as we know that circular shapes
maximize area while minimizing circumference. The members of the Pareto set
adhere to the following genome: (r1, . . . , r8, θ1, . . . , θ8), where ri and θi have the
same respective value. To create 100 shapes from the Pareto set we take ten
equidistant values for r and θ and combine them.

Fig. 5. The ground truth Pareto set is shown over the entire parameter range, with
negative as well as positive values for the radial deformation. Bottom left: closeness to
Pareto set, measured as pixel errors. The six figures on the right show example solution
sets for low and high neutrality.
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Part of the resulting Pareto set is shown in Fig. 5. The distance to the Pareto
set is measured in phenotypic space, by measuring the smallest pixel error, the
sum of pixel-wise differences, between a solution and the Pareto set. We see that
the a number of solutions in VE and RLS are close to the Pareto set (Fig. 5
bottom left). Example results with low and high neutrality are shown on the
right. Solutions that are close to the Pareto set are shown in the brightest green
color. This is evidence for the second half of the second hypothesis. VE again
seems to be more robust w.r.t. genetic neutrality, as it finds more solutions close
to the Pareto set in high-neutrality domains (bottom row) than RLS.

5.2 Phenotypic Diversity Without Domain Knowledge

Up to this point we have used domain knowledge to construct a phenotypic nich-
ing space with VE. Intuitively, the area and circumference seem like good indi-
cators for phenotypic differences. But this comparison between QD and MMO is
not completely fair, as the latter does not get any domain information. On the
other hand, the features used in QD might not be the most diversifying.

Fig. 6. AutoVE. Generating phenotypic features with an autoencoder. A random set
of genomes is created (0), their phenotypes are calculated (1) and used as a training
set for an autoencoder (2). The autoencoder can now be used to predict phenotypic
features of new solutions (3), which is used to fill the archive (4), after which the elite
solutions are extracted from the archive (5) and used to retrain the autoencoder.

We remove the domain knowledge from QD and construct a phenotypic niching
space by using a well known dimensionality reduction technique to map the
phenotypes to a latent space, as was done in [2,14]. To our best knowledge,
this data driven phenotypic niching approach, which we name Auto-Voronoi-
Elites (AutoVE), has never been applied to shape optimization. An initial set
of genomes, drawn from a quasi-random, space-filling Sobol sequence [19] and
expressed into their phenotypes, is used to train a convolutional autoencoder
(cAE) (see Fig. 6). The bottleneck in the cAE is a compressed, latent space
that assigns every phenotype to a coordinate tupel. The encoder predicts these
coordinates of new shapes in the latent space, which are used as phenotypic
features. QD searches phenotypes that expand and improve the cAE archive. The
cAE is retrained with the new samples. The cAE consists of two convolutional
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layers in the encoder and four transposed convolutional layers in the decoder.
We set the filter size to three pixels, the stride to two pixels, and the number
of filters to eight. The cAE is trained using ADAM [10] with a learning rate
of 0.001 and 350 training epochs and a mean square error loss function. Latent
coordinates are normalized between 0 and 1. The number of generations (1024)
is divided over two iterations for AutoVE and the number of latent dimensions
is set to two (to compare with manual VE), five or ten.

Fig. 7. Phenotypic diversity and fitness of manually crafted features (VE) compared
to using an autoencoder (AutoVE) with 2, 5 or 10 latent dimensions.

Fig. 7 shows that the two-dimensional manual and autoencoded phenotypic space
(AutoVE 2D) produce similar diversity, whereby the quality of solutions from
AutoVE 2D is higher. The higher-dimensional latent spaces increase the solution
set diversity at the cost of fitness. This is to be expected, as lower-fitness optima
are protected in their own niches. Finally, the diversity of higher-dimensional
AutoVE is around 50% higher than any of the other tested methods.

6 Conclusion

The main contributions of this work are as follows: a domain was introduced that
allows comparing three different diversity paradigms; a case was made to measure
diversity in phenotypic rather than genetic space; the hypothesis that QD is less
sensitive to genetic neutrality than MMO was confirmed; the hypothesis that
while the diversity of solutions sets of QD and RLS is higher than that of MOO,
they also find some solutions close to the ground truth Pareto set, was confirmed;
we showed that phenotypic diversity in QD is higher than MMO and MOO.
Furthermore, we introduced VE, a simpler and self-expanding version of QD. We
also used an autoencoder to discover phenotypic features in a shape optimization
problem, showing that we do not need to manually predefine features to get a
highly diverse solution set, allowing us to fairly compare QD to MOO and MMO.
Using an autoencoder produces higher diversity than manually defined features,
making AutoVE a strong choice for high diversity multi-solution optimization.

Since all paradigms have their strengths and weaknesses, we propose a guide
for when to use which approach. MOO should be used when you want to optimize
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all the criteria and want to know the trade-off solutions between those criteria.
MMO is appropriate when you have a non-neutral bijective encoding, when
you have a single criterion you want to optimize for or if you want to perform a
gradient-based, Quasi-Newton or (direct) evolutionary local search to refine local
optima. We cannot easily do this in QD due to the effect of neutrality that allows
a search to “jump out of” a phenotypic niche. QD should be used if you have
some criteria where you are less determined about whether to optimize for them,
for example during the first phase of a design process. Some representatives from
the Pareto set will still be discovered. When you are interested in the largest
diversity of solutions and are more willing to get some solutions with lower
fitness than when using MMO, QD is the better alternative. One of the biggest
strengths of QD is the possibility to understand relationships between features
or even to discover features automatically.

Some research effort should be focused on hybridization. MOO and QD are
connected, as the boundary of valid solutions in the phenotypic archive is close
to the Pareto front, yet there is room for improvement. Connecting MMO and
QD means to use a local search method in QD, which needs to overcome the
genetic neutrality problem. We cannot search close to a solution in genetic space
and expect newly created solutions to be close in phenotypic space.

We gave insights about different variations of diversity and when and where
to apply them, depending on whether one is most interested in trade-offs between
criteria, increasing diversity while maximizing fitness, or maximizing diversity
while finding high-performing solutions in a manually defined or automatically
extracted phenotypic space. It is often easy to manually define two or three phe-
notypic descriptors, but human imagination can run out of options quickly. Auto-
matic discovery of phenotypic features is a more attractive option for increas-
ing solution diversity. Real world multi-solution optimization and understanding
solution diversity are important steps towards increasing the efficacy and effi-
ciency at which engineers solve problems.
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Abstract. Cuckoo Search (CS) is a simple yet efficient swarm intel-
ligence algorithm based on Lévy Flight. However, its performance can
depend heavily on the parameter settings. Though many studies have
designed control strategies for scaling factor α, few have considered the
adaption of the stability parameter β (of Lévy Flight). In this paper,
we propose the Parameter Evolution Self-Adaptive strategy (PESA) to
control β. PESA uses an evolutionary algorithm that runs in parallel to
CS. We show that PESA can also be extended to control the parameters
of other meta-heuristics, using Differential Evolution (DE) as a second
example. We compare our strategy with the well-established self-adaptive
strategy used in JADE, both in CS and DE, on classical benchmark func-
tions. We discuss the increased flexibility of PESA and analyze the effect
of changing the frequency of updating parameter values in CS.

Keywords: Self-adaption · Cuckoo search · Lévy Flight

1 Introduction

Cuckoo Search (CS) is a simple yet efficient meta-heuristic. The efficiency of
CS derives mainly from the utilization of Lévy Flight (LF). LF is a type of
random walk where the step length is drawn from a heavy-tailed distribution.
Therefore, the parameters (i.e., scaling factor α and stability parameter β) of
the step-length distribution can heavily influence CS performance. Although it
has been suggested that a fixed value for the stability parameter (β = 1.5) could
work on any problem, results from practical studies (for example, Kordestani’s
recent work [6]) shows that the optimal setting of β depends on the problem.
Therefore, a (self-)adaptive strategy for controlling β is promising. However,
while the (self-)adaptive strategies of other CS parameters such as α and pa

have been well-studied in the literature [8,11,16], the self-adaptive strategy for
β has not been well discussed yet. Some studies have developed such a strategy
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for a limited range, or a set of discrete candidate values [6,11]. However, to the
best of our knowledge, there is no self-adaptive strategy in the CS literature to
control β in its complete domain (i.e., (0, 2]).

Self-adaptive strategies for parameter control have been well studied in other
Evolutionary Algorithms. For example, JADE [20] has been designed to adapt
the two parameters of Differential Evolution (DE). In JADE, the algorithm con-
tinuously estimates the expectation value of good parameters based on successful
parameters in the last generation. This algorithm has been shown to be effective
and was further developed by other researchers in recent years [14]. However, the
strategy in JADE cannot control β in CS without proper modification (as we
found in our pre-experiment). So in this study, we propose a novel self-adaptive
strategy that can control β in CS, as well as a variety of parameters in other
meta-heuristics, called Parameter Evolution Self-Adaptive strategy (PESA).

PESA is an indicator-based strategy to control algorithm parameter values
at an individual level. This strategy maintains two populations: a population of
solutions and a population of algorithm parameters. PESA searches the parame-
ter population using a secondary EA and a fitness function based on the progress
of individuals in the solution population. PESA’s structure makes it easy to apply
it to several meta-heuristics and several types of parameters. This work is related
to previous research on using EA to fine-tune control parameters. However, two
key ideas of our method are the online evolution of parameters (selection and
mutation of new parameters done at optimization time), and its general design
that aims to work with several EAs.

In this work, we consider two implementations of PESA: First, we show an
implementation to adaptively control the β parameter from CS in its full con-
tinuous interval (i.e., [0.1, 1.9]). Next, we consider an implementation to control
the F and CR parameters from DE. We compare the PESA implementations for
each search algorithm to JADE (and its corresponding modifications for use with
the CS: JACS). On a set of 14 benchmark functions on 30 dimensions, PESA
performs a better control of β when compared to JACS, while it has comparable
results to JADE on the control of F and CR. This may indicate that the pro-
posed strategy can be used with little modification for the control of parameters
in a wide range of meta-heuristics. We also analyze the sensitivity of PESA to
the frequency of control parameter updates.

2 Background

2.1 Cuckoo Search and Lévy Flight

CS was proposed by Yang in 2009 [18]. It has a simple structure, and many
subsequent studies have shown it is an efficient meta-heuristic search. Its effi-
ciency is derived from the powerful Lévy Flight operator (LF). Generally, LF
is a random walk based on a stable distribution. Since a (non-Gaussian) stable
distribution holds infinite variance, a large step of any arbitrary size can occur.
This property helps CS escape from local optima during the optimization. The
LF operator is formulated in Eq. (1), where x(t) is the position of search point
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x at time t. L(α, β) is a step generated from a stable distribution with scaling
factor α and stability parameter β.

x(t) = x(t−1) + L(α, β) (1)

Fig. 1. 50-step Lévy Flights with different β and α = 1 started from (0, 0). When
β = 0.1, the search range is nearly infinite, which shows a possibility of using Lévy
Flight to search an unbounded space.

Figure 1 illustrates 50 steps of three LFs with same α = 1, same start point
(0, 0), but different βs. The scale of search ranges are quite different. Generally, a
stable distribution holds infinite variance for 1 ≤ β < 2, and its expectation value
is diverged when 0 < β < 1. When β = 2, it becomes a Gaussian distribution.
These properties show that any large step can be found in LF when β �= 2,
and LF can lose its average position and go everywhere in the search space
when 0 < β < 1. Therefore, LF with a proper β can be used for searching an
unbounded space [4].

2.2 Parameter Adaption Strategies in Cuckoo Search

Because of the importance of parameter tuning, self-adaptive strategies are fre-
quently studied and applied in meta-heuristics literature. In the case of CS, the
adaption of the scaling factor α is a well-studied problem. Several studies have
proposed adaptive strategies that adjust α based on generations [16,21] and
individual fitness [12]. Researchers have also applied adaptive CS to solve some
application problems [15,17].

On the other hand, the adaptation of the stability parameter β has not been
studied as much as α in the adaptive CS literature. Mlakar has proposed a
hybrid self-adaptive CS [11]. However, in his study, β is limited to [1.2, 1.8].
Kordestani has utilized multiple β values and designed learning automation to
switch between fixed values (0.75 and 1.90) based on probability [6]. Abedi has
proposed a similar design, where the solution is explored with β = 1.0, 1.5 and
2.0 [1]. Lee has injected LF mutation into Evolutionary programming [7]. He has
also developed an “adaptive” strategy, where four candidates are generated with
fixed β (1.0, 1.3, 1.7, 2.0), and the best one is selected as offspring.

We find that most of the (self-)adaptive strategies in the CS literature are
dealing with α and pa. In a few existing studies for adaption of β, the candidate
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values are discrete [1,6,7] or a restricted range [11]. What is more, even in
the case of deterministic parameter CS, performance with small β is seldom
discussed.

2.3 Parameter Adaption in Other Meta-Heuristics

Since the (self)-adaption design of parameter β in CS has not been well discussed,
we introduce self-adaptive adaption in another famous meta-heuristics named
differential evolution (DE). Specifically, we introduce JADE [20]. Many variants
of JADE and other (self-)adaptive design of DE can be found in the review work
by Al-Dabbagh [2]. The full description of JADE can be referred to Zhang’s
study [20]. In JADE, each solution has an associated parameter value, and the
selection of new parameters happens at the same time as the selection of new
solutions. Parameters are obtained from a probability distribution, and the shape
of this distribution is estimated during the optimization process.

Another idea for select parameter values of an EA is to use a secondary
EA. The most well-known approach for this is the Meta-EAs [3,9]. Usually, a
Meta-EA maintains multiple sub-populations of the primary EA, each with a
corresponding parameter setting. The Meta-EA will analyze a full run of each
sub-population, and therefore is computationally expensive.

A slightly different approach is to use a secondary EA that runs in paral-
lel with the primary EA to guide parameter control in self-adaptive strategies.
Posik has proposed a method to co-evolve the solutions and mutation steps in
evolutionary strategy (ES) [13]. In this way, we can consider JADE as a paral-
lel Estimation of Distribution Algorithm (EDA) guiding the DE’s parameters.
PLADE [19] has applied particle swarm optimization (PSO) to guide DE param-
eters. However, to our best knowledge, such a technique has not been applied to
control the stability parameter in CS.

3 Proposed Method

3.1 Parameter Evolution Self-Adaptive Strategy

In this paper, we propose the Parameter Evolution Self-adaptive strategy
(PESA), which is a generalization of JADE [20], PLADE [19], and Posik’s
study [13].

PESA uses two parallel populations of the same size: a solution population
and a parameter population. Individual xi in the solution population is the stan-
dard solution candidate for an EA, while pi is the set of parameters that will
be used to operate on xi, and will be evaluated by a secondary, and possibly
different, EA.

The fitness yi of an individual xi is calculated as usual, using the problem’s
fitness function f . On the other hand, the fitness indicator Ii of parameter can-
didate pi is calculated by an indicator function g, which evaluates the search
progress of the corresponding solution in the last nstep generations. This implies
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that the secondary EA evaluates, selects, and modifies the parameter population
less frequently than the primary EA, this difference being controlled by the nstep

parameter. An important characteristic to keep in mind is that this secondary
EA does not consume extra fitness evaluations. The assessment of parameters is
based on the solution information that has already been computed in the first
EA. The outline of PESA is described in Algorithm 1.

Algorithm 1. Parameter Evolved Self-Adaptive Strategy (PESA)
1: Input: solution population X = {x1, · · · , xN}, parameter population P =

{p1, · · · , pN}, fitness function f , indicator function g;
2: while termination criteria is not satisfied do
3: increase generation counter t;
4: evaluate solution fitness: yt

i = f(xt
i)

5: calculate offspring solution xt+1
i based on xt

i and parameter pi;
6: if t is multiple of nstep then

7: evaluate parameter fitness: Ii = g(xt
i, y

t
i , x

t−1
i , yt−1

i , · · · , x
t−nstep

i , y
t−nstep

i )
8: calculate next parameter p′

i based on Ii and secondary EA;

As shown in Fig. 2, compared with Meta-EAs [3,9], each parameter setting
in PESA corresponds with an individual rather than a sub-population of base-
level EA. This further lead to two difference in the evolutionary process. First,
a parameter is assessed by the search progress of only one individual. Second,
in Meta-EAs, the fitness of a parameter is computed based on an independent
run of one sub-population. However, in our PESA, individuals do not run inde-
pendently; the search progress of one solution may be partially contributed by
another individual. This shows that the fitness of a parameter in PESA should
be well-designed.

Posik has proposed a co-evolutionary algorithm for real parameter optimiza-
tion [13]. In that study, the two populations, a population of solutions and a
population of mutation steps, are co-evolved. Compared to his study, our method
co-evolves solutions with parameters rather than mutation steps. An essential
difference between parameters and mutation steps is that a parameter can gen-
erate multiple types (size) of step sizes. Therefore, evolving parameters is gener-
ally more difficult. To deal with this problem, we introduce a multi-generation
assessment, where each parameter is assessed for nstep generations.

It is not hard to note that JADE (without external archive) [20] is a special
case of PESA. PESA determines that the quality of parameters is assessed by an
indicator function, and then selected independently from the selection process
of solutions. In JADE, there is no explicit indicator function, and the selection
of parameters and solutions are both based on the fitness of the solution. This
could be expressed in PESA as Ii = max(yt−1

i − yt
i , 0) as the indicator function.
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3.2 Parameter Evolution Cuckoo Search

PESA is a general strategy for controlling parameters of an EA, which requires
the definition of the indicator function and the secondary EA rules for generating
new parameters.

In this paper, we introduce Parameter Evolution Cuckoo Search (PECS) as a
specific implementation of PESA for cuckoo search. Since parameter α and β are
highly correlated, we design self-adaption for stability parameter β but tune α for
simplicity. In PECS, the solutions are evolved by CS (in Line 5 of Algorithm 1),
and the parameters are evolved by another EA (Line 8 of the same algorithm).

Fig. 2. Conceptual Difference between Parameter Evolved Self-Adaptive Strategy
(PESA) and Meta-EA. Meta-EA evaluates a parameter set by running an entire sub-
population with that parameter, while PESA evaluates a parameter set based on a
single corresponding individual.

The indicator function that expresses the fitness of a parameter set is com-
puted cumulatively by the corresponding improvement over nstep generations of
CS, as in Eq. (2). A new parameter set is generated following the crossover step
described in Eq. (3) and the mutation step in Eq. (4), with probability pc and
pm, respectively. In these equations, βselect is a stability parameter chosen by
roulette selection, every time before the parameter reproduction step. The selec-
tion probability of βi is equal to Ii/ΣIi. σ is a random uniform value between 0
and 1. The selection between the new parameter set and the old one is based on
the comparison of a pair of positions, before and after implementing LF (i.e., xi

and x′
i). This marks an important difference between the selection of solutions

by CS and the selection of parameters by the secondary EA.
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Ii+ = max{f(xi) − f(x′
i), 0} (2)

β′
i = βi + σ ∗ (βselect − βi), σ ∈ [0, 1] (3)

β′′
i = β′

i + L(θ, λ) (4)

Implementation of Lévy Flight. To implement LF, we use Eqs. (1) and (5).
The first case of the equation below is based on Gutowski’s study [4], where a
simulation method is constructed to generate only positive LF random numbers
for β ∈ (0, 2). We multiply {-1,1}, which means the equal probability of 1 and
-1, to achieve both positive and negative LF random numbers. The symbol rand
stands for a uniform random number in [0, 1]. The second case is implemented by
Mantegna’s algorithm [10]. This algorithm approximates a symmetrical stable
distribution, however, for a limited range of β ∈ [0.3, 1.99].

L(α, β) =

{
α · {−1, 1} · (rand− 1

β − 1), 0.1 ≤ β < 0.3
α · u

|v|1/β 0.3 ≤ β ≤ 1.9
(5)

4 Experiments

We show our PESA can control the stability parameter β (with a tuned α) in
CS, as well as F and CR in DE. In other words, we compare the performance
of different adaptive strategies to solve the parameter space of CS and DE. The
source code for all algorithms, extra figures and data are in our public website1.

4.1 Comparison with Self-Adaptive Strategy in JADE

CS-based Algorithms. Totally, we have four algorithms to compare, namely
PECS, JACS, Random Parameter CS (RPCS), and CS (Tuned).

– PECS: CS where β is controlled by the proposed PESA.
– JACS: CS where β is controlled by JASA. In our pre-experiments, we find

that without a proper modification, JACS performs poorly on most of the
problems. Thus, we implemented a modification to realize the quality of LF
in terms of fitness improvement by applying weighted mean. This modification
is similar to what proposed by Tanabe [14].

– RPCS: CS where β is randomly generated from [0.1, 1.9] before mutation.
– CS (Tuned): CS where β is fine-tuned on each benchmark problem.

DE-based Algorithms. To test PESA’s performance on controlling DE, we
include PEDE (DE controlled by PESA). As comparison methods, we use JADE
and Random Parameter DE (RPDE). The mutation method of all three methods
is DE/current-to-pbest/1, and all three algorithms (PEDE, JADE, RPDE) are
implemented without an external archive for simplicity.
1 https://y1fanhe.github.io/research/bioma2020.

https://y1fanhe.github.io/research/bioma2020
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Experimental Settings for CS-based Algorithms. For a fair comparison,
we tuned parameters of all CS-based algorithms based on the average evaluation
cost and average fitness of 21 runs with maximum evaluations of 15,000 on Sphere
and Rastrigin. We set the population size N as 20, which is a common value.
We tuned α and β in pairs to get a proper α. Based on the results, we set α on
all problems as 1e-07. We then tuned pa to 0.1. For JACS, we tuned the scaling
factor of Cauchy distribution γ = 0.1 and learning rate c = 0.1. We set the
initial value of μβ as 1.0 (average of 0.1 and 1.9). For PECS, we set θ and λ to
0.1 and 1.0, respectively. This setting is the same as LF by Cauchy distribution
with a scaling factor of 0.1. We tuned pc and pm to 0.7 and 0.3, respectively. We
set nstep as 5, and discuss the influence of this parameter in Sect. 4.2. For CS
(Tuned), we run algorithm with β = { 0.1, 0.2, ..., 1.9 } and chose the best β to
compare.

In our experiment, a total of 14 benchmark problems (30-dimension) are
included. We have implemented them based on Jamil’s review work on continu-
ous benchmark problems [5]. They are F1: Sphere, F2: Sum Squares, F3: Rosen-
brock, F4: Zakharov, F5: Ackley, F6: Alpine N.1, F7: Periodic, F8: Styblinski-
Tank, F9: Rastrigin, F10: Griewank, F11: Schwefel, F12: Salomon, F13: Xin-She
Yang’s N.2, and F14: Xin-She Yang’s N.4 function. F1 - F4 are unimodal prob-
lems and F5 - F14 are multimodal problems.

The experiment is performed with 31 repetitions. Each algorithm will run
with a maximum evaluation of 300,000. The termination criterion is when the
fitness meets the tolerance (to the optimal fitness value). The tolerance for each
problem is computed as follows. We first run CS with β from 0.1 to 1.9 for
300,000 evaluations for 31 repetition and use the distance from the best average
fitness to the optimal fitness as tolerance. We record the success rate in 31 runs
as well as the mean and standard deviation of the number of evaluation numbers
in successful runs as results.

Experimental Settings for DE-based Algorithms. We use a population of
100 and a pbest rate of 0.05 for all methods. F and CR are controlled by a self-
adaptive strategy within [0, 1]. For JADE, the parameters used for self-adaptive
strategy is μF = μCR = 0.5, γ = 0.1, c = 0.1. These settings are the same as
in Zhang’s study [20]. We use the tuned parameters in the previous experiments
for the parameters of the adaptive strategy in PEDE. The maximum evaluations
are set to 300,000. We run JADE in the same procedure to set tolerance for DE-
based algorithms.

Experimental Results. Tables 1 and 2 presents the results of six CS-based
algorithm and three DE-based algorithms on F1–F14, respectively. We addi-
tionally performed the aggregated Friedman test and the aggregated Wilcoxon
Signed-Rank test. The results have shown that the improvement of PECS over
JACS and RPCS in terms of the number of evaluations is statistically significant
(p-values 0.028 and 0.003, respectively), while there is no statistical difference
between all four CS-based methods in terms of success rate (p-value = 0.155).
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Table 1. Success rate (SR), mean and standard deviation of evaluation numbers for
CS-based algorithms (The numbers after CS are the best values of β)

Fun Method SR Mean Std Fun Method SR Mean Std

F1 PECS 1.00 5.47e+04 6.67e+03 F8 PECS 1.00 7.23e+04 2.79e+04

JACS 1.00 9.03e+04 2.92e+03 JACS 1.00 1.00e+05 1.09e+04

RPCS 1.00 7.07e+04 3.89e+03 RPCS 1.00 1.74e+05 3.95e+04

CS (0.6) 0.68 2.63e+05 2.44e+04 CS (0.4) 0.65 2.62e+05 2.11e+04

F2 PECS 1.00 5.80e+04 5.70e+03 F9 PECS 0.94 1.73e+05 4.89e+04

JACS 1.00 9.34e+04 3.47e+03 JACS 0.81 1.57e+05 3.86e+04

RPCS 1.00 7.90e+04 4.88e+03 RPCS 0.16 2.66e+05 2.86e+04

CS (0.5) 0.94 2.22e+05 2.98e+04 CS (0.4) 0.81 2.50e+05 3.17e+04

F3 PECS 0.81 8.61e+04 7.13e+04 F10 PECS 0.71 4.37e+04 3.92e+04

JACS 0.61 8.76e+04 5.67e+04 JACS 0.81 5.62e+04 1.59e+04

RPCS 0.52 1.24e+05 6.37e+04 RPCS 0.26 1.27e+05 7.47e+04

CS (0.4) 0.87 7.41e+04 5.34e+04 CS (0.2) 0.77 3.01e+04 4.49e+03

F4 PECS 0.00 - - F11 PECS 0.71 2.29e+05 4.40e+04

JACS 0.00 - - JACS 0.39 2.29e+05 3.11e+04

RPCS 0.00 - - RPCS 0.00 - -

CS (0.3) 0.77 2.71e+05 1.86e+04 CS (0.2) 0.94 2.30e+05 3.01e+04

F5 PECS 1.00 6.15e+04 5.96e+03 F12 PECS 0.00 - -

JACS 1.00 1.03e+05 4.57e+03 JACS 0.00 - -

RPCS 1.00 1.14e+05 1.19e+04 RPCS 0.00 - -

CS (0.5) 0.68 2.73e+05 1.48e+04 CS (0.2) 0.61 1.31e+05 5.45e+04

F6 PECS 1.00 3.91e+04 2.68e+04 F13 PECS 1.00 1.76e+05 3.31e+04

JACS 1.00 2.89e+04 2.13e+04 JACS 1.00 2.16e+05 3.44e+04

RPCS 0.97 2.79e+04 1.64e+04 RPCS 0.00 - -

CS (0.3) 0.74 1.38e+05 6.16e+04 CS (0.3) 1.00 5.87e+04 1.37e+04

F7 PECS 1.00 1.54e+04 2.45e+03 F14 PECS 1.00 2.61e+04 2.52e+03

JACS 1.00 1.75e+04 1.74e+03 JACS 1.00 4.08e+04 2.67e+03

RPCS 1.00 1.60e+04 1.90e+03 RPCS 1.00 4.83e+04 3.54e+03

CS (0.6) 1.00 5.83e+04 1.14e+04 CS (0.5) 1.00 1.31e+05 1.88e+04

Fig. 3. Mean of β and fitness in best run on F9 and F12 for adaptive CS
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JADE is better than PEDE in terms of success rate, however, without statistical
significance (p-value = 0.058). All DE-based algorithms perform in the same tier
in terms of the number of evaluations (p-value = 0.054). These results show that
PESA can work better than JASA on controlling CS and perform a comparable
result with JASA on controlling DE. This may indicate that our PESA can work
in a more general case compared to JASA.

Table 2. Success rate (SR), mean and standard deviation of evaluation numbers for
DE-based algorithms

Fun Method SR Mean Std Fun Method SR Mean Std

F1 PEDE 1.00 3.43e+04 2.24e+03 F8 PEDE 0.48 6.38e+04 7.40e+03

JADE 1.00 3.33e+04 1.20e+03 JADE 0.90 8.96e+04 6.10e+03

RPDE 1.00 3.70e+04 7.28e+02 RPDE 0.35 6.79e+04 1.03e+04

F2 PEDE 1.00 3.94e+04 2.13e+03 F9 PEDE 1.00 1.52e+05 5.24e+03

JADE 1.00 3.78e+04 1.33e+03 JADE 1.00 1.77e+05 3.20e+03

RPDE 1.00 4.21e+04 7.51e+02 RPDE 0.00 - -

F3 PEDE 0.03 2.75e+05 0.00e+00 F10 PEDE 0.74 5.38e+04 6.56e+03

JADE 0.55 1.99e+05 7.28e+03 JADE 1.00 5.57e+04 1.62e+04

RPDE 0.00 - - RPDE 0.87 5.66e+04 4.76e+03

F4 PEDE 1.00 9.92e+04 5.69e+03 F11 PEDE 0.32 2.10e+05 4.58e+04

JADE 0.94 1.05e+05 1.20e+04 JADE 0.16 2.49e+05 4.18e+04

RPDE 1.00 1.66e+05 4.42e+03 RPDE 0.00 - -

F5 PEDE 1.00 5.76e+04 1.98e+03 F12 PEDE 0.00 - -

JADE 1.00 6.47e+04 2.64e+03 JADE 0.16 6.87e+04 1.08e+04

RPDE 1.00 7.34e+04 1.08e+03 RPDE 0.03 1.41e+05 0.00e+00

F6 PEDE 1.00 2.38e+04 1.20e+04 F13 PEDE 0.65 1.86e+05 4.65e+04

JADE 1.00 3.80e+04 1.16e+03 JADE 0.71 1.29e+05 2.76e+04

RPDE 1.00 5.94e+04 3.36e+03 RPDE 0.00 - -

F7 PEDE 1.00 9.86e+04 8.02e+03 F14 PEDE 0.10 2.42e+05 2.43e+04

JADE 1.00 9.79e+04 6.03e+03 JADE 1.00 2.67e+05 1.31e+04

RPDE 0.00 - - RPDE 0.97 1.24e+05 4.55e+04

Discussion. It is interesting to see how β evolves with different strategies. As
an example, the evolutionary process best fitness and mean of β in the best runs
of PECS and JACS on F9 and F12 are plotted in Fig. 3. On F9, we can find
that both methods decrease β at first to perform a global search, and increase
to perform precious local search later. What is more, our PECS increases β
much earlier than JACS, and thus holds a better convergence speed. On F12:
Salomon function, the evolutionary process of β in PECS is periodic. The ring-
shaped local optima occur periodically on the domain. This may indicate that
the search process of parameters is too greedy, and the parameters are evolved to
large β at an early phase. On this problem, the performance of all self-adaptive
CS is worse than a fine-tuned CS with β=0.2. This also shows the nature of
self-adaptive EAs; the strategy can only reward the short-term benefits.
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4.2 Comparison on Using Different nstep

In our PECS, a parameter is assessed with nstep generations. The setting of nstep

can influence performance. A small nstep leads to an inaccurate assessment on
the performance of parameters, while with a large nstep, parameters have less
chance to be updated. Also, the solution may move far away from the current
position after a large generation. Figure 4 presents the evolutionary process of
β by nstep={ 1, 5, 10, 50 } on F9. It is not hard to find that on all the three
problems, small nstep leads to a rapid change in β. On F9, when nstep=1, the
fitness keeps a high value for a large number of evaluations, which indicates that
the algorithm cannot escape from the local optimal. However, when nstep=50,
the convergence speed is slower than nstep=5 and 10. A similar observation can
be found in most of the testing problems. Therefore, nstep=5 or 10 should be a
good choice for this parameter.

Fig. 4. Mean of β in best run of PECS on F9 with different nstep

5 Conclusions

In this study, we proposed a novel self-adaptive strategy (PESA) to control the
stability parameter of LF in CS from a wide range ([0.1, 1.9]). The proposed self-
adaptive strategy is a co-evolution between solutions and parameters. We also
showed that the proposed PESA is a generalization of many literature methods,
such as JADE [20]. In the experiments, we showed that for both CS and DE, the
proposed PESA could perform better or at least comparable results, compared
with the strategy in JADE (JASA).

In the future, we will assess our methods on CEC benchmarks and compared
them with other state-of-the-art algorithms. We will apply our strategy to more
EAs to test its flexibility. We will extend our method to control multiple param-
eters simultaneously. Also, it is essential to discover a new metric to guide the
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search for parameters. What is more, it is also interesting to adapt our method
to a multi-objective evolutionary algorithm.
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Abstract. The cooperative coevolution framework has been used exten-
sively to solve large scale global optimization problems. Recently, the
framework is used in CC-RDG3 where it uses recursive differential group-
ing and covariance matrix adaptation evolution strategies (CMA-ES). It
was shown that the algorithm performs well on the CEC2013-LSGO
benchmark functions. In this study, some modifications to the CC-
RDG3 algorithm are proposed to improve performance. The modifica-
tions should be applied differently depending on the modality of the
problem at hand.

Keywords: Cooperative coevolution · Large scale optimization ·
Evolutionary algorithms

1 Introduction

The cooperative coevolution (CC) framework [15] is a popular framework for
solving large scale global optimization (LSGO) problems. The framework uses
a divide-and-conquer concept where the large scale problem is decomposed into
smaller problems with fewer variables, that are further optimized. However, the
decomposition step in using the CC framework is still a challenge despite the
various decomposition methods that have been proposed before.

One of the most popular decomposition schemes is the differential group-
ing (DG) [13,14] and its family, such as the extended DG (XDG) [19], and the
recursive DG (RDG) and RDG3 [17,18], which decomposes the problem based on
variable interaction. The variable interactions are detected based on the second-
order differentials. The rationale behind these schemes is that tightly-interacting
variables should be in the same group while interactions among distinct subcom-
ponents should be weak [4]. Some algorithms indeed rely on separability between
the subproblems and their performance may deteriorate if the decomposition
produces bad grouping [16].
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Once the problem is decomposed, the optimal values of the subproblems
should be found by an optimizer. Many evolutionary algorithms (EAs) have
been used as optimizers in the context of the CC framework for LSGO. The
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm pro-
posed in [8], is an evolution strategy that relies on the adaptation of the full
covariance matrix of a normal search distribution. This algorithm performs well
on unimodal functions, but its performance deteriorates in multimodal functions.
To tackle this problem, Auger et al. [1] suggested a CMA-ES with an increas-
ing population (IPOP-CMA-ES), where the algorithm adopts a restart strategy
with successively increasing the population size giving promising results.

The CMA-ES has been used together with RDG3 within the CC framework
and named as the CC-RDG3 algorithm. In this work, we refine the CC-RDG3
algorithm that uses a standard CMA-ES optimizer, by using IPOP-CMA-ES.
Furthermore, instead of a complete restart of the CMA-ES in every cycle, we
use a persistent covariance matrix instead.

Another important aspect after the decomposition and during the optimiza-
tion is the budget allocation. The simplest method in this context is, after the
problem is decomposed, to use a round-robin method to assign the computa-
tional time equally to each subproblem, ignoring the different effects that each
subproblem can have to the general problem. The contribution based budget
allocation CC (CBCC) [12] and CC with a sensitivity analysis-based budget
assignment method (SACC) [10] investigate the influence of each subcomponent
and allocate accordingly the number of iterations for the optimization. In this
study, the SACC method is also tested.

The combinations of the various modifications are tested on numerous test-
functions from standard LSGO benchmark suites and compared with the base
CC-RDG3 algorithm. The results of each combination vary and depend hugely
on the characteristics of the test problem, especially on the modality.

The remainder of this paper is organized as follows. Section 2 contains a
short description of the CC framework and the RDG3 decomposition method
used. Section 3 explains the proposed refinement of the CC-RDG3 algorithm.
Section 4 presents the numerical experiments and the benchmark used, the
obtained results along with their comparison and analysis. Lastly, Sect. 5 con-
cludes this paper and shows future directions.

2 Cooperative Coevolution with Recursive Differential
Grouping

CC framework was first proposed by [15] in 1994. The main two steps of the
general CC framework can be summarized as follows: 1. Decomposition: Decom-
pose the problem into several subproblems, by dividing a given high-dimensional
problem into a number of low-dimensional subcomponents and 2. Optimisation:
Optimise each subproblem cooperatively with the use of an optimizer.

The existing decomposition methods are classified by [18] as manual or auto-
matic (or blind and intelligent as proposed later in [20] as more appropriate ter-
minology). The manual (or blind) decomposition method ignores the underlying
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structure of variable interaction, and the number and the size of the subcompo-
nents are manually designed. Examples of such methods is uni-variable grouping
[15], Sk grouping [2] and random grouping [21], and have been proved to work
well in fully separable problems. In the automatic decomposition, the variable
interactions are identified and the problem is decomposed accordingly.

The Recursive Differential Grouping (RDG) is one of the most effective auto-
matic methods, capable of quickly grouping variables based on interaction. The
grouping is done recursively and requires O(d log d) function evaluations. There
are several versions of RDG and the most recent is RDG3 [17]. Compared to
previous versions, the RDG3 scheme puts emphasis on handling overlapping
variables. The differential grouping schemes usually put groups with overlap-
ping variables into a single, big group. This means that there are many variables
that are not directly interacting (also termed “weak interactions”) in the group.

In RDG3, when groups have overlapping variables, a size-limit-threshold is
imposed. When the threshold is exceeded, no further overlapping variables are
grouped together. This allows some overlapping variables to be grouped together,
while also preventing the groups to grow too big. A small size-threshold will
prevent variables with weak interactions from being grouped together, while a
larger size-threshold will allow more weak interactions.

The RDG3 has been used in the CC framework in CC-RDG3 [17], paired
with the covariance matrix adaptation-evolution strategy (CMA-ES) [8] as the
solver. The algorithm shows exceptional results on the CEC2013 problems for
LSGO [9], especially on overlapping problems.

3 Proposed Algorithm

The proposed modifications to the CC-RDG3 algorithm are described in this
section. Each modification can be applied separately.

3.1 CMA-ES with Increasing Population

The CMA-ES algorithm explore the search space using the multivariate normal
distribution N (μ,Σ). The search at generation g + 1 follows the equation

x(g+1) = N (x(g), (σ(g))2C(g)), (1)

where x(g+1) is the offspring, x(g) is the current best point, while σ(g) and C(g)

are the step size (scaling factor) and the covariance matrix at current generation
g, respectively. The CMA-ES adapts the σ and C.

The performance of CMA-ES on multi-modal functions depends strongly on
population size [7]. To address this, Auger, et al. [1] proposed a restart strategy
with increasing population. When some stopping criteria is triggered, the CMA-
ES is restarted and the population size is increased hence promoting exploration
of the search space. In this work, the same stopping criteria as in [1] are used,
except that the equalfunvalhist stopping criterion only check for flat fitness.
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In regards with the CC framework, when any stopping criteria is triggered,
the optimization on the current group is stopped and it will be restarted in
the next cycle with double population size up to 8 times the original size (see
Algorithm 1). The size limit is imposed to prevent the population size growing
too large. When the size limit is reached, the step size σ is doubled instead. For
brevity, algorithms that use the IPOP-CMA-ES strategy will be marked with
“IPOP” in the name.

Algorithm 1. CC-RDG3-IPOP
G ← Group variables using RDG3
Set initial population size λ = λ0 and CMA-ES step size σ = σ0

while Budget still available do
for i = 1 : |G| do

Use CMA-ES with step size σ, other parameters at default on f(xi)
Update xi

Check termination code
if CMA-ES terminated due to IPOP restart criterion then

if λ ≤ λ8 then λ ← 2λ
elseσ ← 2σ
end if

end if
end for

end while

3.2 Persistent Covariance Matrix

The CMA-ES algorithm will continuously adapt the covariance matrix, step
size, and also records the evolution path through cumulation. Every time the
algorithm is restarted, these information are usually lost and only the initial
values of x are updated. With regards to the CC framework, a restart would
happen after each cycle finishes.

We propose to use a persistent covariance matrix and step size. Persistent
means that the covariance matrix, step size, and also the evolution path are
not reset at each restart (see Algorithm 2). All values are retained and the next
restart will start with these values. The function landscape may change after
each cycle, but the information retained may help to kick-start the optimization
in the subsequent cycles. The procedure will promote exploitation of potential
areas in the search space.

Due to the conflicting nature between the persistent covariance matrix strat-
egy against the IPOP-CMA-ES strategy, they are set to be mutually exclusive
when used together (see Algorithm 3). The covariance matrix (and other val-
ues) are only retained if the stopping criteria in Sect. 3.1 are not triggered and
the CMA-ES ends because it reaches maximum number of iterations. When
any stopping criteria in Sect. 3.1 is triggered, the IPOP-CMA-ES will be used
instead. Algorithms that use the persistent covariance strategy are marked with
“KC” (keep covariance) in the name.



Refining the CC-RDG3 Algorithm 73

Algorithm 2. CC-RDG3-KC
G ← Group variables using RDG3
Set initial CMA-ES step size σ = σ0, and covariance matrix Λ = 1
while Budget still available do

for i = 1 : |G| do
Use CMA-ES with σ and Λ, other parameters at default on f(xi)
Update xi, σ, and Λ

end for
end while

Algorithm 3. CC-RDG3-IPOP-KC
G ← Group variables using RDG3
Set λ = λ0, σ = σ0, and Λ = 1
while Budget still available do

for i = 1 : |G| do
Use CMA-ES with step size σ, other parameters at default on f(xi)
Update xi

Check termination code
if CMA-ES terminated due to IPOP restart criterion then

if λ ≤ λ8 then λ ← 2λ
elseσ ← 2σ
end if

else
Update σ, and Λ

end if
end for

end while

3.3 Sensitivity Analysis Based Budget Allocation

Equation 2 is an example where the variables have imbalanced effects. A small
perturbation on x1 has much larger effects on f(x) compared to a perturbation
on x2 (104 times larger).

f(x) = 106x1 + 102x2 (2)

The differential analysis (DA), also known as Morris method, is a sensitivity
analysis (SA) method based on the first order differential. Sensitivity analysis
methods assess the extent of the variables’ effect on the objective function. The
DA has been used previously for LSGO problem in [10,11].

For DA, the search space is divided into p intervals in each variable. A grid
jump Δ = N ∗ 1

(p−1) , with N ∈ Z>0 < p − 1. Elementary effect (EE) for each
variable can then be calculated using Eq. 3

EEj(x) =
f(x1, . . . , xj−1, xj + Δ, . . .) − f(x)

Δ
, j = 1, ..., d (3)

The x is picked randomly within the search space such that x+Δ is still within
the search space. Several EEj are sampled with sample size r. The distributions
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of EEj can be obtained. Further, we compute the mean of the absolute value
of EEj , μ∗, to rank the importance of each variable following Eq. 4, with s the
sample number. Higher μ∗ signifies higher impact/contribution to the objective
value [3]. The budget allocated to a group can then be allocated based on μ∗.
In this work, the portion ps for group s follows Eq. 5.

μ∗
j =

∑r
s=1 |EEj(x)|s

r
(4)

ps =

{
1 + log

∑
i∈S μ∗

i , if
∑

i∈s μ∗
i > 1

1, otherwise
(5)

In [8], the maximum number of iterations is set at 30 × d. In this study, d is
the number of variables in the main problem (without decomposition). The ps
is used to scale the number of iteration for each group with respect to 30 × d,
i.e. each group will have a budget of 30ps × d in each cycle. Algorithms that use
the sensitivity analysis budget allocation strategy will be marked with “SA” in
the name. Algorithms without “SA” assume μ∗ for all variables are equal to 1.

4 Numerical Experiments

4.1 Setup of Experiments

To analyze the performance of the proposed algorithms, we compared the algo-
rithms with the base CC-RDG3 algorithm. For each function, all algorithms
are run 15 times and compared to the CC-RDG3 algorithm using the pairwise
Wilcoxon test.

The test functions used in this study are a subset of the CEC2013 LSGO
benchmark suite [9] f1 − f14. Problem f15 is omitted from this study because
the algorithm implementation used in this study cannot find a feasible solution,
most likely due to step size divergence. The problems use 1 000 input variables,
except f13 − f14 with only 905 variables. The budget is set at 3 000 000 function
evaluations for each run for these functions.

Moreover, the test functions f16 − f19 and f21 − f24 from BBOB-largescale
benchmark suite [5] are used to further assess the algorithms’ performances
on multimodal functions. The BBOB benchmark functions are configured to
accept 160 input variables and each optimization run cannot use more than
1 600 000 function evaluations. In Table 1, the test functions and their properties
are reported. Note that we keep the original numbering of each benchmark suite.

4.2 Numerical Results

Performances of the algorithms on the test problems can be observed in Table 2
and Table 3 and boxplots Fig. 1 to Fig. 4. For the boxplots, the data ranges are
normalized to the range [0,1]. Due to the normalization, small differences may be
exaggerated, and vice versa. Additionally, in Table 2 it can be seen that for f3,
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Table 1. Test Functions and their properties. Properties listed are modality (U =
Unimodal, M = Multimodal), additive separability, number of input variables d, and
special features of the functions.

CEC2013 Modality Add. Sep. d Features

f1: Elliptic U Separable 1 000

f2: Rastrigin M Separable 1 000

f3: Ackley M Separable 1 000

f4: 7 Elliptic U Partial 1 000

f5: 7 Rastrigin M Partial 1 000

f6: 7 Ackley M Partial 1 000 Deceptive

f7: 7 Schwefel 1.2 U Partial 1 000

f8: 20 Elliptic U Partial 1 000

f9: 20 Rastrigin M Partial 1 000

f10: 20 Ackley M Partial 1 000 Deceptive

f11: 20 Schwefel 1.2 U Partial 1 000

f12: Rosenbrock M Non-Separable 1 000 Overlapping

f13: Schwefel 1.2 U Non-separable 905 Overlapping, conforming

f14: Schwefel 1.2 U Non-separable 905 Overlapping, conflicting

BBOB Modality Add. Sep. d Features

f16: Weierstrass M Non-separable 160

f17: Schaffers M Non-separable 160

f18: Schaffers M Non-separable 160 Ill conditioned

f19: Griewank-Rosenbrock M Non-separable 160

f21: Gallagher’s 101 Peaks M Non-separable 160

f22: Gallagher’s 21 Peaks M Non-separable 160

f23: Katsuura M Non-separable 160

f22: Lunacek bi-rastrigin M Non-separable 160

f6 and f10 (Ackley functions), all algorithms have similar performances which
are not far off from their starting points. This is because the Ackley function
has a landscape similar to the needle-in-haystack problem where directed search
strategies are expected to fail [1].

From Table 2 and Table 3, it can be seen when an algorithm with SA strat-
egy performs well, the corresponding algorithm without SA strategy also shows
a significant advantage over CC-RDG3. The SA strategy does not provide a
significant improvement to the algorithms.

On unimodal functions, the KC strategy shows its superiority. In Fig. 1,
Fig. 3, and Fig. 4, the CC-RDG3, and CC-RDG3-IPOP algorithms perform much
worse on all unimodal functions. The KC strategy will consistently push the
search to a local optima wherein in unimodal functions, any local optima is also
a global optimum. Combined with the high grouping accuracy of RDG3, the
performance of these algorithms on unimodal functions will be boosted.

However, on the highly multimodal f2, f5 and f9 functions (see Fig. 2), the
RDG-KC and RDG-KC-SA algorithms are not performing so well. On these
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Table 2. Median of the best values obtained by the algorithms on CEC2013 test
problems. Each algorithm is run 15 times on each function. Bold texts indicate the
best results, • indicates better performance than the base CC-RDG3 algorithm, while
� indicates worse performance.

Fn CC-RDG3 IPOP KC IPOP-KC KC-SA IPOP-KC-SA

f1 1.16+07 1.16E+07 3.68+05 • 3.68+05 • 3.68+05 • 3.68+05 •
f2 6.01E+03 1.28E+03 • 6.21E+03 1.28E+03 • 6.21E+03 1.28E+03 •
f3 2.05E+01 2.05E+01 2.04E+01 2.04E+01 2.04E+01 2.04E+01

f4 1.61E+08 1.49E+08 1.41E+06• 3.64E+06 • 1.42E+06 • 3.330E+06 •
f5 1.66E+06 5.17E+05 • 2.46E+06 � 4.90E+05 • 2.52E+06 � 4.74+05 •
f6 1.00E+06 1.01E+06 9.96E+05 • 9.96E+05 • 9.96E+05 • 9.96E+05 •
f7 1.44E+04 1.84E+04 2.06E-19 • 2.07E-07• 4.13E-18 • 2.62E-07 •
f8 1.23E+12 3.20E+12 � 2.03E+06 • 3.09E+07 • 1.73E+06 • 3.81E+07 •
f9 1.18E+08 4.40E+07• 1.54E+08 � 4.87E+07 • 1.70E+08 � 4.56E+07 •
f10 9.12E+07 9.12E+07 9.05E+07 • 9.05E+07 • 9.05E+07 • 9.05E+07 •
f11 1.99E+08 2.05E+08 1.56E+00 • 1.07E+02 • 1.54E+00 • 1.06E+01 •
f12 1.57E+03 1.58E+03 9.50E+02 • 8.93E+02 • 8.54E+02 • 8.42E+02 •
f13 4.57E+09 4.32E+09 1.90E+05 • 3.33E+06 • 1.77E+05 • 1.76E+06 •
f14 2.27E+09 2.56E+09 1.36E+08 • 2.92E+08 • 1.09E+08 • 2.74E+08 •

Table 3. Median of the difference-to-optimum values obtained by the algorithms on
BBOB-largescale test problems. Each algorithm is run 15 times on each function. Bold
text indicates the best performance. Bold texts indicate the best results, • indicates
better performance than the base CC-RDG3 algorithm, while � indicates worse per-
formance.

Fn CC-RDG3 IPOP KC IPOP-KC KC-SA IPOP-KC-SA

f16 7.404E-01 8.113E-01 1.258E+00 � 1.347E+00 � 1.318E+00 � 1.200E+00 �
f17 3.707E-01 4.062E-01 1.173E+00 � 8.908E-01 � 1.043E+00 � 1.175E+00 �
f18 1.778E+00 1.737E+00 4.067E+00 � 3.798E+00 � 3.162E+00 � 2.944E+00 �
f19 2.503737e-01 2.503737e-01 1.659E-02 • 1.659E-02 • 1.659E-02 • 2.291E-02 •
f21 2.922E-08 1.198E-08 6.730E+00 � 1.451E-08 6.740E+00 � 1.340E-08

f22 2.596E+00 3.299E+00 4.640E+00 2.448E+00 2.438E+00 3.114E+00

f23 1.897E-02 1.884E-02 2.138E-02 2.452E-02 � 2.392E-02 2.040E-02

f24 9.999E+01 9.316E+01 1.511E+02 � 1.445E+02 � 1.479E+02 � 1.445E+02 �

functions, the KC strategy will likely lead to early convergence which may trap
the search at local optima. This can be observed in Fig. 7 for f9 where the
algorithms with KC strategy become flat very early. In multimodal functions,
algorithms with IPOP strategy show better performances. This indicates that
the observation in [7] holds true in large scale settings, a larger population will
improve CMA-ES performance on multimodal functions.
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Fig. 1. Boxplot of the best values obtained on CEC2013 elliptic test problems.

Fig. 2. Boxplot of the best values on CEC2013 test problems based on Rastrigin
function.

Fig. 3. Boxplot of the best values obtained on CEC2013 test problems based on Schwe-
fel function.
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Fig. 4. Boxplot of the best values obtained on CEC2013 test problems with overlapping
variables.

Fig. 5. Boxplot of the distance-to-optimum values obtained by the algorithms on
BBOB-largescale test problems with adequate global structure.

Fig. 6. Boxplot of the distance-to-optimum values obtained by the algorithms on
BBOB-largescale test problems with weak global structure.
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Fig. 7. Convergence plots for CEC2013 test problems. Each line is the mean achieved
values for different algorithms after certain numbers of function evaluations.

The test results presented in Table 3 further confirm the dread of KC strat-
egy and potency of IPOP strategy for multimodal functions. In most of the
multimodal BBOB functions, the IPOP strategy has an advantage over the KC
strategy. However, unlike on the f3, f5, and f10, the improvement obtained from
the IPOP strategy is insignificant on the BBOB problems. This may be because
the restart is triggered too late and a too small budget to see the effect of
increasing population. In a similar study for smaller problems, Hansen [6] used
CMA-ES with a different population adaptation scheme called BIPOP-CMA-
ES. The study in [6] uses more stopping criteria (hence it may stop earlier) and
number of function evaluations up to 3 × 105d.

Looking at Fig. 6, the CC-RDG3, and CC-RDG3-IPOP algorithms seem to
perform terribly on f19. If we look into Table 3, although they are indeed worse,
the distance-to-optimum value on both algorithms are actually very low. How-
ever, we can still analyze why it performs worse than other algorithms.

By assessing the convergence history, we found that the two algorithms can-
not find better solutions than the initial samples, hence the flat line in Fig. 8



80 D. Irawan et al.

Fig. 8. Convergence plots for BBOB test problems. Each line is the mean distance-to-
optimum values for different algorithms after certain numbers of function evaluations.

for f19. In such a case, the search is restarted from the same initial point and
the CMA-ES is also restarted with the same covariance matrix and step size
as the previous cycle, repeating a failed search over and over. The problem
with such restart is that the step size resets to a large value while what is
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needed in this case is a local search. The IPOP strategy also promotes a more
global search instead of a local search hence the CC-RDG3-IPOP also does not
perform well. On the other hand, with the introduction of the KC strategy, the
step size will normally decrease in every cycle leading to a local search. The KC
strategy clearly improves performance in such cases. However, the risk of early
convergence to local optima still holds for the KC strategy.

In general, control over whether the search should be local or global is crucial
in solving multimodal function. The two strategies provide a way to control it.
The IPOP strategy will lead to a more global search, while the KC strategy will
lead to a local search. To take full advantage of the strategies, a fitness landscape
analysis can be conducted before choosing the strategies.

5 Conclusion and Future Work

In this study, three strategies to improve the CC-RDG3 algorithm are proposed
and tested: persistent covariance, increasing population, and budget allocation
based on sensitivity analysis. The budget allocation based on sensitivity analysis
does not seem to provide significant improvement.

For unimodal functions, a persistent covariance strategy will improve perfor-
mance while the IPOP strategy does not produce improvement on such functions.
On multimodal functions, on the other hand, the persistent covariance could be
detrimental as it leads to early convergence. On these functions, the IPOP strat-
egy could potentially improve performance as the restart strategy prevents local
entrapment. However, more tests on larger problems are needed. Furthermore,
we identified a special case where the KC strategy is good for multimodal func-
tion: when a good candidate solution is found early and a local search is needed.
To fully take advantage of the proposed strategies, a fitness landscape analysis
should be conducted. How the landscape analysis will be integrated into the CC
framework and the algorithms are left as future work.
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Abstract. This paper covers n-tuple-based reinforcement learning (RL)
algorithms for games. We present a new algorithm for temporal difference
(TD) learning which works seamlessly on various games with arbitrary
number of players. This is achieved by taking a player-centered view
where each player propagates his/her rewards back to previous rounds.
We add a new element called Final Adaptation RL (FARL) to this algo-
rithm. Our main contribution is that FARL is a vitally important ingre-
dient to achieve success with the player-centered view in various games.
We report results on seven board games with 1, 2 and 3 players, includ-
ing Othello, ConnectFour and Hex. In most cases it is found that FARL
is important to learn a near-perfect playing strategy. All algorithms are
available in the GBG framework on GitHub.

Keywords: Reinforcement learning · TD-learning · Game learning ·
N-player games · n-tuples

1 Introduction

1.1 Motivation

It is desirable to have a better understanding of the principles how computers
can learn strategic decision making. Games are an interesting test bed and rein-
forcement learning (RL) is a general paradigm for strategic decision making. It
is however not easy to devise algorithms which work seamlessly on a large vari-
ety of games (different rules, goals and game boards, different number of players
and so on). It is the hope that finding such algorithms and understanding which
elements in them are important helps to better understand the principles of
learning and strategic decision making.

Learning how to play games with neural-network-based RL agents can be seen
as a complex optimization task. It is the goal to find the right weights such that
the neural network outputs the optimal policy for all possible game states or a
near-optimal policy that minimizes the expected error. The state space in board
games is usually discrete and in most cases too large to be searched exhaustively.
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These aspects pose challenges to the optimizer which has to generalize well to
unseen states and has to avoid overfitting.

In this paper we describe in detail a new n-tuple-based RL algorithm. N-
tuples were introduced by Lucas [13] to the field of game learning. Our new
learning algorithms extend the work described in [1,8,19] and serve the purpose
to be usable for a large variety of games. More specifically we deal here with
discrete-time, discrete-action, one-player-at-a-time games. This includes board
games and card games with N = 1, 2, . . . players. Games may be deterministic
or nondeterministic.

N-tuple networks are shown to work well in a variety of games, (e.g. in Con-
nectFour [1,19], Othello [13], EinStein würfelt nicht [3], 2048 [18], SZ-Tetris [7]
etc.) but the algorithms described here are not tied to them. Any other function
approximation network (deep neural network or other) could be used as well.

All algorithms presented here are implemented in the General Board Game
(GBG) learning and playing framework [9,10] and are applied to several games.
The variety of games makes the RL algorithms a bit more complex than the
basic RL algorithms. This paper describes the algorithm as simple as possible,
yet as detailed as necessary to be precise and to follow the implementation in
GBG’s source code, which is available on GitHub1.

A work related to GBG [9,10] is the general game systems Ludii [14]. Ludii is
an efficient general game system based on ludeme library implemented in Java,
allowing to play as well as to generate a large variety of strategy games. Currently
all AI agents implemented in Ludii are tree-based agents (MCTS variants or
AlphaBeta). GBG on the other hand offers the possibility to train RL-based
algorithms on several games.

The main contributions of this paper are as follows: (i) It presents a unifying
view for RL algorithms applicable to different games with different number of
players; (ii) it demonstrates that a new element, named Final Adaptation RL
(FARL), is vital for having success with this new unifying view; (iii) it incorpo-
rates several other elements (afterstates, n-tuples, eligibility with horizon, tem-
poral coherence) that are useful for all games. To the best of our knowledge, this
is the first time that these elements are brought together in a comprehensive
form for game-learning algorithms with arbitrary number N of players.

1.2 Algorithm Overview

The most important task of a game-playing agent is to propose, given a game
state st, a good next action at from the set of available actions in st. TD-
learning (Sect. 2.5) uses the value function V (st) which is the expected sum of
future rewards when being in state st.

It is the task of the agent to learn the value function V (s) from experience
(interaction with the environment). In order to do so, it usually performs multiple
self-play training episodes, until a certain training budget is exhausted or a
certain game-playing strength is reached.

1 https://github.com/WolfgangKonen/GBG.

https://github.com/WolfgangKonen/GBG


86 W. Konen and S. Bagheri

The nomenclature and algorithmic description follows as closely as possible
the descriptions given in [6,18]. But these algorithms are for the special case of
the 1-player game 2048. Since we want to use the TD-n-tuple algorithm for a
broader class of games, in this paper we present a unified TD-update scheme
inspired by [15] which works for 1-, 2-, . . ., N -player games.

Our new RL-algorithm is partly inspired by [6,15] and partly from our own
experience with RL-n-tuple training. The key elements of the new RL-logic – as
opposed to our previous RL-algorithms [1,8] – are:

– New afterstate logic [6], see Sect. 2.2.
– Eligibility method with horizon [6], see Sect. 2.3.
– Generalization to N -player games with arbitrary N [15], see Sect. 2.4.
– Final adaptation RL (FARL) for all players, see Sect. 2.6.
– Weight-individual learning rates via temporal coherence learning (TCL) [1,2].

More details are described in an extended technical report [11].

2 Algorithms and Methods

2.1 N-tuple Systems

N-tuple systems coupled with TD were first applied to game learning by Lucas
in 2008 [13], although n-tuples were introduced already in 1959 for character
recognition purposes. The remarkable success of n-tuples in learning to play
Othello [13] motivated other authors to benefit from this approach for a number
of other games. The main goal of n-tuple systems is to map a highly non-linear
function in a low dimensional space to a high dimensional space where it is easier
to separate ‘good’ and ‘bad’ regions. This can be compared to kernel trick in
Support Vector Machines (SVM). An n-tuple is defined as a sequence of n cells
of the board. Each cell can have m values representing the possible states of that
cell. Therefore, every n-tuple will have a (possibly large) look-up table indexed
in form of an n-digit number in base m. An n-tuple system contains multiple
n-tuples.

2.2 Afterstate Logic

For nondeterministic games, Jaśkowski et al. [6,18] describe a clever mechanism
to reduce the complexity of the value function V (s).

Consider a game like 2048 (Fig. 1): An exemplary action is to move all tiles
to the right, this will cause the environment to merge adjacent same-value tiles
into one single tile twice as big. This is the deterministic part of the action and
the resulting state is called the afterstate s′. The second part of the action
move-right is that the environment adds a random tile 2 or 4 to one of the
empty tiles. This results in the next state s′′.

The naive approach for learning the value function would be to observe the
next state s′′ and learn V (s′′). But this has the burden of increased complexity:
Given a state-action pair (s, a) there is only one afterstate s′, but 2n possible



Reinforcement Learning for N-player Games 87

Fig. 1. For nondeterministic games it is better to split a state transition from s to s′′

in a deterministic part, resulting in afterstate s′, and a random part resulting in next
state s′′ (taken from [18]).

next states s′′, where n is the number of empty tiles in afterstate s′.2 This makes
it much harder to learn the value of an action a in state s. And indeed, it is not
the specific value of V (s′′) which is the value of action a, but it is the expectation
value 〈V (s′′)〉 over all possible next states s′′.

It is much more clever to learn the value V (s′) of an afterstate. This reduces
the complexity by a factor of 2n̄, where n̄ is the average number of empty tiles.
It helps the agent to generalize better in all phases of TD-learning.

For deterministic games there is no random part: afterstate s′ and next state
s′′ are the same. However, afterstates are also beneficial for deterministic games:
For positional games (like TicTacToe, ConnectFour, Hex, . . .) the value of taking
action a in state s depends only on the resulting afterstate s′. Several state-action
pairs might lead to the same afterstate, and it often reduces the complexity of
game learning if we learn the mapping from afterstates to game values (as we
do in TD-learning, Sect. 2.5).

2.3 Eligibility Method

Instead of Sutton’s eligibility traces [17] we use in this paper Jaśkowski’s eligibil-
ity method [6]. This method is efficiently computable even in the case of long RL
episodes and it can be made equivalent to eligibility traces in the case of short
episodes. For details the reader is referred to Appendix A.3 of the extended
technical report [11] or to [6].

2.4 N Players

We want to propose a general TD(λ) n-tuple algorithm which is applicable not
only to 1- and 2-player games but to arbitrary N -player games.
2 In the example of Fig. 1 we have n = 9 empty tiles in afterstate s′, thus there are

2n = 18 possible next states s′′. The factor 2 arises because the environment can
place one of the two random tiles 2 or 4 in any empty tile.
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Algorithm 1. TDFromEpisode: Perform one episode of TD-learning, starting
from state s0. States s′

t−1, st, s
′
t and actions at are for one specific player pt. rt is

the delta reward for pt when taking action at in state st. At is the set of actions
available in state st.
1: function TDFromEpisode(s0)
2: t ← 0
3: repeat
4: Choose for player pt action at ∈ At from st using policy derived from V
5: � e.g. ε-greedy: with probability ε random, with prob. 1 − ε using V
6: Take action at and observe reward rt, afterstate s′

t and next state s′′.
7: V new(s′

t−1) = rt + γV (s′
t) � target value for pt’s previous afterstate

8: Use NN to get the current value of previous afterstate: V (s′
t−1)

9: Adapt NN by backpropagating error δ = V new(s′
t−1) − V (st−1)

10: t ← t + 1
11: st ← s′′

12: until s′′ is terminal

The key difference to the TD-learning variants described in earlier work [1,8]
is that there each state was connected with the next state in the episode. This
required different concepts for TD-learning, depending on whether we had a 1-
player game (maximize next state’s value) or a 2-player game (minimize next
state’s value). Furthermore it has a severe problem for N -player games with N >
2: We usually do not know the game value for all other players in intermediate
states, but we would need them for the algorithms in [1,8]. In contrast, van
der Ree and Wiering [15] describe an approach where each player has a value
function only for his/her states st or state-action-pairs (st, at). The actions of
the opponents are subsumed in the reaction from the environment. That is, if
st is the state for player pt at time t, then st+1 is the next state of the same
player pt on which (s)he has to act. This has the great advantage that there is no
need to translate the value of a state for player pt to the value for other players
– we take always the perspective of the same player when calculating temporal
differences.

In the next section we describe the application of these ideas to TD-learning,
which will result in the (new) TD-FARL n-tuple algorithm valid for all N -player
games.

2.5 TD Learning for N Players

We set up a TD-learning algorithm connecting moves to the last move of the
same player. This is done in Algorithm1 (TDFromEpisode). Algorithm 1
shows the TD-learning algorithm in compact form. It thus makes the general
principle clear. But it has the disadvantage that it obscures one important detail:
What is shown within the while loop is what has to be done by player pt in state
st. After completing this, we do however not move to the next state st+1 of the
same player pt (one round away), but we let the environment act, get a new state
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Algorithm 2. TD-FARL-Episode: Perform one episode of TD-learning, start-
ing from state s0. Similar to Algorithm 1, but with Final-Adaptation RL (FARL).
We connect afterstate s′ via player pt with the previous afterstate slast[pt] of
this player. Note that slast and r are vectors of length N (number of players).
1: function TD-FARL-Episode(s0)
2: t ← 0;
3: slast[p] ← null ∀ player p = 0, . . . , N − 1 � last afterstates
4: repeat
5: pt = player to move in state st
6: Choose action at from st using policy derived from V � e.g. ε-greedy
7: (r, s′, s′′) ← MakeAction(st, at) � s′: afterstate (after taking at)
8: � r is the delta reward tuple from the perspective of all players p
9: AdaptAgentV(slast[pt], r[pt], s

′)
10: slast[pt] ← s′ � the afterstate generated by pt when taking action at

11: t ← t + 1
12: st ← s′′

13: until (s′′ is terminal)
14: FinalAdaptAgents(pt, r, s′) � use final reward tuple to adapt all agents

15:
16: � Update the value function (based on NN) for player pt

17: function AdaptAgentV(slast[pt], r
′, s′)

18: if (slast[pt] �= null) then � Adapt V (slast[pt]) towards target T
19: Target T = r′ + γV (s′) for afterstate slast[pt]
20: Use NN to get V (slast[pt])
21: Adapt NN by backpropagating error δ = T − V (slast[pt])

22:
23: � Terminal update of value function for all players
24: function FinalAdaptAgents(pt, r, s′)
25: for (p = 0, . . . , N − 1, but p �= pt) do
26: if (slast[p] �= null) then � Adapt V (slast[p]) towards target r[p]
27: Use NN to get V (slast[p])
28: Adapt NN by backpropagating error δ = r[p] − V (slast[p])

29: � Adapt V (s′) → 0 (s′: terminal afterstate of player pt)
30: Use NN to get V (s′)
31: Adapt NN by backpropagating error δ = 0 − V (s′)

s′′
t for the next player, and then this next player does his/her pass through the

while loop.
To make these details more clear, we write the algorithm down in a form

where the pseudocode is closer to the GBG implementation. This is done in
Algorithm 2 (TD-FARL-Episode). Some remarks on Algorithm 2:

– Now the sequence of states s0, s1, ..., sf is really the sequence of consecutive
moves in an episode. The players usually vary in cyclic order, 0, 1, ..., N −
1, 0, 1, ..., but other turn sequences are possible as well.

– In each state the connection to the last afterstate of the same player p is made
via slast[p]. Thus the update step is equivalent to Algorithm1.
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– In contrast to Algorithm 1, this algorithm has the final adaptation step FARL
(function FinalAdaptAgents) included. FARL is covered in more detail in
Sect. 2.6.

Algorithm 2 is simpler and at the same time more general than our previous
TD-algorithms [1,8] for several reasons:

1. Each player has its own value function V and each player seeks actions that
maximize this V . This is because each V has in its targets the rewards from
the perspective of the acting player. So there is no need to set up complicated
cases distinguishing between minimization and maximization as it was in
[1,8].

2. The same algorithm is viable for arbitrary number of players.
3. There is no (or less) unwanted crosstalk because of too frequent updates (as

it was the case for some variants in [1,8]).3

4. Since states are connected with states one round (and not one move) earlier,
positive or negative rewards propagate back faster.

2.6 Final Adaptation RL (FARL)

Once an episode terminates, we have a delta reward tuple for all players. A draw-
back of the plain TD-algorithm is that only the current player (who generated
the terminal state) uses this information to perform an update step. But the
other players can also learn from their (usually negative) rewards. This is what
the first part of FinalAdaptAgents (lines 26–28 of Algorithm 2) does: Collect
for each player his/her terminal delta reward and use this as target for a final
update step where the value of the player’s state one round earlier is adapted
towards this target.4

One might ask whether it is not a contradiction to Sect. 2.4 where we stated
that the value for other players is not known for N > 2. This is not a contra-
diction: Although intermediate values are usually not known for all players, the
final reward of a game episode – at least for all games we know of – is available
for all players. It is thus a good strategy to use this information for all players.

Second part of FinalAdaptAgents, lines 29–31: A terminal state is by def-
inition a state where no future rewards are expected. Therefore the value of that
state should be zero. However, crosstalk in the network due to the adaptation
of other states may lead to non-zero values for terminal states. Jaśkowski [6]
proposes to make an adaptation step towards target 0 for all terminal states.

3 With crosstalk we mean the effect that the update of the value function for one
state has detrimental effects on the learned values for other states.

4 The target has only the delta reward r[p] and does not need the value function
V (s′) because the value function for a terminal s′ is always 0 (no future rewards are
expected).
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Fig. 2. Different versions of TD-learning on TicTacToe. Each agent is evaluated by
playing games from different start positions in both roles, 1st and 2nd player, against
the perfect-playing Max-N agent [12]. The best achievable result is 0.5, because Max-N
will win at least in one of the both roles. Shown is the mean over 25 training runs. The
error bars depict σmean.

3 Results

We show detailed results of our algorithms on two games. In preliminary experi-
ments we tested various settings for parameters, namely the learning rate α, the
random move rate ε and the eligibility rate λ. We selected for TicTacToe param-
eter α linearly decreasing from 1.0 to 0.5 and the n-tuple system consisted just of
one 9-tuple. For ConnectFour we used α = 3.7 and an n-tuple system consisting
of initially randomly chosen but then fixed 70 8-tuples. For both games we had
ε linearly decreasing from 0.1 to 0.0, λ = 0.0 and we used the TCL scheme as
described in [1,11]. Note that due to TCL the effective learning rate adopted by
most weights can be far smaller than α. The detailed parameter settings for all
other games are given in the extended technical report [11].

3.1 TicTacToe

Figure 2 shows the learning curves of TD-learning. The red curve shows the full
Algorithm 2 (TD-FARL-Episode). The blue curve shows the results when we
switch off FinalAdaptAgents: The decrease in performance is drastic.

3.2 ConnectFour

Figure 3 shows learning curves of our TD-FARL agent on the non-trivial game
ConnectFour. Two modes of evaluation are shown: The red curves evaluate
against opponent AlphaBeta (AB), the blue curves against opponent AlphaBeta-
Distant-Losses (AB-DL). The AlphaBeta algorithm extends the Minimax algo-
rithm by efficiently pruning the search tree. Thill et al. [19] were able to imple-
ment AlphaBeta for ConnectFour in such a way that it plays perfect in situations
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where it can win. AB and AB-DL differ in the way they react on losing states:
While AB just takes a random move, AB-DL searches for the move which post-
pones the loss as far (distant) as possible. It is tougher to win against AB-DL
since it will punish every wrong move. The final results for our TD-FARL agent
are however very satisfying: 49.5% win rate against AB, 46.5% win rate against
AB-DL. It is worth noting that two perfect-playing opponents (AB and AB-DL)
are not necessarily equally strong.
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Fig. 3. TD-learning on ConnectFour. During training, agent TD-FARL is evaluated
against the perfect-playing agents AlphaBeta (AB) and AlphaBeta-with-distant-losses
(AB-DL). Both agents play in both roles (first or second). Since ConnectFour is a
theoretical win for the starting player, the ideal win rates against AB and AB-DL are
0.5. The solid lines show the mean win rates from 10 training runs with FARL. The
dashed curves no-FARL show the results when FARL is turned off. Error bars depict
the standard deviation of the mean.

It is a remarkable success that TD-FARL learns only from training by self-
play to defeat the perfect-playing AlphaBeta agents in 49%/46% of the cases.
Remember that TD-FARL has never seen AlphaBeta before during training.
The result is similar to our previous work [1]. But the difference is that the new
algorithm can be applied without any change to other games with any N .

There is also a striking failure visible in Fig. 3: If we switch off FinalAdapt-

Agents (curves no-FARL), we see a complete break-down of the TD agent: It
loses nearly all its games. We conclude that the part propagating the final reward
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of the other player back to the other player’s previous state is vitally important.5

If we analyze the no-FARL-agent we find that it has only 0.9% active weights
while the good-working TD-FARL agent has 8% active weights. This comes
because the other player (that is the one who loses the game since the current
player created a winning state) has never the negative reward propagated back to
previous states of that other player. Thus the network fails to learn threatening
positions and/or precursors of such threatening positions.

Table 1. Results for Algorithm 2 (TD-FARL-Episode) on various games. In Nim(3P)
hxs, there are initially h heaps with s stones. For each game, 10 training runs with
different seeds are performed and the resulting TD agent is evaluated by playing against
opponents as indicated in column 3 (two such opponents in the case of Nim3P). Each
agent plays all roles. Shown are the TD agent’s win rates or scores (rewards): mean
from 10 runs plus/minus one standard deviation of the mean.

Game N
evaluated win rates or scores

other RL research
vs. FARL no-FARL

2048 1 142 000± 1 000 122 000± 900 [6] 80 000

TicTacToe 2 Max-N10 [12] 49%± 5% 18%± 6%

ConnectFour 2
AB [19] 49.5%± 0.5% 3.5%± 0.1% [4] 0.0%± 0.0%

AB-DL [19] 46.5%± 0.5% 0.0%± 0.1%

Hex 6x6 2 MCTS10000 81%± 5% 0.0%± 0.2%

Othello 2
Edaxd1 [5] 55%± 1% 53%± 1%

Bench [15] 95%± 0.3% 96%± 0.2% [15] 87.1%± 0.9%

Nim 3x5 2 Max-N15 [12] 50%± 1% 12%± 6%

Nim3P 3x5 3
Max-N15 [12] 0.33± 0.03 0.03± 0.01

MCTS5000 0.78± 0.02 0.09± 0.02

3.3 A Variety of Games

In Table 1 we show the results for seven games with varying number of players
(1, 2, or 3). While there exist many well-known games for 1 and 2 players, it
is not easy to find 3-player games which have a clear winning strategy. Nim3P,
the 3-player-variant of the game Nim, is such a game. Each player can take any
number of pieces from one heap at his/her turn. The player who takes the last
piece loses and gets a reward of 0.0, then the successor is the winner and gets
a reward of 1; the predecessor gets a reward of 0.2. This smaller reward helps
to break ties in otherwise ‘undecided’ situations. The goal for each player is to
maximize his/her average reward. Nim3P cannot end in a tie.

All games are learned by exactly the same TD-FARL/no-FARL algorithm.
The strength of the resulting agent is evaluated by playing against opponents,
5 It is really the first part of FARL which is important: We conducted an experiment

where we switch off only the second part of FARL and observed only a very slight
degradation (1% or less).
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where all agents play in all roles. The opponents are in many cases perfect-
playing or strong-playing agents. If all agents play perfect, the best possible
result for each agent is a win rate of 50% for 2-player games and a score of
0.4 for the game Nim3P (one third of the total reward 1.2 distributed in each
episode). Max-Nd is an N-Player tree search with depth d [12], being a perfect
player for the games TicTacToe, Nim, Nim3P. For ConnectFour, AB and AB-
DL [19] are perfect-playing agents introduced in Sect. 3.2. Edaxd1 [5] is a strong
Othello program, played here with depth 1. Bench [15] is a medium-strength
Othello agent. MCTSa is a Monte Carlo Tree Search with a iterations.

As can be seen from Table 1, TD-FARL reaches near-perfect playing strength
in most competitions against (near-)perfect opponents and it dominates non-
perfect opponents. The most striking feature of Table 1 is its column ‘no-FARL’:
it is in all games much weaker, with one notable exception: In Othello the results
for TD-FARL and TD-no-FARL are approximately the same. This is supported
by the results from van der Ree and Wiering [15] who had good results on
Othello with their no-FARL algorithms. We have no clear answer yet why Othello
behaves differently than all other games.

3.4 Comparison with Other RL Research

For some games we compare in Table 1 with other RL approaches from the liter-
ature. Jaśkowski [6] achieves for the game 2048 with a similar amount of training
episodes and a general-purpose baseline TD agent scores around 80 000. It has to
be noted that Jaśkowski with ten times more training episodes and algorithms
specifically designed for 2048 reaches much higher scores around 600 000, but
here we only want to compare with general-purpose RL approaches.

Dawson [4] introduces a CNN-based and AlphaZero-inspired [16] RL agent
named ConnectZero for the game ConnectFour, which can be played online.
Although it reaches a good playing strength against MCTS1000, it cannot win a
single game against our AlphaBeta agent. We performed 10 episodes with Con-
nectZero starting (which is a theoretical win), but found that instead AlphaBeta
playing second won all games. This is in contrast to our TD-FARL which wins
nearly all episodes when starting against AlphaBeta.

Finally we compare for the game Othello with the work of van der Ree and
Wiering [15]: Their Q-learning agent reaches against Bench (positional player)
a win rate of 87% while their TD-learning agent reaches 72%. Both win rates
are a bit lower than our 95%.

3.5 Discussion

Looking at the results for ConnectFour, one might ask the following question: If
FARL is so important for RL-based ConnectFour, why could Bagheri et al. [1]
learn the game when their algorithm did not have FARL? – The reason is, that
both algorithms have different TD-learning schemes: While the algorithm in [1]
propagates the target from the current state back to the previous state (one move
earlier), our N -player RL propagates the target from the current state back to
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the previous move of the same player (one round earlier). The N -player FARL is
more general (it works for arbitrary N). But it has also this consequence: If for
example a 2-player game is terminated by a move of player 1, the value of the
previous state slast[p2] of player 2 is never updated. As a consequence, player 2
will never learn to avoid the state preceding its loss. Exactly this is cured, if we
activate FARL.

4 Conclusion and Future Work

In summary, we collected evidence that Algorithm 2 (TD-FARL-Episode) pro-
duces good results on a variety of games. It has been shown that the new ingre-
dient FARL (the final adaption step) is vital in many games to get these good
results.

Compared to [1], TD-FARL has the benefit that it can be applied unchanged
to all kind of games whether they have one, two or three players. The algorithm
of [1] cannot be applied to games with more than two players.

We see the following lines of direction for future work: (a) More 3-player
games. Although Nim3P with a clear winning strategy provided a viable testbed
for evaluating our algorithm, taking more 3-player or N -player games into
account will help us to investigate how well our introduced methods general-
ize. (b) Can we better understand why Othello is indifferent to using FARL or
no-FARL? Are there more such games? If so, an interesting research question
would be whether it is possible to identify common game characteristics that
allow to decide whether FARL is important for a game or not.
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Abstract. We propose a framework for solving offline data-driven mul-
tiobjective optimization problems in an interactive manner. No new data
becomes available when solving offline problems. We fit surrogate mod-
els to the data to enable optimization, which introduces uncertainty. The
framework incorporates preference information from a decision maker in
two aspects to direct the solution process. Firstly, the decision maker can
guide the optimization by providing preferences for objectives. Secondly,
the framework features a novel technique for the decision maker to also
express preferences related to maximum acceptable uncertainty in the
solutions as preferred ranges of uncertainty. In this way, the decision maker
can understand what uncertainty in solutions means and utilize this infor-
mation for better decision making. We aim at keeping the cognitive load
on the decision maker low and propose an interactive visualization that
enables the decision maker to make decisions based on uncertainty. The
interactive framework utilizes decomposition-based multiobjective evolu-
tionary algorithms and can be extended to handle different types of pref-
erences for objectives. Finally, we demonstrate the framework by solving
a practical optimization problem with ten objectives.

Keywords: Decision support · Decision making ·
Decomposition-based MOEA · Metamodelling · Surrogate · Kriging ·
Gaussian processes

1 Introduction

Sometimes while solving data-driven multiobjective optimization problems (or
MOPs) additional data can not be acquired during the solution process. Instead,
we may have pre-collected data of the phenomenon of interest that was obtained
beforehand, e.g. by conducting physical experiments. This type of optimiza-
tion problems are termed as offline data-driven MOPs [3,8,17]. For formulating
the optimization problem, we can build surrogate models using the given data
to approximate the behaviour of the phenomenon. Optimization can then be
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performed utilizing these surrogates as objective functions e.g. by a multiobjec-
tive evolutionary algorithm (MOEA). However, approximation error in the sur-
rogates’ prediction can not be avoided. Certain surrogate models such as Kriging
also provide information about the uncertainty (e.g. as standard deviation) in
predictions. This uncertainty information can be utilized in the optimization
process to improve the quality of the solutions [11].

Previous works on offline multiobjective optimization such as [3,8,11,17]
approximate the entire Pareto front. This makes decision making a difficult task
as the decision maker (DM) has to choose from a large set of solutions. Interac-
tive multiobjective optimization approaches allow the DM to find solutions in an
interesting region of the Pareto front and learn about the problem and the feasi-
bility of one’s preferences and adjust the latter. They also provide limited amount
of information at a time thereby reducing the cognitive load (see [13] for more
information). There have been many developments in interactive MOEAs [14] and
decomposition based MOEAs have become quite popular because of their capa-
bility of solving MOPs with a large number of objectives [2,4,20]. Hence, inter-
active approaches such as [7,10,21] have been proposed for decomposition-based
MOEAs. However, as far as we know, addressing DM’s preferences while solving
offline MOPs in decomposition-based MOEAs has not been considered.

Utilizing the uncertainty information in interactive optimization may be quite
valuable to the DM for a better understanding of the solutions and better deci-
sion making while solving offline MOPs. The major challenge in utilizing uncer-
tainty in an interactive optimization process is conveying this extra information
to the DM as (s)he may not be familiar with it.

In this paper, we propose a framework for solving offline data-driven MOPs
interactively using decomposition-based MOEAs. It enables the DM to under-
stand and make decisions based on the uncertainties present in the approximated
solutions. The framework does not increase the cognitive load of the DM signif-
icantly while providing preference information for uncertainties along with the
preferences for objectives.

2 Background

We consider the underlying MOP that has to be solved of the following form:

minimize {f1(x), . . . , fK(x)},

subject to x ∈ S,
(1)

where K ≥ 2 is the number of objectives and S is the feasible region in the deci-
sion space Rn. For a feasible decision vector x, the corresponding objective vector
f(x) comprises of the underlying objective (function) values (f1(x), . . . , fK(x)).

A solution x1 ∈ S dominates another solution x2 ∈ S if fk(x1) ≤ fk(x2)
for all k = 1, . . . , K and fk(x1) < fk(x2) for at least one k = 1, . . . , K. If a
solution of an MOP is not dominated by any other feasible solutions, it is called
nondominated. Solving an MOP using an MOEA typically produces solutions
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that are nondominated within the set of solutions it has found. The solutions
of Eq. (1) that are nondominated in S are also called Pareto optimal solutions.
Next, we discuss a generic approach to solve an offline data-driven MOP.

2.1 Generic Approach for Offline Data-Driven Multiobjective
Optimization

A generic way for offline data-driven optimization using an MOEA described in
[8,18] is shown in Fig. 1. The solution process can be divided into three parts:
a) data collection, b) formulating the MOP and building surrogate models, and
c) running an MOEA. The first step involves performing experiments to acquire
the data and pre-processing it if necessary. Next, surrogate models are built
to approximate the behaviour of the underlying objective functions using the
provided data. The prediction vector of the fitted surrogate models can be rep-
resented as f̂(x) = (f̂1(x), . . . , f̂K(x)), where f̂k is the surrogate’s prediction for
fk. Surrogate models such as Kriging also provide the uncertainty in the model’s
prediction generally in the form of standard deviation. The predicted uncertainty
vector is represented as σ̂(x) = (σ̂1(x), . . . , σ̂K(x)), where σ̂k is the uncertainty
in prediction for the kth objective function. In the third step, an MOEA is run
to solve the optimization problem with the surrogates as objective functions.

Offline
data

Build
surrogate
models

Output 
solutions

Run MOEA

Fig. 1. A generic approach for offline data-driven multiobjective optimization.

Next, we briefly discuss an interactive approach for decomposition-based
MOEAs which is a building block of the framework proposed in this paper.

2.2 Interactive Decomposition-Based MOEA

Decomposition-based MOEAs use reference (or weight) vectors to decompose
the objective space into a number of sub-spaces. In general, they solve several
simpler sub-problems that represent an aggregate of the objective functions by
using a scalarizing function. Some examples of the scalarizing functions used
are Chebyshev [20], penalty based boundary intersection distance (PBI) [20]
and angle penalized distance (APD) [2]. The solutions obtained by solving these
sub-problems jointly represent the approximated Pareto front of the MOP in the
objective space.

Interactive decomposition-based MOEAs find solutions only in certain
regions of the Pareto front. These approaches utilize preference information from
the DM in the form of, e.g. a reference point, weights and preferred ranges for
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objectives. For more details, see, e.g. [14,19]. In this paper, we adopt the inter-
active approach proposed in [7] for decomposition-based MOEAs and briefly
describe its main ideas as follows.

Converting Preference Information to Reference Vectors: One of the
ways to incorporate preference information into decomposition-based MOEAs is
by adapting the reference vectors to follow the DM’s preferences [14]. We here
demonstrate how to utilize a reference point which consists of the DM’s desired
value for each objective. However, the framework proposed later in this paper is
not limited to only this type of preference information.

Consider a set of uniformly distributed reference vectors V = {vi ∈ R
k|i =

1, . . . ,m}, where m is the total number of reference vectors, and z̄ ∈ R
k is a single

reference point provided by the DM. Each reference vector can be adapted as
follows [2,7]:

vi =
r · vi + (1 − r) · vc

‖r · vi + (1 − r) · vc‖ , (2)

where vc = z̄/ ‖z̄‖ and r ∈ (0, 1). The central vector vc is the projection of z̄ on
a unit hypersphere and the spread of the adapted reference vectors is determined
by the parameter r. The adapted reference vectors are close to vc if r is close to
zero and if r is close to one, the reference vectors are not changed much.

3 The Proposed Framework

As mentioned, since no new data is available in offline data-driven optimization,
the approximation accuracy of the surrogate models determines the quality of
solutions. In reality, the surrogate models’ approximation involve uncertainty. As
mentioned, Kriging surrogates [6] also provide an estimate of the uncertainty in
its prediction. A solution with a higher uncertainty indicates that the objective
values predicted by the surrogates have a lower probability of being close to the
values of the underlying objective function. In other words, the uncertainty pre-
dicted by the surrogate models can represent the accuracy of the solutions when
evaluated using the underlying objective functions. In [11], utilizing the predicted
uncertainties from the surrogates as additional objective(s) produced solutions
with a better hypervolume and accuracy in root mean squared error (RMSE)
compared to the generic approach. This was because the approach simultane-
ously minimized the objective functions and their respective uncertainties. The
solutions generated represented the trade-off between objective values and uncer-
tainties. However, this results in an increase in both computational and cognitive
load with a large number of objectives. Overall, it is desirable for the DM to get
solutions that have a low uncertainty in order to achieve better accuracy.

As explained before, interactive approaches are quite advantageous as the
DM can guide the optimization process through preferences for objectives and
also learn about the problem. To incorporate preferences for uncertainties while
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solving an MOP interactively, the DM should first understand what uncertainty
really means in regards to the MOP. Giving the DM an opportunity to provide
preferences for uncertainties is desirable but may increase cognitive load.

The proposed framework aims at solving offline data-driven MOPs inter-
actively by considering preferences for both objectives and uncertainties. The
framework is based on a decomposition-based MOEA and preference informa-
tion for objectives in the form of reference points. The first and primary challenge
faced is the DM’s understanding of uncertainty, specifically the uncertainty in
the surrogates’ approximation. Secondly, the cognitive load should not drasti-
cally increase when the DM wants to provide preferences for uncertainties along
with the preferences for objectives. The proposed framework tackles both of
the challenges and aims at providing an improved decision support for the DM
during the solution process. Next, we discuss two steps which are the primary
building blocks of the proposed framework.

3.1 Pre-filtering Solutions Following DM’s Preferences

Generally, in offline data-driven MOPs, there exists a trade-off between the qual-
ity of solutions (e.g. hypervolume) and the accuracy of the solutions (e.g. RMSE)
[11]. To have a diverse range of uncertainty and objective values, we first store
the solutions from all the generations of an MOEA in an archive. This allows
us to filter and make decisions from a pool of solutions having various objective
and uncertainty values. However, only the solutions representing the DM’s pref-
erences for objectives are interesting to him/her. Hence, the archive needs some
amount of pre-filtering before we can present it to the DM. We have to further
filter these solutions such that only the solutions that simultaneously achieve the
best objective values and the lowest uncertainties are shown to the DM. Hence,
we propose a two-stage pre-filtering approach as follows.

Fig. 2. Pre-filtering solutions: green dots are kept and red dots are rejected. (Color
figure online)
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The first stage is to find solutions in the archive that follow the DM’s pref-
erences for objectives, i.e., reference points. As described in Sect. 2.2, at first,
the uniformly distributed set of reference vectors are adapted using Eq. (2) that
reflects the DM’s preferences for objectives. Next, we find the adapted reference
vectors that have the highest component in one of the objectives and call them
edge vectors. Initially, the set of reference vectors are uniformly distributed and
have just one vector at each axis (objective). As the adaptation in Eq. (2) is lin-
ear; we find just one reference at every extreme or edge. Thus, the total number
of edge vectors is K. The multidimensional volume enclosed by the edge vectors
is termed as the hypercone. A solution is accepted by the first stage pre-filter
if it lies inside the hypercone. Figure 2 shows the idea of the pre-filtering for
a bi-objective minimization problem. The edge vectors are v1 and v2 and the
angle between the edge vectors is θ0. The angle between solution A and the edge
vectors v1 and v2 is θ1 and θ2, respectively. A solution is accepted for the next
pre-filtering stage if both θ1 and θ2 are smaller than θ0. In the figure, the solu-
tions in green (e.g. A) are accepted by this pre-filtering stage, and the solutions
shown in red (e.g. B) are rejected. The rejected solutions do not follow the pref-
erences and hence are not of interest to the DM. In general, with K objectives,
the angle θ0 between any two edge vectors is the same. This is because the set
of uniformly distributed reference vectors is adapted by using a linear transfor-
mation. Hence, a solution is inside the hypercone if θik < θ0 for all k = 1, . . . ,K,
where θik is the angle between the kth edge vector and the ith solution.

Fig. 3. The sub-figures show the solutions in different pre-filtering stages while solving
a bi-objective minimization problem. The grey solutions are the ones filtered out at
each stage. The red point denotes the reference point provided by the DM. (Color
figure online)

The archive contains objective vectors and their respective uncertainties from
all the generations. However, only the solutions with the smallest uncertainties
and objective values are interesting for the DM. Hence, we propose a second



Interactive Framework for Offline Data-Driven Multiobjective Optimization 103

pre-filtering stage that performs nondominated sorting on the solutions filtered
by the first stage and include uncertainties as additional components in the
vectors while sorting (as done in [11]). Considering uncertainty while perform-
ing nondominated sorting finds the solutions representing the trade-off between
objective values and uncertainty.

These two stages are applied sequentially in the pre-filtering stage of our
proposed framework. The functioning of the pre-filtering stage can be understood
from Fig. 3, which shows solutions in the archive for a bi-objective minimization
problem. The colour code represents the normalized average of the uncertainty
vector for the solutions. Sub-figure (a) shows all the solutions in the archive
before the pre-filtering. Sub-figure (b) shows the solutions after the first stage
pre-filtering. It can be observed that only the solutions following the preferences
for objectives (here the reference point in red) are filtered. Sub-figure (c) shows
the solutions obtained after the second stage pre-filtering. The solutions after
the pre-filtering stage follow the DM’s preferences for objectives and represent
the trade-off between objective values and uncertainties in the solutions. The
grey solutions are the ones that are rejected at each pre-filtering stage.

3.2 DM’s Understanding of Uncertainty

As discussed before, knowledge of uncertainty is an essential aspect while solv-
ing offline optimization problems. However, while solving real-life problems, the
DM is not always familiar with uncertainty in the solutions. Depending on the
problem, the DM can be assumed to have an idea of permissible tolerances in
objective values. For example, in the welded beam problem [5], cost and end
deflection are minimized. Considering just the DM’s preference regarding cost,
(s)he has an idea of the highest permissible cost. Here, the permissible deviation
in the objective value is referred to as one-sided tolerance of the DM [9]. In
other words, one-sided tolerance information can be considered as a cutoff over
the probable variation in the objective values. In our case, the variation in objec-
tive values is available in the form of uncertainty in the surrogates. Preferred
one-sided tolerances are preferences for uncertainties provided by the DM and
represent the maximum permissible variation in the solutions when they are eval-
uated by the underlying objectives. In this paper, we refer to one-sided tolerance
as tolerance for simplicity.

For the proposed framework (and later in the tests), we consider indifference
tolerances. They are provided as a percentage for every objective and represent
the 95% tolerance interval [9]. Let us consider the indifference tolerance pro-
vided by the DM for the kth objective function as τk%, where k = 1, . . . , K. The
distribution of the predicted objective value is Gaussian while using Kriging sur-
rogates and the predicted standard deviation of the kth objectives’ surrogate is
σ̂k(x). Thus, cutoff tolerance functions can be formulated such that the solutions
do not violate the DM’s preferences for uncertainties and thus are of interest to
the DM. The kth cutoff tolerance function is:

gk(x) = 1.96σ̂k(x) − τk · f̂k(x)/100 ≤ 0, (3)
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where x is the decision vector and k = 1, . . . ,K. A solution is interesting to
the DM if the objective value of the kth objective function does not exceed
1.96σ̂k(x) or 95% confidence interval of the Gaussian distribution. Thus, the DM
can change the preferences for uncertainties and visualize the solutions that do
not violate the cutoff tolerance functions in Eq. (3). However, it has to be noted
that the cutoff tolerance function can be modified depending on the prediction
distribution of the surrogate.

3.3 Steps of the Framework

Figure 4 shows the simplified structure of the proposed interactive offline data-
driven MOEA framework. The framework can be broadly divided into five steps:

1. Building surrogate models and initializing the MOEA.
2. Running the MOEA and storing the solutions in an archive.
3. Applying two-stage pre-filtering on the archive.
4. Interactively visualizing the solutions based on the preferences for uncertain-

ties provided by the DM.
5. Asking for preference information for objectives from the DM and adapting

the reference vectors.

Offline
data

Adapt reference
vectors

Build
surrogates DM's preferences

for objectives

Stage 2 : 
Nondominated

sorting

Cutoff tolerance
functions

Initialize
decomposition-
based MOEA

DM's preferences
for uncertainty

Visualize
solutions

(1) (2) (3) (4)

Run MOEA 

Archive

(5)

Stage 1:
Hypercone

Pre-filtering

Most
preferred
solution

DM 
satisfied?

Yes

No

Fig. 4. The proposed framework for interactive offline data-driven multiobjective
optimization.

Step 1: We formulate the MOP by utilizing the provided data. The expertise
of the DM may be required in this. We build Kriging surrogate models for every
objective function using the data (as in the generic approach in Sect. 2). Next,
we initialize a decomposition-based MOEA and generate a uniformly distributed
set of reference vectors and create the initial population.
Step 2: We run an MOEA for a fixed number of generations. The objective
values and uncertainties for the individuals from every generation are stored in
an archive that serves as a database for Step 3.
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Step 3: At the end of Step 2, we have an archive containing objective vectors
and uncertainties of different individuals. We apply the pre-filtering techniques
as in Sect. 3.1. Note that for the first iteration, we do not have any preferences
for objectives, and the reference vectors (that includes the edge vectors) are not
adapted. Hence, the hypercone constitutes the entire objective space and the
first pre-filtering stage accepts all the solutions.
Step 4: The DM provides preferences for uncertainties (indifference tolerances)
τk% and the pre-filtered solutions from Step 3 qualifying the cutoff tolerance
functions in Eq. (3) are shown.

The DM can provide preferences for uncertainties as many times (s)he wishes
thereby enabling him/her to view different solutions within the provided toler-
ances. For a better understanding of uncertainties while visualizing, solutions
can be colour coded. This can be done by the normalized average of the uncer-
tainty vector (in percentage) or by the maximum uncertainty of a solution for
any of the objective functions. The DM may skip this step entirely if solution
uncertainties are not interesting. As this step consists of just filtering solutions
obtained after Step 3, it can be repeated with a very low computational cost.
Step 5: In this step, the DM can stop the optimization process if (s)he has found
a satisfactory solution. Otherwise, (s)he is asked for new preference information.
We adapt the reference vectors according to Eq. (2) so that solutions follow the
preferences for objectives. After adapting the reference vectors, we go to Step 2.

The interaction process is split into Steps 4 and 5, where the DM provides
preferences for uncertainties and objectives, respectively. Due to this, the cog-
nitive load on the DM does not increase significantly. The DM can provide
different preferences for uncertainties and view the corresponding solutions and
repeat this as long as one wishes. The proposed way of providing preferences for
uncertainties does not modify the selection process of the MOEA. Hence, the
solution process is not affected.

4 Numerical Results

Assessing and comparing the performance of interactive approaches is still a
research challenge. Hence, we demonstrate and discuss the advantages of the pro-
posed framework by solving the general aviation aircraft (GAA) [15,16] design
problem. Due to space limitations, further analysis on benchmark problems is
available at http://www.mit.jyu.fi/optgroup/extramaterial.html as additional
material.

The GAA problem refers to designing an aircraft for recreational pilots to busi-
ness executives. We solved the problem as in [15] with 27 decision variables, ten
objectives and one constraint. As we are dealing with offline optimization prob-
lems, we generated data using the implementation [1]. We used Latin hypercube
sampling [12] to generate 1000 samples for decision variables and evaluated them
using the GAA functions to obtain the offline data. To approximate the underlying
objective functions, we used Kriging with a radial basis function kernel as our sur-
rogate models. We used RVEA as the MOEA with standard parameter settings as

http://www.mit.jyu.fi/optgroup/extramaterial.html
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in [2] and executed it for 100 generations in each iteration with standard crossover
and mutation parameters. The spread parameter r was set as 0.2. However, it can
be increased if the DM’s wants a more diverse set of solutions. As our framework
does not support constraint handling, we considered the constraint violation as
an additional objective function for the demonstration.

Fig. 5. The solutions obtained for two iterations of the interactive framework (all
objectives are minimized). (a): solutions in the archive after the first iteration. (b)
& (c): solutions after pre-filtering in the first and second iteration respectively with
different reference points (red line). (d): solutions after DM provides preferences for
uncertainties. (Color figure online)

Figure 5 shows solutions produced by the framework for two iterations. The
colour coding represents the normalized average of the uncertainty vector for the
solutions (blue is lowest and yellow is highest). Sub-figure (a) shows the solutions
in the archive at the first iteration when there are no preferences for objectives
available. In sub-figure (b) the DM provides the reference point (in red) and
gets the pre-filtered solutions. It can be observed that the solutions produced
follow the DM’s preferences for objectives. However, (s)he chooses to skip the
step of providing preferences for uncertainties as none of the solutions has a
low uncertainty (as represented by the colour). In the next iteration, the DM
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changes the preferences for objectives. The solutions after pre-filtering, as shown
in sub-figure (c) not only follow the DM’s preferences for objectives but also have
a lower uncertainty. We now provide hypothetical tolerances to demonstrate the
framework’s ability to consider preferences for uncertainties. In sub-figure (d)
only a few solutions that are within the preferred uncertainty of the DM are
shown. Finally, one of the solutions that matches the preferences for objectives
and uncertainties may be chosen by the DM. (S)he may choose to reset the
cutoff tolerances again to view a different set of solution to make decisions.
Alternatively, if the DM is not satisfied with any of the solutions, (s)he may
choose to change the preferences for objectives and continue the optimization.

If the DM is unaware of the uncertainties in the solutions, (s)he may be
deprived of valuable knowledge regarding the acceptability of the solutions. In
certain situations such as Fig. 5(b), judging the goodness of a solution based on
the objective values alone may be misleading. By observing the uncertainties, the
DM avoids making a worse decision and can modify preferences for objectives.
The DM may choose to provide preferences for uncertainties and see solutions
within different tolerances with a low computational cost. As the DM can see
the solutions pre-filtered from the archive that have various uncertainties, (s)he
has a wide range of solutions to make decisions if so desired.

5 Conclusions

In this paper, we proposed a framework for interactively solving offline data-
driven MOPs. It enabled the DM to understand and provide preferences for
uncertainties during an interaction. By using preferences for objectives, the DM
can guide the solution process. The solutions generated follow the DM’s pref-
erences for objectives and have a variety of uncertainties. By preferences for
uncertainties, the DM can control which solutions (s)he can see. The two-step
interaction proposed in the framework does not significantly increase the cogni-
tive load on the DM. We also demonstrated it by solving the GAA problem that
proved its capability in solving many-objective problems. The visualization in the
framework enabled the DM to provide preferences for uncertainties interactively.
However, more work should be done in the field of reference vectors adaptation
and development of comparison metrics for interactive approaches. We also need
to perform tests with different types of preferences for objectives. Furthermore,
the framework is not designed to handle constraints. Handling constraints for
offline data-driven problems deserves further attention.
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Abstract. The interest in solving high complexity problems has been
growing in recent years, intensifying the use of swarm robotics. Coopera-
tion is a central idea to the usage of swarm robotics because it enables the
solution of complex problems with a coordinated execution of basic tasks,
which together lead to the achievement of the swarm common goal. This
coordination is only possible with an efficient task allocation. Inspired by
the strategy of the particle swarm optimization algorithm, we propose a
novel algorithm called the Clustered Dynamic Task Allocation (CDTA).
This algorithm performs task allocation to swarm robots in a fully dis-
tributed manner. It performs a guided search of the solution spaces using
the concept of adaptive speed. However, this process requires an intense
exchange of information between robots, which hinders the efficiency of
the task allocation process for large swarms. This paper proposes the use
of a clustered communication topology between the swarm robots, aiming
to optimize the underlying communication processes, and thus enabling
efficient task allocation for large robotic swarms. The results obtained
with the cluster-based topology are compared to those obtained with the
full mesh-based topology.

Keywords: Task allocation · Swarm robotics · Swarm intelligence

1 Introduction

Swarm intelligence [9] when applied to a physical robotic platforms is usually
called as swarm robotics [1,8,10]. Composed of multiple interacting autonomous
robots, swarm robotics can solve complex problems through cooperation between
robots that, by performing simple basic tasks can often lead to reach the common
goal, which is the emergence of an intelligent good solution of the problem.
Task allocation is a fundamental process for using swarm robotics to solve high
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complexity problems [8]. It defines the way tasks are assigned to the robots of the
swarm. Dynamic task allocation is done on-the-fly, adapting to new configuration
of the swarm in terms of size and composition. The solution of the task allocation
process guarantees the execution of all tasks to achieve the overall goal of the
robotic swarm.

This paper proposes a distributed algorithm to solve the dynamic task allo-
cation problem while optimizing the communication process in order to be able
to work with large robot swarms. This work is a continuation that aims at
improving the results obtained by the Global approach for Dynamic Task Allo-
cation algorithm (GDTA) proposed in [7]. GDTA achieves the task allocation by
approaching it as an optimization problem. Inspired by the well-known Particle
Swarm Optimization (PSO) algorithm [4]. In this approach, each robot repre-
sents a particle that has a position corresponding to a feasible allocation. At each
iteration of the algorithm, allocations are evaluated according to their ability to
meet the objective proportion. Allocations are adaptive, so the swarm task allo-
cation is continually updated through information exchange between robots of
the swarm. For this purpose, each robot of the swarm sends its current allocation
and receives the allocations constructed by all the other members of the swarm.
However, this type of approach has a large flow of information between robots,
which leads to a loss of performance or even impossibility to be used when the
swarm grows beyond certain size.

As such, the GDTA [7] uses the full mesh communication topology, in which
all robots communicate with each other, generating exponential growth of the
data flow due to the number of robots. When the swarm is of reduced size,
i.e. up to 20 robots, the GDTA works fine. However, beyond this swarm size,
the approach proposed in [7] does not converge and the task allocation pro-
cess cannot be completed. As it was shown, the bottleneck is the exponential
growth of the amount of information exchange between the robots to adjust
their task allocation. So, it is worth to investigate the impact of other commu-
nication topologies that reduce the flow of information between swarm robots,
allowing for a performance improvement and making it possible to work with
larger swarms. The Clustered Dynamic Task Allocation (CDTA) algorithm has
the same approach and methodology as that used by GDTA, but instead of
communication through a full mesh topology, it uses the clustered communica-
tion topology as it will be explained in details throughout this paper. We show
that this clustered communication strategy allows for a significant improvement
in terms of the performance and allowed us to exploit swarms larger swarms.
It is noteworthy to point out that this proposed approach can be used to allo-
cate tasks dynamically for larger swarms. Here we experimented with swarms
consisting of up to the 32 robots.

The remainder of this paper is structured into 4 sections. In Sect. 2, we
present the formal definition of the Dynamic Task Allocation problem. In Sect. 3,
we explain the steps of the proposed algorithm, demonstrating how communica-
tion is performed and optimized. In Sect. 4, we present and analyze of the results
obtained. In Sect. 5, we draw some useful conclusions regarding the achieved
improvement and point out some directions for future work.
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2 Dynamic Task Allocation

Dynamic Task Allocation (DTA) is the process that manages and organizes
a robot swarm to correctly execute a set of tasks, aiming at a unique global
objective. This process consists of identifying and assigning, in a organized and
distributed fashion, the task that each robot of the swarm must execute. There
are many tasks, and two or more robots of the swarm may be allocated to execute
the same task. The DTA process must be dynamic because the allocation changes
in accordance with the environment and the swarm composition.

Seeking a formal representation of the DTA problem, let τ be the total num-
ber of valid tasks, T = {t1, t2, . . . , tτ} the task identifier set to be allocated to ρ
robots of the swarm. Note that τ and ρ are independent quantities.

Let us assume that the overall task decomposition generates the proportions
P = {p1, p2, . . . , pτ}, which is defined by a set of positive integers pj ∈ ]0, 1].
Each pj represents the percentage of the ρ robots, required to perform task tj .
Note that all pj ∈ P sum up to 1. From the desired P ratio, we can calculate
the number of robots that ought to be allocated to each task, represented by a
set of counters C = {c1, c2, . . . , cτ}, such that each counter is the product of the
ratio and the number of robots cj = pj × ρ. Note that all counters cj ∈ C sum
up to ρ.

In a swarm, each robot has a unique identifier. The set of identifiers is rep-
resented by I = {id1, id2, . . . , idρ}. The task allocation of the swarm robots is
represented by A = {a1, a2, . . . , aρ}, where aj identifies the task to be performed
by the robot idj . From allocation A, we can compute the number of robots
allocated to each of the tasks represented by CA = {c1, c2, . . . , cτ}, as in (1):

cj = CA[tj ] =
ρ∑

r=1

θ(ar, tj), (1)

wherein function θ is defined as in (2):

θ(a, t) =

⎧
⎨

⎩

1 if a = t;

0 otherwise.
(2)

It is noteworthy to emphasize that there are many possible optimal allocations,
such as A

∗, that verifies the requirements of Eq. 3. So, the solution of the DTA
problem is to find and allocation A

∗ = {a∗
1, a

∗
2, . . . , a

∗
ρ} that meets the desired

ratio as shown in (3):

∀tj ∈ T and ∀pj ∈ P, CA∗ [tj ] = pj × ρ. (3)

In order to find a solution of the DTA problem using an optimization algo-
rithm, an objective function is required. This function should evaluate the error
introduced by the found allocation A in relation to the sought allocation A

∗. The
cost function should provide a metric to quantify a given allocation’s quality, and
used to optimize the DTA problem, is shown in (4):
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f(A) =

∑τ
j=1 |C[j] − CA[j]|

τ
, (4)

wherein τ is the number of valid tasks, C[j] is the correct number of robots that
ought to be allocated to task j according to pre-defined proportion P and CA[j]
is the number of robots, which are allocated to task j according to the evaluated
allocation A.

It is noteworthy to point out that, by analyzing the search space, we can find
out about the complexity of the DTA problem thus formulated. Actually, we are
dealing with a total of feasible allocations of τρ. For instance, in a swarm of 25
robots with 5 tasks to be allocated, we have 298 quadrillion feasible allocations.

The academic community has come up with numerous task allocation algo-
rithm proposals under the influence of different inspirations and approaches
such as that based on market laws [6], behavioral [11], bio-inspired [12] and
communication-oriented [2]. The different solutions for DTA in the state-of-the-
art literature are classified according to the taxonomy presented in [13]. The DTA
problem can be classified as either instantaneous assignment or time-extended
assignment based on either the information is limited, allowing instant alloca-
tions or complete, allowing future planning, respectively [5].

3 Proposed DTA Algorithm

In order to optimize the results presented in [7], we developed the Clustered
Dynamic Task Allocation (CDTA) algorithm. It is a distributed stochastic algo-
rithm that performs dynamic task allocation. It can be categorized as a multi-
task robots and time-extended approach. It exploits a search strategy that is
inspired by Particle Swarm Optimization (PSO) technique, proposed in [4], but
is fully distributed, as each PSO particle is physically represented by a robot.

The clustered communication topology has communication stages with well-
defined characteristics. Each stage has a robot organization and communication
structure that must be respected by all swarm robots. It uses M communica-
tion matrix that establishes the robot organization and communication topology
structure, defining which cluster each robot is a member of, how many clusters
there are in the swarm, how many robots there are in each cluster, and which
robots are informers. Note that in the clustered topology, a member of the cluster
may be a non-informant or informant member. The former type can communi-
cates only with the robots that are also members of its proper cluster while the
latter can also communicate with members of other clusters than its own. It is
through these informant members that the partial information that emerges with
a given cluster can flow through the swarm traversing clusters. Figure 1 presents
an example of 3-cluster communication topology and its equivalent communica-
tion matrix, wherein the white nodes represent the informants. It is noteworthy
to point out that, in this example, links between non-informants are represented
simply by their cluster identifier. Moreover, links between informants, which can
be either with members of their cluster, and thus are represented by the clus-
ter identifier or with members of other clusters, and hence are represented by
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number 9. Without loss of generality, we assume here that there are always up to
8 different clusters, since with 8 clusters we can test a multitude of clustered
robot swarms, and we can use a single digit to denote a given cluster.

Fig. 1. Clustered communication organization within a swarm of 9 robots

The cluster communication process is divided into three steps. The first step
is similar to mesh communication, where information is shared within each
cluster, as shown in Fig. 2(a). During this communication step, we are able
to identify the robot that has the best solution within the cluster, which we
will denote by robot Cbest. The second step is a special communication made
only between informants. During this communication step, all informant robots
send and receive the best solutions found in each cluster and determine, at that
moment, the robot that has the best solution of the whole swarm, which we
will denote by robot Gbest. Figure 2(b) exemplifies this step. The third and last
step is the communication that allows the informants to send the members of
their respective clusters the best allocation, which we will denote by AGbest.
Figure 2(c) illustrates this step.

The proposed CDTA algorithm is structured into five sequential stages: ini-
tialization; tuning; identification; updating and stopping. Algorithm1 demon-
strates how the connection between the stages is performed. The algorithm’s
steps enable robots to repeat the steps over and over again until a suitable solu-
tion of the DTA problem is found. Each of the stages is detailed in the sequel.

3.1 Initialization Stage

During the initialization stage, the initial configuration of CDTA is performed,
allowing for the configuration of the algorithm’s parameters. The CDTA’s
parameters consist of the number of robots ρ, the number of tasks τ ; the target
task distribution P and the communication matrix M. It is noteworthy to already
emphasize that this stage as run by robot i will also initialize the robot alloca-
tion Ai; its so-far best quality allocation APbesti ; its so-far best cluster allocation
ACbesti ; the so-far best swarm allocation AGbest; the ideal task counter C; the
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Fig. 2. The communication steps used in the clustered topology

Algorithm 1. CDTA main steps as executed by any given robot of the swarm
1: Initialization
2: repeat
3: Tuning;
4: if informant then
5: Identification;
6: end if
7: Updating; Stopping;
8: until A valid allocation is found;
9: Execute assigned task

robots current task counter CAi and its current velocity vi. These initializations
are required by the stages of the main loop of the CDTA algorithm. The basic
steps of the initialization stage are shown in Algorithm2. Note that for a swarm
of ρ robots, there are ρ such initializations running in parallel, one per robot.

Algorithm 2. Actions during the initialization stage
Require: ρ, τ , P and M;
Ensure: Ai, APbesti , ACbesti , AGbest, C, CAi and vi;
1: Generate randomly Ai and vi;
2: Compute o C and CAi;
3: APbesti := Ai;
4: ACbesti := Ai;
5: AGbest := Ai;

3.2 Tuning Stage

In the tuning stage, the best allocation ACbestj for a given cluster j is updated.
Allocation APbesti is the best allocation achieved so far by the robot i. To be up-
to-date, robot i needs to compute the current allocation quality f(Ai), whenever
the current allocation quality is better. Thus quality Pbesti is replaced by the



116 N. Nedjah et al.

quality of current allocation and allocation APbesti is replaced by current allo-
cation Ai as shown in Algorithm 3. For the identification of the robot Cbestj ,
an information exchange is carried out between the robots of the same cluster.
So, each robot of the cluster sends to the other robots in its cluster its identifier
idi and the quality of its best allocation quality Pbesti. As the messages from
the other robots are being received, vector V = {Pbest1, P best2, . . . , P bestρ} is
populated. Whenever this process is completed, this vector will be up-to-date,
hence permitting the identification of robot Cbestj . Note that for a swarm of γ
clusters there are γ such tuning processes going on in parallel.

Algorithm 3. Actions during the tuning stage
Require: ρ, Ai, APbesti and M ;
Ensure: idCbestj , Cbestj and ACbestj ;
1: if f(Ai) ≤ Pbesti) then
2: Pbesti := f(Ai); APbesti := Ai;
3: end if
4: msg ← 〈idi, P besti〉;
5: repeat
6: Send msg to all the robot of cluster j;
7: Receive msg from all the robot of cluster j; V[i] := Pbesti;
8: until all messages are received/sent from/to all robot of cluster j
9: Identify robot Cbestj (idCbestj and Cbestj);

10: msg1 ← 〈idi,Ai〉; msg2 ← 〈idi〉;
11: repeat
12: if idi = idCbest then
13: Send msg1 to all the robot of cluster j;
14: Receive msg2 from all the robot of cluster j;
15: end if
16: if idi �= idCbestj then
17: Receive msg1 from robot idCbestj ;
18: Send msg2 to robot idCbestj ; ACbestj := Ai;
19: end if
20: until all the cluster robots have received all messages

3.3 Identification Stage

During the identification stage, the identification of the robot Gbest, which is
the robot with the best global allocation, is performed. For the purpose, it is
necessary to compare all the best allocations Cbestj found within all clusters
j ∈ [1, γ]. This stage is performed only by the informant robots, which repre-
sent the access points of their respective clusters. For identification purposes,
vector V

∗ = {Cbest1, Cbest2, . . . , Cbestγ} has to be updated with the emerging
Cbestsj for j ∈ [1, γ], which were found in the swarm clusters during the tun-
ing stage. Informants exchange messages containing the Cbestj found in their
respective clusters. Once vector V

∗ is up-to-date, the robot Gbest is identified.
The dynamics of the identification stage are presented in Algorithm4.
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Algorithm 4. Actions during the identification stage
Require: ρ, Cbestj , ACbestj and M ;
Ensure: Gbest and AGbest;
1: msg3 ← 〈idi, Gbest〉;
2: repeat
3: Send msg3 to all informant robots;
4: Receive msg3 from all informant robots; V∗[j] := Cbestj ;
5: until Receive/send from/to all informant robots
6: Identify robot Gbest (idGbest and Gbest); msg4 ← 〈idi,ACbest〉; msg5 ← 〈idi〉;
7: repeat
8: if idi = idGbest then
9: Send msg4 to all informant robots;

10: Receive msg5 from all informant robots;
11: end if
12: if idi �= idGbest then
13: Send msg5 to robot idGbest;
14: Receive msg4 from robot idGbest; AGbest := ACbest;
15: end if
16: until all informant have received all messages

3.4 Updating Stage

In the upgrade stage, informants send messages to the other robots within their
respective cluster bearing the identifier idGbest of the robot that obtained the
so-far swarm best solution as well as the allocation AGbest. Robots receiving
the informant message replace the old AGbest allocation with the updated new
emerged one. Throughout this stage, non-informant robots remain in a waiting
loop, waiting for the up-to-date information to be sent by the informant robots.
Upon completion of the updating work, the entire swarm is hence allowed to
proceed to the Stopping stage. The dynamics of the updating stage are presented
in Algorithm 5.

Algorithm 5. Actions during the updating stage
Require: ρ, Gbest, AGbest and M ;
Ensure: Gbest and AGbest;
1: repeat
2: msg6 ← 〈idi,AGbest〉; msg7 ← 〈idi〉;
3: if informant then
4: Send msg6 to all robots of the cluster;
5: Receive msg7 from all robots of the cluster;
6: else
7: Send msg7 to informant robot;
8: Receive msg6 from informant robot; AGbest := AGbest;
9: end if

10: until all robot of the cluster have received all messages
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3.5 Stopping Stage

The stopping stage determines whether the optimization goal has been achieved
and hence the main loop of CDTA should be terminated. Thus, if the AGbest

allocation satisfies the P target task distribution, all robots are allowed to enter
the execution state, wherein they keep executing the tasks, which they were
allocated considering AGbest. However, if the best task allocation does not satisfy
task proportion P, i.e. we still have AGbest �= P, all robots iterate once again the
main steps of the main loop as to infer a new position in the search space.

Algorithm 6 presents the dynamics of the stopping stage. First, the quality
of the best global allocation f(AGbest) is evaluated. So, if this quality is equal
to 0, this means that the allocation is valid. In this situation the robots enters
the task execution loop to which they are allocated according to the found task
allocation. Otherwise, if f(AGbest) �= 0, then a new position, which corresponds
to a new allocation, in the search space must be sought. After the new position
has been obtained, a new cycle is performed, in which each robot of the swarm
returns to the tuning stage.

Algorithm 6. Actions during stopping Stage
Require: ρ, τ , Ai, APbest, AGbest and M ;
Ensure: Ai;
1: if f(AGbest) = 0 then
2: repeat
3: Execute assigned task AGbest[i];
4: until a new task distribution is sensed
5: else
6: for k := 1 → ρ do
7: Generate random r1 in [0 . . . 1]; Generate random r2 in [0 . . . 1];
8: Acognitive := c1×r1×(APbesti [k]−Ai[k]); Asocial := c2×r2×(AGbest[k]−Ai[k];
9: Ainertia := w × velocity[k]; velocity[k] := Ainertia + Acognitive + Asocial;

10: if (velocity[k] − �velocity[k]	) ≤ 0.5 then
11: velocity[k] := �velocity[k]	;
12: else
13: velocity[k] := 
velocity[k]�;
14: end if
15: Ai[k] := Ai[k] + velocity[k];
16: if Ai[k] < t1 then
17: Ai[k] := t1;
18: else
19: if Ai[k] > tτ then
20: Ai[k] := tτ ;
21: end if
22: end if
23: end for
24: end if
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4 Performance Results

The implementation of the CDTA algorithm requires a robot that is autonomous,
programmable and has a communication structure. In this case, ELISA-3 is the
swarm robot used [3]. It has the required characteristics, along with a compact
structure, allowing for the implementation of large groups of robots. Elisa-3 is
of 5 cm in diameter and 3 cm high. It has a number of embedded devices that
enables it to communicate with other ELISA-3 robots or the user and to move,
among other functionalities [3]. The embedded communication takes place via
a radio base station (nRF24L01+) connected to a computer via a USB cable,
which transfers the data to the robots over a wireless connection. Each robot of
the swarm has a unique identifier id (RFID) stored in the factory-programmed
EEPROM memory.

The methodology used to perform the experiments allowed us to evaluate the
results obtained regarding different swarm configurations that are characterized
by the number of robots ρ and the number of tasks τ . Each of the experiment
iterates dynamically the aforementioned task assignment process until it finds a
new allocation A

∗ that meets the requirements of the target distribution P. In
all experiments, the swarm is initialized to an initial state, in which all robots
are assigned task 0. So, the swarm will start in all experiments with the same
initial allocation A0 = {0, 0, . . . , 0}. The analysis is concerned with obtaining
statistically valid results, so each of the tests performed is repeated 10 times.
The final results to be analyzed are the average of the thus obtained results. It
is noteworthy to point out that the results were robust throughout the different
runs and the standard deviations were insignificant. Three factors are analyzed
in these experiments. The first is the convergence time, which represents the
time the implemented algorithm takes to find allocation A

∗ that satisfies the
objective task proportion. The second and third analyzed factors allow for the
evaluation of the communication process. The number of messages sent by the
robots to the base and the number of messages sent from the base to the robots
are analyzed.

4.1 CDTA’s Performance

The tests use cluster communication topology configurations as explained in
the previous sections, wherein the number of clusters is a function of the total
number of robots. As shown in Fig. 3, tests are performed with 6 different
configurations.



120 N. Nedjah et al.

Fig. 3. Communication topology configurations (ρ, γ) used to evaluate CDTA’s per-
formance

Figure 4(a) shows the average convergence times regarding the 6 considered
configurations for robot swarms, ranging from 12 to 32 robots when allocating
of 2 to 5 tasks. Figure 4(b) shows the average of the total number of messages
received while Fig. 4(c) exhibits the average of total number of messages sent.

The results presented in this section demonstrate that CDTA’s performance
regarding convergence time and message exchange (number of messages sent and
received) have similar behavior on average. This characterizes a direct relation-
ship of the communication process on the final result of such an implementation.

CDTA was successful in all the performed experiments. Nonetheless, it was
noted that the swarm configuration with more than 50 robots achieves con-
vergence for some task configurations only. This behavior occurred due to the
fact that the chosen platform (ELISA-3) has some physical limitations, which
in this case is the battery charge capacity, which limits the working time of the
robots. With a 50-robot swarm, for the allocation of 4 tasks, the robot charge
battery charge was exhausted before the solution is reached. Hence, we do not
report these results in this paper as we have to verify exhaustively all experiment
settings.
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Fig. 4. CDTA’s performance: convergence times and total number of sent and received
messages

4.2 Comparison of CDTA’s and GDTA’s Performances

The results presented in this section are direct comparisons between the results
obtained in the work [7] with the results obtained in this alternative proposal.
GDTA is an algorithm used to search for a solution for DTA problem using dis-
tributed PSO based on a full mesh communication topology. It is noteworthy to
emphasize that CDTA is distinct from GDTA regarding the exploited commu-
nication topology. CDTA uses a clustered topology. An initial understanding is
that CDTA reduces information flow between robots and thus should improve
the performance. Hence, this allows us to handle larger swarms of the same kind
of physical robots.

Figure 5(a) shows the average convergence time, Fig. 5(c) shows the average
total number of sent messages and Fig. 5(b) exhibits the averages total number
of received messages for algorithms GDTA and CDTA. The presented results
refer to 4 experiments with robot swarms ranging from 12 to 24 robots for an
allocation of tasks ranging from 2 to 5 tasks.
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Fig. 5. GDTA’s and CDTA’s performance comparison, wherein red bars are for GDTA
and blue ones are for CDTA (Color figure online)

The CDTA proposal achieved an average convergence time reduction of
30.03%. Its best performance yielded a reduction of 77.39% while its worst per-
formance occasioned an increase of 24.73%. The average number of received mes-
sages decreased by 41.92%. Its best performance yielded a reduction of 78.21%
while its worst performance occasioned an increase of 19.16%. On average, the
number of sent messages dropped by 38.26%. Its best performance yielded a
reduction of 76.44% while its worst performance occasioned and increase of
26.08%.

5 Conclusions

This work proposes CDTA, a novel stochastic distributed algorithm (CDTA)
to optimize the communication used to solve the dynamic task allocation in
a robotic swarm. It builds on the previous GDTA algorithm proposed in [7],
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wherein the communication is performed in a broadcast manner. Both CDTA
and GDTA are PSO-inspired optimization algorithms. Nonetheless, in CDTA
the communication is taking advantage of a clustered topology, and allows and
significant improvement in terms of convergence time requirements thanks to the
reduction of the total number of exchanged message between the robots. The
cluster-based communication topology used by CDTA demonstrates its ability
to allow the optimization of the communication process, yielding better results
than the full mesh communication topology used by GDTA.

In the proposed CDTA algorithm, the robots do not wander around the envi-
ronment. So, the configuration of the clusters within the robotic swarm is kept
static. In the near future, we intend to improve the algorithm to allow for a online
clustering of the robots, which would adjust the clusters’ configuration dynami-
cally as robot wander around, using closeness in terms of distance, as one of the
main criteria to establish cluster formation. Furthermore, a new proposal could
evaluate the impact of other communication topology configurations, such as a
ring or a tree. Both the ring topology and the tree topology would further reduce
the flow of information between robots, but both would delay the flow of the
information among robots, which could impact negatively on the convergence of
the task allocation process. Moreover, we suspect these communication topology
configurations would require a complex internal structure for the communication
process.
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Abstract. Evolutionary Algorithms are efficient alternatives to solve
complex optimization problems. The high computational cost of these
algorithms commonly motivates their implementation to run in parallel
computational environments. Island Model enables the parallel imple-
mentation of Evolutionary Algorithms relatively easily to incorporate
the migration operation into the evolutionary process. The inclusion of
new solutions in a population, previously evolved in another population,
can contribute positively to the problem’s solution quality. In this work,
a performance index was added to the Island Model, aiming to indicate
how efficiently each island’s population is in solving the problem accord-
ing to its algorithm. Islands with higher performance indexes receive
more individuals in migrations. In this way, these algorithms become
more active in the evolutionary process. The experiments demonstrated
that the new model solutions were as good as the solutions from each
problem’s best algorithm. We also noticed that even if we remove the
most efficient algorithm from the model, it still adapts and provides effi-
cient solutions.

Keywords: Island Model · Performance index · Evolutionary
Computation

1 Introduction

Evolutionary Computation is an area of artificial intelligence that presents ways
to find solutions to problems, usually formulated as optimization problems. It is
a family of different algorithms called Evolutionary Algorithms (EA). They are
characterized by implementing biological evolution mechanisms, such as repro-
duction, mutation, and selection. The first records of the use of EAs to solve
problems started around the 1950s [10].

Several alternatives for implementing EAs have already been proposed in
the literature. In the search for better performance, the Island Model (IM) was
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created. In the IM, the population is divided between islands that evolve sepa-
rately and communicate periodically through the migration operator’s exchange
of solutions. One of the main IM characteristics is the possibility of paralleliza-
tion of EAs. For example, each island can be assigned to a processor. This can
significantly reduce the simulation time.

Usually, the IM is implemented by applying different EAs between islands.
In this type of IM, each island can follow a different trajectory in the search
space, producing different solutions based on its EA characteristics. This can be
interesting for the preservation of genetic diversity between individuals during
the evolutionary process.

The migration occurs between iterations of EAs on the islands. In this oper-
ation, the individuals move from one island to another according to the topology
applied to the IM, in order to share genetic material between populations. In
the traditional IM, the migration rate between the two islands is fixed. That is,
the number of individuals going from one island to another is always the same
during the entire simulation.

This work aims to present and test a new IM, which is characterized by the
variation in the migration operator. In the proposed IM, some islands receive
more individuals than others in migrations, according to their EAs. The choice
of these islands will be based on a performance index, which shows how well the
island is doing at solving the problem.

2 Adaptive Island Model

The use of EAs to solve optimization problems is increasing due to their efficiency
already demonstrated extensively in the literature. However, their behavior may
vary according to the problem. Thus, it is not easy to choose an EA to solve a
given problem to produce a good quality solution.

Another characteristic of EAs is the high computational cost required for
their execution. For this reason, commonly, they are implemented to run in
parallel computational environments. The IM is an alternative often used for
this purpose [1]. There are several approaches to parallel implementations of
EAs. Some distributed approaches were published by Derbel [6] and Jankee [14].

In the IM, the population is distributed in subsets called islands, which evolve
their solutions individually in a parallel way. A certain topology connects the
islands and, during the execution of their EAs, exchange solutions through the
migration operation. In this case, the topology has a notable impact on the
final IM result. Several topologies can be used, the most common being the ring
topology [22,23].

In addition to the topology, the migration also depends on a set of rules to
be defined by the user. These rules involve, for example, how often the migration
will be applied, how many and what solutions in each island will migrate, and
which among other available islands will be the destination islands [20,24,26].

The IM can also be homogeneous or heterogeneous. In the homogeneous IM,
the same EA is applied to all islands. On the other hand, in the heterogeneous
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IM, different EAs are applied between islands. Thus, in the heterogeneous IM,
it is possible to combine different evolutionary strategies to solve the problem
[15,17].

In a heterogeneous IM, the migration becomes a mechanism by which it is
possible to establish cooperation between EAs. Solutions received by an island,
coming from others with other EAs, can point unexplored regions in the search
space. This effect can positively impact the quality of the final solution. In addi-
tion to the use of different EAs, the cooperation between EAs in IM also requires
a convenient set of rules for migration. It is also important to observe that some
EAs may be more suitable for solving a given problem in a heterogeneous IM
than others.

An interesting way to explore the possibilities of a heterogeneous IM is
through the use of dynamic topologies. In this type of implementation, the con-
nections between islands change during the execution of their EAs, usually in the
migrations and in an adaptive way. In these IMs, the topology and/or popula-
tion distribution between islands is adjusted according to information obtained
along the evolutionary process. The articles published by Lardeux et al. [5,16]
are examples of this approach.

Different strategies for adaptive adjustment of topology in IM were proposed
in the literature. In [2], it was proposed an approach based on the speciation con-
cept, by which the population is grouped and distributed periodically according
to their similarities. In [13] it was also considered the speciation concept to pro-
pose the Speciating Island Model (SIM), a Genetic Programming methodology
in which the population is distributed in islands based in the identification of
new species by outlier solutions in the population. In [21] it was proposed a
procedure called ECO, based on the ecosystem concept, by which similar islands
according to population quality are grouped in habitats. In [8] and [9] were
proposed the dynamic adjustment of the IM topology according to the attrac-
tiveness between pairs of islands. The difference between strategies proposed in
[8] and [9] is the definition of attractiveness based on the convergence rate of
the EAs in the islands or in the quality of their populations. The IM appears
in [19] among multi-population strategies, where also was presented some of its
applications in solving problems in different areas.

2.1 Island Model with Performance Index

This work proposes a new approach based on IM, in which the migration operator
is modified, aiming for the dynamic distribution of solutions between islands. In
the proposed IM, the islands are fully connected by uni-directional connections.
Each island is associated with a performance index, corresponding to its migra-
tion rate, which indicates how efficient it is in solving the problem. At each
migration operation, islands with a high-performance index will receive more
individuals, causing their populations increasing, while decreases the population
in islands with lower performance index (less efficient islands).

In the proposed IM, each island also has a connection to itself. In this case,
the migrant solutions can also consider remaining on the island on which they
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are already located, according to its performance index. Figure 1 illustrates the
connections that each migrant solution from each island in the proposed IM has
as alternatives to use a path to the chosen island.

Fig. 1. Decision on the destination island by each migrant individual. The figure exem-
plifies the alternatives of the path for each migrant solution from each island according
to the proposed IM, through the solution highlighted by a circle.

Islands with high-performance indexes indicate good EAs to solve the prob-
lem. These islands will increase the individual’s chances of choosing. However,
a minimum number of individuals has been established for the populations to
prevent a particular island having fewer individuals than necessary. This value
equals 5, which is the same for all islands.

When carrying out the migration, the best individuals in each island will
choose the destination island first. This means that, for the islands that produce
good results, after each migration, their quality populations may depreciate if
their migrant solutions choose to leave them. On the other hand, despite losing
their best individuals in migration, islands that produce no good results may
receive better individuals from better islands, improving their populations.

In face of all these information, at each iteration n, the performance index
Rn of each island is given by

Rn = Rn−1 + log

(
f̂n−1

f̂n

)
(1)

where Rn−1 is the performance index until previous generation n− 1, f̂n−1 and
f̂n are the average fitness in generations n − 1 and n respectively. Note that
f̂n−1/f̂n is a measure of how much the population on the island has improved
(or worsened) between iterations. Thus, it estimates the island gain in terms of
solution quality if an individual migrates to it.

When the migration is carried out, the performance index from the generation
before the migration is not calculated. This could cause a very sudden change in
the result or even obtain a negative value. Additionally, in this work, the selection
operator used in the algorithm is elitism, so the average of the solutions in each
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island never gets worse from one generation to the next. If there was no elitism,
the variation could generate positive and negative returns. Since the performance
index is based on return, it will never decrease from one generation to the next.

When applying the migration operator, a portion of the best individuals
from an island migrate, using a roulette wheel to determine where they’re going,
taking into account the returns Rn of each island. Elitism was chosen to apply
the selection operator in the algorithms. Consequently, we have only positive
returns (Rn) since the average fitness of the population always decreases in
minimization. If there was no elitism, the population average could vary up and
down, generating positive and negative returns. As the performance index is
based only on return, the island’s performance index will never decrease from
one generation to the next.

3 Assessing the Proposed Island Model

To check if the proposed IM produces competitive results, the test problems
proposed in [18] to the competition CEC-2014 (Conference on Evolutionary
Computation) were used. This set comprises 30 mono-objective minimization
problems produced from 14 basic functions, divided into four groups. The three
first problems are classified as Unimodal Functions, followed by the next thir-
teen problems identified as Simple Multimodal Functions. Six problems combine
basic functions and because of this are classified as Hybrid Functions. Finally,
the last eight functions compose the fourth group called Composition Functions
and they are defined by weighted combinations of problems from other three
groups. The domain for all problems is the range [−100, 100].

In this work the proposed IM was evaluated with 4 islands. A different EA
was applied in each island, each one with its own characteristics such as diversity
of solutions, operators, selection mechanisms. Each EA could perform a differ-
ent path in the solution space, contributing to each other through migration. The
algorithms used in this work were: SGA (Simple Genetic Algorithm) [12], DE (Dif-
ferential Evolution) [25], HS (Harmony Search) [11] and ES (Evolution Strategies)
[3]. The values used to the parameters of the algorithms are shown in Table 1.

Table 1. Parameter setting of the algorithms used in the experiments.

Algorithm Parameters

DE F = 0.8, CR = 0.9, variant = DE/rand/1/exp, stop criteria on f =
1e−6, stop criteria on x = 1e−6

SGA CR = 0.95, mutation probability = 0.05, selection strategy =
“truncated”

HS Rate of choosing from memory = 0.85, minimum pitch adjustment
rate = 0.35, maximum pitch adjustment rate = 0.99, minimum
distance bandwidth = 1e−5, maximum distance bandwidth = 1

ES Starting step (σ) = 0.5. The other algorithm parameters are calculated
during the simulation
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For the implementation of the simulation code, the pygmo tool was used, the
Python version of the pagmo [4], a scientific library based on IM, with several
optimization problems and algorithms.

First, the EAs chosen for the experiments were evaluated individually. Each
one of them was executed in a single population of 100 individuals, under the
total of 100 generations. For this evaluation, according to the respective EAs,
the experimental scenarios were identified as: C-01: DE, C-02: SGA, C-03: HS,
C-04: ES.

For the second stage of experiment, the proposed IM was compared with the
best EA identified in the first evaluation. The tested scenarios involving the IM
are shown in Table 2. In scenario C-06, the DE algorithm was not used because
it is considered to be one of the best algorithms in general, among the algorithms
used in this work. It was checked if the proposed IM would work well without
this EA in one of its islands.

Table 2. Description of the experimental scenarios C-05 and C-06, involving the pro-
posed IM. The parameters used in the EAs are shown in Table 1.

Scenario Algorithms
(Islands)

Population size Generations Migration
frequency

C-05 DE, SGA, ES
e HS

100 (randomly divided
between 4 islands with 25
individuals)

100 10 generations

C-06 SGA, ES e
HS

100 (randomly divided
between 2 islands with 33
individuals and 1 island
with 34 individuals)

100 10 generations

During the IM execution, the best and average values of the objective function
in population, the population size and the Rn value of each island were stored.
Figure 2 shows the variation of the data along generations of scenario C-05 for
one of the problems.

Table 3 shows the average results obtained in 30 runs of the best EA identified
for each problem and the proposed IM. In table, the lowest values obtained for
the two metrics for each problem were highlighted in boldface. The proposed IM
obtained similar solutions to the best EA for most of the 30 tested problems.

For each problem, the Tukey’s range test was performed to determine if there
is significant difference between the best EA and the proposed IM. The results
in Table 3 show that no significant difference was found for any problem. On
the EAs performance, DE and HS were identified as the best ones, mainly DE,
which produced best solution for a larger number of problems.

To compare the performance difference between all scenarios considered in
this work, it was used the technique called Performance Profiles, proposed in [7].
This technique is applicable in evaluations where there are a set of algorithms
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Fig. 2. Simulation details for problem F2, under using the scenario C-05 to solve it.

and a set of problems. The results in Fig. 3 show that the scenario C-05 has
the larger area under the curve, meaning that it was more efficient to reach a
satisfactory solution.

Fig. 3. Performance profiles of the 30 problems, running all scenarios C-01 to C-06
with 100 generations over 30 runs.
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Table 3. Comparison of the best algorithm and the proposed IM. The second column
presents the algorithm that showed the best average result in 30 runs. Column Opti-
mum is the known optimal solution for each problem according [18], Solution Alg. and
Solution IM are the solutions obtained by the best EA and proposed IM respectively,
Standard deviation Alg. and Standard deviation IM are the standard deviation between
solutions obtained in 30 runs of the best EA and the proposed IM respectively.

Problem Best

algorithm

Optimum Average of

solutions

(Alg)

Standard

deviation

(Alg)

Average of

solution

(IM)

Standard

deviation

(IM)

Significant

difference

F1 DE 100 248.61 39.63 118.12 36.85 No

F2 DE 200 200.49 0.18 200.02 0.02 No

F3 DE 300 300.00 1.57 300.00 0.00 No

F4 DE 400 400.00 0.0007 403.48 10.43 No

F5 DE 500 519.92 0.61 520.00 0.0002 No

F6 DE 600 600.11 0.08 600.10 0.27 No

F7 HS 700 700.08 0.07 700.08 0.05 No

F8 DE 800 800.00 8.89 800.00 0.00 No

F9 HS 900 905.93 2.18 908.58 2.17 No

F10 SGA 1000 1000.07 0.03 1000.03 0.04 No

F11 HS 1100 1190.19 46.38 1226.09 107.42 No

F12 ES 1200 1200.11 0.03 1200.02 0.02 No

F13 HS 1300 1300.15 0.03 1300.12 0.02 No

F14 DE 1400 1400.15 0.02 1400.16 0.06 No

F15 HS 1500 1500.13 0.20 1501.13 0.53 No

F16 HS 1600 1601.25 0.32 1601.70 0.59 No

F17 DE 1700 1750.45 11.15 1719.56 25.17 No

F18 DE 1800 1805.15 0.88 1803.25 2.42 No

F19 ES 1900 1900.73 0.37 1900.43 0.34 No

F20 DE 2000 2002.55 0.41 2001.69 0.97 No

F21 DE 2100 2103.29 1.07 2105.85 8.02 No

F22 HS 2200 2200.76 0.66 2201.63 3.82 No

F23 DE 2300 2629.46 1.39 2629.46 0.00 No

F24 HS 2400 2515.43 3.90 2515.59 4.66 No

F25 DE 2500 2637.34 3.27 2635.30 7.29 No

F26 HS 2600 2700.14 0.03 2700.10 0.02 No

F27 DE 2700 2703.30 0.31 2792.58 136.68 No

F28 DE 2800 3156.88 0.05 3141.54 81.22 No

F29 DE 2900 3061.34 18.92 3117.90 24.66 No

F30 DE 3000 3576.19 30.58 3534.11 36.91 No

4 Conclusions

In this paper, a migration strategy guided by a performance index was developed
to heterogeneous Island Models. A set of 30 problems was used to assess the
model performance compared to individual evolutionary approaches.
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As the proposed model presented similar solutions to the best algorithms, it
can be concluded that this model is a good option for most problems. If instead
of this model, only one algorithm is used, one would have to test the algorithms
one by one until the best one is found, which would require more effort.
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Abstract. The Biological Growth Method (BGM) is an efficient opti-
mization approach suitable for the surface stress reduction in a specific
mechanical component and allows us to obtain a more homogeneous
stress distribution. This method mimics the way in which biological
structures, such as tree trunks, bones and horns, evolve during their
growth. The effectiveness of the BGM methodology, coupled with mesh
morphing technique based on Radial Basis Functions (RBF), is presented
here. Two cases are illustrated: the first referring to the growth of tree
trunks under specific loads; the second referring to the optimization of
an after-market component for high performances motorbikes.

Keywords: Radial basis functions · Finite element method ·
Optimization · Mesh morphing · Biological growth method

1 Introduction

In mechanical design, the optimal configuration of components has to be pur-
sued, so that both costs and failure risks can be minimized. Nowadays, designer
can take advantage of the introduction and widespread adoption of numerical
simulations: this allows to virtually test different configurations using Finite Ele-
ment Method (FEM) and optimization techniques. The research of an optimal
configuration, however, requires the designer to build a numerical model for each
configuration to be tested and this can become a very time-consuming task, spe-
cially dealing with complex shape models. Mesh morphing ([3,8] and [18]) is a
powerful tool that allows to obtain different numerical model configurations by
operating on the mesh nodes spatial position, with no need to rebuild the model
geometry or mesh. This tool proved its reliability in several challenging engi-
neering fields, such as Fluid Structure Interaction (FSI) problems, as described
in [11,13] and [5], or crack front propagation prediction [9], as reported in [10]
and [6].

Mesh morphing action can be driven in different ways: user can decide which
displacement impose to which point, or it is possible to use numerical results
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https://doi.org/10.1007/978-3-030-63710-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63710-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-63710-1_11


136 S. Porziani and M. E. Biancolini

data to decide which point has to be moved and the amplitude of the displace-
ment. Biological Growth Method (BGM) belongs to this second approach. BGM
is a bio-inspired approach that is based on the behaviour observed in the bio-
logical tissue under stress: higher stress area usually promote an high growth
rate so that the stress peaks can be mitigated. This method can be successfully
employed to optimize mechanical component shape[16]; resulting organic shapes
could be too complex to be built and specific manufacturing constraints can be
added as demonstrated in [15]. In this latter work ([15]), the BGM and mesh
morphing surface sculpting optimization (which can be considered a parameter-
less method) is compared with a parameter-based optimization strategy: the last
one strategy, applied on a simple mechanical component, allowed a maximum
stress reduction of 21.8%, whilst the proposed optimization strategy allowed a
30.7% maximum stress reduction on the same mechanical component, under the
same load and constraint conditions. Industrial interest in parameter-less meth-
ods is increasing nowadays, in [16] the BGM based mesh morphing is compared
with an adjoint based surface sculpting in an industrial component optimization.
It is worth to remark that adjoint based parameter-less optimization can fail in
obtaining optimized shapes if is not possible to evaluate the observable adjoint
matrix for a specific numerical analysis, whilst BGM can be always applied since
relays only on the local surface results of the numerical analysis.

In the present work, the result of the proposed methodology to optimize
mechanical component shape [17] is first presented by showing how it works in
nature, i.e., by modelling a tree trunk growth, and then it is applied to a motor-
sport application, i.e., showing the shape optimization of a front wheel support
of a high performance motorcycle.

The methodology has been developed in the framework of ANSYS Work-
bench Finite Element Analysis (FEA) tool [1], using the mesh morpher RBF
Morph ACT extension [2], which is based on Radial Basis Functions (RBFs), to
manage both the mesh morphing and the BGM algorithms employed.

1.1 RBF Background

RBFs are a set of scalar functions introduced in the early 60s to interpolate
multidimensional scattered data ([7]). They allow to interpolate a scalar field
everywhere in the definition space, starting from known values at discrete points,
also called source points. Given that data to be interpolated is in the form of
scattered scalar values at source points xki

in the space R
n, the interpolating

function can be written as in Eq. (1).

s(x ) =
N∑

i=1

γiϕ (‖x − xki
‖) + h(x ) (1)

The points x at which the function is evaluated are the target points. ϕ is the
radial function, which is a scalar function of the Euclidean distance between each
source point and the target point considered; typical radial functions are shown
in Table 1, considering r = (‖x − xki

‖). γi are the weights of the radial basis
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which are to be evaluated solving a linear system of equations, whose order is
equal to the number of source points introduced and the polynomial part h is
added to guarantee the existence and the uniqueness of the solution. In mesh
morphing applications, a linear polynomial can be used:

h(x ) = β1 + β2x + β3y + β4z (2)

in which β coefficients are to be evaluated together with γ weights in the solving
RBF system resulting from orthogonality and uniqueness conditions (see for
reference [17]). Once solved, the RBF system is used to interpolate each imposed
displacement component as an independent scalar field:

Table 1. Most common radial functions.

RBF type Equation

Spline type (Rn) rn, n odd

Thin plate spline rnlog(r), n even

Multiquadric (MQ)
√

1 + r2

Inverse multiquadric (IMQ) 1√
1+r2

Inverse quadric (IQ) 1
1+r2

Gaussian (GS) e−r2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sx(x ) =
N∑

i=0

γx
i ϕ (‖x − x i‖) + βx

1 + βx
2x + βx

3 y + βx
4 z

sy(x ) =
N∑

i=0

γy
i ϕ(‖x − x i‖) + βy

1 + βy
2x + βy

3y + βy
4z

sz(x ) =
N∑

i=0

γz
i ϕ(‖x − x i‖) + βz

1 + βz
2x + βz

3y + βz
4z

(3)

In mesh morphing, source points are the mesh nodes on which the displacement
is imposed, whilst the target nodes are the whole set of nodes that have to be
morphed in order to obtain the new numerical model configuration.

1.2 BGM Method

The Biological Growth Method (BGM) is a shape optimization method which
adopts as a driving force the entity of surface stresses of structural components.
This method is based on the observation that biological structures, such as tree
trunks and animal bones, can evolve at surfaces by adding biological material
layers on areas where an activation stress acts. In [12] and in [14] it is proposed
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to extend this concept: material can be added on surfaces with high stresses and
can be removed from surfaces where stresses are low. [12] demonstrated that
combining photo-elastic techniques and BGM approach, a uniform stress along
the boundary of a stress raiser can be obtained. In [14] a 2D study capable
to predict the shape evolution observed in natural structures is presented and
proposed to be used in CAE based optimization. In their work, the authors
computed the volumetric growth (ε̇) according to the von Mises stress (σMises)
and a threshold stress (σref ); the latter one was chosen according to the allowable
stress for the specific design.

ε̇ = k (σMises − σref ) (4)

Waldman and Heller [19] proposed a more complex model for layer growth,
suitable for shape optimization of holes in air-frame structures with multiple
stress peak locations. The formula is more complex than Eq. (4), as reported in
Eq. (5):

dji =

(
σj
i − σth

i

σth
i

)
· s · c , σth

i = max(σj
i ) if σj

i > 0 or σth
i = min(σj

i ) if σj
i < 0

(5)
The model by Waldman and Heller moves the i -th boundary node of the j -th
region by a distance dji , computed using (5), where σj

i is the normal stress in the
tangential direction, σth

i is the stress threshold, c is and arbitrary characteristic
length and s is a step size scaling factor.

In the present work a different implementation of BGM is used. As stated
before, the framework used to perform numerical simulations is ANSYS Mechan-
ical exploiting the RBF Morph ACT Extension. The capability of RBF Morph
in performing BGM optimization were already presented in [4]. The BGM imple-
mented prescribes the node displacement (Snode) in the direction normal to the
surface according to Eq. (6), where σnode is the stress evaluated at each node,
σth is a threshold value for stress defined by user, σmax and σmin are respec-
tively the maximum and the minimum value of stress in the current set. d is the
maximum offset between the nodes on which the maximum and the minimum
stress are evaluated; this parameter is defined by the user to control the nodes
displacement whilst limiting the possible distortion of the mesh.

Snode =
σnode − σth

σmax − σmin
· d (6)

According to Eq. (6), nodes on the surface to be optimized can be moved either
inward, if the stress on node is lower than the threshold value, or outward,
if the evaluated stress is higher than the threshold value. In RBF Morph BGM
implementation the Eq. (6) has been improved by adding the capability to use as
driver different equivalent stress and strain definitions, as summarized in Table 2.
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Table 2. Stress and strain types available in the RBF Morph implementation of BGM.

Stress/Strain type Equation

von Mises stress σe =
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

Maximum Principal stress σe = max(σ1, σ2, σ3)

Minumum Principal stress σe = min(σ1, σ2, σ3)

Stress intensity σe = max(|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|)
Maximum Shear stress σe = 0.5 · (max (σ1, σ2, σ3)− min (σ1, σ2, σ3))

Equivalent Plastic strain εe = [2 (1 + ν′)]−1 ·
(
0.5

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2

)

1.3 RBF and BGM Coupling

The above described mesh morphing technique and BGM can be successfully
coupled in a optimization approach. This approach has been integrated in the
RBF Morph ACT extension for ANSYS Mechanical and is based on the following
steps:

1. the baseline geometry is discretized into finite elements; load and constraints
are applied and FEM solution evaluated;

2. from FEM solution, nodal stress on surfaces to be optimized are retrieved,
σth and d are set by user and Snode displacement along surface normal for
each node is evaluated according to Eq. (6) for each selected node;

3. evaluated displacement are used to set up the RBF problem by imposing them
as values to be interpolated (values on source points), user can optionally set
additional source points values to complete the morphing set-up (i.e., points
to be maintained fixed);

4. FEM model mesh is morphed and FEM solution evaluated again;
5. stress values on surface to be optimized are analyzed: if the new stress levels

can be further optimized, the procedure is iterated from point 2; otherwise,
the geometry can be considered optimized.

In the above described methodology, the user is required to set two BGM
parameters: the threshold stress σth and maximum displacement d. The first
parameter represents the stress level value on which the optimization procedure
will try to converge; the second parameter represents the maximum displacement
allowed within an individual optimization step: the smaller is its value the higher
will be the number of steps to reach the optimum and the lower will be the risk
of mesh distortions that could invalidate FEM model.

In the following sections, two applications of the proposed methodology will
be illustrated: a first application involving a natural structure, i.e. a tree trunks
junction in which loads applied have induced a particular tissue growth; a second
application in which surface shape optimization of a high-performances motor-
bike component is driven by BGM and mesh morphing.
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2 Natural Application

As stated before, BGM was developed in 90’s, and among main contributors it
is possible to cite Mattheck and Burkhardt [14]. In their study, the tissue growth
of a particular zone of a tree is described and reproduced numerically using a
two-dimensional numerical model (see Fig. 1).

Fig. 1. Example of natural structures growth [14].

Adopting the proposed methodology, a three-dimensional model of the same
natural structure has been modeled and analysed in order to investigate the
model shape optimization. The modeling activities were realized taking into
account the geometry depicted in Fig. 2a. Two-dimensional boundary condi-
tions shown in Fig. 2b and reported in the above mentioned paper ([14]) were
translated in the three-dimensional model, so that this latter was loaded and
constrained as in the reference paper. Material used to modelling wood was
considered as transversely isotropic, and material data used referred to a wood
belonging to the Pinacee family (see Table 3).

The BGM driven surface sculpting was set to iterate 40 times, setting the
threshold value to 50000Pa for the equivalent von Mises stress and the d param-
eter to 0.0005m (see Eq. (6)). The maximum and mean von Mises equivalent
stress reduction is plotted in Fig. 3: the maximum value was reduced by 61%,
whilst the mean value was reduced by 44% at the end of the 40th iteration.

The shape evolution at 0, 20 and 40 iterations is depicted in Fig. 4: in the left
column the shape evolution is shown, whilst in the right column it is possible to
notice how the surface portion interested by the highest stress value decreases
and the area is subject to a more homogeneous stress distribution. As for the
final shape achieved in [14] and shown in Fig. 1, the shape of left trunk is modified
so that its diameter is increased just above the knee, in order to reduce surface
stresses in this area.
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Table 3. Wood elastic property used in numerical modelling.

Elastic property Value

Ex, Ez 1.000 [GPa]

Ey 11.520 [GPa]

Gxy, Gyz 0.810 [GPa]

Gxz 0.355 [GPa]

νxy, νzy 0.0301 [−]

νxz, νzx 0.4080 [−]

νyz, νyx 0.3470 [−]

a) b)

Fig. 2. a) tree CAD model; b) loads and constraints applied
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Fig. 3. Values of maximum and mean von Mises equivalent stress during the iterative
surface sculpting.
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Fig. 4. Evolution of the tree geometry and stress distribution at (from the top) 0, 20,
40 iterations.

3 Motorbike Application

In this section an optimization study performed on the Ducati Panigale V4 front
wheel support is presented. This component has an important function in the
overall motorbike cycling: it represents the connection between front wheel, front
suspension (fork) and front braking system. In a high performances motorbike,
loads acting on this component are extremely high and the component needs
an accurate design and optimization process. Highest loads act on the support
during a overturning-limit brake, which is a condition when, due to the braking
action applied, inertia forces acting on the motorbike lead to nullify contact
between back wheel and road surface. In this condition, forces transmitted by
braking system to threads are summed with vehicle inertial force transmitted by
front wheel hub to the tightening clump (see Fig. 5).
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Fig. 5. Load and constraints on the front wheel support

The scope of calculus is the shape optimization of the front wheel support
and its consequent structural validation. The proposed optimised configura-
tion will be realised using an aeronautical derivation aluminium alloy, EN AW
7075. A preliminary sensitivity analysis on the grid spacing has been performed
in the baseline configuration representing the aftermarket geometry and the
overturning-limit brake condition. Applied constraints and loads configuration
is shown in Fig. 5, numerical values are not disclosed because are confidential
information of the industrial partner. Von Mises stress distribution in the base-
line configuration is depicted in Fig. 6.

Fig. 6. Equivalent von Mises stress on the whole body

Analyzing this stress distribution two set of surfaces were selected to perform
the surface sculpting adopting BGM and mesh morphing techniques. These sur-
faces, with von Mises stress distributions, are those highlighted in Fig. 7: a set
of planar surfaces (Fig. 7 left) and a set of cylindrical ones (Fig. 7 right).
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Fig. 7. Equivalent von Mises Stress on the sculpted surfaces

Three different approaches were pursued: BGM applied on planar surfaces
(Setup 1), BGM applied on circular surfaces (Setup 2), BGM applied on both
zones (Setup 3). The sculpting action has been set to iterate 10 times, obtain-
ing the maximum von Mises stress variation and volume variation reported in
Fig. 8. According to these graphs, Setup 1 is the solution providing more volume
reduction (−0.6%), but maximum equivalent stress is increased at the end of
the iterations (+0.3%). With Setup 2 the maximum value of von Mises stress
decreases (−16.1%), with an increased volume (+1.5%). Setup 3 provides higher
stress reduction (−20.8%) at the cost of an higher volume increase (+2.5%).

Fig. 8. Maximum von Mises stress reduction and Volume increase for the three BGM
setup investigated

Since in this kind of mechanical components maximum stress value reduc-
tion is the most important performance index, as it can affect fatigue life of
components themselves, Setup 3 can be considered as the optimal solution. The
stress distribution obtained at the end of the surface sculpting optimization are
depicted in Fig. 9, whilst the final shape is shown in Fig. 10.
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Fig. 9. Equivalent von Mises stress distribution after 10 iterations

Fig. 10. Final shape obtained with 10 surface sculpting iterations

4 Conclusions

In the present work a new approach toward parameter-less shape optimization
through surface sculpting has been presented, which is based on the combination
of two mathematical tools: the biological growth method and the radial basis
functions mesh morphing. The first one is based on the observation and imita-
tion of growth mechanisms for natural tissues, and is coupled with an innovative
and effective shape modification technique, RBF based mesh morphing. In the
present paper, after giving theoretical background to both methods and a com-
parison with other parameter-less optimization solutions, two applications were
presented.

In the first application, a test case from a fundamental paper on BGM has
been analysed. In this application a natural structure, a tree trunk junction,
was modeled using three-dimensional elements and the same two-dimensional
loads and constraints applied to the literature case were translated and applied
the three-dimensional model. Results gave a good agreement with literature case,
both in terms of shape evolution and in terms of stress reduction (61% maximum
stress reduction and 44% mean stress reduction).

In the second application, an industrial application was presented: the shape
optimization of an after-market front wheel support for a high-performances
motorbike. In this case three different strategies were applied, choosing and
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combining the surfaces of the component to be optimized. The final optimized
shape reported a 20.8% maximum equivalent stress reduction, at the cost of
2.5% volume increase.
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Abstract. Reinforcement Learning (RL) is the process of training
agents to solve specific tasks, based on measures of reward. Understand-
ing the behavior of an agent in its environment can be crucial. For
instance, if users understand why specific agents fail at a task, they might
be able to define better reward functions, to steer the agents’ develop-
ment in the right direction. Understandability also empowers decisions
for agent deployment. If we know why the controller of an autonomous
car fails or excels in specific traffic situations, we can make better deci-
sions on whether/when to use them in practice. We aim to facilitate
the understandability of RL. To that end, we investigate and observe
the behavioral space: the set of actions of an agent observed for a set of
input states. Consecutively, we develop measures of distance or similarity
in that space and analyze how agents compare in their behavior. More-
over, we investigate which states and actions are critical for a task, and
determine the correlation between reward and behavior. We utilize two
basic RL environments to investigate our measures. The results showcase
the high potential of inspecting an agents’ behavior and comparing their
distance in behavior space.

Keywords: Reinforcement Learning · Behavior · Understandable AI

1 Introduction

In Reinforcement Learning (RL), agents are learning policies to solve a specific
task. For example, we can consider a robot as an agent who has to navigate a
particular environment and react to certain obstacles. At first, a user is interested
in these robots’ performance, which is commonly evaluated by their ability to
solve the task and further based on a user-defined reward function. Besides this
performance assessment, the trained robot’s behavior, such as the action it takes
for individual states, is the only observable part, as the internals of the policy
remain indistinguishable by an external observer. Thus, users desire to analyze
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and compare the behavior to exploit how the robot reacts in certain situations
or if it behaves as intended. Even a well-performing robot may have developed
a specialized behavior not intended by the user, such as only driving backward.

This paper compares agents based on their behaviors, which span a new
space, the behavior space. This paper’s primary motivation is to create a better
understanding of this behavior space and develop useful measures for the com-
parisons of agents without knowing the inner details of their policies. Moreover,
these measures could allow us to identify how agents in a learning set differ,
not concerning their reward, but with regard to their behavior. It is particularly
interesting to identify situations (states) in which an agent behaves differently
than expected. As this is a broad topic, we will start by tackling the following
research questions:

Q-1. How does an agent’s behavior with good performance compare to similarly
performing agents or inferior agents?

Q-2. Which input states are important or problematic for the task?
Q-3. Is there a correlation between an agent’s reward and behavior, and how do

changes in the behavior affect their reward?

Comparing agents in the behavior space has some prerequisites: For most
RL environments, individual agents will not visit the entire state space and thus
not learn the optimal action for these unobserved states. Unobserved states are,
for instance, present in environments with continuous state spaces or exclusive
paths. Nevertheless, as we investigate agents that map a policy from state to
action space (i.e., Artificial Neural Network (ANN) policy controllers), we can
compute an agent’s behavior to any state, even if not observed or observable by
the agent itself. This property allows us to compare two agents in the behavior
space on a mutual state set and investigate differences. However, state sets are
usually not initially known but based on processing the RL tasks and discovered
during each agent’s learning process. Thus, the individual state sets’ contents
are based on the state trajectory each agent follows, for example, an absolute
path for a robot in a maze. Each agent in a learning set will likely have different
trajectories, which renders it challenging to select input states to compute a
useful behavior space to compare many agents.

Behavior spaces have previously been investigated in the RL literature. Most
frequently, they were utilized to measure diversity and enforce explorative search
strategies. For instance, Doncieux and Mouret used behavioral similarity mea-
sures to encourage the diversity of evolved agents in an evolutionary search [1].
Ollion and Doncieux suggested to measure and enforce exploration in the behav-
ioral space [12]. Meyerson et al. [9] investigated how behavior characterizations
can be learned automatically for novelty search. Quality diversity algorithms
also depend on effective behavior comparison [13]. Similar directions have been
investigated in the field of surrogate model-based optimization. Here, the term
phenotypic space has been used, defining a space that encompasses behaviors
and outcomes of individuals, rather than their encoding (genotype). Distances
in the phenotypic space are used to train surrogate models. For instance, this has
been investigated in the context of tree-coded genetic programming [5,11,16].
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Similar work focused on graph-coded representations of neural networks. Here,
phenotypic spaces and distance measure have been investigated for tasks like
classification, reinforcement learning, or for evolving neural network controllers
for robotic navigation [4,14].

Unlike these previous investigations, we aim to look at the behavior space not
primarily to improve the performance of optimization or modeling algorithms.
Instead, we aim for the understandability of agents’ behavior. To do so, we utilize
two RL environments, a designed maze with different mutual exclusive paths and
the inverted pendulum, with a large real-valued state space.

2 Methods

2.1 Behavior Space in Reinforcement Learning

The behavior of an RL agent encompasses its (re-)actions, based on its environ-
ment and observed input states. The actions an agent takes for a specific state
s ∈ S is defined by a policy π : S → B. The agents get a reward r ∈ R for each
state transition. The discussed methods apply to a wide range of RL agents. The
only prerequisite is their ability to calculate a behavior for states that have not
been observed by those agents themselves. More precisely, we define the behav-
ior as the set of actions for a set of input states. For an agent A, we denote its
behavior as BA, with BA = πA(S). Here, S is a set containing n input state vec-
tors, πA(S) is the policy function computing the actions of agent A for all states
in S. Consequently, the behavior space B is the set of all possible behaviors (or
the behavior of all possible agents) for a RL task, that is, BA ∈ B.

2.2 Behavior Comparison and State Importance

For the comparison of two agents A and A′, we can calculate the distance of
their behaviors, which can then be denoted by d(BA, BA′). Because the distance
depends on the state space, we consider the distance of two behaviors concerning
the same state set S. The employed distance function can be chosen according
to the data type of BA, BA′ . That is, if they contain continuous values, we
might use the Euclidean distance. If they are ordinal integers, we can choose
the Manhattan distance instead, with d(BA, BA′) =

∑n
i |πA(Si)−πA′(Si)|. The

comparison of actions for individual states can provide interesting insights into
the specific behavior of an agent and further the importance of that state for
the task. In particular, we analyze the effects of unobserved states (UOS), which
are not present in the state set of a specific agent, and the influence of states
with degrees of freedom (DFS), where several actions lead to the same or similar
reward. In general, we consider a state as important (or problematic), if the
correct action for this state is essential for getting a good reward (or challenging
to learn, e.g., a majority of agents in a learning set fails to learn the correct
action). For the impact of states on the reward, we utilize the Action Reward
Rank : For each state, all performed actions of the agents are compared, and the
best ranking agent who took this action is outlined. Hence, this action is related
to the final best performing agent in the set.
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2.3 Reward Behavior Correlation

To understand the benefits of comparisons in the behavior space, the correla-
tion between reward distance and behavior distance is interesting. Therefore, we
investigate a set of m agents {A1, ..., Am}, their behaviors {BA1 , ..., BAm

}, and
their accumulated rewards {RA1 , ..., RAm

}. We compute the Reward Behavior
Correlation (RBC) for all pairwise comparisons

RBCall = cor
(
d
({BA1 , ..., BAm

})
,d

({RA1 , ..., RAm
}))

.

Here, d
({BA1 , ..., BAm

})
calculates all pairwise distances of the present agents

using the behavioral distance d(BAi
, BAj

). Correspondingly, d
({RA1 , ..., RAm

})

calculates all pairwise distances of the present agents using a distance of their
accumulated rewards d(RAi

, RAj
). The correlation cor(., .) may be computed

rank-based, if desired, or with standard linear correlation (Pearson correlation).
Similarly to RBCall, we can also compare each agent to the optimum agent Aopt

(the agent with the largest reward), instead of performing all pairwise compar-
isons. We denote this as RBCopt. A large RBC means that small/substantial dif-
ferences in reward coincide with small/significant differences in behavior. Hence,
a large RBC is a good indicator that the behavior space is easier to traverse for
search algorithms and easier to learn for surrogate models.

This property has a close connection to the Fitness Distance Correlation
(FDC) used in evolutionary computation to rate problem difficulty [6]. There, dif-
ferences in fitness are correlated with distances in the search space. RBCall consid-
ers all pairwise distances while RBCopt and FDC consider distances only between
candidate solutions and the global optimum (or best-known solution [7]).

3 Experiments

3.1 Deterministic Maze

The deterministic maze was designed with mazelab [17] as a comprehensible
problem where correct actions are known, and behavior is manually rateable.
The environment, visualized in Fig. 1(a), consists of a 10 × 7 matrix (shown in
figures as 9 × 6, excluding external walls) with different encoding for accessible
ways, walls, the agent and goal. The target is to find the shortest path to the
goal. The agent is allowed to take only deterministic actions for each observed
agent position in each cardinal direction. Thus they can get stuck against a
wall. Agents get a small negative reward for each movement, a larger negative
reward if running against a wall or moving backward, and a positive reward for
reaching the goal. The maximum step size of each agent is fixed to 30, whereas
only 11 are needed to follow the shortest path. We manually designed the maze
to feature DFS and UOS: The maze has a total of four paths to the goal and
22 unique agent positions, but these are partly exclusive, and successful agents
have always UOS. Moreover, the lower fork is a DFS, while the upper one is not.
The intention was to construct a problem where agents with the same reward
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(a) Deterministic Maze (b) Inverted Pendulum

Fig. 1. Environments. For the maze environment, external walls are not displayed.
Different ways: A and B are equal in reward, while D is slightly worse than C.

can have different behavior, cause of the forks, and different paths. Moreover,
to analyze the effect of different exclusive paths and the UOS on the pairwise
behavior comparison.

3.2 Continuous Inverted Pendulum

The inverted pendulum is a time-dependent physics simulator with a continuous
input space (Fig. 1(b)). The target is to balance the pendulum on a car in the
upright position for most time steps, starting at a random downwards position
by moving the car. The environment is evaluated over 500 timesteps but dis-
continues if the base car moves out of designated limits. The action space was
made deterministic for more comprehensible behavior comparisons. The pendu-
lum environment has no exclusive paths, i.e., all states are observable, but agents
will have an enormous number of UOS because of the real-valued input space.
We also consider the environment to include multiple DFS, e.g., multiple correct
behaviors are possible. The environment allows a large number of behaviors and
different sized sets of observed states per agent.

3.3 Generating Reinforcement Learning Agents by Neuroevolution

The RL agents’ policies are created and trained by utilizing Neuroevolution
to learn ANN policies in an evolutionary process. The underlying algorithm is
the graph-based cartesian genetic programming CGP by A. Turner1 [8,15]. For
the maze problem, ANNs with 70 inputs and 4 outputs were evolved, where
the softmax function computes the resulting action. The pendulum ANN has 6
inputs (5 + 1 bias) and a single output. For an output value >0.5, the action is
drive left, otherwise, drive right. The ANNs are evolved in terms of connection
weights and structure, i.e., the number and placing of connections, nodes, and
transfer functions. The maximum number of nodes and connections for each
ANN was set to 100 (maze) and 1000 (pendulum). This leads to a vast amount
1 http://www.cgplibrary.co.uk - v2.4 - accessed: 2018-01-12.

http://www.cgplibrary.co.uk
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Table 1. Parameters and results of the neuroevolution run for both environments

maze pendulum maze pendulum

repeated runs 12 1 total agents 48e3 4020
evaluations per run 4020 4020 × 30 unique agents 43 3648
observed states per agent 30 max 15e3 unique states 22 30e6

of different ANN topologies. The inner workings of the ANNs are complex and
very difficult to compare [3,14]. Thus, only the reward and the behavior of the
agents using these ANNs are considered observable.

Table 1 summarizes the parameters and outcomes of the Neuroevolution. The
pendulum agents’ rewards were aggregated over 30 different instances for reduc-
ing the impact of the random start positions; all states and actions from these
instances are included in the agents’ state sets. The agents of each environ-
ment were merged into one data set. Agents with equal state-input sets (i.e.,
those following precisely the same path) were filtered to acquire a feasibly sized
data set. Due to the small number of input states for the maze environment,
its amount of agents is significantly reduced. Conversely, the majority of tra-
jectories in the pendulum experiment is unique. The cleaned-up data for each
environment consist of all unique agents; the input states they observed, the
corresponding actions, and their rewards. The agents were ranked, where equal
performance leads to a shared rank. The maze problem has two best-ranked
(rank 1) agents. For the following experiments, we arbitrarily chose one of these
two as a reference agent (denoted as “best agent”).

3.4 Experimental Setup for Analyzing the Behavior Measures

Behavior Comparison: First, explorative data analysis is conducted to analyze
the behaviors and visualize them in the environment. We analyze the behavior
for individual input states in particular for the maze problem, as we can manually
identify wrong actions and understand their impact on the reward. Furthermore,
we use a one-to-one comparison of agents with similar rewards to see the influence
of UOS and DFS. For the pendulum problem, we analyze and reveal different
behavior based on specific inputs and compare the influence of using different
state sets as input for the behavior comparison. The denoted “best agent” for
this problem is the best found.

State Importance: The maze environment has designed DFS and UOS, i.e., the
forks with different importance and different exclusive paths to reach the goal.
The goal of the importance analysis is to discover these states by comparing the
behavior of all agents. We take a best-ranked agent as the reference for correct
actions and calculate the percentage of different actions for each state by one-
to-many comparisons, weighted by the difference in rank for these agents, by
d(BA, BA′)×d(rankA, rankA′)/sum(rankA, rankA′). Further, we calculate and
visualize the action reward rank (Sect. 2.2) for each state.
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Fig. 2. One-to-one behavior comparison of the best agent against all agents, computed
with different state input sets (a) and two selected examples (b,c) Green: differences
on Input set C (BEST). Blue: differences on Input set D (BOTH, includes C). Red:
differences on Input set B (ALL, includes C and D). Grey cells: agents act the same.
a) Summary of behavior distance of best against all. Shaded areas illustrate the input
set differences. b) Trajectories: best rank 1 (white) vs. another rank 1 (yellow) c)
Trajectories: best (white) vs. Rank 13 (yellow) (Color figure online)

Reward Behavior Correlation: The main challenge in computing the RBCall and
RBCopt is selecting a suitable state set to compare the behavior. With the pre-
vious experiments’ experience, we defined different options to select a suitable
state set and analyze which of them leads to the best overall RBC:

– Input set A: Random states sampled from all known states of all agents.
– Input set B: All known states of an environment.
– Input set C: The observed states of the best agent.
– Input set D: The observed states of both compared agents.
– Input set E: The observed states of one compared agent.

For the pendulum problem, we calculate the RBCall on an equidistant sampled
(each 15th) subset of agents to significantly reduce the computation time.

4 Results and Discussion

4.1 Behavior Comparison

The comparison of the best agent against all and selected inferior agents for
the maze environment on different state sets (B, C, D) is illustrated in Fig. 2.
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Interestingly, the best agent does not choose the best action in all states. It only
chooses correctly for the states it observed by itself. The agent would run into
walls if placed in certain positions (e.g., 5,5 or 4,9).

The behavior distance is amplified by different actions for states that were
not observed by the compared agents, i.e., UOS lead to a larger distance, in
particular visible in Fig. 2(b) and (c), where red cells highlight the UOS. If the
state input set of both agents are used instead of all, the influence of UOS is
smaller, as at least one of the agent has observed these states (blue line/cells).
However, it is still evident for the higher ranks. A remarkable observation is
shown in Fig. 2(c), for a comparison between the best agent and a medium-rank
agent (rank 13). They have a behavior distance of only 1 if compared on their
mutual state set and 4 with UOS considered. Their behavior on their mutual
state set is nearly identical, despite the significant difference in rank.
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Fig. 3. Behavior comparison for the pendulum. The behavior difference from best
versus rank 1000 is shown (Green cross = same action, red dot = different action)
for the angular speed value over the first 1000 states of state sets from best, rank
2000, and rank 3500. As visible, the behavior difference is influenced by the state sets.
Particularly, the dissimilarity in (c) is smaller. (Color figure online)

The number of acquired states for the pendulum is enormous and not suitable
for complete comparisons as we visualized for the maze. However, we computed
behavior differences of smaller state subsets and visualized them using a selected
input, the angular speed of the pendulum, which is nearly zero if the pendulum
is balanced in the upright position. Fig. 3(a) shows the behavior of the best
agent against the rank 1000 (of 3648) agent by calculating it on best, as well as
on rank 2.000 (b) and rank 3500 (c) input sets. Fig. 3(a) shows that for time-
steps 250–300 and 750–800, the rank 1000 agent behaves consequently differently.
These time-steps illustrate a situation of a falling pendulum, shortly after it was
balanced. While the best agent countersteers this movement, the rank 1000 agent
accelerates it. Consequently, we were able to identify a situation where the lower-
ranked agent fails to learn the correct actions. However, as the actions are based
on all inputs and the angular speed is just one of them, finding these situations
manually remains challenging. Figure 3(c) shows what happens if the behavior of
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the two agents is compared on the input set of a distant ranked agent. The state
input set of the rank 3500 is considerably different: Each recorded trajectory is
only some time steps long, presumably caused by the agent quickly driving the
base car to the horizontal limit, which leads to termination. For such extreme
situations, both compared agents (best vs. rank 1000) seem to behave similarly.
Conversely, their difference in reward seems to be related to smaller differences
in critical situations. We can summarize these observations to identify some
properties of the behavior space:

I) Agents with the same reward/rank can have a considerable behavior dis-
tance, mainly if compared on state input sets with UOS and DFS.

II) Small behavior differences (e.g., d < 3) can cause significant rank changes.
III) The input set has a huge impact on the behavioral distance comparison.

These observations reflect a central challenge of behavioral comparisons: We
need to find important states and a suitable state set for conducting behavior
comparisons. We argue that comparing the behavior on input sets with UOS can
help distinguish between agents of similar reward, but is presumably overesti-
mating their behavior distance on task level and further influenced by significant
variances due to random actions in UOS. Moreover, comparing agents on state
sets of other agents, even without considering the influence of UOS, might not
reveal useful behavior distances, as these states represent situations not suitable
for telling apart good behavior.

4.2 State Importance

For the state importance, we illustrate the percentage of agents with behavior
differing from the best agent for each state, weighted by their differences in rank.
In case of the maze, Fig. 4(a) shows this statistic only for agents reaching the
goal, while Fig. 4(b) concerns all agents. Here, highly valued states are consid-
ered to be more important, as most agents behave dissimilarly to the presumed
‘correct‘ action. For the comparison between the best agents, many states show
no importance, i.e., similar behavior in this set. The maze was designed such
that the importance of the DFS fork in (4,3), should be less than the no-DFS
fork in (4,7). This is represented by our importance measure, as (4,7) has a
twice as high value in Fig. 4(a) and (b). However, the importance measure also
provides other states with a high importance value, particularly visible in the
maze’s upper part. This can be explained by the type of behavior comparison
(all states) and the influence of UOS for each agent. Agents can have ‘wrong’
behavior for these states, even if they can solve the environment. This is observ-
able in Fig. 4(c), where for each state, the best agent choosing a specific action
is shown. While for the state (4,3) and also for (4,7), we see a correct identi-
fication of different ways, (5,5), (4,9), and (5,9) give the wrong idea of correct
actions, as the supposedly best-outlined action is surprisingly to run against a
wall. This effect of UOS is amplified if all agents are considered. For example,
the lowest-ranked agent runs directly against a wall. However, we compute and
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Fig. 4. (a) State importance calculated using either the best agents or (b) all agents.
Higher values depict higher importance, colored by value quarters for easier comparison.
(c) Action reward rank. Shows the best rank choosing each action for each state. Green
= rank 1, blue = rank 3, red = worst action rank. The two rank 1 agents choose different
actions in (4,3) and (5,5). (4,3) is DFS, and (5,5) an UOS for the best agent. (Color
figure online)

compare its behavior (intensified by its low rank) on all states. We assume that
if we compare a broad set of agents, the UOS, with their presumably random
actions, do not affect the importance as strongly. Thus, the shown importance is
presumably higher in the states of the upper part of the maze, as only a minority
of agents reach this part of the maze. For the rest, we are just comparing their
behavior on UOS. Thus, our importance measures could also help identify states
of an environment rarely reached by any agent in a set.

4.3 Reward Behavior Correlation

For the RBC analysis, the previous results have shown that it is essential to
choose a suitable state set for each pairwise comparison. The results are displayed
in Fig. 5 and Table 2. Figure 5(a) and (b) shows the resulting RBCall and RBCopt

values, respectively. For both, the overall correlation is notably positive. In 5(b)
it differs between good agents (rank 1–800), medium agents (800–3100), and
poor agents (3100–3600). The other input sets (A, B, C, and E) lead to an
inferior RBCopt for both problems. Moreover, set D and E lead to the highest
RBCall, with a very significant difference for the maze problem. We assume that
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Fig. 5. (a) RBCall plot for the maze environment (b) RBCopt plot for the pendulum
problem. Computed on input set E and D, respectively. A decent correlation is visible.

the best correlation would be achieved if agents are compared in their mutual
behavior space. The presumed cause for the higher RBCall is the reduction of
the influence of unobserved states in the comparison. In particular, the maze
environment agents have less UOS where they likely act random, if set D or E
are considered. Including UOS in a comparison does thus not lead to a more
detailed behavior distance, but one with higher overall variance, thus leading
to an inferior RBC. This is visible for the pendulum, which for all sets, has a
large amount of UOS due to the continuous state space, which leads to a smaller
difference in the variants to compute the RBCall. The overall positive RBCall

outlines the high potential of agent comparisons in the behavior space to improve
the search for good ranking agents.

Table 2. RBCall of all agents for different input sets

environment A) random B) all C) reference D) both observed E) one observed

maze 0.27 0.29 0.28 0.62 0.72
pendulum 0.36 na 0.34 0.45 0.36

5 Conclusion

In this work, we investigated the properties of the behavior space of RL agents
and how this space can help to compare agents in learning sets to gain valuable
insights. Regarding our research questions, we can conclude for Q-1, that even
small changes in the behavior can have considerable effects on the reward. At the
same time, agents achieving the same reward can show quite different behavior.
We believe that focusing only on the reward of an agent might not be the optimal
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choice. Instead, the agents’ behavior can give valuable insights into how agents
achieve that reward. This can reveal agents with surprising behavior or help to
improve the learning process. For instance, reward functions can be designed to
enforce or suppress specific behavior.

The analysis of Q-2 has shown that accessing the variable importance is
challenging and highly dependent on the underlying set of agents and the envi-
ronment. These challenges are mainly caused by comparing an agent on states,
which were not observed by it, or are even not observable by this agent due
to environment restrictions, e.g., mutually exclusive paths. For these cases, an
agent’s behavior can be random, even for the ones with the best reward. A
comparison of behavior on these states might deliver misleading results. Only if
multiple agents observed states, we could access their real importance.

This finding is further stressed when considering Q-3. The RBC is highest
if we consider pairwise behavior comparisons on those states that have been
observed by both compared agents. The reasonable positive RBC shows that
the behavior space is a promising concept. We suggest that searching in that
space may be beneficial.

For future work, we aim to take a close look at how the understanding of
behavioral spaces can be exploited, e.g., by new reward measures, direct search
in the behavior-space, and specialized search operators:

Reward Measures: Ideally, reward measures help to steer the search into desirable
areas of the search space. Understanding which states are critical to receiving a
good match between behavior and reward may help design better reward mea-
sures. The importance of developing useful reward measures for RL is stressed
in a review by Doncieux and Mouret [2].

Search in Behavior Space: The usage of agents’ behavior distance as an addi-
tional search criterion seems very attractive. It can be used to preserve diversity
in evolutionary search procedures [1]. Further, the search for a specific behav-
ior may be of interest, independent or in addition to reward-driven search, e.g.,
by modeling the reward to behavior space with surrogate models. An example
application would be inverse reinforcement learning [10]. The search in behavior
space allows the use of completely different agent topologies or even comparing
agents trained by different algorithms.

Search Operators: Finally, a good understanding of the latent, behavioral space
may help to define better search operators. For instance, search operators could
be designed to search directly in the behavior space, rather than the policy or
topology space.
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Abstract. The training of anomaly detection models usually requires
labeled data. We present in this paper a novel approach for anomaly
detection in time series which trains unsupervised using a convolutional
approach coupled to an autoencoder framework. After training, only a
small amount of labeled data is needed to adjust the anomaly thresh-
old. We show that our new approach outperforms several other state-of-
the-art anomaly detection algorithms on a Mackey-Glass (MG) anomaly
benchmark. At the same time our autoencoder is capable of learning
interesting representations in latent space. Our new MG anomaly bench-
mark allows to create an unlimited amount of anomaly benchmark data
with steerable difficulty. In this benchmark, the anomalies are well-
defined, yet difficult to spot for the human eye.

Keywords: Time series representations · Temporal convolutional
networks · Autoencoder · Anomaly detection · Unsupervised learning ·
Mackey-Glass time series · Chaos

1 Introduction

For the operation of large machines in companies or other critical systems in
society, it is usually necessary to record and monitor specific machine or system
health indicators over time. In the past, the recorded time series were often
evaluated manually or by simple heuristics (such as threshold values) to detect
abnormal behavior. With the more recent advances in the fields of ML (machine
learning) and AI (artificial intelligence), ML-based anomaly detection algorithms
are becoming increasingly popular for many tasks such as health monitoring
and predictive maintenance. Supervised algorithms need labeled training data,
which are often cumbersome to get and to maintain in real-world applications.
Yet, unsupervised anomaly detection remains up to now a challenging task.

In this paper we propose a novel autoencoder architecture for sequences (time
series) which is based on temporal convolutional networks [3] and shows its effi-
cacy in unsupervised learning tasks. Our experiments show that the architecture
can learn interesting representations of sequences in latent space. The idea of
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unsupervised anomaly learning is based on the assumption that in real-world
tasks the overwhelming part of the time-series data will be normal. Without the
need to label the data, we train a model that learns the normal behavior, i.e.
assigns a low score to normal and a higher score to anomalous data. Finally,
only a small fraction of labeled data is needed to find a suitable threshold for
the anomaly score. This can also be fine-tuned in operation, with an already
trained model.

For the initial benchmarking and comparison of our algorithm, we introduce
a new synthetic benchmark based on Mackey-Glass (MG) time series [21]. In
its current form, the Mackey-Glass Anomaly Benchmark (MGAB) consists of
10 MG time series in which anomalies were inserted using a clearly defined
procedure. Although the anomalies are inserted synthetically, spotting them is
rather difficult for the human eye. Due to the structured insertion process and the
clear labeling of nominal and anomalous data, no domain knowledge is required
to correctly label the data. Additionally, the difficulty of the anomaly detection
task is steerable by simply adjusting a few parameters of the MGAB generation
process (e.g. time delay, smoothness parameters).

2 Related Work

Other well known time series anomaly benchmarks are Yahoo Webscope S5 [16]
and NAB [17]. The Webscope S5 benchmark mostly contains simple/trivial spa-
tial anomalies. In NAB [17], the labeling process is not always immediately
comprehensible without having domain-dependent knowledge of the time series.
Furthermore, the amount of data is often too small for many deep learning
approaches. In [29], we introduce an anomaly benchmark based on electrocar-
diogram recordings of the MIT-BIH ECG dataset [10].

In recent years a lot of effort was put into the design of time series
anomaly detection algorithms and many new methods have been proposed:
A common approach is to use the prediction error of a time series regres-
sion model as anomaly score [23,29,30]. Commonly, also autoencoder-based
approaches are used [11,22], where the reconstruction error of the time series
serves as an indicator for anomalous behaviour. Other approaches are based
on generative adversarial networks (GANs) [13,18] or variational-based net-
works/autoencoders [26,27,32]. There exists also an architecture [33] where the
parameters of a deep autoencoder and of a Gaussian mixture model are simul-
taneously learned during training. Most of the aforementioned algorithms are
unsupervised.

In this work we will compare several state-of-the-art algorithms on MGAB:
The first one is DNN-AE, an anomaly detection algorithm based on a regular
deep neural network autoencoder [11]. DNN-AE takes short sequences from a
time series and attempts to encode and reconstruct these. Large reconstruc-
tion errors indicate anomalous behavior. Similar to DNN-AE, the algorithm
LSTM-ED [22] uses an encoder-decoder approach, but now based on LSTM
networks [12] to encode short sub-sequences taken from a time series. A third
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algorithm, Numenta’s anomaly detection algorithm NuPIC [28] is based on the
hierarchical temporal memory (HTM) algorithm [9] which is biologically inspired
by the neocortex of the brain. Finally, the LSTM-AD algorithm [29] uses stacked
LSTM networks to predict a time series for several prediction horizons and learns
a statistical model of normal behavior in order to detect anomalous events. All
algorithms compared in this work are unsupervised, since no anomaly labels are
passed to the algorithms during training. Only during the test phase a small
fraction of the labels are used to determine a suitable anomaly threshold.

3 TCN Autoencoder

In computer vision architectures, convolutional neural networks (CNN) are very
popular due to their equivariance properties and sparse interactions. Temporal
convolutional networks (TCN) translate these convolutional advantages from
computer vision into the time domain, as we will detail in Sect. 3.1 and Sect. 3.2.

The central idea of the TCN autoencoder (TCN-AE) is to encode a sequence
of length T into a significantly shorter sequence of length T/s (where s ∈ Z

+ is a
sampling factor) and subsequently to reconstruct the original sequence from the
compressed sequence (using a decoder network). The idea is similar to a classi-
cal (deep) autoencoder, where fixed-sized inputs are encoded into a latent space
representation and the latent variables are used to reconstruct the original input.
Similarly, the TCN-AE encodes sequences along the temporal axis into a com-
pressed representation and then attempts to reconstruct the original sequence.
However, it differs from a regular autoencoder in so far that it replaces the dense
layer architecture of a regular autoencoder with the more powerful convolutional
architecture. Due to this, it is also more flexible with respect to the input length.
Our TCN autoencoder consists of two temporal convolutional neural networks
(TCNs) [3], one for encoding and one for decoding. Additionally, a downsam-
pling and upsampling layer are used in the encoder and decoder, respectively.
The individual components will be described in more detail in the following.

3.1 Discrete Dilated Convolutions

The dilated acausal convolution of a d-dimensional sequence x : {0, 1, . . . , T −
1} → R

d, and a discrete filter with a finite impulse response (FIR filter) h[n],
h : {0, 1, . . . , k − 1} → R

d, can be defined as:

y[n] = (x ∗q h)[n] =
k−1∑

i=0

h[i]ᵀ · x[n − q · (i − k/2)], (1)

where y[n] ∈ R is the output of the filter with size T − k + 1, q ∈ N is the
dilation rate, h[i] ∈ R

d is the impulse response of the filter with kernel size k.
While the regular convolution (q = 1) applies the filter to adjacent elements of
the input sequence, the dilated convolution ∗q allows to skip several values in
the input sequence before the next filter tap h[i] is applied. The convolution
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Fig. 1. A section of a Mackey-Glass time series containing three anomalies. For the
human eye these anomalies would be very hard to spot, if we took the red bars away.
(Color figure online)

operation slides a k × d-dimensional filter stepwise over the input sequence x[n]
and computes a weighted average of x[n] and the corresponding weights h[i] in
each step. Since the filter is only sled along the (discrete) time-axis, the oper-
ation is commonly referred to as one-dimensional convolution. The convolution
in Eq. (1) is slightly acausal due to the term k/2. In some applications it might
also be reasonable to use causal convolutions (Fig. 1).

Many neural network architectures for sequence modeling utilize dilated con-
volutions in order to build a hierarchical temporal model with a large receptive
field. These models are capable of learning long-term temporal patterns in the
input data. The main idea is to construct a stack of dilated convolutional layers,
where the dilation rate increases with every additional layer. A common choice
is to start with a dilation rate of q = 1 for the first layer of the network and to
double q with every new layer. This approach allows to increase the receptive
field of the model exponentially.

3.2 Temporal Convolutional Networks

The temporal convolutional network (TCN) [3] is inspired by several convolu-
tional architectures [6,8,14,24], but differs from these approaches, according to
the authors, insofar as it combines simplicity, auto-regressive prediction, residual
blocks and very long memory. A full description of TCN would be out of scope
for this paper, the reader is referred to [3] for the details. Its main elements are
however the dilated convolutions of Sect. 3.1. A TCN can be basically described
by three elements: a list of dilation rates (q1, q2, . . . , qnr

), the number of filters
nfilters, and the kernel size k, which is the same for all filters in a TCN.
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Fig. 2. Architecture of TCN-AE. Each layer is described by its parameters inside the
box. The input of the TCN-AE is a sequence x[n] with length T and dimensionality d.

3.3 An Autoencoder Using TCNs

The novel element we propose in this paper is an autoencoder (AE) for time
series which employs TCNs as building blocks. This architecture, which we name
TCN-AE, is sketched in Fig. 2. Like any autoencoder, TCN-AE consists of an
encoder and a decoder. The encoder initially processes the input sequence x[n]
of length T and dimension d using a TCN. Subsequently, in order to reduce the
size of the feature map (dimensionality) of the TCN’s output, a one-dimensional
convolutional layer (1 × 1 convolution [19]) is used with q = 1, k = 1 and a
smaller number of filters (i.e., nfilters = 8). The temporal average pooling layer
is the last layer in the encoder and responsible for downsampling the series by a
factor s. It does so by averaging groups of size s along the time axis.

Right afterwards, the downsampled sequence is passed to the decoder mod-
ule and brought back to its original length using an upsampling layer which
simply performs a nearest neighbor interpolation. The upsampled sequence is
passed through a second TCN, which is parameterized in the same way as the
encoder-TCN, but has independent weights. Finally, the reconstruction of the
input sequence is generated with a Conv1D layer which ensures (by setting k = 1
and nfilters = d) that the dimensionality of the input is matched. Once TCN-AE
is trained, the input sequence and its reconstruction will be used for detecting
anomalies, as described in the next section.

3.4 Anomaly Detection with TCN-AE

A natural application of TCN-AE is the anomaly detection in time series. When
TCN-AE is trained on time series containing predominantly nominal data, the
network will attempt to minimize the reconstruction error for these nominal
patterns. At the same time, the reconstruction error for anomalous patterns
or patterns which differ significantly in their characteristics should be larger.
One possibility to identify these unusual patterns is to estimate a distribution
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for the reconstruction error. In our approach, we decide to slide a window of
length � over our reconstruction error and compute a mean vector µ and covari-
ance matrix Σ. Subsequently, the Mahalanobis distance can be used as anomaly
score. The unified algorithmic description of the anomaly detection procedure
in combination with TCN-AE is listed in Algorithm 1. Only for determining the
anomaly threshold, 10% of the true labels are used, as described in Sect. 5.3.

Algorithm 1. Anomaly detection algorithm using the TCN-AE architecture.
1: Adjustable parameters:
2: Mτ : anomaly threshold, obtained as described in Section 5.3
3: �: window length for constructing the error vectors
4: Ttrain: length of training sub-sequences
5:
6: function anomalyDetect(xtr[n],x[n]) � time series xtr,x : N → R

d of length T
7: Construct model tcnae() and Initialize the trainable parameters
8: for {1 . . . nepochs} do

9: Extract training sub-sequences X
(i)
train ∈ R

Ttrain×d from xtr[n], i = 1, . . . , B

10: ∀i ∈ {1, . . . , B} : train(tcnae,X
(i)
train) � Train net on mini-batches

11: end for
12: x̂[n] ← tcnae(x[n]) � Encode and reconstruct whole sequence
13: e[n] ← x[n] − x̂[n] � reconstruction error e : N → R

d of length T
14: E[n] ← slidingWindow(e[n], �) � E : N → R

T×�×d

15: E′[n] ← reshape(E[n]) � E′ : N → R
T×�·d

16: µ,Σ = estimate(E′[n]) � µ ∈ R
�·d,

17: M [n] ← (E′[n] − µ)ᵀΣ−1(E′[n] − µ) � Mahalanobis distance for each point

18: a[n] ←
{

0 if M [n] < Mτ

1 else
� Binary anomaly flags

19: return a[n] � Return anomaly flag for each time series point
20: end function

4 The Mackey-Glass Anomaly Benchmark

In this work we will compare various anomaly detection algorithms on a non-
trivial synthetic benchmark, named Mackey-Glass anomaly benchmark (MGAB)
in the following. Mackey-Glass time series are known to exhibit chaotic behavior
under certain conditions. MGAB contains 10 MG time series of length T = 105.
Into each time series 10 anomalies are inserted with a procedure described in
Sect. 4.1. In contrast to other synthetic benchmarks, the introduced anomalies
are for the human eye very hard to distinguish from the normal (chaotic) behav-
ior. Overall, we generate 100 anomalies in 106 time series points. The benchmark
data and the detailed procedure for generating these and similar benchmark data
are publicly available at GitHub [31].1

1 GitHub repository: https://github.com/MarkusThill/MGAB/.

https://github.com/MarkusThill/MGAB/
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4.1 Generating Anomalies in Mackey-Glass Time Series

In order to create the Mackey-Glass Anomaly Benchmark, we first generate a
sufficiently long time series having a dimension of d = 1 using the JiTCDDE [2]
solver with the parameters τ = 18, n = 10, β = 0.25, γ = 0.1, h = 0.9. The
integration step size is set to 1. The maximal Lyapunov exponent (MLE) of
λmle = 0.0061 ± 0.0002 suggests that the generated time series is (mildly)
chaotic. Subsequently, we split this series into ten same-sized individual time
series and insert 10 anomalies into each time series.

5 Results

5.1 Experimental Setup

Anomaly Detection Algorithms. All training algorithms are unsupervised,
i.e. they do not need the true anomaly labels during the training process. Only
in order to find a suitable anomaly threshold, a small fraction of labels is used,
as described in Sect. 5.3. Otherwise, the anomaly labels are only used at test
time to evaluate the performance of the individual algorithms. In one run, each
algorithm is trained for 10 rounds: in the i-th round the algorithms are trained
on the i-th time series and evaluated on the time series {1, . . . , 10} \ {i}. In total,
we perform 10 runs with different random seeds. In order to find suitable hyper-
parameters for each algorithm, we use the hyperopt library [4] and optimize
the F1-score on a separate MG time series.

For all neural networks we use the Adam optimizer [15] to train the weights
by minimizing the MSE loss. Additionally, all time series (having a dimension
of d = 1) are standardized to zero mean and unit variance.

DNN-AE [7]: we use a PyTorch [25] implementation for the anomaly detec-
tion algorithm based on a deep autoencoder [11]. The algorithm requires several
parameters, which we choose as follows: batch size B = 100, number of training
epochs nepochs = 40, sequence length Ttrain = 150 and a hidden size of h = 10
for the bottle neck (which results in a compression factor of Ttrain/h = 15 for
each sequence). Finally, we set %Gaussian = 1%, which specifies that 99% of the
data is used to estimate a Gaussian distribution for the anomaly detection task.

LSTM-ED [22] is also implemented using PyTorch and uses the following
parameter setting: batch size B = 100, number of training epochs nepochs = 20,
sequence length Ttrain = 300, hidden size h = 100 and %Gaussian = 1%. Both,
encoder and decoder use a stacked LSTM network with two layers.

NuPIC [28]: Numenta’s anomaly detection algorithm has a large range of
hyper-parameters which have to be set. We use the parameters recommended
by the authors in [17]. It is possible to tune the parameters with an internal
swarming tool [1]. However, this is a time-expensive process which is not feasible
for the large MGAB dataset.

LSTM-AD [29]: here we select the following parameters: batch size B = 1024,
number of training epochs nepochs = 30, and sequence length Ttrain = 128.
A 2-layer LSTM network with 256 units in the first layer and 128 units in the
second layer is used. The target horizons are chosen to be H = (1, 3, . . . , 51).
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TCN-AE : The main TCN-AE parameters are given in Fig. 2. Additionally
we use the sequence length Ttrain = 1050, batch size B = 32 and nepochs = 40.

5.2 Learning Time Series Representations

In our first experiment we want to assess the capabilities of the TCN-AE architec-
ture to learn representations of time series. For this purpose we train a TCN-AE
model using many different MG time series with a varying time delay param-
eter τ . Ideally, TCN-AE should be able to learn the main characteristics of

Fig. 3. Top: 2d-representation of 105 (104 for each τ) different Mackey-Glass time
series using TCN-AE. The (unsupervised) algorithm is capable of learning an encoding
which separates the MG time series fairly well according to their τ value. Bottom:
2d-representation of the same MG time series, but now using t-SNE [20] to find suitable
encodings.
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the individual time series and find suitable compressed representations. In our
experiment we use TCN-AE on 105 different Mackey-Glass time series (104 for
each τ in the range of τ = 11 . . . 20). Each time series of length 256 is encoded
into a 2-dimensional compressed representation. The algorithm is trained in an
unsupervised manner, hence, τ is not passed to the algorithm at any time. Sur-
prisingly, even with this large compression rate of 128, TCN-AE can find an
interesting embedding for the MG time series, as depicted in Fig. 3 (top). For a
certain τ , all samples are placed in only one connected cluster (with the exception
of a few satellites) and these clusters are mostly – with a few small exceptions –
non-overlapping.

For comparison, we repeated the same experiment with the popular t-
SNE [20] clustering algorithm. We executed t-SNE on a GPU with the help
of a certain CUDA implementation [5]. We tried different parameter settings
and finally fixed the perplexity parameter to 200, the learning rate to 10 and the
number of iterations to 104. The results for t-SNE in Fig. 3 (bottom) indicate
that it is not a trivial task to find suitable representations for MG time series.
t-SNE has in comparison to TCN-AE more difficulties to cluster all sequences
with a certain time delay parameter τ in only one connected region.

5.3 Algorithm Evaluation

Determining the Anomaly Threshold. All algorithms output an anomaly
score for each point of the time series. A low anomaly score indicates nominal
behavior and high scores suggest that anomalies are present. In order to classify
each point as nominal or anomalous a so-called anomaly threshold is required.
Points with a score above the threshold are classified as anomalous, all other
points are classified as nominal. We determine this threshold for all algorithms
as follows: A sub-sequence containing 10% of the data is taken and the anomaly
threshold is optimized on this short sequence, such that the F1-score is maxi-
mized. The optimal threshold is then fixed for the complete time series and the
overall results are obtained. Since the results can vary depending on which sub-
sequence is used for the threshold adjustment, we repeat the above procedure,
similarly to k-fold cross validation, for 10 different 10% sub-sequences of the
considered time series and record the results for the 10 different sub-sequences.

Performance Measures. In order to assess the performance of all algorithms
and to be able to compare the results, we use several common performance
metrics in this paper. Analogously to typical classification problems, a confusion
matrix can be constructed for time series anomaly detection tasks, containing
the number of true-positives (TP), false-positives (FP), false-negatives and true-
negatives (TN). TP indicates the number of anomalies, which were correctly
identified within an anomaly window (a small range around the actual anomaly
point). Only the first detection in an anomaly window is counted. On the other
hand, a missed anomaly window (no point inside the window is flagged) will be
judged as a FN. If a point is incorrectly presumed to be anomalous (detection
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outside any anomaly window), this will be considered as a FP. All other points,
which are not marked as anomalous, are considered as true-negatives (TN). From
these four quantities the well known performance measures precision, recall and
F1-score can be derived.

5.4 Anomaly Detection on the Mackey-Glass Anomaly Benchmark

In a second experiment, we compare TCN-AE to several state-of-the-art anomaly
detection algorithms on the Mackey-Glass Anomaly Benchmark. For each algo-
rithm, except NuPIC, 10 runs were performed. Hence, for each algorithm and
time series 10 different models are trained and each model is evaluated on the
other nine time series. NuPIC is completely deterministic and does not require
several runs. Additionally, as described in Sect. 5.1, the anomaly threshold for
each algorithm and time series is tuned on 10 different sub-sequences. We add up
the TP, FN and FP over all 10 time series and summarize the results in Table 1.
Up to 100 anomalies can be detected in total. We can see that the (deep) DNN-
AE detects most of the anomalies (approx. 92), missing only about 8 on average.
However, this result is achieved at the expense of producing many false-positives.
Overall, DNN-AE produces more than 60 false positives on average, while TCN-
AE produces less than one. Hence, DNN-AE achieves the highest recall among
all algorithms but ranks only 3rd in F1-score, due to its low precision. TCN-AE
scores best in F1-score and precision. NuPIC has the poorest performance in all
measures.

Table 1. Results for MGAB. The results shown here (mean and standard deviation
of 10 runs and 10 sub-sequences, Sect. 5.3) are for the sum of TP, FN and FP over all
10 time series. For each algorithm and time series the anomaly threshold was tuned
on 10% of the data using a cross-validation approach: the threshold is tuned on 10
different 10%-sequences of the data.

Algorithm TP FN FP Precision Recall F1-score

NuPIC [28] 3.00 ± 0.00 97.00 ± 0.00 132.00 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

LSTM-ED [22] 14.6 ± 5.86 85.4 ± 5.86 57.0 ± 20.43 0.21 ± 0.08 0.15 ± 0.06 0.17 ± 0.06

DNN-AE [11] 91.79 ± 1.22 8.21 ± 1.22 62.58 ± 13.65 0.6 ± 0.06 0.92 ± 0.01 0.72 ± 0.04

LSTM-AD [29] 88.8 ± 2.59 11.20 ± 2.59 0.62 ± 0.61 0.99 ± 0.01 0.89 ± 0.03 0.94 ± 0.01

TCN-AE

[this work]

90.54 ± 1.72 9.46 ± 1.72 0.20 ± 0.47 1.00 ± 0.01 0.91 ± 0.02 0.95 ± 0.01

5.5 Discussion

The initial results that we obtained with our new TCN-AE architecture are
promising. The learned representations (Fig. 3) on different MG time series
appear to be useful and may reveal interesting insights. For anomaly detection
we achieve with TCN-AE and LSTM-AD the highest F1-score on the non-trivial
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MG benchmark. Remarkably, all algorithms except NuPIC require many train-
able weights. TCN-AE had 164 451 parameters, DNN-AE 241 526, LSTM-ED
244 101 and LSTM-AD 464 537. That is, the other high-performing algorithms
require 50%–300% more trainable weights than TCN-AE.

6 Conclusion and Future Work

In this work, we proposed with TCN-AE a novel autoencoder architecture for
multivariate time series and evaluated it on various Mackey-Glass (MG) time
series with respect to two relevant tasks: representation learning and anomaly
detection. TCN-AE could learn a very interesting representation in only two
dimensions which accurately distinguishes MG time series differing in their time
delay values τ (Sect. 5.2). On the Mackey-Glass Anomaly Benchmark (MGAB),
which was introduced in this paper, TCN-AE achieved better anomaly detection
results than other state-of-the-art anomaly detectors (Sect. 5.4).

Possibilities for future work on TCN-AE include: (a) Gaining more insights
from the representations that TCN-AE learns unsupervisedly (Fig. 3). (b) Since
the network architecture allows to train TCN-AE with training sequences of
arbitrary length, another improvement could be to start the training process
with short sequences and then successively increase the sequence length after
each epoch. This approach could enable a faster learning progress in the begin-
ning and allow fine tuning of the weights towards the end of the training. (c)
We are planning to evaluate TCN-AE on other real-world anomaly detection
benchmarks containing (multi-variate) time series. Possible options are electro-
cardiogram signals [10] or industrial monitoring tasks [16,17].
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Margarita Antoniou1,2(B) , Gašper Petelin1 , and Gregor Papa1,2
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Abstract. In this paper, a bilevel multi-objective formulation of the
Ground Scheduling Problem is presented. First, the problem is formu-
lated as a bilevel optimisation problem (BOP), wherein the upper level
(UL) is a biobjective problem determining the pairs of Ground Station
(GS) to Spacecraft (SC) and the starting time of each event with objec-
tives the maximisation of the access windows and the minimisation of the
communication clashes of each GS. These two objectives of the UL can
be assumed as a measure of the violation of the feasibility of a schedule.
The lower level (LL) consists of a single objective optimisation problem
that determines the duration of each event, with objectives the commu-
nication time requirement of SCs with GS and the total ground station
usage, combined together to a weighted sum function. The approach
used to solve this multi-objective BOP is a nested approach, where the
Pareto front of the upper level is obtained by a multi-objective opti-
misation algorithm (NSGA2) and the lower level is solved using a GA.
The formulation is tested on one small test case from literature and the
relevant results are reported.

Keywords: Bilevel optimisation · Multi-objective optimisation ·
Satellite scheduling

1 Introduction

The Ground Station Scheduling (GSS) refers to the problem of planning the
communication between satellites (or spacecraft) and the ground stations. The
importance of the GSS problem relies on finding optimal allocation of the com-
munication of many satellites to a limited number of ground stations. The prob-
lem is very complex, highly constrained, and proved to be NP-hard [7]. There-
fore, since only near-optimal solutions are expected to be found the use of EAs
and other metaheuristics has become popular, e.g. [3,9]. The problem is most of
the time formulated as a multi-objective problem, consisting of several and con-
flicting objectives [11,12]. Moreover, the optimisation of each of the objectives
can be modeled in a hierarchical or simultaneous fashion [13]. In the simulta-
neous optimisation, the objectives are optimised at the same time, obtaining a
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Pareto front of the solutions, ignoring their hierarchy. In this way, the solutions
of the optimisation might not be representative of the final schedule, since some
communications will be omitted as they don’t satisfy some of the constraints.

The main scope of this paper is to present and test a bilevel multi-objective
formulation of the Ground Scheduling Problem. The problem is formulated as
a bilevel optimisation problem (BOP), wherein the upper level is a biobjective
problem determining the pairs of Ground Station (GS) to Spacecraft (SC) and
the starting time of each event with objectives the maximisation of the access
windows and the minimisation of the communication clashes of each GS. These
two objectives of the UL can be assumed as a measure of the violation of the
feasibility of a schedule. The lower level consists of a single objective optimi-
sation problem that determines the duration of each event, with objectives the
communication time requirement of SCs with GS and the total ground sta-
tion usage, formulated as a weighted sum function. The approach used to solve
this multi-objective BOP is a nested approach, where the Pareto front of the
upper level is obtained by NSGA2 and the lower level is solved using a GA. The
expected results of this approach are to have more representative solutions to
the optimization of the final schedule.

The remainder of this paper is organized as follows. In Sect. 2 the multi-
objective bilevel optimisation problem is described along with its mathematical
representation. In Sect. 3 the ground scheduling problem is presented, with the
notations and the objective functions taken into account in this implementa-
tion, and the formulation as a multi-objective bilevel problem is defined. The
nested evolutionary approach adopted for the optimisation is shortly described in
Sect. 4. The experimental setup and the obtained results are discussed in Sect. 5.
Finally, Sect. 6 concludes the paper, giving some future steps of the research.

2 Multi-objective Bilevel Optimisation Problem

The general bilevel optimisation problem (BOP) consists of two levels of opti-
misation problems referred to as the upper and lower level (UL and LL). The
lower level works as a constraint to the upper, meaning that the feasible space of
the upper level is determined by the optimal solution of the lower level problem.
The mathematical representation of a BOP can be described as follows:

min
x∈X

F (x, y)

subject to G(x, y) ≤ 0,
min
y∈Y

f(x, y)

subject to g(x, y) ≤ 0

(1)

where y is the solution of the LL problem from the set of solutions Y ⊆ Rn,
with regard to the solution from UL, x from the set of solutions X ⊆ Rm.
This means that the LL problem is optimised only with respect to y, while x
is kept fixed. The highest level of the hierarchy is the UL optimisation problem
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where F is its objective, while f corresponds to the objective of the LL of the
optimisation problem, the lowest level in the hierarchy [4]. Moreover, G(x, y) and
g(x, y) correspond to the inequality constraints of the UL and LL respectively.

If F and f are vector functions (F : Rn×Rm → RN and f : Rn×Rm → RM ),
then the problem is called a multi-objective bilevel problem. A general Multi-
objective Bilevel Optimisation Problem (MBOP) can be described as follows [6]:

min
x∈X,y∈Y

F (x, y) = (F1(x, y), . . . , FN (x, y))

subject to G(x, y) ≤ 0,
min
y∈Y

f(x, y) = (f1(x, y), . . . , fM (x, y))

subject to g(x, y) ≤ 0

(2)

In the above formulation, F1(x, y), . . . , FN (x, y) and f1(x, y), . . . , fM (x, y) are
the UL and LL objective functions respectively. A solution is a feasible solution
to the UL problem, only if it is a Pareto-optimal solution of the LL optimisa-
tion problem. More about the basic notations and theoretical results about the
MBOP can be found in [2]. Note that in our formulation we make the optimistic
assumption, meaning in case there is more than one optimal LL solution, we
assume that is the one that is optimal for the UL as well [2].

3 Satellite and Ground Scheduling Problem

In this section, the satellite scheduling problem and more specifically the ground
scheduling problem are described shortly. Then, the mathematical formulation
and notation of the problem are presented, defining its parameters, variables
and objective functions used. Last, the interpretation of a bilevel multi-objective
problem and its mathematical formulation is given.

3.1 Problem Description

The Ground Station Scheduling optimises the plan of the communication
between satellites (or spacecraft) and the ground stations. The problem can be
formulated with many different objectives. In this paper, a benchmark instance
of the ground station scheduling generated with the STK simulation toolkit
from Xhafa et al. [12,13] is used. Therefore, the same formulation of objectives
is implemented –with some small modifications of the quantification of some
objectives– to correspond to the same input and output parameters. The main
objectives taken into account in this formulation are 1. maximising the visibility
windows of SCs and GSs 2. minimising the clashes of the time windows between
different SCs to the same GS, 3. satisfying the required communication time
between SC with GSs, 4. minimising the idle time of the GSs.
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3.2 Mathematical Formulation

The notation and the mathematical problem is presented as follows:

Parameters

– s ∈ 1, . . . , S satellite set, index s
– g ∈ 1, . . . , G ground station set, index g
– h ∈ 1, . . . , H set of available Access Windows for a specific g and a specific s

for all days of the schedule, index h
– d ∈ 1, . . . , D & set of days, index d
– twh

sg: h
th time window between a specific g and a specific s

– TAOS(twh
sg), TLOS(twh

sg) are the visibility and losing signal times of a g from
a s

– ∀g ∈ G, s ∈ S AWs,g =
H⋃

h=1

[TAOS(twh
sg), TLOS(twh

sg)] where AW defines all

the time periods s and g can communicate
– kds ∈ 1, . . . ,K are requirements for each s each day d
– Tbeg(kds ), Tend(kds ) are the beginning and ending time of a requirement where

connection has to be established for at least Treq(kds ) during a specified
period d.

Decision Variables

– nm
sg ∈ N an event of the schedule, where m ∈ M is the consecutive number of

event when a specific g communicates with a specific s, N is the total number
of events of the schedule

– Tstart(nm
sg), Tdur(nm

sg) Starting and Duration time between s and g.

Objective Functions

Access Windows Fitness Function: Access windows or visibility windows
are the time windows during which a g can establish communication with an s.
Therefore in the schedule, we want to maximize the number of events that fall
into these time windows. ∀g ∈ G, s ∈ S,m ∈ M

fAW (nm
sg) =

{
1 if [Tstart(nm

sg), Tstart(nm
sg) + Tdur(nm

sg)] ⊆ AWs,g

0 else
(3)

FitAW =

∑M
m=1

∑G
g=1

∑S
s=1 fAW (nm

sg) ∗ 100
N

(4)

Communication Clash Fitness Function: A communication clash occurs
when two satellites are trying to communicate with the same Ground Station
at the same time. In this case, the solutions are infeasible. The goal here is to
minimise the clashes that are produced between the several SCs to one GS. Let
from nm

gs create the sets ∀s : nl
g ∈ N where l ∈ L ⊂ N is the index of the mth
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event of a specific g to all the s, after its events are sorted in ascending order for
a fixed g and ∀s according to their Tstart(nm

s ) Then:

fsc(nl
g) =

{
−1 if Tstart(nl+1

s ) < Tstart(nl
s) + Tdur(nl

s)
0 else

(5)

FitCS =
N +

∑G
g=1

∑L
l=1 f(nl

g) ∗ 100
N

(6)

Communication Time Requirements Fitness Function: In order for TTC
( Telemetry, Tracking, and Command) tasks to be completed, such as data down-
load tasks, there exist some minimum time requirements. These periodical tasks
are given as an input to the problem, in a matrix of their starting and end-
ing times for each period (day) for each satellite. The objective is to satisfy as
much as possible these requirements in the whole schedule. The fitness function
is computed as follows: ∀n ∈ N and ∀k ∈ K

f(kds , n
m
sg) = ‖[Tstart(nm

sg), Tstart(nm
sg) + Tdur(nm

sg)] ∩ [Tbeg(kds ), Tend(kds )]‖ (7)

In the reference paper, the problem was formulated as follows:

fTR(kds ) =

{
1 if (

∑G
g=1

∑M
m=1 f(kds , n

m
sg)) ≥ TReq(kds )

0 else
(8)

This formulation (Eq. 8), where the percentage of violation of the require-
ment is calculated, may pose a problem in some bilevel formulations. When this
objective is optimized without any other constraints on the same level, it may
happen that all of the event duration are increased to their maximum limit (here
e.g. the maximum days of the schedule). To prevent this from happening, the
fitness function was reformulated as follows:

fTR(kds ) =

{
0 if (

∑G
g=1

∑M
m=1 f(kds , n

m
sg)) < TReq(kds )

TReq(kds )/(
∑G

g=1

∑M
m=1 f(kds , n

m
sg)) else

(9)

FitTR =

∑S
s=1

∑G
g=1 fTR(kds )
K

∗ 100 (10)

The new formulation assigns a small penalty to the events that establish
communication for a period that is longer than the required amount of time.
This penalty is proportional to the length of the requirement.

Ground Station Usage Fitness Function: This fitness function is maximiz-
ing the busy time of a GS (minimising its idle time). This is expressed as a
percentage of the GSs busy time and the total available communication time of
a GS.

FitGU =
‖⋃M

m=1

⋃G
g=1

⋃S
s=1[Tstart(nm

gs), Tstart(nm
gs) + Tdur(nm

gs)]‖
∑G

g=1 Ttotal(g)
∗ 100 (11)
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where Ttotal(g) is the total available time of a GS, in this case the number of
days of the schedule.

3.3 Interpretation as a Bilevel Multi-objective Problem

In the reference paper, the problem was approached by combining the fitness
objectives into one, by assigning weights to each fitness functions as follows:

FitTotal = 1.5 ∗ FitAW + FitTR + 0.1 ∗ FitCS + 0.01 ∗ FitGU

It should be noted that the fitness functions can be grouped into modules, of
serial and parallel, according to the dependencies among the fitness functions.
In this problem, FitAW and FitCS belong to the serial fitness module, while the
rest two objectives to the parallel module. From a hierarchical point of view, the
objectives of Access windows Eq. 4 and Communication Clash Eq. 6 (the serial
module) are the ones that should be evaluated first, as they are also defining the
violation of the feasibility of each event. Also, these two objectives are most of
the time conflicting, making the problem difficult to find an optimal solution. In
this paper, we take into account this hierarchy, by decoupling the problem into
two levels. We define the UL as a biobjective optimisation problem and the LL
as a single objective, defined by a weighted function of the rest two objectives.
The mathematical representation of the problem is as follows:

max
x∈X,y∈Y

F (x, y) = (FAW (x, y), FCS(x, y))

subject to
max
y∈Y

f(x, y) = (FTR(x, y) + 0.1 ∗ FGU (x, y))

(12)

where the decision variables of the upper level are x = SC,GS, Tstart, and the
decision variables of the lower level is y = Tdur.

Therefore, most of the variables of the scheduling problem are defined by the
UL, while the LL defines only the duration of each event. The optimal Tdur
defined by the LL is then used to evaluate the Pareto front of the UL. The
rationale behind this formulation lies in firstly the assumed hierarchy of the
objectives and then the influence of the decision variables to each objective. One
can notice that the ground station usage fitness (Eq. 11) and the communication
time requirement fitness (Eq. 9) are mostly influenced by the variable Tdur of
each event. Moreover, the objectives of the UL are actually a measure of the
violation of the feasibility of the events. In this way, we take into account LL
optimal objectives that are violating as less as possible these constraints, making
the solution more representative to the final schedule. Finally, by keeping the
number of decision variables low at the LL, the optimisation problem becomes
of lower dimensionality and relatively easier to optimise. The general structure
of the bilevel model is presented in Fig. 2.
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4 Evolutionary Algorithms for MBOP

To solve the MBOP that we formulated, we adopt a nested optimisation app-
roach [10]. A similar nested approach has been applied in [8], where they imple-
mented a nested Genetic Algorithm (GA) for solving an integrated long-term
staffing and scheduling problem. In the UL, the biobjective problem is solved
with the NSGA-II multi-objective algorithm [1]. To evaluate each individual of
the UL, the LL is solved to optimality with a GA. Each optimisation of the
LL for each UL individual is independent, so these processes were parallelized
to reduce the computational cost. Finally, the result is a Pareto front of all
the non-dominated solutions of the upper-level. The general pseudocode of the
nested algorithm is shown in Algorithm 1. For solving the problem with GA
and NSGA2, the following representation of the chromosome was adopted. Each
chromosome encodes a schedule as a list of communication events, where each
event is represented by 5 binary variables, as seen in Fig. 1. I is a binary variable
that indicates whether the specific schedule is taken into account or not, while
the rest are representing the SCs with their corresponding GSs and their starting
and duration times. One chromosome consists of many of these tuples to cre-
ate a whole schedule. As a crossover operator, HUX was selected, while BitFlip
mutation was used as a mutation strategy for the specific implementation, both
for NSGA2 and GA.

Fig. 1. Chromosome encoding and its mutation and crossover operators.
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Algorithm 1. Nested MBOP
Input: AW,S,G,Days, TReq
Output: GS − SC, n, fitnessfunctions

1: procedure nestedMBOP
2: Initialize Population X0

3: Best ← {}
4: for number of generations do:
5: for all Individuals Xi ∈ X do in parallel:
6: call lower-level GA with Xi as an input, obtain Yibest as an output
7: end for
8: Evaluate Fitness(X)
9: A ← Pareto Front(X) ∪ Best

10: Best ← Pareto Front(A)
11: reproduction (selection, mutation, recombination)

return Best non dominated solutions

Upper level Problem

Multi-objective:
max FitAW

max FitCS

UL decides the GS-SC
and Tstart

Lower level Problem

Single objective
Weighted function:

max (FitTR + 0.1FitGU )

LL responds with Tdur

Tdur GS-SC,Tstart

Fig. 2. Bilevel model structure of the Ground Scheduling Problem

5 Experiments

5.1 Experimental Setup and Problem Instance

For the implementation of the NSGA-II and GA, the platypus1 framework in
python is used. For the upper level, a population size of 30 and 500 generations
was used, while for the LL a population size of 50 and 20 generations. The prob-
lem instance corresponds to the first small size of the benchmarks generated by
Xhafa et al. from STK toolkit2, where there are 5 Ground Stations, 10 Space-
craft and the number of days is 10. The preliminary results refer to one run of
the nested approach to test the mathematical formulation of the problem. The

1 https://platypus.readthedocs.io/en/latest/getting-started.html.
2 https://www.researchgate.net/publication/260086344 GS Scheduling Inputs.

https://platypus.readthedocs.io/en/latest/getting-started.html
https://www.researchgate.net/publication/260086344_GS_Scheduling_Inputs
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control parameters values used are reported in Table 1. Our implementation of
the objective functions and the related code can be found at [5].

Table 1. Selected control parameters that are used in all of the reported results.

UL LL

HUX crossover rate 0.3 0.3

BitFlip mutation rate 0.001 0.001

Population size 30 50

Number of generations 500 20

5.2 Results and Discussion

In Fig. 3 the convergence of the hypervolume indicator of the UL NSGA-II is
presented with respect to the number of generations. The results show that
the algorithm converges as the generations evolve. In Fig. 4 the scatter plot of
the solutions of the final UL generations is depicted. Orange dots represent the
obtained Pareto front, while the blue dots are the dominated solutions of the
population. In Fig. 5 the final objective values of the Pareto front solutions and
their corresponding LL objective values are depicted. It is interesting to note,
that the objective values of the FitTR seem to be concentrated with a small
variance around 20. These low values are most probably an implication of the
reformulation of the objective function that was implemented and described in
Sect. 3 and is a topic for further research. Also with this formulation, we only
accept solutions that violate as less as possible the constraints of the AW and
Clashes and this explains further the low values of the lower level objective.

Fig. 3. Hypervolume indicator convergence of Upper Level NSGA-II.
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Fig. 4. Scatter plot of the non-dominated (orange) and dominated (blue) solutions of
the final UL generation and the obtained Pareto front for case I S 01. (Color figure
online)

Fig. 5. Parallel coordinate plot of the approximate Pareto front on the case I S 01 with
bilevel algorithms (green). (Color figure online)

6 Conclusion and Future Work

We formulated for the first time the GSP as a multiobjective bilevel problem
and tested in one benchmark instance. In the final schedule of a GSP, only the
feasible solutions are taken into account and the values of some of the objectives
are not optimal anymore. The proposed formulation of the GSP aims to give
more representative results of this final schedule. It can take advantage of the
hierarchy of the objectives, without using weights, giving more than a single
optimal schedule at the end. Finally, the bilevel formulation can be useful for
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modeling the problem with other objectives as well, especially when the lower
level is cheaper to evaluate.

In the next steps, the possible implications of the time requirement objective
reformulation will be examined and improved. Moreover, a different formulation
of the problem, meaning different UL and LL objectives and/or decision variables
can be interesting, by exploring deeper the hierarchies of the problem. Last but
not least, algorithmic-wise, ways to reduce further the computational cost of the
bilevel approach will be examined, such as additional parallelization, use the
knowledge of the previous runs by using them as an initial population of each
lower level run, and the possibility of using approximation functions.

Acknowledgements. This work is funded by the European Commission’s H2020 pro-
gram, UTOPIAE Marie Curie Innovative Training Network, H2020-MSCA-ITN-2016,
under Grant Agreement No. 722734 and from the Slovenian Research Agency (research
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Abstract. Ice accretion poses a major threat for performance and safety
of aircraft. Electro-Thermal Ice Protection Systems (ETIPS) are a reli-
able and flexible alternative to protect critical parts against it. Their
main drawback is the high power consumption, especially when oper-
ating in fully evaporative Anti-Ice mode. In this work, a Genetic Algo-
rithm (GA) is deployed to optimize the heat flux distribution on the
fixed heaters of a wing ETIPS that operates in Anti-Ice regime. The aim
is to minimize the power consumption while ensuring safety, such that
no runback ice is formed downstream the protected parts. A thermody-
namic numerical model was deployed to assess runback ice formations
for each layout of heat fluxes. A linear penalty method was selected to
handle the constraint of no-runback ice formation. Crossover and Muta-
tion operators for GA were investigated for a large population as well
as a penalty factor. Higher penalties and Mutation-based GA presented
the best optimization performance based on several runs. The optimal
layout of fluxes was found to minimize as well the convective losses in
several ways to increase the evaporative efficiency.

Keywords: In-flight icing · Ice Protection Systems · Optimization ·
Genetic Algorithms

Nomenclature

Parameters H IPS Substratum thickness [m]

Δli Size of the heater i [m] h Heat Transfer Coefficient[Wm−2K−1]

δ Thickness [m] il−s Solidification latent heat [Jkg−1]

ṁ Mass Rate [kgs−1] il−v Vaporization latent heat [Jkg−1]

Q̇ Thermal Power [Wm−1] kwall Effective Thermal Conductivity

q̇
′′

Heat Flux [Wm−2] l Number of chromosome gens

P Heat Fluxes vector p Probability

A Control volume surface area [m2] Pi Heat Flux of the heater i [Wm−2]
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c Chord [m] s Curvilinear Coordinate [m]

cp Specific Heat [Jkg−1K−1] T Temperature [K]

F Wetness fraction V Velocity [ms−1]

LWC Liquid Water Content [kgm−3] imp Impinging

MVD Mean Volume Diameter [μm] in Incoming to a control volume

Subscripts IPS Ice protection system

0 Total m Mutation

∞ Free stream out Outgoing from a control volume

A Average of runs rec Recovery

B Best of all runs ref Reference Temperature, 273.15K

cr Crossover wall External solid surface

f Liquid film water Liquid film

ice Freezing

1 Introduction

Aircraft icing consists of the accumulation of ice on their surfaces when inter-
acting with supercooled clouds. These contain water droplets that are at a tem-
perature below the freezing point but they remain liquid in metastable equi-
librium. When the droplets impact, they totally or partially freeze [9]. Among
other effects, in-flight icing causes a reduction in the lift capability, increase in
drag, decrease of the control surface effectiveness [10]. Furthermore, severe ice
accretions have been the cause of several accidents in the past [14]. Accord-
ing to literature, “the average altitude of icing environments is around 3 000 m
above mean sea level, with few encounters above 6 000 m” [15]. Commonly, air-
craft operate at these altitudes and for this reason, the critical parts of aircraft
must include Ice Protection Systems (IPS). Anti-Ice operational regime of IPS
prevents the formation of ice and it includes two operating modes: fully evapo-
rative and running wet. Electro-Thermal IPS (ETIPS) is a mature technology
widely deployed to protect small critical parts due to its reliability. It consists
of a substratum including resistors to transform electricity into heating power.
One of its main drawbacks a high power consumption compared to other tech-
nologies, especially in fully evaporative operation for large protected areas in
long icing encounters. Also, when operating in running wet regime, the water
that is not evaporated might freeze downstream forming the so-called runback
ice. Runback ice also compromises safety and performance. Wing ETIPS are
deployed in several substratum heating bands that extend spanwise and can be
controlled independently. Despite its drawbacks, there is room for improvement
and motivation for such in the development of fully electric aircraft.

There is a very limited research effort available in open literature concern-
ing ETIPS experimental studies, mainly due to high cost and confidentiality.
A study conducted by Al-Khalil [1] consists of a set of icing wind tunnel tests
of an ETIPS. However, there is a large research effort on the development of
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numerical models for the prediction of the performance of Thermal Anti-Ice
ETIPS. Numerical models aim to support preliminary designs and to improve
the understanding of the physics. These codes include ANTICE [1], FENSAP-
ICE [2], the works by Silva [18,19] and many others. They are based on the
formulation of mass and energy conservation equations in control volumes. With
the development of numerical codes, there is a recent research effort on optimiz-
ing their power consumption. Pellisier [13] performed a surrogate-based numer-
ical optimization study of the geometric parameters of Pneumatic wing IPS.
The goal was to minimize the power consumption while ensuring all water was
evaporated employing GA. Pourbagian performed a surrogate-based optimiza-
tion study of a wing Anti-Ice ETIPS in both operational modes [16] utilizing
Multi-Adaptive Direct Search. Further work of Pourbagian [17] included several
formulations of objective functions and constraints for the optimization of an
Anti-Ice ETIPS.

In this work, the minimization of the thermal power consumption of an Anti-
Ice ETIPS working in fully evaporative regime was performed utilizing a GA.
Several Genetic operators were investigated and compared to find the best per-
forming one. The numerical framework of optimization of the IPS includes only
in-house developed and open-source codes. It is aimed to obtain an understand-
ing of the physics of optimized configurations compared to intuitive designs,
hence the identification of the global minimum is only advantageous. In Sect.
2, the framework for numerical simulations is presented. Section 3 describes the
optimization methodology including the objective function selected. In Sect. 4,
the results obtained are presented and discussed. Finally in Sect. 5 the conclud-
ing remarks are explained.

2 Numerical Modelling

2.1 Model Equations

Several assumptions and simplifications were introduced to enable the model con-
struction. Steady-state was assumed, given that generally, Anti-Ice systems deal
with long exposures to icing conditions. The physical process was decomposed in
several loosely coupled numerical steps. The discretization of the computational
domain was performed utilizing the in-house software uhMesh [7]. The computa-
tion of the Aerodynamic field was performed through the CFD code SU2 [8]. The
flow was modelled as inviscid and the resulting velocity field for the reference
test case is presented in Fig. 1. The distribution of water impingement was com-
puted by means of the in-house software PoliDrop [3]. It consists of a Lagrangian
Particle Tracking solver that computes the trajectories of water droplets in an
aerodynamic field. The distribution of water on the surface is quantified by the
collection efficiency. The obtained profile for the reference test case is presented
in Fig. 2. The thermal calculations were performed by the Anti-Ice module of
PoliMIce. It solved mass and energy conservation equations. The model equa-
tions were based on the work of Silva [18,19] while the liquid film model is based
on the work of Myers [12] adapted to the Anti-Ice problem. The equations are
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solved in a discrete domain divided into control volumes. The mass conservation
equation reads:

∂δf ūf (δf , s)
∂s

=
ṁimp − ṁevap − ṁice

AρH2O
(1)

From δf , ṁin and ṁout can be retrieved. The equation of the energy conservation
in the solid substratum of the IPS is presented next:

d
ds

(
kwall H dTwall

ds

) − F hwater (Twall − Twater) + q̇
′′
IPS

− (1 − F ) [hair (Twall − Trec)] = 0
(2)

Finally, a second conservation equation in the liquid film is formulated:

F A hair (Trec − Twater) + F A hwater (Twall − Twater)

+ ṁin cpwater
(Tin − Tref ) − ṁout cpwater

(Tout − Tref )

+ ṁimp

[
cpwater

(T∞ − Tref ) + V 2
∞
2

]

− ṁe [il−v + cpwater
(Twater − Tref )]

+ ṁice [il−s − cpwater
(Twater − Tref )] = 0.

(3)

The main heat fluxes in Eq. 3 are the evaporative and convective ones. The
convective heat fluxes are inefficiencies as ideally all the thermal power supplied
would be devoted to evaporation. The evaporative heat flux depends exponen-
tially on the temperature whereas the convective heat flux is linear. It is assumed
there is no temperature gradient across the height of the film. Terms to predict

Fig. 1. Airflow velocity field computed
by means of the CFD software SU2 for
the test case 67A

Fig. 2. Water collection efficiency com-
puted by means of PoliDrop. The 0
abscissa corresponds to the leading
edge of the airfoil. Positive values of s/c
correspond to the suction surface of the
airfoil.



Optimization of a Thermal Ice Protection System 193

and account for mass and heat fluxes of the runback ice were introduced into the
model formulation proposed by Silva [18]. The IPS substratum was modelled as
a unique layer with an equivalent thermal conductivity and a fixed thickness.

2.2 Baseline Design

The layout of the ETIPS was taken from the experimental work of Al-Khalil
[1]. The geometry consisted of an extruded NACA0012 profile with a chord of
0.9144 m. The IPS comprised a set of 7 multilayered heaters fitted at the leading
edge expanding spanwise. Due to a manufacturing issue, the heaters have been
shifted towards the suction side a total of 0.0145 m. Therefore, the geometry,
depicted in Fig. 3, is not symmetric. The freestream velocity is equal to 89.4
ms−1, the pressure is equal to 90 000 Pa, the angle of attack equal to 0◦ and
the Static Air Temperature is equal to 251.33 K. As for the cloud properties the
LWC is equal to 5.5e−4 kgm−3 and the MVD is equal to 20 µm.

Fig. 3. Layout of the heaters of the ETIPS. Note that due to a manufacturing issue
the heaters are shifted towards the CEG side

This layout and operation conditions were selected as the baseline test case
for optimization because they represented a realistic problem for which actual
improvements entailed by the optimization study would be quantified. The model
validation results are shown in Fig. 4, where they are compared to experimental
measurements reported in the work of Al-Khalil [1]. Computational results are
in good agreement with experiments, in particular in the region of impingement.
Due to fixed cloud and flight parameters, the mass impinging is computed only
once through the Aerodynamic and Particle Tracking solvers. Therefore, each
model evaluation included only the solution to the thermodynamic model. This
rendered the computational cost per evaluation in the order of 20 s. The simu-
lations were run in a single node from a cluster, which included two Intel Xeon
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X5650 processors with a base frequency of 2.67 GHz. Each consists of 6 cores
with 2 threads each, 24 threads in total.

Fig. 4. Comparison of the experimental surface temperature readings from the work
of Al-Khalil [1] and the predictions from the ETIPS numerical model

3 Optimization Methodology

3.1 Problem Formulation

The target of the optimization is the minimization of the thermal power con-
sumption of the ETIPS constrained to no-runback ice formations downstream
the protected parts. The designs for which the freezing mass rate was greater
than 1e−7 kgs−1 were considered infeasible. The design vector P included the
heat fluxes corresponding to each heater. A linear penalty method was chosen
to handle the constraint. The amount of constraint violation was integrated into
the objective function as a penalty. The penalty was chosen to be linearly pro-
portional to the amount of extra-power that would be required to evaporate the
freezing mass rate. Hence, the formulation of the optimization problem for a
discrete domain reads:

minimize
P∈IR7

7∑

i=1

PiΔli + k

N∑

i=1

ṁice(si)il−v (4a)

subject to Pi≥ 0Wm−2 (4b)
Pi≤ 45 000Wm−2, (4c)

where k is an integer proportionality factor. Low k values drove the optimization
algorithm to the infeasible region of the design space. High values stopped the
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exploration of the portions of the design space close to the constraint. Two
different values were tested namely, k = 3 and k = 10. When the constraint
was inactive, the objective function solely depended linearly on the heat fluxes.
Further decrease of the heat fluxes lead to the formation of runback ice, activating
the constraint. At that point, the monotony of the objective function changed
due to the penalty. Consequently, the global minimum must lay at the feasibility
boundary.

3.2 Optimization Algorithm Description

GAs were selected as the preferred optimization algorithm because the objective
function included nonlinearities and multiple local minima. These features were
associated with the inclusion of the penalty, which also introduced noise to the
objective function. That was due to the coupling of several numerical models with
their associated numerical errors. For these reasons, gradient-based algorithms
could misperform here. In addition, GAs are easily scaled to multi-objective
problems, allowing future problem exploitation. Finally, GAs are simple, mature,
widely proven and versatile algorithms that have successfully optimized complex
objective functions with different features when adequate parameters are set
[4]. Their main drawback is the slow or no convergence to the exact global
minimum and the requirement of parameter tunning. The computational cost
per evaluation of the ETIPS numerical model is low, enabling numerous repeated
samples.

GAs are inspired by the survival of the fittest individuals in a population. Each
individual is represented by a chromosome containing the input parameters and
by its fitness that accounts for its respective objective function value. The input
parameters were encoded forming a binary string, the chromosome in which each
bit mimics a gen. Bit encoding can perform equally well than real value encod-
ing as reported by De Jong [5]. Among its benefits are the ease of performing the
operations of Crossover and Mutation. A total of 23 bits per design variable were
required to get an accuracy of 0.01. The selected generic operators for the evo-
lution of the population were Roulette Selection, One-point Crossover, Bit-flip
Mutation and Elitism for the single best individual of a population [11]. The selec-
tion of operator parameters and population size is of paramount importance for
the adequate performance of the algorithm. In this work, they were extracted from
the parameter study performed by Deb for a multiple peak function [6]. Selection
operator performs the exploitation of local portions of the design space to find a
minimum. Crossover and Mutation operators account for two different paradigms
for exploration and exploitation. To investigate the suitability of each, their per-
formance was investigated in Crossover-based GA (C-GA) and Mutation-based
GA (M-GA) as well as combined (CM-GA). A constant population of 500 individ-
uals was selected. In a preliminary study, a population of 100 individuals presented
premature convergence as well as poor population diversity for C-GA, M-GA and
CM-GA, Operators parameters pcr and pm were set to 0.9 and 1

l respectively as
suggested by Deb [6]. The stopping criterion was set to 100 000 function evalua-
tions per run. To cope with the characteristic randomness of the algorithm, each
of the runs was repeated 5 times.
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4 Results

A summary of results is depicted in Table 1, where the best objective function
values Hb for each GA and k are reported with their respective constraint values
ṁice and the arithmetic mean of the minimized power consumption of all the 5
runs HA.

Table 1. Best and Average Performance of the 5 runs for each of the GA tested and
different penalty factors. The values reported account only for the power consumption,
not including constraint violation penalties.

k C-GA M-GA CM-GA

Hb ṁice HA Hb ṁice HA Hb ṁice HA

3 4 249 1.48e−6 4 289 4 329 2.75e−6 4 369 4 293 5.98e−7 4 342

10 4 286 0.00 4 341 4 249 0.00 4 287 4 328 0.00 4 381

First, it was observed that for k = 10, the optimized solutions for each run
were generally feasible. Hence, the exploration of the design space focused the
search in the feasible and linear portion of the design space. The best perform-
ing GA on average and individually was M-GA for the parameters selected. It
retrieved the overall best optimized solution, which decreased the thermal power
consumption by 11.8%, pushing the design to the feasible space. Besides, it pre-
sented the minimal difference between HA and Hb showing better consistence.
Nevertheless, CM-GA was the poorest performing algorithm caused by an excess
of exploration or sub-optimal parameter selection that slowed the convergence.
On the other hand, for k = 3, penalties were small enough such that infeasi-
ble solutions were well-performing. As stated in Sect. 3, the landscape of the
infeasible region is more complex. Because of that, more exploration was needed
making C-GA and CM-GA more adequate choices for the parameters selected.
The best performing GA was C-GA for both Hb and HA. The Mutation operator
performed exploration and exploitation actions even in a heterogeneous popu-
lation whereas the Crossover operator conducted exploitation only for homoge-
neous populations. The selected large population and random Selection operator
maintained diversity in the population. However, in the feasible space, further
exploitation given by M-GA was suitable and thorougher exploration performed
by CM-GA ill-performed.

The convergence histories for the 5 runs of M-GA and k = 10 are depicted
in Fig. 5. Analogous results were found for the remaining GAs and runs. The
computational cost per run was in the range of 2e5 s. One can see that the
convergence rate was slow, not reaching it clearly in any of the runs. Besides,
each run converged to a different value. This was due to the presence of several
local minima, inherent inefficiency of the GA or sub-optimal parameter selection.
Furthermore, the selective pressure was low. That was caused by the population
size and the uniform Selection operator that maintained alive unfit individuals
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and their genetic information by chance. On a different note, any minimum must
lie at the feasible boundary, dictated by the ice formation threshold. Otherwise,
Hb could be further reduced manually by decreasing any Pi until reaching it.
Consequently, in these runs no minimum was reached.
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Fig. 5. Convergence history over the course of the simulations. Convergence was still
not reached.

Next, the results obtained for the optimized design are presented in Fig. 6
and Table 2. It was found that the optimal design minimized as well the convec-
tive losses. In the baseline design, those accounted for 38% of the total thermal
power and 31% in the optimized design. That was achieved by shortening the
liquid film and nearly turning off heaters F and G. All the excess heat supplied
to them would be dissipated by the air. At stagnation point, there is a promi-
nent temperature drop. Large portion of heat is taken there to warm imping-
ing droplets. Besides convective losses relative to the thermal power supply are
maximum, hence keeping the heat flux low improved system performance. At
the locations corresponding to heaters B, C, D and E, the relative convective
losses were reduced. By raising the temperature there, the evaporation process
was more efficient the mass evaporated increases exponentially with water tem-
perature and convective losses depend linearly. In that way, a bigger portion of
the thermal power supplied was devoted to evaporation, improving the efficiency
of the ETIPS.
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Fig. 6. Temperature predictions on the solid surface for baseline and optimized designs.
Included additionally, the limits of the liquid film in each case for comparison

Table 2. Comparison of the heat fluxes and total power consumption per meter span
protected for baseline and optimized designs.

Heat flux

[Wm−2]

Heater A Heater B Heater C Heater D Heater E Heater F Heater G Power

[Wm−1]

Base 43 400 32 550 26 350 21 700 18 600 20 150 18 600 4 815

Opt 6 328 39 378 39 476 41 853 43 039 0 239 4 250

5 Final Remarks

Any of the GA alternatives was successful in finding the designs that outper-
formed the initial intuitive design within few function evaluations. However,
convergence to a minimum was slow and frequently non reached. In addition,
the global minimum was not identified either. This evidenced the shortcomings
of GA under sub-optimal parameters selection. Nevertheless, it was concluded
that deploying a more aggressive elitist strategy could speed up convergence.
For instance, elitist parent-off spring survival to fill the population size, which
provided promising results in preliminary runs. Moreover, the number of bits
chosen for the binary encoding of each of the variables should be investigated
as well for improved convergence. With regards to the allocation of heat fluxes,
it was found that an optimal design presents minimal convective losses for the
same amount of evaporative heat fluxes. This could be achieved by increasing the
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water temperature in locations of relatively low convective losses and shrinking
the liquid film. Furthermore, the heat fluxes in dry parts should be low or oth-
erwise, the convective losses would rapidly escalate. Due to the accuracy of the
numerical model presented in Sect. 2, a mismatch is expected between the best
solution here presented and reality. However, the qualitative design guidance can
be helpful on the allocation of heat fluxes on the heaters of an ETIPS.

Acknowledgements. The work in this paper was supported by the H2020-MSCA-
ITN-2016 UTOPIAE, grant agreement 722734.
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Abstract. We propose a new memetic algorithm to minimize the
makespan for the flowshop scheduling problem in two variants: the
classic permutation setting and the no-wait statement. Our algorithm
hybridizes the local search technique into the framework of a steady-
state genetic algorithm. A local search heuristic is applied on each itera-
tion and explores the insertion neighborhood. The execution of the local
search is parallelized using the CUDA framework for Graphics Processing
Units. The initial population is constructed by means of greedy construc-
tive heuristics. A computational experiment on the benchmark instances
shows that the proposed algorithm yields results competitive to those of
well-known algorithms for the flowshop problem.

Keywords: Local search · Genetic algorithm · Permutation · CUDA ·
GPU

1 Introduction

We consider the permutation flowshop scheduling problem with makespan crite-
rion (FSSP) [7]. Let n be the number of jobs and m be the number of machines.
Each of n jobs is to be sequentially processed on machines 1, . . . ,m. The pro-
cessing time pji of job j on machine i is given. Preemption of the execution of a
job on a machine is disallowed. At any time, each machine can process at most
one job and each job can be processed on at most one machine. The sequence
in which the jobs are to be processed is the same for each machine. The aim is
to find a permutation of jobs to minimize the maximum completion time, Cmax.
The FSSP appears in various real-world situations, such as engineering problems,
production and air transportation scheduling. We also consider the flowshop set-
ting with no-wait environment [9], where a job must be processed from start to
completion, without any interruption either on or between machines.

Due to the strong NP-hardness of the considered flowshop problems [7,23],
heuristics and metaheuristics occupy an important place among the methods
developed for them. In particular, single-solution based metaheuristics such as
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iterative local search, tabu search, simulated annealing, variable neighborhood
search (see, e.g., [8,22,24,26,31]), and hybrid population-based algorithms such
as genetic algorithms, ant colony systems, particle swarm, differential evolution
(see, e.g., [11,13,15,20,28]) have been developed. In order to construct an initial
solution the NEH-algorithm [17] is often used, which is considered to be the best
one among polynomial time constructive heuristics for the flowshop scheduling.
For permutation-based optimization problems four neighborhoods are usually
used: insertion, swap, shift and inversion. The experimental evaluation showed
that the insertion neighborhood is the most efficient for various variants of
the flowshop [8,22,26]. Some local search heuristics explore subsets of inser-
tion and swap neighborhoods, and use problem-specific speed-up technics (see,
e.g., [8,11,26,28,29]). Hybrid evolutionary algorithms as usual apply order-type
crossovers, insertion-based local updates, greedy constructive heuristics [12,17],
and various mechanisms for maintaining population diversity (migration of indi-
viduals between subpopulations, restarting procedures with updating all or part
of individuals, adaptive learning strategies for multiple operators) [15,19,20].

A memetic algorithm is a method that combines a population-based search
approach, and local search (LS) techniques and/or constructive heuristics (see,
e.g., [18]). Such population-based search frameworks as genetic algorithms (GAs)
and ant colony optimization are often used in the domain of combinatorial
optimization, while differential evolution and particle swarm optimization are
favored in continuous variable problems. Local improvements can be incorpo-
rated at different steps of the population-based search. It is possible to classify
improvement at initialization step, post-processing integration, and procedures
that are interleaved within population-based evolutionary operators. Coordina-
tion of the algorithmic components can be performed by means of fitness-based or
distance-based diversity adaptive rules, adaptive hyper-heuristics, self-adaptive
and co-evolutionary schemes, and learning processes [18]. Various memetic algo-
rithms (also called hybrid algorithms) have been proposed and for problems on
permutations, in particular for the flowshop settings (see, e.g., [2,5,18,19]).

Recently the use of graphics processing units (GPUs), CPU multi-core envi-
ronments and heterogeneous approaches is popular to speedup optimization and
provide a basis for parallel computing [24]. GPU computing is one of the powerful
ways to achieve high-performance on various applications [6,25]. Parallelization
strategies are classified according to the source of parallelism: low-level paral-
lelism (evaluating neighbor solutions or computing the objective of a solution
in parallel), domain decomposition (subproblems are solved simultaneously by
applying the same sequential algorithm), independent and cooperative multi-
search (explorations of the search space by different methods).

For variations of the flowshop scheduling the following parallel algorithms
were developed: GPU-accelerated branch-and-bound algorithms [3,30] (bound-
ing operators are performed on GPU), GPU-based local search methods with
parallel execution of swap or insertion moves [10,29,31], a parallel version of
NEH-algorithm [16], multi-search metaheuristics [20,24], and others. For exam-
ple, several individuals or sub-populations are updated in parallel in such multi-
search population-based methods as parallel simulated annealing, parallel tabu
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search, island genetic algorithm and hybrid memetic algorithm with iterated
greedy heuristic [20,24]. We also note that hybrid population-based algorithms
with GPU-based low-level parallelism have been proposed for various problems
on permutations. In particular, the experimental evaluation showed applicability
of the algorithms to routing and scheduling problems (see, e.g., [6,24,25]).

Our Results. We propose a unified memetic algorithm for the classic and no-
wait flowshop scheduling problems. Our algorithm uses the randomized analog
of NEH-heuristic [17] to generate the initial population. Moreover, this algorithm
applies a local search method with insertion neighborhood. In order to reduce
the computational time we provide parallel realization of the local search, where
moves in a neighborhood are distributed between GPU-threads. The perfor-
mance of our algorithm is evaluated with two standard benchmarks: Reeves’s
instances [21] and Taillard’s instances [27]. Experimental results showed that
the proposed memetic algorithm yields results competitive or superior to those
of state-of-the-art algorithms.

The article is organized as follows. Section 2 presents our memetic algorithm
and describes its operators. Section 3 provides the experimental evaluation on
benchmark instances. Section 4 contains the concluding remarks.

2 Memetic Algorithm

Our memetic algorithm is implemented within the population-based framework
of genetic algorithms. The genetic algorithm uses a population of individuals and
reproduction operators to reach optimal/near optimal solutions, where each indi-
vidual encodes some solution. We chose the natural representation of solutions
for the flowshop scheduling, i.e. an individual is represented as a permutation
of jobs. The components of the permutations are called genes. The initial popu-
lation is built by the randomized analog of NEH-heuristic [17] and an insertion
local search (which will be described below). The fitness function is equal to
the objective function and calculated in O(nm) time for the classic flowshop
scheduling, and O(n) time for the no-wait case (using the well-known reduction
to the asymmetric traveling salesman problem, see, e.g., [14]). The basic scheme
of the proposed memetic algorithm is outlined in Algorithm 1.

The randomized analog of NEH-heuristic includes the following two stages.
Firstly we randomly sort all jobs (in the original NEH-algorithm jobs are ordered
by decreasing sums of processing times on all machines), then take the first two
jobs and find their order with the best makespan. Secondly we take the i-th job
from the sequence obtained on the first stage, and construct the best partial
solution by inserting this job into all possible i positions of the current schedule,
i = 3, 4, . . . , n. The computational complexity of this heuristic is O(n2m).

We use the steady state replacement, in which one iteration means producing
two offspring individuals. The choice of parents is made by the tournament
selection operator, in which σ individuals are selected randomly and the best one
is returned as a result. Parameter σ is defined manually. The first and second
parents are selected by independent applications of this operator. When the new
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child individuals are generated, they are included in the population, replacing
two existing individuals that are found by the “inverse” selection operator. It
works as described above, but selects the worst individuals among the randomly
selected ones.

Algorithm 1. Basic Scheme of the Memetic Algorithm
1: Build initial population Π using NEH and LSins.
2: Until a termination condition is satisfied do

2.1 Choose two individuals p1 and p2 from Π.
2.2 Apply reproduction operator: (c1, c2) = R(p1, p2).
2.3 Apply local search operator LSins to c1 and c2 and construct c′

1 and c′
2.

2.4 Choose individuals q1, q2 from Π for replacement.
2.5 Replace q1 and q2 by c′

1 and c′
2.

3: Return the best found individual.

The reproduction operator consists of crossover and mutation. Three
crossovers, the Order Crossover (OX), the Partially Mapped Crossover (PMX),
and the Cycle Crossover (CX), are implemented (see e.g. [4]), the choice between
them is made randomly with equal probability. Note that we use order-based
and position-based crossover operators: OX preserve the absolute positions in
the sequence of elements of one parent individual and the relative positions of
those from the other; PMX partially copies values of genes from parents, and
the rest positions are filled by the pairwise exchanges between parents; in CX
a value of each gene is copied from one of the values of this gene in the parent
solutions. Two mutation operators are used. The first one, Mswap, selects two
random positions and swaps the values in these positions. The second operator,
Mins, randomly selects a gene and inserts its value at a new randomly selected
position shifting the middle part of the chromosome in the appropriate direction.
Moreover, the mutation is applied to an offspring individual one or two or three
times, the number of times is chosen randomly.

The local search procedure based on insertion neighborhood is used in the
algorithm. We call it LSins. Note that here a move to the neighbor solution is
the same as in the Mins operator, i.e. two positions i and j are selected, and
element at position i is inserted in position j. A one step of the LS consists
in enumeration of all pairs i and j and performing a best improving move if it
exists (best improvement strategy). The enumeration part is done in parallel and
implemented for running on a Graphics Processing Unit. A GPU has a highly
parallel processor with hundreds or thousands cores that is now widely used
not only for graphics rendering but also for general purpose computing. The
SIMD (Single Instruction, Multiple Data) architecture of the GPU suits well for
tasks where the same function must be executed large number of times in many
parallel threads.

In our implementation, each thread computes cost function for some pair i
and j. Note that the program code of one step of LSins is different for the cases
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i < j (ForeInsertion) and j < i (BackInsertion), so they are implemented as
different procedures. The mapping between values i, j and the thread id is done
in the most evident way illustrated below (considering the case i > j).

i \ j 0 1 2 3
1 0
2 1 2
3 3 4 5
4 6 7 8 9

For instance, the thread with id = 7 operates with i = 4, j = 1.
To keep the memory consumption and the transfer costs between the CPU

and the GPU, all the threads share the same current solution π = (π1, . . . , πn).
Since its size is relatively small, the time required to copy it to the GPU is
negligible. The neighbor permutations are not generated explicitly, instead the
required elements are obtained when necessary, i.e. in the case i > j it holds
π′
j = πi, π′

k = πk−1 if j < k ≤ i, and π′
k = πk otherwise. For the case i < j, the

correspondence is done similarly. The input data of the problem, i.e. the matrix
of processing times is loaded to the constant memory at the beginning of the
computations.

As a result of execution of all the threads, a set of cost values for all possible
moves is obtained and the best one is selected. The search for the best move is
also done in parallel using a reduction step, in which the whole set is divided in
smaller parts, each part is searched for the minimal element, then a minimum
is found among the obtained elements. When the best pair i, j is found, the
improving neighbor solution is built on the CPU.

Unfortunately, the GPU approach requires to implement the objective func-
tion evaluation twice: in the CPU code of the fitness function, and in the GPU
kernel, but these are mostly the same copy/paste parts of the code.

On each iteration of LSins, the case i < j or j < i is selected randomly, then
the best move under this condition is found and applied. The search is stopped
when neither of two cases improves the current solution. This approach helps to
adjust the algorithm for the GPU architecture and introduces some randomness
to the local search.

The LSins is widely used for the FSSP and many authors report its advan-
tage. We also tested an adaptive LS in parallel version on a GPU, where three
neighborhoods: insertion, swap and optimization of the subsequences are com-
bined. However, a preliminary experiment did not demonstrate statistical sig-
nificant improvements of such approach. So, we apply only LSins in our main
computational experiment.

To prevent the algorithm to get stuck in the regions of poor local optima, the
following restart rule is applied (see e.g. [1]): The memetic algorithm performs
the first Itermin iterations unconditionally. After that, each time the algorithm
finds a new record solution, the execution time since the last restart (i.e. the last
rebuild of the population) is registered and the same amount of time is given for
the algorithm to continue. In the experiments it was observed that in some rare
cases this may lead to very long restarts, so the parameter Tmax

r was introduced,
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which defines the limit of the amount of time given to the algorithm after the
last record hitting.

3 Implementation Details and Experimental Results

For the computational evaluation, our memetic algorithm (denoted MAPLS)
was coded in C++ and compiled with g++ 5.5.0 with O3 optimization flag
under 64 bit Ubuntu Linux 18.04. The GPU part of LS was implemented in C
with CUDA toolkit 8.0 (https://developer.nvidia.com/cuda-80-ga2-download-
archive). In the experiments the following equipment is used: CPU Intel i5-9400F
2.90 GHz and GPU Tesla C2075. We observed that for the largest considered
instances (with 200 jobs) the local search on the GPU is about eight times faster
than the similar sequential local search on one core of the CPU.

In the preliminary tests the algorithm settings were tuned as follows. The
population size is 200, the tournament size for the selection operator is σ = 10,
the minimal number of iterations is Itermin = 1000. For each instance MAPLS

made 20 independent runs consisting of three restarts. The experiments were
done on the well known benchmarks of Reeves [21] and Taillard [27]. The con-
sidered instances and their sizes are given in Table 1. The values of parameter
Tmax
r (see Sect. 2) in seconds were adjusted manually depending on the problem

size and are also given in this table.

Table 1. Problem sizes and time limits

Jobs Machines Instances Tmax
r Tmax

r (no wait)

50 10 rec31,...,rec35 7 3

75 20 rec37,...,rec41 20 6

50 20 ta51,...,ta60 10 3

100 10 ta71,...,ta80 20 5

100 20 ta81,...,ta90 30 7

3.1 Comparison to Known Algorithms for the Classic Flowshop

The proposed memetic algorithm MAPLS is initially evaluated on the permu-
tation flowshop scheduling problem. For a comparison, three evolutionary algo-
rithms from the literature are considered: the hybrid backtracking search algo-
rithm (HBS) [13], the memetic algorithm (MA) [19], and the parallel hybrid
method (MA+MIG) [20]. All the considered algorithms construct the initial
population using NEH-based heuristics and randomly, and apply local search
with the insertion neighborhood.

HBS [13] is an evolutionary algorithm using specific population management
strategy with backtracking search. Initial population is constructed randomly,

https://developer.nvidia.com/cuda-80-ga2-download-archive
https://developer.nvidia.com/cuda-80-ga2-download-archive
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except for one individual, which is build by NEH-approach. The algorithm incor-
porates three order-based crossovers, random insertion local search, and swap-,
insertion-, and inverse-type mutations. It was executed on Pentium Dule-Core
3 GHz processor, 4 Gb RAM.

MA [19] iteratively applies order crossover, shift mutation, and two problem-
specific heuristics (gap filling and job shifting). The initial population is gen-
erated by Johnson’s algorithm [12], NEH-based heuristics and randomly. A
restart mechanism is also used. The algorithm [19] was executed on Intel Core
i7 2.8 GHz, 4 Gb RAM.

MA+MIG [20] is a parallel hybrid method, that combines memetic algorithm
and multi-CPU-threaded iterated greedy (MIG) algorithm (one thread is used
for the MA and seven threads for MIG). The population in MA has the ternary
tree structure. The initial population is constructed by NEH and greedy heuris-
tics, and randomly. Each iteration of the MA includes optimal 1-point crossover,
inversion mutation and local improvements. MIG is based on the insertion neigh-
borhood, and runs concurrently with the MA. A restarting rule and a migration
of individuals between the algorithms are applied. MA+MIG was tested on Dual
Xeon E5405 (Quad core) 2.0 GHz, 32 Gb RAM (unfortunately, the authors did
not report the running time of MA+MIG on the considered instances with 20
machines from [27]).

The results of four considered algorithms for the classic permutation flowshop
problem are given in Table 2. The first column shows the instance name. Column
C∗ indicates the optimal or best-known objective values. The performance of the
algorithms is evaluated by the relative error r = (C − C∗)/C∗ × 100%, where
C is the objective value of the solution, found by the algorithm. In the table,
the minimal, average, and maximal errors are reported in the corresponding
columns. Empty cells in the table mean that the results were not published for
these instances. In addition, the test instances were solved by the general purpose
local search based optimization package LocalSolver (https://www.localsolver.
com/). For each instance, one run with the time limit equal to the average
execution time of MAPLS was performed, the relative errors are shown in the
last column. Table 3 demonstrates the relative errors and run times averaged
over series. The full results for each individual run are available at https://
github.com/pborisovsky/flowshop-gpu.

As we can see from Tables 2 and 3, the newly proposed MAPLS outperforms
HBS and MA in terms of relative errors. The maximal relative error of MAPLS

is less than the minimal error of HBS on all considered instances from [21]. The
average relative error of the resulting solution for MAPLS is 0.6%, while that of
MA is 0.8% over 30 tested instances from [27]. Note that the running time of MA
and HBS was similar to the run time presented in this study for our algorithm.

We also carried out the statistical analysis of experimental data using the
Wilcoxon test. The results indicate that the difference between the record values
of MAPLS and MA is statistically significant at level α ≤ 0.05 on series from [27].

https://www.localsolver.com/
https://www.localsolver.com/
https://github.com/pborisovsky/flowshop-gpu
https://github.com/pborisovsky/flowshop-gpu


208 P. Borisovsky and Y. Kovalenko

Table 2. Relative percentage error for the classic flowshop

Name C∗ MAPLS HBS MA MA+MIG Local

rmin ravg rmax rmin ravg rmax rmin ravg rmin ravg rmax Solver

rec31 3045 0.26 0.26 0.26 0.43 1.91 2.66 1.84

rec33 3114 0 0 0 0 0.59 1.28 0.0

rec35 3277 0 0 0 0 0 0 0.0

rec37 4951 0.3 0.76 1.19 1.92 2.93 4.2 4.97

rec39 5087 0.65 0.69 0.88 0.9 1.88 3.38 1.97

rec41 4960 0.3 0.63 1.17 1.69 2.72 3.55 2.88

ta51 3847 0.47 0.83 1.2 1.2 1.21 0.39 0.59 0.7 2.7

ta52 3704 0.24 0.31 0.59 0.3 0.44 0.11 0.24 0.35 3.46

ta53 3640 0.16 0.68 1.13 0.99 1.03 0.25 0.7 0.88 3.08

ta54 3719 0.43 0.69 0.91 0.56 0.75 0.38 0.66 0.86 1.91

ta55 3610 0.11 0.48 0.83 0.19 0.4 0.22 0.49 0.61 3.24

ta56 3679 0.33 0.61 1.06 0.43 0.68 0.14 0.49 0.71 2.94

ta57 3704 0.16 0.48 0.81 0.54 0.73 0.27 0.54 0.7 2.43

ta58 3691 0.51 0.78 1.11 0.57 1.14 0.27 0.81 1.03 2.36

ta59 3741 0.4 0.67 1.2 0.56 0.71 0.35 0.53 0.7 2.06

ta60 3756 0.29 0.47 0.67 0.67 0.83 0.29 0.32 0.37 1.28

ta71 5770 0 0.01 0.02 0 0.03 0.12

ta72 5349 0 0.19 0.24 0.24 0.24 0.24

ta73 5676 0.05 0.05 0.05 0.05 0.05 0.26

ta74 5781 0 0.47 0.78 0.19 0.24 0.78

ta75 5467 0 0.29 0.55 0.05 0.07 0.8

ta76 5303 0 0.08 0.09 0.09 0.09 0.34

ta77 5595 0.02 0.06 0.09 0.13 0.19 0.18

ta78 5617 0.11 0.34 0.41 0.2 0.26 0.82

ta79 5871 0.07 0.1 0.34 0.22 0.28 0.97

ta80 5845 0.05 0.05 0.05 0.05 0.05 0.62

ta81 6202 0.69 1.02 1.34 1.42 1.52 0.42 0.82 1.02 2.21

ta82 6183 0.55 0.91 1.33 1.34 1.36 0.73 0.91 1.1 2.35

ta83 6271 0.38 0.74 1.02 1.29 1.39 0.24 0.48 0.62 2.01

ta84 6269 0.49 0.83 1.55 1.37 1.43 0.16 0.48 0.54 2.71

ta85 6314 0.21 0.74 1.36 1.19 1.31 0.25 0.51 0.65 2.33

ta86 6364 0.03 1.42 1.93 1.37 1.46 0.17 0.71 0.94 1.98

ta87 6268 0.49 0.77 1.08 1.01 1.07 0.4 0.68 0.88 1.8

ta88 6401 0.53 0.81 1.41 1.45 1.57 0.61 0.81 1.03 2.55

ta89 6275 0.41 0.79 1.08 1.07 1.11 0.4 0.76 0.92 1.88

ta90 6434 0.19 0.82 1.51 1.15 1.29 0.3 0.62 0.79 1.63

Algorithms MAPLS and MA+MIG demonstrate competitive relative errors
on problems of sizes 50 × 20 and 100 × 20. The results of LocalSolver look
quite good for the general-purpose solver, but not superior to the considered
evolutionary algorithms.
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Table 3. Comparison of the algorithms for the classic flowshop

Size MAPLS HBS MA MA+MIG Local

rmin ravg Time rmin ravg Time rmin ravg Time rmin ravg Solver

50 × 10 0.09 0.09 15.67 0.14 0.83 36.7 0.61

75 × 20 0.42 0.69 127.33 1.5 2.51 216.3 3.27

50 × 20 0.31 0.6 49 0.6 0.79 65 0.27 0.54 2.55

100 × 10 0.03 0.16 49.1 0.12 0.15 70 0.51

100 × 20 0.4 0.89 194.8 1.27 1.35 142 0.37 0.68 2.15

3.2 Comparison to Known Algorithms for the No-Wait Flowshop

A similar experiment was carried out for the no-wait flowshop problem. No
modifications of the algorithm were done except the fitness calculation. For the
comparison, genetic algorithms HGA [28] and GA-VNS [11] were considered.

HGA [28] uses the population management strategy known as elitist recom-
bination. The initial individuals are generated at random. The orthogonal-array-
based crossover with three or six cut points, exchange mutation, and two reduced
variants of insertion local search (α-range insertion search and insertion search
with cut-and-repair) are utilized in the GA [28]. A perturbation is applied by
means of mutation operators. The algorithm [28] was executed on Intel Pentium
III 1266 MHz, 1 Gb RAM.

GA-VNS [11] uses the steady state replacement, Block Order Crossover and
insertion mutation. Individuals are improved by a variable neighborhood search
based on swap and insertion neighborhoods. The initial population is constricted
by the same randomized analog of NEH-heuristic as in our algorithm. The algo-
rithm [11] was executed on Intel Pentium IV 3.2 GHz, 512 Mb RAM.

The same test instances were used in the experiment for no-wait FSSP, the
optimal makespan values were collected from [14]. The results are given in Tables
4 and 5 in the form identical to the classic flowshop. Negative deviations for
HGA indicate that the records reported in [28] are less than the values given
in column C∗, which contradicts with [14], where the authors claim that the
provided solutions are exact optima. The average relative errors of GA-VNS
presented in paper [11] were copied to Table 5 (marked by underline). These
errors correspond to upper bounds from [11], which do not coincide with optimal
makespans from [14]. So the relative deviations for GA-VNS will be greater than
in [11] if instead of upper bounds we take the optimal values.

As seen from Tables 4 and 5 our algorithm MAPLS presents very compet-
itive results in terms of relative errors. Optimal solutions were found on 13
out of 36 instances, and the maximal relative error is no more than 0.8%. The
average relative error for MAPLS is approximately by the factor 4 smaller than
that of HGA on 22 Taillard’s instances, where the calculated deviations are
non-negative for HGA (the difference between the record values is statistically
significant at level α ≤ 0.05 on these problems). Notice that MAPLS is more time
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Table 4. Relative percentage error for the no-wait flowshop

Name C∗ MAPLS GA-VNS HGA Local

rmin ravg rmax rmin ravg rmax rmin ravg rmax Solver

rec31 4307 0 0.13 0.35 0.18 0.51 0.76 0.14 0.5 1.49

rec33 4424 0 0.21 0.45 0.09 0.71 1.49 0.16 0.71 2.08

rec35 4397 0 0.08 0.18 0 0.4 0.72 0 0.48 2.25

rec37 8008 0.14 0.28 0.55 0.23 0.86 1.32 0.21 0.51 3.5

rec39 8419 0.08 0.22 0.42 0.11 0.76 1.2 0.32 0.76 3.88

rec41 8437 0.01 0.22 0.4 0.15 0.68 1.01 0.53 0.65 4.43

ta51 6129 0 0 0 0.15 0.34 0.7 6.04

ta52 5725 0 0.01 0.09 −0.07 0.46 1.14 5.66

ta53 5862 0 0.1 0.19 −0.26 0.38 1.14 5.41

ta54 5788 0 0 0.03 −0.12 0.29 0.67 4.22

ta55 5886 0 0.01 0.1 0.08 0.4 1.09 4.09

ta56 5863 0 0.13 0.2 0.2 0.47 0.82 3.38

ta57 5962 0 0.07 0.13 −0.42 0.2 0.65 3.02

ta58 5926 0 0.07 0.24 −0.12 0.42 0.76 3.68

ta59 5876 0 0 0 −0.63 −0.04 0.39 4.94

ta60 5957 0 0.02 0.12 −0.37 0.11 0.37 2.3

ta71 8055 0.26 0.4 0.53 0.74 1.47 2.17 3.34

ta72 7853 0.39 0.59 0.85 1.69 2.48 3.16 3.32

ta73 8016 0.21 0.38 0.64 0.51 1.57 2.48 3.44

ta74 8328 0.19 0.35 0.6 −0.01 1.31 2.13 3.41

ta75 7936 0.3 0.47 0.74 0.69 1.39 2.02 4.62

ta76 7773 0.23 0.47 0.72 0.64 1.42 2.24 4.53

ta77 7846 0.14 0.37 0.65 0.88 2.05 3 4.28

ta78 7880 0.28 0.45 0.63 0.75 2.15 2.86 4.31

ta79 8131 0.33 0.48 0.64 1.17 1.96 2.68 3.8

ta80 8092 0.28 0.51 0.77 1.16 2.02 3.06 4.45

ta81 10675 0.21 0.35 0.59 0.66 1.42 2.41 5.62

ta82 10562 0.3 0.44 0.8 0.88 1.9 2.7 4.66

ta83 10587 0.2 0.41 0.6 0.8 1.45 2.21 3.58

ta84 10588 0.2 0.33 0.51 0.4 0.87 1.97 4.88

ta85 10506 0.16 0.35 0.61 0.4 1.45 2.58 4.15

ta86 10623 0.17 0.45 0.71 0.72 1.22 2.17 5.23

ta87 10793 0.2 0.31 0.44 0.32 1.12 2.21 3.95

ta88 10801 0.12 0.35 0.54 0.57 0.96 1.77 3.73

ta89 10703 0.14 0.33 0.48 0.45 1.46 2.43 4.34

ta90 10747 0.25 0.43 0.69 0.44 1.69 2.98 4.62

consuming than GA-VNS, probably because it does not use some specific prop-
erties of the no-wait setting, but the solutions quality of MAPLS is much better.
Again, general-purpose software LocalSolver shows good performance, but is still
inferior to the considered evolutionary algorithms.

The proposed memetic algorithm is implemented in a very generic way using
little knowledge of the particular problem, and it can be easily applied to any
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Table 5. Comparison of the algorithms for the no-wait flowshop

Size MAPLS GA-VNS HGA Local

rmin ravg time rmin ravg Time rmin ravg Time Solver

50 × 10 0 0.14 8 0.09 0.54 0.33 0.1 0.56 0.25 1.94

75 × 20 0.08 0.24 41.33 0.16 0.77 0.82 0.35 0.64 1.27 3.94

50 × 20 0 0.04 9.4 0.07 0.47 0.35 −0.16 0.3 3 4.27

100 × 10 0.26 0.45 56.5 0.43 0.85 2.18 0.82 1.78 67 3.95

100 × 20 0.19 0.38 75.3 0.42 0.91 2.18 0.56 1.35 83 4.48

other optimization problem on permutations. Of course the algorithm may be not
competitive for such problems like TSP, for which many advanced methods were
developed based on the property that the cost function can be fastly updated in
local search moves. Besides, other types of neighborhoods are more appropriate
for permutation problems with objective functions containing weights of adja-
cencies between elements. On the other hand, there are many problems that do
not have this property (see, e.g., [9,24,25]), and the proposed MAPLS can be
used for their solving.

4 Conclusion

We proposed and experimentally evaluated a unified memetic algorithm for two
versions of the permutation flowshop scheduling. The algorithm does not essen-
tially use any special knowledge of a particular problem except the objective
function, and may be applied to other problems on permutations. The main
feature of the algorithm is the parallel local search implemented for executing
on GPU. This study allows to estimate the advantages of using GPUs in the
design of metaheuristics. In our experiments, the proposed algorithm showed
better or similar performance comparing to other evolutionary algorithms spe-
cially adjusted for solving only one variant of the considered problem. Note that
unlike usual processors, GPUs are being rapidly improved, and much better
performance can be expected using a newer device. The future research may
concentrate on the improvement of parallel local search and its better adjust-
ment for the GPU architecture, and further evaluation and development of this
approach for other optimization problems.
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using “Tesla” cluster at Omsk branch of Sobolev Institute of Mathematics.
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Abstract. We present a new application suitable for evolutionary algo-
rithms: geometry optimization for robotic applications. Our working
example is a robotic cheetah leg, which uses simple control algorithms,
but accurately crafted and tuned mechanics to maximize motion effi-
ciency. In this paper we aim at tuning its parameters, such that the
joints of the leg follow the desired trajectories as close as possible. Opti-
mization is done in two stages involving just two parameters each.

Even this simply-looking problem presents a challenge to evolution-
ary algorithms, as it is both ill-conditioned and multimodal. However,
we show that choosing a better fitness function that captures our desires
in a different way can make the problem much easier.

Keywords: Robotic leg · Fitness function · Multimodal functions

1 Introduction

Development of generative (or computational) design methods and algorithms
became a hot topic in CAD-system in general, and robotics in particular, sev-
eral decades ago [2,9,23]. However, with recent developments in machine learning
and numerical optimization techniques we expect a new wave to come, bringing
not only theoretical achievements, but also a number of interesting implementa-
tion examples. Modern methods of structure synthesis are used in various robotic
tasks in manufacturing, aquaculture and fishery, technical medicine, automated
inspection, entertainment and film making, and others [3,7,8,11,13,15,16,20–22].

On the other hand, working in different application areas requires under-
standing of specific design requirements and constraints, which will define the
optimization problem framework, including cost function selection. For example,
synthesis of the mechanism of the robot feeder was carried out in accordance with
the condition of minimum acceleration and speed limits of the end-effector [20].
In [11] synthesis of a surgical robot was carried out according to the parameters
of the instrument working area, depending on its position for a serial robot. Var-
ious methods have been developed and applied for legged robots in particular.
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Fig. 1. The prototype of the Minitaur mechanism built in the BE2R Lab, ITMO Uni-
versity, based on the concept presented in [17]

In [15] the walking bilateral robot with flexible passive legs has been developed,
where each joint has been optimized to ensure smooth movements similar to a
human gait. In [8] dynamic synthesis was performed for the jumping robot to
reduce the torque on the drivers.

Generative design in general includes topology optimization, nevertheless the
problem of robot geometric parameters optimization addressed in this work is
an essential part of it. Moreover, for many tasks, especially when we stick to
certain manufacturing technologies, doing parametric optimization covers 90%
of what is needed and gives more cost-efficient solutions.

This research is motivated by the task to synthesize a structure that would
mechanically repeat the desired behaviour of the bio-inspired robotic cheetah
leg mechanism (see Fig. 1 for an example of our experimental test-bed). Same
goal can be achieved if we leave system design as is and force desired motion
by means of control algorithms along, but this approach has its bottlenecks. At
first, it is much less energy efficient and requires much more complicated control
systems both in terms of hardware (sensors and actuators) and algorithms.

In this sense, our work is related to recent developments of the Disney-
Research team in the field of mechanism optimization. Mainly, they are solving
animatronics tasks [3,13,21], jumping and walking robots projects [5,14].

In our previous attempt, we used the Pattern Search optimizer [10] offered
by the MATLAB environment. Since Pattern Search is an advanced form of
continuous local search, which has good convergence properties but a lack of
the global search ability, our next step, which we attempt in this paper, is to
investigate how global optimizers perform on the same task. For this stage, we
chose the representative continuous evolutionary optimizers from the two most
prominent families which are known to perform well in various benchmarks: Dif-
ferential Evolution [18] and Covariance Matrix Adaptation Evolution Strategy,
or CMA-ES [6].
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We should mention that even though this case study is related to legged
robot design, the proposed approach is quite general to be applied for mecha-
nism optimization of various robotic systems. On the other hand, these steps in
rigid-body kinematics optimization can be a starting point for further studies
including automatic elastic elements allocation and its elasto-static parameters
adjustment, which was done manually in authors’ preceding work [1].

(a)

1

2

3

4

(b)

Fig. 2. a) The mechanism of the Cheetah Leg: (1) cranks, (2) connecting rods, (3)
crank arm/femur, (4) brick, (5) rocker, (6) connecting rod/tibia, (7) rocker/fibula,
(8) output link/ankle, (9) frame, F is a contact point with ground/feet. b) Cheetah
skeleton: (1) femur, (2) patella, (3) tibia, (4) fibula

The rest of the paper is organized in the following way. Sect. 2 sets some
preliminaries including mechanical design issues to be taken into account, frame-
work of the proposed parametric optimization, and description of the cost func-
tion used in our previous studies. Section 3 presents main contribution of this
work, which is improving parametric convergence by means of evolutionary algo-
rithms along with a newly suggested cost function. We also put here optimiza-
tion results together with our observations on what properties the mechanism
optimization problem has to make it an interesting challenge for evolutionary
algorithms implementation. Section 4 concludes.

2 Preliminaries

2.1 Leg Mechanism Description

Topology of our robotic leg is inspired by the animal cheetah’s muscle-skeletal
structure (see Fig. 2(b)). But completely copying the legs’ structure makes not
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much sense, instead we want a mechanism that will reproduce desired animal-like
motions, which is of interest for animatronic designs.

The leg can be divided in three parts: the hip, the knee, and the foot. The
Minitaur mechanism (Fig. 2(a)) is a good choice for the robotic hip because of
the following reasons. It can produce a large range of different gaits, controlling
the difference in the angles of the input links and their speed. It is compact so the
height and length of the jump does not depend on the width of the mechanism
[17]. The input shafts O1 and O2 are rotating cranks O1A and O3A

′ to actuate
leg mechanism. The mechanism of the Minotaur is responsible for moving the
patella (see B on Fig. 2(a)).

The knee mechanism (see EO4CB on Fig. 2(a)) controls the angle between
the femur and the tibia within the specified range (see E′B and 6 on Fig. 2(a)).
The knee mechanism is attached to the output link of the Minitaur mechanism
(thigh) and to the brick (see EH on Fig. 2(a)).

The last group of the leg are tibia, fibula and ankle and they execute panto-
graph functions (see BM , 7 and 8 on Fig. 2(a)).

2.2 Decomposition and Constraints

Capturing rigid-body kinematics only, the mechanism can be described as a
function transforming the input values like rotating cranks’ angles to output
values like contact point coordinates in Cartesian space. This function exists in
the kinematic state space, which can be represented as all possible output values.
This space can be narrowed depending on constraints imposed on kinematic
parameters of the mechanism.

In our case, this transformation is indeed the forward kinematics nonlinear
function, and lengths of the links are its parameters. So, in order to set the
optimization problem first we need to decide, which parameters should be a
priori fixed and which can be optimized, and what are upper and lower bounds
for the latter ones. This choice is mostly based on mechanical design limitations.

Since the multi-link mechanism under consideration has quite many param-
eters that can be optimized, we decided to divide it to subsystems, define con-
straints and desired behaviour for each one, and therefore split optimization
procedure into stages. This decomposition is illustrated in Fig. 3.

In order to save space and do not bother the reader with mechanical details
we will not elaborate here on imposed design constraints, but mention that is
were reasoned by conditions for the existence of linkages, overall mechanism
dimensions’ and structural strength’s limitations. As the result, for example, for
the hip subsystem length’s of rods AB and A′B (upper bounded by 260 mm) and
phase difference between input shafts 0◦ < β < 180◦ were chosen as parameters
for optimization, while the rest of subsystem’s geometric parameters were fixed
to pre-defined values. The choice of parameters allows to use basic box constraint
handling techniques.
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Fig. 3. Leg mechanism decomposition for optimization, from left to right: the hip, the
knee, and the foot structures. Active black indicates a structure to be optimized.

2.3 Existing Cost Function

Our goal is to find geometric parameters values such that characteristic points
of our mechanism will follow a desired trajectory, while the latter one is defined
by certain key features important for locomotion like stride length and height,
path curvature, and so on.

Driven by intention to minimize computational load, in our previous study we
used the following optimization cost function (see [4] for details). We compared
perimeters and areas for the calculated cyclic path and the desired ones as major
metrics for curve-fitting. But since these two aggregated measures are not enough
to guarantee that curve shapes will be close to each other, we augmented it
with matching heights and lengths of a stride, i.e. minimizing distances between
most left, right, top, and down points of the desired and calculated trajectories
respectively (see Fig. 4(b)). These points were selected as special, because they
break the trajectory into phases of jerk, leg pull-up, leg extension, and landing.

To simplify calculations, we approximated path traced by a point as a poly-
gon, specified by pairs of the planar coordinates of its vertices. In this case the
area S and perimeter P of the polygon were calculated by splitting it into seg-
ments, which are defined based on the polygon vertices locations (see Fig. 4(a)):

S = SN,1 +
∑N−1

i=1
Si,i+1, P = LN,1 +

∑N

i=2
Li−1,i,

where Si,j = (xj−xi)·(yj+yi)
2 is the area of the trapezoid with indexes i and j

denote respective points numbering, and Lj,i =
√

(xi − xj)2 + (yi − yj)2.
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Fig. 4. a) A polygon that is constructed from an array of coordinates of a curve. b) 1, 4
are the leftmost and rightmost, and 2, 3 are the highest and lowest trajectory points
respectively. Ls and Hs are stride length and height respectively

The resulting optimization cost function was calculated as

F = (S� − S)2 + (P � − P )2 +
∑4

i=1
((x�

i − xi)2 + (y�
i − yi)2),

where S, S�, P and P � denote the area and the perimeter of the polygons related
to the calculated and the desired trajectories respectively (see Fig. 4(b)).

However, as it will be shown later in this paper, such cost function selection
has certain disadvantages in terms of parametric convergence, especially when
using evolutionary algorithms.

3 Experiments and Observations

In our experiments, we consider optimization of the first two stages: the hip
(Fig. 3, left) and the knee (Fig. 3, middle). Both of them involve optimizing
two variables, which gives an advantage of the convenient visual analysis of the
behaviour of optimizers. We used the following optimizers:

– Pattern Search, proposed in [10]; the MATLAB implementation was used
with the following parameters: maximum of 40 iterations (which was enough
for complete convergence), mesh size 10−4, mesh contraction factor 0.5, and
the use of complete poll.

– Differential Evolution [18]: the DE/1/rand/bin variant with population size
40, crossover probability 0.5, differential weight sampled from [0.5; 1.5].

– CMA-ES [6]: the official implementation1 with its default settings.

The computation budget was set to 400 for all the methods (however, Pattern
Search tends to converge prematurely much earlier). As fitness functions involve
modeling and hence are expensive, we performed only 10 runs for each optimizer.

1 https://github.com/CMA-ES/pycma.

https://github.com/CMA-ES/pycma


220 M. Buzdalov et al.

40 60
150

200

B
C

40 60
150

200

40 60
150

200
100
200
300
400

40 60
150

200

B
C

40 60
150

200

40 60
150

200
100
200
300
400

40 60
150

200

B
C

40 60
150

200

40 60
150

200
100
200
300
400

40 60
150

200

B
C

40 60
150

200

40 60
150

200
100
200
300
400

40 60
150

200

β

B
C

40 60
150

200

β

40 60
150

200

β

100
200
300
400

Fig. 5. Convergence in the search space: Pattern Search (left column), Differential
Evolution (middle column) and CMA-ES (right column) on the old function for hip.
Runs ranked 1, 3, 5, 7, 9 according to the final fitness value are shown. Point colors
show the number of fitness evaluation

Fig. 6. Left: The fitness landscape of the old function for hip, with points colored
according to the logarithm of fitness minus 8.88. Right: The best found trajectory for
hip with fitness 8.8936 according to the old function

The considered problems have only basic box constraints, which Differential
Evolution and Pattern Search can handle out of the box, so the only change was
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to use 109 plus the distance to the feasible region as a fitness value for infeasible
queries made by CMA-ES.

We discuss the hip stage first. Figure 5 displays five out of ten runs for each
optimizer, chosen based on the resulting fitness values in order to showcase more
of the possible outcomes of these algorithms. The colors in this figure are based
on the number of the fitness function evaluations corresponding to each point,
so these plots visually illustrate the convergence behaviour of the optimizers.
One can see that Pattern Search converges very quickly, CMA-ES tests a larger
region of the search space before convergence, and Differential Evolution is still
scattered very much across the search space after 10 iterations. More experiments
show that, for the latter, a wide range of population sizes from 10 to 40 results
in roughly the same behaviour.

The best fitness values out of these ten runs were 8.9644 for Pattern Search,
8.9639 for Differential Evolution and 8.8936 for CMA-ES, and the medians were
10.4478, 9.4342 and 9.5830, respectively. The Wilcoxon rank sum test [12,19]
with the one-sided hypotheses based on these median values yields the following
p-values:

– 0.0144 for Pattern Search vs CMA-ES,
– 0.0446 for Pattern Search vs Differential Evolution,
– 0.5733 for CMA-ES vs Differential Evolution,

which indicates that Pattern Search is worse on this problem than either of the
evolutionary algorithms, whereas the latter perform similarly.

Figure 6 presents all the queries made by these algorithms combined on a
single plot, where the color represents the logarithm of the fitness value (the
darker the color, the better the fitness). As one can see, the fitness landscape of
this problem resembles the Rosenbrock function with a number of local optima
in the valley. It appears to be quite hard: in our case CMA-ES found a local
optimum overlooked by other methods.

Figure 6 also presents the desired hip trajectory and the best found individ-
ual, according to the fitness function. We can see that, although the overall shape
is captured correctly, there is still a visible difference between the trajectories.

In an attempt to escape from the complexities imposed by the fitness land-
scape of the existing fitness function, we have designed a new one, which is
only marginally harder to compute, but captures the intended qualities better.
This function is evaluated as follows:

– the desired trajectory and the one generated by the evaluated individual are
represented as piecewise linear functions D(t) and A(t) of the parameter t ∈
[0; 1] returning two-dimensional points, where t = 0 means the first trajectory
point, t = 1 the last one, and other values are interpolated linearly;

– the value
∫ 1

0
(D(t) − A(t))2dt is computed using the two-pointer approach.

For the new fitness function, Fig. 7 and 8 represent the same data as for the
original function. Based on the presented scatter plots, the convergence proper-
ties of the algorithms appears to remain the same. The best fitness values out of
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Fig. 7. Convergence in the search space: Pattern Search (left column), Differential
Evolution (middle column) and CMA-ES (right column) on the new function for hip.
Runs ranked 1, 3, 5, 7, 9 according to the final fitness value are shown. Point colors
show the number of fitness evaluation

Fig. 8. Left: The fitness landscape of the new function for hip, with points colored
according to the logarithm of fitness. Right: The best found trajectory for hip with
fitness 0.545307 according to the new function
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Table 1. Statistical summary of the results for the knee stage experiments

Pattern search Differential evolution CMA-ES

Old function

Min 22.5552 22.8797 22.5541

Median 33.2892 24.1715 28.1541

New function

Min 6.3197 6.3180 6.3183

Median 7.9530 6.3197 6.6584

the ten runs are 0.54546 for Pattern Search, 0.56200 for Differential Evolution
and 0.54531 for CMA-ES, whereas the respective medians are 0.58083, 0.60336
and 0.57958. The p-values produced by the Wilcoxon rank sum tests are:

– 0.2644 for Differential Evolution vs Pattern Search,
– 0.09516 for Differential Evolution vs CMA-ES,
– 0.05256 for Pattern Search vs CMA-ES,

so all the algorithms now perform quite similarly. Together with the landscape
observation on the left of Fig. 8 this indicates that the fitness landscape appears
to be much easier, although still multimodal. One can also see on the right of
Fig. 8 that the approximation of the desired trajectory is now much better.

The same experiments with both functions performed for the knee stage
demonstrate mostly the same trends (Fig. 9, 10, 11 and 12), although the fitness
landscapes appear to be easier. Tables 1 and 2 present the basic statistical eval-
uation. They indicate, in particular, that all the algorithms are quite similar on
the old function, whereas Differential Evolution performs somewhat better on
the new function.

Table 2. The p-values by the Wilcoxon rank sum test for the knee stage experiments

Null hypothesis P.S. ≥ CMA CMA ≥ D.E. P.S. ≥ D.E.

Old function 0.0615 0.1237 0.0828

New function 0.2644 0.0014 0.0057
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Fig. 9. Convergence in the search space: Pattern Search (left column), Differential
Evolution (middle column) and CMA-ES (right column) on the old function for knee.
Runs ranked 1, 3, 5, 7, 9 according to the final fitness value are shown. Point colors
show the number of fitness evaluation

Fig. 10. Left: The fitness landscape of the old function for knee, with points colored
according to the logarithm of fitness. Right: The best found trajectory for knee with
fitness 22.5541 according to the old function
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Fig. 11. Convergence in the search space: Pattern Search (left column), Differential
Evolution (middle column) and CMA-ES (right column) on the new function for knee.
Runs ranked 1, 3, 5, 7, 9 according to the final fitness value are shown. Point colors
show the number of fitness evaluation

Fig. 12. Left: The fitness landscape of the new function for knee, with points colored
according to the logarithm of fitness. Right: The best found trajectory for knee with
fitness 6.31798 according to the new function
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4 Conclusion

We have investigated the problem of parameter tuning for the robotic cheetah
leg from the viewpoint of evolutionary computation. Regarding the considered
methods, both CMA-ES and differential evolution tend to outperform the previ-
ously used local search method Pattern Search in terms of solution quality. Which
of the considered evolutionary algorithms is better, depends on the particular
problem variation in question. Based on the observed scatter plots, CMA-ES
is typically better at exploitation, whereas Differential Evolution seems to be
stronger at exploration, however, the overall difference is not very large.

The investigation of whether the recent advances in the corresponding algo-
rithmic families have an impact in these problems is a possible future work. We
also plan to investigate how the simultaneous optimization of all the parameters
of the robotic cheetah leg relates to the already-considered chain of independent
optimization runs, as well as to attempt the complete structure synthesis rather
than just geometry optimization.

The most insightful part is that a choice of the fitness function, even among
those which have the same global optimum and express the same desires, can sig-
nificantly influence the quality of the solutions and the hardness of the problem.
The fitness function used in previous studies appears to be both ill-conditioned
and multimodal, which makes the problem especially hard, whereas the new
function is much simpler.
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Abstract. In this paper, we introduce some new methodologies in a gen-
eral path problem. Finding a good path is always a desirable task and it
can be also crucial in emergency and panic situations, in which people
tend to assume different and unpredictable behaviors. In this paper, we
analyse an escape situation in which the environment is a labyrinth and
people are agents that act as two different kinds of ant colonies. In par-
ticular, we assume that people act according to opposite behaviors: (i)
cooperatively, helping each other and the group; (ii) non cooperatively,
helping just themselves, and no caring about the rest of the group. So,
we use in a path problem an Ant Colony Algorithm based on two breeds
of colonies: a cooperative and a non-cooperative one. We imagine that
their task is to find the exit of the labyrinth making decisions according
to the ACO rules and according to their breed. Every breed has, in fact,
two different strategies. Via a game theory approach, we investigate how
these two strategies affect the final payoff of each breed.

Keywords: Game theory · Ant Colony Optimization · Swarm
intelligence · Optimization · Metaheuristics

1 Introduction

Throughout history, humans have been interested in natural disasters and the
topic of evacuation, because optimizing the evacuation’s strategies has vital
importance in reducing the human and social harm, and saving the aid time.
During evacuation, there are more than a few decisions which have to be made in
a very short period of time, and in the most appropriate way. Significant research
efforts have been made in the literature, (see [9]), to deal with evacuation opti-
mization on the basis of deterministic optimization model, nevertheless the coop-
erative or non-cooperative behavior’s aspects of real-world evacuation have not
been taken into account comprehensively. In [5] the authors focused their ideas
on the evacuation routes; whereas, in our work we focused on the minimum path
and also on the behavior of the crowd. A suitable way to find optimum evac-
uation routes, during an emergency, is using Ant Colony Optimization (ACO)
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algorithms [6,7,16]. Indeed, humans have faced complex optimization problems
such as finding the shortest path between various points, evacuation simulations
and optimization, allocating the optimum amount of resources, determining the
optimum sequence of the processes in a production line, among others. Ant
Colony Optimization algorithms are approximate techniques, belonging to the
Swarm Intelligence methods, which imitate the cooperative behavior of real ants
to solve optimization problems. Each artificial ant is inspired by the behavior
of a real ant and can be seen as an agent of a multi-agent system. Real ants
are eusocial insects and use collective behavior to achieve complex task, such
as finding shortest paths between food sources and their nest. Using a simple
communication mechanism like a chemical trail (pheromone), an ant colony is
able to find the shortest path between two points. Initially, ant colony optimiza-
tion algorithms have been applied to many combinatorial optimization problems,
achieving good results in solving different problems, such as graph coloring [2],
scheduling [13,17] and assignment problems [1]. Nowadays, ACO algorithms have
also been applied to problems belonging to the class of dynamic optimization
problems, in which topology and costs can change during the execution of the
algorithm. Routing in telecommunications networks is an example of such a
problem [8]. Game theory has been widely used in the research of various sci-
entific disciplines, from biological systems to economic and social networks [4].
With the help of game theory, researchers can conduct extensive studies on the
pedestrian and evacuation dynamics [3,19]. However, game-theoretical models
are focused on the study of the crowd’s behavior in evacuation process. Indeed,
in [18] the authors study a game-theoretical model to underline the relationship
between cooperative and competitive agents in a crowd. Also, [12] discusses the
basic principles of multiple robot cooperative system using Game Theory and
Ant Colony Algorithms.

The aim of this research work is to study and analyse the collective behav-
ior of a little social group that tries to escape from a disaster situation, such
as earthquakes, volcanic eruptions, and/or hurricanes, trying to reach a safe
location in the shortest possible time. Therefore, an ACO algorithm has been
taken into account to study the behavior of different agents in strictly dynamic
situations. Specifically, two different agents have been considered, which act dif-
ferently: cooperative and non-cooperative agents. Ants colonies are recognized
to be the best organized and cooperative social system, able to make their social
community work at the best, and able to perform complex tasks, such as, for
instance, discovering the shortest path between food and anthill, or defend the
own anthill from attack by predators [11]. Moreover, any action of any ant, is
related only to its local environment, local interactions with other ants, simple
social rules, and in total absence of centralized decisions. These last features,
that we find own in catastrophic situations, convinced us to consider ACO as
the simulation model suitable for our study, because a sophisticated collective
behavior based on local interactions, social rules, and in absence of centralized
decisions, becomes crucial in reaching safe locations. Finally, the relationship
between ACO and Game Theory aims to find a good solution in the case where
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agents with different ideas and strategies have to share a particular situation.
As happens in an emergency scenario for the crowd, the same happens with a
group of ants that tries to achieve the exit as safe as possible.

2 The Model

The Ant Colony Optimization algorithm is a well-known procedure that takes
inspiration from the ants’ behavior, when they look for a path between any food
source and their anthill. It has been observed that they can identify the shortest
path, and communicate it to the others through chemical signals released along
the path, called pheromones. In recent years, this behavior has been translated
into mathematical and computer language and used to solve different kinds of
optimization problems through different versions of the algorithm itself. Despite
the different contexts where it has been applied, the mathematical description of
the algorithm is quite the same for most of the problems. In particular, the ant’s
environment is considered as a graph G = (N,L), where N is the set of nodes
and L is the set of links. A generic ant k is supposed to be placed on a node i, and
she must choose a destination node according to her behavior in real life; that
is, preferring a path with some pheromone traces. However, this behavior is not
deterministic so a proportional transition rule pk

ij(t) is defined as in Eq. (1).
It states that an ant k, on a node i and at a time t will choose a destination node
j with a probability that is proportional to the quantity of pheromone on the
link connecting i with j, if the link j belongs to the set of possible displacements
for k. The probability is 0 otherwise. In formulas, we have:

pk
ij(t) =

⎧
⎨

⎩

τij(t)
α·ηβ

ij
∑

l∈Jk
i

τil(t)α·ηβ
il

if j ∈ Jk
i

0 if j /∈ Jk
i .

(1)

As said previously, Jk
i is the set of possible movements of the ant k. Moreover,

ηij is the visibility of node j (defined as the inverse of the distance between two
nodes), τij(t) is the pheromone intensity on a path at a given iteration, while α
and β are two parameters that determine the importance of pheromone intensity
with respect to the visibility of a path. Once the ant k arrives at a destination
node j, she updates the pheromone trace by releasing at a time t an amount of it
proportional to the inverse of the length of the path Lk(t) (eventually multiplied
by a Q-factor) if the link (i, j) belongs to the path T k(t) of the ant at time
t. It is 0 otherwise. In this way, the greater the length of a path is, the less
pheromone will be present on it. This feature is described by Eq. (2) in which
Δτk

ij(t) represents the amount of pheromone deposited by the ant k.

Δτk
ij(t) =

{
Q

Lk(t)
if (i, j) ∈ T k(t)

0 if (i, j) /∈ T k(t).
(2)

Finally, a global updating rule τij(t + 1) is applied as in Eq. (3). It states
that the intensity of pheromone will be updated considering the intensity τij(t)
of it at a previous step, and decreasing it with an evaporation factor ρ.
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τij(t + 1) = (1 − ρ) · τij(t) +
m∑

k=1

Δτk
ij(t). (3)

Now, starting from this procedure we have modified and extended ACO rules
to fit them in our model. In particular, we have tried to mix concepts of game
theory with concepts of optimization, to explore and highlight some novel fea-
tures still not completely understood. To do this, we have imagined a generic risk
situation like the one a group of ants is forced to live if it must solve a labyrinth.
In other words, we assume that ants must find the exit of the labyrinth from a
certain entrance as soon as possible to survive. We have modelled this escape
situation like a game in which every ant can adopt two different strategies to
exit from the labyrinth. We have chosen a labyrinth structure, since it gener-
alizes and makes more interesting and challenging the optimization problem of
finding the shortest path in a graph. We have realized this model using NetLogo
[15], an agent-based model software that allowed us not only to build materially
the structure of the labyrinth itself and implement the algorithm, but also to
see what was happening during the simulation thanks to an opportune dedicate
tab. We have built the labyrinth modifying an existing model proposed in [14].
We have fixed the seed of the random numbers to regenerate, at each run, the
same labyrinth. Then, we have created a network underneath the labyrinth and
realized more complex labyrinths by strictly modifying the procedure proposed
in [14]. This upgraded version can add other links between some nodes with at
least two first neighbors and other nodes with at least two first neighbors, in
order to prevent the loss of the dead ends. We have repeated this procedure for
different kinds of labyrinths with different sets of nodes and links, and grouped
them in order to increase complexity. Finally, we have selected for all of them
one node on the left part of the labyrinth to be the entrance, and one node on
the right part to be the exit. We underline that the entrance and the exit are
chosen on the left and on the right, respectively, to give an example to focus on a
sample of the labyrinth. In order to generalize the problem, we can put the exit
wherever we want or we can rotate the labyrinth, as suitably as we need. Then,
we have created two different kinds of ants that act differently, and each of them
follow a different strategy to escape from the labyrinth. In particular, we have
imagined what would happen if some ants acted cooperatively, while other ants
acted non cooperatively. Thus, at first we initialize the set of the whole colony
and then, by means of a cooperation parameter f , we establish the fraction of
ants who will act cooperatively. It follows that the remaining fraction (1 − f) of
ants will act non cooperatively. In detail, we set the two strategies, that cannot
be changed once the fraction of cooperative ants is defined, as follows:

– Non-Cooperative: they block a random node of their path. In Fig. 1, non-
cooperative ants are colored in blue, while a blocked node is represented as a
fire.

– Cooperative: if they find a damaged node close to their path, they repair it.
In Fig. 1, cooperative ants are colored in red.
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Fig. 1. In this model the entrance is fixed (always on the left part of the labyrinth),
whilst the exit changes, in any position of the labyrinth, in according to the number
of prizes on it. Bigger black nodes represent end nodes, i.e. dead ends roads; fires
indicate the damaged nodes by the non-cooperative ants; and the black labels on the
edges indicate the intensity of pheromone on that route. With red are showed the
cooperative ants, and in blue the non-cooperative ones. (Color figure online)

Both of them become safe if and only they arrive at the exit. Every kind of
ant is “equipped” with the same transition rule. In other words, each ant chooses
the next target node according to the same rule, even if it belongs to different
families and acts differently. In particular, the transition rule in (4) defines the
probability pk

ij(t) of an ant to go from a starting node i to a destination node
j as follows: during the first iteration, the ants explore randomly the labyrinth.
They choose to visit a link according to the intensity of pheromone on it that,
in the first iteration, is equal to 1 for all the links of the labyrinth.

The first ant of each kind that arrives at the exit releases a trace of pheromone
Δτij along every link of her path. For simplicity, in our model, the intensity of
pheromone released by each ant on every link of her path is Δτij = 1.5. After
that, the other ants of the same kind die, the global updating rule (5) is applied
and a new generation is launched. In formulas, we define the transition rule as:

pk
ij(t) =

⎧
⎨

⎩

τij(t)∑
l∈Jk

i
τil(t)

if j ∈ Jk
i

0 otherwise,
(4)

with τij intensity of pheromone on the link (i, j) and Jk
i is the set of allowed

links. Finally, the global updating rule is defined as:

τij(t + 1) = (1 − α) · τij(t) + Δτij , (5)

where α is the evaporation rate, τij is the pheromone intensity on the link (i, j)
at the previous step and Δτij is the amount of deposited pheromone by the
winning ant, at each turn, on the same link. In this model, we have also imposed
that, once the quantity of pheromone falls below a certain threshold, it remains
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fixed and does not decrease further. This choice is to prevent the stagnation of
the algorithm around a local optimum. Thus, within this situation, we want to
analyze how two different strategies evolve in time during a critical situation,
namely, in finding the shortest path from the entrance to the exit in the shortest
possible time. In the next section, we will discuss about some game theory def-
initions used in the model. We decide not to consider the gain of a single link,
but the aim of one ant is to reach the exit as soon as possible. In fact, the exit,
or in our case the shelter, has a capacity that in the algorithm is represented by
a prize in the exit. If there are no more prizes on the exit, i.e. capacity in the
shelter, the exit will move (with the same budget of prizes) to another edge node
of the graph, except the ones on the left part of the labyrinth. We are ruling
out the possibility that the exit and the entrance are on the same side of the
graph. It is a dynamic case in which not only the ants must be able to find the
exit from the maze through the shortest path, but from time to time, they must
also have the ability to organize themselves for a new objective that gives the
opportunity to collect prizes.

2.1 Evacuees’ Game

Game theory allows one to define how much an agent can gain from its actions
and decisions. Indeed, agents are defined to be rational and intelligent and try to
reach the highest value of the profit function. In game theory, the profit function
models reality so as to give a value to the emotional or economic gain to the
agent who adopts a certain strategy. A strategy space for a player is the set
of all possible strategies of a player; whereas, a strategy is a complete plan of
action for every stage of the game. Formally, we define a payoff function for a
player as a map from the cross-product of players’ strategy spaces to reals, i.e.
the payoff function of a player takes as its input a strategy profile and yields a
representation of payoff as its output.

In this model, we consider an N -players game (N ≥ 2). The evacuees rep-
resent the players of the game, who have to reach a safe area. We suppose that
evacuees can chose either to cooperate (C) or not to cooperate (NC), when
attempting to arrive a desired safe area after or during a disaster. Each player
starts from the same node and tries to reach an exit using the minimum path.
A little group of evacuees tries to arrive in a safe area, which has a capacity K,
but only one member of the group can reach that place. When the shelter is full
or is not enough safe, we consider a new shelter, placed in another node of the
graph, which the evacuees have to reach.

Let G = (N,L) be the graph associated with the game, where N is the set
of nodes and L the set of links. The payoff of the player that finally reaches
the safe area depends on a parameter, the pheromone τij on the edge (i, j)
used in the Ant Colony Algorithm. According to the strategies we define two
different payoff functions, which depend on the strategy that an agent chooses.
As a consequence, we define the payoff function of an agent k, who chooses the
cooperative strategy aC

k :
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uk(aC
k , a−k) =

f · ∑
i,j τij

n
, 0 < f ≤ 1. (6)

We define the payoff function of an agent k, who chooses the non-cooperative
strategy aNC

k :

uk(aNC
k , a−k) =

(1 − f) · ∑
i,j τij

n
, 0 ≤ f < 1. (7)

We denote f as the percentage of cooperative players and n as the number of
evacuees of a group. We consider

∑
i,j τij as the sum of the pheromone on the

links of the agent path. We underline that ak is a generic strategy, that an agent
k can choose from (C) or (NC) and we denote a−k the strategies of all agents,
except k.

We group for all k, the cooperative (C) and the non-cooperative ants (NC)
respectively, as:

uC = f ·
∑

i,j

τij , 0 < f ≤ 1; uNC = (1 − f) ·
∑

i,j

τij , 0 ≤ f < 1.

Finally, we denote the profit function of the game as the sum of the payoff of all
cooperative ants plus the payoff of all non-cooperative ants, i.e. U = uC + uNC .

3 Experiments and Results

In our simulations, we use ant shape agents according to the implemented algo-
rithm, but this is just a graphic feature that doesn’t affect the correctness of
the procedure. It follows that a generation of ants represents a group of people
who try to arrive at a shelter or a safe area. At the end of each generation, only
one ant of each kind survives. After several preliminary experiments, we choose
a set of n = 10 agents and perform 10 different simulations for different values
of f , starting from f = 0 to f = 1 and increasing f at a regular interval of
0.20. For our purposes, we consider the trend of ten generations. Figure 2 shows
the trend of the average profit function over 10 simulations at different values
of f (and correspondingly (1 − f)). In each plot, the x-axis indicates the gen-
erations number, while in the y-axis are displayed the average profits obtained,
respectively, by the cooperative agents (Fig. 2a) and by the non-cooperative ones
(Fig. 2b). In particular, the figure represents the comparison of the values of
the profit function for each evacuee referred to the percentage of cooperative
agents (f). We notice that when the number of cooperative agents increases,
the value of profit function increases too, following a linear trend. Furthermore,
for f = 0.8 and f = 1.0, after a few generations, the average profit function
grows similarly, reaching the same value after 10 generations. This suggests that
a non-cooperative behavior of a few agents can increase the profit of the other
ones. In the same way, the plot in Fig. 2b shows that a non-cooperative strategy
is good if and only if a lot of agents choose that particular strategy. Also, in this
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(a) (b)

Fig. 2. Comparison of the average profit obtained by cooperative agents (plot (a)),
compared to obtained one by non-cooperatives (plot (b)).

case, the average profit function reaches the best values for f = 0.2 and f = 0.4,
leading to the same evaluation of the previous case.

In Fig. 3 we can see the average profit function comparison for f = 0.2
and f = 0.8, both for cooperative evacuees and non-cooperative evacuees. In
Fig. 3a, we find the value of f for which are present 2 cooperative evacuees
and 8 non-cooperative evacuees, and in Fig. 3e the symmetric situation. The
same distinction is present also in Fig. 3 for f = 0.4 in Fig. 3b, and f = 0.6 in
Fig. 3d, but with 4 and 6 different kinds of evacuees in two symmetric situations.
For these plots, the average profit function is higher for the larger groups (non-
cooperative for f < 0.5 and cooperative for f > 0.5). This can be explained
because these plots are calculated for a percentage of cooperation less than
f = 0.5. In fact, at f = 0.5 something special happens. In Fig. 3c the trend of
the average profit function for cooperative evacuees starts to be lower than the
one for the non-cooperative evacuees, but as the generations increase, the two
functions tend to reach the same value.

The Chicken Game supports our considerations. Indeed, the main feature
of this game is that players try to avoid appearing as a “chicken”. So each
player taunts the others to increase the risk of shame in giving up. However,
when a player surrenders, the conflict is avoided and the game is mostly over.
Furthermore, the fact that the profit function is the same when half of the
population is cooperative and the other is not, leads to compare the Chicken
Game with the particular case f = 0.5. In fact, the balance of the game is
obtained when one player chooses strategy (C) and the other the strategy (NC),
that is the opposite strategy. In this situation, no player is considered a “chicken”
until the moment when the value of f decreases, and hence the competitive
strategy takes advantage. We observe, however, that the game of chicken is
considered as a social dilemma [10].

To better investigate the meaning of these data, we calculate the average
values of the profit function over 10 simulations for each group of evacuees and
for each value of f . Figure 4 shows what we have obtained. As we can see, as
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(a) (b)

(c) (d)

(e)

Fig. 3. Average profit function comparison obtained by the cooperative and non-
cooperative agents, at different values of f and (1 − f).

the percentage of f increases, the average value of the profit function has two
different trends. The one for cooperative evacuees increases as f increases. The
one for non-cooperative evacuees decreases. In particular, the average value of
the profit function for f ≥ 0.50 is higher than the ones for f ≤ 0.50. This means
that the average values calculated for two opposite and symmetric configurations
are not the same. The two curves are not symmetrical. In fact, the two curves are
not symmetrical because they are the outcome of different dynamic scenarios,
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Fig. 4. Average profit function comparison over 10 simulations and over 10 generations
for cooperative and non-cooperative evacuees.

where the two kinds of agents (cooperative and non-cooperative) act differently.
Of course, these effects are strongly affected by the number of the former com-
pared to the latter, and in particular, higher values of the profit function (u) are
strictly related to higher values of the parameter f . This, in general, is not a
surprising result since is quite common that cooperation means, in most cases,
better performances. It is important to say that in game theory there are several
examples in which players can choose whether to adopt a more or less coopera-
tive strategy. Let’s consider the classic game of hawks and doves as an example.
These sample-animals represent couples of the same type of animals and same
population that fly on a prey. Each animal can choose to behave like a hawk or
a dove: hawk (strategy H) or dove (strategy D) behavior indicates aggressive or
peaceful behavior, respectively. In this example, if the players choose the same
strategy then they divide the loot, otherwise, if they both choose the same strat-
egy, one will get the maximum profit the other the minimum profit. From this
example we can see how in situations where there is total collaboration, a greater
profit is obtained than in a situation in which only one can obtain a good profit.
However, in this context, we imagine that better performances can be linked or
explained with one evacuee’s willing to improve its profit. It is presumable that
in real-life escape situations people tend to act in the same way that is, trying
to improve their profit function. Therefore, our results suggest that to do this
they should prefer a cooperative strategy.

4 Conclusions

In this paper we analyse the affinity between the behavior of ants and people in a
particular situation. Indeed, in an emergency situation, a crowd seems to move in
a messy way but inside the crowd there are little groups that try to decide their
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behavior inside that group. As a consequence, we investigate the cooperative or
non-cooperative agents’ choice inside each single group. This original approach
consists of correlation between ants and people, that give us the possibility to
underline some interesting factors, as the importance of using the sum of the
pheromone into the profit function. The payoff’s values, for each agent, lead to
significant observations regarding the cooperative and competitive behaviors of
the agents, in a difficult situation, where an evacuee has to decide as fast as
he can. Furthermore, the idea to insert the percentage of cooperative agents in
the profit function represents another innovative aspect that allows us to better
understand both the behavior of the agents and the profit they may have as
we explain in Sect. 3. In fact, for the first time is used a game theory approach
to an evacuation model using an ACO algorithm, to find the solution of the
profit function of the game. The quality and safety of the chosen path is directly
proportional to the sum of the pheromone along this path. This leads to a profit
function that reflects the safety and efficiency of the path chosen by the evacuees.
Moreover, during the comparison over 10 simulations and over 10 generations
for cooperative and non-cooperative evacuees, we notice that if a lot of evacuees
choose cooperative strategies, then the value of the function is higher than the
same number of evacuees can gain playing a competitive strategy. The results
presented in this paper are just a small part of a bigger study that is still under
work. Further studies and simulations have to be made. Especially because our
model considers just one winner at each run, which is not a desirable situation
in real life.
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5. Forcael, E., González, V., Orozco, F., Vargas, S., Pantoja, A., Moscoso, P.: Ant
colony optimization model for tsunamis evacuation routes. Comput. Aided Civil
and Infrastruct. Eng. 29(10), 723–737 (2014). https://doi.org/10.1111/mice.12113

6. Hajjem, M., Bouziri, H., Talbi, E.G., Mellouli, K.: Intelligent indoor evacuation
guidance system based on ant colony algorithm. In: IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA), pp. 1035–1042 (10
2017). https://doi.org/10.1109/AICCSA.2017.47

https://doi.org/10.1109/CEC.2013.6557792
https://doi.org/10.1016/j.mcm.2010.06.012
https://doi.org/10.1016/j.mcm.2010.06.012
https://doi.org/10.1007/s11590-019-01528-4
https://doi.org/10.1007/s11590-019-01528-4
https://doi.org/10.1111/mice.12113
https://doi.org/10.1109/AICCSA.2017.47


A Game Theory Approach for Crowd Evacuation Modelling 239

7. Hongzhi Wang, C.W., Yifeng Guo, Y.Z., Zhu, M.: Emergency escape route planning
for the louvre summary. Acad. J. Comput. Inf. Sci. 2, 78–84 (2019). https://doi.
org/10.25236/AJCIS.010041

8. Huang, S.H., Huang, Y.H., Blazquez, C.A., Paredes-Belmar, G.: Application of the
ant colony optimization in the resolution of the bridge inspection routing problem.
Appl. Soft Comput. 65(C), 443–461 (2018). https://doi.org/10.1016/j.asoc.2018.
01.034

9. Kotsireas, I.S., Nagurney, A., Pardalos, P.M. (eds.): DOD 2015 2016. SPMS, vol.
185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43709-5

10. Macy, M.W., Flache, A.: Learning dynamics in social dilemmas. Proc. Nat. Acad.
Sci. 99(suppl 3), 7229–7236 (2002). https://doi.org/10.1073/pnas.092080099

11. O’Shea-Wheller, T., Sendova-Franks, A., Franks, N.: Differentiated anti-predation
responses in a superorganism. PLoS ONE 10(11), e0141012 (2015). https://doi.
org/10.1371/journal.pone.0141012

12. Ping, Y., Chao, Y., Li, Z., Cuiming, L.: Based on game theory and ant colony
algorithm’s research on group robot cooperative system control. In: 2010 Inter-
national Conference on Electrical and Control Engineering, pp. 532–535. IEEE
(2010). https://doi.org/10.1109/iCECE.2010.137

13. Reddy, G., Phanikumar, S.: Multi objective task scheduling using modified ant
colony optimization in cloud computing. Int. J. Intell. Eng. Syst. 11, 242–250
(2018). https://doi.org/10.22266/ijies2018.0630.26

14. Steiner, J.: Maze maker (2004). http://ccl.northwestern.edu/netlogo/models/
community/maze-maker-2004

15. Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Mod-
eling. Northwestern University, Evanston, IL (1999). http://ccl.northwestern.edu/
netlogo/

16. Zarrinpanjeh, N., Javan, F., Naji, A., Azadi, H., Maeyer, P., Witlox, F.: Opti-
mum path determination to facilitate fire station rescue missions using ant colony
optimization algorithms (case study: City of Karaj). ISPRS Int. Arch. Photogram.
Remote Sens. Spat. Inf. Sci. XLIII-B3-2020, 1285–1291 (2020). https://doi.org/
10.5194/isprs-archives-XLIII-B3-2020-1285-2020

17. Zhang, X., Wang, S., Yi, L., Xue, H., Yang, S., Xiong, X.: An integrated ant
colony optimization algorithm to solve job allocating and tool scheduling problem.
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232 (2016). https://doi.org/10.
1177/0954405416636038

18. Zheng, X., Cheng, Y.: Modeling cooperative and competitive behaviors in emer-
gency evacuation: a game-theoretical approach. Comput. Math. Appl. 62(12),
4627–4634 (2011). https://doi.org/10.1016/j.camwa.2011.10.048

19. Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on
seven methodological approaches. Build. Environ. 44(3), 437–445 (2009). https://
doi.org/10.1016/j.buildenv.2008.04.002

https://doi.org/10.25236/AJCIS.010041
https://doi.org/10.25236/AJCIS.010041
https://doi.org/10.1016/j.asoc.2018.01.034
https://doi.org/10.1016/j.asoc.2018.01.034
https://doi.org/10.1007/978-3-319-43709-5
https://doi.org/10.1073/pnas.092080099
https://doi.org/10.1371/journal.pone.0141012
https://doi.org/10.1371/journal.pone.0141012
https://doi.org/10.1109/iCECE.2010.137
https://doi.org/10.22266/ijies2018.0630.26
http://ccl.northwestern.edu/netlogo/models/community/maze-maker-2004
http://ccl.northwestern.edu/netlogo/models/community/maze-maker-2004
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1285-2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1285-2020
https://doi.org/10.1177/0954405416636038
https://doi.org/10.1177/0954405416636038
https://doi.org/10.1016/j.camwa.2011.10.048
https://doi.org/10.1016/j.buildenv.2008.04.002
https://doi.org/10.1016/j.buildenv.2008.04.002


A Hybrid Neural Network-Genetic
Programming Intelligent Control

Approach

Francesco Marchetti(B) and Edmondo Minisci

Intelligent Computational Engineering Laboratory,
University of Strathclyde, Glasgow, UK

{francesco.marchetti,edmondo.minisci}@strath.ac.uk

Abstract. The proposed work aims to introduce a novel approach to
Intelligent Control (IC), based on the combined use of Genetic Program-
ming (GP) and feedforward Neural Network (NN). Both techniques have
been successfully used in the literature for regression and control appli-
cations, but, while a NN creates a black box model, GP allows for a
greater interpretability of the created model, which is a key feature in
control applications. The main idea behind the hybrid approach proposed
in this paper is to combine the speed and flexibility of a NN with the
interpretability of GP. Moreover, to improve the robustness of the GP
control law against unforeseen environmental changes, a new selection
and crossover mechanisms, called Inclusive Tournament and Inclusive
Crossover, are also introduced. The proposed IC approach is tested on
the guidance control of a space transportation system and results, show-
ing the potentialities for real applications, are shown and discussed.

Keywords: Intelligent Control · Genetic Programming · Neural
Networks · Optimal control · Space transportation system

1 Introduction

Many different Artificial Intelligence (AI) techniques have been used in the
past decades for various IC applications [18], where the definition of IC can
be summarized as follows: a controller can be defined intelligent if it can deal
autonomously with unforeseen changes in the environment, in the control sys-
tem or in the goals, by relaying on techniques pertaining to the fields of Artifi-
cial Intelligence, Operations Research and Automatic Control (Saridis [16] and
Antsaklis [1]). Mainly three different classes of AI techniques have been used
for IC both alone and hybridized: Fuzzy Logic (FL), Evolutionary Computing
(EC) and Machine Learning (ML). Among these different techniques, NNs are
certainly the most common, mainly due to their flexibility and their ability in
being integrated in control systems of any kind, e.g. as was done in [7].

GP can be also used for control applications (Marchetti et al. [12], Chiang [2])
and as suggested by Koza et al. [9], it is particularly interesting for its ability to
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produce interpretable control laws for nonlinear systems. In fact, GP possess two
key advantages in comparison to NNs: 1) it can create a regression model from
scratches by interacting with the environment, so without the need of providing a
huge amount of training data; and 2) it produces a human-readable mathematical
equation, which can be easily interpreted by the designer. Such interpretability
is of particular importance for control applications, where in order to assess the
reliability and behaviour of a control system the control equation must be known.
Considering that an intelligent controller must possess the ability to learn and
adapt online, hence the computational load of this adaptation or learning process
must be very low, the main aim of this work is to propose an IC approach that
combines GP and NN, which has the interpretability of GP without its excessive
computational cost for online learning and adaptation.

In this respect, a novel hybrid approach to IC is introduced, where a NN is
used to optimize online the GP control law found during the offline training pro-
cess. Moreover, to increase the robustness of the proposed control method, two
new features have been introduced in the considered GP algorithm: the Inclu-
sive Tournament and the Inclusive Crossover. It is shown that these alternative
heuristics allow for a greater robustness of the GP control law when varying
environmental conditions and uncertainties are considered.

To the authors best knowledge, the control approach introduced in this work
is not present in the literature. In fact, the classical approach to hybridize GP
and NN is in a Neuroevolutionary manner where GP or another evolutionary
algorithm to optimize the topology and weights of a NN which then is used for
control purposes, as in [6,15] or inside a Reinforcement Learning (RL) control
framework as in [5,8].

The paper is structured as follows: Sect. 2 introduces the concepts behind the
NN Optimization of the GP control law; Sect. 3 introduces the new tournament
and crossover mechanism employed in this work; in Sect. 4 the chosen test case
is presented, and the obtained results are shown and discussed in Sect. 5; the
final conclusions and future work directions are then presented in Sect. 6.

2 Neural Optimization of the Genetic Programming
Control Law

The core of this work consists in the use of a feedforward NN to optimize online
a control law obtained offline using GP. The idea of this hybrid approach comes
from the need to keep the interpretability of a control law produced using GP,
while having the advantages of a NN, namely the ability to perform learning and
adaptation online with a much lower computational cost.

As schematised in Fig. 1, once the GP control law is obtained offline, the NN
is used to optimize online the key coefficients of such control law, that are:

– The weights inserted as multiplying factors of the input variables of the GP
control law. All the weights are independent and initialized to 1. The weights
are inserted after the GP control law is created, as depicted in Fig. 2.
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– The real valued coefficients inserted in the GP control law during its creation.
Also for these values as for the weights, they are all independent. This means
that if the same coefficient is used multiple times in the GP law, these are
considered as different coefficients by the optimization process.

Fig. 1. Schematic of the genetic programming control law update

Fig. 2. How the GP control is modified to insert the multiplying factors. The red
rectangles highlights where the weights are inserted (Color figure online)

The procedure to go from the offline creation of the GP control law to its
online adaptation is described by the following three steps schematized also in
Fig. 3:

1. The GP control law is obtained offline by simulating a control task where
a disturbance is considered. The GP control law is created to control the
plant against that particular disturbance scenario: noise is introduced in the
form of uncertainties in the physical models and perturbations of the applied
disturbances. The main goal of this phase is to find a robust GP control law,
in order to perform well also on unseen disturbance scenarios.

2. Define a set of disturbance cases uniformly covering the whole domain of the
possible disturbance scenarios (Fig. 4a), referred as “disturbance domain”
from this point onward, and perform an optimization of the obtained GP
control law on each of the disturbance points. The optimization is considered
successful if the performed trajectory is the same or within a small range
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defined by the user from the reference trajectory. The results obtained from
the successful optimizations are stored to produce a training dataset for the
NN. Such optimization of the GP control law performed on the training set
is done using classical optimization techniques.

3. The NN is trained on the training dataset produced at the previous step and
the created model is then tested on a predefined set of disturbance scenarios
(Fig. 4b) considering also the uncertainties on the physical models.

Fig. 3. Schematic of the process to obtain the proposed Hybrid Neural Network-
Genetic Programming Intelligent Control Approach. The proposed control scheme is
depicted in the lower left part.

According to the taxonomy presented in [18], the proposed control approach
can be classified as G0, E2, C1, since the goal is predefined by the user and it is
followed by minimizing the tracking error (G0); the environment is defined but
subject to time varying disturbances, modelled by the introduction of environ-
mental disturbances and uncertainties (E2); the GP control law parameters are
updated online by the NN (C1).

3 Inclusive Genetic Programming

When using GP in a control environment, it is important to assess the robustness
of the produced control law. In fact, it is desirable to obtain a control law,
which is capable to control the desired plant also in the presence of uncertainties
and unforeseen events. Since an intelligent controller is expected to work on
nonlinear systems, to increase the robustness of the GP control law and describe
their behaviour in a more accurate way, it is important for it to capture the
nonlinear behaviour of the plant. In order to do so, the GP must maintain a
certain degree of diversity in the population to preserve also complex structures
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(a) Training Scenarios - Disturbance
scenarios used to create the training
dataset for the NN

(b) Test Scenarios - Disturbance scenarios
used to test the proposed control approach

(c) Disturbance scenarios used to compare
the control laws for the SPG and IGP
comparison

Fig. 4. Different sets of disturbance scenarios considered in this work

able to capture nonlinearties, which would be discarded otherwise due to their
excessive complexity.

To maintain the population diversity and improve the robustness of the GP
control law, a new tournament and crossover mechanisms, which can be seen
as approaches to create and exploit different niches [17], are introduced: the
Inclusive Tournament (IncT) and the Inclusive Crossover (IncC).

The main concept behind the IncC and IncT is the following: the individuals
in the population are divided into n categories (niches) according to their geno-
typic diversity, i.e. the number of nodes in an individual or individual length.
The categories are created in an evenly distributed manner (linearly divided)
between the maximum and minimum length of the individuals in the popula-
tion, then the individuals are assigned to the respective category according to
their length. The same number of categories is kept during the evolutionary pro-
cess, but their size (the interval of individuals lengths that they cover) and the
amount of individuals inside them change at every generation. Once the cate-
gories are created, both the crossover and tournament selection are performed
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considering individuals from different categories in order to maintain the pop-
ulation diversity. Finally, before starting the evolutionary process, a search for
the population with the highest entropy [14] is performed, in order to start with
a diversified initial population.

3.1 Inclusive Tournament

The IncT consists in performing a Double Tournament [10] on each category
of the considered population as in Algorithm 1. Moreover, the selection mecha-
nism applied to the considered individuals is modified in order to favour those
individuals that respect the applied constraints (called Modified Double Tour-
nament in Algorithm 1). The employed evolutionary strategy is based on the
μ + λ algorithm.

Algorithm 1. Inclusive Tournament
1: Divide the population into n categories based on the length of the individuals
2: while Number of selected individuals < µ do
3: for i in number of categories do
4: if Number of selected individuals from i-th category < total number of indi-

viduals in i-th category then
5: Select one individual in i-th category with Modified Double Tournament

selection
6: end if
7: end for
8: end while

3.2 Inclusive Crossover

Algorithm 2 describes the mechanism behind the IncC. A one point crossover is
applied between two individuals which are selected from two different categories.
The list of exploitable categories is continuously updated in order to avoid select-
ing always from the same categories. About the two individuals chosen, one is
the best of the considered category, in order to pass the best performing genes
to the future generation and the other is selected randomly in order to main-
tain a certain degree of diversity in the population. Moreover, a mechanism to
avoid breeding between the same or very similar individuals is used (lines 7–14
in Algorithm 2). Here nl is a preset constant defining the maximum number of
loop iterations, needed to avoid possible infinite loops.
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Algorithm 2. Inclusive Crossover
1: if List of exploitable categories is empty then
2: List of exploitable categories ← list of all filled categories
3: end if
4: Select randomly two different categories from List of exploitable categories
5: Remove chosen categories from List of exploitable categories
6: Select the best individual from the first category and select a random individual

from the second category
7: n = 0
8: while The selected individuals have the same fitness and n < nl do
9: Repeat lines 4 to 6

10: if List of exploitable categories is empty then
11: List of exploitable categories ← list of all filled categories
12: end if
13: n = n+1
14: end while
15: Apply crossover to the chosen individuals

3.3 Robustness Analysis

To quantify the improvements in the robustness of the obtained GP control
law made possible by the IncT and IncC, a comparison between the Standard
Genetic Programming (SGP) and the Inclusive Genetic Programming (IGP) was
made on the creation of a control law for the test case introduced in Sect. 4,
considering the uncertainties in the models and a perturbation of the design
disturbance scenario. Such perturbation was introduced as a random variation
of ±10% of the design gust vg and gust range Δg at every generation of the
evolutionary process. Such variation is not cumulative across generations and its
magnitude is different at every generation. Regarding the disturbance scenario,
more is explained in Sect. 4.1.

The creation of the GP control law was performed on 10 different disturbance
scenarios (Fig. 4c), which were spread uniformly over the disturbance domain.
Each line in Table 1 is a control law created on a different disturbance scenario.
Both GP algorithms were set to create two control laws at the same time, since
two control parameters were present in the considered test case (Individual 1
and 2 in Table 1). The SGP algorithm employs a Double Tournament selection
and a single point crossover. The GP algorithms were set as follows:

– Primitives: +,++ (ternary addition), −, ∗, tanh ,
√

., log , exp, sin , cos. All the
primitives were modified in order to avoid numerical errors.

– Fitness Functions: two fitness functions were simultaneously considered
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1. min fitness1 = RMSE(objectives) where:

objectives =
( ∫

| ˆerrv(t) | dt,

∫
| ˆerrχ(t) | dt,

∫
| ˆerrγ(t) | dt,

∫
| ˆerrh(t) | dt,

orbital requirements
)

where the considered errors are scaled with the maximum values of the
states, and

orbital requirements =
∣∣∣∣
href final − hfinal

hmax

∣∣∣∣ +
∣∣∣∣
vabs − vorbit

vmax

∣∣∣∣

+
∣∣∣∣
χabs − χorbit

χmax

∣∣∣∣ +
∣∣∣∣
γref final − γfinal

γmax

∣∣∣∣

2. min fitness2 = ||constraints violation||2
– Termination Criteria: generation number = 150
– Double Tournament Parsimony size: 1.6 for both algorithms
– Double Tournament Fitness size: 2 for both algorithms
– Population Size: 300 individuals for both algorithms
– Crossover Rate: 0.2 for IGP, 0.7 for SGP
– Mutation Rate: 0.7 for IGP, 0.2 for SGP
– Elitism Rate: 0.1 for both algorithms

For the IGP, the mutation rate was set at 0.7 at the beginning of the evolu-
tionary process in order to explore the search space. Then, when feasible indi-
viduals were found (fitness2 = 0), the mutation rate was decreased by 0.01 and
the crossover rate was increased by the same quantity at each generation, until
the crossover rate reached the value of 0.65. Moreover, to avoid bloating, both
the IGP and SGP make use of the bloat control operators implemented in the
DEAP library.

After the creation of the control laws, these were tested on 500 disturbance
scenarios evenly distributed in the disturbance domain (Fig. 4a), in order to
asses the robustness of the obtained control laws. The results of this comparison
are listed in Table 1.

The major highlights of this comparison are:

– From the column “Disturbance Cases Solved” in Table 1, it can be seen how
the IGP control laws can perform successfully on average on 207/500 distur-
bance scenarios while the SGP ones on 81/500, hence a greater robustness is
achieved.

– Looking at the columns from “Length Individual 1” to “Depth Individual 2”
in Table 1, it can be seen how the SGP can always find substantially smaller
individuals than IGP. Nonetheless, they outperform those found with IGP in
terms of robustness (last column in Table 1) only two times out of 10. More-
over, in terms of fitness 1 values, the individuals created with SGP always
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Table 1. Results of GP control law creation using the Inclusive GP and Standard
GP. The highlighted values indicates which GP algorithm performed better on the
considered disturbance scenario.

Fitness 1 Fitness 2 Successful Length Depth Length Depth Disturbance cases

Individual 1 Individual 1 Individual 2 Individual 2 solved

IGP 0.8688 0 No 65 14 26 12 20/500

SGP 1.9712 0 No 2 1 6 4 0/500

IGP 0.5427 0 No 71 23 9 6 60/500

SGP 0.7811 0 No 2 1 8 2 150/500

IGP 0.4832 0 No 3 1 15 5 73/500

SGP 1.8142 0 No 2 1 5 4 1/500

IGP 0.6076 0 Yes 57 17 14 6 44/500

SGP 0.6603 0 No 2 1 2 1 209/500

IGP 0.4986 0 Yes 41 16 75 18 436/500

SGP 0.9315 0 No 2 1 4 3 45/500

IGP 0.5272 0 Yes 68 21 35 13 248/500

SGP 1.0006 0 No 6 4 2 1 57/500

IGP 0.4985 0 Yes 21 7 88 14 428/500

SGP 0.7328 0 No 2 1 4 3 104/500

IGP 0.7218 0 No 10 5 122 25 276/500

SGP 0.7888 0 No 2 1 5 3 186/500

IGP 0.5520 0 Yes 75 14 100 25 434/500

SGP 1.0065 0 No 2 1 2 1 50/500

IGP 0.7602 0 No 33 9 5 3 52/500

SGP 1.1208 0 No 2 1 2 1 8/500

perform worse than those created with IGP. These observations suggest that
indeed more complex (e.g. bigger) individuals have better performances than
smaller ones hence they are capable of capturing more efficiently the nonlin-
earties of the plant.

– Using the same number of maximum generations and population size, the
SGP is never able to find a successful control law on the disturbance scenario
of design, while the IGP is able to find a successful control law 50% of the time
as reported in the column “Successful” in Table 1. Here successful means that
the final values of the states are within 1% range of their reference values.
This suggests that IGP can find better solutions than SGP with a smaller
computational budget.

4 Test Case

The system considered to test the proposed controller is the FESTIP-FSS5
Single-Stage-to-Orbit vehicle (D’angelo et al. [3]). The main peculiarities of such
vehicle are its lifting body shape and the use of an aerospike engine, which can
be used during the entire ascent trajectory. This vehicle is very different from
a standard multistage rocket, having greater control capability, and hence is an
interesting framework for the design and testing of intelligent controllers. Here,
only those aspects that influence the design of the controller will be described.
For a more detailed description of this vehicle please refer to [3].
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The aim of the considered controller is to perform the guidance of the vehicle
by tracking a reference trajectory. In particular the reference trajectory obtained
in [11] is considered.

4.1 Disturbance Scenario

The control capabilities of the proposed controller are tested by simulating dif-
ferent disturbance scenarios consisting in a gust acting in a certain altitude range
with constant intensity and by considering uncertainties in the aerodynamic and
atmospheric models. The uncertainties formulation was taken from [13].

Each disturbance scenario is described by three parameters as in Eq. (1)

disturbance scenario = (hstart, vg,Δg) (1)

where hstart ∈ [1, 30] km is the altitude at which the gust starts, vg ∈ [1, 60]
m/s is its intensity and Δg ∈ [5, 15] km is the width of the gust zone. The gust
is applied as in Eq. (2)

v =

⎧
⎪⎨
⎪⎩

v, h < hstart

v − vg, hstart ≤ h ≤ hstart + Δg

v, h > hstart + Δg

(2)

5 Results

The code for the algorithms and the models have been implemented in Python
3 and rely on the open source library DEAP [4] for the GP part, and Tensorflow
for the NN. All the simulations were run on a Laptop with 16 GB of RAM and
an Intel R© CoreTM i7-8750H CPU @ 2.20 GHz × 12 threads and multiprocessing
was used. The code developed in this work is open source and can be found at
https://github.com/strath-ace/smart-ml.

In this section, other than presenting the final results on the performances of
the proposed controller, also the influence of the optimization algorithm used to
create the training dataset and the architecture of the employed NN are analyzed
in order to understand their influence on the whole controller creation process.

Note that the formulation of the test case used in this section does not
consider the constraints that were implemented during the creation of the control
law using GP in Sect. 3. This because the aim of the next steps of the proposed
approach (the optimization of the GP control law and the control tests using
also the NN) is to maintain the trajectory within 1% from the reference one,
and then the constraints satisfaction is implied.

The training dataset for the NN was produced by performing an optimization
of the best performing control law obtained with IGP (fifth row in Table 1) on
500 different disturbance scenarios evenly distributed in the disturbance domain
(Fig. 4a). The goal of the optimization process is to find the optimal GP control
law parameters explained in Sect. 2 in order to obtain a controlled trajectory

https://github.com/strath-ace/smart-ml
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which is within 1% range of the reference trajectory. The optimal GP parame-
ters and the related trajectory are then stored to produce the training dataset
for the NN. In order to understand the influence of the employed optimization
algorithm on the whole process and on the training phase, a comparison of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Nelder-Mead (NM) algorithms
was made and the results are listed in Table 2. These two algorithms were chosen
since both are implemented in the scipy optimize library and BFGS is a gradient
based method, while NM is a direct search method.

From these results it can be seen that BFGS is six times faster and can
converge better than NM since it can perform a successful optimization of the
GP control law on 24.6% more disturbance scenarios than the latter. Such better
performances can be explained by the fact that, by being gradient based, BFGS
can converge faster to the local minimum, while NM makes use of the whole
optimization budget at its disposal (greater computational time) but without
using the information from the gradient it is not able to successfully converge to
the minimum.

Table 2. Comparison of two different optimization algorithms

BFGS Nelder-Mead

Successes 439/500 316/500

Computational time 1 day 03h27m27s 6 days 12h33m19s

The results of the optimization using both algorithms were used to produce
two different training datasets for the NN which were structured as the matrix
in Eq. (3).

training dataset =

⎡
⎢⎢⎣
t′1 x′

11 ... x′
1s err′

x11 ... err′
x1s C11 ... C1n

t′2 x′
21 ... x′

2s err′
x21 ... err′

x2s C21 ... C2n

... ... ... ... ... ... ... ... ... ...
t′m x′

m1 ... x′
ms err′

xm1 ... err′
xms Cm1 ... Cmn

⎤
⎥⎥⎦ (3)

The training dataset matrix in Eq. (3) has dimensionality [m × (2s + n +
1)], where m denotes the different optimizations performed, s is the number of
the states parameters, and n refers to the optimized parameters typical of the
considered GP equation. In this case, each component represented in Eq. (3)
is a column vector containing 500 points of the performed trajectory, e.g. x′

11

contains the trajectory of the state x1 obtained using the optimized values of the
GP control laws from C11 to C1n . The same explanation is valid for the tracking
errors, which are measured as the differences between the obtained trajectory
and the reference one.

The training datasets obtained with both algorithms were used to train three
different NN architectures with fully connected layers: A) one hidden layer with
30 neurons per layer (Configuration 30 with 1,629 trainable parameters); B)
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two hidden layers with 25 neurons per layer (Configuration 25 × 25 with 2,014
trainable parameters); C) two hidden layers with 30 neurons per layer (Configu-
ration 30 × 30 with 2,559 trainable parameters). The NNs were then tested five
times on a predefined set of 500 disturbance scenarios obtained randomly and
uniformly distributed in the disturbance domain (Fig. 4b). These 500 distur-
bance scenarios are different than those used in the previous steps of the process
in order to further test the robustness of the proposed controller. The three
NN architectures were chosen in order to observe the effects of the variation of
the number of trainable parameters on the overall performances. The obtained
results are listed in Table 3.

Table 3. Success rates (%) of the three different NN configurations tested on five
different runs on the same test points using the NN trained on the training datasets
produced with the BFGS and Nelder-Mead optimization.

BFGS Nelder-Mead

Success rate (%) Success rate (%)

Run 1 Run 2 Run 3 Run 4 Run 5 Mean ± σ Run 1 Run 2 Run 3 Run 4 Run 5 Mean ± σ

Configuration 30

NN 71.0 70.2 68.2 71.2 68.0 (69.72 ± 1.36) 68.0 68.0 71.0 67.2 69.6 (68.76 ± 1.13)

GP 67.8 70.6 70.0 69.0 67.8 (69.04 ± 0.43) 65.6 65.6 66.6 65.6 66.8 (66.04 ± 1.41)

Global 84.8 84.6 83.6 84.0 84.2 (84.24 ± 0.50) 82.6 82.6 82.2 81.6 84.8 (82.76 ± 0.92)

Configuration 25 × 25

NN 69.0 69.4 69.6 72.6 71.6 (70.44 ± 1.34) 66.0 70.6 69.0 70.6 67.2 (68.68 ± 1.72)

GP 70.6 71.2 70.2 71.6 70.6 (70.84 ± 0.97) 62.4 69.4 66.2 70.2 68.0 (67.24 ± 1.36)

Global 86.2 84.8 83.8 85.6 86.2 (85.32 ± 0.54) 80.0 82.6 82.2 82.8 82.2 (81.96 ± 1.08)

Configuration 30 × 30

NN 71.2 71.6 68.2 70.8 72.0 (70.76 ± 1.84) 68.6 68.0 68.6 69.2 69.0 (68.68 ± 2.78)

GP 71.0 68.6 69.8 72.8 68.0 (70.04 ± 1.00) 68.8 68.0 69.4 67.0 68.8 (67.24 ± 0.41)

Global 85.0 84.8 83.0 84.4 86.0 (84.64 ± 0.83) 82.4 83.4 84.4 82.4 81.2 (82.76 ± 1.08)

In Table 3, success rate means how many successful trajectories (within
1% from the reference trajectory) were obtained over 500 different disturbance
scenarios (Fig. 4b). The results in Table 3 were obtained by performing a control
action on the selected disturbance scenario using in parallel: 1) the non optimized
GP control law (GP approach, rows GP in Table 3); and 2) the GP control law
always optimized by the NN (NN approach, rows NN in Table 3). Global, in Table
3, refers to the total success rate achieved when considering both the GP and NN
approaches. This comparison highlighted how when using alone either the GP
approach or the NN one, the success rate is ∼70% (∼68% for those obtained with
NM) of the tested disturbance scenarios. While if the global amount of success is
considered, the success rate gets to ∼85% (∼82% for those obtained with NM).
This suggests that the two approaches NN and GP can be complementary, that
is, the GP approach is successful on some disturbance scenarios where the NN
approach fails and vice-versa. The observed complementarity indicates that a
controller as depicted in Fig. 3 could be effective by enhancing the GP control
law performances optimizing it online with a NN when the GP control law fails,
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which is, when the tracking error on the states becomes greater than a certain
threshold. It can also be observed that, in line with the results obtained from
the BFGS and NM comparison, the lower success rate of the NM algorithm
translates into a smaller training dataset for the NN than the one obtained with
the BFGS algorithm, which as a consequence influenced the precision and success
rate of the NN.

6 Conclusion

In this work, a new hybrid approach to IC, consisting in an NN based online
optimization of a GP control law produced offline, has been proposed. Results
coming from tests with different settings of disturbances show that the approach
is more robust that using only the GP trained offline.

Moreover, the creation of the training dataset using two different optimiza-
tion algorithm showed the importance of this phase, highlighting how using
different optimization methods can lead to different results. In fact, a gradient
based method produced better results both in terms of accuracy (24.6% more
successes) and of computational time (six times faster) than a direct search
method. As a consequence, the controller trained with the dataset produced
using the BFGS algorithm achieved a slightly greater robustness on test cases
than the one trained with the NM algorithm.

To improve the performance of the GP, two new features were also devised,
implemented and tested: Inclusive Tournament and Inclusive Crossover. The
Inclusive Tournament and Inclusive Crossover were designed to improve the
robustness of the GP control law since it is a key aspect in control applications.
In comparison with a standard implementation of GP using standard single point
crossover and Double Tournament selection, the control law created with IGP
can control the plant successfully on average on 25.2% more disturbance cases
than the one created with the SGP.

Different future research directions lie ahead: the creation of the training
dataset for the NN requires further investigation in order to assess the possible
benefits of using a global optimizer instead of a local one and also to understand
if the creation of the training dataset could be avoided in order to speed up the
process, for example by using a RL framework. Different NN architectures will
be tested, e.g. a Radial Basis Function (RBF) network, in order to assess which
could be the best NN configuration for this application. Finally a more in depth
analysis of the Inclusive Crossover and Tournament will be performed in order
to fully understand the extent of the introduced improvements in comparison to
the SGP.
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lution. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2084–
2095. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-2 105

7. Johnson, E., Calise, A., Corban, J.E.: Reusable launch vehicle adaptive guidance
and control using neural networks. In: AIAA Guidance, Navigation, and Control
Conference and Exhibit (2001). https://doi.org/10.2514/6.2001-4381

8. Kamio, S., Mitsuhashi, H., Iba, H.: Integration of genetic programming and rein-
forcement learning for real robots. In: Cantú-Paz, E., et al. (eds.) GECCO 2003.
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Abstract. This paper proposes a hybrid approach combining an
Extreme Learning Machine and a Genetic Algorithm to predict the short-
term streamflow at the Cahora Bassa dam, the largest hydroelectric
power plant in southern Africa. To predict the streamflows seven days
ahead, the model uses as input the past river flows, information from
humidity, rainfall, and evaporation measures from the lake upstream of
the dam. The choice of the Extreme Learning Machine’s internal param-
eters, crucial for excellent model performance, is performed by a Genetic
Algorithm. A set of five metrics was used to assess the performance
of the hybrid approach. The computational experiments show the pro-
posed approach outperforms other machine learning methods such as
ElasticNet linear model, Support Vector Machines, and Gradient Boost-
ing. However, the ELM prediction model overestimates higher flows. The
approach arises as a practical tool to predict the streams which have the
potential to help the dam operations balancing the needs of energy pro-
duction and the safety of the population living downstream of the dam.

Keywords: Extreme learning machines · Genetic algorithms ·
Hydrology

1 Introduction

Located in the province of Tete, the Cahora Bassa dam is the fourth-largest dam
in Africa, on the terminal section of the so-called Zambezi medium Mozambique.
The reservoir is the 12th largest in the world and also the fifth in Africa, with a
maximum capacity of 6300 m3 of water (after Aswan, Volta, and Kariba), has a
maximum length of 250 km in length and 38 km of spacing between banks, occu-
pying about 2700 km2 and having an average depth of 26 m. It is currently the

c© Springer Nature Switzerland AG 2020
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Fig. 1. Zambezi River basin, showing the location of the Cahora Bassa dam. Adapted
from [16].

largest electricity producer in Mozambique, with over 2000 MW, which supplies
Mozambique, South Africa, Zimbabwe, and Malawi.

In addition to energy production, it contributes to the development of the
economy of the Zambezi River delta, downstream of it, by enabling activities such
as agriculture, pastoralism, fishing, construction of access roads and, in reducing
the risk of the occurrence of natural disasters, such as drought, floods. However,
due to the maximization of energy production, by releasing stored water during
the season drought, while preparing for low flows on dry season. As a result, the
Zambezi’s regulated flow has been drying out the wetlands, previously fed by the
Zambezi floodwaters, ceasing to be multiple secondary channels and branches
that regularly changed, becoming a single main channel. The water released by
the dam erodes the banks and deepens the riverbed. The now dry floodplains
have severe consequences for biodiversity. Floods have become unpredictable,
making communities across the Zambezi much more vulnerable to their negative
impacts. This paper presents a tool to help understand the dynamics of the
Zambezi River in Cahora-Bassa, by forecasting the flow in the affluence to the
dam. The Cahora Bassa lake receives contributions from the Luangwa River Sub-
basin, Kafue River Sub-basin, Hunyani River Sub-basin, and direct tributaries
to the reservoir and by the effluence generated by Kariba, the upstream dam,
depending on its storage status. This forecast appears to be extremely important
because it can help make decisions about dam operations, contributing to the
construction of a policy of sustainable exploitation of the hydrographic basin,
that is, the adoption of the ecological flow. Figure 1 shows the Zambezi River
basin and the location of the Cahora Bassa dam.
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Time series prediction models have been widely applied for the characteri-
zation of hydrological variables. Several methods developed in the literature are
used to this task, ranging from hydrological and meteorological modeling, statis-
tical approaches, and computational intelligence and machine learning models.
As reported in the recent literature [1,15,20] the machine learning models deserve
a particular highlight in their modeling and forecasting abilities, often obtaining
better results.

A comparison of machine learning techniques for monthly river flow fore-
casting is reported in [13] and [21]. By comparing eight machine learning mod-
els for time series prediction, Ahmed et al. [2] have concluded that multilayer
perceptron neural networks and Gaussian processes produced the most accu-
rate estimations. Sun et al. [19] reported that Gaussian Process outperformed
ARIMA-based methods in more than 400 river basins. Other computational
intelligence approaches have also have shown to be accurate tools for water level
and discharge forecasting with uncertainty, such as Fuzzy neural networks [3].

Despite the impressive results reported in the literature, machine learning
approaches’ proper performance depends on adjusting internal parameters [14],
and their choice directly affects the performance of the models. For example,
neural networks need the number of layers, the number of neurons, and the
learning rate to be set. Gaussian processes need the choice of the kernel function
and the associated parameters. This task can exhibit high complexity [6], and
smart search techniques are an alternative to find the best possible set. To tackle
these drawbacks, an alternative is to apply an optimization algorithm. This
approach can be called hybrid. Hybrid strategies combine the capabilities of
different methods to produce accurate predictions, covering physical modeling,
concentrated and distributed conceptual models, methodologies combining both
machine learning and stochastic models, and techniques of artificial intelligence
and data mining.

This study aims to assess the abilities of the Extreme Learning Machine
(ELM) model as a practical technique for predicting the natural flow of the Zam-
bezi River to the Cahora-Bassa dam. The results show that ELM outperforms
other machine learning methods producing accurate estimations. However, the
technique should be applied with care when estimating extreme flow values. The
ELM can be used to estimate natural flows helping to develop an alert system
for the dam’s operations. This paper is organized follows. Section 2 describes
the study area and the historical data, the streamflow estimation model, and
the proposed hybrid approach. The computational experiments and discussion
are presented in Sect. 3. Finally, Sect. 4 draws the conclusion.

2 Materials and Methods

2.1 Study Area and Data

The data consist of a historical daily series of 5844 observations covering 15
years, referring to 2003 and 2018. The variables under analysis are: natural flow
affluent to the Cahora Bassa dam (Q), rainfall (R), evaporation (E) and relative
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humidity (H). The database provided by the Water Resources and Environment
Management Department of the Cahora Bassa Hydroelectric, the managing com-
pany of the Cahora Bassa dam. The observed streamflow data is partitioned into
the model development (training) and model evaluation (testing) part, according
to Fig. 2.

Fig. 2. Historical flow data of the Zambezi river at Cahora Bassa dam. The training
set ranges from 2003-01-01 to 2012-06-30 and is shown in blue, while the test set ranges
from 2012-07-01 to 2018-12-31 and appears in orange. (Color figure online)

2.2 Streamflow Estimation Model

To carry out the predictions, we selected periods with seven days in the histor-
ical flow series. The forecast model receives an input consisting of 28 values: 7
values of precipitation, 7 of evaporation, 7 humidity, and 7 values of flow. The
model returns the corresponding estimated flow 7-days ahead. There are three
forms of flow forecasting, with a few hours or days in advance, called short-term
forecasts, medium-term or seasonal forecasts, and long-term forecasts, based on
probabilities, trend analysis or climate change scenarios.
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The estimated flow was considered as a function of finite sets of antecedent
precipitation, evaporation and humidity and flow observations at the stations.
The predictive model has the following form:

Qt+7 = F (

rainfall
︷ ︸︸ ︷

Rt, · · · , Rt−6, Et, · · · , Et−6
︸ ︷︷ ︸

evaporation

,

humidity
︷ ︸︸ ︷

Ht, · · · ,Ht−6, Qt, · · · , Qt−6
︸ ︷︷ ︸

streamflow

) (1)

where Qt+j is the streamflow at day t + j, Rt+j is the precipitation (rainfall) at
day t + j, Et+j is the evaporation at day t + j, Ht+j is the humidity measured
at day t + j, and F is an estimation function.

2.3 Extreme Learning Machine (ELM)

Extreme Learning Machine (ELM) [12] is a particular case of feedforward arti-
ficial neural network, where the vast majority is composed of only one hidden
layer. Compared with the Artificial Neural Network (ANN), the Support Vec-
tor Machine (SVM), and other traditional prediction models, the ELM model
retains the advantages of fast learning, good ability to generalize, and conve-
nience in terms of modeling [7]. According to authors, these models are able to
produce good generalization performance and learn thousands of times faster
than networks trained using backpropagation. In literature, it also shows that
these models can outperform support vector machines in both classification and
regression applications.

In ELMs, there are three levels of randomness: (1) fully connected, hidden
node parameters are randomly generated; (2) the connection between inputs to
hidden nodes can be randomly generated, not all input nodes are connected to
a particular hidden node; (3) a hidden node itself can be a subnetwork formed
by several nodes resulting in learning local features.

The output function of ELM used in this paper is given by [18]

ŷ(x) =
L

∑

i=1

βiG(wi, bi,x) (2)

where ŷ is the ELM prediction associated to the input vector x, wi is the weight
vector of the ith hidden node, bi are the biases of the neurons in the hidden
layer, βi are output weights, G(·) is the nonlinear activation function and L
is the number of hidden nodes. The parameters (w, b) are randomly generated
(normally distributed with zero mean and standard deviation equals to one),
and weights βi of the output layer are determined analytically. The activation
functions G(w, b,x) with the hidden nodes weights (w, b) are shown in Table 1.

The output weight vector [β1, ..., βL] can be determined by minimizing [11]

min
βββ∈RL

(‖Hβββ − y‖ + C||βββ||2) (3)
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Table 1. Activation functions used in ELM. The hidden node parameters (w, b) are
randomly generated using a normal distribution N(0, 1).

# Name Activation function G

1 Identity G(w, b,x) = ||w · x + b||
2 Sigmoid G(w, b,x) = 1

1+exp(−w·x+b)

3 Hyperbolic Tangent G(w, b,x) = 1−exp(w·x+b)
1+exp(w·x+b)

4 Gaussian G(w, b,x) = exp(−(w · x + b)2)

5 Multiquadrics G(w, b,x) =
√||w − x||2 + b2

6 Inverse Multiquadrics G(w, b,x) = 1/(||w − x||2 + b2)1/2

7 Swish G(w, b,x) = ||w·x+b||
1+exp(−w·x+b)

8 ReLU G(w, b,x) = maxi (0, (w · x + b))

where y is the output data vector, H is the hidden layer output matrix

H =

⎡

⎢

⎣

G1(w1, b1,x1) · · · GL(wL, bL,x1)
...

. . .
...

G1(w1, b1,xN ) · · · GL(wL, bL,xN )

⎤

⎥

⎦ and y =

⎡

⎢

⎣

y1
...

yN

⎤

⎥

⎦

is the output data vector with N the number of data points. The optimal solution
is given by

βββ = (HTH)−1HTy = H†y

where H† is the pseudoinverse of H.

2.4 Parameter Tuning Guided by a Genetic Algorithm

We use in this work a Genetic Algorithm (GA) to find the internal parameters
of the ELM neural network. In this scenario, each individual/candidate in the
population represents an ELM neural network. There are practically four fun-
damental blocks for a genetic algorithm [10]: (i) Selection: the purpose of the
selection is to choose the individuals who will serve as parents in the reproduc-
tion process. (ii) Crossover: this operator creates new individuals by mixing the
characteristics of two parents. (iii) Mutation: this operator introduces diversity
among the new individuals of the population. (iv) Reinsertion: elitism strategy
is used to preserve part of the population that has superior performance. Hence,
the best-known solutions found so-far in the search process were not lost. Using
the these blocks we can describe GA with the following steps:

1. Create an initial population of random models (randomly generate a set of
hyperparameters values);

2. Evaluate each individual (model) of the population and acquire their fitness
value (performance metric of the model);

3. Select individuals for the recombination process;
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4. Create a new population of new models (from a new set of internal parame-
ters) generated through crossover and mutation on the selected individuals;

5. Combine the old population with the new one and keep only the best models
(elitism strategy);

6. Repeat steps 2–5 until to satisfy the stopping criteria.

Table 2 shows the set of hyperparameters. Considering the ELM setup, a
candidate solution θ = (θ1, θ2, θ3) represents the number of neurons in the hidden
layers, the value of the parameter C in Eq. (3) and the activation function as
shown in Table 1.

Table 2. Encoding of ELM candidate solutions. The column DV indicates the Decision
Variable in the GA encoding.

DV Description Settings/Range

θ1 No. neurons in the hidden layer, L [1, 500]

θ2 Regularization parameter C, Eq. (3) [0.0001, 10000]

θ3 Activation function G, Table 1 1: Identity; 4: Sigmoid; 3: Hyperbolic Tangent

4: Gaussian; 5: Multiquadric; 6: Inverse

Multiquadric; 7: Swish; 8: ReLU;

3 Computational Experiments and Discussion

The internal parameters of each ELM model were set through the search per-
formed by the Genetic Algorithm with a population size of 16 individuals evolv-
ing in 25 generations, crossover probability of 80%, and mutation rate of 10%.
The fitness function is the RMSE calculated according to 3-fold cross-validation
in the training set that ranges from 2003-01-01 to 2012-06-30. The training set
appears in blue in Fig. 2. After the end of the evolutionary search, the best
model’s performance is calculated using the test set, a slice of the historical data
ranging from 2012-07-01 to 2018-12-31 that appears in orange in Fig. 2. The
lower and upper bounds θL and θU , are given respectively by θL = (1, 0.001, 1)
and θU = (100, 104, 8). Tournament selection was used to select individuals for
the recombination process, using five individuals in the tournament. The exper-
iments were repeated 25 times with different random seeds.

To assess the ELM performance, we have implemented three other machine
learning methods in the same computational framework: ElasticNet linear model
(EN) [9], Support Vector Regression (SVR) [4], and Extreme Gradient Boosting
(XGB) [5]. All models had their internal parameters optimized by the genetic
algorithm using the same population size, crossover probabilities, mutation rates,
and the number of generations. The encondig for EN models involves three
parameters, (θ1, θ2, θ3), where θ1 is a penalty term, θ2 is the ratio between
L1 and L2 regularization, and θ3 is a bolean variavle that allows only posi-
tive coefficients. The upper and lower bounds are θ1 ∈ [10−6, 2], θ2 ∈ [0, 1],
and θ3 ∈ {True,False}. The SVR model implements RBF (radial basis func-
tion) kernel and each individual encodes three SVR parameters in the form
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(θ1, θ2, θ3) = (γ,C, ε). The lower and upper bounds are θL = (0, 0.1, 0.01) and
θU = (1, 104, 100). The candidate solutions for XGB models encodes four param-
eters (θ1, θ2, θ3, θ2), where θ1 is the learning rate, θ2 controls the number of
estimators of the ensemble model, θ3 is the maximum depth of each estimator,
and θ4 is the regularization parameter. The lower and upper bounds are θL =
(10−6, 10, 1, 0) and θU = (1, 100, 20, 100). Table 3 presents the metrics used in
this paper and their brief description.

Table 3. Performance metrics. R2 is the coefficient of determination, RMSE is the Root
Mean Squared Error, while MAPE is the Mean Absolute Percentage Error. NSE is the
Nash-Sutcliffe efficiency for the estimation model [17], and KGE is the Kling-Gupta
efficiency between simulated and observed values [8]. Oi represents the observed data
and Pi the predicted values. O is the mean observed streams. r is the Pearson product-
moment correlation coefficient and α is the ratio between the standard deviation of the
predicted values and the standard deviation of the observed values. Finally, β is the
ratio between the mean of the predicted values and the mean of the observed values.

Metric acronym Expression

R2
∑N

i=1(Oi−Pi)
2

∑N
i=1(Oi−O)2

RMSE
1

N

√∑N
i=1(Oi − Pi)2

MAPE 100 × 1
N

∑N
i=1

|O(i)−P(i)|
|O(i)|

NSE 1 − ΣN
i=1(Oi−Pi)

2
∑

i=1n(Oi−O)
2

KGE 1 − √
(r − 1)2 + (α − 1)2 + (β − 1)2

Table 4 presents the descriptive statistics for the performance metrics. The
results produced by the ELM model are compared with other models of machine
learning, such as EN, SVR, XGB. From this table, we can observe ELM pro-
duced competitive results concerning all metrics. However, ELM presents better
estimates showing lower standard deviations.

Table 4. Averaged metrics produced by ELM and comparison with other approaches.
The standard deviations appear within parentheses. The first column shows the metric
acronym. The second column summarizes ELM results, the second and third columns,
the results for EN and SVR, while the last column presents the metrics for XGB. A
total of 25 runs were performed.

Estimator ELM EN SVR XGB

R2 0.71 (0.004) 0.66 (0.073) 0.71 (0.062) 0.70 (0.005)

RMSE 0.42 (0.003) 0.47 (0.060) 0.42 (0.041) 0.43 (0.003)

MAPE 14.85 (0.182) 16.61 (2.438) 15.20 (2.457) 16.05 (0.234)

NSE 0.72 (0.003) 0.60 (0.118) 0.68 (0.025) 0.68 (0.005)

KGE 0.86 (0.001) 0.81 (0.055) 0.82 (0.020) 0.84 (0.003)
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The results of the statistical tests for all metrics are displayed in Table 5. The
null hypothesis is that the mean in each evaluation metric is equal for all models.
As can be seen, we reject the null hypothesis for MAPE, NSE, RMSE, and KGE
because their p-values were smaller than the significance level of 0.05. This means
that these metrics can be used as a criterion to evaluate the performance of the
models in the forecast 7-days ahead. All models produced similar results for R2,
however, with relatively low. Table 5 shows the results of multiple comparisons
applying the Tukey test (α = 0.05) to ELM pairs and other models for each
metric. The null hypothesis is that the means in each pair of models are equal,
which leads to a similar conclusion in Table 6.

Table 5. p-values of ANOVA test for each metric.

Metric R2 RMSE MAPE NSE KGE

p-value 0.101 0.032 0.020 0.000 0.000

Table 6. Pairwise Tukey test. The null hypothesis is that the estimators’ means are
equal. The entries show the outcome for rejecting the null hypothesis.

Estimator 1 Estimator 2 R2 RMSE MAPE NSE KGE

ELM EN False True False True True

ELM SVR False False False True True

ELM XGB False False True True True

Figure 3 shows the best hydrograph according to RMSE for the 7-days ahead
flow Qt+7 in 25 runs. A hydrograph is a graph of the flow in a stream over a
period in a specific location. From this figure, we observe that ELM is capable of
representing the characteristics in the flow series, such as the change in level in
the critical periods with lower flows and higher flows. The simulated hydrograph
showed a very close behavior with good adherence to the observed data. However,
the ELM solution overestimates the peak flows.

The internal parameters of ELM models produced by the genetic search
were collected for all runs, and their distributions are shown in Fig. 4. This
figure shows the parameter distribution for activation function G, the number
of neurons in the hidden layer L, and the regularization parameter C. From this
figure, we observe from a total of eight activation functions shown in Table 1,
only three were chosen in the final solutions: Multiquadric, Swish, and Sigmoid.
As shown in Fig. 4, the Multiquadric activation function was selected in 22
out of 25 runs, while the Swish function appears in the final solutions in two
runs and the Sigmoid in one run. The number of neurons (parameter L) in the
hidden layer is around 450, ranging from 350 to 500 neurons. More than half the
solutions were set with 425–475 neurons, as shown in the boxplot’s interquartile.



264 A. D. Martinho et al.

Fig. 3. Best solution according to RMSE for 7-day ahead streamflows.

Fig. 4. Distribution of ELM parameters over 25 runs. The activation function G and
the number of neurons L influence the solutions according to Eq. 2. The activation
functions are described in Table 1. The regularization parameter C in Eq. 3 controls
the smoothness.

The distribution of penalization shows the parameter C was set in a relatively
wide range, but the boxplot shows more than 50% of the values lie in the interval
[100–250].

Figure 5 displays the scatter plot of the solution with smallest RMSE over
25 runs. We observe that ELM produced solutions with a good agreement up to
flows of 2500 m3/s, indicated by the dotted line. Furthermore, it can be seen
that the quality of the solutions deteriorates as the flow value of 7-days ahead
increases. One can observe that the estimation of extreme events or extreme flows
is difficult to predict by ELM. We highlight that accurately identifying extreme
flows are critical to the decision policy of the dam operations. Due to the river
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Fig. 5. Scatter plot of the solution with smallest RMSE over 25 runs.

bed’s geographic characteristics downstream, the dam, the valley broadens, and
the river develops a narrow floodplain [16]. As a result, extreme streamflows can
abruptly change the river flow, which may cause floods and disasters. Accurate
extreme streamflow predictions help safely control the river flow, allowing fit the
demands for energy generation.

4 Conclusions

The present study shows the ability of the ELM model for the daily forecast of
the natural flow to the Cahora Bassa dam. The results show that using a genetic
algorithm to guide the selection of ELM parameters provides superior results
in the flow forecast 7-days ahead. The ELM technique showed good potential
to perform flow predictions; however, it seemed to overestimate peak flows. As
observed in this study, ELM has been shown to obtain better results than EN,
XGB, and SVR. Further studies include exploring other models, such as deep
learning and online machine learning models to evaluate their forecasting capac-
ity. The proposed ELM model can be useful for flow forecasting, which is most
important to reservoir operation. It also helps to allocate the dam’s waiting vol-
ume and optimize the operating rules, balancing the energy generation while
ensuring the reservoir’s ecological flows.
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Abstract. In this paper, a new three-dimensional path planning app-
roach with obstacle avoidance for UAVs is proposed. The aim is to pro-
vide a computationally-fast on-board sub-optimal solution for collision-
free path planning in static environments. The optimal 3D path is an
NP (non-deterministic polynomial-time) hard problem which may be
solved numerically by global optimization algorithms such as the Particle
Swarm Optimization (PSO). Application of PSO to the 3D path plan-
ning class of problems faces typical challenges such slow convergence rate.
It is shown that the performance may be improved markedly by imple-
menting a novel parallel approach and incorporation of new termination
conditions. Moreover, the exploration and exploitation parameters are
optimized to find a reasonably short, smooth, and safe path connecting
the way-points. As an additional precaution to avoid collisions, obstacle
dimensions are artificially slightly enlarged. To verify the robustness of
the algorithm, several simulations are carried out by varying the num-
ber of obstacles, their volume and location in space. A certain number
of simulations exploiting the random nature of PSO are performed to
highlight the computational efficiency, and the robustness of this new
approach.

Keywords: Particle swarm optimization (PSO) · 3D path planning
algorithm · Unmanned aerial vehicle (UAV) · Autonomous navigation

1 Introduction and Related Works

The problem of path planning in the presence of obstacles is one of the corner-
stones of autonomous UAVs navigation. In all those critical scenarios where it is
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necessary to act quickly, such as earthquake-stricken areas, quarries, crevasses,
or in others GPS denied/degraded environments, for UAVs the ability to pro-
cess the path independently in a short time is critical. In [1], an interesting path
planning solution is developed for urban environments based on MPC (Model
Predictive Control) for a UAV rotary-wing fleet.

In 2007, a seminal contribution for real-time 2D path planning based on PSO
in dynamic environments in the presence of circular obstacles was published [2].
PSO-based path planning algorithms were subsequently used in several studies
such the one presented in [3] to solve path planning problems in complex 2D
scenarios populated by a large number of articulated-shaped obstacles. In this
work the PSO is used to optimize trajectories in terms of smoothing and path
length. In [4] a path planning in 2D environments in limited survival time without
obstacles is presented which aims to reduce the computational time associated
with PSO. In subsequent years, further PSO-based approaches were developed,
for 2D path planning with static or dynamic obstacles, in [2,5–9] PSO based
path planning for multi-robot applications is considered by [5] in which both
collision-avoidance with obstacles, and also with trajectories of other units is
considered simultaneously.

One of the early studies on 3D path planning is presented in [6]. This work
is built on an analogy between trajectories and fluid lines around a body. Subse-
quently, PSO-based algorithms are developed in [7] and [8] in order to improve
upon the computational time and trajectory optimization point of view. Despite
this, the 3rd dimension significantly increases the complexity of the algorithm
and, for this reason the computational times are in the order of minutes or hours.
As a consequence, only simplified environments are still considered.

Since algorithms of this nature (evolutionary algorithms) are useful to find
the global minimum for a problem, the PSO is therefore effective to the search
for trajectories of minimum length; and for this reason that it is adopted in the
following discussion.

In this paper we propose an innovative approach to find a global sub-optimal
solution of a 3D path planning problem with a significant reduction in com-
putational time, even in the presence of several obstacles. This, enables full
autonomous UAVs navigation in several previously unattainable possibilities.
Simulation results demonstrate that the proposed strategy is able to compute a
sub-optimal solution with a computational time lower than 1 s. The main feature
of the proposed algorithm in parallel implementation of the 3D path planning
problem.

The paper is organized as follow. In Sect. 2, the classic particle swarm opti-
mization is presented with the novel modifications developed in this work. The
definition of the objective function for the path planning problem and the param-
eters tuning are also presented in this section. In Sect. 3, results are presented
for 4 different environments of increasing complexity. Several simulations are
considered by varying the starting point and the target.
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2 Problem Formulation

In this paper, the proposed PSO-based algorithm solves a path planning prob-
lem searching for the shortest path connecting a starting point to a target or
sequence of targets. It is assumed that the precise offline map of the environment
is available to the drone. Moreover, the drone is required to reach complete stop
(zero-velocity) above each target, if there are more than one target to reach.

In this section, the standard PSO algorithm and the improvements proposed
to have fast and reliable results for the problem of 3D path planning are pre-
sented. After the introduction of the objective function, the value of different
parameters of the heuristic approach is presented. For each path, i.e. target i to
target i + 1 we compute Nt points and a smooth and feasible flight path will
be determined for the drone by considering spline interpolation between NV ar

auxiliary points.
It is assumed that path planning is performed in a bounded space: the mini-

mum and maximum of the positions in each direction in 3D space are determined
based on the environment where the UAV flies. These are defined as Minp and
Maxp, where p could be x, y, or z. For stability of the algorithm, a boundary
for the velocity of particles is needed: Vminp

and Vmaxp
are defined in Eq. 1.

Vmaxp
= α(Maxp − Minp)

Vminp
= −Vmaxp

,
(1)

where α is a tuning parameter.

2.1 Particle Swarm Optimization

The origin of this algorithm takes its cue from the study of the social behavior
of a bird flock or a fish school by Berhart and Kennedy [9,10]. It solves opti-
mization problems by introducing a population of candidate solutions, called
particles, and iteratively trying to improve each of them in relation to an objec-
tive function. In this study, this function is represented by a combination of
smoothness, shortness, and safety of the proposed flight path. For the ith parti-
cle of the swarm, the position and the velocity vector in the current and in the
following time instant are defined as:{

Vi
k+1 = wVk

k + r1c1(
−→
Pbi

k − xk
i ) + r2c2(

−→
Gbi

k − xk
i )

Xi
k+1 = Xi

k + Vi
k+1 (2)

where the particle velocity is defined by the sum of the inertial contribution,
the cognitive contribution and the global one with their respective speed values:
Vi

k,
−→
Pbi

k and
−→
Gbi

k. While, for the calculation of the position of the particle at
instant k + 1 the pose at instant k and the velocity at instant k + 1 are added.
What is more, w denotes the inertia weight, c1 and c2 are the personal and global
learning constants respectively, r1 and r2 random values in [0,1]. Figure 1 shows
a schematic of Eq. 2.
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Fig. 1. PSO search mechanism in multidimensional search space, [11]

2.2 Improvement with Respect to Standard PSO Algorithm

Due to the slow convergence of the standard PSO algorithm for intensive prob-
lems such as 3D path planning, it is essential to tune and change the parameters
of the standard algorithm to obtain satisfactory results. In this paper, minor
changes in the standard algorithm itself are performed, and the parameters of
PSO for the 3D path planning problem in an obstructed environment are appro-
priately tuned. Algorithm1 shows the pseudocode of our PSO algorithm. Main
features of our proposed algorithm versus the standard PSO algorithm is as
follows:

1. Implementing parallel computing to find a sub-optimal path between different
targets. In the standard PSO the best path between multiple targets is found
by increasing the number of variables. However, this leads to costly computa-
tions and poor results. By proposing and successfully implementing a parallel
form of path-planning we show that an efficient and accurate path can be
found by multiple instances of parallel PSO with low number of variables and
a low computational cost.

2. Parallel computing for each direction, i.e. x, y and, z, which leads to fast
convergence in each direction with a low computational cost.

3. Control of the velocity of particles to remain within the permitted range.
When these ranges aren’t respected, to obtain reliable results, it is wise not
only to saturate the magnitude of velocities, but also using velocity mirroring,
which guarantee the particles to stay in the right path and to reach positions
with lower cost in less time.

4. Considering 3 distinct stop conditions including, maximum number of iter-
ations, obtaining reduced cost less than γ % in Nγ consecutive iterations,
and, finding a path which its length is equal to KL times minimum path
length possible, where minimum path length possible is direct line between
the starting point to destination point. Note that, γ, Nγ , and, KL are tunable
parameters, which will define in tuning section.
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Algorithm 1: Proposed PSO algorithm for the problem of 3D path plan-
ning

%% initialization
Generate particle individuals with these structures; position, velocity, cost,
bestPosition and bestCost;

Set positions of the particles randomly and velocities equal to zero and
bestPosition equal to position;

Set costs of the particles by evaluating positions based on cost function and
bestCost equal to cost;

Find global best position between these particles;
%% Main loop
Set IT = 0;
Set all(ActiveFlag) = true;
while any(ActiveFlag) is true do

IT = IT + 1;
for i = 1 : numel(targets) do

if ActiveFlag(i) is true then
for j = 1 : numel(particles) do

for p = [x,y,z] do
Update velocities based on equation 2, and apply velocity
mirroring if velocity is out of range.

Update positions based on equation 2, and check they be in
the valid intervals.

Evaluate the costs of each position.
Update local best of each particle (bestPosition, bestCost)
and global best position and cost.

end

end
if any stop conditions has been satisfied then

Set ActiveFlag(i) = false;
end

end

end

end

2.3 Objective Function

The objective function consists of two parts, one for path length and one for
obstacle avoidance. Equation 3 illustrates the objective function to be minimized
in our problem.

Cost = R + βV, (3)

where R is the total length of the path, V indicates a violation of path defined
in Eq. 4, more than 0 when the path crosses an obstacle and, β is the coefficient
of the penalty part.
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V =
No∑
i=1

∏
p=x,y,z

max(

∑Nt

j=1 (Rpi
− |p(tj) − Opi

|)
Nt

, 0), (4)

where No is the number of obstacles, Rpi
, and Opi

are respectively dimension and
center of ith obstacle corresponding to each direction, x(tj), y(tj), and z(tj) are
the coordinates of the path at time tj in each direction, and, Nt is the resolution
of path over time. Note that, Rpi

is greater than actual dimension of obstacle
corresponding to each direction, and Rpi

= rpi
+ RCons, where rpi

(p = x, y, z)
are actual dimension of obstacle and RCons is a conservative margin which is
related to dimensions of the drone itself.

2.4 Parameter Setting

To reach accurate and fast results, α = 0.1, β = 200, γ = 1%, Nγ = 5, NV ar = 3,
Nt = 100, and, KL = 1.08 are found by trail and error. For a small quad-copter,
we consider RCons = 0.4 m. The number of particles for this problem is 150 with
maximum iterations of 50, i.e. the final solution should be reachable in less than
or equal to 50 iterations.

For best performance, it is important to tune exploration and exploitation
parameters, i.e. c1 and c2, correctly. Therefore, by simulating different conditions,
we use the constriction coefficient introduced by Kennedy [12] based on Eq. 5 to
tune c1 and c2.

φ1, φ2 > 0, φ = φ1 + φ2 > 4

χ =
2

φ − 2 +
√

φ2 − 4φ

c1 = χφ1

c2 = χφ2

(5)

where the optimal solution is φ1 = φ2 = 2.05, so χ = 0.7298 and c1 =
c2 = 1.4962. Therefore, the exploration and exploitation coefficients have a bal-
ance and lead to fast and robust results for the problem of 3D path planning.
Moreover, we consider inertia wight as w = wdampχ, where wdamp is variable by
iterations and as wdamp = 0.99it. This approach has a significant role in reducing
the computational time for our problem.

For what concerns the reliability of the algorithm, the following stopping
criteria are fixed:

– Cost below γ% in Nγ consecutive iterations, where γ and Nγ are 1 and 5
respectively. This condition means that a feasible solution is obtained as there
is not a strong reduction in the cost during the last consecutive iterations.

– A path length equal to KL (1.08) times the minimum path length possible is
obtained. Where minimum path length possible is represented by the direct
line between the starting point to destination point.

– Maximum number of PSO iterations always below 100 (to limit the compu-
tational time).
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3 Results and Considerations

In order to evaluate the efficiency of the algorithm in terms of computational
time and path length, 4 different environments are built with increasing com-
plexity. In all these 4 maps a fixed rectangular base parallelepiped control volume
(CV ) containing several obstacles is considered (length = 25 m, width = 11 m,
height = 5 m), which represents also the limit within the path can be elaborated
by the algorithm. Figure 2 shows the testing environment with detailed the per-
centage of obstacles defined as VObst/VCV %, with VObst the volume occupied
by obstacles.

Fig. 2. MATLAB R© simulated environments with their respective percentage of
obstacles

3.1 Simulation in Different Environments

Due to the random nature of the PSO algorithm various runs with the same
starting point ([0; 0; 2] m) and destination point ([6; 22; 1.0] m) are performed for
each environment to test the robustness of the algorithm and its path length
and computational time results in terms of variance and average value. In this
case, 50 runs for each environment are performed. Simulations are performed in
MATLAB R© (R2020a) in a PC of Windows 10 OS, Intel(R) Core(TM) i7-7700
CPU with 2.80 GHz and 16 GB RAM.

In Fig. 3, the results for the first environment are shown; the path length has
a moderate oscillation between the maximum and minimum value of approxi-
mately � 1.3 m. The computational time, except for the initial outlier due to
the environment setting, is quite stable and oscillate around � 0.30 s.

In Fig. 4, results for the second environment are shown. The path length
average value is varies negligibly. Instead, its variance starts growing and the
max gap between the maximum and minimum value of approximately increase
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up to � 2.3 m. While, the computational time trend and the average is not varied
considerably.

Figure 5 shows results for the 3rd environment where the percentage of obsta-
cle increase up to 6.40 %. In the path length an important outlier manifests;
while, the rest of the simulation results are stable and similar to the Fig. 4 results.
In this case, the increased % of obstacles involves a rise in the computational
time average, which increases to � 0.45 s. Slight growth in the computational
time variance can be noted too.

In the last environment a high degree of environment complexity is applied.
Seven obstacles and 9.89% of obstruction make up the environment, as shown
in Fig. 2. Figure 6 reports an increase in the variance of path length and compu-
tational time. Also, an increase in the computational time average is registered,
which settles around the still limited value of � 0.85 s.

Fig. 3. Path length and computational time results for environment 1

To find the std of different parameters of the algorithm, 200 simulations for
each environment were performed. The results are shown in Fig. 7. Simulations
are performed in MATLAB R© (R2020a) in a PC of Windows 10 OS, Intel(R)
Core(TM) i5-2400 CPU with 3.10 GHz and 16 GB RAM.

In this case, the total cost and the number of iterations are plotted also. As
previously shown, it is notable that a consequence of increasing complexity of
the environment is to raise the standard deviation of each magnitude. Another
consequence is the increase of the gap between the maximum path length and the
minimum one; this problem can be overcome thanks to the considerably short
computational time that allows elaborating different solutions every second and
selection of the best. The discrepancy notable in the average computational time
compared to previous results shown in Fig. 3, 4, 5, and 6, is mainly due to the
use of different PCs in the two cases, as specified.

To resume, in the simplest environment there is a reduced standard deviation
with the presence of a reduced number of outliers. As the complexity of the
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Fig. 4. Path length and computational time results for environment 2

Fig. 5. Path length and computational time results for environment 3

Fig. 6. Path length and computational time results for environment 4
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Environment 1 Environment 2

Environment 3 Environment 4

Fig. 7. Simulations results for the 4 different environments with 200 runs

environment increases, the standard deviation rises and the presence of outliers
consequently decreases.

In Fig. 8, the results are plotted in terms of average values of path length
and computational time. As expected, the path length and the computational
time mean values increase with the complexity of the environment simulated.
But, the positive result is the reduced value of the derivative of both curves.

Fig. 8. Path length and computation time over more complex environment
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3.2 Comparison with Standard PSO

Environment 1 Environment 2

Environment 3 Environment 4

Fig. 9. Comparison results for the 4 different environments with 200 runs

To show the effectiveness of the proposed approach, a comparison for each envi-
ronment with the standard PSO is performed. The differences between the pro-
posed approach and standard PSO are 4 mentioned points in Sect. 2.2 and Eq. 5.
In this comparisons, the standard PSO parameters are c1 = c2 = 1.7, and
w = 0.6 based on [13]. Other common parameters are the same as proposed
algorithm including the cost function in Eq. 3. Both algorithms are performed in
MATLAB R© (R2020a) in a PC of Windows 10 OS, Intel(R) Core(TM) i5-2400
CPU with 3.10 GHz and 16 GB RAM.

As Fig. 9 shows the standard PSO has lower total cost (less than 3%), but
the total run time of the proposed algorithm is almost 6 ∼ 10 times faster.

4 Conclusions and Further Developments

It is shown that even for the hardest scenario, the computational time always
stays below one second with a stable sub-optimal path solution. This consistency
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in achieving stable fast sub-optimal path solution represents a marked improve-
ment over previous algorithms such as [7] and [8]. In fact, as shown in Sect. 3,
the computational time never exceeds 1 s, even in the most complex environment
analyzed with a stable and reliable 3D path planning solution.

Moreover, since all the simulations run on MATLAB R© for convenience; then
the computational time can still be reduced by implementing the logic in an
embedded platform with a lower level language code as C/C++ in on-board
platforms. For further developments, other optimizations are in consideration to
further reduce the calculation time and meet the real-time requirements without
losing the quality of solution. Moreover, due to fast convergence of the proposed
algorithm, it could be used for dynamic obstacles in real time. The final aim
of this work is to provide the UAV with the ability of autonomous real-time
path planning, for critical environments with a high percentage of obstacles
also, which is one of those key aspects for autonomous flight in unknown GPS
denied/degraded and critical environments in general.
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Abstract. The improvement of combustion processes in industry, espe-
cially in the automotive branch, is of great importance to maintain the
environmental permitted limits. Carbon monoxide concentration in the
exhaust gases can give an insight into the efficiency of the combustion
taking place and for this reason, it is important to have sensors that can
measure it accurately. First results of a long term study with one of the
leading sensor manufactures showed high performance using genetic pro-
gramming. However, this expensive approach is difficult to apply in real-
world settings. Therefore a hybrid optimization that combines support
vector regression (SVR) with variable pre-selection is proposed. Three
different methods for variable selection are compared for this application,
a genetic algorithm, and two methods from Bayesian statistics: statistical
equivalent signatures and projection predictive variable selection. Fur-
thermore, a multi-objective approach using the same hybrid definition is
implemented for the cases in which several sensors need to be considered
simultaneously. Our results show that the hybrid model is an improve-
ment compared to the previous study, while delivering good performance
when dealing with a multivariate formulation. Genetic algorithms in com-
bination with SVR lead to enhanced variation on the groups of selected
variables.

Keywords: Support vector regression · Feature selection · Projection
predictive · Statistical equivalent signatures

1 Introduction

The automotive industry is increasingly concerned with building high perfor-
mance cars while also adhering to the normative set in place for environment
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B. Filipič et al. (Eds.): BIOMA 2020, LNCS 12438, pp. 281–293, 2020.
https://doi.org/10.1007/978-3-030-63710-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63710-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-63710-1_22


282 M. Rebolledo et al.

protection. Among other things, this requires a cutback on the emission levels of
carbon monoxide. The efficiency increase of motor combustion processes plays
an important role in the reduction of pollutant levels. The different concentra-
tions of gases resulting from combustion allow to make an approximate analysis
of said efficiency and thus a reliable in-situ sensing system is required.

In addition to the already existent oxygen sensor, a reliable carbon monox-
ide in-situ sensor is also needed. The sensor should have a high sensitivity for
carbon monoxide and be able to vary its output according to the proportion of
gases found in the exhaust gases. Furthermore the interpretability of the sys-
tem describing these sensors needs to be maintained in order to keep a clear
understanding of how each different gas affects the system output.

Under these conditions, an accurate and informative computational model
can be constructed to examine the dependency of the sensor output to the com-
plex interactions of the exhaust gases. Therefore, an important trait of a model
would be the ability to reveal if there are such synergies between the attributes.
Finally, the underneath workings of the combustion process should be better
revealed by more than one sensor at a time, which would require a multivariate
approach for an adequate modelling of the entire problem. The findings can then
determine if the designed sensors are robust or need to be further enhanced by
the engineers.

Rebolledo et al. [17] proved the efficiency of Genetic Programming (GP)
when modelling single carbon monoxide gas sensors. However, the expensive GP
implementation and its excessive time demanding approach made the method
infeasible for the real world setting. Instead the Least Absolute Shrinkage and
Selection Operator (LASSO) [19] model was favored given its interpretability
and ability to identify the effect each variable had on the output.

The main goal of this paper is to put forward a hybrid model strategy to
improve the modelling of single sensors and go one step further into the for-
mulation and solution of the multi-objective case. This in order to handle the
situation when there is more than one sensor required to be investigated. The well
performing support vector regression (SVR) technique is combined with variable
selection methods to accelerate the sensor optimization and at the same time to
enable the understanding of parameter importance. Furthermore, a lower num-
ber of parameters will limit SVR high flexibility, reducing in this way its variance
and avoiding overfitting [10].

Three different methods of variable selection are compared for this applica-
tion: a genetic algorithm (GA) and two methods from Bayesian statistics, i.e.
the statistically equivalent signature (SES) and projection predictive variable
selection (Projpred). By this we want to answer two questions:

Q-1. Can these methods be applied as a feasible approach to single and multi-
variate sensor optimization scenarios yielding minimal mean square error
(MSE)?

Q-2. Which method performs best among the ones tested?
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The findings will help determine whether the designed sensors are robust to work
in single and/or multiple arrays, while maintaining a clear presentation of the
influence that the different gases have on the sensor reading.

The paper is structured in the subsequent manner. Section 2 presents the
description of the problem and the available data set. Section 3 explains the
setup of our experiments and the workings of the three tested hybrid algorithms.
Section 4 presents the results obtained. Finally, Sect. 5 discusses results and
presents answers to questions (Q-1) and (Q-2).

2 Problem Description

The efficiency of motor combustion processes can be indirectly measured by mon-
itoring the concentrations of carbon monoxide and other harmful gases releases
into the atmosphere. This paper focuses on the modelling and optimization
of a sensor that is able to discern carbon monoxide concentration apart from
other six exhaust gases. This is difficult because the sensor is exposed and influ-
enced by these gases. Thus, the sensor output will represent the underneath
process influenced by all the other gases and not directly the carbon monoxide
concentration.

The optimization task can be given in a general formulation as two prob-
lems ranging from single to multi-objective. Given the data set {Ai,Bi},
i = 1, 2, ...,m, where each Ai = (A1

i , A
2
i , ..., A

n
i ) refers to the concentrations

of the X1, X2, ..., Xn gases involved in the combustion process, with Aj
i ∈ IR,

j = 1, 2, ..., n, and every Bi ∈ IRp denotes the output of the p sensors Y1, Y2, ...,
Yp (i.e., a multivariate regression formulation), the two main objectives of the
experiments can be named as:

1. Find the (combination of) predictors Aj
i that minimizes the MSE for each

sensor measurement independently.
2. Find the (combination of) predictors Aj

i that minimizes the MSE for all
sensor measurements Y1, Y2, ..., Yp simultaneously.

A first simple way to address the presence of several sensor is to appoint
a naive approach where the fitness evaluation of an individual is a summation
of several objective function, i.e. sum of SVR estimated MSE for each output.
f(c) = f1(c) + f2(c)... + fp(c).

At this point the hybrid approaches GA-SVR, SES-SVR and Projpred-SVR
can be appointed to solve both the single and the multi-objective task.

2.1 Data Description

The data set for this work was presented in [17] and is included on the R package
SPOT [2] where it can be freely accessed for comparative studies.

During four years, the data was collected from an extensive real-world project
in cooperation with one of the leading sensor manufacturers. The data was
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recorded from a series of experiments following a response surface design. This
design constraints itself to the maximum and minimum expected concentration
values of each gas under normal working conditions. Given the cost and time
consumption required for the experiments, only a limited amount of samples
could be measured.

The data contains m = 140 samples and every record is defined by seven
attributes, X1 to X7, which represent the concentrations of each of the measured
exhaust gases, here anonymized due to confidentiality reasons. Carbon monoxide
is identified as X1. Two sensor outputs, denominated Y 1 and Y 2, were recorded.
The data is standardized, meaning that every sample had its mean subtracted
and was then divided by the standard deviation. Following the nomenclature of
the above defined optimization task, the variables m, n and p have the following
particular values: m = 140, n = 7, p = 2.

3 Experiments

Following the standard procedure in machine learning described in detail in [7],
the data is divided into training, test, and validation sets.

To give stability and statistical significance to the results, several experimen-
tal runs were performed by drawing different compositions for the three sets. 30
partitions are constructed by repeatedly selecting 80/25/35 samples correspond-
ingly. The selection is done randomly.

The variable selection and model building will be evaluated in terms of MSE
using the validation set. The best obtained result will be evaluated on the test
set to acquire the final result.

All the executed experiments use the R package e1071 [12] to implement
the SVR. All the instances of SVR use the radial basis function (RBF) kernel,
exp(−γ||x − x′||2), with parameter γ = 0.1 indicating the spread of the kernel.

The exact implementation of the different hybrid methods differs according
to their inner workings and their exact experimental settings are presented in
more detail in the following sections.

3.1 GA-SVR

In this approach a genetic algorithm (GA) [5] selects the predictors Xi that
influence the output for each available sensor and learns from the training data.

Evolutionary and swarm computation have been often successfully partnered
with support vector machines for variable or parameter selection, as demon-
strated by other application areas in industry, medicine and biology [8,9,14,18].

Since the current task is variable selection, a binary representation was cho-
sen. An individual is a binary vector c ∈ {0, 1}n, where cn = 1 signifies that the
corresponding gas n influences the sensor signal and cn = 0 that its effect on the
sensor output is insignificant.
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This approach is depicted by Algorithm 1. Here no of repeats corresponds
each of the 30 train/validation/test sets partitions.

Evolution at each repeat follows the standard cycle of parent selection, vari-
ation, and survivor selection. The GA binary encoded individual c indicates the
attributes that will be included in the modelling step. A SVR is trained on the
obtained attribute collection and the MSE is computed on the validation data.
The MSE value is returned as the current individual’s fitness. At the end of each
GA run, the best individual bestl, is retained. After the 30 trials are finished,
the number of times a feature l was selected in the preserved best individuals
is counted in scorel. Therefore, a ranking of the involved attributes is achieved.
Additionally, the MSE of each of the preserved best individuals is computed on
its respective test set. The final test MSE is obtained as the average of the results
over these runs.

for i = 1 : no of repeats do
use train/validation/test set partition i ;
initialization of population popGA;
evaluate popGA by calculating MSE;
for j = 1 : no of generations do

parent selection in popGA;
variation in popGA;
obtain offspring population off ;
evaluate off by calculating MSE;
survival selection in popGA;

end
store the best individual of popGA in besti;

end
for l = 1 : n do

scorel = sum of selected attributes in (best);
end
rank variables according to score;

Algorithm 1: Hybrid GA-SVR algorithm. The algorithm accepts the different
partitions of the data set and returns a score of most important variables.

The GA-SVR meta-heuristic can be easily extended to be able to simulta-
neously handle several sensors. The objective function will be the summation of
each several objective function as stated on the problem definition. The problem
can be therefore defined as a multi-objective discrete and combinatorial opti-
mization problem [4], where every objective refers to the measurement of one
sensor and needs to be minimized.

The GA was implemented using the R package genalg [22]. The GA popula-
tion size is set to 20, with 50 generations. Bit flip mutation with a probability
of 0.3 was used with elitist selection.
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3.2 SES-SVR

Statistically equivalent signature (SES) [11] is a constraint-based feature selec-
tion algorithm with roots in causal analysis, where the optimal set of predictors
consist in the Markov Blanket (MB) of the variable in the Bayesian Network
(BN) representing the data distribution [21]. SES has already been proved to
work on several high-dimensional gene-expression data sets including temporal
data [20] and text mining applications [1].

Given a subset of variables, W, an statistical independence test, ind(), is
used to test the null hypothesis that a variable X is conditionally independent
on the output T given W, ind(X,T|W). Variables that cannot be proven as
independent, that is they show a connection (functional relation) to the output,
are selected.

Once the variables with the most expected predictive power have been
selected, a SVR model is built on the training set including only these variables.
The group of variables with the smallest MSE in all validation sets is selected as
the best. For the final test MSE, the SVR models are generated again on all 30
data partitions using the best variables and the average MSE on the test sets is
computed. Algorithm 2 illustrates the steps for the SES-SVR approach.

for i = 1 : no of repeats do
use train/validation set partition i ;
initialize variable selection algorithm ;
Select variables with the configured criteria ;
estimate MSE in validation set ;

end
store selected variables with best MSE in best ;
for l = 1 : n do

scorel = sum of selected attributes in (best);
end
for i = 1 : no of repeats do

use test set partition i ;
estimate MSE using best in test ;

end
rank variables according to score ;

Algorithm 2: General algorithm for SES-SVR and Projpred-SVR. The algo-
rithm accepts the different partitions of the data set and returns a score of
most important variables.

The multi-objective formulation needs only a new definition of the inde-
pendence test used while selecting the variables. In this case the multivariate
regression test is applied. The MSE of the best variables will be defined as the
MSE sum of all the sensors outputs.

SES was implemented using the R package MXM [11]. Since both variables
and outputs have continuous values, the Fisher test (testIndFisher) is computed
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for the single objective case and the multiple regression test (testIndMVred) for
the multiobjective case. A maximum of four variables is used as the conditioning
set and the threshold for the p-value is set at 0.05 because this is considered as
a standard value.

3.3 Projpred-SVR

The projection predictive variable selection (Projpred) [16] is a Bayesian model
selection method, in which the posterior information of a reference model that
includes all possible variables (M∗) is projected onto candidate models (M⊥) con-
taining only a subset of the variables. The goal is to find a submodel M⊥ whose
predictive distribution is as close as possible to that of M∗. The Kullback-Leibler
(KL) divergence is used to determine the divergence between both distributions.

The method works as follows: a Gaussian linear model is used to build the
reference model M∗ with input variables fi as in Eq. 1.

fi = W�Xi

yi = fi + εi, ε ∼ N(0, σ2)
(1)

To encourage sparsity an extra prior is added to the weights W = (w1, ...wn)
to count for their relevance or irrelevance to the output. The Horseshoe prior [3]
accomplishes this by introducing a global scale, τ , inferred by the data, and a
local scale, λ, inferred by W, as seen in Eq. 2, where t+v refers to the half-Student-
t prior with v = 1 degrees of freedom. Both scale parameters are unknown quan-
tities and will be inferred during the Markov chain runs. The scale parameter λ
will be high for inputs with high relevance and small for those with low or no
relevance.

wi|λi, τ ∼ N(0, λiτ)

λi ∼ t+v (0, 1)
(2)

After model fitting is finish, variable selection starts searching for impor-
tant variables using L1-search, a LASSO related method in which a subspace
to project the model is defined using L1 constraints on the parameters of the
full model [13]. The variables that achieve the most similitude to the predictive
distribution of the original model are selected.

The algorithm works following the same steps as illustrated in Algorithm 2.
First the full Gaussian linear model is fitted using the horseshoe prior. To specify
the prior beliefs about the number of relevant variables, the results from [17] are
used. According to their findings four variables showed a higher influence on
the model output. This information will be transmitted to the model through
the prior definition. After the full model is fitted, the variable selection starts
using L1-search. The chosen variables are the ones that most decrease the KL-
divergence between the predictive distribution of the full model and the one of
the candidate model. At the end of the runs the variables with minimum MSE
on the validation set are chosen as the best. The SVR model uses only the best
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variables to give the final result on the test set. Moreover, the best variables are
encoded as a binary vector to allow to calculate the ranking for each attribute.

The implementation of the described algorithm is implemented using the
projpred R package [15]. The model fitting was done using the rstanarm package
[6]. The definition of the Horseshoe prior uses a global scale parameter ≈ 0.149.
Four Markov chains are run, each with 1000 iterations and leaving 500 iteration
as burn-in.

4 Results

The constructed algorithms were applied to the gas sensor data described in
Sect. 2. The experiments were first conducted for the single objective formulation
using the output given by sensor Y1 and subsequently by sensor Y2. The results
obtained on the test data are shown in Table 1. These correspond to the average
MSE value across all 30 test set partitions. To enable comparison with previous
results, the results obtained using LASSO in [17] are also presented as a baseline.

Table 1. MSE with standard deviation obtained for GA-SVM, SES-SVM and
Projpred-SVM on the single-objective formulation experiments. As a baseline the
results obtained in [17] using LASSO are also presented. Smaller values mean better
performance.

GA-SVM SES-SVM Projpred-L1 Baseline

Y1 0.3321± 0.0875 0.3367± 0.1062 0.3928± 0.1375 0.56

Y2 0.2827± 0.0633 0.2868± 0.0797 0.2880± 0.0721 0.27

The variable ranking given by all the three different methods coincide on
clearly pointing parameters X1 and X4 as the ones with the strongest influ-
ence on outputs Y1 and Y2. Results start to diverge when observing the other
parameters. While GA-SVR algorithm finds parameters X3 and X7 as the sec-
ond most influential parameters this trend, although visible, is not as marked
for SES-SVR or Projpred-SVR. Figure 1 shows the ranking differences between
two of the algorithms. It is clear that the GA method includes more variation
in variable selection.

The MSE results for the multi-objective formulation are given separately for
the two sensors in Table 2.

It is interesting to observe that the performance of the compared methods
is not greatly affected when changing between single and multi-objective for-
mulations. It is again significantly improved when compared to the baseline in
Table 1.

The parameter ranking for the multi-objective formulation of all three meth-
ods is shown in Fig. 2. The same most influential parameters are identified and
the least important X5 and X6 are hardly considered. These two parameters
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Fig. 1. Variable importance ranking for the (a) GA-SVR, (b) Projpred-SVR, and (c)
SES-SVR. All three algorithms are in their single objective formulation for Y1 and Y2.
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Table 2. MSE with standard deviation obtained for GA-SVM, SES-SVM and
Projpred-SVM on the multi-objective formulation. Here smaller values mean better
performance.

GA-SVM SES-SVM Projpred-L1

Y1 0.3619± 0.0917 0.3460± 0.0882 0.3525± 0.0939

Y2 0.2993± 0.0641 0.3010± 0.0759 0.3022± 0.0721

are only selected by GA-SVR on a low number of occasions. It is interesting to
note that the variable selection implemented by the GA maintained the same
behavior in the single- and multi-objective case.

Fig. 2. Ranking of the variable importance of all three methods in the multi-objective
formulation.

Lastly, it is of interest to know the difference in wall-clock time each of these
methods need in order to complete the described experiments. Using a dual
core 1.4 GHz Intel Core i5 processor the time required for the multi objective
formulation was 10 min, 12 s and 15 min for GA-SVR, SES-SVR, and Projpred-
SVR respectively.

5 Conclusions

The current data analysis considers seven gases resulting from a combustion
process and two built-in sensors to measure the concentration of each gas as
provided by an industrial testing station. The optimization problem required to
find the minimal MSE while preserving the system interpretability.
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Our proposed solution makes use of the well performing SVR to model the
sensor output. To avoid overfitting and to maintain model interpretability only a
subset on the input parameters is used when building the model. Three variable
selection methods are tested in order to select the input subset: Projection pre-
dictive method, binary genetic algorithm, and statistical equivalent signatures.
There three methods use different strategies when selecting the most important
variables.

The experiments show there is clear improvement over the results presented
in [17] and prove the hybrid approach has good performance for both the single-
and multi-objective formulation of the gas sensors.

To answer the first question (Q-1), can these methods be applied as a feasible
approach to single and multi-variate sensor optimization scenarios yielding min-
imal MSE?, single- and multi-objective solutions were tested. All three methods
showed an increase in the performance when compared to the baseline in the
single objective approach. This performance level was maintained when testing
the methods on the multi objective scenario.

In the single-objective formulation the GA-SVR approach showed slightly
better results than the other two competing methods. Even though LASSO was
the preferred method in [17], the analog implementation used in Projpred did
not show any solid advantage. In the multi-objective formulation all methods
presented a performance comparable to that obtained on the single sensor app-
roach. Here GA-SVR showed again a slightly better result.

Regarding the second question (Q-2), which method performs best among
the ones tested?, the dynamics of the variable selection were observed across the
experiments. As seen in the results all three approaches showed similar perfor-
mances but there were two significant differences. On the one hand, GA-SVR
shows more variation between the best variable groups while the other two meth-
ods find only a couple different best options and repeat them for several models.
On the other hand, SES-SVR allows an implementation that is by far faster
that the other two methods. Following these observations GA-SVR is our pre-
ferred method in scenarios where there is no time pressure. Here the variability
on the best variable groups can be beneficial for data sets with complex input
interactions.
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Abstract. Computer-aided drug design is an approach to effectively
identify and analyse molecules for therapeutic and diagnostic interven-
tions. Generally, libraries with a broad range of compounds revealing a
high genetic diversity with an at most similar behavior in bioactivity have
to be created. For this purpose, an evolutionary process for multi- and
many-objective Molecular Optimization (MO) has been designed and
improved during the past decade. Diversity plays a central role in Evo-
lutionary Algorithms (EAs) to prevent premature convergence to sub-
optimal solutions and several methods to promote diversity on different
levels of an EA have been proposed. The aspect of genetic diversity
in MO is a further challenge that has to be controlled and promoted
by different strategies on various stages of a problem-specific EA. This
work presents an application-specific re-interpretation of different diver-
sity aspects on various stages of an EA for MO. A sophisticated survival
selection strategy combining a specific ranking method with application-
specific diversity promoting technologies is introduced and benchmarked
to the recently proposed many-objective evolutionary algorithm AnD on
four molecular optimization problems with 3 up to 6 objectives.

Keywords: Genetic dissimilarity · Genotype and fitness diversity ·
Multi- and many-objective molecular optimization

1 Introduction

Drug discovery for therapeutical and diagnostic entities is a highly complex pro-
cess and still costly, difficult and time-consuming. The aim of drug discovery is to
identify candidate antibodies to disease-relevant targets that are complementary
in shape and charge to these targets with which they interact and bind. This
process is often a combination of computer techniques, bioinformatic approaches
and laboratory experiments to simultaneously improve molecular properties like
affinity, selectivity and metabolic stability [1].

For this purpose, a single-objective EA for MO has been evolved reveal-
ing exponential fitness improvement of candidate peptides within 10 iterations,
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slowed down to linear fitness improvement afterwards [2]. A sophisticated ver-
sion of this approach with similar properties for multi-objective MO, termed
as COmponent-Specific Evolutionary Algorithm for Molecular Optimization
(COSEA-MO), has been reported and benchmarked on a 3- and 4-dimensional
physiochemical optimization problems in [3]. The components have been com-
pared to several state-of-the-art components and a fine-tuning of the parameters,
number of recombinations and population size, has been performed [3–5]. Fur-
thermore, COSEA-MO has been enhanced for the application on multi- and
many-objective MO problems by a winning-score based ranking method as sur-
vival selection [6] providing again exponential fitness improvement within 10
iterations. This enhanced version has been evolved under specific conditions:

– provides exponential convergence improvement within 10 iterations on multi-
as well as many-objective molecular optimization problems,

– components are parameter-free in the sense that no parameters have to be
chosen by the user which have a high impact on the performance,

– the algorithm does not make use of reference points, weight vectors or a
division of the search space by hyperboxes, which also have a high impact on
the performance and have to be chosen carefully by the user.

The genetic diversity with the meaning of genetic material among the candidate
optimized peptides is an important feature and less work has been done so far
to control this aspect of diversity in an evolutionary process, especially in the
field of MO.

Generally, diversity is the second important aim in evolutionary optimiza-
tion and is usually addressed in an evolutionary process to prevent premature
convergence on suboptimal solutions. Therefore, several diversity strategies are
included on different stages in an evolutionary process acting on the three levels
genotype, phenotype and fitness with a different impact on the performance [7].

The contribution of this work is a application-specific re-interpretation of
diversity promoting aspects in an evolutionary process for multi- and many-
objective molecular optimization and an enhancement of this evolutionary pro-
cess, COSEA-MO, to control diversity among the candidate optimized peptides
by a sophisticated selection procedure to identify a significant number of highly
qualified peptides with an at most wide range of genetic diversity among them-
selves. For these issues, the following questions are addressed in this work:

1. What does diversity mean in the field of MO?
2. How to address diversity on different stages of an evolutionary process?

A sophisticated selection strategy as a linear combination with the terms molec-
ular quality, genetic diversity and dissimilarity is introduced. The molecular
quality is measured by a winning-score technique [8]. Hamming distance and
a dissimilarity measure based on the matrix of Sneath [9] is used to calculate
the diversity of the genetic material. The performance of COSEA-MO with the
new selection function is evaluated on four MO problems with 3 to 6 objec-
tives and is compared the recently proposed many-objective evolutionary algo-
rithm AnD (ANgle-based selection and shift-based Density estimation strategy)
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[10] with the survival selection principle ‘diversity-first-and-convergence-second’.
AnD has the same simple framework structure as COSEA-MO, is also indepen-
dent of problem-specific weight vectors and reference points and outperformed
several state-of-the-art many-objective EAs on standard benchmark problems.
AnD has been chosen for comparison as it is currently the only state-of-the-art
algorithm that is compatible with the second and third condition mentioned
above.

The outline of this work is as follows: Sect. 2 gives an overview of preliminary
knowledge, re-interprets these general aspects of diversity in the application field
of MO and describes related work. Section 3 introduces the proposed approach
COSEA-MO with the new survival selection strategy and discusses the methods
of diversity promotion on different stages of the algorithm. Section 4 presents the
simulation onsets and the experimental results, which are discussed in Sect. 5.

2 Preliminary Knowledge and Related Work

Analyzing an evolutionary process regarding the term diversity, at least three
levels are recognizable to promote diversity: genotype, phenotype and fitness.
Genotype is the internal representation of an individual in an evolutionary pro-
cess and is directly manipulated by the evolutionary operators. In the case that
the genotype presentation cannot be directly evaluated by the fitness functions,
a transformation into a phenotype representation is necessary. In this case, fit-
ness distance measures are also effective measures for genotype and phenotype
distance [7].

In the field of MO, individuals are usually represented as amino acids
sequences and molecular functions - assuming that approximate molecular fitness
functions for property prediction are available - directly work on this represen-
tation, therefore genotype and phenotype coincide. The fitness values are real
numbers in the so-called chemical space. In [11], chemical space is defined as a
N-dimensional Cartesian space in which molecules are mapped using chemoinfor-
matic descriptors, which quantify physical, chemical and topological properties
of molecules. The Euclidean distance is an intuitive distance measure to calcu-
late the chemical space diversity based in the descriptor values of two molecules
i and j:

Di,j =

√
√
√
√

N∑

k=1

(di,k − dj,k)2

On genotype level, the common Hamming Distance is a straightforward metric
to evaluate genetic diversity:

Dham
i,j =

XOR(i, j)
N

,

where i and j are two strings of length N , XOR(i, j) is the number of positions
that differ in two strings.
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The locality principle states that small changes in genotype correspond to
small changes in phenotype and result in small variations on fitness level. This
principle is not an intrinsic character of the optimization problem, but of the
genotype-phenotype-fitness-mapping. Generally, phenotype variation in multi-
objective optimization causes more fitness variations because obtaining identical
fitness values is less probable in higher-dimensional spaces [7].

This locality principle does not hold in molecular landscapes [12]. The reason
for this is a further aspect according to the work of Sneath [9] that has to be
considered: A correlation study is performed between changes of amino acids in
the chemical structure of a molecule and its impact on the molecule bioactivity.
The 20 canonical amino acids are considered in this work evaluating their sin-
gle influence on the bioactivity of a molecule by a systematical substitution of
one or more amino acids. The outcome of this work is a correlation matrix of
the canonical amino acids quantifying their dissimilarity (D) or similarity (1-D)
respectively to each other. The resemblance of the amino acids is obtained by
comparing as many chemical properties as possible. The consequence from this
work transferred to the field of MO is that diversity and dissimilarity are two
complementary aspects on genotype level which have to be equally considered
in MO: two peptides potentially have the same Hamming Distance value but
highly differ in their dissimilarity values regarding the varying amino acids and
therefore provide highly differing physiochemical fitness values.

Diversity in Evolutionary Algorithms (EAs) is usually quantified in three
different ways: firstly, as a distance metric between individuals, secondly as an
individual attribute reflecting how far an individual is positioned from the pop-
ulation (individual diversity). Thirdly, the population diversity is defined as the
average individual diversity.[7]

It has to be noted that individual and population diversity in EAs usually
refers to diversity on fitness level and transferred to MO, individual and popu-
lation diversity is related to distances in chemical space.

In the related work [13], dissimilarity inspired by biodiversity measures has
firstly been applied to address diversity in many-objective evolutionary opti-
mization. A new diversity measure, which is an accumulation of dissimilarity
in the population based on an adopted Lp-norm, enhances diversity mainte-
nance in a many-objective evolutionary process. The diversity of a solution is
determined by the sum of dissimilarity values to the remaining members of the
population. Diversity performance of four popular multi-objective evolutionary
algorithms has been improved on four standard benchmark problems with two
to ten objectives.

In this work, COSEA-MO with the sophisticated selection strategy is com-
pared to AnD (ANgle-based selection and shift-based Density estimation strat-
egy) [10] in this work. To the best of the authors knowledge, AnD is currently the
only available state-of-the-art algorithm that is compatible with the second and
third condition mentioned in the introduction and provides a specific diversity
promoting strategy within the selection. AnD selects promising individuals from
the union of parent and child population for the next iteration with a diversity-
first-and-convergence-second principle. In AnD, the well-known vector angle and
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shift-based density estimation in the selection process are combined. Angle-based
selection is used to identify two individuals with minimal angle. This is by the
idea that these individuals represent the search in the same direction and waste
computational resources if both individuals survive. The individual with lower
shift-based density estimation is deleted in order to ensure convergence. AnD
has been compared to seven state-of-the-art MaOEA on a variety of benchmark
problems with 5, 10 and 15 objectives and reveals highly competitive perfor-
mance. AnD is chosen for experimental comparison in this work as it the same
simple framework structure like COSEA-MO (Algorithm 1), provides optimized
default parameters for the non-expert use and is independent of weight vectors
or reference points, which usually have a strong impact on the performance and
are usually unknown in real-world applications.

3 Proposed Approach

This section describes an enhanced version of COSEA-MO to promote high
genetic diversity and to ensure exponential fitness improvement within 10 itera-
tions at the same time. The framework of COSEA-MO is given in Algorithm 1.
The algorithm starts with the random initialization of the start population P0

of size N . The individuals represent peptides encoded as character strings con-
sisting of 20 different characters symbolizing the 20 canonical amino acids. Dur-
ing the evolution process, an offspring generation Qt of size N is generated by
the variation operators recombination and mutation (RandomMatingAndVaria-
tion). Then, Pt and Qt are combined to a population Ut of size 2N . Finally, a
survival selection strategy (LinearSelection) is performed to select N individuals
of Ut for the next generation Pt+1. An overview of diversity-preserving methods
on different stages of the evolutionary process is given and the components of
COSEA-MO are introduced.

Algorithm 1: Framework of COSEA-MO
Input: Population Pt, population size N , number of optimal solutions m, total

number of generations T
Output: Next generation Pt+1

1: Random initialization of P0;
2: while t < T do

Qt ← RandomMatingAndVariation(Pt);
Ut ← Pt ∪ Qt;
Pt+1 ← LinearSelection(Ut);
t ← t + 1;

end
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3.1 Diversity Strategies on Different Stages of COSEA-MO

COSEA-MO uses diversity strategies on three stages, firstly in parent selec-
tion for recombination, secondly on the stage of variation by guiding the search
process with a suitable balance of exploration and exploitation on the basis of
deterministic dynamic operators and thirdly by a new sophisticated survival
selection strategy: Firstly, three parents are randomly selected from the popu-
lation Pt for variation. The specific number of parents is motived to ensure a
higher genetic diversity of the genetic material in the offspring genotype com-
pared to the common choice of two parents. Secondly, deterministic dynamic
variation operators are used for a high explorative search in early generations
and a exploitative search in later generations. A linear dynamic recombination
operator and an adapted version of the deterministic dynamic mutation opera-
tor of Bäck and Schütz [14] are used to generate offspring. The variation rates
are adapted dynamically by predefined decreasing functions with the iteration
progress: the recombination operator varies the number of recombination points
by a linearly decreasing function

xR(t) =
l

4
− l/4

T
· t,

where l is the peptide length, T the total number of the generations and t the
index of the current generation. The adapted mutation operator determines the
mutation probabilities via

pBS = (a +
l − 2
T − 1

t)−1

with a = 5. The mutation rates of the traditional operator are reduced by a
higher value for a.

Thirdly, a new selection strategy is used in COSEA-MO as survival selection.
A fitness value is assigned to each peptide in Ut by a linear combination consist-
ing of a term reflecting the peptide quality, a term for genetic diversity and one
for genetic dissimilarity as well as similarity respectively. Peptide quality is mea-
sured by a winning-score (WS) value for each peptide relative to the remaining
members of the population. The WS method describes the difference between
the number of superior and inferior objectives between two individuals: let supij
be the number of objectives in a solution i that is superior to the corresponding
objectives in a solution j while infij is the number of objectives in i that is
inferior to j. The WS-value of the i-th solution in a population of size N is given
by [8]:

WS(i) =
N∑

j=1

wij with wij = supij − infij

Obviously, it is wij = −wji and wii = 0. This assignment ensures that solutions
with high WS-values are close to the true Pareto front.

The genetic diversity is measured by the traditional Hamming Distance
(HD) relative to a predefined reference peptide. The genetic dissimilarity (D) is
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calculated averaging the dissimilarity values of a peptide i to a predefined refer-
ence peptide r according to the dissimilarity matrix of Sneath

D(i) =
1
l

l∑

j=1

D(ij , rj),

where ij and rj refers to the j−th amino acid position. Since the amino acids at
each position of both peptides are compared, they have to be of the same length
l. The values of WS, HD and D are scaled to are range of 0 to 1 ensuring an
equal impact on the fitness value.

The selection procedure starts with assigning of a fitness value to each indi-
vidual of Ut by the following linear combination:

F (i) = a ·WS(i) + b ·HD(i) + c ·D(i) + d (1)

with the weights a, b, c and d (Table 1). The terms WS, HD and D have to be
maximized: peptides with an average high number of superior objectives relative
to other members of the population, a high genetic diversity of the material and
a high average similarity in bioactivity (1 −D(i)) to a reference peptide at the
same time are preferred. The peptides with the N -highest fitness values are
selected for the next generation.

4 Experimental Studies

The performance of COSEA-MO with different selection configurations are com-
pared to the recently published AnD on four differently dimensional MO prob-
lems and are evaluated according to the convergence behavior, diversity in chem-
ical space and average dissimilarity. AnD has the same framework structure as
COSEA-MO and the same variation operators are used for a fair comparison of
the selection strategies. The different configurations of COSEA-MO are given
by different selection function with various weights (Eq. 1). All experiments are
implemented in the open source jMetal library 4.5. [15]. Each configuration is
run 30 times on each MO problem with 10 iterations and a population size of 100.

Table 1. Applied linear selection functions in COSEA-MO

Abbr. Weights Selection by

V1 a = c = 0.5, b = d = 0 WS value and
dissimilarity

V2 a = 1, b = c = d = 0 Only WS value

V3 a = b = 0.5, c = d = 0 WS value and Hamming
Distance

V4 a = b = d = 0.333, c = −0.333 WS value, Hamming
Distance and similarity



Diversity Promoting Strategies 301

The individuals are 20-mer peptides composed of the 20 canonical amino acids.
Short peptides of length 20 are of specific interest because of their favorable
properties as drugs.

4.1 Physiochemical Optimization Problems

Four optimization problems (Table 2) with 3 up to 6 objective functions are
applied predicting physiochemical peptide properties. The optimization prob-
lems comprise molecular properties like charge, solubility in aqueous solutions,
molecule size, molecule stability and structure. The six physiochemical functions
are generic in the sense that the physiochemical properties are determined by
descriptor values of the amino acids in the molecule sequence and are provided
by the open source BioJava library [16]. A description of the determination
methods and a motivation for the physiochemical function selection is given in
[6]: Needleman Wunsch Algorithm (NMW), Molecular Weight (MW), Average
Hydrophilicity (Hydro), Instability Index (InstInd), Isoelectric Point (pI) and
Aliphatic Index (aI). These six objective functions act comparatively to reflect
the similarity of a particular peptide to a pre-defined reference peptide:
f(CandidatePept.) := |f(CandidatePept.) − f(ReferencePept.)|. Therefore, the
four objective functions have to be minimized. Furthermore, the objective values
are normalized by the theoretical maximal value of each objective.

Table 2. Physiochemical functions of the different optimization problems

Dimension Abbr Objective functions

3D 3D-MOP NMW, MW, Hydro

4D 4D-MaOP NMW, MW, Hydro, InstInd

5D 5D-MaOP NMW, MW, Hydro, InstInd, pI

6D 6D-MaOP NMW, MW, Hydro, InstInd, pI, aI

4.2 Performance Metrics

Three metrics are used to measure convergence, diversity and dissimilarity. These
metrics are applied on 20% approximately optimal individuals in each iteration
for all configurations. These optimal individuals are determined by WS values
in all configurations. The Average Cuboid Volume (ACV) is used to measure
the convergence behavior [17]. ACV calculates the averaged spanned space of
each solution to an ideal reference point, which is usually known in real-world
applications. The ACV indicator is given by

ACV =
1
n

n∑

i=1

(
k∏

j=1

(xij − rj)), (2)

where n is the number of individuals that are evaluated, k the number of
objectives and rj the ideal point. The lower the ACV values, the better the
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convergence behavior since the MO problems have to be minimized. ACV as a
simple statistical measure is preferred over traditional convergence metrics since
it is independent of Pareto optimal solution sets which are usually unknown
in real-world applications, of low computation cost, independent of the prob-
lem dimension and relative to the number of solutions allowing a comparison of
differently sized solution sets.

A state-of-the-art statistical evaluation method is used to evaluate the diver-
sity performance. The diversity is determined by the standard deviation of the
solution set to the gravity point of this set. Therefore, this diversity measure
refers to population diversity in chemical space.

The dissimilarity is determined as average dissimilarity of the 20% candidate
peptides to a pre-defined reference peptide according to the dissimilarity matrix
of Sneath. This measure is a diversity measure on genotype level and a problem-
specific measure to evaluate diversity of the genetic material.

4.3 Experimental Results

The performance results of the COSEA-MO configurations V1 - V4 on 3D-MOP
for the three indicators are depicted in Fig. 1, 3 and 5, the results of AnD for all
test problems are depicted in Fig. 13, 14 and 15. The graphs present the average
performance results for 10 iterations including the start population. The over-
all favorable performance is given by very low ACV results with high diversity
and high average dissimilarity values. Generally, the ACV performance results
of V1 to V4 are remarkably close especially in the last generations. The config-
urations V1 to V4 reveal outstanding convergence behavior within 10 iterations
by significantly lower ACV values compared to AnD, that does not provide any
convergence behavior at all but has the highest diversity values in terms of pop-
ulation diversity in chemical space. Best convergence behavior with the lowest
scattering of the ACV results is achieved by V2, WS solely selection, followed by
V3. But V2 has also the lowest diversity and dissimilarity results. V4 achieves
good convergence results with the best diversity and average dissimilarity values
and therefore provides best overall performance.

In 4D-MaOP (Fig. 2, 4, 6), V1 to V4 achieve again outstanding convergence
behavior compared to AnD that does not reveal any convergence but has the high-
est diversity values. V4 provides very good performance results with very good
convergence and diversity values as well as high average dissimilarity results. V2
provides again fast convergence in the first generations but with the lowest diver-
sity and dissimilarity results. V1 achieves second best overall performance.

In 5D-MaOP (Fig. 7, 9, 11), V1 to V4 reveal again very good convergence
results. Here, AnD also provide a slight convergence improvement, but far from
the results of V1 to V4. Diversity values are once again the highest. Best conver-
gence results are achieved by V2 with lowest diversity and dissimilarity results.
Both, V1 and V4 provide very good convergency and diversity results. High
average dissimilarity results are provided by V1 followed by V3 and V4.

Similar results are observable for 6D-MaOP (Fig. 8, 10, 12): outstanding
convergence behavior is achieved by V1 to V4, AnD reveals slight convergence
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Fig. 1. 3D-MOP: ACV results Fig. 2. 4D-MaOP: ACV results

Fig. 3. 3D-MOP: diversity results Fig. 4. 4D-MaOP: diversity results

Fig. 5. 3D-MOP: dissimilarity results Fig. 6. 4D-MaOP: dissimilarity results

improvement with the highest diversity values. Best convergence behavior is
achieved by V4 followed by V1. V4 reveals constantly good diversity and accept-
able dissimilarity results.

Summarizing, AnD does only provide slight convergence behavior on 5D-
and 6D-MaOP with highest diversity in chemical space. This corresponds to
the diversity-first-and-convergence-second principle. It has to be noted that
this principle solely act in chemical space. Moreover, AnD seems to be a real
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Fig. 7. 5D-MaOP: ACV results Fig. 8. 6D-MaOP: ACV results

Fig. 9. 5D-MaOP: diversity results Fig. 10. 6D-MaOP: diversity results

Fig. 11. 5D-MOP: dissimilarity results Fig. 12. 6D-MaOP: dissimilarity results

many-objective EA, since no convergence behavior is observable on 3D-MOP and
4D-MaOP. In general, V2 provides the overall best convergence performance but
poor diversity and average dissimilarity results caused by the solely WS selection
technique. V1 generally provides good convergence, very good average dissim-
ilarity and generally good diversity results, which is caused by equal WS and
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Fig. 13. AnD: ACV results Fig. 14. AnD: diversity results

Fig. 15. AnD: dissimilarity results

dissimilarity based selection. V4 achieves good overall performances in all test
cases. V4 selects individuals according to the highest WS values, high diversity
in genetic material (HD) and high similarity on amino acid level. Since V3 also
selects individuals based on WS values and according to high genetic diversity,
HD empirically seems to be an important measure to promote diversity in MO.
The configuration V4 is preferred as selection strategy due to the complementa-
tion of HD with the aspect of amino acid similarity within the selection strategy.
The experimental results reveal the identification of highly qualified candidate
molecules with a high diversity in genetic material and high average dissimilarity
at the same time.

5 Discussion and Conclusion

The aim of MO is the identification of highly qualified candidate peptides accord-
ing to the physiochemical objectives with a high diversity of the genetic material
and comparable bioactivity. Diversity is addressed in EA on different levels with
various methodologies and performance measures. In this work, the aspect of
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diversity is re-defined and re-interpreted on different stages of a proposed EA
for MO. At this point, the issues raised in the introduction have to be focussed:
The first issue addresses the re-definition of diversity in MO. Diversity has to
be considered on genotype and fitness level and different techniques have to
be applied to control and promote diversity on these levels. Two complemen-
tary aspects define diversity on gentoype level: firstly, the diversity of genetic
material measured by the number of differing amino acids between two molecule
sequences and secondly, diversity in terms of amino acid dissimilarity according
to Sneath. Both aspects together have an impact on variations in fitness level.
Diversity in fitness level is referred to diversity in chemical space and measurable
by distance metrics.

Different diversity promoting methods have been included in COSEA-MO on
three stages: in parent selection for recombination, in the variation operators and
in survival selection. This work also presents a sophisticated selection strategy
based on the diversity considerations in MO. Individuals for the next iteration
are chosen by a linear combination as selection function with the terms molecu-
lar quality, genetic diversity and dissimilarity calculated by a WS method, HD
and average dissimilarity of the amino acids relative to a predefined reference
peptide. The performance has been compared to the diversity-first-convergence-
second selection principle and AnD on four different dimensional MO problems,
where diversity refers to diversity in chemical space. The four selection config-
urations of COSEA-MO clearly outperform AnD in terms of convergence in all
test cases which emphasizes the clear and application-specific definition of the
term diversity. AnD reveals a slight convergence behavior only in the two higher-
dimensional test cases. Especially the COSEA-MO selection configurations with
diversity promoting strategies on genotype level provide remarkble results in all
test cases.

In future work, a deeper understanding of genotype diversity and amino acid
dissimilarity in MO and its impact on molecular landscapes have to be analyzed
to control and improve the search behavior in evolutionary strategies. Further-
more, different methodologies have been proposed for sequence alignment and
a systematic comparison regarding diversity promoting in evolutionary search
prozesses will be focussed.
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Abstract. Context recognition (CR) systems infer the user’s context,
such as their physical activity, from sensor data obtained, for example,
with smartphone sensors. Designing an energy-efficient CR system, how-
ever, is a complex optimization problem involving conflicting objectives
and several constraints arising from real-world limitations and designers’
preferences. To address this task, we propose a constrained multiobjec-
tive formulation of the CR design problem. Unlike most studies in this
domain, we use a true multiobjective approach in solving it. Specifically,
we apply a multiobjective evolutionary algorithm equipped with two
different constraint handling techniques. Their performance is demon-
strated in optimizing six CR systems of various complexity. The pro-
posed problem formulation and the optimization results make it possible
to better understand the CR systems operation and provide valuable
information to the designers.

Keywords: Multiobjective optimization · Constraint handling ·
Context recognition · Energy efficiency

1 Introduction

Context recognition (CR) is a vague term encompassing a wide array of tasks
where (usually wearable) sensors are used to detect something about the per-
son wearing them. Possible applications range from counting steps, localization,
detecting activities such as walking or running, to monitoring someone’s physical
and mental health.

CR is an already mature research area [13] and many applications using
CR systems come pre-installed on average smartphones. However, a common
problem that occurs when designing such systems is the energy consumption of
the device that is collecting and processing the sensor data. It is easy to imagine
that a smartphone application that uses all its sensors (e.g., GPS, Bluetooth,
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Wi-Fi, accelerometer, etc.) can detect much about its user, but also quickly
drains the phone’s battery, making it useless in practice.

There are many ways of preserving the battery life of a CR system. One
of the most effective ways is the choice of the right sensors for the task (as
different sensors can be used for the same CR task) and duty-cycling them,
e.g., periodically turning them on and off again. Energy savings can be further
increased if the sensors used and the duty-cycle durations adapt to the current
context. For example, one might want to use GPS when the user is driving, but
accelerometer when walking.

The issue with creating such adaptive CR systems is that doing so requires
either a lot of expert knowledge of the domain or manual experimentation. Thus,
any process that could at least partially automate the task of searching for
energy-efficient solutions would be greatly beneficial.

Janko et al. [8] were the first to show that this problem can be formulated as a
multiobjective optimization problem (MOP) with the objectives being the accu-
racy and energy consumption of the CR system. Their work, however, lacked
a thorough experimentation in solving the resulting MOP and did not con-
sider constraints in its formulation. The constraints naturally arise from real-
world limitations of some sensors and from additional desires from the system
designers.

In this work we expand on both of these aspects by performing a more com-
prehensive experimental evaluation, and more importantly, adding real-world
constraints to the proposed MOP. The resulting constrained MOP is solved using
the well-known Nondominated Sorting Genetic Algorithm II (NSGA-II) [2]. Two
constraint handling techniques (CHTs) are applied: the original constrained-
domination principle (CDP) [2] and a more recent approach based on an ensem-
ble (ENS) of multiple CHTs proposed in our previous work [12]. Their perfor-
mance in solving the CR optimization problem is assessed on six progressively
harder CR systems.

We first present two different datasets—Commodity12 and Opportunity—
that represent two different CR problems (Sect. 2). In Sect. 3, we then elaborate
on how to represent the semantics of these datasets as a MOP. Special consider-
ation is given to the constraint formulation (Sect. 3.1), and for each dataset we
prepare three different, progressively harder, sets of these constraints. In Sect.
4, we test the difficulty of the proposed CR optimization problems and evaluate
the quality of the found energy-efficient solutions, and finally conclude in Sect. 5.

2 Datasets

In this section, we present two datasets from two CR problems. They both
contain streams of sensor data, which are then split into windows and can be
used to calculate features. These features are then fed into machine-learning
classifiers whose goal is to classify each window into one of the predetermined
contexts as accurately as possible and with as little sensor data as possible.
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2.1 Commodity12

The aim of the Commodity12 project was to create a system that can be used by
diabetics to monitor their activities and help them manage their lifestyle more
easily. All details can be found in the previous work on the domain [1].

For data collection, a smartphone and a chest-worn heart-rate monitor were
used to monitor ten participants. Each participant continuously collected data
for two weeks and manually labeled the following contexts: sleep, work, home,
eating, transport, exercise, out (out of house, but not in any of the previous
contexts). The data was collected from ten sensors: accelerometer, barometer,
light sensor, GPS location, a list of visible Wi-Fi networks, a description of
location by the Foursquare web service, sound, time, heart rate and respiration
rate. The first eight were measured with the smartphone, and the last two with
the heart rate monitor connected to the smartphone via Bluetooth.

Random Forest was identified as the best-performing classifier and was there-
fore selected for the present work on this dataset. While the classification accu-
racy was reasonably high (between 73% and 88%, depending on the user), the
energy consumption made the application impractical to use—and thus the need
for energy optimization.

To use energy consumption as one of the optimization objectives, it needs to
be estimated for each sensor combination (as the energy consumption of differ-
ent sensors do not add up linearly). This was done empirically by attaching a
multimeter device directly to the smartphone battery [8].

2.2 Opportunity

Opportunity [9] is a popular publicly available dataset designed to evaluate algo-
rithms for detecting human activity. Data on four users were recorded while they
were performing various tasks in an apartment.

There were 30 sensor clusters in this apartment, some on the user’s body and
some on the objects the user interacted with. The complete list of sensor locations
is as follows: user’s left knee, left and right upper arm, left and right forearm,
user’s hips, left and right shoe, left and right wrist, left and right hand, as well as
a cup, salami, water bottle, cheese, bread, knife, sugar, plate, and drinking glass.
Each cluster contained some of the following sensors: accelerometer, gyroscope
and magnetometer.

The dataset provides various sets of labels, out of which we decided to test
the case where the problem was to recognize which object the user is currently
holding in their right hand. There were 18 classes: bottle, bread, chair, cheese, cup,
dishwasher, door, drawer, fridge, glass, knife, milk, plate, salami, spoon, sugar,
switch, table, none), each representing an object held, except for the none class
that represented no object in hand. The class distribution was highly unbalanced
with the none class having a representation of 57%.

The classification process was made relatively simple in order to conform
to the introductory paper [10] of the dataset. The data from each sensor was
divided into 500-ms non-overlapping windows on which we calculated the mean
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and standard deviation. The k-nearest neighbors classifier (k = 3) was then used
for the classification.

This problem domain has an unusually high number of sensors (30 sensor
clusters), which creates an enormous space for possible sensor subsets. Therefore
we decided to use only some sensor subsets (not all, as with Commodity12) as
the search-space for multiobjective optimization. These subsets were selected
in the following way. We started with an empty set. Then we added the sensor
cluster that increased the F-score the most to the set. This was repeated until no
single sensor cluster could increase the F-score. Each resulting subset was added
as a sensor setting (each subset had one more sensor than the previous one). The
procedure was then repeated for each context, this time adding sensors only if
it increased the F-score for recognizing this context. All generated subsets were
added again as sensor settings. The justification for this greedy procedure is that
most sensor subsets are redundantly large, both inflating the energy consumption
and unnecessarily increasing the search space of different system configurations.

For the sake of simplicity (and since we did not have access to the details
about the sensors) we assumed that all existing sensors had similar energy con-
sumption. To model their combined consumption, we simply added up the indi-
vidual energy consumptions.

3 Problem Formulation

Suppose the CR system can detect c different contexts. It can do so by using
different settings—the setting being which sensors to use and with which duty-
cycle schedules (sensors can work for a time periods, then sleep for s time periods,
and repeat). Whenever a context is detected, the setting used changes to the one
assigned for the current context (e.g., whenever transport is detected, the GPS
gets turned on). This opens up the problem of finding the ideal assignment
of each context to the one of the possible settings. Each such assignment will
result in a different CR system that will generally have a different trade-off
between its accuracy and its energy consumption. We can assume that both
of these objectives can be accurately estimated using either a simulation or a
mathematical model [6–8].

The problem can be naturally formulated as a multiobjective optimization
problem with the accuracy of the system, f1, and its energy consumption, f2,
being two conflicting objectives. A setting-to-context assignment can be repre-
sented with an integer (decision) vector,

x = (x1, . . . , xD)T ∈ S ⊂ N
D

where S denotes the decision space of dimension D = 2c+1. The first c entries of
x dictate which sensor subset to use when the corresponding context is detected
(possible sensors subsets are enumerated). Similarly, the second c entries dictate
for how long the system sleeps in each duty cycle (no sensor is working). Finally,
the last component indicates how long the sensors are active between the sleeping
periods. It is of note that the length of a duty cycle is not fixed, therefore the
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lengths of the sleeping and active periods do not necessarily sum into a given
total. Two duty cycles of different lengths may have different performance, even
with the same ratio of active and sleeping periods.

The number of possible sensor subsets was roughly 200 for both datasets,
while the lengths of both the sleeping and active periods were capped at 30. The
ranges of these parameters were chosen to be semantically sensible and, in the
case of no constraints, all parameter values have the potential to be part of a
Pareto-optimal solution. The fitness of these integer vectors was calculated using
the mathematical model from [7,8].

To make it possible to compare the performance of various CR systems, we
consider normalized objective values. The values of f1 are already normalized
since they represent the achieved accuracy. On the other hand, the values of f2
are normalized by the maximum possible energy consumption. This is obtained
when all the sensors are used and they are never turned off.

3.1 Constraints

For both the Commodity12 and Opportunity datasets we derived three versions
of constraints, each progressively harder than the previous one. The difficulty
was increased either by adding additional constraints or by making the existing
ones harder to satisfy. In the latter case we used the variable z to denote the
value that was changing from one problem version to another. The used values
of z for each problem setting are summarized in Table 1.

The first category of constraints is based on the precisions and recalls of spe-
cific contexts when the system is using a particular solution. In each dataset,
we selected a subset of contexts (denoted as L) that represents contexts impor-
tant for the real-life application of the system. In the Commodity12 problem the
system has to give diabetic patients recommendations about their lifestyle, thus
the most important contexts are: eating, exercise and transport (as it includes
walking). In the Opportunity problem we wanted to detect the preparation of a
sandwich, so the crucial contexts are: bread, salami, plate, knife, fridge, drawer
and none.

For each of these contexts we wanted to ensure that their precision and
recall do not significantly deviate from their maximum possible values (Mi).
The maximum values are achieved when all the sensors are used and are never
turned off (duty-cycled).

g1,i(x) = precision(i, x) ≥ z · Mi, i ∈ L (1)

g2,i(x) = recall(i, x) ≥ z · Mi, i ∈ L (2)

Here, recall(x, i) is the recall of the i-th activity when the system is using solution
x, and z is a fraction that varies from problem to problem.

For other contexts, we still wanted that they are “balanced” and that the
system is not entirely omitting one in favor of the others. Thus, the next set
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of constraints ensures that the precisions and recalls of these contexts are in a
certain range from each other.

g3(x) = max{precision(i, x) | i /∈ L} − min{precision(i, x) | i /∈ L} ≤ 0.25 (3)

g4(x) = max{recall(i, x) | i /∈ L} − min{recall(i, x) | i /∈ L} ≤ 0.25 (4)

In many domains it has been shown [5] that the accuracy of the system can be
improved by “smoothing” the predictions, i.e., classifying a few consecutive data
windows and then taking the most frequent prediction for that time period. To
allow for this post-processing step, we try to enforce a longer active period if the
accuracy of the system is below some threshold.

g5(x) =

⎧
⎪⎨

⎪⎩

x2c+1 ≥ 5, 0.5 < f1(x) < 0.75
x2c+1 ≥ 3, f1(x) ≤ 0.5
x2c+1 ≥ 1, otherwise

(5)

Our duty-cycle scheme assumes that sensors can be switched on and off in short
intervals, and can do so without any additional energy cost. This is frequently
not the case and it creates additional constraints on the system design. For
example, if the GPS is active, the sleeping part of the duty cycle has to be
longer to account for the extra time needed for turning the GPS on and off
again. In Eq. (6) used for the Commodity12 problem, we used binary variables,
xs
i , that indicate if sensor s is active when using the sensor set xi (g stands for

GPS, b for sensors that use Bluetooth and w for Wi-Fi). For the Opportunity
problem we used a similar scheme, but made different weights based on whether
the sensor is on the body or in the environment.

g6,i(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi+c ≥ 8 + z, xg
i

xi+c ≥ 5 + z, ¬xg
i ∧ xb

i

xi+c ≥ 3 + z, ¬xg
i ∧ ¬xb

i ∧ xw
i

xi+c ≥ 0, otherwise

i ∈ {1, . . . , c} (6)

The final constraint arises from the number of sensors being used by the system,
as ideally we would like to use as few sensors as possible. Doing so in the case of
Opportunity would mean reducing the cost of the hardware, while in Commod-
ity12 it would reduce the number of different data types that system designers
have to analyze. In the Opportunity problem we also want to limit the number
of sensors worn by the user to increase the practicality of the system.

g7(x) = |
c⋃

i=1

sens(xi)| ≤ z (7)

g8(x) = |
c⋃

i=1

bsens(xi)| ≤ z (8)
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Table 1. Values of z for each problem/constraint combination and the characteristics
of the resulting test CR systems: the number of contexts c, dimension of the decision
space D, and number of constraints N . If the parameter z is not used, the sign +/−
denotes whether the given constraint category is used (+) or not (−). In the case of
OPP3 and constraints g1,i and g2,i, all contexts have bounded precision and recall, not
only the crucial ones.

System g1,i g2,i g3 g4 g5 g6,i g7 g8 c D N

COM1 0.8 0.8 − + + −2 − − 7 15 15

COM2 0.9 0.9 − + + 0 − − 7 15 15

COM3 0.8 0.9 + + + 0 5 − 7 15 17

OPP1 0.7 0.7 − − + −1 18 10 18 37 35

OPP2 0.8 0.8 − − + −1 18 10 18 37 35

OPP3 0.9 0.9 − − + 0 18 10 18 37 57

Here, sens(xi) is the set of all sensors used by xi, and bsens(xi) the set of all
body-worn sensors used.

Throughout the paper we use COM as the abbreviation for Commodity12
test CR systems and OPP for Opportunity test CR systems. The characteristics
of the test CR systems are summarized in Table 1. Additionally, we provide
the feasibility ratio (the proportion of feasible solutions) of each optimization
problem. The estimation is based on two samples of 106 solutions generated
by random sampling and Latin hypercube sampling. The feasibility ratio for
COM1 is approximately 5.3 · 10−5 according to random sampling and 6.1 · 10−5

according to Latin hypercube sampling. On the other hand, no feasible solutions
can be found for other test CR systems regardless of the sampling method used.
Therefore, their feasibility ratios are estimated to be less than 10−6. Particularly
hard constraints are g3, g7, and g8 that are each satisfied in less than 1% of the
sampled solutions.

4 Experiments and Results

Based on the multiobjective formulation of the CR optimization problem, the
experimental evaluation aimed at finding sets of trade-off solutions in the form of
Pareto front approximations. For this purpose we used the well-known NSGA-II
multiobjective optimization algorithm equipped with CDP [2] and ENS [12].

The CDP technique is the most frequently used method to solve constrained
MOPs in practice. It strictly favors feasible solutions over infeasible ones. While
feasible solutions are ranked based on Pareto dominance, the infeasible solutions
are ranked according to constraint violations.

The ENS method combines multiple CHTs into an ensemble-based method
where solutions for a new generation are selected based on a weighted voting
provided by various CHTs. This approach considers only CHTs which are applied
in the replacement phase, i.e., survivor selection, of an evolutionary algorithm.
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Table 2. Average cumulative hypervolume values obtained by both CHTs on the test
CR systems.

System CDP [μ ± σ] ENS [μ ± σ]

COM1 1.0081 ± 0.0018 1.0215 ± 0.0028

COM2 0.9497 ± 0.0095 0.9517 ± 0.0111

COM3 0.8873 ± 0.0277 0.8905 ± 0.0269

OPP1 0.8011 ± 0.0054 0.8419 ± 0.0047

OPP2 0.7111 ± 0.0189 0.7614 ± 0.0127

OPP3 0.6131 ± 0.0199 0.6705 ± 0.0141

Each CHT in the ensemble is supposed to provide a quality measure combining
individuals’ objective values and constraint violations. These quality measures
are normalized to allow for comparison of individuals’ quality among various
CHTs. The quality measure produced by the ensemble of CHTs is a weighted
average of the corresponding quality measures.

In this work, four CHTs were considered for the ensemble: normalized overall
constraint violation [11], CDP, dynamic penalty function [3], and multiple con-
straint ranking [4]. In contrast to the original work [12], we decided to change
the nondominated sorting with the normalized overall constraint violation, since
the proposed test CR systems are heavily constrained.

The experimental setup was defined in the following way. Both methods
were run with populations of 200 solutions for 1000 generations. The crossover
probability was set to 0.9 and the mutation probability to 0.1. These parameter
values were selected based on the experimental results from [6,8]. Specifically,
for ENS, uniform weights (wi = 1/4 for i ∈ {1, 2, 3, 4}) were used, while the two
parameters of the dynamic penalty function, C and α, were set to 0.5 and 2,
respectively. On each test CR system, every CHT was run 31 times, each time
with a new randomly initialized population.

Additionally, the implementation details and parameter settings concerning
data preprocessing, feature extraction, Random Forest classifier learning, and
calculation of energy consumption were defined as in [6].

The quality of the optimization algorithm runs was measured with the cumu-
lative hypervolume of the Pareto front approximation found in each run. Given
f1, f2 ∈ [0, 1], the reference point for hypervolume calculations was set to
(−0.1, 1.1)T.

The means of cumulative hypervolume values are shown in Table 2. As we
can see, ENS obtains better cumulative hypervolume means than CDP on all
test CR systems. However, the differences are negligible on both COM2 and
COM3. Indeed, the independent Welch’s t-test (the normality assumption was
confirmed by the Shapiro-Wilk test, while the homoscedasticity was rejected
by the Levene’s test) shows statistically significant differences in algorithm per-
formance for COM1, OPP1, OPP2 and OPP3 (p < 0.05), while there are no
significant differences observed on COM2 and COM3 (p ≈ 0.24, 0.47).
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The results are even easier to interpret through visualization of the obtained
Pareto front approximations. Figure 1 shows Pareto front approximations for the
test CR systems resulting from typical runs. In more detail, all the runs corre-
sponding to a given test CR system are sorted based on the obtained cumulative
hypervolume, and the front obtained in the median run is shown in the figure.
We can see that the fronts obtained by ENS are superior in both convergence and
diversity. This is especially true on OPP test CR systems, where ENS obtains
significantly better Pareto-optimal solutions than CDP. It is worth noting that
the performance of CDP compared to ENS decreases with constraint complexity.

Interestingly, on COM2, a few solutions obtained by CDP dominate the solu-
tions obtained by ENS (see Fig. 1, COM2, around f2 ≈ 0.4) although its front
seems to be well converged. This observation suggests that ENS gets stuck in a
sub-optimal region and reveals the problem’s multimodal nature. Nevertheless,
further investigation is needed to explain this phenomenon. Another interesting
observation is the sharp knee appearing in the fronts for all COM test CR sys-
tems. Investigating the found solutions revealed that solutions on one side of the
knee only use sensors for one time period in every duty cycle (and thus have low
energy consumption), while the solutions on the other side have an increasingly
longer active period. Finally, in all cases the energy consumption quickly drops
(in exchange for a small accuracy loss), indicating that smaller sensor subsets
can be almost as effective as all sensors.

Figure 2 shows the progress of the mean cumulative hypervolume during opti-
mization for the test CR systems. The x-axis indicates the spent function eval-
uations and y-axis the corresponding cumulative hypervolume values. Although
the performance of CDP and ENS are comparable on COM test CR systems,
we can see that ENS is more efficient. On average ENS needs less function eval-
uations to converge than CDP, and this gap increases for more constrained CR
systems. In addition, the graphs show that both CHTs converge on all test CR
systems except on OPP3. For this reason, it is unlikely that an increase in the
computational budget would drastically improve these results (except on OPP3).

Finally, since CR optimization is a design problem, the results with respect
to efficiency (spent computational resources) are not of great importance. The
most computationally expensive task is solution evaluation. A single solution
evaluation takes around 0.016 s for COM test CR systems, and 0.217 s for OPP
test CR systems. All the experiments were run on a 3.40 GHz Intel(R) Core(TM)
i7-6700 CPU with 16 GB RAM.
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Fig. 1. Pareto front approximations for COM (left) and OPP (right) test CR systems.
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Fig. 2. Cumulative hypervolume progress for COM (left) and OPP (right) test CR
systems.
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5 Conclusions

In this paper, we expanded the work of Janko et al. [6] by proposing a con-
strained multiobjective optimization problem formulation for the design of
energy-efficient CR systems. The proposed CR optimization problem takes
into account the accuracy and overall energy consumption of the CR system
and, at the same time, considers real-world limitations and designers’ prefer-
ences. As opposed to most related work, the resulting optimization problem was
solved using a true multiobjective optimizer capable of finding approximations
of Pareto-optimal solutions. Specifically, the constraints were handled both by
a classic technique frequently used in constrained multiobjective optimization,
and our novel ensemble-based approach.

The experimental results on six progressively harder test CR systems show
that the approach based on the ensemble paradigm performs better than the
classic technique. The ensemble was superior on four test CR systems, while no
differences in performance were observed on two easier CR systems. Additionally,
an initial investigation of the produced Pareto front approximations reveals the
multimodal nature of the CR optimization problem.

The found solutions were semantically meaningful as well as energy-efficient,
especially in comparison to the base case where all the sensors were used. As an
example, the “knee” solution for the COM1 test system represents a trade-off
where, by sacrificing less than 2% of classification accuracy, the energy consump-
tion is reduced by 82%.

In the future, we plan to investigate the CR optimization problem in more
detail and assess the scalability of the applied optimization methodology. For
the first task, we will examine the landscapes of the introduced optimization
problem by investigating the produced solutions. For the second task, we will
design new test CR systems, preferably using new datasets. Finally, the test CR
systems will be made publicly available to the optimization community.
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