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Abstract The trisection problem date back to the Greeks and Arabs and it is related
to the algebraic solution of third degree. It concerns construction of an angle equal
to one third of a given arbitrary angle, using only two tools: unmarked ruler and
compass. The problem is stated impossible to solve for arbitrary angles, as proved
by Pierre Wantzel in 1837. In this article, we present some geometric or algebraic
methods to solve the problem from the first one due to Greeks until Maria Gaetana
Agnesi’s algebraic-geometric effort. Then we propose a geometric approximation’s
method based only on straightedge and compass.
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1 Introduction

The ancient Greeks were particularly interested in the construction of angles of
different sizes using only unmarked straightedge and compass. According to the
problem of drawing regular polygons of given arbitrary number of sides. The trisec-
tion of the angle was one of the problems that employed mathematical scholars for
a long time. Over the centuries, many scholars invented procedures for trisection
of the angle but never it was possible to solve this problem using only straightedge
and compass. The geometric trisection’s problem became an algebraic problem,
connected to the not solvable equations of third degree [1].
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2 Greek and Arab Methods

The Arab mathematician Abusaid Ahamed ibn Muhammad ibn Abd-al-Galil-as-
Sigzi (about 951–1024) solves the trisection’s problem as an intersection of a circle
with an equilateral hyperbola. InXI century,Al-Kashi develops an iterationprocedure
that stands out for its simplicity and rapidity of convergence. His treatise On the
chord and the sine was never found but is mentioned at the beginning of the book
Key to Arithmetic with the hint to popularize the method used to calculate sen1°. In
this treatise, the Persian mathematician exposed the equation of the angle trisection,
based on two theorems due to Euclid and Ptolemy. Al-Kashi connects algebraic
techniques to geometric methods due to ancient Greek scholars.

2.1 Euclid’s Theorem

In a right-angled triangle, the square built on the height relative to the hypotenuse is
equivalent to the rectangle whose sides show the projections of the two cathetuses
on the hypotenuse [2].

2.2 Ptolemy’s Theorem

Given a quadrilateral inscribed in a circle, the sum of the products of the pairs of
opposite sides is equal to the product of the diagonals.

2.3 Algebraic Equation

We consider now the semi circumference ABO with radius = R. The arcs AB, BC,
CD are equal. We draw a semi circumference AEM with diameter AM (Fig. 1).

Fig. 1 .
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We consider the chords AB, AC, AD and we note that the arcs AE, EG, GH
are equal. Knowing the value of the chord AH, we can find the value of the chord
corresponding to the arch AE.

We apply the Ptolemy’s theorem to the quadrilateral AEGH and observing that
AE = EG = GH and AG = EH, we have

AE2 + AE .AH = AG2 (1.1)

As AG = GC, using Euclid’s theorem we have

AG2 = BG(R − BG) (1.2)

And, by secant theorem,

AB2 = BG.2R

Substituting BG in (1.2), we find

AG2 = 4AE2 − 4AE4/ R2 (1.3)

The equation for the trisection of an angle can be deduce substituting (1.3) in (1.1)

4AE3 + R2 · AH = 3R2 · AE (1.4)

Let α be the angle corresponding to the arc AE and 3α the angle corresponding
to the arc AH, we have that AH = R sin3α and AE = R sinα, so we find

sin3α = 3sinα − 4sin3α

3 Archimedes’s Method

In the solution proposed by Archimedes the ruler is used to report a length and,
therefore, is thought of as a twice-notched straightedge. Suppose that we want to
trisect the angle CÂB so we draw the circumference G, with centre in A and radius
=r. The circumference intersects the line c in C and the line b in B. Now we design a
line d, passing through C. The line d intersects the line b in E and the circumference
in F so that EF = r. We draw the line e parallel to d and passing through A. The line
e intersects the circumference in X. The angle XÂB is one third of the angle CÂB
(Fig. 2).

Hp: EF = AF = AB = AC
Th: XÂB = 1

3CÂB
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Fig. 2 .

The two triangles EFA and CAF are isosceles. The side EF is equal to the side
AF and the side AF is equal to the side AC.

So, we have

FÊA ∼= FÂE and AĈF ∼= AF̂C

CÂB is an external angle for the triangle EAC, then

CÂB ∼= FÊA + AĈF (2.1)

AĈF ∼= AF̂C , external angle for the triangle EFA, then

AF̂C ∼= FÊA + FÂE ∼= 2FÊA (2.2)

From (2.3) and (2.3), we have that

CÂB ∼= FÊA + 2FÊA = 3FÊA

that is

FÊA ∼= 1

3
CÂB (2.3)

EF // AX and the angles FÊA e XÂB are corresponding angles then

FÊA ∼= XÂB (2.4)

From (2.3) and (2.4), we find that

XÂB ∼= 1

3
= CÂB
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Fig. 3 Pappus’ solution

4 Solutions Using Algebraic Curves

4.1 Pappus Solution

Pappus of Alexandria (290–350 AD) composed an opera in eight books entitled
Mathematical Collection. In this work, Pappus solves the problem of trisection using
the conics and referring to Apollonius [3, 4] (Fig. 3).

Let AB a line, we want to determine the locus of the points P such that 2PÂB =
P B̂ A.

It is shown that this locus is a hyperbola having eccentricity equal to 2, having a
focus in B and the axis of the segment AB as a directrix. Considered as the centre
the point O, we draw the circle passing through A and B and the hyperbola in such
a way. The hyperbola intersects the circle in P. The segment PO trisects the angle
AÔB. From the properties of the hyperbola, 2PÂB = P B̂ A. The central angle of a
circle is twice any inscribed angle subtended by the same arc then 2PÂB = PÔB that
insist on arc PB and 2P B̂ A = PÔA who insist on the arc PA.

By combining the two relationships we get 2PÔB = PÔA that is, the angle PÔB
is the third part of the angle AÔB.

4.2 The Solution with the Conchoid of Nicomedes

Nicomedes, a contemporary of Archimedes, invented the curve called conchoid
(Fig. 4).

The Cartesian equation of the curve is
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Fig. 4 The conchoid

(
x2 + y2

)
(x − d)2 = k2x2

To obtain the conchoid, we fix a point O (pole) and a line distant d from O.
Consider a second line passing through O that intersects the previous line in A. On
this line, on opposite sides with respect to A, we consider two segments AP = AP’
each of length k. The locus of the pointsP andP’ obtained by rotating the line through
O is called conchoid. Now let’s see how to use the conchoid for the angle trisection
problem. Let AOB be an angle, and consider the conchoid with OB = d and AP = k.
The parallel line to OB, through the point A, meets branch external of the conchoid
in C. Joining C with O we prove that AÔC = 1/3 AÔB.

4.3 Solution with the Use of Pascal’s Snail

The conchoid of a circle for a fixed point on it is called limaçon of Pascal. The first
part of the name picked by Étienne Pascal, father of Blaise Pascal, means snail in
French.

The curve is simple to describe in polar coordinates as r = b + dcos(θ), where
d is the diameter of the circle and b is a real parameter. This can be converted to
Cartesian coordinates and we obtain

(
x2 + y2 − dx

)2 = b2
(
x2 + y2

)

The circle aboutC with radius AC is fixed. The line s rotates about A and the point
Q is on s at the fixed distance from the circle b = PQ, and d = 2AC (Fig. 5).
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Fig. 5 Pascal’s snail

Now let’s see how to use the snail for the angle trisection problem. We draw the
snail for which C belongs to the interior branch of the snail (Fig. 6).

We consider the angle BĈQ draw and join Q with A. Let P the intersection point
of AQ and the circle with centre C and radius AC. Since triangles APC and QPC are
isosceles, PÂC = AP̂C = 2P Q̂C . Then for the triangle AQC we have:

BĈQ = PÂC + P Q̂C = 3P Q̂C

4.4 Solution Using the Maclaurin Trisectrix

The trisectrix is an algebraic curve of the third order, cubic with node that was studied
by Colin Maclaurin in 1742. The Maclaurin trisectrix can be defined as locus of the
point of intersection of two lines, each rotating at a uniform rate about separate points
A and B, so that the ratio of the rates of rotation is 1:3 and the lines initially coincide
with the line between the two points. This curve is notable because it can be used for
trisecting the angles, indeed it follows from the property that when the line rotating
about A has angle θ with the x axis, the line rotating about B has angle 3θ (Fig. 7).

If A = (0,0) and B = (a,0), the Cartesian equation is 2x
(
x2 + y2

) = a
(
3x2 − y2

)

P1
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Fig. 6 Trisection with snail

Fig. 7 Trisection’s property
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5 Letter from Jacopo Riccati to Maria Gaetana Agnesi
(1751)

Jacopo Riccati maintained an intense correspondence with Maria Gaetana Agnesi
from 1745 to 1752, that testifies the exchange of scientific ideas that arose around
the writing and printing of Instituzioni analitiche ad uso della gioventù italiana. In
1751, among other suggestions he presents his own solution to the classical problem
of angle trisection, hoping that Maria Gaetana will approve it [5].

After recalling that cubic equations often do not admit algebraic solutions, Riccati
wonders if they cannot be handled with some unknown artifice.

He proposes an essay in the famous problem of angle trisection that cannot be
satisfied analytically because the roots, even if real, appear as imaginary.

Consider the scalene triangle ABC and divide the angle B into three equal parts
(Fig. 8).

We set

AB = a;BC = b; AC = c; AD = x; DE = y; EC = z (4.1)

and suppose that AB < BC.
A well-known theorem applied to triangle ABE states that if the line BD divides

the angle AB̂E into two equal parts, we have the following relation

AB.BE − DB2 = AD.DE (4.2)

For the triangle BDC, in which the line BE divides the angle DB̂C into two equal
parts, we have the following relation

BD.BC − EB2 = EC.DE (4.3)

From the angle bisector theorem, we also have that

AD : DE = AB : BE

Fig. 8 .
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CE : ED = CB : BD

so

BE = ay

x
,BD = by

z
(4.4)

From the two theorems, we get

{
a2 y
x − b2 y2

z2 = xy
b2 y
z − a2 y2

x2 = zy

{
a2z2 − b2yx = x2z2

b2x2 − a2yz = x2z2
(4.5)

From which we get the only equation

a2z2 − b2yx = b2x2 − a2yz (4.6)

In this equation the side AD = c is missing.
We need to introduce the AD side and at the same time eliminate the linear y. The

(4.6) becomes

a2z2 − b2xc + b2x2 + b2xz = b2x2 − a2zc + a2zx + a2z2 (4.7)

From which

−b2xc + b2xz = −a2zc + a2zx (4.8)

where both x and z are linear.
We obtain

z = b2xc
(
b2 − a2

)
x + a2c

we place

g2 = b2 − a2

from which

z = b2xc

g2x + a2c
(4.9)

so
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z2 = b4x2c2
(
g2x + a2c

)2

From (4.5) we have

y = z2
(
a2 − x2

)

b2x
= x2

(
b2 − z2

)

a2z

and so

z2
(
a2 − x2

)

b2x
= x2b2

a2z
− zx2

a2
(4.10)

Using the (4.9) we get

g2x + a2c

a2cx
− b2cx

a2
(
g2x + a2c

) =
(
a2 − x2

)
b2c2

x
(
g2x + a2c

)2

Making the common denominator and collecting we obtain

g4x3 − b2c2x3 + 3g2a2cx2 + 3a4c2x = a4c3

We have come to a complete third-degree equation.
To simplify this expression we have to remove the term of maximum degree.
We set

g2 = bc

that is b2 − a2 = bc.
We obtain

3g2a2cx2 + 3a4c2x = a4c2

x2 + a2

b
x = a2c

3b

which is a second-degree equation with two real solutions of opposite sign.

x2 + a2

b
x + a4

4b2
= a2c

3b
+ a4

4b2

(
x + a2

2b

)2

= a2c

3b
+ a4

4b2
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x = − a2

2b
±

√
a2c

3b
+ a4

4b2

Recalling that c = b2 − a2/b
We obtain

x = − a2

2b
± a

2b

√
4b2 − a2

3

5.1 Geometric Meaning

Given the triangle ABC, with sides AB = a (assumed fixed), BC = b variable with
the only condition BC > AB.

We get the value c of the side AC with the following proportion

b : (b − a) = (b + a) : c

derived from the condition b2 − a2 = bc
So given a, b, c, we get infinite triangles all well-defined since, even if we take

two arbitrary values of a and b, we always have that

BC2 − AB2 = B.BA

So, we can trisect the angle B using a second-degree equation.
Angle AB̂C is always acute because BC > CA.
The construction does not consider obtuse angles, but this is not a limitation since

if it trisects an acute angle in a similar way it can divide the supplementary.
The angle B ÂC is always obtuse because our operation leads to say that in the

triangle ABC the following relation holds

AB2 + AC2 = a2 + c2 < b2 = BC2

Given the triangle ABCwith the above condition, we cut into equal parts the angle
ABC with the two lines BD, BE. It follows that we can know AD using a quadratic
equation (Fig. 9).

Consider another CF basis to vary the triangle. In this case the third-degree
equation cannot be reduced unless a = b.

Then given the sides AB, BC between the infinite third sides that close the triangle
only

AC = c = b − a2

b
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Fig. 9 .

it has a special property that allows us to obtain the result. In all other cases the
algebraic way does not consent to solve the trisection problem.

6 Other Geometric Method: Using the Square

Many geometric methods were proposed for trisecting the right angle and arbitrary
angles, but we focus on methods that require the use of straightedge and compass. In
the case of the right angle we obtain the exact trisection, in the general case a good
approximate trisection.

In the Phd thesis, G. Mele exposed his idea of trisecting right angle, based on his
studies about medieval architecture.

Medieval architects studied the problem of the polygons’ inscription in the square
that is connected to trisection of the right angle. This problemexploits the relationship
for the construction of a right-angled triangle having a base equal to 1/2, a height
equal to

√
3/2 and hypotenuse equal to 1.

By drawing a square with its medians and considering a quarter of a circumfer-
ence with a radius equal to the side of the square, we notice that the circumference
intersects the medians in two points. By joining these points with the centre of the
circumference, we obtain the division into three equal parts of the right angle. It is
also possible to avoid tracing the circumference, and therefore the use of the compass,
as it is sufficient to trace on the medians a measure equal to L

√
3/2, where L is the

measure of the side of the starting square (Fig. 10).
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Fig. 10 .

7 Trisection’s Approximation of Arbitrary Angles Using
Only Straightedge and Compass

The geometric approximation of the arbitrary angle’s trisection, proposed byG.Mele
in his Phd thesis [6], is obtained using only straightedge and compass. We show how
to trisect an acute angle. This is enough, since we know it is possible to trisect a right
angle using only a straightedge (without notches) and compass, and an obtuse angle
is the sum of a right angle and an acute angle. Let α be the angle formed by the two
half-lines s and t of origin A. We draw the circumference of vertex O and radius R.
B and C are the intersections with s and t respectively. We divide the angle α into
four equal parts using straightedge and compass (Euclid’s Elements I, 9) [2].

Let E be the point on the circumference such that BAE = 1/4BAC. Now we divide
AB into three equal parts and consider AF = 1/3R. We draw the circumference
centered in Awith radius AF and let H be the intersection of this circumference with
AE. The FH arc is equal to 1/3 of the BE arc (Fig. 11).

Now we construct a rectilinear angle EPG equal to the rectilinear angle FAH on
the straight line PE = 1/3R (Euclid’s Elements I, 23). Then we trace EG and report
it on the circumference of radius R and center A obtaining EK. Truthfully, the EG
chord is reported and we obtain EK which is good approximation of the arc length
EG. On the circumference centered in A with radius R we obtain the arc BK, which
corresponds to the angle β such that β = 1/4α + 1/3(1/4α) = 1/3α (Fig. 12).

The approximation error decreases when the angle measure decreases and its
estimated value is done by the formula

x

4
+ 2

3
sin

( x
8

) ∼= x

3
− 1

72

( x
4

)3
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Fig. 11 .

Fig. 12 .

where x (0 < x < π/2) is the radiant measure of the arc, we want trisect. The
approximation formula does not depend on the radius of the circumference and the
error is always less than 0.1%.

8 Conclusions

Over the centuries, many scholars invented procedures for trisection of the angle but
never it was possible to solve this problem using only straightedge and compass.
The geometric trisection’s problem became an algebraic problem, connected to the
not solvable equations of third degree. This problem can be solved in a geometric
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way, with a very good approximation, as we noted in the previous paragraph and the
method used can be extended now division into parts (in odd) 5 parts it is first divided
into 2 parts, then each of them of 3 parts and then, with the method described above,
division into 5 parts is obtained. This method is of great help for the construction of
buildings, churches, and fortresses on the ground.
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