
2
Competition for Market Share and for

Market Size

In this chapter, we build on the ideas developed in Chap. 1 to formulate
a more general model, although portraying the simplified economy
imagined by Dixit and Stiglitz (1977), an economy reduced to two
sectors, one oligopolistic, the other competitive, with firms selling each
a single good to a representative consumer. In the following, we will
first present the canonical model and then explore several extensions.
Assuming either weak or homothetic separability, we define a general
concept of oligopolistic equilibrium. The first-order conditions are used
to derive a simple formula where the relative markup is a function of
the intra- and intersectoral elasticities of substitution. This leads to a
parameterisation of equilibria in terms of firms’ competitive toughnesses
defining possible regimes of oligopolistic competition. It is then shown
that such a formula is robust to supposing that firms take into account
the income feedback effects of distributed income (the so-called Ford
effects). In the homogeneous good case, we compare our approach to
alternative ones, such as the conjectural variation and the supply function
approaches. Finally, the methodology is applied to two policy questions:
Is tougher competition price decreasing? Does it foster innovation?
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Before providing the technical details, we want to emphasise that
the two-sector economy is the essential basis for the canonical model
in which we introduce our oligopolistic equilibrium concept. In this
economy the fundamental feature is that the representative consumer
preferences are assumed weakly separable relative to the two sectors.
The differentiated goods produced in the oligopolistic sector can thus
be aggregated into a composite good (through the sub-utility function
defined on these goods) and the aggregate good produced in the compet-
itive sector, representing the rest of the economy, is taken as numeraire.
Applying two-stage budgeting, one obtains the main ingredients to be
used in our own setting: (1) within the oligopolistic sector, the Hicksian
demand for each differentiated good and the corresponding intrasectoral
elasticity of substitution of each such good for the composite good and
(2) across sectors, the Marshallian demand for the composite good and
the corresponding intersectoral elasticity of substitution of each good for
aggregate consumption.

An oligopolistic equilibrium supposes that each firm in the oligopolis-
tic sector maximises profit (allowing for no-production) in both price
and quantity, under two constraints, on market share (depending upon
Hicksian demand) and on market size (depending upon Marshallian
demand). It is from the first-order conditions that we get the basic
equations that should be used for estimation purposes. These equations
determine the equilibriummarkup of each firm as a weighted mean of the
reciprocals of the two elasticities of substitution. The crucial advantage
is that the weights explicitly involve the firm’s “competitive toughness”
as a continuous parameter (varying between 0 and 1) derived from the
Lagrange multipliers associated with the two constraints. By varying the
competitive toughness parameters we hence get a continuum of regimes
of competition, including standard ones such as tacit collusion, pure price
and pure quantity equilibria.

Assuming symmetry and negligible market shares, we retrieve the
Dixit-Stiglitz monopolistic competition equilibrium, with the equilib-
rium markup just equal to the reciprocal of the intrasectoral elasticity
of substitution, simplicity being however counterbalanced by the loss
of any intersectoral effects. As we will see, the same reduced form can
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be obtained, even with large firms, via cutthroat competition (maximal
competitive toughness), an illustration of the so-called Bertrand paradox.
Competitive toughness is thus an important factor to explain firm hetero-
geneity. In a recent empirical study, Hottman et al. (2016) observe that
firms with the largest market shares have “substantially higher markups”
and that this effect is much greater under quantity competition than
under price competition.1 Firm heterogeneity is thus reinforced by softer
competition. However, from our point of view, this statement should
not be reduced to the Cournot-Bertrand dichotomy, but apply to the
continuum of possible competition regimes between the two extremes of
cutthroat competition and pure collusion.
The existence of large firms implies that these firms influence the size of

their own market through the income they distribute. That such income
feedback effects can be taken into account by large firms was already well
illustrated by the industrialist Henry Ford in the 1920s when advocating
a high wage policy: “Our own sales depend in a measure upon the wages
we pay” (Ford 1922, p. 124). This kind of effects can be integrated
into our canonical model. In particular, in the case where the firms
internalise the income feedback effect within the oligopolistic sector,
taking as given the expenditure in the competitive sector, we will show
that the equilibriummarkup formula will keep the same structure. These
“Ford effects” essentially modify the relevant elasticity of intersectoral
substitution.
Coming back to the possible continuum of equilibria in oligopolistic

markets, we shallmention three previous approaches (the conjectural vari-
ation, the supply function and the pricing scheme approaches) explaining
this indeterminateness in the special case where all firms produce the
same homogeneous good. These alternative approaches have been useful
in different contexts, for example in the studies of the New Empirical
Industrial Organisation (NEIO) for the conjectural variations approach,
in the analysis of electricity markets for the supply function equilibrium
approach, and to model facilitating practices for the pricing schemes

1To quote: “In most sectors, the largest firm has a market share above 20%, which enables it to
charge a markup that is 24% higher than that of the median firm under price competition and
double that under quantity competition.” (Hottman et al., 2016, p.5).
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approach.We will show that by restricting properly the admissible class of
the corresponding instruments (conjectural variations, supply functions
or pricing schemes), we can recover exactly the set of oligopolistic
outcomes.

To end this chapter, we will discuss two important applications. First,
to enhance the role of the two elasticities of substitution, we shall examine
the price effects of intensifying competition. Both under price and
quantity competition, an average markup can be written as a function of
the Herfindhal index of concentration. This function is increasing (resp.
decreasing) if the intersectoral elasticity of substitution is smaller (resp.
larger) than the intrasectoral elasticity of substitution, thus implying a
pro-competitive (resp. anti-competitive) effect of abating concentration.
Second, we will use our continuous measure of competitive toughness
to re-examine the classical debate on the role of competition for firm
innovative activity, opposing the Darwinian view for which a competitive
firm is forced (or has more incentives, according to Arrow 1962) to
innovate than a monopolist, and the Schumpeterian view for which
innovation requires some monopoly rent.

1 The Canonical Model

The main idea underlying our model is that competition has essentially
two dimensions: a dimension of conflicting interests of firms fighting
against each other for their market shares and a dimension of convergent
interests of firms implicitly competing together, against the other sector,
for their market size.

A Representative Consumer with General Separable
Preferences

Assuming existence of a representative consumer with preferences sep-
arable with respect to the two composite goods supplied by the two
sectors allows to use the standard analytical framework for consumption
decisions and in particular to exploit duality, a very convenient property
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for the study of price-quantity competition. We suppose that the rep-
resentative consumer supplies inelastically L units of labour at a wage
equal to 1 (the labour productivity in the competitive sector) and receives
a profit � from the imperfectly competitive sector (the equilibrium
profit of the other sector being necessarily zero). He chooses a basket
x ∈ [0, ∞)N of N differentiated goods (sold at prices p ∈ (0, ∞]N ) and
a quantity z ∈ [0, ∞) of the numeraire good (an implicitly composite
good resulting from the aggregation of the rest of the economy). This
choice is made so as to maximise, with an income Y = L + � and
under the budget constraint px + z ≤ Y , a separable utility function
U (X (x) , z). The utility function U and the sub-utility function X,
which aggregates the quantities of the differentiated goods into the
volume of a composite good, are assumed increasing and strongly quasi-
concave (except, for X, in the linear and Leontief limit cases and, for
U , in the case of quasilinearity2 in z). Notice that, apart from standard
properties of the utility function and from separability, essential for a
Dixit-Stiglitz economy, we are not imposing homotheticity, additivity or
symmetry to the aggregator function X.
The maximisation can be performed in two stages, to which corre-

spond, as we will see, the two mentioned dimensions of competition. At
the first stage, the consumer chooses the quantity xi of each differentiated
good i given some quantity X of the composite good (some level of sub-
utility X), by solving the programme

min
x∈RN+

{
px
∣∣X (x) ≥ X

} ≡ e
(
p,X

)
, (1.1)

which defines the expenditure function e. We obtain:

pi = ∂Xe
(
p,X

)
∂iX (x) (first-order condition) (1.2)

xi = ∂pi
e
(
p,X

) ≡ Hi

(
p,X

)
(Shephard’s lemma), (1.3)

2This is the special case where U (X (x) , z) = Û (X (x)) + z. It is the one considered by Spence
(1976) seminal contribution.
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where Hi is the Hicksian demand function for good i (associated with
sub-utility X).

Using these two equations, we can compute the intrasectoral elasticity
of substitution si of good i for the composite good, that is, the absolute
value of the elasticity of xi/X with respect to the relative price pi/P

(where X and P are the quantity and price of the composite good).3
This computation may be alternatively performed in terms of quantities
or in terms of prices, by taking respectively X = X (x) and pi/P =
∂iX (x), the marginal rate of substitution of xi for X, or by taking xi =
Hi

(
p,X

)
and P = ∂Xe

(
p,X

)
, the shadow price of X. We thus obtain

two equivalent formulas:

si = 1 − εiX (x)
−εi (∂iX (x))

= −εpi
Hi

(
p,X

)

1 − [εiX (x)]
[
εXHi

(
p,X

)] . (1.4)

At the second stage, the consumer chooses the quantities X of the
composite good and z of the numeraire good by solving the programme

max
(X,z)∈R2+

{
U
(
X, z

) ∣∣e
(
p,X

)+ z ≤ Y
}
. (1.5)

The solution to this programme determines the Marshallian demand
X = D

(
p, Y

)
for the composite good and the demand z = Y −

e
(
p, D

(
p, Y

))
for the numeraire good. We can then define the inter-

sectoral elasticity of substitution of good i as the elasticity of substitution

3In the standard use of the concept and from the point of view of good i, it is its substitutability
with respect to some other good j rather than to the composite good that is considered. When
the substitutability differs among pairs of goods, conventional elasticities must be averaged (see,
e.g. Bertoletti and Etro 2018, who use averages of the Morishima elasticticities of substitution and
complementarity). We avoid introducing arbitrary averages by directly referring to substitutability
with respect to the composite good. The relation between our concept and the conventional one is
examined in the appendix of d’Aspremont and Dos Santos Ferreira (2016).
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σ i of good i for the aggregate consumption Y in the whole economy:

σ i ≡ − d (xi/Y )

d (pi/1)

∣∣
∣∣
X(x)=D(p,Y)

pi/1
xi/Y

= −(1/Y) ∂pi
D
(
p, Y

)

∂iX (x)
pi

xi/Y
= −εpi

D
(
p, Y

)

εiX (x)
. (1.6)

In the computation of σ i we are taking into account the variation of
the Marshallian demand D

(
p, Y

)
rather than the mere share adjustment

expressed in the elasticity of the Hicksian demand −εpi
Hi

(
p,X

)
.

A stronger form of separability of the utility function, homothetic
separability, applying when the aggregator X is homothetic (more specif-
ically, homogeneous of degree one, without loss of generality), simplifies
computations and allows to further exploit duality. In this case, the
expenditure function and, obviously, the Hicksian demand function are
linear in X: e

(
p,X

) = P
(
p
)
X and Hi

(
p,X

) = ∂iP
(
p
)
X, where

P is a price aggregator function, and the Marshallian demand function
becomes homothetically separable: D

(
p, Y

) = D̂
(
P
(
p
)
, Y
)
. As a

consequence, we obtain dual, perfectly symmetric, expressions for the
first-order condition (1.2) and for Shephard’s lemma (1.3):

pi = P
(
p
)
∂iX (x) and xi = X (x) ∂iP

(
p
)
, (1.7)

respectively. Also, for cost minimising consumption bundles, the budget
share of good i is equal to the elasticity of anyone of the two aggregator
functions:

pixi

P
(
p
)
X (x)

= εiP
(
p
) = εiX (x) ≡ αi . (1.8)

Finally, the price formula for the intrasectoral elasticity of substitution is
then symmetric with respect to the quantity formula:

si = 1 − εiX (x)
−εi (∂iX (x))

= −εi

(
∂iP

(
p
))

1 − εiP
(
p
) , (1.9)
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and the intersectoral elasticity of substitution is just equal to the demand
elasticity, now the same for any differentiated good:

σ i ≡ −εiD
(
p, Y

)
/αi = −εP D̂

(
P
(
p
)
, Y
)
εiP

(
p
)
/αi = σ .

Firms’ Competitive Behaviour and Oligopolistic
Equilibria

We consider competition among N firms, each firm i producing a single
component of the composite good with a constant positive unit cost ci

and a non-negative fixed cost φi incurred only when production is pos-
itive.4 Firms behave strategically in price-quantity pairs: (pi, xi) ∈ R

2+
for each firm i = 1, . . . , N . These pairs have to satisfy two admissibility
constraints, generalising the two constraints as specified in Chap. 1.

The first is a constraint on market share, focusing on competition within
the sector which produces the differentiated goods and referring to the
first stage of the consumer’s utility maximisation. It bounds the quantity
of good i by the corresponding Hicksian demand:

xi ≤ Hi

((
pi, p−i

)
,X (xi, x−i)

)
. (1.10)

The second is a constraint on market size, focusing on competition of
the whole set of producers of the differentiated goods with the sector
which produces the numeraire good. It refers to the second stage of the
consumer’s utility maximisation, and bounds the size of the market for
the differentiated goods by the Marshallian demand:

X (xi, x−i) ≤ D
((

pi, p−i

)
, Y
)
. (1.11)

4We assume positivity of unit costs for all firms to keep the exposition simple. The case of zero
unit costs has already been examined in Chap. 1. The concept of oligopolistic equilibrium has
been introduced in d’Aspremont et al. (2007), and further explored in d’Aspremont and Dos
Santos Ferreira (2009, 2010, 2016).
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We recall that the constraint onmarket share emphasises the conflictual
side of competition between the oligopolists, whereas the constraint on
market size translates their common interest as a sector.
We define the concept of oligopolistic equilibrium.

Definition 1 An oligopolistic equilibrium is a 2N -tuple
(
p∗

i , x
∗
i

)
i=1,...,N ∈

R
2N
+ such that, for any i,

(
p∗

i , x
∗
i

) ∈ arg max
(pi ,xi )∈R2+

(pi − ci) xi

s.t. xi ≤ Hi

((
pi, p∗

−i

)
,X
(
xi, x∗

−i

))

and X
(
xi, x∗

−i

) ≤ D
((

pi,p∗
−i

)
, Y ∗) , (1.12)

and such that Y ∗ = L + ∑N
i=1
((

p∗
i − ci

)
x∗

i − sgn
(
x∗

i

)
φi

)
. In addi-

tion, we require the profits to be non-negative, namely
(
p∗

i − ci

)
x∗

i −
sgn

(
x∗

i

)
φi ≥ 0 for each i, and the consumer to be non-rationed.

Non-rationing of the consumer implies that both constraints are
satisfied as equalities for each firm i at equilibrium. It makes the equi-
librium compatible with the consumer’s programme and the resulting
demand functions. Notice that, according to this definition, all firms
are not necessarily active in an oligopolistic equilibrium.5 We shall in
general assume that n firms are active, each one i choosing a positive
strategy

(
p∗

i , x∗
i

)
, and that N − n firms are inactive, choosing each a

strategy (∞, 0). Of course, inactive firms are also maximising profits at
equilibrium: no admissible strategy would allow them to obtain a positive
profit. As the fixed cost is incurred only at a positive output, choosing a
zero output is a way to ensure that the profit is at least non-negative.
The price strategy is then arbitrary. We suppose it to be infinite in order
to avoid consumer rationing. As already discussed in Chap. 1, existence

5Inactive firms do play a role though. Shubik (1959) suggests to call such firms “firms in being” by
analogy to the famous term “fleet in being,” introduced by Lord Torrington in 1690 and used by
Kipling.
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of inactive firms at equilibrium allows to qualify that equilibrium as
a free entry equilibrium, but only if the inactive firms have the same
opportunities as the active ones, which imposes the oligopoly game to
be symmetric, a restrictive assumption that we are not making in general.

We next show that an oligopolistic equilibrium can be characterised by
a simple expression for individual (relative) markups (or Lerner indices
of the degree of monopoly power) at that equilibrium, that is, μ∗

i =(
p∗

i − ci

)
/p∗

i for each active firm i. This markup is derived from the
first-order conditions of producer i’s programme in Definition 1.6 To
obtain that simple expression, we refer to the intra- and intersectoral
elasticities of substitution of good i, s∗

i and σ ∗
i respectively, again at

the considered equilibrium, and we introduce in addition simplifying
notations for two additional elasticities. The elasticity αi ≡ εiX (x)
measures the impact of a variation in the quantity of good i on the volume
of the composite good. The elasticity βi ≡ εXHi

(
p, X

)
measures the

reverse impact of a variation of the quantity of the composite good on
the demand for its component i, at given prices p. The product of these
two elasticities, which appears in the multiplier 1/

(
1 − αiβi

)
applied to

the elasticity −εpi
Hi

(
p,X

)
of the Hicksian demand in the price formula

for si , Eq. (1.4), measures the intensity of the feedback originating in a
variation of the quantity of good i and going through the volume of the
composite good.

For easier reference, we recall the expressions for these four elasticities
in Table 2.1:

Table 2.1 Elasticities appearing in the markup formula

Intrasectoral substitution: si = 1−αi
−εi∂iX(x)

= −εpi Hi(p,X(x))

1−αiβ i

Intersectoral substitution: σ i = −εpi D(p,Y)

αi

Impact of xi on X αi ≡ εiX (x)

Impact of X on xi β i ≡ εXHi (p,X (x))

6Reference to the markup μ∗
i replaces the direct reference to the price p∗

i used in Chap. 1 for the
case of zero unit costs (a case in which the Lerner index is always equal to 1).
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Take an oligopolistic equilibrium
((

p∗
i , x∗

i

)
i=1,...,n , (∞, 0)N−n

)
(with

positive prices and quantities for the first n firms), henceforth denoted(
p∗

i , x∗
i

)
i=1,...,n = (

p∗, x∗) for simplicity. In the rest of our book, we
shall often resort to this abusive simplifying notation referring to the
sole active firms. The markup of active firm i at this equilibrium will
be expressed, according to the following proposition, as a weighted mean
of the reciprocals of the two elasticities of substitution s∗

i and σ ∗
i at that

equilibrium. The corresponding weights will involve, for each firm i, the
elasticities α∗

i and β∗
i measuring the two reciprocal effects of quantity

variations of good i and of the composite good, as well as a conduct
parameter7 θ∗

i ∈ [0, 1], stemming from the first-order conditions and
interpreted as the competitive toughness displayed by firm i towards its
rival oligopolists at the equilibrium

(
p∗, x∗).

Proposition 4 Let
(
p∗

i , x∗
i

)
i=1,...,n ∈ R

2n++ be an oligopolistic equilibrium.
Then the markup μ∗

i = (
p∗

i − ci

)
/p∗

i of each firm i is given by

μ∗
i = θ∗

i

(
1 − α∗

i β
∗
i

)+ (
1 − θ∗

i

)
α∗

i

θ∗
i

(
1 − α∗

i β
∗
i

)
s∗
i + (

1 − θ∗
i

)
α∗

i σ
∗
i

, (1.13)

for some θ∗
i ∈ [0, 1].

Proof We start by making dimensionally homogeneous the two con-
straints in the programme of firm i, rewriting them in terms of the two
ratios:

xi

Hi

((
pi,p∗−i

)
,X
(
xi, x∗−i

)) ≤ 1 and
X
(
xi, x∗

−i

)

D
((

pi, p∗−i

)
, Y ∗) ≤ 1.

(1.14)

7To use the terminology of the New Empirical Industrial Organization (see Bresnahan, 1989).
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The first-order necessary conditions for profit maximisation at
(
p∗

i , x∗
i

)

under these two constraints (holding as equalities at equilibrium) can then
be expressed, for non-negative Lagrange multipliers λ∗

i and ν∗
i , as

x∗
i = λ∗

i

−∂pi
Hi

(
p∗, D

(
p∗, Y ∗))

Hi

(
p∗, D

(
p∗, Y ∗)) + ν∗

i

−∂pi
D
(
p∗, Y ∗)

D
(
p∗, Y ∗)

= λ∗
i

p∗
i

[−εpi
Hi

(
p∗,D

(
p∗, Y ∗))]+ ν∗

i

p∗
i

[−εpi
D
(
p∗, Y ∗)] ,

(1.15)

and

p∗
i − ci = λ∗

i

1 − [
∂XHi

(
p∗,D

(
p∗, Y ∗))] [∂iX (x∗)

]

Hi

(
p∗,D

(
p∗, Y ∗)) + ν∗

i

∂iX (x∗)
X (x∗)

= λ∗
i

x∗
i

(
1 − [

εiX
(
x∗)] [εXHi

(
p∗,D

(
p∗, Y ∗))])+ ν∗

i

x∗
i

εiX
(
x∗) .

(1.16)

We can use these two conditions and the notations of Table 2.1 to obtain
the markup formula for firm i at the equilibrium

(
p∗, x∗), as given by

(1.13), with θ∗
i ≡ λ∗

i /
(
λ∗

i + ν∗
i

)
. �	

Since λ∗
i is the Lagrange multiplier associated with the constraint

on market share, which emphasises the conflictual side of competition
between firm i and its rivals in the sector, whereas ν∗

i is the Lagrange
multiplier associated with the constraint on market size, which reflects
converging interests of the competitors in the sector, the normalised
multiplier θ∗

i can be interpreted, as suggested in Chap. 1, as the com-
petitive toughness experienced by firm i at the particular equilibrium(
p∗

j , x∗
j

)

j=1,...,n
. Inspection of Eq. (1.13) shows that the weight put on

the reciprocal of intrasectoral elasticity of substitution s∗
i (relative to the

weight put on the reciprocal of its intersectoral homologue σ ∗
i ) naturally

increases with the competitive toughness θ∗
i experienced by firm i at

equilibrium.
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The equilibrium markup of firm i is a weighted harmonic mean of
the reciprocals of the two elasticities of substitution s∗

i and σ ∗
i . If we

assume homothetic separability of the consumer’s utility function (not
necessarily the CES specification of the aggregator X), we can use, as we
did in Sect. 3 of Chap. 1 (Proposition 3), the dual constraints on market
share and market size in order to obtain

μ∗
i = θ ′∗

i

(
1 − α∗

i

) (
1/s∗

i

)+ (
1 − θ ′∗

i

)
α∗

i (1/σ ∗)
θ ′∗

i

(
1 − α∗

i

)+ (
1 − θ ′∗

i

)
α∗

i

, (1.17)

where μ∗
i appears as an arithmetic mean of the reciprocals of the two

elasticities s∗
i and σ ∗ (the latter uniform for the whole oligopolistic sector

because of the homotheticity assumption).8 The equilibrium is the same
(s∗

i , σ ∗ and the budget share α∗
i are identical, with β∗

i = 1 by linearity
of the Hicksian demand), but the conduct parameters are specific to this
dual form, the equilibrium parameterisation differing between the dual
forms of the two constraints. By identifying the formula of μ∗

i given by
(1.17) and that given by (1.13) (with σ ∗

i = σ ∗ and β∗
i = 1), we can easily

establish the relation between the two parameters: for s∗
i /∈ {0, σ ∗,∞},

1/θ ′∗
i − 1
σ ∗ = 1/θ∗

i − 1
s∗
i

(1.18)

Regimes of Competition

The vector θ∗ = (
θ∗
1 , . . . , θ∗

n

)
of the competitive toughnesses of the

different active firms (or its dual counterpart θ ′∗ in the homothetic case)
specifies a regime of competition, which can be continuously modified
by varying this vector in [0, 1]n. Tracing the set of potential equilibria

8Recall that

σ i = −εpi
D
(
p, Y

)

αi

= −εpi
D̂
(
P
(
p
)
, Y
)

αi

= −εP D̂ · εiP

αi

= −εP D̂ = σ ,

with σ denoting the elasticity of the Marshallian demand function D̂ (·, Y ), as in Chap. 1.
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by varying θ∗ allows us in particular to retrieve standard regimes like
price and quantity equilbria (θ∗

i = 1/2 and θ ′∗
i = 1/2, respectively,

for any active firm i), or the collusive solution (θ∗ ≡ 0), although
existence of the whole spectrum of potential equilibria (for all values of
θ ∈ [0, 1]n) is generally not satisfied, as already shown in Chap. 1. The
markup formula is also useful in limit cases. We shall examine in Sect. 3
the perfect substitutability case (si = ∞) referring to the dual version
(1.17) of the formula. Now, if we assume that preferences are symmetric,
that the unit costs are identical for all firms (ci = c for all i) and that
the number of active firms go to infinity, say for a sequence of symmetric
oligopolistic equilibria, then the oligopolistic sector becomes “large” in
the sense of Chamberlin, meaning that every individual firm becomes
negligible (α∗

i � 0), and we get what we may call the Dixit-Stiglitz
monopolistic competition equilibrium, with μ∗

i = 1/s∗
i . The standard case

is when the markup remains positive, that is limn→∞
(
1/s∗

i

)
> 0, as

it is when the aggregator X is CES with s∗
i = s > 0. Then there is

another way to obtain the outcome of monopolistic competition, which
is to assume that firms’ conduct is sufficiently tough (θ∗

i � 1). This holds,
even in the “small” group case.9 However, in the large group case, we get
the competitive (Walrasian) equilibrium when limn→∞

(
1/s∗

i

) = 0.10
To summarise, the main competition regimes under homothetic sep-

arability can be characterised by the competitive toughness and markup
values (applying to all firms) displayed in Table 2.2.

9Shimomura and Thisse (2012) introduce a mixed market structure. They consider a Dixit-Stiglitz
economy where U is Cobb-Douglas and X CES, defined over the union of a discrete set of goods
produced by large firms and a continuum of goods produced by small firms. This continuum is a
monopolistically competitive fringe, with mass determined by the zero-profit condition, under free
entry restricted to the fringe. Quantity competition is also assumed. The resulting mixed market
quantity equilibrium outcome can of course be (approximately) obtained within our canonical
model, by letting α∗

i � 0 iff firm i is small or, alternatively, by letting θ ′∗
i � 1 if firm i is small (and

θ ′∗
i = 1/2 if firm i is large).

10As well emphasised in Thisse and Ushchev (2018), this depends on the preferences. Other
examples will be given below.
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Table 2.2 Competition regimes under homothetic separability

Competition
regime

Competitive toughness Markup

Collusion θ i= θ ′
i= 0 μ∗

i = 1/σ ∗

Quantity
competition

θ ′
i= 1/2; θ i= 1/

(
1 + s∗i /σ

∗)
μ∗
i =

(
1 − α∗

i

)
/s∗i +α∗

i /σ
∗

Price competition θ i= 1/2; θ ′
i= 1/

(
1 + σ ∗/s∗i

)
μ∗
i = 1/

((
1 − α∗

i

)
s∗i +α∗

i σ
)

Monopolistic
competition

θ i= θ ′
i= 1 μ∗

i = 1/s∗i
θ i= θ ′

i> 0 and α∗
i � 0 μ∗

i = 1/s∗i
Perfect
competition

θ i= θ ′
i> 0 and α∗

i � 0 –
with limn→∞

(
1/s∗i

) = 0 μ∗
i = 0

To illustrate, take for instance the case, represented in Fig. 2.1, of
a symmetric differentiated duopoly with the CES specification for the
aggregator X, the isoelastic demand function D̂ (P , Y ) = YP−5/2 and
the constant unit cost c = 1. We represent the degree of complementarity
1/ (1 + s) on the horizontal axis and the competitive toughness θ (the
same for both firms) on the vertical axis. The set of values which
parameterise existent oligopolistic equilibria is represented by the region
inside the thick curves. We see that as the two goods become more
and more complementary, potential equilibria cease to be enforceable as
competitive toughness becomes too high or too low. The same is true if
substitutability is very high and competitive toughness very low. The thin
horizontal line (θ = 1/2) represents the competitive toughness displayed
in the price equilibrium (existent at any degree of complementarity) and
the thin increasing curve represents the competitive toughness associated
with the quantity equilibrium (existent only if complementarity is not
too large).
The set of existent oligopolistic equilibria is also represented for the

same example in Fig. 2.2 as the region of the space 1/(1+ s)×μ between
the thick curves. Relative to Fig. 1.2 in Chap. 1, the main difference is
the presence of a positive unit cost, allowing to replace on the vertical
axis the price index P = 21/(1−s)p by the markup μ = (p − 1) /p =(
P − 21/(1−s)

)
/P .

The thick curve switching from concave to convex is quite similar to
the corresponding one in Fig. 1.2 of Chap. 1. It is the soft competition
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1/(1+s)

θ

Price equilibrium

Quantity equilibrium

Fig. 2.1 Competitive toughness compatible with equilibrium existence

1/(1+s)

μ

Price Eq.

Quantity Eq.

Mon. Comp.

Collusive outcome

Cournot

Cournot

Bertrand

Fig. 2.2 Equilibrium regimes

frontier representing themarkup that is closest to the collusive one (1/σ =
0.4 in this example) and linking the two Cournot solutions (the one for
the homogeneous duopoly at its left end and the one for complementary
monopoly at its right end). The thick convex curve starting at the origin
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from the Bertrand solution (μ = 0) is the tough competition frontier, rep-
resenting the markup 1/s resulting from maximal competitive toughness
(θ = 1). By the Bertrand paradox, this maximal competitive toughness
entails the monopolistic competition outcome usually associated with
a continuum of producers. Because of the positive unit cost, θ = 1
is not linked to corner solutions, so that this frontier essentially differs
from the graph of the step function in Fig. 1.2 in Chap. 1. The thin
concave curve, linking the Bertrand and the Cournot complementary
monopoly solutions, represents the price equilibrium markup and the
thin convex curve starting from the Cournot homogeneous duopoly
solution represents the quantity equilibrium markup, always above the
price equilibrium markup.

2 Introducing Ford Effects

In the preceding section, when formulating the constraint on market
share, we have treated income Y parametrically, its value being of course
adjusted at equilibrium. Large firms may however influence the size of
their own market through the income they distribute, in a way that is
far from negligible. And they may well have a good perception of that
influence, taking it into account in their decisions. A well-known example
of that perception is the high wage policy advocated from an industrialist
point of view by Henry Ford:

I believe in the first place that, all other considerations aside, our own sales
depend in a measure upon the wages we pay. If we can distribute high
wages, then that money is going to be spent and it will serve to make
storekeepers and distributors and manufacturers and workers in other lines
more prosperous and their prosperity will be reflected in our sales. Country-
wide high wages spell country-wide prosperity, provided, however, the
higher wages are paid for higher production (Ford 1922, p.124).

What makes this idea quite remarkable is that it is formulated in “general
equilibrium” terms. The income feedback effect of higher distributed
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income—that may be called the Ford effect11 —works through the varia-
tions it induces outside the sector in which it originates.

The consequences for the equilibrium markup of introducing Ford
effects working through the different income components (wages, profits
and their sum) can be evaluated (see d’Aspremont and Dos Santos Fer-
reira, 2017). Let us here consider Ford effects extended to the whole
income of the oligopolistic sector, when firms in this sector take as given
the (wage) income z generated (or spent) in the competitive sector. We
redefine accordingly the concept of oligopolistic equilibrium.

Definition 2 An oligopolistic equilibrium with Ford effects is a tuple of
pairs

(
p∗

i , x∗
i

)
i=1,...,N ∈ R

2N
+ such that, for any i,

(
p∗

i , x∗
i

) ∈ arg max
(pi ,xi )∈R2+

(pi − ci) xi

s.t. xi ≤ Hi

((
pi,p∗

−i

)
,X
(
xi, x∗

−i

))

and X
(
xi, x∗

−i

) ≤ D
((

pi,p∗
−i

)
, z∗ +∑

j =i p∗
j x

∗
j + pixi

)
, (2.1)

and such that the profits are non-negative, namely that
(
p∗

i − ci

)
x∗

i −
sgn

(
x∗

i

)
φi ≥ 0 for each i, and also such that the consumer is non-

rationed (implying z∗ = L −∑N
i=1
(
cix

∗
i + sgn

(
x∗

i

)
φi

)
).

The general formula obtained for the equilibriummarkup is modified,
while remaining easy to interpret.

Proposition 5 Let
(
p∗

i , x∗
i

)
i=1,...,n ∈ R

2n++ be an oligopolistic equilibrium
with Ford effects. Then the equilibrium markup μ∗

i = (
p∗

i − ci

)
/p∗

i of
each firm i is given by

μ∗
i = θ∗

i

(
1 − α∗

i β
∗
i

)+ (
1 − θ∗

i

) [
α∗

i − η∗
i εY D∗]

θ∗
i

(
1 − α∗

i β
∗
i

)
s∗
i + (

1 − θ∗
i

) [
α∗

i σ
∗
i − η∗

i εY D∗] , (2.2)

11As in d’Aspremont et al. 1989a and 1989b.
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where η∗
i ≡ p∗

i x
∗
i /Y

∗ is the budget share of good i in the whole expenditure,
for some θ∗

i ∈ [0, 1].

Proof The only modification in the programme of firm i concerns the
income as an argument of the Marshallian demand function in the
constraint for market size. Thus, by referring to the programme (2.1)
and building on first-order conditions (1.15) and (1.16) in the proof of
Proposition 4, we easily modify these conditions to obtain:

x∗
i = λ∗

i

p∗
i

[−εpi
Hi

(
p∗,D

(
p∗, Y ∗))]

+ ν∗
i

p∗
i

[−εpi
D
(
p∗, Y ∗)− εY D

(
p∗, Y ∗) εpi

Y ∗]

p∗
i − ci = λ∗

i

x∗
i

(
1 − [

εiX
(
x∗)] [εXHi

(
p∗, D

(
p∗, Y ∗))])

+ν∗
i

x∗
i

[
εiX

(
x∗)− εY D

(
p∗, Y ∗) εxi

Y ∗] . (2.3)

By dividing the two handsides of the second equation by the correspond-
ing handsides of the first and then using Table 2.1 and εpi

Y ∗ = εxi
Y ∗ =

p∗
i x

∗
i /Y

∗ ≡ η∗
i plus θ∗

i ≡ λ∗
i /
(
λ∗

i + ν∗
i

)
to make the appropriate

simplifications, we obtain indeed the markup formula (2.2). �	

This expression for the equilibrium markup, similar to formula
(1.13) in Proposition 4, is again a harmonic mean of the elasticities
(in absolute value) of the two frontiers at the equilibrium point
(in the space xi × pi), 1/s∗

i for the market share frontier and(
α∗

i − η∗
i εY D∗) /

(
α∗

i σ
∗
i − η∗

i εY D∗) ≡ 1/σ̂ ∗
i , rather than 1/σ ∗

i , for the
market size frontier. The redefined elasticity of intersectoral substitution
σ̂ ∗

i is larger (resp. smaller) than the original σ ∗
i if σ ∗

i > 1 (resp. σ ∗
i < 1).

In other words, the Ford effect increases (resp. decreases) the relevant
elasticity of intersectoral substitution and accordingly exerts ceteris paribus
a depressing (resp. enhancing) effect on the equilibrium markup when
good i and the numeraire good are substitutes (resp. complements).
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The equilibriummarkup formula (2.2) becomes simpler in the partic-
ular case of homotheticity of the utility function U and homogeneity of
degree 1 of the aggregator function X. In this case, εXe∗ = εXH ∗

i =
εY D∗ = 1 and η∗

i = α∗
i (P ∗X∗/Y ∗) ≡ α∗

i γ
∗, where γ ∗ is the budget

share of the composite product of the oligopolistic sector in the whole
expenditure, so that σ̂ ∗ = (σ ∗ − γ ∗) / (1 − γ ∗) and

μ∗
i = θ∗

i

(
1 − α∗

i

)+ (
1 − θ∗

i

)
α∗

i (1 − γ ∗)
θ∗

i

(
1 − α∗

i

)
s∗
i + (

1 − θ∗
i

)
α∗

i (1 − γ ∗) σ̂ ∗ . (2.4)

The markup μ∗
i is a weighted harmonic mean of the reciprocals of two

elasticities of substitution, s∗
i and σ̂ ∗, where the intersectoral elasticity of

substitution σ̂ ∗ has been implicitly redefined to refer to the substitution
of X/z with respect to P/1 rather than that of xi/Y with respect to pi/1.
We have indeed, using quantity and price indices of the composite good
produced in the oligopolistic sector thanks to homotheticity:

σ̂ ≡ −εP

[
D̂ (P , Y )

Y − PD̂ (P , Y )

]

= −εP D̂ (P , 1)︸ ︷︷ ︸
σ

− PD̂ (P , 1)
1 − PD̂ (P , 1)︸ ︷︷ ︸

γ /(1−γ )

(
1 + εP D̂ (P , 1)

)

︸ ︷︷ ︸
1−σ

= σ − γ

1 − γ
. (2.5)

Let us compare the markup formula (2.4) and the formula (1.13)
prevailing in the absence of Ford effects (but under homotheticity, leading
to β∗

i = 1 and σ ∗
i = σ ∗ as the price elasticity of demand for the composite

good). The weight on the reciprocal of the intrasectoral elasticity of
substitution is not modified: this elasticity completely determines the
markup of firm i in the limit cases of a negligible market share (α∗

i → 0)
or of maximum competitive toughness (θ∗

i → 1). Correspondingly, the
intersectoral elasticity of substitution completely determines the markup
of firm i in the opposite limit cases of monopoly (α∗

i → 1) or collusion
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(θ∗
i → 0). An increasing weight put on the reciprocal of the intersectoral

elasticity of substitutionmay however also result from a decreasing budget
share γ ∗ of the composite product of the oligopolistic sector. But the
most significant consequence of the Ford effect is the transformation of
the intersectoral elasticity of substitution itself: with σ̂ ∗ increasing from
σ ∗ > 1 to infinity as the budget share γ ∗ increases from 0 to 1 (when
the two composite goods are substitutable) and with σ̂ ∗ decreasing from
σ ∗ < 1 to zero as the budget share γ ∗ increases from 0 to 1 (when the
two composite goods are complementary).
This concludes our analysis of the consequences of introducing Ford

effects extended to the whole income of the oligopolistic sector. Some
more limited form could be considered, but in the present model,
restricting Ford effects to wages does not make sense. As the economy
has a single labour market which is perfectly competitive, as labour
productivity in the numeraire sector is assumed constant and as labour
supply is rigid, economy-wide wage income is insensitive to oligopolistic
firms’ decisions, at least when expressed in terms of the numeraire. It is
just equal to L.
Restricting Ford effects to profits, so that the economy income, as

conjectured by firm i at some equilibrium
(
p∗, x∗), is

Y = L +∑
j =i

((
p∗

j − cj

)
x∗

j − φj

)+ (
(pi − ci) xi − φi

)
, (2.6)

will not have any consequence either. Consider the programme (1.12) of
firm i, expressed as the maximisation of the Lagrangian

max
(pi ,xi)

fi (pi, xi)−λigi (pi, xi)−νih (pi, xi, Y (fi (pi, xi))) , (2.7)

where fi is the objective function, and where gi (pi, xi) ≤ 0 and
h(pi, xi, Y (fi (pi, xi))) ≤ 0 are the two constraints, on market share
and onmarket size respectively, and λi and νi the corresponding Lagrange
multipliers. The strategies of other firms, implicit arguments of functions
gi and h, are omitted for simplicity of notation. The crucial point is that
Y depends upon the strategy pair (pi, xi) only through the objective
function fi . As a consequence, the first-order condition for an interior
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solution is
[
1 − νi∂Y h · Y ′ (fi (pi, xi))

]
∂(pi ,xi )fi (pi, xi)

= λi∂(pi ,xi )gi (pi, xi) + νi∂(pi ,xi )h (2.8)

where the gradient ∂(pi ,xi )fi (pi, xi) is multiplied, not by 1 as when Ford
effects are ignored, but by a positive factor which depends upon the
strategy pair (pi, xi). Thus, taking into account Ford effects restricted
to profits only changes proportionately the two Lagrange multipliers
without modifying the equilibrium markup, which depends only on the
ratio of those multipliers.

3 Back to the Homogeneous Good Case:
Comparison with Alternative Approaches

In the first section of Chap. 1, we have considered the case of a duopoly
producing a homogeneous good at zero cost under perfectly symmetric
conditions. Let us now suppose N firms, each firm i producing the same
good with a technology described by an increasing cost function Ci ,
which is continuously differentiable on (0,∞) and such that Ci(0) =
0.12 The demand D for the good is a function of market price P , with
a finite continuous derivative D′(P ) < 0 over all the domain where it is
positive and such that limP→P D(P ) = 0, for some P ∈ (0, ∞]. Our
purpose is to review different approaches to oligopolistic competition in
the homogeneous good case, used in different contexts, also leading to
the same kind of indeterminacy. We start by our own approach.

12Following d’Aspremont and Dos Santos Ferreira (2009), and for the sake of comparing our
oligopolistic equilibrium concept with alternative concepts, the technology assumption is weakened
with respect to the one in section 2.1, where Ci (xi) = φi + cixi for xi > 0 (with ci > 0).
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Our Market Share and Market Size Approach

Using the dual form of the market share and market size constraints
given in Eq. (3.7) of Chap. 1, the definition of oligopolistic equilibrium
is straightforwardly adapted.

Definition 3 An oligopolistic equilibrium is a 2N -tuple (p∗, x∗) such
that, for each firm i = 1, . . . , N , (p∗

i , x∗
i ) is solution to the programme

max
(pi ,xi)∈R2+
⎧
⎨

⎩
pixi − Ci(xi)|pi ≤ min

j =i
{p∗

j } and pi ≤ D−1

⎛

⎝xi +
∑

j =i

x∗
j

⎞

⎠

⎫
⎬

⎭
,

(3.1)

and satisfies

∑

j

x∗
j = D

(
min

j

{
p∗

j

})
. (3.2)

Since both constraints are binding for any active firm at an oligopolistic
equilibrium and since we are in the homogeneous good case, an equilib-
rium outcome is simply given by the pair (P ∗, x∗) with P ∗ = minj {p∗

j }.
It is easy to see that both the Cournot outcome (PC, xC) satisfying

xC
i ∈ arg max

xi∈[0,∞)

⎧
⎨

⎩
D−1

⎛

⎝xi +
∑

j =i

xC
j

⎞

⎠ xi − Ci(xi)

⎫
⎬

⎭
for i = 1, . . . , N ,

PC = D−1

⎛

⎝
∑

j

xC
j

⎞

⎠ , (3.3)
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and the competitive (Walrasian) outcome (PW, xW) satisfying

xW
i ∈ arg max

xi∈[0,∞)
{PWxi − Ci(xi)} for i = 1, . . . , N ,

PW = D−1

⎛

⎝
∑

j

xW
j

⎞

⎠ (3.4)

are oligopolistic equilibria. If, indeed, there were, for some i, a deviation
(pi, xi) ∈ R

2+ satisfying the two constraints in (3.1) such that the profit
pixi −Ci(xi)were strictly larger than the Cournot profitPCxC

i −Ci(x
C
i )

(resp. the Walrasian profit PWxW
i − Ci(x

W
i )), then we would get the

contradiction PCxC
i − Ci(x

C
i ) < D−1(xi +∑

j =i xC
j )xi − Ci(xi) (resp.

PWxW
i − Ci(x

W
i ) < PWxi − Ci(xi)).

As to the Bertrand outcome (P B, xB) with P B = mini{pB
i }, it is now

characterised by

pB
i ∈ arg max

pi∈[0,∞)

{
pidi

(
pi,pB−i

)− Ci

(
di

(
pi, pB−i

))}
(3.5)

where the demand to firm i is di

(
pi,pB−i

) = D (pi) / (# argmin{
pi, pB−i

})
if pi = min

{
pi, pB−i

}
and di

(
pi,pB−i

) = 0 otherwise. It is
also an oligopolistic equilibrium, since a profitable deviation (pi, xi) for
some i in the extended Cournot-Bertrand game would have pi ≤ P B and
hence would be also feasible and profitable in the Bertrand game, again a
contradiction. Finally, as already noticed in the symmetric duopoly case,
and in contrast with the differentiated good case, the collusive outcome
(Pm, xm) corresponding to

(Pm, xm) ∈ arg max
(P ,x)∈Rn+1+

{

P
∑

i

xi −
∑

i

Ci(xi)

∣
∣∣
∣∣

∑

i

xi ≤ D(P)

}

,

(3.6)
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cannot be an oligopolistic equilibrium in the homogeneous good case
unless it coincides with the Cournot outcome. Indeed, if (Pm, xm) is
not a Cournot outcome, we have, for some i, some xi ∈ R+ and
P = D−1(xi +∑

j =i x
m
j ),

Pxi − Ci(xi) + Pm
∑

j =i

xm
j −

∑

j =i

Cj (x
m
j )

> Pmxm
i − Ci(x

m
i ) + Pm

∑

j =i

xm
j −

∑

j =i

Cj (x
m
j ), (3.7)

and, since it is collusive,

Pm
∑

j

xm
j −

∑

j

Cj (x
m
j ) ≥ Pxi − Ci(xi) + P

∑

j =i

xm
j −

∑

j =i

Cj (x
m
j )

(3.8)

implying P < Pm. Therefore, (P , xi) is an admissible deviation for firm
i in the oligopoly game.
Looking now at the first-order conditions of firm i at an oligopolistic

equilibrium (with multipliers (λ′
i , ν ′

i) ∈ R
2+ \ {0} associated with the

first and second constraints in (3.1)), they require, by the positivity of
p∗

i and of x∗
i (if firm i is active) that x∗

i − λ′∗
i − ν ′∗

i = 0, and p∗
i −

C ′
i(x

∗
i ) + ν ′∗

i /D′(P ∗) = 0. If firm i is inactive, both constraints cease
to bind, so that we let λ′∗

i = ν ′∗
i = 0. Using the normalised parameter

θ ′∗
i ≡ λ′∗

i /
(
λ′∗

i + ν′∗
i

) ∈ [0, 1], we can rewrite the first-order conditions
to characterise the markup of each firm i in the set I ∗ of active firms as a
function of θ ′∗

i , with P ∗ = minj {p∗
j }:

μ∗
i = P ∗ − C ′

i(x
∗
i )

P ∗ = (
1 − θ ′∗

i

)x∗
i /
∑

j x∗
j

−εD(P ∗)
≡ (1 − θ ′∗

i )
α∗

i

σ (P ∗)
, i ∈ I ∗.

(3.9)

This formula generalises formula (1.5) in Chap. 1 for the duopoly case
with zero marginal cost. As above, θ ′∗

i may be interpreted as measuring
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the competitive toughness of firm i at the equilibrium
(
p∗, x∗). When

competitive toughness is maximal (θ ′∗ = (1, . . . , 1)), each active firm
equalising marginal cost to price, we get the competitive equilibrium
(or the Bertrand equilibrium for constant marginal costs). At the other
extreme, when competitive toughness is minimal (θ ′∗ = (0, . . . , 0)), we
get the standard markup formula for the Cournot equilibrium. All other
oligopolistic equilibria correspond to intermediate values of θ ′∗.

Notice that μ∗
i in formula (3.9) is equal to the numerator of μ∗

i in
formula (1.17) in the limit case s∗

i = ∞. But, looking at the denominator
of μ∗

i in formula (1.17), we see that the parameterisation of competitive
toughness is different in the two formulas (although we have kept the
same notation θ ′∗

i in both formulas). Indeed, if we apply formula (1.17),
it entails μ∗

i = 0 for θ ′∗
i = 1 (Bertrand) and μ∗

i = α∗
i /σ

∗ for θ ′∗
i = 1/2

(Cournot), whereas by applying formula (3.9) we still obtain μ∗
i = 0 for

θ ′∗
i = 1 (Bertrand) but now μ∗

i = α∗
i /σ

∗ for θ ′∗
i = 0 (Cournot).13

For the sake of comparison, let us now look at other approaches to
oligopolistic competition in the homogeneous good case.

The Conjectural Variation Approach

The parameterisation we have obtained in (3.9) is equivalent to the
one used in the empirical literature, building econometric models that
incorporate general equations where each firm conduct in setting price
or quantity is represented by a parameter, itself viewed as an index of
competitiveness. This is the so-called “conduct parameter method” which
has been at the basis of the New Empirical Industrial Organisation
(NEIO) and has generated a large number of empirical studies (for a
synthesis see Bresnahan 1989, Einav and Levin 2010). It is related to

13In the homogeneous good case (a limit case of the homothetic case), differentiability of P is lost.
The left-hand elasticity ε−

i P
(
p∗), the one that must be applied when considering a deviation along

the market size frontier, is equal to 1, so that we get

1
σ ∗

i

= α∗
i

−ε−
pi

D
(
p∗, Y

) = α∗
i

−εP D̂ · ε−
i P

(
p∗) = α∗

i

σ ∗ .

Compare to footnote 8 in Sect. 1.
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the conjectural variation approach but, as stressed by Bresnahan, “the
phrase “conjectural variations” has to be understood in two ways: it means
something different in the theoretical literature than the object which has
been estimated in the empirical papers.”
In the theoretical approach to conjectural variations, each firm i

when choosing its quantity is also supposed to make a specified type of
conjecture concerning the reaction of the other firms to any of its devi-
ations. These conjectures, though, are not game-theoretically founded.
They are introduced directly into the first-order conditions. Following
the presentation in Dixit (1986), a sufficient specification14 consists in
introducing conjectural derivatives ri = ∑

j =i ∂xj/∂xi for each i. These
are called compensating (or non-collusive) variations if each ri is restricted
to be in the interval [−1,0], for every i. The corresponding first-order
conditions are:

P ∗ − C ′
i(x

∗
i )

P ∗ = (1 + ri)
x∗

i /
∑

j x∗
j

−εD(P ∗)
. (3.10)

If matching variations (ri > 0) are excluded, and in particular those
leading to the collusive solution, this gives the same characterisation as
(3.9) with ri = −θ ′

i . In other words, comparing first-order conditions,
the set of oligopolistic equilibrium outcomes appears as the selected
subset of outcomes obtained by non-collusive conjectural variations. The
concept of oligopolistic equilibrium thus provides some game-theoretic
foundation to the concept of conjectural variations, since the conjectural
variation terms (within the relevant class) can be identified with the
parameterisation of the equilibria of a fully specified game.

14Dixit considers the more general case where ri is a function of both xi and
∑

j =i xj . More
generally, in the empirical approach to conjectural variations with differentiated products, there are
as many conjectural variation parameters as pairs of products (Nevo, 1998). As we have noticed in
the case of demand estimation (see footnote 3 in Sect. 1), for estimation on the supply side our
approach is also more parcimonious, with one parameter per product.
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The Supply Function Approach

Another approach, initiated by Grossman (1981) and Hart (1982),
assumes that firms strategies are supply functions. A firm i strategy is
a supply function Si associating with every price pi in [0,∞) a quantity
xi = Si(pi). In order to compare this concept with our own, we shall
restrict strategies to the set S+ of non-decreasing supply functions.15 To
define the payoffs of the corresponding game, we have to solve in P the
following equation for any N -tuple S of supply functions in S

N+

N∑

j=1

Sj (P ) = D(P). (3.11)

Since the market demand is strictly decreasing and the supply function of
each firm is non-decreasing, if a solution P̂ (S) clearing the market exists,
then it is unique.

The payoffs are defined as follows. We let

�i(Si, S−i ) = P̂ (Si, S−i )Si

(
P̂ (Si, S−i)

)− Ci

(
Si(P̂

(
Si, S−i )

))
,

if the market clearing price P̂ (S) exists, and

�i(Si, S−i) = 0, otherwise. (3.12)

A supply function equilibrium is a Nash equilibrium S∗ of the resulting
game.

We can define the residual demand function of firm i at an equilibrium
S∗:

D∗
i (P , S∗

−i) = max

⎧
⎨

⎩
D(P) −

∑

j =i

S∗
j (P ), 0

⎫
⎬

⎭
,

15As Delgado and Moreno (2004) do. However, they assume in addition that firms are identical.
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Then for any firm i, maximising in Si the profit �i(Si, S∗
−i ) amounts to

select P ∗ in

arg max
P∈R+

{P D∗
i (P , S∗

−i ) − Ci(D
∗
i (P , S∗

−i))}. (3.13)

or, equivalently, to choose any supply function Si for which Si(P ) =
D∗

i (P , S∗
−i ) has the unique solution P ∗. The multiplicity of supply func-

tion equilibria is well known, but we have the following characterisation.

Proposition 6 If strategies are restricted to non-decreasing supply functions,
the set of outcomes of the supply function game,
{(

P ∗, x∗) ∈ R
N+1+

∣
∣
∣ x∗ = S∗ (P ∗) with S∗ a supply function equilibrium

}
,

coincides with the set of oligopolistic equilibrium outcomes.

Proof Let
(
p∗, x∗) be an oligopolistic equilibrium. We then construct

a supply function equilibrium giving the same outcome, each firm i

choosing a supply function S∗
i ∈ S+ simply characterised by the price-

quantity pair (p∗
i , x∗

i ), that is such that S∗
i (P ) = x∗

i if P ≤ p∗
i ,

and S∗
i (P ) = ∞ otherwise. Clearly, the solution to (3.13) cannot be

larger than minj =i{p∗
j }, hence any profitable deviation by some firm i

from S∗
i must involve a price below minj =i{p∗

j } and a quantity below
D(pi) − ∑

j =i x
∗
j , and thus constitute a deviation with respect to the

oligopolistic equilibrium.
To prove the converse, let S∗ ∈ S

N+ be a supply function equilibrium.
Observe that, for any i, the residual demand D∗

i (P , S∗
−i ) is decreasing in

P and that the profit pixi −Ci(xi) is increasing in pi for xi > 0. Hence,
by (3.13), (p∗

i , x∗
i ) maximises pixi − Ci(xi) on

Ai ≡ {
(pi, xi) ∈ R

2
+
∣
∣ xi ≤ D∗

i (pi, S∗
−i)
}
. (3.14)
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For
(
p∗, x∗), with x∗ = S∗(P̂ (S∗)) and p∗

j = P̂ (S∗) for any j , to be an
oligopolistic equilibrium, (p∗

i , x∗
i ) should maximise pixi − Ci(xi) on

Âi ≡
{

(pi, xi) ∈ R
2
+
∣∣pi ≤ min

j =i

(
p∗

j

)
,

xi ≤ max

⎧
⎨

⎩
D (pi) −

∑

j =i

x∗
j , 0

⎫
⎬

⎭

⎫
⎬

⎭
, (3.15)

for every i. Since,
(
p∗

i , x∗
i

) ∈ Âi and Âi ⊂ Ai , the result follows. �	

This shows that, for any oligopolistic equilibrium
(
p∗, x∗), there is a

supply function equilibrium S∗ ∈ S
N+ such that S∗

(
minj {p∗

j }
)

= x∗

and, conversely, for any supply function equilibrium S∗ ∈ S
N+ , there is an

oligopolistic equilibrium
(
p∗, x∗) such that p∗

j = P̂ (S∗), for any j , and
x∗ = S∗(P̂ (S∗)).

If we consider the differentiable case (restricting S∗−i to differentiable
supply functions in SN−1+ ), we may get back formula (3.9) if we derive the
first-order condition to firm i programme (3.13) at equilibrium:

x∗
i +

⎛

⎝D′(P ∗) −
∑

j =i

S∗′
j (P ∗)

⎞

⎠ (P ∗ − C ′
i(x

∗
i )) = 0, with

x∗
i = D∗

i (P
∗, S∗

−i),
(3.16)

or, equivalently,

P ∗ − C ′
i(x

∗
i )

P ∗ = x∗
i /
∑

k x∗
k

−εD(P ∗) +∑
j =i(x

∗
j /
∑

k x∗
k )εS

∗
j (P

∗)
. (3.17)
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Taking

1 − θ ′
i = −εD(P ∗)

−εD(P ∗) +∑
j =i(x

∗
j /
∑

k x∗
k )εS

∗
j (P ∗)

. (3.18)

we obtain formula (3.9).
In this formula, the term

∑
j =i(x

∗
j /
∑

k x∗
k )εS

∗
j (P ∗) may be

interpreted as measuring the “reactivity of the other firms” (with respect
to prices) as anticipated by firm i at the supply function equilibrium.
It has a positive impact on the competitive toughness θ ′

i of firm i as
measured at the oligopolistic equilibrium. The elasticity of the supply
function chosen by firm i is indifferent from the point of view of the
firm itself since only the price-quantity pair (pi, xi) matters. However
varying the elasticities of the other firms’supply functions allows to cover
the whole range of admissible values of θ ′

i . In particular the Cournot
solution corresponds to an elasticity εS∗

j (P
∗) of the supply functions

equal to 0 for all j , and the competitive solution to εS∗
j (P

∗) = ∞ for at
least two j ’s.

The Pricing Scheme Approach

In Chap. 1, we have introduced in the duopoly case a concept of “pricing
scheme” associating with a vector of price announcements the resulting
market price. It was mentioned that, if the pricing scheme (which is
nothing else than a coordination device) is sufficiently responsive to
individual price signals, then we get the Cournot equilibrium. This leads
to the interpretation of a Cournot equilibrium as the coordinated optimal
decisions of a set of monopolists, each facing some (imperfectly elastic)
residual demand. In the original Cournot model, the same coordination
is ensured by the use of the inverse demand function. Formally, pricing
schemes have the same status as auctions or bidding mechanisms. They
could be assimilated to the “facilitating practices” already discussed in
Sect. 2 of Chap. 1 (see also d’Aspremont et al., 1991a,b). In this subsection,
we shall first come back to the Cournot case where the pricing scheme
is supposed to be sufficiently responsive and then examine the case of
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facilitating practices implying de facto that the pricing-scheme is the min-
pricing scheme.

In the pricing scheme approach, the market price is supposed to be
determined by a pricing scheme � , a continuous non-decreasing function
from R

N+ to R+, associating with each vector of price signals ψ =
(ψ 1, . . . , ψi, . . . , ψN) a single price �(ψ). For a given pricing scheme
� , we thus obtain a game involving the N firms, the strategies of firm i

being the set of nonnegative price-quantity pairs
(
ψi, xi

)
. For any vector

(ψ, x) of such strategies, the payoff of firm i is given by the profit function

�i (ψ, x) ≡ � (ψ) xi − Ci (xi) , (3.19)

with (ψ, x) satisfying

N∑

i=1

xi ≤ D (� (ψ)) . (3.20)

A �-equilibrium is a vector
(
ψ∗, x∗) in R

2N+ , such that
∑N

i=1 x
∗
i =

D
(
�
(
ψ∗)) and, for every i ∈ N ,

(
ψ∗

i , x∗
i

)
is a solution to

max
(ψi,xi)∈R2+

�
(
ψi,ψ

∗−i

)
xi − Ci (xi) , s.t. xi ≤ D

(
�
(
ψi,ψ

∗−i

))−
N∑

j =i

x∗
j .

(3.21)

If we now consider the Cournot model with, say, the function
D−1 (xi, x−i) xi − Ci (xi) differentiable and strictly quasi-concave in
xi , and assume that the pricing scheme � is differentiable, onto and
strictly increasing in each variable ψi (and hence strongly responsive),
then the �-equilibrium outcome coincides with the Cournot outcome,
that is,

(
�
(
ψ∗) , x∗) = (

PC, xC
)
. Looking at the first-order conditions

for an active firm i ∈ I ∗ at a �-equilibrium, we obtain

∂i�
(
ψ∗) [x∗

i + (
�
(
ψ∗)− C ′

i

(
x∗

i

))
D′ (�(ψ∗)

)] = 0, (3.22)
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leading to the same conditions as (3.9) for the Cournot case (θ ′ = 0):

�
(
ψ∗)− C ′

i

(
x∗

i

)

�
(
ψ∗) = x∗

i /
∑

j x∗
j

−εD
(
�
(
ψ∗)) , i ∈ I ∗. (3.23)

The essential property to get this result is themanipulability (upwards and
downwards) of the market price by each individual producer. This means
that the pricing scheme can be eventually obliterated. The equilibrium
can simply be described as having each firm i choosing its monopoly
solution (pi, xi) on its residual demand, that is, by maximising its profit
pixi −Ci (xi) in price and quantity under the residual demand constraint
xi ≤ D (pi) − ∑

j =i x
∗
j . Each firm i will thus end up choosing the

Cournot solution xC
i and the same price pC

i = PC, clearing the market∑
j xC

j = D
(
PC
)
.

But, of course, firms can also adopt a different conduct, based on
other forms of price coordination, such as facilitating practices. For
instance, each firm can include a meeting competition clause (or price-
match guarantee) in its sales contracts, guaranteeing its customers that they
are not paying more than what they would to a competitor, so that each
customer acts as if facing the single market price �min

(
p
) = minj {pj },

where �min is called the min-pricing scheme. Combining this guarantee
with the assumption that each firm i brings xi to the market, we infer
that it should be willing to sell this output at the discount price P =
min{�min(p),D−1(

∑
j xj )}. We thus get the following payoff function

for firm i:

�i

(
pi, p−i , xi, x−i

) ≡ min
{
�min (p

)
, D−1

(∑
j xj

)}
xi − Ci (xi) .

(3.24)
This defines a price-matching oligopoly game in prices and quantities.
The corresponding oligopolistic equilibrium

(
p∗, x∗), called a �min-

equilibrium, is a Nash equilibrium satisfying in addition the no-rationing
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restriction
∑

j

x∗
j = D

(
�min (p∗)) (3.25)

to eliminate equilibria where customers would be willing to buy more at
the equilibrium price �min

(
p∗). The following proposition states that

the equilibria of the price-matching oligopoly game coincide, when the
output is homogeneous, with the oligopolistic equilibria.

Proposition 7 A 2n-tuple
(
p∗, x∗) is a �min-equilibrium if and only if it

is an oligopolistic equilibrium.

Proof Suppose first that
(
p∗, x∗) is a �min-equilibrium (so that, for

every i, p∗
i = �min

(
p∗) = D−1

(∑
j x∗

j

)
), but that, for some i,

and some (pi, xi) ∈ R
2+, pixi − Ci (xi) > p∗

i x
∗
i − Ci

(
x∗

i

)
, with

pi ≤ min
{
p∗

−i , D−1
(
xi +∑

j =i x
∗
j

)}
. Then,

min
{
�min (pi, p∗

−i

)
,D−1

(
xi +∑

j =i x
∗
j

)}
xi − Ci(xi)

= pixi − Ci(xi)

> min
{
�min (p∗) , D−1

(∑
j x∗

j

)}
x∗

i − Ci(x
∗
i ),

and (pi, xi) is a profitable deviation to the �min-equilibrium, a contra-
diction.

To prove the other direction, suppose now (p∗, q∗) is an oligopolistic
equilibrium (so that again

∑
j x∗

j = D
(
minj

{
p∗

j

})
), but that, for some

i, some (pi, xi) ∈ R
2+, and p′

i ≡ min
{
pi, p∗

−i , D−1
(
xi +∑

j =i x
∗
j

)}
,

we have p′
ixi − Ci (xi) > p∗

i x
∗
i − Ci

(
x∗

i

) ≥ 0. Then
(
p′

i , xi

)
satisfies

the two constraints in (3.1) and gives higher profit to firm i, again a
contradiction. �	
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Hence, the min-pricing scheme approach is another way to get
oligopolistic equilibria and a relevant one to investigate the large number
of markets where the price-match guarantee is offered.

4 The Effects of Intensifying Competition:
Two Applications of the Model

The conventional view of the consequences of intensifying competition,
through abatement of concentration or restriction of collusive practices, is
that it increases welfare by reducing prices and spurring innovation. This
view has however been challenged, as more intense competition can be
price increasing (Chen and Riordan, 2008; Thisse and Ushchev, 2018;
Zhelobodko et al., 2012) and its influence on R&D investment non-
monotone (for a synthesis, see Aghion et al., 2005). These two questions
can be easily addressed using our framework.

Stiffer Competition: Is It Price Decreasing or Price
Increasing?

The basis of the conventional view that an increase in competitive
intensity has a price decreasing effect can be traced back to Cournot
(1838), where the symmetric equilibrium condition σ (p) = 1/n in the
case of nil costs, with an increasing function σ , has the consequence
that “the resulting value of p would diminish indefinitely with the
indefinite increase of the number n” (p. 94). The same result can be
obtained without entry, through tougher competitive conduct, as implied
by Bertrand’s objection to Cournot. Does this view hold when we proceed
from the homogeneous to the differentiated oligopoly and from partial to
general equilibrium?
A simple way of answering this question is to recall our equilibrium

markup formula given in Proposition 4. The markup appears in this
formula as a weighted mean of the reciprocals of intra- and intersectoral
elasticities of substitution. The weight on the former, θ i

(
1 − αiβii

)
for

firm i, is increasing in the competitive toughness displayed by firm i and



70 C. d’Aspremont, R. Dos Santos Ferreira

decreasing in the impactαi of firm i’s production on the aggregate output.
Hence, more intense competition translates into a higher relative weight
put on the reciprocal of intrasectoral elasticity of substitution, so that it
decreases (resp. increases) the price of good i if the differentiated goods are
more (resp. less) substitutable among themselves than for the numeraire
good.

To make this analysis sharper, let us (1) take the CES case, (2) consider
the two standard regimes of price and quantity competition (continuously
increasing θ i is anyway equivalent to continuously decreasing αi) and (3)
refer to the averagemarkup in the oligopolistic sector. By (1.13) and taking
θ i = 1/2 for a price equilibrium pB, we obtain the following harmonic
mean of the markups of all firms, weighted by their budget shares:

μB =
(
∑

i

αB
i

μB
i

)−1

= 1

s + (
σ B − s

)∑
i

(
αB

i

)2 . (4.1)

The most sensible assumption to make concerning the difference σB − s

is that it is negative, differentiated goods being more substitutable among
themselves than for the numeraire good (see Dixit and Stiglitz, 1977).
Then, the average markup μB is an increasing function of the Herfindahl
index of concentration

∑
i

(
αB

i

)2, so that abating concentration has a price
decreasing effect and entry has a pro-competitive effect. The opposite case
can however not be excluded, leading to opposite effects: more intense
competition is then welfare degrading.

We naturally obtain the same kind of results under quantity compe-
tition. By (1.17) and taking θ ′

i = 1/2 for a quantity equilibrium xC, the
arithmetic mean of the markups of all firms, weighted by their budget
shares, is

μC = 1/s + (
1/σC − 1/s

)∑
i

(
αC

i

)2 . (4.2)

Hence, abating concentration has a price decreasing (resp. increasing)
effect and entry has a pro-competitive (resp. anti-competitive) effect if
s > σC (resp. s < σC).
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The relation between intra- and intersectoral elasticities of substitu-
tion thus appears crucial to settle the sense of price effects of higher
competitive intensity. Take however the case of a continuum [0, N ] of
differentiated goods, a case where budget shares and the ensuing index
of concentration are equal to zero (Chamberlin’s case of a large group
of producers). We then lose the general equilibrium dimension and the
markup is simply equal to 1/s, a constant in the CES case. We can
however take instead the case of symmetric variable elasticity of substitution
(Thisse and Ushchev, 2018). With αi = 0, the expression (1.4) becomes,
at a symmetric profile where xi = x if i ∈ [0, n] and xi = 0 if i ∈ [n,N ],

si = 1
−∂2

iiX (x) x/∂iX (x)
. (4.3)

If we stick to the homotheticity assumption, the denominator on the RHS
of this equation is homogeneous of degree 0 in x and only depends on
the mass n of produced goods, so that the elasticity of substitution at a
symmetric profile is a function of n. In this case, we can consequently
have pro- or anti-competitive effects of entry if s is an increasing or a
decreasing function, respectively. If the aggregator function is additive
(X (x) = ∫ n

0 ξ (x) + ∫ N

n
ξ (0)), we obtain for any active firm the

elasticity of substitution s (x) = 1/
(−εξ ′ (x)

)
, the reciprocal of the

relative love for variety (an index of the local curvature of the aggregator
function). As the equilibrium value of x is itself a function of n, we
obtain again the two possible pro- and anti-competitive effects according
to the sense of variation of s as a composite function of n. So, even under
monopolistic competition, the possibility of anti-competitive effects of
entry undermines the conventional view against collusive practices and
barriers to entry.

Tougher Competition: Does It Foster Innovation?

Two opposite views contend on this question: the Darwinian view
for which competition is needed to force firms to innovate in order



72 C. d’Aspremont, R. Dos Santos Ferreira

to survive16 and the Schumpeterian view for which monopoly rent
is required to support innovative activity, tougher competition hav-
ing a negative impact on innovation (Schumpeter, 1942). These two
views refer to two contrary effects, the presence of which may lead
to the observed non-monotonicity of the relation between competitive
toughness and innovative activity. In recent theoretical and empirical
work, Aghion et al. (2005) suggest an explanation for this observation.
More intense competition enhances R&D investment when firms are
at the same technological level (the Darwinian view), but discourages
it when technological leaders and laggards coexist (the Schumpeterian
view). By averaging R&D intensities across all industries, an inverted
U-relationship between the average innovation rate and product market
competition obtains through a composition effect. Non-monotonicity
has however deeper roots, within each industry, and does not necessarily
appear only at the aggregate level (d’Aspremont et al., 2010).

Let us examine the question in the context of a homogeneous oligopoly
where process innovation reduces constant unit production costs. Con-
sider a two-stage game played by N firms, which decide at the first stage
whether or not to make, at a fixed cost φ, a R&D investment allowing
to reduce the unit cost from c to c (with c > c > 0). At the second
stage, n innovators produce at unit cost c and N − n laggards at unit
cost c and compete for demand 1/P with toughness θ . The competitive
toughness is taken as uniform across all firms and exogenously given,
characterising a specific regime of competition (between the two extremes
of θ = 0 for Cournot and θ = 1 for Bertrand). Firm i’s equilibrium
markup 1 − ci/P

∗ is consequently, by (3.9), equal to (1 − θ) α∗
i , with

α∗
i the equilibrium market share of firm i. Firm i’s profit is consequently

(1 − ci/P
∗) α∗

i = (1 − θ) α∗2
i . By aggregating the markup formula over

16Or, according to Arrow (1962), a monopolist has less incentive to invent than a competitive firm.
This is due to a “replacement effect”: the profits resulting from innovation replace profits that
are smaller for a competitive firm than for a monopolist (Tirole, 1988). See also the discussion in
Dasgupta and Stiglitz (1980).
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all firms, we can easily compute the equilibrium price

P ∗ = nc + (N − n) c

N − (1 − θ)
, (4.4)

and then, introducing the notation κ ≡ (
c − c

)
/c ∈ (0, 1) for the

relative cost advantage of the innovators, the equilibrium market shares
α and α of the innovator and the laggard, respectively

α (θ, n, N, κ) = min

{
1 − κ + (N − n) κ/ (1 − θ)

N − nκ
,
1
n

}
and

α (θ, n, N, κ) = max

{
1 − nκ/ (1 − θ)

N − nκ
, 0
}
. (4.5)

We can now refer to the gain of innovating for a firm confronted with
n rival innovators (0 ≤ n < N ), namely

G(θ, n, N, κ) = (1 − θ)
[
(α (θ, n + 1,N, κ))2 − (

α (θ, n, N, κ)
)2] .
(4.6)

First notice that laggards are eliminated if nκ ≥ 1− θ , the case of drastic
innovations, with many innovators benefitting from a high relative cost
advantage. The gain of innovating is then (1 − θ) / (n + 1)2, a decreasing
function of θ , leaving us with the markup squeezing effect of higher
competitive toughness, discouraging innovation in the Schumpeterian
mood. By contrast, if 0 < nκ < 1−θ , the case of non-drastic innovations,
the innovator’s market share α (θ, n + 1,N, κ) is increasing and the
laggard’s market share α (θ, n, N, κ) decreasing in θ . Although the
markup squeezing effect is still working, tougher competition may spur
innovation through some sort of Darwinian selection pressure, eroding
the territory of the least apt to the benefit of the fittest. It is however
interesting to notice that the possible stimulating influence of tougher
competition on innovation works here through higher asymmetry of
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G

θ

n = 0

n = 1

n = 2
n = 3

R&D investment
cost

Fig. 2.3 Gain of innovating as a function of competitive toughness

market shares, hence through a concentration effect, thus preserving in
some sense the Schumpeterian view.

The function G (·, n, N, κ) is strictly quasi-concave, either always
decreasing or, if nκ is small enough, inverse V-shaped. We illustrate its
behaviour in Fig. 2.3 for κ = 0.2, N = 8 and n ∈ {0, 1, 2, 3} (for a full
treatment, see Lemma 1 in d’Aspremont et al. 2010).

The function G(θ, ·,N, κ) is decreasing, the higher curve in Fig. 2.3
corresponding to n = 0 and the lower to n = 3. For φ = 0.075,
represented by the dashed horizontal line, the subgame perfect equilib-
rium number n∗ of innovators depends upon the competitive toughness:
n∗ = 0 if θ ∈ [0.92, 1], n∗ = 1 if θ ∈ [0.70, 0.92], n∗ = 2 if
θ ∈ [0, 0.095] ∪ [0.32, 0.70] and n∗ = 3 if θ ∈ [0.095, 0.32]. In
this example, high competitive toughness discourages innovation, but the
largest number of innovators is associated with low, but not too low levels
of competitive toughness. The relation between competitive toughness
and the number of innovators is again non-monotone.

In our deterministic model, a particular equilibrium has to be selected
by randomly choosing n∗ R&D investors, hence innovators, among N

identical firms. It would be more realistic to go farther and assume that
R&D investment at the first stage does not necessarily succeed, ensuring
only a higher probability of innovating at the second. The decision to
invest is then made by comparing the R&D investment cost and the
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expected gain of innovating. However, the results of such stochastic
extension of the model mainly reproduce the preceding analysis and will
accordingly be omitted (see d’Aspremont et al., 2010 for the stochastic
and general equilibrium extension).

References

Aghion, P., N. Bloom, R. Blundell, R. Griffith, and P. Howitt. 2005. Compe-
tition and innovation: An inverted-U relationship. The Quarterly Journal of
Economics 120: 701–728.

Arrow, K.J. 1962. Economic welfare and the allocation of resources for invention.
In The rate and direction of inventive activity: Economic and social factors, ed.
R. Nelson. Princeton: Princeton University Press.

d’Aspremont, C., and R. Dos Santos Ferreira. 2009. Price–quantity competition
with varying toughness. Games and Economic Behavior 65: 62–82.

d’Aspremont, C., and R. Dos Santos Ferreira. 2010. Oligopolistic competition
as a common agency game. Games and Economic Behavior 70: 21–33.

d’Aspremont, C., and R. Dos Santos Ferreira 2016. Oligopolistic vs. monop-
olistic competition: Do intersectoral effects matter? Economic Theory 62:
299–324.

d’Aspremont, C., and R. Dos Santos Ferreira. 2017. The Dixit–Stiglitz economy
with a ‘small group’ of firms: A simple and robust equilibrium markup
formula. Research in Economics 71: 729–739.

d’Aspremont, C., R. Dos Santos Ferreira, and L.-A. Gérard-Varet. 1989a.
Unemployment in a Cournot oligopoly model with Ford effects. Recherches
Économiques de Louvain/Louvain Economic Review 55: 33–60.

d’Aspremont, C., R. Dos Santos Ferreira, and L.-A. Gérard-Varet. 1989b.
Unemployment in an extended Cournot oligopoly model. Oxford Economic
Papers 41: 490–505.

d’Aspremont, C., R. Dos Santos Ferreira, and L.-A. Gérard-Varet. 1991a. Con-
currence en prix et équilibres cournotiens. Revue économique 42: 967–996.

d’Aspremont, C., R. Dos Santos Ferreira, and L.-A. Gérard-Varet. 1991b. Pricing
schemes and Cournotian equilibria. The American Economic Review 81: 666–
673.

d’Aspremont,C., R. Dos Santos Ferreira, and L.-A.Gérard-Varet. 2007. Compe-
tition for market share or for market size: Oligopolistic equilibria with varying
competitive toughness. International Economic Review 48: 761–784.



76 C. d’Aspremont, R. Dos Santos Ferreira

d’Aspremont,C., R. Dos Santos Ferreira, and L.-A. Gérard-Varet. 2010. Strategic
R&D investment, competitive toughness and growth. International Journal of
Economic Theory 6: 273–295.

Bertoletti, P., and F. Etro. 2018. Monopolistic competition, as you like it. Tech-
nical Report WP 31/2018, Universita’ degli Studi di Firenze, Dipartimento di
Scienze per l’Economia e l’Impresa.

Bresnahan, T.F. 1989. Empirical studies of industries with market power. In
Handbook of industrial organization, ed. R. Schmalensee and R. Willig, vol. 2,
1011–1057. Amsterdam: Elsevier.

Chen, Y., and M.H. Riordan. 2008. Price-increasing competition. The RAND
Journal of Economics 39: 1042–1058.

Cournot, A.A. 1838. Recherches sur les principes mathématiques de la théorie
des richesses. Paris: Hachette. [1897] Researches into the Mathematical
Principles of the Theory of Wealth. Translated by N. T. Bacon. London:
Macmillan.

Dasgupta, P., and J. Stiglitz. 1980. Industrial structure and the nature of
innovative activity. The Economic Journal 90: 266–293.

Delgado, J., and D. Moreno. 2004. Coalition-proof supply function equilibria
in oligopoly. Journal of Economic Theory 114: 231–254.

Dixit, A. 1986. Comparative statics for oligopoly. International Economic Review
27: 107–122.

Dixit, A.K., and J.E. Stiglitz. 1977. Monopolistic competition and optimum
product diversity. The American Economic Review 67: 297–308.

Einav, L., and J. Levin. 2010. Empirical industrial organization: A progress
report. Journal of Economic Perspectives 24: 145–62.

Ford, H. 1922. My life and my work, in collaboration with Samuel Crowther.
London: William Heinemann.

Grossman, S.J. 1981. Nash equilibrium and the industrial organization of
markets with large fixed costs. Econometrica 49: 1149–1172.

Hart, O. 1982. Reasonable conjectures. Technical Report, Suntory and Toyota
International Centres for Economics and RelatedDisciplines, London School
of Economics.

Hottman, C.J., S.J. Redding, andD.E.Weinstein. 2016. Quantifying the sources
of firm heterogeneity. The Quarterly Journal of Economics 131: 1291–1364.

Nevo, A. 1998. Identification of the oligopoly solution concept in a
differentiated-products industry. Economics Letters 59: 391–395.

Schumpeter, J.A. 1942. Capitalism, socialism and democracy. New York: Harper
& Row.



2 Competition for Market Share and for Market Size 77

Shimomura, K.-I., and J.-F. Thisse. 2012. Competition among the big and the
small. The Rand Journal of Economics 43: 329–347.

Shubik, M. 1959. Strategy and market structure: Competition, oligopoly, and the
theory of games. Hoboken: Wiley.

Spence, M. 1976. Product selection, fixed costs, and monopolistic competition.
The Review of Economic Studies 43: 217–235.

Thisse, J.-F., and P. Ushchev. 2018. Monopolistic competition without apology.
In Handbook of game theory and industrial organization, vol. I. Cheltenham:
Edward Elgar Publishing.

Tirole, J. 1988. The theory of industrial organization. Cambridge: MIT Press.
Zhelobodko, E., S. Kokovin, M. Parenti, and J.-F. Thisse. 2012. Monopolistic

competition: Beyond the constant elasticity of substitution. Econometrica 80:
2765–2784.


	2 Competition for Market Share and for Market Size
	1 The Canonical Model
	A Representative Consumer with General Separable Preferences
	Firms' Competitive Behaviour and Oligopolistic Equilibria
	Regimes of Competition

	2 Introducing Ford Effects
	3 Back to the Homogeneous Good Case: Comparison with Alternative Approaches
	Our Market Share and Market Size Approach
	The Conjectural Variation Approach
	The Supply Function Approach
	The Pricing Scheme Approach

	4 The Effects of Intensifying Competition: Two Applications of the Model
	Stiffer Competition: Is It Price Decreasing or Price Increasing?
	Tougher Competition: Does It Foster Innovation?

	References


