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Abstract The lattice Boltzmann method (LBM) has attracted much attention in
recent years as a recent efficient solution method for fluid flow simulations as well as
general PDEs. Due to the local nature of the computations in the lattice Boltzmann
method and its ease of programming, the LBM is an ideal candidate for developing
efficient parallel PDE solvers suitable for recent computer hardware. In the present
study, we have used the lattice Boltzmann method for solving the transient heat
diffusion equation. The performance of this method is compared with that of the
traditional finite difference based PDE solver. All these solvers have been developed
using the Julia programming language, which is a recent player amongst the scientific
computing languages. Several benchmark problems in the field of transient heat
transfer described by parabolic PDEs are solved, and the results obtained from the
aforementioned methods are compared with each other. It is shown that by using the
lattice Boltzmann method, it is possible to solve these partial differential equations
more efficiently while maintaining the accuracy of the solution.

Keywords Lattice Boltzmann method · Finite difference · Partial differential
equation · Numerical performance comparison

1 Introduction

The lattice Boltzmann method (LBM) is a rather young and promising method for
simulating complex fluid flow physics. In comparison with the conventional methods
in computational fluid dynamics (CFD), LBM is easy for programming, intrinsically
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parallel [1, 19], and it is easy to incorporate complicated boundary conditions such
as those encountered in porous media problems [6, 10].

In the past years, in addition to solving the fluid flow problems, more applications
have been introduced for the lattice Boltzmann method. It has been shown that by
modifying a typical LBM, it is possible to solve partial differential equations as well
[3, 9, 14, 18, 20]. Solving partial differential equations is required in a vast verity
of applications varying from image denoising using the Laplace equation [15] to
simulating the heat transfer phenomena in solid or fluid media.

With advances in the high-performance supercomputers and the invention of new
GPU acceleration methods, the LBM has gained even more attention due to its
intrinsic parallelism and locality of calculations, which is an advantage of the LBM
over the conventional partial differential equation solvers [1, 19].

In this study, the accuracy and computational performance of a LBM PDE solver
have been investigated and compared with those of a traditional FD PDE solver by
solving several benchmarks in the field of transient heat transfer which are described
by parabolic PDEs.

2 Description of the Numerical Methods

The transient heat diffusion equation can be written as:

∂T

∂t
= α

∂2T

∂x2
(1)

In which T represents temperature, α is the heat diffusion coefficient, t is time, and
x is the spatial direction of the diffusion [8]. One of the well known traditional FD
solutions for this PDE is to use the Forward Euler method and the second-order
central difference scheme to discretize the Eq. (1) as it is presented in Eq. (2).

T n+1
i = T n

i (1 − ω) + ω(0.5T n
i+1 + 0.5T n

i−1) (2)

where ω = (2αΔt)/(Δx2). It is necessary to mention that this discrete formulation
has a stability criterion (Δt ≤ Δx2/2α), which limits the maximum possible time
step size for a fixed Δx . The stability criterion may also vary according to the
employed boundary condition type [8]. This method only requires information from
the nearest neighboring sites at each time step. Therefore, it is very similar to the
LBM in this regard.

The lattice Boltzmann general formulation is:

∂ f

∂t
+ c.� f = Ω (3)
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Fig. 1 Lattice configuration
and naming convention used
for discretization of the LBM
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where f is the population distribution function (PDF), c is the lattice speed, � is the
gradient operator, and the Ω is the collision operator [13]. The Ω , in general, is a
sophisticated integral, which is hard to compute. There have been several approxi-
mations for this integral which up to now, the most widely used and known of them is
the Bhatnagar-Gross-Krook (BGK) model [11]. Among the different LBMmethods,
the BGK collision method [16] is mathematically the simplest. However, it has some
deficiencies; for example, the BGK LBM suffers from numerical instability, espe-
cially for the simulation of low viscosity fluids [12]. To overcome these deficiencies,
several advanced methods have been proposed, among which the multi-relaxation
LBM [4] and cascaded central moments method [5] are two of the most known ones.

For discretizing the LBM formulation, Eq. (1), over a domain, there is a need to
choose a lattice configuration. In this work, we have chosen the D1Q2 and D2Q4
lattice configuration for one-dimensional and two-dimensional simulations as they
are shown in Fig. 1a, b, respectively.

By discretizing the LBM formulation, we will have:

fk(x, t + Δt) − fk(x, t)

Δt
+ ck .

fk(x + Δx, t + Δt) − fk(x, t + Δt)

Δx
= Ωk (4)

The BGK approximation is:

Ωk = 1

τ
[ fk(x, t) − f eqk (x, t)] (5)

By substitution of the BGK approximation, Eq. (5), into Eq. (4) the BGK LBM
becomes:

fk(x + Δx, t + Δt) − fk(x, t) = −Δt

τ
[ fk(x, t) − f eqk (x, t)] (6)

where f eq is the equilibrium distribution function and τ is the relaxation time factor.
By performing the Chapman-Enskog expansion [17] the relation between macro-
scopic values and the f eq and τ can be determined as:
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f eqk = wi T (x, t) (7)

wherewi is the latticeweight factor. For theD1Q2 lattice configurationwi = 0.5, i =
1, 2 and for D2Q4 lattice configuration wi = 0.25, i = 1, ..., 4 [13]. Additionally,
the temperature T is calculated using the Eq. (8) [13].

T (x, t) =
q∑

i=1

fi (x, t) (8)

It is more convenient to separate the local and nonlocal part of Eq. (6) and perform
the calculations in the collision, Eq. (9), and the streaming, Eq. (10), processes
separately.

f post
k = fk(x, t) − Δt

τ
[ fk(x, t) − f eqk (x, t)] (9)

fk(x + Δx, t + Δt) = f post
k (x, t) (10)

Boundary Cconditions:

To implement the Dirichlet boundary condition, we should write the flux balance at
the considered boundary. For example, at the left boundary, we have:

f eq1 (x, t) − f1(x, t) + f eq2 (x, t) − f2(x, t) = 0 (11)

In Eq. (11) the only unknown is the f1.
In the case of the Neumann boundary condition on the left side:

q ′ = −k
T (1) − T (0)

dx
(12)

Substituting T (1) = f1(1) + f2(1) and T (0) = f1(0) + f2(0) in Eq. (12) and solv-
ing for f1(0) gives:

f1(0) = f1(1) + f2(1) − f2(0) + q ′dx
k

(13)

Finally, in the case of the Robin boundary condition, we have:

− λ
∂T (x, t)

∂x
= β[T (x, t) − Ta] (14)

where λ is the solid medium thermal conductivity, β is the convection coefficient in
lattice units, and Ta is the ambient temperature [13]. Expanding the Eq. (14) for the
right boundary condition yields to:
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− λ
T p+1
n − T p+1

n−1

Δx
= β[T p+1

n − Ta] (15)

This means:

f post
1,n + f post

2,n = λ

λ + βΔx
( f post

1,n−1 + f post
2,n−1) + βΔx

λ + βΔx
Ta (16)

On the right side boundary, the only unknown distribution function is f2,n , which
can be calculated using Eq. (16).

For a more detailed derivation of boundary conditions, interested readers may
refer to references [7, 9, 13, 20].

3 Results

The results presented here are obtained using codes which have been implemented in
the Julia programming language [2]. The simulations are performed on a computer
system with the following configuration: CPU model: AMD Opteron(tm) Processor
6174, CPU MHz: 2200, L1 cache: 64K, L2 cache: 512K, L3 cache: 5118K, and 94
GB of RAM.

To compare the performance and accuracy of the methods, we used several com-
mon one-dimensional and two-dimensional benchmarks introduced in [7, 9, 13]. In
the first case a one-dimensional layer of steel with a thermal conductivity of, λ, 35
[W/mK ], thermal diffusivity of, α, 7.1795 × 10−6 [m2/s], and thickness of L =
0.05 [m] has been considered. The initial condition, the left boundary condition, and
the right boundary condition are specified by T (x, 0) = 0 [°C] , T (t, 0) = 0 [°C], and
T (t, L) = 100 [°C] respectively.To obtain the results illustrated in Fig. 2, the mesh
size and time stephavebeen set toΔx = 0.00125 [m] (node numbers (N ) = 40) and
Δt = 0.001 [s] respectively. Figure 3 shows the same geometry as the first case (Fig.
2) with the exception of the Robin boundary condition (β = 10 [W/m2K ], Ta = 20
[°C]) at the right hand side of the geometry and T = 150 [°C] at the left-hand side of
the geometry. Figures 2 and 3 clearly show that the results obtained from the LBM
and the FD codes are in excellent agreement with each other.

For the two-dimensional formulation, two geometries are selected to compare the
performance and the accuracy of the lattice Boltzmann method versus that of the
finite difference method. Fig. 4a, b show the geometries, boundary conditions, and
initial conditions of the chosen benchmarks.

Figure 5 shows the temperature distribution along the centerline of the case 3
geometry for different dimensionless times. Fig. 6, which is a contour display of
the temperature distribution of case 4, shows that the results from both the finite
difference method and lattice Boltzmann method are in an excellent agreement with
each other. To demonstrate this better, Fig. 7 shows the temperature distributions
along the X and Y oriented centerlines of the case 4 geometry. As it is shown in Fig.
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Fig. 2 Temperature distribution at different times for the one-dimensional transient heat transfer
with Dirichlet boundary conditions at the left and right sides
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Fig. 3 Temperature distribution at different times for the one-dimensional transient heat transfer
with a Dirichlet boundary condition at the left side and a Robin boundary condition at the right side

6 to Fig. 7, the results from the lattice Boltzmann method and the finite difference
method are in excellent agreement with each other.

The primary motivation of using the LBM over conventional methods such as the
FD for solving differential equations (in this case, the heat diffusion problem) is to
benefit from the LBM’s capabilities, particularly the computational performance of
the LBM. Another test has been conducted to study the performance of the LBM
and the FD, which compares wall clock times required by each method to achieve
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(a) Case 3 (b) Case 4

Fig. 4 Boundary conditions and initial condition values for the two-dimensional transient heat
transfer case 3 and case 4
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Fig. 5 Temperature distribution along the centerline of the case 3 geometry (Fig. 4a) at different
dimensionless times (t∗). Circles and lines represent the LBM and the FD results respectively

a particular result. For this test, we used case 3 geometry to benchmark the results.
Times are measured with the benchmarking tool provided by the Julia language
(BenchmarkT ools. jl), which is a tool that can repeat each benchmark and pro-
cesses the result to eliminate system load noises and to provide a consistent, reliable
answer. To conduct a fair comparison, the FD time step has been pushed to its maxi-
mum possible value concerning the FD stability limits (Fo = 0.25). Then the LBM
relaxation time factor has been changed to measure the changes in the performance
(Fig. 8).

As it is shown in Fig. 9, the resolution study reveals that even in lower mesh reso-
lutions, the solution is mesh-independent. Nevertheless, we have chosen a finer mesh
because we wanted to ensure the accuracy of the study through different simulations,
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(a) FD Results at t∗ = 0.4 (b) LBM Results at t∗ = 0.4

Fig. 6 Case 4 results: Temperature distribution over the solution domain at a dimensionless time
(t* = 0.4)
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(a) Y-direction
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Fig. 7 Temperature distribution along the X and Y oriented centerlines at different dimensionless
times

and more importantly, we needed a more time-consuming calculation so that we can
provide a more accurate time comparison.

Figure 8 depicts the time ratio of the FD over the LBM calculations, which clearly
shows the LBM’s superiority over the FD regarding their performances. It is worth
mentioning that in this study, we have just implemented a serial code for both the
LBM and the FD methods. Due to the parallel nature of the LBM, it is expected that
the parallel implementation of these codes would result in even more performance
gain in favor of the LBM approach. It is known that by increasing the relaxation time
factor of the BGK LBM, its numerical accuracy may deteriorate [12]. To measure
this error, the difference between the LBM solution and that of the FD solution for
a variety of dimensionless times and LBM relaxation factors are calculated. The
results are presented in Fig. 10. The maximum measured difference in our studies
has been less than 0.6%, which could be neglected in most common applications. On
the other hand, the performance gain is very high. Nearly 0.1 of the computational
time is required for the LBM to achieve the same results as that of the FD method.
Also, the difference between the LBM and the FD results vanishes by advancing
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through time. So it is possible to even achieve the same steady-state results while
spending significantly less computational time using the LBM.

4 Conclusion

In this study, the lattice Boltzmann method has been employed to solve the transient
heat diffusion equation with different boundary conditions in one and two dimen-
sions. To study the accuracy and performance of the lattice Boltzmann method,
several benchmarks have been implemented in the Julia programming language.
The results show that the lattice Boltzmann method solution for the transient heat
diffusion problems would be as accurate as those obtained by the finite difference
method. However, using the lattice Boltzmannmethod, it is possible to achieve better
computational performance and significantly reduce the computational cost. In our
benchmarks, the required solution time for the lattice Boltzmann method is an order
of magnitude less than that required by the finite difference method for the same
level of accuracy.
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