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Preface

This volume contains a selection of papers originally prepared for presentations at
AMMCS-2019, an international conference held in Waterloo, Ontario, Canada
from 18 to 23 August 2019. It was the fifth in the series of AMMCS meetings, held
biennially at Wilfrid Laurier University beginning in 2011. The 2019 event
continued the tradition of promoting interdisciplinary research and collaboration
involving mathematical, statistical and computational sciences within the broader
international community, highlighting recent advances in Applied Mathematics,
Modeling and Computational Science (AMMCS).

The interdisciplinary focus of the AMMCS conferences has been crucial to their
success. The primary aim of AMMCS-2019 was to promote research and
collaboration involving new applications of mathematical, statistical and
computational sciences to many fields, for the benefit of international communities
of researchers, practitioners, and students.

For millennia, mathematical methods have been fundamental tools for the
development of human knowledge. Now sophisticated mathematical and statistical
tools are making essential contributions to progress in an amazing range of
application areas—in the natural and social sciences, engineering, finance, and
even the arts. Mathematics, statistics, and associated computational and data
science techniques are playing a fundamental role in the modern world, throwing
new light on problems, both ancient and contemporary, thereby contributing to
human well-being.

Today’s most challenging problems arise not only in the physical sciences and
engineering, where mathematics is traditionally applied, but also in the life sciences,
the social sciences, and finance. Stunning advances in these areas have resulted from
the great subtlety and power of mathematical techniques and reasoning, augmented
by data collection and analysis on a scale more massive than could be imagined only
a few years ago, and by computational studies that not only support analysis but
also explore new combinations and structures. These developments have forged new
connections among disciplines that were once widely separated, as the horizons of
mathematical and computational modeling expand at an increasing rate.

AMMCS-2019 was a major international forum for the exchange of ideas in an
interdisciplinary setting, with a focus on applications of mathematical and
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vi Preface

computational sciences, modeling and simulation to the natural and social sciences,
engineering and technology, industry and finance. It proudly followed the traditions
of previous AMMCS events, particularly in its emphasis on discussion,
comparison, and synthesis across disciplines. We believe that only through
interdisciplinary collaboration will it be possible to meet the complex challenges
facing humanity today.

This book consists of a representative selection of current research presented at
AMMCS-2019. It illustrates how mathematics, statistics, and modeling are
contributing to a range of disciplines. The 68 selected contributions are organized
into six parts, as follows:

I. Advances in Mathematical Modelling and Theory;
II. Advances in Statistical Modelling and Data Analysis;
III. Computational Methods for Differential Equations;
IV. Mathematical Modelling in Engineering, Physical and Chemical Sciences;
V. Mathematical and Statistical Modelling in Life Sciences;
VI. Mathematics and Computation in Finance, Economics, and Social Sciences.

The titles of the parts make the breadth of the topics clear. This wide-ranging
selection shows clearly how mathematical, statistical, and computational sciences
are now emerging as fundamental tools in a wide range of disciplines.

The editors of this volumeextend their thanks to all of the contributors toAMMCS-
2019, to all of the attendees, to the Organizing, Scientific, and Technical Committees,
and to all of the volunteers, without whom the conference could not have taken
place. We are grateful to our sponsors and to Wilfrid Laurier University. We give
special thanks to the contributors who prepared papers for this volume, and to the
referees whose guidance was essential to us as we evaluated proposed contributions.
We also thank Leonie Kunz of Springer, who assisted us with the documents and
editorial work, and Banu Dhayalan of Springer, who handled the technical aspects of
production and publishing.We are proud of this volume, and pleased to acknowledge
all those who helped bring it to fruition.
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AMoving Horizon State Estimator
for Real-Time Stabilization of a Double
Inverted Pendulum

Amanda Bernstein, Ethan King, and Hien Tran

Abstract A moving horizon estimator is designed in the framework of the proxi-
mal point minimization algorithm for linear time invariant systems and convergence
results are established in the presence of model and measurement noise. The state
estimator is implemented in a nonlinear suboptimal feedback control framework for
the real time stabilization of a double inverted pendulum on a cart.

Keywords Time invariant systems · Measurement noise · State estimations ·
Minimization algorithms · Nonlinear feedback stabilization

1 Introduction

The double inverted pendulum (DIP) is commonly used as a benchmark problem
in nonlinear control theory as it is an under-actuated system with highly nonlinear
dynamics which is amenable to laboratory study. Control of the DIP can also provide
a direct model for systems such as robotic limbs [15], human posture, balance, and
gymnast motion [17, 19].

Many control designs have been applied to the DIP system including the linear
quadratic regulator (LQR) [7, 9], state dependent Riccati equation control [7], and
neural network control [7, 18]. Less work has been done for state estimation of the
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4 A. Bernstein et al.

DIP as many studies use only simulations. State estimation though, is necessary for
real-time experimental set ups and has been accomplished with Luenburger type
observers [11] and low pass derivative filters [6].

The DIP on a cart, consists of two pendula in tandem connected on a hinge to a
cart which moves on a linear track as shown in Fig. 1. Stabilization control refers to
moving the cart along the track, such that the pendula are balanced vertically over the
cart in an upright unstable equilibrium. While the pendulum angles and cart position
are directly measured, for feedback control of the system, the velocity of the cart and
pendulum angles must be estimated.

State estimation for DIP stabilization control has been found to be a challenging
task for some methods [5]. The stabilization control of the DIP from an upright
start provides an interesting problem, as it can require rapid convergence of state
estimates, from a poor initial estimate, in order for the feedback control to rescue the
system. The estimationmethodmust also achieve robust performance in the presence
of significant model error, measurement error, and disturbances to be effective.

This paper studies state estimation and stabilization control of a DIP on a cart.
A nonlinear feedback stabilization control is designed using power series expan-
sion following Garrard [10]. State estimation is approached from a proximal point
perspective to construct a moving horizon estimator.

Moving horizon estimation (MHE) most commonly minimizes a least squares
cost functional, which includes a regularizing term frequently called the arrival cost,
to fit a model trajectory to the N most recent systemmeasurement outputs. Inclusion
of an arrival cost term has been found to be important to ensure convergence and
stability properties of MHE algorithms [2, 13]. The arrival cost penalizes the differ-
ence between the new and previous state estimate and has been interpreted in several
ways; as an estimate of the error of the fit to the truncated measurement history when
MHE is viewed as approximating the Kalman filter [13], approximating use of an
a-priori distribution in probabilistic settings [8], more loosely as a confidence in the
past estimate [2], and can also be viewed as a regularization term for solving the
state to output inverse problem when MHE is considered as an approximation of a
deadbeat observer.

MHE algorithms have been found to converge quickly from poor initial estimates
[3, 12, 13] and to perform robustly in the presence of noise [1, 3]. Similar results
have been observed in online applications, including charge estimation of batteries
[16] and state estimation of a vibrating active cantilever [1].

We approach iterative minimization for state estimation through the framework
of the proximal operator and proximal point minimization algorithm. The proximal
point minimization algorithm as given in [14] naturally gives rise to a quadratic
regulating term similar to the arrival cost terms shown to be effective for MHE in
practice.We develop and show convergence of a linear discrete time state estimator in
this framework, similar to the MHE given by Alessandri et al. in [2], and implement
it for stabilization of the DIP system.

This paper is organized as follows. In Sect. 2, we construct a proximal pointMHE
state estimator and give convergence results. In Sect. 3, we introduce the double
inverted pendulum system and mathematical model. Section4 describes a power



A Moving Horizon State Estimator for Real-Time Stabilization … 5

series based feedback stabilization control, and we implement the control and state
estimate on the physical DIP system in Sect. 5.

2 A Proximal Point Moving Horizon Estimator for Linear
Time Invariant Systems

Let � ∈ R
d×d , W ∈ R

d×v , C ∈ R
m×d , and controls u ∈ R

v . Consider the following
discrete dynamical system

xk+1 = �xk + Wuk + ηk

yk+1 = Cxk+1 + εk ,
(1)

where {ηk}k∈N and {εk}k∈N are unknownmodel and measurement noise, respectively.
Given the past N system outputs {yk−i }0i=N−1, an estimate for the state at xk is

constructed with a moving horizon type state estimator using a least squares cost
functional, by solving a problem of the form

min
{zk− j }0j=N−1

||zk−(N−1) − x̂k−(N−1)||2 +
0∑

i=N−1

|| yk−i − Czk−i ||2

subject to zk−i+1 = �zk−i ∀i ∈ 0, 1, . . . , N − 1 ,

(2)

where x̂k−(N−1) is the previous state trajectory estimate and the first term in the cost
functional (2) is taken as the arrival cost type term.

We approach theminimization at each iteration ofMHE as applying the proximity
operator of the trajectory fitting functional to the previous state estimate.

Definition 1 Let the function φ : Rd → [−∞,∞] and γ ∈]0,∞[. The proximity
operator of γφ is defined by

Proxγφ : Rd → R
d : x → argminz∈Rd φ(z) + 1

2

1

γ
||z − x ||2 .

Iterative applicationof the proximity operator cangenerate aminimizing sequence for
a given cost functional. In particular if φ convex, proper, and lower semi-continuous,
with argmin φ �= {∅} then for all γ ∈]0,∞[, Proxγφ is well defined. Moreover, for
any initial value z0 ∈ R

d with sequence {γk}k∈N in ]0,∞[ such that
∑

k∈N γk = ∞
the proximal point iteration

zk+1 = Proxγkφzk

generates a minimizing sequence of φ [4].
We consider the design of a discrete time state estimator for the system (1) by

constructing functionals {φk}k∈N such that argminz∈Rdφk(z) = xk . Thenwe define the
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proximal point observer as the sequences {x̂k}k∈N and {pk}k∈N constructed according
to the recursion

pk = Proxγkφk x̂k
x̂k+1 = f (pk) .

(3)

Functionals capturing least squares type moving horizon estimators can be con-
structed with a G ∈ R

(N ·m)×d giving the model to output map and vector vk ∈ R
N ·m

incorporating the model and measurement noise, in the form

φk(z)
.= 1

2
||G(xk − z) + vk ||2 . (4)

For example for the MHE given in (2)

G =
⎡

⎣
C�

. . .

C (�)N

⎤

⎦ , vk =
⎡

⎣
Cηk + εk

. . .

C
∑N−2

j=0 �N−1− jηk+ j + Cη(k+(N−1)) + εk+N

⎤

⎦ .

Suppose that the matrix GTG is positive definite, then each φk has a unique
minimizer z∗

k , given by
z∗
k = xk + (GTG)−1GT vk .

The discrepancy between the minimizer and the true state of the system is denoted
as the noise term ζk , where for each functional

ζk = (GTG)−1GT vk .

For convenience the functionals are also adjusted such that the minimum value is
zero as follows

φk(z) = 1

2
||G(xk − z) + vk ||2 − 1

2
||(I − G(GTG)−1GT )vk ||2 ,

which may be written more conveniently as

φk(z) = 1

2
||G((xk + ζk) − z)||2 . (5)

Using functionals of the form (5) the error for the proximal observer estimates (3)
follows a simple recursion. For the following it is assumed GTG is positive definite,
withU ∈ R

d×d a unitary matrix, and � ∈ R
d×d diagonal such that GTG = U�UT .

The eigenvalues of GTG are denoted by {λi }di=1.
From an initial estimate x̂0, let the sequences {x̂k}k∈N and {pk}k∈N be generated

according to (3) using the cost functionals (5), with sequence ofweighting parameters
{γk}k∈N in R>0.
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Proposition 1 The error terms ek = (x̂k − xk) satisfy the recursion

ek+1 = �U�̄kU
T ek + �U�̈kU

T ζk − ηk

where the diagonal matrices �̄k , �̈k have entries �̄i,i = 1

1 + γkλi
, and �̈i,i =

γkλi

1 + γkλi
.

Proof Here we provide only the main steps of the proof. Note from (3)

pk = ProxγkφGk
(x̂k) = argminz∈Rn

{
1

2
||G(z − (xk + ζk))||2 + 1

2γk
||z − x̂k ||2

}
.

Then computing the gradient and setting it equal to zero yields

pk = (GTG + 1

γk
I )−1GTG(xk + ζk) + 1

γk
(GTG + 1

γk
I )−1 x̂k .

Using the fact GTG = U�UT ,

pk = U (� + 1

γk
I )−1�UT xk + 1

γk
U (� + 1

γk
I )−1UT x̂k + U (� + 1

γk
I )−1�UT ζk .

Therefore,

(pk − xk ) = U ((� + 1

γk
I )−1� − I )UT xk + 1

γk
U (� + 1

γk
I )−1UT x̂k + U (� + 1

γk
I )−1�UT ζk .

Note that

(� + 1

γk
I )−1� − I = −�̄k,

1

γk
(� + 1

γk
I )−1 = �̄k, (� + 1

γk
I )−1� = �̈k

then
(pk − xk) = U�̄kU

T ek +U�̈kU
T ζk .

Therefore,

ek+1 = (x̂k+1 − xk+1) = �(pk − xk) − ηk = �U�̄kU
T ek + �U�̈kU

T ζk − ηk .

The error recursion of Proposition 1, can be used to choose weighting parameters
{γk}k∈N to ensure the error is small relative to the noise. In particular, suppose for all
k ∈ N, γk = γ , then the proximal points pk can be computed more efficiently at each
iteration. A criteria for selecting a fixed γ follows immediately from Proposition 1.
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Proposition 2 Ifλmin the smallest eigenvalue of GTG and γ > max

{ ||�|| − 1

λmin
, 0

}
,

then
lim
k→∞ ||ek || ≤ κ

1 − r
,

where κ = ||�||ζ̄ + η̄ and r = ||�||
1 + γ λmin

.

Proof Using proposition 1 for all k ∈ N

||ek+1|| ≤ ||�|| 1

1 + γ λmin
||ek || + ||�|| γ λmax

1 + γ λmax
||ζk || + ||ηk ||

≤ r ||ek || + κ

.

Therefore,

||ek || ≤ ||e0||rk + κ

k∑

m=0

rm ,

and r < 1, hence
lim
k→∞ ||ek || ≤ κ

1 − r
.

2.1 Centered Proximal Point Observer

Many cost functionals of the form (5) can be constructed for discrete systems (1). A
functional utilizing only the threemost recentmeasurementswas found to be effective
for the DIP state estimation problem. For all k ∈ N let the function φcntrk : Rd → R

be defined as

φcntrk (z)
.= 1

2
||C(�−1z + W−1uk−1) − yk−1||2 + 1

2
||Cz − yk ||2 + 1

2
||C(�z + Wuk ) − yk+1||2 .

(6)

Then with vk ∈ R
3·m and G ∈ R

(3·m)×d given by

G =
⎡

⎣
C�−1

C
C�

⎤

⎦ and vk =
⎡

⎣
−C�−1ηk−1 + εk−1

εk
Cηk + εk+1

⎤

⎦ ,

φcntrk is of the form (5).
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Fig. 1 Diagram and photo of the DIP system

3 Mathematical Model of the Double Inverted Pendulum

The DIP system used in this work was provided by Quanser Consulting Inc. and
consists of an upper (12 in.) aluminium rod connected on a hinge to a lower (7 in.)
rod which is in turn connected on a hinge to a cart (an IPO2 linear servo unit) that
moves on a track as shown in Fig. 1. Encodersmeasure three variables; the position of
the cart (xc), the angle between the lower pendulum and normal vector vertical to the
cart (α), and the angle between the lower and upper pendulum (θ). Themeasurements
are defined such that upright unstable equilibrium is the origin and counterclockwise
rotation is positive. The system is controlled through voltage input to a DC motor
that moves the cart along the track.

Themodel for the DIP is derived using Lagrange’s energymethod as is commonly
done, for example in [7, 9, 11]. A full derivation and description of the model can
be found in [5, 6].

4 Power Series Stabilization Controller

For an f : R6 → R
6 and B ∈ R

6, with control, u : [0,∞[→ R, the DIP dynamics
are given by a system of the form

ẋ = f (x) + Bu for x = [xc, θ, α, ẋc, θ̇ , α̇]T .

A feedback stabilization control is constructed with respect to the cost functional
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J (x0, u) = 1

2

∫ ∞

0
xT Qx + Ru2dt , (7)

with Q ∈ R
6×6 and R ∈ R, symmetric positive definite matrices. The optimal feed-

back control is
u(x)

.= −R−1BT Vx (x) ,

where V is the solution to the corresponding Hamilton Jacobi Bellman equation,
which is approximated using power series expansions following [10]. Let f be
expanded about the unstable equilibrium as

f (x) = Ax +
∞∑

n=2

fn(x), where fn(x) = O(|x |n) .

Then for P the solution of the algebraic Riccatti equation corresponding to the
linearized system and cost functional (7), the control for the DIP is given in the
feedback form

u∗(x) = −R−1BT
[
Px − (

AT − PBR−1BT
)−1

P f3(x)
]
. (8)

Full details can be found in [5].

5 Real Time Stabilization of a Double Inverted Pendulum

The centered proximal point observer was applied to the DIP system by first con-
structing a discrete system of the form (1) using a linearization of the nonlinear DIP
model about the unstable equilibrium. The state transition matrices �, �−1, W , and
W−1 for the linearized systemwere approximated usingMatlab’s expm command. A
fixed (γ > 0) was used in the computation of state estimates according to proximal
point observer (3) using the cost functionals (6), which at each iteration requires a
solution to

pk = argminz∈R6

1

2
||Hz − qk ||2 , (9)

for

H =

⎡

⎢⎢⎣

1
γ
I

C�−1

C
C�

⎤

⎥⎥⎦ and qk =

⎡

⎢⎢⎣

1
γ
x̂k

yk−1 − CW−1Bun−1

yk
yk+1 − CWBun

⎤

⎥⎥⎦ .

To compute (9), an offline QR factorization for H = QH RH was computed with
theMatlab qr command.Then the centered proximal pointmovinghorizon estimation
(CPX) with a fixed γ was iterated from initial estimate x̂0 = 0 according to
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pk = R−1
H QT

Hqk
x̂k+1 = �pk + Wuk .

(10)

When implemented for the DIP feedback control in real time, the estimates supplied
to compute the control were the model predictions x̃k+2 = �x̂k+1 + uk+1.

The power series feedback stabilization control was computed with

Q = diag([80, 300, 100, 0, 0, 0]) and R = 0.5 ,

where the state of the system is x = [xc, θ, α, ẋc, θ̇ , α̇]T .
The estimator and control were implemented in real time through MATLAB

Simulink interfaced with Quanser’s Quarc software on a desktop computer running
Windows 7with a 3.20GHz Intel Core i5 650 processor and 4GBofRAM, connected
to the DIP system by two Q2-USB DAQ control boards, with the control voltage
applied to the cart by a VoltPAQ amplifier.

For a comparison study, both a CPX and a second order low pass derivative filter
(LDF) were used to supply state estimates for stabilization control. The CPX estima-
tor (10) was applied with γ = 150, while the LDF was used with Quanser’s supplied
parameters: cutoff frequency ω = 100π for the cart, ω = 20π for the pendulum
angles, and damping ratios 0.9. Stabilization control was initiated once measure-
ment values were brought to within 0.01 of the balanced state, the average value
and variance for the measured DIP states when under stabilization control with CPX
and LDF are reported in Table1. Feedback control using the CPX estimates main-
tained the system closer to the balanced state and with less variance than with LDF
estimates.

The CPX and LDF differed most for the estimates of the rate of change for θ ,
the angle between the pendulums. Figure2 shows a comparison between CPX and
LDF angle velocity estimates using measurement data from the physical DIP system
under stabilization control.

The criteria for γ to guarantee CPX estimate convergence given in Proposition 2 is
γ ≥ 24,400 for the DIP system.When values of γ satisfying the condition were used
the CPX angle velocity estimates had large amplitude high frequency oscillations
unsuitable for computing a control, γ was reduced two orders of magnitude from the

Table 1 Output of DIP stabilization over (6.5 s) interval using either centered proximal point MHE
(CPX) or low pass derivative filter (LDF) to compute the feedback control, the stabilized state is
the origin

xc (cm) α (◦) θ (◦)
Mean Variance Mean Variance Mean Variance

CPX −0.002 5.52 0.178 35.2 −0.45 3.89

LDF −0.119 5.98 1.21 41.8 −0.867 6.78
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Fig. 2 Comparison of CPX and LDF angle velocity estimates for the real time DIP system under
stabilization control

Proposition 2 criteria before a reasonable control could be computed. The need for
a smaller γ value is likely due to H in (9) becoming more ill conditioned for larger
γ and the solutions of (9) more sensitive to noise.
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Spontaneous Symmetry-Breaking in
Deterministic Queueing Models with
Delayed Information

Juancho A. Collera

Abstract The dynamics of a system involving two queues which incorporates cus-
tomer choice behavior based on delayed queue length information was studied
recently. Waiting times in emergency rooms of hospitals, telephone call centers,
and various rides in theme parks are some examples where delayed information is
provided to the customers. This time delay has an impact on the dynamics of the
queues and therefore has the capacity to affect the decision of a customer to choose
which queue to wait in. We generalize this queueing model to a finite arbitrary num-
ber of queues. The system of delay differential equations for this generalized model
is equivariant under a symmetry group. Spontaneous symmetry-breaking occurs in
an equivariant dynamical systemwhen the symmetry group of a solution of the equa-
tions is lesser than the symmetry group of the equations themselves. In this work, we
show that the generalized model exhibits spontaneous symmetry-breaking. In par-
ticular, we show that varying the time delay parameter can make a stable equilibrium
become unstable, and this switch in stability occurs only at a symmetry-breaking
Hopf bifurcation. However, if the number of queues is chosen to be large enough,
then the equilibrium is absolutely stable.

Keywords Delay differential equations · Queues · Delayed information ·
Spontaneous symmetry-breaking

1 Introduction

In queueing theory, a fluid model is a mathematical model which describes the fluid
level in a reservoir where the periods of filling and emptying are randomly deter-
mined. More recently, fluid models are being used in nonlinear dynamics to describe
certain applications such as in [7] which describes a single queue where the rate of
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changewith respect to time of a queue length is the difference between the arrival rate
of the customers and the rate at which customers are serviced. In [8], the following
deterministic queueing model where customers are given the opportunity to choose
between two queues was introduced

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt
x(t) = a

exp(−x(t − τ))

exp(−x(t − τ)) + exp(−y(t − τ))
− bx(t),

d

dt
y(t) = a

exp(−y(t − τ))

exp(−x(t − τ)) + exp(−y(t − τ))
− by(t).

(1)

Here, x(t) and y(t) are, respectively, the length of the first and second queues, and the
time delay τ > 0. For t ∈ [−τ, 0], the continuous functions x(t) = ϕ1(t) > 0 and
y(t) = ϕ2(t) > 0 were used as initial history functions for system (1). It is assumed
that the total arrival rate to both queues is equal to the constant rate a. Furthermore,
since customers are given the queue length information τ time units in the past, the
arrival rates in system (1) are based on delayed information.

We generalize the queues-with-choice model (1) introduced in [8] to an arbitrary
but finite number of queues, and then study it from a symmetry perspective [5]. The
generalized model is given by the following system of delay differential equations

d

dt
xk(t) = a

exp(−xk(t − τ))
∑N

n=1 exp(−xn(t − τ))
− bxk(t), k = 1, 2, . . . , N . (2)

The symmetry properties of system (2) play a significant role in determining its
dynamical behavior. When a solution of the equations has a smaller symmetry group
than the equations themselves, then we have a case called spontaneous symmetry-
breaking [5]. This typically happens when a fully symmetric solution becomes unsta-
ble and branches of solutions with lesser symmetry bifurcate [11].

In this paper, we show that the symmetry structure of the generalized model (2)
can be used to classify the types and kinds of solutions that can occur in the system.
We show that spontaneous symmetry-breaking occurs in the system. In particular,
this result explains why only asynchronous periodic solutions arise in such model,
while synchronous periodic solutions do not.We also show that the number of queues
can be chosen so that the equilibrium is absolutely stable, i.e. asymptotically stable
for all time delays [1]. These additional insights on the dynamical behavior of queues
will help managers of queues to be more aware of the consequences of providing
delayed queue length information to their customers.

This paper is organized as follows. Section2 provides preliminary materials
needed to establish our results. Section3 contains the results for an analysis of the
generalized model from a symmetry perspective. The last section, which is Sect. 4,
provides a summary and conclusion of the paper.
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2 Preliminaries

In this section, we discuss what we mean by symmetries of a system of delay differ-
ential equations (DDEs). We consider the following class of DDEs

d

dt
X(t) = F(X(t),X(t − τ)) (3)

with a single discrete time delay τ > 0 and X : R → R
N where N is a pos-

itive integer. We denote by C = C([−τ, 0],RN ) the space of continuous func-
tions mapping the interval [−τ, 0] into R

N . Together with the supremum norm,
‖φ‖C = sup {φ(θ) | θ ∈ [−τ, 0]} for φ ∈ C, C is a Banach space. The reader is
referred to the texts [6, 10] for more background on the theory of DDEs.

Now, let G be a group. We say that system (3) is G-equivariant if there is a
representation ρ of G such that for g ∈ G, we have

g · F (X(t),X(t − τ)) = F (g · X(t), g · X(t − τ)) (4)

where for ease of notation we use the symbols g · X(t) to denote ρ(g)X(t). We
also call G as a symmetry group of system (3). The equivariance condition given
in Eq. (4) means that if X(t) is a solution to system (3), then so is g · X(t). To
see this, suppose that X(t) is a solution to system (3) and assume that system (3)
satisfies the equivariance condition (4). Then, we have d

dt [g · X(t)] = g · d
dtX(t) =

g · F (X(t),X(t − τ)) = F (g · X(t), g · X(t − τ)) and this proves our claim.
For system (2), we will encounter the following N × N matrix

L =

⎡

⎢
⎢
⎢
⎣

A B · · · B
B A · · · B
...

...
. . .

...

B B · · · A

⎤

⎥
⎥
⎥
⎦

, (5)

where A and B are scalars. We follow a similar method from [2–4] in examining
the eigenvalues of matrix L. For purposes of completeness, we discuss the technique
that applies to matrix L. Let ζ = e2π i/N and define, for k = 0, 1, 2, . . . , N − 1, the
subspaces Vk = {[v, ζ kv, ζ 2kv, . . . ζ (N−1)kv]′, v ∈ R}. Notice that the action of L

on Vk , for k = 0, 1, 2, . . . , N − 1, is given by Lvk =
(
A + B

∑N−1
j=1 ζ jk

)
vk where

vk ∈ Vk . This means that, for k = 0, 1, 2, . . . , N − 1, the eigenvalue of L restricted

to Vk is A +
(∑N−1

j=1 ζ jk
)
B. Observe that A +

(∑N−1
j=1 ζ jk

)
B = A + (N − 1)B

when k = 0. Similarly, we can show that A +
(∑N−1

j=1 ζ jk
)
B = A − B for k =

1, 2, . . . , N − 1. Therefore, the eigenvalue of L restricted to V0 is A + (N − 1)B,
while the eigenvalue of L restricted to Vk , for k = 1, 2, . . . , N − 1, is A − B.
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3 Results

Our first result is to show that system (2) has symmetry group SN . Here, SN is the
finite symmetric group defined over the set {1, 2, 3, . . . , N }. The elements of SN are
permutations of the first N positive integers. Let σ ∈ SN and define the action of SN
to the state variables as follows

σ · [x1(t), x2(t), . . . , xN (t)]′ = [
xσ−1(1)(t), xσ−1(2)(t), . . . , xσ−1(N )(t)

]′
. (6)

Since the elements of SN are bijections from the set {1, 2, 3, . . . , N } to itself, we
have for all σ ∈ SN the following set equality

{1, 2, 3, . . . , N } = {
σ−1(1), σ−1(2), σ−1(3), . . . , σ−1(N )

}
. (7)

Theorem 1 System (2) is SN -equivariant.

Proof If we let X(t) = [x1(t), x2(t), . . . , xN (t)]′ and

F (X(t),X(t − τ)) =

⎡

⎢
⎢
⎢
⎣

f1 (X(t),X(t − τ))

f2 (X(t),X(t − τ))
...

fN (X(t),X(t − τ))

⎤

⎥
⎥
⎥
⎦

where

fk (X(t),X(t − τ)) = a
exp (−xk(t − τ))

∑N
n=1 exp (−xn(t − τ))

− bxk(t) (8)

for k = 1, 2, . . . , N , then system (2) can be written as in system (3). From equations
(6) and (8), we have that for any element σ ∈ SN and for k = 1, 2, . . . , N ,

fk (σ · X(t), σ · X(t − τ)) = a
exp(−xσ−1(k)(t − τ))

∑N
n=1 exp(−xσ−1(n)(t − τ))

− bxσ−1(k)(t).

Using Eq. (7), we see that
∑N

n=1 exp(−xσ−1(n)(t − τ)) = ∑N
n=1 exp(−xn(t − τ)).

Hence,

fk (σ · X(t), σ · X(t − τ)) = a
exp(−xσ−1(k)(t − τ))

∑N
n=1 exp (−xn(t − τ))

− bxσ−1(k)(t) (9)

for k = 1, 2, . . . , N . Thus, from Eqs. (8) and (9), we obtain

fk (σ · X(t), σ · X(t − τ)) = fσ−1(k) (X(t),X(t − τ)) (10)
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for k = 1, 2, . . . , N . Consequently, for any σ ∈ SN , we have

σ ·

⎡

⎢
⎢
⎢
⎣

f1 (X(t),X(t − τ))

f2 (X(t),X(t − τ))
...

fN (X(t),X(t − τ))

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

fσ−1(1) (X(t),X(t − τ))

fσ−1(2) (X(t),X(t − τ))
...

fσ−1(N ) (X(t),X(t − τ))

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

f1 (σ · X(t), σ · X(t − τ))

f2 (σ · X(t), σ · X(t − τ))
...

fN (σ · X(t), σ · X(t − τ))

⎤

⎥
⎥
⎥
⎦

where the first equality follows from the action of SN given in Eq. (6) while
the second equality follows from Eq. (10). Therefore, for any σ ∈ SN , we have
σ · F (X(t),X(t − τ)) = F (σ · X(t), σ · X(t − τ)) , which is the equivariance con-
dition given in Eq. (4). This proves that system (2) is SN -equivariant. �

Since system (2) has symmetry group SN , it is natural to ask if it can have
solutions with the same symmetry. Solutions (x1(t), x2(t), . . . , xN (t)) of system
(2) that are fixed by the symmetry group SN satisfy, for any σ ∈ SN , the condition
σ · (x1(t), x2(t), . . . , xN (t)) = (x1(t), x2(t), . . . , xN (t)). This condition forces us to
have x1(t) = x2(t) = · · · = xN (t). If we are seeking equilibrium solutions of system
(2) that are fixed by SN , then we need the additional condition d

dt xn(t) = 0 for n =
1, 2, 3, . . . , N . This additonal condition yields xn(t) = a/Nb for n = 1, 2, 3, . . . , N
and the equilibrium E∗ := (

a
Nb ,

a
Nb , . . . ,

a
Nb

)
. Since the parameters a, b and N are

all positive, the equilibrium E∗ always exists. For the rest of this paper, we shall call
the equilibrium E∗ as the fully symmetric equilibrium of system (2).

Theorem 2 The fully symmetric equilibrium E∗ of system (2), that is the equilibrium
fixed by the symmetry group SN , always exists.

3.1 Local Stability of the Fully Symmetric Equilibrium

The local stability of the fully symmetric equilibrium E∗ of system (2) can be
analyzed by examining the corresponding linearized system about E∗ given by
d
dtX(t) = M0X(t) + M1X(t − τ) where the N × N matrices M0 and M1 are as
follows
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[M0|M1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−b 0 · · · 0 − N−1
N 2 a 1

N 2 a · · · 1
N 2 a

0 −b · · · 0 1
N 2 a − N−1

N 2 a · · · 1
N 2 a

...
...

. . .
...

...
...

. . .
...

0 0 · · · −b 1
N 2 a

1
N 2 a · · · − N−1

N 2 a

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The characteristic equation corresponding to the linearized system is given by

det(
(λ)) = 0 (11)

where 
(λ) = λIN − M0 − M1e−λτ and IN denotes the N × N identity matrix. If
all roots of the charateristic equation (11) have negative real part, then the fully
symmetric equilibrium E∗ of system (2) is locally asymptotically stable (LAS) [10].
Now, let A = λ + b + N−1

N 2 ae−λτ and B = − 1
N 2 ae−λτ . Then, the matrix 
(λ) takes

the form of the matrix given in Eq. (5). This means that the problem of solving
the characteristic equation (11) reduces to solving the equations A + (N − 1)B =
0 and A − B = 0. In fact, we have det (
(λ)) = (A + (N − 1)B) · (A − B)N−1,
which can also be proven using mathematical induction. Moreover, the roots from
equation A + (N − 1)B = 0 are simple while those from equation A − B = 0 are of
multiplicity (N − 1). Since A + (N − 1)B = λ + b and A − B = λ + b + 1

N ae
−λτ ,

we have the following lemma.

Lemma 1 The roots of the characteristic equation (11) are the roots of the equations
λ + b = 0 and

λ + b + 1

N
ae−λτ = 0. (12)

Lemma 1 tells us that when the time delay τ = 0, the roots of the characteristic
equation (11) are λ = −b and λ = −b − a/N . Both these roots are negative since
a, b, N > 0. Consequently, we have the following theorem.

Theorem 3 The fully symmetric equilibrium E∗ of system (2) is LAS when τ = 0.

The stability of the fully symmetric equilibrium may change once the time delay
parameter τ is increased. Stability switches occur when roots of the characteristic
equation (11) appear on and cross the imaginary axis [9]. That is, we first need to
check ifλ = 0 orλ = iω (ω > 0) is a root of Eq. (11). In otherwords, usingLemma1,
we first need to check if λ = 0 or λ = iω (ω > 0) is a root of the equation λ + b = 0
or of Eq. (12).

The action of the symmery group SN on R
N decomposes RN into isotypic com-

ponentsV0 ⊕ V1 ⊕ · · · ⊕ VN−1 where the subspacesVk are the subspaces we intro-
duced in the preliminary section. Notice that SN acts trivially on V0 while its action
on Vk , for k = 1, 2, . . . , N − 1, is non-trivial. This means that roots with zero real
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part obtained from λ + b = 0 give rise to regular bifurcations, while roots with zero
real part obtained from Eq. (12) give rise to symmetry-breaking bifurcations [5].

Since λ = 0 is not a root of equation λ + b = 0 nor of Eq. (12), we have the
following result on the steady-state bifurcations of system (2).

Theorem 4 Steady-state bifurcations, both regular and symmetry-breaking, will not
occur in system (2).

Furthermore, since λ = iω (ω > 0) is not a root of equation λ + b = 0, we obtain
the following result.

Theorem 5 Regular Hopf bifurcations will not occur in system (2).

The non-occurrence of a symmetry-breaking steady-state bifurcation rules out
asymmetric equilibriumsolutions in the system,while the non-occurrenceof a regular
Hopf bifurcation rules out synchronous periodic solutions in the system.

3.2 Symmetry-Breaking Hopf Bifurcations

We now examine the possibility of symmetry-breaking Hopf bifurcations. Suppose
now that Eq. (12) has a purely imaginary root λ = iω∗ with ω∗ > 0. Since λ = iω∗
satisfies Eq. (12), then iω∗ + b + a

N e
−iω∗τ = 0 or equivalently, we have iω∗ + b +

a
N (cosω∗τ − i sinω∗τ) = 0. Matching the real and imaginary parts yields

a cosω∗τ = −bN and a sinω∗τ = Nω∗. (13)

We can eliminate τ by squaring each side of the equations in (13) and then adding
corresponding sides to obtain N 2ω2∗ = a2 − b2N 2. If (a2 − b2N 2) < 0, then Eq.
(12) cannot have purely imaginary roots. In this case, the roots of the characteristic
equation (11) that are in the open left-half plane when τ = 0 remains in the open
left-half plane even if we increase the value of the time delay τ . In other words, if
(a − bN ) < 0, then the fully symmetric equilibrium E∗ of system (2) is LAS for all
τ > 0. On the other hand, if (a − bN ) > 0, then (a2 − b2N 2) > 0 and we obtain

ω∗ :=
√
a2 − b2 N 2/N > 0, (14)

and thus the purely imaginary roots of Eq. (12) are given by λ = ±iω∗. Correspond-
ing to these roots λ = ±iω∗ of Eq. (12) is the sequence

τn := 1

ω∗

{

cos−1

(

−bN

a

)

+ 2πn

}

= cos−1 (−bN/a) + 2πn√
a2 − b2 N 2/N

(15)

for n = 0, 1, 2, . . . , obtained from the first equation in (13) and Eq. (14). In view of
the Hopf bifurcation theorem [10], we now show that the roots λ = ±iω∗ of Eq. (12)
that lie in the imaginary axis when τ = τn move towards the open right-half plane.
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Lemma 2 Let λ(τ) be the root of Eq. (12) satisfying λ(τn) = iω∗, for n =
0, 1, 2, . . . , with τn given in Eq. (15). Then, d

dτ
Re(λ(τ ))

∣
∣
τ=τn

> 0.

Proof Note that sign
{

d
dτ
Re(λ(τ ))

}

τ=τn
= sign{Re( dλ

dτ
)−1}λ=iω∗ . So we first need to

compute for the quantity (dλ/dτ)−1. Differentiating with respect to τ in Eq. (12)
yields

(
1 + 1

N ae
−λτ (−τ)

)
dλ
dτ

+ (
1
N ae

−λτ (−λ)
) = 0. Hence,

(
dλ

dτ

)−1

= 1 − τ(a/N )e−λτ

λ(a/N )e−λτ
= 1

λ(a/N )e−λτ
− τ

λ
= 1

−λ2 − bλ
− τ

λ
.

since (a/N )e−λτ = −(λ + b) from Eq. (12). Thus,

sign

{
d

dτ
Re(λ(τ ))

}

τ=τn

= sign

{

Re

(
1

−λ2 − bλ
− τ

λ

)}

λ=iω∗

= sign

{

Re

(
1

ω2∗ − ibω∗
− τ

iω∗

)}

= sign

{
ω2∗

ω4∗ + b2ω2∗

}

.

Since ω∗ and b are both positive, we obtain that d
dτ

Re(λ(τ ))
∣
∣
τ=τn

> 0. �

We summarize the above results in the following theorem.

Theorem 6 Let τ ∗ := min {τn | τn > 0} where τn are given in Eq. (15).

A. If (a − bN ) < 0, then the fully symmetric equilibrium E∗ of system (2) is locally
asymptotically stable (LAS) for all time delay τ > 0.

B. If (a − bN ) > 0, then the fully symmetric equilibrium of system (2) is LAS for
all τ ∈ (0, τ ∗) and is unstable for τ > τ ∗. At τ = τ ∗, system (2) undergoes a
symmetry-breaking Hopf bifurcation at the fully symmetric equilibrium E∗.

In Theorem 6A, the condition for the absolute stability of E∗ is N > a/b. That
is, if we choose the number of queues to be large enough, then each queue behaves
eventually the same. In otherwords, in this case, the decision as towhich queue towait
in is immaterial since the queue lengths will eventually become equal. Meanwhile,
in Theorem 6B with N < a/b, the Hopf bifurcation at τ = τ ∗ gives arise to periodic
solutions where the queue lengths oscillate periodically and asynchronously. Hence,
in this case, the decision as to which queue to wait in must be done wisely since
for τ > τ ∗ the queues no longer give the same experience unlike in the case where
N > a/b.
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3.3 Numerical Simulations

We now illustrate the result in Theorem 6B which provides the possibility of having
asynchronous periodic solutions through a symmetry-breaking Hopf bifurcation.

Example 1 Consider system (2) with a = 10, b = 1 and N = 4. Here, the sym-
metry group is S4, the fully symmetric equilibrium E∗ = (2.5, 2.5, 2.5, 2.5) and
the critical delay value τ ∗ = 0.865152 approximately. Using the initial history
(ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)) = (2.6, 2.7, 2.8, 2.9) for t ∈ [−τ, 0], we obtain the plots
in Fig. 1 showing the switch in the stability of E∗ at τ = τ ∗. Further examination of
the periodic solution obtained for the case when τ = 0.9 > τ ∗ reveals a pattern of
oscillation as shown in Fig. 2.

Recall the action of the symmetry group S4 given in Eq. (6) with N = 4. Observe
that the non-identity elements of S4 do not fix the periodic solution in Fig. 2. In other
words, this periodic solution has lesser symmetry compared to the symmetry group
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Fig. 1 A switch in the stability of the fully symmetric equilibrium E∗ occurs at the critical delay
value τ ∗ = 0.865152 approximately. When τ = 0.8 < τ ∗ (left panel), E∗ is locally asymptotically
stable while if τ = 0.9 > τ ∗ (right panel), E∗ is unstable
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Hopf bifurcation
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of system (2) with N = 4 which is S4. This should not come as a surprise since this
periodic solution comes from a branch or family of periodic solutions that emanates
from a symmtery-breakingHopf bifurcation. The only type of periodic solutions that
S4 fixed are the synchronous type. However, Theorem 5 implies the non-occurence
of such synchronous periodic solutions. Therefore, for τ > τ ∗, we have the case
of spontaneous symmetry-breaking since the branch or family of periodic solutions
that bifurcates has smaller symmetry group than S4 which is the symmetry group of
system (2).

4 Summary and Conclusions

In this paper, we studied a generalized model describing an arbitrary number of
queues. Using symmetry perspective, we showed the non-occurrence of asymmetric
steady-state solutions as well as sychronous periodic solutions. This is done by rul-
ing out symmetry-breaking steady-state bifurcations and regular Hopf bifurcations.
The same technique is used to show the possibility of having asynchronous peri-
odic solutions which is established using symmetry-breaking Hopf bifurcations. The
branch or family of periodic solutions that bifurcates in this case has lesser symmetry
than the symmetry group of the generalized model, which implies the occurence of
spontaneous symmetry-breaking in the system.

We showed that if the number of queues is large enough, i.e. N > a/b, then
the fully symmetric equilibrium is asymptotically stable for all time delay τ and
consequently each queue behaves eventually the same. In other words, in this case,
the decision as to which queue to wait in is immaterial since the queue lengths will
eventually become equal. Meanwhile, in the case where N < a/b, the equlibrium
is only asymptotically stable when τ < τ ∗. Beyond this critical value, the queue
lengths oscillate periodically and asynchronously. Hence, in this case, the decision
as to which queue to wait in must be done wisely since the queues no longer give the
same experience unlike in the case where N > a/b. These additional insights on the
dynamical behaviour of queues will help managers of queues to be more aware of
the consequences of providing delayed queue length information to their customers.
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Algebraic Structure of the Varikon Box

Jason d’Eon and Chrystopher L. Nehaniv

Abstract The 15-Puzzle is a well studied permutation puzzle. This paper explores
the group structure of a three-dimensional variant of the 15-Puzzle known as the
Varikon Box, with the goal of providing a heuristic that would help a human solve
it while minimizing the number of moves. First, we show by a parity argument
which configurations of the puzzle are reachable. We define a generating set based
on the three dimensions of movement, which generates a group that acts on the
puzzle configurations, and we explore the structure of this group. Finally, we show
a heuristic for solving the puzzle by writing an element of the symmetry group as
a word in terms of a generating set, and we compute the shortest possible word for
each puzzle configuration.

Keywords Permutation puzzles · Finite group theory · Permutation groups

1 Introduction

The 15-Puzzle is a permutation puzzle which consists of a 4 × 4 grid with fifteen
numbered squares and one empty space that allows the pieces to slide around. Many
variants of the 15-Puzzle exist, for example, by changing the size of the grid. Aside
from the 15-Puzzle, one could consider the 24-Puzzle, 8-Puzzle, or the very trivial
3-Puzzle, which correspond to a 5× 5 grid, a 3× 3 grid, and a 2× 2 grid respectively.
In fact, there is no particular reason the board has to be square, so one could take the
puzzle consisting of a 2 × 3 grid, with five movable pieces.

The focus of this paper is on a three-dimensional permutation puzzle known as
the 2 × 2 × 2 Varikon Box. It also consists of a 2 × 2 × 2 grid with seven movable
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Fig. 1 The Varikon Box. The left shows an example of a solved configuration. The right shows
two views of a piece inside the 2 × 2 × 2 Varikon Box. It has one corner surrounded by blue faces,
and the opposite corner surrounded by red faces

pieces. Each piece has three sides coloured red and three sides coloured blue, so that
opposite faces are opposite colours (shown in Fig. 1). There is always one corner of
the piece surrounded by red faces and one corner surrounded by blue faces, giving
eight distinct orientations of a piece: one for each position of the “blue” corner (which
also determines the position of the red corner). The seven pieces in the puzzle have
distinct orientations. A solved state of the puzzle is a configuration where all the
faces towards the outside of the puzzle are one colour, but the three faces in the core,
seen through the empty space, are the opposite colour.

The outline of the paper is as follows. Section2 is a review of the classical anal-
ysis of 15-Puzzle configurations which can be reached by valid moves. Section3
covers which properties of the 15-Puzzle carry over to the 2×2×2 Varikon Box, and
describes its reachable configurations. Section4 describes the structure of the group
formed by the moves of the 2 × 2 × 2 Varikon Box. Section5 gives a heuristic for
solving the Varikon Box in few moves, by writing permutations as words in terms of
a generating set. Section6 concludes with some open questions on generalizations
of these puzzles.

2 Review of the 15-Puzzle

The 2 × 2 × 2 Varikon Box is closely related with the 15-Puzzle, so we begin by
reviewing the structure of the 15-Puzzle. In particular, we are interested in configu-
rations which we can reach using a valid sequence of moves. Let us denote by C the
set of such reachable configurations of the 15-Puzzle. For convenience, we denote
the solved configuration by ι. A sequence of valid moves permutes the pieces of the
puzzle, but it is not the case that every permutation of the pieces is reachable. For
example, Fig. 2 shows a configuration which is well-known not to be in C .

Now take the subset C f ix of reachable configurations where the empty space
is fixed in the bottom right corner. Configurations in C f ix can also be thought of
as permutations in S15, with respect to ι. For example, the configuration in Fig. 2
corresponds with the permutation (14, 15), since performing this permutation on the
pieces of ιwould yield the configuration in the figure. The following lemma was first
shown in [1].
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1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

Fig. 2 An unsolvable configuration of the 15-Puzzle. There does not exist a sequence of moves
that maps this configuration to the solved state

Fig. 3 Applying the “right”
move repeatedly cycles
through four 15-Puzzle
configurations
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13 14 15

Lemma 1 For every c ∈ C f ix , c must correspond with an even permutation.

Proof This can be seen by imagining the 4×4 grid as a black and white checker-
board. When considering moves that swap the empty space with an adjacent square,
each move must change the colour that the empty space is on. If we take two con-
figurations c1, c2 ∈ C f ix , it must take an even number of transpositions to transition
from c1 to c2, since the empty space begins and ends on the same colour. �

To show that every even permutation is a reachable configuration, we adapt the
proof from [2]. First, we introduce a notation for moves, which act as maps on the
configurations. The definition for moves is based on the idea of sliding blocks to
the right or left, as well as up or down. Unfortunately, not all moves are possible on
all configurations. If the empty space is on the far left side of the grid, there is no
piece to the right which can be moved to fill the space. To fix this issue, we define a
“right” move, denoted R, to either mean sliding a block to the right to fill the space,
or if the space is on the far left, it means to slide the entire row to the left. Figure3
shows that under this definition, R4 is equivalent to the identity map on C , and R3

is what we might consider a “left” move. Similarly, we can define U to be the “up”
move, which slides a piece up, effectively moving the empty space down. Using this
notation, moves can be written as a sequence of R’s and U ’s.

The diagram on the left in Fig. 4 is in C f ix , as it can be obtained by applying
RU 3R3U to ι, which is indicated by multiplication. Using the convention that moves
are applied from left to right, this sequence corresponds with the permutation (1, 12,
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RU3R3U

1 2 3 4

5 6 7 8

9 10 12 15

13 14 11

U3R

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

Fig. 4 Examples of sequences being applied to the solved configuration of the 15-Puzzle. The left
shows a 3-cycle in the bottom-right quadrant, and the right shows the set-up sequence,U3R, being
applied to ι

15). In order to show that every even permutation is reachable, we will use the fact
that A15 is generated by the 3-cycles, (11, 12, i) for all i ∈ {1, . . . , 15} other than 11
and 12.

We start by performing a set-up sequence, U 3R, to the solved configuration,
which we will undo later (Fig. 4). Following the set-up, we can then swap the empty
space with the following sequence of pieces: 7 → 8 → 4 → 3 → 2 → 1 → 5 →
6 → 10 → 9 → 13 → 14 → 15 → 7. Repetitions of this cycle will replace 15 in
the bottom-right quadrant with any other piece in this sequence, while fixing 11 and
12. Altogether, this is written:

σn = (U 3R)(U 3R3U 3R3UR3URU R2U 3)n(U 3R)−1, (1)

where n ≥ 0. Therefore, over all distinct choices of n, the sequence:

σn(RU
3R3U )σ−1

n , (2)

will correspond with permutations of the form (11, 12, i), for all i except i = 11, 12.
By the above arguments, we have the following theorem.

Theorem 1 C f ix corresponds precisely with even permutations of the fifteen pieces.

Asimilar argument applies to any fixed position of the empty space. Therefore, the
number of reachable configurations is 16 · |A15| = 16!

2 . This is different than saying
the reachable configurations are even permutations of the 16 squares. Rather, when
the empty square is an even (or respectively, odd) number of swaps away from the
bottom-right corner, then the configuration is reachable if and only if the permutation
is even (respectively odd).

3 Reachable Configurations of the Varikon Box

In this section, we describe some previously known results for the 2× 2× 2 Varikon
Box [3], and provide proofs for these facts, by generalizing the 15-Puzzle. First,
we note that the 2 × 2 × 2 Varikon Box is precisely a three-dimensional variant of
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Fig. 5 Left: by labelling the pieces of the 2 × 2 × 2 Varikon Box, we can define the labelling that
represents the solved configuration, denoted by ι. Right: an example of a 3-cycle on the bottom half
of the 2 × 2 × 2 Varikon Box

the 15-Puzzle. If we choose to try solving the puzzle by making all the outer faces
blue, there would be only one candidate solution, which consists of matching the
blue corner of each piece with the respective corner of the puzzle. Therefore, at first
glance, there would appear to be two solutions: whether we choose to put blue or red
on the outer faces.

Lemma 2 Given a fixed starting configuration, the 2 × 2 × 2 Varikon Box has
exactly one solution.

Proof On each individual piece, the red corner and blue corner must be opposite
from each other. Transitioning between candidate solutions would mean swapping
every piece with the contents of the opposite corner, which is an even permutation.
However, any sequence of moves that takes the empty space to the opposite corner
will involve an odd number of swaps. Therefore, it is not possible to transition
between the two candidate solutions, making only one possible to reach. �

According to Lemma 2, we can numerically label the pieces and define a solved
configuration in terms of the labelling. Let us denote the set of reachable configu-
rations of the 2 × 2 × 2 Varikon Box by V . We will reuse ι to indicate the solved
configuration, shown in Fig. 5.

Lemma 1 extends to the three-dimensional case. Let V f ix be the set of configura-
tions where the empty space is in its solved position. If v ∈ V f ix , it must correspond
with an even permutation of the 7 pieces: a fact which we already used in the proof
of Lemma 2. To prove that every even permutation is in V f ix , we show that every
cycle of the form (5, 6, i) is in V f ix , when i �= 5, 6, as this will generate A7.

To describe sequences of swaps on the Varikon Box, we need three generators:
R,U, B (right, up, and back, respectively), which act as according to Fig. 6. We
define R2,U 2, and B2 to be the identity map to fix the issue of certain moves being
impossible given the position of the empty space. To get the permutation (5, 6, 7),
one can perform sequence RBRB (Fig. 5), but we can also replace the 7 with any
of the other pieces, by swapping the empty space with 4 → 2 → 1 → 3 → 7 → 4.
By repeating the cycle, we can replace 7 with any other piece, in order to perform
(5, 6, i) for other i .

Therefore, we can extend Theorem 1 to the 2 × 2 × 2 Varikon Box, since config-
urations in V f ix correspond with even permutations of the 7 pieces. By symmetry,
we can conclude that there are 8!

2 = 20, 160 reachable configurations, since for every
position of the empty space, we can perform any even permutation on the 7 pieces.
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Fig. 6 The three possible directions of movement for the 2 × 2 × 2 Varikon Box

4 Group Structure of the 2 × 2 × 2 Varikon Box

We begin this section by observing that sequences of R,U, and B give rise to a
group-like structure.

Proposition 1 Let s1, s2 be two sequences of R,U, and B. We say s1 = s2 if for all
c1, c2 ∈ V , s1 : c1 �→ c2 if and only if s2 : c1 �→ c2. Thenwith respect to composition,
the set of sequences form a group and themapping on the configurations is equivalent
to a group action.

Proof Composition is associative and concatenating two sequences will produce
another valid sequence. The empty sequence satisfies the properties of the identity.
Every sequence is invertible, since each element of the generating set {R,U, B} is
an involution. The group operation is well-defined, since if x and y are sequences
where x = y and s another sequence, then xs = ys, since for all c ∈ V , x and y map
c to the same configuration, and performing additional moves will maintain equality.
The mapping on configurations is clearly a group action, since the empty sequence
leaves all configurations untouched, and the group multiplication is defined to be
compatible with the action. �

We now investigate the structure of this group, which we call G, and we show
how to reduce it to a structure that will help us solve the 2 × 2 × 2 Varikon Box.
First, note that the stabilizer of ι is trivial and the action of the group is transitive,
which implies that |G| = 20, 160.

Interestingly, if we restrict G to the subgroup of sequences involving only R and
U , we get a copy of D6, since R2 = e, (RU )6 = e, and RU · R = R · (RU )−1. For
any given configuration, this gives a local picture around the configuration, since by
alternating any two of R,U, and B, we obtain a copy of D6, pictured in Fig. 7.

To help break down the size of the group, consider the group homomorphism,
ϕ : G → (Z2)

3, where for g ∈ G the components of ϕ(g) correspondwith the counts
modulo 2 of R’s, U ’s, and B’s in g respectively. For example:

ϕ(RUBUBR) = (0, 0, 0), (3)
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Fig. 7 Centered at a particular configuration, if one alternates between R and U , between R and
B, or between U and B, we get three copies of the dihedral group of order 12

which also implies that RUBUBR fixes the empty space. It is clear to see that
this is a well-defined group homomorphism by properties of modular arithmetic
since each letter toggles the position of the empty space in a different dimension.
Consider K = ker ϕ, which is a normal subgroup. By our definition of ϕ, K must
correspond with sequences of moves which fix the empty space. By the extension of
Lemma 1, K ∼= A7, as it acts like A7 on the configurations in V f ix . Given that K is
normal in G, the product, K 〈R〉, is a subgroup of G, and since R /∈ K , we get that
|K 〈R〉| = 5, 040. This subgroup will be a key piece of the decomposition of G.

On the other hand, consider Z , the center of G. Computationally, we verified that
|Z | = 4.1 The configurations produced by applying these elements to ι are shown
in Fig. 8. One can easily verify by inspection that the intersection of K 〈R〉 and Z is
trivial, as no element in K 〈R〉 will move the empty space far enough to reach the
non-trivial configurations in Fig. 8. Furthermore,

|K 〈R〉Z | = |K 〈R〉| · |Z |
|K 〈R〉 ∩ Z | = 5040 · 4

1
= 20160 = |G|. (4)

1 The nontrivial elements can be given by the sequences: (RU )2(RB)2UB(RB)2UBRB,
(RU )2RB(RU )2(BU )2RU RB, and (RU )2BUBRBUBUBR(BU )2.
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Fig. 8 The configurations obtained by applying elements of the center, Z , to ι. They correspond
with ι itself, and 180◦ rotations of the entire box, pivoting around the U , B, and R axes

Since K 〈R〉Z � G, then K 〈R〉Z = G. Therefore, since K 〈R〉 ∩ Z is trivial and Z
commutes with K 〈R〉, we have that G ∼= K 〈R〉 × Z . By determining the structure
of these components, we will then obtain the full structure of G.

Lemma 3 K 〈R〉 ∼= S7, where K is the kernel of the group homomorphism ϕ.

Proof K is normal in K 〈R〉 and K ∩ 〈R〉 = {e}, so K 〈R〉 = K � 〈R〉 ∼= A7 � Z2.2

It is well known that A7 � Z2 is isomorphic to either A7 × Z2 or S7, so it remains
to show the former is false. If it held, then K 〈R〉 would contain an element kR of
order 2, with k ∈ K , commuting with all of K 〈R〉. Since Z is the center, then kR
commutes with all of G = K 〈R〉Z , and thus kR ∈ Z . This is a contradiction, since
K 〈R〉 ∩ Z is trivial. This gives us K 〈R〉 ∼= S7. �

Lemma 4 The center Z of the Varikon box group is a Klein four-group (Z2)
2.

Proof Note by Fig. 8 that applying a 180◦ rotation of the whole Varikon Box to any
configuration maintains the numbers aligned along the U , B, or R axes. From this
it is clear that sequences yielding these configurations commute with every other
sequence, and each non-trivial element has order 2. It follows that Z ∼= (Z2)

2. �

Theorem 2 The group of the Varikon box G is isomorphic to S7 × (Z2)
2.

Proof This follows trivially from Lemmas 3 and 4. �

5 The A5 and A6 Shortest Word Problem

One way to proceed toward a solution heuristic is by limiting the configurations to
reduce the size of the problem. In practice, it is simple to locate the piece belonging
in the position opposite of the empty space (the piece labelled 1) and solve it. If
we only consider the configurations in V f ix where piece 1 is in the solved position,
then we could solve the remaining pieces with (3, 4, 7), (2, 4, 6), and (5, 6, 7), by
alternating between any two of R,U, and B.With these restrictions, we can visualize

2 The structure of K � 〈R〉 is given by the automorphism φR of K defined by φR(k) =
RkR−1. That is, for k1, k2 ∈ K and r1, r2 ∈ 〈R〉, multiplication is defined as (k1, r1) · (k2, r2) :=
(k1r1k2r

−1
1 , r1r2).
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Fig. 9 A visualization of the 2 × 2 × 2 Varikon Box sub-problems. The left assumes the piece
opposite the empty space is in the solved position, and restricts to three 3-cycles. The right assumes
two pieces are solved, and restricts to two 3-cycles
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Fig. 10 Examples of the worst-cases for the two sub-problems. The left shows the A5 sub-problem,
which takes 24moves with this method. The right shows the A6 sub-problem, which takes 20 moves

the puzzle as just these 3-cycles on pieces 2, 3, 4, 5, 6, and 7, but for convenience,
we will relabel these from 1 to 6, so that the permutations are now (1, 2, 3), (3, 4, 5)
and (5, 6, 1). Figure9 shows a visual representation of this simplified puzzle.

One can easily verify that these 3-cycles generate A6. This reduces the puzzle
to a word problem: given a permutation in A6, what is the shortest way to write it
as a product of these 3-cycles and their inverses? We can solve this sub-problem
by performing the inverse of this product. We can even reduce it further, by solving
piece 6 of the sub-problem (which is easy in practice). This leaves us with solving the
remaining 5 pieces using only the 3-cycles (1, 2, 3) and (3, 4, 5), which are enough
to generate A5 (a visualization of this is shown in Fig. 9).

We computed the shortest-length product of permutations in A5 in terms of (1,
2, 3) and (3, 4, 5). The worst-case found was the permutation (1, 2) (4, 5), with a
word-length of 6. Furthermore, it was the only permutation to have this length:

(1, 2)(4, 5) = (3, 4, 5)−1(1, 2, 3)(3, 4, 5)(1, 2, 3)−1(3, 4, 5)−1(1, 2, 3). (5)

We then computed the shortest-length product of permutations in A6 in terms of
the generators (1, 2, 3), (3, 4, 5), and (5, 6, 1). We found 46 permutations achieve
the maximum word-length of 5. Which corresponds with the permutation (2, 4, 6):

(2, 4, 6) = (1, 2, 3)(3, 4, 5)−1(5, 6, 1)−1(3, 4, 5)(1, 2, 3)−1. (6)

These examples are shown in their puzzle-form in Fig. 10. Setting up the A6 sub-
problem takes at most 2 moves, since the orientation of the puzzle can be freely
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changed, and the worst-case scenario is when the piece labelled 1 starts adjacent to
the empty space. Combining this with the worst-case for the A6 word sub-problem,
it takes at most 22 moves to solve the Varikon Box with this method, assuming one
can solve the shortest word problem. This is comparable to the known worst-case
which is 19, found by a brute-force method [3].

6 Conclusion and Future Work

We have analyzed the 2 × 2 × 2 Varikon Box by describing moves of the puzzle as
a group action on its configurations. The group associated with sequences of moves
has an order equal to the number of reachable configurations, and is isomorphic to
S7 × (Z2)

2.Additionally, there exist larger versions of theVarikonBox (for example,
3× 3× 3 and 4× 4× 4). It remains to be seen if a similar analysis can be applied to
an n × n × n Varikon Box. More abstractly, one could consider higher-dimensional
variants: that is, a group generated by {X1, . . . , Xk}, where Xn

i = e for each i , which
could have further applications to discrete dynamical systems in general.
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A Bestiary of Transformation
Semigroups for the Holonomy
Decomposition

Attila Egri-Nagy and Chrystopher L. Nehaniv

Abstract Herewe give a selection of instructional examples of holonomy decompo-
sitions of finite transformation semigroups. These are edge cases that can be used in
verifying computational implementations, as counterexamples in learning the holon-
omy method of the Krohn-Rhodes Theorem, and they are also sources of open prob-
lems.

Keywords Automata theory · Computer algebra · Transformation semigroup ·
Hierarchical decomposition · Holonomy

1 Introduction

The Krohn-Rhodes theorem decomposes a finite discrete dynamical system hierar-
chically into simpler components, namely as a cascade of levels of parallel flip-flops
and permutation groups augmented by reset maps [9]. Computationally tractable
implementations of this mathematical theorem are now available in computer alge-
bra systems [4, 6, 7]. These rely on the holonomy decomposition method of proving
the Krohn-Rhodes theorem [1, 3, 5, 8, 12], which studies the structure and covering
relationships of image sets and their permutators.

The development of the computational implementation of the holonomy decom-
position was not a straightforward process. This is often the case with any software
project, and the open mathematical questions about the algorithm added more diffi-
culty. The computational exploration, the testing and debugging cycles produced an
interesting set of example transformation semigroups. These examples became test
cases for the software package. According to the now standard continuous integration
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method in software engineering, every further change in the code is tested against
these examples. They include illustrative examples, and examples that cover ‘edge
cases’ and exhibit unexpected features possible in discrete dynamical systems. Here,
we will analyse these semigroups in order to shed light on the inner workings of the
decomposition algorithm. This is useful for studying the holonomy algorithm, since
the examples do not just help the software development, but they can also safeguard
against the usual misunderstandings of the method. This educational perspective
can also turn around the decomposition process. In a scientific scenario we have an
automata model we want learn about through decomposition. But studying peculiar
examples, in a way, becomes the quest for ‘engineering’ interesting decompositions,
to produce decompositions with certain properties. This is a good source of open
problems for further research.

Transformation Semigroups. A transformation semigroup (X, S) captures the con-
cept of change in a rigorous and discrete way. It consists of a set of states X (anal-
ogous to phase space), and a set S of transformations of the state set, s : X → X
acting by x �→ x · s, that is closed under the associative operation of function com-
position. Finite state automata (without specifying initial and accepting states) and
transformation semigroups are essentially the same concept, since a fixed generat-
ing set for a transformation semigroup can be considered as a set of input symbols.
Writing s1s2 ∈ S for the composite function s1 ∈ S followed by s2 ∈ S, we have
x · (s1s2) = (x · s1) · s2, giving a (right) action of S on X . This extends to an action
on the subsets P ⊆ X , by letting P · s = {x · s | x ∈ P}, and of special interest for us
in the holonomy method are certain P where an s permutes P · s = P non-trivially.
Transformation semigroups are general enough to model a wide range of processes.
All we need is to have a strong structure theorem for them.

Decompositions. A fundamental technique of the scientific method is decomposi-
tion. We identify the building blocks of a system, and determine how these com-
ponents work together to build the system. The simpler components are easier to
understand, and we gain more understanding from the decomposition if the connec-
tions are somehow limited. When the information goes only in one direction, we talk
about a hierarchical system. The least dependent component does not receive any
information from others, while components deeper in the hierarchy are influenced
by the building blocks above.

Krohn-Rhodes Theory. It is a remarkable result of finite semigroup theory [10],
that we can always find a decomposition in a hierarchical form. There is a caveat
though, we often end up building a bigger system through hierarchical composition.
So instead of two systems being the same, we need to talk about emulation, which is
in general a capability of one system producing the same dynamics as another one,
not necessarily containing an exact copy. For semigroups, we say that S divides T ,
if S is a homomorphic image of a subsemigroup of T .

Algebraically, hierarchical connections are captured by wreath products. The
wreath product (X, S) � (Y, T ) of transformation semigroups is the transformation
semigroup (X × Y,W ) where W = {(s, f ) | s ∈ S, f ∈ T X }, whose elements map
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X × Y to itself as follows (x, y) · (s, f ) = (x · s, y · f (x)) for x ∈ X, y ∈ Y . Here
T X is the semigroup of all functions f from X to T (under pointwise multiplica-
tion). Note we have written y · f (x) for the element f (x) ∈ T applied to y ∈ Y . The
wreath product construction is associative on the class of transformation semigroups
(up to isomorphism) and can be iterated for any number of components. Now we
can state a main result of algebraic automata theory.

Theorem 1 (Krohn-Rhodes Theorem (informal statement)) Every finite semigroup
S is a divisor of a wreath product of its building block components. The groups in
the components can be taken to be divisors of S itself.

This is analogous to the Jordan-Hölder Theorem in group theory, but there we can
use embedding instead of division.

2 The Holonomy Method

The holonomy decomposition is one particular method for finding the building
blocks of transformation semigroups and composing them in a hierarchical struc-
ture. Beyond the ideas of emulation and hierarchy, we need two more fundamental
concepts: approximation and compression.

Approximation gives less information about a system in a way that the partial
description does not contradict the full description. In the holonomy decomposi-
tion, we extend the action on states to be defined on sets of states. Thus, a state is
approximated by a set containing it. Then, we further extend the action to chains of
increasingly smaller subsets of the state set, that successively approximate a state.
The hierarchical nature of the decomposition also originates in these nested sets.
The technical details of the holonomy method are for putting the extended action on
chains into the form of a wreath product. For the complete algorithm see [6].

To do this we need compression, that for repeated patterns stores the pattern once
and then only records its occurrences. Whenever the semigroup acts the same way
on different subsets, we consider those subsets equivalent and only store the action
on the equivalence class representatives (compression). These representative local
actions are the building blocks of the decomposition, and they are permutation groups
augmented with constant maps. They can be defined by round-trips of mappings of
elements of the equivalence classes. The term ‘holonomy’ is borrowed from differ-
ential geometry: a round-trip of composed bijective maps producing permutations
is analogous to moving a vector via parallel transport along a smooth closed curve
yielding change of the direction of the vector.

When observing or communicating a holonomy decomposition of a transforma-
tion semigroup, the skeleton emerged as a most efficient tool. Though it does not
provide a complete description, the skeleton depicts subsets of the state set produced
by the dynamics of the semigroup and certain hierarchical relations between them.
In most examples we will give the generators and the skeleton. The reader is invited
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to the SgpDec package [7] in the GAP [11] computer algebra system to try out the
examples and get additional information.

The Skeleton and Holonomy. The set of images of the state set under the dynamics
of the semigroup, extended with the state set itself and all the singleton sets, is the
mathematical object underlying the holonomy decomposition. Therefore, most of
our examples are about the properties of this set.

The setIS(X) = {X · s | s ∈ S} is the image set of the transformation semigroup
(X, S). The extended image set of the state set under the action of the semigroup is
I ′

S(X) = IS(X) ∪ {X} ∪ {{x} | x ∈ X
}
. The inclusion relation (being a subset of,

⊆) is naturally defined on I ′(X). For a given non-singleton member P ∈ I ′
S(X),

its maximal subsets T ∈ I ′
S(X) are called the tiles of T , and clearly P is the union

of its tiles since all singletons are in I ′
S(X). The subduction relation generalizes

inclusion in that we also allow the sets to be moved by S.

P ⊆S Q ⇐⇒ ∃s ∈ S1 such that P ⊆ Q · s P, Q ∈ I ′(X),

i.e., either P ⊆ Q or we can transform Q to include P under the action of S. (Here S1

denotes Swith the identity transformation adjoined in case S does not already contain
it.) Therefore, subduction is a generalized inclusion, i.e. inclusion is subduction
under the action of the trivial monoid. We define the ≡S equivalence relation on
I ′

S(X) by taking subduction in both directions: P ≡S Q ⇐⇒ P ⊆S Q and Q ⊆S

P. The skeleton is the extended image set with the subduction and the corresponding
equivalence relation.

The permutator group of P is the permutation group on P generated by restricting
those s ∈ S1 for which P = P · s to P , and the holonomy group of a nonsingleton
P is the induced action of the permutator group on the tiles of P . The height of P
is the length of longest strict subduction chain from a singleton to P . The permu-
tator groups of equivalent sets are isomorphic as permutation groups, as are their
holonomy groups. This is the source of compression in the holonomy method. The
holonomy decomposition theorem [1, 3, 5, 8, 12] states that (X, S) is emulated by
the wreath product of direct products of holonomy groups (augmented by constant
maps), arranged hierarchically according to height, with just one holonomy group
for each equivalence class in the skeleton.

3 Bestiary of Examples for Image Sets in the Skeleton

Let us examine examples with attention to properties of the skeleton’s image sets.

TheAntithesis of anEdgeCase: TheFull Transformation Semigroup. Informally
speaking, a full transformation semigroup, consisting of all possible transformations
of n states, is the easiest to decompose (Fig. 1). Because of its regularity, even an
incomplete implementation of the holonomy decomposition can produce the correct
decomposition. All subsets of the state set are in IS(X), thus there is no missing



A Bestiary of Transformation Semigroups for the Holonomy Decomposition 41

S4

S3

C2

1

2

3

4

{1,2,3,4}

{1,2,3}

[ 3 ]

{2,3,4}

[ 3, 1 ]

{1,3,4}

[ 3, 1, 1 ]

{1,2,4}

[ 3, 1, 1, 1 ]

{1,2}

[ 1, 1, 1, 3 ]

{2,3}

[ 1, 1, 3, 2 ]

{1,3}

[ 1, 1, 3 ]

{1}

[ 1, 1, 1, 3 ]

{2}

[ 1, 1, 1, 3, 1 ]

{2,4}{1,4}{3,4}

{3}{4}

Fig. 1 The skeleton of the full transformation semigroup with 4 states. At each hierarchical level
we have all the subsets of the corresponding cardinality, all in one equivalence class (depicted as
rectangular boxes), acting upon by a symmetric group and constant maps. The arrows point to
the tiles of a representative set. In this case the tiles all come from the level directly below. The
list in the labels is a sequence of generators that produce the tile from the representative set. The
semigroup can be generated by the standard generator set: [Transformation ([2, 3, 4,
1]), Transformation ([2, 1]), Transformation ([1, 2, 3, 1])]

piece to trip over for an algorithm. The holonomy groups are symmetric and equicar-
dinality implies subduction equivalence. A good way to understand the holonomy
decomposition is to think about this base case, then see how more general examples
depart from its regular structure.

All Image Sets Without Groups. The symmetric groups in a full transformation
semigroup generate all subsets of the state set. For a set missing a particular single
state, applying all permutations yields all the sets missing exactly one state. By
iterating this process for sets missing more than one states we get all subsets of the
state set.

Is it possible to generate these subsets without a non-trivial group component?
We could try to include a generator for each subset, collapsing the elements not in
a given subset. However, these generators tend to combine into group components.
We have to send the non-collapsed states to somewhere, and these individual maps
link up to form cycles. Figure2 shows a constructed example where we tried to add
only a selected few generators, to keep the balance of generating all images but not
combining into permutations. It is an open problem whether this is possible for all
number states n, or just smaller cases?

NoGenerated Image Sets.What are the minimal, in terms of the number of subsets,
examples of holonomy decompositions? The simplest possible dynamics is the action
of a constant map (Fig. 3). It gives only a single level and just a single image set.
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1

2

3

4

5

6

7

{1,2,3,4}

{1,2,3}

[ 1 ]

{1,2,4}

[ 2 ]{2,3,4}

[ 3 ]

{1,3,4}

[ 4 ]

{1,2}

[ 2 ] {2,3}

[ 3 ]

{1,3}

[ 4 ]

{2,4}

[ 3 ]

{1,4}

[ 4 ]

[ 1, 2 ]

{3,4}

[ 5 ] [ 2 ]

[ 1 ]

{3}

[ 1 ]

{4} {2}

[ 3 ]

{1}

[ 4 ]

[ 5 ] [ 2 ]

Fig. 2 A skeleton with all possible non-empty subsets as image sets but without
any non-trivial group component. The generators are [Transformation ([1, 2, 3,
3]),Transformation ([1, 2, 2, 4]), Transformation ([2, 2, 3, 4]),
Transformation ([1, 1, 3, 4]), Transformation ([3, 3, 3, 4])], pro-
ducing image sets {1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4} and {3, 4}

1

2

{1,2,3,4,5}

{1}

[ 1 ]

{5} {4} {3} {2}

Fig. 3 Skeleton of a transformation semigroup generated by a single constant map,
Transformation ([1, 1, 1, 1, 1]). The dashed arrows indicate tiles that are not
images of the set being tiled
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A permutation group as an input to the holonomy decomposition is also an edge
case. The group action produces no proper subsets of the state set, therefore the
singletons are added. These form the set of tiles as well, and the holonomy group
is isomorphic to the input permutation group. This is just to say in other words that
holonomy is a semigroup-, and not a group-decomposition algorithm.

Non-image Tiles. Non-image tiles are maximal subsets covering a set of states P
that cannot be accessed through the dynamics of the semigroup from P itself. That
is, they are tiles T of P such there is no s ∈ S with P · s = T . We saw these in
the previous section, but there they only appeared in single-level, non-hierarchical
decompositions. The real question is,Can non-image tiles appear in non-trivial hier-
archies? The constructed example in Fig. 4 shows that this is indeed the case. This
simply shows that having a subset and having an image set under the action of the
semigroup are different concepts. However, understanding the holonomy decompo-
sition often starts at the top level, where these two concept are tied together (except
non-image singletons). Therefore, one might get the false impression that it is always
the case.

Wide and Long Decompositions. How wide and tall a decomposition can be for
n states? These questions were discussed in [5]. The width is easy to answer. The
width can be

( n
 n
2 �

)
, and this can be realized by generating only the image sets of a

middle size.
The exact limit of the number levels is an open problem. We can do a systematic

analysis for transformation semigroups on 4 states, since we have all such transfor-
mation semigroups [2]. What is the length of the longest strict subduction chain?

#levels #semigroups
1 54
2 9119
3 23953498
4 47190311
5 50321112
6 9357581
7 1238099

We have no such comprehensive data set for n = 5 or bigger, since the enu-
meration of all transformation semigroups on 5 states is beyond the current limits
of computational enumeration. A better approach would be the direct study of the
longest strict subduction chains.

Overtaking. The holonomy decomposition is based on nested chains of subsets.
Thus, it is natural to think that as we go into deeper levels, we get smaller sets.
However, there are examples of overtaking, a set appearing lower in the hierarchy
below sets with fewer elements (Fig. 4). Since the position of a set in the skeleton
is defined by strict subduction chains, this is possible. Overtaking can happen when
individual tiles of a set havedifferent length ofmaximal subduction chains underneath
them. However, the situations in which overtakings occur have not been studied
systematically.
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C3

S3

C2

C3

C2

1

2

3

4

5

6

{1,2,3,4,5,6}

{4,5,6}

[ 2 ] {1,2,3,4}

[ 5 ]

{1,2,3}

{1,2} {2,3}{1,3}

{4,5}

[ 4 ]

{5,6}

[ 4, 3 ]

{4,6}

[ 4, 3, 2 ]

{4}

[ 6 ]

{5}

[ 3, 4 ]

[ 1 ] {1,4}

[ 5 ]

{2,4}

[ 5, 6 ]

{3,4}

[ 5, 6, 6 ]

{1}{2}{6}{3}

[ 2, 1 ][ 2, 1, 6 ]

[ 4 ] [ 1 ]

Fig. 4 The Becks transformation semigroup was constructed manually for demonstrat-
ing the existence of non-image non-singleton tiles. It also demonstrates overtaking: the
set {1, 4} appears above {1, 2, 3}. [Transformation ([1, 2, 3, 1, 1, 1]),
Transformation ([4, 4, 4, 5, 4]), Transformation ([4, 4, 4, 5,
6, 4]), Transformation ([4, 4, 4, 4, 5, 5]), Transformation ([4,
4, 4, 1, 2, 3]), Transformation ([2, 3, 1, 4, 4, 4])]

4 Bestiary of Examples for Holonomy Groups

Finding the group components, ‘local pools of reversible dynamics’ is the final step
of the holonomy decomposition.

Non-isomorphic Holonomy and Permutator Groups. Given a subset P in the
extended image state set, we distinguish two possibly different permutation groups
associated with it: The permutator group of P acting on the points of P induces the
holonomy group action on the tiles of P . Therefore holonomy groups are homomor-
phic images of the permutator groups. For the full transformation semigroup they
are isomorphic. What is a minimal example where the permutator and the holon-
omy group of a subset P are not isomorphic? The idea is to have some permutation
entirely contained in a tile. Figure5 shows how this can be constructed.

Overlapping. The holonomy decomposition can produce two separate group com-
ponents on the same hierarchical level, if two sets are not equivalent. However, this
does not exclude the possibility of sharing the tiles, so the sets of tiles may overlap.
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C2

1

2

3

{1,2,3}

{1,2}

[ 2 ]

{3}{2} {1}

Fig. 5 Skeleton of a transformation semigroup generated by the transformations
[Transformation ([2, 1]), Transformation ([1, 2, 2])]. The top level
has no non-trivial holonomy group, though the permutator group of {1, 2, 3} is C2, the cyclic group
of order 2. However, the top level has two tiles, and one of them contains the entire non-trivial
group action

C3

C2

C2

1

2

3

4

{1,2,3,4}

{2,3,4}

[ 1 ]

{1,2,3}

[ 3 ]

{3,4}

[ 2, 1 ]

{2,4}

[ 2, 1, 1 ]

{2,3}

[ 2, 3 ]

{1,2}

{2}

[ 3, 2 ]

{1}

[ 1, 3 ]

[ 2 ][ 2, 3 ]

{3}{4}

Fig. 6 Skeleton with overlapping tile set for two components on the same level. The groups
C2 and C3 on the second level are different. Still their tile sets contain equivalent elements.
The transformation semigroup is generated by [Transformation ([4, 3, 4, 2]),
Transformation ([1, 2, 2, 1]), Transformation ([3, 2, 1, 1])]

Figure6 shows an example where the tiles are coming from the same equivalence
class. This demonstrates, that even if a local pool of reversibility (an equivalence
class) exists on a level, irreversibility can occur on the levels above.
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5 Conclusion

The biggest obstacle for practical applications of computational Krohn-Rhodes
methodology is the lack of comprehensive knowledge about the space of possible
decompositions. The above examples could help to find the most promising ways to
improve our understanding. The open problems mentioned in this paper are:

1. What is the upper bound for the height of a holonomy decomposition of a trans-
formation semigroup on n states?

2. Is it always possible to generate all subsets of the state sets without group com-
ponents?

3. What are all the ways in which the depths of subsets can be in an inverse rela-
tionship with their cardinalities.

A systematic study of the space of skeletons could shed light on these problems.
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Spatial Iterated Prisoner’s Dilemma
as a Transformation Semigroup

Isaiah Farahbakhsh and Chrystopher L. Nehaniv

Abstract The prisoner’s dilemma (PD) is a game-theoretic model studied in a wide
array of fields to understand the emergence of cooperation between rational self-
interested agents. In this work, we formulate a spatial iterated PD as a discrete-event
dynamical system where agents play the game in each time-step and analyse it
algebraically using Krohn-Rhodes algebraic automata theory using a computational
implementation of the holonomy decomposition of transformation semigroups. In
each iteration all players adopt the most profitable strategy in their immediate neigh-
bourhood. Perturbations resetting the strategy of a given player provide additional
generating events for the dynamics. Our initial study shows that the algebraic struc-
ture, including how natural subsystems comprising permutation groups acting on the
spatial distributions of strategies, arise in certain parameter regimes for the pay-off
matrix, and are absent for other parameter regimes. Differences in the number of
group levels in the holonomy decomposition (an upper bound for Krohn-Rhodes
complexity) are revealed as more pools of reversibility appear when the temptation
to defect is at an intermediate level. Algebraic structure uncovered by this analysis
can be interpreted to shed light on the dynamics of the spatial iterated PD.
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1 Introduction

Krohn-Rhodes (KR) theory offers powerful tools for understanding discrete-event
dynamical systems (e.g. [8]). This theory decomposes any system whose dynamics
can be represented as a transformation semigroup into a cascade of permutation-
group layers and identity-reset (flip-flop) layers using the wreath product [5]. This
yields a “coarse-to-fine graining” of both the system’s state and its dynamical trans-
formations. The decomposition process can uncover subsystems represented by per-
mutation groups which we call pools of reversibility or natural subsystems (see
below).Algebraic structure uncovered by this analysis can be interpreted to shed light
on the dynamics and complexity of many broad classes of discrete-event dynamical
systems, including models found in the field of game theory.

The Prisoner’s Dilemma (PD) is an extensively studied game which explores
the problem of individual versus collective profit in a simple 2-strategy model. The
model is usually presented describing a situation where two partners-in-crime are
imprisoned and unable to communicate. The prosecutors lack evidence and can only
convict each prisoner for a lesser charge, so they offer the prisoners a deal. This
deal comes as a dilemma to the prisoners as they need to choose between remaining
silent or betraying their partner which would grant them a sentence lighter than
that of the lesser charge, only if their partner remains silent. These two options
can be represented as strategies in a game where remaining silent is referred to as
cooperation and betraying the partner-in-crime is referred to as defection. This game
can be applied to any situation in which there is a temptation for individuals to defect,
however the net benefit of all parties is maximized if all individuals cooperate. It has
been used to study the emergence of cooperation in a wide array of models in the
fields of ecology, economics and psychology [1, 12, 13].

In the PD, the payoff matrix for a given player is usually represented by:

Player 2
D C

Player 1 D (a, a) (b, c)
C (c, b) (d, d)

(1)

where every cell corresponds to each player choosing a strategy of either defect
(D) or cooperate (C). The first and second elements of the tuple within each cell
represent the payoff of players 1 and 2 respectively. To represent the dilemma, the
payoffs are formulated with b > d > a > c and to have the net payoff maximized
for two cooperators, the system is further restricted such that 2d > b + c. A common
payoff matrix satisfying these conditions is:

Player 2
D C

Player 1 D (1, 1) (b, 0)
C (0, b) (3, 3)

(2)
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where b > 3 is a parameter referred to as the temptation to defect.When simulated as
a two-player game, the players’ strategies will always converge to defection since it
is the Nash equilibrium [11]. However when iterated on a spatial structure with local
interactions,more complex behaviour arises, including the persistence of cooperation
due to the spatial clustering of alike strategies [9, 10].

2 Spatial Algebraic Model

For the model presented in this paper, the PD is iterated on rectangular lattice with
periodic boundary conditions where each cell represents a player with one of two
strategies; defection represented by ‘0’ and cooperation represented by ‘1’. A small
2 × 3 lattice is used here due to current resource constraints of the computational
algebraic analysis, but is illustrative of the general phenomena that arise.
The state space,

Xbin = {000000, 000001, 000010, 000011, . . . , 111110, 111111} (3)

is made of 64 6-bit binary strings, where the i th bit from the left represents the
strategy of cell i (Fig. 1). For a more notationally compact representation, this state
set can also be written in decimal form with each state being the decimal integer
equivalent of the binary string,

X = {0, 1, 2, 3, . . . , 62, 63}. (4)

During each synchronous playing of the game, t (which we call a time step), each
cell plays the PD with their von Neumann neighbours and gains a net payoff over all
games using the payoff matrix (2). Note that since the system is a 2 × 3 lattice, each
cell has 3 von Neumann neighbours to avoid double-counting existing neighbours
with the periodic boundaries. After playing against each other, each cell updates its
strategy to match that of their neighbour with maximal payoff, only if the maximal
payoff is greater than their own. If two neighbouring cells with different strategies
have the same maximal payoff, then cooperation is chosen.

To allow formore complexity, themodelwas formulated such that certain cells can
have their strategy perturbed outside of t-dependent strategy evolution. We call these
cells “open”. If cell i is open, there are two locally constant mappings associated with

Fig. 1 The spatial
arrangement and
enumeration of the cells on
the 2 × 3 spatial Prisoner’s
Dilemma lattice

1

2

3

4

5

6
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that cell; di and ci . These correspond to mapping the strategy of cell i to defection
or cooperation respectively, regardless of the change in payoff. These mappings on
the set of open cells (denoted O) make a set of locally constant mappings, resetting
cell i’s strategy to either d or c but leaving others’ unchanged.

T ′
O = {di , ci }i∈O . (5)

The set of generators for the semigroup transformations is then given by

TO = T ′
O

⋃
{t}. (6)

Words made from elements of TO define mappings on the set of states by applying
each transformation in order from left to right. The set of transformations generated
from TO comprise a semigroup denoted by

SO = 〈TO〉, (7)

and SO acting on X gives us the transformation semigroup (X, SO). As T ′
O is a set

of locally constant mappings, it does not depend on the parameter b, however t does
and its b-dependence was explored using a python script which also generated the
semigroup mappings. In this analysis the strict inequality b > 3 = d was relaxed
so that b ≥ 3. Note that for b = 3, the system still favours defection since although
mutual cooperation has become a weak Nash equilibrium, mutual defection is still
the only strict Nash equilibrium,meaning no player can change their strategywithout
suffering a loss in payoff. The mappings generated by the python script were then
read intoGAP [7] and the transformation semigroup was analyzed using the SgpDec
package [2] to carry out a holonomy decomposition [3, 4, 8]. This yields a KR
decomposition of the spatial PD model’s dynamics (X, SO) by identifying natural
subsystems, i.e., nontrivial permutation groups whose state set is an image X · s of
the state set X under some semigroup element s ∈ SO and whose permutations are
the restrictions of those members of SO which permute this set. Such an image set
can be covered by the union of smaller image sets and singletons, which in turn must
also be permuted by these transformations. The permutation group induced on the
maximal covering sets of a natural subsystem by these sets is a holonomy group.
See [3, 4, 8] for details. In the next section, we will be referencing subduction,
a generalized inclusion relation defined on the collection of images together with
X and the singletons. For subsets P, Q ⊆ X , we say P subducts Q if P ⊆ Q · s
for some s ∈ S or s the identity mapping. Mutual subduction implies isomorphism
of holonomy groups, so equivalent locally reversible dynamics in the hierarchical
decomposition can be compressed [3], giving insight into complexity of a dynamical
system (X, S). In the analysis and diagrams below, subduction corresponds to subset
inclusion.
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3 Complexity Regimes

The investigation of the iterated PD’s b-dependence revealed four different regimes
characterized by unique sets of transformations by t (Table1). The complexity of
each regime was explored using the Krohn-Rhodes (KR) definition of semigroup
complexity [6]: KR complexity is formulated such that the complexity of a trans-
formation semigroup (X, S) is equal to the smallest number of non-trivial groups
needed for a wreath product decomposition of (X, S). Therefore an upper bound for
the KR complexity is the number of levels with non-trivial groups in the holonomy
decomposition. For the remainder of this paper, upper bounds will be used when
referring to KR complexity.

3.1 Regime A

Beginning with regime A (b > 4.0), the system has a temptation to defect so large,
that t2 acting on any state containing at least one defector will bring that state to
‘000000’ (state 0), which we will call pure defection. (As t maps the pure coopera-
tion state ‘111111’ (state 63) to itself and no other statesmap to 63 bywords generated
by t , this state is left out of the subduction chains shown in Figs. 2 and 3.) The defec-
tion attractor dynamics can be visualized from subduction chain for (X \ {63}, 〈t〉)
(Fig. 2). We can choose to only examine the mappings induced by words generated
by t when comparing regimes since the semigroup generated by T ′

O is unchanged
by the parameter b. As t2 only maps to pure defection and the rest of the mappings
in SO are locally constant maps, there are no pools of reversibility and few levels in
the holonomy decomposition, yielding a relatively trivial system.

3.2 Regime B

Regime B (b = 4.0) can be seen as a critical point where the system changes from
regime A to C. The main difference between regimes A and B is that mixed strategy
equilibria under transformation t appear in regime B. These equilibria fall under
two spatial configurations up to isomorphism: “3-in-a-row” and “L-shape”, shown

Table 1 Four unique regimes
of the iterated Prisoner’s
Dilemma

Regime Parameter range

A b > 4.0

B b = 4.0

C 3.0 < b < 4.0

D b = 3.0
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X \{63}

{0,1,2,4,5,8,10,16,17,20,32,34,40}

{0}

Fig. 2 Subduction chain for (X, 〈t〉) with b > 4

X \{63}

{0,5,10,17,20,21,23,29,34,40,42,43,46,53,58}

{0,21,23,29,42,43,46,53,58}

Fig. 3 Subduction chain for (X, 〈t〉) with b = 4
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(a) “3-in-a-row” strategy configuration (b) “L-shape” strategy configuration represented
represented by {21,42} = [21]∼= ⊂ X by {23,29,43,46,53,58} = [23]∼= ⊂ X

Fig. 4 Mixed strategy equilibria configuration for regimes B and C. Hatched pattern and no fill
represent defector and cooperator strategies, respectively

in Fig. 4. Similar to regime A, this regime does not have non-trivial groups in the
holonomy decomposition giving both regimes a KR complexity of 0.

3.3 Regime C

In regime C (3.0 < b < 4.0), the temptation to defect is at an intermediate level
which now allows certain states tomap to ones of higher cooperation with t . From the
subduction chain (Fig. 5) one can see that the decreased temptation to defect removes
one class of mixed strategy equilibria states, [21]∼=. In this state, the defector’s net
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Fig. 5 Subduction chain for
(X, 〈t〉) with 3 < b < 4 X

{0,5,10,17,20,23,29,34,40,43,46,53,58,63}

{0,23,29,43,46,53,58,63}

Table 2 Unique open cell configurations for 2,3 & 4 open cells, represented in grey

Open cell orienta-
tion

KR complexity 0 0 2 0 2 �6 4 4 4 7

Groups in
holonomy
decomposition

– – (3,C2)

(2,C2)

– (2,C2) (4,C2)

(3,C2)

(2,C2)

(4,C2)

(3,C2)

(2,C2)

(4,C2)

(3,C2)

(2,C2)

(3, S3)
(4,C2)

(3,C2)

(2,C2)

payoff is b + 2 as it receives b for playing against one adjacent cooperator as well as
2 for playing against two adjacent defectors. Since b < 4 in this regime, b + 2 < 6,
the total payoff for cooperators and this state will nowmap to pure cooperation when
acted on by t .

This regime is drastically different from regimes A and B as there are now cyclic
groups in the holonomy decomposition. For these intermediate temptations to defect,
the system has pools of reversibility where dynamical cycles may recur, unlike the
previous regimes where any non-trivial mappings induced by words in SO would
bring the system to a state in which the previous state is inaccessible by the same
transformation. This reversibility is entirely t-dependent since any words made of
locally constant maps which act non-trivially on a state are by definition irreversible.
Only when the temptation to defect is low enough such that an action by t can bring
the system to a new state of equivalent or higher cooperation will mappings induced
by words from SO form non-trivial groups.

Additionally, the amount and distribution of open cells now play a significant
role in the system complexity. In general, KR complexity increases with the num-
ber of open cells; yet for a given number of open cells, their distribution plays
a significant role (Table2). Note the open cell configuration corresponding to
T ′
123 = {d1, d2, d3, c1, c2, c3} has its upper bound of KR complexity reduced from

6 to 4. This is because the configuration T ′
1234 has KR complexity 4 and T ′

123 is a sub-
semigroup of T ′

1234. It follows naturally that (X, S1234) emulates (X, S123) and from
the KR complexity axioms [6], for transformation semigroups (Y, T ) and (X, S), if
(X, S) can emulate (Y, T ) then the complexity of (Y, T ) must be less than or equal
to that of (X, S).
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{0,10,43,46}

{0,43,46,63}

d2c1td2c1t

{0,10,63} d2c1t

000000 d2c1t 001010

111111

d2c1td2c1t

101011 d2c1t 101110 d2c1t

(a) Orbits of holonomy group (3,C2) (b) Natural subsystem for transformation d2c1t
for transformation d2c1t

Fig. 6 Orbits and natural subsystem for a (3,C2) found in regime C with O = {1, 2}. Note states
numbered 0, 10, 43, 45, and 63 in (a) correspond to strategy distributions ‘000000’, ‘001010’,
‘101011’, ‘101110’, and ‘111111’ seen in (b), respectively

Below are the orbits for a representation of the holonomy group (3,C2) found in
the holonomy decomposition (Fig. 6a). This is one of two C2 permutator groups in
regime C with O = {1, 2}. The generator of this permutation group is d2c1t which
represents mapping cell 2 to defection, cell 1 to cooperation and then letting one time
step, t pass. Since the holonomy group (3,C2) shows the group action on a set of 3
subsets permuted by permutations of 5 underlying states, the exact mechanism lead-
ing to this reversibility is not immediately clear. We can gain a better understanding
of the dynamics of this cyclic group by examining the orbits of the transformation
d2c1t on specific states in these sets as shown in the natural subsystem (Fig. 6b).
Most of these orbits act in an expected manner since for the two right-most orbits,
the locally constant mappings do not change the state and as the states are mixed
strategy equilibria for regime C, action by t does not change the state. In the left-most
orbit, the behaviour is also expected since d2c1 effectively turns a pure defection state
into one with a single cooperator which will receive the lowest payoff of its defecting
neighbours, thus reverting back to defection with t .

In the orbit second from the left in Fig. 6b, the behaviour is much more interesting
as the same transformation that removes four cooperators from the system, also leads
it into a state of pure cooperation. For state ‘001010’, d2c1 acts as simply c1 since cell
2 is already a defector. This maps the system to state ‘101010’. As shown above, this
state now maps to one of pure cooperation with t . At the state of pure cooperation,
d2c1 now acts as d2 mapping the state to ‘101111’.

In this state, the single defector benefits from being surrounded by cooperators
receiving the highest net payoff as b > 3 and with t , all of its neighbours switch
to the defector strategy resulting in the state ‘001010’ (See Fig. 7). These pools of
reversibility can offer some insight regarding the spatial configuration of strategies
which lead to the persistence of cooperation. Additionally, in regime C, we see the
only symmetric group (3, S3) in the holonomy decomposition (Fig. 8). Here the two
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Fig. 7 Dynamics of C2 generated by d2c1t

{16,21,23}

{16,21,55}

c3td1c2tc5c2tc2d3

{16,23,55}

c3tc2c5td1c2tc2d3c3td1c2tc5c2tc2d3

c3tc2c5td1c2tc2d3

c3tc2c5td1c2tc2d3

c3td1c2tc5c2tc2d3

Fig. 8 Orbits of Holonomy Group (3, S3). The underlying states (strategy distributions) of the
corresponding natural subsystem are 16 = ‘01000’, 21 = ‘010101’, 23 = ‘010111’, and 55 =
‘101101’

group generators are given by c3td1c2tc5c2tc2d3 and c3tc2c5td1c2tc2d3 and although
these words are long and hard to interpret, the possibility of appearance of such non-
abelian group dynamics is not an obvious result of simple iterated PD.

3.4 Regime D

In regime D (b = 3.0), which can be interpreted as a weak PD, the temptation to
defect is very low and consequently the incentive to cooperate is highest. Due to this
push towards cooperation, there are less pools of reversibility than in regime C and
the highest upper bound for KR complexity is 2. From the subduction chain (Fig. 9),
we see that all equilibria are mapped to by a single time step t and a new class of
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Fig. 9 Subduction chain for
(X, 〈t〉) with b = 3 X

{0,23,29,31,43,46,47,53,55,58,59,61,62,63}

Fig. 10 New class of
equilibria
{31, 47, 55, 59, 61, 62} =
[31]∼= ⊂ X

1

2

3

4

5

6

equilibria emerge. (Also present are the “L-shape” equilibria with two defectors in
a row we encountered above.) This new class represents a single defector, which
in all previous regimes had been beneficial to the lone defector. In this regime, the
temptation to defect is low enough that the system has become immune to invasion
by a single defector (Fig. 10).

4 Conclusion

Representing the iterated PD as a transformation semigroup allows the holonomy
decomposition to reveal qualitative differences between distinct payoff-dependent
regimes. When the temptation to defect is below a threshold, the KR complexity
becomes non-zero and pools of reversibility form. The number of open cells also
positively influences the KR complexity, however their spatial distribution plays an
equally important role. With greater computational power, it would be interesting
to further explore this system with a larger number of players as well as different
topologies to see how the results presented in this paper compare to larger and more
complex spatial configurations. With this information, one could explore how the
KR complexity varies with both spatial size and configuration, as well as with the
temptation to defect. Additionally, it could lead to insights resulting in algebraic
theorems for more general iterated PD systems.

All code used to generate semigroup mappings, analysis and figures is available
at https://git.io/JJJcN.
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Oscillations and Periodic Solutions
in a Two-Dimensional Differential Delay
Model

Anatoli F. Ivanov and Zari A. Dzalilov

Abstract A class of two-dimensional differential systems with delay and overall
negative feedback is considered. Sufficient conditions for the existence of periodic
solutions are established. The instability of the unique equilibrium together with
the one-sided boundedness of one of the two nonlinearities lead to the existence of
periodic solutions. Systems of this type appear in various applications in engineering
and natural sciences, in particular in mathematical biology and physiology as models
of circadian rhythm generator and glucose-insulin regulation models in humans.

Keywords Delay differential equations · Slow oscillations · Periodic solutions ·
Ejective fixed point theory

1 Introduction

This paper dealswith the problemof existence of slowly oscillating periodic solutions
for a system of two-dimensional differential delay equations of the form

x ′(t) = −αx(t) + f (x(t), y(t), x(t − τ), y(t − σ)) (1)

y ′(t) = −βy(t) + g(x(t), y(t), x(t − τ), y(t − σ))

where nonlinearities f and g are continuous real-valued functions, decay rates α, β

are positive, and delays τ, σ are non-negative with τ + σ := d > 0.
Systems of type (1) appear in various applications, including physics and laser

optics, physiology and mathematical biology, economics and life sciences among
others. In particular, they naturally appear in physiology and mathematical biology
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[5, 9, 11, 14, 18, 25, 33, 35], where they serve as models of enzyme production
[13, 27], of an intracellular circadian rhythm generator [30], or as glucose-insulin
regulationmodels in humans [4, 26]. An extensive description of various applications
can be found in e.g. [10, 11, 31, 35].

Sufficient conditions for the existence of periodic solutions in system (1) are
established in this paper. The nonlinearities f and g are further assumed to satisfy
either positive or negative feedback condition with the overall negative feedback
in the system. The instability of the unique equilibrium together with a one-sided
boundedness of either f or g lead to the existence of periodic solutions. The analysis
of system (1) uses some of the results established for multi-dimensional systems and
higher order differential delay equations [6, 20, 21].

The standard technique employed in the proof of existence of periodic solutions
of autonomous equations and systems is the Ejective Fixed Point Theory. For details
of the theory see respective chapters of monographs [8, 17]. It goes back to the
classic works by Wright [34] and Jones [22–24]. Wright proved that the delay dif-
ferential equation x ′(t) = −αx(t − 1)[1 + x(t)] has no slowly oscillating solutions
converging to zero as t → ∞ when α > π

2 (for appropriately chosen initial func-
tions). This fact together with adapted versions of the ejective fixed point theorem by
Browder [7] allowed Jones to show that the latter equation and its analogues possess
slowly oscillating periodic solutions. In the years following since then the approach
was further theoretically developed and formalized to the level that allowed one to
prove the existence of periodic solutions to various classes of delay differential equa-
tions and systems. The basics of the ejective fixed point techniques can be found in
monographs [8, 17]; some examples of application of this theory to derive periodic
solutions can be given by results in papers [1, 2, 6, 15, 16, 28, 32].

In this paper we provide a general outline of establishing the existence of slowly
oscillating periodic solutions for system (1); detailed mathematical exposition with
complete proofs will be given in a forthcoming work. We follow the established
theory of the ejective fixed point theorem as described in monographs [8, 17], with
recent supplementary results obtained in [21] for systems of delay equations, as well
as some further results from [6, 20]. A significant difference for the developments
in this work is that our system (1) cannot be reduces to the form used in [6, 21],
where the original system is transformed to the form with a single delay present in
only one equation. This difference is essential and requires modified considerations
and approaches. The modified elements of our approach are the selection of an
appropriate cone in the phase space of system (1), deriving the relevant properties of
solutions, and construction of a nonlinear map on the cone. The ejectivity is derived
from establishing linear lower bounds on the functionals which are specific for this
two-dimensional system. Together with the one-sided boundedness of either f or
g this implies the compactness of the nonlinear map on a set of slowly oscillating
initial functions, leading in turn to the existence of periodic solutions to system (1).
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2 Preliminaries

2.1 Assumptions and Basics

Throughout the paper we make the following assumptions:

(A1) (Continuity) Functions f (u, v, w, z), g(u, v, w, z) are continuous, f, g ∈
C(R4,R), the decay coefficients are positive, α > 0, β > 0, and the delays
τ, σ are nonnegative with τ + σ = d > 0;

(A2) (Differentiability at zero) Partial derivatives fu, fv, fw, fz, gu, gv, gw, gz are
continuous in a neighborhood of zero, (u, v, w, z) ∈ [−δ, δ]4 for some δ > 0;

(A3) (Overall negative feedback) Function f satisfies the positive feedback condi-
tion

f (u, v, w, z) · z > 0 ∀(u, v, w, z) ∈ R4, z �= 0, (p f )

while function g satisfies the negative feedback condition

g(u, v, w, z) · w < 0 ∀(u, v, w, z) ∈ R4, w �= 0; (n f )

(A4) (One sided boundedness) Either nonlinearity f or nonlinearity g is one-sided
bounded:

f (u, v, w, z) ≤ M > 0 or f (u, v, w, z) ≥ −M < 0 ∀(u, v, w, z) ∈ R4; (bd)

(similar inequalities for g when it is one-sided bounded).

For some of the considerations of the paper a higher smoothness of the partial deriva-
tives in (A2) may be required (see e.g. Theorem 1, (O1)). Therefore, we shall also
use the following enhancement of assumption (A2):

(A2∗) Partial derivatives fu, fv, fw, fz, gu, gv, gw, gz are of C1-class in a neighbor-
hood of zero, (u, v, w, z) ∈ [−δ, δ]4 for some δ > 0.

Given initial data for each of the two components x = ϕ(s) ∈ C([−τ, 0],R) :=
X1, y = ψ(s) ∈ C([−σ, 0],R) := X2 one has to solve a sequence of ordinary dif-
ferential systems in order to derive the corresponding solution to system (1) for
t ≥ 0. Therefore, the natural phase space for system (1) is the direct product of two
Banach spaces X = C([−τ, 0],R) × C([−σ, 0],R) := X1 × X2. We shall assume
that for every initial function (ϕ, ψ) ∈ X there exists unique corresponding solu-
tion (x(t), y(t)) to systems (1) defined for all t ≥ 0. Such conditions for the exis-
tence and uniqueness can be e.g. the uniform Lipschitz continuity of functions
f (u, v, w, z), g(u, v, w, z) in the first two variables u, v. The solution (x, y) is then
constructed for t ≥ 0 by the standard step method [3, 8, 17].

Note that due to symmetry considerations one can make the assumption in (A3)
that the nonlinearity f satisfy the negative feedback condition (n f ) while the non-
linearity g satisfies the positive feedback condition (p f ). One can also assume, that
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σ ≤ τ is satisfied. The feedback assumptions (p f ) and (n f ) of (A3) imply that
(x, y) ≡ (0, 0) is the unique equilibrium of system (1).

System (1) includes a general cyclic systemwith the overall negative feedback [6,
21] as a partial case of N = 2, when f (u, v, w, z) = F(z) and g(u, v, w, z) = G(w)

and functions F,G satisfy the positive and negative feedback conditions respectively
in dimension one: x · F(x) > 0, x · G(x) < 0,∀x �= 0. An example of such systems
in applications is e.g. the mathematical model for the intracellular circadian rhythm
generator [30]. When α = β and τ = σ a partial case of system (1) was studied in
papers [2, 32]. Some second order delay differential equations can also be viewed
as a partial case of system (1) [1].

2.2 Linearization and Characteristic Equation

The linearized system about the equilibrium (x, y) = (0, 0) is given by

x ′(t) = −αx(t) + a1y(t − σ) (2)

y ′(t) = −βy(t) − a2x(t − τ),

where a1 = fz(0, 0, 0, 0) > 0 and a2 = −gw(0, 0, 0, 0) > 0. Note that all other
partial derivatives of f and g at (0, 0, 0, 0) are zero due to both positive and
negative feedback assumptions (n f ) and (p f ). The characteristic equation of the
linear system (2) is found when one seeks its solutions in the exponential form
(x, y) = (x0, y0) exp{λt}; it has the following form:

(λ + α)(λ + β) + a exp{−dλ} = 0, (3)

where a = a1a2 > 0 and d = τ + σ > 0.
The transcendental equation (3) is extensively studied in several publications; we

will adopt and use in this paper corresponding results from papers [1, 6].
The linear system (2) and its characteristic equation (3) determine several impor-

tant properties of the original nonlinear system (1). In particular, when (3) has no
real eigenvalues then all solutions to systems (1) and (2) oscillate. When (3) has a
pair of complex conjugate eigenvalues with positive real part then the zero solution
for both systems is unstable. See [6] for exact statements and more details.

2.3 Oscillation

We are interested in the oscillatory behavior of all solutions of system (1). Recall
that a scalar continuous function u(t) is said to be oscillatory on a semi-axis [t0,∞)

if there is an increasing sequence of values tn → ∞ such that u(tn) · u(tn+1) < 0.
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We shall call a solution (x, y) to the system to be oscillatory if both components
x(t) and y(t) oscillate on the semi-axis [t0,∞). Note that an assumption about the
oscillatory behavior of one component of system (1) implies that the other component
is oscillatory as well (see [6], subsection “Oscillation”).

Sufficient conditions for the oscillation of all solutions to system (1) are given by
the following statement.

Theorem 1 Suppose that at least one of the following two conditions is satisfied:

(O1) The characteristic equation (3) has no real solutions (while (A2∗) holds);
(O2) ad > max{α, β}.
Then all solutions to system (1) oscillate about the equilibrium (x, y) = (0, 0).

Part (O1) of the theorem can be derived from an analogue of Theorem 1 ([6], p.
17) when one assumes the additional smoothness properties (A2∗). Part (O2) can be
established along the same lines as the proof of Theorem 1 in [19] (with no principal
changes). Additional oscillation criteria for delay differential equations and systems
can be found in e.g. [12].

An important particular type of the oscillatory behavior is the so-called slow
oscillation. It is associated with the size of a delay in a particular equation/system.
With regard to system (1) we shall call either one of the components x or y to be
slowly oscillating on a semi-axis [t0,∞) if the distance between its any two zeros
there is greater that the overall delay d = τ + σ in the system.

The slow oscillation is present and typical in scalar equations and systems of
type (1) with the overall negative feedback. This property allows one to define an
associated cone K of initial functions in the phase space X , and follow corresponding
slowly oscillating solutions in forward time until they enter the cone again at some
point. This return point defines a nonlinear invariant map F on cone K which fixed
points correspond to periodic solutions of the original system (1). Typically the zero
element (0, 0) is a part of the cone, however, it produces the trivial fixed point for
the nonlinear map F , as it results in constant equilibrium solution (x, y) ≡ (0, 0)
to system (1). One needs a second fixed point of F in order to derive a nontrivial
periodic solution to the system. This is achieved by establishing the ejectivity of the
trivial fixed point under the non-linear map F on the cone K .

2.4 Ejective Fixed Point Theorem

For the objectives of this paper we are adapting more general definitions and con-
siderations of the ejective fixed point theory from [8, 17] to the partial case of
two-dimensional system (1). The Banach space X = X1 × X2 = C([−τ, 0],R) ×
C([−σ, 0],R) is the phase space of system (1). The norm || · ||X is defined as the
maximum of the two norms for the Banach spaces X1 and X2; each one of the latter is
defined as the supremum norm on the sets of continuous functions on initial intervals
[−τ, 0] and [−σ, 0], respectively.



64 A. F. Ivanov and Z. A. Dzalilov

Let U be a subset of X , F : U �→ X be a mapping on U , and x∗ ∈ U be a fixed
point of F . The fixed point x∗ is called ejective if there exists its open neighborhood
G ⊂ X such that for every x ∈ G ∩U, x �= x∗, there is an integer m = m(x) such
that Fm(x) /∈ G ∩U.

The following statement is taken from [17] (Theorem 2.1, Sect. 11.2); its original
version is given in paper [28].

Theorem 2 Suppose K is closed, bounded, convex infinite-dimensional set in X,
mapF : K \ {x∗} → F is completely continuous, and x∗ is an ejective fixed point
of F . Then there is a fixed point of F inK \ {x∗}.

In applications of this theorem to delay differential equations the setU is usually
a set of initial functions which give rise to slowly oscillating solutions (cone K
mentioned above). The fixed point x∗ of the mapF is a trivial fixed point generated
by a constant solution of a differential delay system. The other fixed point from
K \ {x∗} generates a non-constant periodic solution.

3 Main Results

The following theorem is the main result of this paper

Theorem 3 Suppose that the assumptions (A1)–(A4) are satisfied and the char-
acteristic equation (3) has a pair of complex conjugate solutions with positive real
part. Then delay differential system (1) has a nontrivial slowly oscillating periodic
solution.

The principal components of the proof are the construction of a coneK ⊂ X of
initial functions, building of a nonlinear invariant map F on K as an appropriate
shift along the corresponding solutions, showing the complete continuity ofF , and
establishing the ejectivity of the zero fixed point of F . These are outlined in the
following subsections.

The ejectivity is proved under the assumption that the characteristic equation (3)
has a leading pair of complex conjugate solutions λ = γ ± ωi with the positive real
part γ > 0 and the imaginary part satisfying 0 < ω < π/(τ + σ). The existence
of such leading eigenlavue also implies the oscillatory behavior of all solutions of
system (1).

3.1 Invariant Cone, Slow Oscillation, and Nonlinear
Mapping

Consider the following cone K of initial functions:

K = {(ϕ, ψ) ∈ X | ϕ(s) ≥ 0, ϕ(s) exp{αs} ↑, s ∈ [−τ, 0];
ψ(s) ≥ 0, ψ(s) exp{βs} ↑, s ∈ [−σ, 0]}.
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K is a closed convex set that includes the zero element (ϕ, ψ) = (0, 0). The latter
generates the trivial solution (x, y) ≡ (0, 0), ∀t ≥ 0.When an initial function is not
the zero element, (ϕ, ψ) �≡ (0, 0), then the corresponding solution (x(t), y(t)) is not
the trivial zero solution at any t ≥ 0.

Lemma 1 Suppose one of the two conditions of Theorem 1 is satisfied. Assume an
initial function K � (ϕ, ψ) �= (0, 0) is given, and let (x(t), y(t)), t ≥ 0, be the
corresponding solution to system (1). Then each component x(t) and y(t) is slowly
oscillating with the following properties holding:

(i) The component x(t) has an infinite sequence {ξn}, n ∈ N, of simple zeros such
that ξn+1 − ξn > d and x(t) < 0 ∀t ∈ (ξ2n−1, ξ2n), x(t) > 0 ∀t ∈ (ξ2n, ξ2n+1);

(ii) The component y(t) has an infinite sequence {ηn}, n ∈ N, of simple
zeros such that ηn+1 − ηn > d and y(t) < 0 ∀t ∈ (η2n−1, η2n), y(t) > 0 ∀t ∈
(η2n, η2n+1);

(iii) Between any two zeros ξn and ξn+1 of the component x(t) there is exactly one
zero ηn+1 of the component y(t). Likewise, between any two zeros ηn and ηn+1

of the component y(t) there is exactly one zero ξn of the component x(t);
(iv) Moreover, there is additional separation between zeros {ξn} and {ηn} so that

the following inequalities are satisfied:

ξn − ηn > σ and ηn+1 − ξn > τ, n ∈ N.

Note that Lemma1also holds under the assumption that the characteristic equation
(3) has an eigenvalue with the positive real part. Such conditions are known explicitly
(see e.g. [1] for the case d = 1), and can be shown to be more restrictive than those
of Theorem 1.

We indicate main components of a general outline of the proof of Lemma 1.
First, each component of the solution (x, y) can be represented by an equivalent

integral equation as follows. The first component x(t) of the solution (x, y) of system
(1) satisfies the following integral equation

x(t) = x0 exp{−α(t − t0)} +
∫ t

t0
exp{α(s − t)} f (x(s), y(s), x(s − τ), y(s − σ)) ds, (4)

for t ≥ t0, where x0 = x(t0). Likewise, the second component y(t) satisfies the inte-
gral equation

y(t) = y0 exp{−β(t − t0)} +
∫ t

t0
exp{β(s − t)}g(x(s), y(s), x(s − τ), y(s − σ)) ds, (5)

for t ≥ t0 with y(t0) = y0.Second, due to the positive and negative feedback assump-
tions on the nonlinearities f and g as given in assumption (A3), the increasing and
decreasing nature of the expressions x(t) exp{αt} and y(t) exp{βt} can be deduced
from the representations
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d

dt

[
x(t) · exp{αt}] = exp{αt} f (x(t), y(t), x(t − τ), y(t − σ)) (6)

and
d

dt

[
y(t) · exp{βt}] = exp{βt} g(x(t), y(t), x(t − τ), y(t − σ)), (7)

when y(t − σ) and x(t − τ) are of definite sign respectively.
It follows from Eq. (5) that the component y is the fist one to change the sign

at some point η1 ≥ 0; moreover, y(t) in decreasing on [0, η1] (we make a generic
assumption x(0) > 0, y(0) > 0; other possibilities when x(0) = 0 or y(0) = 0 are
analogous and eventually reduced to this one). In view of the integral equation (4)
the component x remains positive on the interval (0, η1 + σ ], while the component
y is negative on the interval (η1, η1 + σ ]. The component x(t) is decreasing for
t ≥ η1; there exists its first simple zero at t = ξ1 > η1 + σ . The component y remains
negative on the interval (η1, ξ1]. Equations (4) and (6) next show that the component
x(t) is negative on (ξ1, ξ1 + σ ] and x(t) · exp{αt} is decreasing there. Due to the
integral equation (5) the component y(t) is negative in interval [ξ1, ξ1 + τ ]. In view
of (7) the component y is increasing in some right neighborhood [ξ1 + τ, η2] of
ξ1 + τ where η2 is its second simple zero. The component x remains negative on the
interval [ξ1, η2].

One can consider now the constructed solution (x, y) on the interval [0, η2] as
a new initial function, an element of X . One concludes that the new initial func-
tions ϕ1(s) := x(η2 + s), s ∈ [−τ, 0] and ψ1(s) := y(η2 + s), s ∈ [−σ, 0] belong
to the symmetric “negative set” −K consisting of initial functions (ϕ, ψ) such that
(−ϕ,−φ) ∈ K . One can construct now the solution (x, y) for t ≥ 0 in the very
same way to conclude that there exists the second simple zero ξ2 of the compo-
nent x such that ξ2 > η2 + σ and x(t) > 0, t ∈ [η2 + σ, ξ2), y(t) > 0, t ∈ (η2, ξ2]
and y(t) exp{βt} is increasing in [η2, ξ2]. Continuing further one shows that x(t) >

0, t ∈ (ξ2, ξ2 + σ ] and x(t) exp{αt} is increasing there. At the same time y(t) > 0
and y(t) exp{βt} is increasing on the interval (η2, ξ2 + σ ].

One now defines a mapping F on K as follows

∀(ϕ, φ) ∈ K : F (ϕ, φ) = (ϕ1, φ1),

where (ϕ, φ) �= (0, 0) and ϕ1(s) = x(ξ2 + τ + s), s ∈ [−τ, 0] and φ1(s) = y(ξ2 +
τ + s), s ∈ [−σ, 0]. Due to the construction described in Lemma 1 one has that
(ϕ1, φ1) ∈ K , thus showing thatF mapsK into itself. The one-sided boundedness
of either f or g implies that the derivatives of both components x and y are bounded
(after the second zeros ξ2 and η2). Therefore the map F is completely continuous,
as the set F (K ) of functions is bounded and uniformly continuous.

By the continuity of F the zero element (ϕ, ψ) ≡ (0, 0) ∈ K is defined to be
mapped into itself underF , as the initial function (ϕ, ψ) ≡ (0, 0) results in the zero
trivial solution of system (1). Any nonzero fixed point K � (ϕ∗, ψ∗) �= (0, 0) of
mapF ,F (ϕ∗, ψ∗) = (ϕ∗, ψ∗), gives rise to a nontrivial slowly oscillating periodic
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solution to system (1). The ejectivity property of the trivial fixed point (0, 0) guar-
antees the existence of such second fixed point (ϕ∗, ψ∗). Its general outline is given
in the next sub-section.

3.2 Ejectivity

The ejectivity of mappingF is decided from certain properties of linear functionals
constructed on the basis of the linearized system (2) (see [8, 17, 21] for details of
general exposition about the functionals). The functionals are coming from projec-
tions on eigenspaces associated with particular eigenvalues; they are related to the
Laplace transform of the linearized systems (see e.g. [1, 15, 21, 29, 34] for more
details on specific cases). The functionals for system (2) turn out to be of the form:

L1(x, y) = (λ + β)x(0) + (λ + α)(λ + β)

∫ 0

−τ

exp{−λs}x(s) ds

+ a1 exp{−λσ }y(0) + a1(λ + β) exp{−λσ }
∫ 0

−σ

exp{−λs}y(s) ds

and

L2(x, y) = (λ + α)y(0) + (λ + α)(λ + β)

∫ 0

−σ

exp{−λs}y(s) ds

− a2 exp{−λτ }x(0) − a2(λ + α) exp{−λτ }
∫ 0

−τ

exp{−λs}x(s) ds.

The two functionals are derived by using the Laplace transform Lu(λ) :=∫ ∞
0 exp{−λt}u(t) dt on the components x and y of the solutions of system (2) when
the latter is subject to the Laplace transformation. Functional L1 comes out when
Lx (λ) is excluded from the algebraic system, while L2 appears when Ly(λ) is
excluded (therefore, they are equivalent). The functionals are also used to represent
the projection �(λ) on the eigenspace corresponding to an eigenvalue λ (see e.g. [8,
17, 20, 21] for more details, where the relationship between the Laplace transforms
of solutions and the projection � is described and studied).

The ejectivity follows from either one of the two inequalities

|L1(x, y)| ≥ c1||(x, y)|| or |L2(x, y)| ≥ c2||(x, y)||, ∀(x, y) ∈ K ,

which are in turn equivalent to the projection’s boundedness away from zero

sup{|Lk(x, y)|, ||(x, y)|| = 1} = lk > 0, k = 1, 2,
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when λ = γ + ωi is the leading solution of the characteristic equation with the
positive real part γ > 0 and the imaginary part satisfying 0 < ω < π/(τ + σ) (see
e.g. [17], Theorem 2.3 (ii), p. 337). The latter is proved by using a detailed analysis
of functionals L1 and L2 under the assumption ||(x, y)|| = 1. For example, when
|x | = 1 then x(0) ≥ exp{−ατ } is satisfied. One considers next the expression L∗

1 =
L1(x, y) exp(λσ) and estimates the lower bound of its imaginary part. The first term
of L∗

1 is estimated as |Im{(λ + β) exp(λσ)}| ≥ m0 for some m0 > 0 independent
of the particular choice of x(s), s ∈ [−τ, 0] (when σ < τ ). The imaginary parts of
the second and forth terms of L∗

1 can be shown to be each positive (however, not
uniformly bounded away from zero). The third term of L∗

1 is pure real. Therefore,
one deduces that |L∗

1| ≥ |Im(L∗
1)| ≥ m1 > 0 is satisfied, implying also that |L1| ≥

m2 > 0 is valid. The other consideration |y| = 1 is similar with the use of functional
L2.

4 Conclusion

We establish sufficient conditions for the existence of non-trivial slowly oscillating
periodic solutions for a new class of two-dimensional differential delay systems.
Those systems are more general than some of the previously studied models such
as systems with cyclic overall negative feedback [6, 21], or a model of a circadian
rhythm generator [30], or a second order non-linear differential delay equation [1];
they include those mentioned as partial cases. The proof of the existence of peri-
odic solutions follows along the lines of standard techniques of the ejective fixed
point theory [8, 17]. However, the specific considerations on major steps somewhat
differ from those previously employed. These distinctions require new appropriate
adjustments and further developments to several points of the established theory.
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Exploring Tetris as a Transformation
Semigroup

Peter C. Jentsch and Chrystopher L. Nehaniv

Abstract Tetris is a popular puzzle video game, invented in 1984.We formulate two
versions of the game as a transformation semigroup and use this formulation to view
the game through the lens of Krohn-Rhodes theory. In a variation of the game upon
which it restarts if the player loses, we find permutation group structures, including
the symmetric group S5 which contains a non-abelian simple group as a subgroup.
This implies, at least in a simple case, that iterated Tetris is finitarily computationally
universal.

Keywords Ames · Krohn-Rhodes algebraic automata theory · Semigroups ·
Computer algebra · Holonomy

1 Introduction

Tetris is an arcade puzzle game created by Alexey Pajitnov in 1984, that has since
become a worldwide cultural phenomenon [9]. It is the best selling paid-downloaded
mobile game of all time, with over 100 million copies sold for cellphones [11]. It
is also the most ported video game ever, according to the Guinness Book of World
Records, with an estimated 65 platforms [11]. Tetris is fundamentally a polyomino
stacking game. The playing field consists of a 10 × 20 grid, and the player is given
a sequence of tetrominoes (Fig. 1), which are sets of four connected grid cells, to
drop from the top of the playing field. The player can translate or rotate the shapes
as they fall. If a row is filled, the row disappears, and all the blocks above that row
are moved down by one row. If the blocks are stacked outside the grid, then the game
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Fig. 1 Pieces available in standard Tetris, the one-sided tetrominoes [16]

is over. The object of the game is to survive as long as possible. While generally,
the player is only allowed to see one or two pieces ahead, most authors consider the
version where the player has access to the full sequence of pieces ahead of time. This
variation is also called offline Tetris [4], and unless otherwise stated will be the one
discussed here.

There has been considerable research into the mathematics behind Tetris, for an
arcade game. Demaine et al. show that the complexity of solving many aspects of
the game, such as maximizing the number of rows cleared, or the number of moves
before the game ends, are NP-complete. Furthermore, they show that finding algo-
rithms which approximate solutions to these is quite difficult [4]. Other authors have
characterized optimal strategies for small subsets of the pieces [2], and characterized
sequences of pieces that always cause a loss [3]. Hoogeboom and Kosters [10] show
that nearly any reasonable configuration of blocks is possible to construct under the
Tetris rules with a suitable sequence of tetrominoes. It is also possible to represent
Tetris, and other tiling games, as regular grammars, which has allowed for some
enumeration of possible Tetris games [1].

We formulate the game of Tetris as a transformation semigroup, where the ele-
ments of the semigroup are transformations on the set of possible game states.
Krohn-Rhodes theory [12, 13] and the related holonomy decomposition (Theorem 3)
[6, 7] provide a way to decompose transformation semigroups into wreath products
of finite simple groups and the flip-flop monoid (see Appendix for concepts and the-
orems employed here related to holonomy). Our analysis is primarily computational,
and we use a package for the computer algebra system GAP called “SgpDec” [5].

2 Tetris as a Transformation Semigroup

Let P be a set of pieces, where a “piece” is a set of connected cells such as a tetromino.
Let S be a semigroup generated by basic events σ = (p, ξ) ∈ S consisting of a set
of connected cells p, and a position 1 ≤ ξ ≤ n (although the precise limits on the
position ξ depend on the width of p).

A configuration, or state, x is an element of the set of n × k board of cells, where
some of the cells are filled by other pieces.An elementσ ∈ S acts on a configuration x
by “dropping” the piece p with the leftmost block in the column ξ , and then applying
the row removal rules in the familiar way. That is, if there is a full row of width n,
it is removed, and the blocks above the row are dropped down by one. (If more full
rows arise, removal and dropping is iterated.)We denote the empty game state before
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any pieces have dropped by e, and denote by E the “game over” state. If the total
number of cells in the stack exceeds k, then x · σ = E . Furthermore, E · σ = E for
all σ ∈ S. For σ1, σ2 ∈ S, define their product σ1σ2 as the transformation resulting
from applying σ1 then σ2 in the above way.

We consider a state x in the set of possible permutations of a n × k board of cells
to be “reachable” in S if it can be constructed by playing the game from an empty
board with some sequence of pieces. More precisely, a state x is “reachable” if there
exists a word

σ1σ2 . . . σi ∈ S

such that
x = e · σ1σ2 . . . σi .

The semigroup is precisely the set of transformations S given by concatenating pieces
and possible positions for those pieces on the board (p, ξ), along with the set of game
states reachable from the empty board using those (p, ξ) ∈ S.

Definition 1 (X, S) is a finite transformation semigroup, which we will call the
Tetris semigroup of P on the board with dimensions n × k.

3 Analysis

In order to obtain a full description of (X, S) in terms of transformations, we imple-
mented the rules of Tetris in Python. Here, we will consider the complexity of a few
variants of the game. Computation can be done on the 3 × 3 and 3 × 4 size game-
board with tri-ominoes as described below, but any larger is currently out of reach
of the computational capabilities of the GAP algebra system and SgpDec.

3.1 Tri-Tris

Standard Tetris has an extremely large state-space. Germundsson [8] estimates that
it is on the order of 2200, this estimate is corroborated by the later constructibility
result of [10]. Therefore we will consider a variant of Tetris on an n × k board, using
triominoes (Fig. 2) rather than tetrominoes.

Let P = {LS,RS,LUS,RUS,V,H}, then the corresponding game (and semi-
group) we will call Tri-tris accordingly.

Fig. 2 Triominoes and
corresponding labels used in
the implementation
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Table 1 Bounding the aperiodic complexity of Tri-tris on boards of different size by the length of
the longest proper subduction chain, hs(X). All boards with width n = 3 have 11 generators. When
n is increased to 4 the semigroup is too large for GAP to handle

Board dimensions |X | |S| hs(X)

3 × 3 35 2,056 13

3 × 4 135 259,726 32

3 × 5 709 – –

We will mostly consider the setting where n = 3. In this case, the horizontal line
triomino H is the identity, except when there are cells in the top line, in which case
it maps to E . We will exclude H as it doesn’t add significantly to the system.

3.2 Aperiodicity

A transformation semigroup is called aperiodic if all of its subgroups are trivial.
We have found Tetris to be aperiodic for n ≤ 3 and k ≤ 5. We pose this as an open
problem for larger board sizes.

Open Problem 1 (Is Tetris aperiodic?) For any σ ∈ S does there exist a k > 0 such
that, for all x ∈ X, x · σ k+1 = x · σ k . If so, the Tetris semigroup (X, S) is aperiodic,
and the correspondingKRdecomposition contains no nontrivial permutation groups.

The aperiodic complexity of a transformation semigroup is the least number of
identity-reset components (i.e., direct products of flip-flops) that must be wreathed
together to emulate it (Table 1).

If Tetris is always aperiodic, this means that there are no internal symmetries for
the holonomy decomposition to expose. The complexity increases extremely quickly
as the board size increases. In the next section, we will consider a rule modification
that introduces these symmetries.

4 Periodic Tri-Tris

Themost straightforward rulemodification toTetris that gives the system reversibility
(groups in the holonomy decomposition) is replacing the end state E with the empty
board e. In this version of the game, any move that would previously have caused a
loss, now returns the game to the empty board (Table 2).
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Table 2 The complexity of periodic Tri-tris on boards of different sizes, showing the groups
present in the holonomy decomposition given by SgpDec. Replacing the losing state E with the
empty board state e, the semigroups become much larger. A computation for a 3 × 4 board with a
reduced generator set is included as well

Board dimensions |X | |S| Holonomy groups present

3 × 3 34 118,637 (4,C2 × C2), (3, S3), (2,C2)

3 × 4 135 – –

3 × 4,
P =
{RS,LUS,RUS,V}

116 – (4,C2), (5, S5), (4, S4), (3, S3), (2,C2)

4.1 Periodic Tri-Tris: 3× 3 Case

Non-trivial holonomy permutation groups appear in this case. Consider the empty
state together with the three other states: {empty, 6, 12, 26}, whose non-empty states
are visualized pictorially in Fig. 3. Figure4 shows how the members of the holonomy
group C2 × C2 act on tiles of this set. We can find pictorial representations of some
of the states and the transformations to more easily visualize what this figure is
describing within the games (Fig. 3). Generally, the way that these groups permute
the tile is that the words “reset” the state by exceeding the length of the board, and
then construct the new state. The non-abelian group S3 also appears in the holonomy
decomposition.

4.2 Periodic Tri-Tris: 3× 4 Case with Reduced Generating
Set

If we increase the board size to 3 × 4, and let P = {RS, LUS, RUS, V }, we see that
the holonomy decomposition contains the full symmetric group S5, acting on the set

Fig. 3 Visualizations of the states in Fig. 4. a State 6, b State 12, c State 26
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Fig. 4 Holonomy transformation group (4,C2 × C2) where A = V0LS1V2V0RS1V1V2V0RS1V1,
B = V0LS1V2V1V0V2LS0V1V0V2LS0V1, C = V0V2LS0V1

Fig. 5 Visualizations of the states permuted by S5, in addition to the empty state, in the Tetris semi-
group with n × k = 3 × 4, P = {RS, LUS, RUS, V }. a State 4, b State 11, c State 13, d State 16

Z = {empty, 4, 11, 13, 16}, illustrated in Fig. 5. Although this group is too large to
visualize in the same fashion as C2 × C2, we can describe some generators of the
permutator group. For instance, the word in Eq.1 is a 5-cycle on Z , and the word in
Eq.2 is a 2-cycle on (11, 16) and a 3-cycle on (empty, 4, 13).
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V1LUS0V2V0RS1RS1LUS0RS1V0V1V2RS0RS0V2V0V1V0V2V1V2LUS0RS1
V0V1V2RS0RS0V2V0V1V0V2V1V2LUS0RS1V0V1V2RS0RS0V2V0V1V0V2V1V2

LUS0RS1V0V1V2RS0RS0V2V0V1V0V2V1V2

LUS0RS1V0V1V2RS0RS0V2V0V1V0V2V1V2LUS0RS1V0V1V2RS0RS0V2V0

= (empty, 4, 11, 13, 16) (1)

V1LUS0V2V0RS1RS1V0V1RS0V2V0V2LUS1V0V1V2RS0RS0V2V0V1RUS1
V0V2LUS1V0V1V2RS0RS0V2V0V1RUS1V0V2LUS1V0V1V2RS0RS0V2V0V1

RUS1V0V2LUS1V0V1V2RS0RS0V2V0 = (empty, 4, 13)(11, 16) (2)

These two permutations generate the group S5.

5 SNAGs and Computation in Tetris

The appearance of the symmetric group S5 in the transformation semigroup of 3 × 4
periodic Tri-tris shows that the smallest simple nonabelian group A5 (the alternating
group of 60 even permutations on 5 elements) can be emulated by this Tetris semi-
group. Ensemble techniques of Nehaniv et al. [15] for computing with finite simple
nonabelian groups (SNAGs) now entail that periodic Tri-tris is capable of finitary
universal computation. This means every function f : X → Y for any finite sets X
and Y can be realized via an implementation using an encoding into parallel running
copies of this Tetris game.

Theorem 1 The periodic 3 × 4 Tri-tris game is finitarily computationally universal.

Sketch of Proof (construction of [15]). Let n = �log60 |X |� and m = �log60 |Y |�.
For each permutation π of Z in A5, fix a particular sequence wπ of Tetris events
yielding π . One encodes distinct members of X each uniquely into n such sequences
(wπ1 , . . . , wπn ). Similarly, encode members of Y uniquely in m-tuples of permu-
tations (π ′

1, . . . , π
′
m), π ′

i ∈ A5. This yields an encoding of f as a mapping from
n-tuples of the 60 differentwπ sequences tom-tuples of permutations in A5. Now by
a theorem of Maurer and Rhodes [14], each of the m components of the encoded f
can be computed by some fixed polynomial expression over this SNAG. That is, each
is some finite concatenation of the fixed sequenceswπ giving permutations in A5 and
n free variables which take values in event sequences according to the encoding of
X (with repetitions possible). The evaluation of these polynomial expressions with
sequences encoding a member of X substituted in for the n variables consists of
running Tri-tris and permutes states in parallel copies of the game (each in a config-
uration from Z ). The result in Tri-tris comprises m permutations of Z lying in A5

uniquely encoding the value of f in Y . It suffices to use 5m copies of Tri-tris since
|Z | = 5 to determine the m permutations encoding y = f (x) with x ∈ X, y ∈ Y ;
actually since we are dealing with permutations 4m copies of the game suffice.
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6 Conclusion

We cast Tetris as a finite transformation semigroup, and show that the complexity of
the game grows very quickly with the size of the game board. Modifying the rules
of Tetris to restart on completion yields finite simple nonabelian groups (SNAGs)
in the holonomy decomposition. This entails finite universal computational capacity
of periodic variants of Tetris. While we found computationally that non-periodic
Tetris examples had only trivial subgroups in their decompositions, it remains an
open problem whether this is the case in all non-periodic variants. It also remains to
determine the Krohn-Rhodes complexity and which SNAGs occur in other periodic
versions of Tetris.
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Appendix: Krohn-Rhodes Theory and the Holonomy
Decomposition

The Krohn-Rhodes (KR) theorem describes a general decomposition of transfor-
mation semigroups in terms of wreath products of the finite simple groups and the
flip-flop monoid. A visualization of the flip-flop monoid is shown in Fig. 6.

Theorem 2 (Krohn-Rhodes decomposition [12]) A finite transformation semigroup
(X, S), with states X and semigroup S acting on states by transformations, has a
decomposition

(X, S) divides H1 � H2 � H3 . . . � Hn

with components H1, H2, . . . , Hn, such that each Hi is a finite simple group dividing
S or the flip-flop monoid.

The decomposition given by this theorem tends to be far from optimal in prac-
tice. Therefore, most practical implementations of semigroup decomposition use the
holonomy method described in [7].

Fig. 6 The flip-flop monoid
on X = {1, 2} is given by the
set of transformations
S = {A, B, I }



Exploring Tetris as a Transformation Semigroup 79

We will reproduce the relevant definitions and theorems here. Define the set Q as

Q = {{X · s}|s ∈ S} ∪ {X} ∪ {{a}|a ∈ X}

then we can define a relation on Q called subduction.

Definition 2 (Subduction) Let SI denote S with a new identity element appended.
Given, A, B ∈ Q, we define an reflexive, transitive relation on Q,

A ≤ B ⇐⇒ ∃s ∈ SI , A ⊆ B · s

Furthermore, let A < B if A ≤ B but not B ≤ A. This relation, which we will call
subduction, induces an equivalence relation on Q: A ≡ B ⇐⇒ A ≤ B and B ≤ A.
For each equivalence class A/≡ in Q/≡, let Ā be a unique representative.

Definition 3 (Tiles) Define A to be a tile of B if A � B and

∀Z ∈ Q, (A ≤ Z ≤ B =⇒ Z = A or Z = B)

If A ∈ Q with |A| > 1, the set of tiles of A is �A ⊂ Q

Definition 4 (Holonomy group) The holonomy group, written HA, of A is the set
of permutations of �A induced by the elements of SI . If we let HA act on �A, then
(�A, HA) is the holonomy permutation group of A.

Definition 5 (Height of an Image Set) The height of A ∈ Q is h(A), where h(A) is
the length of the longest strict subduction chain up to A.

We are now able to state the holonomy decomposition theorem, which asserts that
the semigroup (X, S) divides a cascade product, fromwhich the Krohn-Rhodes (KR)
decomposition (Theorem 2) can be derived. The holonomy theorem describes the
transformation semigroup (X, S) in terms of symmetries in the way transformations
in S act on the set of tiles of the Ā ∈ Q.

Theorem 3 (Holonomy decomposition [7]) Let (X, S) be a finite transformation
semigroup, with h = h(X) the height of X. For each i with 1 ≤ i ≤ h, let

(�i ,Hi) =
∏

{A∈Q:h(A)=i, Ā=A}
(� Ā, HĀ)

(�i ,Hi) is a permutation group and (�i ,Hi) is the permutation-reset transformation
semigroup obtained by appending all constant maps to Hi. Then

(X, S) divides (�1,H1) � (�2,H2) � · · · � (�h,Hh).
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Differential Equations Using Generalized
Derivatives on Fractals

Herb Kunze, Davide La Torre, Franklin Mendivil, and Edward R. Vrscay

Abstract In a previous paper [11] we introduced the notion of a μ-derivative and
showed how to formulate differential equations in terms of this derivative. In this
paper, we extend this approach to the definition of a weak derivative which provides
a framework for solving variational problems with respect to fractal measures. We
apply our method to a specific boundary value problem, namely a 1D eigenvalue
problem over a fractal measure.

Keywords Fractals · Fractal measure · Derivatives · Weak derivatives

1 Introduction: Derivatives with Respect to a Fractal
Measure

In this paper we present a framework for solving variational problems with respect
to a fractal measure by extending the ideas from [11]. Our theory uses the weak
formulation and thus we define the weak derivative and the resulting Sobolev spaces
in the natural way. For the one-dimensional problems we discuss in this paper, the
variational problems can be transformed by an appropriate change-of-variable into
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a problem involving Lebesgue measure and thus many of the classical results can be
used directly. Problems in higher dimensions require a substantial reworking of the
classical theory and are the subject of a future paper in preparation.

In a previous paper [11] we introduced the notion of a μ-derivative and we dis-
cussed how to formulate differential equations in which the derivative is replaced by
a μ-derivative. We considered the equivalent integral equation,

u(x) = u0 +
∫ x

0
f (t, u(t)) dμ(t) , (1)

whereμ is a fractal (Borel probability) measure, assumed to be nonatomic, on [0, 1].
We studied the existence and uniqueness of solutions to these fractal integral equa-
tions based on the Picard operator. Our main interest was in the fractal nature of the
solutions and we used Iterated Function Systems (IFS) to investigate the behaviour
and self-similarity of these solutions. As usual we can try to formulate an integral
equation into an equivalent differential form. Motivated by this we defined the μ-
derivatives of a function G to be

D+
μ (G)(x) := lim

h→0+

G(x + h) − G(x)

μ([x, x + h]) .

In a similar way, we can define

D−
μ (G)(x) := lim

h→0+

G(x) − G(x − h)

μ([x − h, x]) .

Whenever the two limits are equal we label their common value Dμ(G)(x) and say
that G is μ-differentiable at x [11].

A version of the Fundamental Theorem of Calculus holds [11] so that the integral
equation (1) becomes the μ-differential initial value problem,

Dμ(u)(x) = f (x, u(x)), u(0) = u0. (2)

The following results are very useful when dealing with calculations involving the
notion of μ-derivative.

Proposition 1 ([11])Let us suppose thatμ is non-atomicand let F : K= supp(μ) →
[0, 1] be the cumulative ofμ and F−1 : [0, 1] → K be its inverse. Then, given a func-
tion f : K → R, the following change of variable rule holds:

∫
K
f (x)dμ(x) =

∫ 1

0
f (F−1(x))dx , (3)

where dx indicates integration over Lebesgue measure on [0, 1].
Proposition 2 ([11]) Let us suppose that μ is non-atomic and let F : K =
supp(μ) → [0, 1] be the cumulative ofμ and F−1 : [0, 1] → K be its inverse. Then,
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given a function f : K → R, the following chain rule holds

Dμ f (y) = d

dx
f (F−1(x))|x=F(y), for μ-a.e. y, (4)

where dx denotes Lebesgue measure and y = F−1(x). Moreover, the following for-
mula for higher-order derivatives holds:

Dn
μ f (y) = dn

dxn
f (F−1(x))|x=F(y). (5)

Using these properties it is not hard to show that the following version of integra-
tion by parts holds (where cov(A) is the convex hull of A).

Proposition 3 Let us suppose [a, b] = cov(supp(μ)). Then the following formula
holds:

∫ b

a
Dμ f (t) g(t) dμ(t) = f (b)g(b) − f (a)g(a) −

∫ b

a
f (t)Dμg(t) dμ(t). (6)

In the next sections we extend this approach to deal with boundary value problems
(BVP) and with particular application to a simple example. We then introduce the
notion of a weak μ-derivative and present a variational formulation of the BVP.

The paper is organized as follows. Section2 presents the notion ofμ-weak deriva-
tive and the definition of the Hilbert space H 1

μ(K ) along with an application to a
one-dimensional eigenvalue BVP. Section3 recalls the basic definitions of Iterated
Function Systems and the notion of attractor. Section4 presents some convergence
results and Sect. 5 contains some concluding remarks.

We provide a brief excursion into this topic with the intention to interest the reader
in the possibilities. Because of space limitationswe do not provide proofs. For amuch
more in-depth discussion, including proofs and extensions we invite the reader to
read our forthcoming paper (in preparation).

It is important to mention that our work here (as in [11]) is strongly related to
other previous work in analysis on time-scales (see [2, 8] and the references therein),
in measure differential equations (see [3, 17] and the references therein) and also
in Stieltjes derivatives (as nicely explained in [16]). More recent work in time-scale
analysis which is strongly related to the current paper can be found in [4] (and its
references). The papers [13, 14] present another method for defining calculus on
subsets of E ⊂ R which is geometrically defined and intrinsic to E (and so do not
depend on the existence of a measure on E). Their results imply the results in [11]
in the case of a “uniform” measure on E and thus could be used as an alternative
approach to ours.

From the perspective of applications, the use of fractal derivatives in physics has
been recognized, for example, in [6] as have been variational methods [7]. There is
an enormous literature on the subject which this paper cannot hope to address even
in part. Here we simply mention [5, 10, 18] as noteworthy contributions to the field.
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2 The Weak Formulation and H1
µ(K )

Let K ⊂ R be a given compact “fractal” set with convex hull cov(K ) = [a, b] and
μ be a Borel probability measure supported on it. For a given function φ : K → R,
we denote by Dμφ the μ-derivative of φ with respect to μ at x (which is well-
defined at μ-almost all x). In the sequel we denote by C1

c (K ) the set of all functions
for which the μ-derivative exists, it is continuous and φ(a) = φ(b) = 0. Given a
function u : K → R, the weak μ -derivative of u is a function g : K → R which
satisfies ∫

K
uDμφdμ = −

∫
K
gφdμ for all φ ∈ C1

c (K ) . (7)

We also denote the weak μ-derivative of u by Dμu. Using the fact the μ is
supported on K , the previous integral can be rewritten as

∫
[a,b]

uDμφdμ = −
∫

[a,b]
gφdμ (8)

where μ also denotes its extension to [a, b] (i.e., the measure μ(A) = μ(K ∩ A)).
As usual, we define the space L p

μ(K ) as the set of all functions u : K → R that
satisfy the condition, ∫

K
|u|pdμ < +∞. (9)

In a similar way, we denote by W 1,p
μ (K ) the following set,

W 1,p
μ (K ) = {

u : K → R, u ∈ L p
μ(K ) : Dμu exists and Dμu ∈ L p

μ(K )
}

, (10)

with H 1
μ(K ) = W 1,2

μ (K ). It is not complicated to prove that the space H 1
μ(K ) is

Hilbert with respect to the inner product,

〈u, v〉 =
∫
K
Dμu(x)Dμv(x)dμ +

∫
K
u(x)v(x)dμ ,

and induced norm

‖u − v‖H 1
μ

= ‖Dμu − Dμv‖L2
μ(K ) + ‖u − v‖L2

μ(K ).

Example: We now consider the Dirichlet problem taking the form,

D2
μu(x) + λu(x) = f (x), u(0) = 0, u(1) = 0. (11)

Following the standard procedure, we obtain an equivalent formulation by first mul-
tiplying both sides by a test function ξ ∈ C1

c (K ). Integration by parts leads to
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∫
K
f (x)ξ(x)dμ(x) =

∫
K
D2

μu(x)ξ(x)dμ(x) + λ

∫
K
u(x)ξ(x)dμ(x)

= Dμu(b)ξ(b) − Dμu(a)ξ(a) +
∫
K
Dμu(x)Dμξ(x)dμ(x)

+ λ

∫
K
u(x)ξ(x)dμ(x)

=
∫
K
Dμu(x)Dμξ(x)dμ(x) + λ

∫
K
u(x)ξ(x)dμ(x) .

We arrive at the variational form,

∫
K
DμuDμξ dμ + λ

∫
K
uξ dμ =

∫
K
f ξ dμ. (12)

If we define the bilinear form,

b(u, v) :=
∫
K
Dμu(x)Dμv(x)dμ(x) + λ

∫
K
u(x)v(x)dμ(x) , (13)

and the linear form,

θ(v) =
∫
K
f (x)v(x)dμ(x) , (14)

then (11) can be written as follows: Find u ∈ H 1
μ(K ) such that

b(u, v) = θ(v) (15)

for any v ∈ H 1
μ(K ). The existence and uniqueness of solutions to (15) can be proved

using the classical Lax-Milgram Theorem.
We conclude this section by showing how our method in [11] may be used to

the 1D eigenvalue-BVP in Eq. (11). Once again assuming that μ is non-atomic, we
define the variable t = F(x) = μ((−∞, x]), where F(x) denotes the cumulative
distribution function associated with μ. Also let x = F−1(t). Using the change of
variable presented in Proposition 2, we obtain

D2
μu(x) + λu(x) = d2

dt2
u(F−1(t))|t=F(x) + λu(x) = 0, u(a) = 0, u(b) = 0 ,

which is equivalent to

d2

dt2
u(F−1(t))(t) + λu(F−1(t)) = 0 .
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By defining g(t) = u(F−1)(t), this can be written as

d2

dt2
g(t) + λg(t) = 0, g(0) = 0, g(1) = 0 .

This, of course, is the classical “vibrating string” eigenvalue problem on [0, 1] with
solutions λn = (nπ)2 and gn(t) = sin(nπ t), n ≥ 1. From these, the solutions to (11)
may expressed in terms of the variable x as simply un(x) = sin(nπF(x)).

In each of Figs. 1, 2 and 3 are shown histogram approximations to the invariant
measureμ and its CDF function Fμ alongwith the first three eigenfunctions un(x). In
Fig. 1, the IFS isw1(x) = x/3 andw2(x) = x/3 + 2/3with probabilities p1 = p2 =
1/2. This IFSP generates a “uniform” distribution on the classical middle-1/3 Cantor
set. The same two IFS maps are employed in Fig. 2, but with probabilities p1 = 2/5
and p2 = 3/5. The largerweight “towards the right” is evident in all portions ofμ, Fμ

(its CDF) and the eigenfunctions. In Fig. 3, the two IFS maps are w1(x) = x/2 and
w2(x) = x/2 + 1/2 with probabilities p1 = 2/5 and p2 = 3/5. Here, the attractor
is [0, 1]. Once again, the unequal weighting produces a (self-similar) “shift” of the
measure to the right.

Note that in both Figs. 1 and 2 the eigenfunctions are illustrated by extending
them to be constant over the “gaps” in the complement of the Cantor set. (These
functions are supported only on the Cantor set itself.) This is done in order to make
their graphs visible.

Fig. 1 “Uniform Cantor measure” μ, CDF Fμ, and first three eigenfunctions un(x) =
sin(nπFμ(x))

Fig. 2 “Non-uniform Cantor measure” μ, CDF Fμ, and first three eigenfunctions sin(nπFμ(x))
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Fig. 3 Non-uniform fully supported measure μ, CDF Fμ, and first three eigenfunctions
sin(nπFμ(x))

3 Some Basics of Iterated Function Systems

In what follows, we let (X, d) denote a compact metric space. An N -map Iterated
Function System (IFS) on X ,w = {w1, . . . , wN }, is a set of N contraction mappings
on X , i.e., wi : X → X , i = 1, . . . , N , with contraction factors ci ∈ [0, 1). (See [1,
9, 12].) Associated with an N -map IFS is the following set-valued mapping ŵ on
the space H (X) of nonempty compact subsets of X ,

ŵ(S) :=
N⋃
i=1

wi (S) , S ∈ H (X) . (16)

Theorem 1 ([9]) For A, B ∈ H (X),

h(ŵ(A), ŵ(B)) ≤ ch(A, B) where c = max
1≤i≤N

ci < 1 (17)

and h denotes the Hausdorff metric on H (X).

Corollary 1 ([9]) There exists a unique set A ∈ H (X), the attractor of the IFS w,
such that

A = ŵ(A) =
N⋃
i=1

wi (A). (18)

Moreover, for any B ∈ H (X), h(A, ŵn B) → 0 as n → ∞.

An N -map Iterated Function System with Probabilities (IFSP) (w,p) is an
N -map IFS w with associated probabilities p = {p1, . . . , pN }, ∑N

i=1 pi = 1. Let
M (X) denote the set of probability measures on (Borel subsets of) X with Monge-
Kantorovich distance dMK : For μ, ν ∈ M (X),

dMK (μ, ν) = sup
f ∈Lip1(X)

[∫
f dμ −

∫
f dν

]
, (19)
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where Lip1(X) = { f : X → R | | f (x) − f (y)| ≤ d(x, y) }. The metric space
(M (X), dMK ) is complete [1, 9].

Associated with an N -map IFSP is a mapping M : M → M , often referred to
as theMarkov operator, defined as follows. Let ν = Mμ for any μ ∈ M (X). Then
for any measurable set S ⊂ X ,

ν(S) = (Mμ)(S) =
N∑
i=1

pi μ(w−1
i (S)) . (20)

Theorem 2 ([9]) For μ, ν ∈ M (X),

dMK (Mμ, Mν) ≤ c dMK (μ, ν) . (21)

Corollary 2 ([9]) There exists a unique measure ν̄ ∈ M (X), the invariant measure
of the IFSP (w,p), such that

μ̄(S) = (Mμ̄)(S) =
N∑
i=1

pi μ̄(w−1
i (S)) . (22)

Moreover, for any ν ∈ M (X), dMK (μ̄, Mnν) → 0 as n → ∞.

Theorem 3 ([9]) The support of the invariant measure μ̄ of an N-map IFSP (w,p)

is the attractor A of the IFS w, i.e., supp μ̄ = A.

The next result is rather technical but is used in our convergence results in Sect. 4.
The proof uses the fact that an IFSP on R induces a natural IFS-type operator on
cumulative distribution functions which is contractive in the uniform norm.

Theorem 4 Let (w,p) be an N-map IFSP with non-atomic invariant measure μ.
Let [a, b] = cov(supp(μ)) and suppose thatwi ([a, b]) ∩ w j ([a, b]) for i �= j either
empty or consisting of one point.

Let μ0 be any initial Borel probability measure supported on [a, b], μn+1 =
Mμn, F : [a, b] → [0, 1] be defined as F(x) = μ([a, x]) and Fn : [a, b] → [0, 1]
be defined as Fn(x) = μn([a, x]). Then Fn → F uniformly on [a, b].

4 Convergence of Solutions

We now discuss a simple convergence result for the above eigenvalue problem. We
restrict our presentation to the simplest case for clarity and brevity; more general
results are certainly possible (including results on the variational problem (12)) but
we leave them to our future paper.
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Take an IFSP (w,p) and initial measure μ0 so that they both satisfy the con-
ditions of Theorem 4 and consider the sequence of eigenvalue problems: Find
u ∈ H 1

μn
([a, b]) so that

∫
[a,b]

Dμn u Dμnvdμn + λ

∫
[a,b]

uv dμn = 0 , for all v ∈ H 1
μn

([a, b]) . (23)

Proposition 4 Given μn and un as above we have that un → u uniformly and u is
solution to the problem:

∫
[a,b]

DμuDμvdμ + λ

∫
[a,b]

uvdμ = 0. (24)

We endwith a small taste of amore general problem. Start withμ0 as the Lebesgue
measure. Then the solutions un to the variational problems,

∫
[a,b]

DμunDμv dμn + λ

∫
[a,b]

unv dμn =
∫

[a,b]
f v dμn , (25)

can be found by using more classical methods involving subproblems with weighted
versions of the Lebesgue measure. Note that by using the definition of the Markov
operator and a change of variable, the first term in (25) can be written as follows,

∫
DμunDμv dμn =

∫
DμunDμv dMnμ0 =

N∑
σ1,...,σn=1

pσ1 pσ2 ...pσn

∫
(DμunDμv) ◦ wσ1 ◦ wσ2 ◦ · · · ◦ wσn dμ0.

Similarly,

λ

∫
uv dμn =

N∑
σ1,...,σn=1

pσ1 pσ2 . . . pσnλ

∫
(uv) ◦ wσ1 ◦ wσ2 ◦ · · · ◦ wσn dμ0

and

∫
f v dμn =

N∑
σ1,...,σn=1

pσ1 pσ2 . . . pσn

∫
( f v) ◦ wσ1 ◦ wσ2 ◦ · · · ◦ wσn dμ0.

Thus the variational problem with respect toμn can be reformulated as follows: Find
un ∈ H 1

μ([a, b])) such that
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N∑
σ1,...,σn=1

pσ1 pσ2 . . . pσn

∫
Ks

(DμunDμv) ◦ wσ1 ◦ wσ2 ◦ · · · ◦ wσn dμ0+

N∑
σ1,...,σn=1

pσ1 pσ2 . . . pσnλ

∫
Ks

(uv) ◦ wσ1 ◦ wσ2 ◦ · · · ◦ wσn dμ0 =

N∑
σ1,...,σn=1

pσ1 pσ2 . . . pσn

∫
( f v) ◦ wσ1 ◦ wσ2 ◦ · · · ◦ wσn dμ0.

Notice that these integrals are all performed with respect to Lebesgue measure.

5 Conclusion

In [11] we introduced the notion of μ-derivative and we discussed how to formulate
differential equations in which the derivative is replaced by a μ-derivative. In this
paper, instead, we have extended this approach to the definition of weak derivative
and to deal with boundary value problems.We have shown an application to a specific
BVP, namely an eigenvalue problem, and presented a variational formulation of this
problem in 1D. Future avenues include an extension of this approach to introduce
weak partial derivatives to analyze variational problems on 2D fractals.
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Revisiting Path-Following to Solve the
Generalized Nash Equilibrium Problem

Tangi Migot and Monica-G. Cojocaru

Abstract In this short paper, we present a generic path-following approach to tackle
the generalized Nash equilibrium problem (GNEP) via its KKT conditions. This
general formulation can be specialized to various smoothing techniques, including
the popular interior-point method. We prove that under classical assumptions, there
exists a path starting from an initial point and leading to an equilibrium of the GNEP.
We also open the discussion on how one can derive numerical methods based on our
approach.

Keywords Generalized Nash equilibrium problem · KKT conditions · GNEP
KKT · Interior-point method · Homotopy

Introduction

In the early 50s [30], Nash introduces a notion of equilibrium, the so-called Nash
equilibrium, for non-cooperative N -player games where the payoff function of each
player depends on the others’ strategies. Later on,ArrowandDebreu [3] extended this
notion to the generalized Nash equilibrium for games where both the payoff function
and the set of feasible strategies depend on others’ strategies. Initially motivated
by economic applications, the notion of equilibrium in games has received a vivid
interest thanks to its various applications in social science, biology, computer science
or energy problems to cite few among others. These applications have motivated the
evolution of the Nash equilibrium concept, and its use, to complex games that now
require a deep understanding of theoretical and computational mathematics.

The study of numerical methods to compute one (or more) equilibrium of the
generalized Nash equilibrium problem (GNEP) started two decades ago in the oper-
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ational research community. Several approaches have been proposed in the literature:
decomposition methods [14, 17, 18, 22, 27, 32], (quasi)-variational inequality type
methods [26], penalty methods [15], Nikaido Isoda-function type methods [31, 33],
ordinary differential equation based methods [6, 28], Newton type approaches [10,
25] and homotopy methods [11, 19]. We refer to [14, 22] for a review of the main
numerical approaches and refer to [8, 29] for computing all the equilibria.

One approach to numerically tackle this problem is to replace each players’ prob-
lemwith its optimality conditions, theKarush-Kuhn-Tucker (KKT) conditions. Then,
we obtain a non-linear equation formed by concatenating the N KKT systems, so-
called GNEPKKT system. In [13], the authors introduced a potential reduction algo-
rithm to solve this system. The method has later been extended to a hybrid potential
reduction algorithm [10, 12] combining the original algorithm with the desired local
convergence properties of the LP-Newton [21]. This approach has been shown to
be successful from the practical point of view but also offers a global convergence
under classical assumptions.

In this short paper, we present a generic homotopy method to tackle the GNEP
KKT system. This general formulation allows us to then specialize this approach
to various smoothing techniques, including the popular interior-point method. We
prove that under classical assumptions, there exists a path starting from an initial
point and leading to an equilibrium of the GNEP.

The paper is organized as follows. In Sect. 1, we introduce the necessary math-
ematical background and the GNEP. In Sect. 2, we present a homotopy method to
solve the GNEP and prove that starting from an initial point, there exists a smooth
path leading to a solution. In Sect. 3, we provide examples of homotopy, and, in par-
ticular, link the interior-point method with the GNEP. Finally, in Sect. 4, we discuss
how this work can be extended to derive numerical methods.

1 The Generalized Nash Equilibrium Problem

The generalized Nash equilibrium problem (GNEP) is characterized by a set of
N players, each of whom controls a finite set of variables xν ∈ R

nν . We denote
by x := (x1, . . . , xN )T the vector formed by all the decision variables, which has
dimension n := ∑N

ν=1 nν . We denote by x−ν the vector formed by all the players’
decision variables except those of Player ν. We sometimes write (xν, x−ν) instead
of x , which does not mean that the block components of x are reordered. The goal
of each player is to minimize their objective function θν(·, x−ν) subject to some
constraint set Kν(x−ν). The key feature here is that each Kν depends on variables
beyond Player ν’s control. An equilibrium is any strategy x∗ where no player can
lower their objective function by unilaterally altering their strategy, i.e. for every
ν ∈ {1, . . . , N } it holds

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν, x∗,−ν), ∀xν ∈ Kν(x
∗,−ν).
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Stated otherwise, an N -player GNEP consists of N optimization problems with the
player ν controlling nν variables and being subject to constraints:

min
xν∈Rnν

θν(x
ν, x−ν) s.t. xν ∈ Kν(x

−ν).

A typical choice of set Kν is described by equality and inequality constraints, for
instance

Kν(x
−ν) := {xν ∈ R

nν : gν(xν, x−ν) ≤ 0, hν(xν, x−ν) = 0}, (1)

where gν : Rn → R
mν and hν : Rn → R

pν . We denote by K (x) := ∏N
ν=1 Kν(x−ν).

Assume for all ν and all x−ν ∈ R
−ν that θν(·, x−ν), gν(·, x−ν) are differentiable

and convex, and, hν(·, x−ν) is affine. Moreover, assume that for all ν a constraint
qualification holds for (1), then the GNEP is equivalent to the system formed by
concatenating the KKT conditions of each optimization problem, [14]. In other
words, x∗ is a generalized Nash equilibrium if and only if for all ν there exists
(λν, μν) ∈ R

mν × R
pν such that the following system is satisfied:

∇xν θν(x
∗) + ∇xν gν(x∗)Tλν + ∇xνhν(x∗)Tμν = 0,

λν
i g

ν
i (x

∗) = 0, λν
i ≥ 0, gν

i (x
∗) ≤ 0, ∀i = 1, . . . ,mν,

hν
i (x

∗) = 0, ∀i = 1, . . . , pν .

(2)

Since the concatenation of the N system (2) is equivalent to theGNEP,wewill use this
system to solve the GNEP. This is a system of size n + p + m where n := ∑N

ν=1 nν ,
m := ∑N

ν=1 mν , and p := ∑N
ν=1 pν .

One constraint qualification to ensure that the GNEP KKT system is a necessary
optimality condition is the GNEP-Slater constraint qualification (SCQ).

Definition 1 We say that GNEP-SCQ holds, if for all ν = 1, . . . , N and for all
x ∈ K (x) it holds:

(∇xνhν
i (x)

)
i=1,pν

are linearly independent,

and there exists x0 such that

gν
i (x

0,ν , x−ν) < 0,∀i = 1, . . . ,mν,

hν
i (x

0,ν , x−ν) = 0,∀i = 1, . . . , pν .

We refer the interested reader to [4, 5, 14] for more discussion on constraint quali-
fications for (1).
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2 A Pathway to the GNEP

Following [35, 36], we study here an homotopy technique for the KKT formulation
of the GNEP. The KKT system (2) can be reformulated as a non-linear equation
H(x, λ, s, μ) = 0, where H : Rn × R

2m+ × R
p → R

n+2m+p is defined as

H(x, λ, s, μ) :=

⎛

⎜
⎜
⎝

(∇xνLν(x, λ, μ))ν=1,N

g(x) + s
h(x)

(λi si )i=1,m

⎞

⎟
⎟
⎠ ,

with Lν(x, λ, μ) := θν(x) + gν(x)Tλν + hν(x)Tμν denotes the Lagrangian func-
tion of the ν-th player, and denoting g(x) := (gν(x))ν=1,N , h(x) := (hν(x))ν=1,N .
In the rest of this section, we will consider a parametrized version of this system
H(x, λ, s, μ, t) : Rn × R

2m+ × R
p × R

l → R
n+2m+p defined as

H(x, λ, s, μ, t) :=

⎛

⎜
⎜
⎝

(∇xνLν(x, λ, μ, t))ν=1,N
g(x, t) + s
h(x, t)

Φ(λ, s, t)

⎞

⎟
⎟
⎠ , (3)

where g(x, t) and h(h, t) are possible regularizations of g(x) and h(x), and Φ :
R

2m+l → R
2m is a smooth homotopy mapping. Examples of such mappings will be

given in Sect. 3.
Denote 0 (resp. 1), the vector of all zeros (resp. ones). We assume that the

parametrized system satisfies

H(x, λ, s, μ, 0) = H(x, λ, s, μ), (4)

and the solution is easy to compute at t = 1.
This formulation encompasses some classical smoothing approach for comple-

mentarity problems such as smoothing ofmerit function or primal-dual interior-point
methods, as discussed in the next section.

The next result follows straightforwardly from the Implicit Function Theorem.

Theorem 1 Assume that ∀(x, λ, μ, s, t) ∈ R
n × R

2m+ × R
p × [0, 1]l , ∇x,λ,μ,s

H(x, λ, s, μ, t) has a full rank (n + 2m + p), and the functions θν, gν, hν are C3 for
all ν. Then, H−1 := {(x, λ, μ, s, t) : H(x, λ, s, μ, t) = 0} is an l-smooth manifold.

The following lemma gives a more specific condition to ensure the full rank
assumption.

Definition 2 We say that GNEP-SCQ(t) holds, if for all ν = 1, . . . , N and for all
x ∈ K (x, t) it holds:

(∇xνhν
i (x, t)

)
i=1,pν

are linearly independent, (5)
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and there exists x0 such that

gν
i (x

0,ν , x−ν, t) < 0,∀i = 1, . . . ,mν,

hν
i (x

0,ν , x−ν, t) = 0,∀i = 1, . . . , pν .
(6)

At t = 0, we recover the classical GNEP-SCQ given in previous section.
From now on, assume that the set of feasible points of (1), denoted X := {x : x ∈

K (x)} ⊆ R
n , is a non-empty compact convex set.

Lemma 1 Assume that for all x ∈ X, θν(·, x−ν) and gν(·, x−ν) is convex, and
hν(·, x−ν) is affine. Besides, assume that, for any t ∈ [0, 1]l , GNEP-SCQ(t) holds
true. Then, H−1 is contained in a compact set.

Proof Consider each parametric optimization problem composing the GNEP KKT
system separately. It is classical from non-linear optimization that the SCQ is equiv-
alent to the Mangasarian Fromovitz constraint qualification (MFCQ) in the convex
case. Then, MFCQ is equivalent to having the set of Lagrange multipliers non-empty
and bounded, according to [23].

Since GNEP-SCQ consists of applying the classical SCQ to each parametric
optimization problem, the previous reasoning gives that the set of Lagrangemultiplier
is non-empty and bounded. �

We assume that there exists a compact convex set D ⊆ X × R
2m+ × R

p such that

H(x, λ, s, μ, t) = 0 =⇒ (x, λ, μ, s) ∈ int(D) or t = 0.

In other words, H is boundary-free for t > 0. Assuming GNEP-SCQ(t) holds for
any t ∈ [0, 1]l , and X is a compact convex set, then this assumption is not restrictive
according to previous lemma.

Theorem 2 Suppose H(x, λ, s, μ, t) is a homotopy system of H(x, λ, s, μ) such
that:

(i) the functions θν, gν, hν are C3, and for all x ∈ X, θν(·, x−ν) and gν(·, x−ν) is
convex, and hν(·, x−ν) is affine;

(ii) for any (x, λ, μ, s, t) ∈ D × [0, 1]l , the jacobianmatrix∇x,λ,μ,s H(x, λ, s, μ, t)
has a full rank (n + 2m + p);

(iii) for all t ∈ [0, 1]l , GNEP-SCQ(t) holds true.
(iv) At t = 1, the system H(x, λ, s, μ, 1) has a unique solution.

The path follows leads from the unique starting point (x0, λ0, μ0, s0) to a solution
of the GNEP.

Proof Theorem1guarantees that, starting from the initial point (x0, λ0, μ0, s0), there
exists a path of solutions of H = 0. This path cannot diverge by (iii) and Lemma 1.
Nor can it go back to the initial point by (iv) and by (ii) it cannot loop. Thus, the
path reach t = 0, which is a solution of the KKT GNEP system, and is therefore a
generalized Nash equilibrium by (i). �
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We refer the reader to [13, Sect. 3] for a discussion on assumptions guaranteeing
the full rank of the GNEP KKT system.

Remark 1 In the case where Kν(x−ν) does not depend on x−ν (classical Nash
games), one way to ensure the uniqueness of the initial point is to add a regularization
term in the objective function of each player in the following way:

(1 − t)θν(x
ν, x−ν) + t

2
‖xν − x0,ν‖2.

Further researchwill focus onweakening someof the assumptions of this theorem.
In particular, assumption (ii) implies that the equilibrium is locally unique, which
might be restrictive. Additionally, the question of using a weaker assumption than
GNEP-SCQ would also be of great interest for the applicability of the homotopy.
Another perspective involves the generalization of this scheme to weaker optimality
conditions than the GNEP KKT, such as Fritz John system [9] inspired by a recent
adaptation of Newton method’s variants [20].

3 Examples of Pathways

In the previous section, we introduced a parametric mapping (3) that can be used in
a path-following approach to tackle the GNEP. Throughout this section, we consider
one parameter t ∈ [0, 1] so that l = 1.

Given an initial point x0 ∈ X , we denote the regularized Lagrangian function of
the ν-th player by

Lν(x, λ, μ, t) := (1 − t)θν(x
ν, x−ν) + t

2
‖xν − x0,ν‖2 + gν(x∗)Tλ + hν(x∗)Tμ.

For a smoothing function Φ : R2m+1 → R
m , consider the following specialization

of (3):

H(x, λ, s, μ, t) :=

⎛

⎜
⎜
⎝

(∇xνLν(x, λ, μ, t))ν=1,N

g(x) + s
h(x)

Φ(λ, s, t)

⎞

⎟
⎟
⎠ . (7)

We now discuss two examples of parametric systems by specialization the function
Φ. Note that assuming for all t > 0 that λi si = 0 =⇒ Φi (λ, s, t) < 0, and starting
the homotopy (t = 1) at (x0, λ0, μ0, s0) with λ0 > 0, s0 > 0, the continuity of the
pathway guarantees that λ and s remains positive at any t > 0 and possibly vanishes
only at t = 0.
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3.1 Smoothing of C-Functions

We call Φ a C-function, [16], if it satisfies the following property:

Φ(a, b) = 0 ⇐⇒ a, b ≥ 0, (aibi )
m
i=1 = 0.

This type of function is particularly useful in the context of complementarity prob-
lems. Classical C-functions are the min function, Φmin(a, b) = min(a, b), and the
Fischer-Burmeister (FB) function,ΦFB(a, b) := a + b − √

a2 + b2. However, these
functions are non-smooth in general and one can use a smoothing techniques to sat-
isfy the assumptions of Theorem 2. For instance, a smoothing of the FB-function
is

ΦFB(a, b, t) := a + b −
√
a2 + b2 + t2.

Werefer the reader to [7] or [16] and references therein.Noting that previous approach
does not exploit the fact that the non-negativity constraints are ensured by the homo-
topy, we can also consider merit function that only regularize the product ab = 0,
see for instance [1].

3.2 Interior-Point Method

Following the classical interior-point method in numerical optimization, consider
the following

ΦI PM(λ, s, t) := (λi si )
m
i=1 − t.

This formulation allows to exploit the very efficient algorithms design for interior-
point methods [34]. Moreover, we can also benefit from the good theoretical
(polynomial-time) complexity of the interior-point method in some specific cases,
see recently [24].

4 How to Follow the Path

Based on the homotopy introduced in the previous sections, we can derive numer-
ical approaches that are following the path. In other words, the method consists of
discretizing the interval [0, 1]l and at each step solving the parametrized problem.
Considering a uniform step-size, a generic algorithm is given in Algorithm 1.

It might not be efficient to solve all the suproblems with high precision since we
only really care about the final solution. One classical approach taking into account
this information is the so-called predictor-corrector method [2]. The idea is to first
use a predictor step, for instance, one iteration of a Newton method. Then, run
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starting vector z0 := (x, λ, s, μ)0 ∈ int(D) such that H(z0, 1) = 0;
N an integer;
ε > 0;
Begin ;
Set k := 1, δ := N−1

N , Δδ = 1
N ;

for k = 1, . . . , N do
Compute zk iterative solution ‖H(z, δ1)‖ ≤ ε using zk−1 as initial point;
δ := δ − Δδ;

end for
return xk

Algorithm 1: Generic path-following algorithm

a corrector step (possibly more than one) to get closer to the path. We left more
sophisticated discussion on implementation such as an effective step-size adaptation,
an efficient incorporation of higher-order predictors, and an efficient implementation
of the corrector step specific to the GNEP KKT system for future works.
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Properties of the Zeros of the Scale-Delay
Equation and Its Time-Variant ODE
Realization

Erik I. Verriest

Abstract An inverse realization problem is solved for a class of analytic functions:
Given a function, find a regular differential polynomial that annihilates it. It is shown
that the minimal annihilator has degree m + 1, where m is the highest multiplicity
of the zeros of x belonging to a class of analytic functions. This generalizes the
realization of Bohl functions as solutions to LTI-ODE’s. With it, the unit solution
of the scale-delay equation (SDE) is approximated as the solution to a second-order
time-variant ODE. Some new identities for the exact zeros of the SDE are proven.

Keywords Differential polynomial · Inverse problem · ODE modeling · Scale
delay equation · Linear time-variant system

1 Introduction

It is well known that the solution of homogeneous finite order linear time-invariant
(LTI) ordinary differential equation consists of a finite sumof (complex) exponentials
multiplied by polynomials in t . Such a function is known as a Bohl function [7].
Zeilberger calls theseC-finite, as the vector spaceC[D] f = span{Di f ; i ≥ 0},where
D denotes the differential operator d

dt , is finite dimensional [13]. In the real case, a
Bohl function is a finite sum of products of polynomials, real exponentials and sines
and cosines.

An inverse problem is associated with the previous: Given any Bohl function,

x(t) =
μ∑

i=1

pi (t)e
λi t , λi ∈ C, such that i �= j ⇒ λi �= λ j , pi ∈ C[t], deg pi = mi ,

(1)
find an annihilator for x(t), i.e., a polynomial operator a(D), with a(s) ∈ R[s], such
that a(D)x = 0. (Here, D = d/d t). This inverse problem does not have a unique
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answer. If a(D) is a solution, i.e., a(D)x = 0, then so is c(D)a(D). In the ring R[D]
this inverse problem specifies an ideal. However, the monic solution of least degree
is unique. The ideal, annihilating x , is then generated by

ao(D)
def=

μ∏

i=1

(D − λi )
mi+1, deg ao =

μ∑

i=1

(mi + 1). (2)

In this paper we ask the following questions:

1. Can one do better for Bohl functions if one allows time-varying coefficients?
2. Can one find a(t,D) if x is non-Bohl?
3. What is the minimal order of a(t,D) solving the problem in (2)? We will see

that the answers to question 1 and 2 are affirmative, under some conditions. We
then proceed with the constructive answer to question 3.

Of course, the ODE should be restricted to have smooth coefficients. Hence we
formulate our generalized inverse problem, restricted to real functions, as follows.

Given a smooth, at least n times differentiable function, x(t), find a linear differ-
ential operator,

a(t,D) = Dn + a1(t)Dn−1 + · · · + an−1D + an(t), (3)

with ai (t) ∈ C(R,R) such that a(t,D)x ≡ 0 for t ∈ (a, b). First, we look in Sect. 2
at some examples to shed light on the problem. In Sect. 3, this problem is completely
solved for functions that are analytic functions in a finite interval. Section4 gives an
extension to infinite intervals, requiring some notions of entire functions. The last
section looks at the solution of the (scalar) scale-delay equation, which can be seen
as the simplest generalization (in Weierstrass’s sense) of the exponential function,
and some new properties of the zeros of this function are described.

2 Time-Variant Differential Annihilators

Zeilberger introduced the notion of a holonomic function [13]. It is a function that is
annihilated by a polynomial inDwith polynomial (in t) coefficients.Define the opera-
tion ofmultiplication by the independent variable byQ. The differential polynomials
considered are then elements from the noncommutativeWeyl algebra generated byQ
and D. Thus x ∈ ker(R[Q])[D] iff x is holonomic. In this work, we shall also allow
the coefficients of the differential polynomials to be rational functions, or power
series. Let’s look at some motivating examples.

First, consider nonvanishing functions. Given x ∈ C1((α, β),R) such that x(t) �=
0 in (α, β), then let

a(t,D) = D − ẋ(t)

x(t)
(4)
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which involves the logarithmic derivative. This form is well-defined and solves the
problem since

(
D − ẋ

x

)
x = 0.

Next, consider the case of a function x having a single simple zero in an interval. If
x ∈ C1((α, β),R) vanishes at t0 ∈ (α, β), the first order operator a(t,D) in (4) is not
well-defined. Restricted to (α, t0), all solutions of (4) are of the form Ax(t), A ∈ C.
Likewise, in (t0, β), the solutions are of the form Bx(t), B ∈ C. It is not necessary
to assume A = B.

Example 1 To shed light on the behavior when x(t) has a simple zero, consider
x(t) = t − 1, in an interval (α, β) containing 1. The naive form leads to a(t,D) =(
D − 1

t−1

)
, and the behaviors consistent with this are:

(
D − 1

t − 1

)
y = 0 ⇒ y(t; A, B) =

{
A(t − 1) if t ∈ (0, 1)
B(t − 1) if t ∈ (1,∞).

Thus, the corresponding Cauchy problem has (weak) solutions (with H(·) the Heav-
iside unit-step function):

A + (B − A)H(t − 1)](t − 1). (5)

Two parameters pin down a particular solution, which alludes to a higher dimension-
ality.With the identity tδ(t) = 0, it is readily verified that the functions (5) are indeed
all annihilated by the non-monic differential operator (t − 1)D − 1. A non-monic
ODE where the highest order coefficient can vanish is known as singular.

Example 2 Consider the function x(t) = t + t2H(t). It has a single zero at t = 0,
and is differentiable with derivative ẋ(t) = 1 + 2t H(t). Its second derivative is not
continuous at zero. Multiplying by t , we obtain the differential polynomial

a(t,D) = tD − 1 + 2t H(t)

1 + t H(t)
. (6)

The equation a(t,D)y(t) = 0 has the general solution y(t) = At for t < 0, and
y(t) = Bt (1 + t) for t > 0, hence is continuous. However, its first derivative has a
jump of B − A at t = 0, and its second derivative has the singular term (B − A)δ(t)
and a jump 2BH(t). Unless y ≡ 0, smoothness is at most of first order. The next
section explores singular cases in more detail.

3 General Results

The examples in Sect. 2 suggest an idea on how to generate a singular time-variant
first order ODE in case the given function x has a single zero in some interval (α, β).
They also showed that it may be prudent to limit the analysis to analytic functions.
The first main result proven here relates to arbitrary non-identically zero analytic
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x(t). By the principle of permanence, this implies that the zeros of x are isolated (no
cluster points). Consequently, a real analytic function has finitely many zeros in any
bounded interval.

Definition 1 The linear differential polynomial a(t,D) = Dn + a1(t)Dn−1 + · · · +
an−1D + an(t) is regular in (α, β) if it is monic (a0(t) ≡ 1) and the coefficients ai (t)
are continuous in (α, β).

Definition 2 A smooth function is called signed in (α, β) if it is nowhere vanishing
in the interval (α, β). Consequently, it has a fixed sign in (α, β).

We shall now restrict the given function x to be real analytic. Recall that x is real
analytic on (α, β) iff x can be extended to a complex analytic (a.k.a. holomorphic)
function on an open set D ⊂ C, which contains the real interval (α, β). The set of
real analytic functions on an interval (α, β) is denoted by Cω((α, β),R).

Theorem 1 If x ∈ Cω((α, β),R) has only single zeros, then there exists a regular
second order linear differential operator a(t,D) such that a(t,D)x = 0.

Proof Let the zeros of x in (α, β) be α < t1 < t2 < · · · < tn < β, and factor x(t) as

x(t) = (t − t1)(t − t2) · · · (t − tn)︸ ︷︷ ︸
=p(t)

xr (t),

where xr (t) is twice differentiable and p(t)D − p(t)ẋr (t)
xr (t)

− ṗ(t), annihilates the given
function x but is not regular. Operate on the left with the first-order differential
polynomial D − η(t), where η ∈ C((α, β),R), to get

(D − η)

(
pD − pẋr

xr
− ṗ

)

= pD2 − p

(
η + ẋr

xr

)
D + p

(
ẋr
xr

η −
(
ẋr
xr

)′)
+

[
ṗ

(
η − ẋr

xr

)
− p̈

]
.

If the term in [ · ] were a multiple of p, we may cast out the “p” from the above
differential operator to obtain amonic one. Thusmotivated, we ask for the solvability
for η and k in

ṗ

(
η − ẋr

xr

)
− p̈

?= kp. (7)

Note that by the Gauss-Lucas theorem, the polynomials p and ṗ have interlaced
roots. This implies that p and ṗ are coprime polynomials. By Bezout’s theorem,
polynomials q0 and k0 exists in R[t] such that

q0(t) ṗ(t) − k0(t)p(t) = 1. (8)
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This is a consequence of the Euclidean divison algorithm. The Diophantine equation

q(t) ṗ(t) − k(t)p(t) = p̈(t) (9)

is then solved by the polynomials q(t) = q0(t) p̈(t) and k(t) = k0(t) p̈(t). Finally,
let

η(t) = q(t) + ẋr (t)

xr (t)
,

so that the regular second order differential polynomial,

a(t,D) = D2 −
(
q0 p̈ + 2

ẋr
xr

)
+

((
ẋr
xr

)
q0 p̈ +

(
ẋr
xr

)2

−
(
ẋr
xr

)′
+ k0 p̈

)
, (10)

annihilates x(t) = p(t)xr (t). �

Theorem 1 explains why in the theory of linear time-variant equations most of
the study centers around second-order equations, culminating in the Sturm-Liouville
problem. Furthermore, single zero-crossings are robust with respect to perturbations.
Higher order zeros are not. We present here an alternative solution method, based on
the following lemma.

Lemma 1 Let p be a monic polynomial of degree n with single real roots t1, . . . , tn.
Then the Bezout equation q0(t) ṗ(t) − k0(t)p(t) = 1 is solved by

q0(t) = Q0t
n−1 + Q1t

n−2 + · · · + Qn−1, (11)

where the coefficients, Qi , are obtained by solving the system of equations, param-
eterized by the real zero set, {t1, . . . , tn},

⎡

⎢⎢⎢⎣

tn−1
1 · · · t1 1
tn−1
1 · · · t1 1
...

...

tn−1
1 · · · t1 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

Q0

Q1
...

Qn−1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

q0(t1)
q0(t2)

...

q0(tn)

⎤

⎥⎥⎥⎦ . (12)

where q0(ti ) = Res
[

1
p(t) , ti

]
. The matrix on the left of (12) is a Vandermonde matrix,

and is nonsingular since the ti are disjoint. The polynomial k0(t) is then identified
from the given Bezout identity.

Proof A polynomial, p, with single real roots at ti , has the property
ṗ(t)
p(t) = ∑

i
1

t−ti
.

Hence the Bezout equation (8) is equivalent to q0(t)
∑n

i=1
1

t−ti
− k0 = 1

p(t) , from
which q0(tk)

∑n
i=1

∏
j �=i (tk − t j ) = 1. Only one term in this sum is non-zero, so it

follows from

q0(tk) = 1∏
j �=k(tk − t j )
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that q0(ti ) = limt→ti
t−ti
p(t) , i.e., the q0(ti ) are the residues of the inverse of p at its

roots, or equivalently, the numerators in the partial fraction expansion of p−1. The
coefficients Qi are determined by the solution of the Vandermonde system (12). �

In Examples 1 and 2, the function x(t) is differentiable, and in both cases x has
a nonzero derivative where x vanishes. Hence the zero has multiplicity one in both
cases. In Example 1, the choice η = 0 yields the second order regular differential
polynomial D2. In example (2) it is not possible to find a second order regular
polynomial, since x is not twice differentiable. This is the reason for restricting
Theorem 1 to analytic functions. Next we generalize to real analytic x possessing
real zeros of higher multiplicity.

Lemma 2 Any x ∈ Cω((α, β),R) can be factored as x = pxb, where p is a monic
polynomial with only real zeros in (α, β) and xb is differentiable and signed in (α, β).
Then (

D − ẋb
xb

)
pxb = ṗxb.

Proof Direct verification. �

The factorization alluded to in Lemma 2 is not unique. The function x(t) = t (t2 +
1) exp(−t) factors in p1(t) = t and xb1(t) = (t2 + 1) exp(−t), or p2(t) = t (t2 + 1)
and xb2(t) = exp(−t) in the interval (−1, 1). This prompts us to define a canonical
factorization:

Definition 3 The factorization of x ∈ Cω((α, β),R) as pxb is canonical in (α, β) if
p is monic and its extension over C has no roots other than those in the real interval
(α, β). This implies that the cofactor xb is signed in (α, β).

By the Gauss-Lucas theorem, all roots of ṗ lie on the real axis, and deg ṗ = deg p −
1. In addition, if p has a root of multiplicity m at t = t0 > 1, then ṗ has a root at t0
of multiplicity m − 1. This leads to:

Theorem 2 Let x = pxb be a canonical factorization of x. If the highest multiplicity
of a root is m, then a regular differential polynomial annihilating x is of the form

a(t,D) = (D2 + a1D + a2)

(
D − ẋb

xb

)m−1

. (13)

Proof Repeated use of Lemma 2 gives
(
D − ẋb

xb

)m−1
pxb = qxb, where q = p(m−1)

has only roots on the real axis withmultiplicity one. By Theorem 1, smooth functions
a1 and a2 exist such that qxb is annihilated by a(t,D). �

Corollary 1 If the highest multiplicity of a zero of x(t) ∈ Cω((α, β),R) is m, then
x is annihilated by a regular differential polynoimal of degree m + 1.
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4 Extensions: From (α, β) to R

If x has a finite number of real zeros, the previous extends directly for (α, β) → R.
But when x has infinitely many zeros, the factor p(t) does not make sense. Still
assuming that x is analytic, the zeros cannot cluster and consequently, if {ti } is

the sequence of zeros, |tn| → ∞. The infinite product
∏∞

n=1

(
1 − 1

tn

)
converges if

∑∞
n=1

1
|tn | converges. Here we invoke Weirstrass’s factorization theorem:

If x is an entire function with zeros, zi , possibly repeated and for some inte-

ger sequence {pn} it holds that
∑∞

n=1

(
t

|zn |
)1+pn

converges ∀t ∈ R, then x(z) =
g(z)

∏∞
n=1 Epi

(
z
zi

)
, where

E0(z) = (1 − z), Ep(z) = (1 − z) exp

(
z + z2

2
+ · · · z

p

p

)
, p = 1, 2, . . .

areWeierstrass’s elementary factors [6], and g is an entire functionwithout real zeros.
The elementary factors are close to 1 if |z| < 1, and p is large, although Ep(1) = 0.

Consider the class of real entire functions (Real means f : R → R) of the form

f (z) = Ce−az2+bzzm
∞∏

k=1

(
1 − z

zk

)
ez/zk ,

with a ≥ 0, b ∈ R, C ∈ R,
∑

k
1

|zk |2 < ∞, zk ∈ C \ {0}, |Im zn| < ∞. Functions in
this class have only real zeros. Examples are sin(z), cos(z), exp(z), exp(−z), and
exp(−z2). This class is known as the Laguerre-Pólya class, denoted LP. We can now
make the proper extension for real analytic x .

Theorem 3 If x, a real entire function, has a factorization x = xe�, with � ∈ LP
and xe has no real zeros, then x(t) satisfies a regular second order ODE in all of R
if all zeros of � have multiplicity one.

Proof Let Z(x) denote the zero-set for x , and let T = Z(x) ∩ R be the set of real
zeros and ZC its complement in Z(x). By the factorization theorem

x(t) =
∏

tn∈T
Epn

(
t

tn

)

︸ ︷︷ ︸
=�(t)

∏

zm∈ZC

Epm

(
t

zm

)
y(t)

︸ ︷︷ ︸
=xe(t)

(14)

where y is entirewithout zeros.Consequently, xe, having no zeros inR is signed.As in

Theorem 1, we try to find a smooth function η such that (D − η)
(
�D − �̇ − � ẋe

xe

)

is regular. This subproblem requires the solution of the Bezout equation
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(
η − ẋe

xe

)
�̇ = −k� = �̈.

The ring of entire functions is a Bezout domain, but not a PID. However, every finitely
generated ideal is principal. Thus a solution exists if � and �̇ are relatively prime.
By Laguerre’s theorem on separation of zeros, this is the case if �(t) belongs to the
Laguerre-Polya class [1]. The proof then follows as in Theorem 1. �

Remark 1 There is no division algorithm to compute η and k for entire functions.
However, if x ∈ LP has only single zeros, then ẋ is well-defined, and does not vanish
at the zeros of x . A solution (a, b) to the Bezout equation ax + bẋ = 1 is given by
a = x

x2+ẋ2 , and b = − ẋ
x2+ẋ2 .

Example 3 Consider the Bessel function, x(t) = J0(t), and recall that J̇0(t) =
−J1(t) and by Bessel’s ODE: J̈0(t) = −J0(t) + J1(t)

t . Applying Theorem 3 yields

(Dl − η(t))(J0(t)D + J1(t)) = J0(t)D2 − η(t)J0(t)D + J̇1(t) − η(t)J1(t).

Solve the Bezout equation, η(t)J1(t) + k(t)J0(t) = J̇1(t) to get

η(t) = J1(t) J̇1(t)

J 2
0 (t) + J 2

1 (t)
+ p(t)J0(t), k(t) = J0(t) J̇1(t)

J 2
0 (t) + J 2

1 (t)
− p(t)J0(t).

The reason why the usual Bessel ODE for J0 does not appear stems from the singu-
larity of the second order Bessel ODE: The monic Bessel ODE has a 1/t-coefficient.

Example 4 Let now x(t) = sin t2. This has a double root at t = 0, all other roots
(±k

√
π) for k = 1, 2, . . . beging simple. In an interval not containing 0, we expect

a second order ODE. Indeed, we can find D2 − 1
t D + 4t2. In order to find a dif-

ferential polynomial that is valid in all of R, consider again (D − η(t))(t cos tD2 −
D + 4t3). Letting η(t) = tη0(t), we get the monic differential polynomials D3 −
t2η0(t)D2 + 4(η0(t) + t2)D − 12t , with its simplest form for η0(t) ≡ 0, given byD3

+ 4t2D + 12t.

5 Application: Scale-Delay Equation

The scale-delay equation, ẋ(t) = Ax(t) + Bx(αt) where α ∈ (0, 1), corresponds to
a delay equation, with delay τ(t) = (1 − α)t , and therefore satisfies the causality
condition τ̇ < 1 [9], and is infinite dimensional. In the limit cases, α ∈ {0, 1}, the
system is finite dimensional. This equation has been studied extensively [3–5, 8, 11,
14, 15]. We first present some known results to set the stage.

Valeev [8] showed that the scalar functional differential equation (FDA)

ẏ(t) = μy(t) + βy(αt), y(0) = 1,
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has a solution given by the series expansion y(t) = 1 + ∑∞
k=1

t k

k!
∏k−1

i=0 (μ + βαi ).

The ratio test shows that this series has an infinite radius of convergence, hence is an
entire function. For μ �= 0, the solution diverges if |β| > |μ| and converges if |β| <

|μ|. A particularly interesting case is μ = 0, β = 1: The unit solution (y(0) = 1)
(a.k.a. the deformed exponential) is an entire function of the LP-class

y(t) =
∞∑

k=0

αk(k−1)/2

k! t k
def= Eα(t). (15)

which satisfies 0 < y(t) < exp(tε) for all ε > 0, and y(t) ≥ t
ln ln t
2 ln α

+o(ln t). It follows
that for μ = 0 and arbitrary β, the unit solution is the time-scaled version Eα(βt).
Perhaps surprisingly, the solution Eα(−t) for β = −1 oscillates and diverges. Its
zeros are asymptotically given by tk = k

αk−1 (1 + ψ(α)k−2 + o(k−2)), where ψ(α)

is the generating function of the sum-of-divisors function σ(k) [12, 15]. Since the
order, infr>0{Eα(−z) ∼ O(exp |z|r )}, of Eα(z) is zero, Hadamard’s factorization
theorem yields the simple form in terms of the roots {tk > 0} of Eα(−t):

Eα(−t) =
∞∏

k=1

(
1 − t

tn

)
. (16)

Consider the series of inverse powers of the roots

Sn =
∞∑

k=1

1

tnk
, n = 1, 2, . . . .

Let also cn denote the coefficient of tn in Eα(t). Using the extensions of Newton’s
identities for Weierstrass products, [2] one finds

Sn − c1Sn−1 + c2Sn−2 − · · · + (−1)n−1cn−1S1 + (−1)nncnS0 = 0, S0 = 1. (17)

Theorem 4 The sums of inverse powers of the zeros, Sn, can be recursively com-
puted, and give in particular the sequential relations [5]

S1 = 1

S2 = 1 − α

S3 = 1

2
(1 − α)2(2 + α)

S4 = 1

6
(1 − α)3(6 + 6α + 3α2 + α3).
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Fig. 1 Coefficients a1 and
a2 of the LTV-ODE
equivalent to the scale delay
equation (α = 0.5)

In addition, the zeros satisfy

∞∑

k=1

1

αtk − t�
= 0, � = 1, 2, . . . ; 1

tk

∏

� �=k

t� − tk
t� − αtk

= 1 − α. (18)

Proof Substitute Hadamard’s expansion in the FDE, and evaluate at t = t�
α
and tk

respectively. �

Since ẋ(t) = −x(αt), for 0 < α < 1 has only positive real zeros all with multi-
plicity one, by Theorem 3 x must obey a second order linear time-variant ODE.

ẍ(t) + a1(t)ẋ(t) + a2(t)x(t) = 0.

Numerical solution of the FDE leads to the approximation of a1 and a2 in Fig. 1.
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Covering Large Complex Networks by
Cliques—A Sparse Matrix Approach

W. M. Abdullah, S. Hossain, and M. A. Khan

Abstract The Edge Clique Cover (ECC) problem is concerned with covering edges
of a graph with the minimum number of cliques, which is an NP-hard problem. This
problem has many real-life applications, such as, in computational biology, food
science, efficient representation of pairwise information, and so on. In this work
we propose using a compact representation of network data based on sparse matrix
data structures. Building upon an existing ECC heuristic due to Kellermanwe proffer
adding vertices during the clique-growing step of the algorithm in judiciously chosen
degree-based orders. On a set of standard benchmark instances our ordered approach
produced smaller sized clique cover compared to unordered processing.

Keywords Adjacency matrix · Clique cover · Intersection matrix · Vertex
ordering · Sparse graph

1 Introduction

Identification of and computation with dense or otherwise highly connected sub-
graphs are two of the kernel operations arising in areas as diverse as sparse matrix
determination and complex network analysis [1, 6, 9]. Identification of special inter-
est groups or characterization of information propagation are examples of frequently
performed operations in social networks [8]. Efficient representation of network
data is critical to addressing algorithmic challenges in the analysis of massive data
sets using graph theoretic abstractions. In this paper, we propose sparse matrix data
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structures to enable compact representation of graph data and use an existing sparse
matrix framework [5] to design efficient algorithms for the ECC problem.

Let G = (V, E) be an undirected connected graph with |V | = n vertices and
|E | = m edges. A clique is a subset of vertices such that every pair of distinct vertices
are connected by an edge in the induced (by the subset of vertices) subgraph. An
edge clique cover of size k in graph G is a decomposition of set E into k subsets
C1,C2, . . . ,Ck such that Ci , i = 1, 2, . . . , k induces a clique in G and each edge
{u, v} ∈ E is included in some Ci . A trivial clique cover can be specified by the set
of edges E with each edge being a clique. The problem of finding a clique cover with
minimum number of cliques (and many variants thereof) is known to be NP-hard [7].

In the literature, the ECC problem and its variants have been extensively investi-
gated from theoretical perspectives and have found applications in disparate areas. In
[3], the authors describe a branch-and-bound approach to determine sparse Jacobian
matrices. Given the sparsity pattern of the Jacobian, the problem is to find a partition
of the columns into structurally orthogonal column groups of smallest cardinality.
Blanchette et al. [15] study the protein complex identification problem from compu-
tational biology, where the problem is to identify overlapping protein complexes in
protein-protein interaction networks. When modelled as a graph problem, the goal is
to decompose the network into a smallest collection of cliques. Several polynomial
time algorithms have been proposed in the paper for graphs with bounded tree-width.
In sensory science, a seemingly unrelated application area, a frequently occurring
task is concerned with the concise representation of pairwise interaction of products
with many attributes [14, 16]. This pairwise information can be given in a tabular
form called “compact letter display”. The challenge is to minimize redundant infor-
mation. It has been shown that this problem can be posed as a variant of the ECC
problem [16].

Many heuristics have been proposed in the literature to approximately solve ECC
problem while there are only few exact methods which are usually limited to solving
small instance sizes. A recent approach is described by Gramm et al. in [10], where
they introduce and analyze data reduction techniques to shrink the instance size
without sacrificing the optimal solution. The main idea is that with small enough
instance sizes, exact algorithms may become feasible.

In this paper we propose a compact representation of network data based on sparse
matrix data structures [3] and provide an improved algorithm based on an existing
heuristic for finding clique cover. Our approach is based on the simple but critical
observation that for a sparse matrix A ∈ R

m×n , the column intersection graph of A
is isomorphic to the adjacency graph of A�A, and that the row intersection graph
of A is isomorphic to the adjacency graph of AA� [5]. Consequently, the subset of
columns corresponding to nonzero entries in row i induces a clique in the adjacency
graph of A�A, and the subset of rows corresponding to nonzero entries in column
j induces a clique in the adjacency graph of AA�. Note that, matrices A�A and
AA� are most likely dense even if matrix A is sparse. In this work, we exploit the
connection between sparse matrices and graphs in the reverse direction. We show
that given a graph (or network), we can define a sparse matrix, intersection matrix,
such that graph algorithms of interest can be expressed in terms of the associated
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intersection matrix. This structural reduction enables us to use existing sparse matrix
computational framework to solve graph problems [5]. This duality between graphs
and sparsematrices has also been exploitedwhere the graph algorithms are expressed
in the language of sparse linear algebra [1, 4]. However, they use adjacency matrix
representation which is different from our intersection matrix representation.

We organize the rest of the paper in the following way. In Sect. 2, we present our
main theoretical result that allows us to pose the ECC problem as amatrix determina-
tion problem. This is followed by a brief description of the clique-cover heuristic of
[11]. Next, we describe algorithms for preprocessing the vertices according to their
degree in the graph. Results from numerical experiments on a standard collection of
test instances are provided in Sect. 3. Finally, the paper is concluded in Sect. 4.

2 Compact Representation and Edge Clique Cover

Classical data structures adjacency matrix (full matrix storage) and adjacency list
for representing graphs are inadequate for efficient computer implementation of
many important graph operations. Adjacency matrix is costly for sparse graphs and
typical adjacency list implementations employ pointers where indirect access leads
to poor cache utilization. In a typical adjacency list implementation of undirected
graphs, each edge is represented twice. An alternative adjacency list representation
of undirected labelled graph avoids this redundancy by storing each edge only once,
where the edges incident on each vertex are stored in sorted order of vertex labels
[17]. The intersection matrix representation below enables efficient representation of
pairwise information where the edges are implicit. Moreover, it allows us to utilize
computational framework DSJM to implement the ECC algorithms.

2.1 Intersection Matrix

We require some preliminary definitions. The adjacency graph associated with a
matrix J ∈ R

n×n is a graphG = (V, E) in which for each column or row k of J there
is a vertex vk ∈ V and J (i, j) �= 0 implies {vi , v j } ∈ E . The column intersection
graph associated with matrix J ∈ R

m×n is a graph G = (V, E) in which for each
column k of J there is a vertex vk ∈ V and {vi , v j } ∈ E whenever there is a row l
for which J (l, i) �= 0 and J (l, j) �= 0.

LetG = (V, E) be an undirected and connected graphwithout self-loops ormulti-
ple edges between a pair of vertices. The adjacency matrix A(G) ≡ A ∈ {0, 1}|V |×|V |
associated with graph G is defined as,

A(i, j) =
{
1 if {vi , v j } where i �= j is in E
0 otherwise
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Unlike the adjacency matrix which is unique (up to a fixed labeling of the vertices)
for graphG, there can bemore than one (column) intersection matrix associated with
graphG. We exploit this flexibility to store a graph in a structured and space-efficient
form using an intersection matrix. Let the edges in E be labelled e1, . . . , e|E |. An
intersection matrix associated with graph G = (V, E) where |V | = n and |E | =
m, is a matrix C ∈ {0, 1}m×n where for edge ek = {vi , v j }, k = 1, . . . ,m we have
C(k, i) = C(k, j) = 1, and all other entries of matrix C are zero.

Let C ∈ {0, 1}m×n be the intersection matrix as defined above associated with a
graph G = (V, E). Consider the product B = C�C .

Theorem 1 The adjacency graph of matrix B is isomorphic to graph G.

Proof Consider an arbitrary edge ek = {vi , v j } of graph G. By construction, row
k of the intersection matrix C has C(k, i) = C(k, j) = 1 and C(k, l) = 0 for l /∈
{i, j}. Since there are no multiple edges in G, there is one and only one such row k
corresponding to edge ek . Element B(i, j) is the inner product of column vectors i
and j of matrixC . The inner product is 1 if and only ifC(k, i) = C(k, j) = 1. Thus,
ek is in E if and only if B(i, j) = 1 implying that it is an edge connecting vertices
vi and v j of the adjacency graph of matrix B. This proves the theorem. �

Theorem 1 establishes the desired connection between a graph and its sparse matrix
representation. For a vertex v ∈ V we define by Nv = {w ∈ V | {v,w} ∈ E} the set
of its neighbors. The degree of a vertex v, denoted d(v), is the cardinality of set Nv .
The following result follows directly from Theorem 1.

Corollary 1 The diagonal entry B(i, i) where B = C�C and C is the intersection
matrix of graph G, is the degree d(vi ) of vertex vi ∈ V, i = 1, . . . , n of graph G =
(V, E).

Intersection matrix C defined above represents an edge clique cover of cardinality
m for graph G. Each edge {vi , v j } constitutes a clique of size 2. In the intersection
matrix C , the clique (edge) is represented by row k with C(k, i) = C(k, j) = 1 and
other entries in the row being zero. In general, column indices l in row k where
C(k, l) = 1 constitutes a clique on vertices vl of graph G. Thus the ECC problem
can be cast as a matrix compression problem.

ECC Matrix Problem Given A ∈ {0, 1}m×n determine A′ ∈ {0, 1}k×n with k mini-
mized such that the intersection graphs of A and A′ are isomorphic.

Figure1a displays a graph on 5 vertices. Figure1b depicts an intersection matrix
representing an edge clique cover of cardinality 7 (number of edges). In the figure a
dark dot represents numerical value 1 while a blank entry is a zero. The intersection
matrix in Fig. 1c corresponds to an edge clique cover with three cliques. This is
also the minimum clique cover for the given graph. To verify that it represents a
clique cover, we examine each row of the matrix. Row 1 has dots in columns 1, 3, 4
representing the clique on vertices 1, 3, 4. Row 2 represents the clique on vertices
2, 4, 5 and the remaining edge is covered by row 3.
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Fig. 1 ECC as a sparse matrix problem

2.2 A Heuristic for Clique Cover

The heuristic algorithm that we have implemented for the ECC problem is based on
an algorithm due toKellerman [11]. For ease of presentationwe discuss the algorithm
in graph theoretic terms. However, our computer implementation uses sparse matrix
framework of DSJM [5] and all computations are expressed in terms of intersection
matrices.

There is a close connection between the clique cover of a graph G = (V, E)
and the coloring of vertices of the complement graph Ḡ = (V, Ē) where Ē =
{{u, v} | {u, v} /∈ E}. In the classical graph coloring problem, vertices of the graph
are partitioned into subsets (colors) such that pair of vertices connected by an edge
are in different subsets. The optimization version asks for the partition with smallest
number of subsets. It is well-known that the greedy coloring heuristic is sensitive to
the order in which the vertices are processed (see [3]). Consider an optimal coloring
of graph G and order the vertices in nondecreasing color index. It is not difficult to
see that the greedy heuristic on graph G with the given order of the vertices produces
optimal coloring. We experimentally verify that the ECC heuristic is sensitive to
the ordering in which the vertices are processed. We employ three vertex ordering
algorithms from the literature: Largest-first order (LFO), Smallest-Last Order (SLO),
and Incidence-degree Order (IDO) prior to applying the heuristic [11]. We recall that
d(v) = |Nv| denotes the degree of vertex v in graph G = (V, E).

• (LFO) Order the vertices such that {d(vi ), i = 1, . . . , n} is nonincreasing.
• (SLO) Assume that the last n − k vertices {vk+1 . . . , vn} in smallest-last order
have been determined. The kth vertex in the order is an unordered vertex whose
degree in the subgraph induced by
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V \ {vk+1, . . . , vn}

is minimum.
• (IDO)Assume that the first k − 1 vertices {v1 . . . , vk−1} in incidence-degree order
have been determined. Choose vk from among the unordered vertices that has
maximum degree in the subgraph induced by

{v1, . . . , vk}

Next, we present the algorithm for the ECC problem.
Let the vertices of graph G = (V, E) be ordered in one of SLO, LFO, and IDO:

v1, . . . , vn . Also, let VP = {v1, . . . , vi−1} denote the vertices that have been assigned
to one ormore cliques {C1, . . . ,Ck−1} and vi be the vertex currently being processed.
Denote by set

W = {v j | j < i and {vi , v j } ∈ E}

the neighbors of vi in VP . The task is to assign vi to one or more of the existing
cliques (or create a new clique) such that each edge incident on vi that connects to a
vertex in VP is covered by a clique. There are three possibilities:

Case I. W is empty: Create a new clique Ck = {vi }
Case II. W is not empty:

Case a. There is a cliqueCl, l ∈ {1, . . . , k − 1} such thatW = Cl : add vi toCl

Case b. There is no such clique:
i. If Cl ⊂ W for some l, add vi to Cl together with uncovered edges

from VP . Update W by removing edges that got covered.
ii. If there are uncovered edges after step II(b(i)) create a new clique

from an existing clique and add vi and the incident edges until all
the edges of W are covered.

The complete algorithm is presented below.

VertexOrderedECC (W , list)
1: k ← 0 	 Number of cliques
2: for index = 1 to N do 	 N denotes the number of vertices
3: i ← list[index] 	 list contains the vertices in a predefined order
4: if W = ∅ then 	 W ← { j | j < i and {i, j} ∈ E}
5: k ← k + 1
6: Ck ← {i} 	 Ck denotes kthclique
7: else
8: U ← ∅ 	 Contains neighbours of i , which are in the cliques
9: for l = 1 to k do
10: if Cl ⊆ W then
11: Cl ← Cl ∪ {i}
12: U ← U ∪ Cl

13: if U = W then
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14: break
15: W ← W \U
16: while W �= ∅ do
17: Max ← ∅
18: MI Nl ← 0
19: for l = 1 to k do
20: if |Max | < |(Cl ∩ W )| then
21: Max ← (Cl ∩ W )

22: MI Nl ← l
23: l ← MI Nl

24: k ← k + 1
25: Ck ← (Cl ∩ W ) ∪ {i}
26: W ← W \ Cl

27: return C1,C2, ...,Ck

We argue that the cliques C1,C2, ...,Ck returned by the algorithm constitutes an
edge clique cover for the input graph G.

Themain for-loop (line 2) reads the next vertex (i) from the ordered list of vertices
and tries to include it in one of the existing cliques, or creates newclique(s)with vertex
i included. If vertex i has no neighbor (W = ∅) in VP , a new clique gets created (line
6). If the neighbor setW is not empty, the algorithm tries to identify existing cliques
Cl that are subsets ofW and assigns vertex i to each of them (lines 9 – 15,Case 2. a.
and Case 2. b. i.). This step covers edges of the form {i, i ′} where i ′ ∈ Cl,Cl ⊂ W .
Finally, the while-loop (line 16) covers the remaining edges (Case II. b. ii.) of
the form {i, i ′} where i ′ ∈ S, S = W ∩ C ′

l , l
′ ∈ {1, 2, . . . , l} with |S| maximum. The

maximality on |S| ensures that each newly created clique covers largest number of
uncovered edges. For a graph G = (V, E) each edge is a clique of size 2 so that set
E constitute an (trivial) ECC. Therefore, each edge of input graph G eventually gets
assigned to one of the cliques output by algorithm VertexOrderedECC.

The above discussion can be summarized in the following result.

Lemma 1 The collection {C1,C2, . . . ,Ck} computed by Algorithm VertexOrdere-
dECC constitutes an ECC of graph G.

3 Numerical Testing

In this section, we provide results from numerical experiments on selected test
instances. The graph instances are chosen from standard benchmark collections
that are used in the literature for ECC and closely related graph problems such as,
graph coloring, graph partitioning, etc. The data set for the experiments is obtained
from the University of Florida SparseMatrix Collection [12]. Instances chesapeake,
delaunay_n10 to 13, as-22july06 are from “10th DIMACS Implementation Chal-
lenge” benchmark collection for graph clustering and graph partitioning. Instances
ca-GrQc, as-735, Wiki-Vote, p2p-Gnutella04, Oregon-1 are from “Stanford Net-
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work Analysis Platform (SNAP)” collection. These instances represent social net-
works from variety of apllications. We also consider the data set for Compact Letter
Displays used in [13]. The experiments were performed using a PC with 3.4G Hz
Intel Xeon CPU, 8 GB RAM running Linux. The implementation language was C++
and the code was compiled using −O2 optimization flag with a g++ version 4.4.7
compiler.

A short description of the data set for our experiments is as follows:

• chesapeake: Symmetric, undirected graph and contains 39 vertices and 170 edges.
• delaunay_n10 to 13: The graphs are symmetric and undirected. The minimum
degree is 3 for all of them and the maximum degrees are 12, 13, 14 and 12 respec-
tively.

• as-22july06: The graph is symmetric and undirected having maximum degree
2.4K and minimum degree 1.

• ca-GrQc: General Relativity and Quantum Cosmology network covers scientific
collaboration between authors in this field. This graph contains an undirected edge
from i to j , if author i co-authored a paper with author j .

• as-735: An autonomous system which represents a communication network of
who-talks-to whom.

• Wiki-Vote: This data set contains voting data of Wikipedia till January 2008
where the contest was between volunteers to become one of the administrator.
There is a directed edge from node i to node j if user i voted for user j .

• p2p-Gnutella04: A snapshoot of Gnutella peer-to-peer file sharing network on
August 04, 2002.Adirected graphwhere nodes represent hosts and edges represent
connection between hosts.

• Oregon-1: Undirected graph where autonomous system peering information is
inferred from Oregon route-views on May 26, 2001.

• Triticale, winter wheat and oilseed rape yield trials: These instances are from
the application “compact letter display” [13] to test ECC algorithms.

Test results for the selected test instances from group DIMACS10 and SNAP are
reported in Tables1 and 2 respectively. Test results for Compact Letter Display are
reported in Table3. Here, N represents the number of vertices and M represents the
number of edges of the graph. |C | represents number of cliques required to cover all
the edges.

For comparison we also show the ECC results where no specific vertex ordering is
employed, in addition to ordering algorithms LFO, SLO, and IDO. Column labelled
Natural reports the ECC result when the vertices are processed in the order they are
specified in the data file. On DIMACS10 instances, smallest last order gives the best
result except for instance named as-22july06. On SNAP instances largest-first
order is the overall winner. Note that on both sets of test instances ordered approach
produces strictly better ECC compared with Natural. We remark that OCaml
implementation from [2] fails (hangs) to run on DIMACS10 and SNAP instances.
As such no comparison of the ECC quality (size) can be made. Table3 displays
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Table 1 Test results for DIMACS10 matrices

Matrix Natural SLO LFO IDO

Name N M |C | |C | |C | |C |
chesapeake 39 170 90 79 83 80

delaunay_n10 1024 3056 1300 1223 1302 1268

delaunay_n11 2048 6127 2610 2482 2617 2527

delaunay_n12 4096 12264 5228 4973 5264 5061

delaunay_n13 8192 24547 10489 9937 10541 10121

as-22july06 22963 48436 34695 34772 34568 34666

Table 2 Test results for SNAP matrices

Matrix Natural SLO LFO IDO

Name N M |C | |C | |C | |C |
ca-GrQc 5242 14496 3791 3879 3777 3900

as-735 7716 13895 9055 9108 8985 9038

Wiki-Vote 7115 103689 43497 45530 42482 45491

p2p-
Gnutella04

10876 39994 38475 38474 38475 38474

Oregon-1 11174 23409 15736 15807 15631 15857

Table 3 Test results for compact letter displays [13]

Graph Degree
ordered
method

Insert-
absorb

Clique-
growing

Search tree

Name N M |C | |C | |C | |C |
Triticale 1 13 55 4 4 4 4

Triticale 2 17 86 5 5 5 5

Wheat 1 124 4847 50 56 50 49

Wheat 2 121 4706 48 50 48 48

Wheat 3 97 3559 32 39 32 31

Rapeseed 1 47 576 20 20 20 20

Rapeseed 2 57 1040 20 20 20 20

Rapeseed 3 64 1260 24 24 24 24

Rapeseed 4 62 1085 19 19 19 19

Rapeseed 5 64 1456 19 19 19 19

Rapeseed 6 70 1416 27 27 27 27

Rapeseed 7 74 1758 26 29 27 25

Rapeseed 8 59 1128 17 17 17 17

Rapeseed 9 76 1835 30 30 30 30
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results using our degree ordered method and two other algorithms discussed in [13].
Insert Absorb and Search Tree require exponential running time while
Clique Growingmethod is an improved implementation of the heuristic of [11].
Search Tree is an exact method that produces optimal ECC. Degree Order
Method reports the best ECC of our implementation. It is evident from the table
that our method produces optimal or near optimal (off by 1) ECC.

4 Conclusion

In this work, we have shown that the connection between large networks and their
sparse matrix representation can be exploited to employ efficient techniques from
sparse matrix determination literature in graph algorithms [18, 19]. The edge clique
cover problem is recast as a sparse matrix determination problem. The notion of
intersection matrix provides a unified framework that facilitates compact represen-
tation of graph data and efficient implementation of graph algorithms. The adjacency
matrix representation of a graph can potentially have many nonzero entries since it is
the product of an intersection matrix with its transpose. We have shown that, similar
to graph vertex coloring problem, the ECC problem is sensitive to ordering of the
vertices.
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Comparing Regularization Techniques
Applied to a Perceptron

Bryson Boreland, Herb Kunze, and Kimberly M. Levere

Abstract Overfitting is a common problem that is faced when dealing with neural
networks, especially as computers continue to get more powerful, and we have the
capability to train larger networks with many free parameters. As a result there is a
pressing need to develop and explore different techniques to reduce overfitting; we
explore the impact of different regularization terms, and their combinations, in the
training phase of a single-perceptron neural network.

Keywords Perceptron · Machine learning · Regularization · Overfitting · Neural
network

1 Introduction

Current research [4] suggests that regularization can help to avoid overfitting a neu-
ral network and improve how it handles new and unobserved data. For example, [5]
illustrates that an �0 regularization approach smoothes a network model and accel-
erates its training. Such an approach can be extended to other types of networks
beyond traditional Artificial Neural Networks (ANN) such as Convolutional Neural
Networks (CNN) and Interval Neural Networks (IANN), which are both important
tools in deep learning. In this paper, we will discuss the single perceptron model and
perform a quantitative comparison of two commonly used regularization techniques,
�1 and �2.
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2 Background

In the 1950s and 1960s, Frank Rosenblatt developed the perceptron model [2],
inspired by early work done by McCulloch and Pitts [1]. In this section, we present
some background information and notation on perceptrons. We note that there are
moremodernmodels that are used in present day, such as the commonly used sigmoid
neuron, but in this paper we stay focused on the perceptron.

2.1 The Simple Perceptron Model

The simple perceptron model is made up of a single neuron containing two layers,
an input layer and an output layer, that maps a specified number of inputs into a
single output. The main objective of the perceptron is to classify data that can be
separated into two different classifications. We can formally define the model using
vector notation.

Definition 1 Let x = [x1, . . . , xn]T be a vector of inputs, w = [w1, . . . ,wn]T be a
vector of weights, and b be the bias (or threshold). Then the output, y, of a perceptron
model can be given by,

y =
⎧
⎨

⎩

1, if wT x =
n∑

i=1
wi xi ≥ b

0, otherwise,
(1)

where n ∈ Z
+ is the specified number of inputs. The weights and bias of a single

perceptron model can be either boolean or real-valued and can only be used to solve
linearly separable problems. Figure1 illustrates a simple perceptron model.

Remark 1 We typically associate the input x0 = 1 with the bias value b and rewrite
b as w0. Equation (1) then becomes,

y =
⎧
⎨

⎩

1, if wT x =
n∑

i=0
wi xi ≥ 0

0, otherwise.
(2)

Fig. 1 A visualization of the
simple perceptron model
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In order to calculate the weights and biases efficiently we need an algorithm that
updates the new values and a way to quantify if our algorithm is finding values that
are optimal. The following section will explore these ideas.

3 Finding Weights and Biases

This section will establish an algorithm to help find the “best” choice (the outputs
that are achieved are close to the expected outputs) of weights and define a way to
measure the goodness of a particular choice of weights.

3.1 The Loss Function

If we provide our perceptron with a set of inputs and outputs or a “training” set, then
we want to find an algorithm that can adjust our weights and bias based on the inputs
so that we get the expected output. When the weights of our perceptron have been
initialized, we can begin calculating our outputs with the given inputs but the outputs
will not be as expected.

A cost function gives a measure of how good our choice of weights and bias are,
given our training set and expected outputs. One way to compute an overall cost is
to use the sum of squared errors (SSE),

C =
∑

i

(
yi − ŷi

)2
, (3)

where i is a training example, yi is the expected outcome for the selected training
example i , and ŷi is the predicted outcome based on the current choice of weights
and bias. In this paper, we restrict our discussion to convex functions similar to the
function introduced in (3).

Our cost is a function of two types of variables, our inputs and our weights on our
perceptron. Since we do not have a choice of what our data inputs are, we minimize
the cost by changing our weights. The process of seeking weights that minimize the
cost function is referred to as “training” the perceptron. Of course, we could use a
brute forcemethod in order to find the best solution of weights for our perceptron, but
with complexity and increased dimensionality come very expensive computations.
Instead we can use gradient descent.
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3.2 Gradient Descent

There are a few optimization techniques that can be used to minimize the cost func-
tional and choose optimal weights. One such method is known as gradient descent
which is an iterative process that takes steps in a descending direction as defined by
the negative of the gradient.

Assume we have a perceptron with weights wi , i = 1, . . . , n, and we want to find
which direction to move the weight values in order to minimize a cost function C .
We know that the rate of change of the cost function with respect to the weights is
as follows,

�C = ∂C

∂w1
�w1 + · · · + ∂C

∂w2
�wn

= ∇C · �w, (4)

where ∇C =
(

∂C
∂w1

, . . . , ∂C
∂wn

)
and �w = (�w1, . . . ,�wn). Using equation (4) we

can now make a choice for �w that decreases ∇C . We choose,

�w = −η∇C ,

where the learning rate (or step size) η > 0 is small. To see whywe choose this value,
notice

�C = ∇C · �w

= ∇C · (−η∇C)

= −η‖∇C‖2
≤ 0

since η > 0 and ‖∇C‖2 ≥ 0.We use this choice of�w to create the following update
rule for the perceptron’s weights

w′
i = wi − η∇C . (5)

If the cost function is non-convex, then the gradient descent algorithm could stop at
local minimums rather than the global minimum. In the exploration of this paper, we
have chosen a quadratic and therefore convex cost function.

4 Overfitting and Regularization

Modern day neural networks often have a large number of parameters (weights and
biases), which can cause a well-known problem of overfitting. In this section we
discuss how to combat overfitting by using a technique called regularization. Before



Comparing Regularization Techniques Applied to a Perceptron 133

Fig. 2 Example of an appropriately fitted model and an overfitted model

explaining how regularization affects the cost function, a visual example will be
introduced to help with understanding what regularization does to our model.

Suppose we have two classes of data that our network is trying to classify, X ’s
and O’s, by fitting a curve in 2D space. Overfitting is when our neural network
attempts to fit a line to include every single data point of X on one side of the line
and none of the O data points. This can be seen on the righthand side of Fig. 2. The
reason why this fit is not appropriate is while our model is trying to find the important
properties in the training dataset, it is finding every single possible property. Thus,
the application of the resulting neural network to a general dataset can give a poor
prediction.

Now, switching to the lefthand side of Fig. 2 we see that an appropriately fitted
model generalizes the data well. This sort of outcome is the desired result from using
regularization. Mathematically, recalling our SSE cost function (3), we can give a
general formula for our new cost function,

Cr = C + λ · R (6)

where R is a vector of regularization terms of choice and λ > 0 is the regularization
coefficient vector that determines the weights of each regularization term. Of course,
there are different regularization terms that can be added to the cost function which
all have unique properties.

In this work, we consider the use of �1 and/or �2 regularization terms, giving

Cr = C + λ · R
= C + λ1‖w‖1 + λ2‖w‖22
=

∑

i

(
yi − ŷi

)2 + λ1

∑

i

|wi | + λ2

∑

i

w2
i , (7)
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where λ1 ≥ 0 and λ2 ≥ 0 are the regularization coefficients for the �1 and �2 terms,
respectively. Additionally, we choose to normalize the coefficients by multiplying
(7) by 1

1+λ2+λ2
to get

C̄r = γ · C + γ1 · ‖w‖1 + γ2 · ‖w‖22,

where γ > 0, γ1, γ2 ≥ 0, and γ + γ1 + γ2 = 1. When γi = 0, we do not employ �i
regularization, i = 1, 2.

We comment that, as the word implies, regularization is typically employed to
make an ill-behaved objective functions more regular. In this work, our initial cost
function C is extremely well-behaved, so we should view the regularization terms
instead as perturbations that we hope can improve the training of the network.

5 Results and Discussion

We consider the MNIST dataset, introduced by [3], consisting of images that are
scanned handwriting samples from 250 people, where half were US Census Bureau
employees, and the other half were high school students. The images are greyscale
and 28 by 28 pixels in size. The perceptron takes 784 pixels as 784 inputs and then
has a single output classifying the image as either a 1 or a 0. An example of the data
set can be seen in Fig. 3.

We are interested in how the value of the cost function C changes as we adjust
the values of γ1 and γ2 in C̄r for the weight update rule.

When γ1 > 0 and γ2 = 0 we see from Fig. 4a that with a small amount of γ1 added
to the cost function our error, or value of our cost function, is 0. As we increase γ1 to
add more weight to our �1 term, the error value grows which suggests that too much
γ1 over penalizes the weights when updated.

On the other hand, when γ2 > 0 and γ1 = 0 we see from Fig. 4b that we have
more choices of our γ2 value while still keeping the error value at 0. A similar result
occurs if we add too much γ2 and the error value begins to grow. This result can be
expected by considering the behaviours of �1 and �2. �1 decreases linearly as you
move towards the origin which will cause our update rule to send the value of the
weights to 0. However, �2 decreases quadratically as you move towards the origin
and therefore sends the value of the weights close to zero but not equal to zero.

Fig. 3 Examples of the handwritten 0’s and 1’s included in the MNIST data set
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Fig. 4 Value of C for a choices of γ1 (�1 term) when γ2 = 0 (�2 term) and b choices of γ2 (�2
term) when γ1 = 0 (�1 term)

Fig. 5 Visualizations of values of the cost function C for a choices of γ1 and γ2 and b the zoomed
section where 0 ≤ γ1, γ2 ≤ 0.25. The darker the shade of blue the larger the value of C

When considering both �1 and �2 terms present in our weight update rule we get
the results we might expect to see based on the individual results. In Fig. 5a we see
that when both terms are present adding a small amount of each is when the error
value remains low (circles with a lighter shade of blue) or at 0 (white circles). There
are once again more choices of γ2 that still have a positive effect on our model and
this is clear when zooming in on our choices of γ1 and γ2 as shown in Fig. 5b.

In conclusion, adding a small amount of each term provides a positive effect on
our model during training and optimization of the weights. Further investigation
needs to be done on the choice of cost function such as an exponential cost or the
cross-entropy cost function. Of course, different choices of the cost function can add
more layers of complexity to the model that will interact differently with the �1 and
�2 terms.

The next step in this work is to extend the exploration to a network of many
perceptrons.
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Key Performance Indicators and
Individual Factors on Penalty Kicks

Joao Fialho

Abstract In the recent years quite a few papers have been dedicated to the study of
penalty kicks in soccer. With either the intent of predicting the direction or the final
outcome of the kick, several different factors have been analyzed, from kinematics,
biomechanics, stress levels, individual skills and fatigue as just some examples. In
this paper, the author studies a group of four different international soccer players
with the objective of identifying key performance indicators on kicks from the penalty
spot. Using data analysis techniques, with emphasis on Cramer’s V correlation and
hypothesis testing, several variables are analyzed,with the intent of identifying global
and individual factors, that might provide a a signal foe which side of the goal post
the penalty kick will be aimed at. This study’s primary objective is then to provide
the goalkeeper with some attributable information that can be used in his advantage,
to predict the side for where the penalty is more likely to be aimed at.

Keywords Penalty kicks · Sports analytics · Individual performance indicators in
football

1 Introduction

When analyzing a soccer match, one can not exclude the penalty kick. Even more
when one specifically considers World Class tournaments, such as the World Cup,
European Cup, Champions League, or other international competitions, the penalty
kick becomes even more important, as the knockout stages or and even the trophy
are sometimes decided on penalty shootouts.

According to informal statistics collected by ESPN, the current rate of conversion
of penalty kicks, ranges from 70 to 80%, depending on the League or tournament
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being played. In addition to this high conversion rate, it it takes on average 400 ms
for a ball to reach the top corner, with an average shot speed speed of 113 km/h, as
shown in [3]. The goalkeeper needs 100 ms to process plus 100 ms to decide and
initiate movement, and then needs 700 ms to jump and try to reach the ball.

With this information, it becomes clear that, currently, the advantage is on the
kicker side, not on the goalkeeper, whether we are looking at response time or even
at the current estimated efficiency percentage. It becomes important to counteract this
advantage. In order to do so, several papers and authors approach the penalty kick in
soccer using several different paradigms, such as biomechanics and kinematics [6–8,
10] or psychology [2, 5, 11], as examples. However as they aim for a generalization,
they do not provide the goalkeeper with any clear guidance on how to reduce the
kicker advantage.

In this paper the author proposes an individual approach to each penalty taker, in
an attempt to identify key performance factors. The a priori identification of such
factors, would clearly provide the goalkeeper with some ability to predict the side for
where the shot is more likely to be taken and therefore “even the odds” in a penalty
kick.

Two different case studies will be presented, one at a global level covering 2
former players and 2 current players from the Portuguese National squad, and then
an individual analysis of two of those players, to better understand the level of specific
factors. In both cases, key factors will be exhibited and proposed. The author would
like to emphasize on the case study characteristic of this research. Given the fact the
the sample is somewhat limited, the factors and testing should not to be extrapolated
to be a bigger population than the one in consideration.

2 Data Set and Variables Definition

For this particular case study a total of 176 penalty kicks were analyzed from 4 inter-
national professional soccer players from the Portuguese National squad. Two are
former players and 2 are current players. The rationale to select the four players was
based on the following: three were the players in the Portuguese National team with
more penalty kicks taken, in official competitions at the time of the World Cup 2018
and the other player (Player 3 in Table1)was a youth player. As some of the players
are still currently playing for their teams, their identity has been kept confidential.
Data recorded covers official league and cup games as well as international club and
national team competitions, from 16 different competitions. For these four players,
this represent their totality of penalty kicks in official competitions, from the season
2005/2006 to May 2018.

Data was analyzed and compiled from video recordings of each penalty shot,
a second observer confirmed the observations by taking a random sample of the
initial observations. For each penalty kick, 17 different variables were analyzed.
The distribution in terms of penalty kicks taken, over the four players, is not even.
Individual distribution is given in the Table1.
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Table 1 Players and number of penalty kicks considered

Player Number of penalty kicks

Player 1 122

Player 2 26

Player 3 9

Player 4 19

Table 2 Variables considered

Variable Details Data type

Side for which GK dive Right, Center, Left Nominal

Penalty scored Yes, No Nominal

If not, saved or missed Saved, Missed Nominal

Shot side Right, Center, Left Nominal

Looked at the side before the
shot

Yes, No Nominal

Player faked Yes, No Nominal

Step count Number of steps Numerical

Shooting technique Inner part, Front part Nominal

Shooting type Skill, Power Nominal

Shot height Low, Medium, High Nominal

Shot speed Low, Medium, High Nominal

GK faked Yes, No Nominal

GK stayed with open arms Yes, No Nominal

GK looked for visual contact Yes, No Nominal

Supporting fans location Behind the goal, Opposite side Nominal

Moment of the game 0 to 15min, 16 to 30min, 31 to
45min, 46 to 60min, 61 to
75min, 76 to 90min, Over
90min

Nominal

Result at the time Winning, Drawing, Losing Nominal

In terms of variables collected, they are listed in Table2, along with the details
The variables collected are in linewith variables suggested in [2, 5, 7–9] and cover

kinematic and psychological observable factors. As mentioned previously, one of the
main objectives in this study was to concentrate on variables that could be assessed
and inferred by the goalkeeper during a match. Variables such as Speed and Shot
height cannot be observed before the penalty is taken, but they provide a more in
depth analysis of each of the penalty takers.
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Fig. 1 Considerations in
terms of side and height

2.1 Variable Clarification

Some of the variables defined require some more clarification and detail.
As specified in [8], due to goalkeeper’s position, the author considers center as

the central 60% portion of the goal, the left side and right side cover the remainder,
as illustrated in Fig. 1.

A similar approach was made for the height. The “medium height” area was
considered as the region from the goalkeeper’s knee up to 80% of full arm extension
region, as suggested in [8].

In terms of speed, the split was made based on the information cited in [3].
Therefore, shots that took between 350 and 450 ms (inclusive) to reach the goal were
considered medium speed, less than 350 ms high speed and more than 450 ms, low
speed. This was analyzed by an approximate measure from the time the shot was
taken until it crossed the goal line. A second observer confirmed a sample of the
observations.

As per the variable “Player faked”, the binary input Yes/No refers to the deceiving
action of the player. If the player slows down or tries to deceive the goalkeeper, during
his run to the ball, before taking the shot, that action is recorded as Yes. If the player
does not attempt such actions, it is recorded as No. The variables collected that are
related to goalkeeper behavior (GK faked, GK stayed with open arms, GK looked
for visual contact) were included to understand if the GK behavior could have a
significant influence in the choice of side selected by the penalty taker. In terms of
the player variables, the binary input Yes/No was used. The “Moment of the game”
variable was split in 15min intervals. This split mimics the influence of both stress
and fatigue levels, as mentioned in [4, 5]. The “Result at the time” and “Supporting
fans location” are recorded, with the intent to measure the external pressure on the
penalty kick taker.

3 Methodology

The approach taken in this paper focuses mainly on identifying key performance
factors, first at a more global level for group of four players, and then uses the same
process to analyze one individual player to assess potential indicators that can provide
some insight to a goalkeeper, during a penalty situation.



Key Performance Indicators and Individual Factors on Penalty Kicks 141

The techiques used rely on the measure of association Cramer’s V, as suggested
in [1], combined with hypothesis testing. The reason for such is related to the fact
that the main variables under scrutiny are nominal variables.

For the global approach, a series of factors will be analyzed and some hypothesis
testing will be done to study the independence of the factors under consideration. In
terms of the the individual player analysis, the author will identify overall accuracy,
current tendency and efficiency, key performance indicators and then present a prob-
ability cross tabulation table, emphasizing the player’s tendency, based on the main
factors previously identified. Hypothesis testing on the factors will be conducted for
each individual player as well. A level of significance of 5% was considered.

These dependent factors, can then be seen as a predictive model for each players
choice of side, under those specific conditions.

4 Key Performance Factors in Penalty Kick

As mentioned in the introduction to this study, four different international soccer
players are analyzed. Combined, a total of 176 penalty kicks were analyzed.

4.1 Global Analysis

As mentioned previously, the penalty kick analyzed represent the universe of all
penalty kicks taken, in official games (domestic or international competitions) for
these four players. The overall level of efficiency in this sample is 65%, meanning
that globallly 65% of the penalties resulted in goal.

To identify the key performance indicators, Cramer’s V correlation coefficients
were calculated for every combination of variables. The resultant graph is shown in
Fig. 2.

From Fig. 2, it is clear that the most relevant factors that influence the choice of
side are, “Player faked”, with a coefficient of 0.34, “Moment of the game”, with
a coefficient of 0.19 and the “Shooting Type”, with a coefficient of 0.19. In terms
of analysis of Cramer’s V coefficient, these values show that “Player faked” has
a strong connection with the choice of side, where “Shooting type” and “Moment
of the game”, seem to have a weak to moderate connection. A Chi-squared test of
independence was ran on the above mentioned factors, at a level of significance of
5%. Results are detailed in Table3.

Table3 clearly shows that none of the potential connections is statistically signif-
icant. However this analysis is a global one. In the next section a more individual
approach is taken.
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Fig. 2 Heatmap with Cramer’s V coefficients—global analysis

Table 3 Chi-squared test of independence

Hypothesis Chi-squared p-value Outcome

H0: Choice of side is independent
of Player faked

3.5601 0.1686 Do not reject H0

H0: Choice of side is independent
of Moment of the game

12.326 0.7213 Do not reject H0

H0: Choice of side is independent
of Shooting type

1.983 0.371 Do not reject H0

4.2 Individual Players

The individual player selected has a total of 122 official penalties taken in 13 different
international or domestic competitions. This player shoots preferably with his right
foot and all the penalties considered were shot with the right foot. His current level
of efficiency is 82%, meaning he successfully scored 100 of the 126 penalties taken.

The player’s preference and efficiency are shown on Fig. 3.
From Fig. 3 it is also clear that there is dominant choice in terms of the left side,

as it is chosen 55% of the times. However shots taken to the right side, even though
they are less frequent they occur 35% of the time, seem to be more successful (91%



Key Performance Indicators and Individual Factors on Penalty Kicks 143

Fig. 3 Graph illustrating tendency and efficiency by player’s choice of side for Player 2

Fig. 4 Heatmap with Cramer’s V coefficients for Player 1

of the times). To identify the key performance indicators, Cramer’s V coefficients
were calculated for every combination of variables. The resultant graph is shown in
Fig. 4.

From the analysis of Fig. 4, one can identify as most relevant factors for the choice
of side, the “Shooting technique”, with a coefficient of 0.31 and the “Moment of the
game” with a coefficient of 0.25. These are considered to be strong to moderately
strong factors. Results are detailed in Table4.
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Table 4 Chi-Squared test of independence

Hypothesis Chi-squared p-value Outcome

H0: Choice of side is independent of
Shooting Technique

11.971 0.002515 Reject H0

H0: Choice of side is independent of
Moment of the game

14.868 0.3872 Do not reject H0

Fig. 5 Graph illustrating
tendency and efficiency by
player’s choice of side for
Player 1

From the factors considered only “Shooting technique” is statistically significant.
This factor is however harder to identify to the goalkeeper. Nevertheless, looking at
the player bio-mechanics, the test shows that there is a statistically significant “give
away” of side. looking at the original data, when the player shoots with the front part
of the foot, 70% of the shots will go left.

To highlight the gain in terms of detail when analyzing individual players, another
individual player is analyzing using the same process. This player has a total of 26
official penalties taken in 3 different international or domestic competitions. His
preferred foot is the right foot and all the shots analyzed in this paper were taken
with the right foot. His current efficiency is 85%, as he successfully scored 22 of the
26 penalties taken.

The player’s preference and efficiency are shown on Fig. 5.
Cramer’s V coefficients were calculated for every combination of variables. The

resultant graph is shown in Fig. 6.
the most relevant factors for the choice of side are, the “Moment of the game”,

with a coefficient of 0.54, the “Shooting speed”, with a coefficient of 0.42 and the
“Result at the moment of the shot”, with a coefficient of 0.26. The table with the
hypothesis testing is shown below (Table 5).

Showing in this case that the only statistically relevant factor for this player is the
Result at the moment of the shot.
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Fig. 6 Heatmap with Cramer’s V coefficients for Player 1

Table 5 Chi-squared test of independence

Hypothesis Chi-squared p-value Outcome

H0: Choice of side is independent of
Moment of the game

6.9333 0.4359 Do not reject H0

H0: Choice of side is independent of
Shooting speed

4.2386 0.1201 Do not reject H0

H0: Choice of side is independent of
Result at the moment of the shot

6.7394 0.0344 Reject H0

5 Conclusion

In an initial approach in this same study, more than 176 penalty kicks were analyzed,
fromdifferent leagues and competitions and the connections found between variables
at a global level were not significant.

In this study the focus is on taking an individual approach to determine key
indicators for each player that might “give away” their choice of side, when taking
the penalty kick. As the literature shows, these factors can range from biomechanical,
to kinematics, to psychological.
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In the first part of this study, the generalization, shows that it is very difficult to
find common factors on a penalty kick situation, even on a specific team or smaller
subset of players. However when the analysis focuses on a specific player, individual
characteristics seem to emerge. In both of the cases analyzed it was possible to
identify observable factors, that can provide the goalkeeper with some “a priori”
information, to offset the player advantage in a penalty kick, in soccer. Predicting
the side or outcome of a penalty, in a generalized manner, was not the goal of this
study, but more to provide an overview on a technique that can be useful in turning
the penalty kick lottery, into a more balanced event. On an individual basis and based
on historic player data it was possible not only to identify those factors but also to
use them to build an individual predictive model, based on those same factors.
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Sparse Covariance and Precision
Random Design Regression

Xi Fang, Steven Winter, and Adam B. Kashlak

Abstract Linear regression for high dimensional data is an inherently challenging
problem with many solutions generally involving some structural assumption on
the model such as lasso’s sparsity in the parameter vector. Considering the random
design setting, we apply a different sparsity assumption: sparsity in the covariance
or precision matrix of the predictors. Thus, we propose a new regression estimator
by first applying methods for estimating a sparse covariance or precision matrix.
This matrix is then incorporated into the estimator for the regression parameters. We
mainly compare this methodology against the classic ridge or Tikhonov regulariza-
tion method.

Keywords Graphical lasso · Penalized estimator · Ridge regression ·
Thresholding

1 Introduction

Linear regression is a backbone of statisticalmethodology. The classical least squares
approach has a simple and elegant theory, but fails in the high dimensional setting
where the number of parameters p is greater than the sample size n. High dimen-
sional datasets have led to over 40 years of research resulting in methods such as
ridge regression, lasso, elastic net, SCAD, and many others [4]. In this work, we
contribute to the compendium of such methods by constructing an estimator for high
dimensional regression models making use of sparse covariance and sparse precision
matrix estimators in the random design setting.
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Sparsity is not new to linear regression. The renowned lasso estimator [18] is one
of the most important recent contributions to statistics and mathematics. However,
the assumption of lasso is sparsity in the parameters and is used for model selection.
In contrast, we consider sparsity in the covariance or precision matrix of the random
designmatrix X . That is,we assumemost off-diagonal entries to be zero and construct
a regression estimator under this assumption.

Remark 1 (Sparse Covariance and Precision Matrices) Though being inverses of
one another, a sparse covariance and a sparse precision matrix result in two different
implications for the underlying data. The covariance matrix considers the marginal
correlation between each pair of random variables. A zero entry implies that there
is no linear relation between these two variables and in the Gaussian case implies
pairwise independence. The precision matrix considers the conditional correlation
structure of the data. A zero entry implies that the two variables are uncorrelated—
independent whenGaussian—conditioned on the remaining random variables. Thus,
the precision matrix defines a network structure and is useful in the study of Gaus-
sian graphical models. Sparse covariance and precision matrices arise in many high
dimensional datasets such as genomics, climate, and socioeconomics.

2 Estimator Construction

We begin with a set of n predictor-response pairs (yi , xi ), i = 1, . . . , n with yi ∈ R

and xi ∈ R
p and assume that x1 j , . . . , xnj for j = 1, . . . , p and the y1, . . . , yn are

centred as is common in the penalized regression literature. The standard theory of
the least squares estimator when p < n for the linear model,

yi = β1xi1 + . . . + βpxip + εi

with unknownparametersβ andmean-zero errors εi , yields theordinary least squares
(OLS) estimator β̂ols = (XTX)−1XTY for design matrix X with the i j th entry xi j
and Y = (y1, . . . , yn). Under random design [3, 10], the rows of X are treated as iid

random vectors, and the least squares loss Lols(β̃) = E
∥
∥
∥Y − X β̃

∥
∥
∥

2

�2
is minimized by

β = (E[XTX ])−1E
(

XTY
)

where we write � = n−1E[XTX ], the p × p covariance
matrix for the rows of X . We denote the i th row of X to be xi .

When p > n, the standard covariance estimator �̂ = n−1 ∑n
i=1 x

T
i xi is known

to be far from � and furthermore not full rank and thus not invertible. The classic
ridge regression solution—also called Tikhonov regularization—considers the �2

penalized least squares loss

LR(β̃) = E
∥
∥
∥Y − X β̃

∥
∥
∥

2

�2
+ λ

∥
∥
∥β̃

∥
∥
∥

2

�2
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with solution β̂R = (XTX + λIp)−1XTY for p × p identitymatrix Ip. This estimator
is known to shrink the values of β̂R towards zero adding some bias for a sizeable
reduction in the estimator’s variance. In Sect. 3, we compute the ridge estimator via
the glmnet package in R [9].

Let r = min{n, p} be the rank of X . The singular value decomposition for the
n × p design matrix can be written as X = UDV T where D is the r × r diagonal
matrix of singular values, and U and V are n × r and p × r matrices, respectively.
Thus, for high dimensional data, r = n andU is orthonormal whereas V TV = I but
VV T �= I and is, in fact, a projection onto the n-dimensional row space of X , a linear
subspace of Rp. Under this decomposition and the notion of a pseudo-inverse, the
OLS estimator can be extended to high dimensional data as

β̂ols = V D−2V TV DUTY = V D−1UTY.

Similarly, the ridge estimator becomes β̂R = V (D2 + λI )−1DUTY. Note that the
squared singular values d2

1 , . . . , d
2
n on the diagonal D2 are the estimated non-zero

eigenvalues for the covariance matrix �. Hence, this regularization method is aug-
menting the eigenvalues by adding λ to each to get d2

i + λ for i = 1, . . . , n and
just λ for i = n + 1, . . . , p. Therefore, the ridge estimator is, in fact, shrinking the
estimated eigenvalues for the precision matrix �−1 to zero as λ → ∞. This, in turn,
takes β̂R to zero.

The ridge estimator replaces XTX with XTX + λI . Buildingoff of this inspiration,
our proposed methodology is to replace XTX with a sparse covariance estimator, or
replace the undefined (XTX)−1 with a sparse precision matrix estimator.

2.1 Replacing XTX

Under the sparsity assumption stated in the introduction for either the covariance
or precision matrix, we could consider an alternative estimator being inspired by
the Naive-Bayes method. Specifically, we could compute �̂diag being the empirical
covariance estimator from before with all off-diagonal entries set to zero. Then
as this matrix is invertible, we can consider the estimator β̂NB = (n�̂diag)−1XTY
where �̂diag is multiplied by n to undo the normalization in the covariance estimator.
If we were to normalize the data such that n�̂diag = Ip, then our estimator would
be merely XTY or equivalently the �2 inner products between Y and each of the p
columns of X .1 However, the removal of all off-diagonal entries may be too extreme
of a methodology. Instead, we relax away from such a diagonal-only estimator by
considering sparse estimators for � and �−1 in the following subsections. However,
we first take a look at the implications of replacing XTX with a different positive
definite matrix M .

1 The estimator XTY occurs in practice in orthogonal experimental designs when X is chosen such
that XTX = Ip assuming p < n. [19].
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Let M be a positive definite symmetric matrix with eigen-decompositionWSWT

for W the orthonormal matrix of eigenvectors and S the diagonal matrix of eigen-
values. We wish to write a new regression estimator β̂M = M−1XTY . However, this
will initially fail as the first n eigenvectors in W will (most likely) not coincide
with the n left singular vectors V of X resulting in a nonsensical estimator. Thus,
we have to rotate the entire problem. Let Wn be the p × n matrix consisting of the
first n columns of W , and let Sn be the n × n diagonal matrix with the n principal
eigenvalues of M on the diagonal. Replacing

X ⇒ Z := XVWT
n and β ⇒ β� := WnV

Tβ (1)

gives the rotated model Y = Xβ + ε = Zβ� + ε. The new estimator making use of
M is

β̂M = M−1ZTY = WnS
−1
n DUTY, (2)

which is an estimator for the rotated parameter vector β�. Note that in Sect. 3, we
compare a variety of such estimators in mean squared error. As such transformations
as in Eq.1 are isometries, we can still compare mean squared errors estimated over
many random simulations as well as the mean squared prediction error for the forest
fire and Arizona crime data.

Remark 2 In the above Eqs. 1 and 2, we could instead consider p × p orthonormal
matrices W̃ and Ṽ being the eigenvectors of M and XTX , respectively. Computa-
tionally, the resulting estimator will be equivalent as the eigenvalues corresponding
to those p − n additional columns will be zero. Hence, any rotation in those direc-
tions will not affect the estimator. The above formulation is more computationally
efficient by ignoring these extraneous directions.

2.1.1 Sparse Covariance Estimation

There is a vast literature on sparse covariance matrix estimators for high dimensional
data. Two broad approaches are penalized estimators [2, 16] and threshold estimators
[1, 5, 17]. The lattermethods apply a threshold function entrywise to the off-diagonal
entries of the empirical covariance matrix, which effectively sets entries below a
specified threshold to zero. A threshold is typically chosen via cross validation. As
sample sizes are typically small and cross validation is furthermore computationally
expensive, a threshold can also be selected by choosing a suitable individual false
positive rate α ∈ [0, 1] being the probability that an off-diagonal entry is falsely
included in the support of the estimator—i.e. the probability that the i j th entry in
the estimator is not zero given that �i j = 0 [14]. This α acts as a regularization
parameter. Indeed, this estimator allows us to relax away from the above naive-
Bayes estimator, which would correspond to α = 0, by increasing α to allow for
a few off-diagonal entries to be non-zero. Such estimators are computed via the R
package sparseMatEst [13].
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Remark 3 (Positive Definiteness) Even though the empirical covariance estimator
is positive semi-definite, a thresholded covariance estimator may no longer be. To
rectify this problem, let �̂(α) be a sparse covariance estimator with false positive rate
α, and denote the eigenvalues of �̂(α) in decreasing order to be λ

(α)
1 ≥ . . . ≥ λ(α)

n .
Then assuming λ(α)

n < 0 we add {∣∣λ(α)
n

∣
∣ + λ

(α)
1 /100}Ip to �̂(α) to make the new

estimator positive definite with a condition number of 100.

2.1.2 Sparse Precision Estimation

The most famous method of sparse precision matrix estimation is the graphical lasso
[8], but other regularized estimators also exist [6]. Unlike for covariance matri-
ces, threshold estimation of the precision matrix is more challenging as there is no
unbiased estimator for �−1 threshold. However, [12] applies the same idea of indi-
vidual false positive rate control by thresholding the debiased glasso estimator of
[11]. This precision matrix estimation method is also implemented in the R package
sparseMatEst [13].

3 Numerical Results

3.1 Simulated Data

In this section, we test the following estimators of the form β̂M = M−1ZTY from
Eq.2. ForM , we consider threshold based sparse covariance estimators from [14] and
the standard ridge estimator. For M−1, we consider threshold based sparse precision
estimators from [12] as well as the graphical lasso [8]. To gauge the success of each
estimator, we estimate the normalized mean squared error,

MSE(β̃) =
∥
∥
∥β̃ − β

∥
∥
∥

2

�2
/ ‖β‖2

�2 ,

over 100 replications for β = (1, . . . , 1), the rows of X being iidN (0, �) for some
sparse � discussed below, and Y = Xβ + ε with iid εi ∼ N (0, 4).

Figure1 contains the results—estimated log base-2 mean squared errors—for
such simulations for � tridiagonal with main diagonal 1 and off-diagonal entries
0.4 and contains results for � banded with main diagonal 1 and three off-diagonals
with values 3/4, 1/2, and 1/4. Since these methods normalize the variance of the
predictors before penalizing, we only consider settings where all diagonal entries
are 1. For all methods, many choices of the tuning parameter—α ∈ [0, 1] for sparse
covariance and λ ≥ 0 for ridge and glasso—were considered and the best was taken.
Hence, Fig. 1 displays results for optimal choice in tuning parameter. In both cases,
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Fig. 1 Top row: Results of methods given a tridiagonal covariance matrix. Bottom row: Results of
methods given a banded covariance matrix. Here, n = 48, p = 64, and the plots were the result of
100 replications with β = (1, . . . , 1)

the performance of the sparse covariance methodology was on par with that of ridge
regression, and both of these outperformed the graphical lasso.

This methodology was also tested for sparse precision matrices—i.e. rerunning
the above simulations but specifying �−1 to be tri-diagonal or banded as opposed to
�. In that setting, the sparse precision methodology performed much more poorly
than ridge regression. Hence, those results are not included. The answer as to why the
sparse matrix-based regression estimator succeeds for covariance matrices but not
for precision matrices remains illusive. However, good performance of the precision
estimator is observed in Sect. 3.3.

3.2 Forest Fire Data

For a first real data application, we consider the mean squared prediction errors
(MSPE) for different regression methods on the Portuguese forest fire data [7] avail-
able online on the UCI Machine Learning Repository (https://archive.ics.uci.edu/
ml/index.php). We aim to predict the log(Area Burned) based on a variety of indices

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
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and weather measurements: the coordinates of the location of the fire, the Fine Fuel
Moisture Code (FFMC), the Duff Moisture Code (DMC), the Drought Code (DC),
the Initial Spread Index (ISI), the outside temperature, the relative humidity, and the
wind speed. For more details, see [7]. Only fires whose total area burned was greater
than zero were considered due to the log-transform, which was necessary due to the
extreme skewness of the area data. Thus, we have n = 270 and p = 9. Though,
this is not high dimensional data, there is strong collinearity among the predictors
warranting the use of shrinkage estimators.

To compute the MSPE, we randomly split the data into training and testing sets
of sample size ntrain = 225 and ntest = 45, respectively, to fit the model and then
compute

MSPE = 1

ntest

ntest∑

i=1

(Ai − Âi )
2

for Ai the total log-area burned for the i th observation of the test set and Âi the i th
predicted value. This was averaged over 1000 replications with randomly selected
training and testing sets.

Figure2 displays the results of ourmethods. The support of the replacementmatrix
for XTX is considered on the left for different values of α. Note that for α = 0.5,
most of the off-diagonal entries have already been removed. The MSPE on the right
is considered for sparse covariance matrices with four different types of thresholds:
Hard, Soft, Adaptive Lasso, and SCAD thresholding. More details on these can
be found in [14, 17]. Ridge regression is also included whereas sparse precision
and glasso methods are excluded due to their poor performance on simulated data.
Most notably, the methods all return similar MSPE for this dataset, but hard and scad
thresholding are themost robust with respect to choice in tuning parameter compared
to the other methods.

Fig. 2 On the left, the support in black of the thresholded XTX matrix for different α for the forest
fire data [7]. On the right, the mean squared prediction error computed over 1000 replications for 5
different estimators with 5 different values of their respective tuning parameter—α on the bottom
for the sparse covariance and λ on the top for ridge regression
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Fig. 3 On the left, the support in black of the thresholded inverse XTX estimator for different α for
the Arizona crime data [15]. On the right, the mean squared prediction error computed over 1000
replications for 7 different estimators with 7 different values of their respective tuning parameter—α

on the bottom for the sparse covariance and λ on the top for ridge regression

3.3 Arizona Crime Data

We secondly repeat the previous analysis on the Communities and Crime Data Set
also from the UCI Machine Learning Repository and discussed in [15]. This dataset
contains potential predictors of violent crime collected across the USA. For the
sake of our methodology, we only considered the n = 20 observations taken from
the state of Arizona. There are p = 99 predictors in this dataset. The dataset was
randomly split into ntrain = 13 and ntest = 7 and the MSPE was computed over 1000
replications.

Figure3 displays the results for the precision matrix estimator, which performed
better than the covariance-based approach. This is reasonable asmany predictorsmay
be correlated—e.g.. number of homeless shelters and number of vacant houses—but
conditionally uncorrelated—e.g.. taking median income into account. Here, all pre-
cision thresholding methods had very similar MSPE. In contrast, the ridge estimator
either performed better or worse depending on choice of λ; though the scale of the
vertical axis indicates that ridge regression only achieves a slightly betterMSPE after
careful tuning of λ.

4 Discussion

In this article, we proposed an alternative estimator for the parameters of a high
dimensional regression model under the random design setting where it is assumed
that the rows of the design matrix have a sparse covariance or sparse precision
structure. Such structural assumptions do occur in real data problems and are distinct
from the usual notation of regression sparsity—that is, sparsity in the parameter
vector β.
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The result of multiple simulation experiments, beyond what is detailed in Sect. 3,
indicate that using a sparse covariance estimator in place of XTX can achieve similar
but no superior results to that of standard ridge regression. Replacing (XTX)−1 with
a sparse precision estimator or the classic graphical lasso estimator did not yield
good performance in contrast to ridge regression for simulated data. However, we
did see strong performance on the Arizona crime dataset.

The success of this methodology does warrant further investigations into such
methods considering how they can be improved and if there are scenarios where they
can outperform standard ridge regression. Even though the performance of ridge
regressionwas comparable to ourmethodology, it did not perform significantly better.
Also, our method appears more robust to choice of tuning parameter meaning one
can achieve similar performance to ridge regression without the need to carefully
tune λ.
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Applying Neural Networks to a Fractal
Inverse Problem

Liam Graham and Matthew Demers

Abstract With the increasing potential of convolutional neural networks in image-
related problems, we apply these methods to a fractal inverse problem: Given the
attractor of a contractive iterated function system (IFS) what are the parameters that
define that IFS? We create and analyze fractal databases, and use them to train vari-
ous convolutional neural networks to predict these parameters. The neural network
outputs produce visually different fractals, however, they could be used to create
an initial population for other search algorithms. Additionally, the neural networks
become increasingly accurate with increasing numbers of functions defining the IFS.

Keywords Iterated function systems · Applied analysis · Inverse problems ·
Neural networks · Machine learning

1 Introduction

Fractals have been used to model natural phenomena such as plants and mountains in
a wide variety of applications. They are infinite sets that are typically found through
fixed point iteration, and contain self-similar features. There are many different types
of fractals, one of the most common being those generated by an iterated function
system (IFS); a finite set of N contraction mappings on a complete metric space.
These mappings possess a unique non-empty compact fixed set of points called the
attractor, which is a fractal [2].

Although it is quite easy to generate an image representing the fractal set of an
IFS, the inverse problem is quite difficult, and is the focus of this paper. That is, we
want to obtain an IFS possessing an attractor closely approximating a given image.
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For simplicity, we are restricting ourselves to binary (black and white) images, and
IFSs consisting solely of affine maps.

Attempts at this problem include using a Gröbner basis [1], wavelet transforms
[3], moment matching [11], and genetic algorithms [8]. The most recent approach
uses a swarm intelligencemethod called the cuckoo search, giving satisfactory results
for a few specific fractals [9]. However, the problem still remains for general binary
images. With the development of computer vision techniques using neural network
algorithms, image classification problems have been solved with better than human
level accuracy [5, 6, 12]. We will use modified versions of these algorithms and train
a convolutional neural network to predict the parameters in an IFS that approximates
a given image.

2 Mathematical Background

If W = {wi : R2 → R
2 | i = 1, 2, ..., N } is an IFS, then each wi is a contraction

mapping, and W has a unique non-empty compact fixed set given by S =
N⋃

i=1
wi (S).

For this work, we consider only affine maps in R
2. Therefore our functions within

the IFS have the form:

wi

(
x
y

)

=
(
ai bi
ci di

) (
x
y

)

+
(
ei
fi

)

= Aix + b. (1)

In order to train the neural network,we need data to both give to the neural network
(the binary images), and compare with the outputs (the 6N parameters shown in
Eq.1, see Sect. 3 for details). We will generate this data by randomly initializing
IFSs. However, to ensure that the resulting IFS has an attractor, we must be able to
test whether the functions it consists of are contractive. Let ki be the lipshitz constant
for the ith function, wi , in an IFS. Then,

||wi (x) − wi (y)||2 ≤ ki ||x − y||2, ∀x, y ∈ R
2

||Ai ||2||x − y||2 ≤ ki ||x − y||2 (2)

||Ai ||2 ≤ ki .

Thus wi is a contraction mapping if ρ(AiAT
i ) < 1, where ρ denotes the spectral

radius. Since AiAT
i is positive, semi-definite, and symmetric, all its eigenvalues will

be positive. Thus, we can guarantee the eigenvalues will either be larger or smaller
than 1 with the restriction fi (1) > 0, where fi is the characteristic polynomial of
AiAT

i . Imposing the condition ||Aix||2 < ||x||2 further forces both eigenvalues to be
smaller than 1. Applying the standard basis for R2 to this last restriction, we obtain
the following conditions for wi to be a contraction mapping:
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⎧
⎪⎨

⎪⎩

Tr(AiAT
i ) − det (Ai )

2 < 1

a2i + c2i < 1

b2i + d2
i < 1

(3)

To generate the data, we then initialize all of the IFSs parameters with double
precision numbers randomly chosen between −1 and 1, and check these conditions.
If they are satisfied, the image representing the IFSs attractor is generated, if not, the
parameters are regenerated. In order to ensure that the value of a pixel is consistent
throughout the data, a viewing window spanning from −1 to 1 in both the horizontal
and vertical directions was chosen. If the generated fractal does not fit within this
window, the largest in magnitude x or y coordinate of a point in the approximated
fractal set is used as a divisor of all pi and qi parameters in the IFS. Upon a new
generation of this set, the attractor will then be scaled to fit within the desired region.

3 Neural Network Background

Neural networks are connections of nodes, which can be thought of as placeholders
for values, used to approximate complicated functions [4]. These nodes are organized
in layers with the first layer being the input(s), the last layer being the output(s), and
all layers in between being hidden layers. As data is fed through the connections, it
getsmultiplied by values known asweights and is typically transformed by non-linear
functions, among other things [4]. Once the output is obtained from the network, it
is compared with known values and an error is calculated by a loss function [4]. This
error is used to update parameters of the network using modified gradient descent
algorithms, resulting in more desirable outputs [4].

Convolutional neural networks (CNNs) are a specific class of neural network
commonly used in image related problems. As opposed to fully connected neural
networks where all nodes of one layer are connected to all nodes of the next, CNNs
use a filter which passes over the image and computes a discrete convolution given
by

F(i, j) =
∑

m

∑

n

I (i − m, j − n)K (m, n), (4)

where i and j are pixel locations on an image, I , and K is the filter which m and
n iterate over [4]. The output of the convolution is then stored in a node of the next
layer, effectively creating a feature map. As the network parameters are updated, the
filter learns features important to the data-set on which it is trained [4]. Filters in
layers near the input may learn to detect lines and edges whereas filters further in the
network learn to detect objects constructed by those lines [4].

These convolutions are necessary in image related problems as they save a sig-
nificant amount of computer memory. Pooling, the process of having the filter skip
steps as it passes over the image, is another method commonly used to help this
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endeavor [4]. Regularization techniques, thosemethods used tominimize over-fitting
are another important feature of CNNs. The most common forms of regularization
are batch normalization, weight decay, and dropout, all of which will be applied in
this paper (for further details on these see [4, 7, 10]).

The specific type of CNN that we will use to approach this problem is a residual
CNN. This type of network has layers that are connected not only to the next layer,
but layers further on as well to aid in the backward propagation of the error. This
allows for much deeper networks to be trained more quickly [5]. A residual CNN
was one of the first networks to surpass human level performance on the ImageNet
database; a database with over a million images and thousands of categories. We will
modify this architecture to predict the 6N parameters within an IFS consisting of N
functions.

4 Fractal Databases

Vast amounts of data are required to train a CNN without over-fitting. As outlined in
the previous sections, we created databases of fractals, organized by the number of
functions in the IFSs. This was donewith our own codewritten in the C programming
language and is available upon request. The functions in each IFS were also ordered
based on their parameter values so as to have consistency when computing the error
in the output. Specifically, the functions were listed in increasing order of their
ai parameter as depicted in Eq.1. If two functions were to have the same value
for that parameter, a very unlikely case for randomly generated double precision
values, then the one with the smallest bi parameter would be listed first. Within the
databases we stored the parameters of the IFS as well as the location of the average
pixel, the standard deviation of the fractals’ pixels in both the horizontal and vertical
directions, the fractal dimension, number of pixels corresponding to the fractal, and
the 640 × 640 binary image. Here, we use the terminology average pixel to signify
the centroid location of the fractal in terms of pixel coordinates if each of the pixels
corresponding to the fractal possessed a unit mass. Similarly, the standard deviation
of the pixels in a given direction is a measure of the spread of those unit mass pixels
from the average pixel location.

We can analyze how the parameters of a fractal affect its properties, and how
these properties change with varying numbers of functions in the IFSs. We call the
values within the matrix of each affine transformation of an IFS the multiplicative
parameters. From Fig. 1 we can see that for fractals with fewer functions in their
IFS, the magnitude of the multiplicative parameters is related, on average, to the
number of pixels corresponding to the fractal. However, as the number of functions
in an IFS increases, the affect of the magnitude of the parameters diminishes. We
see the same results from Fig. 2 that examines those fractals with greater numbers of
pixels corresponding to the fractal.We can also analyze how properties of the fractals
change with varying numbers of functions in an IFS. Examining the distributions of
the number of pixels corresponding to the fractals as shown in Fig. 3, we see that
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Fig. 1 Acomparison of themagnitude of themultiplicative parameters as the number of of functions
in an IFS increases. The green represents the distribution of a subset of these parameters that have
the fewest number of pixels corresponding to the fractal, whereas the blue represents the distribution
of the entire database with that number of functions in an IFS. Going from left to right, the graphs
show these distributions for fractal databases with 2, 4, 6, and 8 functions in the IFSs

Fig. 2 Acomparison of themagnitude of themultiplicative parameters as the number of of functions
in an IFS increases. The green represents the distribution of a subset of these parameters that have
the largest number of pixels corresponding to the fractal, whereas the blue represents the distribution
of the entire database with that number of functions in an IFS. Going from left to right, the graphs
show these distributions for fractal databases with 2, 4, 6, and 8 functions in the IFSs

Fig. 3 A comparison of the distributions of the number of pixels corresponding to a fractal as the
number of functions in an IFS is changed. From left to right there are 2, 4, 6, and 8 functions in the
IFSs

on average, the number of pixels increases with an increasing number of functions
in the IFS. Additionally, from Fig. 4 we see that the standard deviation of the pixels
decreases, on average, with an increasing number of functions in the IFS. Pairing
these concepts together, as the number of functions in an IFS is increased we go from
fractals that are spread out with fewer numbers of pixels, to fractals that are more
compact with higher numbers of pixels.

Of course, these trends will disappear once the number of functions in the IFSs is
increased to a certain threshold. The standard deviation of the pixels corresponding
to the fractal will have to increase with the increasing number of pixels, and the
increasing number of pixels will have to stop once the entire image begins to be
taken up by the fractal.
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Fig. 4 A comparison of the distributions of the standard deviation of the pixels corresponding to
the fractals along the horizontal direction as the number of functions in an IFS is changed. From
left to right there are 2, 4, 6, and 8 functions in the IFSs

5 Results

Using the concepts outlined in Sect. 3, many network architectures were tested with
the following general structure:

• Take as input the 640 × 640 binary image.
• Apply the hidden layers (at least 20 were used in our simulations) with 5 layers of
pooling

• Apply a fully connected layer leading to the 6N outputs
• Calculate the loss using the mean squared error.

Previous studies of this problem often used the Hausdorff distance as a measure of
the similarity between two attractors as opposed to the mean squared error of the
parameter values. By reconstructing the image from the predicted parameter values,
a possible extension of this work could be to include this metric in the loss function.
However, this methodwould be computationally expensive, and there is no guarantee
that themodel would predict parameters resulting in contractive functions, especially
at the beginning of training.

Between each layer of themodel, batch-normalizationwasused to aidwith internal
covariate shift, as outlined in [7]. Additionally, dropout with a 50% probability was
applied to the fully connected layer, and L2 weight decay was added to the loss
function. All neural network components of this paper were implemented using
python version 3.7 along with version 1.2 of the pytorch library; this code is available
upon request. Tomeasure the accuracy of themodels,we used various tolerance levels
and deemed the output correct if it was within the given tolerance. That is, if 12 out
of 24 of the models predicted parameters were within 0.1 of the true value, we would
say it has 50% accuracy at that tolerance level.

Table1 shows sample output from a network trained on IFSs consisting of four
functions with an input it had not yet seen. Visually, the fractals obtained are quite
different. However, comparing parameters, more than half are within 0.3 of their
respective true value.

From Table2 we can obtain a more accurate representation of how the models
perform overall. There is a strange trend in this table that the models are becoming
more accurate with increasing numbers of functions in the IFSs. This is unexpected
because the model has to predict more values, and is performing better. However,
none of these accuracies are sufficient to consistently produce IFSs with attractors
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Table 1 The top row shows a comparison of the true parameter values for the fractal with four
functions in its IFS to the model output. The bottom row shows the corresponding fractal images

True IFS Model Output

w1

(
x

y

)

=
(

−0.4193 −0.0270

−0.4613 −0.2053

) (
x

y

)

+
(
0.2791

0.0481

)

w1

(
x

y

)

=
(

−0.5886 −0.0300

−0.1213 −0.0009

) (
x

y

)

+
(

−0.0672

0.0688

)

w2

(
x

y

)

=
(

−0.3939 0.4496

0.4406 0.4919

) (
x

y

)

+
(

−0.2792

−0.2756

)

w2

(
x

y

)

=
(

−0.3463 0.0072

0.0261 −0.0587

) (
x

y

)

+
(

−0.0345

0.0054

)

w3

(
x

y

)

=
(

0.1568 −0.3538

−0.7952 0.3318

) (
x

y

)

+
(
0.4873

0.2117

)

w3

(
x

y

)

=
(

0.0156 −0.0798

−0.0697 −0.1472

) (
x

y

)

+
(

0.0220

−0.0234

)

w4

(
x

y

)

=
(

0.3812 0.5316

−0.5675 0.2246

) (
x

y

)

+
(

−0.1638

0.2334

)

w4

(
x

y

)

=
(

0.2440 −0.1563

−0.0041 −0.0303

) (
x

y

)

+
(

−0.1560

−0.0047

)

Table 2 Accuracy at various tolerance levels of the same model being trained on fractal databases
with different numbers of functions in the IFSs. Each model was trained for the same amount of
time and accuracy was averaged over 10,000 images the model had not trained on

Tolerance Accuracy

2 functions (%) 4 functions (%) 6 functions (%) 8 functions (%)

0.1 20.93 24.36 25.81 26.56

0.2 40.24 46.09 48.67 50.42

0.3 56.94 62.78 65.25 66.99

0.4 70.66 75.01 76.09 77.08

0.5 81.11 83.54 83.78 84.10
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visually similar to the input image. Despite this, neural networks provide results
quickly, and the probability of randomly producing an 8-function IFS with at least
84%of its valueswithin 0.5 of the true values is quite small. Hence the neural network
outputs could be used to create an initial population for a genetic algorithm or swarm
intelligence method.

6 Conclusions and Future Work

The field of neural networks has grown exponentially in recent years. Convolutional
neural networks have become more complex and are able to solve many image
related problems. Following this trend we trained several neural networks to predict
the parameters used to construct fractals made from iterated function systems. In
order to do so, we constructed fractal databases and analyzed them to determine
features of iterated function system fractals in general. The trained neural networks,
while giving outputs resulting in visually different fractals, provided parameters
which could be used to initialize other search algorithms. With increasing numbers
of functions in the iterated function system, the models performed better. We plan
to exploit this trend and create more databases with higher numbers of functions, as
well as test other model architectures.
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Solving Parameter Identification
Problems using the Collage Distance and
Entropy

Herb Kunze and Davide La Torre

Abstract In this paper, we extend the previous method for solving inverse problems
for PDEs using the Generalized Collage Theorem by searching for a set of coeffi-
cients that not only minimizes the collage error but also maximizes the entropy. In
this extended formulation, the parameter estimation minimization problem can be
understood as a multi-criteria problem, with two different and conflicting criteria,
the generalized collage error and entropy associated with the unknown parameters.
We use the typical approach of scalarization to reduce the multi-criteria program to a
single-criteria program by combining all objective functions with different trade-off
weights. Numerical examples confirm that the collage method produces good, but
sub-optimal, results, and that adding a relatively low-weighted entropy term helps
us obtain a better approximation.

Keywords Inverse problems · Collage theorem · Multi-criteria optimization ·
Entropy

1 Introduction

Recent work has established the Generalized Collage Theorem as a tool for solv-
ing inverse problems for variational equations, such as those arising from the weak
formulation of PDEs [3, 4]. Despite the fact that it uses completely different mathe-
matical machinery, the theorem received its name because of the strong philosophical
connection to similar work for inverse problems for ODEs, using the Collage Theo-
rem, a simple consequence of Banach’s fixed point theorem. Across these different
settings, many results on collage-based methods have been established [6], includ-
ing that they produce very good results: in a typical inverse problem, the estimated
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parameter values produce a solution that lies close to the target data. On the other
hand, it has also been shown that, in general, the estimated parameter values are sub-
optimal [1, 2]. In this paper, following on earlier work for the ODEs inverse problem
using the Collage Theorem (in fractal imaging [7], and for ODEs inverse problems
[5]), we consider adjusting the solution approach for a variational parameter estima-
tion inverse problem by seeking not just to minimize the generalized collage distance
with respect to the unknown parameters, but to also maximize the entropy associated
with the unknown parameters.

In Sect. 2, we discuss the details of the Generalized Collage Theorem, and in
Sect. 3, we explain how we construct the entropy term. Section4 briefly discusses
how we scalarize the two-objective optimization problem. Finally, Sect. 5 presents
a numerical example that shows that adding a relatively low-weighted entropy term
to the collage distance results in parameter values with a corresponding solution
that better agrees with the target data. This conclusion is in agreement with past
observations in other mathematical settings.

2 Inverse Problems Using the Generalized Collage
Theorem

Many inverse problems for PDEs can be written in the following variational form,

a(u, v) = φ(v), v ∈ H. (1)

where φ(v) and a(u, v) are linear and bilinear maps, respectively, both defined on a
Hilbert space H . Let 〈·〉 denote the inner product in H , ‖u‖2 = 〈u, u〉 and d(u, v) =
‖u − v‖, for all u, v ∈ H . The existence and uniqueness of solutions to this kind
of equation are provided by the classical Lax-Milgram representation theorem: Let
H be a Hilbert space and φ a bounded linear nonzero functional, i.e., φ : H → R.
Also suppose that a(u, v) is a bilinear form on H × H which satisfies the following
conditions:

1. There exists a constant M > 0 s.t. |a(u, v)| ≤ M‖u‖‖v‖ for all u, v ∈ H ,
2. There exists a constant m > 0 s.t. |a(u, u)| ≥ m‖u‖2 for all u ∈ H .

Then there is a unique vector u∗ ∈ H such that φ(v) = a(u∗, v) for all v ∈ H .
While theLax-Milgram representation theoremgives conclusions on the existence

and uniqueness of a solution to the direct problem for an appropriately casted PDE,
one now wonders what can be said about the associated inverse problem. That is,
suppose that we have a given Hilbert space H , a “target” element u ∈ H and a family
of bilinear functionals aλ, such that the hypotheses of the theorem are satisfied for
each λ. Then by the Lax-Milgram theorem, there exists a unique vector uλ such that
φ(v) = aλ(uλ, v) for all v ∈ H . We would like to determine if there exists a value of
the parameter λ such that uλ = u or, more realistically, such that ‖uλ − u‖ is small
enough. The Generalized Collage Theorem addresses this question.
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Theorem 1 (Generalized Collage Theorem) [3] Suppose that aλ(u, v) : F × H ×
H → R is a family of bilinear forms for all λ ∈ F and φ : H → R is a given
bounded linear functional. Suppose that the hypotheses of the Lax-Milgram theorem
are satisfied for each λ ∈ F , and let uλ denote the unique solution of the equation
aλ(u, v) = φ(v) for all v ∈ H as guaranteed by that theorem. Given a target element
u ∈ H then

‖u − uλ‖ ≤ 1

mλ

F(λ), (2)

where
F(λ) = sup

v∈H, ‖v‖=1
|aλ(u, v) − φ(v)|. (3)

In order to ensure that the approximation uλ is close to a target element u ∈ H , we
can, by the Generalized Collage Theorem, try to make the term F(λ)/mλ as close to
zero as possible. If infλ∈F mλ ≥ m > 0 then the inverse problem can be reduced to
the minimization of the function F(λ) on the space F , that is,

min
λ∈F

F(λ). (4)

To produce a problem that we can actually solve in general, we finite-dimensionalize
the problem in (4). Let Vn = 〈e1, e2, . . . , en〉 be the finite dimensional vector space
generated by ei , so that Vn ⊂ H . Given a target u ∈ H , let �Vnu be the projection
of u on the space Vn . We approximate the true error minimization problem by the
projected problem

min
uλ∈Vn

‖�Vnu − uλ‖.

We can write

‖�Vnu − uλ‖ ≤
(

1

mλ

)
sup

v∈Vn , ‖v‖=1
|aλ(�Vnu, v) − φ(v)|

≤ 1

mλ

max
v=∑n

i=1 αi ei∈Vn , ‖v‖=1

[
n∑

i=1

α2
i

][∑
i

|aλ(u, ei ) − φ(ei )|2
]

= M

m

[∑
i

|aλ(u, ei ) − φ(ei )|2
]

= M

m
Fn(λ)

where M = max
v∈Vn , ‖v‖=1

n∑
i=1

α2
i . This means that

inf
λ∈�

‖�Vnu − uλ‖ ≤ M

m
inf
λ∈�

Fn(λ). (5)
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From a practical standpoint, the, we choose a value for n and solve

inf
λ∈�

Fn(λ).

In the following sections, we use the abbreviation CD (for “collage distance”) to
denote the function Fn(λ).

3 Entropy

The classical measure of information is Shannon entropy, taking the form∑
i pi ln(pi ), where 0 < pi < 1. We adapt this form to our unknown parameter λi

through a simple scaling. For a set of coefficients λ = {λ1, λ2, ..., λm}, we defined:

ENT (λ) = −
m∑
1

|λi |
�

ln
|λi |
�

(6)

where the constant � ≥ ∑
i |λi |. In practical terms, one can think that the allowable

values of λ live inside the m-dimensional hypercube with edge-length 2�. In order
to maximize this entropy term, we minimize its opposite or negative–also known as
“negentropy.”

4 Multicriteria Optimization and Our Scalarized Problem

We recall some basic results frommulticritera optimization [8] In an abstract setting,
a finite-dimensional multicriteria optimization problem has the form

max J (x), x ∈ X (7)

where (X, ‖ · ‖) is a Banach space, J : X → R
p is a vector-valued functional, and

R
p is ordered by the Pareto cone R

p
+. A point x ∈ X is said to be Pareto optimal

or efficient if J (x) is one of the maximal elements of the set of achievable values
J (X). Thus a point x is Pareto optimal if it is feasible and, for any possible y ∈ X ,
J (x) ≤R

p
+ J (y) implies x = y. In a more synthetic way, a point x ∈ X is said to be

Pareto optimal if (J (x) + R
p
+) ∩ J (X) = {J (x)}.

Scalarization is probably the simplest and most widely used technique to identify
Pareto optimal solutions. One solves the scalar problem

max β · J (x), x ∈ X (8)
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whereβ ∈ int(Rp
+). Since the Pareto optimal solution depends onβ, by varyingβ it is

possible to obtain different Pareto optimal points. In the case that each component Ji
is concave, J is a vector-valued concave functional, and, under this assumption, the
scalarized problem (8) is also concave. This means that we can find Pareto optimal
points of a concave problem by solving a concave scalar optimization problem, and
for each β ∈ int(Rp

+) different Pareto optimal points can be obtained. For concave
problems, the converse of this result is only partially true, since for every Pareto
optimal point x̄ , there is a nonzero β̄ ∈ R

p
+ such that x̄ is a solution of the scalarized

problem (8) with β = β̄.
For the purpose of this paper, we consider the scalar problem

min
λ∈�

β1CD(λ) − β2ENT (λ) (9)

5 Numerical Results

Example 1 We consider the boundary value problem (BVP)

− d

dx

(
K (x)

du

dx
(x)

)
= f (x), u(0) = 0, u(1) = 0 (10)

with f (x) = −12x + 1 and true diffusivity and solution Ktrue(x) = 1 + 3x and
utrue(x). We sample utrue(x) at 10 uniformly distributed points in [0, 1]. We add
1% relative noise to these 10 values to produce 10 data points, and we fit a fourth-
degree polynomial to the points to produce a target function utarget (x). This results
of this process are displayed in Fig. 1.

Now, we seek to solve the inverse problem: given utarget (x) and f (x), estimate
K (x) of the form

K (x) =
4∑

i=0

λi x
i

so that utarget (x) is an approximate solution to the BVP.
Weview theBVP as a steady-state heat equation and recast it its weak formulation,

a(u, v) = φ(v), with

a(u, v) =
∫ 1

0
K (x)u′(x)v′(x) dx, and (11)

φ(v) =
∫ 1

0
f (x)v(x) dx . (12)
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Fig. 1 Graphs of
y = utrue(x) (dashed),
y = utarget (x) (solid), with
the 10 noised data values
(diamonds)

where v, u ∈ H 1
0 ([0, 1]). We project the problem onto

V 1
n = {

v ∈ C[0, 1] : v is linear on
[
xi−1, xi

]
, i = 1, . . . , n + 1, v(0) = v(1) = 0

}

which has as a basis the so-called hat functions

ei (x) =
⎧⎨
⎩

(n + 1) (x − xi−1) , xi−1 ≤ x ≤ xi
−(n + 1) (x − xi+1) , xi ≤ x ≤ xi+1

0, otherwise
, i = 1, . . . , n, .

Note that if continuous K (x) > 0 for all x ∈ [0, 1], then m in our formulation can
be chosen as min

x∈[0,1] K (x).

Setting n = 30, we use the preceding ingredients to construct CD(λ), with
u = utarget , and ENT (λ), setting � = 25, and then solve (9) for different choices
of β1 and β2. Each solution produces values for λ, and hence K (x), which we use to
solve numerically the BVP for uλ. Finally, we calculate ER = ‖utrue(x) − uλ(x)‖2.
Table1 shows the results. The first row of the table gives the results when no entropy
is used (β2 = 0); note the values of the generalized collage distance ant the approx-
imation error. In row two of the table, our objective function has a low-weighted
entropy term added. The recovered values of λ change, and, sure enough, the gen-
eralized collage distance at this new λ value is higher than the minimal value in
row one. But we see that the approximation error decreases. The trend continues as
we increase the weighting of the entropy term. In this example, the approximation
error continues to improve until we hit “35% entropy,” at which point we see the
approximation error start to increase from its minimal value in the table. Figure2
displays the minimal-collage solution and the minimal-error solution from Table1,
corresponding to (β1, β2) = (0.7, 0.3).
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Table 1 Results for Example 1. βi are the weights, CD is the generalized collage distance, ENT
is the entropy, and ER is the error in the solution approximation

β1 β2 CD ENT ER

1.000 0.000 0.0119685 −0.3736584 0.3861749

0.950 0.050 0.0120116 −0.3753041 0.3401305

0.900 0.100 0.0121578 −0.3770917 0.2921707

0.850 0.150 0.0124380 −0.3790424 0.2431742

0.800 0.200 0.0128938 −0.3811815 0.1955942

0.750 0.250 0.0135814 −0.3835405 0.1561011

0.700 0.300 0.0145780 −0.3861584 0.1400275

0.650 0.350 0.0159919 −0.3890844 0.1637707

0.600 0.400 0.0179775 −0.3923817 0.2232289

Fig. 2 For Example 1, in
addition to the information in
Fig. 1, we add the
minimal-collage solution
(which has the smallest
minimum in the plot) and the
minimal-error solution
(thickest curve)

Example 2 We again consider Eq. (10), this time with f (x) = 2 + cos x and true
diffusivity Ktrue(x) = 1 + 5x2. We solve numerically for utrue(x), and, as in Exam-
ple 1, sample the solution at 10 uniformly distribute points in [0, 1], add ε% relative
noise, and fit a fourth-degree polynomial to these data values to produce utarget (x).
We solve the inverse problem via the minimization problem in (5), as in Example 1.
The results for ε = 0 are in Table2, for ε = 1 are in Table3, and for ε = 3 are in
Table4. We see similar results to Example 1, although the location in β1β2-space of
the minimum error changes a little for the different noise levels.
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Table 2 Results for Example 2, with no noise added. βi are the weights, CD is the generalized
collage distance, ENT is the entropy, and ER is the error in the solution approximation

β1 β2 CD ENT ER

1.000 0.000 0.0021742 −0.4465069 0.1137800

0.975 0.025 0.0022016 −0.4486607 0.0803865

0.950 0.050 0.0022864 −0.4508330 0.0517537

0.925 0.075 0.0024329 −0.4530269 0.0405989

0.900 0.100 0.0026458 −0.4552454 0.0586154

0.875 0.125 0.0029308 −0.4574919 0.0900950

0.850 0.150 0.0032943 −0.4597698 0.1256223

0.825 0.175 0.0037434 −0.4620827 0.1628787

0.800 0.200 0.0042865 −0.4644348 0.2011943

Table 3 Results for Example 2, with 1% relative noise added. βi are the weights, CD is the
generalized collage distance, ENT is the entropy, and ER is the error in the solution approximation

β1 β2 CD ENT ER

1.000 0.000 0.0021017 −0.4470260 0.0845346

0.975 0.025 0.0021298 −0.4492358 0.0499861

0.950 0.050 0.0022168 −0.4514640 0.0242196

0.925 0.075 0.0023669 −0.4537136 0.0382541

0.900 0.100 0.0025853 −0.4559880 0.0720679

0.875 0.125 0.0028774 −0.4582904 0.1088788

0.850 0.150 0.0032497 −0.4606244 0.1467492

0.825 0.175 0.0037098 −0.4629939 0.1853078

0.800 0.200 0.0042661 −0.4654028 0.2244618

Table 4 Results for Example 2, with 3% relative noise added. βi are the weights, CD is the
generalized collage distance, ENT is the entropy, and ER is the error in the solution approximation

β1 β2 CD ENT ER

1.000 0.000 0.0023244 −0.4477071 0.0373642

0.975 0.025 0.0023541 −0.4500420 0.0133447

0.950 0.050 0.0024460 −0.4523946 0.0421420

0.925 0.075 0.0026044 −0.4547684 0.0790124

0.900 0.100 0.0028346 −0.4571666 0.1168087

0.875 0.125 0.0031425 −0.4595929 0.1551047

0.850 0.150 0.0035346 −0.4620510 0.1938376

0.825 0.175 0.0040189 −0.4645450 0.2330136

0.800 0.200 0.0046040 −0.4670791 0.2726602
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6 Conclusions

In this paper, we consider parameter identification inverse problems for variational
equations using theGeneralizedCollage Theorem (subject to the coercivity constants
being bounded away from zero). We give a reminder that making the generalized
collage distance very small produces a variational equation with solution close to
a given target solution. We incorporate an entropy term to produce a two-criteria
optimization problem: the goal is to find parameters that minimize the generalized
collage distance and maximize entropy. The point is to demonstrate that the revised
problem can yield parameter values that produce a solution that lies even closer to
the target solution. We choose to scalarize the two-criteria problem, which leads to a
weighted combination of the two criteria as the single objective function. Numerical
examples show that a small positive weight on the entropy term indeed produces a
better estimate than the case when the weight is zero.

It may bear mentioning in this conclusion that there are other ways to treat such
multicriteria optimization problems.One other approach is called goal programming;
in this framework, one seeks an acceptable solution (which is likely not optimal) by
introducing goals for each of the criteria. Another approach is called the ε-constraint
method, which singles out one of the criteria as the sole objective function, while
shifting all of the other criteria to equality constraints. The inequalities require each
constraint term to be bounded by some small term,which, as the name of the approach
suggests, is often denoted εi for constraint i .

Acknowledgements Research partially supported by the Natural Sciences and Engineering
Research Council of Canada.
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Mean-Square Stability of Stochastic
System with Impulse and Unbounded
Delay

Mengling Li, Feiqi Deng, and Xinzhi Liu

Abstract This paper investigates mean-square stability of stochastic systems with
time-varying parameters, impulses and unbounded delay. Applying the character-
istics of stabilizing and destabilizing impulses, stochastic analysis techniques and
mathematical deduction, the two conclusions on mean-square stability analysis of
the considered systems are obtained.

Keywords Stochastic system · Impulse · Unbounded delay

1 Introduction

Most of the control systems inevitably have some disturbance factors from interior
or outside in the actual operation. Stochastic noise [1, 2], impulse [3–5], unbounded
delay [6–8] are often encountered and may destroy the stability of systems. In this
paper, we mainly aim at this type of systems which possess many complex fac-
tors, such as time-vary parameters, noise, impulses and unbounded delay. Sufficient
conditions on mean-square stability for the considered systems are given.

There are many literatures focusing on stability of stochastic systems, impulsive
systems and systems with unbounded delay. The mean-square stability of stochastic
systems are investigated in the references [9, 10] and the authors in the references
[11, 12] apply Razumikhin technique to discuss the moment exponential stability of
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a class of impulsive stochastic functional differential equations. References [13–16]
considered the stability and control of impulsive systems. But to our best knowl-
edge, the mean-square stability of stochastic systems with time-varying parameters,
impulse and unbounded delay is not investigated up to now.

In this paper, we aim at the mean-square stability analysis for stochastic systems
with impulses and unbounded delay. The two situations for impulses including sta-
bilizing and destabilizing impulses are considered and the sufficient conditions for
the mean-square stability of stochastic systems are discussed.

Notations: Let (Ω,F , {Ft }t≥t0 , P) be a complete probability space with a
filtration {Ft }t≥t0 satisfying usual conditions and | · | be Euclidean norm. Let
R denote the set of real numbers, R+ the set of nonnegative real number, Rn

and Rn×m the n−dimensional and n × m−dimensional real spaces, respectively.
A > 0(A < 0) means that the matrix A is a symmetric positive(negative) defi-
nite matrix. N+ represents the set of positive integers. D+ϕ stands for the Dini
derivative of function ϕ. C(℘,�) = {� : ℘ → � is continuous } and denote by
C1,2([t0,+∞) × Rn; R+) the family of positive real-valued functions defined on
[t0,+∞) × Rn which are continuously twice differentiable in x ∈ Rn and once dif-
ferentiable in t ∈ [t0,+∞). Denote a ∨ b, a ∧ b the maximum and minimum value
of a, b, respectively. E(·) denote the mathematical expectation. Let Ψ = {ψ(t) ∈
C(R, R+ \ {0})|ψ(t) ≤ 1, t ≤ t0;ψ(t) ≥ 1, t > t0}.

2 Problem Formulation

Consider the following stochastic time-varying systems with impulses and time-
varying unbounded delay

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t) = (A(t)x(t) + B(t)x(t − τ(t)))dt

+(C(t)x(t) + D(t)x(t − τ(t)))dw(t), t > t0
x(tk) = αk x(t

−
k ), k ∈ N+

x(t) = φ(t), t ∈ [t0, t0],
(1)

where x = (x1, ..., xn)T ∈ Rn; A(t) = [ai j (t)], B(t) = [Bi j (t)],C(t) = [ci j (t)],
D(t) = [di j (t)] ∈ C([t0,+∞), Rn×n); τ(t) ≥ 0 is a continuous time delay, αk ∈ R+
for any k ∈ N+, φ = (φ1, ..., φn)

T ∈ C([t0, t0], Rn); w(t) is a one-dimensional
Ft−adpated Brownian motion defined on the complete probability space (Ω,F ,

{Ft }t≥t0 , P); and t0 = inf t≥t0{t − τ(t)}.
In this paper, we say that if αk ∈ [−1, 1], then the corresponding impulse is sta-

bilizing impulse. And the destabilizing impulse means αk ∈ (−∞,−1) ∪ (1,+∞).
The mean-square asymptotic stability is the main research content, so we assume
that the impulse times tk satisfy tk → +∞ and k → +∞.
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Next, Itô formula will be given. For function V (t, x) ∈ C1,2([t0,+∞) × R; R+),
when t �= tk, k = 1, 2, ..., we have

dV (t, x(t)) = L V (t, x(t))dt + ∂V (t, x(t))

∂x
(C(t)x(t) + D(t)x(t − τ(t))),

where operator L is regular and its detailed definition can be found in the refer-
ence [17].

Definition 1 For any initial time t0 and initial dataφ, if limt→+∞ E |x(t)|2 = 0 holds,
then the trivial solution of the systems is said to be mean-square stable.

In particular, if there exist a function ψ(t) ∈ Ψ and a constant M which relates
to the initial time and data, such that E |x(t)|2 ≤ Mψ−1(t) for any t > t0, then the
trivial solution is said to be mean-square ψ stable.

For convenience’sake, several time-varying matrices are defined as following,

Υ (t) = [υi j (t)] = A(t) + AT (t) + CT (t)C(t),

Θ(t) = [θi j (t)] = B(t) + CT (t)D(t),

Π(t) = [πi j (t)] = DT (t)D(t),

Υ (t),Θ(t),Π(t) belong to C([t0,+∞), Rn×n).

3 Main Results

Firstly, we focus on the stabilizing impulses. Before we give the stability conclusion,
a very useful lemma is given.

Lemma 1 If these is a function ψ(t) ∈ Ψ such that

b(t)
ψ(t)

ψ(t − τ(t))
+ a(t) < 0, t ≥ t0, (2)

then we have
E |x(t)|2 ≤ X̃(t0)χkψ

−1(t). (3)

for t ∈ [t0, tk).
Where

a(t) = max
i∈N

{υi i (t) +
n∑

j=1, j �=i

|υi j (t)| +
n∑

j=1

|θi j (t)|} < 0,

b(t) = max
i∈N

{
n∑

j=1

|θ j i (t)| +
n∑

j=1

|πi j (t)|}, N = {1, ..., n},
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X̃(t0) = sup
h∈[t0,t0]

E(xT (h)x(h)),

χ0 = 1, χk =
k−1∏

i=0

(1 ∨ α2
i ), k ≥ 1.

Proof Let V (t) = xT (t)x(t) = ∑n
i=1 x

2
i (t). For any k ∈ N+ and t ∈ (tk, tk+1), let

� t > 0 be small enough such that t+ � t ∈ (tk, tk+1). Then by Fubini theorem, it
can be obtained that

EV (t+ � t) − EV (t) =
∫ t+�t

t
EL V (s)ds.

Since EL V (t) is continuous in the interval t ∈ (tk, tk+1), it follows that

D+EV (t) = EL V (t), t ∈ (tk, tk+1), k ∈ N+. (4)

Based on the definition of operator L , we can compute

L V (t) = 2xT (t)(A(t)x(t) + B(t)x(t − τ(t)))

+ (C(t)x(t) + D(t)x(t − τ(t)))T (C(t)x(t) + D(t)x(t − τ(t)))

= xT (t)(A(t) + AT (t) + CT (t)C(t))x(t)

+ 2xT (t)(B(t) + CT (t)D(t))x(t − τ(t))

+ xT (t − τ(t))DT (t)D(t)x(t − τ(t))

= xT (t)Υ (t)x(t)

+ 2xT (t)Θ(t)x(t − τ(t)) + xT (t − τ(t))Π(t)x(t − τ(t)).

(5)

Note that

xT (t)Υ (t)x(t) = υ11(t)x
2
1 (t) + 2υ12(t)x1(t)x2(t) + · · ·

+ 2υ1n(t)x1(t)xn(t) + υ22(t)x
2
2 (t)

+ · · · + 2υ2n(t)x2(t)xn(t) + · · · + υnn(t)x
2
n (t)

≤ υ11(t)x
2
1 (t) + |υ12(t)|(x21 (t) + x2n (t)) + · · ·

+ |υ1n(t)|(x21 (t) + x2n (t)) + · · ·
+ |υ2n(t)|(x22 (t) + x2n (t)) + · · · + υnn(t)x

2
n (t)

≤ (υ11(t) +
n∑

j=2

|υ1 j (t)|)x21 (t) + · · ·

+ (υnn(t) +
n−1∑

j=1

|υnj (t)|)x2n (t),

(6)
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2xT (t)Θ(t)x(t − τ(t)) = 2(θ11(t)x1(t)x1(t − τ(t)) + · · · + θn1(t)xn(t)

× x1(t − τ(t)) + θ12(t)x1(t)x2(t − τ(t)) + · · · + θ1n(t)

× x1(t)xn(t − τ(t)) + · · · + θnn(t)xn(t)xn(t − τ(t)))

≤ |θ11(t)|(x21 (t) + x21 (t − τ(t))) + · · · + |θn1(t)|
× (x2n (t) + x21 (t − τ(t))) + |θ12(t)|(x21 (t) + x22 (t − τ(t)))

+ · · · + |θnn(t)|(x2n (t) + x2n (t − τ(t)))

=
n∑

i=1

|θ1i (t)|x21 (t) + · · · +
n∑

i=1

|θni (t)|x2n (t)

+
n∑

j=1

|θ j1|x21 (t − τ(t)) +
n∑

j=1

|θ jn(t)|x2n (t − τ(t)),

(7)

xT (t − τ(t))Π(t)x(t − τ(t)) = π11(t)x
2
1 (t − τ(t)) + 2π12(t)x1(t − τ(t))

× x2(t − τ(t)) + · · · + 2π1n(t)x1(t − τ(t))xn(t − τ(t))

+ π22(t)x
2
2 (t − τ(t)) + · · · + πnn(t)x

2
n (t − τ(t))

≤
n∑

j=1

|π1 j (t)|x21 (t − τ(t)) + · · · +
n∑

j=1

|πnj (t)|x2n (t − τ(t)).

(8)
Substituting (6), (7), (8) into (5), we can obtain

L V (t) ≤ max
i∈N

{υi i (t) +
n∑

j=1, j �=i

|υi j (t)| +
n∑

j=1

|θi j (t)|}V (t)

+ max
i∈N

{
n∑

j=1

|θ j i (t)| +
n∑

j=1

|πi j (t)|}V (t − τ(t))

= a(t)V (t) + b(t)V (t − τ(t)),

(9)

for any k ∈ N+ and t ∈ (tk, tk+1).
Combining (4) with (9), we have

{
D+EV (t) ≤ a(t)EV (t) + b(t)EV (t − τ(t)), t �= tk
EV (tk) = α2

k EV (t−k ), k ∈ N+.
(10)

Without loss of generality, we assume that x(t0) �= 0 a.s..
When t ∈ [t0, t1), first it is clear that EV (t0) ≤ X̃(t0). If there is t∗ = inf{s ∈

(t0, t1)|EV (s) > X̃(t0)χ1ψ
−1(s)}, we have

EV (s) ≤ EV (t∗), if t0 ≤ s < t∗. (11)
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EV (t) is derivable when t ∈ (t0, t1), by (11), we can obtain that

D+EV (t∗) = lim
�→0+

EV (t∗+ �) − EV (t∗)
� = lim

�→0−

EV (t∗+ �) − EV (t∗)
� ≥ 0.

(12)
On the other hand, by (10), (2) and (11),

D+EV (t∗) ≤ a(t)EV (t∗) + b(t)EV (t∗ − τ(t∗))

≤ a(t∗)X̃(t0)χ1
1

ψ(t∗)
+ b(t∗)X̃(t0)χ1

1

ψ(t∗ − τ(t∗))

≤ X̃(t0)χ1(a(t∗) + b(t∗)
ψ(t∗)

ψ(t∗ − τ(t∗))
) < 0,

(13)

which is contradicted with (12), so we can conclude that (3) holds for t ∈ [t0, t1).
Now,we assume that EV (t) ≤ X̃(t0)χk−1

1
ψ(t) holds for t ∈ [t0, tk−1) andwe show

that EV (t) ≤ X̃(t0)χk
1

ψ(t) holds for t ∈ [t0, tk).
According to condition and (10), EV (tk−1) = α2

k−1EV (t−k−1) ≤ α2
k−1 X̃(t0)χk−1 ×

ψ−1(tk−1) ≤ χk X̃(t0)ψ−1(tk−1). Then similar to the procedure and method of (11),
(12) and (13), we can conclude that EV (t) ≤ X̃(t0)χkψ

−1(t) holds for t∈[t0, tk), k ∈
N+, which means the conclusion (3).

According to the above lemma, the first theorem is given.

Theorem 1 If the impulses are all stabilizing or there are only finite destabilizing
impulses, then under conditions inLemma1, the systems (1) canachievemean-square
ψ stability.

Proof If the impulses are all stabilizing or there are only finite destabilizing impulse,
then there is a positive constant M ≥ X̃(t0)χk for any k ∈ N+.

Remark 1 It can be seem from (2) and the structure of a(t), b(t) that the coefficient
of non-delay term A(t) plays a critical role for moment stability conclusion. Both
the time-delay term and stochastic term have a negative effect on moment stability
performance.

Unless otherwise specified, the same sign stands for the same definition. It there
are infinite destabilizing impulses, the following lemma is useful.

Lemma 2 If there are constants λ > 0, β > 1 and � ∈ (0, λ) such that

b(t)βλτ(t) + λ ln β + a(t) < 0, (14)

and
|αk | ≤ β

1
2 �(tk+1−tk ). (15)
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Then we have

βλ(t−t0)E(xT (t)x(t)) ≤ X̃(t0)β
�(tk−t0), t ∈ [tk−1, tk), k ∈ N+. (16)

Proof Let V (t) = xT (t)x(t), Z(t) = βλ(t−t0)EV (t), the conclusion (16) is equiva-
lent to prove that the following inequality

Z(t) ≤ X̃(t0)β
�(tk−t0), (17)

holds for t ∈ [tk−1, tk), k ∈ N+.

First, we will prove that (17) holds for t ∈ [t0, t1). It is obvious that Z(t0) =
EV (t0) ≤ X̃(t0). If (17) does not hold, then set t∗ = inf{s ∈ (t0, t1)|Z(s) >

X̃(t0)β�(t1−t0)}. Then
Z(s) ≤ Z(t∗), t0 ≤ s ≤ t∗. (18)

Z(t) is derivable when t ∈ (t0, t1), so

D+Z(t∗) = lim
�→0+

Z(t∗+ �) − Z(t∗)
� = lim

�→0−

Z(t∗+ �) − Z(t∗)
� ≥ 0. (19)

On the other hand, by (10), (14) and (18), we have

D+Z(t∗) = λβλ(t∗−t0) ln βEV (t∗) + βλ(t∗−t0)D+EV (t∗)

≤ λβλ(t∗−t0) ln βEV (t∗) + βλ(t∗−t0)(a(t∗)EV (t∗) + b(t∗)EV (t∗ − τ(t∗)))

= λ ln βZ(t∗) + a(t∗)Z(t∗) + βλτ(t∗)b(t∗)Z(t∗ − τ(t∗))

≤ (λ ln β + a(t∗) + βλτ(t∗)b(t∗))Z(t∗) < 0,
(20)

which is contradicted with (19). So Z(t) ≤ X̃(t0)β�(t1−t0) for t ∈ [t0, t1). Assume
that Z(t) ≤ X̃(t0)β�(tl−t0) for t ∈ [tl−1, tl), l = 1, · · · , k − 1 and we will show that
Z(t) ≤ X̃(t0)β�(t−t0) for t ∈ [tk−1, tk) .

Z(tk−1) = βλ(tk−1−t0)EV (tk−1) ≤ βλ(tk−1−t0)α2
k−1EV (t−k−1)

≤ α2
k−1Z(t−k−1) ≤ X̃(t0)β

�(tk−t0).

Then similar to the procedure and method of (18), (19) and (20), the conclusion
(16) can be obtained.

Theorem 2 Let themaximum impulse time interval Tmax � supk∈N+{tk − tk−1} > 0,
under the same conditions as Lemma 2, the conclusion (16) is equivalent to

E |x(t)|2 ≤ β̄ X̃(t0)β
−(λ−�)(t−t0),

for any t ≥ t0, where β̄ = βTmax > 1, which means that the trivial solution is mean-
square stable.
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Proof When t ∈ [tk−1, tk), applying β�(tk−t0) = β�(tk−t+t−t0) ≤ β̄β�(t−t0).

Remark 2 (I) According to (15), impulse strength and impulse time interval influ-
ence each other. The longer the time interval, the impulse strength can be allowed
larger, which is also a intuitive thought.

(II) The existing of maximum impulse interval in Theorem 2 means that the
impulse strength cannot be too big.

(III) Compare Theorems 1 and 2, it can be found that there is no restriction on
the impulse time interval when impulse strength is relatively small, but there is a
connection between impulse time interval and impulse strength when the impulse
strength is relatively big.
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BOLD.R: A Software Package
to Interface with BOLD Through R

Nishan Mudalige

Abstract DNA barcoding has been established as a reliable system for identifying
and classifying species. Data generated from DNA barcoding is continuously cat-
aloged on the Barcode of Life Data System (BOLD) using samples collected from
researchers and institutions around the world. Advances in DNA analysis have led to
a rapid increase in the amount of data available for researchers to study and modern
statistical techniques are consequently playing an increasingly important role in the
analysis of such large volumes of data. Existing methods to import data from BOLD
into any statistical software can be inconvenient, time-consuming, or provide limited
information. One of the most popular software applications for statistical analysis is
R and we developed an R packages called BOLD.R which aims to overcome exist-
ing barriers currently preventing the ease of access to information on BOLD directly
into statistical software. Our package allows users to access public data directly from
BOLD into R via the current API maintained by the BOLD system. In this article we
discuss the implementation and benefits of BOLD.R for researchers and scientists.

Keywords Bioinformatics · Statistical software · R · DNA barcoding

1 Introduction

DNAbarcoding is a revolutionary technique that is on the frontier of modern science.
Short genetic markers in the DNA of an organism act as genetic “barcodes” that are
used for the classification of species. The procedure of applying DNA barcodes for
identificationwas developedbyHebert et al. and discussed further in [1]. TheBarcode
of Life Data System (BOLD) was developed at the Centre for Biodiversity Genomics
(CBG) to provide a comprehensive platform for storing, analyzing, cataloging and
publishing data related toDNAbarcode records. Samples are collected by researchers
in the field or gathered from museums and sent to the CBG for sequencing and
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analysis. DNAbarcodes are extracted from these samples and all of the data collected
is uploaded on to BOLD. The BOLD ID Engine drives the identification of unknown
sequences by using an advanced cutting-edge clustering algorithm developed by
Hebert and Ratnasingham [2]. The algorithm incorporates all sequences uploaded
to BOLD from public and private projects in order to locate the closest match. We
note that sequences from private records are never exposed in order to maintain data
security. BOLD also provides a clean, modern, web-based interface for accessing
data. The powerful integrated environment offered by BOLD and the ability for
DNA barcode extraction and data upload to be performed in-house at the CBG
has resulted in BOLD becoming a valuable asset for many academic and scientific
institutions. Due to the significance of DNA barcoding and the advantages offered
by the BOLD system, the number of users as well as the volume of information
stored on BOLD has grown at an exponential rate. BOLD version 1.0 launched in
2005 with approximately 58,000 records from which approximately 42,000 DNA
barcodes were successfully obtained and these records represented approximately
15,000 species. The current iteration of BOLD is version 4.0, and as of September
2019, BOLD has information on over 10 million records which contain 7.5 million
DNA barcode sequences representing information from over 650,000 animal species
and species proxies (i.e. BINs).

Researchers involved with genetic barcoding are often interested is the ability to
perform statistical analysis on their data. As a result, modern statistical techniques are
becoming progressively essential in data analysis, particularly with large volumes
of data. Users can conduct a reasonable degree of statistical analysis on BOLD
through the web interface, however in-depth analysis of data may require specialized
statistical software. Many statistical packages are available for data analysis and one
of the most popular is R (https://www.r-project.org/).

R is an open-source programming language designed by statisticians and scientists
specifically for statistical analysis. R is free and available for download onMicrosoft
Windows, macOS, and Linux. The base version of R incorporates many functions to
perform standard statistical tests, create statistical models, analyze large and small
data sets,manipulate data and create graphical plots.Many specialized packages have
been developed by the scientific community and contributed to the R project. These
packages are typically useful in performing specific tasks or analyzing distinct types
of data. There are almost 15,000 packages available on R through the Comprehensive
R Archive Network (CRAN) repository as of September, 2019. The ability to access
such a vast and diverse collection of packages provides users with the flexibility
and convenience to conduct statistical analysis in the R environment. R is also very
effective and efficient at managing and storing data. It also has powerful graphical
capabilities which allow the user to create clean and professional plots and figures
which are suitable for publication. The results obtained from statistical analysis
conducted in R is often accepted by the scientific community for publishing in many
journals (this includes running simulations).

Although we have discussed the advantages of both BOLD and R, existing meth-
ods to retrieve data from BOLD into R (or any statistical package) are inconvenient,
time-consuming or return limited information. The typical scenario would consist

https://www.r-project.org/


BOLD.R: A Software Package to Interface with BOLD Through R 189

of a user logging in to BOLD, performing queries to locate the required data, saving
the desired files into a format that can be read by R, such as a comma separated files
(.csv) or extensible markup language (XML) file, and finally reading the data into
R. We have therefore introduced a more accessible system to provide convenient
and direct access to the data stored on BOLD into R. Our solution is an R package
called “BOLD.R”. An alpha version of BOLD.R is available for download at http://
boldsystems.org/BOLD.R.

2 Methods and Implementation

We developed an R package called BOLD.Rwhich allows users to access public data
directly fromBOLD into R via current APIsmaintained by the BOLD system. A user
simply needs to load BOLD.R in R and use the functions provided by our package
to retrieve public data into R in real time directly through the R interface. BOLD can
be used as a point for data storage and validation and R can be used for analysis. The
BOLD ID engine will validate, extract and classify genera through DNA barcoding
and BOLD.R will complement BOLD by allowing researchers to conduct in-depth
statistical analysis of public data stored on BOLD using R.

Data on BOLD that is accessed using BOLD.R is stored within R in a format
called a “data frame”. A data frame is a tabular data structure in R which consists
of rows and columns. We chose to store the data retried from BOLD as a data frame
due to the many many advantages offered by the format. Data frames are flexible
since each column can store data of a different type (e.g.. strings, numeric, logical
etc.); we are able to attach labels to column headers so we can provide a meaningful
name to a column; it is relatively easy to modify the contents of a data frame; the
user can make changes to the data in a data frame without affecting the original
data on BOLD; there are many methods to filter data by the values in a column of
a data frame and R provides straightforward and efficient ways to merge data and
remove duplicated values in data frames. Once data is retrieved from BOLD into R,
the user can apply functions from the substantial library of other packages available
to conduct analysis on their data. We provide several examples in Sect. 3.

3 Results and Discussion

The primary motivation for us to develop BOLD.R was to provide a convenient
way to transfer public data from BOLD into R. To achieve this, we developed the
get.public function which allows the user to obtain public data by providing
a taxon, ID number, BIN number, project code, institution name, researcher name,
geographic location or genetic marker to obtain the desired data from BOLD. A
string or a vector of strings can be entered to return a result. The information is

http://boldsystems.org/BOLD.R
http://boldsystems.org/BOLD.R
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retrieved and stored as a data frame. An example of obtaining several projects at
once is illustrated in Fig. 1.
If multiple parameter values are passed into the get.public function, the API
will perform an inner join on the conditions.

Several other useful functions are integrated into the BOLD.R package. One such
function is the summary.bold function which provides information regarding the
number of unique records, number of projects and number of different primers in a
data frame. Figure2 provides an example of the data displayed with this function.

Another useful function is the nucleotides function which provides informa-
tion about the different types of nucleotide alignments within a data frame. Figure3
provides an example of the output displayed by this function.

We reiterate that R has the ability to createmany professional plots. For illustrative
purposes we present some plots that were created in R using BOLD.R along with
other existing packages. The data used to create all of the plots presented in this
paper is public data which anyone can easily accesses from BOLD. Figures4 and 5
provide examples of popular types of plots for displaying qualitative data. The bar
plot and donut plot in these figures can be created using the functions available on
the base version of R.

Using additional packages, we can obtain more sophisticated visualizations of
data, such as trees and dendrograms. Figures6 and 7 provide some examples of plots
that can be created using the ape and plyr libraries on public data retrieved through
BOLD.R. Figure6 is a tree created using data obtained from a project with a relatively
small number of distinct records and Fig. 7 is a dendrogram in a fan layout that was
created using data from a project with a relatively large number of distinct data
records. The ape package is popular among researchers working with phylogenetic

Fig. 1 An example of a command which will retrieve data from several public projects

Fig. 2 An example of the output obtained from the summary.bold function. The data frame in this
example consists of 4 different projects which contain a total of 337 unique records with 3 different
primers and it does not contain any duplicates

Fig. 3 An example of the output obtained from the nucleotides function. The data frame in this
example consists of 3 different projects which contain a total of 3 different nucleotides
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Barplot of Taxon in ACAGA
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Fig. 4 Abar plot createdusing records in a data frame.This example contains frequency information
about the frequency of specific phyla obtained from a public data set on BOLD
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Fig. 5 A doughnut plot created using records in a data frame. This example contains frequency
information about the frequency of specific phyla obtained from a public data set on BOLD

data. ape stands for Analyses of Phylogenetics and Evolution and it is often used to
plot and prune phylogenetic trees, calculate metrics between DNA sequences, read
and write nucleotide formats and it also integrates with the BioConductor framework
for the analysis of genomic data. More information about ape can be found in [4]
plyr is an R package this is used to efficiently perform split-apply-combine (SAC)
procedures on data. It is a very useful package to load into R in order to manipulate
very large data sets. More information about plyr can be found in [7].
BOLD.R allows the user to create a class of object called a DNAbin by using

the genDNAbin function which is included with BOLD.R. A DNAbin object can
be used with other packages such as ape to analyze DNA sequences. Functions in
ape can be applied on DNAbin objects to create images displaying the alignment
of nucleotide sequences, such as the image in Fig. 8. We created Fig. 8 in R using a
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Aerophilus gregburtoni

Aerophilus rebeccashapleyae

Aerophilus bradzlotnicki

Aerophilus vaughntani

Aerophilus colleenhitchcockaeDHJ01

Aerophilus sandraberriosae

Aerophilus jessiehillae

Aerophilus jessicadimauroae

Aerophilus robpringlei

Aerophilus mingfangi

Dendrogram of ACAGA

Fig. 6 A tree classifying taxa in a data frame. The additional libraries used to create this plot are
ape and plyr

subset of data retrieved from a public project using BOLD.R and then converting the
data obtained into a DNAbin object with the genDNAbin function.

A fewmore examples of graphical plots that can be created using DNAbin objects
are given in Figs. 9 and 10. Figure9 depicts a heatmap and Fig. 10 is a haplotype
network plot. Thestringdistpackagewas used to create the heatmap and pegas
was used to create the haplotype network. More information about these packages
can be found in [6] and [5] respectively.

Samples collected by researchers may also contain geographic information, such
as latitude, longitude and elevation. This geographic data can also be plotted in R
to provide useful information regarding the specific path that a researcher used to
collect samples or to gather information on the spatial distribution of species. The
ggmap library integrates with the google map API and provides functions which
allow users to plots data on maps. More information on ggmap can be found in
[3]. Various layers of maps can be plotted to show the desired amount of detail.
Figure11 provides visual information about the location in which data was collected
by researchers conducting field work in a park for two different projects on BOLD.
This figure also provides some information about land cover and topography.
BOLD.R also provides a function for merging data. The merge.bold func-

tion efficiently and intelligently merges data frames containing data obtained from
BOLD. The advantage of using the merge.bold function over other functions in
R which merge data structures is that merge.bold was specifically designed with
the structure of the data that returned from BOLD. The merge.bold function will
also remove any duplicate rows that may exist after merging.

We can also create a FASTA file directly from data stored on BOLD using the
get.fasta function which is provided with BOLD.R. This is a very convenient
feature since FASTA is a standard text-based format that is used for representing
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Fig. 7 A dendrogram (fan layout) of the taxa in a data fame. The additional libraries used to create
this plot are ape and plyr
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Fig. 8 An image illustrating the alignment of nucleotide created for a small subset of data taken
from a public project
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Fig. 9 A heat map for the similarity between barcodes in a public project on BOLD. The additional
libraries used to create this plot are stringdist and gplots
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Fig. 11 A geospatial plot indicating locations specimens in a public project stored in BOLD were
collected. The additional R library used to create this plot is ggmap

nucleotide sequences. The parameters of the get.fasta are the same as those
in the get.public function (i.e. taxon, ID number, BIN number, etc.) and the
API will perform an inner join on if multiple parameter values are provided. A
single FASTA file can have many records of sequences, and each record consists of
the sequence itself as a string of characters and a unique sequence ID. This format
allows the storage aligned DNA strings and amino acid sequences making it a simple
and flexible file format for bioinformatics.

4 Conclusions

BOLD.R is a useful package which provides the user with the capacity to access
and analyze large amounts of public data on BOLD directly through R. The package
provides the user with an efficient manner to import and manipulate data on BOLD
directly into R, which is the most comprehensive open-source software package
available for statistical analysis. BOLD.R can therefore become a valuable tool to
assist researchers make informed decisions through data analytics. The package has
a diverse array of applications in fields such as genetic barcoding, biodiversity, con-
servation, population genetics, evolutionary biology, bioinformatics, and education.

Acknowledgements We would like to thank Sujeevan Ratnasingham for his guidance on this
project andMeganMilton for providing systematic insight on the structure and operation of BOLD.
We would like to thank Ramya Manjunath for her help with testing and developing BOLD.R and
for providing assistance understanding the format in which data is stored on BOLD. We would



196 N. Mudalige

like to thank Joris D’hondt for his help with compiling the source code into a working binary and
Alexandra Stoneham for her help with providing sample project codes for data sets that were used
for testing. We also thank Dean Chan and Eddie Ma for their help with setting up the website where
the package can be downloaded.

References

1. Hebert, P., Cywinska, A., Ball, S.L., deWaard, J.R.: Biological identifications through DNA
barcodes. Proc. R Soc. Lond. (2003). https://doi.org/10.1098/rspb.2002.2218

2. Hebert, P., Ratnasingham, S.: BOLD: the barcode of life data system.Mol. Ecol. Resour. (2007).
https://doi.org/10.1111/j.1471-8286.2006.01678.x

3. Kahle, D., Wickham, H.: ggmap: spatial visualization with ggplot2. R. J. (2013). https://doi.org/
10.32614/RJ-2013-014

4. Paradis, E., Claude, J., Strimmer, K.: APE: analyses of phylogenetics and evolution in R lan-
guage. Bioinformatics (2004). https://doi.org/10.1093/bioinformatics/btg412

5. Paradis, E.: pegas: an R package for population genetics with an integrated-modular approach.
Bioinformatics (2010). https://doi.org/10.1093/bioinformatics/btp696

6. van der Loo, M.: The stringdist package for approximate string matching. R. J. (2014). https://
doi.org/10.32614/RJ-2014-011

7. Wickham, H.: The split-apply-combine strategy for data analysis. J. Stat. Softw. (2019). https://
doi.org/10.18637/jss.v040.i01

https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1111/j.1471-8286.2006.01678.x
https://doi.org/10.32614/RJ-2013-014
https://doi.org/10.32614/RJ-2013-014
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1093/bioinformatics/btp696
https://doi.org/10.32614/RJ-2014-011
https://doi.org/10.32614/RJ-2014-011
https://doi.org/10.18637/jss.v040.i01
https://doi.org/10.18637/jss.v040.i01


Analysis of Cortical Spreading
Depression in Brain with Multiscale
Mathematical Models

Hina Shaheen, Roderick Melnik, and Sundeep Singh

Abstract The present study aims at modeling the cortical spreading depression
(CSD) propagation in brain considering two different approaches available in the
literature: (a) a simplified model consisting of six coupled equations of the reaction-
diffusion type in two space dimensions and (b) a one-dimensional, more complex
neuronal model comprising of ionic currents and ionic pumps. A study has been
conducted to quantify the effects of varying extracellular potassium concentrations
on the propagation of CSD in the multiscale reaction-diffusion model by monitor-
ing the respective changes in the extracellular and intracellular concentrations of
sodium, chlorine and calcium ions, in addition to evaluating the changes in the gen-
erated membrane potentials. In the multiscale neuronal model, the influence of gated
conductance on the intracellular and extracellular potassium concentrations of the
sodium and potassium and the membrane potential has been reported. The study
revealed that the variation in gated conductance results in an increase of the pump
currents that leads to the spatio-temporal variations of extracellular potassium.

Keywords Brain · CSD propagation · neuronal model · ion channels · KCl
stimulus
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1 Introduction

Cortical spreading depression (CSD), first discovered by Leão [1] in 1944, is a wave
that propagates slowly across the cerebral cortex of the brain. This wave can cause
a drastic failure of the brain homeostasis leading to temporary impairment in the
normal functioning of neurons. The clinical disorders related to CSD can also lead to
pathophysiology of various diseases including migraine, ischemic stroke, transient
global amnesia, epilepsy and traumatic brain injury [2, 3]. The main property of
neural cells is to produce an action potential comprising a rapid increase of the trans-
membrane potential, called spike, supported by a recovering of the resting condition
through a refractory period, where the cell cannot be excited during this period [4].
CSD is awave of electrophysiological hyperactivity, whereby neurons are first highly
excited. That is being followed by a silent phase of membrane hyper-polarization
and later the triggered neurons are slowly recovered to their normal frequencies. This
neurophysiological phenomenon of CSD results in abrupt changes in the intracel-
lular ion gradients, i.e. an increase in extracellular K+ and glutamate, along with
rise in intracellular Na+ and Ca+2, followed by sustained depolarization of neurons
[5]. Importantly, there are several biophysical, electrophysiological, neurochemical
and anatomical elements involved in the propagation of CSD, such as glia, neu-
rons, synapses, cell swelling, many ion channels, ion and transmitter concentrations,
pumps, blood vessels, degree of hypoxia, gap junctions, etc. [6].

Themathematicalmodels of CSDhave also been explored in the past decades for a
better understandingofCSD instigation, propagation anddepolarization in the human
cortex (e.g.. [7–10] and references therein). In the present studies, two continuum-
based multiscale mathematical models of CSD have been analyzed numerically:
(a) a simplified two-dimensional model consisting of six coupled equations of the
reaction-diffusion type derived from the Tuckwell model [5] in two space dimensions
and (b) a one-dimensional multiscale neuronal model comprising of ionic currents
and ionic pumps derived from [9]. Themathematical structure of the two-dimensional
model considers diffusion in extracellular (ECS) and intracellular (ICS) spaces while
the neuronal model considers diffusion in extracellular space only. We demonstrate
that the developed models reproduce many important characteristics of CSD over
multiple spatio-temporal scales such as instigation, propagation and depolarization
of CSD wave. In addition, the effect of change in concentration of high extracellular
potassium on the propagation of CSD of the model in two space dimensions has
also been evaluated. Finally, one of the main motivations and novelty of this study
has been to quantify the effects of varying strength of gated conductances of sodium
and potassium on the instigation and propagation of CSD in the one-dimensional
neuronal model along with highlighting the effects of higher extracellular potassium
in two spatial dimensions.
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2 Mathematical Modeling of CSD

In this section the mathematical modeling approaches for the analysis of CSD wave
instigation and propagation are discussed in the one- and two-dimensional spaces.

2.1 Reaction-Diffusion Model of CSD in Two-Space
Dimensions

A mathematical model is developed for the movements of four basic ions, viz., K+,
Ca+2, Na+, Cl−, and two neurotransmitter substances, one excitatory (TE ) and the
other inhibitory (TI ) in the two-dimensional space (x ,y) for simulating the move-
ments of these substance during CSD [5]. Our model assumes that the brain-cell
microenvironment can be treated as a porous medium consisting of extra- and intra-
cellular (ECS, ICS) compartments whereby the ions and transmitters are free to
diffuse in the extracellular space. The present model is based on reaction-diffusion
of ions and neurotransmitters. “Reaction” refers to the ion exchange between ICS
and ECS which is the microscopic part of the model at a cellular level and “Diffu-
sion” refers to the ionic propagation between neurons and ECS in the macroscopic
part of the model. Thus, the developed model consists of six coupled equations of
the reaction-diffusion type which update the extracellular concentrations of ions as
follows:

∂vext
i

∂t
= Di∇2vext

i + Fi (v) i = 1, 2, . . . , 6, (1)

where v1, v2, v3, v4, v5, v6 are the concentrations of K+, Ca+2, Na+, Cl−, TE and
TI , respectively, at time t , Di is the diffusion coefficient for the ith component and
Fi (v) is the reaction term associated to each ion. Further, it is presumed that the CSD
wave results in intense neuronal activity that leads to the abrupt rise in the potassium
or calcium ion concentrations of the extracellular compartment. Thus, in the present
analysis, the instigation of CSD has been done by specifying the initial condition of
Kext as a “supra threshold” Gaussian elevation of potassium chloride concentration
with a peak value of 20 mM that is given by:

Kext (x, y, 0) = Kext,R + 20 exp

[
−

[(
x − 1.25

0.05

)2

+
(
y − 1.25

0.05

)2]]
. (2)

We consider two intracellular compartments, one pertaining to synapses and the
other pertaining to nonsynaptic processes accounting for contributions from glia.
These processes are assigned different ratios of extracellular to intracellular volumes
represented by α1 and α2, respectively. Moreover, intracellular ions can only diffuse
within a limited region of space or must first become extracellular before becoming
free to diffuse over the significant region. The internal ion concentrations (vint

i , i =
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1, 2, 3, 4) are assumed to be given by the local conservation equations, which for
K+, Na+, Cl− are (with R being a resting equilibrium):

vint
i (x, y, t) = v

int,R
i + α1[vext,R

i − vext
i (x, y, t)] i = 1, 3, 4, (3)

whereas for Ca+2, we have:

vint
2 (x, y, t) = v

int,R
2 + α2[vext,R

2 − vext
2 (x, y, t)]. (4)

The other phenomenological relations for computing themembrane potential, Nernst
potential, source and sink terms, pump terms, gated conductance, etc., have been
adopted from [5]. In this model, the CSD is initiated based on the potassium hypoth-
esis, whereby the high extracellular potassium concentrations will lead to an increase
in the excitability of neurons and promote the further release of potassium. Normally,
ion pumps present in the neuron membrane and glia comprehend a set of buffering
mechanisms responsible for clearing these extracellular excesses. However, if the
concentration exceeds a certain threshold then the process buffers too fast and the
resulting mechanism will rise to cope. This reaction-diffusion process depends on
both the diffusion of potassium across the extracellular concentrations and the reac-
tion triggered in neighbouring tissue which results in further release of potassium
[5]. In what follows, the effect of high extracellular potassium concentration on
the propagation of CSD has been quantified utilizing this two-dimensional model
(0 < x < 2.5 mm, 0 < y < 2.5 mm) comprising of six coupled reaction-diffusion
equation (1).

2.2 One-Dimensional Neuronal Model of CSD

In this section, we will construct a neuronal model that consists of the main charac-
teristics of the more complicated model derived from [9]. The model consists of two
ions (sodium and potassium) and two compartments (extracellular and intracellular
spaces). According to Kirchhoffs current law [10], the membrane potential VM (mV)
is defined by the ordinary differential equation as:

Cm
∂VM

∂t
= −I, (5)

where Cm is the membrane capacitance per unit surface area and I is the total cross
membrane ionic current per unit surface area given by the sum of the sodium (INa),
potassium (IK ) and leak currents (ILeak) given by:

INa = INa,T + INa,P + INa,Leak + INa,Pump; IK = IK ,DR + IK ,A + IK ,Leak + IK ,Pump . (6)
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In this model, the cross-membrane currents are developed by using Goldman-
Hodgkin-Katz (GHK) formulas for the active membrane currents, such as the
fast transient sodium current (INa,T ), persistent sodium current (INa,P ), potassium
delayed rectifier current (IK ,DR) and transient potassium current (IK ,A). Further, the
sodium leak current (INa,Leak), potassium leak current (IK ,Leak), fixed leak current
(ILeak) and sodium-potassium exchange pump currents (INa,Pump and IK ,Pump) are
computed using the Hodgkin-Huxley (HH) model. The general expressions for the
GHK for sodium and potassium currents is given by [11]:

Iion,GHK = gion,GHKm
phq

FVM

(
ionint − exp

(
−VM

φ

)
ionext

)

φ

(
1 − exp

(
−VM

φ

)) , (7)

where gion,GHK is the product of the conductance amplitude and membrane perme-
ability for the active currents,m and h are the ion-specific activation and inactivation
gating variables and φ = RT/F is a parameter where R is the universal gas constant,
T is the absolute temperature and F is the Faraday’s constant. In the HH model, we
assumed that the conductances gion,HH , i.e. the conductance amplitude for the pas-
sive currents, are constant. Further, the general expression of HH types of currents
is given by:

Iion,HH = gion,HH (VM − Vion), (8)

where Vion is the Nernst potential for Na and K ions. The leak currents of all ions
in the HH model are summarized in one specific leak current given by:

ILeak = gHH (VM + 70), (9)

where gHH is a conductance constant. The rate equations give the dynamic of
the gating variables for the potassium activator (m) and sodium inactivator (h) as
dm/dt = αm(1 − m) − βmm; dh/dt = αh(1 − h) − βhh. The values of αi and βi

(i = m, h) have been adopted from [9].
The pump currents are given as INa,Pump = 3IPump and IK ,Pump = −2IPump,

where IPump = Imax/(1 + 2.0[K−1
ext ])2(1 + 7.7[Na−1

int ])3. The model equations in
terms of internal and external concentrations coupled with nonlinear diffusion are
given as follows:

∂Naext

∂t
= A

FVint f
INa + DNa

∂2 Naext

∂x2
; ∂Naint

∂t
= − A

FVint f
INa, (10)

∂Kext

∂t
= A

FVint f
IK + DK

∂2 Kext

∂x2
; ∂K int

∂t
= − A

FVint f
IK , (11)
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where A is the cell surface area, Vint and Vext are the intracellular and extracellu-
lar volumes, respectively, and f = Vext/Vint = 0.15. The values of other relevant
parameters used in this model have been adopted from [5, 9]. In what follows, the
effect of gated conductances of sodium and potassium has been evaluated on the CSD
wave propagation based on the one-dimensional neuronal model described here.

Throughout this section, CSD was triggered by initiating the Gaussian potassium
chloride (KCl) wave, i.e. by changing the initial condition of external potassium as:

Kext (x, 0) = Kext,R + Kmax exp

(−x2

2τ 2

)
, (12)

where τ = 0.5 × 10−2 mm. Motivated by [9], the domain selected for this one-
dimensional model was 0 < x < 6 mm. A finite element method implemented via
[12] has been used to solve the set of coupled ordinary and partial differential equa-
tions of the multiscale neuronal model and a simplified two-dimensional model.

3 Results and Discussion

In the present paper, a study has been performed for quantifying the effects of differ-
ent parameters on the CSD wave propagation. In what follows, the effects of sudden
changes in KCl stimulus have been quantified on the membrane potential and extra-
cellular concentrations using the model of CSD in two space dimensions. Whereas,
the effects of gated conductance on the extracellular potassium concentration have
been investigated utilizing the one-dimensional model. This section is split into two
parts. Firstly, we will discuss the results obtained with the two-dimensional model,
and then with the one-dimensional model, following the description of theses models
given in the previous section.

3.1 Reaction-Diffusion Model of CSD in Two-Space
Dimensions

The temporal response of the extracellular concentrations of Na+, K+, Ca+2, Cl−1,
excitatory and inhibitory transmitters subjected to the initial KCl stimulation applied
at the centre of the two-dimensional domain is presented in Fig. 1.As seen fromFig. 1,
the KCl stimulus will result in a corresponding increase in the concentration of K+
and excitatory and inhibitory transmitters, along with a decrease in the Na+, Ca+2

and Cl−1 concentrations. One of our main motivations for the present mathematical
study is to evaluate the effects of high extracellular potassium concentration on
the propagation of CSD. Primarily, two peak values of Kext in a “supra threshold”
Gaussian elevation of KCl concentrations have been selected (a) 40 mM and (b) 60
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Fig. 1 (Color online) Temporal variation of: a Potassium, b Chloride, c Calcium, d Sodium, e
Inhibitory transmitter and f Excitory transmitter at t = 2s subjected to a KCl stimulus

mM. The variation of the peak value of extracellular potassium concentration on the
propagation of CSD with time for the two considered cases has been presented in
Fig. 2. As evident from Fig. 2, there prevails a significant variation in the predicted
membrane potential while the effect on the external potassium concentration is quite
negligible. The membrane potential increases as the peak value of the extracellular
concentration increases from 20 to 60 mM and vice versa.

3.2 One-Dimensional Neuronal Model of CSD

Here we focus on the analysis of the effects of gated conductance on the extracellular
potassium concentration. Based on the model equations (5)–(11) with x ∈ (0, 6)
mm, the spatio-temporal variations in the external potassium concentrations and
membrane potential obtained by triggering the CSD with the application of “supra
threshold” Gaussian elevation of KCl at the left leading edge (x = 0), for a peak
value of 50 mM at different time steps, are presented in Fig. 3. As evident from
Fig. 3, the extracellular potassium concentration increases tremendously due to the
instigation of CSD and the depolarization of membrane potential. Importantly, the
influence of the CSD is felt more on the left side where the KCl stimulation was
applied. Similar trends were observed for the membrane potentials as depicted in
Fig. 3. The effects of the dynamics gated currents in a neuronal model of CSD by
increasing the values of gNa and gK are presented in Fig. 4. Recall that the variations
in the gated currents of the CSD model considered in the present study are the fast
inward sodium current and the slower outward potassium current. In a physiological
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Fig. 2 (Color online) Temporal variation of extracellular potassium concentration (le f t) andmem-
brane potential (right) for different values of preset peak value of Kext : a 40 mM and b 60 mM
(on the insert, blue: 0 s, green: 1 s, red: 2 s)

steady state, the gated currents are almost zero and become very strong during the
spread of CSD. Even the ionic pump currents are not sufficient to recover the system
and alter the CSD to the physiological steady state as presented in Fig. 4. Above all,
if the strength of both gated currents is increased by the same factor, a larger pump
current will be required to compensate for the gated currents as evident from Fig. 4.

Finally, we note that neural and other electrophysiological activities across the
cerebral cortex are stochastic in nature [5], so many sources and sinks of ions and
transmitters should be modelled with random processes. A simple way to include
these random emissions in the mathematical model of CSD would be by means
of a counting process N (x, t), x1 ≤ x ≤ x2, t > 0 which gives random numbers of
action potentials in the time interval (0, t]. In this case, the corresponding differential
equation for the extracellular potassium ion concentration becomes:

∂Kext

∂t
= A

FVint f
IK + DK

∂2 Kext

∂x2
+ α

∂2 N (x, t)

∂x∂t
, (13)

where α represents the local increase in potassium. Further details in this direction
will be reported in our future studies.
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Fig. 3 (Color online) Spatial (le f t) and temporal (right) variations of a extracellular potassium
concentration and b membrane potential subjected to initial KCl stimulation at x = 0 mm (on the
insert left, blue: 0 s, green: 20 s, red: 40 s, light blue: 60 s, pink: 120 s, yellow: 180 s, black: 240
s; on the insert right, blue: 0 mm, green: 0.02 mm, red: 0.04 mm, light blue: 0.06 mm, pink: 0.08
mm, yellow: 0.1 mm)

4 Conclusions

In the present study, mathematical models have been developed for quantifying the
effects of CSD propagation instigated by sudden changes in the KCl stimulus. Two
different models have been considered: a multicomponent reaction-diffusion model
and a single neuronal model with sodium and potassium currents. We instigated
CSD by adding a KCl stimulus that leads to an initial condition on extracellular
potassium concentration. Adding KCl stimulus results in a large increase in the
extracellular concentrations of K+ and a small increase in excitatory and inhibitory
transmitters, along with a large decrease in the Cl− and small decrease in Na+,
Ca+2 extracellular concentrations for the six component model. This behaviour of
extracellular concentration of ions is responsible for the propagation of CSD in the
brain. The effects of changes in the extracellular potassium concentrations and the
gated conductances have also been investigated on the propagation of CSD waves.
The results reported in this study could assist in our better understanding of the impact
of sudden alterations of the sub-cellular properties on the propagation and instigation
of CSD. Future studies will be focused on the inclusion of other compartments, in
addition to extracellular and intracellular spaces, such as vascular, glial, neural cell
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Fig. 4 (Color online) Spatial (le f t) and temporal (right) variations of extracellular potassium
concentration for different values of potassium and sodium gated conductances: a gk = 20, 40 and
60; and b gNa = 30, 50, 75 and 80 (on the insert top, blue: gk = 20, green: gk = 40, red: gk = 60; on
the insert bottom, blue: gNa = 30, green: gNa = 50, red: gNa = 75, light blue: gNa = 80)

bodies and dendrites, as well as on the development of a new stochastic model
based on the ideas highlighted here. This will lead to further clarification of the key
mechanisms underlying the dynamics of CSD propagating within the pathological
brain.
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Impulsive Consensus of Complex-Valued
Multi-agent Systems with Hybrid
Protocols

Yuan Shen, Xianguo Li, and Xinzhi Liu

Abstract This paper studies the consensus problem of complex-valued multi-agent
systems. A complex-valued hybrid consensus protocol with time-delay is proposed,
where different network topologies in both continuous-time intervals and impulsive
instants are also taken into account. By employing themethod of Lyapunov function-
als, delay dependent sufficient conditions are established to guarantee that consensus
can be achieved in complex domain. Based on various delay sizes of the continuous-
time part of the consensus protocol, our result shows that hybrid impulsive protocol
leads to consensus if the topological structures of complex-valued multi-agent sys-
tems and the impulsive distances can be suitably designed. Numerical simulations
are provided to illustrate the effectiveness of the theoretical results.

Keywords Complex-valued multi-agent systems · Consensus · Impulsive
protocol · Time delays

1 Introduction

Multi-agent systems have recently been intensively studied in the fields of commu-
nication networks, mobile robots, intelligent transportation system, and distributed
sensor networks [1–3]. A multi-agent system is a networked system composed of
multiple interacting dynamic agents. One of the desired properties in multi-agent
systems is consensus among all agents, namely, all agents must reach an agreement
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upon a common value of a certain quantity of interest. Our goal is to design appropri-
ate protocols via distributed coordinated control such that all agents can eventually
achieve consensus.

Recently, many protocols have been proposed to solve the consensus problems of
multi-agent systems [1, 4–6], and a few of consensus results are derived by design-
ing impulsive consensus protocols based on impulsive control method. In [7], an
impulsive consensus protocol is proposed for delay-free linear multi-agent systems
with fixed and switching topologies. The hybrid consensus protocol introduced in
[8] considers both continuous-time and discrete-time connections in the network
topologies, but time-delay is considered only in the impulsive part of the consensus
protocol. In [9], a hybrid impulsive protocol is designed, and time delays are taken
into account in both continuous-time and discrete-time consensus protocols. Never-
theless, consensus results derived in [9] have no information regarding time-delay
in the continuous-time part of hybrid protocols. Moreover, the above consensus
results mainly concentrated on multi-agent systems with real variables. Actually,
many practical problems in real life can be described more accurately and solved
more effectively by complex-valued systems, such as the laser system [10], and the
reaction-advection-diffusion system [11]. In particular, it is revealed that the dynam-
ical behaviors for complex-valued neural networks have recently been extensively
studied [12–14]. Naturally, there might have potential applications for complex-
valued multi-agent systems. Therefore, it is interesting and important to explore the
consensus of complex-valued multi-agent systems.

Motivated by the above discussion, a complex-valued hybrid consensus protocol
is introduced in this paper. Sufficient conditions are established to guarantee the
consensus of complex-valued multi-agent systems with fixed network topologies by
employing the Lyapunov method. The constraint of designing impulsive distances
based on various delay sizes is also discussed. Numerical simulations are given to
illustrate the effectiveness of our theoretical results.

The rest of the paper is organized as follows. In Sect. 2, some background on graph
theory and preliminaries for consensus problems and hybrid consensus protocols
are presented. In Sect. 3, consensus results for complex-valued multi-agent systems
will be established by considering dynamic agents with fixed topology. A typical
illustrative numerical example is provided in Sect. 4. Conclusions will be stated in
Sect. 5.

Throughout this paper,CN denotes the N-dimensional complex vector space. For
x ∈ C

N , the notation x∗ refers to the conjugate transpose of x .

2 Preliminaries

Let G = (V ,E ) be a digraph consisting of N nodes, V = {vi | i = 1, 2, . . . , N }, and
the set of edges E ⊆ V × V . An edge of G is denoted by (vi , v j ), which means the
node v j can receive information from vi . The index setNi = {v j ∈ V |(v j , vi ) ∈ E }
denotes the neighbors set of node vi . A weighted digraph GA = (V ,E , A) is a
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digraph G = (V ,E ) associated with a weighted adjacency matrix A = [αi j ] ∈
R

N×N with nonnegative adjacency elements αi j such that (v j , vi ) ∈ E if and only
if αi j > 0. It is assumed that αi i = 0 for all i . The in-degree and out-degree
of node vi are defined as din(vi ) = ∑

j∈N i
αi j and do(vi ) = ∑

j∈N i
α j i , respec-

tively. The graph Laplacian L of weighted digraph GA is defined by L = D −
A, where D = diag{din(v1), din(v2), . . . , din(vN )}. More precisely, L = [li j ] ∈
R

N×N , where li j = ∑N
j=1 αi j if i = j and li j = −αi j , otherwise. Aweighted digraph

GA is said to be balanced if din(vi ) = do(vi ) for all i . A digraph is said to be strongly
connected if any two distinct nodes of the graph can be connected via a path that
respects the direction of the edges of the digraph.

Let xi ∈ C denote the state of node vi in complex space, and consider each node
of a digraph to be a continuous complex-valued agent which has the form

ẋi (t) = ui (t), i = 1, 2, . . . , N , (1)

where ui (t) ∈ C is the control input of agent i . We say that ui (t) is a protocol if the
controller ui (t) only depends on the state information of node vi and its neighbors
(i.e. v j ∈ Ni ).

We consider the following complex-valued hybrid impulsive consensus protocol
based on fixed digraphs GA = (V ,E , A) at non-impulsive time intervals and G

′
A =

(V ,E
′
, A

′
) at each impulsive instant:

ui (t) =
∑

j∈N i

αi j [x j (t − r) − xi (t − r)] +
∞∑

k=1

∑

j∈N ′
i

α
′
i j [x j (t − τ̄ ) − xi (t − τ̄ )]δ(t − tk), (2)

where αi j (α
′
i j ) ∈ R is the (i, j)th entry of the weighted adjacent matrix A (A

′
), and

Ni (N
′

i ) denotes the neighbors set of node vi in digraph GA (G
′
A); δ(·) denotes the

Dirac delta function, and impulsive sequence {tk} satisfies t0 < t1 < t2 < ... < tk <

tk+1 < ..., and lim
k→∞ tk = ∞; r is the constant time-delay in continuous-time protocol,

and τ̄ represents constant impulse delay when processing the impulsive information
at each impulsive instant tk .

Definition 1 We say that a protocol ui (t) solves the consensus problem if

lim
t→∞‖xi (t) − x j (t)‖ = 0, i, j = 1, 2, . . . , N .

By the definition of δ(·), complex-valued multi-agent system (1) with integrator
dynamics under consnesus protocol (2) can be described by the following complex-
valued impulsive system:

⎧
⎨

⎩

ẋi (t) = ∑
j∈N i

αi j [x j (t − r) − xi (t − r)], t 	= tk,
Δxi (tk) = ∑

j∈N ′
i

α
′
i j [x j (tk − τ̄ ) − xi (tk − τ̄ )], k ∈ N,

xit0 (s) = φi (s), s ∈ [−τ, 0],
(3)
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where φi ∈ PC([−τ, 0],C) is the piecewise continuous initial function with τ =
max{r, τ̄ }. Without loss of generality, we assume xi (tk) = xi (t

+
k ) in the following

discussion, which implies solutions of (3) are right continuous at impulsive instants.
If we define state vector x(t) = (x1, x2, ...., xN )T ∈ C

N , according to interaction
topologies GA = (V ,E , A) and G

′
A = (V ,E

′
, A

′
), system (3) can be rewritten as

{
ẋ(t) = −L x(t − r), t 	= tk,

Δx(tk) = −L
′
x(tk − τ̄ ), k ∈ N.

(4)

Our objective is to derive sufficient conditions on fixed digraphs GA, G
′
A and

impulsive sequence {tk} to guarantee that complex-valued hybrid protocol (2) can
solve the consensus problem.

3 Consensus Results

In order to seek consensus in system (3), we introduce the following disagreement
vector e(t) ∈ C

N

e(t) = x(t) − Ave(x(t)) · 1,

where x(t) = (x1, x2, ...., xN )T ∈ C
N , 1 denotes the column N-vector with all ones,

and Ave(x(t)) = 1
N

∑N
i=1 xi (t). From [9], if GA and G

′
A are balanced, we have

that Ave(x(t)) is an invariant quantity for t ≥ 0, say Ave(x(t)) = Ave(x(0)) =
1
N

∑N
i=1 xi (0). Moreover, the Laplacians L and L

′
have row sum equal to zero,

hence L Ave(x(0))1 = L
′
Ave(x(0))1 = 0.

According to system (4), we can obtain the following impulsive disagreement
dynamical system: {

ė(t) = −L e(t − r), t 	= tk,

Δe(tk) = −L
′
e(tk − τ̄ ), k ∈ N.

(5)

For simplicity, we assume all impulses are uniformly distributed (i.e.T = tk − tk−1

for all k ∈ N), and τ̄ ≤ T throughout this section.

Theorem 1 Suppose that GA is balanced, G
′
A is balanced and strongly connected.

Let λ2(L
′
s ) denotes the second smallest eigenvalue of L

′
s = L ′+L ′T

2 , if there exist
constants ε > 0, 0 < ω ≤ 1 such that

ln(α + β + ωr) < −cT, (6)
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where α = (1 + ε)(1 − 2λ2(L
′
s ) + ‖L ′ ‖2), β = (1 + 1

ε
)(τ̄‖L ‖‖L ′ ‖)2, c =

‖L ‖2
ω

+ ω, and T = tk − tk−1. Then, protocol (2) leads to the consensus for agents
in complex-valued multi-agent system (1).

Proof Construct the Lyapunov functional candidate V (t) = V1(t) + V2(t), where
V1(t) = e∗(t)e(t), and V2(t) = ω

∫ t
t−r e

∗(s)e(s)ds (0 < ω ≤ 1). When t 	= tk ,

V̇ ≤ 2|e∗(t)L e(t − r)| + ωe∗(t)e(t) − ωe∗(t − r)e(t − r)

≤ 2‖e(t)‖‖L ‖‖e(t − r)‖ + ωe∗(t)e(t) − ωe∗(t − r)e(t − r)

≤ (
‖L ‖2

ω
+ ω)e∗(t)e(t) ≤ (

‖L ‖2
ω

+ ω) V (t).

Denote c = ‖L ‖2
ω

+ ω, then we can conclude that

V (t) ≤ V (tk−1) e
c(t−tk−1), t ∈ [tk−1, tk), k = 1, 2, 3, ... (7)

For t = tk , since we assume that τ̄ ≤ T , integrate both sides of (5) from tk − τ̄ to tk ,
yields e(tk − τ̄ ) = e(t−k ) + ∫ tk

tk−τ̄
L e(t − r)dt . According to (5), at t = tk , we have

that e(tk) = X + Y , where X = (I − L
′
)e(t−k ), and Y = −LL

′ ∫ tk
tk−τ̄

e(t − r)dt ,
then for any ε > 0, we have the following inequality

V1(tk) = (X + Y )∗(X + Y ) ≤ (1 + ε)X∗X + (1 + 1

ε
)Y ∗Y.

Since G
′
A is balanced, strongly connected, and 1

T e(t−k ) = 0, with similar approaches
from [4] and [9], and apply Cauchy Schwarz inequality for integrable complex-
valued functions, we can obtain X∗X ≤ (1 − 2λ2(L

′
s ) + ‖L ′ ‖2)V1(t

−
k ) and Y ∗Y ≤

(τ̄‖L ‖‖L ′ ‖)2 sups∈[−(τ̄+r),0] V1(t
−
k + s). If we denoteα = (1 + ε)(1 − 2λ2(L

′
s ) +

‖L ′ ‖2) and β = (1 + 1
ε
)(τ̄‖L ‖‖L ′ ‖)2, then we have

V1(tk) ≤ αV (t−k ) + β sup
s∈[−(τ̄+r),0]

V (t−k + s), (8)

by the continuity of V2(t),

V2(tk) ≤ ωr sup
s∈[−r, 0]

V (t−k + s). (9)

If there exists 0 < ω ≤ 1 such that condition (6) is satisfied, then by IVT, there exists
unique λ > 0 that solves for the following equation

ln[α + βeλ(τ̄+r) + ωreλr ] = −(λ + c) T . (10)
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Since lim
k→∞tk = ∞, there exists integer p ≥ 1 such that tp − τ̄ − r ≥ t0. For t ∈

[t0, tp):

V (t) = V (t)eλ(t−t0)e−λ(t−t0) ≤ Me−λ(t−t0), (11)

where M = supt∈[t0,tp] V (t)eλ(tp−t0). Next, we will use the method of mathematical
induction to prove that

V (t) ≤ Me−(λ+c)(tk+1−t0)ec(t−t0), t ∈ [tk, tk+1), k ≥ p. (12)

Suppose (12) is true for p ≤ k ≤ j , then

V (t) ≤ Me−(λ+c)(tk+1−t0)ec(t−t0), t ∈ [tk, tk+1), p ≤ k ≤ j. (13)

At t = t j+1, We will estimate the supremum of V (t−j+1 + s) for s ∈ [−(τ̄ + r), 0]
by considering the following two cases:

Case 1: If t j+1 + s ∈ [t0, tp) for some s ∈ [−(τ̄ + r), 0], then from (11):

V (t−j+1 + s) ≤ e−λsMe−λ(t j+1−t0) ≤ eλ(τ̄+r̄)Me−λ(t j+1−t0).

Case 2: If t j+1 + s ≥ tp for some s ∈ [−(τ̄ + r), 0], there exists k̂(p ≤ k̂ ≤ j) such
that t j+1 + s ∈ [tk̂, tk̂+1), then according to (13),

V (t−j+1 + s) ≤ Me−(λ+c)(tk̂+1−t0)ec(t j+1+s−t0)

≤ Me−λ(t j+1+s−t0)

≤ eλ(τ̄+r)Me−λ(t j+1−t0).

Therefore, we can conclude that V (t−j+1 + s) ≤ eλ(τ̄+r)Me−λ(t j+1−t0) for all s ∈
[−(τ̄ + r), 0], which implies that sups∈[−(τ̄+r),0] V (t−j+1 + s) ≤ Meλ(τ̄+r)e−λ(t j+1−t0).
According to (8) and (13), we have

V1(t j+1) ≤ [α + βeλ(τ̄+r)]Me−λ(t j+1−t0).

Similarly, from (9), (11) and (13), we can show that

V2(t j+1) ≤ ωreλr Me−λ(t j+1−t0).

Therefore, at t = t j+1, we can obtain from (10) that

V (t j+1) ≤ [α + βeλ(τ̄+r) + ωreλr ] Me−λ(t j+1−t0)

= e−(λ+c)(t j+2−t j+1)Me−(λ+c)(t j+1−t0)ec(t j+1−t0)

= M e−(λ+c)(t j+2−t0)ec(t j+1−t0).
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When t ∈ (t j+1, t j+2), from (7),

V (t) ≤ M e−(λ+c)(t j+2−t0)ec(t j+1−t0)ec(t−t j+1)

= M e−(λ+c)(t j+2−t0)ec(t−t0).

This proves that (12) is true for k = j + 1, which implies that (12) holds by the
mathematical induction method. Therefore,

V1(t) ≤ V (t) ≤ M e−(λ+c)(tk+1−t0)ec(tk+1−t0)

= Me−λ(tk+1−t0), t ∈ [tk, tk+1), k ≥ p.

When k → ∞, t → ∞, Me−λ(tk+1−t0) → 0, V1(t) → 0, which implies that for any
i = 1, 2, . . . , N , |xi (t) − Ave(x(0))| → 0 as t → ∞. On the other hand, for any
i, j = 1, 2, . . . , N , we have that

|xi (t) − x j (t)| ≤ |xi (t) − Ave(x(0))| + |x j (t) − Ave(x(0))| ≤ 2 max
1≤i≤N

|xi (t) − Ave(x(0))|.

By taking limits t → ∞ on both sides of the above inequality, we can conclude that
lim
t→∞|xi (t) − x j (t)| = 0 for any i, j = 1, 2, . . . , N , hence protocol (2) leads to the

consensus for agents in complex-valued multi-agent system (1). �
Remark 1 The parameter ω ∈ (0, 1] can adjust the value of α + β + ωr to guan-
rantee that α + β + ωr < 1 such that condition (6) in Theorem 1 can be satisfied for
relatively large delay size of r . It can be seen from the proof of Theorem 1 that the
impulsive part of protocol (2) plays control effect to accelerate the consensus process,
while the continuous-time part of protocol (2) may either accelerate or decelerate
such process, and condition (6) implies that impulsive distances have to be suitably
designed such that hybrid protocol (2) can solve the consensus problem.

Theorem 2 Suppose GA is balanced, G
′
A is balanced and strongly connected. Let

λ2(L
′
s ) be the second smallest eigenvalue of L

′
s = L ′+L ′T

2 , and denotes ρmin =
(
√
1 − 2λ2(L ′

s ) + ‖L ′‖2 + τ̄‖L ‖‖L ′ ‖)2. If ρmin < 1 and constant impulsive dis-
tance T satisfying

τ̄ < T <

⎧
⎪⎪⎨

⎪⎪⎩

− ln(ρmin + r)

‖L ‖2 , if 0 < r < u∗ − ρmin,

1 − ρmin

‖L ‖2ρmin
, if u∗ − ρmin ≤ r < ∞,

(14)

where u∗ = eW (ρmine)−1 and W (·) is the Lambert W function, then protocol (2) leads
to the consensus for agents in complex-valued multi-agent system (1).

Proof It can be seen from Theorem 1 that α, β depend on parameter ε, and c
depends on parameter ω, where 0 < ω ≤ 1. If we define ρ = ρ(ε) =
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α + β = (1 + ε)(1 − 2λ2(L
′
s ) + ‖L ′ ‖2) + (1 + 1

ε
)(τ̄‖L ‖‖L ′ ‖)2, condition (6)

in Theorem 1 implies that the consensus result will be achieved if T <
−ω ln(ρ+ωr)

‖L ‖2 .
In order to find the upper bound for constant impulsive distances T , we will
specify the values of parameters ε and ω to maximize −ω ln(ρ + ωr). For any
given 0 < ω ≤ 1, define F(ρ) = −ω ln(ρ + ωr). In order to maximize F(ρ), we
need ρ + ωr < 1, hence ρ < 1 − ωr . By applying the extreme value theory, ρ =
ρ(ε) attains its minimum when ε = τ̄‖L ‖‖L ′ ‖√

1−2λ2(L
′
s )+‖L ′ ‖2 , and ρmin = minε>0 ρ =

(
√
1 − 2λ2(L

′
s ) + ‖L ′ ‖2 + τ̄‖L ‖‖L ′ ‖)2. If ρmin < 1 − ωr < 1, then

F(ρ) = −ω ln(ρ + ωr), ρ ∈ [ρmin, 1 − ωr),

and for ρ ∈ [ρmin, 1 − ωr), F
′
(ρ) = −ω

ρ+ωr < 0. Therefore, max F(ρ) = F(ρmin) =
−ω ln(ρmin + ωr). Next, we defineG(ω) = −ω ln(ρmin+ωr)

‖L ‖2 , where 0 < ω <
1−ρmin

r and
0 < ω ≤ 1. We have to consider the following two cases depending on the size of
delay r .

Case 1: if 0 < ω <
1−ρmin

r ≤ 1, then 1 − ρmin ≤ r < ∞, and G(ω) = −ω ln(ρmin+ωr)
‖L ‖2 ,

ω ∈ (0, 1−ρmin

r ). Define u = ρmin + ωr , where ω ∈ (0, 1−ρmin

r ). Then, G
′
(ω) = 0

implies ln u − ρmin

u + 1 = 0, u ∈ (ρmin, 1). Next, we define

f (u) = ln u − ρmin

u
+ 1, u ∈ (ρmin, 1), (15)

then, f (ρmin) = ln(ρmin) < 0, f (1) = 1 − ρmin > 0, and f
′
(u) = 1

u + ρmin

u2 > 0 for
u ∈ (ρmin, 1). Then by IVT, there exists a unique u∗ ∈ (ρmin, 1) such that f (u∗) = 0.
Let v = ln u, and u = ev , then f (u) = 0 implies ev+1(v + 1) = ρmin · e. Therefore,
based on the property of the Lambert W function, we have v = W (ρmine) − 1, and
u∗ = ev = eW (ρmine)−1 ∈ (ρmin, 1). Therefore, there exists a uniqueω∗ = u∗−ρmin

r such
that G

′
(ω∗) = 0, where 0 < ω∗ = u∗−ρmin

r <
1−ρmin

r ≤ 1. According to (15), if 0 <

ω < ω∗, ρmin < u < u∗, then f (u) < 0 and G
′
(ω) > 0, and if ω∗ < ω <

1−ρmin

r ,
u∗ < u < 1, then f (u) > 0 and G

′
(ω) < 0. Therefore, when 1 − ρmin ≤ r < ∞,

max
ω∈(0, 1−ρmin

r )

G(ω) = G(ω∗) = (u∗ − ρmin)
2

‖L ‖2ru∗ ≤ 1 − ρmin

‖L ‖2ρmin
.

Case 2: if 0 < ω ≤ 1 <
1−ρmin

r , then 0 < r < 1 − ρmin, and G(ω) = −ω ln(ρmin+ωr)
‖L ‖2 ,

ω ∈ (0, 1]. Let u = ρmin + ωr , since ω ∈ (0, 1], then u ∈ (ρmin, ρmin + r ]. Define

h(u) = ln u − ρmin

u
+ 1, u ∈ (ρmin, ρmin + r ]. (16)

Then, G
′
(ω) = 0 implies h(u) = 0. Moreover, we can obtain h(ρmin) = ln(ρmin) <

0, and h
′
(u) = 1

u + ρmin

u2 > 0 for u ∈ (ρmin, ρmin + r ]. From previous discussion,
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we know that h(u∗) = 0 when u∗ = eW (ρmine)−1. Therefore, if u∗ ∈ (ρmin, ρmin + r ],
which implies u∗ − ρmin ≤ r < 1 − ρmin, then there exists a unique ω∗ = u∗−ρmin

r ∈
(0, 1] such that G ′

(ω∗) = 0. According to (16), if 0 < ω < ω∗, ρmin < u < u∗, then
h(u) < 0 andG

′
(ω) > 0, and ifω∗ < ω ≤ 1, u∗ < u ≤ ρmin + r , then h(u) > 0 and

G
′
(ω) < 0. Therefore, if u∗ − ρmin ≤ r < 1 − ρmin, then

max
ω∈(0,1]

G(ω) = G(ω∗) = (u∗ − ρmin)
2

‖L ‖2ru∗ ≤ 1 − ρmin

‖L ‖2ρmin
.

If u∗ > ρmin + r , then 0 < r < u∗ − ρmin, and ω∗ = u∗−ρmin

r > 1, according to (16),
when 0 < ω ≤ 1, ρmin < u ≤ ρmin + r , then h(u) < 0 and G

′
(ω) > 0 for all ω ∈

(0, 1]. Therefore, when 0 < r < u∗ − ρmin,

max
ω∈(0,1]

G(ω) = G(1) = − ln(ρmin + r)

‖L ‖2 .

According to the above discussion, we can conclude that protocol (2) leads to con-
sensus for agents in complex-valued multi-agent system (1) if impulsive distances
satisfy (14), which completes the proof. �
Remark 2 Comparing with the consensus results established in [9], Theorem 2
provides a delay-r dependent condition to find the upper bound for the length of
impulsive intervals based on various delay sizes of r such that protocol (2) solves the
complex-valued consensus problem, the consensus result will always be achieved
as long as the designed impulsive distances are less than the upper bound obtained
in (14).

4 Numerical Simulations

Consider complex-valued multi-agent system (1) with hybrid protocol (2) consisting
of eight agents. In Fig. 1, the solid lines denote the edges of fixed digraphs GA at
continuous-time intervals, and the dashed lines represent the edges of fixed digraphs
G

′
A at each impulsive instant. In Example 1, at each continuous-time interval, GA is

assumed to have weights 0.12 between the 2nd agent and the 8th agent; weights 0.15
between the 3rd agent and the 7th agent, and weights 0.18 between the 4th agent and
the 6th agent; digraph G

′
A has equal weight 0.08 at each impulsive instant.

Example 1 Consider hybrid impulsive protocol (2) with fixed digraphs GA and G
′
A

shown in Fig. 1. It can be seen that GA is balanced with ‖L ‖ = 0.36, G
′
A is bal-

anced and strongly connectedwith‖L ′ ‖ = 0.16, andλ2(L
′
s ) = 0.0234. If τ̄ = 0.03,

then ρmin = 0.982 < 1, and u∗ = 0.991. For r = 0.006, r < u∗ − ρmin. Theorem 2
implies that protocol (2) can solve the consensus problem if the uniform impulsive
distance T satisfies τ̄ < T < − ln(ρmin+r)

‖L ‖2 = 0.093. The initial states are chosen as
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Fig. 1 Fixed topologies GA and G
′
A
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Fig. 2 Average consensus process for τ̄ = 0.03, r = 0.006, and T = 0.08

x(0) = [3 − i,−6 + 2i, 1 + 6i, 4 − 3i,−2 + 4i, 8 − 5i,−5 + i,−3 − 4i]T , and if
we design T = 0.08 < 0.093, then all the agent states reach a consent. The consensus
process for both real and imaginary parts of the state of agents are shown in Fig. 2,
and the final consent state is nothing but Ave(x(0)) = 0. For r = 2, r ≥ u∗ − ρmin,
then consensus can be achieved if τ̄ < T <

1−ρmin

‖L ‖2ρmin
= 0.141 based on Theorem 2.

With the same initial conditions, choose T = 0.12 < 0.141, Fig. 3 shows that the
consensus result can still be confirmed even if r > T .

5 Conclusion

We have studied the consensus problem of complex-valued multi-agent systems. A
hybrid impulsive consensus protocol that takes into account both the fixed network
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Fig. 3 Average consensus process for τ̄ = 0.03, r = 2, and T = 0.12

topologies and time delays has been proposed. Delay dependent sufficient condi-
tions have been derived to guarantee that the consensus result can be achieved in
complex space via the proposed consensus protocol by employing the method of
Lyapunov functionals. Our result has shown that the proposed consensus protocols
can lead complex-valued multi-agent systems to achieve consensus if one can con-
struct appropriate network topologies and suitably design the length of impulsive
intervals based on various delay sizes for the continuous-time part of the consensus
protocol. Numerical simulations have been provided to demonstrate the effectiveness
of the obtained theoretical results.
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Input-to-State Stability for Delayed
Hybrid Systems and H∞ Control

Taghreed G. Sugati, Mohamad S. Alwan, and Xinzhi Liu

Abstract This paper addresses the problems of input-to-state stability/stabilization
(ISS) and designing a robust reliable H∞ control for a class of switched systems
with state delay and time-varying, bounded disturbing input. The methodology of
Razumikhin with multiple Lyapunov functions is used to establish the ISS prop-
erty. The importance of this method is that it provides delay-independent sufficient
conditions to guarantee the ISS of the system modes, and later this result will be
applied to design the feedback H∞ controller not only when all the actuators are
operational, but also when some of them experience failure. The non-zero output of
faulty actuators are treated as a disturbance signal that is augmented with the system
disturbance input. The organization of mode switching is ruled by the general frame-
work of average dwell-time (ADT) switching law. Finally, the proposed theoretical
results are clarified by a numerical example with simulations.

Keywords Hybrid systems · Lyapunov-Razumikhin method · Switched
dynamics · Feedback controller design · Average-dwell-time

1 Inroduction

A switched system is a special class of hybrid systems that consists of a family
of continuous- or discrete-time dynamical subsystems, and a switching signal that
organizes the switchings among the system modes. The importance of studying
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switched systems is many folds. It is a proper tool to cover many natural and human-
made phenomena [1–4], many dynamical systems can only be stabilized by several
control laws, but not by one law [7], it can be used to reduce the complexity of many
sophisticated systems [5], and it is well known that the stability of such a system is
not guaranteed by the stability of the individual modes unless the switching among
them is ruled by a logic-based switching signal. As a result, switched systems have
received a large amount of literature including books [6–8] and special issues [9–12].

A reliable control is meant to be a controller that tolerates failures in its com-
ponents, particularly actuators or sensors. In reality, such failures are frequently
encountered and an immediate repair may be impossible in some critical cases as in
the case of aerospace vehicles or submarine systems, etc [14–21].

The ISS notion, introduced in [22], has been realized to be an efficient tool to deal
with such disturbances. Briefly, the ISS addresses the system response to a bounded
disturbance when the unforced system is asymptotically stable [22–24].

The novelty here is to address the ISS for the switched time-delayed system
and design robust H∞ reliable controller with nonlinear perturbation by using the
Lyapunov-Razumikhin methodology. The jump among the system modes is con-
trolled by the ADT switching signal. Later, these results are applied to switched
control systems with possible faulty actuators. The actuator output signal is treated
as a disturbance signal augmented with the system input disturbance.

2 Problem Formulation

Consider the nonlinear switched system

{
ẋ = f�(t)(xt , w(t)),
xt0(s) = φ(s), s ∈ [−r, 0], r > 0,

(1)

where x ∈ R
n is the system state and w ∈ R

p is an input disturbance, which is
assumed to be in L2[t0,∞), that is ||w||22 = ∫ ∞

t0
||w(t)||2 dt < ∞. For all t ∈ R+ =

[0,∞), let x(t) be a function defined on [t0,∞). Then, we define the function
xt : [−r, 0] → R

n by xt (s) = x(t + s) for all s ∈ [−r, 0], and its norm by ||xt ||r =
supt−r≤θ≤t ||x(θ)||, where r > 0 is the time delay. � is the switching rule which is
a piecewise constant function defined by � : [t0,∞) → S = {1, 2, · · · , N }, for a
natural number N .

Definition 1 [23] A function α ∈ C ([0, a],R+) is said to be in classK if α(0) = 0
and it is strictly increasing.

Definition 2 [23] System (1) is said to be globally exponentially ISS if there exist
λ > 0, λ̄ > 0 and a function ρ ∈ K such that x(t) exists ∀t ≥ t0 and satisfies

||x || ≤ λ̄||xt0 ||r e−λ(t−t0) + ρ
(

sup
t0≤τ≤t

||w(τ)||
)
.
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Lemma 1 For any ξ j > 0 ( j = 1, 2, 3) and a positive–definite matrix P, we have

(i) 2xT PGw ≤ xT (ξ1PGGT P)x + 1
ξ1

wT w. Moreover, for x ∈ Cr , if ||x(t − r)||2r
≤ q||x ||2 with q > 1, then

(ii) 2xT P Āx(t − r) ≤ xT (ξ2P Ā( Ā)T P + q
ξ2

I )x.

(iii) 2xT P f (x(t)) ≤ xT (ξ3P2 + 1
ξ3

δ I )x, where δ > 0 such that || f (x(t))||2
≤ δ||x(t)||2.

Average Dwell Time [13]. The number of switches N (t0, t) in (t0, t) for a finite t
satisfies N (t0, t) ≤ N0 + t−t0

τa
, where N0 is the chatter bound, and τa is the ADT.

3 Main Results

The following theorem gives sufficient conditions of global exponential ISS property
of the system, where we use the Lyapunov-Razumikhin method [25].

Theorem 1 For i ∈ S , let γ be a differentiable K function. Assume there are
positive constants c1, c2, r, β, and a function Vi ∈ C 1(Rn,R+) such that

(i) c1‖x‖2 ≤ Vi (x) ≤ c2‖x‖2 for all t ≥ t0 − r ;
(ii) V̇i (ψ(0)) < −λVi (ψ(0)) whenever the relations Vi (ψ(s)) ≤ qVi (ψ(0)) and

γ
(
supt0≤θ≤tk |w(θ)|

)
≤ Vi (ψ(0)) hold for ψ ∈ Cr , s ∈ [−r, 0] and

t ∈ [tk−1, tk), where q = max{μh, eλr } > 1 with μ = c2/c1 ≥ 1;
(iii) for all k, r ≤ tk − tk−1 ≤ β and the ADT condition holds;
(iv) for s ∈ [−r, 0] and h > 1, Vi (x(t + s)) ≤ hVj (x(t)) for any i, j ∈ S and all

t ≥ t0.

Then, system (1) is globally exponentially ISS.

Proof Let x(t) = x(t, t0, φ) be any solution of system (1) with xt0 = φ and vi (t) =
Vi (x(t)). First, we want to show that every mode is globally exponentially ISS using
conditions (i) and (i i). For any i ∈ S , and k ∈ N, t ∈ [tk−1, tk), we shall show that

vi (t) ≤ c2||xtk−1 ||2r e−λ(t−tk−1) + γ
(

sup
t0≤s≤t

||w(s)||
)
. (2)

Define

Qi (t) =
{

vi (t) − c2||xtk−1 ||2r e−λ(t−tk−1) − γ
(
supt0≤s≤t ||w(s)||

)
, t ∈ [tk−1, tk), k ∈ N

vi (t) − c2||xt0 ||2r e−λ(t−t0), t ∈ [t0 − r, t0).

We will show that Qi (t) ≤ 0 for all t ≥ t0 − r . For t ∈ [t0 − r, t0], it is clear that
Qi (t) ≤ 0. By condition (i),
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vi (t) ≤c2‖x‖2 ≤ c2‖xt0‖2r ≤ c2‖xt0‖2r e−λ(t−t0) (3)

as−λ(t − t0) > 0 for t ∈ [t0 − r, t0]. So,we have Qi (t)=vi (t)−c2‖xt0‖2r e−λ(t−t0) ≤
0. Step 1, for t ∈ [t0, t1), we need to show

Qi (t) = vi (t) − c2‖xt0‖2r e−λ(t−t0) − γ
(

sup
t0≤θ≤t1

‖w(θ)‖
)

≤ 0. (4)

For any i ∈ S , let αi > 0 be arbitrary, and we show Qi (t) ≤ αi for [t0, t1). If not,
then there would exist some t ∈ [t0, t1) so that Qi (t) > αi . Let

t∗
i = inf{t ∈ [t0, t1) : Qi (t) > αi , i ∈ S }.

We also have Qi (t0) ≤ vi (t0) − c2‖xt0‖2r ≤ c2(‖x(t0)‖2 − ‖xt0‖2r ) ≤ 0. Since
Qi (t) ≤ 0 < αi for t ∈ [t0 − r, t0], then t∗

i ∈ (t0, t1). Also, since Qi (t) is continuous
on [t0, t1), we have Qi (t∗

i ) = αi and Qi (t) ≤ αi for [t0 − r, t∗
i ]. So, we have

vi (t
∗
i ) = Qi (t

∗
i ) + c2‖xt0‖2r e−λ(t∗

i −t0) + γ
(

sup
t0≤θ≤t∗

i

‖w(θ)‖
)

(5)

and for s ∈ [−r, 0], we have

vi (t
∗
i + s) = Qi (t

∗
i + s) + c2‖xt0‖2r e−λ(t∗

i +s−t0) + γ
(

sup
t0≤θ≤t∗

i +s
‖w(θ)‖

)

≤ αi + c2‖xt0‖2r e−λ(t∗
i −t0)eλr + γ

(
sup

t0≤θ≤t∗
i

‖w(θ)‖
)

≤[
αi + c2‖xt0‖2r e−λ(t∗

i −t0) + γ
(

sup
t0≤θ≤t∗

i

‖w(θ)‖
)]

eλr

= eλrvi (t
∗
i ) ≤ qvi (t

∗), (6)

where from (5), we have used γ
(
supt0≤θ≤t∗

i
‖w(θ)‖

)
≤ vi (t∗

i ).Thus, from condition

(i i), we have v̇i (t∗
i ) ≤ −λvi (t∗

i ) which implies that

Q̇i (t
∗
i ) = v̇i (t

∗
i ) + λc2‖xt0‖2r e−λ(t∗

i −t0) − γ̇
(

sup
t0≤θ≤t∗

i

‖w(θ)‖
)

≤ − λ
[
vi (t

∗
i ) − c2‖xt0‖2r e−λ(t∗

i −t0) − γ
(

sup
t0≤θ≤t∗

i

‖w(θ)‖
)]

= −λαi . (7)

Therefore, Qi (t) is decreasing at t∗
i which is a contradiction for being increasing at

t∗ according to the definition of t∗. Thus, we get Qi (t) ≤ αi for all t ∈ [t0, t1). Let
αi → 0+, then we have Qi (t) ≤ 0 for t ∈ [t0, t1).
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Step 2, for any i ∈ S assume Qi (t) ≤ 0 for all t ∈ [tk−1, tk) for k = 1, · · · m.

Qi (tm) = vi (tm) − c2‖xtm ‖2r − γ
(

sup
t0≤θ≤tm+1

‖w(θ)‖
)

≤ c2
(‖x(tm)‖2 − ‖xtm ‖2r

) − γ
(

sup
t0≤θ≤tm+1

‖w(θ)‖
)

≤ 0.

Step 3, we will show that Qi (t) ≤ 0 for all t ∈ [tm, tm+1), i.e., we aim to show that

vi (t) ≤ c2||xtm ||2r e−λ(t−tm ) + γ
(

sup
t0≤s≤t

||w(s)||
)
.

To do so, we need first to prove that Qi (t) ≤ αi for t ∈ [tm, tm+1) and i ∈ S . If this
were not true, then there would be t ∈ [tm, tm+1) such that for i ∈ S , Qi (t) > αi .
Let

t∗
i = inf{t ∈ [tm, tm+1) : Qi (t) > αi , i ∈ S }.

Then, by the continuity, we have Qi (t∗
i ) = αi and Qi (t) ≤ αi for all t ∈ [tm, t∗

i ), i.e.,
Q̇i (t∗

i ) > 0. Thus, we have

vi (t
∗
i ) = αi + c2‖xtm ‖2r e−λ(t∗

i −tm ) + γ
(

sup
t0≤θ≤t∗

i

‖w(θ)‖
)
. (8)

We want to show vi (t∗
i + s) ≤ vi (t∗

i ) for s ∈ [−r, 0].
Case 1. If t∗

i + s ∈ [tm, tm+1), then we have for each i ∈ S

vi (t
∗
i + s) = Qi (t

∗
i + s) + c2‖xtm ‖2r e−λ(t∗

i +s−tm ) + γ
(

sup
t0≤θ≤t∗

i +s
‖w(θ)‖

)

≤
[
αi + c2‖xtm ‖2r e−λ(t∗

i −tm ) + γ
(

sup
t0≤θ≤t∗

i

‖w(θ)‖
)]

eλr

= eλrvi (t
∗
i ) ≤ qvi (t

∗
i ). (9)

Case 2. If t∗
i + s ∈ [tm − r, tm). Then, for i, j ∈ S and t ≥ t0 − r , we have vi (t) ≤

μv j (t) with μ = c2/c1 ≥ 1. Using (iv) implies that vi (t∗
i + s) ≤ μv j (t∗

i + s) ≤
μhvi (t∗

i ) ≤ qvi (t∗
i ), where q = max{eλr , μh}. Also, from (8), we have

γ (supt0≤θ≤t∗
i
‖w(θ)‖) ≤ vi (t∗

i ). Thus, from condition (i i), we have v̇i (t∗
i ) ≤

−λvi (t∗
i ) which implies

Q̇i (t
∗
i ) = v̇i (t

∗
i ) + λc2‖xtm ‖2r e−λ(t∗

i −tm ) − γ̇
(

sup
t0≤θ≤t∗

i

‖w(θ)‖
)

≤ − λ
[
vi (t

∗
i ) − c2‖xtm ‖2r e−λ(t∗

i −tm ) − γ
(

sup
t0≤θ≤t∗

i

‖w(θ)‖
)]

= −λαi . (10)
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So that, Qi (t) is decreasing at t∗
i which is a contradiction for being increasing at t∗

i
according to the definition of t∗

i . Thus, we get Qi (t) ≤ αi for all t ∈ [tm, tm+1). Let
αi → 0+, then we have Qi (t) ≤ 0 for t ∈ [tm, tm+1). By induction, we conclude that
Qi (t) ≤ 0 for all t ≥ t0 − r. Thus, we have proved that, for t ∈ [tk−1, tk),

vi (t) ≤ c2||xtk−1 ||2r e−λ(t−tk−1) + γ
(

sup
t0≤s≤t

||w(s)||
)
. (11)

By (i), we get ‖x‖ ≤ √
μ||xtk−1 ||r e−λ(t−tk−1)/2 +

√
1
c1

γ
(
supt0≤s≤t ||w(s)||

)
. This

proves that every mode is ISS. Second, we aim to show the switched system is
ISS. Since condition (i) is assumed to hold for all t ≥ t0 − r , then we have from (11)

Vi (x(t)) ≤ μVi (x(tk−1 − r))e−λ(t−tk−1) + γ
(

sup
t0≤s≤t

||w(s)||
)
. (12)

For any i ∈ S and all t ∈ [tk−1, tk), we have

Vi (x(t)) ≤μ2k−1e(k−1)λr e−λ(t−t0)Vi (xt0) +
( k−1∑

j=0

(μ2) j
)
γ
(

sup
t0≤s≤tk

||w(s)||
)

≤μk(μeλr )k−1e−λ(t−t0)Vi (xt0) + k(μ2)k−1γ
(

sup
t0≤s≤tk

||w(s)||
)

≤ (μ�)k�−1e−λ(t−t0)Vi (xt0) + k(μ2)k−1γ
(

sup
t0≤s≤tk

||w(s)||
)

≤ ek ln(μ�)−ln(�)−λ(t−t0)Vi (xt0) + �(t),

where � = μeλr and �(t) = k(μ2)k−1γ
(
supt0≤s≤tk ||w(s)||

)
. Using the ADT with

N0 = η

ln(μ�)
, τa = ln(μ�)

λ−ν
, (0 < ν < λ), for an arbitrary positive constant η, we get

Vi (x(t)) ≤ eη+lnμ−ν(t−t0)Vi (xt0) + �(t) ≤ De−ν(t−t0)‖xt0‖2r + �(t),

where D = c2μeη. This implies that ‖x‖ ≤ b‖xt0‖r e−ν(t−t0)/2 + γ̄ (t), t ≥ t0,where
b = μ

√
eη, and γ̄ (t) = √

�(t)/c1 is class K . The proof is complete.

3.1 Linear Systems

Consider the switched input/output linear system with time delay

⎧⎨
⎩

ẋ = A�(t)x + Ā�(t)x(t − r) + B�(t)u + G�(t)w + f�(t)(x(t)),
z = C�(t)x + F�(t)u,

xt0(s) = φ(s), s ∈ [−r, 0], r > 0,
(13)
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where u ∈ R
l is the control input and z ∈ R

r is the controlled output. Ai is non
Hurwitz, Ki ∈ R

l×n is the control gain such that u = Ki x and (Ai , Bi ) is stablizable,
fi (·) ∈ R

n , and Ai , Bi , Gi , Ci , Fi are known matrices. The closed-loop system is

{
ẋ = (Ai + Bi Ki )x + Āi x(t − r) + Giw + fi (x(t))
z = Cicx, Cic = Ci + Fi Ki .

(14)

Define Gic = (Gi Biσ ), then the closed-loop system in the faulty case becomes

ẋ = (Ai + Bi σ̄ Ki )x + Āi x(t − r) + Gicw
F
σ + fi (x(t)). (15)

Definition 3 Given a constant γ > 0, system (13) is said to be ISS-H∞ if there
is a state feedback law u = Ki x , such that the closed-loop system (14) is glob-
ally exponentially ISS, and the controlled output z satisfies ||z||22 = ∫ ∞

t0
||z||2 dt ≤

γ 2||w||22 + m0, for some m0 > 0.

Corollary 2 For i ∈ S , let Ki and γi > 0 be given. Assume that there exist positive
constants ξ j i ( j = 1, 2, 3), αi > 0, and a positive-definite matrix Pi satisfying

(Ai + Bi Ki )
T Pi + Pi (Ai + Bi Ki ) + Pi (ξ1i Gi G

T
i + ξ2i Āi ( Āi )

T + ξ3i I )Pi

+ (
qi

ξ2i
+ δi

ξ3i
)I + CT

icCic + αi Pi = 0. (16)

Assume that ‖w‖2 ≤ ξ2iα
∗
i Vi (x) with 0 < α∗

i < αi and for k, r ≤ tk − tk−1 ≤ β

where β > 0, and the ADT holds. Then, system (14) is globally exponentially
ISS-H∞.

Proof For i ∈ S , define Vi (x) = xT Pi x . Then, form condition (ii), we have

V̇i (x) = [(Ai + Bi Ki )x + Āi x(t − r) + Giw + fi (x(t))]T Pi x

+ xT Pi [(Ai + Bi Ki )x + Āi x(t − r) + Giw + fi (x(t))]
≤ xT [(Ai + Bi Ki )

T Pi + Pi (Ai + Bi Ki ) + Pi (ξ1i Gi G
T
i + ξ2i Āi ( Āi )

T

+ ξ3i I )Pi + (
qi

ξ2i
+ δi

ξ3i
)I ]x + 1

ξ1i
wT w ≤ −αi Vi (x) + 1

ξ1i
wT w ≤ −λi Vi (x)

≤ − λVi (x),

where λi = αi − α∗
i , λ = mini∈S {λi } and we used Lemma 1, and condition (16).

To prove the upper bound to ‖z‖, let the performance function be defined by Ji =∫ ∞
t0

(zT z − γ 2
i wT w)dt , for i ∈ S . Then,
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Ji =
∫ ∞

t0
(zT z − γ 2

i wT w) dt +
∫ ∞

t0
V̇i dt − Vi (∞) + Vi (x0)

≤
∫ ∞

t0
(zT z − γ 2

i wT w) dt + Vi (x0) +
∫ ∞

t0

{
xT [(Ai + Bi Ki )

T Pi + Pi (Ai + Bi Ki )

+ Pi (ξ2i Āi ( Āi )
T + ξ3i I )Pi + (

qi

ξ2i
+ δi

ξ3i
)I + γ −2

i Pi Gi G
T
i Pi − γ −2

i Pi Gi G
T
i Pi ]x

+ 2xT Pi Giw
}

dt

= Vi (x0) +
∫ ∞

t0

{
xT [(Ai + Bi Ki )

T Pi + Pi (Ai + Bi Ki ) + Pi (ξ2i Āi ( Āi )
T

+ ξ3i I )Pi + (
qi

ξ2i
+ δi

ξ3i
)I + γ −2

i Pi Gi G
T
i Pi + CT

icCic]x
}

dt

−
∫ ∞

t0
γ 2

i (w − γ −2
i GT

i Pi x)T (w − γ −2
i GT

i Pi x) dt.

Using (16) with γ −2
i = ξ1i leads to Ji ≤ Vi (x0); hence, ‖z‖22 ≤ γ 2‖w‖22 + m0 where

m0 = maxi∈S {Vi (x0)} and γ = maxi∈S {γi }.

Corollary 3 (Reliability) For i ∈ S , let γi > 0 be given, and assume that there
exist positive constants ξ j i ( j = 1, 2, 3), εi , αi , control gain Ki = − 1

2εi BT
i σ̄ Pi , and

a positive-definite matrix Pi such that the following Riccati-like equation holds

AT
i Pi + Pi Ai + Pi (ξ1i GicGT

ic − εi Bi�̄ BT
i�̄ + ξ2i Āi ( Āi )

T + ξ3i I )Pi

+ (
qi

ξ2i
+ δi

ξ3i
)I + CT

icCic + αi Pi = 0. (17)

Assume further that ‖wF
σ ‖2 ≤ ξ1iα

∗
i Vi (x), where wF

σ = (wT (uF
σ )T )T is the aug-

mented disturbance input to the system, with uF
σ ∈ R

q is the failure vector whose
elements corresponding to the set of faulty actuators σ , α∗

i < αi and for all k,
r ≤ tk − tk−1 ≤ β where β > 0, assume further that the ADT condition holds. Then,
system (15) is globally exponentially ISS-H∞.

Proof For i ∈ S , define the Lyapunov function candidate Vi (x) = xT Pi x . Then

V̇i (x) ≤ xT [AT
i Pi + Pi Ai + Pi (ξ1i GicGT

ic + ξ2i Āi ( Āi )
T − εi Bi�̄ BT

i�̄

+ ξ3i I )Pi + (
qi

ξ2i
+ δi

ξ3i
)I ]x + 1

ξ1i
(wF

σ )T wF
σ ≤ −αi Vi (x) + 1

ξ1i
(wF

σ )T wF
σ

≤ − λi Vi (x) ≤ −λVi (x),
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with λi = αi − α∗
i and λ = mini∈S {λi }, where we have used Lemma 1,

condition (17), and the fact that Bi�̄ BT
i�̄

≤Bi σ̄ BT
i σ̄ [21]. Thus, we have ‖x‖ ≤

b‖xt0‖r e−α(t−t0)/2 + γ̄ (t), for t ≥ t0, where b = μ
√

eη, and γ̄ (t) = √
�(t)/c1 is class

K such that�(s) = k(μ2)k−1 ‖wF
σ (s)‖2
ξ1α∗ and ξ1α

∗ = mini∈S {ξ1iα
∗
i }. Similarly, we can

find the upper bound to ‖z‖ where in this case Ji = ∫ ∞
t0

(zT z − γ 2
i (wF

σ )T wF
σ )dt .

4 Numerical Examples

Example 1 Consider system (14) withS = {1, 2}. In the first mode, we have

A1 =
[
0.2 0.1
0 −6

]
, B1 =

[−3 1
0.1 0.2

]
, C1 =

[
2 0.1
0 2

]
, F1 =

[
0.1 −2
0.1 0

]
,

Ā1 =
[
0.1 0.1
0.2 1

]
, G1 =

[
1 0
0 1

]
, f1 = 0.1

[
sin(x1(t))
sin(x2(t))

]
,

and the tuning parameters: ε1=2, γ1 = 0.1, α1 = 2, ξ11 = γ −2
1 , ξ21 = 0.1,

ξ31 = 0.2, M1 = 2, β = 3, θ1 = 0.05, and δ1 = 0.1. As for the second mode, we
have

A2 =
[−9 0.2

0 0.1

]
, B2 =

[
0.1 0.5
0.1 −1

]
, C2 =

[
1 0
0 0.5

]
, F2 =

[
0.1 0
−3 0.1

]
,

Ā2 =
[
0.3 0.2
0 0.1

]
, G2 =

[
0.5 0
0 1

]
, f2 = 0.01

[
sin(x1(t))
sin(x2(t))

]
,

and tuningparameters: ε2=0.5, γ2 = 0.15, α2=2.5, ξ12=γ −2
2 , ξ22=0.2, ξ32=0.1,

M2 = 1.1, θ2 = 0.15, and δ2 = 0.01. The disturbance is w(t) =
[

e−0.2t sin(t)
e−0.2t sin(t)

]
,

Case 1 (Normal Actuators): From the Ricatti-like matrix equations, we obtain

P1 =
[
10.1452 −1.0498
−1.0498 9.2549

]
and P2 =

[
29.8698 −2.2714
−2.2714 15.3825

]
, and the control gains

K1 =
[
30.5406 −4.0748
−9.9352 −0.8012

]
and K2 =

[−0.6900 −0.3278
−4.3016 4.1295

]
. So that, from condi-

tion (i) in Theorem 1, we get c1 = 8.5598 and c2 = 30.2176. Then, from the ADT
condition, we get τa = lnμ

α∗−ν
= 0.8699 where ν = 0.5, and the cheater bound is

N0 = 0.5853. The upper bound of the disturbance magnitude is 0.1031.

Case 2. When there is a failure in the first actuator, i.e., B1� = {1} and B1�̄ =[
0 1
0 0.2

]
, and B2� = {2} and B2�̄ =

[
0.1 0
0.1 0

]
, then from the Ricatti-like equations,
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Fig. 1 ISS: operational case (left) and faulty case (right)

we obtain P1 =
[
10.2190 −2.7934
−2.7934 10.0408

]
and P2 =

[
29.6137 −2.7372
−2.7372 15.4077

]
, and the

control gain matrices K1 =
[
30.9364 −9.3843

0 0

]
and K2 =

[
0 0

−4.3860 4.1941

]
.

From condition (i) in Theorem 1, we get c1 = 7.3351, c2 = 30.1228. Thus, Ai +
Bi Ki (i = 1, 2) are Hurwitz and the ADT is τa = 0.9742 where the cheater bound
is N0 = 0.5378. The upper bound of the disturbance magnitude is 0.1033. Figure 1
shows the simulation results of ‖x‖ (thin) and ρ(s) (bold) for both cases, where
ρ(s) = max{ρ1(s), ρ2(s)} and ρi (s) = s/

√
c2θiξ2i .
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Impulsive Distance-Based Formation
Tracking Control of Multi-agent Systems

Zixing Wu, Xinzhi Liu, and Jinsheng Sun

Abstract In this paper, we discuss the distance-based formation control problems
for double-integrator multi-agent system (MAS) via impulsive protocols. The pro-
posed controller allows all agents to attain the desired formation shape by controlling
the inter-distances and velocities. Unlike the common conditions in most litera-
tures associated with distance-based formation, where the information is assumed to
be exchanged continuously, in our proposed strategy, the information of leader are
exchanged according to an impulsive sequence, which is more applicable to some
difficult communication environment. For the continuous control term, we will gen-
erate a potential function and use relative distance information of inter-agents to
form and keep the desired formation shape. The impulsive control term is applied to
the tracking errors between each agent and the leader at every impulse moment. By
using Lyapunov’s method, the exponential stability of the system with the proposed
impulsive control law has been demonstrated. Numerical examples are provided to
validate the effectiveness of our approach.

Keywords Multi-agent system · Formation control · Impulsive control ·
Cooperative control

1 Introduction

Formation control of networkedmulti-agent systems has received considerable atten-
tion in recent years due to its extensive applications. The formation control can be
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classified into position-based, displacement-based, bearing-based anddistance-based
formation control according to the controlled variable and sensed variable [1]. The
distance-based formation control has recently attracted research interest, because it
reduced requirement on the sensing capability for individual agents and do not share
a common coordinate system [2].

With underpinnings from rigid graph, the distance-based formation control prob-
lem in continuous-time has been studied in the literature, see for example [3, 4].
However, most of the results so far are based on the assumption that all the informa-
tion exchanges in the MAS are completed during the full response time. As is well
known, continuous-time communication is always too expensive or unavailable. By
contrast, for the impulse control method, the state information is just transmitted at
impulsive instants, and the state information transmitted among the nodes of multi-
agent systems is reduced greatly. Impulsive control has gained considerable interest
in various areas. Recently, Ref. [5] designed an impulsive algorithms by using only
the relative position to achieve the formation tracking. In [6], some results were pre-
sented on containment control in multi-agent systems that have static or dynamic
leaders under directed and undirected communication topologies by periodic impul-
sive algorithms. Although much researches have been done on consensus problem
[7, 8] and formation control [5, 9, 10] ofMASs, this is to our best knowledge the first
time to incorporate an impulsive protocol with distance-based formation control.

Inspired by the above discussion, a novel distributed formation control strategy
for double-integrator multi-agent is introduced. The algorithms presented in this
paper only need distance information of inter-agent and the communication graph
and desired formation shape graph are assumed to be rigid. This is very significant
because position or relative position according to the global coordination system can
not be obtained in some situations. The impulsive protocols need the information of
agents only at every impulsive instant, and regulate the velocities of all followers at
every instant. Some necessary and sufficient conditions are also derived in this paper.

The overall arrangement of this paper is organized as follows. In Sect. 2, we
demonstrate the preliminaries and problem formulation. The distance-based forma-
tion tracking control problem via impulsive protocol is studied in Sect. 3. Numerical
example of dynamic leaders is presented to verify the validity of the proposed pro-
tocols in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Preliminaries and Problem Formulation

2.1 Graph Theory and Some Useful Lemmas

Consider an undirected graph with m edges and n vertices, denoted by G = {V ,E }
with vertex set V (G ) = {v1, . . . , vn} and edge set E ⊆ V × V . The neighbor set of
node i is defined asNi := { j ∈ V : (i, j) ∈ E }. The adjacency matrix A = [

ai j
] ∈

R
n×n is defined with nonnegative elements. The adjacency elements associated with
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the edges of the graph are positive, i.e., ei j ∈ E ⇔ ai j > 0.Moreover,we assume that
aii = 0. TheLaplacianmatrix L = [

li j
] ∈ R

n×n associatedwith the adjacencymatrix

A is defined by li j = −ai j for i �= j , and lii = ∑N
j=1, j �=i ai j for i = 1, 2, . . . , N

which satisfies that
∑N

j=1 li j = 0. For a connected graph G , L has a simple zero
eigenvalue and all the other eigenvalues have positive real parts. All these eigenvalues
can be ordered as 0 = λ1 < λ2 ≤ · · · ≤ λn .

In this paper, we consider a rigid formation modeled by an undirected graph.
Then, a matrix relating to the nodes to the edges is introduced, which is called the
incidence matrix H = [

hi j
] ∈ R

n×m whose entries are defined as

hi j =
⎧
⎨

⎩

1, the i th edge sinks at node j ,
−1, the i th edge leaves node j,
0, otherwise.

Note that for a rigid formation modeled by an undirected graph considered in this
paper, the orientation of each edge for writing the incidence matrix can be defined
arbitrarily.

Let pi ∈ R
d where d = 2, 3 denote a point that is assigned to i ∈ V . The stacked

vector p = [
pT1 , pT2 , . . . , pTn

]T ∈ R
dn represents the realization of G in R

d . The
rigidity function rG (p) : Rdn → R

m associated with the framework (G , p) is given
as:

rG (p) = 1

2

[
· · · ,

∥∥pi − p j

∥∥2
, · · ·

]T
, (i, j) ∈ E ,

where ‖∗‖ is the standard Euclidean norm, the k-th component in rG (p),
∥∥pi − p j

∥∥2

corresponds to the squared length of the relative position vector zk which connected
vertices i and j . One useful tool to characterize the rigidity property of a framework
is the rigidity matrix R ∈ R

m×dn , which is defined as

R(p) = ∂rG (p)

∂p
. (1)

The row of the rigidity matrix R corresponding to {(i, j) ∈ E } takes the following
form [

01×d , . . . ,
(
pi − p j

)T
, . . . , 01×d , . . . ,

(
p j − pi

)T
, . . . , 01×d

]
.

The following Lemmas are needed for later use.

Lemma 1 [11] Let X and Y be arbitrary n-dimensional real vectors, P ∈ R
n×n be

a positive definite matrix, and ε > 0. Then, the following matrix inequality holds:

± {
XT PT Y + Y T PX

} ≤ εXT PX + ε−1Y T PT Y. (2)



236 Z. Wu et al.

2.2 Problem Statement

Consider the following n double-integrator agents in d-dimensional space.

{
ṗi (t) = qi (t)

q̇i (t) = ui (t)
, i = 1, . . . , n, (3)

where pi ∈ R
d , qi ∈ R

d , ui ∈ R
d , d = {2, 3} denote the position, the velocity and

the control input for i ∈ V . The leader dynamic is expressed as

ṗr (t) = qr (t), q̇r = ur (pr , t), (4)

where pr , qr and ur (pr , t) denote the position, velocity and accelerated velocity of
leader. (pr (0), qr (0)) and ur (pr , t) are given in advance as a reference.

In distance-based formation setup, the desired formation shape is described with
distance constraints. Given a formation shape realization p∗ = [pT1 , pT2 , . . . , pTn ]T ∈
R

dn . We define the desired distance for the k-th edge (k = 1, 2, . . . ,m) which con-

nects the agent i and j as di j =
���p∗

i − p∗
j

��� and the distance error is defined as

ek = �
�pi − p j

�
�2 − d2

i j . (5)

Denote the error vector as e = [e1, e2, . . . , em]T ∈ R
m . Further, the desired formation

Ep∗,v∗ of the agents can be expressed as

Ep∗,q∗ := {[pT , qT ]T ∈ R
2dn : e = 0, qi = qr }. (6)

Then the impulsive distance formation control problem for the double-integrator
modeled agents is stated as follows:

Consider a group of n double-integrator modeled agents (3) in d-dimensional
space, suppose that the sensing graph of the agents is given by an undirected graph
G = {V ,E }. Design a distributed controller ui with given the impulsive sequence,
such that the distances between each agent reach defined distance constraints and
agents maintain consistent velocity with the leader, which means that Ep∗,q∗ is
achieved and the system (3) with controller is exponential stable under the impulsive
distributed control law.
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3 Main Results

3.1 Undirected Formations of Double Integrators

The formation control law is designed as:

ui (t) = ur (t) −
∑

j∈N i

(pi (t) − p j (t))(
∥∥pi (t) − p j (t)

∥∥2 − d2
i j )

− kv

∑

j∈N i

ai j (qi (t) − q j (t))

−
∞∑

k=1

[ci (pi (tk) − pr (tk)) + kvci (qi (tk) − qr (tk))] δ (t − tk) ,

(7)

where kv > 0, ci ≥ 0 are constant non-negative coefficients, ci = 0 means that
the i-th agent cannot receive the information from the reference, ai j is the ele-
ment of adjacency matrix A. Define C = diag{ci } ∈ R

n×n , then the eigenvalues
of matrix C (denoted by λ(C)) depend on the choice of elements ci and one
has λmax (C) = sup{ci }. Dirac function δ(t) denotes the impulsive effects at the
time moment t = tk , the time sequence {tk} with 0 = t0 < t1 < · · · < tk < · · · ,

k = 1, 2, . . ., limt→∞ tk = ∞ forms a strictly increasing sequence in the time interval
[0,∞). The impulsive distances are defined as Δtk = tk − tk−1.

Define xi = pi − pr , vi = qi − qr . The double-integrator model (3) combined
with the controller (7) can be transformed into

⎧
⎪⎪⎨

⎪⎪⎩

ẋi (t) = vi (t),

v̇i (t) = −kp
∑

j∈N i
(xi (t) − x j (t))(

∥∥xi (t) − x j (t)
∥∥2 − d∗2

i j

−kv

∑
j∈N i

ai j (qi (t) − q j (t)), t ∈ [tk−1, tk),
Δvi (tk) = −ci xi (tk) − ci kvvi (tk), t = tk,

(8)

which can be rewritten to a matrix form as
⎧
⎨

⎩

ẋ(t) = v(t),
v̇(t) = −RT (x(t))e(x(t)) − kv(L ⊗ Id)v(t), t ∈ [tk, tk+1),

Δv(tk) = −C(x(tk) + kvv(tk)), t = tk,
(9)

where R(x(t)) = R(p) is the rigid matrix and L̂ = L ⊗ Id . To deal with the position
system with the impulsive protocol (9), we analyze the distance error system. By
noting that ė(t) = 2R(x) ṗ(t), one can obtain the following equation for the distance
error system with the controller (7):

ė(t) = 2R(x)v(t), t ∈ [tk−1, tk). (10)
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Then, based on the control inputs, the stability properties for the distance-based
formation problem for double-integrator agents are stated in the following theorem:

Theorem 1 Suppose the target formation is infinitesimally and minimally rigid.
The error system (9) is exponentially stable if there exist positive scalars ε > 0,
0 < μ ≤ ρ < 1 such that

1. (
(ε−1 − α)I 0

∗ (ε − α)I − 2kv L̂

)
< 0,

2. There exist constant 0 < μ < 1 satisfying

(
CTC + (

1
2 − μ

)
I −CT (I − kvC)

∗ (I − kvC)T (I − kvC) − μI

)
< 0,

3.
lnρ − αh2 < 0.

where 0 < h1 < tk − tk−1 < h2 is the impulsive period.

Proof Consider the following Lyapunov function candidate:

V = 1

2
eT (t)e(t) + xT (t)x(t) + vT (t)v(t). (11)

For t ∈ [
tk−1, tk

]
, k ≥ 0, calculate the Dini’s derivative of V (t) as

D+V (t) = eT (t)Pė(t) + 2xT (t)v(t) + 2vT (t)v̇(t)

= 2eT (t)R(x)v(t) + 2xT (t)v(t) − 2vT (t)R(x)e(t) − 2kvv
T (t)L̂v(t)

≤ ε−1xT (t)x(t) + εvT (t)v(t) − 2kvv
T (t)L̂v(t),

(12)
From condition 1, we have

D+V (t) ≤ αV (t),

which yields to V (t) ≤ eα(t−tk )V (t+k−1), t ∈ [tk−1, tk).
For t = tk , we have x(t

+
k ) = x(t−k ), e(t+k ) = e(t−k ). There holds

V
(
t+k

)
= 1

2
eT

(
t−k

)
e
(
t−k

)
+ xT

(
t−k

)
x

(
t−k

)

+
(
−Cx

(
t−k

)
+ (I − kvC)vT

(
t−k

))T (
−Cx

(
t−k

)
+ (I − kvC)v

(
t−k

))

≤ 1

2
eT

(
t−k

)
e
(
t−k

)
+

⎛

⎝
x

(
t−k

)

v
(
t−k

)

⎞

⎠

T (
CT C + 1

2 I −CT (I − kvC)

∗ (I − kvC)T (I − kvC)

)⎛

⎝
x

(
t−k

)

v
(
t−k

)

⎞

⎠ ,
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By condition 2, we have V (t+k ) ≤ 1
4e

T (t−k )e(t−k ) + 1
2μxT (t−k )x(t−k ) + 1

2μxT (t−k )

x(t−k ). It follows that V (t) is decreasing at every impulsive instant. Consequently,
there exist positive factor 0 < μ ≤ ρ < 1, such that

V (t+k ) ≤ ρV (t−k ).

It can be obtained that

V (t) ≤ ρk−1eα(t−t0)V (t0), t ∈ [tk−1, tk).

For t ∈ [t0, t1)
V (t) ≤ eα(t−t0)V (t0).

For t ∈ [t1, t2)
V (t+1 ) ≤ ρeα(t1−t0)V (t0).

Thus we conclude from mathematical induction that, for t ∈ [tk, tk+1),

V (t) ≤ ρkeα(t−t0)V (t0). (13)

Hence, as t → ∞ the system (3) will converge to the set Ep∗,q∗ where the distance
error limt→∞e(t) = 0 means that the desired formation construction is achieved and
the tracking errors limt→∞x(t) = 0, limt→∞v(t) = 0 means that agents follow the
movement of the reference.

This completes the proof. �

Remark 1 It should be pointed out that in contrast to the common impulsive control
systems, the distributed control input designed in this paper is not zero when t �= tk ,
such that the agents can receive the inter-agent relative position information. In fact,
the impulsive effects are only associated with the information of the leader.

Remark 2 The distance error for the k-th edge ek = ∥∥pi − p j

∥∥2 − d2
i j is related to

the relative position of the agent i and j . Since the control objective is to achieve
desired formation shape which is restricted by relative distance, we conclude that the
distance-based formation can be obtained when limt→∞e(t) = 0.

4 Numerical examples

In this section, an illustrative example is provided to verify the effectiveness of
the proposed impulsive distance-based formation control method for five double-
integrator agents in a plane.

Example 1 The desired formation was set to the regular convex pentagon with the
desired distances of connected edges were d12 = d15 = d23 = d34 = d45 =
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Fig. 1 The evolutions of distance errors with desired formation shape
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Fig. 2 The evolutions of velocity errors with the leader

√
2(1 − cos2π/5) and d13 = d14 = √

2(1 + cosπ/5). The control impulsive inter-
val is set as a constant 0.2s in the simulation. The components of the initial posi-
tions pi (0) for each agent are randomly perturbed from those of p∗

i by a random
variable uniformly distributed on [−5,5], and the initial velocities for each agent
are set as zeros. The motion of the leader is set as ur = 0 and the initial veloc-
ity of leader is [0.5, 0.5]T . The parameters in controller are set as kv = 0.2 and
C = diag{0, 0, 0, 0, 0.8}. Figs. 1 and 2 illustrate distance errors and the norm of
velocity errors with the leader convergence to zeros. The trajectories of each agent,
together with the initial position and the final shape are depicted in Fig. 3.

Remark 3 The leader can be a virtual reference or a real agent with a given motion.
Sincewe only focused on the tracking of the velocity state of the leader, the controller
only contains the information of the velocity of leader. As shown in Fig. 2, the norm
of velocity errors converge to zero. In the simulations, the step size 0.001s are used.
The control impulsive interval is chosen as Δtk = 0.2s.
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Fig. 3 The trajectories of
five followers and one leader.
Only the agent 5 can receive
the information from leader.
The desired formation shape
is achieved and the whole
formation moving with the
leader
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5 Conclusions

In this paper, leader-following distance-based formation control of double-integrator
MASs under impulsive protocol is investigated. The impulsive formation tracking
algorithms with the leader information have been proposed to achieve the forma-
tion. Based on the stability theory of impulsive systems and rigid graph theory, the
exponentially stability for the closed-loop system combined with the system and the
hybrid controller has been proved. Finally, an example has been given to illustrate
the effectiveness of our theoretical results.

References

1. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53,
424–440 (2015)

2. Sun, Z., Anderson, B.D., Deghat, M., Ahn, H.S.: Rigid formation control of double-integrator
systems. Int. J. Control 90(7), 1403–19 (2016)

3. Sun, Z., Anderson, B.D., Deghat, M., Ahn, H.S.: Rigid formation control of double-integrator
systems. Int. J. Control 90, 1403–1419 (2016)

4. Colombo, L.J., de Marina, H.G.: A Variational Integrator for the distance-based formation
control of multi-agent systems. IFAC-PapersOnLine 51(23), 76–81 (2018)

5. Wang, Y.W., Liu, M., Liu, Z.W., Yi, J.W.: Formation tracking of the second-order multi-agent
systems using position-only information via impulsive control with input delays. Appl. Math.
Comput. 246, 572–585 (2014)

6. Zhang, H.X., Ding, L., Liu, Z.W.: Schooling formulti-agent systems via impulsive containment
control algorithmswith quantized information. Trans. Inst.Measur. Control 41, 828–841 (2018)

7. Liu, X., Zhang, K., Xie, W.C.: Impulsive consensus of networked multi-agent systems with
distributed delays in agent dynamics and impulsive protocols. J. Dyn. Syst. Measur. Control
141, 011008-08-8 (2018)



242 Z. Wu et al.

8. Zhu,W.,Wang, D.: Leader-following consensus of multi-agent systems via event-based impul-
sive control. Measur. Control 52(1–2), 91–99 (2019)

9. Gaias, G., D’Amico, S.: Impulsive maneuvers for formation reconfiguration using relative
orbital elements. J. Guidance Control Dyn. 38, 1036–1049 (2015)

10. Qin,W., Liu, Z., Chen, Z.: Impulsive formation control algorithms for leader-following second-
order nonlinear multi-agent systems. IFAC Proc. Vol. 46, 172–77 (2013)

11. Wu, J., Jiao, L.: Synchronization in complex delayed dynamical networks with nonsymmetric
coupling. Physica A 386, 513–C530 (2007)



Exponential Stabilization for Markov
Jump Neural Networks with Additive
Time-Varying Delays via
Event-Triggered Impulsive Control

Haiyang Zhang, Zhipeng Qiu, Xinzhi Liu, and Lianglin Xiong

Abstract This paper investigates the Exponential Stabilization (ES) problem for
Markov Jumping Neural Networks (MJNNs) with Additive Time-varying Delays
(ATDs). To further mitigate the “unnecessary” waste of networks resources, a
Sample-based Event-triggered Impulsive Control (SEIC) scheme is employed. A
novel Lyapunov-Krasovskii functional is constructed by considering more informa-
tion about sampled data, ATDs and Markov jump parameters. In virtue of the SEIC
scheme, a new ES criterion for MJNNs with ATDs is then presented. In the end, a
numerical example is given to illustrate the validity of the obtained result.

Keywords Exponential stabilization · Neural networks · Markov jump
parameters · Additive time-varying delays · Event-triggered impulsive control

1 Introduction

In recent decades, Neural Networks (NNs) have received considerable attentions
since its extensive applications in many different fields, such as pattern recognition
[1–3], smart antenna arrays [4–6], and so forth. Time-varying Delays (TDs) are
inevitably encountered inNNs [7] due to the inherent communication time among the
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neurons, and other reasons. Especially, when signals are transferred from one node to
another,AdditiveTime-varyingDelays (ATDs)with different physical characteristics
are produced in NNs, because the transmission channel and circumstances may be
entirely distinct in different segments of networks. As a result, some conservativeness
could be generated if the different kinds of ATDs are regarded as the same [8]. It
is known that stability is a precondition for the implementation of systems, but the
existence of TDs often leads to NNs chaotic, oscillation and even unstable [9]. In
addition, fast convergence of the networks is essential for realtime computation, and
the exponential-convergence rate is generally used to determine the speed of neural
computations [10]. Thus, it is of great theoretical and practical importance to study
the exponential stability for NNs with ATDs.

As is well known, the structures and parameters of NNs are often subjected to
random abrupt variations [11], such as external environment sudden change, infor-
mation latching, and so on.Markov Jump systems (MJSs), as a special kind of hybrid
systems, have a powerful ability to describe those random behaviors [12]. In addi-
tion, Impulsive control, as a powerful tool, plays an important role in many different
science and engineering fields. Especially, in the field of artificial neural networks,
the study for stabilization is more complicated due to the state-dependent nonlinear
switching behaviors of NNs. Consequently, the research about exponential stabiliza-
tion of Impulsive Markov jump neural networks (IMJNNs) with TDs have attracted
much more attention [13–18]. However, there are few works about exponential sta-
bilization for IMJNNs with ATDs, which leaves much room for investigation.

On the other hand, in traditional impulsive control strategy [13–15], the impulse
signals are transmitted periodically, or the impulsive instants are predesigned . As a
result, some “unnecessary” data are sent frequently and the network resources are
excessively used. It is necessary to improve the traditional control scheme, espe-
cially in the case that the networks resources are limited [19]. Therefore, to reduce
unnecessary waste of network resources, an alternative control scheme, namely,
event-triggered control scheme was proposed [20], and then Event-triggered Impul-
sive Control (EIC) scheme was developed in [21–25]. It should be pointed out that
the above EIC scheme is in the means of continuous-time, which has some disadvan-
tages. For example, it requires sensors to monitor the system state all the time, but it
is not necessary due to the worst scenario rarely happens. Thus, in order to further
save the network resources, a SEIC scheme is adopted to investigate the exponential
stabilization for IMJNNs with ATDs in this paper.

Notations: Let N denote the set of positive integers, R the set of real numbers,
and R

n the n-dimensional real space equipped with the Euclidean norm ‖·‖, Rm×n

the set of all m × n real matrices, Sn+ and S
n the set of symmetric positive definite

and symmetric matrices of Rn×n , respectively. The symbol “∗′′ in a block matrix
signifies the symmetric terms, col {· · · } and diag {· · · } express a column vector
and a diagonal matrix, respectively. For any matrix X ∈ R

n×n , H {X} means that
X + XT , λmax(X) and λmin(X) stand for the maximum and minimum eigenvalue
of X , respectively. The zero and identity matrices with appropriate dimensions are
described by 0 and I , respectively.
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2 Description of problem and preliminaries

Let {r(t), t ≥ 0} be a continuous-time Markov Processes (MPs) taking values in a
finite state spaceN = (1, 2, · · · , N ). The evolution ofMPs {r(t), t ≥ 0} is governed
by the following transition probability:

Pr{r(t + Δ) = j | r(t) = i} =
{

πi jΔ + o(Δ), i �= j,
1 + πi iΔ + o(Δ), i = j,

(1)

where Δ ≥ 0, limΔ→0 o (Δ)
/
Δ = 0; πi j ≥ 0 for i �= j ∈ N is the Transition Rate

(TR) from mode i at time t to mode j at time t + Δ, and πi i = −∑N
j=1, j �=i πi j .

Consider the following impulsive MJNNs with ATDs:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = −Br(t)x(t) + Ar(t) f (x(t)) + Cr(t)x(tk)
+Dr(t) f (x(t − δ1(t) − δ2(t))), t �= tk,

x(t+) = (1 + qk)x(t−), t = tk, k ∈ N,

φ(θ) = x(t0 + θ), r (0) = r0, θ ∈ [−max{δ1 + δ2, η}, 0],
(2)

where x(t) = col{x1(t), · · · , xn(t)} is the state; f (x(t)) = col{ f1(x1(t)), · · · ,

fn(xn(t))} is the neuron activation function, and satisfies :

λ−
l ≤ fl(y1) − fl(y2)

y1 − y2
≤ λ+

l , fl(0) = 0, l ∈ N,∀y1 �= y2 ∈ R, (3)

where λ−
l , λ+

l are scalars which can be positive, negative and zero; φ(θ) is the initial
condition; δ1(t), δ2(t) are two ATDs with different physical property, and satisfy:

0 ≤ δ1 (t) ≤ δ1, δ̇1 (t) ≤ μ1 < 1, 0 ≤ δ2 (t) ≤ δ2, δ̇2 (t) ≤ μ2 < 1, (4)

where δ1, δ2, and μ1, μ2 are known constants; Br(t) is a positive diagonal matrix,
Ar(t), Dr(t) are connection weighted matrices; Cr(t) is a control gain matrix to be
determined, qk is the impulsive intensity, r0 ∈ N is the initial mode as t = 0.

To mitigate unnecessary waste of network resources, a Sample-based Event-
triggered Impulsive Control (SEIC) scheme is employed in this paper. Assume
that the system’s state is periodically sampled, and the sampling sequence is
depicted by the set Πs = {0, h, 2h, · · · , kh} with k ∈ N, where h is a constant
sampling period, and the event-triggered sequence is described by the set Πe =
{0, b1h, b2h, · · · , bkh} ⊆ Πs with bk ∈ N. Suppose the event-triggered instants to be
the impulsive instants, i.e., tk = bkh, then the next impulsive instant tk+1 = tk + lmh,
where

lm = min{l |eT (tk + lh)Ωe(tk + lh) > σ xT (tk)Ωx(tk)}, l ∈ N, (5)
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and σ ∈ [0, 1) is a constant trigger threshold, Ω ∈ S
n+ is an unknown weighted

matrix, e(tk + lh) = x(tk + lh) − x(tk) expresses the error between the two states
at the latest trigger instant and the current sampling one.

For the sake of introducing the SEIC scheme to determine whether the current
sampled-data should be transmitted, an effective way is to consider the sampled-
data error at every sampling instant. Decompose the impulsive interval [tk, tk+1)

into the following subintervals: [tk, tk+1) = ⋃lm−1
l=0 Ik(l), where Ik(l) = [tk + lh, tk +

(l + 1)h). Define a function

η(t) = t − (tk + lh), t ∈ Ik(l). (6)

Note that η(t) is a linear piecewise function and satisfies 0 ≤ η(t) ≤ η, η̇(t) =
1, ∀t ∈ Ik(l). For simplifying some notations, denote δ (t) = δ1 (t) + δ2 (t) , δ =
δ1 + δ2, μ = μ1 + μ2, and Bi = Br(t), Ai = Ar(t), Di = Dr(t), Ci = Cr(t) when
r(t) = i . Then, combining with (5) and (6), the system (2) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

ẋ (t) = −Bi x (t) + Ai f (x (t)) + Di f (x (t − δ (t))) ,

+Ci x(t − η(t)) − Cie(t − η(t)), t �= tk,
x(t+) = (1 + qk)x(t−), t = tk, k ∈ N,

φ(θ) = x(t0 + θ), r (0) = r0, θ ∈ [−max{δ, η}, 0].
(7)

The following definition and lemmas will be recalled, and play a key role to
demonstrate our main result.

Definition 1 [26] The system (7) is said to be stochastically exponentially stable in
the mean square sense with convergence rate α > 0, if there exist a constant M > 0
for ∀t ≥ t0 such that

E
{‖x(t)‖2} ≤ Me−α(t−t0)E

{
sup

θ∈[−max{δ,η},0]

{‖φ(θ)‖2, ‖φ̇(θ)‖2}
}

. (8)

Lemma 1 [27] For a matrix R ∈ S
n+, scalars a and b with a < b, a differentiable

vector function x(s) : [a, b] → R
n, the following inequality hold

(b − a)

∫ b

a
xT (s)Rx(s)ds ≥

[∫ b

a
x(s)ds

]T

R

[∫ b

a
x(s)ds

]
. (9)

Lemma 2 [28] For scalars α1, α2 ∈ (0, 1) satisfying α1 + α2 = 1, and matrices
R1, R2 ∈ S

n+, Y ∈ R
n×n, the following inequality hold

diag

{
1

α1
R1,

1

α2
R2

}
≥

(
R1 Y
∗ R2

)
, if

(
R1 Y
∗ R2

)
> 0. (10)
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3 Main Results

In this section, our purpose is to establish a new stochastic exponential stabilization
condition for systems (7) via the SEIC scheme (5). Before presenting the main result,
the following vector and functional are defined for convenience:

ξ(t) =col{x(t), f (x(t)) , x(t − δ(t)), f (x(t − δ(t))) , x(t − δ), x (t − η(t)) ,

x (t − η) , e(t − η(t)), x(t − δ1(t)), x(t − δ1(t) − δ2), ẋ(t)},
ei =col{0, · · · , 0, I︸︷︷︸

ν

, 0, · · · , 0}, (ν = 1, 2, · · · , 11).

and consider the following stochastic Lyapunov-Krasovskii Functional (LKF):

V (x(t), r(t)) = V1(x(t), r(t)) + V2(x(t), r(t)) + V3(x(t), r(t)), (11)

where

V1(x(t), r(t)) =xT (t)P(rt )x(t) + xT (tk)Sx(tk), (12)

V2(x(t), r(t)) =
∫ t

t−δ(t)
eα(s−t)

[
xT (s)Q1x(s) + f T (x(s))Q2 f (x(s))

]
ds

+
∫ t

t−δ
eα(s−t)xT (s)Q3x(s)ds +

∫ t

t−η
eα(s−t)xT (s)Q4x(s)ds

+
∫ t

t−δ1(t)
eα(s−t)xT (s)Q5x(s)ds +

∫ t

t−δ1(t)−δ2

eα(s−t)xT (s)Q6x(s)ds,

(13)

V3(x(t), r(t)) =δ1δ2

∫ t

t−δ

∫ t

u
eα(s−t) ẋ T (s)R1 ẋ(s)dsdu

+ η

∫ t

t−η

∫ t

u
eα(s−t) ẋ T (s)R2 ẋ(s)dsdu. (14)

Theorem 1 For given positive scalars δ1, δ2, μ1, μ2, η, α and σ , the system (7) is
said to be stochastically exponentially stable in the mean square sense, if there exist
matrices Pi , S, Q1, Q2, Q3, Q4, Q5, Q6, R1, R2 ∈ S

n+, X1, X2, Ni , Ki ∈ R
n×n and

diagonal matrix M1, M2 ∈ S
n+ such that

(1 + qk)
2λmax (Pi + S) − λmin(Pi ) > 0, k ∈ N, (15)

inf {tk+1 − tk} = β >
ln q

α
, k ∈ N, (16)

R1 =
[
R1 ∗
XT
1 R1

]
> 0, R2 =

[
R2 ∗
XT
2 R2

]
> 0, (17)

Φi =Φ1i + Φ2i + Φ3i + Φ4i + Φ5i < 0, (18)
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where q = (1 + qk)2λmax (Pi + S) /λmin(Pi ), R = diag{δ2R1, δ1R1} and

Φ1i =H
{−e1

T Pie11
} + eT1

(
αPi + Π(Pj )

)
e1 + α(e6 − e8)

T S(e6 − e8),

Φ2i =eT1 (Q1 + Q3 + Q4 + Q5 + Q6)e1 + eT2 Q2e2 − e−αδ(1 − μ)eT3 Q1e3

− e−αδ(1 − μ)eT4 Q2e4 − e−αδeT5 Q3e5 − e−αηeT7 Q4e7

− e−αδ1(1 − μ1)e
T
9 Q5e9 − e−αδ(1 − μ1)e

T
10Q6e10,

Φ3i =eT11
(
δδ1δ2R1 + η2R2

)
e11 − e−αδζ T

1 Rζ1 − e−αηζ T
2 R2ζ2,

Φ4i =σ(e6 − e8)
TΩ(e6 − e8) − eT8 Ωe8 + H

{
(e11 + e1)

T Ki (e6 − e8)
}

+ H
{
(e11 + e1)

T Ni (−e11 − Bie1 + Aie2 + Die4)
}
,

Φ5i = − H
{
(e2 − �1e1)

T M1 (e2 − �2e1) + (e4 − �1e3)
T M2 (e4 − �2e3)

}
,

ζ11 =col{e1 − e9, e10 − e5}, ζ12 = col{e9 − e3, e3 − e10},
ζ1 =col{ζ11, ζ12}, ζ2 = col{e1 − e6, e6 − e7}, Π(Pj ) =

∑N

j=1
πi j Pj .

In addition, the control gain is designed by Ci = N−1
i Ki , i ∈ N.

Proof The detail of proof is omitted here since the page limits.

4 Numerical Example

In this section, we aim to demonstrate the feasibility and validity of the obtained
result in this paper by a numerical example.

Example 1 Consider the systems (7) with the following parameters [12]

B1 =
[
1 0
0 1

]
, A1 =

[
2 −0.1

−5 3

]
, D1 =

[−1.5 −0.1
−0.2 −2.5

]
, (19)

B2 =
[
0.8 0
0 1

]
, A2 =

[
2 −0.11

−5 3.2

]
, D2 =

[ −1.6 −0.1
−0.18 −2.4

]
, (20)

TR: (πi j ) =
[−3 3
5 −5

]
, �1 =

[
0 0
0 0

]
, �2 =

[
0.5 0
0 0.5

]
, (21)

δ1 =0.1, δ2 = 0.2, μ1 = 0.2, μ2 = 0.1, (22)

α =0.16, σ = 0.02, η = 0.1, β = 0.2. (23)

According to Theorem 1 and using the MATLAB LMI toolbox, the control gains

matrices can be derived: Ω = 1.0e + 05 ∗
[
2.3139 0.4016
0.4016 0.7217

]
and

C1 =
[−0.2865 −0.0534
−2.2135 −3.7376

]
,C2 =

[−0.3173 −0.0382
−2.1119 −3.7730

]
.
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Fig. 1 Curve of x(t)
without control
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Fig. 2 Release instants and
intervals
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Under the above parameters, we take the impulsive intensity qk = −0.3, the
neuron activation function fi (x) = 0.5 (|x + 1| − |x − 1|), the ATDs δ1(t) = 0.1 +
0.2sin(t), δ2(t) = 0.2 + 0.1cos(t) and the initial value x(0) = col{−0.2, 0.3}. Then
the feasibility and validity of the obtained result are demonstrated by the following
Figs. 1, 2, 3 and 4, and it can be said that more networks resources are saved by using
the SEIC scheme. Moreover, comparing the periodic impulsive control scheme, that
is, the period of impulsive control is η = 0.1, then the control numbers will be as
hight as up to 50, while the control number under the SEIC scheme is 25. Clearly,
the control frequency is slashed effectively.
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Fig. 3 Curve of x(t) with
SEIC

0 1 2 3 4 5−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time t

St
at

e 
x(

t)

0 2 4
0.5

1

1.5

2

2.5

Time t

M
od

e 
r(t

)

Fig. 4 Control input u(t)
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5 Conclusion

In this paper, we study the stochastic exponential stabilization problem for MJNNs
with ATDs. A novel LKF involving more information about sampled data and ATDs
is constructed, and a stochastic exponential stabilization criterion for MJNNs with
ATDs is established by employing the SEIC scheme. The feasibility and validity of
the obtained result is illustrated by a numerical example, and it is concluded that
more networks resources can be saved by using the SEIC scheme.
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Development of a Lattice Boltzmann
Model for the Solution of Partial
Differential Equations, A Performance
Comparison Study with that of the Finite
Difference Method

Mahmud Ashrafizaadeh and A. Ghavaminia

Abstract The lattice Boltzmann method (LBM) has attracted much attention in
recent years as a recent efficient solution method for fluid flow simulations as well as
general PDEs. Due to the local nature of the computations in the lattice Boltzmann
method and its ease of programming, the LBM is an ideal candidate for developing
efficient parallel PDE solvers suitable for recent computer hardware. In the present
study, we have used the lattice Boltzmann method for solving the transient heat
diffusion equation. The performance of this method is compared with that of the
traditional finite difference based PDE solver. All these solvers have been developed
using the Julia programming language, which is a recent player amongst the scientific
computing languages. Several benchmark problems in the field of transient heat
transfer described by parabolic PDEs are solved, and the results obtained from the
aforementioned methods are compared with each other. It is shown that by using the
lattice Boltzmann method, it is possible to solve these partial differential equations
more efficiently while maintaining the accuracy of the solution.

Keywords Lattice Boltzmann method · Finite difference · Partial differential
equation · Numerical performance comparison

1 Introduction

The lattice Boltzmann method (LBM) is a rather young and promising method for
simulating complex fluid flow physics. In comparison with the conventional methods
in computational fluid dynamics (CFD), LBM is easy for programming, intrinsically
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parallel [1, 19], and it is easy to incorporate complicated boundary conditions such
as those encountered in porous media problems [6, 10].

In the past years, in addition to solving the fluid flow problems, more applications
have been introduced for the lattice Boltzmann method. It has been shown that by
modifying a typical LBM, it is possible to solve partial differential equations as well
[3, 9, 14, 18, 20]. Solving partial differential equations is required in a vast verity
of applications varying from image denoising using the Laplace equation [15] to
simulating the heat transfer phenomena in solid or fluid media.

With advances in the high-performance supercomputers and the invention of new
GPU acceleration methods, the LBM has gained even more attention due to its
intrinsic parallelism and locality of calculations, which is an advantage of the LBM
over the conventional partial differential equation solvers [1, 19].

In this study, the accuracy and computational performance of a LBM PDE solver
have been investigated and compared with those of a traditional FD PDE solver by
solving several benchmarks in the field of transient heat transfer which are described
by parabolic PDEs.

2 Description of the Numerical Methods

The transient heat diffusion equation can be written as:

∂T

∂t
= α

∂2T

∂x2
(1)

In which T represents temperature, α is the heat diffusion coefficient, t is time, and
x is the spatial direction of the diffusion [8]. One of the well known traditional FD
solutions for this PDE is to use the Forward Euler method and the second-order
central difference scheme to discretize the Eq. (1) as it is presented in Eq. (2).

T n+1
i = T n

i (1 − ω) + ω(0.5T n
i+1 + 0.5T n

i−1) (2)

where ω = (2αΔt)/(Δx2). It is necessary to mention that this discrete formulation
has a stability criterion (Δt ≤ Δx2/2α), which limits the maximum possible time
step size for a fixed Δx . The stability criterion may also vary according to the
employed boundary condition type [8]. This method only requires information from
the nearest neighboring sites at each time step. Therefore, it is very similar to the
LBM in this regard.

The lattice Boltzmann general formulation is:

∂ f

∂t
+ c.� f = Ω (3)
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Fig. 1 Lattice configuration
and naming convention used
for discretization of the LBM

. 12

(a) D1Q2

1

3

2

4

(b) D2Q4

where f is the population distribution function (PDF), c is the lattice speed, � is the
gradient operator, and the Ω is the collision operator [13]. The Ω , in general, is a
sophisticated integral, which is hard to compute. There have been several approxi-
mations for this integral which up to now, the most widely used and known of them is
the Bhatnagar-Gross-Krook (BGK) model [11]. Among the different LBMmethods,
the BGK collision method [16] is mathematically the simplest. However, it has some
deficiencies; for example, the BGK LBM suffers from numerical instability, espe-
cially for the simulation of low viscosity fluids [12]. To overcome these deficiencies,
several advanced methods have been proposed, among which the multi-relaxation
LBM [4] and cascaded central moments method [5] are two of the most known ones.

For discretizing the LBM formulation, Eq. (1), over a domain, there is a need to
choose a lattice configuration. In this work, we have chosen the D1Q2 and D2Q4
lattice configuration for one-dimensional and two-dimensional simulations as they
are shown in Fig. 1a, b, respectively.

By discretizing the LBM formulation, we will have:

fk(x, t + Δt) − fk(x, t)

Δt
+ ck .

fk(x + Δx, t + Δt) − fk(x, t + Δt)

Δx
= Ωk (4)

The BGK approximation is:

Ωk = 1

τ
[ fk(x, t) − f eqk (x, t)] (5)

By substitution of the BGK approximation, Eq. (5), into Eq. (4) the BGK LBM
becomes:

fk(x + Δx, t + Δt) − fk(x, t) = −Δt

τ
[ fk(x, t) − f eqk (x, t)] (6)

where f eq is the equilibrium distribution function and τ is the relaxation time factor.
By performing the Chapman-Enskog expansion [17] the relation between macro-
scopic values and the f eq and τ can be determined as:
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f eqk = wi T (x, t) (7)

wherewi is the latticeweight factor. For theD1Q2 lattice configurationwi = 0.5, i =
1, 2 and for D2Q4 lattice configuration wi = 0.25, i = 1, ..., 4 [13]. Additionally,
the temperature T is calculated using the Eq. (8) [13].

T (x, t) =
q∑

i=1

fi (x, t) (8)

It is more convenient to separate the local and nonlocal part of Eq. (6) and perform
the calculations in the collision, Eq. (9), and the streaming, Eq. (10), processes
separately.

f post
k = fk(x, t) − Δt

τ
[ fk(x, t) − f eqk (x, t)] (9)

fk(x + Δx, t + Δt) = f post
k (x, t) (10)

Boundary Cconditions:

To implement the Dirichlet boundary condition, we should write the flux balance at
the considered boundary. For example, at the left boundary, we have:

f eq1 (x, t) − f1(x, t) + f eq2 (x, t) − f2(x, t) = 0 (11)

In Eq. (11) the only unknown is the f1.
In the case of the Neumann boundary condition on the left side:

q ′ = −k
T (1) − T (0)

dx
(12)

Substituting T (1) = f1(1) + f2(1) and T (0) = f1(0) + f2(0) in Eq. (12) and solv-
ing for f1(0) gives:

f1(0) = f1(1) + f2(1) − f2(0) + q ′dx
k

(13)

Finally, in the case of the Robin boundary condition, we have:

− λ
∂T (x, t)

∂x
= β[T (x, t) − Ta] (14)

where λ is the solid medium thermal conductivity, β is the convection coefficient in
lattice units, and Ta is the ambient temperature [13]. Expanding the Eq. (14) for the
right boundary condition yields to:



Development of a Lattice Boltzmann Model for the Solution … 259

− λ
T p+1
n − T p+1

n−1

Δx
= β[T p+1

n − Ta] (15)

This means:

f post
1,n + f post

2,n = λ

λ + βΔx
( f post

1,n−1 + f post
2,n−1) + βΔx

λ + βΔx
Ta (16)

On the right side boundary, the only unknown distribution function is f2,n , which
can be calculated using Eq. (16).

For a more detailed derivation of boundary conditions, interested readers may
refer to references [7, 9, 13, 20].

3 Results

The results presented here are obtained using codes which have been implemented in
the Julia programming language [2]. The simulations are performed on a computer
system with the following configuration: CPU model: AMD Opteron(tm) Processor
6174, CPU MHz: 2200, L1 cache: 64K, L2 cache: 512K, L3 cache: 5118K, and 94
GB of RAM.

To compare the performance and accuracy of the methods, we used several com-
mon one-dimensional and two-dimensional benchmarks introduced in [7, 9, 13]. In
the first case a one-dimensional layer of steel with a thermal conductivity of, λ, 35
[W/mK ], thermal diffusivity of, α, 7.1795 × 10−6 [m2/s], and thickness of L =
0.05 [m] has been considered. The initial condition, the left boundary condition, and
the right boundary condition are specified by T (x, 0) = 0 [°C] , T (t, 0) = 0 [°C], and
T (t, L) = 100 [°C] respectively.To obtain the results illustrated in Fig. 2, the mesh
size and time stephavebeen set toΔx = 0.00125 [m] (node numbers (N ) = 40) and
Δt = 0.001 [s] respectively. Figure 3 shows the same geometry as the first case (Fig.
2) with the exception of the Robin boundary condition (β = 10 [W/m2K ], Ta = 20
[°C]) at the right hand side of the geometry and T = 150 [°C] at the left-hand side of
the geometry. Figures 2 and 3 clearly show that the results obtained from the LBM
and the FD codes are in excellent agreement with each other.

For the two-dimensional formulation, two geometries are selected to compare the
performance and the accuracy of the lattice Boltzmann method versus that of the
finite difference method. Fig. 4a, b show the geometries, boundary conditions, and
initial conditions of the chosen benchmarks.

Figure 5 shows the temperature distribution along the centerline of the case 3
geometry for different dimensionless times. Fig. 6, which is a contour display of
the temperature distribution of case 4, shows that the results from both the finite
difference method and lattice Boltzmann method are in an excellent agreement with
each other. To demonstrate this better, Fig. 7 shows the temperature distributions
along the X and Y oriented centerlines of the case 4 geometry. As it is shown in Fig.
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Fig. 2 Temperature distribution at different times for the one-dimensional transient heat transfer
with Dirichlet boundary conditions at the left and right sides
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Fig. 3 Temperature distribution at different times for the one-dimensional transient heat transfer
with a Dirichlet boundary condition at the left side and a Robin boundary condition at the right side

6 to Fig. 7, the results from the lattice Boltzmann method and the finite difference
method are in excellent agreement with each other.

The primary motivation of using the LBM over conventional methods such as the
FD for solving differential equations (in this case, the heat diffusion problem) is to
benefit from the LBM’s capabilities, particularly the computational performance of
the LBM. Another test has been conducted to study the performance of the LBM
and the FD, which compares wall clock times required by each method to achieve
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(a) Case 3 (b) Case 4

Fig. 4 Boundary conditions and initial condition values for the two-dimensional transient heat
transfer case 3 and case 4
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Fig. 5 Temperature distribution along the centerline of the case 3 geometry (Fig. 4a) at different
dimensionless times (t∗). Circles and lines represent the LBM and the FD results respectively

a particular result. For this test, we used case 3 geometry to benchmark the results.
Times are measured with the benchmarking tool provided by the Julia language
(BenchmarkT ools. jl), which is a tool that can repeat each benchmark and pro-
cesses the result to eliminate system load noises and to provide a consistent, reliable
answer. To conduct a fair comparison, the FD time step has been pushed to its maxi-
mum possible value concerning the FD stability limits (Fo = 0.25). Then the LBM
relaxation time factor has been changed to measure the changes in the performance
(Fig. 8).

As it is shown in Fig. 9, the resolution study reveals that even in lower mesh reso-
lutions, the solution is mesh-independent. Nevertheless, we have chosen a finer mesh
because we wanted to ensure the accuracy of the study through different simulations,
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(a) FD Results at t∗ = 0.4 (b) LBM Results at t∗ = 0.4

Fig. 6 Case 4 results: Temperature distribution over the solution domain at a dimensionless time
(t* = 0.4)
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Fig. 7 Temperature distribution along the X and Y oriented centerlines at different dimensionless
times

and more importantly, we needed a more time-consuming calculation so that we can
provide a more accurate time comparison.

Figure 8 depicts the time ratio of the FD over the LBM calculations, which clearly
shows the LBM’s superiority over the FD regarding their performances. It is worth
mentioning that in this study, we have just implemented a serial code for both the
LBM and the FD methods. Due to the parallel nature of the LBM, it is expected that
the parallel implementation of these codes would result in even more performance
gain in favor of the LBM approach. It is known that by increasing the relaxation time
factor of the BGK LBM, its numerical accuracy may deteriorate [12]. To measure
this error, the difference between the LBM solution and that of the FD solution for
a variety of dimensionless times and LBM relaxation factors are calculated. The
results are presented in Fig. 10. The maximum measured difference in our studies
has been less than 0.6%, which could be neglected in most common applications. On
the other hand, the performance gain is very high. Nearly 0.1 of the computational
time is required for the LBM to achieve the same results as that of the FD method.
Also, the difference between the LBM and the FD results vanishes by advancing
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through time. So it is possible to even achieve the same steady-state results while
spending significantly less computational time using the LBM.

4 Conclusion

In this study, the lattice Boltzmann method has been employed to solve the transient
heat diffusion equation with different boundary conditions in one and two dimen-
sions. To study the accuracy and performance of the lattice Boltzmann method,
several benchmarks have been implemented in the Julia programming language.
The results show that the lattice Boltzmann method solution for the transient heat
diffusion problems would be as accurate as those obtained by the finite difference
method. However, using the lattice Boltzmannmethod, it is possible to achieve better
computational performance and significantly reduce the computational cost. In our
benchmarks, the required solution time for the lattice Boltzmann method is an order
of magnitude less than that required by the finite difference method for the same
level of accuracy.
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Using Shooting Approaches to Generate
Initial Guesses for ODE Parameter
Estimation

Jonathan Calver, Jienan Yao, and Wayne Enright

Abstract We consider the parameter estimation problem for parameterized systems
of ordinary differential equations (ODEs). This problem involves finding the set of
parameters that best fit a set of observed data. In particular, we consider techniques
for generating initial guesses that are sufficiently close to the best fit parameters,
so that a shooting approach is likely to converge. We discuss approaches used in
the literature and demonstrate how they can be improved using ideas motivated by
progressive and multiple shooting. Our proposed approach is then applied to a test
problem from the literature.

Keywords Ordinary differential equations · Inverse problems · Shooting methods

1 Introduction

Parameterized initial value problems (IVPs) are used in a wide range of applica-
tions, including investigations of population dynamics [3], enzyme kinetics [11], the
spread of disease [14], chemical reactions [16], and neuron signalling [10]. An IVP
consists of a system of ordinary differential equations (ODEs) and a set of initial
conditions, which specify the initial state of the model. The solution of an IVP can
be approximated by simulating the model state from the initial time to some final
time of interest. The solution of the IVP over an interval of interest is referred to as a
trajectory. Parameter estimation seeks to find the set of model parameters such that
the model best fits the observed data, as defined by an appropriate objective function.
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Estimating the best fit parameters can be a computationally intensive task. Eval-
uating the objective function for a candidate set of model parameters requires a
trajectory simulation. If the model is complex, or the interval of interest is large,
this simulation can be quite time consuming. This observation has led to a variety
of techniques being proposed to reduce the number of model trajectory simulations
required to approximate the best fit model parameters. In this work, we describe
some of these techniques, propose a modification to one of the techniques based on
the ideas of progressive and multiple shooting, and demonstrate its use in a two stage
parameter estimation procedure.

1.1 Definitions and Notation

We consider the parameterized initial value problem (IVP),

y′(t) = f (t, y(t), p), y(0) = y0, t ∈ (0, T ), (1)

where y(t) is the state vector of dimension ny , p is a constant vector of model
parameters of dimension np, and y0 are the initial conditions of the state vector, y(0).
We will denote the solution of (1) by y(t, p). In some applications, the parameters
only appear linearly in f and one can often exploit this structure to rewrite f as,

f (t, y(t), p) = G(t, y(t))p. (2)

In the rest of this paper, we consider this case, where all of the parameters appear
linearly.

1.2 Least Squares Parameter Estimation

We assume that a set of observations of the entire state vector is known and given by,

ŷ j (ti ) = y j (ti ) + N (0, σ 2
i j ), for i = 1, . . . , no j = 1, . . . , ny, (3)

where no is the number of observation points, y j (ti ) denotes the j th component
of the true state vector at time ti , and N (0, σ 2

i j ) is normally distributed noise with
variance σ 2

i j . Given such data, parameter estimation is often performed using maxi-
mum likelihood estimation (MLE). This leads to a nonlinear least squares objective
function,

L(p) =
no∑

i=1

ny∑

i= j

(ŷ j (ti ) − y j (ti , p))2

2σ 2
i j

. (4)
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The parameter estimation problem we consider is to find,

p̂ = argminp L(p), subject to (1). (5)

1.3 Shooting Approaches

In this work, we consider the single shooting (SS) approach (see for example [1])
for solving this problem. In the single shooting approach, an IVP solver is used to
approximate a trajectory, y(t, p), to within a user specified tolerance, whenever we
evaluate the objective function. That is, we approximate the solution of (1) on each
iteration of the optimization.

In order to find p̂ using a gradient based optimizer and the single shooting
approach, we require approximations to the sensitivity information. This requires
us to approximate the model sensitivities, dy

dp (t), at each observation point, ti . For
example, the model sensitivities can be approximated by simulating the variational
equations simultaneously with the original system of ODEs.

A common criticism of using a gradient based optimizer and the single shooting
approach is that it relies on an initial p, call it po, that is sufficiently close to the best
fit p̂. If po is not close enough to p̂, the optimization may converge to a poor, local
minimum, converge slowly, or fail to converge at all. Two modifications to single
shooting have been proposed that make it less sensitive to the choice of po.

Incremental shooting [19] and progressive shooting (PS) [15] are both based on
the observation that if the parameters are too far from their true values, then the
solution of the IVP may only remain close to the data near the initial time. Trying to
fit to data further in the simulation can lead to convergence to a poor localminimumor
the simulation might fail before reaching t = T for certain values of the parameters.
Progressive shooting proceeds by first fitting to the data over a shorter interval, say
[0, T̃ ], then progressively increasing the length of the interval. This can also be
viewed as a form of continuation, where the continuation parameter is T̃ .

Multiple shooting (MS) is a more robust and better conditioned form of single
shooting, which is widely used for the numerical solution of ODE boundary value
problems (BVPs) (see, for example [4, 15]). This technique is particularly effective
if the problem is not well conditioned. It has also been suggested for estimating the
parameters in systems of ODEs [9, 20].

In multiple shooting, the interval over which the system is simulated is divided
into NMS subintervals. Additional parameters are added to specify the state vector at
the beginning of each subinterval. Equality constraints are introduced at the bound-
ary of each subinterval and these additional constraints are added to the objective
function, (4).

A significant advantage of this approach is that it allows discontinuities in the
intermediate trajectories (i.e. violation of the introduced equality constraints) to exist
during the optimization.Also, since it restarts the simulations at the beginning of each
subinterval, it is less likely that the IVP solver will fail. When used in conjunction
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with a gradient based optimizer, a downside ofmultiple shooting is that each iteration
is more computationally expensive than single shooting; although we note that, on
each iteration, each of the simulations over the NMS subintervals can be performed
in parallel.

Alternatively, we can try to determine a value for po, such that SS is likely to con-
verge to p̂ , which is the approach we will consider here. The techniques described in
[5], hybrid optimizers [21], andACCEL[7] can all be viewedas two stage approaches,
where first a suitable po is found, then SS with a gradient based optimizer is used
to determine p̂. We now discuss ways to use the observed data and structure of the
model to obtain such a suitable po.

1.4 Obtaining a suitable po

The expensive part of evaluating the objective function, (4), is simulating the under-
lying ODE IVP. Varah [22] and others [2, 7, 12] recognized that if one uses the
observed values of y(t) to approximate y′(t), then one can formulate a related least
squares problem,

min
p

∫ T

0

∥∥(ỹ′(t) − f (t, ỹ(t), p))
∥∥2

dt, (6)

where ỹ(t) is an approximation of y(t) over the interval, [0, T ], based on the observed
data. Note, in the work of Varah [22], a sum over the observation times was used,
rather than an integral. An estimate for p obtained in this way is referred to as a
smooth and match estimator (SME) [12]. In terms of computation, a major benefit
of SME is that the numerical derivatives to be approximated can be significantly less
expensive to compute than a simulation of an ODE IVP.We also do not have to worry
about what happens when a set of parameters would cause the simulation to fail.

More recently, Dattner [8] has suggested a related approach using the integral
form of the associated ODE IVP. The resulting approach is referred to as integral
SME (INT-SME). We note that this approach is similar to those that use the Collage
Theorem [17, 18]. If we assume the structure of the ODE IVP in (2), then the
associated least squares problem defining INT-SME is given by,

min
p

∫ T

0

∥∥∥ỹ(t) −
(
y0 + [ ∫ t

0
G(τ, ỹ(τ )) dτ

]
p
)∥∥∥

2
dt. (7)

Note that this least squares problem is linear in p (and y0) and unlike SME, this does
not require y′(t) to be explicitly approximated.

The above methods can be extended to the general case with nonlinear parameters
and this is discussed in [5]. It is also sometimes possible to extend these methods to
handle unobserved states [5, 6].
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2 Proposed method

While INT-SME can be quite effective, it may produce poor results if the avail-
able data doesn’t allow for the underlying shape of the trajectory to be recovered
with enough accuracy. Since the estimator relies on cumulative integrals, errors may
propagate over the interval. As a simple example, consider an undamped oscillator,

y′(t) = v(t), (8)

v′(t) = −ky(t). (9)

In this example, we see that if the noise in the observations is Gaussian, then the
variance in the only component of

∫ t
0 G(τ, ỹ(τ )) dτ will grow like t , since it is the

integral of −ỹ(τ ). Of course, depending on the form of G, it may be hard to predict
how the error will propagate for a given model. This suggests it might be helpful to
restart the integrals to prevent too much error from propagating and this motivates
our proposed method.

Note that usually the hope is that the smoother can sufficiently reduce the error
to mitigate this problem, but if the underlying trajectory contains peaks that are not
sufficiently sampled, then the peak might get smoothed out—potentially causing
more error to propagate.

First, we define INT-SME(s), where s takes the place of T in the upper limit of
integration in the outermost integral in (7). Inspired by progressive shooting, this will
only consider the subset of observations between t = 0 and t = s. We then propose
a multiple shooting inspired version of INT-SME(s). This approach considers,

min
p, {ȳ(ti )}mi=1

m∑

i=1

[ ∫ ti+1

ti

∥∥∥ỹ(t) −
(
ȳ(ti ) + [ ∫ t

ti

G(τ, ỹ(τ )) dτ
]
p
)∥∥∥

2
dt

]
, (10)

where m is the number of shooting intervals used and the set of ti ’s partition the
interval from0 to s. Note thatm = 1 corresponds to INT-SME, using the observations
up to s. In our numerical experiments, we have used uniform partitions. Unlike true
multiple shooting, we do not enforce equality constraints at the end of each shooting
interval, since doing so would reduce to INT-SME(s). One could also fix the ȳ(ti )’s
to their observed values, but in our experiments, we have included the ȳ(ti )’s in the
linear least squares problem. We will refer to this approach as INT-SME(m, s).

3 Numerical Experiments

We now consider an example from the literature to demonstrate the performance of
our proposed method.

The Calcium ion model is a system of ODEs describing the oscillations of Ca2+
ions in the cytoplasm of eukaryotic cells, which play a role in cellular information
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Fig. 1 True trajectories for
the Calcium Ion test problem

processing. For a complete description of this model, see [16]. The model is given
by,

G∗
α

′ = k1 + k2G
∗
α − k3PLC

∗ G∗
α

G∗
α + Km1

− k4Cacyt
G∗

α

G∗
α + Km2

, (11)

PLC∗′ = k5G
∗
α − k6

PLC∗
PLC∗ + Km3

, (12)

Cacyt
′ = k7PLC

∗Cacyt
Caer

Caer + Km4
+ k8PLC

∗ + k9G
∗
α − k10 − k11

Cacyt
Cacyt + Km6

,

(13)

Caer
′ = −k7PLC

∗Cacyt
Caer

Caer + Km4
+ k11

Cacyt
Cacyt + Km6

, (14)

where the state variables, y = [G∗
α, PLC∗, Cacyt , Caer ], are concentrations of

four compounds, which interact in the calcium-signaling pathway. The parameters
are chosen to be k1 = 0.09, k2 = 2, k3 = 1.27, k4 = 3.73, k5 = 1.27, k6 = 32.24,
k7 = 2, k8 = 0.05, k9 = 13.58, k10 = 153, k11 = 4.85, Km1 = 0.19, Km2 = 0.73,
Km3 = 29.09, Km4 = 2.67, Km5 = 0.16, Km6 = 0.05. The nonlinear param-
eters (the Km’s) are considered fixed and the linear parameters (the k’s) are
estimated. The initial conditions are treated as known and are given by y(0) =
[0.12, 0.31, 0.0058, 4.3]. The model is simulated for t ∈ [0, 20]. For this specific
parameterization, the solution exhibits a limit cycle [20]. The true trajectories corre-
sponding to these parameters are shown in Fig. 1.

To generate the noisy data, we simulate the ODE IVP with the true parameter
values and take observations every 0.1 time units, from t = 0 to t = 20. Noise is
added relative to the magnitude of each component of the state vector, such that each
observation has roughly 6.5% error. This is the same experimental setup used in
[20], in which the authors demonstrated that multiple shooting can be more robust
than single shooting when a good initial guess is not available. They generated
one set of noisy data (as we described) and ran each of simple shooting (SS) and
multiple shooting (MS) with NMS = 17 from 250 random initial guesses on the
model parameters, which were drawn uniformly from [0, 1]np . They found that SS
converged to p̂ only 4% of the time and MS converged to p̂ 49% of the time.
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Table 1 The percentage of times the final optimization succeeded when INT-SME(m, s) was used
to generate po. Note that m = 1 corresponds to INT-SME

m/s 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 96 98 98 92 93 85 95 92 94 95 92 84 72 66 65 63

2 93 100 92 90 98 98 98 100 95 95 98 91 80 66 55 64

4 98 100 98 92 97 100 100 99 98 97 98 96 94 93 86 91

8 98 100 99 100 100 100 99 99 100 100 100 99 98 99 98 100

16 99 100 100 98 100 100 100 100 100 100 100 100 100 100 99 100

For our experiments, we generated 200 sets of noisy data as described above and
attempted to generate a suitable po for each set of data. As noted in [13], the choice
of smoother can bias the estimates generated by procedures like SME and INT-SME.
This is the case in this example, due to sharp peaks in the true trajectory. For our
numerical experiments, we found that reasonable results were obtained by not using
a smoother to ensure that the peaks are preserved. To efficiently approximate the
cumulative integrals required by INT-SME(m, s), we used the trapezoidal rule—
with the same mesh as the observed data.

Given these initial guesses, we then performed the final optimization, (5), using
Matlab’s implementation of Levenberg-Marquardt in lsqnonlin. We used the DDEM
package [23] as our IVP solver to simulate the model trajectories and their associated
variational equations to approximate the required sensitivities. A tolerance of 10−5

was used for all simulations.We consider themethod to have succeeded if L( p̂) is less
than the objective function evaluated for the true parameter vector. Since a relative
error model is used in this example, we let σi j = 0.065|ŷ j (ti )|. We found that this
sometimes led to issues in the early iterations of the optimizations for components
of y(t) close to zero, so we used a constant σi j for the first few iterations.

Table 1 shows the convergence results for our experiments where we varied m
and s. We see that increasingm seems to increase the success rate, although there are
still occasional failures. Most importantly, we observe that for m ∈ [1, 2], we obtain
significantly worse results if we include observations past around t = 16. Recall
that m = 1 corresponds to INT-SME(s)—with s = 20 being the original INT-SME,
where all observations are included.

Table 2 shows the timing results.We observe that the time taken in all cases is quite
similar, since the cost is dominated by the cost of the final optimization.When a better
initial guess is obtained, the final optimization may take fewer iterations—resulting
in a reduction in cost. We observe that when s is large, increasing m somewhat
reduces the time taken. The time taken decreases with s, but for smaller values of s,
increasing m has less impact on the time taken.
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Table 2 Average cost (in seconds) of the full procedure using INT-SME(m, s) to generate po and
using SS to obtain p̂. Note that m = 1 corresponds to INT-SME

m/s 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.87 0.84 0.92 0.89 1.00 0.85 0.83 0.98 0.91 0.85 0.86 1.01 1.45 1.48 1.31 1.65

2 0.93 0.84 0.85 0.93 0.91 0.86 0.89 0.93 1.05 0.80 0.93 1.18 1.17 1.55 1.32 1.57

4 0.91 0.77 0.84 0.97 0.80 0.83 0.83 0.89 0.86 0.85 0.93 0.92 1.04 1.08 1.31 1.19

8 0.87 0.81 0.86 0.86 0.81 0.81 0.83 0.81 0.82 0.85 0.85 0.86 0.94 0.98 0.90 0.95

16 0.98 0.92 0.93 0.89 0.90 0.92 0.92 0.95 0.92 0.95 0.91 0.96 0.98 1.04 1.01 1.03

3.1 Comparison to random sampling

We also include an experiment similar to that in [20], in order to see the relative
performance of our proposed methods and to compare SS and PS, rather than SS and
MS as was done in [20]. We summarize the results in Table 3.

As we can see, random sampling is much less likely to succeed and will also be
slower than if we use any of the methods in Table 2. We also observe that PS is
almost twice as likely to converge to the global minimum and it is actually faster as
well. This can be explained by the fact that PS starts with shorter trajectories and
only attempts longer trajectories once the parameters are fitting the initial data values
reasonably well. We do note that when we tried PS with a longer initial interval, we
observed slightly better convergence, but with a cost more similar to SS than PS with
a shorter initial interval.

For a more direct comparison, we can do a simple calculation based on the proba-
bility of success and the cost per guess for random sampling. From Table 2, we have
that our INT-SME(m, s) procedure takes roughly one second and is very likely to
succeed. From this experiment, we have that for a given data set, random sampling
succeeds roughly 10% of the time and takes about 4s. So on average, we would
expect to require about 40s of computation (or about ten samples). Of course, these
samples could be checked in parallel or a more sophisticated sampling method could
be used to reduce this cost. Similarly, our PS implementation that took 2.5s per guess
and had a success rate of 20%, would require about 12.5s of computation (or about
five samples) on average.

Table 3 Timing and success rate for the shooting approaches applied to the Calcium Ion test
problem. PS(T̃ = 10, 20) means we first fit to the first half of the data and then used that estimate
to fit to all of the data

Method Success rate Average time (s)

SS 27
250 3.9

PS(T̃ = 5, 10, 15, 20) 50
250 2.5

PS(T̃ = 10, 20) 65
250 3.7



Using Shooting Approaches to Generate Initial Guesses for ODE Parameter Estimation 275

4 Conclusions

A modified version of INT-SME inspired by multiple and progressive shooting was
proposed. Its performance was demonstrated on a test problem from the literature,
for which single shooting was known to perform poorly. Our proposed method,INT-
SME(m, s), was shown to both improve the robustness and reduce the cost of a two
stage, gradient based single shooting ODE IVP parameter estimation procedure. In
future work we will further test our proposed method on other problems from the
literature.
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A Computational Study for Solving
Inverse Problems for Mixed Variational
Equations on Perforated Domains

A. I. Garralda-Guillem, Herb Kunze, Davide La Torre, and M. Ruiz Galán

Abstract In this paper we give some conditions for the existence of solution of
a system of mixed varational equations and of a related inverse problem. We also
conduct a computational study related to the collage-based approach for solving
inverse problems for mixed variational equations on perforated domains.

Keywords Mixed variational equations · Inverse problems · Perforated domains

1 Introduction

Mixed variational formulations are very well known and stated area in numerical
analysis and treatment of Partial Differential Equations (see, for instance, [3] and
some of its generalizations [5, 6]).

In this paper we consider a perturbed variational equation in which a perturbation
term, expressed in terms of a bilinear form, is added to the basis model. We focus on
its formulation on a perforated domain, that is a domain that shows the presence of
holes. This problem can be now analyzed from both a direct and inverse approach:
the direct problem is the analysis of the properties of existence, uniqueness, and
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stability of the solution. This is also refereed to the notion of well-posedness in the
sense of Hadamard [7].

The inverse problem, instead, aims to identify causes from effects. In practice, this
may be done by using observed data to estimate parameters in the functional form
of a model. Usually an inverse problem is ill-posed because some of the properties
related to existence, uniqueness, and stability fail to hold. When this happens, it is
crucial to identify a suitable numerical scheme that ensures the convergence to the
solution.

The literature is rich in papers studying ad hoc methods to address ill-posed
inverse problems by minimizing a suitable approximation error along with utilizing
some regularization techniques [8, 17–21]. Many inverse or parameter identification
problems can be viewed in terms of the approximation of a target element in a
complete metric space by the fixed point of a contraction mapping and by means of
Banach’s Theorem and the so-called Collage Theorem [1]. This approach has been
used a lot in fractal imaging to approximate a target image by the fixed point (image)
of a contractive fractal transform [1, 14].

These ideas have been extended to inverse problems for ordinary differential
equations and their application to different fields in [9, 11]. Fractal-based methods
have been also extended to solving inverse problems for partial differential equations
over solid and perforated domains. [2, 5, 6, 10, 12, 13, 15, 16].

The paper is organized as follows. Section 2 presents the basics on inverse prob-
lems using an extension of the Collage Theorem, known as Generalized Collage
Theorem. Section 3 presents a general formulation of a system of mixed variational
equations derived in [4] and illustrates a fourth-order differential equations that can
be written as a mixed-variational equation. Section 4 illustrates some computational
studies, and finally Sect. 5 concludes.

2 Basics on Inverse problems for Variational Equations
using the Generalized Collage Theorem

Let E be aHilbert space, and consider the following variational equation: Find u ∈ E
such that

a(u, v) = x∗(v), (1)

for anyv ∈ E ,where x∗(v) anda(u, v) are linear andbilinearmaps, respectively, both
defined on aHilbert space E . Let 〈·〉 denote the inner product in E , ‖u‖2 = 〈u, u〉 and
d(u, v) = ‖u − v‖, for all u, v ∈ E . The existence and uniqueness of solutions to this
kind of equation are provided by the classical Lax-Milgram representation theorem.
The following theorem presents how to determine the solution to the inverse problem
for the above variational problem. Following our earlier studies of inverse problems
using fixed points of contraction mappings, we shall refer to it as a “generalized
collage method.”
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Theorem 1 (Generalized Collage Theorem) [12] For any λ ∈ Λ, let aλ : E × E →
R be a family of bilinear forms and x∗

λ : E → R be a family of linear forms, and
suppose that

1. there exists a constant M = supλ∈Λ Mλ > 0 such that for any λ ∈ Λ, |aλ(u, v)| ≤
Mλ‖u‖‖v‖ for all u, v ∈ E, and

2. there exists a constant m = infλ∈Λ mλ > 0 such that for any λ ∈ Λ, |aλ(u, u)| ≥
mλ‖u‖2 for all u ∈ E.

Then, according to the Lax-Milgram theorem, for any λ ∈ Λ there exists a unique
vector uλ such that

aλ(uλ, v) = x∗
λ(v)

for all v ∈ E. Then, for any u ∈ E,

‖u − uλ‖ ≤ 1

mλ

F(λ), (2)

where
F(λ) = sup

v∈E, ‖v‖=1
|aλ(u, v) − x∗(v)| = ‖aλ(u, ·) − x∗‖. (3)

In order to ensure that the approximation uλ is close to a target element u ∈ E we
can, by the Generalized Collage Theorem, try to make the term F(λ)/mλ as close
to zero as possible. The inverse problem can be reduced to the minimization of the
function F(λ) on the space Λ, that is,

min
λ∈Λ

F(λ). (4)

3 Mixed Variational Equations

Mixed-Variational Equations are extensions of the classical variational equations
presented in the previous section. The perturbed version adopt this form: Let E and
F be real Hilbert spaces, a : E × E −→ R, b : E × F −→ R and c : F × F −→ R

are continuous bilinear forms, x∗ : E → R and y∗ : F → R are linear forms. The
problem under consideration is the following: Find (w,ψ) such that

{
v ∈ E ⇒ a(w, v) + b(v, ψ) = x∗(v)

φ ∈ W ⇒ b(w, φ) + c(ψ, φ) = y∗(φ)
. (5)

The following result (see [4]) states a sufficient condition that guarantees existence
and uniqueness of the solution.
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Theorem 2 Assume that E and F are real Hilbert spaces, Λ is nonempty set and
that for all λ ∈ Λ, aλ : E × E −→ R, bλ : E × F −→ R and cλ : F × F −→ R be
continuous and bilinear forms, Kλ := {x ∈ E : bλ(x, ·) = 0} and that

(i) x ∈ Kλ ∧ a(x, ·)|Kλ
⇒ x = 0

and for some αλ, βλ > 0 there hold

(ii) x ∈ Kλ ⇒ αλ‖x‖ ≤ ‖a(·, x)|Kλ
‖,

(iii) y ∈ F ⇒ βλ‖y‖ ≤ ‖b(·, y)‖.
If

ρλ := max

{
1

αλ

,
1

βλ

(
1 + ‖aλ‖

αλ

)
,
1

β2
λ

‖aλ‖
(
1 + ‖aλ‖

α j

)}

and in addition

(iv) ‖cλ‖ <
1

ρλ

,

then for each λ ∈ Λ and (x∗, y∗) ∈ E∗ × F∗ there exists a unique (xλ, yλ) ∈ E × F
such that {

aλ(xλ, ·) + bλ(·, yλ) = x∗
bλ(xλ, ·) + cλ(yλ, ·) = y∗ . (6)

Furthermore, if (x, y) ∈ E × F, then

max{‖xλ − x‖, ‖yλ − y‖} ≤ ρλ

1 − ρλ‖cλ‖
(‖x∗ − aλ(x, ·) − bλ(·, y)‖ + ‖y∗ − bλ(x, ·)‖

)
. (7)

The idea behind the inverse problem is that under the uniform conditions

α := inf
λ∈Λ

αλ > 0, β := inf
λ∈Λ

βλ > 0, δ := sup
λ∈Λ

‖aλ‖, γ := inf
λ∈Λ

‖cλ‖ > 0

and

ρ := max

{
1

α
,
1

β

(
1 + δ

α

)
,

δ

β2

(
1 + δ

α

)}
,

then

inf
λ∈Λ

max{‖xλ − x‖, ‖yλ − y‖} ≤ ρ

1 − ργ
(‖x∗ − aλ(x, ·) − bλ(·, y)‖ + ‖y∗ − bλ(x, ·)‖).

So we can minimize

{‖x∗ − aλ(x, ·) − bλ(·, y)‖ : λ ∈ Λ}

and
{‖y∗ − bλ(x, ·)‖ : λ ∈ Λ},
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and that is to solve the optimization problem

min
λ∈Λ

F(λ) := ‖x∗
λ − aλ(ŵ, ·) − bλ(·, ψ̂)‖ + ‖y∗

λ − bλ(ŵ, ·)‖

and then we approximate the solution of the inverse problem.

Example 1 As in [4] we consider de the boundary value problem:

⎧⎨
⎩

Δ2ψ + δψ = f in Ω

ψ |Γ = 0
Δψ |Γ = 0

, (8)

whereΩ = (0, 1)2, Γ = ∂Ω , δ ∈ R and f ∈ H 1
0 (Ω). If one takesw := −Δψ , then

this problem is equivalent to

⎧⎪⎪⎨
⎪⎪⎩

w + Δψ = 0 in Ω

−Δw + δψ = f in Ω

ψ |Γ = 0
w|Γ = 0

, (9)

and by easy passages it can be written in this variational formulation (5): find
(w,ψ) ∈ E × F such that

{
v ∈ E ⇒ a(w, v) + b(v, ψ) = x∗(v)

φ ∈ W ⇒ b(w, φ) + c(ψ, φ) = y∗(φ)
.

This system adopts the form of (6) with card(Λ) = 1, the real Hilbert spaces E =
F := H 1

0 (Ω), the continuous bilinear forms a : E × E −→ R, b : E × F −→ R

and c : F × F −→ R defined for each w, v ∈ E, and φ,ψ ∈ F , as

a(w, v) := 〈w, v〉,

b(v, ψ) := −〈∇v,∇ψ〉,

and
c(ψ, φ) := −δ〈ψ, φ〉,

and the continuous linear forms x∗ := 0 ∈ E∗ and y∗ ∈ F∗ given by

y∗(φ) := −〈 f, φ〉, (φ ∈ F).

To run a numerical simulation,we use themodel presented in the previous example
and set δ = −2, and f (x, y) the function in such away that the solutionψ(x, y) to the
problem is 103[x(1 − x)y(1 − y)]4.We suppose there are no holes and the domain is
solid. We solve the system in COMSOL. Then we sample the numerical solution on
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a uniform grid of 9 × 9 interior points of [0, 1]2. We feed the resulting representation
of ψ and w into our generalized collage theorem machinery and, knowing f (x, y),
we recover C[1], C[2], C[3] so that these representations are approximate solutions
to the system {

C[1]Δψ + C[2]w = 0,
−C[1]Δw + C[3]ψ = f (x, y).

True values are C[1] = 1, C[2] = 1, C[3] = −2. The results for two runs, one with
1% relative noise added, are below. The final number is the value of the generalized
collage distance.

Noise C[1] C[2] C[3] Collage distance
0.00 0.99998 1.00058 −1.85635 0.00045
0.01 1.00316 1.00411 −3.14588 0.00171

4 Inverse Problems on Perforated Domains:
A Computational Study

The concept of porous media is essential in many areas of applied sciences and engi-
neering, including chemical engineering, civil engineering, petroleum engineering,
aerospace engineering, soil science, geology, and material science. A given material
is said to be porous or perforated when it is characterized by a partitioning of the
total volume a solid portion and the holes.

When a differential equation is formulated over a porous medium, the term
“porous” implies that the state equation is written only on the solid domain while
boundary conditions should be imposed on the entire boundary including the bound-
ary of the holes. Since the porosity in materials can assume different forms and
appear in varying degrees, solving differential equations over porous media is often
a complicated task. Examples of this are Stokes or Navier-Stokes equations that are
usually written for the fluid part while the rocks play the role of “mathematical”
holes.

Given a compact and convex set Ω , we denote by ΩB the collection of all holes
Bj .We also suppose that each hole Bj ⊂ B(x j , ε j )where B(x j , ε j ) is a ball centered
at x j and with radius ε j . We let ε = max j ε j . The purpose of the analysis of problems
on perforated domains is to analyze the stability of the inverse problem estimation’s
results whenever ε → 0 and the balls Bj become smaller and smaller.

Going back to the model presented in Sect. 3, given a solid set Ω = (0, 1)2,
Γ = ∂Ω , let us consider the perforated domain Ωε = Ω\ ∪n

i=1 Bj where ε is the
radius of the biggest ball which contains the biggest hole Bj . Let us denote by
Γε = ∂Ωε , δ ∈ R, and f ∈ H 1

0 (Ωε). Consider the porous version of the boundary
value problem in Example 1:
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⎧⎨
⎩

Δ2ψ + δψ = f in Ωε

ψ |Γε
= 0

Δψ |Γε
= 0

. (10)

Then, multiplying its first equation by a test function v ∈ H 1
0 (Ωε), and integrating

by part, we arrive at ∫
Ωε

wv −
∫

Ωε

∇w∇v = 0.

On the other hand, when multiplying the second equation of (10) by a test function
φ ∈ H 1

0 (Ωε), and, proceeding as above, we write it as

−
∫

Ωε

∇w∇φ − δ

∫
Ωε

ψφ = −
∫

Ωε

f φ.

Therefore, if we take theHilbert spaces Eε = Fε := H 1
0 (Ωε), the continuous bilinear

forms aε : Eε × Eε −→ R, bε : Eε × Fε −→ R and cε : Fε × Fε −→ R defined for
each w, v ∈ Eε and φ,ψ ∈ Fε , as

aε(w, v) :=
∫

Ωε

wv,

bε(v, ψ) := −
∫

Ωε

∇v∇ψ,

and

cε(ψ, φ) := −δ

∫
Ωε

ψφ,

and the continuous linear forms x∗ ∈ E∗
ε and y∗ ∈ F∗

ε given by

x∗
ε (v) := 0 (v ∈ Eε)

and

y∗
ε (φ) := −

∫
Ωε

f φ, (φ ∈ Fε),

then, if we proceed by doing the same passages we did in the solid domain case, the
above model can be rewritten in the following form: Find (wε, ψε) ∈ Eε × Fε such
that {

v ∈ Eε ⇒ aε(wε, v) + b(v, ψε) = x∗
ε (v)

φ ∈ Wε ⇒ b(wε, φ) + c(ψε, φ) = y∗
ε (φ)

.

Here we take Eε = Fε := H 1
0 (Ωε), and the continuous linear forms x∗

ε (v) :=<

0, v >ε and y∗
ε (φ) :=< − f, φ >ε . One is interested in analyzing the behaviour of
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Fig. 1 Mesh and isotherms where the square side is 0.005, the circle radius is 0.005, the ellipse
major is axis 0.005, and the minor axis is 0.003

the solution as well as the stability of the inverse problem results when ε → 0. This
analysis is left to a future paper that will discuss these aspects in details. In the fol-
lowing three examples we run the collage coding approach over perforated domains
in which the holes take different shapes and sizes. We randomly put four holes, and
the shapes we use are squares, circles, and ellipses.

Example 2 In this example we consider the mesh and the isotherms are given in
Fig. 1. In this example we suppose that the square side is 0.005, the circle radius is
0.005, the ellipse major is axis 0.005, and the minor axis is 0.003. The results are
shown in the following table.

Elements C[1] C[2] C[3] Collage distance
05 1.000157776 1.002858381 −3.535085287 3.427295666 ∗ 10−12

10 1.000192021 1.003093897 −3.670642019 1.964405817 ∗ 10−12

15 1.000227419 1.003165604 −3.775473780 1.081577887 ∗ 10−12

20 1.000249733 1.003200522 −3.841718970 6.683393914 ∗ 10−13

Example 3 In this example we consider the mesh and the isotherms given in Fig.
2. In this example we set that the square side is 0.0005, the circle radius is 0.0005,
the ellipse major axis is 0.0005, and the minor axis 0.0003. Results are shown in the
following table.

Elements C[1] C[2] C[3] Collage distance
05 1.000155327 1.000282807 −2.095981040 1.536328957 ∗ 10−15

10 1.000157458 1.000297366 −2.104443730 3.957312313 ∗ 10−15

15 1.0001596550 1.0003018000 −2.1109728600 2.303236318 ∗ 10−15

20 1.000161039 1.000303959 −2.115096071 1.533338673 ∗ 10−15
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Fig. 2 Mesh and isotherms where the square side is 0.0005, the circle radius is 0.0005, the ellipse
major axis is 0.0005, and the minor axis 0.0003

Fig. 3 Mesh and isothermswhere the square side is 0.00005, the circle radius is 0.00005, the ellipse
major axis is 0.00005, and the minor axis 0.00003

Example 4 In this example we consider the mesh and thhe isotherms are shown in
Fig. 3. We suppose that the square side is 0.00005, the circle radius is 0.00005, the
ellipse major axis is 0.00005, and the minor axis 0.00003. The results are shown in
the following table.

Elements C[1] C[2] C[3] Collage distance
05 1.000154670 1.000255958 −2.080640364 1.744800741 ∗ 10−15

10 1.000156459 1.000268181 −2.087745875 2.088385461 ∗ 10−15

15 1.000158303 1.000271903 −2.093227440 1.224364804 ∗ 10−15

20 1.000159465 1.000273715 −2.096689098 8.256778945 ∗ 10−16
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5 Conclusion

We have collected some results and an example in [4] related to a perturbed version
of a mixed variational problem. We also have run several numerical examples to
show how the collage coding works when the domain is perforated. The results
show that the as hole diameter decreases, results improve. Moreover, with fixed
diameter, results generally get better as n increases. There are n2 finite element basis
functions used in our collage distance calculation. This preliminary computational
study suggests that further investigation is necessary when studying the stability of
the inverse problem solution. This will be investigated in a future paper.

Acknowledgements Research partially supported by project MTM2016-80676-P (AEI/FEDER,
UE) and by Junta de Andalucía Grant FQM359.
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bacoli_py—A Python Package for the
Error Controlled Numerical Solution
of 1D Time-Dependent PDEs

Connor Tannahill and Paul Muir

Abstract This paper introduces, bacoli_py, a Python 3 package for computing error
controlled numerical solutions to 1D time-dependent PDEs. This package wraps
modified versions of the Fortran packages, BACOLI and BACOLRI, so that they
can be used in the more widely accessed and user-friendly Python 3 environment.
This paper first provides an overview of the underlying numerical algorithms that
are implemented in this package, followed by a description of the components of the
package and then two examples to demonstrate its usage.

Keywords Partial differential equations · Error control · Python

1 Introduction

In this paper, we introduce bacoli_py, an open-source Python 3 module which can
be used to compute error controlled numerical solutions to one dimensional time-
dependent PDEs of the form

ut (t, x) = f(t, x,u(t, x),ux (t, x),uxx (t, x)), x ∈ [xa, xb], t ∈ [t0, tout ], (1)

where u : R × R → R
n and f : R × R × R

n × R
n × R

n → R
n , with initial condi-

tions,
u(t, x0) = u0(x), x ∈ [xa, xb], (2)

where u0 : R → R
n , and separated boundary conditions,

bL(t,u(xa, t),ux (xa, t)) = 0, bR(t,u(xb, t),ux (xb, t)) = 0, t ∈ [t0, tout ], (3)
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where bL,bR : R × R
n × R

n → R
n and 0 ∈ R

n, andwhere n ≡ npde is the number
of PDEs.

Error control algorithms attempt to generate approximate solutions for which
an associated high-quality error estimate satisfies a user-prescribed tolerance. In
this way, the user can be reasonably confident that the approximate solution that is
returned will have an error that approximately satisfies the tolerance. Additionally,
the cost of the computation can be expected to be proportional to the tolerance.

The bacoli_py solver wraps the Fortran packages BACOLI [10] and BACOLRI
[1], the most recent members of a family of B-spline Gaussian collocation error
control solvers for this problem class. These solvers have been shown to efficiently
compute error controlled numerical solutions to 1D PDEs of the form (1)–(3) [11,
12]. Prior to being employed within this Python module, these solvers were modified
in two significant ways: (i) the linear system solver COLROW [3] was replaced
with the LAMPAK solver [6] (to ensure copyright compliance within the Python 3
environment) and (ii) the calls to the function that defines the right hand side of (1)
were modified such that the cross-language callbacks could be done more efficiently
through vectorization using numpy [7] arrays. The purpose of this vectorization is
to minimize the number of cross-language callbacks used by re-organizing the code
such that repeated evaluations of the main user callback routine are instead done in
one larger call to themodified user routine.We have also developed, as an alternative,
an option that allows bacoli_py to make use of compiled Fortran subroutines. The
Python to Fortran interface required for this package is generated using f2py [8].

Having these solvers available within the Python language will greatly increase
the potential user community compared to that of the corresponding Fortran solvers.
Furthermore, because of the capabilities of the Python language, substantial sim-
plifications can be made in the user interface compared to what is necessary when
using the lower-level Fortran codes directly. As well, users can take advantage of the
many high-quality tools which are easily available within the Python ecosystem for
analysis and visualization of results.

These advantages do come at a cost to performance, with bacoli_py, in its standard
mode, i.e., with vectorized calls to Python callback functions, being at least an order
of magnitude slower than the Fortran solvers, BACOLI and BACOLRI. The Python
module is therefore primarily useful for initial prototyping and model exploration.
For applications where efficiency is ofmajor concern, the authors recommend the use
of either the Fortran versions of this software, available at http://cs.smu.ca/~muir/
BACOLI-3Webpage.htm, or the use ofbacoli_pywith callback functions as compiled
Fortran subroutines; both of these options are at least an order of magnitude faster
than bacoli_py, in standard mode.

For complete documentation, see https://bacoli-py.readthedocs.io/en/latest/. The
bacoli_py package is available from PyPi at http://pypi.python.org/pypi/bacoli-py.
The source code is available at https://github.com/connortannahill/bacoli_py.

http://cs.smu.ca/~muir/BACOLI-3Webpage.htm
http://cs.smu.ca/~muir/BACOLI-3Webpage.htm
https://bacoli-py.readthedocs.io/en/latest/
http://pypi.python.org/pypi/bacoli-py
https://github.com/connortannahill/bacoli_py
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2 Overview of BACOLI and BACOLRI

The BACOLI and BACOLRI packages represent the approximate solution to (1)-
(3) at a given point in time, t , as a linear combination of C1-continuous B-spline
basis functions [2] of a given degree p. Let xa = x0 < x1 < · · · < xnint = xb be a
mesh with nint subintervals that partitions the spatial domain [xa, xb]. Then the
approximate solution is represented as

U(t, x) =
NCp∑

i=1

yp,i (t)Bp,i (x), (4)

where yp,i (t) is the unknown time-dependent vector coefficient of Bp,i (x), the i th
B-spline basis function of degree p, and NCp = nint (p − 1) + 2. Equations for the
determination of the unknown coefficients in (4), yp,i (t), are obtained by requiring
that (4) exactly satisfies (1) at p − 1 collocation points on each subinterval. These
conditions have the form

Ut (t, ξl) = f(t, ξl,U(t, ξl),Ux (t, ξl),Uxx (t, ξl)), (5)

for l = 2, ..., NCp − 1, where the collocation points are ξl = xi−1 + hiρ j , for l =
1 + (i − 1)(p − 1) + j, i = 1, . . . , nint, j = 1, . . . , p − 1, {ρi }p−1

i=1 are the images
of the order p − 1 Gauss points on [0, 1], and hi = xi − xi−1. As well, at ξ1 =
xa, ξNCp = xb, (4) is required to satisfy the BCs, giving,

bL(t,U(t, xa),Ux (t, xa)) = 0, bR(t,U(t, xb),Ux (t, xb)) = 0. (6)

The system of time-dependent ordinary differential equations, (5), coupled with the
conditions, (6), forms a system of Differential Algebraic Equations (DAEs) which
is solved for yp,i (t) using standard error control solvers for DAEs. BACOLI uses
DASSL [9] for solving (5)–(6), whereas BACOLRI uses RADAU5 [5]. DASSL
makes use of a family of multi-step methods called Backwards Differentiation For-
mulas (BDFs). RADAU5 is based on a fifth order Implicit RungeKutta (IRK)method
of Radau IIA type. The resultant approximate solution (4) has a spatial error that is
O(h p+1), where h is the maximum spatial mesh subinterval size; see, e.g., [10] and
references within.

On standard test problems, the two codes have comparable performance but
BACOLRI out-performs BACOLI for certain classes of problems where stability
issues arise for the higher-order BDFs. Such problems are characterized as those
which lead to DAE systems that have Jacobians with eigenvalues near the imaginary
axis. It is well known that the stability regions of the higher order BDFs have gaps
near the imaginary axis, just above and below the origin, and thus are not stable for
such problems. See [12] and references within.

After (4) has been obtained for a given point in time, a spatial error estimate is
computed. This error estimate requires the computation of a second approximate
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solution, U(t, x), which has spatial error of a different order of accuracy than that
of U(t, x). A scaled difference of U(t, x) and U(t, x) then gives the spatial error
estimate. The approximate solution, U(t, x), at the current time step is accepted if
the error estimate meets the tolerance. Otherwise, the step is rejected and a spatial
remeshing algorithm is applied which attempts to compute a new spatial mesh such
that the computed solution obtainedon this newmeshwill have a spatial error estimate
that satisfies the tolerance. This remeshing algorithm works by (i) adjusting the
number of mesh subintervals based on the magnitude of the spatial error estimate
and (ii) using equidistribution to re-position the mesh points into regions where the
spatial error estimate is largest.

BACOLI and BACOLRI make use of inexpensive, interpolation-based spatial
error estimates referred to as the SuperConvergent Interpolation (SCI) scheme and
the Lower Order Interpolation (LOI) scheme. For each spatial subinterval, the SCI
interpolates U(t, x) or Ux (t, x) at known points of supercovergence where these
values have higher orders of accuracy than at arbitrary points within [xa, xb]. In this
case, U(t, x) is a C1-continuous piecewise polynomial based on Hermite-Birkhoff
interpolating polynomials on each subinterval which interpolate a set of supercon-
vergent values associated with the subinterval. The scaled difference of U(t, x) and
U(t, x) provides an estimate of the error ofU(t, x) and this is referred to as Standard
(ST) error control. The LOI scheme implements an alternative form of error control
known as Local Extrapolation (LE) error control. In LE error control, an approxi-
mate solution, U(t, x), of one spatial order of accuracy less than that of U(t, x) is
computed. The scaled difference ofU(t, x) andU(t, x) in this case gives an estimate
of the spatial error of U(t, x), which provides a conservative upper bound on the
error in U(t, x). In the LOI scheme, this lower order approximation is expressed
as a Hermite-Birkhoff interpolant on each subinterval which has been constructed
such that its interpolation error is asymptotically equivalent to the leading order error
term in a collocation solution of one order of accuracy less thanU(t, x). See [10] for
further details. The SCI and LOI schemes thus provide bacoli_py with two types of
error control, ST error control or LE error control. This is similar to what is provided
with Runge-Kutta formula pairs for the numerical solution of initial value ODEs;
see, e.g., [4].

For more complete descriptions of the BACOLI/BACOLRI algorithms, see [10,
12] and references within.

3 Description of bacoli_py

3.1 Basic Usage

bacoli_py provides a convenient, minimal, object-oriented programming interface
that is substantially simpler than that of the Fortran packages. For standard usage of
bacoli_py the user must first define the system of npde PDEs to be solved in terms
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of the Python callback functions, f, bndxa, bndxa, uinit, which correspond to (1),
(3), and (2), respectively. These are encapsulated within a ProblemDefinition object
as

problem_definition =
bacoli_py .ProblemDefinition(npde, f ,bndxa,bndxb, uinit ) .

ASolver objectwhichperforms themain functionality ofbacoli_py is then initialized.
This can be done simply by

solver = bacoli_py .Solver ( ) .

The Solver object contains the method, solve, which is used to solve (1)–(3) defined
by a ProblemDefinition object. The arguments to this method include a ProblemDef-
inition object, the initial time, t0, the spatial boundaries, xa, xb, and the points in
time and space at which the solution values are required. A call to solve takes the
form

evaluation = solver . solve(problem_definition ,
initial_time , [xa ,xb] , tspan ,xspan) .

This call returns an Evaluation object containing the computed solution information.
In particular, the approximate solution is contained, as an attribute in this object, in
a numpy array with dimensions (npde, len(tspan), len(xspan)),

u = evaluation .u

This summarizes the process of using bacoli_py in the majority of use cases. For a
more complete description of this module, including its overall structure and descrip-
tions of the many arguments and settings that can be specified, we refer the reader
to https://bacoli-py.readthedocs.io/en/latest/.

4 Examples

In this section, we provide examples in which bacoli_py is applied to two test prob-
lems. See https://bacoli-py.readthedocs.io/en/latest/ for additional examples.

4.1 One Layer Burgers Equation—Python Callback
Functions

The One Layer Burgers Equation is given by,

ut (t, x) = εuxx (t, x) − u(t, x)ux (t, x), x ∈ [0, 1], t ∈ [0, 1],

where the initial conditions and the Dirichlet boundary conditions taken from the
exact solution,

https://bacoli-py.readthedocs.io/en/latest/
https://bacoli-py.readthedocs.io/en/latest/
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u(t, x) = 1

2
− 1

2
tanh

(
x − t

2 − 1
4

4ε

)
,

and where ε is chosen to be 10−3. We choose a tolerance of 10−6.
We first describe this system in terms of Python callback functions, as well as

globally defining npde and the problem-dependent parameter ε. These functions are
then placed within a ProblemDefinition object.

import bacoli_py
import numpy
from numpy import tanh , array
# Specify the number of PDEs in this system.
npde = 1

# Ini t ia l ize problem−dependent parameter .
eps = 1.0e−3

# Function defining the PDE.
def f ( t , x, u, ux, uxx, fval ) :

fval [0] = eps∗uxx[0] − u[0]∗ux[0]
return fval

# Function defining the lef t spatial boundary condition .
def bndxa( t , u, ux, bval ) :

bval[0] = u[0] − 0.5 + 0.5∗tanh( (−0.5∗t−0.25) / (4.0∗eps) )
return bval

# Function defining the right spatial boundary condition .
def bndxb( t , u, ux, bval ) :

bval[0] = 0.5∗tanh((0.75−0.5∗ t )/(4.0∗eps)) − 0.5 + u[0]
return bval

# Function defining the in i t i a l condition .
def uinit (x, u) :

u[0] = 0.5 − 0.5 ∗ tanh((x − 0.25) / (4.0∗eps))
return u

# Pack al l of these callbacks and the number of PDEs into a
# ProblemDefinition object .
problem_definition = bacoli_py .ProblemDefinition(npde, f=f ,

bndxa=bndxa, bndxb=bndxb, uinit=uinit )

OnceProblemDefinition is created, using bacoli_py to solve (1)–(3) is fairly straight-
forward, requiring only the creation of a Solver object and the specification of
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• The initial time t0,
• An array, [xa, xb], containing the spatial boundary points,
• The points at which the solution will be evaluated. (This is done by providing a list
of x points, xspan, and t points, tspan, at which the evaluations of the numerical
solution will be provided.)

• The absolute (atol) and relative (rtol) error tolerances. (Here we set atol = rtol
= 10−6.)

# Ini t ia l ize the Solver object .
solver = bacoli_py .Solver ()

# Set t0 .
initial_time = 0.0

# Define the spatial boundaries .
initial_mesh = numpy. array ([0.0 , 1.0])
# Choose output times and points . Here our final time t_end = 1.
tspan = numpy. linspace(0.001, 1, 100)
xspan = numpy. linspace(0 , 1, 100)

# Solve this problem.
evaluation = solver . solve(problem_definition , initial_time ,
initial_mesh , tspan ,xspan , atol=1e−6,r tol=1e−6,dirichlet=True)

The solution obtained from this call is plotted in Fig. 1.

Fig. 1 One layer burgers equation, ε = 10−3
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4.2 Two Layer Burgers Equation—Callback Functions
as Compiled Fortran Subroutines

To increase the efficiency of bacoli_py, it is possible to define the callback func-
tions in a ProblemDefinition as compiled Fortran subroutines. In this example, we
demonstrate how this can be done in the context of solving the Two Layer Burgers
Equation. This PDE is given by

ut (t, x) = εuxx (t, x) − u(t, x)ux (t, x), x ∈ [0, 1], t ∈ [0, 1],

with initial and (Dirichlet) boundary conditions taken from the exact solution,

u(t, x) = 0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
, t ∈ [0, 1], x ∈ [0, 1],

where,

A = 0.05

ε
(x − 0.5 + 4.95t), B = 0.25

ε
(x − 0.5 + 0.75t), C = 0.5

ε
(x − 0.375),

and where ε is chosen to be 10−4. We use the default tolerance, 10−4.
We first define Fortran 95 callback routines for each of the callback functions rep-

resenting the PDE, its initial condition, and its boundary conditions. The numpy.f2py
module is used to build an extension module containing these Fortran subroutines,
callable from Python.

import numpy. f2py as f2py

# String defining the Fortran 95 callback subroutines .
prob_def_f = """

subroutine f ( t , x, u, ux, uxx, fval )
integer npde
parameter (npde=1)
double precision t , x, u(npde) , ux(npde)
double precision uxx(npde) , fval (npde)
double precision eps
parameter (eps=1d−4)
fval (1) = eps∗uxx(1) − u(1)∗ux(1)

return
end
subroutine bndxa( t , u, ux, bval)

integer npde
parameter (npde=1)
double precision t , u(npde) , ux(npde) , bval(npde)
double precision eps
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parameter (eps=1d−4)
double precision a1, a2, a3, expa1, expa2, expa3, temp
a1 = (0.5d0 − 4.95d0 ∗ t ) ∗ 0.5d−1 / eps
a2 = (0.5d0 − 0.75d0 ∗ t ) ∗ 0.25d0 / eps
a3 = 0.1875d0 / eps
expa1 = 0.d0; expa2 = 0.d0; expa3 = 0.d0
temp = max(a1, a2, a3)
i f ((a1−temp) .ge . −35.d0) expa1 = exp(a1−temp)
i f ((a2−temp) .ge . −35.d0) expa2 = exp(a2−temp)
i f ((a3−temp) .ge . −35.d0) expa3 = exp(a3−temp)
bval(1) = u(1) − (0.1d0∗expa1+0.5d0∗expa2+expa3) &

/ (expa1+expa2+expa3)
return
end

subroutine bndxb( t , u, ux, bval)
integer npde
parameter (npde=1)
double precision t , u(npde) , ux(npde) , bval(npde)
double precision eps
parameter (eps=1d−4)
double precision a1, a2, a3, expa1, expa2, expa3, temp
a1 = (−0.5d0 − 4.95d0 ∗ t ) ∗ 0.5d−1 / eps
a2 = (−0.5d0 − 0.75d0 ∗ t ) ∗ 0.25d0 / eps
a3 = − 0.3125d0 / eps
expa1 = 0.d0; expa2 = 0.d0; expa3 = 0.d0
temp = max(a1, a2, a3)
i f ((a1−temp) .ge . −35.d0) expa1 = exp(a1−temp)
i f ((a2−temp) .ge . −35.d0) expa2 = exp(a2−temp)
i f ((a3−temp) .ge . −35.d0) expa3 = exp(a3−temp)
bval(1) = u(1) − (0.1d0∗expa1+0.5d0∗expa2+expa3) &

/(expa1+expa2+expa3)
return
end

subroutine uinit (x, u)
integer npde
parameter (npde=1)
double precision x, u(npde)
double precision eps
parameter (eps=1d−4)
double precision a1, a2, a3, expa1, expa2, expa3, temp
a1 = (−x + 0.5d0) ∗ 0.5d−1 / eps
a2 = (−x + 0.5d0) ∗ 0.25d0 / eps
a3 = (−x + 0.375d0) ∗ 0.5 / eps
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expa1 = 0.d0; expa2 = 0.d0; expa3 = 0.d0
temp = max(a1, a2, a3)
i f ((a1−temp) .ge . −35.d0) expa1 = exp(a1−temp)
i f ((a2−temp) .ge . −35.d0) expa2 = exp(a2−temp)
i f ((a3−temp) .ge . −35.d0) expa3 = exp(a3−temp)
u(1) = (0.1d0∗expa1+0.5d0∗expa2+expa3) &

/(expa1+expa2+expa3)
return
end

"""

# Build extension module containing these callbacks .
f2py .compile(prob_def_f , modulename=’problemdef’ , verbose=0,

extension=’.f95’)

After the extension module has been built, the compiled callback functions can be
usedwith bacoli_py. To do this, aProblemDefinition object is definedwhich contains
pointers to these compiled subroutines in place of the usual Python functions.

import bacoli_py
import numpy

# Import Fortran callbacks from extension module.
from problemdef import f , bndxa, bndxb, uinit

# Specify the number of PDEs in this system.
npde = 1

# Pack al l of these callbacks and the number of PDEs into a
# ProblemDefinition object .
problem_definition = bacoli_py .ProblemDefinition(npde,
f=f . _cpointer , bndxa=bndxa. _cpointer , bndxb=bndxb. _cpointer ,

uinit=uinit . _cpointer )

bacoli_py can then be used in almost entirely the same way as we saw in the pre-
vious example. The only exception to this is that the flag compiled_callbacks in the
call to the Solver.solve method must be set to True, in which case the usual vector
optimizations used in bacoli_py will not be employed.

# Ini t ia l ize the Solver object .
solver = bacoli_py .Solver ()

# Set t0 .
initial_time = 0.0

# Define the spatial boundaries .
initial_mesh = [0 , 1]
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Fig. 2 Two layer burgers equation, ε = 10−4

# Choose output times and points .
tspan = numpy. linspace(0.001, 1, 100)
xspan = numpy. linspace(0 , 1, 100)

# Solve this problem.
evaluation = solver . solve(problem_definition , initial_time ,

initial_mesh , tspan , xspan , compiled_callbacks=True, dirichlet=True)

The computed solution is plotted in Fig. 2.
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Solving Cardiac Bidomain Problems
with B-spline Adaptive Collocation

Kevin R. Green and Raymond J. Spiteri

Abstract B-spline collocation methods have been shown to be effective for solv-
ing systems of parabolic partial differential equations (PDEs). Using B-spline bases
for spatial discretization and backward differentiation formulae for temporal dis-
cretization, software can be developed that allows full spatio-temporal error control
throughout the solution. The software packageeBACOLI, which usesC 1-continuous
B-splines, has been extended for this approach to work with PDEs in one spatial
dimension that have a multi-scale structure like the bidomain model, i.e., parabolic
and elliptic PDEs at the macro-scale coupled with ordinary differential equations at
the micro-scale. We present numerical results of cardiac bidomain simulations, vali-
dating them through comparison with solutions obtained from the software package
Nektar++. The performance of eBACOLI and Nektar++ simulations are compared
by considering solution times with comparable error with respect to a reference
solution, showing that in addition to automatically controlling the error (a feature
unavailable in Nektar++), eBACOLI is generally more than an order of magnitude
faster than Nektar++ for a given error level.

Keywords Bidomain model · B-splines · Adaptive collocation

1 Introduction

The bidomain model is a continuummodel used for simulating the electrical activity
of cardiac tissue. It consists of a system of multi-scale partial differential equa-
tions (PDEs) that couples a signal propagation model in the tissue at the macro-
scale with cardiomyocyte firing models at the micro-scale. The macro-scale model
describes both the intra- and extra-cellular electrical potentials of the tissue sepa-
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rately while being co-located in the domain of interest. The bidomain model was
originally derived by Tung in the 1970s [21] and has been studied extensively since;
see, e.g., [6, 9, 10, 13, 20] and references therein. Here, we use the more commonly
written Roth form of the bidomain model [18],

χCm
∂v

∂ t
= χ Iion(x, t, v, s) + Istim(x, t) + ∇ · (σi∇v) + ∇ · (σi∇ue) , (1a)

∂ s
∂ t

= f(x, t, v, s), (1b)

0 = ∇ · (σi∇v) + ∇ · ((σi + σe) ∇ue) . (1c)

In this formulation, the dynamical quantities are the transmembrane potential v(x, t),
the extracellular potential ue(x, t), and the cell model state variables s(x, t), each
defined for spatial domain x ∈ Ω ⊂ R

d of dimension d and temporal domain
t ∈ [t0, t f ]. A cell model consists of the (generally nonlinear) functions f(·), mod-
elling its own dynamics, and Iion(·), modelling its coupling to the macro-scale tissue.
Parameters of the bidomain model are the cell membrane capacitance per unit area
Cm , the cell membrane area per unit volume χ , and possibly many others needed
within the cell model functions. Finally, σi (x) and σe(x) are the intra- and extra-
cellular conductivity tensors, respectively. An external stimulus applied to the tissue
is denoted by Istim(·). Boundary conditions for the bidomain model are based on the
assumption that ions do not flow out of the domain,

n̂ · (σi∇v + σi∇ue) = 0,

n̂ · (σe∇ue) = 0,
(2)

where n̂ is the unit normal pointing outwards on the boundary ∂Ω .
BACOLI is amember of a family of software packages that solves one-dimension-

al parabolic PDEs using adaptive B-spline collocation [16]. The software uses C 1-
continuousB-splines for spatial discretization and the variable order backward differ-
entiation formulae (BDF) package DASSL [15] for adaptive temporal discretization.
Full spatial error control is applied when DASSL fails to find a suitable timestep
size . The spatial representation is then refined globally to equidistribute spatial error
according to an error estimator that is built from spatial interpolants.
BACOLI has recently been extended to eBACOLI [8], which is capable of han-

dling multi-scale equations that couple parabolic PDE systems to spatially localized
ordinary differential equation (ODE) systems; i.e., the capability to couple Eqs.
(1a) to (1b) was added. The current work describes a further extension that permits
the solution of equations of the form of the bidomain model that also includes non-
dynamical constraint equations like Eq. (1c). At present, the software is only capable
of handling a single elliptic equation as is needed for solving Eq. (1c).

The remainder of this paper progresses as follows. A review of the formulation
of discretization used in eBACOLI and its relevance to the bidomain model are



Solving Cardiac Bidomain Problems with B-spline Adaptive Collocation 303

provided in Sect. 2. The numerical experiments performed are described in Sect. 3.
The results of the numerical experiments are presented in Sect. 4. Conclusions and
future directions are discussed in Sect. 5.

2 The Bidomain Model in eBACOLI

This section gives a summary of the basics of adaptive B-spline collocation methods
as needed for understanding a bidomain solve with eBACOLI. To use eBACOLI
for cardiac bidomain simulation, we consider Eq. (1) with d = 1 and pack all of the
dynamical quantities into a single vector y(x, t) = [

v(x, t) sT (x, t) ue(x, t)
]T
.

2.1 B-spline Basis Expansion

eBACOLI solves problems likeEq. (1) in the spaceRmPDE × Pp,π,2, wheremPDE is the
total number of PDEs of the system and Pp,π,ν is the space of piecewise polynomials
of degree p on the mesh

π = { xi | xL = x0 < x1 < . . . < xN = xR }

that are C ν−1-continuous at the internal mesh points. For the bidomain model,
mPDE = ns + 2, where ns is the number of dynamic state variables in the cell model.
eBACOLI uses polynomials of order p = 3, 4, . . . , 11. The lower bound is based

on how eBACOLI constructs spatial interpolants for error estimation, and the upper
bound is due to practical considerations, chosen as the point at which the accuracy of
standard double-precision calculations typically saturates due to roundoff errors [8].

With the degree p and mesh π fixed, a B-spline basis { Bp, j }Mj=1 for Pp,π,2 can
be computed using divided differences [3]. The space Pp,π,2 has dimension M =
N (p − 1) + 2, and thus the dimension of the spatially discretized system ismPDEM .

The approximate B-spline solution to (1) can therefore be written as

Y(x, t) := [
V (x, t) ST (x, t) Ue(x, t)

]T =
M∑

j=1

yp, j (t)Bp, j (x) ≈ y(x, t), (3)

where yp, j (t) is the vector of coefficients of B-spline basis function j of degree p.



304 K. R. Green and R. J. Spiteri

2.2 Collocation Equations

To account for all of the degrees of freedom in the B-spline representation of the
bidomain solution, we require the following:

• p − 1 collocation points,ρk, k = 1, 2, . . . , p − 1, on each interval for v, s, andue
on the interior of the domain. These collocation points are taken to be the canonical
Gauss points on [−1, 1] mapped to each interval;

• ns collocation points on each boundary for s at the boundaries;
• Two boundary conditions on each boundary for v and ue at the boundaries.

The collocation conditions on the interior of the domain can be expressed as the
system of differential-algebraic equations (DAEs)

d

dt

⎡

⎣
χCmV (ξl, t)

S(ξl, t)
0

⎤

⎦ =
⎡

⎣
χ Iion(ξl, t, V,S) + Istim(ξl, t) + (σi Vx )x + (

σiUe,x
)
x

f(ξl, t, V,S)

(σi Vx )x + (
(σi + σe)Ue,x

)
x

⎤

⎦ ,

(4a)

where subscript x denotes differentiation with respect to x and all dynamical fields
have argument (ξl, t) for the collocation points

ξl = xi−1 + hi
2

(ρk + 1) , where

i = 1, 2, . . . , N ,

k = 1, 2, . . . , p − 1,

l = 1 + (i − 1)(p − 1) + k.

The relationship of Eq. (3) combined with a known B-spline basis for a given mesh
allows all spatial derivatives of the approximate fields to be computed using coeffi-
cients of the B-spline expansion. Details can be found in [3].

At each boundary point xB = {xL , xR}, we have the DAE system

d

dt

⎡

⎣
0

S(xB, t)
0

⎤

⎦ =
⎡

⎣
σi Vx (xB, t) + σiUe,x (xB, t)
f(xB, t, V (xB, t),S(xB, t))

σeUe,x (xB, t)

⎤

⎦ . (4b)

The complete system Eq. (4) constitutes an index-1 DAE and is thus suitable for
solution via the DASSL package. The version of eBACOLI described in [8] cannot
handleEq. (4) due to the algebraic equations present at every interior collocation point
and was modified to obtain the results reported here. The modifications performed
are mainly in setting up the Jacobian and residual evaluations for DASSL to use at
each timestep. The last component in Eq. (4b) is handled in a similar way to its
first component. The last component of Eq. (4a) is handled similarly to a boundary
condition in terms of its dynamical behaviour but at the same time with spatial
dependence that is similar to its first component in Eq. (4a).
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2.3 Error Control

The error control remains unchanged from the original BACOLI package [16]. To
summarize, temporal error is controlled via DASSL by approximating the error
present in the BDF approximation of the DAE system and adjusting the timestep
size and order of the BDF method according to absolute and relative tolerances.

With a successful time step from DASSL, a spatial error estimate is formed by
comparing the B-spline solution to a second solution obtained by a different interpo-
lation method. The interpolated solution can be of lower degree (lower-order inter-
polation (LOI)) or higher degree (super-convergent interpolation (SCI)) depending
on the solution parameter settings within eBACOLI. If the spatial error approxima-
tion does not meet the desired tolerance, a remeshing algorithm is applied that tries
to (i) estimate the number of mesh points necessary to do so and (ii) approximately
equidistribute the error on the newmesh. This spatial remeshing creates a new spatial
discretization and thus a new system of DAEs to integrate in time.

3 Numerical Experiments

Weconsider a single case for validation of bidomain solutions that uses conductivities
σe and σi that are constant in space and time . In such a case, Eq. (1) reduces to the so-
called monodomain model. This construct allows us to compare bidomain solutions
with equivalent monodomain solutions, which, for example, can be computed using
the original version ofeBACOLI [8]when d = 1. For brevity,we do not report details
of these comparisons here, noting only successful validation of the new software for
this case, and report only results from numerical experiments that solve the problem
as a bidomain model.

The FitzHugh–Nagumo (FHN) cell model [7, 12] is chosen for our experiments,
with its functions taking the form

f1(x, t, v, s1) = ε (v + β − γ s1) ,

Iion(x, t, v, s1) = 1

ε

(
v − v3

3
− s1

)
,

(5)

where ε is a cell-tissue coupling parameter, γ is a cell recovery rate, and β is a resting
potential parameter. The FHN bidomain model parameters used in the experiments
reported are χ = 1, Cm = 1, σi = σe = 1, ε = 0.1, β = 1, and γ = 0.5. The spatial
domain is [0, 70], and the simulation takes place on the time interval [0, 30].

3.1 Initiation of Pulse Solutions

To initiate a pulse solution,we initialize themembrane potentials and cell state to their
equilibrium values that arise from the parameters specified in the previous sections.
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From this state, a simple rectangular stimulus is applied at the left end of the domain
to initiate a pulse that will propagate to the right,

Istim(x, t) =
{
Iamp, t0 ≤ t ≤ tstim, 0 ≤ x ≤ xstim,

0, otherwise.

The amplitude Iamp, duration tstim, and spatial extent xstim of a stimulus that is capable
of generating a pulse is dependent on the tissue and cellmodel parameters. The values
used for the numerical experiments are Iamp = 2, tstim = 2, and xstim = 2.

3.2 Reference Solution and Error

We compute a reference solution that has converged to D digits of accuracy at NST

points in space and time. The value of D is chosen to be sufficiently large compared to
the magnitude of errors observed in the numerical experiments. For our experiment,
we have computed a reference solution using the spectral element code Nektar++ [4]
and Richardson extrapolation [17] applied in a step-doubling manner in time. The
Nektar++ reference solution is computed using the first-order semi-implicit BDF
(SBDF1) method with a fixed spatial discretization using p = 48 order polynomials
on 700 intervals. Richardson extrapolation with 14 levels (i.e., 13 refinements of the
time step) is applied starting from Δt = 0.1. This procedure is performed because
Nektar++ does not have any error control facilities.

The error we use is the Mixed Root Mean Square (MRMS) error, which for a
quantity W is defined by

[MRMS]W =
√√√√ 1

NST

NST∑

i=1

(
Ŵi − Wi

1 + |Ŵi |

)2

,

where Wi and Ŵi denote the numerical and the reference solutions of component W
at space-time point i . The total number of space-time points is taken to be NST =
Nx Nt . As shown in [11], the MRMS error gives a more self-consistent measure of
accuracy than the Relative Root Mean Square error when considered across various
cell models. The number of equally spaced spatial points for the reference solution is
Nx = 700 and the number of equally spaced points in the time dimension is Nt = 21.

The reference solution calculated in this way has D = 7 stable digits and is dis-
played in Fig. 1. For comparison, the final state of an eBACOLI FHN bidomain
solution with tolerances atol = rtol = 10−2 is given in Fig. 2. Close agreement
is indicated by MRMS in Figs. 3 and 4 with the reference solution for an eBACOLI
solution using B-spline order p = 9 and tolerances atol = rtol = 10−9. For con-
venience of comparisons, we use this eBACOLI reference solution henceforth.
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t = 30.0

Fig. 1 Snapshots of reference solution for V (x, t) computed using Nektar++ and Richardson
extrapolation. Starting from a uniform steady state, the applied stimulus quickly induces a pulse
travelling to the right
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Fig. 2 Snapshot at t = 30.0 for all components of an FHN bidomain solution obtained from
eBACOLI. Solve parameters are atol=1e-2, and polynomial order p = 5. Because a loose
tolerance is used, this final state requires only 15 mesh subintervals, represented by the x-axis ticks,
and corresponds to an [MRMS]V of 2% when compared to the Nektar++ reference in Fig. 1

3.3 Numerical Solutions

For the purposes of analysis, we compute numerical solutions with eBACOLI and
Nektar++ by adjusting solution parameters in prescribed ways. We plot the precision
obtained relative to the reference solution as a function of CPU time and tolerance
(for eBACOLI) or constant time step Δt (for Nektar++). For eBACOLI, we adjust
the atol parameter (and keeping atol=rtol). We look at results obtained from
three different B-spline expansionswith order p = {5, 7, 9}. For Nektar++, we adjust
Δt , keeping both the spatial mesh and the expansion order P constant. We use the



308 K. R. Green and R. J. Spiteri

same mesh as that of the reference solution and fix P = 6. We look at the first three
orders of the SBDF family of time integrators: SBDF1, SBDF2, and SBDF3 [1].

All computationswere performed on a computerwith an Intel(R)Xeon(R)W3520
@ 2.67GHz CPU, 16GBDDR3@1333MT/s RAM, running 4.15.0-65-generic #74-
Ubuntu SMP Tue Sep 17 17:06:04 UTC 2019, and compilers gcc & gfortran
(Ubuntu 7.4.0-1ubuntu1 18.04.1) 7.4.0.

4 Results

A number of simulations were performed using the following eBACOLI and
Nektar++ methods: three eBACOLI methods using B-spline orders p = {5, 7, 9}
withvarious tolerances and threeNektar++methodsusing a sixth-order spatial expan-
sion and time integrators SBDF{1,2,3} with various constant step sizes. The results
of these experiments are given in Figs. 3 and 4 as [MRMS]V and [MRMS]Ue error
versus CPU time (Figs. 3a and 4a) and tolerance / Δt (Figs. 3b and 4b).

There are a few observations that can be made from Figs. 3 and 4. First, vary-
ing the tolerances in eBACOLI results in less smooth MRMS error and CPU time
behavior than varying the timestepΔt in Nektar++. This is expected due to the nature
of the adaptive algorithms employed within eBACOLI. The observed non-smooth
behaviour can be effectively addressed through the use of strategies based on digital
filters [19], but doing so is deemed to be beyond the scope of this study.

10−1 100 101 102 103 104

CPU time (s)

10−6

10−5

10−4

10−3

10−2

10−1

[M
R
M
S]

V

(a)

p= 5
p= 7
p= 9

SBDF1
SBDF2
SBDF3

10−8 10−6 10−4 10−2

atol (eBACOLI)

10−5 10−4 10−3 10−2 10−1

t (Nektar++)

(b)

Fig. 3 Precision as a function of CPU time and specified tolerance / time step for three eBACOLI
methods with B-spline orders p = {5, 7, 9} and three Nektar++ methods with sixth-order spatial
expansions and time integrators SBDF{1,2,3}. a Precision-work diagram for a given [MRMS]V
error. b Precision for different tolerance values (for eBACOLI) and time steps (for Nektar++).
The bottom axis indicates atol=rtol for eBACOLI solutions, and the top axis indicates Δt for
Nektar++ solutions



Solving Cardiac Bidomain Problems with B-spline Adaptive Collocation 309

10−1 100 101 102 103 104

CPU time (s)

10−6

10−5

10−4

10−3

10−2

10−1

[M
R
M
S]

U
e

(a)

p= 5
p= 7
p= 9

SBDF1
SBDF2
SBDF3

10−8 10−6 10−4 10−2

atol (eBACOLI)

10−5 10−4 10−3 10−2 10−1

t (Nektar++)

(b)

Fig. 4 Precision as a function of CPU time and specified tolerance / time step for three eBACOLI
methods with B-spline orders p = {5, 7, 9} and three Nektar++ methods with sixth-order spatial
expansions and time integrators SBDF{1,2,3}. a Precision-work diagram for a given [MRMS]Ue

error. b Precision for different tolerance values (for eBACOLI) and time steps (for Nektar++).
The bottom axis indicates atol=rtol for eBACOLI solutions, and the top axis indicates Δt for
Nektar++ solutions

Second, for the Nektar++ simulations, [MRMS]Ue is generally larger than
[MRMS]V , and convergence towards the reference solution stagnates. For the
eBACOLI simulations, [MRMS]Ue is generally slightly smaller than [MRMS]V , and
convergence towards the reference solution does not stagnate. Limiting the order of
the spatial expansion in Nektar++ for these simulations to P = 6 is likely an impor-
tant determining factor in their stagnation. Because eBACOLI simulations are based
on satisfying given tolerances, fixing the order of the spatial expansion does not result
in this behavior.

Finally, the eBACOLI solutions are generally obtained in at least an order of
magnitude less time than the Nektar++ solutions at a given MRMS error level, with
differences reaching as high as four orders of magnitude. There is also no clear
winner among the different eBACOLI solutions in terms of B-spline order. The
highest-order eBACOLI simulation can achieve results with tolerances as low as
10−9 (the reference solution), but the true accuracy of such a solution cannot be
determined by the methods employed in this study.

5 Conclusions

AdaptiveB-spline collocation is shown to be an effectivemethod for one-dimensional
systems of time-dependent PDEs that consist of parabolic and elliptic PDEs coupled
with ODEs as described by the bidomain model Eq. (1). Besides providing automatic
error control, the adaptive B-spline solutions obtained using eBACOLI are obtained
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much more efficiently, up to four orders of magnitude faster for a given MRMS error
level, than spectral element solutions in Nektar++ with non-adaptive spatial and
time discretizations. High-accuracy solutions to cardiac bidomain problems can be
obtained so quickly by eBACOLI that we recommend its use for efficient reference
solution generation for one-dimensional cardiac bidomain problems.

Future directions of this work include (i) increasing the performance ofeBACOLI
by allowing faster construction of Jacobians and solves of the resulting almost block
diagonal (ABD) linear systems [16] by replacing COLROW [5] with a parallel ABD
solver like RSCALE [14] and (ii) building a general one-dimensional cardiac solver
based on eBACOLI that interfaces with all cell models from the CellML library [2].

References

1. Ascher, U.M., Ruuth, S.J.,Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial
differential equations. SIAM J. Num. Anal. 32(3), 797–823 (1995)

2. Auckland Bioengineering Institute: The CellML project (2011). http://www.cellml.org/
3. de Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York, USA (1978)
4. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia,

D., Yakovlev, S., Lombard, J.E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C.,
Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar plus plus : an open-source
spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015). https://doi.
org/10.1016/j.cpc.2015.02.008

5. Diaz, J.C., Fairweather,G.,Keast, P.: Fortran packages for solving certain almost block diagonal
linear systems by modified alternate row and column elimination. ACM Trans. Math. Softw.
9(3), 358–375 (1983). https://doi.org/10.1145/356044.356053

6. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model.
SIAM J. Numer. Anal. 46(5), 2443–2468 (2008). https://doi.org/10.1137/070680503

7. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane.
Biophys. J. 1(6), 445–466 (1961)

8. Green, K.R., Spiteri, R.J.: Extended BACOLI: solving one-dimensional multiscale parabolic
pde systems with error control. ACM Trans. Math. Softw. 45(1), 8:1–8:19 (2019). https://doi.
org/10.1145/3301320

9. Hooke, N., Henriquez, C., Lanzkron, P., Rose, D.: Linear algebraic transformations of
the bidomain equations: implications for numerical methods. Math. Biosci. 120(2), 127–
145 (1994). https://doi.org/10.1016/0025-5564(94)90049-3. http://www.sciencedirect.com/
science/article/pii/0025556494900493

10. Keener, J.P., Bogar, K.: A numerical method for the solution of the bidomain equations in
cardiac tissue. Chaos Interdisc. J. Nonlinear Sci. 8(1), 234–241 (1998). https://doi.org/10.
1063/1.166300

11. Marsh, M.E., Ziaratgahi, S.T., Spiteri, R.J.: The secrets to the success of the Rush-Larsen
method and its generalizations. IEEE Trans. Biomed. Eng. 59(9), 2506–2515 (2012). https://
doi.org/10.1109/TBME.2012.2205575

12. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve
axon. Proc. IRE 50(10), 2061–2070 (1962). https://doi.org/10.1109/JRPROC.1962.288235

13. Niederer, S.A., et al.: Verification of cardiac tissue electrophysiology simulators using an N-
version benchmark. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1954), 4331–4351
(2011). https://doi.org/10.1098/rsta.2011.0139

14. Pancer, R.N.: The Parallel Solution of ABD Systems Arising in Numerical Methods for BVPs
for ODEs. Ph.D. thesis, University of Toronto (2006)

http://www.cellml.org/
https://doi.org/10.1016/j.cpc.2015.02.008
https://doi.org/10.1016/j.cpc.2015.02.008
https://doi.org/10.1145/356044.356053
https://doi.org/10.1137/070680503
https://doi.org/10.1145/3301320
https://doi.org/10.1145/3301320
https://doi.org/10.1016/0025-5564(94)90049-3
http://www.sciencedirect.com/science/article/pii/0025556494900493
http://www.sciencedirect.com/science/article/pii/0025556494900493
https://doi.org/10.1063/1.166300
https://doi.org/10.1063/1.166300
https://doi.org/10.1109/TBME.2012.2205575
https://doi.org/10.1109/TBME.2012.2205575
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1098/rsta.2011.0139


Solving Cardiac Bidomain Problems with B-spline Adaptive Collocation 311

15. Petzold, L.R.: A description of DASSL: a differential-algebraic system solver. In: Scientific
computing (Montreal, Que., 1982), IMACS Trans Sci Comput., I, pp. 65–68. IMACS, New
Brunswick, NJ (1983)

16. Pew, J., Li, Z., Muir, P.: Algorithm 962: BACOLI: B-spline adaptive collocation software for
PDEswith interpolation-based spatial error control. ACMTrans.Math. Softw. 42(3), 25 (2016).
https://doi.org/10.1145/2818312

17. Richardson, L.F.: On the approximate arithmetical solution by finite differences of physical
problems involving differential equations, with an application to the stresses in a masonry dam.
In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences An Interdisciplinary Journal, vol. 83(563), pp. 335–336 (1910). https://doi.org/10.
1098/rspa.1910.0020. http://rspa.royalsocietypublishing.org/content/83/563/335

18. Roth, B.J.: Action potential propagation in a thick strand of cardiac muscle. Circ. Res. 68(1),
162–173 (1991)

19. Söderlind, G., Wang, L.: Adaptive time-stepping and computational stability. J. Comput.
Appl. Math. 185(2), 225–243 (2006). https://doi.org/10.1016/j.cam.2005.03.008. https://doi-
org.cyber.usask.ca/10.1016/j.cam.2005.03.008

20. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the
Electrical Activity in the Heart. Springer, Berlin (2006)

21. Tung, L.: A bi-domain model for describing ischemic myocardial dc potentials. Ph.D. thesis,
Massachusetts Institute of Technology (1978)

https://doi.org/10.1145/2818312
https://doi.org/10.1098/rspa.1910.0020
https://doi.org/10.1098/rspa.1910.0020
http://rspa.royalsocietypublishing.org/content/83/563/335
https://doi.org/10.1016/j.cam.2005.03.008
https://doi-org.cyber.usask.ca/10.1016/j.cam.2005.03.008
https://doi-org.cyber.usask.ca/10.1016/j.cam.2005.03.008


A Computational Comparison of Three
Methods for Solving a 1D Boundary
Value Inverse Problem

Kimberly M. Levere, Bryson Boreland, and John Dewhurst

Abstract A goal of many inverse problem techniques is to find unknown parameter
values λ ∈ Λ that produce a solution to the forward problem, uλ, that lies “close” to
a known solution, u. Mathematically speaking, these techniques wish to minimize
the approximation error subject to these parameters,

min
λ∈Λ

‖u − uλ‖.

A number of different inverse problem techniques have been developed for solving
such a problem. In this paper we briefly discuss three methods for solving inverse
problems in the ODE setting: Tikhonov Regularization, Landweber-Fridman iter-
ation, and the more recent Collage-Coding method. We compare and contrast the
methods by applying each of them to the same example. The accuracy, robustness,
and efficiency of each method is then explored.

Keywords Inverse problem · Optimization · Parameter estimation · Collage
theorem · Regularization

1 Introduction

A number of different inverse problem techniques have been developed for solving
inverse problems with a variety of different applications. In this paper we focus our
efforts on inverse problems for ODEs. Perhaps the most well-known inverse prob-
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lem methods are regularization techniques, in particular, Tikhonov Regularization
[11]. Regularization techniques often cast the above problem in terms of a system
Aκ = f , where A is an operator containing known information, f contains known
information, and κ contains the unknown parameters. As the operator A is often
not invertible, or does not have a bounded inverse, the problem of solving for κ

is ill-posed. Regularization schemes replace the ill-posed operator with a “nearby”
well-posed operator and then add a penalty (or regularization) term to correct for this
adjustment.

Iterative Schemes are also prevalent in the inverse problem literature. As their
name implies, an iteration scheme is developed that is designed to converge to a
solution (after a large number of iterations) that is “close” to the true parameter
values. One such iteration scheme is explored in this paper, Landweber-Fridman
iteration [2].

A more recent inverse problem technique is that of Collage-Coding [8]. The
idea behind this technique is to bound the approximation error above by another
distance that is more easily minimized. When working with ODEs, this upper bound
is achieved using the Collage Theorem, a consequence of the well-known Banach’s
Fixed Point Theorem,

‖u − uλ‖ ≤ 1

1 − cλ

‖u − Tλu‖, (1)

where Tλ is a cλ-contractive, space preserving operator that depends on the unknown
parameters λ. By minimizing the so-called collage distance ‖u − Tλu‖ (ensuring
that cλ is bounded away from 1), one can ensure that the approximation error is
indeed small.Relying insteadon theLax-MilgramRepresentationTheorem,Collage-
Coding methods have been developed for both linear and nonlinear PDEs.

In Sects. 2–4, we explore each of the above mentioned methods in turn, outlining
their basic approach. Each method is then used to solve the example problem

d

dx

(
κ(x)

du

dx

)
= − f (x) in Ω = (0, 1),

u = 0, on ∂Ω

(2)

to highlight details and numerical considerations of each approach. Finally, in Sect.
5 we compare and contrast the methods and discuss their strengths and weaknesses.

2 Regularization Methods

Regularization schemes attempt to handle the challenge of minimizing the approx-
imation error head-on. The problem is first recast as an operator equation Aκ = f ,
where A and f contain only known information, and κ contains the unknown param-
eter values. In this case then, the approximation error becomes the distance between
Aκ and f in an appropriate norm, ‖Aκ − f ‖. If the operator A is invertible so that
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κ = A−1 f , and this κ depends continuously on f then the problem is said to be well-
posed. If either of these conditions fails, the problem is called ill-posed. Depending
on the severity of the ill-posedness, solutions can be found in a variety of ways. For
instance, if κ does not depend continuously on f , one can orthogonally project f
onto the closure of the range of A, Π f ∈ ¯R(A). We then can achieve a so-called
generalized solution, which is defined to be the κ that, under the operator A, is clos-
est in norm to Π f . Such solutions can be shown to exist and be unique, see [3] for
further details.

2.1 Tikhonov Regularization

If the problem suffers not only from a lack of continuous dependence but the operator
A is also not invertible, then the problem is called genuinely ill-posed. In this case,
regularization methods can be of use, in particular, we will discuss Tikhonov Regu-
larization. The idea is to replace the ill-posed operator by a nearby well-conditioned
operator. To arrive at this operator, we recall that we wish to minimize the approxi-
mation error

min
κ

1

2
‖Aκ − f ‖2 = min

κ

1

2
(Aκ − f )∗(Aκ − f )

= min
κ

1

2
(κ∗A∗Aκ − 2κ∗A∗ f + f ∗ f ),

where A∗ denotes the adjoint operator of A. Calculus tells us that the values of κ that
accomplish this task satisfy

∂

∂κi
(κ∗A∗Aκ − 2κ∗A∗ f + f ∗ f ) = 0

=⇒ A∗Aκ = A∗ f. (3)

Unfortunately, the operator A∗A is often not invertible. To remedy this, we replace
this operator by the perturbed operator A∗A + α I , where α > 0 (called the regular-
ization parameter) and I denotes the identity operator. By choosing α > 0 such that
all spectral values are positive the perturbed operator is indeed invertible. By sub-
stituting the perturbed operator into (3) we arrive at the Tikhonov approximation to
the generalized solution

κ = (A∗A + α I )−1A∗ f.

One can prove that under particular conditions that as α → 0+ the Tikhonov
approximation indeed converges to the generalized solution. See, for instance, [2]
and [11] for further details.
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2.2 An Example Problem

We apply the technique of Tikhonov Regularization to the BVP given in (2). To
recast this continuous problem in terms of a discrete operator A, r points are chosen
along the domain Ω = [0, 1] (in our case, uniformly although this is not neces-
sary). Derivatives are approximated by finite difference approximations and thus A
is a matrix containing combinations of discrete data values, ui , 0 ≤ i ≤ r , while
f is a vector containing discrete values of the function f (x), fi and κ contains
unknown values of the function κ(x) at each of the r discrete locations on Ω ,
κi . In order to verify our results, we assume f (x) = 96x3 + 12x2 + 48x − 8 and
κTrue(x) = 3x3 + 2x2 + 4x + 1 which imposes uTrue(x) = 4x(1 − x). To con-
struct faux data, we then sample uTrue(x) at the r discrete locations along Ω ,
possibly adding low amplitude Gaussian noise, ε to simulate experimental error.
For the inverse problem we imagine that we only have access to the data values ui ,
and the discrete values fi . We seek discrete values κi that minimize the Tikhonov
approximation error ‖(A∗A + α I )κ − A∗ f ‖. Subsequently, a polynomial is fit to the
κi via least squares to form the continuous approximation κTikhonov(x). Using this
continuous approximation, the original BVP is solved forward to find the Tikhonov
approximation of u, uTikhonov(x). Numerous trials were run testing the impact of
using different degrees for κTikhonov(x). The method seemed to correctly identified
the appropriate degree making higher degree coefficients negligible. Note that the
regularization parameter was chosen using Mozorov’s principle which is discussed
in detail in [2]. The results of several trials are summarized in Table 1. In Fig. 1 both
the recovered and true values of κ(x) are plotted for comparative purposes.

As one might expect, increasing the number of sample points, r , produces better
results with respect to the approximation error of κ(x). For a fixed number of sample
points, the approximation error of u(x) shows strong tolerance to noise, as it remains
fairly consistent across different amplitudes of noise.

Table 1 Results for Tikhonov Regularization applied to (2) for various values of r and ε

r ε α ‖κT ikhonov −
κTrue‖L2(Ω)

‖uT ikhonov −
uTrue‖L2(Ω)

5 0 0.30951 × 10−9 0.99591 0.19756

0.01 0.17011 × 10−3 0.99548 0.19705

0.1 0.17072 × 10−2 0.98979 0.19205

10 0 5.94456 × 10−10 0.65853 0.28319

0.01 0.12131 × 10−4 0.65772 0.28254

0.1 0.12166 × 10−3 0.65165 0.27716

15 0 0.42286 × 10−14 0.59133 0.27981

0.01 0.25567 × 10−14 0.58914 0.27672

0.1 0.39503 × 10−14 0.57156 0.26784
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r = 5 r = 10 r = 15
ε= 0

ε = 0.01

Fig. 1 Plots of κTikhonov(x) (red) and κTrue(x) (blue) for various values of r and ε

3 Iteration Schemes

Much like regularizationmethods, iteration schemesworkwith discrete values.Using
an initial guess or seed value, all future values can be found based on previous values.
The sequence of values that are generated can be shown to converge (under certain
conditions) to a solution (generalized in our case) of the original problem.

3.1 Landweber-Fridman Iteration

Utilizing the same setup as regularization methods, iterative schemes recast continu-
ous problems in terms of the operator equation Aκ = f , where A and f contain only
known information, and κ contains the unknown parameter values. As before, tomin-
imize the approximation error, ‖Aκ − f ‖ one must find κ such that A∗Aκ = A∗ f .
Working with this requirement, first rearrange and then multiply by a parameter
β > 0 (which will serve as the stepsize for the iterative scheme)

0 = β(A∗ f − A∗Aκ).

Finally, adding κ to both sides and appropriately subscripting suggests the iterative
scheme

κn+1 = κn + β(A∗ fn − A∗Aκn),
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where n = 0, ... and κ0 is the seed value. With an appropriate choice for β one can
show that the sequence {κn}∞n=0 converges to the generalized solution, see [2] for
further details.

3.2 Revisited: An Example Problem

We consider again the BVP problem (2) presented in the introduction.
To construct the iteration scheme,weuse the sameprocess to discretize this contin-

uous problem.Motivated by convergence requirements, we choose β = 1

‖A‖ > 0 as

our stepsize for the method and a stopping criteria of ‖Aκ − f ‖ ≤ 10−10. At the end
of iteration, a polynomial was fit to the κ found by iteration, κLandweber(x). Using
this continuous approximation,we then solved (2) to determine the approximate solu-
tion uLandweber(x). As was the case with Tikhonov Regularization, several degrees
for κLandweber(x) were tested. When using higher degree polynomials than nec-
essary, these higher order coefficients were found to be negligible. The results for
various values of r and ε are found in Table 2. In Fig. 2 both the recovered and true
values of κ(x) are plotted for comparative purposes.

Landweber-Fridman iteration produces very similar quality results to that of
Tikhonov Regularization. As expected, increasing r produces better results for our
recovered κ while the introduction of noise hinders this method although it is rather
robust to low amplitude noise.

Table 2 Results for Landweber-Fridman iteration applied to (2) for various values of r and ε

r ε ‖κLandweber −
κTrue‖L2(Ω)

‖uLandweber −
uTrue‖L2(Ω)

5 0 0.99591 0.19756

0.01 0.99655 0.19730

0.1 0.99917 0.19402

10 0 0.65853 0.28319

0.01 0.65812 0.28264

0.1 0.65663 0.27859

15 0 0.59133 0.27981

0.01 0.59103 0.27940

0.1 0.58968 0.27614

20 0 0.53069 0.26455

0.01 0.53031 0.26404

0.1 0.52837 0.26037
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r = 5 r = 10 r = 15 r = 20
ε = 0

ε= 0.01

Fig. 2 Plots of κLandweber(x) (red) and κTrue(x) (blue) for various values of r and ε

4 Collage-Coding Methods

The Collage-Coding technique was first proposed in 1999 and applied to inverse
problems for ODEs in [8]. Unlike regularization methods or iterative schemes that
tackle the approximation error head-on, the Collage-Coding method instead bounds
the approximation error above by the so-called collage distance which is, in practice,
easier to minimize. By minimizing the collage distance (subject to a few conditions),
the approximation error will be controlled. The construction of the collage distance
relies on the same hypotheses required for establishing existence and uniqueness of
solutions to ODEs. For completeness, we state Banach’s Fixed Point Theoremwhich
is commonplace in this regard.

Theorem 1 (Banach’s Fixed Point Theorem) Let (X, ‖ · ‖X ) be a Banach space and
let T : X → X be a contractive operator with contraction factor c ∈ [0, 1). Then
there exists a unique fixed point ū ∈ X such that T ū = ū. Moreover, for any u ∈ X,
‖T ◦su − ū‖X → 0 as s → ∞.

Proof of this theorem can be found in [12], for instance. A simple consequence of
this theorem, the Collage Theorem, will establish the aforementioned upper bound
on the approximation error.

Theorem 2 (Collage Theorem) Let (X, ‖ · ‖X ) be a Banach space and T : X → X
be a contractive operator with contraction factor c ∈ [0, 1) and unique fixed point
ū ∈ X. Then

‖u − ū‖X ≤ 1

1 − c
‖u − Tu‖X .

The proof of this theorem can be found in [1]. Byminimizing the collage distance,
‖u − Tu‖X , provided c is bounded away from 1, guarantees that the approximation
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error is indeed controlled. This is the theme of a wide variety of Collage-Coding
methods that have since been developed for treating a variety of different problems,
see for instance [4]–[10].

4.1 Revisited: An Example Problem

Once again, we apply the current method to the example problem (2) presented in
the introduction.

We will work on the complete metric space (C1( Ī ), ‖ · ‖∞). Since the infinity
norm is computationally cumbersome, we utilize the fact that C1(Ω̄) ⊂ L 2(Ω̄)

and work instead with theL 2 norm. As before, we assume f (x) = 96x3 + 12x2 +
48x − 8 and that we have been given observational data for u(x) (in this case gen-
erated by sampling the function u(x) = 4x(1 − x) at r discrete locations along
the domain [0, 1]). A second-degree polynomial target function, utarget(x) is
then fit to this data using a least squares procedure. With this setup, κtrue(x) =
3x3 + 2x2 + 4x + 1, although in practice this would not be known so we will only
use this to check the accuracy of our method. A suitable choice for a contractive,
space-preserving operator T for this problem is a Picard operator. For our BVP, this is
found by first applying the product rule on the left-hand side of the ODE, integrating
twice is given by

Tu(x) = utarget(0) + u′
target(0)x −

∫ x

0
(x − s)

(
f (s) + κ ′

collage(s)u
′
target(s)

κcollage(s)

)
ds

where we assume the form κcollage(x) = λ3x3 + λ2x2 + λ1x + λ0 and seek the
values of λi that minimize the collage distance. Different degrees for κcollage(x)
were tested, with higher order coefficients recovered as negligible values. Certainly,
one could instead express κcollage(x) in terms of an appropriate basis to avoid the
use of polynomials and the choice of their degree altogether. Note that one can
prove that the operator is indeed contractive and space-preserving (see [7]). As the
parameters of the problem appear in a complex way in our operator T (and thus, also

in our collage distance), we apply the Taylor expansion to both of the terms
κ ′(x)
κ(x)

and
f (x)

κ(x)
to simplify integration. Depending on the complexity of the operator a

variety of minimization schemes may be employed. In this case a gradient descent
was used to find a solution. The computational results of the Collage-Coding method
are shown in Table 3 with graphical results in Fig. 3.

Perhaps not surprisingly, as we are given more data (larger r ) our results improve.
Likewise,we see a decrease in the accuracy of our results aswe increase the amplitude
of noise, ε.
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Table 3 Results for Collage-Coding applied to (2) for various values of r and ε with the collage
distance given by F(λ)

r ε ‖κcollage −
κtrue‖L2(Ω)

‖ucollage −
utrue‖L2(Ω)

F(λ)

5 0 0.40638 × 10−2 0.10628 × 10−2 0.13146 × 10−2

0.01 0.15850 × 10−1 0.13428 × 10−2 0.13644 × 10−2

0.1 0.14369 0.82542 × 10−2 0.13771 × 10−1

10 0 0.22166 × 10−2 0.41095 × 10−3 0.72132 × 10−3

0.01 0.29545 × 10−2 0.52345 × 10−3 0.75067 × 10−3

0.1 0.17485 × 10−1 0.31956 × 10−2 0.75115 × 10−2

15 0 0.15239 × 10−2 0.23054 × 10−3 0.46148 × 10−3

0.01 0.27604 × 10−2 0.28666 × 10−3 0.50843 × 10−3

0.1 0.87824 × 10−2 0.17322 × 10−2 0.51642 × 10−2

20 0 0.11611 × 10−2 0.15201 × 10−3 0.36302 × 10−3

0.01 0.18407 × 10−2 0.18431 × 10−3 0.39011 × 10−3

0.1 0.84030 × 10−2 0.10645 × 10−2 0.39346 × 10−3

r = 5 r = 10 r = 15 r = 20
ε = 0

ε = 0.10

Fig. 3 Plots of κcollage(x) (red) and κTrue(x) (blue) for various values of r and ε

5 Conclusions and Future Work

While each of the methods discussed in this paper provide viable options for find-
ing a solution, certainly there are advantages to each. Tikhonov Regularization and
Landweber-Fridman iteration have very simplistic constructions with easy-to-check
conditions for the parameters α and β. In the case of the Collage-Coding method,
the contraction factor c is difficult to check a priori since in general it will depend on
the unknown function κ(x). For simplicity, in this paper we chose to express κ(x) as
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a polynomial, which, in spirit acts as a regularizer on its own. Certainly it is possible
to work in terms of an appropriate basis to avoid choosing any particular form for
κ(x). Bases such as the “hat basis” or the basis of “hexagonal based pyramids” have
been employed in other Collage-Coding work. Such choices have not been found to
starkly impact the quality of results. Likewise, the target function utarget(x) can also
be expressed in terms of a basis so that the use of an arbitrary degree polynomial is
not necessary.

Computationally, Tikhonov Regularization was by far the most expensive of the
methods investigated. It was unable to produce results for the r = 20 case with-
out resorting to higher computing power. Landweber-Fridman iteration was slightly
less computationally expensive but required many iterations to reach a solution that
indeed converged to the generalized solution. Collage-Coding was the least expen-
sive computationally, finding its results in less than half the time of the iteration
scheme.

All three methods were robust to noisy data provided that the number of data
points, r , was large. In terms of accuracy, for this example the results of Tikhonov
Regularization and Landweber-Fridman iteration were relatively similar in terms of
approximation error. Collage-Coding produced much smaller approximation errors
than that of the other two methods. Certainly, we cannot conclude that this will be
the case more globally when used on other more complex problems, but it is worth
noting that gains in accuracy can be seen with this method. Further investigation
should be conducted on a variety of problems to more completely investigate the
pros and cons of each method.
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A Comparison of Turbulence Generated
by 3DS Sparse Grids with Different
Blockage Ratios and Different Co-frame
Arrangements

M. Syed Usama and Nadeem A. Malik

Abstract A new type of grid turbulence generator, the 3D sparse grid (3DS), is a
co-planar arrangement of co-frames each containing a different length scale of grid
elements [Malik, N. A. US Patent No. US 9,599,269 B2 (2017)] and possessing a
much bigger parameter space than the flat 2D fractal square grid (2DF). Using DNS
we compare the characteristics of the turbulence (mean flow, turbulence intensity,
energy spectrum) generated by different types of 3DS grids. The peak intensities
generated by 3DS can exceed the peaks generated by the 2DF by 80%; we observe
that a 3DS with blockage ratio 24% produces turbulence similar to the 2DF with
blockage ratio 32% implying lower energy input for the same turbulence.

Keywords Turbulence · Sparse grid · Turbulence generator · Fractal ·
Multi-scale · Blockage ratio · Mixing

1 Introduction

The generation and control of turbulence is one of the most important challenges in
fluidmechanics, with applications ranging fromdrag reduction tomixing in chemical
reactors. A promising innovation in recent times has been the design of new types of
turbulence generating grids which are different to the classical regular grid (RG), Fig.
1a. The RG grids have bars of fixed thickness and flow passages of fixed size. A new
grid type is a multi-scale arrangement of bars of varying thicknesses that produce
flow passages of various sizes. Typically, the bar thicknesses and flow passages are in
a self-similar configuration in a two-dimensional plane, such as the 2D square fractal
grid (2DF), Fig. 1b.A key feature ofmulti-scale 2Dgrids is that they producemultiple
scales of turbulence at once in the grid plane, which alters the turbulence generated
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(a) Regular grid (RG) (b) Square fractal grid (2DF)

(c) 3D sparse grid (3DS)

Fig. 1 Different types of grid

[1–5] compared to RG; in particular the peak turbulence intensity is enhanced for
the same blockage ratio [3].

Conisder a rectangular flow channel or conduit with a turbulence grid placed
close to the entrance. A defining charactersitic of turbulence generating grids is the
blockage ratio (i.e. the solidity), σ , which is the surface area of all the bar elements,
Selts divided by the planar cross-sectional area A of the channel,

σ = Selts
A

(1)

In the RG and 2DF, σ is a single value; in [3] a three-generation 2DF was presented
with σ2DF = 0.32 (or 32%). σ is important for flow passage; for the same volumetric
flow rate you need higher pressure gradient in a channel with higher solidity, which
means more energy input requirement. Thus, an important goal in mixing is to opti-
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mize the balance between energy input (or ∂P/∂x), the solidity σ , and turbulence
generation.

A recent innovation in grid generated turbulence, the Sparse 3DMulti-Scale Grid
Turbulence Generator, or 3D sparse grid (3DS) for short [6, 7], has excited interest
in the turbulence community because of its potential to alter and control turbulence
characteristics even more than the 2DF. The 3DS separates each generation of length
scale of grid elements into its own co-frame in overall co-planar arrangement, Fig. 1c,
which produces a 3D ‘sparse’ grid system. Each generation of grid elements produces
a turbulent wake pattern that interacts with the other wake patterns downstream.
The length scale of the grid elements from co-frame to co-frame can be in any
geometric ratio, although a fractal pattern across the generations is a popular choice.
The spacing between successive co-frames r1, r2, ... are new parameters which do
not exist in a non-sparse single frame 2D grid system. If each co-frame is located at
[x0, x1, x2, ...], then r1 = x1 − x0, r2 = x2 − x1, etc. Each co-frame has a blockage
ratio, σ0, σ1, σ2, .... We define the overall (or maximum) blockage ratio of the 3DS
system, σ3DS , to be the maximum of this set of values,

σ3DS = Max{σ0, σ1, σ2, ...}. (2)

Thus, for the same value of σ3DS there are an infinite number of possible 3DS
configurations since the σ ′

i s can take continuous values, provided 0 < σi ≤ σ3DS;
at least one (possibly all) of the co-frames must have σi = σ3DS .

A third new parameter in the 3DS grid system is the order of arrangement of the
co-frames Z0, Z1, Z2, ... which can be in any order. We define Z0 to be the largest
scale of elements, Z1 the next largest, and so on. Thus, a 3-generation 3DS grid
system [X0, X1, X2] = [Z0, Z1, Z2] where the co-frames are placed at, [x0, x1, x2]
such that x0 < x1 < x2, means that the co-frame length scales [l0, l1, l2], are such that
l0 > l1 > l2. However, the 3DS grid system [X0, X1, X2] = [Z1, Z2, Z0] where the
co-frames are placed at, [x0, x1, x2] such that x0 < x1 < x2, means that the co-frame
length scales [l0, l1, l2], are such that l2 > l0 > l1.

It is imporant to note that σ3DS is much smaller than in the comparative 2DF grid,
σ3DS � σ2DF . In a 3-generation 3DS system the blockage ratios of the three co-
frames is [σ1, σ2, σ3], and with a geometric ratio of a = 0.5 between the successive
generation, we obtain σ1 = σ2 = σ3 = σ2DF/3. Therefore, if the blockage ratio of
the 2DF is σ2DF = 30%, then σ3DS = 10%. (This will differ for other a �= 0.5 [8].)

We use Direct Numerical Simulations to compare the mean flows, the turbulence
intensities, and the energy spectra generated by three-generation 3DS grid systems
for different blockage ratios and different order of co-frame arrangements, and we
also compare them to the turbulence produced by RG and 2DF grids. In this study
we keep r1 and r2 constant. Here, our systems are channels with periodic lateral
boundary conditions; the possible effects of no-slip wall conditions and of changing
mean flow direction is discussed in Sect. 4, Conclusions.
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2 Direct Numerical Simulations

In the first instance we compare the 3DS with the simuations of Laizet et al. [3].
The simulated domain has dimensions of 460.8 × 115.2 × 115.2d3

min where dmin is
the thickness of the smallest square. The height and width of the channel is H =
115.2dmin .

The effective mesh size in the RG is Mef = 13.33dmin , and the bars have length
115.2dmin , and thickness 2.6dmin . This matches the system reported in [3].

The 2DF has non-dimensionlized lengths and widths {li , di }, in generation i =
0, 1, 2.Where l0 = 57.6 = 0.5h, l1 = 0.5l0, l2 = 0.5l1. The bar thicknesses are d0 =
8.5, d1 = 2.9d2, d2 = 1.All lengths are henceforth non-dimensionalized by dmin . The
time scale is defined by t2 = dmin/U∞ where U∞ is the inlet velocity set equal to 1.

The 3DS-2, Table 1, has the same lengths and thickness as the 2DF above, however
each generation is held in a co-frame separated from the next by non-dimensional
distances, r1 = x1 − x0 = 17, and r2 = x2 − x1 = 8.5, and x0 = 10, where x ′

i s are
the non-dimensionalised x-coordinates of the i’th frame.

The blockage ratio (or solidity) in theRGand 2DF is the same 32%.Themaximum
blockage ratio in the 3DS is 15%.

OpenFOAM, (OFoam), was used to create a numerical grid Nx × Ny × Nz =
2304 × 576 × 576. The RG and 2DF grids lie in the plane x0 = 10 downstream of
the channel inlet. Periodic boundary conditions were applied on the walls in the y and
z directions; and inlet-outlet boundary conditions were applied in the x-direction.
The initial condition is a uniform inflow velocity U∞ = 1. The Reynolds number
is, Re = U∞dmin

ν
= 300. The resolution is Δx = 0.2dmin which is adequate for our

purposes.
OpenFoam is 2nd order accurate in spatial resolution which is adequate for

low Reynolds numbers. It uses finite volume discretization with Pressure Implicit
Splitting of Operator Algorithm (PISO). Time discretization using Backward Euler
method, whereas gradient and Laplacian term discretization using Gauss linear

Table 1 Different grid types used in this study: the order of arrangement of the co-frames Zi and
the corresponding co-frame blockage ratio σi (%) are shown. The last column shows the maximum
(i.e. overall) blockage ratio of the grid system

Grid X0 σ0 (%) X1 σ1 (%) X2 σ2 (%) σ/σ3DS
(%)

RG – – – – – – 32

2DF – – – – – – 32

3DS-2 Z0 15 Z1 15 Z2 15 15

3DS-3 Z0 24 Z1 15 Z2 15 24

3DS-4 Z0 32 Z1 15 Z2 15 32

3DS-5 Z1 15 Z2 15 Z0 32 32

3DS-6 Z2 15 Z0 32 Z1 15 32
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method are performed. Divergence term discretization is done using Gauss cubic
method which is a third order scheme. Interpolation and other terms are discretized
using Gauss Linear schemes. The resulting linear systems are solved by precondi-
tioned conjugate gradient methodwith diagonal incomplete Cholesky preconditioner
for pressure solution whereas iterative solver is used with symmetric Gauss-Siedel
as the smoother to calculate velocities. Tolerance is set at 10−6. Simulation time step
is Δt = 0.015dmin/U∞ which corresponds to a Courant number of 0.75. Blockage,
such as a bluff body, is achieved by imposing no-slip u = 0 condition on the numer-
ical grid corresponding to the surface of the body. The square cross-sectional bars
in the 3DS are particularly easy to implement as they match exactly the rectangular
geometry of the finite volume elements.

3 Results on Turbulence Intensity

A comparison of the turbulence intensities along different pencils from the RG, 2DF,
and 3DS-2 grids from DNS simulations has been reported in [8]. The RG and 2DF
plots are close to the results in [3] which validates the DNS for these calculations.

Here, in Fig. 2 we show the time averaged mean flow along the centerline,U (x =
0)/U∞, from all six grids considered in Table 1, and the centerline time averaged
rms turbulence fluctuation (i.e. intensity), u′(x = 0)/U∞.

Figure 3 shows the turbulence intensity, u′(x)/U∞, from the same grids along
different pencils in the x-direction as indicated.

We group the results into three sets for comparison in Figs. 2 and 3: the first set
is (a) and (b), where the 2DF and 3DS-2 are compared. 3DS-2 is obtained from the
2DF by taking the grid bars in 2DF and placing them in the different co-frames.

The second set is (b), (c), and (d), which is a comparison of 3DS grids with
different blockage ratios for the same co-frame arrangement, [Z0, Z1, Z2].

The third set is (d), (e), and (f), which is a comparison of 3DS grids with different
co-frame arrangements for the same blockage ratio σ3DS = 32%.

As expected, for the low blockage ratio 3DS-2 σ3DS = 15% � σ2DF the mean
flowalong the centreline in the 3DS-2 is notmuch disturbed, and the turbulence inten-
sity generated remains low at ≈ 10%. However, away from the centreline, the turbu-
lence intensity shows significant peaks in the near field close to the grid, although not
as much as in the 2DF. In all cases, in the far field downstream the planar averaged
turbulence intensity decays slowly. Thus, it is in the near to mid-range downstream
where the differences are most strongly felt.

The results in Figs. 2c and 3c, from the 3DS-3 grid with σ3DS = 24% are remark-
ably close to the 2DF (32%), Figs. 2a and 3a. The mean and the intensity along the
centerline are similar, and the off-centerline turbulence intensities in Fig. 3c display
similar trends as well, the peak intensities being only a little higher along most of
the pencils.
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(a) 2DF: σ2DF = 32%
(b) 3DS-2: [Z0,Z1,Z2];
σMax = 15%

(c) 3DS-3: [Z0,Z1,Z2];
σMax = 24%

(d) 3DS-4: [Z0,Z1,Z2];
σMax = 32%

(e) 3DS-5: [Z1,Z2,Z0];
σMax = 32%

(f) 3DS-6: [Z2,Z0,Z1];
σMax = 32%

Fig. 2 The mean streamwise velocity U/U∞ (green), and the streamwise turbulence intensity
u′/U∞ (red) along the centerline, from the 2DF and the 3DS grids. The 3DS co-frame order of
arrangement [Zi ], and the blockage ratios σ2DF and σ3DF (%) are shown
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(a) 2DF:σ2DF = 32% (b) 3DS-2: [Z0,Z1,Z2]; σ =
15%

(c) 3DS-3: [Z0,Z1,Z2]; σ =
24%

(d) 3DS-4: [Z0,Z1,Z2]; σ =
32%

(e) 3DS-5: [Z1,Z2,Z0]; σ =
32%

(f) 3DS-6: [Z2,Z0,Z1]; σ =
32%

Fig. 3 The streamwise turbulence intensity u′/U∞ along different pencils as indicted, from the
2DF and the 3DS grids. The 3DS co-frame order of arrangement [Zi ], and the blockage ratios σ2DF
and σ3DF (%) are shown
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(a) 2DF:σ = 32% (b) 3DS-2: [Z0,Z1,Z2]; σ =
15%

(c) 3DS-3: [Z0,Z1,Z2]; σ =
24%

(d) 3DS-4: [Z0,Z1,Z2]; σ =
32%

(e) 3DS-5: [Z1,Z2,Z0]; σ =
32%

(f) 3DS-6: [Z2,Z0,Z1]; σ =
132%

Fig. 4 The energy spectrum Φuu/U2∞dmin against the wavenumber k = wdmin/U∞, at differ-
ent locations along the centerline, from the 2DF and the 3DS grids. The 3DS co-frame order of
arrangement [Zi ], and the blockage ratios σ2DF and σ3DF (%) are shown
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Figures 2d and 3d, from the 3DS-4 with σ3DS = 32%, show the peaks in mean
flow and the turbulence intensities exceeding the 2DF peaks by as much as 80% in
the near-field downsteam. The peaks in Fig. 3(d) are the highest yet observed.

The comparison of the order of arrangement of the co-frames in the 3DS grids for
σ3DS = 32%, (d)–(f), shows that the turbulence is sensitive to the ordering, although
not as sensitive as a change in σ3DS . The three cases are a cyclic permutation, with the
largest scale Z0 being cycled. The order [Z0, Z1, Z2] in the 3DS-4, Fig. 3d, shows
the highest peaks in turbulence intensity, although the other two cyclic cases 3DS-5
and 3DS-6 also produce higher peaks that the 2DF. The peaks in the mean flow do
not differ much, all three cases being about 50% higher than in the 2DF.

Wenote that in some of the 3DSgrid cases the centerlinemean flowand turbulence
intensity appear to increase far downstream towards the end of the channel. This is
almost certainly due to the entrainment of turbulent flows towards the center of the
channel, because the current 2DF and 3DS are void of elements in the center. (Other
geometric configurations may produce different results.)

Finally, Fig. 4 shows the energy spectrum at different locations downstream for all
the grids considered. The spectra are obtained from time series of the velocities at the
given location, and converted from frequency domain to the wavenumber domain,
Φuu(k), where k ∼ wdmin/U∞, usingTaylor’s hypothesis. The 2DFapproaches equi-
librium turbulence,Φuu ∼ k−5/3 the fastest, andmost of the 3DS cases do not achieve
this till around x/dmin ≈ 100 remaining in non-equilibrium because the turbulence
is still developing in this region. The 3DS appears to prevent a return to equilibrium
more effectively than other types of grid.

4 Conclusions

The three-generation 3DSgrids thatwehave investigated show remarkable sensitivity
to the blockage ratio σ3DS and the order of arrangement of co-frames when compare
to the 2DF grid. Our results show that the three-generation 3DS-3 grid with σ3DS =
24% with co-frame ordering [Z0, Z1, Z2] produces turbulence characteristics that
are close to the 2DF with σ2DF = 32%; if this could be translated to lower pressure
gradient (i.e. lower energy input) then this would be very significant for industrial
applications. Furthermore, the senstivity of the turbulence to the grid parameters
implies that a better way of controling the turbulence generated could be devised.
The 3DS grids with blockage ratio equal to the 2DF – 3DS-4, 3DS-5, and 3DS-6,
with σ3DS = σ2DF = 32% in cyclic co-frame ordering respectively—show peaks in
the mean flow and the turbulence intensity in the near field downstream of the grid
that greatly exceed that from 2DF grid, by as much as 80% along some pencils.
The turbulence spectra show that the turbuence generated by the 3DS grids remain
far from equilibrium for the longest period downstream. The entrainment of the
turbulence toward the center of the channel causes the mean flow and the intensity
to increase far downstream along the centerline.
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The results presented here constitute a proof of concept for the 3DS. As this is the
first study in 3DSwe have simplified the system to facilitate a direct comparison with
the RG and 2DF of [3]; we have ignored the boundary wall effects which generates
turbulence of its own that would penetrate towards the centre as the streamwise
distance increases. However, if the 3DS grid is placed close to the channel entrance,
then the effect of boundary walls may not be so important close to the centerline in
the near field. It is also of some interest to speculate about how effective the 3DS
would be in a bigger system where the mean velocity is changing directions. Shear
generated turbulence will likely increase but would need greater pressure drop. On
the other hand, if the mixing and turbulence characteristics are dependent mainly on
the generation of length scales and time-delay between the co-frames, then it may
not matter so much. This and the effect of other parameters, such as varying the
inter-frame distances, r1 and r2, is left for future investigation.
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An Extended Pseudo Potential
Multiphase Lattice Boltzmann Model
with Variable Viscosity Ratio

Mahmud Ashrafizaadeh, Farshad Gharibi,
and Seyyed Meysam Khatoonabadi

Abstract A new multiphase lattice Boltzmann method (LBM) scheme is proposed
through which the viscosity of the two phases can be adjusted based on a theoretical
equation of states (EOS). Moreover, any other values of the viscosity can be adjusted
by the use of an extra factor of n. The proposedmodel is validated using two test cases:
The Laplace test and the two-phase Poiseuille flow. Numerical results are compared
with those of available analytical solutions. A very good agreement between these
results are shown. Furthermore, a numerical simulation of a droplet splashing on
a thin liquid film is conducted. Despite the standard LBM in which the viscosity
of the fluid is bond to the numerical relaxation time and cannot be adjusted, the
proposed model enjoys the capability of adjusting the phases’ viscosity based on
their theoretical and more physically realistic values.

Keywords Lattice Boltzmann method · Pseudo potential · Viscosity ratio · EOS

1 Introduction

Multiphase fluid flow is an important phenomenon in industrial, scientific, and engi-
neering applications. An accurate simulation of multiphase flows is a challenging
problem for researchers [3]. An efficient and recently developed computational fluid
dynamics method for the simulation of multiphase flows is the lattice Boltzmann
method (LBM) [14]. Several LBM multiphase models have been developed within
the last three decades [3] (e.g. the Rothman-Keller, the pseudopotential and the free
energy models). One of the most prevalent of these models is the pseudopotential
model [6] that was proposed by Shan and Chen [15]. However, this model suffers
from some deficiencies which limit the applicability of the Shan-Chen model for
practical purposes. Some researchers such as Yuan and Schaefer [19] and He et
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al. [7] incorporated some equations of state (EOS) into the pseudopotential model
to achieve higher density ratios. Kupershtokh et al. [10] proposed the exact differ-
ence method (EDM) to incorporate the body force into lattice Boltzmann equation
to obtain high accuracy in high-density ratios. According to previous studies, most
researchers have used the same relaxation times for both phases in the pseudopo-
tential model, i.e. the kinematic viscosity of the phases are equal and the dynamic
viscosity ratio is considered equal to the density ratio [4, 8, 18]. According to molec-
ular theory, the dynamic viscosity ratio is proportional to density ratio, but they are
not exactly the same [2]. Lou and Li [11] utilized two different relaxation time fac-
tors for liquid and gas phases in their pseudopotential multiphase model. In other
methods like the free energy model, researchers use a simple linear function of den-
sity to change the kinematic viscosity of phases [12, 16]. Chapman and Cowling [2]
determined a relation for the viscosity change in terms of the density for dense gases.
Suryanarayanan et al. [17] in their lattice Boltzmann multiphase model introduced
an expression for viscosity changes by combining the Chapman viscosity relation
[2] and the Carnahan-Starling(CS) EOS [10].

This paper aims to link the viscosity of the two phases to the theoretical values
calculated by a corresponding EOS as well as to any other desired values which can
be adjusted by the use of an extra factor n.

2 Pseudopotential Model

The lattice Boltzmann equation with the Bhatnagar-Groos-Krook (BGK) [1] term
and with an external force term can be written as

fi (x + eiδt, t + δt) − fi (x, t) = (1/τ)[ fi (x, t) − f eqi (x, t)] + ΔFi (x, t) (1)

ΔFi (x, t) = f eqi

(
ρ, u + (Fi (x, t)δt)/ρ

)
− f eqi (ρ, u) (2)

where f is the particle distribution function, τ is the relaxation time, which is a func-
tion of viscosity by ν = (τ − 0.5)/3,ΔF is the bulk force, and f eqi is the equilibrium
distribution function as the following [13]

f eqi (x, t) = ωiρ(x, y)[1 + ei · u
c2s

+ (ei · u)2

c4s
+ u2

2c2s
] (3)

where ωi is the i th weighting factor, Cs = 1/
√
3 is the lattice speed of sound, and

ei is the discrete velocity in direction i . Furthermore, ρ and u are the macroscopic
density and velocity. When δx = δt = 1, ωi and ei for the D2Q9 lattice model are
calculated by:
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ei =

⎧⎪⎪⎨
⎪⎪⎩

0 α = 0

cos
[

(α−1)π
2

]
· sin

[
(α−1)π

2

]
α = 1, 2, 3, 4

√
2cos

[
(α−5)π

2 + π
4

]
· sin

[
(α−5)π

2 + π
4

]
α = 5, 6, 7, 8

(4)

ωi = [4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36] (5)

After every iteration, the density and momentum are calculated as follows

ρ =
∑
i

fi (6)

ρu =
∑
i

ei fi (7)

The Fi (x, t) term in Eq. (2) is the inter-particle interaction force among particles
of fluid. Kupershtokh et al. suggested a combination of two force terms given by
Eq. (8)

Fi (x, t) =
(

(1 − 2A)ψ(x)
∑
i

(
ωiψ(x, x ′)ei

)
+ A

∑
i

(
ωiψ

2(x, x ′)ei
))

/αh

(8)
where h is the lattice spacing, A controls the accuracy of densities compared with the
theoretical values, and α is 1.5 in the current settings. ψ(x) is the pseudopotential
function. In Eq. (8), x

′ = x + ei are the nearest neighbor nodes. In addition, the
parameter k is incorporated into the pseudopotential function as

ψ =
√

(k p̄ − ρ̄c2s ) (9)

where p̄ = p/pcr and ρ̄ = ρ/ρcr that are named non-dimensional pressure and den-
sity, respectively, and pcr and ρcr are the critical pressure and density. The term k is
equal to pcr Δt2/ρcr Δx2. The other parameters, Δt and Δx , are the time step and
the lattice spacing, respectively. Generally, k ≈ 0.01 is an appropriate assumption
for a wide range of fluids [10]. The EDM with a non-dimensional CS EOS and a
stabilizer parameter k shows a better performance rather than the common form of
the EOS [9]

p̄ = k(
cρ̄RT̄ (1 + b ρ̄ + (b ρ̄)2 − (b ρ̄)3)

(1 − b ρ̄)3
− aρ̄2) (10)

where T̄ = T/Tcr is the non-dimensional temperature, T is the temperature and Tcr
is the critical temperature and R is the universal gas constant. Since water is used for
present simulations, a = 3.852462257, b = 0.130443884, and c = 2.785855166
are constant as mentioned in reference [10].
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In the general pseudopotential model, the viscosity of the two phases cannot
be adjusted independently, since the viscosity ratio is equal to the density ratio.
Therefore, if one relaxation time is used for both phases (which is a common practice
in existingmodels), the phase kinematic viscositieswould be equal. This is apparently
not consistent with physical observations. Hence, it is needed to find a theoretical
base to physically link the viscosity to the density such that independent kinematic
viscosities could be specified for different phases. The coefficient of viscosity in a
dense gas (μ) is related to the corresponding coefficient in a normal gas (μ

′
) by Eq.

(11) [2].

μ

ρ
= bμ

′
(

1

bρx
+ 0.8 + 0.7614bρx) (11)

where bρx can be determined from the compressibility of the fluid by dP
dT . To couple

viscosity and density of the two phases to their theoretical values, it is feasible to
utilize an EOS. Since the Carnahan-Starling EOS is utilized in the pseudopotential
function, it is used in the following consideration as well

χh = bρx = bρ(1 − bρ
8 )

(1 − bρ
4 )3

(12)

By using Eq. (12), one may find the viscosity ratio for different densities of fluid
as follows

μ1

μ2
= ρ1

ρ2

( 1
χh
1

+ 0.8 + 0.7614χh
1 )

( 1
χh
2

+ 0.8 + 0.7614χh
2 )

(13)

If Eq. (13) is multiplied by a coefficient n, other viscosity ratios could be achieved.
Due to the fact that in the LBM the relaxation time is directly related to the

viscosity, the relaxation time for the two phases could be related as follows:

τ2 = 0.5 + n(τ1 − 0.5)
( 1

χh
1

+ 0.8 + 0.7614χh
1 )

( 1
χh
2

+ 0.8 + 0.7614χh
2 )

(14)

Equation (14) allows us to specify different relaxation times for the two phases and as
a result their kinematic viscosities would be different, which is the desired outcome.



An Extended Pseudo Potential Multiphase Lattice Boltzmann Model … 341

3 Model Validation

3.1 Static Droplet

In the original pseudopotential model, the relaxation parameter is considered the
same for the whole computational domain which results in a fixed viscosity for both
phases. However, when Eq. (14) is employed for the relaxation time, each point could
have a different viscosity based on local conditions. Figure1 illustrates relaxation
time contours for a static drop surrounded by a different fluid. The present proposed
method is used for the simulation. As shown in Fig. 1, there is a distribution of
relaxation time (hence viscosity) which changes sharply near the interface due to the
sharp density gradient.

In spite of the general claim of the lack of dependency of the relaxation time and
the stability of the exact differencemethod, several numerical results indicate that the
EDM simulations become unstable when the relaxation time falls below 0.7. For this
reason, the minimum τ should be kept in a particular range. Consequently, it might
not be possible to reach the desired values of the viscosity when simulating flows
with large density ratios (up to 40). In order to alleviate this problem, the parameter
n can be specified to decrease the viscosity ratio as low as possible. Table1 provides
some minimum n values for typical density ratios to ensure a stable simulation. The
minimum achievable viscosity ratio of the original pseudopotential model are also
compared with those of the present model.

In order to ensure that the proposed model does not have negative side effects, the
Laplace’s law was tested. According to the Laplace law, the capillary pressure for a
2D droplet should be such that Pin − Pout = σ

R . Where σ is the surface tension and
R is the radius of the droplet. In this test, the computational domain (200 * 200 lu2)
is filled with a gas phase and a static droplet is placed at the center of the domain.

Fig. 1 Contours of the
relaxation time



342 M. Ashrafizaadeh et al.

Table 1 Minimum achievable viscosity ratio in different density ratio

Density ratio 26 84 196 530

Viscosity ratio
(original model)

26 84 196 530

Min n 1 5 8 18

Min achievable
viscosity ratio

26.21 30.44 82.64 221.76

Fig. 2 Pressure difference
as a function of inverse drop
radius

By changing the radius of the droplet, the pressure difference between the inside and
outside of the droplet is obtained. Figure2 shows the pressure difference versus the
inverse of the radius so that the slope of the plot shows the computed surface tension.
The results demonstrate that the surface tension and the viscosity ratio in the present
model are independent, as it should be expected. It is worthwhile mentioning that
the magnitude of the spurious current does not change noticeably when Eq. (14) is
employed.

3.2 Immiscible Two-Phase Poiseuille Flow

One of the two-phase flows that has an analytical solution is the co-current multi-
phase flow between two parallel flat walls. As shown in Fig. 3, the wetting phase
has contact with the walls, and the non-wetting phase flows between the films
of the wetting phase. In this problem, the velocity of the non-wetting phase is
affected by the dynamic viscosity ratio of the fluids [18], M = μnw

μw
. In most previous

LBM simulations, the kinematic viscosity of both fluids are considered to be equal
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Fig. 3 Schematic of
Immiscible two-phase
poiseuille flow

(by using a fixed relaxation time). Hence, the dynamic viscosity ratio would be equal
to the density ratio i.e. M = μnw

μw
= ρnw

ρw
[4, 8, 18]. But in reality, for many fluids this

is not a physical accurate assumption. In the present model, however, the dynamic
viscosity ratio can be adjusted as a function of the density ratio, allowing us to have
different relaxation times (i.e. kinematic viscosities) for different phases.

By assuming a 2D Poiseuille flow between two flat plates, the analytical velocity
profile is [18]:

u = F

2μw

(L2 − y2) a < |y| < L (15)

u = F

2μw

(L2 − a2) + F

2μnw

(a2 − y2) 0 < |x | < a (16)

whereμw andμnw are dynamic viscosities of thewetting and non-wetting phases. F is
the body force that is equal to the pressure gradient i.e. ΔP

l . The relative permeability
of each phase is defined by [18]:

Kr ·w = 1

2
S2w(3 − Sw) Kr ·nw = Snw[3

2
M + S2nw(1 − 3

2
M)] (17)

where Kr ·w and Kr ·nw are thewetting and non-wetting relative permeabilities, respec-
tively. Sw and Snw are the wetting and non-wetting saturations. The saturation of each
phase can be defined as the occupied width of the one phase divided by the entire
width of the channel [5].

In this study, a 120 * 240 lu2 computational domain with periodic boundary
conditions in the x-direction and bounce-back boundary conditions for the upper
and lower walls are considered. A constant external force is imposed on both phases
to move the flow inside the channel. Figure4 shows the velocity profiles of the two-
phase flow at different wetting saturations. In this case, a gas density of 0.102, and
a fluid density of 2.57 is assumed. As illustrated in Fig. 4,the present LBM results
show good agreement with those of the analytical solution. However, by increasing
the saturation of the non-wetting phase, a small deviation from analytical results
are detected. This difference originates from the effect of the interface thickness on
the calculated velocities. In fact, when the wetting layer’s height is in the order of
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Fig. 4 Velocity profile
perpendicular to the
direction of the flow for
different saturation

Fig. 5 Velocity profile
perpendicular to the
direction of the flow for
original and new method in a
same condition

the interface thickness, the velocity error at the interface affects the total calculated
velocity of the wetting phase. Figure5 compares the velocity profiles across the
channel for a = 72 for the present model and the original model. As shown, the
original model under predicts the velocity profile.

Using the calculated velocity profiles, the relative permeability of both phases
can be determined as a function of the saturation and the viscosity ratio. Figure6
shows the relative permeability of the wetting phase calculated by both the general
pseudopotential model and the newmodel. According to Eq. (17), the relative perme-
ability of the wetting phase does not depend on the viscosity changes of the phases.
Based on Fig. 6, it can be seen that the proposed model illustrates this point well.
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Fig. 6 Relative
permeabilities for the
wetting phases

Fig. 7 Relative
permeabilities for the
non-wetting phases

Figure7 also illustrates the relative permeability of the non-wetting phase, where the
effect of changing the viscosity of the phases can be observed. The results show that
there is a good agreement between the LBM simulation and that of the analytical
solution.
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3.3 Droplet Splashing

In this section, the problem of a droplet, with an initial velocity, splashing on a thin
liquid film is investigated. The effect of using a variable viscosity model is compared
with that of a constant viscosity assumption. Figure8 shows an overview of the initial
conditions of the problem. For the simulation, a drop with a radius of 50 (lattice unit)
and an impact velocity of V =−0.13 is considered in a 250 ∗ 800 lattice unit solution
domain. The reduced temperature is set to be T̄ = 0.5, and the relaxation time of the
gas phase is set to be τ = 1.8.

Figures 9 and 10 show the snapshots of this simulation at different times. As can
be seen from Fig. 9, in constant viscosity model, only an outward wave is generated
whereas in themodified presentmodel, as shown in Fig. 10, a crown is created radially
away from the center, which is qualitativelymore consistent with actual observations.

Fig. 8 Initial condition of droplet splashing on a thin liquid film (dark blue = liquid phase, light
blue = gas phase)

Fig. 9 Density contours of the splashing simulation by constant viscosity model at a t = 300, b t
= 1200, c t = 2100, d t = 3000 (lattice unit)

Fig. 10 Density contours of the splashing simulation by variable viscosity model at a t = 300, b t
= 1200, c t = 2100, d t = 3000 (lattice unit)
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4 Conclusion

In this study, a new scheme is proposed formodelingmultiphase flows throughwhich
viscosity of two phases can be adjusted based on a theoretical equation. In order to
show the capabilities of the suggested model, the Laplace test has been conducted.
The results illustrate that the density and the surface tension are independent of
the specified viscosity. Also, the relative permeability tests for a two-phase flow
between parallel plates, show a good agreement with those of analytical results. With
the decrease of the wetting fluid saturation, the simulated velocity profile slightly
deviated from that of the analytical values. Moreover, a coefficient n is incorporated
into the viscosity equation that can be utilized to specify arbitrary viscosity ratios.
However, this factor is limited, especially when large density ratios are considered.
The present model seems to be a promising tool to play a significant role in the
simulation of practical applications, such as phase transition flows.
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Approximating Dispersive Materials
with Parameter Distributions in the
Lorentz Model

Jacqueline Alvarez, Andrew Fisher, and Nathan L. Gibson

Abstract We seek to improve the accuracy of the Lorentz model by incorporating a
distribution of dielectric parameters and introducing a microscopic quantity we call
the random polarization. Thus the usual polarization is the macroscopic average, or
expected value, of the random polarization. The forward problem in the frequency
domain demonstrates the difference between the distributed and deterministic mod-
els. Using a least squares cost formulation and χ2 significance test, we explore the
parameter identification problem for saltwater data. For analysis in the time domain,
we use Polynomial Chaos and the Finite Difference Time Domain methods to dis-
cretize in one dimension. We then examine two time domain inverse problems that
compare interrogation signals.

Keywords Lorentz model · Random polarization · Polynomial chaos · Parameter
estimation

1 Introduction

Electromagnetic interrogation of dispersivematerials is of current interest in industry
for its potential as a non-invasive method in identifying weaknesses or compositions
in materials. An example is determining a material’s dispersive properties through
the analysis of a single transmitted ultra-wideband (UWB) pulse. Several differ-
ent methods have been suggested that expand on the common Lorentz polarization
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model, some employing linear combinations of poles or normally distributed poles
to fit models to data [5]. In this paper, however, we explore placing beta distributions
on the dielectric parameters in the model.

First we present necessary background information including Maxwell’s equa-
tions, the constitutive equations, and the Lorentz model. Next we introduce ran-
dom parameters and define random polarization. Then using Fourier transforms,
we explore the frequency domain through the complex permittivity and present a
parameter identification problem. For analysis in the time domain, we use Polyno-
mial Chaos and the Finite Difference Time Domain (FDTD) method to discretize in
one dimension. We then examine two time domain inverse problems that compare
interrogation signals.

2 Background

2.1 Maxwell’s Equations

We begin by presenting Maxwell’s equations that describe the behavior of electro-
magnetic waves in free space. D is the electric flux density, E and H are the electric
and magnetic fields. The magnetic permeability of free space is given by μ0

∂D

∂t
+ J = ∇ × H (1a)

μ0
∂H

∂t
= −∇ × E (1b)

∇ · D = 0 (1c)

∇ · B = 0 (1d)

Next, we incorporate the constitutive laws that adapt Maxwell’s equations for
propagation in materials. We let ε̃ represent the electric permittivity which is equal
to the product of the permittivity of free space and a relative permittivity (ε̃ = ε0ε∞).
The polarization in the material is given by P , defined by

D = ε̃E + P. (2)

To find the equations defining electromagnetic waves in a material, we substitute
the constitutive equations intoMaxwell’s curl equations and reduce to one dimension:

ε̃
∂Ex

∂t
= −∂Hy

∂z
− ∂Px

∂t
(3)

μ0
∂Hy

∂t
= −∂Ex

∂z
. (4)
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From now on, we drop the subscripts so that E(t, z) = Ex (t, z), P(t, z) = Px (t, z),
and H(t, z) = Hy(t, z).

Prior to interrogation, there are no fields or polarizations present so our initial
conditions are:

E(0, z) = H(0, z) = P(0, z) = 0. (5)

Our boundary conditions include the interrogating signal, f (t), at z = 0 and a
reflective surface at z = z0:

E(t, 0) = f (t) and E(t, z0) = 0. (6)

2.2 Lorentz Model

There are several models that describe polarization in materials. In this paper, we
focus on the Lorentz model [4] for which the physical assumption is that we can
treat electrons in the material as simple harmonic oscillators. The Lorentz model is
given by

P̈ + 2ν Ṗ + ω2
0P = ε0ω

2
pE (7)

where ν is the damping coefficient, ω0 is the natural resonant frequency and ωp is
the plasma frequency.

Taking the Fourier transform of (2) [4], we get D̂ = ε0ε(ω)Ê where ε(ω) is called
the complex permittivity, and is given by

ε(ω) = ε∞ + ω2
p

ω2
0 − ω2 + i2νω

. (8)

It is useful to separate (8) into its real and imaginary parts. The real part is pri-
marily responsible for the material effect on the frequency dependent speed of wave
propagation, or dispersion, while the imaginary part is primarily responsible for loss
or dissipation. As such, it is common to write the imaginary part as an effective (fre-
quency dependent) conductivity. Thus the separation is ε(ω) = εr (ω) − iσ(ω)/ω:

εr = ε∞ + ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + 4ν2ω2

(9a)

σ = ω2
p2ν

(ω2
0 − ω2)2 + 4ν2ω2

. (9b)
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2.3 Random Polarization

In this paper, we explore the effects of altering the original Lorentz model by apply-
ing a probability distribution to the resonance frequency, or rather η = ω2

0 (since ω0

always appears as ω2
0, we choose to vary ω2

0 for simplicity). In order to use distri-
butions of parameters with Maxwell’s equations [8], we define the random Lorentz
model similar to (7), but where the resonance frequency is now a random variable
and P is the random polarization:

P̈ + 2νṖ + ηP = ε0ω
2
pE . (10)

Next, we declare that the macroscopic polarization P , defined in (2), is modeled
by the expected value of the random polarization, where η is a random variable
defined over [a,b] with probability density function f (η) [2]:

P(t, z) = E[P] :=
∫ b

a
P(t, z; η) f (η) d(η). (11)

For example, in the case of a uniform probability distribution, f (η) = 1
b−a .

Thus, (11) along with (10) represents a more sophisticated model for the macro-
scopic polarization present in a material than does the simple Lorentz model given in
(7). We note that the Lorentz model is a subset of the random Lorentz model which
assumes a discrete distribution of parameters consisting of a single value.

3 Frequency Domain

Now we consider the frequency domain formulation of the random Lorentz model.
The complex permittivity (8) becomes

ε(ω; η) = ε∞ + ω2
p

η − ω2 + i2νω
. (12)

An observed, measured value for the permittivity or conductivity of a material
would represent a macroscopic average of a microscale phenomenon. Thus, in order
to compare this random Lorentz model for complex permittivity to data, we must
compute its expected value. Because η is a random variable, we must integrate over
the corresponding probability distribution to find the expected complex permittivity.
In the case of a uniform distribution, it turns out that there is an analytical formula
[1]. Otherwise, numerical quadrature can be used.
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3.1 Frequency Domain Inverse Problem

The complex permittivity describes how a signal will propagate in a Lorentz mate-
rial with given parameters. The frequency domain inverse problem involves recov-
ering the appropriate material parameters, say q, by fitting a model to experimen-
tal data. Using a least squares cost formulation, we optimize using the MATLAB
lsqnonlin function. We consider a fixed range of frequencies, and a uniform
mesh on this range. We assume that permittivity and conductivity measurements are
available corresponding to these discrete frequencies.We let the permittivity and con-
ductivity data vectors be concatenated into a single vector Vdata . Then, given a trial
set of material parameters, q, a complex permittivity model (either the deterministic
Lorentz or the random Lorentz) can be evaluated at the same discrete frequencies
and will produce a vector of complex permittivity values Vmodel(q) to compare to
the data. The residual (R(q)) of this process is defined as the difference between the
measured data and the model estimate. The least squares cost (F(q)) is defined as
the norm of the residual, thus

R = Vdata − Vmodel (13)

F = RT R. (14)

If the permittivity and conductivity are on the same order of magnitude, they do not
need to be scaled relative to each other. Thus our parameter estimation problem is to
find q such that F(q) is minimized.

Wewant to show that randompermittivities are distinct from deterministic permit-
tivities. For example, [9] discusses how the Lorenz-Lorentz model for permittivity is
actually equivalent to the shifted Lorentz model with equivalence when the inequal-
ity ω2

p � 6νω0 is satisfied. To be sure the permittivities are distinct, we apply a
deterministic fit of parameters to data which comes from a uniform distribution.
For comparison, we plot the deterministic permittivity, i.e., using the expected value
with no distribution. Results are shown in Fig. 1 where the distribution’s (relative)
range is the radius divided by the midpoint (r = b−a

b+a ). As expected, the deterministic
permittivity model was unable to fit the random permittivity data.

We now attempt to fit parameters to actual saltwater data from [10]. The fits and
results are shown in Fig. 2 and Table 1. The error in the deterministic model fit is
twice that of the distributional model fit.

To determine if there is statistical significance between the fits, we use the hypoth-
esis testing presented in [3]. First we let q = (ν, E[ω2

0], ωp, r) ∈ Q where Q is the
parameter set. Then, we define Q0 to be the set {Q0 ∈ Q : r = 0} (e.g., a discrete
distribution, or a deterministic model) and let q̂	 and q̄	 denote minimizers of Q0

and Q, respectively. We construct the hypotheses H0 : r = 0 and HA : r �= 0 so that
a rejection of the null hypothesis correlates to a difference in the fits. Finally, we
define the test statistic:

U	 = 	
[
F	(q̂	) − F	(q̄	)

]
F	(q̄	)

(15)
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Table 1 Results for saltwater fits

Source ε∞ ν (1 × 1013) ω0 (1 × 1014) Range ωp (1 × 1014) Cost

Det. fit 1.7931 2.7547 6.3568 – 1.7333 0.1704

Dist. fit 1.7901 1.6112 6.3608 0.0855 1.6067 0.0655

where 	 is the number of data points and F	 is the minimized cost.
We proceed by using a significance level α and χ2(s) distribution with s degrees

of freedom to obtain the threshold τ so that P
(
χ2(s) > τ

) = α. We compare U	

with τ , such that if U	 > τ we reject the null hypothesis H0. Because the parameter
r is the only degree of freedom (s = 1), we refer to Table 2.

Our simulations return F	(q̂) = 0.1704 and F	(q̄) = 0.0655 with 	 = 79. Plug-
ging those values into (15) we get U	 = 126.584. Because U	 � τ , we reject H0.
Thus, we can conclude that a distributed model provides a statistically significantly
better fit than a deterministic model.

Fig. 1 Plots of the permittivity data, as well as the fitted model, for synthetic data using parameters:
ν = 3, ωp = 50,E[ω2

0] = 110, and r = 0.25

Fig. 2 Plots of the permittivity data, as well as the fitted model, for saltwater data
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Table 2 χ2 distribution with
1 degree of freedom

α = 0.25 τ = 1.32

α = 0.10 τ = 2.71

α = 0.05 τ = 3.84

α = 0.01 τ = 6.63

α = 0.001 τ = 10.83

Table 3 Bimodal fit comparison

Source ε∞ ν ω0 Range ωp ν2 ω0,2 Range ωp,2 Cost

Data 1.000 13.000 110.000 0.200 50.000 20.000 150.000 0.300 70.000 –

Uni-modal 0.986 14.659 134.811 0.539 83.861 – – – – 4.763

Bi-modal 0.978 15.079 110.918 0.179 53.817 20.573 151.327 0.262 68.229 0.1118

Bi-discrete 0.970 17.693 111.580 – 55.571 27.731 151.144 – 71.073 0.4894

3.2 Bimodal Data

We also consider fitting parameters to bimodal data. First, we create data using a
distribution with the parameters given in Table 3. Because real data requires repeated
measurements, instrument errors can be propagated. For this reason, we add normally
distributed noise with μ = 0 and σ = 0.001 to the derivatives of the bimodal data.
Then we optimize with uni-modal, bi-modal, and bi-discrete model fits. Results are
given in Table 3. As expected, the bi-modal model fit best matches the data with
F = 0.1118, the uni-modal cost was 10 times larger.

4 Time Domain Discretization

Now we consider the time domain formulation of the random Lorentz model, using
PolynomialChaos to dealwith the randomvariableω2

0. PolynomialChaos is amethod
of solving random differential equations by expressing quantities as orthogonal poly-
nomial expansions in the random variable [11]. We expand in the normalized Jacobi
polynomials, but because they are defined on [−1, 1] it is necessary to scale our
distribution. Letting ω2

0 = m + rξ so that ξ is defined on [−1, 1], we identify m
and r as the center and radius of the distribution. Random polarization can now be
expressed as a function of ξ ,

P(ξ, t) =
∞∑
i=0

αi (t)φi (ξ). (16)
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We refer the reader to the details in [1, 7], which include a rigorous analysis of
the stability and dispersion properties of the FDTD method described here. Each of
these is an extension of the methods developed in [8].

Letting α̇ = β we express the polynomial chaos modal equations for (10) as a
system of differential equations:

α̇ = β (17a)

β̇ = −Aα − 2ν Iβ + f, (17b)

where f = ê1ε0ω2
pE .

4.1 FDTD Discretization

Combining Maxwell’s equations with our results from Polynomial Chaos, we have
the four equations that completely determine propagation through a dielectric mate-
rial. We repeat them here as a reference:

ε∞ε0
∂E

∂t
= −∂H

∂z
− β0 (18a)

∂H

∂t
= − 1

μ0

∂E

∂z
(18b)

α̇ = β (18c)

β̇ = −Aα − 2ν Iβ + f . (18d)

It is important to note that ∂P
∂t is the time change in macroscopic polarization or

the time change of the expected value of our random polarization. Since only the 0th
Jacobi polynomial is constant, we identify β0 = ∂P

∂t with the other polynomials and
coefficients determining uncertainties. This explains our substitution in (18a).

To model these equations, we discretize them according to the one-dimensional
Yee Scheme [12]. The Yee Scheme implements a staggered grid where the electric
field and random polarization are evaluated at integer time steps and spatial steps,
while the magnetic field is evaluated at half integer time steps and spatial steps.
We consider the domain z ∈ [0, z0] for t ∈ [0, T ], choosing integers J and N to
discretize so that Δz = z0

J and Δt = T
N . Let z j = jΔz and tn = nΔt . If U is a field

variable, we define the grid function to be

Un
j ≈ U (x j , t

n).

Our discrete initial conditions and boundary conditions are:

E0
j = α0

j = β0
j = 0 for 0 ≤ j ≤ J, Hn

j = 0 for 0 ≤ j ≤ J and n ≤ 0,
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En
0 = f (tn) and En

J = 0 for 0 ≤ n ≤ N .

First we approximate derivatives with finite differences and constant terms with
averages:

ε∞ε0
En+1

j − En
j

Δt
= −

H
n+ 1

2

j+ 1
2

− H
n+ 1

2

j− 1
2

Δz
− βn+1

0, j + βn
0, j

2
(19a)

H
n+ 1

2

j+ 1
2

− H
n− 1

2

j+ 1
2

Δt
= − 1

μ0

En
j+1 − En

j

Δz
(19b)

αn+1
j − αn

j

Δt
= βn+1

j + βn
j

2
(19c)

βn+1
j − βn

j

Δt
= −A

αn+1
j + αn

j

2
− 2ν I

βn+1
j + βn

j

2
+ ê1ε0ω2

p

2

[
En+1

j + En
j

]
. (19d)

Equations (19a), (19c), and (19d) are defined for {1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1}
and (19b) is defined for {0 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1}.

5 Time Domain Inverse Problem

In this section,we apply our forward simulation to the timedomain inverse problem. It
was proven in [2] that unique solutions exist for time-domain parameter identification
problems involving dispersive Maxwell’s equations posed with distributions over
dielectric parameters. Specifically,wewish to reconstruct the parameters of amaterial
from noisy data collected by a receiver a distance of 0.252 μm into the material. We
borrowparameter values from [4].Assuming ε∞ = 1 and that the interrogating signal
is known, only three parameters need to optimized: ν, ω0, and ωp. Note that τ := 1

2ν
and we use τ for convenience in the simulations, so the results reported below are in
terms of τ .

For this time-domain parameter identification problem, the received data is
observed electric field values at a discrete set of times. We collect these in a col-
umn vector Vdata . Given a trial value of a vector of material parameters, say q, we
may simulate a model of the system and collect electric field estimates at the same
point in space and discrete times in order to form a vector Vmodel(q). We again define
the residual R(q) and cost F(q) as in (14) and (13). We intend to determine the
dielectric parameter set q which minimizes the cost F(q).

We use both Finkel’s Direct global optimization program [6] and the MATLAB
lsqnonlin function.Direct takes the n-dimensional rectangular region determined
by given bounds and iteratively divides into smaller rectangles, checking for possible
minimums. In this way, Direct is able to find the global minimum for functions
with several local minima. On the other hand, lsqnonlin function uses gradient
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methods to converge quickly to the nearest localminimum.Our strategy is to obtain an
approximate solution using Direct to optimize ω2

0 and ωp, and then finish optimizing
all three parameters with lsqnonlin.

For the first inverse problem, we consider how the deterministic model fits a
distribution for single frequency signals. Data is synthesized from a model using a
probability distribution with a range of 0.25 and then contaminated with normally-
distributed random noise with a standard deviation of ς .

We apply both deterministic and distributed fits for the 8 × 1015 frequency signal
with noise of ς = 2 for comparison. Results are given in Table 4. Even though our
method accurately recovered the true values of the material, the distributed fit was
unable to significantly improve on the deterministic fit.

For the second inverse problem, we create data from the same distribution and
attempt to apply deterministic and distributed fits. However, we now use a UWB as
our interrogating signal:

f (t) =
n∑

i=1

αi sin( fi t) (20)

where fi are angular frequencies linearly spaced from 1 × 1014 to 1 × 1016 and αi

are weights determined by the beta distribution β(1, 3). Results are given in Table 5
using n = 100. It is clearly harder for the deterministic model to fit a UWB than a
single frequency signal.

The data supports the suggestion above that the distributed model struggles with
estimating τ from the data. This is expected since a large change in τ corresponds to
a small change in the cost function. Also, the distributed fit did make an appreciable
difference over the cost of the deterministic fit. This agrees with our simulations in
the frequency domain where the deterministic model was unable to fit parameters to
the distributed permittivity over a spectrum of frequencies.

Table 4 Fit comparison: Freq = 8 × 1015 and ς = 2

Source τ (1 ×
10−16)

ω0 (1 ×
1016)

Range ωp (1 ×
1016)

Cost Norm. cost

Data 7 1.8 0.25 2 – –

Det. fit 6.9489 1.7543 – 1.9697 23971 3.995

Dist. fit 6.9819 1.8049 0.2438 1.9984 23591 3.932

Table 5 Fit comparison: UWB with ς = 2

Source τ (1 ×
10−16)

ω0 (1 ×
1016)

Range ωp (1 ×
1016)

Cost Norm. cost

Data 7 1.8 0.25 2 – –

Det. fit 6.4433 1.7757 – 2.0135 25825 4.304

Dist. fit 7.0650 1.7999 0.2493 1.9998 23441 3.907



Approximating Dispersive Materials with Parameter Distributions in the Lorentz Model 359

6 Conclusion

We showed in the frequency domain that applying a distribution to ω2
0 can produce

significantly better fits of parameters to real data than the deterministic Lorentz
model. In the time domain, we used Polynomial Chaos and finite differences with
the first order Yee Scheme to discretize the Maxwell-random Lorentz system. In [1]
it was shown that the Polynomial Chaos method converged quickly for the number of
polynomials used in the expansion. For the inverse problem, we compared a single
frequency interrogating signal with a UWB pulse. The distributed model only fit
better than the deterministic model over a range of frequencies as implied by the
complex permittivity plots in the frequency domain.
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Coulomb Explosion Imaging:
Super-Resolution by Optical Properties
of Electrostatics Lenses

David Babalola and C. Sean Bohun

Abstract Velocity-map imaging (VMI) is a popular technique in a Coulomb-
explosion imaging experiment with the capacity to focus photo-fragments based on
their initial velocity vectors. The VMI is capable of achieving this feat as a result of
the system of electrostatic lenses with varying potential, which the photo-fragments
have to transit. However, despite the focusing capability of the VMI, the measured
time-of-flights of the photo-fragments still suffer from a temporal spread, which is
a consequence of the initial velocity and spatial spread at the point of formation.
To be able to improve the spatial-temporal resolution of the photo-fragments at the
point of formation, there is a need for a better understanding of how the system of
electrostatic lenses alter the trajectories of the photo-fragments between formation
and detection to achieve a velocity map. Also, an expression is derived to resolve the
spatial spread of the photo-fragment products.

Keywords Resolution · Velocity-map · Time-of-flights

1 Introduction

Coulomb-explosion imaging (CEI) is a technique used to determine a molecular
structure by retrieving in coincidence the momenta of all the fragment ions from the
parent molecule following the stripping of its valence electrons by an intense laser
pulse [6–8]. In a CEI experiment, velocity-map imaging (VMI) is a technique that
maps photo-fragments to the detector based on their initial velocities [5]. This simply
means that, fragments with the same initial velocity will end up at the same spot on
the detector, regardless of their initial positions at formation. In practice, the time
of arrival of these positive ions are noted along with the positions of impacts on the
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detector. This information is vital for CEI, in particular for molecular reconstruc-
tion. From this information, correlation among the photo-fragments are determined
to know those ions that are in coincidence i.e. the ions that undergo the same frag-
mentation process. The primary data used for the correlation of the fragments is the
time of flight (TOF) [1, 6–8, 14], and the spatial data is used in the calculation of
kinetic energy and angular distributions [5]. Hence, the need for a highly resolved
measured data. According to [12, 13], some independent factors that impact the
resolution of the time of flight are: responsiveness of the detection system, initial
velocity spread, initial position spread and the field inhomogeneity. Research efforts
have been directed at resolving some of these issues but some resolution concern
still persists [2–5, 10, 11].

The central theme of this article is to look at how to improve resolution by adjust-
ing the measured spatial-temporal information. This approach entails understanding
how the electrostatic lens system creates velocity map as the ions transits the spec-
trometer, examine if the focusing of the fragments on the detector is mass-per-charge
dependent and derive an expression for adjusting the spatial-temporal information.At
the moment, this study does not consider the effects of open apertures on VMI lenses
on the electric field, therefore, the potential is assumed linear between segments.
The remainder of the article uses a paraxial approximation of the potential, which
indirectly describes the fragment motion along axial direction. This is followed by
the exploitation of the optical properties of the electrostatic lens in understanding
time spread, an explanation of the simulation results, and a conclusion.

2 Paraxial Approximation

To improve spatial-temporal resolution inCEI experiments, there is a need for a better
understanding of the dynamics of a fragment in a time-of-flight spectrometer (TOFS).
Hence, we zoom-in on the influence of the electrostatics lenses on its trajectory under
paraxial approximation. First of all, the electric field E = (Er , Eθ , Ez) is given by
−∇φ and it satisfies the Laplace’s equation ∇2φ = 0 due to the lack of internal
charge. In a paraxial approximation, the trajectory is assumed to be near the optical
axis and we will show that indeed Er � Ez (i.e. the axial field component dominates
the radial field component). The performance of a TOFS depends only on the ratios of
the geometrical dimensions and potentials, which means any TOFS is scalable [13].

Let the radial and axial coordinates be scaled according to the physical dimension
of the spectrometer of length L and radius R. In addition, the potential is scaled by
the characteristic operating voltage VR of the lens system so that

r = Rr̃ , z = Lz̃, φ = VRφ̃. (1a)

The nondimensional parameter
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ε = R

L
� 1 (1b)

for typical spectrometer. Using this parameter, and assuming an axi-symmetric,
steady state, electric potential φ = φ(r, Z) satisfies

1

r

∂

∂r

(
r
∂φ

∂r

)
+ ε2

∂2φ

∂z2
= 0, φ(0, z) = 0 (2)

where the tildes have been dropped for convenience. Expanding φ in a power series
in ε, we let

φ(r, z) =
∞∑
j=0

ε2 jφ j (r, z). (3)

Substituting this representation into expression (2), we have the following recursive
equations,

1

r

∂

∂r

(
r
∂φ j

∂r

)
= −∂2φ j−1

∂z2
, φ j (0, z) = 0, j = 0, 1, . . . (4)

where for φ−1 ≡ 0. Solving (4) for j = 0, we have

φ0(r, z) = c0(z) ln r + c1(z). (5a)

To ensure that the potential remains bounded along r = 0 gives

φ0(r, z) = c1(z) = φ(0, z) = Φ(z). (5b)

From this first result, the remaining terms can be solved explicitly and collecting
these results,

φ(r, z) =
∞∑
j=0

ε2 j
(−1) j

22 j
r2 j

( j !)2
d2 jΦ

dz2 j
. (5c)

The corresponding electric field, with the assumption of azimuthal symmetry,

E(r, z) = −∇φ(r, z) = −
〈
∂φ

∂r
,
1

r

∂φ

∂θ
,
∂φ

∂z

〉
= 〈Er , Eθ , Ez〉 , (6)

allows one to identify Eθ = 0 and

Er (r, z) = r

2

d2Φ

dz2
ε2 + O

(
ε4

)
, Ez(0, z) = −dΦ

dz
+ r2

4

d3Φ

dz3
ε2 + O

(
ε4

)
. (7)
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3 Optical Property and Time Dispersion

Following the asymptotic expansion of the electric potential, there is a need to under-
stand how the electrostatic lenses perturb the flight path to be able to achieve a veloc-
ity map. This exploration is carried out under paraxial approximation and the time
dispersion is also analysed. Under the strict paraxial assumption for the potential,
(ε = 0),

E = −∇φ = −dφ

dz
k̂ (8)

so that the changes in speed are restricted to the k̂ direction. Focusing on the corre-
sponding z = z(t) location, the trajectory of a fragment with mass m and charge q
satisfies,

d2z

dt2
= 1

2

d

dz

(
dz

dt

)2

= − q

m

dΦ

dz
, 0 ≤ z ≤ � (9)

where � > 0 denotes the downstream edge of the lens assembly. Integrating from z1
to � ≥ z2 > z1, and letting v = dz/ dt ,

v2(z2) − v2(z1) = −2q

m
(φ(z2) − φ(z1)) . (10)

With this expression we consider the effect of a dispersion in both the initial position
and initial velocity. In particular, v0(t) with z(t = 0) = 0, v0(z(t = 0)) = 0, and
v1(t) with z(t = 0) = Δz, v1(z(t = 0)) = Δv. At a position z, with Δz < z ≤ �,

v2
0(z) = −2q

m
(Φ(z) − Φ(0)) , (11a)

v2
1(z) = −2q

m
(Φ(z) − Φ(Δz)) + (Δv)2 = v2

0(z) − v2
0(Δz) + (Δv)2 , (11b)

where we have assumed that dφ/dz < 0 for the entire interval. The time to reach
z = � in either scenario is therefore

T0 =
∫ �

0

dt

v0(z)
, T1 =

∫ �

Δz

dt

v1(z)
, (12a)

and consequently,

ΔT = T1 − T0 =
∫ �

Δz

dz

(v2
0(z) − v2

0(Δz) + (Δv)2)1/2
−

∫ �

0

dz

v0(z)
. (12b)
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It is convenient to define an auxiliary displacement Δz1 to be that position where
v1 vanishes so that v1(Δz1) = 0. According to (11b),

v2
0(Δz1) − v2

0(Δz) + (Δv)2 = 0. (13)

With this definition we can rewrite (12b) as

ΔT = −
∫ �

0

dz

v0(z)
+

∫ �

Δz1

dz

(v2
0(z) − v2

0(Δz1))1/2

− sgn(Δv)

∫ Δz

Δz1

dz

(v2
0(z) − v2

0(Δz1))1/2
(14)

where the sgn(Δv) factor compensates for the ordering of Δz and Δz1.
Each of these integrals are now approximated assuming Δz and Δz1 are close to

zero. In particular,

(
v2
0(z) − v2

0(Δz1)
)−1/2 = (2a0(z − Δz1))

−1/2

(
1 − b0

8a0
(z + Δz1) + O

(
z2

))

(15a)

where

a0 = 1

2

dv2
0(z)

dz

∣∣∣∣
z=0

, b0 = d2v2
0(z)

dz2

∣∣∣∣
z=0

. (15b)

Integrating over [Δz1,Δz] we find

sgn(Δv)

∫ Δz

Δz1

dz

(v20(z) − v20(Δz1))1/2
= sgn(Δv)

(
2(Δz − Δz1)

a0

)1/2
(1 + Λ(Δz))

= Δv

a0
(1 + Λ(Δz)) , Λ(Δz) = b0(Δz + 5Δz1)

24a0
+ O

(
(Δz)2

)
, (16)

where expression (13) expanded about z = 0 gives

Δz1 = Δz − (Δv)2

2a0
+ O

(
(Δz)2

)
. (17)

Similarly, detailed in the Appendix,

∫ �

0

dz

v0(z)
−

∫ �

Δz1

dz

(v20(z) − v20(Δz1))1/2
= Δz

(
1

v0(�)
+

∫ �

0

a(z) − a0
v30(z)

dz

)
+ O

(
(Δz)2

)
.

(18)

Combining (16) and (18) the total time dispersion is to first order in Δz and Δv,



366 D. Babalola and C. S. Bohun

z= z0

φ0

φ+
0

z= z1

φ1

φ+
1φ −

1

z= z2

φ2

φ+
2φ −

2

z= z3

φ3

φ −
3

ζ1 ζ2 ζ3

Fig. 1 Askeleton of a systemof N = 3 electrostatic lenseswithmultiple segments {ζk}3k=1 showing
how the potentials immediately before and after an electrode. Within each segment, the potential is
linear and the acceleration is constant

ΔT = Δv

a0
+ Δz

(
1

v0(�)
+

∫ �

0

a(z) − a0
v3
0(z)

dz

)
, a(z) = 1

2

dv2
0(z)

dz
. (19)

In conclusion, this analysis shows that the dispersion due toΔv cannot be eliminated
but is minimized by increasing the initial acceleration. In contrast the dispersion due
to the spread in initial location, Δz, can be eliminated by choosing potential so that
the condition

∫ �

0

a0 − a(z)

v3
0(z)

dz = 1

v0(�)
(20)

is satisfied.
To understand how a series of lenses impact the trajectory of a fragment between

formation and detection, we consider an N -segment TOFS. To this end, consider a
collection of N segments ζk = [zk−1, zk], k = 1, 2, . . . , N . with a specified velocity,
v(zk) = vk . Figure 1 illustrates a TOFS for N = 3. Assuming a constant acceleration
ak for segment ζk then

ak = v2
k − v2

k−1

2(zk − zk−1)
, tk = 2(zk − zk−1)

vk + vk−1
, T0 =

N∑
k=1

tk (21)

where tk is the time to traverse segment ζk and T0 is the time taken to transit all of
the segments.
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The axial motion is governed by (9) for each segment. Focusing on the radial
motion we have

d2r

dt2
= q

2m

d2Φ

dz2
r (22)

where the constant axial acceleration, dΦ/ dz = const, translates into a constant
velocity in the radial direction. Considering a fragment that enters ζk at a radius of
rk−1, and velocity dr/ dt (z = zk−1) = ṙk−1 will exit at radius rk = rk−1 + ṙk−1tk . As
a transition matrix,

(
rk
ṙk

)
=

(
1 tk
0 1

) (
rk−1

ṙk−1

)
= Pk

(
rk−1

ṙk−1

)
, (23)

for the segment ζk . As the fragment crosses from one segment to the next, there
is jump in the potential which updates the velocity and using (22) gives the jump
condition

ṙ+
k − ṙ−

k = q

2m

r−
k

vk
(φ+

k − φ−
k ), r+

k = r−
k , (24)

or as a matrix we have

(
rk
ṙk

)+
=

(
1 0

q
2m (φ+

k − φ−
k ) 1

) (
rk
ṙk

)−
= Lk

(
rk
ṙk

)−
. (25)

Combining (23) and (25) for the 3-lens TOFS system,

(
r3
ṙ3

)
= M

(
r0
ṙ0

)
, M = P3L2P2L1P1 =

(
M11 M12

M21 M22

)
(26)

is the transformation matrix connecting the initial radial position and velocity of a
fragment with its final radial position and velocity at the detector. Since Pk and Lk

have unit determinant, the matrix M itself has unit determinant so that the transfor-
mation is uniquely invertible.

IfM12 = 0 then fragments leaving the same position on at their point of formation,
will hit the same spot on the detector, irrespective of their initial velocity. That is,
there is a one-to-one relationship between the radial position on the detector and its
radial position at its starting point [9, 12, 13]. Similarly, ifM11 = 0, andM12 
= 0, the
TOFS can achieve a velocity map in which fragments with the same initial velocity
can be mapped to the same position, irrespective of their initial position. This second
property is utilized in a VMI lens setup by placing a position-sensitive detector in
the focal position. In this latter case

M11 = 1 + q

2m
f ({tk}3k=1, {φ−

k }3k=1, {φ+
k−1}3k=1) (27)
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Fig. 2 An exaggerated hit
positions on a
position-sensitive detector.
All measurements are with
reference to the center-line
of the TOFS, i.e. the dashed
horizontal line. For a detector
placed at z = L , r2 = r4 is a
hit position for two smaller
masses with the same initial
velocity, and r1,r3 are hit
positions for another two
larger masses with the same
initial velocity. Adjustment
is made to the positions r1, r3
so that they have a common
hit position r

′
1 = r

′
3.

r1

r2 = r4

r3

r′1 = r′3

z= L z= L′

for a continuous function f . Therefore, placing the detector at a focal point for a
fragment with a small value ofm would not properly focus a much heavier fragment.
So, there is a need to adjust the measured data for the fragments to account for this
deficiency. This effect is shown in Fig. 2 where four fragments arrive at a detector
with one pair, fragments 2 and 4 of say mass m = m1, arriving at the focal z = L
and fragments 1 and 3 of mass m = m2 
= m1, coinciding at the focal plane z = L ′.

An example of this effect is simulated in Fig. 3 where the detector is re-positioned
from z = L to z = L ′. In this simulation, theflight of four ions, twopairs, is calculated
with a pair having the samemass per charge. For each pair of ion, one is back-scattered
and the other is forward-scattered. Also, the position of each ion is rotated to account
for all possible angles of flight. Themeasured spatial-temporal data for the fragments
are re-calculated to compensate the fact that a single fixed detection plane would not
provide an adequate resolution achievable by the detection system. The new final
positions are calculated with r ′ = r − Δr , where r ′ ∈ (r ′

1, r
′
3), r ∈ (r1, r2, r3, r4),

r̄ is a mean position and Δr = r − r̄ which is the gap between the position of a
fragment and the mean position of all of the fragments in the same ring of width
2Δr . The spatial spread is improved as can be seen in the right frame of Fig. 3. This
approach would reduce spread or dispersion that hitherto remains despite velocity
mapping.

4 Conclusion

Using a paraxial approximation for a TOFS trajectories of system are shown to be
tuneable, giving both the options for imaging that is invariant to the initial fragment
velocity as well as velocity map imaging where the image does not depend on the
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Fig. 3 An adjusted positions for fragments. The outer rings have a width that is attributable to a
velocity spread in a VMI lens. After the position re-adjustment, the width is eliminated, hence, a
better resolution

initial position. The time-of-flight is shown to have an inherent dispersion due to
velocity variationswhich can beminimizedwith a large initial acceleration in the lens
system, but never fully removed.Dispersion due to the initial fragment position can be
completely eliminated. Further improvement in resolution is achievable through a re-
positioning procedure that takes themass of the various fragments into consideration.
Also, a future improvement to the model that considers the potential as non-linear
between segments will have a far-reaching applications to a true VMI instrument.

Appendix

The expression of the form,

I (s) =
∫ L

s

dx√
f (x) − f (s)

−
∫ L

0

dx√
f (x) − f (0)

,

can be re-written with a change of variable x ′ = x − s in the first integral and the
domain of the second integral partitioned as [0, L − s] ∪ [L − s, L]. The resulting
representation is,
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∫ L−s

0

(
dx√

f (x + s) − f (s)
− dx√

f (x) − f (0)

)
−

∫ L

L−s

dx√
f (x) − f (0)

.

The first integrand in the above expression is expanded in power series in s as,

I1(s) = − s

2

f ′(x) − f ′(0)√
( f (x) − f (0))3

+ O
(
s2

)
, s � 1,

(the assumption s � 1 is sufficient for our application, see (18) in the text) and the
second integral as,

I2(s) =
∫ L

L−s

dx√
f (x) − f (0)

=
∫ s

0

d y√
f (L + y − s) − f (0)

,

with the substitution y = x − L + s. Under the assumption that, s � L ,

I1(s) = −1

2

f ′(x) − f ′(0)
( f (x) − f (0))3/2

s + O
(
s2

)
, I2(s) = s√

f (L) − f (0)
+ O

(
s2

)
.

Therefore, the integral I (s) is evaluated to the first order as,

I (s) = −s

(
1

2

f ′(x) − f ′(0)
( f (x) − f (0))3/2

+ 1√
f (L) − f (0)

)
+ O

(
s2

)
.
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Error Correction for Correlated
Quantum Systems

Mark Byrd, Alvin Gonzales, Daniel Dilley, and Purva Thakre

Abstract Modeling open quantum systems is a difficult task for many experiments.
A standard method for modeling open system evolution uses an environment that is
initially uncorrelated with the system in question, evolves the two unitarily, and then
traces over the bath degrees of freedom to find an effective evolution of the system.
This model can be insufficient for physical systems that have initial correlations.
Specifically, there are evolutions ρS = trE (ρSE ) → ρ ′

S = trE (UρSEU †) which can-
not be modeled as ρS = trE (ρSE ) → ρ ′

S = trE (UρS ⊗ ρEU †). An example of this is
ρSE = ∣

∣Φ+〉 〈

Φ+∣
∣ andUSE = CNOTwith control on the environment.Unfortunately,

there is no known method of modeling an open quantum system which is completely
general. We first present some restrictions on the availability of completely positive
(CP) maps via the standard prescription. We then discuss some implications a more
general treatment would have for quantum control methods. In particular, we pro-
vide a theorem that restricts the reversibility of a map that is not completely positive
(NCP). Let Φ be NCP and Φ̃ be the corresponding CP map given by taking the
absolute value of the coefficients in Φ. The theorem shows that the CP reversibility
conditions for Φ̃ do not provide reversibility conditions for Φ unless Φ is positive
on the domain of the code space.

Keywords Quantum error correction · Quantum control · Open quantum systems

1 Introduction

Precise modeling and control of quantum systems will be required for quantum tech-
nologies. This includes quantum computers, quantum cryptography, and quantum
simulation of quantum systems. Unfortunately, even though great progress has been
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made in this area, there are still questions concerning the types of possible evolutions
and how to describe them. In the case that the system and environment have no prior
correlations, there is a standard prescription for describing the evolution. Let the
system (environment) state be ρS (ρE ). Supposing that the two evolve under a joint
unitary transformation USE , then a map can be defined by

Φ(ρS) = trE (USEρS ⊗ ρEU
†
SE ). (1)

This map is not only positive (It maps all positive operators to positive operators.),
it is also completely positive (The extended map In ⊗ Φ(ρ) is positive for all n and
any positive input ρ.). This also provides a way to model a quantum system.

However, not all evolutions of a quantum system are able to be described this
way. In particular, the assumption of an initial product state may not be satisfied. In
this case, some discussions have arisen in the literature about what one should do if
the standard assumption of an initially uncorrelated state no longer applies [1–13].
This is very relevant given that such examples are not difficult to find [14].

In general, the evolution of a system can be defined by a dynamical map, A, where
we first vectorize the system densitymatrix [15]. The vectorization is done bywriting
all the elements as a column vector. For a single qubit state, this is given by

vec(ρ) =

⎡

⎢
⎢
⎣

ρ00

ρ01

ρ10

ρ11

⎤

⎥
⎥
⎦

. (2)

The transformation is then done on this vectorized form and is given by

ρ ′ = Aρ. (3)

Using the restrictions for a valid density matrix, it being Hermitian, positive semi-
definite and having trace one, the restrictions on the A matrix are given by

Ars,r ′s ′ = (Asr,s ′r ′)∗, (4)

∑

rsr ′s ′
x∗
r xs Ars,r ′s ′ yr ′ y∗

s ′ ≥ 0, (5)

and

∑

r

Arr,r ′s ′ = δr ′s ′ , (6)

respectively.
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These conditions can be translated to an equivalent B matrix by just relabeling.
Let

Brr ′,ss ′ ≡ Ars,r ′s ′ . (7)

Then, the conditions are hermiticity

Brr ′,ss ′ = (Bss ′,rr ′)∗, (8)

positivity

∑

rsr ′s ′
z∗
rr ′ Brr ′,ss ′ zss ′ ≥ 0, (9)

and trace preserving

∑

r

Brr ′,rs ′ = δr ′s ′ . (10)

Since B is Hermitian, it has an eigenvector/eigenvalue decomposition

Br ′r,s ′sρrs =
∑

α

γ (α)Cα
r ′rρrs(C

α
s ′s)

∗,

where the C are the eigenvectors and γ the eigenvalues.
One may also write this as

Φ(ρ) = Bρ =
∑

α

ηαAαρA†
α

(

=
∑

α

AαρA†
α,∀ηα = 1

)

, (11)

where Aα ≡ √|γ |Cα so that ηα = ±1. It is known that themap is completely positive
(CP) if and only if all ηα = 1.

This form is often called the “Operator-Sum representation”, or “Kraus decom-
position” and is often used to describe open-system quantum dynamics.

2 Freedom in the Operator-Sum Representation

It is important to realize that the operator-sum decomposition, Eq. (11), is not unique
and this non-uniqueness can be useful for finding different operator bases. This
freedom is often called the “unitary freedom” [16].

Unitary Theorem: The form of a completely positive Hermiticity-preserving map,
Φ(ρ) = ∑

α AαρA†
α , defined by operators {Aα} is not unique, but the operators {Fβ}
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give the same map, if and only if there is a unitary matrix with elements uαβ such
that Fβ = ∑

α uβαAα, ∀β.

This theorem can be used to prove the error-correcting code conditions below.
The more general map, the map that may be not completely positive (NCP), has

a freedom in it as well. This is called the “pseudo-unitary freedom” [17].

Pseudo-Unitary Theorem: The form of a Hermiticity-preserving map,

Φ(ρ) =
∑

α

ηαAαρA†
α,

defined by {Aα} and {ηα} is not unique, but the operators {Fβ} give the same map,
if and only if there is a pseudo-unitary matrix with elements uαβ such that Fα =
∑

β uαβ Aβ, ∀α. The signature of the matrix (uαβ) ∈ U (p, q) is determined by the
number of input and output elements in the sets {Aα} and {Fβ}.

Note that a unitary matrix, V , is defined by the equation V IV † = I , whereas a
pseudounitary matrix,U , is defined by the equationUηU † = η. In general, there are
many choices for η. However, in our case, η = diag(1, 1, . . . , 1,−1,−1, . . . ,−1)
where there are p ones and q minus ones.

3 Modeling Open Quantum Systems

The standard prescription, Eq. (1), is used to justify completely positive maps, and
often suffices for modeling quantum systems. However, it is clear that it is not the
most general possible evolution.Manypeople, including the recentworkofPechukas,
which spurred much discussion [1], have pointed out that a more general evolution
may be derived from a potentially correlated system and environment:

Φ(ρS) = trE (USEρSEU
†
SE ). (12)

Finding examples which do not obey the assumption of an uncorrelated system
and environment is not difficult. Consider the following two qubit example. Suppose
that initial and final states of the system are known to be, respectively,

ρS = (1/2)

(

1 0
0 1

)

and

ρ ′
S =

(

1 0
0 0

)

.

Further assume that it is known that they evolve according to a system-environment
coupling
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USE = (1/
√
2)

⎛

⎜
⎜
⎝

−i 0 0 −i
0 −i −i 0
−i 0 0 i
0 −i i 0

⎞

⎟
⎟
⎠

.

Then it is easy to show that there is no state ρE such that Eq. (1) is satisfied. This
example can be shown to be robust to initial condition variations, as well as variations
in the unitary transformation. This makes it experimentally verifiable.

Furthermore, finding such examples is not difficult. Consider a transformation
from

ρS = TrE (ρSE )

to
ρ ′
S = TrB(USEρSEU

†
SE ).

We say this is U-generated by USE . The set of local unitary transformations will be
denoted LU, the set of unitaries that are equivalent via local unitaries to the swap
unitary will be denoted as SWAP, and the set of unitary transformations that are
equivalent via local unitaries to a controlled unitary will be denoted UC2. Then we
have the following theorem [14].

Theorem: Suppose that the system and environment consist of two qubits. EveryU -
generated physical transformation ρS → ρ ′

S can be U -generated by a product state
iff U belongs to LU ∪ SWAP. If U belongs to UC2, the transformation can be U -
generated by a quantum-classical state. On the other hand, ifU does not belong to LU
∪SWAP∪ UC2, then there exist physical transformations that cannot beU -generated
by any initial separable state.

Therefore, there are plenty of examples where the standard prescription fails.
This is our motivation for studying evolutions that do not necessarily correspond to
a completely positive map.

4 Reversing a Quantum Operation Corresponding
to a Completely Positive Map

The reversibility of a quantumoperation depends on the operation elements satisfying
certain conditions. These conditions are known as the quantum error correcting code
conditions. There are several ways to state these conditions, one is to consider a map
of the form of Eq. (11) when the map is completely positive with operation elements
Aα , and some logical (encoded states) |iL〉, | jL〉 [18]

〈iL |A†
αAβ | jL〉 = mαβδi j .
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This has an intuitive interpretation as a “disjointness condition.” It states that one
state |iL〉 acted on by one operator Aα cannot have any overlap with another state
| jL〉 acted on by another error Aβ .

One can show that this condition is equivalent to the following condition [19]

PA†
αAβ P = cαβ P,

where P is a projector onto the code space and c is a Hermitian matrix.

5 Reversing a Quantum Operation that Is Not
a Completely Positive Map

We first show that it is possible to reverse a map that is NCP.

Example 1 Let the NCP map be the three qubit map

Φ(ρ) = c0ρ + c1
∑

i

XiρXi − c2 |010〉 〈010| ρ |010〉 〈010| , (13)

where Xi is the Pauli matrix σx acting on qubit i and c0 + 3c1 = 1 and 0 < c2 < 1.
Thus, Φ is a trace decreasing map. Suppose we know that Φ has occurred. Then, the
projector onto the code space is

P = |000〉 〈000| + |111〉 〈111| (14)

and the recovery map is

R(ρ) = PρP +
∑

i

P XiρXi P. (15)

It is easy to check that any state PρP in the code space is recovered.

CP and NCP maps are closely related and in the paper by Shabani and Lidar [20],
they state:

Corollary 1 Consider a Hermitian noise map

ΦH (ρ) =
N

∑

i=1

ηi AiρA
†
i

and associate to it a CP map

Φ̃CP(ρ) =
N

∑

i=1

|ηi |AiρA
†
i .
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Then any quantum error correcting code and corresponding CP recovery map for
Φ̃CP(ρ) are also a quantum error correcting code and CP recovery map for ΦH (ρ).

Their corollary gives a result which is proportional to the original density operator
on average. However, the standard procedure for a quantum error correction, which
reverses a quantum operation, proceeds in two steps. The first is to measure an error
syndrome which identifies the error. The second step is the recovery operation. Since
the first projects out one of the terms in the sum, the terms in the sum should all be
positive if they are independent. Otherwise, they can give a negative result for the
measurement, which corresponds to a negative probability for the result to occur. We
deem this nonphysical.

Theorem 1 Suppose, using the pseudo-unitary (PU) degree of freedom, that

PF†
i Fj P = di j P

and
Φ(ρ) = Φ1(ρ) − Φ2(ρ),

where Fi = ui j A j , {ui j } ∈ PU,Φ2(PρP) �= 0, and {di j } is diagonal. ThenΦ(PρP)

is not positive, i.e., the code space is not in the domain of the error map.

Sketch of Proof : Let our input density matrix be PρP , i.e., in the code space. The
proof relies on the orthogonality of the rotated code space. The code space projector
P , when acted on by the individual operators Fi are rotated to a set of orthogonal
projectors due to the error correcting condition. From the polar decomposition, we
have

Fi P = Ui

√

PF†
i Fi P = √

diiUi P (16)

This is actually a rotation on P . Thus, we can define

Pi ≡ Ui PU
†
i (17)

and when i �= j we get

Pj Pi = 0. (18)

This means that we can pick out individual terms in the map.
Any NCP map can be written as the difference of two completely maps because

we can group the negative terms and factor out the minus sign. Since the map
Φ(ρ) = Φ1(ρ) − Φ2(ρ) and Φ2(PρP) �= 0, we can get a measurement result Pi
which corresponds to an outcome PiUiρU

†
i Pi bymeasuring the output densitymatrix

in the {Pk} basis. For PiUiρU
†
i Pi ∈ Φ2(PρP), this measurement probability is neg-

ative because the probability is given by
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tr(− |dii | PiUiρU
†
i Pi ) = − |dii | . (19)

Since valid density matrices are positive semi-definite, the code space is not in the
domain of Φ(ρ).

6 Discussion/Conclusions

The general problem of reversing the open-system evolution of a quantum system
is an important open problem. Here we have provided a restriction on the ability to
perform such an operation. In particular, we have shown that it is possible to arrive at
a nonphysical result when attempting to use the same recovery operation for a map
that is not completely positive as for the corresponding positive one. Furthermore,
our theorem shows that there is a general restriction on the type of encoding that one
may hope to use for reversing the quantum operations.

The general problem of how to reverse a quantum operation is still unsolved.
However, we hope to present results elsewhere that can, in particular instances,
enable the reversibility. Since the control of quantum systems is required for reliable
quantum devices, we hope the results presented here, and in our future work, will
help with the development of strategies for quantum control.

Acknowledgements Funding for this researchwas provided by theNSF,MPS under award number
PHY-1820870.
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Numerical Investigation of VAWT Airfoil
Shapes on Power Extraction
and Self-starting Purposes

Sajad Maleki Dastjerdi, Amir HormoziNejad, Kobra Gharali,
and Jatin Nathwani

Abstract The effects of airfoil shapes on the power coefficient and the torque coef-
ficient have been studied for an H-type Darrius vertical axis wind turbine (VAWT).
Different types of airfoils were analyzed, and eight of themwere selected and divided
into two groups. The first group includes the airfoils with camber, including S815,
NACA9418, and NACA9415, while the second group including S1048, NACA0018,
and NACA0015 have symmetric geometries. The focus of the current study is on
two-blade VAWTs because they have higher power coefficient than three or four
blades VAWTs. The two-blade VAWTs with selected airfoils were simulated with
Computational Fluid Dynamic (CFD) method, and k-ω SST was used as a turbu-
lence model and then grid independency was checked. The numerical investigation
indicates that the cambered airfoils produce a higher static torque coefficient than
symmetric ones, up to 79.8%, and are qualified for self-starting purposes. In addition,
the symmetric airfoils produce higher power coefficient than cambered ones, up to
68.7%, and are qualified for power extraction purposes.
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Nomenclature

U∞ Freestream velocity (m/s)
D Turbine diameter (m)
R Turbine radius (m)
L Height of the turbine (m)
c Chord length (m)
λ Tip speed ratio (–)
Vrotation Rotor rotational speed (rad/s)
N Number of blades (–)
ρ Density of fluid (kg/m3)
T Torque (N m)
CP Power coefficient (–)
CT Torque coefficient (–)
σ Solidity (–)

1 Introduction

Lift based vertical axis wind turbines have high power coefficients, but usually,
they do not have the self-starting ability at low wind speeds. H-type Darrius ver-
tical axis wind turbines known as the Straight Blade Vertical Axis Wind Turbines
(SBVAWTs) are considered as useful types of lift-based VAWTs. Since self-starting
is a particular drawback of popular h-darrieus VAWTs, many numerical and exper-
imental innovations have been done for improving self-starting ability. SBVAWTs
suffer from self-starting issue; that means, the rotor cannot start rotating in itself at
low wind velocities. If a wind turbine cannot operate under low wind speeds, it will
miss considerable portion of the annual power production. For solving this issue,
some turbines are equipped with extra facilities including a motor, controllers and
sensors to start rotating at low wind speeds. The extra equipment reduces VAWT
simplicity, and causes higher operation and maintenance costs. Thus, designing a
low cost VAWT with the self-starting ability without using extra equipment will be
remarkable achievement.

Dereng [1] invented a VAWT with a new blade shape. He claimed that it has
better self-starting ability than normal VAWTs. Some of the researchers tried to
use advantages of both drag-based and lift-based VAWTs, simultaneously. So for
achieving this aim, they used blades with flexible shapes, which means they became
drag based for self-starting purpose and after starting rotation, the blades are changed
to the common type of lift-based airfoils [2].Batista et al. [3] designed a newairfoil for
VAWTs. Their new airfoil had a good self-starting ability. Using a combination of a
h-type with a savonius VAWTwas another innovation for improving the self-starting
ability compared with the SBVAWT [4]; but this innovation resulted in lower power
coefficients [4]. Using guide vane for SBVAWT was tried to improve self-starting
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ability like drag-based VAWTs [5]. J-shaped airfoils also had positive and negative
impacts on self-starting ability and power generation of SBVAWTs, respectively
[6, 7]. One of the novel works for improving self-starting ability as well as the power
coefficient of SBVAWTs was using auxiliary blades close to the main blades by Li
et al. [8] for a two-blade SBVAWT and Scungio et al. [9] for three blade SBVAWT.
According to the mentioned studies, the shape of the airfoils has a strong impact on
the self-starting ability and the power generation of a SBVAWT. In this study, some
airfoils are selected and SBVAWTs with these airfoils are modeled numerically for

• evaluating the effects of cambered airfoils on improving self-starting abilities;
• analyzing the impacts of symmetric airfoils on boosting power coefficients;
• comparing the influences of symmetric airfoils with non-symmetric airfoils on the
performance characteristics of VAWTs;

• choosing the best airfoil for improving the self-starting ability;
• selecting the best airfoil for improving the power coefficient; and
• introducing an airfoil with a good self-starting ability and high power coefficient.

2 Selected Airfoils and Characteristics of VAWT

The selected non-symmetric airfoils are NACA’s airfoils with the high camber,
NACA9418, and NACA9415 and also, S815 from Selig’s airfoils. For the sym-
metric airfoils, NACA0018 and NACA0015 are selected because they have the same
thickness ratio as NACA9418 and NACA9415, respectively. S1048 is chosen for
comparing with the non-symmetric Selig’s airfoil, S815 (Fig. 1).

The solidity of vertical axis wind turbines is computed by Eq.1 [10]:

σ = N · c
D

(1)

Fig. 1 Selected airfoils

S 815 S 1048

NACA 9418 NACA 0018

NACA 9415 NACA 0015



386 S. Maleki Dastjerdi et al.

Tip Speed Ratio (TSR) is the ratio of the tip of the blade’s velocity to freestream
velocity, and it is defined as Eq.2 [11]:

λ = R · Vrotation

U∞
(2)

A two-blade SBVAWT has been simulated numerically. The parameters are set as
follows:

• Chord length: 0.15 (m)
• The diameter of the rotor: 1 (m)
• Solidity: 0.3
• H/D: 1
• Tip speed ratios (TSRs): 2, 2.5, 3, 3.5, 4
• The rotational speed of VAWT (constant in different TSRs): 40 (rad/s)
• Free stream velocity for evaluating self-starting ability: 10 (m/s)

3 Methodology

In the current study, both dynamic and static simulations are done with two Intel
Xeon E5-2683 V4 (32 cores).

3.1 Setup, Boundary Conditions, and Flow Modeling

For the dynamic simulations, sliding mesh technique under transient condition has
been used. Since the velocity of the wind is less than 10m/s, an incompressible flow
and a pressure-based solver have been used. Second-order discretization for spatial
discretization and semi-implicit second-order discretization for temporal ones have
been applied. For static simulations, the rotating domain is fixed in different angles
ranging from 0◦ to 360◦ by step size of 30◦ (Fig. 2).

Reynolds numbers according to the chord length are about 102000 [13]. K- SST
has been selected as the turbulence model.

3.2 Mesh

Unstructured meshes are considered for all domains, Fig. 3.
The values of y+ for all cases are less than four. For evaluating the independency

of results from mesh, cells are fined by four steps, and in each level, the number of
cells is doubled. The final mesh has 6 × 105 cells (Fig. 4).
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Fig. 2 a Numerical domain and boundary condition (left) [12]; b rotating domain (right)
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Fig. 3 The 2D mesh; a NACA9418. b Trailing edge of NACA9418
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Fig. 4 Grid independency

3.3 Validation

The current results are compared with the numerical and experimental results of
Howell et al. [14]. It should be noted that the turbulence model used by Howell et
al. was k-ε RNG. The power coefficient extracted from the current study agrees with
the experimental data, Fig. 5.
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Fig. 5 Validation and verification of simulation

4 Evaluation of Power Coefficients (CP )

The average static torque coefficient of the wind turbine is obtained by

CT = T
1
4 · ρ(U∞)2 · D2 · L (3)

And the power coefficient, CP is calculated from CP
CT

= λ. The combination of
the pressure and the viscous forces of the airfoils results in torque calculation. The
pressure force is determined by integrating the pressure values around the airfoil.
The viscous forces are measured through the boundary layer of airfoils. Finally, the
tangential component of the obtained pressure and viscous forces is multiplied by
the radius of the rotor to calculate the torque value. Then, the torque coefficient (CT )
will be computed by Eq.3.

From Figs. 6 and 7, it can be concluded that although NACA9418 is a non-
symmetric airfoil, it behaves as symmetric airfoils in terms of power coefficient
variation. The airfoil S815 is not shown for TSRs bigger than two since the average
power coefficient of this airfoil is negative in these TSRs.

The maximum power coefficient of 0.37 is for NACA0015 at TSR=2.5, Fig. 8a.
For higher wind speeds, NACA0018 and NACA0015 are more efficient than other
airfoils. For lower wind speeds, S1048 has the best power coefficient. The power
coefficient of NACA9418 for TSR of 3.5 is more than the power coefficient of
NACA0018. Therefore, for lower wind speeds, NACA9418 is more efficient.

In real cases, the wind speed is not constant. Therefore, the average power coef-
ficients in all TSRs have been plotted in Fig. 8b for the wind speed range from 5 to
10m/s. Although the average power coefficients of symmetric airfoils are more than
non-symmetric ones, NACA9418 has higher CP than S1048.
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(a)

(b) (c)

Fig. 6 Power coefficients for TSRs lower than 3: a TSR = 2; b TSR = 2.5; c TSR = 3

(a) (b)

Fig. 7 Power coefficient for TSRs higher than 3: a TSR = 3.5; b TSR = 4
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(a) (b)

Fig. 8 a CP versus TSR; b average power coefficients of different airfoils for all evaluated TSRs

5 Analysis of Self-starting

The static torque coefficients for all six airfoils except NACA9415 and NACA9418
are negative at 90◦ and 270◦, Table1. The arrangement of the blades at 90◦ and 270◦
in front of the wind makes the blades like a bluff body.

S815 behaves like a symmetric airfoil. S815 and NACA9418 have the highest
self-starting ability from 0◦ to 60◦ and from 90◦ to 150◦, respectively.

The average static torque coefficients at wind speed of 10m/s are plotted in Fig. 9a.
The non-symmetric airfoils have higher self-starting ability than the symmetric ones.

Table 1 Static torque coefficients

Angle (◦) NACA 0018 NACA 9418 NACA 0015 NACA 9415 S 1048 S 815

0 0.00610 0.01448 0.00323 0.00955 0.00495 0.01506

30 0.04275 0.00132 0.03523 0.00021 0.02906 0.05042

60 0.02262 0.00500 0.02530 0.00381 0.02136 0.02934

90 −0.01368 0.00677 −0.01711 0.00296 −0.01467 −0.02570

120 0.00496 0.03615 0.00406 0.03382 −0.00205 −0.00056

150 0.00410 0.05645 0.00709 0.04956 0.00491 0.02534

180 0.00610 0.01448 0.00323 0.00955 0.00495 0.01506

210 0.04275 0.00132 0.03523 0.00021 0.02906 0.05042

240 0.02262 0.00500 0.02530 0.00381 0.02136 0.02934

270 −0.01368 0.00677 −0.01711 0.00296 −0.01467 −0.02570

300 0.00496 0.03615 0.00406 0.03382 −0.00205 −0.00056

330 0.00410 0.05645 0.00709 0.04956 0.00491 0.02534
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(a) (b)

Fig. 9 a Average static torque coefficients; b details of static torque coefficients in one rotation

Among the non-symmetric and symmetric airfoils, NACA9418 andNACA0018 have
the highest average static torque coefficients; but S815 and S1048 have the lowest
ones. The static torque coefficient of NACA9418 is about 79.8% and 108% more
than that of NACA0018 and NACA0015, respectively.

6 Conclusion

2D numerical simulations have been done for comparing selected non-symmetric
airfoils versus symmetric airfoils based on the power coefficient and self-starting
ability of a vertical axis wind turbine. The results can help airfoil selection for VAWT
design. In general, non-symmetric airfoils have better self-starting ability than sym-
metric airfoils. However, symmetric airfoils have a higher power coefficient. So if
self-starting is not a crucial issue, a symmetric airfoil is a better choice for a VAWT.

According to the current study based on the selected airfoils, NACA0015 and
NACA0018 have 68.7 and 53.8% more power coefficients than NACA9418 which
has the highest power coefficient among the rest of the non-symmetric airfoils.
NACA0015 has the highest power coefficient, so Ignoring the self-starting abil-
ity, NACA0015 can be considered as a suitable choice for a VAWT. NACA9418,
NACA9415, and S815 have 79.8%, 49.4%, and 40.5% higher self-starting ability,
respectively than NACA0018, which has the highest self-starting ability among the
rest of the symmetric airfoils. NACA9418 increases the self-starting ability of the
turbine while decreases the power coefficient less than the other non-symmetric air-
foils. If both self-starting and power coefficient are important, NACA9418 might
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be assumed as the best choice. The non-symmetric S815 generates negative power
coefficient for some conditions while it improves slightly the self-starting ability.
Although S815 is a non-symmetric airfoil, it behaves like symmetric airfoils due to
its high thickness and low camber.

Thicker airfoils have better self-starting ability according to this study. Then,
NACA0018 has a better self-starting ability than NACA0015, and NACA9418 is
better than NACA9415. S1048 airfoil has the worst self-starting ability among the
rest of the airfoils. It generates the lowest power among the symmetric airfoils, even
lower than non-symmetric NACA9418. However, in low wind speeds with TSR of
four, it produces the highest power, so it can be concluded that performance of S1048
extremely depends on the wind speed.
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Abstract This study aims at investigating the problem of stability and stabilization
of chaotic systems on the basis of Takagi–Sugeno (T–S) fuzzy model under aperi-
odic sampling. A modified Lyapunov-Krasovskii functional (LKF), which fully cap-
tures the information of the sampling pattern, is constructed to the chaotic systems.
Togetherwith free-weightedmatrices technique,much less conservative stabilization
results are derived in term of linear matrix inequality (LMI).
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1 Introduction

T–S fuzzy systems represented by a batteries of IF-THEN ruleswith fuzzy sets, which
offers an efficient tool to depict complex nonlinear systems, have been extensively
studied [1–3].Recently, plentiful results havebeen investigated theT–S fuzzy systems
[4–8].

With the development of microelectronics, increasing attention has been drawn
to the sampled-data control, which greatly improve the efficiency of the control. It
does not require to transmit the information moment by moment. Hence, numer-
ous results have been studied the sampled-data control [9–12]. The authors in [13]
have researched stabilization of the fuzzy system with sampled-data control by the
switched operation approach. The H∞ stabilization results have been presented for
T–S fuzzy systems bymemory sampled-data control in [14]. In [15], the stabilization
of chaotic systems based on a T–S fuzzy model has been studied by the sampled-data
control.

In this study, stability and stabilization of chaotic systems on the basis of T–S fuzzy
model via aperiodic sampling is investigated. The core contributions of this study
are presented as aspects: (1) The stabilization for T–S fuzzy systems with aperiodic
sampling is researched. (2) A modified LKF is constructed and less conservative
results are obtained. (3) The sampled-data controller is devised for the system.

Notations: Rn×m is the set of all n × m real matrices, Rm denotes m-dimensional
Euclidean space. diag{. . .} denotes block diagonal matrix,A < (>)O denotingA
is the negative (positive) definite matrix, On×n stands for the n × n zero matrix, In
denotes the n × n identity matrix, ∗ is the symmetric block in symmetric matrix and
He{C } = C + C T.

2 Preliminaries

Consider the fuzzy model as below:
Plant rule j : IF h1(t) is x j1, h2(t) is x j2, . . . and hr (t) is x jr , THEN

ż(t) = B jz(t) + D j u(t), (1)

where z(t) ∈ Rn denotes the state, u(t) ∈ Rζ is a control input. h1(t), h2(t),
. . . , hr (t) denote premise variables, x j i represents fuzzy sets, j = 1, 2, . . . , α,
i = 1, 2, . . . , r , B j and D j are given matrices with proper dimensions, α stands
for the number of IF-THEN rules.

Set h(t) = [h1(t),h2(t), . . . ,hr (t)], q j (h(t)) =
r∏

i=1
x j i (hi (t))

α∑

j=1

r∏

i=1
x j i (hi (t))

with x j i (hi (t))

is the grade of membership of hi (t) in x j i and suppose that
r∏

i=1
x j i (hi (t)) ≥ 0,
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α∑

j=1

r∏

i=1
x j i (hi (t)) > 0, ∀t > 0,

q j (h(t)) ≥ 0,
α∑

j=1

q j (h(t)) = 1. (2)

By fuzzy blending, we have the following fuzzy system (3)

ż(t) =
α∑

j=1

q j (h(t))[B jz(t) + D j u(t)]. (3)

The control input is given in the following
Rule i : IF h1(t) is xi1, h2(t) is xi2, . . . and hr (t) is xir , THEN

u(t) = Kiz(t − s(t)), (4)

where s(t) = t − tk . The control signal is produced by zero-order hold with a battery
of hold times

0 = t0 < t1 < · · · < tk < · · · < lim
k→∞ tk = +∞, (5)

where tk ≤ t < tk+1, Ki is the control gain and z(tk) is the measurement of z(t) at
the sampling instant tk . Assume that 0 < s(t) ≤ tk+1 − tk = sk ≤ s, ∀k ≥ 0. Then,
we obtain the following controller (6)

u(t) =
α∑

i=1

qi (h(t − s(t)))Kiz(t − s(t)), tk ≤ t < tk+1. (6)

Replacing (6) with (3), we get

ż(t) =
α∑

j=1

α∑

i=1

q j (h(t))qi (h(t − s(t)))[B jz(t) + D jKiz(t − s(t))]. (7)

3 Main Results

In this part,wewill present the stability and stabilization results for the system (7). For
convenience, let v(t) = [zT (t) zT (t − s(t)) żT (t) zT (t − s)

∫ t
t−s z

T (α)dα]T ,
v̄(t) = [zT (t) zT (t − s(t)) żT (t) zT (t − s)

∫ t
t−s z

T (α)dα]T , Ei =
[On×(i−1)n In On×(5−i)n], i = 1, 2, . . . , 5.
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Theorem 1 For a given scalar s > 0 and control gainsKi , the system (7) is asymp-
totically stable if there exist matricesP > O,Y > O,W1 > O,W2 > O,X > O
and anymatricesF1,F2,F3 such that the following LMI hold for i, j = 1, 2, . . . , α

Ῡi j < O, (8)

where

Ῡi j =He{[E1 E5
]T

P
[
E3 E1 − E4

]} + E
T
1 (Y + sW2)E1 − E

T
4Y E4

+ E
T
3 (sW1 + s2

2
X )E3 − 1

s
(E1 − E2)

TW1(E1 − E2)

− 1

s
E
T
5W2E5 − 2

s2
(E1 − E5)

TX (E1 − E5)

+ He{[ET
1F1 + E

T
3F2 + E

T
2F3]

× [−E3 + B jE1 + D jKiE2]}.

Proof Consider the LKF as

V (t) = 4
�
c=1

Vc(t), t ∈ [tk, tk+1), (9)

with

V1(t) =
[

z(t)∫ t
t−s z(α)dα

]T

P

[
z(t)∫ t

t−s z(α)dα

]

,

V2(t) =
∫ t

t−s

zT (α)Y z(α)dα,

V3(t) =
∫ 0

−s

∫ t

t+x

żT (α)W1ż(α)dαdx

+
∫ 0

−s

∫ t

t+x

zT (α)W2z(α)dαdx,

V4(t) =
∫ 0

−s

∫ 0

x

∫ t

t+α

żT (β)X ż(β)dβdαdx.

Calculating the derivative of Vc(t), c = 1, 2, . . . , 4 along with the system (7), we
get

V̇1(t) =He{
[

z(t)∫ t
t−s z(α)dα

]T

P

[
ż(t)

z(t) − z(t − s)

]

}, (10)

V̇2(t) = zT (t)Y z(t) − zT (t − s)Y z(t − s), (11)
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V̇3(t) = sżT (t)W1ż(t) −
∫ t

t−s

żT (α)W1ż(α)dα

+ szT (t)W2z(t) −
∫ t

t−s

zT (α)W2z(α)dα,

(12)

V̇4(t) =s2

2
żT (t)X ż(t) −

∫ 0

−s

∫ t

t+x

żT (α)X ż(α)dαdx. (13)

By dealing with the integral terms in (12) and (13), we have

−
∫ t

t−s

żT (α)W1ż(α)dα ≤ −1

s
(E1 − E2)

TW1(E1 − E2), (14)

−
∫ t

t−s

zT (α)W2z(α)dα ≤ −1

s
E
T
5W2E5, (15)

−
∫ 0

−s

∫ t

t+x

żT (α)X ż(α)dαdx ≤ − 2

s2
(E1 − E5)

TX (E1 − E5). (16)

From the system (7), we derive

0 =
α∑

j=1

α∑

i=1

q j (h(t))qi (h(t − s(t))He{[zT(t)F1

+ żT (t)F2 + zT (t − s(t))F3]
×[−ż(t) + B jz(t) + D jKiz(t − s(t))]}.

(17)

By combining (10)–(16) with (17), we obtain

V̇ (t) ≤
α∑

j=1

α∑

i=1

q j (h(t))qi (h(t − s(t))vT (t)Υv(t), (18)

where Υ is defined in Theorem 1.
According to the condition (8), when v(t) 	= O , it follows that

V̇ (t) < 0, (19)

Therefore, the system (7) is asymptotically stable.

Theorem 1 is based on the given control gain Ki . The following Theorem 2 will
solve the control gain if it is not given in advance.

Theorem 2 For given scalars s > 0,ψ1,ψ2, the system (7) is asymptotically stable if
there exist matrices P̂ > O, Ŷ > O, Ŵ1 > O, Ŵ2 > O, X̂ > O and any matrices
T ,Qi such that the following LMI hold for i, j = 1, 2, . . . , α
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Υ̂i j < O, (20)

where

Υ̂i j =He{[E1 E5
]T

P̂
[
E3 E1 − E4

]} + E
T
1 (Ŷ + sŴ2)E1 − E

T
4 Ŷ E4

+ E
T
3 (sŴ1 + s2

2
X̂ )E3 − 1

s
(E1 − E2)

T Ŵ1(E1 − E2)

− 1

s
E
T
5 Ŵ2E5 − 2

s2
(E1 − E5)

T X̂ (E1 − E5)

+ He{[ET
1 In + E

T
3ψ1In + E

T
2ψ2In]

× [−T T
E3 + B jT

T
E1 + D jQiE2]},

The control gain is designed as

Ki = Qi (T
T )−1. (21)

Proof Denote F1 = T −1, F2 = ψ1T −1, F3 = ψ2T −1, P̂ = T PT T , Ŷ =
T Y T T , Ŵ1 = T W1T T , Ŵ2 = T W2T T , X̂ = T X T T , � = diag{T ,T ,

T ,T , T },Qi = KiT T . Pre and postmultiplying (8) with �, �T , we have (20).

4 Conclusion

We have investigated the problems of stability and stabilization of T–S fuzzy model
under aperiodic sampling. An improved LKF has been considered and the aperi-
odic sampling methods are utilized. Based on the free-weighted matrices technique,
much less conservative stability and stabilization results are derived in term of LMI.
Future works will aim at the stabilization of Lurie systems, memristor-based neural
networks, multi-agent systems by state quantized control and impulsive control.
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A New Method of Modelling Tuneable
Lasers with Functional Composition

B. Metherall and C. Sean Bohun

Abstract A new nonlinear model is proposed for tuneable lasers. Using the gener-
alized nonlinear Schrödinger equation as a starting point, expressions for the trans-
formations undergone by the pulse are derived for each of the five components (gain,
loss, dispersion, modulation, and nonlinearity) within the laser cavity. These trans-
formations are then composed to give the overall effect of one trip around the cavity.
This is in contrast to solving the generalized nonlinear Schrödinger equation which
treats the processes as continuous.

Keywords Tuneable ring lasers · Modulation instability · Mathematical
modelling · Generalized nonlinear Schrödinger equation

1 Introduction

A tuneable laser has the ability to vary the frequency of its output by up to about
100 nm [5, 8, 38]. Tuneable lasers simultaneously lase at all frequencies within
this bandwidth. This tuneability is quite useful and has applications in spectroscopy
and high resolution imaging such as coherent anti-Stokes Raman spectroscopy and
optical coherence tomography [5, 7, 38], as well as communications and diagnostics
of ultra fast processes [31]. A typical tuneable laser cavity can be seen in Fig. 1. In
contrast to a standard laser, a tuneable laser contains two additional components,
namely, a chirped fibre Bragg grating (CFBG), and a modulator.

A CFBG is a length of optical fibre where the refractive index oscillates along
its length [10], and therefore, can act as a reflective filter [1, 3, 10, 32]. Due to the
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Fig. 1 Typical cavity of a fibre based tuneable laser. The laser pulses travel clockwise around each
loop. The pulses iteratively pass through each component successively

oscillatory nature, light with the corresponding wavelength will be reflected when
the Bragg condition is satisfied [1, 3, 4, 10, 31, 32]. The spacial variation of the
refractive index effectively creates a spacial dependence on the Bragg condition,
causing most wavelengths to be reflected by a CFBG, but with each wavelength
satisfying the Bragg condition at a different spacial location.1 A consequence of this
is that a time delay is created between wavelengths—this causes the pulse to disperse
and broaden.

The modulator serves the purpose of reshaping the pulse. Without it, the pulse
will repeatedly widen due to the CFBG—the modulator ensures the pulse is band
limited by altering the envelope.

2 Previous Modelling Efforts

The standard equation for studying nonlinear optics is the nonlinear Schrödinger
equation (NLSE),2

∂ A

∂z
= −i

β2

2

∂2A

∂T 2
+ iγ |A|2 A. (1)

1 Note that a monotonic chirping ensures that the spacial dependence of the Bragg condition is
continuous with respect to the frequency.
2 The NLSE can be derived from the nonlinear wave equation for electric fields; this derivation is
presented in detail in [2, 10].
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Here A = A(T, z) : R2 �→ C is the complex pulse amplitude, β2 ∈ R is the second
order dispersion, and γ ∈ R is the coefficient of nonlinearity. In practice, (1) lacks
a few key terms, thus, it is often generalized by adding amplification, loss, and
occasionally higher order terms. This gives the generalized nonlinear Schrödinger
equation (GNLSE) [2, 5, 11, 28, 29, 39],

∂ A

∂z
= −i

β2

2

∂2A

∂T 2
+ iγ |A|2 A + 1

2
g(A)A − αA, (2)

where g(A) is an amplifying term due to the gain, and α ∈ R is the loss due to
scattering and absorption.

The GNLSE has many applications in nonlinear optics and fibre optic communi-
cations, however, in the context of lasers we typically also add a modulation term.
This yields the master equation of mode-locking [13–16, 18, 20, 35, 37],

∂ A

∂z
= −i

β2

2

∂2A

∂T 2
+ iγ |A|2 A + 1

2
g(A)A − αA − M(T ), (3)

where M(T ) is the modulation function. The solutions of three simplifications of (3)
have been investigated:

• Omitting both modulation and nonlinearity [13, 15, 16].
• Omitting only modulation [19, 37].
• Omitting only nonlinearity [7, 13, 14, 17, 18, 20, 35, 37].

For a more comprehensive history see [18].

2.1 Discrete Component Models

While the derivation of (3) is sound mathematically, it is not representative of what
happens within the laser cavity. The issue with (3) is that it has been assumed each
process affects the pulse continuously within the cavity; for example, the pulse is
amplified whether or not it is in the Erbium-doped fibre. As highlighted by Fig. 1,
this is a rather poor assumption. Within the cavity each effect is localized to its
corresponding component: almost all of the dispersion happens within the CFBG
[1], the pulse is only amplified within the Erbium-doped fibre, etc. Thus, a better
model is one where (3) is broken down into the individual components giving the
effect of each ‘block’ of the cavity. Each of the blocks can then be functionally
composed together to give an iterative map for the effect of one circuit around the
cavity. This transforms the differential equation into an algebraic equation.

Such a method was first proposed in 1955 by Cutler [9] while analyzing a
microwave regenerative pulse generator. This method was adapted for mode-locked
lasers in 1969 by Siegman and Kuizenga [21, 30]. Kuizenga and Siegman also had
success experimentally validating theirmodel [22, 23]. The effects of the nonlinearity
would not be considered until Martinez, Fork, and Gordon [26, 27] tried modelling
passively mode-locked lasers. This issue has recently been readdressed by Burgoyne



404 B. Metherall and C. S. Bohun

[7] in the literature for tuneable lasers. In these models the effect of each component
is described by a transfer function.

These discrete component models differ from the often used split-step Fourier
method (see [2, 33]). The split-step Fourier method is a numerical technique used for
solving nonlinear partial differential equations, such as (1). Themethod considers the
linear and nonlinear terms separately and has a half integration step for both parts—
in a manner similar to the leap-frog algorithm.3 Therefore, in the case of the NLSE,
the dispersion and nonlinearity are still treated as continuous processes. However, in
discrete component models the entire effect of each component is computed at once
and the output of one component becomes the input for the following component,
instead of alternating between the components in small integration steps. In this way,
discrete component models are able to account for the geometry of a laser cavity, and
indeed altering the permutation of the components gives rise to different dynamics.

Despite the development of discrete component models, several short-comings
exist. The clearest is that none of these models have contained every block—either
the nonlinearity or the modulation have been omitted. In the framework of tuneable
lasers, each component plays a crucial role and the tuneable laser will not function
correctly without the inclusion of all the components. Another key drawback is that
the functional operations of some of the components used in their models are phe-
nomenological. While these functions are chosen based on the observed output, they
are not necessarily consistent with the underlying physics. Finally, none of these pre-
vious models have been able to exhibit a phenomenon called modulation instability
in which the self-phase modulation of the pulse becomes too strong, distorting and
damaging the wave until it ultimately becomes unstable and unsustainable.

3 A New Model

Using the ideas presented in the previous section of the prior functional models [7,
9, 21–23, 26, 27, 30] we shall derive a new model from (2)—with the exception of
modulation in which we consider the exact functional form to be determined by the
laser operator.

3.1 Components

We shall determine the effect each component has on the pulse by solving (2) while
only considering the dominant term within each section of the cavity, and neglecting
the others.

3 Also known as velocity Verlet in molecular dynamics, the Störmer method in astronomy, and
further names in other areas [12].
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3.1.1 Gain

Within the Er-doped gain fibre, the gain term is dominant, and Eq. (2) reduces to

∂ A

∂z
= 1

2
g(A)A, (4)

where g(A) takes the form [5, 7, 13, 14, 16, 18–20, 28, 29, 31, 37, 39]

g(A) = g0
1 + E/Esat

, E =
∫ ∞

−∞
|A|2 dT, (5)

where g0 is a small signal gain, E is the energy of the pulse, and Esat is the energy at
which the gain begins to saturate. Without much difficulty this differential equation
can be solved, and the effect on an incident pulse is

G(A; E) =
(
Eout

E

)1/2

A =
(
Esat

E
W

(
E

Esat
eE/Esat eg0Lg

))1/2

A, (6)

where Lg is the length of the gain fibre.

3.1.2 Nonlinearity

The nonlinearity of the fibre arises from the parameter γ . In regions where this effect
is dominant expression (2) becomes

∂ A

∂z
− iγ |A|2 A = 0. (7)

Using a similar method as with the gain, the effect of the nonlinearity can be shown
to be

F(A) = Aeiγ |A|2L f , (8)

where L f is the length of fibre.

3.1.3 Loss

Expression (2) leads to exponential decay due to the scattering and absorption of the
fibre. However, a majority of the signal is removed from the cavity by the optical
coupler. Combining these two effects yields

L(A) = (1 − R)e−αLT A, (9)
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where R is the reflectivity of the output coupler, and LT is the total length of the
laser circuit, as the effect of the losses.4

3.1.4 Dispersion

Considering only the dispersive term of (2), one obtains

∂ A

∂z
= −i

β2

2

∂2A

∂T 2
. (10)

The effect of dispersion is then given by the map

D(A) = F−1
{
eiω

2LDβ2/2F {A}
}

, (11)

where LD is the characteristic length of the dispersive medium, and F denotes the
Fourier transform.

3.1.5 Modulation

In this model, the modulation is considered to be applied externally in which ever
way the operator sees fit. For simplicity the representation is taken as the Gaussian

M(A) = e−T 2/2T 2
M A, (12)

where TM is the characteristic width of the modulation.

3.2 Non-dimensionalization

The structure of each process of the laser can be better understood by re-scaling the
time, energy, and amplitude. Nominal values for tuneable lasers are shown in Table1.
Knowing experimental durations and energies, the table suggests the convenient
scalings:

T = TM T̃ , E = Esat Ẽ, A =
(
Esat

TM

)1/2

Ã. (13)

Revisiting each processmap shows each process has a characteristic non-dimensional
parameter. The new mappings—after dropping the tildes—are

4 Depending on the layout of the laser cavity the loss may take the form L(A) = Re−αLT A instead.
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Table 1 Range of variation of various parameters

Parameter Symbol Value Sources

Absorption of fibrea α 10−4–0.3 m−1 [6, 29, 36, 37, 39]

Fibre dispersion β
f
2 −50–50 ps2/km [1, 2, 7, 25, 28, 39]

Fibre nonlinearity γ 0.001–0.01 W−1m−1 [2, 11, 37, 39]

Grating dispersion β
g
2 LD 10–2000 ps2 [1, 2, 7, 24]

Length of cavity LT 10–100 m [6, 28, 35]

Length of fibre L f 0.15–1 m [6]

Length of gain fibre Lg 2–3 m [7, 28, 29, 34, 39]

Modulation time TM 15–150 ps [5–7]

Reflectivity of optical
coupler

R 0.1–0.9 [6, 24, 28, 34, 35, 38]

Saturation energy Esat 103–104 pJ [6, 37, 39]

Small signal gain g0 1–10 m−1 [6, 39]
aFibre loss is typically reported as ∼0.5 dB/km

G(A) = (
E−1W

(
aEeE

))1/2
A, F(A) = Aeib|A|2 , L(A) = hA,

D(A) = F−1
{
eis

2ω2
F {A}

}
, M(A) = e−T 2/2A,

(14)

with the four dimensionless parameters, as defined by the values in Table1,

a = eg0Lg ∼ 8 × 103, h = (1 − R)e−αLT ∼ 0.04,

b = γ L f
Esat

TM
∼ 1, s =

√
β2LD

2T 2
M

∼ 0.2,
(15)

which characterize the behaviour of the laser. Notice that themodulation is only char-
acterized by TM , and each other process has its own independent non-dimensional
parameter.

3.3 Combining the Effects of Each Block of the Model

In this model the pulse is iteratively passed through each process, the order of which
must now be considered. We are most interested in the output of the laser cavity,
and so we shall start with the loss component. Next, the pulse is passed through the
CFBG, as well as the modulator. Finally, the pulse travels through the gain fibre to be
amplified, and then we consider the effect of the nonlinearity since this is the region
where the power is maximal. Note that in general the functional operators of the
components do not commute, and therefore, the order of the components is indeed
important—in contrast to previous models. This is especially the case for dispersion
as realized through the Fourier transform. Functionally, this can be denoted as
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L (A) = F(G(M(D(L(A))))), (16)

where L denotes one loop of the laser. The pulse after one complete circuit of
the laser cavity is then passed back in to restart the process. A steady solution to
this model is one in which the envelope and chirp are unchanged after traversing
every component in the cavity—we are uninterested in the phase. That is, such that
L (A) = Aeiφ—for some φ ∈ R.

4 Conclusion

Within this paper we developed a nonlinear model for tuneable lasers. In order to bet-
ter represent the underlying physics within the laser cavity, the nonlinear Schrödinger
equation was reduced to simpler differential equations for each component of the
laser. This led to a functional map that defines the effect of each component on a par-
ticular input pulse. These processes were then composed together to give an iterative
mapping of the whole laser cavity. In a future publication, we shall show the results
obtained by this iterative mapping as well as discuss the dynamics exhibited by this
model—including modulation instability—to predict the conditions under which the
pulse is stable and sustainable.

References

1. Agrawal, G.: Fiber-Optic Communication Systems, 3rd edn. Wiley, Inc. (2002)
2. Agrawal, G.: Nonlinear Fiber Optics, 5th edn. Academic Press (2013)
3. Al-Azzawi, A.: Fiber Optics: Principles and Advanced Practices, 2nd edn. CRC Press (2017)
4. Becker, P.C., Olsson, N.A., Simpson, J.R.: Erbium-Doped Fiber Amplifiers Fundamentals and

Technology, 1st edn. Academic Press (1999)
5. Bohun, C.S., Cher, Y., Cummings, L.J., Howell, P.,Mitre, T.,Monasse, L.,Mueller, J., Rouillon,

S.: Modelling and specifying dispersive laser cavities. In: Sixth Montréal Industrial Problem
Solving Workshop, pp. 11–25 (2015)

6. Burgoyne, B.: Private Communication (2018)
7. Burgoyne, B., Dupuis, A., Villeneuve, A.: An experimentally validated discrete model for

dispersion-tuned actively mode-locked lasers. IEEE J. Sel. Top. Quantum Electron. 20(5),
390–398 (2014). https://doi.org/10.1109/JSTQE.2014.2303794

8. Burgoyne, B., Villeneuve, A.: Programmable lasers: design and applications. In: Proceedings
of the SPIE, vol. 7580 (2010). https://doi.org/10.1117/12.841277

9. Cutler, C.C.: The regenerative pulse generator. In: Proceedings of the IRE. IEEE (1955). https://
doi.org/10.1109/JRPROC.1955.278070

10. Ferreira, M.F.S.: Nonlinear Effects in Optical Fibers. Wiley, Inc. (2011)
11. Finot, C., Kibler, B., Provost, L., Wabnitz, S.: Beneficial impact of wave-breaking for coherent

continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25(11), 1938–
1948 (2008). https://doi.org/10.1364/JOSAB.25.001938

12. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations, 2nd edn. No. 31 in Springer Series in Com-
putational Mathematics. Springer, Berlin; New York (2006)

https://doi.org/10.1109/JSTQE.2014.2303794
https://doi.org/10.1117/12.841277
https://doi.org/10.1109/JRPROC.1955.278070
https://doi.org/10.1109/JRPROC.1955.278070
https://doi.org/10.1364/JOSAB.25.001938


A New Method of Modelling Tuneable Lasers with Functional Composition 409

13. Haus, H.A.: A theory of forced mode locking. IEEE J. Quantum Electron. 11(7), 323–330
(1975). https://doi.org/10.1109/JQE.1975.1068636

14. Haus, H.A.: Waves and Fields in Optoelectronics. Prentice-Hall, Inc. (1984)
15. Haus, H.A.: Laser mode locking with addition of nonlinear index. IEEE J. Quantum Electron.

22(2), 325–331 (1986). https://doi.org/10.1109/JQE.1986.1072944
16. Haus, H.A.: Analytic theory of additive pulse and Kerr lens mode locking. IEEE J. Quantum

Electron. 28(10), 2086–2096 (1992). https://doi.org/10.1109/3.159519
17. Haus, H.A.: Theory of soliton stability in asynchronous modelocking. J. Lightwave Technol.

14(4), 622–627 (1996). https://doi.org/10.1109/50.491401
18. Haus, H.A.: Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185

(2000). https://doi.org/10.1109/2944.902165
19. Haus, H.A., Fujimoto, J.G., Ippen, E.P.: Structures for additive pulse mode locking. J. Opt.

Soc. Am. B 8(10), 2068–2076 (1991). https://doi.org/10.1364/JOSAB.8.002068
20. Kärtner, F.: Lecture Notes in Ultrafast Optics. Massachusetts Institute of Technology: MIT

OpenCourseWare (Online) (2005)
21. Kuizenga, D.J., Siegman, A.E.: FM and AM mode locking of the homogeneous laser–part I:

theory. IEEE J. Quantum Electron. 6(11), 694–708 (1970). https://doi.org/10.1109/JQE.1970.
1076343

22. Kuizenga, D.J., Siegman, A.E.: FM and AM mode locking of the homogeneous laser–part
II: experimental results in a Nd:YAG laser with internal FM modulation. IEEE J. Quantum
Electron. 6(11), 709–715 (1970). https://doi.org/10.1109/JQE.1970.1076344

23. Kuizenga, D.J., Siegman, A.E.: FM-laser operation of the Nd:YAG laser. IEEE J. Quantum
Electron. 6(11), 673–677 (1970). https://doi.org/10.1109/JQE.1970.1076348

24. Li, S., Chan, K.T.: Electrical wavelength tunable and multiwavelength actively mode-locked
fiber ring laser. Appl. Phys. Lett. 72(16), 1954–1956 (1998). https://doi.org/10.1063/1.121263

25. Litchinitser, N.M., Eggleton, B.J., Patterson, D.B.: Fiber Bragg gratings for dispersion com-
pensation in transmission: theoretical model and design criteria for nearly ideal pulse recom-
pression. J. Lightwave Technol. 15(8), 1303–1313 (1997). https://doi.org/10.1109/50.618327

26. Martinez, O.E., Fork, R.L., Gordon, J.P.: Theory of passively mode-locked lasers including
self-phase modulation and group-velocity dispersion. Opt. Lett. 9(5), 156–158 (1984). https://
doi.org/10.1364/OL.9.000156

27. Martinez, O.E., Fork, R.L., Gordon, J.P.: Theory of passivelymode-locked lasers for the case of
a nonlinear complex-propagation coefficient. J. Opt. Soc. Am. B 2(5), 753–760 (1985). https://
doi.org/10.1364/JOSAB.2.000753

28. Peng, J., Luo, H., Zhan, L.: In-cavity soliton self-frequency shift ultrafast fiber lasers. Opt. Lett.
43(24), 5913–5916 (2018). https://doi.org/10.1364/OL.43.005913. http://ol.osa.org/abstract.
cfm?URI=ol-43-24-5913

29. Shtyrina, O.V., Ivanenko, A.V., Yarutkina, I.A., Kemmer, A.V., Skidin, A.S., Kobtsev, S.M.,
Fedoruk, M.P.: Experimental measurement and analytical estimation of the signal gain in an
Er-doped fiber. J. Opt. Soc. Am. B 34(2), 227–231 (2017). https://doi.org/10.1364/JOSAB.34.
000227

30. Siegman,A.E.,Kuizenga,D.J.: Simple analytic expressions forAMandFMmodelocked pulses
in homogenous lasers. Appl. Phys. Lett. 6, 181–182 (1969). https://doi.org/10.1063/1.1652765

31. Silfvast, W.T.: Laser Fundamentals, 2nd edn. Cambridge University Press (2004)
32. Starodoumov, A.N.: Optical fibers and accessories. In: Malacara-Hernández, D., Thompson,

B.J. (eds.) Advanced Optical Instruments and Techniques. Handbook of Optical Engineering,
vol. 2, 2nd edn., pp. 633–676. CRC Press (2018). Ch. 18. 2018

33. Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution
equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55(2), 203–230
(1984). https://doi.org/10.1016/0021-9991(84)90003-2

34. Tamura, K., Ippen, E.P., Haus, H.A., Nelson, L.E.: 77-fs pulse generation from a stretched-
pulse mode-locked all-fiber ring laser. Opt. Lett. 18(13), 1080–1082 (1993). https://doi.org/
10.1364/OL.18.001080

https://doi.org/10.1109/JQE.1975.1068636
https://doi.org/10.1109/JQE.1986.1072944
https://doi.org/10.1109/3.159519
https://doi.org/10.1109/50.491401
https://doi.org/10.1109/2944.902165
https://doi.org/10.1364/JOSAB.8.002068
https://doi.org/10.1109/JQE.1970.1076343
https://doi.org/10.1109/JQE.1970.1076343
https://doi.org/10.1109/JQE.1970.1076344
https://doi.org/10.1109/JQE.1970.1076348
https://doi.org/10.1063/1.121263
https://doi.org/10.1109/50.618327
https://doi.org/10.1364/OL.9.000156
https://doi.org/10.1364/OL.9.000156
https://doi.org/10.1364/JOSAB.2.000753
https://doi.org/10.1364/JOSAB.2.000753
https://doi.org/10.1364/OL.43.005913
http://ol.osa.org/abstract.cfm?URI=ol-43-24-5913
http://ol.osa.org/abstract.cfm?URI=ol-43-24-5913
https://doi.org/10.1364/JOSAB.34.000227
https://doi.org/10.1364/JOSAB.34.000227
https://doi.org/10.1063/1.1652765
https://doi.org/10.1016/0021-9991(84)90003-2
https://doi.org/10.1364/OL.18.001080
https://doi.org/10.1364/OL.18.001080


410 B. Metherall and C. S. Bohun

35. Tamura, K., Nakazawa, M.: Dispersion-tuned harmonically mode-locked fiber ring laser for
self-synchronization to an external clock. Opt. Lett. 21(24), 1984–1986 (1996). https://doi.org/
10.1364/OL.21.001984

36. Tomlinson, W.J., Stolen, R.H., Johnson, A.M.: Optical wave breaking of pulses in nonlinear
optical fibers. Opt. Lett. 10(9), 457–459 (1985). https://doi.org/10.1364/OL.10.000457

37. Usechak,N.G.,Agrawal,G.P.:Rate-equation approach for frequency-modulationmode locking
using the moment method. J. Opt. Soc. Am. B 22(12), 2570–2580 (2005). https://doi.org/10.
1364/JOSAB.22.002570

38. Yamashita, S., Nakazaki, Y., Konishi, R., Kusakari, O.: Wide and fast wavelength-swept fiber
laser based on dispersion tuning for dynamic sensing. J. Sens. 2009 (2009). https://doi.org/10.
1155/2009/572835

39. Yarutkina, I., Shtyrina, O., Fedoruk, M., Turitsyn, S.: Numerical modeling of fiber lasers with
long and ultra-long ring cavity. Opt. Express 21(10), 12942–12950 (2013). https://doi.org/10.
1364/OE.21.012942

https://doi.org/10.1364/OL.21.001984
https://doi.org/10.1364/OL.21.001984
https://doi.org/10.1364/OL.10.000457
https://doi.org/10.1364/JOSAB.22.002570
https://doi.org/10.1364/JOSAB.22.002570
https://doi.org/10.1155/2009/572835
https://doi.org/10.1155/2009/572835
https://doi.org/10.1364/OE.21.012942
https://doi.org/10.1364/OE.21.012942


Algebraic Structure and Complexity
of Bootstrap Percolation with External
Inputs

S. Pal and Chrystopher L. Nehaniv

Abstract In this paper amodification of the standard Bootstrap Percolationmodel is
introduced. In our modification a discrete time update rule is constructed that allows
for non-monotonicity—unlike its classical counterpart. External inputs to drive the
system into desirable states are also included in themodel. The algebraic structure and
complexity properties of the system are inferred by studying the system’s holonomy
decomposition. We introduce methods of inferring the pools of reversibility for the
system. Dependence of system complexity on process parameters is presented and
discussed.

Keywords Bootstrap percolation · Discrete-event dynamical systems ·
Transformation semigroups · Complexity analysis · Holonomy decomposition

1 Introduction

Bootstrap percolation is a process studied in statistical mechanics where cells in a
lattice or any other space (for example, nodes in a random graph) exist in binary
states—active or inactive. Given any initial configuration of states, the states of the
nodes evolve with discrete time based on some predefined update rule. Bootstrap
percolation is an example of a boolean network. The most popular update rule of
bootstrap percolation is parameterized with a threshold k as follows:

xi (t + 1) =

⎧
⎪⎨

⎪⎩

xi (t) if xi (t) = 1

1 if xi (t) = 0 and
∑

j∈N (i) x
i (t) ≥ k

0 if xi (t) = 0 and
∑

j∈N (i) x
i (t) < k,
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where N (i) is the set of neighbours of node i and xi (t) is the boolean state of the node
i at discrete time t : xi (t) = 1 representing active state and xi (t) = 0 representing
the inactive state for node i at time t . The standard interpretation of the states may be
inverted in some cases causing no loss of generality. There can be other update rules
of a bootstrap percolation process like in [7] but all variants have the same property
of being homogeneous and local. The standard model of bootstrap percolation is
monotonewith evolution of discrete time. Some variants of the bootstrap percolation,
with the introduction of excitatory nodes and inhibitory nodes [7], display non-
monotone behavior. The model of bootstrap percolation with inhibition has been
useful in studying the phenomenon of input normalization in neurons [1]. In the
next section a modification to the standard bootstrap percolation is introduced that
also exhibits a non-monotonic behavior. Bootstrap percolationmodels have also been
used to study impacts of external perturbations to models of weighted trade networks
[8]. In [8], each node—a nation state—is modelled to be in a binary state. A node
in an active state represents that the corresponding nation state is in a normal state,
i.e. it has imports and exports in a stable level. An abnormal or inactive state for a
nation indicates that it is facing a trading disaster and it is leading towards a volatile
economy. Since an abnormal country can influence the state of its neighbours by
potentially turning them into abnormals, bootstrap percolation is used for modeling
the cascading reaction of any initial perturbation. Despite being an interesting model
of the spread of trading and economic disasters in a trade network, certain major
assumptions of the model make it less flexible to real settings. The model does
not allow nodes going from inactive to active states through a local process in the
same way they go from active to inactive. Moreover the model, in general does not
allow independent relapse or recovery of nodes—i.e without the assistance of local
homogenous update rule. Even though our modified bootstrap percolation model
was motivated by drawbacks and inadequacies in the fault propagation model in
trade-networks, one can use the structural framework of our model to represent other
non-monotone local-homogenous processes.

2 The Modified Bootstrap Percolation Model with External
Inputs

The new model description can be broken down into two independent parts:

1. The non-monotone bootstrap percolation process.
2. External inputs forcing certain network states to certain target network states.

The second part of the model has a superiority over the first part. After the formal
description of these parts it will be clear as to how their hierarchy is defined
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The non-Monotone Bootstrap Percolation Process:

This part of the model corresponds to the discrete step update rule. As opposed to the
standard bootstrap percolation model, this modification has two process parameters
k1, k2 instead of a single one k. The process is defined as:

xi (t + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if xi (t) = 0 and
∑

j∈N (i) x
i (t) ≥ k1

0, if xi (t) = 0 and
∑

j∈N (i) x
i (t) < k1

0, if xi (t) = 1 and
∑

j∈N (i) x
i (t) ≤ |N (i)| − k2

1, if xi (t) = 1 and
∑

j∈N (i) x
i (t) > |N (i)| − k2

In brief, the above process can be described textually as: (a) If a node is inactive
and k1 or more of its neighbours are active, it will turn active. (b) If a node is active
and k2 or more neighbours are inactive it will become inactive. Otherwise the state
of nodes remains unchanged.

Note that now, with these changes we have an identical jump back rule from active
to inactive like jumping from inactive to active. Unless there are any external inputs
(the second part of the model), these update rules are obeyed at every discrete time
step to evaluate the state of the network at the next time step. This part forms the
local-homogenous update rule for our model.

External Inputs: Only the abovemodification does not allow nodes to have indepen-
dent transitions to active or inactive states, i.e without the assistance of the homoge-
nous update rule. In order to account for that, external forced inputs are introduced.
Before defining the external forced inputs let’s define what is meant by state of the
network. Since a node can exist is two states and there are N nodes in the network,
there can be 2N possibilities of network state. Network state at discrete time step
t is defined as X (t) = (x1(t), x2(t), . . . , xN (t)). The network state is an element
from {0, 1}N . For convenience, each network state will be encoded with its decimal
equivalent added with 1. So, for example the state (1, 0, 0, . . . , 0) represents that
only the node labelled 1 is active (1) and rest are inactive (0). If there were 4 nodes
in the network the state (1, 0, 0, 0) would have been encoded as 9. The 2N states of
a network are represented as X1, X2, . . . , X2N .

The external inputs are analogous to constantmaps except for a crucial distinction:
that some states of the network are non-forceable. This brings us to the third parameter
of our model which is the set of states of the network which cannot be forced into a
target set by any constant map. Formally, this part of the model can be expressed as:

For a network of size N the set of all possible external inputs is:

Sall = {s1, s2, . . . , s2N }

Let’s define a one to one function F as: F : si �→ Xi . If S is defined as the set of
non-forceable states of the network, then if at time step t there is an external input
sk to the process,
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X (t + 1) = F(sk) iff X (t) /∈ S

If X (t) ∈ S then X (t + 1) is determined by the local update rule of the process. At
any time step t the model does not permit more than one external input to the process.

This part of the model has a hierarchy over the previous part. If there is any
external input to the process, the external input part takes precedence over the local
homogenous update rule.

3 Holonomy Decomposition and Modeling the Process
as a Transformation Semigroup

In this paper the complexity and behaviour of such a modified model is analyzed
by observing its algebraic structure. There are some obvious questions this paper
aims to investigate. Since the process is non-monotone it is of interest to investigate
whether a particular instance (a set of parameters k1, k2 and S) of this model falls into
cycles or dies down into a single state. It may also be of interest to know whether
it is possible to trigger the system into cycle—if yes, what is the fastest possible
way of achieving that. Intuitively, the complexity of the process increases if the
cardinality of S increases. In this section two measures are defined to quantify the
algebraic complexity of the process. We will be using the method of computational
Holonomy Decomposition of Transformation Actions to analyze this model [5]. The
computational holonomy decomposition of any discrete-time, discrete state process
requires the process to be represented as a transformation action. Before defining a
transformation action representation the modified Bootstrap percolation model let’s
look at holonomydecomposition and the advantages of using it to analyze our system.

A transformation action (also called a transformation semigroup) is defined as a
set of functions that maps a set to itself and is closed under function composition. It is
represented as (A, S)where S is the set of functions acting on the set A. (This S is not
to be confused with the set of non-forceable states as defined in themodel above.) Let
a · s denote resulting state s(a) in A resulting from applying transformation s ∈ S to
state a ∈ A. Similarly for P ⊆ A, P · s = {a · s ∈ A | a ∈ P}. The extended image
set I ∗ of the transformation action (A, S) is defined as:

I ∗ = {A · s | s ∈ S} ∪ {A} ∪ {{a} | a ∈ A},

A reflexive and transitive relation called the subduction relation is defined on I ∗ as:

P ≤S Q ⇐⇒ P = Q or ∃s ∈ S such that P ⊆ Q · s for P, Q ∈ I ∗

Height of a singleton member Q in I ∗ is defined to be 0. For any other member
Q ∈ I ∗, the height is i is defined as the length of the longest strict subduction chain
to Q in I ∗ that ends in a singleton, the Q’s holonomy group (BQ, HQ) can be defined
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as is done in [3]. A permutation reset semigroup (�i ,�i ) for a height i , i = 1, . . . , h
is defined as the direct product of holonomy groups for subduction equivalence class
representatives Q in I ∗ that have height i , augmented with the constant maps.

The holonomy decomposition theorem [3] states that any finite transformation
semigroup divides or is emulated by a wreath product of its holonomy permutation
reset transformation semigroups. Since holonomy decomposition is used to study the
modified bootstrap percolation—the process is modeled as a transformation semi-
group as follows:

(X = {0, 1}N , 〈(Sall \ {F−1(s)|s ∈ S}) ∪ {t}〉) (1)

Note that here S is the set of non-forceable states and Sall is the set of all external
inputs. The angular brackets indicate that the semigroup acting on the state set X is
generated by association of elements of the set inside the brackets. The actions of
the transformation action is defined as:

x · t = y =⇒ X (t + 1) = y if X (t) = x, x, y ∈ X and no external input on system.

and x · si = F(si ) if x /∈ S

x · si = x · t if x ∈ S

For every parameter set k1, k2, S of the model for a given graph, a transformation
semigroup can be written for the process using Eq.1. For the remainder of this paper
we show the results for the graph indicated in Fig. 1.

Fig. 1 Random graph with 5
nodes chosen for this study.
A total of 32 states starting
from 1 till 32 is possible for
this network, for all the
different boolean labellings
of the nodes. Numbers inside
the node indicate their index
in the network statelabel
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4 Methods, Results and Discussion

All the analysis of holonomy decomposition, algebraic structure, hierarchy and com-
plexity were carried out using the computational tools of GAP (Groups, Algorithm,
Programming)—a system for computational discrete algebra [12] and one of its
packages: SgpDec (package for semigroup decomposition) [2]. In this paper, using
GAP/SgpDec we study the holonomy decomposition of finite transformation actions
[5, 6] to gains insights about the discrete system dynamics. Another concept that will
be frequently used in this study is algebraic complexity of a process. We use two
measures of complexity: (a) Krohn-Rhodes (KR) ComplexityMeasure (b) Aperiodic
Complexity Measure. The KR complexity measure is a unique maximal hierarchical
complexity measure satisfying the complexity axioms defined in [11]. It is defined as
the the smallest number of permutation levels needed in any Krohn-Rhodes decom-
position [9]. In this paper we employ a computable upper bound onKR complexity of
a transformation semigroup (TS) given as the total number of levels of the holonomy
decomposition of TS with groups in them. We also define the height complexity of
a transformation semigroup as the smallest number of levels needed in the holon-
omy decomposition of the transformation semigroup. It is to be noted that all the
complexity measures reported in this paper are upper bounds of the actual KR com-
plexity measure as GAP/SgpDec is never always guaranteed to produce a shortest
Krohn-Rhodes decomposition for a transformation semigroup.

Using SgpDec it is possible to observe and study the skeleton of a transformation
semigroup [4]. A skeleton of a transformation action is a pre-ordered structure on
I ∗ which encodes information about the different ways of traversing from the entire
state set to singletons of the system. It is possible to evaluate the upper bound of the
number of consecutive irreversible transformations required (from any initialization)
to reach a death state (or terminal generalized limit cycle, i.e., permutation group)
for the system from the skeleton of a transformation action.

Since there are a lot of parameter combinations possible for our model, we focus
on three scenarios of the process model which are somewhat realistic in the context
of trade networks to demonstrate how holonomy decomposition can be used to study
the bootstrap percolation process. Using those parameter values we will observe how
the use of holonomy decomposition helps to understand the model process in more
depth.

We study the following three scenarios of the modified Bootstrap percolation
model. For all the three scenarios the values of k1 and k2 range from 1 to 5:

1. Scenario 1: In this scenario the set S (the set of non-forceable states) is empty.
2. Scenario 2: In this scenario the set S is taken as {11, 19, 20, 25}.
3. Scenario 3: In this scenario the set S is taken as {8, 15, 20, 22, 29}.

The choices for the set S in the above scenarios are not random. Their construction
is dependent on the subject graph that has been chosen for this study. In the second
scenario the motivation was to bunch five states into the non-forceable set S which
allow only two nodes to be active with the constraint that their cumulative degree
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Fig. 2 Complexity analysis for Scenario 1. aHeatmap for Krohn-Rhodes in scenario 1. bHeatmap
for height complexity in scenario 1. The horizontal axis of the heatmap corresponds to the parameter
k1. The vertical axis corresponds to the parameter k2. The numbers inside the cells represent the
complexity value at the corresponding values of k1 and k2

does not exceed 6. Similarly in the third scenario the degree constraint was upper
bounded to 10. The construction of these scenarios are realistic because in most
applied cases, like the case of a trade network, making states non-forceable incurs
certain costs.

Scenario 1 results: The upper bound for complexity measures for scenario 1 are
presented in Fig. 2a, b with a heat map. For values of (k1, k2) = (1, 1), (2, 1), (2, 2)
and (2, 3) the highest value for Krohn-Rhodes Complexity, i.e 1, is achieved. For
k1 > 3 and k2 > 3 the Krohn-Rhodes complexity of the system is zero. This implies
that in that subspace of the parameter space it is possible to construct an embedding
of the model system by using only banks of flip-flops as there exists no pools of
reversibility in the system in them. The system never falls into cycles and always
dies into a state. The holonomy components of the system in scenario 1 as found by
SgpDec for k1, k2 = (1, 1) are: Level 1: 19, Level 2: 6, Level 3: 2, Level 4: (7, C4)

This encodes that the first level of the decomposition has 19 elements of extended
image set being moved around by constant maps and identity. These transformation
actions are called identity resets. We also see identity resets in levels 2 and 3. In the
fourth level of the decomposition we have a permutation group (7, C4) with a cyclic
group C4 of order 4 acting on 7 elements, augmented with constant maps.

Although not presented in this report, it was found that the standard monotone
bootstrap percolation model with constant maps (a simpler version than this one) has
the simplest algebraic decompositions as it can be entirely built up with banks of flip
flops. In other words the standard bootstrap percolation model with constant maps
has Krohn-Rhodes complexity zero for all pairs of (k1, k2) and any other modifica-
tion of that model can be viewed as being an added complexity to the fundamental
model. The case of k1, k2 = (1, 1) does however have cycles in it (indicated by per-
mutation group in last level of decomposition). When the (7, C4) holonomy group
is investigated further using SgpDec, it was found that the states {6, 12, 10, 14}
are being moved by the generator t in a cycle, isomorphic to C4. In Fig. 3 we see
the physical interpretation of this. The cycle in which the graph falls into has been
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Fig. 3 The C4 cycle in last level of the holonomy decomposition of scenario 1 set at (k1, k2) =
(1, 1). Red nodes indicate inactive nodes and green nodes indicate active nodes

Fig. 4 Heat map for complexity measures over parameters k1, k2 for scenario 2. a KR Complexity
upper-bound measure. b Height complexity measure. Highest KR complexity upper bound deter-
mined by SgpDec for this scenario is 4

identified exactly. If the system falls into any one of the states shown in Fig. 3 it will
forever be stuck there (since we are in scenario 1 there is no forced exit from the
loop as well).

Complexity increases in Scenario 2 and 3 due to introduction of a non-forceable
state as is observable in the heat maps of complexity in Figs. 4 and 5. Many more
holonomy groups start to appear in the decomposition. Unlike scenario 1, in this
scenario we have holonomy groups in levels in which there were none in the previous
scenario. This implies that there are elements in the semigroup that move around
sets of states together. To illustrate let’s take an example. At (k1, k2) = (1, 1) for
scenario 2, we find that the holonomy group (5, C2) appears in the penultimate level
of decomposition (the 7th). On investigating this group closely we see that the set of
states {6, 8} was being moved around by t2 to {8, 10} and back. This is shown in
Fig. 6. In this case since an element of the transformation semigroup (here t2 meaning
two clock ticks) moves set of states around in cycles, it is less intuitive to understand
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Fig. 5 Heat map for complexity measures over parameters k1, k2 for scenario 3. a KR complexity
measure. b Height complexity measure

Fig. 6 The C2 cycle in the 7th level of the holonomy decomposition of Scenario 2 set at (k1, k2) =
(1, 1). Red nodes are inactive nodes and green nodes are active nodes. The set {6, 8} is mapped to
{8, 10} and back by t2

the actual cycles from the holonomy group itself. Looking at Natural Subsystems
can help in having a better insight in these cases [10].

We also see that the highest KR complexity bound attained in Scenario 2 and 3
is 4. Scenario 3 is only a bit more complex than Scenario 2 in the height complexity
measure. For some parameter tuples (k1, k2) the upper bound of the number of
irreversible actions required on the original state set to bring system to a death state
is higher for Scenario 3 when compared to Scenario 2 (and of course, scenario 1).
Note that in Scenario 2 and 3, just like Scenario 1, there exist threshold values for k1
and k2 above which KR complexity measure is zero as no pools of reversibility can
exist in those parameter spaces.
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5 Conclusion

In this paper we introduced a modified non-monotone version of the classical boot-
strap percolation that allowed external inputs and modelled it as an automaton in
order to analyze its algebraic structure and corresponding complexity. Existence of
cycles can be beneficial or detrimental depending on the system being studied. So
their identification in a discrete event discrete time system process can be of inter-
est. The complexity measures identified in this paper provide insight on that matter.
A non-zero KR complexity measure for discrete systems indicates the existence of
subsets of the state space that can be moved around in cycles by sequence of combi-
nation of external operations. We also discuss analysis by holonomy decomposition
of our bootstrap percolation model and discuss how it reveals hidden structures and
information about the system. The decomposition reveals that our system’s hier-
archical construction can be emulated by building blocks of cyclic groups, simple
non-abelian groups and flip-flops. Apart from cycles, other interesting system prop-
erties are also identified for our system by studying metrics like height complexity
of a holonomy decomposition. The non-monotone version of the Bootstrap percola-
tion model under discussion shows higher complexity in structure than the classical
Bootstrap Percolation model. Adding a non-forceable state set on top of that results
in further increases in the complexity measures.
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Simulations of Realistic Trombone Notes
in the Time-Domain

Janelle Resch, Lilia Krivodonova, and John Vanderkooy

Abstract Time pressure waveforms associated with four musical notes produced
at different volumes on a trombone were measured and then reproduced using a
computational model. Special care was taken to accurately model the change in
the trombone’s cross-sectional area. An axisymmetric formulation of the compress-
ible Euler equations was used and then numerically solved using the discontinuous
Galerkin method. To evaluate the chosen model, the numerical solutions were com-
pared against the measured data collected outside the bell. We found that accounting
for the nonlinear behaviour for both high and low sound volumes yielded a good
quantitative match between the computed and measured tones. For all four notes,
once the sound pressure level drops 30 dB below the main peak, the computed pres-
sure overestimated the measured spectral components.

Keywords Nonlinear acoustics · Compressible Euler equations · Discontinuous
Galerkin method · Wave steepening · Trombone

1 Introduction

In this paper, we present results of axisymmetric simulations of sound propagation
in a trombone where notes of different dynamic levels were considered. Modeling
the state of a musical instrument during play, i.e., simulating realistic musical notes,

J. Resch (B) · L. Krivodonova
Department of Applied Mathematics, University of Waterloo, 200 University Ave. W.,
Waterloo, ON N2L 3G1, Canada
e-mail: jresch@uwaterloo.ca

L. Krivodonova
e-mail: lgk@uwaterloo.ca

J. Vanderkooy
Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W.,
Waterloo, ON N2L 3G1, Canada
e-mail: jv@uwaterloo.ca

© Springer Nature Switzerland AG 2021
D. M. Kilgour et al. (eds.), Recent Developments in Mathematical, Statistical
and Computational Sciences, Springer Proceedings in Mathematics & Statistics 343,
https://doi.org/10.1007/978-3-030-63591-6_39

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63591-6_39&domain=pdf
mailto:jresch@uwaterloo.ca
mailto:lgk@uwaterloo.ca
mailto:jv@uwaterloo.ca
https://doi.org/10.1007/978-3-030-63591-6_39


424 J. Resch et al.

is equivalent to recreating the timbre produced by the vibrating air-column [16].
If a note is played softly on a brass instrument, then its tonal character is typically
expressed by the first few harmonics [4]. In acoustics, words such as ‘mellow’ or
‘dull’ have been used to characterize such timbres [7]. But as the playing dynamic
or loudness of the note increases, the amplitude as well as the rate of change of the
pressure disturbance entering the bore increases. This results in the sound quality
becoming more ‘rich’ or ‘bright’ [3, 6, 8, 13]. This tonal character or ‘brassiness’
is the acoustic consequence of nonlinear wave propagation, i.e., the distortion of the
waveform’s shape as it travels through the tubing of the instrument. In particular,
the crest of the pressure wave will travel faster than the trough causing the wave to
steepen. Such wave propagation is especially prevalent in the trombone due to its
length and general shape [7]. For such strong nonlinear behaviour, a linearization
cannot be applied to the equations of motion, particularly if a loud note is being
modeled. This has been shown for instance in [9, 10, 12].

In this work, we further demonstrate that regardless of a note’s volume, realistic
musical tones can be accurately simulated when the nonlinear motion is incorporated
into the model. This is accomplished by measuring and then simulating the pressure
waveform associated with a Bb

3 played at mezzo-piano, a Bb
3 and Bb

4 played at forte,
and a F3 played at double-forte through a simplified trombone geometry. Since we
previously showed [15] that the bends of the instrument do not greatly influence the
wave propagation, the trombone can be thought of as a tube with axial symmetry.
We exploited this symmetry and used an axisymmetric model where the change in
the trombone’s radius was carefully reconstructed.

2 Computational Model

We write the general conservation law in a domain Ω as

∂u
∂t

+ ∇ · f(u) = 0, x ∈ Ω, t > 0, (1a)

u = u0, t = 0, (1b)

where f(u) is the flux function and the solution is u(x, t) = (u1, u2, . . . , um)t ,
(x, t) ∈ Ω × [0, T ]. The solution u(x, t) on each element is approximated by a
vector function U j whose components are written as a linear combination of the
orthogonal basis functions {ϕ j }.

We model nonlinear sound wave propagation through a trombone using the com-
pressible Euler equations in which we describe the flow as an inviscid, isentropic
fluid. The equations of motion will be written using the 2D axisymmetric system
(x, r) where r is the radial component and x is along the trombone axis. The solu-
tion is independent from the angular coordinate θ . To avoid the singularity at r = 0,
the surface integral is not computed along the axis of symmetry and the vector of
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conserved variablesU is multiplied by r . Taking ρ as the gas density, p as the internal
pressure, E as the total energy, ρu = (ρu, ρv) as the momenta in the axial and radial
directions, the system in (x, r) coordinates can be written as

∂[rU]
∂t

+ ∂[rF(U)]
∂x

+ ∂[rG(U)]
∂r

= S(U), (2)

where the flux vectors F(U), G(U), and the source term S(U) are defined as

F(U) =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv

u(E + p)

⎤
⎥⎥⎦ , G(U) =

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p
v(E + p)

⎤
⎥⎥⎦ , S(U) =

⎡
⎢⎢⎣
0
0
p
0

⎤
⎥⎥⎦ . (3)

The equation of state for an ideal gas connects E to the other variables and closes
the system

E = r

(
p

γ − 1
+ ρ

2
(u2 + v2)

)
, (4)

where the parameter γ is the specific heat ratio, which for air is γ = 1.4 [17].

2.1 Numerical Test Case

We simulated the time pressure waveform of the recorded Bb
3 played at mezzo-piano

(mp), a Bb
3 and Bb

4 played at forte (f ), and a F3 played at double-forte (ff ) (see [15]
for details). These pressure measurements were obtained by mounting a quarter-inch
microphone on a Mendini MTB-L Bb tenor slide trombone approximately 4.7cm
from the beginning of the mouthpiece. This area of the trombone is known as the
mouthpiece-shank. The wave profiles were prescribed as the boundary conditions
on pressure at the inlet boundary of the computational trombone for the simulations
presented in Sect. 3. We wrote an expression for the pressure by applying Fourier
synthesis to one period of the recorded waveform. The series was truncated at the
31st term and written as

p = A0 + 2
30∑
i=1

Aicos (2π fi t + φi ) , (5)

where fi denotes an integer multiple of the fundamental frequency, Ai and φi is the
amplitude and phase corresponding to each harmonic component, respectively, and
A0 is the term corresponding to the direct current.

Since the cross-sectional area near mouthpiece-shank only increases slightly for
the initial 4.5 cm of tubing and then remains constant for approximately 159.5cm,
we locally related pressure and velocity at the mouthpiece boundary using the planar
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expression derived from linear acoustic theory. This relation between pressure and
velocity reproduced themeasuredmouthpiece pressurewaveformaccurately. Finally,
the density was prescribed assuming the adiabatic relation between pressure and
density fromcompressible flow theory [14]. In summary, the dimensionless boundary
conditions at the mouthpiece of the computational trumpet are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p = A0 + ∑30
i=1 2Aicos (2π fi t + φi ) ,

ρ = γ p
1
γ ,

u = p−po
ρoc

,

v = 0.0.

(6)

The computed pressure was sampled 17cm outside the computational trombone.
This corresponds to the position where another microphone was placed along the
central axis of the real instrument. The microphones simultaneously recorded the
mentioned notes so we could examine the evolution of the waveform as it traveled
through the instrument. Comparing the experimental waveforms outside the bell with
our numerical outputs allowed us to test the validity of our model.

2.2 Initial and Boundary Conditions

Wemodeled a trombone where the flare opens into an open domain and took the flow
to initially be at rest. For all simulations, the flow (6) is introduced into the domain at
the left vertical boundary of the bore which corresponds to the mouthpiece boundary.
Along the far-field, pass-through boundary conditions were used in which the ghost
state was prescribed to be the free flow state, i.e., the initial state. We experimentally
determined the size of the computational domain so that reflections at the far-field
would not influence the waveform solution. Reflective boundary conditions were
prescribed (i.e., solid-wall boundary conditions) on the inner and outer walls of the
computational instrument. At the ghost state, the normal velocity was taken to be the
inner value with a negative sign. The density, pressure and tangential velocity were
unchanged from the corresponding values inside the cell (see [5] for more details).

2.3 Computational Trombone Geometry

We now present the computational trombone that was used for our numerical sim-
ulations. The computational geometry describes the physical shape of the 2.87m
long trombone where the flow in the mouthpiece cup was not considered. A general
diagram of the trombone mouthpiece and the positioning of the first microphone is
shown in Fig. 1. The shaded region represents the beginning of our computational
domain.
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Fig. 1 Adiagramof the first 10cmof the trombone. The shaded region corresponds to the beginning
of the computational domain where the left vertical wall at 4.7 cm is the mouthpiece boundary. The
junction between the trombone tubing and the mouthpiece is located at 5.6cm

Fig. 2 An example of the
mesh generated using GMSH
inside the computational
trombone flare region

The first 4.5 cm of the trombone bore is conical (not including the mouthpiece
cup), whereas the next 159.5cm of tubing remains cylindrical (the first bend is within
this region). Leading into the second bend however, the trombone tubing slightly
increases in radius again. The second bend then immediately leads into the region
of the rapidly expanding flare. Therefore, if the trombone were to be straightened
out, between 164 to 247cm, the bore is a conical shape whose radius increases by
a factor of 1.59. To obtain a realistic flare shape, a photograph of the trombone bell
was taken. The grabit software (Math Works Inc.) was then used to trace out the
trombone flare by a set of points. Cubic splines were used to interpolate the bell and
initial bore shape and lines were used for the cylindrical regions. We will refer to
this computational geometry as Geo Trombone. The corresponding mesh was obtained
using the mesh generating software GMSH. In Fig. 2, a close up of the mesh inside
the flare region is shown. Adaptive element sizes were used to accurately resolve the
geometric features of the trombone. The final mesh had a total of 935,366 triangular
shaped cells where the minimum inscribed radius was 75.4 µm.

3 Simulation Results

The 2D axisymmetric compressible Euler equations (3)–(4) were solved on
Geo Trombone where the Bb

3 atmp, the B
b
3 at f, the B

b
4 at f, and the F3 at ff were generated

at the inflow boundary. All four computed pressure waveforms were sampled 17cm
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Fig. 3 A comparison between the experimental and computed frequency spectra of the Bb
3 played

atmp (top-left), Bb
4 played at f (top-right), B

b
3 played at f (bottom-left) and F3 played at ff (bottom-

right) simulated on Geo Trombone

outside the bell and then compared against the measured data at the same position.
The computed and measured spectral curves for these notes are plotted in Fig. 3.

For the mp trombone note, the sound pressure levels (SPLs) corresponding to the
first six frequencies (i.e., components less 1500Hz)matchwell with the experimental
data. These components are most important since it is a softly played note, and the
highermeasured harmonics appear to containmostly noise.Wewill therefore dismiss
the noisy portion of the spectrum. Next we will evaluate whether brassy timbres, i.e.,
louder notes, could also be accurately reproduced. Examining the Bb

3 /B
b
4 played at f

in Fig. 3, we found that the simulated notes match the measured data exceptionally
well for all frequencies 2800Hz. A lower, louder pitch—the Fb

3 played at ff, was also
simulated on Geo Trombone yielding even better results for frequencies up 4000Hz.
The relative differences in the SPLs between the computed and measured pitches are
plotted in Fig. 4.

Although we have not presented the results in this paper, in [15] we examined the
general importance of incorporating nonlinear effects (i.e., wave steepening) when
simulating musical notes, especially when attempting to reproduce musical notes
through the trombone when shock waves are produced. In particular, simulations of
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Fig. 4 Relative difference in SPLs between the measured and simulated trombone notes shown in
Fig. 3

both finite-amplitude (nonlinear) and small-amplitude (linear) musical tones were
simulated and their spectra were compared. It was found that when wave steepen-
ing was neglected, the numerical solutions greatly underestimated the amplitude of
harmonic components larger 1500 and 500Hz for the trumpet and trombone, respec-
tively, when modeling a B f

3 played at forte.

4 Conclusion

In the literature, it is typical to consider six to ten harmonics when analyzing the
timbre of f notes, [1, 2, 7, 11, 12]. By these standards, our proposed model is able
to reproduce the brassiness of the mentioned notes rather well. Regardless of the
playing dynamic level, deviations from the experimental data were observed mainly
for the highest frequencies. In particular, for harmonicswith the SPLs that are roughly
30 dB below the maximum SPL, the computed spectra overestimates the measured
values where the discrepancy increases with frequency. Nonetheless, the lower and
mid-frequencies of the trombone notes matched the experimental spectra very well.
This makes it tempting to suggest that the observed variation is due to neglecting
thermoviscous effects (since losses are more efficient for higher frequencies). Future
work should attempt to incorporate such losses.
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The Impact of External Features on
Prediction Accuracy in Short-Term
Energy Forecasting

Maher Selim, Ryan Zhou, Wenying Feng, and Omar Alam

Abstract Accurate prediction of future electricity demand is important in the energy
industry.Machine learning for time series prediction provides solutions for short term
energy forecasting through a variety of algorithms, such as LSTM, SVR, Xgboost,
and Facebook Prophet. However, many companies primarily rely on univariate time
series algorithms, while numerous external data, e.g. weather data, are available as
input features for energy forecasting. In this paper, we study the impact of external
features on the performance of univariate and multivariate time series algorithms
for Short-term Energy Forecasting using a standard benchmark energy data set.
Quantitative comparisons on prediction accuracy measured by Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE) for the models are
obtained. It is found that multivariate algorithms using external features outperform
univariate algorithms, and that multivariate algorithms achieve reasonable accuracy
even without using past step energy consumption as an input feature.

Keywords Energy forecasting · Facebook prophet · LSTM · Machine learning ·
Support vector regression

1 Introduction

Forecasting energy demand is critical for the energy industry as well as businesses
in related sectors, such as banks and insurance companies. It has been estimated
that a one-percent improvement in mean absolute percentage error (MAPE) can save
$300,000 annually for a utility company with a 1 GW peak load, and millions of
dollars for larger ones [1]. An accurate forecast of upcoming energy consumption
allows utility companies to plan and make decisions in real-time for all processes
in their system and is a requirement to build automated smart energy grids [2, 3].
However, this problem has increasingly become more complex in recent years due
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to growing energy markets [1] and the introduction of renewable sources which
are tightly coupled with external variables such as weather conditions. Despite the
fact that energy forecasting is increasingly becoming a multivariate problem, many
companies in the energy sector continue to use univariate time series algorithms,
which only consider the usage history of electricity consumption.

Electricity forecasting using data-driven approaches, such as, machine learning is
the subject of ongoing research [1]. A recent survey [1] shows that the percentages of
machine learning algorithms investigated for Short-Term Energy Load Forecasting
(STELF) are as follows: 4% decision trees, 24% statistical and other algorithms,
25% support vector machines (SVM), and 47% artificial neural networks (ANN)
[1, 4, 5].

Research in energy forecasting focuses primarily on improvement of univariate
models [6, 7]. Our contributions in this paper are twofold. First, we test repre-
sentative models using algorithms from each of the above surveyed categories [1],
and demonstrate that multivariate approaches consistently outperform the univariate
model Facebook Prophet for energy forecasting. To this end, four computational
models are adopted to our research purpose and tested: Long Short-Term Mem-
ory neural networks (LSTM) [8], Support Vector Regression (SVR) [9], Gradient
Boosted Trees [10], and Facebook Prophet [11]. Prediction accuracy for all models
is compared with Root Mean Square Error (RMSE) and Mean Absolute Percentage
Error (MAPE). Second, we show that even when the past energy load is excluded
as a feature, the models are capable of predicting future load based on external fea-
tures and even when the features are measured on a larger timescale than the target
variable. These results are of interest to the energy industry as they demonstrate a
simple and computationally light method to improve currently used models.

The remainder of this paper is organized as follows. Section2 provides an
overview of machine learning time series algorithms studied. Section3 discusses
the computational models and methodology implementation. Section4 explains our
experimental results and Sect. 5 concludes the paper.

2 Notable Multivariate and Univariate Machine Learning
Time Series Algorithms

We first briefly discuss the mathematical background for notable time series algo-
rithms including the multivariate algorithms LSTM [8], SVR [9], Gradient Boosted
Trees via XGBoost [10], and the univariate Facebook Prophet package [11]. This
forms the basis for our model development and implementation to be explained in
Sect. 3.

Univariate and multivariate time series models: The univariate time series is a
set of continuous observations for a single variable with constant time steps [12],
univariate models aim to predict future values for that single variable based only on
its past values:
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x̂t = F(xt−1, xt−2, xt−3, . . .)

where xt represents the value of the target variable at time t , and F is the learned
function. The multivariate time series is defined as observations of one or more
variables and features often taken simultaneously and describes the interrelationships
among the series [13–15]. Multivariate models use variables and features of time-
series data to develop a model to forecast future prediction for the target variable:

x̂t = F(xt−1, xt−2, xt−3, . . . , a
(1)
t−1, a

(1)
t−2, a

(1)
t−3, . . . , a

(2)
t−1, a

(2)
t−2, a

(2)
t−3, . . .)

where each a(i) represents the time series of an external feature. We also investigate
models of the form

x̂t = F(a(1)
t−1, a

(1)
t−2, a

(1)
t−3, . . . , a

(2)
t−1, a

(2)
t−2, a

(2)
t−3, . . .)

where past information about the target variable is unavailable.

Long Short-Term Memory (LSTM) neural networks: LSTM is a type of recur-
rent neural network architecture designed to extract long-term dependencies out of
sequential data and avoid the vanishing gradient problem present in ordinary recur-
rent networks [16, 17]. These propertiesmake LSTM themethod of choice for longer
time series and sequence prediction problems [18, 19]. LSTMs have been success-
fully applied to Short-Term Electricity Load Forecasting (STELF) modeling [2, 8].
There are several variations of the LSTM unit, but in this paper we use the standard
architecture designed by Graves and Schmidhuber [16].

The key idea behind LSTM is to introduce a memory cell to the standard RNN
architecture [2, 8]. This memory cell allows the LSTMmodule to retain information
across many timesteps when needed [18, 19].

Support Vector Regression (SVR): Nonlinear support vector regression is an exten-
sion of the support vector machine (SVM) to regression problems [20]. The statis-
tical learning theory for support vector regression is developed in [21]. Assuming
that D = {xi , yi }ni=1 is a training dataset, where xi ∈ Rd are the system features and
yi ∈ R is the main system output observations, the goal of ε-SVR is to find a function
f (x) that has no more than ε deviation from the observed output yi for all training
data.

This leads to the SVR optimization:

min
w

1

2
||w||2 + C

∑

i

(
ξi + ξ̂i

)

s.t. yi − wT xi − ξi ≤ ε

− (yi − wT xi ) − ξ̂i ≤ ε

ξi ≥ 0, ξ̂i ≥ 0, i = 1, · · · , n.
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where w is the learned weight vector, n denotes the number of samples, xi is the i-th
training instance, yi is the training label, and ξi the distance between the bounds and
predicted values outside the bounds.C is a parameter set by the user that controls the
penalty imposed on observations outside the bounds, which helps to prevent overfit-
ting. The SVR uses kernel functions to transform the data into a higher dimensional
feature space to make it possible to perform the linear separation. In this paper, we
use three different kernels with SVR namely (a) Linear, (b) Polynomial, (c) Radial
Basis Function (RBF).

Facebook Prophet: Prophet uses a decomposable time series model [11, 22] which
models three components: trend, seasonality, and holidays. They are combined addi-
tively as follows:

y(t) = g(t) + s(t) + h(t) + ε1, (1)

where g(t) is a piece-wise linear or a logistic growth curve for modelling the trend
function that catches non-periodic changes in the value of the time series, s(t) rep-
resents periodic changes (e.g., weekly and yearly seasonality), and h(t) represents
the effects of holidays which occur on potentially irregular schedules over one or
more days. The error term ε1 represents any idiosyncratic changes which are not
accommodated by the model; the package assumes that ε1 is normally distributed.

Using time as a regressor, Prophet attempts to fit several linear and nonlinear
functions of time as components. Modeling seasonality as an additive component is
the same approach taken by exponential smoothing in the Holt-Winters technique.
This package frames the forecasting problem as curve-fitting rather than looking
explicitly at the time based dependence of each observation within a time series.
This means that it is not designed for multivariate time series.

XGBoost regression: Gradient boosting is an ensemble technique which creates a
predictionmodel by aggregating the predictions of weak predictionmodels, typically
decision trees. With boosting methods, weak predictors are added to the collection
sequentially with each one attempting to improve upon the entire ensemble’s perfor-
mance.

In the XGBoost implementation [23], given a dataset with n training examples
consisting of an input xi and expected output yi , a tree ensemble model φ(xi) is
defined as the sum of K regression trees fk(xi):

ŷi = φ(xi) =
K∑

k=1

fk(xi).

To evaluate the performance of a given model, we choose a loss function l(ŷi , yi ) to
measure the error between the predicted value and the target value, and optionally
add a regularization term Ω( fk) to penalize overly complex trees:
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L(φ) =
n∑

i

l(ŷi , yi ) +
K∑

k

(Ω( fk)).

The algorithm minimizes L(φ) by iteratively introducing each fk . Assume that the
ensemble currently contains K trees. We add a new tree fK+1 that minimizes

n∑

i

l(ŷi , yi + fK+1(xi)) + Ω( fk),

or in other words, we greedily add the tree that most improves the current model as
determined by L . We train the new tree using this objective function; this is done
in practice by approximating the objective function using the first and second order
gradients of the loss function l(ŷi , yi ) [24].

3 Implementation Methodology

We implement the four algorithms described above in Python, using the scikit-learn
and Keras packages with Tensorflow as a backend [25, 26]. We used the Python
implementation of Prophet [11]. Table1 shows the configuration parameters used
in the experiment for (LSTM, SVR XGboost) multivariate models and (The Face-
book Prophet) univariate model. For more details regarding the implantation of the
algorithms, the reader can check our longer paper [27] in that field and the packages
documentations online [11, 25, 26].

Before being fed into the models, categorical features are encoded as numerical
values and all features are subsequently normalized to lie in the interval [0, 1]. To
test the effect of external features, we reframe the data into three different datasets
for testing: one set consisting of univariate time series with no external features,
one consisting of the full multivariate time series with all features, and one contain-
ing external features alone with no energy time series information. The time series

Table 1 Configuration parameters for multivariate models (LSTM, SVR XGboost) and univariate
model (The Facebook Prophet)

Model Configuration parameters

LSTM Input layer, 50 LSTM neurons, 1 neuron output layer
loss (mae), optimizer (adam), epochs (300), batch size (72)

SVR (RBF) kernel = ‘rbf’, C = 1e3, gamma = 0.1

SVR (Linear) kernel = ‘linear’, C = 1e3

SVR (Poly) kernel = ‘poly’, C = 1e3, degree = 3

Gradient Boosting booster(gbtree), colsample bytree (1), gamma (0)
learning rate (0.1), delta step (0), max depth (3), No
estimators (100)

Facebook Prophet Default parameters, Periods (1500), freq (30T)
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Fig. 1 (a) Training and testing processes. (b) Evaluating process

datasets are converted to input-output pairs for supervised learning by considering a
sliding window 50 timesteps in which the windowed portion of the series is used to
predict the next timestep.

The models are trained on each dataset with a 75/25 training/validation split as
shown in Fig. 1, and evaluated on one month of reserved testing data. To avoid data
leakage, we split the data in such a way that all data points in the validation set occur
chronologically later than those the training set, and all data in the testing set occur
after both.

The performance of the models is evaluated by two commonly used metrics in
forecasting, root-mean-square error (RMSE) and mean absolute percentage error
(MAPE) that are defined as the following:

RMSE =
√√√√ 1

N

N∑

i=1

(
yi − ŷi

)2
, (2)

MAPE = 1

N

N∑

i=1

∣∣∣
yi − ŷi

yi

∣∣∣ × 100. (3)

The data used for comparison is a well-studied [4, 28] dataset obtained from
the 2001 European Network on Intelligent Technologies (EUNITE) competition
for electricity load forecasting [29]. This data comes from the Eastern Slovakian
Electricity Corporation and spans two years from January 1, 1997 until December
31, 1998. It includes the following features: the half-hourly electricity load, the daily
average temperature, and a flag signifying whether the day is a holiday. The partial
autocorrelation is shown in Fig. 2; we note a one-timestep dependency as expected
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Fig. 2 (a) A correlation matrix. (b) Partial autocorrelation for the load [28]

for time series, as well as a spike around 48 timesteps corresponding to daily cycles.
We also notice a spike at 336 timesteps corresponding to weekly cycles. For this
reason the important past values for our time series model to incorporate are a lag of
1, and ideally 48 and 336 as well.

A correlation coefficient of −0.8676 between the daily peak load and the daily
average temperature indicates a strong relationship between the electrical load and
weather conditions [28]. Analysis of the dataset shows that the load generally reduces
on holidays andweekends [4, 28], likely due to businesses shutting down. This varies
depending on the specific holiday; onChristmas orNewYear, for example, electricity
consumption is affectedmore than on other holidays. Based on these observations,we
choose to use as input features for our experiments the past loads, daily temperature,
the time of day, month, day of the week and whether the day is a holiday [4, 28].
These features are encoded as numerical or binary values and normalized to lie in
the range [0, 1] using theMinMaxScaler from scikit-learn, while categorical features
are one-hot encoded using LabelEncoder from scikit-learn.

4 Experimental Results

A one-month forecast obtained from the four models is shown in Fig. 3 for 100
timesteps (50h). Qualitatively, it can be seen from the figure that the forecast is
fairly accurate for the LSTM, SVR (RBF, linear), and XGboost models, while being
considerably worse for SVR (polynomial). The figure also shows that the forecasts
obtained from Prophet consistently overestimate the actual value, while at the same
time not capturing small-scale variations in the load behaviour. We believe that
the superior performance of the LSTM, SVR, and XGboost models is due to the
incorporation of multivariate data. Note that despite the external features provided
to the models are measured daily (temperature is provided as a daily average), the
multivariate models still exhibit superior performance.
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Fig. 3 Predictions (blue) compared with actual values (orange) for 100 time steps in January 1999
using (a) LSTM, (b) SVR, (c) XGboost, (d) Facebook Prophet Package

Table 2 MAPE and RMSE for multivariate models (LSTM, SVR XGboost) and (The Facebook
Prophet) univariate model

LSTM SVR
RBF Ker.

SVR
Linear Ker.

SVR
Poly Ker.

Gradient
Boosting

Facebook
Prophet

MAPE 1.51 2.1 2.1 4.0 2.1 14.4

RMSE 13.5 17.6 17.9 36.7 16.64 102.2

Table2 shows the RMSE and MAPE values for each model while predicting the
half-hourly load for one month. The results for multivariate models are as following
for the LSTM model which obtains the highest accuracy with a MAPE value of
1.51% and RMSE value of 13.5 MW, followed by SVR (RBF, Linear) and XGBoost
with MAPE values of 2.1% and RMSE values of 17.6 MW, 17.9 MW, and 18.2 MW
respectively.While the lowest accuracy is for the Facebook Prophet univariate model
with a MAPE value of 14.4% and RMSE value of 102.2 MW

To estimate the contribution of the external features on multivariate models accu-
racy, we conducted the same experiment for the LSTM, SVR, and XGboost models
without using past power consumption as an input feature. Table3 shows the RMSE
and MAPE values for each model while predicting the half-hourly load for one
month. The LSTM model obtains the highest accuracy with a MAPE value of 6.1%
and RMSE value of 51.161MW, followed by SVR (Poly) and XGBoost with MAPE
values of 6.4 and 7.5%, respectively. We note that multivariate models still achieve
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Table 3 MAPE and RMSE for multivariate models (LSTM, SVR XGboost) and univariate model
(Prophet) without using past power consumption as input feature

LSTM SVR
RBF Ker.

SVR
Linear Ker.

SVR
Poly Ker.

XGBoost Facebook
Prophet

MAPE 6.1 16.0 12.1 6.4 7.5 14.4

RMSE 51.161 128.355 96.036 52.863 63.135 102.2

reasonable accuracy and outperform the univariate model even without using past
power consumption as an input feature.

5 Conclusion

External features, even when provided on longer timescales than the time series
of interest, can be used to improve prediction accuracy. In this work, we com-
pare four forecasting algorithms for time series—LSTM, SVR, XGBoost, and the
Prophet package—for the problem of short-term energy load forecasting. We show
that despite the external features of interest (e.g., temperature and holidays) being
measured on a daily basis, they considerably increase the accuracy of the forecast
for multivariate models as compared to the univariate model. Even when past values
are not provided to the model, the models achieve reasonable accuracy based only
on these external features and the time of day.

As future work, we intend to use datasets from other areas such as finance and
medical applications to investigate the consistency of algorithmperformance.Wewill
also consider to develop new computational models that would take the advantages
of both multivariate and univariate time series algorithms.
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Toral Diffeomorphisms Induce Quantum
Superoperators via TAQS

Artur Sowa

Abstract We propose a new method for adapting (perturbing) models of quantum
observables. The method is dubbed TAQS as it is based on toral automorphisms (dif-
feomorphisms) and the Q-transform, which together induce superoperators acting
on observables. We demonstrate via examples that TAQS perturbations often lead
to radical changes in the observables’ structure and spectra. This is a preliminary
exploration in which emphasis is put on connections with some exciting canonical
topics (the almostMathieu operators), and with recent trends in the study of quantum
metamaterials (fractal-structured operators).

Keywords Quantum theory · Superoperators, Q-transform · Automorphisms of a
torus

1 Introduction

A study of perturbations of Hamiltonians plays an important role in QuantumTheory
and in its applications to Condensed Matter Physics, Materials Science, Chemistry,
Synchrotron Science, etc. The traditional approach goes back to the 1930s work of
E. Wigner, H. A. Jahn, E. Teller, and others, and focuses on the action of symmetry
groups, and the concept of symmetry breaking. We propose an alternative approach
dubbedTAQS.TheTAQSmethod is basedon anobservation that aHilbert space oper-
ator can be perturbed via topological automorphisms of the two-torus. In otherwords,
diffeomorphisms of the torus are interpreted as superoperators acting in spaces of
observables. Here, we will examine some effects related to special diffeomorphisms:
the cyclic shifts and automorphisms identified with the elements of GL(2,Z).

The proposed construction utilizes the Q-transform, [9], which identifies the gen-
eralized functions on the torus with Hilbert space operators. Since diffeomorphisms
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of the torus act on functions (distributions), they automatically act on operators. An
operator obtained by perturbing a self-adjoint operator is also self-adjoint. How-
ever, it may have dramatically different properties, e.g. perturbations of the identity
operator by some toral rotations have nontrivial spectra. Even more strikingly, a per-
turbation of the simple discrete second derivative is unitarily equivalent to the almost
Mathieu operator, see Example 3 in Sect. 3. The latter plays a role in the modelling
of disordered electronic transport, and has been continually researched by physicists
and mathematicians for decades, [3, 7]. In particular, it was conjectured that (under
some conditions) the spectrum of this operator is a Cantor set, [8]. This conjecture,
known as the Ten Martini Problem, was settled positively in 2009, [2].

TAQS may also be used in investigations of the structure of materials. The envi-
sioned method involves switching from the bottom-up to a top-down approach.
Namely, in most of the classical science one constructs models starting from the
fundamental principles and gradually adding structure, see e.g. [5]. In contrast, mod-
ern computational optimizationmethods enable one to construct models based on the
best fit to (whatever type of) data, notwithstanding that the results need not be easy to
interpret via the fundamental principles. A combination of these concepts suggests
a method for finding the best model among the specific adaptations. The starting
point is construction of special superoperators put forth here, which are based on
toral shifts and automorphisms obtained via GL(2,Z). Since the shifts are in numer-
ical practice discrete, and the group of lattice automorphisms is finitely generated,
this framework is amenable to AI explorations. We hope to provide more details in
forthcoming publications.

2 The Method of TAQS

Any diffeomorphism of the torus T = R/Z × R/Z acts on functions or distributions
via the change of variable. On the other hand, one can identify functions (and dis-
tributions) with Hilbert space operators via the Q-transform, [9]. In this way, one
obtains a representation of the group of diffeomorphisms in the space of operators.
In what follows we discuss this construction in more detail.

2.1 Q-Transform Mediated Equivalence Between Functions
and Operators

For an absolutely integrable function f : T → R, its Fourier coefficients
[ f̂ (k, l)](k,l)∈Z2 are defined via:

f̂ (k, l) =
∫∫

f (x, y) e−2π i(kx+ly) dx dy.
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The definition admits a well-known extension for distributions. The set of all real-
valued distributions on T will be denoted S. Next, we fix a Hilbert space H with
a distinguished unitary basis,1 say, (ek)k∈Z. We will use these data to construct a
quantum observable, say, H : H → H. We do so by prescribing the observable’s
matrix elements, i.e. hk,l = H(k, l) = 〈ek |Hel〉. Specifically, we set

hk,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂ (k, l) if k < l

f̂ (l, k)∗ if k > l

√
2 � f̂ (k, k) if l = k < 0

f̂ (0, 0) if l = k = 0

√
2 	 f̂ (k, k) if l = k > 0

(1)

Clearly, the matrix H is self-adjoint, i.e. hk,l = h∗
l,k . This operation is invertible as

indeed:

f̂ (k, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hk,l if k < l

h∗
−k,−l if k > l

1√
2
(h−k,−k + ihk,k) if l = k < 0

h0,0 if l = k = 0

1√
2
(hk,k − ih−k,−k) if l = k > 0

(2)

We write

H = Q[ f ], f = Q−1[H] and H = S[ f̂ ], f̂ = S−1[H].

Operation Q, referred to as theQ-transform, is a composition of the Fourier transform
with the symmetry change S. It is linear and invertible. We will refer to O = Q S
as the space of observables. In other words, O is the linear space of all operators in
H (with the distinguished basis) that Q−1 maps into real-valued distributions. Some
subspaces ofO have special properties. In particular, the following useful observation
follows directly from (1) and the Parseval’s theorem:

Fact 1 The Q-transform is a unitary map from the space of real square-integrable
functions onto the space of self-adjoint Hilbert-Schmidt operators.

1 It is important that the basis index set consist of integers (rather than natural numbers). The finite-
dimensional version of the Q-transform is also easy to interpret but requires an odd number of
indices, [9].
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In fact, more is true: the Q-transform enables the definition of Sobolev classes of
observables (relative to the choice of basis in H). This concept can be applied in the
analysis of quantum dynamics, [9], but that is not our focus.

2.2 Toral Automorphisms Acting on Functions and Operators

Any diffeomorphism of the torus, say, Φ : T → T, acts on functions via the change
of variable f 
→ f ◦ Φ. The action is naturally extended to S (as pullback on distri-
butions). The Q-transform, in turn, extends it to action onO. In other words,Φ gives
rise to a superoperator acting on operators, Q[ f ] 
→ Q[ f ◦ Φ], denotedΣΦ .Wewill
refer to these superoperators and their compositions as TAQS. Clearly, f 
→ f ◦ Φ

is unitary in the real Hilbert space L2(T), whenever Φ is measure preserving. Fact 1
implies:

Fact 2 When Φ is a measure preserving diffeomorphism, the superoperator ΣΦ is
a unitary map in the space of self-adjoint Hilbert-Schmidt operators.

One can interpret the space of all Hilbert-Schmidt operators as the space of quan-
tum states. The action of superoperators ΣΦ induced by any measure preserving
diffeomorphisms is easily extended to this space and remains unitary. Thus, this
structure furnishes an alternative model of the standard quantum mechanics. It addi-
tionally brings on board a constellation of topological aswell as chaos-theoretic ques-
tions. Such questions can also be addressed directly via the space of complex square
integrable functions on the torus. However, the setting enabled by the Q-transform
brings an essentially new element into the scope: the effect of superoperators on the
structure and, in particular, on the spectra of observables. We will examine it via
several calculable examples that stem from special diffeomorphisms:

• Cyclic shifts, i.e. for [α, β] ∈ T, one has the map (x, y) 
→ T (x, y) =
T[α,β](x, y) = (x + α, y + β) mod 1.

• Diffeomorphisms induced by matrices M ∈ GL(2,Z), i.e. for

M =
[
a b
c d

]
, a, b, c, d ∈ Z, and ad − bc = ±1, (3)

one has the map (x, y) 
→ ΦM(x, y) = (ax + by, cx + dy) mod 1.

We will refer to the group of automorphisms generated by T and GL(2,Z) as AutT.
It is convenient to introduce the following notation:

fM = f ◦ Φ−1
M , fT = f ◦ T−1. (4)



Toral Diffeomorphisms Induce Quantum Superoperators via TAQS 445

The corresponding superoperators, denoted for brevity ΣM ,ΣT , are then expressed
via

ΣM [H] = HM := Q[ Q−1[H]M ], ΣT [H] = HT := Q[ Q−1[H]T ]. (5)

This defines a representation of AutT in the vector space O.

2.3 Explicit Formulas for the Special TAQS

We present a straightforward result, Proposition 1, that makes explicit some basic
features of TAQS. It is convenient to use the following notation:

U+ = {
(k, l) ∈ Z

×2 : k < l
}
, U− = {

(k, l) ∈ Z
×2 : k > l

}
,

D+ = {
(k, l) ∈ Z

×2 : k = l > 0
}
, D− = {

(k, l) ∈ Z
×2 : k = l < 0

}
.

Thus, the lattice Z
2 is partitioned into five disjoint sets: U+,U−, D+, D−, and

{(0, 0)}.
Proposition 1 The matrix coefficients of HT , HM are obtained from those of H as
follows:

1. HT (0, 0) = H(0, 0) = HM(0, 0).
2. For T = [α, β], we have:

HT (k, l) =
⎧⎨
⎩
hk,l exp[− 2π i(kα + lβ) ] (k, l) ∈ U+

hk,l exp[2π i(kβ + lα) ] (k, l) ∈ U−
(6)

Thus, the off-diagonal entries of HT differ from those of H only in phase. Fur-
thermore, for k > 0:

[ HT (k, k)
HT (−k,−k)

]
=

[
cos 2πk(α + β) − sin 2πk(α + β)

sin 2πk(α + β) cos 2πk(α + β)

] [
hk,k

h−k,−k

]
(7)

3. Let M be as in (3), and let k1 = ak0 + cl0, l1 = bk0 + dl0. If (k0, l0) ∈ U+, we
have

det M · HM(k0, l0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

hk1,l1 (k1, l1) ∈ U+

h∗
−k1,−l1

(k1, l1) ∈ U−

1√
2
(hk1,k1 − ih−k1,−k1) (k1, l1) ∈ D+

1√
2
(h−k1,−k1 + ihk1,k1) (k1, l1) ∈ D−

(8)
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The coefficientsHM(k0, l0) for (k0, l0) ∈ U− are also obtained from (8) via self-
adjointness. Furthermore, if (k0, l0) ∈ D+, we have

det M · HM(k0, l0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2	 hk1,l1 (k1, l1) ∈ U+

√
2	 h∗

−k1,−l1
(k1, l1) ∈ U−

hk1,k1 (k1, l1) ∈ D+

h−k1,−k1 (k1, l1) ∈ D−

(9)

Finally, if (k0, l0) ∈ D−, we have

det M · HM(k0, l0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2� hk1,l1 (k1, l1) ∈ U+

√
2� h∗

−k1,−l1
(k1, l1) ∈ U−

−h−k1,−k1 (k1, l1) ∈ D+

hk1,k1 (k1, l1) ∈ D−

(10)

Proof First, the invariance of the coefficient at (0, 0) follows directly from the defi-
nitions.

Second, let f = Q−1[H]. (6–7) follow from (1–2) via the straightforward formula
f̂T (k, l) = f̂ (k, l) exp[−2π i(kα + lβ)].
Finally, formulas (8–10) are obtained in the same way via identity f̂M(k, l) =

(det M) f̂ (ak + cl, bk + dl). �

Nontrivial phases in the off-diagonal terms of Hamiltonians (such as in (6)) turn
up in models of electrons hopping on a lattice with transversal magnetic field.2 This
is of relevance to phenomena such as the Quantum Hall Effect, e.g. [4, 11]. At the
same time, an application of ΣM could be interpreted as a redesign of the hopping
constraints (e.g. nearest neighbour vs. mid-range).

3 A few Examples of the Effect of TAQS

It is easily seen from (6–7), that the action by shift [−α, α] is a unitary equivalence;
for more details see [9]. However, that is not the case for other choices of the shift.
Moreover, it is easily seen that for a rank one operator, say,H = |ψ〉〈ψ |, the operators
ΣT [H] or ΣM [H] are generally not of rank one.

2 More precisely, the direct sum of a discrete family of Hamiltonians is needed to model electron
hopping on Z

2 lattice.
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A self-adjoint Hilbert-Schmidt operator is compact and so its spectrum is either a
finite set or a countably infinite set with an accumulation point at 0. The TAQS can
modify such a spectrum, e.g. change the value of the eigenvalues or even their number.
We examine two explicit examples as that using finite rank operators (examples
1, 2). We also demonstrate that when applied to a non Hilbert-Schmidt operator,
a TAQS superoperator can change the spectrum’s topology in a highly nontrivial
way (Example 3). We also discuss a substantial change of an operator’s structure
under a specific TAQS action (Example 4). Finally, we display explicit examples of
eigenvectors of TAQS (Example 5). In all examples the Hilbert space H is infinite-
dimensional (except for the numerical illustration in Example 4).

Example 1 Rank and eigenvalue modulation via ΣT . Let σ̃α with α = 1, 2, 3 be an
operator defined by the action of the Pauli matrix σα in span{e0, e1} ⊂ H, whereas
σ̃αen = 0 for all n = 0, 1.We select the zero-traceHamiltonian,H = p1σ̃1 + p2σ̃2 +
p3σ̃3, i.e.

H =
(

p3 p1 − i p2
p1 + i p2 −p3

)
in span{e0, e1} (11)

Normalizing p21 + p22 + p23 = 1,wefind that the eigenvalues ofH are±1 (in addition
to 0), regardless of the parameters. It follows from (6–7) thatHT = ΣT [H] is nonzero
only in the invariant subspace span{e−1, e0, e1}, wherein:

HT =
⎛
⎝−p3 sin 2πθ 0 0

0 p3 (p1 − i p2)e−2π iβ

0 (p1 + i p2)e2π iβ −p3 cos 2πθ

⎞
⎠ . (12)

Here, θ = α + β. The eigenvalues of this block matrix are readily found explicitly;
they are independent of β and periodic in θ . There are generically three distinct
eigenvalues but also some level-crossings. If p3 = 0 or θ = 0, then HT is unitarily
equivalent toH.

Example 2 Rank augmentation via ΣM . We now consider a perturbation via M
given in (14) of the Hamiltonian (11). It follows from (8–9–10), thatHM is nonzero
only in the invariant subspace span{e0, e1, e2}, wherein:

HM =
⎛
⎝ p3 p1 − i p2 0

p1 + i p2 0 −p3/
√
2

0 −p3/
√
2 0

⎞
⎠ . (13)

The characteristic polynomial depends only on p3 (due to the normalization condi-
tion). It is easily seen that for every p3 ∈ [−1, 1], the matrix has three distinct real
eigenvalues. Again, the rank of the operator does not increase if p3 = 0.



448 A. Sowa

Example 3 The shifted identity and the almostMathieu operator. Let I : H → H be
the identity operator3. Let T be a shift of the torus by [α, β], and denote θ = α + β.
It follows from (7) that the operator IT is diagonal, and

IT (k, k) = √
2 cos(2πkθ + π/4).

Thus, when θ is irrational, the spectrum of IT is the interval [−√
2,

√
2] and, when

it is rational, it is a finite subset of this interval. Furthermore, let R : H → H be the
right-shift operator, defined via R[en] = en+1. Then, with some real parameter μ,

Hμ,θ = √
2μIT + R + R†

is the famous almost Mathieu operator.
One verifies directly that acting with ΣT on the tridiagonal matrix �μ = μI +

R + R† introduces variable phase in the off-diagonal coefficients. However, taking
α = β, we find that the operator ΣT [�μ] is unitarily equivalent with the almost
Mathieu operator, namely:

ΣT [�μ] = U Hμ,2α U
†,

whereU is a diagonal unitary matrix withU (k, k) = exp (2π ik2α). Thus, the TAQS
action transforms�μ whose spectrum is [−2 + μ, 2 + μ] intoΣT [�μ]whose spec-
trum is topologically the Cantor set (for μ = 0 and irrational α), [2].

Example 4 The effect of GL(2,Z) on the structure of couplings. Consider a matrix
H that has nonzero coefficients hk,l aligning along lines k − l = γ for some values
of the constant γ , as in the example given in Fig. 1a. Next, let us choose the map

M =
[
1 −1
0 1

]
. (14)

Applying formula (8) we find that HM has nonzero coefficients aligning along the
lines 2k − l = γ ′ for some values of γ ′, as seen in Fig. 1b. Examples asH used here
have recently been introduced for the purpose of analyzing quantum metamaterials,
[10]. In fact, the concentration of coefficients along lines reflects the structure of
certain physical couplings. The TAQS action via M redesigns those couplings.

The numerical result displayed here is based on the discrete version of the Q-
transform, [9], and a discrete version of an automorphism of the torus. Specifically,
for a function f : T → R represented by an N × N matrix, the matrix of fM is
computed via recalculating indices:

3 It is easily seen that I ∈ O, as is the case for other operators considered in this section.
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-512 512

-512

512

(b)

-512 512

-512

512

(a)

Fig. 1 a The support (i.e. location of the nonzero entries) of the original matrix H = 0 ⊕∑
k

1
2k

σ
(k)
x , where the sum is finite. Note that the nonzero entries align along certain lines with

slope 1. b The support ofHM where M is as specified in (14). The nonzero entries align along cer-
tain lines with the slope 2 and 1/2. From the physical point of view this represents a rearrangement
of couplings between qubits. Note: This example is obtained numerically via a discrete model of
the torus. The choice of matrix indexing (by integers centered at 0) is natural for an application
of the discrete Q-transform, but needs to be recalibrated (to positive integers) when computing the
toral automorphism. The discrete results are different in some details than the infinite-dimensional
version discussed in Proposition 1

ind = mod(Mˆ(-1)*[1:N;1:N],N);

ind = ind + N*(ind == 0); % replace 0 by N

f_M = f(ind(1,:), ind(2,:));

Nevertheless, the highlighted features are similar as in Proposition 1.

Example 5 Nontrivial invariance.We give an example of a nontrivial operator that
remains invariant under a nontrivial automorphism. Consider a sequence of real
numbers (xn)n∈N with x1 = 0. Define H as follows: For 0 < k, l we set

H(k, l) =
{−i xk/ l if l|k

i xl/k if k|l (15)

All other coefficients are set to zero. The coefficient i xn occurs repeatedly along
the line −nk + l = 0. At the same time, −i xn occurs repeatedly along the line
k − nl = 0. (Note that with some assumptions on the growth of |xn|, e.g. if the
sequence is bounded, we have H ∈ O.) Let us consider Σσ1 induced by the first
Pauli matrix σ1 ∈ GL(2,Z). The corresponding TAQS action intertwines the two
sets of lines, and (8) yields

Hσ1 = Σσ1 [H] = H.

It is known, [1], that ΦM1 and ΦM2 are topologically conjugate if and only if M1 and
M2 are similar matrices, i.e. there exists4 M ∈ GL(2,Z), such that MM1 = M2M .

4 Also, the problem of similarity of matrices over GL(2,Z) is nontrivial but well understood, [6].
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That implies similarity of the corresponding superoperators ΣMΣM1 = ΣM2ΣM .
In particular, if H is invariant under ΣM1 , then HM is an eigenvector of ΣM2 . In
particular, taking H as in (15), and arbitrary M ∈ GL(2,Z), we observe that

ΣM2 [HM ] = HM wherein M2 = Mσ1M
−1.

These are the first examples of eigenvectors of TAQS.

Acknowledgements My thinking about the matters presented here has been influenced by the
followingpeople: John-CarlBermodes,RobertGreen,Natalia Janson,Bing-ZhaoLi,RobertMoody,
Raymond Spiteri, and Alexandre Zagoskin.

References

1. Adler, R.L., Weiss, B.: Similarity of automorphisms of the torus. Mem. Amer. Math. Soc. 98
(1970)

2. Avila, A., Jitomirskaya, S.: The ten martini problem. Ann. Math. 170, 303–342 (2009)
3. Jitomirskaya, S., Liu, W.: Universal hierarchical structure of quasiperiodic eigenfunctions.

Ann. Math. 187, 721–776 (2018)
4. Fradkin, E., Kohmoto, M.: Quantum Hall effect and geometrical localization of electrons on

lattices. Phys. Rev. B 35, 6017–6023 (1987)
5. Green, R.J., Haverkort, M.W., Sawatzky, G.A.: Bond disproportionation and dynamical charge

fluctuations in the perovskite rare-earth nickelates. Phys. Rev. B 94, 195127 (2016)
6. Henninger, J.P.: Factorization and Similarity in GL(2, Z). Lin. Alg. App. 251, 223–237 (1997)
7. Last, Y.: Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent

developments. In: Amrein, W.O., Hinz, A.M., Pearson, D.B. (eds.) Sturm-Sliouville Theory,
pp. 99–120. Past and Present, Birkhuser, Basel (2005). MR 2145079 Zbl 1098.39011

8. Simon, B.: Schrödinger operators in the twenty-first century. In: Fokas, A., Grigorian, A.,
Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics, pp. 283–288. Imperial College Press,
London (2000)

9. Sowa, A.: A nonlocal transform to map and track quantum dynamics. J. Phys. A Math. Theor.
52, 305301 (2019)

10. Sowa, A., Zagoskin, A.: An exactly solvable quantum-metamaterial type model. J. Phys. A
Math. Theor. 52, 395304 (2019)

11. Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in
a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)



Optimal Time Decay Rates for a
Chemotaxis Model with Logarithmic
Sensitivity

Yanni Zeng and Kun Zhao

Abstract We consider a Keller-Segel type chemotaxis model with logarithmic sen-
sitivity and density-dependent production/consumption rate. It is a 2 × 2 reaction-
diffusion system describing the interaction of cells and a chemical signal. We study
Cauchy problem for the original system and its transformed system, which is one of
hyperbolic-parabolic conservation laws. In both cases of diffusive and non-diffusive
chemical, we obtain optimal L2 time decay rates for the solution. Our results improve
those in Li et al. (Nonlinearity 28:2181-2210, 2015 [5]),Martinez et al. (IndianaUniv
Math J 67:1383-1424, 2018 [7]).

Keywords Conservation laws · Hyperbolic-parabolic · Reaction-diffusion ·
Asymptotic behavior · Time decay

1 Introduction

In this paper we consider Cauchy problem of a Keller-Segel type chemotaxis model:

{
st = εsxx − μus − σ s,

ut = Duxx − χ [u(ln s)x ]x , x ∈ R, t > 0, (1)

(s, u)(x, 0) = (s0, u0)(x), x ∈ R. (2)

Here the unknown functions s = s(x, t) and u = u(x, t) are the concentration of
a chemical signal and the density of a cellular population, respectively. The con-
stant system parameters are ε ≥ 0, μ �= 0, σ ≥ 0, D > 0 and χ �= 0, standing for
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the diffusion coefficient of chemical signal, coefficient of density-dependent pro-
duction/consumption rate of chemical signal, natural degradation rate of chemical
signal, diffusion coefficient of cellular population, and coefficient of chemotactic
sensitivity, respectively. Equation (1) describes the movement of a cellular popula-
tion in response to a chemical signal, while both entities are naturally diffusing and
producing/degrading in the local environment.

Equation (1) is a system of reaction-diffusion equations. It can be transformed
into a system of hyperbolic-parabolic conservation laws by the inverse Hopf-Cole
transformation [4]:

v = (ln s)x = sx
s

. (3)

The new system under the variables v and u reads:

{
vt + (μu − εv2)x = εvxx ,

ut + χ(uv)x = Duxx .
(4)

Throughout this paper we assume

χμ > 0, (5)

which includes two scenarios: χ > 0 and μ > 0, or χ < 0 and μ < 0. The former is
interpreted as cells are attracted to and consume the chemical. The latter describes
cells depositing the chemical to modify the local environment for succeeding pas-
sages [8]. Further discussion on (5) can be found in [9].

Under assumption (5), (4) can be simplified by using rescaled variables [9]:

t̃ = χμ

D
t, x̃ =

√
χμ

D
x, ṽ = sign(χ)

√
χ

μ
v, ũ = u. (6)

This simplifies (4) to

{
vt + (u − ε2v

2)x = ε1vxx ,

ut + (uv)x = uxx ,
x ∈ R, t > 0 (7)

after dropping the tilde accent. Here the new parameters are

ε1 = ε

D
≥ 0, ε2 = ε

χ
. (8)

The initial condition for (7) is

(v, u)(x, 0) = (v0, u0)(x), x ∈ R. (9)
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For a general background on (1), (7) and related models, readers are referred to [5,
7, 9] and references therein. Here we focus on results directly related to this paper.
Equation (7) is a system of hyperbolic-parabolic conservation laws. If Cauchy data
are small perturbations of a constant state (0, ū) with ū > 0, the L2 theory of (7),
(9) is well understood. This includes local existence, global existence, asymptotic
decay rates, and convergence to an asymptotic solution, as a direct application of
Kawashima’s theory [2, 3]. Similarly, pointwise estimates hence L p theory with
p ≥ 1 are available, also as an application of the general theory [6].

If (v0, u0) is prescribed around (0, ū) but (v0, u0 − ū) has finite H 2 norm that is
not necessary small, global existence of solution to (7), (9) has been established in [1,
5, 11] for the case ε = 0. In particular, under the additional zero-mass assumption
on the perturbation and the smallness assumption on the initial perturbation and its
anti-derivative, algebraic time decay rates in the L2 framework are established in [5].
For the case ε > 0, similar results are obtained in [7].

The time decay rates in [5, 7] are obtained by energy and weighted energy meth-
ods. Although the rates are one can possibly have via those methods, they are not
optimal. Here our purpose is to improve those rates to optimal ones through an iter-
ation scheme based on spectral analysis, Green’s function and Duhamel’s principle.
We also obtain corresponding rates for the original variables, i.e., the solution to (1),
(2). In particular, we establish optimal rates of s and its derivatives in the border case
−μū = σ . This answers a question posted in [5], see Remark 1.2 therein. We further
comment that similar results are obtained recently when (1) or (7) has a logistic
growth term in the equation for cells [10].

Next we formulate the results from [5, 7], as they are the starting point of our
analysis. We consider the scenario that (s0, u0) in (2) is prescribed around a constant
state (s̄, ū), where s̄ and ū are positive. Correspondingly, from (3) and (6) we have
(v0, u0) in (9) as prescribed around (0, ū). From (7), both v and u − ū are conserved
quantities. In particular, from (3) and (6),

∫
R

v(x, t) dx =
∫
R

v0(x) dx = sign(χ)

√
χ

μ

∫
R

d

dx
(ln s0(x)) dx = 0.

If we assume
∫
R
[u0(x) − ū] dx = 0, we also have

∫
R

[u(x, t) − ū] dx = 0.

These allow us to define anti-derivatives:
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ψ(x, t) ≡
∫ x

−∞
v(y, t) dy, φ(x, t) ≡

∫ x

−∞
[u(y, t) − ū] dy.

(10)

ψ0(x) ≡ ψ(x, 0) =
∫ x

−∞
v0(y) dy, φ0(x) ≡ φ(x, 0) =

∫ x

−∞
[u0(y) − ū] dy.

(11)

We introduce somenotations.Throughout this paperweuseC to denote a universal
positive constant, depending only on the system parameters and initial data. We also
use the following notations to abbreviate the norms of Sobolev spaces with respect
to x :

‖ · ‖k = ‖ · ‖Hk (R), ‖ · ‖ = ‖ · ‖L2(R).

Theorem 1 ([5]) Suppose that u0 ≥ 0, ū > 0, (ψ0, φ0) ∈ H 3(R) and there exists a
sufficiently small constant η0 > 0 such that ‖ψ0‖21 + ‖φ0‖2 ≤ η0. Then there exists
a unique global solution to (7)–(9) withl ε = 0, satisfying v ∈ C([0,∞); H 2(R)) ∩
L2([0,∞); H 2(R)) and u − ū ∈ C([0,∞); H 2(R)) ∩ L2([0,∞); H 3(R)). More-
over, the solution has the decay estimate:

2∑
k=0

(t + 1)k+1‖Dk
x (v, u − ū)‖2(t) +

2∑
k=1

∫ t

0
(τ + 1)k‖Dk

xv‖2(τ ) dτ

+
3∑

k=1

∫ t

0
(τ + 1)k‖Dk

xu‖2(τ ) dτ ≤ C t > 0.

(12)

We comment that the statement of Theorem 1 is slightly different from Theorem
1.3 of [5]. This can be justified by a simple iteration, using Theorem 1.1 in [5]. See
a similar argument for the model with logistic growth in [10].

Theorem 2 ([7]) Suppose that u0 ≥ 0, ū > 0, (ψ0, φ0) ∈ H 3(R) and there exists
a sufficiently small constant η0 > 0 such that ‖(ψ0, φ0)‖2 ≤ η0. Then there exists
a unique global solution to (7)–(9) with ε > 0, satisfying (v, u − ū) ∈ C([0,∞);
H 2(R)) ∩ L2([0,∞); H 3(R)). Moreover, the solution has the decay estimate: For
t > 0,

2∑
k=0

(t + 1)k+1‖Dk
x (v, u − ū)‖2(t) +

3∑
k=0

∫ t

0
(τ + 1)k‖Dk

x (v, u − ū)‖2(τ ) dτ ≤ C.

(13)

Our main results are the following theorems. The first one improves the L2 decay
rates of (v, u − ū) and its derivatives in (12) and (13) to optimal ones. The second
one concerns the original variables s and u, or the solution to (1), (2).

Theorem 3 Assume that u0 ≥ 0, ū > 0, and (ψ0, φ0) ∈ H 3(R) ∩ L1(R).
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• There exists a sufficiently small constant η0 > 0 such that if ‖ψ0‖21 + ‖φ0‖2 ≤ η0,
the unique global solution to (7)–(9) with ε = 0, given in Theorem 1, satisfies

1∑
k=0

(t + 1)
3
4 + k

2 ‖Dk
x (v, u − ū)‖(t) ≤ C, t > 0. (14)

• There exists a sufficiently small constant η0 > 0 such that if ‖(ψ0, φ0)‖2 ≤ η0, the
unique global solution to (7)–(9) with ε > 0, given in Theorem 2, satisfies

2∑
k=0

(t + 1)
3
4 + k

2 ‖Dk
x (v, u − ū)‖(t) ≤ C, t > 0. (15)

Theorem 4 Assume that s0 > 0, s̄ > 0, u0 ≥ 0, ū > 0, and φ0 be defined in (11).
Let (s0 − s̄, φ0) ∈ H 3(R) ∩ L1(R). Then there exists a sufficiently small constant
η0 > 0 such that if ‖s0 − s̄‖21 + ‖φ0‖2 ≤ η0, the Cauchy problem (1), (2) with ε ≥ 0
has a unique classical solution for t ≥ 0, satisfying s(x, t) > 0 and u(x, t) ≥ 0. We
write

s(x, t) = e−(μū+σ)t s̃(x, t). (16)

Then the solution has the decay property for t > 0 as follows: If ε = 0,

2∑
k=0

(t + 1)
1
4 + k

2 ‖Dk
x (s̃ − s̄)‖(t) +

1∑
k=0

(t + 1)
3
4+ k

2 ‖Dk
x (u − ū)‖(t) ≤ C. (17)

If ε > 0,

3∑
k=0

(t + 1)
1
4 + k

2 ‖Dk
x (s̃ − s̄)‖(t) +

2∑
k=0

(t + 1)
3
4+ k

2 ‖Dk
x (u − ū)‖(t) ≤ C. (18)

We prove Theorem 3 in Sect. 2, and Theorem 4 in Sect. 3.

2 Decay Rates for the Transformed System

We write (7) in terms of the perturbation. Let

ũ = u − ū, ũ0 = u0 − ū,

w(x, t) =
(

v

ũ

)
(x, t) =

(
w1
w2

)
(x, t), Φ(x, t) =

∫ x

−∞
w(y, t) dy =

(
ψ

φ

)
(x, t), (19)

w0(x) =
(

v0
ũ0

)
(x) =

(
w01
w02

)
(x), Φ0(x) = Φ(x, 0) =

(
ψ0
φ0

)
(x). (20)
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Then (7), (9) can be written as

{
wt + Awx = Bwxx + R

w(x, 0) = w0(x)
, (21)

A =
(
0 1
ū 0

)
, B =

(
ε1 0
0 1

)
, R = R̃x , R̃ =

(
ε2w

2
1−w1w2

)
. (22)

Denote the Fourier transform of w(x, t) with respect to x as ŵ(ξ, t), etc. Then
taking Fourier transform of (21) gives us

ŵt = E(iξ)ŵ + R̂,

E(iξ) = −iξ A − ξ 2B.
(23)

The solution of (23) is

ŵ(ξ, t) = etE(iξ)ŵ(ξ, 0) +
∫ t

0
e(t−τ)E(iξ) R̂(ξ, τ ) dτ. (24)

To study the solution operator in (24), we perform spectral analysis for

E(iξ) =
(−ε1ξ

2 −iξ
−ūiξ −ξ 2

)
= λ1(iξ)P1(iξ) + λ2(iξ)P2(iξ),

where by direct calculation, the eigenvalues are

λ1,2(iξ) = −1

2
(ε1 + 1)ξ 2 ±

√
1

4
(ε1 + 1)2ξ 4 − ξ 2(ε1ξ 2 + ū), (25)

and the corresponding eigenprojections are

P1,2(iξ) = 1

−ūξ 2 + (λ1,2 + ε1ξ 2)2

( −ūξ 2 −iξ(λ1,2 + ε1ξ
2)

−ūiξ(λ1,2 + ε1ξ
2) (λ1,2 + ε1ξ

2)2

)
.

(26)
The solution operator in (24) is

etE(iξ) = eλ1(iξ)t P1(iξ) + eλ2(iξ)t P2(iξ). (27)

Noting that time decay rates are mainly determined by the behavior of solution
operator for small ξ , we take Taylor expansions in (25) and (26): For |ξ | � 1,
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λ1,2(iξ) = −1

2
(ε1 + 1)ξ 2 ± iξg(ξ), g(ξ) = √

ū + O(ξ 2) ∈ R,

P1,2(iξ) = 1

2

(
1 + O(ξ) ∓ 1√

ū
+ O(ξ 2)

∓√
ū + O(ξ 2) 1 + O(ξ)

)
.

(28)

We also need an estimate on the solution operator for ξ ∈ R:

Lemma 1 The solution operator in (24) satisfies

|etE(iξ)| ≤ Ce
− cξ2 t

1+ξ2 , ξ ∈ R. t ≥ 0, (29)

where C and c are two positive constants depending on ε1 ≥ 0 and ū > 0 only.

Lemma 1 is an application of Kawashima’s theory [2]. A discussion of it can be
found in [10], where a direct proof of Lemma 1 is also given. With (28) and Lemma
1, we are ready to prove the following decay estimate on the flow:

Lemma 2 Let ε1 ≥ 0, k ≥ 0 be an integer, h = (h1, h2)t ∈ L1(R), Dk
xh ∈ L2(R).

Then

‖etE(iξ)(iξ)k ĥ(ξ)‖ ≤ C(t + 1)−
1
4− k

2 (‖h1‖L1 + ‖h2‖L1) + Ce−ct‖Dk
xh‖, t ≥ 0,

(30)
where C and c are positive constants depending only on ε1 ≥ 0 and ū > 0.

Proof Let η > 0 be small such that (28) holds for |ξ | ≤ η. We write

I ≡ ‖etE(iξ)(iξ)k ĥ(ξ)‖2 = (

∫
|ξ |≤η

+
∫

|ξ |≥η

)|etE(iξ)(iξ)k ĥ(ξ)|2 dξ.

Applying (27) and (28) to the first integral and (29) to the second one, we have

I ≤
∫
|ξ |≤η

C |ξ |2ke−ξ2t |ĥ(ξ)|2 dξ +
∫
|ξ |≥η

Ce
− 2cη2 t

1+η2 |(iξ)k ĥ(ξ)|2 dξ

≤ C(t + 1)−k− 1
2 ‖ĥ‖2L∞ + Ce−c̃t‖(iξ)k ĥ‖2 ≤ C(t + 1)−k− 1

2 ‖h‖2L1 + Ce−c̃t‖Dk
xh‖2,

where c̃ > 0 is a constant, and we have used Plancherel theorem. Taking the square
root we obtain (30). �

To prove Theorem 3, we only need to prove (14) for ε = 0 while (12) is valid, and
prove (15) for ε > 0 while (13) is true. For this we use (21), which is equivalent to
(7), (9). We consider ε ≥ 0. By Plancherel theorem, (24) and the triangle inequality,
for an integer k ≥ 0 we have

‖Dk
xw‖(t) = ‖(iξ)kŵ‖(t) ≤ ‖(iξ)ket E(iξ)ŵ(ξ, 0)‖

+
∫ t

0
‖(iξ)ke(t−τ)E(iξ) R̂(ξ, τ )‖ dτ ≡ I1 + I2.

(31)
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Noting (11) and (20), we have w0(x) = (ψ ′
0, φ

′
0)

t (x). Thus applying (30) gives
us

I1 =‖(iξ)k+1etE(iξ)(ψ̂0, φ̂0)
t‖ ≤ C[(t + 1)−

3
4 − k

2 (‖ψ0‖L1 + ‖φ0‖]L1)

+Ce−ct‖Dk+1
x (ψ0, φ0)

t‖ ≤ C(t + 1)−
3
4− k

2 , 0 ≤ k ≤ 2.
(32)

Similarly, with (22) we have

I2 ≤
∫ t

0
[C(t − τ + 1)−

3
4 − k

2 (‖w2
1‖L1 + ‖w1w2‖L1)(τ )

+ Ce−c(t−τ)(‖Dk+1
x (w2

1)‖ + ‖Dk+1
x (w1w2)‖)(τ )] dτ.

(33)

For the case k = 0, we define

M(t) = sup
0≤τ≤t

[(τ + 1)
3
4 ‖w‖(τ )], (34)

which implies ‖w‖(t) ≤ M(t)(t + 1)− 3
4 for t ≥ 0. With (12) and (13) we have

(‖w2
1‖L1 + ‖w1w2‖L1)(τ ) ≤ (‖w1‖2 + ‖w1‖‖w2‖)(τ )

= ‖w1‖ 1
2 (τ )(‖w1‖ 3

2 + ‖w1‖ 1
2 ‖w2‖)(τ ) ≤ CM(τ )

1
2 (τ + 1)−

9
8 .

(35)

By Sobolev inequality, (12) and (13), we also have

(‖Dx (w
2
1)‖ + ‖Dx (w1w2)‖)(τ ) ≤ C(‖w‖L∞‖wx‖)(τ )

≤ C(‖w‖ 1
2 ‖wx‖ 3

2 )(τ ) ≤ C(τ + 1)−
7
4 .

(36)

Substituting (35) and (36) into (33), for k = 0 we have

I2 ≤ C
∫ t

0
[M(τ )

1
2 (t − τ + 1)−

3
4 (τ + 1)−

9
8 + e−c(t−τ)(τ + 1)−

7
4 ] dτ

≤ C[M(t)
1
2 (t + 1)−

3
4 + (t + 1)−

7
4 ].

(37)

Substituting (32) and (37) into (31) with k = 0, we have

‖w‖(t) ≤ C(t + 1)−
3
4 + CM(t)

1
2 (t + 1)−

3
4 .

Thus by (34) and Young inequality,

M(t) ≤ C + CM(t)
1
2 ≤ C + 1

2
M(t),

which implies M(t) ≤ C , hence
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(t + 1)
3
4 ‖w‖(t) ≤ C, t ≥ 0. (38)

The case k = 1 is simpler as we are able to use the updated estimate (38) in (35)
to give (‖w2

1‖L1 + ‖w1w2‖L1)(τ ) ≤ C(τ + 1)− 3
2 . Thus for this case,

I2 ≤ C
∫ t

0
[(t − τ + 1)−

5
4 (τ + 1)−

3
2 + e−c(t−τ)(τ + 1)−

9
4 ] dτ ≤ C(t + 1)−

5
4 .

(39)
Substituting (32) and (39) into (31) gives us (t + 1)

5
4 ‖Dxw‖(t) ≤ C .

We only need to justify the term k = 2 in (15), which is for ε > 0. In this case,
we replace (33) by

I2 ≤
∫ t

2

0
C(t − τ + 1)−

7
4 (‖w2

1‖L1 + ‖w1w2‖L1)(τ ) dτ

+
∫ t

t
2

C(t − τ + 1)−
5
4 (‖Dx (w

2
1)‖L1 + ‖Dx (w1w2)‖L1)(τ ) dτ

+
∫ t

0
Ce−c(t−τ)(‖D3

x (w
2
1)‖ + ‖D3

x (w1w2)‖)(τ )] dτ.

With the updated estimates on ‖Dk
xw‖, k = 0, 1, we have

I2 ≤ C
∫ t

2

0
(t − τ + 1)−

7
4 (τ + 1)−

3
2 dτ + C

∫ t

t
2

(t − τ + 1)−
5
4 (τ + 1)−2 dτ

+ C
∫ t

0
e−c(t−τ)[(τ + 1)−

23
8 + (τ + 1)−1‖D3

xw‖(τ )] dτ (40)

≤ C(t + 1)−
7
4 + C[

∫ t

0
e−2c(t−τ)(τ + 1)−5 dτ ] 1

2 [
∫ t

0
(τ + 1)3‖D3

xw‖2(τ ) dτ ] 1
2

≤ C(t + 1)−
7
4 ,

where we have used Cauchy-Schwarz inequality and (13). Now combining (31), (32)
and (40) gives (t + 1)

7
4 ‖D2

xw‖(t) ≤ C . Thus we have proved Theorem 3.
The following is a natural extension of this section, and is needed in next section.

Using notations in (19), (20) and (22), we integrate (21) to have

Φt + AΦx = BΦxx + R̃.

Thus similar to (24),

Φ̂(ξ, t) = etE(iξ)Φ̂(ξ, 0) +
∫ t

0
e(t−τ)E(iξ) ˆ̃R(ξ, τ ) dτ.

Following (31) – (33) and applying Theorem 3, we have
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‖Φ‖(t) = ‖Φ̂‖(t) ≤ ‖etE(iξ)Φ̂0‖ +
∫ t

0
‖e(t−τ)E(iξ) ˆ̃R(ξ, τ )‖ dτ

≤C(t + 1)−
1
4 + C

∫ t

0
[(t − τ + 1)−

1
4 (‖w2

1‖L1 + ‖w1w2‖L1)(τ )

+ e−c(t−τ)(‖w2
1‖ + ‖w1w2‖)(τ )] dτ

≤C(t + 1)−
1
4 .

(41)

3 Decay Rates for the Original System

To simplify our notations and without loss of generality, we assume t̃ = t , x̃ = x ,
and ṽ = v in (6). To prove Theorem 4 we first note that under the hypotheses of the
theorem, the assumptions in Theorem 3 are satisfied for each of the cases ε = 0 and
ε > 0. This is in view of (3) and (11), which imply ψ0(x) = ln s0(x) − ln s̄, hence
|ψ0(x)| ≤ 2

s̄ |s0(x) − s̄| and |ψ ′
0(x)| ≤ 2

s̄ |s ′
0(x)| for small ‖s0 − s̄‖1. Thus (7)–(9) has

a unique global solution, satisfying (14) and (15) for ε = 0 and ε > 0, respectively.
The inverse transform of (3),

s(x, t) = e−(μū+σ)t s̃(x, t), s̃(x, t) = s̄eψ(x,t), (42)

then gives us a unique, global solution to (1), (2).
The inverse transform (42) implies s(x, t) > 0 for all x ∈ R and t ≥ 0. Applying

the maximum principle to the second equation in (7), one concludes that u(x, t) ≥ 0
as well, provided u0(x) ≥ 0. A similar, detailed discussion can be found in [9] for the
model with logistic growth. As the estimates for u − ū in (17) and (18) are inherited
from (14) and (15), respectively, we obtain those for s̃ − s̄ below.

From (19) and (41), we have

‖ψ‖(t) ≤ C(t + 1)−
1
4 . (43)

Since ψx = v, by Sobolev inequality, (14) and (15), we further have

‖ψ‖L∞(t) ≤ C‖ψ‖ 1
2 (t)‖v‖ 1

2 (t) ≤ C(t + 1)−
1
2 . (44)

Therefore,
‖s̃‖L∞(t) ≤ s̄e‖ψ‖L∞ (t) ≤ C. (45)

From (42), (45) and the mean value theorem, we have

|s̃(x, t) − s̄| = s̄|eψ(x,t) − 1| ≤ s̄e‖ψ‖L∞ (t)|ψ(x, t)| ≤ C |ψ(x, t)|,
s̃x (x, t) = (s̃v)(x, t), s̃xx (x, t) = (s̃v2 + s̃vx )(x, t),

s̃xxx (x, t) = (s̃v3 + 3s̃vvx + s̃vxx )(x, t).
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Together with (43), (45), (14) and (15), these give us

‖s̃ − s̄‖(t) ≤ C‖ψ‖(t) ≤ C(t + 1)−
1
4 , ‖s̃x‖(t) ≤ (‖s̃‖L∞‖v‖)(t) ≤ C(t + 1)−

3
4 ,

‖s̃xx‖(t) ≤ ‖s̃‖L∞(t)(‖v‖L∞‖v‖ + ‖vx‖)(t) ≤ C(t + 1)−
5
4 .

In the case ε > 0 we also have

‖D3
x s̃‖(t) ≤ C‖s̃‖L∞(t)(‖v‖2‖vx‖ + ‖v‖ 1

2 ‖vx‖ 3
2 + ‖vxx‖)(t) ≤ C(t + 1)−

7
4 .

We thus settle (17) and (18).
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An Optimal Control Strategy
for a Malaria Model

Onoja Abu and Ikechukwu Ignatius Ayogu

Abstract Malaria is a major vector-borne disease that has been generating a serious
health burden and devastating the economy of Sub-Saharan Africa, South-East Asia,
the Eastern Mediterranean, Western Pacific and Americas. In this paper, a mathe-
matical model for low and high malaria risk human population groups, incorporating
four control variables representing insecticide treated nets, treatment, indoor residual
spraying and intermittent preventive treatment; seasonally forced mosquito popula-
tion and transmission parameters, is formulated. The necessary conditions for the
optimality of the model are derived using the Pontryagin’s Maximum Principle. The
optimal control model is numerically explored using Runge-Kutta method of order
four. Experimental results show that the model is able to indicate the best control
strategy, given the estimated costs of implementation of the varying controlmeasures.

Keywords Optimal control strategies · Malaria disease · Cost-effectiveness ·
Plasmodium species

1 Introduction

Malaria parasites are amongst organisms that live in other organisms as host-
dependent guests [1]. Malaria is a disease caused by infection with protozoan para-
sites belonging to the genus Plasmodium transmitted by infected female Anopheles
mosquitoes through bites when taking blood meal [2, 3]. The four species that com-
monly infect humans are: Plasmodium falciparum, Plasmodium vivax, Plasmodium
ovale and Plasmodium malariae.
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Malaria has caused huge health and financial burdens. Although, the number of
malaria cases globally dropped from an estimated 262 million in 2000 to 219 million
cases in 2017, the burden is still very significant, especially in the worst afflicted
WHO African Region where 200 million or 92% of the cases and 93% of malaria
related deaths occurred in 2017 [5].

Malaria poses serious financial and economic burdens to governments and house-
holds of malarious countries. Estimates of US$ 3.1, US$ 2.7, US$ 2.9, US$ 2.5 and
US$ 2.7 billion were invested in malaria control and elimination efforts in 2017,
2016, 2015, 2014 and 2013 respectively across the globe by governments of malaria
endemic countries and international partners [3–7]. Global financing formalaria con-
trol increased from an estimated US$ 960 million in 2005 to US$ 2.7 billion in 2013
[4–8]. In Africa malaria affected the national income to the tune of 0.6–1.0% of its
gross domestic product (GDP); in Kenya, up to 2–6% of her GDP, and at 1–5% for
Nigeria [9].

To avert malaria health burden, governments of endemic countries and interna-
tional donors have put some major preventive and control measures in place. These
include use of insecticide-treated nets (ITNs), artemisinin based combination therapy
(ACT), indoor residual spraying (IRS) and intermittent preventive treatment (IPT)
[3–7]. Studies to evaluate the financial and economic costs or cost effectiveness anal-
ysis of these interventions in similar or different localities against similar or different
health outcomes have been performed. For details, the reader is referred to [10–12].

Mathematical modeling has been an important tool to study many processes,
including the dynamics of infectious diseases. We have reviewed some relevant
malaria models suitable to our work. Cognizance is taken mostly of the ordinary dif-
ferential equation models that either feature seasonality alone or incorporate control
variables. Optimal control models for infectious diseases abound. Optimal control
theory is a mathematical technique for steering a dynamical system. Optimal control
techniques can be found in [13]. Malaria models with control variables can be seen
in [14–25].

The goal of this paper is to formulate an optimal control model for malaria, ana-
lytically investigate the existence of optimal control vector and numerically explore
the corresponding optimality system.

2 Formulation of the Optimal Control Model

We use the following tips as a guide in the formulation of our model. In the human
population, some groups are more vulnerable than others. These include pregnant
women, children below 5 years and people with immunity impairment such as HIV
patients, immigrants or travelers from malaria-free areas. Malaria causes deaths,
especially, in Plasmodium falciparum endemic settings. Malaria-related deaths have
economic cost implications. Mosquito population and parasite development flourish
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Fig. 1 Flow diagram of malaria transmission dynamics model

more in certain seasons than others; and therefore control efforts of malaria can
be more effective and economical if they are in phases with seasonal variations.
Malaria is endemic in many countries and parts of the world with seasonal changes.
The control measures that are WHO recommended include ITNs, treatment, IRS
and IPT for pregnant women, infants and children. ITNs, treatment, IRS and IPT are
adopted by many malarious countries of the world. In this paper, we formulate an
optimal control model

1. That classifies the host population into low and high risk groups;
2. Whoseobjective functional incorporates economic costs associatedwithmalaria-

induced death, exposed and infected humans, mosquitoes and the costs of imple-
mentation of controls;

3. That incorporates ITNs, treatment, IRS and IPT as controls;
4. That incorporates seasonally forced mosquito birth function and transmission

parameter.

Optimal control models that contain all the four aforementioned components are
rare to the best of our knowledge.

Figure 1 shows the flow of all the processes captured in the model while Tables
1, 2 and 3 describe all the variables and parameters used in the model.
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Table 1 State variables for the malaria model

Variables Description

S1(t) Population of high-risk susceptible individuals at time t

E1(t) Population of high-risk exposed individuals at time t

I1(t) Population of high-risk infectious humans at time t

S2(t) Population of low-risk susceptible individuals at time t

E2(t) Population of low-risk exposed individuals at time t

I2(t) Population of low-risk infectious humans at time t

Rh1(t) Population of high-risk recovered humans at time t

Rh2(t) Population of low-risk recovered humans at time t

Sm(t) Population of susceptible mosquitoes at time t

Em(t) Population of exposed mosquitoes at time t

Im(t) Population of infectious mosquitoes at time t

Nh(t) Total human population at time t

Nhw(t) Total pregnant women population at time t

Nm(t) Total mosquito population at time t

2.1 The Optimal Control Problem

The control problem is presented in the sequel. The cost or objective functional is
given by

J (μ1, μ2, μ3, μ4) =
∫ t

0
[A1E1 + A2E2 + A3 I1 + A4 I2 + A5Nm + A6(δ1 I1 + δ2 I2)

+ 1

2
(B1μ

2
1 + B2μ

2
2 + B3μ

2
3 + B4μ

2
4)]dt (1)

Subject to the state equations:

dS1
dt

= ∧1 + γ2S2 + �1Rh1 − (1 − μ1)λh1S1 − (1 − rμ4)λh1S1 − (γ1 + μh)S1
(2)

dE1

dt
= γ2E2 + (1 − μ1)λh1S1 + (1 − rμ4)λh1S1 − (γ1 + α1 + μh)E1 (3)

d I1
dt

= γ2 I2 + α1E1 − (δ1 + μh)I1 − (γ1 + b1 + τ2μ2)I1 (4)
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Table 2 Parameters/variables of the malaria model

Param/Var Description

ϕ Mosquito contact rate with human

ε Mosquito biting rate

ε0 Transmission coefficient of infection from infectious mosquito to a high-risk
susceptible human, provided there is a bite

ε1 Transmission coefficient of infection from infectious mosquito to a low-risk
susceptible human, provided there is a bite

λ Transmission coefficient of infection from infectious human to a susceptible
mosquito, provided there is a bite

δ1 Per capita disease-induced mortality rate of high-risk infectious humans

δ2 Per capita disease-induced mortality rate of low-risk infectious humans

μh Per capita natural mortality rate of humans

μm Per capita natural mortality rate of mosquitoes

∧1 Recruitment rate into high-risk human population

∧2 Recruitment rate into low-risk human population

λ0 Recruitment of mosquitoes by birth (baseline)

�1 Per capita rate of loss of imunity of recovered individuals in high-risk group

�2 Per capita rate of loss of imunity of recovered individuals in low-risk group

α1 Progression rate from high-risk, exposed to high-risk infected

α2 Progression rate from low-risk, exposed to low-risk infected

b1 Proportion of spontaneous recovery from high-risk population

b2 Proportion of spontaneous recovery from low-risk population

λhw Force of infection for susceptible pregnant women to exposed individuals

λm Force of infection from susceptible mosquitoes to exposed mosquitoes

ω0 Strength of seasonality

γ1 Progression from high-risk group to low-risk group

γ2 Progression from low-risk group to high-risk group

dS2
dt

= ∧2 + γ1S1 + �2Rh2 − (1 − μ1)λh2S2 − (γ2 + μh)S2 (5)

dE2

dt
= γ1E1 + (1 − μ1)λh2S2 − (γ2 + α2 + μh)E2 (6)

d I2
dt

= γ1 I1 + α2E2 − (δ2 + μh)I2 − (γ2 + b2 + τ2μ2)I2 (7)

dRh1

dt
= γ2Rh2 + (b1 + τ2μ2)I1 − (γ1 + �1 + μh)Rh1 (8)
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Table 3 Control variables/parameters in the model

Parameter Description

μ1(t) Insecticide-treated bed nets (ITN)

μ2(t) Treatment of infectious individuals

μ3(t) Indoor residual spraying (IRS)

μ4(t) Intermitent prevent treatment for pregnant women

p Efficacy of use of indoor residual spraying

τ Efficacy of use of treatment

a Efficacy of use of insecticide-treated bed nets

r Efficacy for use of IPT

A1 Cost associated with an exposed individual in high-risk population

A2 Cost associated with an exposed individual in low-risk population

A3 Cost associated with an infectious individual in high-risk population

A4 Cost associated with an infectious individual in low-risk population

A5 Cost associated with a mosquito

A6 Cost associated with a human death

B1 Cost of implementation of ITNs

B2 Cost of implementation of treatment

B3 Cost of implementation of IRS

B4 Cost of implementation of IPT

dRh2

dt
= γ2Rh1 + (b2 + τ2μ2)I2 − (γ2 + �2 + μh)Rh2 (9)

dSm
dt

= ∧m − (1 − μ1)λmSm − (μm + aμ1 + pμ3)Sm (10)

dEm

dt
= (1 − μ1)λmSm − αmEm − (μm + aμ1 + pμ3)Em (11)

d Im
dt

= αmEm − (μm + aμ1 + pμ3)Im (12)

where: λh1 = β1εIm
Nh

, λh2 = β2εIm
Nh

, λm = λεI1+λεI2
Nh

, β1 = ζ0(1 + ω0 cos 2π t),
β2 = ζ1(1 + ω0 cos 2π t), ∧m = λ0(1 + ω0 cos 2π t) and μ1, μ2, μ3, μ4 are Lebe-
gue measurable functions belonging to the set Ω . ω0 cos 2π t captures seasonal
variation in transmission rate over time. This function is also a time translate of
ω0 sin 2π t .
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The dynamics of the human host and the mosquito population are given by
Eqs. (13) and (14)

dNh

dt
= ∧1 + ∧2 − μh Nh − δ1 I1 − δ2 I2 , (13)

dNm

dt
= ∧m − μmNm . (14)

2.2 Analysis of the Optimal Control Problem

The Lagrangian of the optimal control problem is the integrand of the objective
functional and is given by Eq. (15)

L(I1, I2, E1, E2, Nm, μ1, μ2, μ3, μ4) = A1E1 + A2E2 + A3 I1 + A4 I2 + A5Nm

+ A6(δ1 I1 + δ2 I2) + 1

2
(B1μ

2
1 + B2μ

2
2

+ B3μ
2
3 + B4μ

2
4 . (15)

The Hamiltonian is given by H = L + �11
i=iλi fi , fi ’s are the right hand sides of

Eqs. 1–12.

2.3 Optimality System

SupposeU = (μ1, μ2, μ3, μ4) is a control vector, x = (S1, E1, I1, Rh1, S2, E2, Rh2,

Sm, Em, Im) the state vector and H, the Hamiltonian, the optimality system is
given by equation dxi

dt = ∂H
∂λi

,− dλi
dt = ∂H

dxi
, i = 1, ..., 11 with transversality condi-

tions: λi (t f ) = 0, ∂H
dμ j

= 0, j = 1, ..., 4 .

Theorem 1 Let U = (μ1, μ2, μ3, μ4) be a control vector, x = (S1, E1, I1, Rh1, S2,
E2, I2, Rh2, Sm, Em, Im) be the state vector of the system (1–12) and H the Hamilto-
nian. There exist an optimal control vector U ∗(t) and the corresponding state vector
x∗(t) that minimize J (U ) over Ω . Furthermore, there exist adjoint functions λi sat-
isfying the equations − dλi

dt = ∂H
∂xi

with transversality conditions λi (t f ) = 0. In addi-
tion, the optimality controls are given by u∗

j = max{0,min(1, R j )}, j = 1, ..., 4 .

Proof We use the recipe by [13]. The existence of an optimal control vector follows
from the convexity of the integrand J with respect to U , a priori boundedness of
the state solutions and the Lipscitz property of the state solutions with respect to
the state variables. See [13] (Corollary 4.1). The adjoint equations and transversality
conditions can be obtained by using the Pontryagin’s Maximum Principle such that
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− dλ1
dt = ∂H

∂S1
;− dλ2

dt = ∂H
∂E1

;− dλ3
dt = ∂H

∂ I1
;− dλ4

dt = ∂H
∂S2

;− dλ5
dt = ∂H

∂E1
;− dλ6

dt = ∂H
∂ I2

;

− dλ7
dt = ∂H

∂Rh1
; − dλ8

dt = ∂H
∂Rh2

; − dλ9
dt = ∂H

∂Sm
; − dλ10

dt = ∂H
∂Em

; − dλ11
dt = ∂H

∂ Im
;

with transversality conditions

λ1(T )= λ2(T ) = λ3(T ) = λ4(T ) = λ5(T ) = λ6(T ) = λ7(T ) = λ8(T ) = λ9(T ) =
λ10(T ) = λ11(T ) = 0 .

The controls u j can be solved for by using the optimality conditions

− ∂H
∂u1

= 0 ; − ∂H
∂u2

= 0 ; − ∂H
∂u3

= 0 ; − ∂H
∂u4

= 0 .

Therefore:

μ∗
1 = max{0,min(1, R1)},

R1 = λh1S1(λ2 − λ1) + λh2S2(λ5 − λ4) + λmSm(λ10 − λ9 + aSmλ9 + aEmλ10 + aImλ11

B1

(16)

μ∗
2 = max{0,min(1, R2)}, R2 = r1(λ3 − λ7)I1 + τ2(λ6 − λ8)I2

B2
(17)

μ∗
3 = max{0,min(1, R3)}, R3 = p(Sm + Emλ10 + Imλ11)

B3
(18)

μ∗
4 = max{0,min(1, R43)}, R4 = (λ2 − λ1)λh1r S1

B4
(19)

3 Numerical Simulations and Results

For numerical simulation,we apply all the parameter values published in the literature
and estimated others during the research process. In addition we use the following
initial values and weight constants
S1(0) = 1450, E1(0) = 250, I1(0) = 205, Rh1(0) = 50, S2(0) = 17000, E2(0) =
125, I2(0) = 125, Rh2(0) = 50, Sm(0) = 20000, Em(0)5000, Im(0) = 5000, A1 =
1, A2 = 1, A3 = 20, A4 = 16, A5 = 0.1906, A6 = 3000, B1 = 24.10, B2 = 10.64,
B3 = 73.42, B4 = 12.21, γ1 = 0.02, ϕ = 0.502,ε = 0.4, ε0 = 0.0655, ε1 = 0.04,
λ = 0.42, δ1 = δ2 = 0.05, μh = 0.00004892, μm = 0.04, ∧1 = 0.4202, ∧2 = 0.1,
λ0 = 2800,ψ1 = ψ2 = 0.01095,γ1 = 0.02, r = 0.73,a = 0.51, τ = 0.5, p = 0.51,
u1(t) = 0 − 1, u2(t) = 0 − 1,u3(t) = 0 − 1, u4(t) = 0 − 1, ω0 = 0.7,
λm = 0.00000048, λhw=0.00000247,b1 = 0.005,b2 = 0.01, αm = 0.091, α1 = 0.1,
α2 = 0.1 .

For simulation, we consider all the possible intervention strategies: one, two, three
and four control strategies: ITN only,TRT only, IRS only, IPT only, ITN and TRT,
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Fig. 2 Effects of all the control strategies on the population of a infected high-risk humans; b
infected low-risk humans; c infected mosquitoes

ITN and IRS, ITN and IPT, TRT and IRS, TRT and IPT, IRS and IPT, ITN, TRT
and IRS, ITN,TRT and IPT, ITN,IRS and IPT, TRT,IRS and IPT, ITN, TRT, IRS and
IPT. The best numerical results are shown in Fig. 2a, b, c.

4 Discussion

This section discusses analytical and numerical results of our optimal control model.
The optimal control model incorporates four time-dependent variables consisting
of insecticide-treated bed nets (ITNs), treatment (TRT), indoor residual spraying
(IRS) and intermittent preventive treatment (IPT) for high-risk humans. The main
analytical result on existence and characterization of the corresponding optimality
system of the control model can be found in Theorem 1. The optimality system was
numerically explored for different possible intervention strategies. Table 4 shows
the costs implications of all the different strategies while Fig. 2a, b, c shows the best
outcomes of our numerical experiments. Table 4 shows that IPT as a control incurs the
highest cost. The total cost of this intervention based on our model is $10697856.67
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Table 4 Cost of intervention strategies

Control level Costs estimates Control level Costs estimates

No control 10884587.74 ITN/IPT 2378872.77

ITN 2442913.89 TRT/IRS 886414.14

TRT 6730937.95 TRT/IPT 6671496.03

IRS 2551439.20 IRS/IPT 2521914.07

IPT 10697856.67 ITN/TRT/IRS 343974.17

ITN/TRT 545385.27 ITN/TRT/IPT 544669.92

ITN/IRS 2180294.50 ITN/IRS/IPT 2169049.85

TRT/IRS/IPT 872797.00 ITN/TRT/IRS/IPT 343838.63

as against $10884587.74 without control. In another development, ITN, Treatment,
IRS and IPT as a strategy incurs the lowest cost of $343838.63. The effects of this
strategy on infected human and mosquito populations are depicted in Fig. 2a, b, c.

5 Conclusion

In this paper, we formulated an optimal control model for malaria, bearing in mind,
the effects of seasonality on mosquito birth rate, the development of plasmodium
parasites and the consequent implication on transmission parameters in an endemic
setting with a seasonally forced mosquito population. Both the analytical and numer-
ical results were obtained. The main analytical result on existence and optimality
system can be found in Theorem 1. The costs of the different possible strategies can
be seen in Table 4. The results show that optimal use of ITNs, IRS, TRT and IPT as
a control strategy eliminates malaria fastest and gives the lowest cost. Optimal use
of ITNs, IRS, TRT and IPT is the most cost-effective and therefore, recommended
in an endemic setting where the mosquito population is seasonally forced.
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Effect of Genetic Defects in a Cortical
Circuit Model Associated with Childhood
Absence Epilepsy

Maliha Ahmed and Sue Ann Campbell

Abstract Childhood absence epilepsy is a pediatric epilepsy disorder associated
with mutations in genes which encode ion channels including sodium channels. The
thalamocortical circuit is considered to play an important role in the pathophysiol-
ogy of absence seizures, exhibiting the ability to generate oscillations of different
frequencies. The purpose of our investigation was to explore some of the genetic
mutations that alter the function of individual neurons in the cerebral cortex, giv-
ing rise to an epileptic network. In particular, we investigated the consequence of
these alterations on neuronal network activity associated with this disorder. In this
regard, we created a small network consisting of deep layer cortical pyramidal neu-
rons and an interneuron, each described by a single-compartment Hodgkin-Huxley
style model. We investigated factors that convert a normal network into a hyperex-
citable one, including impairment of GABAA synapses and sodium channel defects
resulting frommutations in genes encoding sodium channels. Our model agrees with
experimental results indicating the role of GABA impairment in generating a hyper-
excitable network. Our results also suggest that the co-existence of multiple sodium
channel mutations alters individual neuronal function to increase or decrease the
likelihood of the network exhibiting seizure-like behaviour.

Keywords Childhood absence epilepsy · Computational model · Thalamocortical
network · Sodium channel defects · Hodgkin-huxley · Genetic mutations

1 Introduction

Childhood absence epilepsy (CAE) is a common idiopathic pediatric epilepsy syn-
drome accounting for between 2 and 10% of all cases of epilepsy in children [1].
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It is characterized by brief episodes of impaired consciousness lasting about 10–15
s, and may occur hundreds of times a day. During these episodes, a child may stare
blankly accompanied by an upward roll of their eyeballs, without any convulsive
motor activity [2]. Although in most cases absence seizures resolve in adolescence,
in about 20% of cases, children with CAE continue to have the condition which may
progress in severity [3].

Clinically, the most common tool used for detection and classification of epilepsy
type is an electroencephalogram (EEG). The procedure consists of tiny electrodes
being placed on the patient’s scalp which detect electrical charges resulting from
brain cell activity. Thus, an EEG is capable of detecting abnormal patterns of activ-
ity. A 2.5–4 Hz spike-and-wave discharge (SWD) pattern, for example, is a signature
of absence seizures in humans [3]. The spike-and-wave patterns refers to brief spikes
(very fast oscillations) followed by a slower variation, called a slow wave [4]. More-
over, EEG patterns can be used an indicator of brain activity on a network level to
study circuits involved in creating those patterns. Given the young age of patients
and potentially invasive nature of study, genetic models of rats and mice (such as
the GAERS and WAG/Rij rats) are commonly used to study absence epilepsy [5, 6].
The SWD frequency corresponding to absence seizures is higher in genetic rodent
models, in the range of 7–11 Hz [5]. In addition, mathematical and computational
modelling are powerful tools as well to understand the dynamics of brain activity
during an epileptic seizure.

The thalamocortical circuit is an important component in the pathophysiology
of absence seizures. This circuit consists of pathways connecting the thalamus and
cerebral cortex, forming feedback loops between the two structures. The cortex, in
particular, is integral in the development of spike-and-wave oscillations, and hence
the focus in our work [7]. The human cerebral cortex is divided into six distinct
layers. Cortical pyramidal neurons are the most numerous type of cortical neurons
(mostly populated in layers 5 and 6) and are the main source of output of information
from the cerebral cortex. Input from the thalamus mainly arrives in layer 4 and gets
projected down to layers 5 and 6. It is then integrated and directed to appropriate
cortical regions, as well as forming a feedback loop back to the thalamus [8].

In this paper, we use a small network of cortical neurons (illustrated in Fig. 1),
each described by a single-compartment Hodgkin-Huxley style model, to explore
factors that alter the function of individual neurons and give rise to an epileptic
network associated with childhood absence epilepsy. In particular, we consider the
following two factors: impairment ofGABAsynapses, and alterations of ion channels
to simulate genetic mutations associated with CAE.

2 Model

All of the individual neuron models for this work were based on the thalamocortical
networkmodel by Traub et al. [9]. Our focus on the cortical component in the absence
circuitry was motivated by rat models in which seizure initiation was found to be
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Fig. 1 Schematic of our cortical network model with excitatory (solid lines) and inhibitory (dashed
lines) synapses. The numbers represent maximal synaptic conductance (in nS) for each synapse.
Note: RS: layer 5 tufted regular spiking, I B: layer 5 tufted intrinsically bursting, N RS: layer 6 non-
tufted regular spiking (pyramidal neurons), LT S: deep layer low-threshold spiking (interneuron)

associated with neurons in deep layers of the cortex [10]. Thus, we only included the
layer 5 (tufted intrinsically bursting (IB) and regular spiking (RS)) and layer 6 (non-
tufted regular spiking (NRS)) pyramidal neurons and the deep layer low-threshold
spiking (LTS) interneuron in our model.

The following equation is the principal equation for each neuron describing the
variation in time of membrane potential, V (t):

Cm
dV

dt
= Ihold + Iapp − Ih − INa f − INap − IKdr − IKa − IK2 − IKm − IKc −

IKahp − ICaT − ICaL − ILeak − Isyn
(1)

where Cm is the membrane capacitance (in μF/cm2) with a value of 0.9 for all
pyramidal neurons and 1.0 for the deep LTS interneuron [9]. Ihold is an input current
used to set the resting membrane potential, Iapp is a constant applied current, and Isyn
is a sum of AMPA- and GABA-mediated synaptic currents. A consistent set of units
were maintained such that voltage is given in mV, current in μA/cm2, membrane
conductance densities in mS/cm2, and time in msec. The incorporated Ca2+, Na+,
and K+ currents included in the model are summarized in Table 1.

All equations for the currents were modelled in a Hodgkin-Huxley formalism
(given in Table 1), wherem and h are gating variables for ion channels. Ion channels
are typically regulated by voltage-dependent gates which can go between a closed
and open state. Let p represent the fraction of open gates (e.g. m or h), then,

dp
dt

= p∞(V ) − p
τ(V )

(2)
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Table 1 Description of currents used in our neuron models

Current Current description Current equation

Ih Anomalous rectifier/
hyperpolarization-activated mixed
cation current

gh · (V − Vh) · mh

INa f Fast and transient inactivating
Na+ current

gNa f · (V − VNa) · m3
Na f · hNa f

INap Persistent Na+ current gNap · (V − VNa) · mNap

IKdr Delayed rectifier K+ current gKdr · (V − VK ) · m4
Kdr

IKa Transient inactivating K+ current gKa · (V − VK ) · m4
Ka · hKa

IK2 Slowly activating and inactivating
K+ current

gK2 · (V − VK ) · mK2 · hK2

IKm Muscarinic receptor-supressed K+
current

gKm · (V − VK ) · mKm

IKc Fast voltage and Ca2+-dependent
K+ current

gKc · (V − VK ) · mKc ·
min(0.004 · χ, 1.0)

IKahp Slow Ca2+-dependent K+ current gKahp · (V − VK ) · mKahp

ICaT Low-threshold inactivating Ca2+
current

gCat · (V − VCa) · m2
Cat · hCat

ICaL High-threshold Ca2+ current gCal · (V − VCa) · m2
Cal

ILeak Leak current gLeak · (V − VLeak)

where

p∞(V ) = 1

1 + exp
(−V+V1/2

k

) (3)

Note that τ(V ) is the time constant, p∞(V ) is the steady state value, V1/2 half-
activation voltage and k is the slope of voltage dependence [11]. Equations describing
each gating variable as well as the details for calcium (denoted by χ ) dynamics in our
model are from [9], and a summary can be found in Sect. 5.2 of [12]. The maximal
conductance densities for each current are given in Table 6.1 in [12].

Like ionic currents, synaptic currents can be modelled using a gating variable
s(t) which denotes the fraction of open synaptic channels at time t . According to
the synaptic model developed by Destexhe et al. in 1994 [13], the synaptic current
is described by

Isyn = ḡsyn · s(t) · (Vpost − Vrev) (4)

where ḡsyn is the maximal synaptic conductance, Vpost is the membrane potential of
the postsynaptic neuron, and Vrev is the reversal potential of the synapse. For AMPA
andGABA synapses, Vrev was set to 0mV and−75mV, respectively [11].Moreover,
the fraction of bound receptors, s(t) satisfies,
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ds

dt
= α[T ](1 − s) − βs (5)

where [T] represents the neurotransmitter concentration, and α and β are the for-
ward and backward rate constants describing neurotransmitter binding. For AMPA-
mediated synapses such as pyramidal (PYR)–PYR and PYR–interneuron, we set α

= 1.4493 and 2.8985 mM−1ms−1 respectively, and β = 0.2173 and 0.4346 ms−1

respectively. For GABA-mediated synapses, we set α = 5 mM−1ms−1 and β = 0.125
ms−1 [11, 14, 15]. Since neurotransmitter release is dependent on the presynaptic
voltage, it is assumed to take the following form [11]:

[T ](Vpre) = Tmax

1 + exp
(−(Vpre−VT )

Kp

) (6)

where Tmax is themaximal concentration of the neurotransmitter in the synaptic cleft,
Vpre is the presynaptic voltage, Kp is the steepness of voltage dependence, and VT

is the voltage at which the function is half-activated. We use the values suggested
by Destexhe et al. namely, Tmax = 1 mM, VT = 2 mV and Kp = 5 mV [13]. For
connectivity of all neurons in our model, the maximal synaptic conductances were
set for each synapse as given in Fig. 1.

3 Isolated Single Neurons

We began our investigation by first creating a definition of normal neuronal network
activity in the cortex. In this regard, we first determined the firing behaviour of
individual neurons. Thus,we compared the firing rate versus input current (f-I curves)
for all neuron types, as given in Fig. 2a. Comparing the firing curves for layer 5 RS
and layer 6 RS neurons, it can be seen that both neurons require similar amounts of
stimulating current to initiate firing. On the contrary, the layer 5 IB neuron required
the largest input current to initiate firing, while the interneuron required the smallest
current to both initiate firing, and produced more action potentials for most inputs.
The firing behaviour of all neurons was noted to be comparable to firing patterns
reported in experimental works [16]. As isolated single neurons, simulations of each
neuron with constant current input is given in Fig. 2b.

Next, with all synapses active, we defined a default state of our network. Network
behaviour with input current to all pyramidal neurons and none to the interneuron,
consists of synchronized regular firing of all neurons as seen in Fig. 2c. It is inter-
esting to note the nature of firing (regular spiking) of all neurons given that one of
the neurons has bursting properties by default. We attribute this result to the negative
feedback from the inhibitory neuron, and its ability to suppress bursts into single
spikes. Although not shown here, when the interneuron has a nonzero applied cur-
rent, firing of all pyramidal neurons is fully suppressed while the interneuron spikes
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(a) Firing rate vs input current (fI-
curves) for all neuron types.

(b) Input to all neurons (c) Input to pyramidal neurons only

Fig. 2 Network with no connectivity between neurons for (a)–(b) and fully-connected network for
(c). Units of applied current are µA/cm2

repetitively. The reason for this is that the pyramidal neurons are unable to recover
from the hyperpolarizing response before the interneuron fires again.

4 Modeling Impairment of GABA Synapses

Investigating factors that convert a normal network into a hyperexcitable one, we
considered impairment ofGABAA synapses, following evidence of impairedGABA
inhibition in the case of absence epilepsy. Furthermore, it has been reported that EEG
recordings from the cortex following blockade of GABAA receptors with penicillin
exhibit synchronous spike-and-wave discharges (SWDs), indicating the crucial role
of disinhibition in generation of SWDs. Thus, it was a reasonable approach for us
to model disinhibition by reducing the strength of the maximal GABA conductance
for synapses from the interneuron to all pyramidal neurons. Figure 3 shows the
distribution of inter-spike intervals as inhibition is progressively reduced from 50
(the distribution is nearly the same from 0 to 45%) to 100%. It can be noted that
the distribution of all neurons transforms from being uni-modal to bi-modal. This is
indicative of the appearance of burst firing of all neurons as the modes corresponding
to short and long intervals denote inter-spike and inter-burst intervals, respectively.
The appearance of bursts as disinhibition is increased is confirmed by inspecting
time series of individual neurons (not shown here).

In the presence of inhibition, there exist strong inhibitory feedback loops from
the interneuron to all pyramidal neurons. Consequently, external stimuli to pyrami-
dal neurons together with excitatory synapses with other pyramidal neurons ensures
strong mutual excitation, including excitation to the interneuron. As a result, pyrami-
dal neuron firing is rapidly dampened by strong inhibitory effects of the interneuron,
making it difficult for the pyramidal neurons to produce bursts. However, in the
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Fig. 3 Distribution of inter-spike intervals of firing with varying strengths of disinhibition

absence of GABAergic inhibition, excitatory feedback from all neurons is capable
of depolarizing the neurons over their threshold potentials for a period of time that
is sufficient to produce bursts. In particular, analogous to appearance of SWDs in
a thalamocortical network, higher-frequency tonic spiking (∼24Hz) in our cortical
network switch to slow bursting (∼10Hz).

An analysis of all gating variables for individual neurons revealed the role of
the slow activation of calcium-dependent potassium currents such as IKm , IK2 in
termination of bursts (details can be found in [12]), and thus, provided insight on
possible mechanisms underlying burst discharges.

5 Modeling Sodium Channel Mutations

Exploring hyperexcitability of our cortical network further, we modelled defects in
sodium channel function based on literature on SCN2a and SCN8a mutations asso-
ciated with absence epilepsy. These genes encode the Nav1.2 and Nav1.6 sodium
channels, respectively. These channels are among the most prominent sodium chan-
nels present in the axon and dendrites of cortical neurons, including layer 5 pyramidal
neurons [17]. Although there exist mutations in genes encoding h-channels and cal-
cium channels, we limited our attention to sodium channel defects as voltage-gated
sodium channels are one of the basic constituents of an action potential.

Based on literature, we introduced three different variants of SCN8a in the
inhibitory interneuron, while the SCN2a variant was only introduced in all pyrami-
dal neurons. In particular, the effects of mutations on these channel types were such
that, alterations to the interneuron were specific to the fast Na+ current, INa f and
alterations to pyramidal neurons were specific to the persistent Na+ current, INap.
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In 2018, it was discovered by Ogiwara et al. [18] that mice with a knockout
mutation, SCN2aKO/+ showed electrocorticography (ECoG) and electromyogra-
phy (EMG) recordings resembling absence seizures. In their study, it was discovered
that Nav1.2 deficiency, particularly in excitatory neurons, was causing the epilep-
tic phenotype. Accordingly, we modelled this mutation by reducing the maximal
conductance of the persistent sodium current in pyramidal neurons by 40% [18].

In 2009, a study by Papale et al. [19] reported mutations in the SCN8a gene with
effects associated with absence seizures in a mouse model. Membranes containing
Nav1.6 channels are more excitable than membranes containing other sodium chan-
nels, and thus, impairment in Nav1.6 function is known to result in reduced neural
firing. In their study, the effect of three different SCN8amutantswas studied, namely
SCN8aV 929F , SCN8amed and SCN8amed− jo. The med variant was a null mutation
which we modelled by setting the conductance of INa f current to 0. The other two
variants, med − jo and V 929F resulted in alteration in voltage dependence of acti-
vation and inactivation. Wemodelled these by introducing absolute depolarizing and
hyperpolarizing shifts in voltage-dependence of activation and inactivation, respec-
tively (values given in Table 2). We chose to model alterations of Nav1.6 channels in
the interneuron since there is evidence of Nav1.6 expression in interneurons in the
cortex, and a decrease in activity of inhibitory neurons could result in a net effect
of excitation and hypersynchrony in the cortex (as is the case in the thalamus [20])
associated with absence seizures.

The effect induced by SCN2a mutations in individual pyramidal neurons, was
such that there was almost no change in the peak amplitudes, and the firing frequency
was reduced for all neurons. However, the effect of all three variants of SCN8a on
the interneuron (in isolation) was such that firing was completely abolished. Further-
more, effects of SCN2a and SCN8a variants on the full network model were tested
individually as well as in combination with each other. Introduction of SCN2a vari-
ant only showed minimal changes in network behaviour as all neurons continued to
exhibit synchronized regular spiking (not shown here). However, as shown in Fig. 4,
introduction of SCN8amed and SCN8amed− jo individually as well as in combina-
tion with SCN2aKO/+ resulted in burst discharges of all pyramidal neurons. The
effect of SCN8aV 929F was to produce alternating bursts and single spikes, and in
combination with SCN2aKO/+, the weakened feedback from pyramidal neurons to
the interneuron produced a net effect of single spikes.

Table 2 Absolute shifts in half-activation voltages for variant Nav1.6 channels

Channel type Voltage-dependence of activation Voltage-dependence of inactivation

ΔV1/2 Δ k ΔV1/2 Δ k

Nav1.6med− jo 14.1 0.3 6.8 −0.7

Nav1.6V 929F 5.87 1.84 −11.79 −1.21
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(a) SCN8amed (b) SCN8amed− jo (c) SCN8aV929F

(d) SCN2aKO/+ & SCN8amed (e) SCN2aKO/+ & SCN8amed− jo (f) SCN2aKO/+ & SCN8aV929F

Fig. 4 Network behaviour following the introduction of SCN2a and SCN8a mutant variants. a–c
introduction of SCN8a mutation only. d–f both SCN2a and SCN8a mutant variants included

6 Conclusion and Future Directions

Childhood absence epilepsy is suspected of resulting from mutations in genes which
encode ion-channels, including particular sodium channels. Our purpose in this work
was to model the effect of some of the mutations documented in the literature and
explore how alterations in individual cortical neurons contributes to network activity
associated with CAE. A cortical network consisting of pyramidal neurons and an
interneuron was used to define normal and abnormal cortical network activity. We
modelled impairment of GABA synapses, following evidence of this for absence
epilepsy. The result was hyperexcitability of our cortical network, and in particular,
the appearance of network-induced burst discharges, analogous to the appearance of
SWDs in a thalamocortical network. By examining gating variables for all neurons
in the “normal” and “abnormal” states, we showed that bursts were sustained by
an influx of calcium and terminated by slow calcium-dependent potassium currents,
such as IKm and IK2, consistent with other models [21].

Based on literature on SCN2a and SCN8a mutations associated with absence
epilepsy, we modelled sodium channel defects, particularly for Nav1.2 and Nav1.6



486 M. Ahmed and S. A. Campbell

sodium channels. To our knowledge, modelling SCN8a variants in cortical interneu-
rons has not been done previously, and in cortical networks, it was an important aspect
to study. The introduction of three variants (med, med − jo and V 929F) into the
networkmodel transformed the network into a hyperexcitable (epileptic) state.While
med and med − jo gave similar effects on the network, the effect of V 929F was
relatively weaker. An analysis of gating variables as in the case of impaired GABA
synapses revealed a similar underlying mechanism producing burst discharges of
all neurons. From this result, we can conclude that the functional consequence of
SCN8amutations affecting interneuron function and thus, impacting neuronal firing
upstream in the absence circuitry, is similar to the effect of impaired GABA function.
We alsomodelled the effect of SCN2a knockoutmutation on cortical pyramidal neu-
rons. Although this defect had very little effect on the med and med − jo cases, it
almost normalized V 929F activity. Contrary to previous experimental results [18],
we did not observe any hyperexcitability of our cortical network with a SCN2a
defect. One possible explanation for this is the absence of connectivity with the tha-
lamus. While SCN2a caused decreased excitability of cortical pyramidal neurons,
in a larger network context this could cause decreased input to thalamic interneu-
rons, reducing inhibition to thalamic excitatory neurons leading to a net effect of
hyperexcitability [18].

Overall, these results were able to provide insight on the role of genetic mutations
in absence epilepsy and possible underlying mechanisms giving rise to hyperex-
citable cortical networks. Our results also suggest the importance of considering
thalamic connectivity in future works to obtain a full picture, especially in exploring
genetic manipulations in cortical circuits and their functional effect on the thalamo-
cortical network.
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Operator Splitting for the Simulation
of Aqueous Humor
Thermo-Fluid-Dynamics in the Anterior
Chamber
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and Sangly P. Srinivas

Abstract This work presents a numerical scheme based on operator splitting for the
thermo-fluid-dynamical simulation of aqueous humor flow in the anterior chamber
of the human eye. The stability properties of the scheme are investigated theoret-
ically. Numerical results are presented for different postures and different external
temperatures.

Keywords Operator Splitting · Aqueous humor dynamics · Thermo-fluid
dynamics

1 Introduction

This work presents a numerical method based on operator splitting for the thermo-
fluid-dynamical simulation of aqueous humor flow in the anterior chamber of the
human eye. Aqueous humor flow is very important for several physiological func-
tions, including establishing intraocular pressure and provide nutrients and oxygen
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to the avascular structures in the eye, such as the cornea. The features of aqueous
humor flow are known to be influenced by several factors, including posture and
outside temperature [4]. Gaining knowledge of the quantitative effect of changes in
these factors on aqueous humor flow will enable the utilization of such factors to
optimize/design therapeutical interventions.

The aqueous humor, whose volume is approximately 300 µL, is secreted at a
rate of approximately 2.5 µL/min into the posterior chamber by the ciliary epithe-
lium, escapes into the anterior chamber through the pupil and exits the eye via
the trabecular meshwork in a segmental fashion around the limbus. It also under-
goes mixing in the anterior chamber because of convection currents induced by
the temperature difference between the corneal surface, which is exposed to the
temperature of the external ambient, and the vascularized iris, which is at body
temperature. The flow field of the aqueous humor affects (a) the residence time
and distribution kinetics of topical drugs, (b) optimal placement of drug delivery
implants in the anterior chamber [10], and (c) settlement of the inflammatory cells
on the endothelial surface (e.g., Krukenberg’s spindle) [1]. Flow analysis can also
aid us in the development of technologies to force rapid sedimentation of corneal
endothelial cells following cell injection therapy being promoted for the treatment
of bullous keratopathy [11]. Thermo-fluid-dynamical studies of aqueous humor flow
have been considered by other authors, see for example [1, 4, 9, 13]. However, in
most cases the simulations were conducted by means of commercial software, which
often provides user-friendly interfaces with limited access to the numerical strategy
for the solution of coupled problems. Operator splitting has proved to be very effec-
tive for the numerical solution of time-dependent multi-physics problems arising in
fluid-dynamics [6], including fluid-structure interactions [7] and multiscale 3d-0d
coupling [2]. This paper explores the feasibility of such an approach to the thermo-
fluid-dynamical study of aqueous humor flow as a first step towards more complex
simulations including additional physical mechanisms.

2 Mathematical Model

We implemented the geometry proposed in [3] in two spatial dimensions via
Gmsh [5], see Fig. 1. Let us denote by Ω the two-dimensional domain representing
the anterior chamber of the human eye. The boundary of Ω , denoted by ∂Ω , can
be written as ∂Ω = ΣPC ∪ ΣI ∪ ΣT M ∪ ΣC ∪ ΣP , where the subscripts PC , T M ,
C , I and P represent the posterior chamber (indicated as Inlet in Fig. 1), the tra-
becular meshwork (indicated as Outlet in Fig. 1), the cornea, the iris and the pupil,
respectively. In Fig. 1, the portions of the boundary are marked by the points Pi , with
i = 1, . . . , 10, whose coordinates as listed in Table 1.

The aqueous humor is modeled as a Newtonian viscous fluid in the Boussinesq
approximation [9]. Let (0, T ), with T > 0, be a time interval. Then, in Ω × (0, T )

we solve the following problem
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Fig. 1 Triangular mesh utilized for the space discretization of the domain. The schematic also
indicates the different portions of the domain boundary

Table 1 Coordinates of the points marking the portions of the domain boundary

Point x1 (mm) x2 (mm) Point x1 (mm) x2 (mm)

P1 −6.2 −0.4 P2 −1.5 0.087

P3 −1.5 −0.113 P4 0 0

P5 1.5 0.087 P6 1.5 −0.113

P7 6.2 −0.4 P8 0 2.62

P9 −5.540 0.352 P10 5.547 0.346

∇ · v = 0 (1a)

ρ0 Cp

(∂θ

∂t
+ v · ∇θ

)
= ∇ ·

(
κ ∇θ

)
(1b)

ρ0

(∂v

∂t
+ v · ∇v

)
= −∇ p + μΔv + ρ0

(
1 − α(θ − θ0)

)
g (1c)

where v, p and θ represent the fluid velocity, pressure and temperature, respectively.
The parametersμ, Cp, α and κ represent the dynamic viscosity, the specific heat, the
coefficient of thermal expansion, and thermal conductivity of the aqueous humor,
respectively. In addition, ρ0 represents the fluid density at the reference temperature
θ0. The vector g represents the gravitational acceleration vector. Equations (1a)–(1c)
express the balance of mass, energy and linear momentum governing the flow [14].
Numerical simulations will be conducted in the case of three different postures of
interest for clinical applications, namely standing, laying supine and laying prone.
These cases are characterized by a different definition of the gravitational acceleration
vector, namely g = [g, 0]T in the standing position, g = [0,−g]T in the supine
position and g = [0, g]T in the prone position,where g is the constant of gravitational
acceleration. Initial conditions are specified for velocity and temperature as v = ṽ

and θ = θ̃ for x ∈ Ω and t = 0. No slip boundary conditions are assumed for the
fluid velocity on the cornea, iris and pupil. Nonhomogeneous Dirichlet conditions
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are prescribed on the posterior chamber and trabecular meshwork, which represent
the inlet and outlet portions of the domain boundary, respectively. Thus, the boundary
conditions for the fluid velocity read as follows:

v = 0 on ΣI ∪ ΣC ∪ ΣP × (0, T ) (1d)

v = −vin n on ΣPC × (0, T ) (1e)

v = vout n on ΣT M × (0, T ) (1f)

where vin and vout are given values. The fluid temperature is assumed to be equal to
the body temperature on the iris, posterior chamber, pupil and trabecular meshwork,
so that we can write:

θ = θbody on ΣI ∪ ΣPC ∪ ΣP ∪ ΣT M × (0, T ) (1g)

On the corneaΣC , the temperature is not assigned a priori but it results from the heat
balance at the interface with the external ambient, so that we can write:

−κ
∂θ

∂n
= hamb

(
θ − θamb

) + σ ε
(
θ4 − θ4

amb

) + E on ΣC × (0, T )

(1h)

where θamb is the temperature of the external ambient, which is assumed to be given,
and the parameters hamb, σ , ε and E represent the ambient convection coefficient,
the Stefan-Boltzmann constant, the emissivity of cornea and the evaporation rate,
respectively [13].

3 Numerical Method

We will solve problem (1) by combining the operator splitting method for the time
discretization and the finite element method for the spatial discretization. When
considering a differential system of the form:

∂w

∂t
= A (w) with w(t = 0) = w0 (2)

where A is an operator acting on the unknown variable w = w(x, t), the operator
splitting technique can be applied whenA can be conveniently written as the sum of
simpler operators, namelyA = A1 + A2 + · · · + AM . A detailed description of the
operator splitting technique can be found in [6]. This technique becomes particularly
advantageous when the problem at hand is of hyperbolic/parabolic type. In this
case, by splitting the hyperbolic and parabolic parts of the operator we can design
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a numerical scheme that enjoys unconditional stability with respect to the choice of
the time step, as shown in Theorem 1.

Let us discretize the time interval (0, T ) by means of a uniform discretization
based on the time step τ such that tn = n τ for n ≥ 0. In addition, let use the notation
ϕn = ϕ(tn) for any function ϕ. Then, the operator splitting method is utilized to
approximate the solution of problem (1) by means of an algorithm comprising 4
steps solved sequentially.

For n ≥ 0, assuming that vn and θn are known, solve:

Step 1: Find vn+1/4 and θn+1/4 such that

ρ0 Cp
∂θ

∂t
= ∇ ·

(
κ ∇θ

)
in Ω × (tn, tn+1) (3a)

ρ0
∂v

∂t
= 0 in Ω × (tn, tn+1) (3b)

with the boundary conditions

θ = θbody on ΣI ∪ ΣPC ∪ ΣP ∪ ΣT M × (tn, tn+1) (3c)

−κ
∂θ

∂n
= hamb

(
θ − θamb

) + σ ε
(
θ4 − θ4

amb

) + E on ΣC × (tn, tn+1)

(3d)

and the initial conditions

v(tn) = vn, θ(tn) = θn inΩ (3e)

and then set vn+1/4 = v(tn+1) = vn and θn+1/4 = θ(tn+1).

Step 2: Find vn+2/4, pn+2/4 and θn+2/4 such that

∇ · v = 0 in Ω × (tn, tn+1) (4a)

ρ0 Cp
∂θ

∂t
= 0 in Ω × (tn, tn+1) (4b)

ρ0
∂v

∂t
= −∇ p + μΔv + ρ0

(
1 − α(θ − θ0)

)
g in Ω × (tn, tn+1) (4c)

with the boundary conditions

v = 0 on ΣI ∪ ΣC ∪ ΣP × (tn, tn+1) (4d)

v = −vin n on ΣPC × (tn, tn+1) (4e)

v = vout n on ΣT M × (tn, tn+1) (4f)
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and the initial conditions

v(tn) = vn+1/4, θ(tn) = θn+1/4 inΩ (4g)

and then set vn+2/4 = v(tn+1) = vn , pn+2/4 = p(tn+1) and θn+2/4 = θ(tn+1) =
θn+1/4.

Step 3: Find vn+3/4 and θn+3/4 such that

ρ0 Cp

(∂θ

∂t
+ vn+2/4 · ∇θ

)
= 0 in Ω × (tn, tn+1) (5a)

ρ0
∂v

∂t
= 0 in Ω × (tn, tn+1) (5b)

with the boundary conditions

θ = θn+2/4 on Σ− × (tn, tn+1) (5c)

where Σ={x ∈ ∂Ω : vn+2/4 · n ≤ 0} and the initial conditions

θ(tn) = θn+2/4 in Ω (5d)

and then set vn+3/4 = v(tn+1) = vn+2/4 and θn+3/4 = θ(tn+1).

Step 4: Find vn+4/4 and θn+4/4 such that

ρ0 Cp
∂θ

∂t
= 0 in Ω × (tn, tn+1) (6a)

ρ0

(∂v

∂t
+ vn+3/4 · ∇v

)
= 0 in Ω × (tn, tn+1) (6b)

with the boundary conditions

v = vn+3/4 on Σ− × (tn, tn+1) (6c)

where Σ={x ∈ ∂Ω : vn+3/4 · n ≤ 0} and the initial conditions

v(tn) = vn+3/4 inΩ (6d)

and then set vn+4/4 = v(tn+1) and θn+4/4 = θ(tn+1) = θ3/4.

Finally set vn+1 = vn+4/4, pn+1 = pn+2/4 and θn+1 = θn+4/4, advance n and repeat.

Theorem 1 In the case of homogeneous boundary data and in the absence of exter-
nal forces, the splitting algorithm consisting of the four steps (3)–(6) is uncondition-
ally stable with respect to the choice of the time step.
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Proof Let us begin by considering problem (3) characterizing Step 1. Bymultiplying
Eq. (3a) by θ and Eq. (3b) by v, integrating over Ω and utilizing the boundary
conditions (3c) and (3d) we obtain dE1/dt + D1 = F1 for t ∈ (tn, tn+1), where

E1 = 1

2

∫

Ω

ρ0 Cp θ2 dΩ + 1

2

∫

Ω

ρ0 |v|2 dΩ

D1 =
∫

Ω

κ|∇θ |2 dΩ +
∫

ΣC

(
hambθ

2 − σ ε θ5 − E θ
)
dΣ

F1 =
∫

∂Ω\ΣC

θbody(κ ∇θ) · n dΣ +
∫

ΣC

(
hambθamb + σ εθ4

amb

)
θ dΣ

Let us now consider problem (4) characterizing Step 2. By multiplying Eq. (4b) by
θ and Eq. (4c) by v, integrating over Ω and utilizing the divergence free condi-
tion (4a) and the boundary conditions (4d)–(4e) we obtain dE2/dt + D2 = F2 for
t ∈ (tn, tn+1), where

E2 = 1

2

∫

Ω
ρ0 Cp θ2 dΩ + 1

2

∫

Ω
ρ0 |v|2 dΩ

D2 =
∫

Ω
μ|∇v|2 dΩ

F2 =
∫

Ω
ρ0 (1 − α(θ − θ0)) g · v dΩ −

∫

ΣPC

vin (σ n) · n dΣ +
∫

ΣT M

vout (σ n) · n dΣ

with σ = −p I + μ∇u. Let us now consider problem (5) characterizing Step 3.
Eq. (5a) by θ andEq. (5b) byv, integrating overΩ , utilizing the divergence free condi-
tion (4a) satisfied by vn+2/4 and the boundary conditions (5c)we obtain dE3/dt = F3

for t ∈ (tn, tn+1), where

E3 = 1

2

∫

Ω

ρ0 Cp θ2 dΩ + 1

2

∫

Ω

ρ0 |v|2 dΩ

F3 = −
∫

ΣPC

(θn+2/4)2

2
vin dΣ +

∫

ΣT M

θ2

2
vout dΣ

Let us now consider problem (6) characterizing Step 4. Eq. (6a) by θ and Eq. (6b)
by v, integrating over Ω , utilizing the divergence free condition (4a) satisfied by
vn+3/4 and the boundary conditions (6c) we obtain dE4/dt = F4 for t ∈ (tn, tn+1),
where

E4 = 1

2

∫

Ω

ρ0 Cp θ2 dΩ + 1

2

∫

Ω

ρ0 |v|2 dΩ

F4 = −
∫

ΣPC

|vn+3/4|2
2

vin dΣ +
∫

ΣT M

|v|2
2

vout dΣ
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If boundary data are homogeneous and external forces are absent, then Fi = 0 for
i = 1, . . . , 4. Thus, the initial conditions for each step allow us to write

E4(t
n+1) = E4(t

n) = E3(t
n+1) = E3(t

n) = E2(t
n+1) ≤ E2(t

n) = E1(t
n+1) ≤ E1(t

n)

yielding E4(tn+1) ≤ E1(tn) for n ≥ 0, from which unconditional stability follows.

We emphasize that the four steps solved sequentially in the splitting scheme are
coupled via the initial conditions. Theorem 1 shows that this coupling strategy is
essential to preserve the natural energy balance determined by the physics of the
problem and yield numerical stability. Even though the situation of homogeneous
boundary data seems purely academic, it allows us to verify that the proposed numer-
ical method based on operator splitting preserves the essentially dissipative nature
of the system without introducing spurious sources of energy into the system.

4 Simulation Results

The splitting algorithm (3)–(6) was used to simulate the flow of aqueous humor
in the human eye under different conditions of clinical interest. The values of the
physical parameters adopted in the simulations are listed in Table 2. The parabolic
problem in Step 1 was discretized in time via a one step Backward Euler scheme and
a finite element discretization utilizing P2 elements. The Stokes problem in Step 2
was discretized in time via a one step Backward Euler scheme and a finite element
discretization utilizing P1-P2 elements with stabilization. The advective problems in
Steps 2 and 3 were solved via the Characteristics-Galerkin Method implemented in
the function convect built in FreeFem++ [8]. We emphasize that: (i) our current
implementation is only first-order accurate in time, but it could be made second
order with Strang symmetrization, and (ii) the advective steps could be solved via a
conservative wave-like method [6].

Figures 2, 3 and 4 report the simulated temperature profiles and flow streamlines
in the case of supine, prone and standing positions when the external temperature is
held constant at θamb = 25C. The simulations confirm that changes in posture have a
nontrivial effect on temperature and velocity profiles. For example, the temperature
distribution is very similar in the supine and prone positions, but the internal fluid
vortices rotate in opposite directions. Interestingly, the two vortices that characterize
the supine and prone positions are not present when standing. Changes in the tem-
perature external to the cornea strongly influences the flow magnitude, as shown in
Figs. 5, 6 and 7 for θamb equal to 45C and 15C in different postures.



Operator Splitting for the Simulation of Aqueous Humor … 497

Table 2 Summary of model parameters

Parameter Symbol Value Unit

Reference temperature θ0 298 K

Fluid density at θ0 ρ0 10−3 gmm−3

Specific heat Cp 4.2 × 109 Jg−1 K−1

Thermal conductivity κ 578 × 103 Wmm−1K−1

Coefficient of linear expansion
of aqueous humour

α 3 × 10−4 K−1

Dynamic viscosity μ 1.08 × 103 gmm−1s−1

Ambient temperature θamb 298 K

Ambient convection coefficient hamb 1 × 104 Wmm−2K−1

Stefan-Boltzmann constant σ 5.67 × 10−5 Wmm−2K−4

Emissivity of cornea ε 0.975

Evaporation rate E 4 × 104 Wm−2K−4

Fig. 2 Supine position, θamb = 25C. Temperature profile (Left) and flow streamlines (Right)

Fig. 3 Prone position, θamb = 25C. Temperature profile (Left) and flow streamlines (Right)

Fig. 4 Standing position, θamb = 25C. Temperature profile (Left) and flow streamlines (Right)

Fig. 5 Supine position. Flow streamlines for θamb = 45C (Left) and θamb = 15C (Right)
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Fig. 6 Prone position. Flow streamlines for θamb = 45C (Left) and θamb = 15C (Right)

Fig. 7 Standing position. Flow streamlines for θamb = 45C (Left) and θamb = 15C (Right)

5 Conclusions

This work presents a numerical scheme that leverage operator splitting to main-
tain at the discrete level the physical properties that the solution enjoys at the con-
tinuous level. Our current observations concur with the velocity field as predicted
by other simulation studies [13]. In particular, the maximum, minimum, and mean
velocities are close to the predicted values. Previous analytical models of fluid flow
in human eyes in different postures (supine and vertical) have concluded that the
dominant mechanism that influences the fluid field in the anterior chamber is the
convection-induced buoyancy flow. Similar observations have been made in a rabbit
eye model [12]. Free convection is also claimed to be the major mechanism of depo-
sition of cells/particles on the endothelial surface (e.g., formation of Krukenberg’s
spindle) [1]. Thus, the proposed numerical method has the potential to serve as a
robust framework on which additional physical mechanisms can be incorporated.
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Modelling Thermal Aspects
of Decomposition

L. Calla and C. Sean Bohun

Abstract Temperature modelling at a crime scene is crucial for forensic investi-
gators to estimate the minimum postmortem interval (PMImin) of a cadaver. Upon
death, insect species deposit eggs, and the resulting rate of development of the larvae
are primarily temperature driven. By knowing the historical ambient temperature,
development stage, and specific species of the larvae found on a cadaver, an accu-
rate estimate can be made for this interval. The actual temperature of the remains
prior to discovery cannot be determined without at least historical environmental
temperature data. In this research we examine the possibility of inferring the thermal
environment of the growing larvae and extracting a characteristic heat flux profile
intrinsic to the growing insect population. The external environmental temperature
can be combined with this profile to provide a much more accurate predictor of the
temperature experienced by the larvae than is currently used and consequently a
more reliable estimate of the PMImin.

Keywords Forensic Entomology · Mathematical modelling · PMI

1 Introduction

Within the first two or three days after death,medical techniques can reliably estimate
a PMI [3, 8]. Beyond this time period, forensic entomology provides a minimum
postmortem interval (PMImin) estimate by aging the immature insets feeding on the
body. PMImin describes the time between the first colonizing insects laying eggs
on the body and the time of discovery of the remains. Insects are coldblooded;
therefore their rate of development is affected by the temperature to which they
are exposed. Each species requires a different total thermal threshold to complete
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their development. Using this predictable metabolism, a thermal summationmodel is
used to calculate when the first eggs were laid onto the decomposing remains. Daily
temperature averages give yield to accumulated degree days (ADD), or more precise
hourly temperatures would give yield to accumulated degree hours (ADH). Starting
very early1 in the decomposition of the cadaver, accurately predicting the process of
decomposition depends on an accurate knowledge of the conditions experienced by
insects as they develop. In part, this is due to the stages of the body’s decay having
a strong relationship with the succession of arthropods involved.

The succession of the insects at the scene and their rate of their development
relies heavily on the ambient temperature [2, 11]. To predict the temperatures expe-
rienced by the arthropods, practitioners compute a linear regression to best match the
measured temperature at the location of the cadaver with a nearby weather station.
While this has the capability of giving an accurate prediction, especially over a long
period of time, it neglects a number of known phenomena. It has been experimentally
determined that the presence of larval masses elevate the cadaver temperature with
large discrepancies of 10–20 ◦C above the ambient environmental temperature at the
scene [2, 6, 9, 10]. Another noticeable discrepancy is delay in heating, which can
be attributed to shelter from wind, sunlight or other natural elements at the body’s
location [6, 7].

2 Mathematical Model

To improve PMImin predictions, forensic researchers require accurate estimates for
the temperature profile which the insects experienced throughout their development.
We created a mathematical model for heat transfer of the cadaver over time, which
involves scene specific parameters. The heat transfer model will involve a parameter
to represent the coupling with the environment, and a parameter for the intrinsic heat
flux experienced by a cadaver.

Webegin by considering case studies performedby theForensicEcologyResearch
Facility at the University of Ontario Institute of Technology.2 One study was per-
formed in July 2016 and the other in September 2016, both of which were an outdoor
pig decomposition study.3 In these experiments environmental and internal temper-
atures are recorded.

Figure 1 shows the temperature profiles for the first and last five days of the
September study. The July study is omitted for brevity. In these images, the ambient
environment temperature (green) is plotted with the temperature in the mouth cavity
of the cadaver (red). We note the following characteristics:

1 Insect species Calliphoride and Muscidae colonize within the first few hours after death [5].
2 The first study commenced on 08/09/2016 at 10:00 EST and terminated on 07/10/2016 at 23:59
EST and is referred to as the September study. The July study is slightly shorter, commencing on
05/07/2016 at 11:00 EST and 29/07/2016 at 23:59 EST.
3 According to [6], a domestic pig is the best representative in the field to emulate a human cadaver.
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Fig. 1 Recorded temperatures of the environment (green) and the cadaver (red) for the September
study. Vertical lines indicate (i) sunrise (red); (ii) sunset (black); and (iii) midnight (dashed blue).
Temperatures are in ◦C and time is measured in hours since 08/09/2016, 00:00 EST

• The average internal logger is often warmer than the average environment logger.
• The difference in average temperatures between the two curves decays over time.
• In the first five days, the internal logger experiences less variation between the
maximums and minimums than the environment logger.

• There is a significant initial phase shift between the internal and environment
logger.

• Day and night behaviour is distinct for both internal and external temperature
profiles.

These collective behaviours suggest that an averaged thermal model for the cadaver,
that is driven by an external temperature, may be sufficient to reproduce these prop-
erties.

Within the cadaver domain denoted by Ω , we suppose that the temperature expe-
rienced by the insects, T (x, t), satisfies a heat equation with heat sources/sinks. That
is,

ρcp
∂T

∂t
= k∇2T + q(x, t), x ∈ Ω, t > 0, (1a)

where themass density ρ, specific heat cp , and thermal conductivity k are all assumed
to be constant for convenience. Through the boundary ofΩ , denoted by ∂Ω , the heat
flux is taken to be proportional to the temperature difference across this surface. In
particular
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− k
∂T

∂n̂

∣
∣
∣
∣
∂Ω

= h(T − T0), x ∈ ∂Ω, t > 0, (1b)

where n̂ denotes the outward unit normal vector at the surface, T0(t) is the external
temperature at time t , and h is a constant effective heat transfer coefficient. Rather
than solving for the temperature at every point within the cadaver, we define an
average temperature within Ω as

T̄ (t) = 1

|Ω|
∫

Ω

T (x, t) dx (2)

where |Ω| denotes the volume of the domain. As well as these assumptions,
we choose a scaling that takes into consideration a natural temperature scale of
[Tmin, Tmax], �T = Tmax − Tmin and time scale of τ (based on 12-h) so that

T̄ = Tmin + �T θ, T0 = Tmin + �T θ0, t = τ t̃ . (3)

After dropping the tilde notation, the equation for the averaged temperature in the
rescaled quantities becomes

dθ

dt
= c(t)(θ0(t) − θ) + s(t), (4a)

with

c(t) = h|∂Ω|τ
ρcp|Ω| , s(t) = Q(t)τ

ρcp�T
, Q(t) = 1

|Ω|
∫

Ω

q(x, t) dx, (4b)

reducing to two, possibly time dependent, characteristic quantities c(t) and s(t).4

The parameter c(t) ≥ 0 is a ratio of the thermal energy that passes through the
boundary in the characteristic time to the thermal energy contained within the vol-
ume. In contrast, s(t) models the energy density of a heat source (Q(t) > 0) or
sink (Q(t) < 0) with respect to the characteristic thermal energy density within the
body given by ρcp�T . In [4] the cadaver is described throughout decomposition
as deflating due to loss of mass and liquefying of internal organs. This supports the
notion that c will slowly increase as the surface area to volume ratio of the cadaver
increases provided that the heat transfer coefficient does not change. The variation
of s is expected to follow the circadian rhythm of insect activity.

We consider (4a) as an inverse model to determine the structure of c(t) and s(t)
so that θ(t) best matches the experimentally measured temperature of a thermal
decomposition study. These parameters can depend on a variety of environmental
factors and growth stages of the entomological species that are present. The power of

4 Choosing nominal values of h ∼ 1 J s−1 m−2 K−1, ρcp ∼ 106 J m−3 K−1, τ = 12 × 3600 s and
an effective cadaver thickness of |Ω|/|∂Ω| ∼ 10−1 m, gives an estimate of c ∼ 0.43. Similarly
with �T ∼ 10 K and Q ∼ 104 J s−1 m−3 yields s ∼ 43.
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the model, and its various approximations, lies in the notion that once a characteristic
behaviour of s(t) and c(t) is known, expression (4a) acts as a predictive tool for the
thermal evolution of the body temperature, with only the environmental temperature
history as its input.

Some insight into the structure of the solution can be obtained by writing θ =
u + v where u and v satisfy

du

dt
= c(t)(θ0(t) − u), u(τ0) = θ(τ0); dv

dt
= −c(t)v + s(t), v(τ0) = 0.

(5a)

We can then solve for both u(t) and v(t) to obtain

μ(t)u(t) = θ(τ0) +
∫ t

τ0

μ(η)c(η)θ0(η) dη, μ(t)v(t) =
∫ t

τ0

μ(η)s(η) dη (5b)

where

μ(t) = exp

(∫ t

τ0

c(η) dη

)

. (5c)

Recombining the two expressions gives the solution as

θ(t) = u(t; c) + 1

μ(t)

∫ t

τ0

μ(η)s(η)dη, (6)

illustrating that the external temperature, modulated by the effective heat transfer
coefficient, acts as a separate external heat flux.

3 Model Implementation

We consider an implementation where the time interval is broken into a disjoint
union of N + 1 intervals, {I j = [τ j , τ j+1)}Nj=0 divided at the sunrise/sunset times.
On each interval I j we suppose a constant external flux s j and construct the vector
s = (s0, . . . , sN )T for the entire interval [τ0, τN+1) = ∪N

j=0 I j . For this entire interval
we take a constant value for c(t) so that c(t) = c0 > 0, τ0 ≤ t < τN+1. In this case
the solution takes the form

θ(t; c0, s) = θ(t0)e
−c0(t−τ0) + c0

∫ t

τ0

e−c0(t−η)θ0(η) dη

+ sl
c0

(

1 − e−c0(t−τl )
) + 1

c0

l−1
∑

j=0

s j
(

e−c0(t−τ j+1) − e−c0(t−τ j )
)

, (7)
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for τl ≤ t < τl+1, and l = 0, 1, . . . , N . Using this approximatemodel as our working
platform, we now attempt to determine an external coupling, c0, and characteristic
flux, s, that describe a given thermal decomposition study.

To test this model, we consider a thermal decomposition experiment over a num-
ber of weeks and measure both the internal and external temperature periodically
resulting in M 	 N + 1 samples, {θmeas

j }Mj=1 and {θmeas
0, j }Mj=1 taken at {t j }Mj=1 respec-

tively. Writing (7) as a linear system in s, ideally c0 and s would be chosen so that

f (c0, s) = ‖u(c0) − θ̂ + B(c0)s‖2	2(RM ) (8a)

is minimized where θ̂ = (θmeas
1 , . . . , θmeas

M )T, u(c0) = (u(t1; c0), . . . , u(tM ; c0))T,
and for ti ∈ Il

[B]i j = 1

c0

⎧

⎪⎨

⎪⎩

e−c0(ti−τ j ) − e−c0(ti−τ j−1), 1 ≤ j ≤ l,

1 − e−c0(ti−τl ), j = l + 1,

0, l + 2 ≤ j ≤ N + 1.

(8b)

A standard calculation to find the minimum with respect to s gives

s∗ = arg min
s∈RN+1

f (c0, s) = (BTB)−1BT(θ̂ − u) (9)

leaving a nonlinear, one-dimensional minimization problem to find

c∗
0 = argmin

c0>0
f (c0, s∗) = argmin

c0>0

∥
∥
∥

(

I − B(BTB)−1BT)

(u − θ̂ )

∥
∥
∥

2

	2(RM )
. (10)

Using an alternative norm may lead to different results and this will be explored at
a later date.

4 Results

The approximate model (7) is applied to the two independent thermal decomposition
studies. We use these studies as a ground truth to find the coupling coefficient and
heat flux parameters.

4.1 Analysis of the Coupling Coefficient

We begin by finding the best coupling coefficient that minimizes the percent relative
error defined as
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Fig. 2 The relative error defined by expression (11) as a function of c0 for the duration of each
decomposition study for the July (c∗

0 � 0.51) and the September (c∗
0 � 0.24) experiments

Percent relative error = 1
∥
∥
∥θ̂

∥
∥
∥

	2

∥
∥
∥

(

I − B(BTB)−1BT)

(u − θ̂ )

∥
∥
∥

	2
× 100 (11)

which is illustrated in Fig. 2, assuming a single value of c0 for the entire interval.
There are well defined minimal relative errors obtained for both studies. The value
of c∗

0 � 0.51 for July and c∗
0 � 0.24 for September.

We have assumed that c is constant, and to test this assumption,we find the optimal
value c∗

0 as a function of the duration of the experiment. Figure 3 illustrates that c∗
0

increases with the duration, but the ±1% relative error bounds are quite large. This
spread (in either experiment) indicates the predictability of the model. Consistent
with Fig. 2, the fit is not very sensitive to the value of c∗

0.

4.2 Temperature Prediction and Heat Flux Analysis

With an optimal choice of coupling coefficient, c∗
0, and the corresponding heat flux

vector, s∗, we may return to expression (7) to estimate the cadaver temperature.
Figure 4 shows this prediction for the September study. The fit is better in the last
five days. A possible reason is indicated in Fig. 3 which indicates changes in cmay be
alignedwith the decomposition regime. This is especially noticeable in the July study.

Figure 5 shows our findings for the heat flux of each study. The vertical lines
indicate progression through the decomposition regimes with the September study
failing to reach dry remains. The forensics literature of this process is anecdotal, with
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Fig. 3 The optimal coupling coefficient, c∗
0, as a function of the number of days used in each study

with the decomposition regimes indicated. The upper and lower dashed curves indicate the location
of ±1% relative error away from the optimal value

Anderson noting increased heating in the first few days with pig carcasses, followed
by a rapid drop after a few weeks [4]. It has also been noticed that colonization
of a cadaver follows a specific pattern; with the early stages of bloat and decay
experiencing the most variety, and largest quantities of insect species [3]. In Fig. 5,

20 40 60 80 100 120
0

10

20

30

40 SEP08 SEP09 SEP10 SEP11 SEP12

0

620 640 660 680 700 720
0

10

20

30

40 OCT03 OCT04 OCT05 OCT06 OCT07

600

Fig. 4 The model prediction of the temperature (dotted black) for the first five and last five days
of the September study. For reference, the data in Fig. 1 is also included
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Fig. 5 The predicted piece-wise constant heat flux, s∗, for the duration of the July and September
studies. The characteristics of the two curves are similar with two initial broad peaks followed by
a decay to the background level

a characteristic pattern in the heat flux is indicated, independent of the season, July
or September. There are two broad initial bursts of activity followed by a residual
background flux which is consistent with the observations described in [1].

The heating of the cadaver is driven by both environmental effects as well as
the presence of insects. An accurate prediction of the cadaver temperature is a key
component of accurately determining the time of death in that it modulates the growth
rate of colonizing insects. This research has used thermal decomposition studies to
extract both an intrinsic heat flux for the colonizing insect species, s∗, and an effective
coupling to the environment, c∗

0. With these parameters, the model (7) can rapidly
predict the cadaver temperature much more accurately than current convention of
using linear regressionwith the environmental temperature. This accuracy is reflected
in a more reliable estimate of time of death.

5 Conclusion

In this research we attempted to extract an intrinsic heat response from colonizing
insect species and a single coupling coefficient in an application of an inverse model
corresponding to (4a). It is expected that s∗ is a function of the specific colonizing
species and that the coupling c∗

0 is based on a variety of environmental factors.
Armed with appropriate s(t) and c(t), (4a) provides an efficient and rapid predictor
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of a cadaver temperature as it is driven by an external temperature source. In effect,
this is a novel, non-intrusive way to accurately predict the thermal environment of
the colonizing insects and will allow for increased accuracy in postmortem interval
predictions.

6 Future Work

A single effective value of c∗
0 was chosen for simplicity but a reanalysis of the data

with c(t) changing at the same frequency as s(t) is being undertaken. The authors
agreewith an anonymous referee that this is an essential first step in further developing
this method. The variation of c0 with season and geographic location is also currently
under study.

Acknowledgements Thankyou toH.LeBlanc andA.Skopyk for their case study data and expertise
in forensic entomology.
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Mathematical Modeling of the
Steady-State Behavior of Nitric Oxide
in Brain

Corina S. Drapaca and Andrew Tamis

Abstract Nitric oxide (NO) is a small diffusible molecule that plays an important
role in brain’s signalling processes and regulation of cerebral bloodflowand pressure.
While most of the NO production is achieved through various chemical reactions
taking place in the neurons, endothelial cells, and red blood cells, only the endothelial
NO is activated by the shear stress at the blood-endothelium interface. NO is removed
from the brain by blood’s hemoglobin and through diffusion and other chemical
processes. Given its relevance to brain functions, numerous studies onNO exist in the
literature. Themajority of themathematical models of NO biotransport are diffusion-
reaction equations predicting the spatio-temporal distribution of NO concentration
either inside or outside the blood vessels, and do not account for the endothelial NO
production through mechanotrasduction. In this paper we propose a mathematical
model of the steady-state behavior of NO in the brain that links the NO synthesis
and inactivation from inside and outside a cerebral arteriole and the blood flow. The
blood flow is assumed to be a Poiseuille flow, and we use two models of blood:
viscous Newtonian and non-local non-Newtonian fluids. The model is used to study
through numerical simulations the effects of the cerebral blood pressure on the NO
concentration.

Keywords Cerebral Nitric Oxide · Poiseuille Flow · Mechanotransduction ·
Fractional Calculus · Nonlocality

1 Introduction

Nitric oxide (NO) is a free radical gas involved in many critical bio-chemical pro-
cesses taking place in living organisms. In particular, NO acts as a neuro-glial-
vascular messager and regulator of cerebral blood flow [1, 2, 6, 7, 10, 11, 14,
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15, 18, 20–22]. NO is produced by synthesis reactions taking place in specific
neurons [10], vascular endothelium and choroid plexus [11], and red blood cells
[15]. While neuronal NO is involved in learning, memory formation, and regulation
of the cerebral blood flow [11], the endothelial NO maintains cerebral microcircula-
tion by guiding vasomotor responses and vasoprotection processes, and by reducing
the cerebral blood pressure [1, 10, 12, 13]. The endothelial NO can also be produced
through mechanotransduction initiated by the shear stress at the endothelium-blood
interface [25]. The NO formed in the deoxygenated red blood cells is involved in
the red blood cells deformability [3]. NO is removed from the brain by blood’s
hemoglobin and through diffusion and other chemical processes [15].

Given the essential role played by NO in various physiological and pathophysio-
logical processes, especially those involved in brain functions, numerous mathemat-
ical models of NO spatio-temporal dynamics exist in the literature [5, 14, 16, 26,
27] (a comprehensive review of mathematical models of NO biotransport is given in
[5]). The majority of these models are reaction-diffusion equations describing NO
syntheses (production) and inactivation (loss) either inside or outside the blood ves-
sels. The shear-induced production of the endothelial NO and the coupling of the NO
contributions from the inside and outside of the blood vessels are usually modelled
as known boundary conditions. Since these models do not incorporate any mechan-
ical properties of cells and their interactions, they cannot accurately predict the NO
effects on, for instance, cerebral blood flow and vasculature, and ultimately on brain
fuctions. A mathematical model that couples the NO spatio-temporal dynamics and
the mechanical behaviors of blood flow and vasculature could prove essential in
the development of successful NO-based therapies for clinical conditions associated
with disturbances in NO production and/or signaling [4].

In this paper we propose a mathematical model for the steady-state behavior
of NO in brain that incorporates the production of endothelial NO through shear-
induced mechanotransduction. The steady-state reaction-diffusion equation for the
NO concentration includes production and decay terms from the inside and outside of
a cerebral arteriole which are taken from [14, 16, 26, 27]. A newNOproduction term
is added to the equation thatmodels the shear-inducedmechanotransduction ofNO in
endothelium. This production term is assumed to be proportional to the concentration
of NOwhich is in agreement with the experimental observations reported in [25].We
further conjecture that the production rate of this term is proportional to the viscous
dissipation at the blood flow-endothelium interface. Dissipation is calculated from
assumptions on the mechanical properties of the blood flow and arteriolar wall. For
now, the wall is assumed to be rigid and permeable only to NO. The blood flow is
modelled as a Poiseuille flow, and we use two models of blood: viscous Newtonian
and non-local non-Newtonian fluids. The non-Newtonian nature of blood becomes
apparent in the smaller vessels such as the arterioles. Here we use the non-local non-
Newtonian model of blood proposed in [8] which accounts for long-range chemo-
mechanical interactions of the red blood cells in vivo. The model is used to study
through numerical simulations the effects of the cerebral blood pressure on the NO
concentration.
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The paper is structured as follows. Section 2 presents the mathematical model,
while the numerical results are shown in Sect. 3. The paper ends with conclusions
and suggestions for future work.

2 Mathematical Model

The geometric domain shown in Fig. 1 is made of concentric horizontal axi-
symmetric circular cylinders. The cylinders have rigid walls which are permeable
only to NO. The blood flows through the lumen region of radius R. The endothelium
layer of the arteriole has thickness h and is considered separately from the other
arteriolar layers because it is a NO production site. The next region of thickness d
is made of the other vascular layers and extracellular space. Lastly, the region of
thickness g represents a group of neurons that produce NO.

As in [26, 27], the NO transport by convection is neglected. The blood is an
incompressible fluid in a three-dimensional fully-developed steady laminar flow.
The flow is axi-symmetric and driven by an externally applied pressure gradient.
No body forces are acting on the blood. In cylindrical coordinates (r, θ, z), only
the axial component of the blood’s velocity is non-zero. Thus, at steady-state, the
concentration ofNO, cNO , and the axial component of the blood’s velocity,w, depend
only on the independent variable r .

TheNO is produced in the region [R, R + h] ∪ [R + h + d, R + h + d + g] and
decays in the region [0, R] ∪ [R + h, R + h + d + g]. In addition, NO diffuses
radially on [0, R + h + d + g]. Thus, the balance law of mass at steady-state in
cylindrical coordinates is:

Fig. 1 The geometric domain is made of concentric horizontal axi-symmetric circular cylinders.
The regions correspond to the lumen of radius R, endothelium of thickness h, a region of thickness
d made of other arteriolar layers and extracellular space, and a region of thickness g filled with
neurons
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DNO

(
d2cNO

dr2
+ 1

r

dcNO

dr

)
+ ν1H(r − (R + h + d)) − Vmax cNO

Kmax + cNO
H(r − (R + h))

+σr z

τw

dw

dr
(H(r − R) − H(r − (R + h)))cNO − λ(1 − H(r − R))cNO = 0 (1)

In Eq. (1), DNO is the diffusion coefficient of NO, ν1 is the constant rate of NO
synthesis in the neurons, Vmax is the maximum rate at saturating concentration of NO
in the region [R + h, R + h + d + g], and Kmax is the NO concentration at which
the reaction rate is Vmax/2 in the region [R + h, R + h + d + g] [14]. The viscous
dissipation is the product between blood’s shear stress σr z and dw

dr . The shear stress
at the lumen-endothelium interface is τw = σr z(R). Lastly, the decay of NO due to
the hemoglobin in blood is assumed to happen at a constant rate λ [16, 26, 27]. The
Heaviside step function is denoted by H . The newly introduced fourth term in Eq. (1)
is the shear-induced production of NO in the endothelium. Equation (1) was solved
numerically and thus the presence of the discontinuous Heaviside step function in
the equation did not pose any issues. In subsequent work a mathematical analysis
of this equation with smooth coefficients will be performed to better understand the
mathematical behavior of the solution and its physical interpretation.

The expressions for σr z, dw
dr , and τw are given further. The following assumptions

specific to a Poiseuille flow in the region [0, R] are made. Let C = dp

dz
< 0 be the

constant, externally applied pressure gradient, where p(z) is the hydrostatic pressure
of blood. The lumen-endothelium interface is assumed to be a no slip boundary. The
boundary condition at r = 0 expresses the axial symmetry of the flow.

Newtonian Model of Blood For an incompressible viscous Newtonian fluid, the
shear stress σr z and shear rate dw

dr are related through the following constitutive
relation:

σr z = μ
dw

dr
(2)

where μ is the dynamic viscosity. The solution of the Navier-Stokes equations at
equilibrium with boundary conditions:

w(R) = dw

dr
(0) = 0 (3)

is:

w(r) = C

4μ

(
r2 − R2

)
(4)
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Thus:
dw

dr
= Cr

2μ
, σr z = Cr

2
, τw = CR

2
(5)

Since C < 0, a change of sign is required in front of the fourth term of equation (1)
such that the termmodels NO production. Thus, by replacing formulas (5) in Eq. (1),
Eq. (1) becomes:

DNO

(
d2cNO

dr2
+ 1

r

dcNO

dr

)
+ ν1H(r − (R + h + d)) − VmaxcNO

Kmax + cNO
H(r − (R + h))

− Cr2

2μR
(H(r − R) − H(r − (R + h)))cNO − λ(1 − H(r − R))cNO = 0 (6)

Non-local Non-NewtonianModel of Blood The shear stress σr z for an incompress-
ible non-local non-Newtonian fluid is given by [8]:

σr z = μ Dα
r w(r) (7)

where Dα
r w(r) is the left-sided Caputo fractional derivative of order α which, by

definition, is:

Dα
r w(r) = 1

Γ (m − α)

∫ r

0

1

(r − s)α+1−m

dmw(s)

dsm
ds, m − 1 < α < m

or

Dα
r w(r) = dm

drm
w(r), α = m

form ∈ {1, 2, 3, ...}. From a physical point of view, Dα
r w(r) in formula (7) represents

the shear rate of order α.
For α = 1, formula (7) reduces to formula (2) and the physical parameter μ

becomes the apparent viscosity. Parameter α �= 1 gives an intrinsic coupling between
flow and the continuous rearrangement of the fluid’s microstructure during flow. The
information about this coupling is lost when α = 1. Thus, the constitutive equation
(7) for α �= 1 models long-range (non-local) interactions among cells caused by and
contributing to blood flow in vivo.

The solution of the Navier-Stokes equations at equilibrium with the boundary
conditions:

w(R) = dk

drk
w(0+) = 0, k = 1, 2, ...,m − 1, m − 1 < α < m (8)

is [8]:

w(r) = C

2μα(α + 1)Γ (α)

(
rα+1 − Rα+1

)
. (9)
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Thus:
dw

dr
= Crα

2μαΓ (α)
, σr z = Cr

2
, τw = CR

2
(10)

Lastly, by replacing formulas (10) in Eq. (1) and using the same sign convention as
before, the following equation is obtained for cNO :

DNO

(
d2cNO

dr2
+ 1

r

dcNO

dr

)
+ ν1H(r − (R + h + d)) − VmaxcNO

Kmax + cNO
H(r − (R + h))

− Crα+1

2μRαΓ (α)
(H(r − R) − H(r − (R + h)))cNO − λ(1 − H(r − R))cNO = 0 (11)

If α = 1, Eq. (11) reduces to Eq. (6). Thus, it suffices to build a numerical solution
only for Eq. (11).

3 Results

The values of the parameters used in the numerical simulations are given in Table 1.
Two values for C are used which are named healthy and high. For the Newtonian

model of blood, healthy and high pulse pressures in humans are estimated from [24].
For the non-local non-Newtonian model of blood, the healthy pressure gradient is

Table 1 List of parameters with corresponding values and units

Model of blood Parameters Values and units (Reference)

R 25 × 10−6 m [16]

h 0.5 × 10−6 m [16]

d 4 × 10−6 m

g 5 × 10−6 m [14]

DNO 3.3 × 10−9 m2/s [14, 16]

ν1 1.6 × 10−3 mol/(m3 × s) [14]

Vmax 2 × 10−3 mol/(m3 × s) [14]

Kmax 10−6 mol/m3 [14]

λ 2.3 × 102 1/s [26]

Newtonian μ 3 g/(m × s) [17]

C (healthy) −5.3 × 108 g/(m2 × s2) [24]

C (high) −7.9 × 108 g/(m2 × s2) [24]

Non-local
Non-Newtonian

α 1.97 [9]

μ 0.021 × 106(α−2) g/(m2−α × s) [9]

C (healthy) −7.122 × 107 g/(m2 × s2) [9]

C (high) −7.122 × 1010 g/(m2 × s2)
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estimated from experiments performed on a living mouse and reported in [19]. A
high pressure gradient in living mice was not found in the literature and, therefore,
this is chosen to be a value at which a difference in cNO is observed from the healthy
case. However, this high value of C might not be physiological. Lastly, parameters α

and μ of the non-local non-Newtonian model were found in [9] by fitting the speed
given in formula (9) to the blood speed measured in vivo in a venule of a mouse
cremaster muscle before systemic hemodilution [19].

Equation (11) is solved numerically using a zero Neumann boundary condition
at r = 0:

dcNO

dr
(0) = 0 (12)

and the following Dirichlet boundary condition at r = R + h + d + g estimated
from [14]:

cNO(R + h + d + g) = 10−8 [mol/m3] (13)

Numerical solutions are obtained using the built-in function bvp5c in MATLAB.
The function bvp5c solves boundary-value problems for systems of first order ordi-
nary differential equations using the four-stage Lobatto IIIA formula represented as
an implicit Runge-Kutta formula [23]. The system of first order differential equations
corresponding to Eq. (11) is:

dcNO

dr
= sNO ,

dsNO

dr
= −1

r
sNO − ν1

DNO
H(r − (R + h + d)) + VmaxcNO

DNO (Kmax + cNO )
H(r − (R + h))

+ Crα+1

2DNOμRαΓ (α)
(H(r − R) − H(r − (R + h)))cNO + λ

DNO
(1 − H(r − R))cNO (14)

Thus, the function bvp5c solves system (14) with boundary conditions (12)–(13) for
the unknowns cNO and sNO .

The results are shown in Fig. 2. Both models of blood show similar profiles for
cNO for their respective healthy and high values of C .The profiles of cNO inside and
outside the arteriole agree with those found in the literature. However, in the endothe-
lium region (Fig. 2c, d) the concentration of NO for the high value of C is slightly
higher than the one corresponding to the healthy value of C . These findings suggest
that the blood pressure could affect the concentration of NO. The concentration of
NO is more sensitive to changes in C when using the Newtonian model of blood
then when the blood is modeled as a non-local non-Newtonian fluid. Since the blood
flowing through small arterioles is non-Newtonian, it is possible that the concentra-
tion of NO is not affected by higher values of the cerebral blood pressure which are
within physiological limits. Nevertheless, given the uncertainties in the values of the
parameters in Table 1 and the inconsistencies among these parameters (some param-
eters were estimated from slices of rat brains [14], others from cremaster muscles of
mice [19], and the rest from humans [17, 24]), a careful sensitivity analysis needs to
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Fig. 2 Concentrations of NO for healthy (circle symbol) and high (square symbol) pressure gra-
dients C : a Newtonian model of blood (α = 1), b Non-local non-Newtonian model of blood
(α = 1.97). Zoom-ins of the plots (a) and (b) are shown in plots (c) and respectively (d). The
region around the endothelium is chosen for the zoom-ins. cNO in the endothelium is higher for a
higher value of C , as expected from Eqs. (6) and (11)

be performed in order to get a better understanding of the relationship between the
NO concentration and the cerebral blood flow and pressure and confirm the validity
of these preliminary results.

4 Conclusion

In this paper, a mathematical model was proposed to describe the steady-state behav-
ior of NO in brain. The model is a one-dimensional, steady-state reaction-diffusion
equation for the concentration of NO that includes production and decay terms from
the inside and outside of a cerebral arteriole which were taken from the literature.
A new production term is added to the equation that models the NO production in
the endothelium through shear-induced mechanotransduction. This production term
is proportional to the concentration of NO and the corresponding production rate is
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proportional to the viscous dissipation at the blood flow-endothelium interface. The
dissipationwas calculated using twomechanicalmodels of blood: viscousNewtonian
and non-local non-Newtonian fluids. The blood flow was a Poiseuille flow through
an axi-symmetric circular cylinder whose wall was rigid and permeable only to NO.
Numerical simulations suggest that the concentration of NO in the endothelium is
higher at higher gradients of the cerebral blood pressure. This is a very promising
result since it could help understand the effects of high blood pressure on the NO
concentration. Incorporating the NO production by deoxygenated red blood cells
and the viscoelasticity of the endothelium in the model and performing a sensitivity
analysis of the model’s parameters could provide more accurate predictions of the
spatio-temporal distribution of the NO concentration in brain, and thus these will be
the focus of future work.
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Automate Obstructive Sleep Apnea
Diagnosis Using Convolutional Neural
Networks

Longlong Feng and Xu Wang

Abstract Identifying sleep problem severity from overnight polysomnography
(PSG) recordings plays an important role in diagnosing and treating sleep disorders
such as theObstructiveSleepApnea (OSA).This analysis traditionally is doneby spe-
cialists manually through visual inspections, which can be tedious, time-consuming,
and is prone to subjective errors. One of the solutions is to use Convolutional Neu-
ral Networks (CNN) where the convolutional and pooling layers behave as feature
extractors and some fully-connected (FCN) layers are used for making final predic-
tions for the OSA severity. In this paper, a CNN architecture with 1D convolutional
and FCN layers for classification is presented. The PSG data for this project are
from the Cleveland Children’s Sleep and Health Study database and classification
results confirm the effectiveness of the proposed CNN method. The proposed 1D
CNN model achieves excellent classification results without manually preprocesss-
ing PSG signals such as feature extraction and feature reduction.

Keywords Deep learning · Convolutional neural network · Polysomnography ·
Obstructive sleep apnea

1 Introduction and Background

When we sleep, our muscles relax. For the Obstructive Sleep Apnea (OSA) patients,
the muscles in the back of throat can relax too much and collapse the airway, and
lead to breathing difficulty. OSA presents with abnormal oxygenation, ventilation
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and sleep pattern. The prevalence of OSA has been reported to be between 1% to
5% [1]. Children at risk need timely investigation and treatment.

The gold standard for diagnosing sleep disorders is polysomnography (PSG),
which generates extensive data about biophysical changes during sleep. Studies of
PSG assist doctors to diagnose sleep disorders and provide the baseline for an appro-
priate follow up. A clinical sleep study design based on PSG is to acquire several
biological signals while patients are sleeping, These signals typically include elec-
troencephalography (EEG) for monitoring brain activity, electromyogram (EMG) to
measure muscle activity and Electrocardiography (ECG) for the electrical activity
of heart over a period of sleep [2].

In recent decades, various alternative methods have been proposed to minimize
the number of biosignals required to detect and classify the OSA. These studies
include traditional machine learning methods such as Support Vector Machine and
linear discriminant analysis on signals such as ECG [3], respiratory signals [4], a
combination of extracted features and shallowneural network on heart rate variability
and ECG derived respiration signal [5]. These studies focused on extracting time
domain, frequency domain, and other nonlinear features from physiological signals
and applying some feature selection techniques to reduce the number of dimensions
comprising the feature space. However, this process can be labour-intensive, requires
domain knowledge, and is particularly limited and costly for high-dimensional data.
In addition, feature extraction is difficult for traditional machine learning techniques
as the number of features increase dramatically.

Deep learning framework has proved its modeling ability in different PSG chan-
nels. McCloskey et al. employed a 2D-CNNmodel on spectrograms of nasal airflow
signal, and their model achieved an average accuracy of 77.6% on three severity
levels [6]. Another more outstanding application of deep learning model came from
the work of Cheng et al. in which researchers used a four layered Long Short Term
Memory (LSTM) model on the RR-ECG signal and achieved an average accuracy
of 97.80% on the detection of OSA [7].

Though recurrent model (e.g., RNN, LSTM) can process time-series data and
make sequential predictions, CNN can be trained to recognize the same patterns
(severity levels) on different subfields within fixed time windows. CNN saves time
from manual scoring in the laboratory environment and makes the pre-screening
stage easier in contrast to traditional methods. Moreover, in order to increase the
model generalization ability, we tried to explore 1D-CNN models with different
length of segmentations in EEG, ECG, EMG and respiratory channels. We focused
on themodel structure and utilized the fine-tunedmodel for pediatric OSA prediction
in our study.

The rest of this paper is organized as follows. Section2 explains thedata processing
in detail. Section 3 displays the structure of the proposed 1D-CNNmodel. Evaluation
and experimental results are presented in Sect. 4. Finally, Sect. 5 draws discussion
and conclusion of the research.
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2 Cleveland Children’s Sleep and Health Study Database

The data are retrieved from the National Sleep Research Resource (NSRR), which
is a new National Heart, Lung, and Blood Institute resource designed to provide big
data resources to the sleep research community. The PSG data are available from
Cleveland Children’s Sleep and Health Study (CCSHS) database. Each anonymous
record includes a summary result of a 12-hour overnight sleep study (awake and
sleep stages) including annotation files with scored events and PSG signals and
being formatted as the European Data Format (EDF).

The following channels are selected for the 1D CNN Modeling: 4 EEG chan-
nels (C3/C4 and A1/A2), 3 EMG channels (EMG1, EMG2, EMG3), 2 ECG chan-
nels (ECG1 and ECG2), and 3 respiratory channels including airflow, thoracic and
abdominal breathing.

2.1 Individual Labeling

To define the target variable for this classification problem, each participant needs
one label based on the OSA severity level. The Obstructive Apnea Hypopnea Index
(oahi3) is used to indicate the severity of sleep apnea. It is represented by the number
of apnea and hypopnea events per hour of sleep. It combines AHI and oxygen desat-
uration to give an overall sleep apnea severity score that evaluates both the number
of sleep disruptions and the degree of oxygen desaturation (low oxygen level in the
blood). The values of oahi3 are used as the thresholds for grouping the participants.
The number of participants with different severity levels are shown in Table 1.

The dataset has an imbalanced response variable (362 normal/139 minor/8 mod-
erate/8 severe). Those minority classes (moderate and severe) are our most interest.
We tried to train classifier to learn more frommoderate and severe level data. Under-
samplingmethodwas applied during the data pre-processing stage, i.e., we randomly
selected an equal number of samples (i.e., 8 participants) from each of the normal
and minor groups. Overall, there are 32 participants in the final study data set. In
this project, we conduct data pre-processing and CNN modeling on the data in EDF
format which have a total size of 13 GB.

Table 1 Grouping participants using oahi3 values

Obstructive Apnea Hypopnea
Index

Level of severity Number of participants

0 < oahi3 ≤ 1 NL (Normal) 362

1 < oahi3 ≤ 5 MIN (Minor) 139

5 < oahi3 ≤ 10 MOD (Moderate) 8

10 < oahi3 SV (Severe) 8
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Fig. 1 Demonstration of channel division

2.2 Data Preprocessing

This experiment focuses on the sleep data. The beginning and ending awake signals
could be treated as noise and need to be removed. Secondly, the deep learning algo-
rithms tend to be difficult to train when the length of time series is very long. Figure 1
presents a segmentation strategy, i.e., dividing the time series into smaller chunks.

Each segment was labeled as the same severity level as the participant. In other
words, the segments would inherit the severity label from the participant they
belong to. With a starting length of L time steps, one channel is divided into
blocks of sequence Seq_L yielding about L / Seq_L of new events (or rows) of
shorter length (N).

The PSG data were segmented into 1-min long events. For the ECG channel
(frequency of 256) a 1-min event has a length of 15360 (256 × 60) data points. An
individual has a 8.24-h ECG channel, which would have 1D time series data with
length of 7595520. After segmentation, the long series data turned into a tensor with
dimension 494 × 15360, which indicates 494 events (a length of 15360 for each).
Since we have 32 selected participants and 2 ECG channels for each participant, the
input tensor has the dimension of 15824 (N) × 15360 (Seq_L) × 2 (channels).

With the data segmentation, the length of each time-series is shorter and will be
helpful in model training; and the number of data points has increased by a factor of
L / Seq_L (number of instances or rows) providing a larger data set to train on.

Since different channels (e.g., ECG,EMG)weremeasured in different amplitudes,
therefore, the last step of data processing is to normalize the PSG data with zeromean
and unit standard deviation.

3 1D-CNN Architecture

The convolutional layer andmax-pooling layer play the key roles in the CNNs feature
extraction mechanism. The output of convolutional layer of the �th layer can be
calculated as in Formula 1:
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Fig. 2 The proposed 1D-CNN architecture
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C (�)
k = ReLU (

∑

c

W (�),c
k ∗ X (�−1),c + B�

k ), (1)

where k represents the filter number, c denotes the channel number of the input X �−1,
W (�),c

k is the kth convolutional filter to the cth channel, and B�
k is the bias to the kth

filter, and ∗ is the dot product operation.
The max-pooling layer is a sub-sampling function selecting the maximum value

within a fixed size filter. After the convolution-pooling blocks, one fully connected
layer of neurons which have full connections to all activations in the previous layer,
as in the regular Neural Networks. At the end of the convolutional layers, the data
were flattened and passed onto the Dropout layer before the softmax classifier.

Figure 2 shows the structure of the 1D CNN model proposed in this project. It
contains 3 convolutional and 3 max-pooling layers. We focused our efforts on the
CNNbuilding and began the investigation of theCNNmethod initially by performing
a grid search of several hyperparameters.

For each participant, his or her PSG data were served for either training or test
data, not for both.We implemented a two-level stratified random sampling. In details,
therewere 2 splitting steps among 32 participants: firstly, 8were randomly selected as
test participants (i.e., 2 participants were randomly selected for each severity level);
secondly, the remaining 24 participants were split into two groups: 18 participants
for training set and 6 participants for validation set. The tensorflow graph was fed
with batches of the training data and the hyperparameters were tuned on a validation
set. Finally the trained model was evaluated on the test set.

The CNNmodel was trained in a fully supervised manner, and the gradients were
back-propagated from the softmax layer to the convolutional layers. The network
parameters were optimized by minimizing the cross-entropy loss function based on
the gradient descent with the Adam updating rule and a learning rate of 0.0001.

Table 2 presents the final values of parameters within each layer. Dropout rate
of 0.5 was used as it is the general setting for CNN models. Model classification
performance is evaluated by using the following metrics: classification accuracy,
cross-entropy loss, precision, recall and F1-score. While accuracy and loss can be
used for evaluating the overall performance, some other metrics can be used to
measure the performance of specific class.

4 Results and Analysis

Figure 3 shows the learning curve on training and validation phases. Accuracy and
loss were obtained with various number of iterations. The accuracy increases as the
number of iteration increases, and the loss decreases at the same time. The accuracy
and the loss reach stable values after iterative learning on both phases.

For ECG, we can observe the stable accuracy and loss values after 1000 iterations
(Training acc: 0.9987, loss: 0.0114; Validation acc: 0.9916, loss: 0.0289). For EEG,
the accuracy and the loss start to converge to a value after 2500 iterations (Train-
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Table 2 CNN model structure with optimal parameters

CNN layer # of filters Filter size Stride Padding Activation
function

Conv 1 46 10 2 No Relu

Pooling 1 – 10 2 No –

Conv 2 92 10 2 No Relu

Pooling 2 – 10 2 No –

Conv 3 184 20 2 No Relu

Pooling 3 – 20 5 No –

ing acc: 0.9718, loss: 0.0945; Validation acc: 0.9447, loss: 0.1985). For EMG, the
accuracy and the loss become stable after 4000 iterations (Training acc: 0.9999, loss:
0.0013; Validation acc: 0.9707, loss: 0.1131). However, there are a large number of
big fluctuations before the convergence during the learning process. Thismeans some
portion of the randomness: (1) The Dropout method could cause the network to keep
only some portion of neurons (weights) on each iteration. Sometimes those neurons
do not fit the current batch well, and this may cause large fluctuations; (2) There is
randomness in initialization and data sampling for SGD in back-propagation.

For Respiratory, we can see the train and validation accuracy begin to stay steady
with similar values indicating slight overfitting in the classification (Training acc:
0.9854, loss: 0.0378; Validation acc: 0.9180, loss: 0.2945).

The evaluation metrics and confusion matrices for all channels with training and
test data are presented in Tables 3 and 4 respectively. The results from Table 4 are
summarized in Table 3. It can be observed from Table 3 that, for the test data, the
CNN model can achieve 98.97% for ECG, 94.63% for EEG, 95.81% for EMG,
and 91.99% for Respiratory; We can also verify the training curves from Fig.3 by
checking the training accuracy score from Table 3 and the classified results from
Table 4. Furthermore, the precision, recall and F1-score for each class are collected
in Table 3.

For ECG, the model can achieve a value of >99% for all three metrics for all
classes on the training data and>97% for the test data; For EEG, the model achieves
a >96% score for training data, and >91% for the test data.

For EMG, the scores of 1.0000 are obtained in the training phase on all classes,
which means the perfect classification for the training data during the learning pro-
cess, while the scores of >93.29% are obtained from the test data.

Similarly, for Respiratory, CNN achieves scores of >98% for the training and
slightly lower scores, which are over >88.99% for the test data. The reason why
there exists the gap between training and test scores can be that the respiratory
signal sensors is different from ECG, EEG and EMG. In this case, the signal in the
respiratory system may not be sensitive enough to detect small changes when OSA
happens. Table 4 displays the classification details on the training and test data.
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Table 3 The CNN evaluation metrics

Channels(#) Dataset Accuracy Loss Class Precision Recall F1-score

ECG (2) Training 0.9987 0.0114 NL 0.9997 0.9997 0.9994

MIN 0.9980 0.998 0.9980

MOD 0.9982 0.9982 0.9982

SV 0.9988 0.9994 0.9991

Test 0.9897 0.0289 NL 0.9862 0.9921 0.9891

MIN 0.9990 0.9773 0.9880

MOD 0.9894 0.9961 0.9927

SV 0.9843 0.9940 0.9891

EEG (4) Training 0.9718 0.0945 NL 0.9753 0.9741 0.9747

MIN 0.9784 0.9820 0.9802

MOD 0.9721 0.9684 0.9703

SV 0.9609 0.9621 0.9615

Test 0.9463 0.1985 NL 0.9394 0.9587 0.9490

MIN 0.9415 0.9741 0.9575

MOD 0.9682 0.9166 0.9417

SV 0.9373 0.9354 0.9363

EMG (3) Training 0.9999 0.0013 NL 1.0000 1.0000 1.0000

MIN 1.0000 0.9997 0.9999

MOD 0.9997 1.0000 0.9999

SV 1.0000 1.0000 1.0000

Test 0.9581 0.1132 NL 0.9518 0.9312 0.9414

MIN 0.9660 0.9601 0.9631

MOD 0.9823 0.9712 0.9767

SV 0.9329 0.9696 0.9509

Respiratory
(3)

Training 0.9854 0.0378 NL 0.9857 0.9857 0.9857

MIN 0.9834 0.9849 0.9842

MOD 0.9895 0.9880 0.9888

SV 0.9828 0.9828 0.9828

Test 0.9199 0.2945 NL 0.9147 0.9147 0.9147

MIN 0.9447 0.9053 0.9246

MOD 0.9323 0.9194 0.9258

SV 0.8899 0.9408 0.9147

Note NL (Normal), MIN (Minor), MOD (Moderate), SV (Severe)
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Fig. 3 Accuracy and loss of the proposed CNN model for OSA detection

5 Conclusion and Discussion

Firstly, with the correct hyper-parameter setup, our 1D-CNNmodel can successfully
extract the temporal features from thePSGdata and achieve high performance inOSA
detection for different channels; secondly, our well trained CNN model can be an
efficient tool for clinicians to identify OSA severity without manually going through
tons of PSG data. Furthermore, our CNN models can replace the traditional data
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Table 4 Confusion matrices from the CNN model on training and test data

ECG training ECG test

True Predict

NL MIN MOD SV NL MIN MOD SV

NL 3321 0 1 2 1000 0 3 5

MIN 0 3511 5 2 10 1032 6 8

MOD 1 5 3378 0 1 0 1022 3

SV 0 2 0 3340 3 1 2 1000

ECG training ECG test

True Predict

NL MIN MOD SV NL MIN MOD SV

NL 3239 14 13 59 976 12 4 26

MIN 9 3445 34 20 7 1014 11 9

MOD 15 40 3279 52 28 30 945 28

SV 58 22 47 3222 28 21 16 941

ECG training EMG test

True Predict

NL MIN MOD SV NL MIN MOD SV

NL 3546 0 0 0 731 14 9 31

MIN 0 3745 1 0 11 795 5 17

MOD 0 0 3601 0 9 7 775 7

SV 0 0 0 3571 17 7 0 765

Respiratory training Respiratory test

True Predict

NL MIN MOD SV NL MIN MOD SV

NL 3714 18 14 22 461 10 14 19

MIN 16 3912 13 31 10 478 14 26

MOD 17 17 3786 12 20 7 468 14

SV 21 31 13 3723 13 11 6 477

Note NL (Normal), MIN (Minor), MOD (Moderate), SV (Severe)

processing such as signal extraction and transforming, which can be time-consuming
and labour-intense.

There are some limitations of our work. Firstly, only a small sample of 32 subjects
was investigated in this study. Secondly, we used ECG, EEG, EMG and Respiratory
channels to build CNN models separately, so there was no cross-checking between
different channels. Lastly, our CNN model is slow to be trained without GPU. The
well-trained models require a big data set and the fine-tuned hyperparameters in the
training step.

The future work can aim at feeding the four single CNNmodels into an ensemble-
like model to making a prediction. There are other possible architectures that would
be of great interest for this problem. One of most popular deep learning architectures
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that models sequence and time-series data is the long-short-term memory (LSTM)
cells within recurrent neural networks (RNN).
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Numerical Analysis of Nanowire
Resonators for Ultra-high Resolution
Mass Sensing in Biomedical Applications

Rosa Fallahpour and Roderick Melnik

Abstract Nanowire resonators have fascinated researchers as a promising group
of devices for accurate detection of tiny objects such as atoms, molecules, viruses,
bacteria, and different types of bio-objects. In this paper, we present a numerical
solution to the newly developed mathematical model of the nanowire resonator,
considering such important characteristics as temperature variations, as well as the
electromagnetic fields, added mass, surface and nonlocal effects. The mathematical
model is based on the nonlocal Euler-Bernoulli beam theory. The developed model is
solved by using the Finite DifferenceMethod (FDM). As a result of this solution, the
frequency response of the nanowire resonator has been obtained. Then, based on the
developed numerical solution, a parametric study has been carried out to investigate
the effects of different parameters on the vibration of nanowire resonators. Finally,
the importance of nonlinearity in the modelling of such resonators at the nanoscale
has been highlighted.

Keywords Nanobiomedicine · Mathematical modelling · Nonlocal nonlinear
problems · Euler-bernoulli beam theory · Nanowire resonators · Bio-object
detection

1 Introduction
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onators including nanowires, quantum dots, nanotubes and graphene sheets have
been studied by researchers from different fields to be used for tiny object detec-
tion. In particular, the ultra-high frequency of these structures attracted attention of
researchers in the area of bio-sensing to implement them for the detection of tiny
bio-objects. As a result, plenty of theoretical and practical approaches have been
proposed for the detection of tiny bio-particles. By using both theoretical and exper-
imental approaches, researchers have shown a strong potential of nanoresonators in
the detection of tiny objects even in the scale of zeptogram (zg) [1–3].

Nanoresonators, specifically semi-conductingnanowires, have shownveryunique
reproducible and tunable conducting properties, which provide a basis for strong
sensing approaches in medical applications [4]. This high resolution of sensing
allows detection of tiny bio-objects such as DNA, RNA, proteins, viruses, bacte-
ria and very small chemical atoms. Analysis of temperature variations is one of
the well-addressed parameters, but in order to analyze other significant parameters,
the development of novel models is needed to provide a better understanding of
nanoresonator’s sensing resolution. Thus, vibration characterization and parametric
sensitivity analysis of nano-mechanical resonators for sensing applications are cru-
cial, notably in biomedicine. It should be noted that whenwe refer to nanosensors, we
dealwith a resonatorwith dimensions in the order of nanometer, which has sensitivity
in the nanoscale range, and its interaction distance with the object being detected in
nanometer size. That is why a small perturbation with different sources of excitation
such as temperature, electromagnetic field, nonlinearity due to large oscillations of
the nanoresonators or their substrates should be taken into account for an adequate
mathematical modelling of these devices. Accordingly, vibrations of nanoresonators
including nanobeams, quantum dots, nanotubes, nanowires, graphene sheets, and
nanoplates have been receiving an increased attention in the interdisciplinary com-
munity of researchers, including those working in the areas of applied mechanics
and mathematics, structural analysis and vibrations. A number of works have been
published so far to investigate the vibrations of nanoresonators [5–8].

An analysis of the state-of-the-art in this field shows that there is a lack of mod-
elling results for nanowire resonators in mass detection applications that take into
account different critical parameters such as the electromagnetic fields, piezoelectric
potential, nonlinearity, external excitations and thermal variations. This shortcoming
of current knowledge in this area has prompted us to work on the development, as
well as on mathematical and numerical analysis, of a novel continuum model for
nanowire resonators.

In this article, we briefly describe our developedmathematicalmodel for the vibra-
tions of nanowire resonators. Our proposed model is based on the nonlocal Euler-
Bernoulli beam theory and includes the terms related to the added mass, temperature
variations, electromagnetic fields, large oscillations, and piezoelectric effect. Then, a
finite difference scheme is developed to obtain the natural frequency of the nanowire
resonator. Finally, a parametric sensitivity analysis is presented to show the effect
of different parameters on the frequency behavior of nanowire resonators with an
added mass, and the importance of nonlinearity is highlighted.
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2 Mathematical Modelling

Utilizing the nonlocal EulerBernoulli beam theory and incorporating different effects
including surface, electromagnetic field, thermal variations, large oscillations, added
mass and nonlinear foundation, the following nonlinear partial differential equation
is developed for the vibrations of nanowires [9]:

(E I )e f f
∂4w

∂x4
+

(
1 − Γ

∂2

∂x2

)
Ψ = 0, (1)

where

Ψ = (ρA)e f f
∂2w(x, t)

∂t2
+ mpδ(x − xp)

∂2w(x, t)

∂t2
+

μ
∂w(x, t)

∂t
+ k1w(x, t) − 2bτ0

∂2w

∂x2
+ k3w

3(x, t) − F(x, t) − ζm AH2
x

∂2w

∂x2
+

2Vebe31
∂2w

∂x2
−

(
(E A)e f f

2L

∫ L

0

(
∂w

∂x

)2
dx − Nθ

)
∂2w

∂x2
. (2)

The definition of other terms presented in Eqs. (1–2) can be found in Ref. [9]. In order
to solve the above partial differential equation, we develop a finite difference approx-
imation. In the next section, we briefly describe the numerical approach applied to
the solution of this problem. The considered boundary are described in Eq. (3):

W (0, t) = 0,
∂W

∂x
(0, t) = 0,W (L , t) = 0,

∂W

∂x
(L , t) = 0, (3)

and the following general form of initial conditions are assumed:

W (x, t = 0) = W0,
∂W

∂t
(x, t = 0) = W̄0, (4)

whereW0 and W̄0 are given functions. Motivated by the applications of interest here,
the model (1)–(4) is simplified in the next section. Assuming periodicity in time, we
propose a solution procedure where the function W will be analyzed with respect to
frequency rather than time, moving our consideration to the frequency domain.

3 Solution Procedure

In this section we concisely illustrate the FDM in the context of our problem, and
then move to the implementation of this method for the nanowire resonator.
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3.1 FDM

Finite difference methods are a generic class of numerical methods, which are used
for solving differential equations by approximating them with difference equations,
where finite differences approximate the derivatives. FDMs require a discretization
of the computational domain. The domain is partitioned in both space (x) and time
(t), and approximations of the solution are computed at points of the grid, resulted
from the domain discretization. Based on the FDM, the discretized equations for the
first, second, third and fourth derivatives with respect to x are as follows [10–12]:

∂w

∂x
≈ wi+1 − wi−1

2Δx
,

∂2w

∂x2
≈ wi+1 − 2wi + wi−1

(Δx)2
, (5)

∂3w

∂x3
≈ wi+3 − 3wi+2 + 3wi+1 − wi

(Δx)3
, (6)

∂4w

∂x4
≈ wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2

(Δx)4
, (7)

where

Δx = Length of X

Number of Steps in X
. (8)

The accuracy of approximations (5) and (7) at the grid point xi , is of the second
order, and approximation (6) is of the first order, with respect to (Δx). In the next
sub-section, we apply the FDM to our developed governing equation, Eq. (1), to
allow a numerical analysis of the frequency of nanowire resonators.

3.2 Implementation of the FDM for the Nanowire Resonator

In this part, we apply the FDM to the governing equation (Eq. (1)) of nanowire
resonators. In order to use the FDM to analyze the developed model, we assume that
the displacement of the nanowire resonator can be given in the following form [10]:

w(x, t) = w(x)eiωt , (9)

where ω is the frequency of the nanowire resonator. We first consider the linear part
of the developed Eq. (1) [9]. Substituting Eq. (9) into the linear part of Eq. (1) results
in:

(P)
∂4w(x)

∂x4
+ (Q)

∂2w(x)

∂x2
+ k1w(x) = M̄ω2w(x). (10)
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By substituting the approximate derivatives, Eq. (5) and Eq. (7), into Eq. (10), the
following form is obtained:

G1(wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2) + G2(wi+1 − 2wi + wi−1) + k1wi =
ω2[ − G3wi − G4(wi+1 − 2wi + wi−1)

]
, (11)

where

G1 =
[
(E I )e f f + 2Γ bτ0 + Γ ζ AH 2

x + 2Γ vbe31 + Γ
(E A)e f f

2L Nθ

]
(Δx)4

, (12)

G2 =
[

− 2bτ0 − ζm AH 2
x − 2vbe31 − (E A)e f f

2L Nθ − Γ k1
]

(Δx)2
, (13)

G3 = ρA + mp, G4 = Γ
mp + ρA

Δx2
, (14)

and
M̄ = [ − G3wi − G4(wi+1 − 2wi + wi−1)

]
. (15)

Using Eq. (8) for i = 1, ..., N , we can represent Δx as below:

Δx = L

(N − 1)
, (16)

where L is the length of the nanowire resonator. By considering clamped-clamped
boundary conditions for the nanoresonator, we will have the following equations for
both ends of the nanowire:

at x = 0 : w1 = 0, &
w2 − w0

2Δx
= 0, (17)

and
at x = N : wN = 0, &

wN+1 − wN−1

2Δx
= 0. (18)

Based on Eqs. (17) and (18), we obtain the following relations:

w0 = w2, wN+1 = wN−1. (19)

It should bementioned thatw0 andwN+1 are fictitious valueswhich can be eliminated
in our governing equation by using Eq. (19). Now, in order to solve Eq. (10) using
the FDM, we substitute i = 2, ..., N − 1 into Eq. (11), which results in a system of
equations as follows:
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⎡
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,

where
A1 = 7G1 − 2G2 + k1, B1 = −4G1 + G2, C1 = G1, (21)

A2 = −4G1 + G2, B2 = 4G1 − 2G2 + k1, C2 = −4G1 + G2, D2 = G1, (22)

AN−3 = G1, BN−3 = −4G1 + G2,

CN−3 = 6G1 − 2G2 + k1, DN−3 = −4G1 + G2, (23)

and

AN−2 = G1, BN−2 = −4G1 + G2, CN−2 = 7G1 − 2G2 + k1. (24)

Hence, Eq. (20) can be rewritten in the following form:

( − [M̄]ω2 + [K ]){w} = 0, (25)

wherew = {w2, w3, ...wN−2, wN−1}T , M̄ and K are the mass and stiffness matrices,
respectively. M̄ is defined by the following matrix:

M̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

G3 − 2G4 G4 ... 0 0
G4 G3 − 2G4 ... 0 0
. . ... . .

. . ... . .

. . ... . .

0 0 ... G3 − 2G4 G4

0 0 ... G4 G3 − 2G4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

K represents the stiffness matrix, and it can be found as follows:
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K =

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

In order to obtain the linear frequency of the vibrations of the nanowire resonator,
we need to find the solution of Eq. (25). A non-trivial solution of Eq. (25) can be
obtained when the determinant of coefficient matrix equals to zero:

∣∣∣[ − [M̄]ω2 + [K ]]∣∣∣ = 0. (28)

Based on the algorithmdescribed above, stiffness andmassmatrices can be calculated
numerically. These calculatedmatrices are used in Eq. (28) to obtain the linear natural
frequency in Eq. (25). It should be noted that the size of mass and stiffness matrices
depends on the number of nodes N. For the nonlinear part of the governing equation,
Eq. (1), we have:

NL := − E Aef f
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The integral term in our governing equation can be approximated by the following
relationship:
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0
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dx ≈ L

2
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(
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]
. (30)

Based on the defined boundary conditions in Eqs. (17–18) and the nonlinear terms
presented by Eq. (29), we have the following relation to obtain the nonlinear fre-
quency of the considered nanowire resonator:

( − [M̄]ω2 + [K ] + [KNL ]
){w} = 0. (31)

To find the nonlinear natural frequency, we first need to solve the linear equation
to obtain the eigenvalues and eigenvectors. It should be noted that eigenvectors
and eigenvalues represent mode shapes and the linear frequencies of vibrations,
respectively. Basically, these two values are used in an iterative process to obtain
the nonlinear natural frequencies. Then, we utilize the obtained solution as an initial
approximation to the nonlinear equation defined by Eq. (31). By substituting the
derived eigenvalues and eigenvectors into Eq. (31), and also coupling the linear
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and nonlinear stiffness matrices with the mass matrix, the nonlinear frequency and
mode shape can be calculated [13]. Then, implementing the iteration method, the
nonlinear frequency is recalculated in order to find an approximate frequency, when
the iterations converge with pre-defined accuracy. In the next section, we discuss the
results obtained based on the developed numerical approach.

4 Results and Discussion

In this section, a parametric sensitivity analysis is carried out by using the numerical
solution obtained with the methodology described in the previous section, for the
vibration of the nanowire resonator. All figures in this section are obtained based
on Eq. (28) using parameters defined in Ref. [9] with clamped-clamped boundary
conditions given by Eqs. (17) and (18).We have investigated the sensitivity of dimen-
sionless frequency, f̄n , obtained by numerical simulation presented in Sect. 3 with
respect to variations in temperature, piezoelectric voltage, nonlocal parameter, and
the added mass. The dimensionless frequency, f̄n , is defined by using the following
equation:

f̄n = ω

ω0
, (32)

where both ω and ω0 can be obtained by using Eq. (28). The constant ω0 is the
frequency of the nanoresonator without considering the effect of added mass. Figure
1a shows the effect of temperature on the frequency behavior of silicon nanowire
(SiNW) resonator using Eq. (32). As this figure shows, increasing the temperature
reduces the frequency value of the nanowire resonator. A linear relation is observed
between the temperature rise and the frequency reduction of the nanowire reosna-
tor. Considering the developed continuum model in our analysis, the main reason
of frequency reduction is attributed to a decrease in stiffness of the nanowire as its
temperature increases. Using Eq. (32) based on the FDM solution, we have per-
formed a sensitivity analysis with respect to the piezoelectric voltage, presented in
Fig. 1b. Based on this figure, increasing the piezoelectric voltage reduces the fre-
quency of silicon nanowire resonator. Accordingly, the piezoelectric voltage can be
used for adjusting the vibration behavior of the nanowire resonator. Figure 2a depicts
the effect of dimensionless nonlocal parameter ((e0a)/L) on the frequency behavior
of the silicon nanowire resonator. This figure has been plotted by using Eq. (32)
based on the FDM solution. As the figure reveals, increasing the nonlocal parameter
reduces the frequency of nanowire resonator. From this figure it can be concluded
that the effect of nonlocal parameter is critical and it should be taken into account in
the frequency analysis of nanoscale resonators such as nanowires.

Figure 2b shows the effect of added mass on the frequency behavior of SiNW. As
this figure shows, increasing the mass of added particle reduces the frequency of
SiNW resonator. This figure also demonstrates a significant potential of the nanowire
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Fig. 1 a Effect of temperature on the frequency behavior of SiNW using the FDM b effect of
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Fig. 2 a Effect of dimensionless nonlocal parameter on the frequency behavior of SiNW using the
FDM b effect of added mass on the frequency behavior of SiNW using the FDM c convergence
analysis of the frequency response of the FDM

resonator for tiny object detection. In order to investigate the convergence of our
numerical solution for the developed model of the silicon nanowire resonator, using
the iterative technique in conjunction with the FDM discussed in the context of
Eq. (31), we have plotted the obtained nonlinear frequency of each iteration with
respect to its corresponding number of iteration, M . Figure 2c shows that by using



542 R. Fallahpour and R. Melnik

the iterative technique for the nonlinear part, we can reach the convergent frequency
after just a few iterations with the accuracy of 10−4.

5 Conclusion

In this paper, we presented a numerical solution using the FDM for the vibrations
of nanowire resonator with added mass. The mathematical model for the nanowire
resonator was developed based on the nonlocal Euler-Bernoulli beam theory, which
includes different terms related to thermal variations, electromagnetic fields, surface
and nonlocal effects, as well as added mass. It was revealed that the FDM can effec-
tively be used to model nanoresonators and analyze their frequency of oscillations
with applications to tinymass sensingwhich is critical in biomedicine. It was demon-
strated that an increase in temperature, piezoelectric voltage and nonlocal parameter
reduces the frequency of oscillations in the nanowire resonator. In addition, adding a
tiny particle, in the scale of zeptogram, in the middle of nanowire resonators results
in a detectable shift in their frequency.
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Contaminant Removal in Ceramic Water
Filters by Bacterial Biofilms

Harry J. Gaebler, Jack M. Hughes, and Hermann J. Eberl

Abstract We investigate point-of-use ceramic water filters by reformulating an
existingmulti-scale biofilmmodel that has been developed for porous medium appli-
cations. The reactor model is described by a stiff system of quasilinear hyperbolic
balance laws, which are studied numerically. The model considers processes related
to hydrodynamics and transport of a single target contaminant, growth/death of bac-
teria (both attached biomass inside the filter base, in the form of biofilms, and sus-
pended bacteria), andmass exchange between the biofilm and suspended bacteria via
attachment and detachment. With this model, we investigate the influence of water
height and refill frequency on the amount and quality of recoverable water.

Keywords Balance laws · Biofilms · Ceramic water filters · Numerical simulation

1 Introduction

In many developing countries access to clean drinking water is not always readily
available, resulting in the need to collect water from other locations. By collecting
water elsewhere and returning home, there is a high chance that the source water is
contaminated [10], often with carbonous organic substrates and/or microbial con-
taminants. Many point-of-use water filters have been used in the treatment of con-
taminated source water, with the most widely selected water filter being ceramic
water filters (CWF) [13]. CWFs play a vital role in the local treatment of drinking
water and are relatively inexpensive to produce. Filters of this type are constructed
of clay, sand, and organic material such a rice husks and sawdust [7, 10]. During the
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firing process, the organic material is burned away and small pore spaces remain in
the bed of the filter [10]. These pores help control the flow rate of water (typically
1–3 L/h) through the filter and remove contamination [13].

Over extended periods of use, biofilms begin to form inside these filters. Under
certain conditions, biofilm formation can further increase contamination by entering
the recoverable water via detachment. One option for effectively inhibiting biofilm
growth is to coat the filter in gold or silver nanoparticles [7, 10]. These nanoparticles
inhibit the bacterial cells from performing their basic functions, effectively killing
off the bacteria in the filter. A laboratory experiment conducted by [7] investigated
the effects of silver nanoparticles on biofilm growth by passing contaminated source
water through coated and uncoated filters. Results indicated that biofilm growth was
inhibited on the filter that was coated with the nanoparticles. The authors of [7]
suggest that the growth inhibition was related to the attachment of bacteria to the
CWF walls.

In this work, we adapt an existing multi-scale biofilm model described in [5]
to investigate how biofilm growth and suspended bacteria contribute to substrate
degradation and the quality of recoverable water in a CWF under different hydraulic
loading configurations. In this approach, biofilms contribute towards substrate degra-
dation, increasing removal and we investigate their effect on recoverable water.

2 Mathematical Model

In the following model, we consider biofilm growth in a homogeneous porous
medium with a well-defined flow direction. A growth limiting substrate and sus-
pended bacteria are transported through the medium by convection and the substrate
is consumed by the biomass to promote growth, both on the substratum (in this
case the ceramic filter) and in the bulk liquid. Attachment of suspended biomass and
detachment of attached biomass are both considered as the biofilm thickness evolves.

The filter is described by parallel non-communicating flow channels of width ε

[L], similar to [1, 5]. In the flow direction, each channel is compartmentalized into
smaller segments of length ε where mesoscopic processes related to biofilm growth
are described following the traditional one-dimensional biofilm model described in
[15]. The flow rate in each channel of width ε is the same, but does not remain
constant. The flow through the medium is driven by the pressure of the water column
in the CWF. The flow process here is in contrast to [5], where the flow rate remained
constant and a decrease in the flow path due to biofilm growth resulted in an increase
in local flow velocities. A graphical representation of the filter is given in Fig. 1.

The macroscopic reactor is obtained by continuously shrinking the compartment
size to zero, i.e. ε → 0. The macroscopic reactor is given by the system of stiff
quasilinear hyperbolic balance laws
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Fig. 1 Schematic of the CWF (left) with the description of the filter in the base of the ceramic pot
(bottom-right), the macroscopic compartmentalization (top-middle), and mesoscopic cells of size
ε × ε (top-right)

∂

∂t

⎛
⎝

(p − 2λ)C
(p − 2λ)U

λ

⎞
⎠+ ∂

∂x

⎛
⎝
QC
QU
0

⎞
⎠=

⎛
⎝

−2J (λ,C) − [p−2λ]
Yu

g(C)U
2X∞dλ − 2a[p − 2λ]U + g(C)[p − 2λ]U

Yl
X∞ J (λ,C) − kdλ − dλ + a

X∞ [p − 2λ]U

⎞
⎠ ,

(1)

where C ,U , λ respectively describe substrate concentration [gm−2], suspended bac-
teria concentration [gm−2], and the unitless biofilm thickness relative to the pore
size [-]. In this system, g(C) represents the growth kinetics for suspended bacteria
and J (λ,C) represents the flux of substrate into the biofilm layer. We model the
growth kinetics for suspended bacteria by the commonly used Monod equation [3,
11], which relates the specific growth rate to the concentration of a growth limiting
substrate, i.e.

g(C) = μuC

κu + C
,

where μu [T−1] is the maximum growth rate for suspended bacteria and κu [gm−2]
is the suspended bacteria half saturation constant.

Substrate flux into the biofilm layer is determined from the solution to the two-
point boundary value problem

D
d2c

dz2
= X∞

Yλ

μλc

κλ + c
,

dc

dz
(0) = 0, c(λ) = C, 0 < z < λ, (2)

where c = c(z) is the substrate concentration within the biofilm, D [m2d−1] is the
substrate diffusion coefficient inside the biofilm, X∞ [gm−2] is the biofilm density,
Yλ [-] is the yield coefficient, μλ [T−1] is the biofilm maximum growth rate, and κλ
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[gm−2] is the biofilm half saturation constant. The flux of substrate into the biofilm
is given by

J (λ,C) = D
dc

dz

∣∣∣
λ
. (3)

For a complete derivation of the macroscopic model, see [5]. All other parameter
descriptions are given in Table 1.

Table 1 Parameter values for simulations

Parameter Symbol Value Units References

Initial water height h0 0.2 m Modified,
[12]

Radius of the bottom Rb 0.1 m Modified,
[12]

Filter thickness xF 0.02 m Modified,
[12]

Taper angle θ 10.0 deg. Modified,
[12]

Hydraulic conductivity K 0.15 m/d Calculated

Initial substrate concentration Cin 30.0 g/m2 [14]

Initial suspended concentration Uin 10.0 g/m2 [5]

Initial biofilm thickness λin 0.0 – Assumed

Biomass density X∞ 10000.0 gm−2 [14]

Biofilm maximum growth rate μλ 6.0 d−1 [14]

Biofilm half saturation constant κλ 4.0 gm−2 [14]

Biofilm yield coefficient Yλ 0.63 – [14]

Suspended bacteria maximum
growth rate

μu 6.0 d−1 [14]

Suspended bacteria half
saturation constant

κu 4.0 gm−2 [14]

Suspended bacteria yield
coefficient

Yu 0.63 – [14]

Void fraction p 0.5 – [5]

Biofilm natural cell death rate kd 0.4 d−1 [14]

Detachment coefficient d 0.5 d−1 [1]

Attachment coefficient a 0.3 d−1 [5]

Flow rate Q Varied md−1 Calculated

Diffusion coefficient D 10−4 m2d−1 [14]
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2.1 Pressure Driven Flow

Unlike the model presented in [5], where the flow rate through the medium was
constant, we derive pressure driven flow in a CWFwith tapered sides (cf. Fig. 1). This
derivation is similar to the flow derivation in [12], with one fundamental difference,
we assume that water leaves the CWF through the bottom of the filter only, i.e. no
water is filtered through the sides.

Consider a tapered CWF with a base radius Rb, water height h(t), filter thickness
xF , radius r , which increases with height x , and side taper angle θ . The radius of the
filter at height x is given by

r = Rb + x tan θ. (4)

Constructing a mass balance for the volume of water in the filter V (t), we have

dV (t)

dt
= Q(t), (5)

where Q(t) is the volumetric flow rate through the bottom of the CWF given by the
Darcy flow equation

Q(t) = −k A(P2 − P1)

μxF
, (6)

where k is the the permeability of the medium, A is the cross sectional area, P2 − P1
is the pressure drop, μ is the dynamic viscosity of the fluid, and xF is the length
over which the pressure drop occurs. Assuming the density, ρ, of the liquid remains
constant, we have the following relationships,

k = μK

ρg
, h = P

ρg
(7)

where K is the hydraulic conductivity of the filter, which is assumed to be constant,
and g is the gravitational constant. Substituting (7) into (6) and expressing the area
of the base of the filter as A = πR2

b , the flow rate is given by

Q(t) = πR2
b K

h(t)

xF
. (8)

Based on filter geometry, we also have the relationship

dV (t)

dt
= −π(rh(t))

2 dh(t)

dt
, (9)
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where rh(t) = Rb + h(t) tan θ is the radius of the filter at height x = h(t). Using (4),
(5), (8), and (9) we obtain the expression for the change in water height as

dh(t)

dt
= −Kh(t)

xF

(
Rb

Rb + h(t) tan θ

)2

. (10)

By first solving (10), the flow rate Q(t) can then be determined via (8).

3 Numerical Treatment

3.1 Numerical Method

To study this system numerically, we use a variable transformation in order to inves-
tigate how system (1) progresses over time rather than space. The variable transfor-
mation is given by

S := (p − 2λ)C, W := (p − 2λ)U. (11)

With the variable transformation (11), the system (1) is written as
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We implement theUniformly accurate Central Scheme of order 2 developed in [8] to
simulate the system of nonlinear balance laws (12). Implementation of the method
is described in [4]. We make one modification to the implementation. In [4], the
boundary value problem for the flux is solved using a shooting method with an
explicit Runge-Kutta-Fehlberg (RKF) method. As the RKF method in [4] is explicit,
it may break down under non-substrate limiting conditions due to the stiffness of the
boundary value problem. We adopt a semi-implicit finite difference method and use
a fixed point iteration for the nonlinear problem, avoiding potential stiffness issues.

3.2 Implementation

The numerical method was implemented in C and compiled and tested using gcc
compilers (gcc version 5.0.0). Simulations were carried out on a standard Linux
desktopworkstation underUbuntu 18.04.2. All plotswere generated usingMATLAB
v. 8.6.0.267246 (R2015b).
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4 Numerical Simulations

In this section, we simulate the flow through a CWF given in Fig. 1 that has a base
radius Rb = 0.1 [m], filter thickness xF = 0.2 [m] and taper angle θ = 10 [deg.].
In all simulations the water height is initially h0 = 0.2 [m] and the total volume of
water in the filter V0 = 0.0087 [m3] (V0 = 8.7 [L]). The hydraulic conductivity of
the filter is calculated from (8), under the assumption the filter is initially capable of
filtering 2 [L/h] (Q0 = 0.048 [m3/d]), which is within the common range of filtration
rates for CWFs listed in [13].

We begin by considering a new CWF, i.e. one with no established biomass in the
bottom of the filter. All model parameters and initial conditions are given in Table 1.
The CWF is initially filled to a water height of h = 0.2 [m] and refilled every 9 h
(at 9 h the water height is approximately 0.02 [m]). This process is completed three
times (27 h total) and the results are reported in Fig. 2. Initially, there is no biofilm
in the reactor. As time progresses, biofilm begins to form on the substratum inside
the filter with the thickest part of the biofilm occurring at the top of the filter, which
is consistent with the findings in [5]. Although a biofilm is forming in the filter,
there is insufficient biomass to completely filter the substrate at t = 9 [h]. The CWF
is then refilled back to a height of h = 0.2 [m]. At time t = 3 [h], t = 6 [h], and
t = 9 [h] after refill, there is again an increase in biofilm thickness and a further
decrease in the substrate concentration. This trend continues for the third refill of
the filter. This illustrative simulation demonstrates the ability of bacterial biofilms
to remove carbonaceous substrate when sufficient bacteria is present. As the CWF
is continuously used, more bacteria form inside the filter, which can increase the
overall effectiveness of the filter.

Next, we consider a CWF that has an established biofilm in the base of the filter
(i.e. λ0 = 0.001 [-]). We investigate the effect of filling the CWF in three different
ways. Simulations occur over a 9 h period and the CWF can be filled multiple times
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during that period depending on the availability of untreated water. In the following
simulations, we assume that it is feasible that the CWF is refilled up to 3 times. First,
the CWF is filled to a height of h0 = 0.2 [m] at t = 0 [h] and left for 9 h. Second,
the CWF is filled to a height of h0 = 0.2 [m] at t = 0 [h] and refilled to a height of
h0 = 0.2 [m] at t = 4.5 [h]. Third, the CWF is filled to a height of h0 = 0.2 [m] at
t = 0 [h] and refilled to a height of h0 = 0.2 [m] at t = 3 [h] and t = 6 [h]. Results
are illustrated in Fig. 3.

Results indicate that triple loading yields the most amount of recoverable water at
the end of a 9 h filtering period. However, triple loading has the highest concentration
of substrate in the outflow after 9 h. This can be attributed to the fact that refilling the
CWF increases the amount of water in the filter, which in turn increases the hydraulic
pressure forcing more water through the filter. An increased flow rate through the
filter decreases the residency time of suspended bacteria, which has a negative impact
on substrate degradation (cf. Fig. 3a). Under a single substrate loading configuration,
the amount of recoverable water is much lower than both the double or triple loading
configurations (1.5 and 1.8 times, respectively), but the dischargedwater has the least
amount of substrate (almost zero), suggesting that the triple loading configuration
has the smallest removal efficiency.

The largest amount of suspended bacteria occurs under the single loading con-
figuration and the least amount occurs in the triple loading configuration. Since the
flow rate is monotonically decreasing over time, suspended bacteria residency time
increases, promoting more suspended bacteria growth. However, beyond the first
0.005 m of the filter, substrate concentrations have drastically decreased causing
suspended bacteria growth and biofilm thickness to be controlled by attachment,
detachment, and lysis processes. Under the conditions of the simulation, the attach-
ment rate is smaller than detachment,which causes a net growth in suspended bacteria
and a decrease in biofilm thickness. As very little is known about the biofilm attach-
ment process, which is often chosen out of mathematical convenience [2, 6], we
identify the numeric choice of attachment rate as an area requiring further investi-
gation. For the purpose of this work, the attachment value was selected to remain
consistent with [5], where the initial reactor biofilm model was developed.

The thickest biofilm forms under the triple loading configuration (cf. Fig. 3c).
An increased flow rate supplies more nutrients to the biofilm, promoting higher
rates of growth (cf. Fig. 3c). Additionally, constantly refilling the CWF increases the
substrate concentration to the initial contaminant concentration, providing higher
concentrations of substrate for bacteria growth. It is important to note that in all three
substrate loading configurations the biofilm is the thickest near the top of the filter
where substrate availability is the largest and biofilm thickness stratifies near the
bottom of the filter. These results are consistent with the findings in [5].

Adouble loading of theCWFdischarges almost asmuchwater as the triple loading
(12.2 [L] compared to 14.1 [L], a difference of 14.5%), but has a substantially lower
substrate concentration at outflow (5.7 [gm−2] compared to 13.1 gm−2, a difference
of 78.9%). This indicates that although the triple loading configuration can filter 1.2
times more water than the double loading configuration, the substrate concentration
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in the recoverable water is 2.3 times larger in the triple loading than the double
loading. Although the slight decrease in the amount of recoverable water may be
advantageous when comparing recoverable water quality.

5 Conclusion

In this work, we adapted a macroscale one-dimensional biofilm growth model devel-
oped for porous media applications [5] and applied the resulting system to water
filtration in ceramic water filters with pressure driven flow.

Our findings suggest that the amount of recoverable water can be increased by
constantly refilling the ceramic filter. Refilling the CWF increases the hydraulic
pressure, driving more water through the filter, a result that is consistent with [12].
However, we find that although an increased flow rate leads to more recoverable
water, it may have an adverse effect on water quality. Higher flow rates result in
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thicker biofilms forming throughout the filter, but also corresponds to less substrate
degradation at outflow.While higher flow rates supply the biofilmwithmore nutrients
to promote growth, it also increases thewash out rate of suspended bacteria,which are
generallymore efficient at removing substrate as they are not subject to concentration
gradients [5, 9]. Additionally, we find bacteria in the system do have a presence in
the recoverable water. The least amount of bacteria occurs under the single loading
configuration and dual/triple loading configurations are comparable.

Overall, this study suggests that increasing the amount of filtered water by strictly
increasing the flow rate can have adverse affects on the quality, both in terms of
substrate concentrations and bacteria in the recoverable water.
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Comparison of Fractional-Order and
Integer-Order Cancer Tumor Growth
Models: An Inverse Approach

Jennifer Lawson and Kimberly M. Levere

Abstract Mathematical modelling of real world phenomena via integer-order dif-
ferential equation (DE) models has been a popular topic of research for decades. A
wide variety of articles have been written in this area and major advancements in
model accuracy have been made. Some recent research suggests that fractional-order
DEs may more accurately model real world phenomena compared to integer-order
counterparts. The development of solution techniques to fractional DEs have been
proposed in a number of recent articles. In this paper, we compare fractional-order
and integer-order DE models for fitting cancer patient data for tumor growth using
fractional DEmodels. Utilizing actual patient data, we modify three existing integer-
order models by instead treating the order of the DE as an unknown parameter. Using
a collage-coding inverse problem technique, the order of the DE as well as other
parameters in the model are recovered. Finally, results are compared.

Keywords Inverse problem · Fractional differential equation · Cancer tumor
growth · Collage theorem · Optimization

1 Introduction

Modelling cancer tumorsmathematically is a complex and difficult task.Whilemany
ordinary differential equation (ODE) models exist, it is difficult to understand the
complex nature of the human body and how it interacts with treatments and the
immune system. What is more, the vast majority of these models are of integer-
order, perhaps because more common growth and decay models have been derived
based on integer-order dynamics.
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In this paper, we instead investigate the possibility of utilizing a fractional-order
differential equation (FODE) for suchmodelling (similar explorations of tumormod-
elling with FODEs have been explored for instance in [10]). While FODEs are
perhaps lesser known and studied, great advances in model accuracy have been
experienced as discussed in a recent manuscript by Almeida et al. [1], for instance.
To this end, in this work, the order of the DE will be left as an unknown parameter
to be recovered by an inverse problem technique (collage-coding in our case). In
this way, we can investigate if indeed an integer order model is the best fit. In this
effort, we will utilize real data from prostate cancer patients who have undergone
chemotherapy treatment.

2 Existing Models for Cancer Tumor Growth

A wide variety of models have been produced in the literature regarding different
types of cancer and tumors. For instance, in a recent paper by Enderling et al. [7],
tumor growth models of many types are discussed from ODE models, to partial dif-
ferential equation (PDE) models and even discrete models (see [2] for an additional
fractional difference model). In this paper we will focus our efforts on ODE models
(since the patient data used agrees well with these models). In such models, a first-
order ODE measures the change in number of cancer cells over time (or the volume
of the tumor), often with a growth term, and perhaps a decay term due to the admin-
istration of a drug. There have been many suggestions for an appropriate growth
term such as exponential growth, proposed in [4], which observes that the growth of

the tumor is proportional to the volume of cells
dV

dt
= aV, where a is the growth

rate of the tumor. A logistic model, proposed by Verhulst in [21], observes that there
are limits to the size that a tumor can grow based on its surroundings and resources.
Here, the growth rate is assumed to decrease in a linear fashion until it is no longer

growing when it reaches the carrying capacity, b,
dV

dt
= aV

(
1 − V

b

)
, where a

is a growth rate. A so-called linear model initially assumes exponential growth at a

rate of
a

b
that settles in the long term to a constant growth of a as discussed in [6],

dV

dt
= aV

V + b
. The name “linear” refers to the fact that growth settles to a constant

since indeed this ODE is not linear. Several other growth terms have been explored
which we leave the reader to explore, see [8, 14, 17, 20].

Different growth methods seem to better predict cancer tumor growth in different
areas of the body; there does not seem to be a one-size-fits-all option. Of course,
more intricate biologically motivated models have been proposed as well, see for
instance [5]. These authors have a number of manuscripts that seek to model not
only the number of cells as a whole, but the number of tumor cells, “natural killer”
cells (part of the immune system), and white blood cells. They also include equations
for modelling immunotherapy and chemotherapy drug concentrations.
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3 Fractional Ordinary Differential Equation Models

One commonality among all of the models listed in the previous section is that they
all assume that an integer-order ODE should be used when constructing a model.

Since
“dV ”

dt
defines the change in volume of the tumor over time, certainly this is a

reasonable assumption.
More recently, FODEs have been seen to more accurately model certain real-

world phenomena. A fractional order model is a refinement of more classical integer-
order models that can allow for accuracy not achievable with an integer-order. We
know that integer-order derivatives are local in nature and can describe changes in
a neighbourhood of a point. On the contrary, fractional-order derivatives are global
and can describe changes in an interval. Podlubny provides an explanation in [18] of
fractional integrals in terms of measuring the area of so-called “shadows on walls”
(parallel to the discussion of areas of rectangles for classical integrals). He also
explains an interpretation of fractional derivatives by considering two viewpoints
of time. This is motivated, in part, by observations by physicists such as Hawking
whom observed the complexity of the concept of time and how it behaves near large
bodies as well as how it is interpreted by different observers.

As cancer research is such a complex area of study, it is of interest to investigate
if perhaps allowing a fractional order model in place of the aforementioned integer-
order models may produce more accurate results.

3.1 A Quick Introduction to Fractional Calculus

Before considering the use of FODE models for improving cancer tumor models,
we first need to understand some of the constructs of fractional Calculus. We begin
with the definition of a Caputo fractional derivative.

Definition 1 The qth order Caputo fractional derivative of the function f (x) is given
by

C Dq
a f (x) = 1

�(q)

∫ x

a
(x − t)n−q−1 f (n)(t) dt,

where n − 1 < q ≤ n, and f (n) denotes the nth classical derivative of f .

While other definitions for a fractional derivative exist, the Caputo fractional
derivative is commonly used in FODEs as it produces physically meaningful initial
conditions. Thinking in the opposite direction, we can define the qth order fractional
integral.

Definition 2 The qth order fractional integral of the function f (x) is given by

a J−q
t f (x) = 1

�(q)

∫ x

a
(x − t)q−1 f (t) dt. (1)
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Using fractional order derivatives we can consider the possibility of FODEs. To
develop the necessary theory, we focus on FODEs of the form

C Dq
a y(x) = f (x, y(x)) (2)

y(k)(a) = y(k)
0 , (3)

where k = 0, ..., �q� − 1, f is bounded and Lipschitz continuous in its second argu-
ment and (x, y) are in the space � = [0, β] × [y(0)

0 − α, y(0)
0 + α], for α, β > 0.

Much like its integer-order counterpart, one can prove the existence of a unique
solution to (2)–(3) via Banach’s Fixed Point Theorem which we state for complete-
ness.

Theorem 1 (Banach’s Fixed Point Theorem) Let (X, ‖ · ‖X ) be a Banach space and
let T : X → X be a contractive operator with contraction factor c ∈ [0, 1). Then
there exists a unique fixed point x̄ ∈ X such that T x̄ = x̄ . Moreover, for any x ∈ X,
‖T ◦s x − x̄‖X → 0 as s → ∞.

Proof of this theorem can be found in [22], for instance. When applying Banach’s
Fixed Point Theorem to ODEs, a common choice for the contractive, space-
preserving operator T is the Picard operator, obtained by integrating the DE (in
this case, fractionally) and applying any initial conditions. In terms of the general
FODE (2)–(3), the Picard operator is given by

(T y)(x) =
n−1∑
k=0

xk

k! y(k)(a) + 1

�(q)

∫ x

0
(x − t)q−1 f (t, y(t)) dt. (4)

One can show (see [13]) that provided that f is Lipschitz in its second argument
and bounded above in sup norm that indeed the operator in (4) satisfies the hypotheses
of Banach’s Fixed Point Theorem and thus, there is a unique solution to (2)–(3).

Much like ODEs, a variety of solution techniques for FODEs exist depending
on the form and complexity of the problem. A number of classical ODE techniques
exist in FODE theory such as Laplace transforms and power series. Likewise, the
exponential that appears in solutions to separable ODEs (for instance) appears as a
Mittag Leffler function,

Eα,β(x) =
∞∑

k=0

xk

�(αk + β)
,

in solutions to similar FODEs. Should the FODE be more complex, a number of
numerical techniques have been constructed to find approximate solutions in these
settings. For instance, the Adomian Decomposition Method (ADM) can be used
to numerically approximate solutions to both linear and nonlinear FODEs. Briefly,
this method first applies a fractional integral of order q to the FODE as well as
applying any initial conditions. Then by assuming that the solution to the FODE
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can be written as the infinite sum of component functions,
∞∑

n=0

un(t), the so-called

Adomian polynomials can be built by substituting this decomposition into the FODE.
Using appropriate combinations of subscripts, the Adomian polynomials can be
determined and then used to build a recurrence for generating values of the un’s.
An approximate, truncated solution can then be constructed using a finite number of
these component functions, un . For a more complete discussion, see [15].

4 Comparison of Integer and Fractional Order Cancer
Tumor Models

In Sect. 2, we discussed some of the existing ODE models for cancer tumor growth.
We now wish to investigate the possibility of using a fractional-order model to pos-
sibly improve results. The rationale is simple: since we are unsure of what order the
dynamics should be, we shall leave the order of the DE as an unknown parameter
and use an inverse problem technique to identify which order fits experimental data
the best. The data that we have used came from a study of patients with castration-
resistant prostate cancer, [19]. Since this study involves the administration of a drug
to inhibit tumor growth, each of the models discussed in Sect. 2 will have a term of
the form −C0V added, where C0 represents a decay rate of tumor cells as suggested
in [16]. We will utilize a Collage-coding inverse problem technique which we now
discuss.

4.1 Inverse Problems via Collage-Coding

The goal of many ODE inverse problems is to find unknown parameter values λ ∈ �

present in the DE such that the solution to the DE involving the chosen parameters,
yλ fits known interpolated data ytarget well. Mathematically, we wish to minimize
the approximation error, subject to λ ∈ �,

min
λ∈�

‖ytarget − yλ‖.

In practice, however, approaching this minimization problem head-on can be rather
challenging although many methods do exist. Instead, the collage-coding method
takes a different approach, attempting to bound this approximation error above by
a different distance that is more easily minimized. This upper bound is constructed
using the Collage Theorem, a simple consequence of Banach’s Fixed Point Theorem
which we discussed in Sect. 3.1.
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Theorem 2 (Collage Theorem) Let (X, ‖ · ‖X ) be a Banach space and T : X → X
be a contractive operator with contraction factor c ∈ [0, 1) and unique fixed point
ȳ ∈ X. Then

‖y − ȳ‖X ≤ 1

1 − c
‖y − T y‖X .

The proof of this theorem can be found in [3]. As discussed before, when working
with FODEs one choice for the contractive, space-preserving operator T is the Picard
operator, (4). Recognizing that ‖y − ȳ‖X is just another way to state the approxima-
tion error, by minimizing the so-called collage distance ‖y − T y‖X , we can ensure
that the approximation error is indeed controlled provided that c is bounded away
from 1. This general idea has been applied to a variety of problems, see for instance
[11–13].

4.2 Examples

We investigate each of the ODE growth models in Sect. 2, inversely using the data
from [19] to approximate the solution to the forward problem, y(t), but leaving the
order of the DE, and perhaps other coefficients of the model as unknowns to be found
via Collage-coding. Subsequently, using our recovered parameters to construct the
model, we will solve the forward problem for yλ (the recovered solution) and plot
this solution together with the given data. All numerical simulations were completed
using Maple and some of its built in functions.

Example 1 Weconsider the possibility of a fractional-order exponentialmodel (now
including a decay term) given by

C Dq
0 V = aV − C0V

V (0) = V0

For the inverse problem, we allow the order of the DE, q, to be unknown (and
possibly fractional), as well as the values of a the growth rate, and C0 the decay rate.
The data points were fit with a fourth degree polynomial via least squares and this
polynomial was used in the Collage distance in place of the solution function V (t).
Using the data, we take the initial volume to be V0 = 106.13. Employing collage-
coding using the Picard operator T in (4) we find that the squared collage distance
is given by

�2 =
∫ 1

0

(
Vtarget(t) − V0 − 1

�(q)

∫ t

0
(t − s)q−1(aVtarget(s) − C0Vtarget(s)) ds

)2

dt

Since the parameters appear in a relatively simplistic way in the Collage distance,
Maple’s basic “minimize” function can easily solve for each of the parameters in this
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Fig. 1 Plot of recovered
solution yλ assuming
exponential growth together
with given experimental data

example. Certainly though, for more complex problems, more exotic minimization
techniques would need to be employed.

As this is truly an inverse problem, the true values of these parameters are unknown
and thus we will use the collage distance and approximation error as well as plots
to assess the accuracy of our results. The minimal collage error of � = 0.1361 is
achieved for parameter values of λ = {q, a, C0} = {1.0544, 0.9990, 4.3585}with an
approximation error of 0.1248. In Fig. 1, the recovered solution is plotted together
with the experimental data.

We see that indeed the fit is quite strong. The relatively small approximation error
indicates that indeed the parameters found indeed produce a solution that agrees
closely with the experimental data. In this case, the inverse problem finds that the
order of the DE is not far from integer-order at q = 1.0544. Since this problem
has a closed-form solution involving the Mittag Leffler function, some error was
introduced by truncating this infinite sum. This may be alleviated by using a rational
approximation of the Mittag-Leffler function that has been shown to have minimal
error, see [9] for further details.

Example 2 We consider the possibility of a fractional-order logistic model (now
including a decay term) given by

C Dq
0 V = aV

(
1 − V

b

)
− C0V

V (0) = V0

With the same set up as before, we use collage-coding to recover unknown param-
eters λ = {q, a, v, C0} by minimizing the squared collage distance given by

�2 =
∫ 1

0

(
Vtarget(t) − V0 −

∫ t

0
(t − s)q−1

(
aVtarget(s)

(
1 − Vtarget(s)

b

)
− C0Vtarget(s)

)
ds

)2

dt.
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Fig. 2 Plot of recovered
solution yλ assuming logistic
growth together with given
experimental data

The minimal collage error of � = 0.0462 was achieved for parameter values of
λ = {q, a, b, C0} = {0.9689,−6.8997, 299.8911,−2.2048} with an approximation
error of 0.8966 Fig. 2.

Once again, the order of the DE recovered is not quite integer. We see that both
the growth rate and decay rate are found to be negative, perhaps suggesting that
these two terms have reversed roles in this case. Here, the Adomian Decomposition
Method was used to find a 16-term approximation to the solution of the DE using the
recovered parameters. This truncation together with the fact that this decomposition
is only accurate near 0 contribute to some of the error seen in this case. Since the
parameters appear in complex ways in the collage-distance, in order to simplify the
effort of the minimization scheme (least-squares in this case), Taylor approximations
of elements of the integrands were taken introducing additional error in our results
Fig. 2.

Example 3 Lastly, we consider the possibility of a fractional-order linear model
(now including a decay term) given by

C Dq
0 V = aV

V + b
− C0V

V (0) = V0

Utilizing the same data as before, with the same initial condition, we utilize the
collage-codingmethod to recover the parameters λ = {q, a, b, C0} that minimize the
associated collage distance. The minimal collage error of � = 0.0117 was achieved
for parameter values of λ = {q, a, b, C0} = {1.0822, 1.7662,−8.8225, 3.5040} and
an approximation error of 4.0270.

This model produces the worst approximation error of the examples considered.
Much like Example 2, some error was introduced as the result of numerical approx-
imations such as the use of Taylor expansions to simplify minimization, decomposi-
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Fig. 3 Plot of recovered
solution yλ assuming linear
growth together with given
experimental data

tion truncation, and the fact that the decomposition method struggles away from 0.
The order of the DE recovered is also farthest away from the integer-order.

5 Conclusions and Future Work

While modelling cancer tumor growth is a difficult task, this paper suggests allowing
more freedom when it comes to the order of the DE. Since fractional order mod-
els allow us to refine existing integer-order models, it may be the case that indeed
FODEs can provide us with a granularity not achievable using integer orders. This
paper revealed only mild deviations from integer-order, although only very simple
models were used and many parameters beyond just the order of the model were
also recovered. These models were investigated in part because of the available data.
Perhaps the use of less error-inducing FODE solution techniques can reduce some
of the errors seen as well. The investigation of more complex cancer tumor growth
models may shed additional light on how FODE models (or perhaps even fractional
PDE models) might give rise to models that better describe this complex disease.
More accurate modeling of chemotherapy involving optimal control should also be
investigated.

References

1. Almeida, R., Bastos, N., Monteiro, M.: Modeling some real phenomena by fractional differ-
ential equations. Mathemat. Methods Appl. Sci. 39(16), 4846–4855 (2016)

2. Atici, F.M., Sengul, S.:Modeling with fractional difference equations. J.Mathem. Analy. Appl.
369(1), 1–9 (2010)

3. Barnsley, M.F., Ervin, V., Hardin, D., Lancaster, J.: Solution of an inverse problem for fractals
and other sets. Proc. Natl. Acad. Sci. 83, 1975–1977 (1985)



564 J. Lawson and K. M. Levere

4. Collins, V.P., Loeffler, R.K., Tivey, H.: Observations on growth rates of human tumors. Amer.
J. Roentgenol Radium Ther. Nuc. Med. 78(5), 988–1000 (1956)

5. de Pillis, L.G., Gu,W., Radunskaya, A.E.:Mixed immunotherapy and chemotherapy of tumors:
modeling applications and biological interpretations. J. Theor. Biol. 238(4), 841–862 (2006)

6. Dethlefsen, L.A., Prewitt, J.M.S., Mendelsohn, M.L.: Analysis of tumor growth curves. J. Nat.
Cancer Inst. 40(2), 389–405 (1968)

7. Enderling, H., Chaplain, M.A.J.: Mathematical modeling of tumor growth and treatment. Cur-
rent Pharmaceutical Design 20 (2014)

8. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and
on a new method of determining the value of life contingencies. Phil. Trans. Roy. Soc. 237,
513–585 (1825)

9. Iyiola, O.S., Asante-Asamani, E.O., Wade, B.A.: A real distinct poles fational approximation
of generalized Mittag-Leffler functions and their inverses: applications to fractional calculus.
J. Comput. Appl. Mathem. 330, 307–317 (2018)

10. Iyiola, O.S., Zaman, F.D.: A fractional diffusion equation model for cancer tumor. AIP Advan.
4(10), 107–121 (2014)

11. Kunze, H., La Torre, D., Vrscay, E.R.: A generalized collage method based upon the Lax-
Milgram functional for solving boundary value inverse problems. Nonlin. Anal. Theory, Meth-
ods Appl. 71(12), 1337–1343 (2009)

12. Kunze, H., Vrscay, E.R.: Solving inverse problems for ordinary differential equations using
the Picard contraction mapping. Inverse Probl. 15, 745–770 (1999)

13. Levere, K.M., VanDeWalker, B.: Solving inverse problems for fractional ODEs via the Collage
theorem. Recent Advances in Mathematical and Statistical Methods, 259 (2018)

14. Mendelsohn, M.L.: Cell proliferation and tumor growth. Blackwell Scientific Publications,
Oxford (1963)

15. Momani, S., Shawagfeh, S.: Decomposition method for solving fractional Riccati differential
equations. Appl. Mathem. Comput. 182(2), 1083–1092 (2006)

16. Murphy, H., Jaafari, H., Dobrovolny, H.M.: Differences in predictions of ODEmodels of tumor
growth: a cautionary example. BMC Cancer 16(163) (2016)

17. Patt, H.M., Blackford, M.E.: Quantitative studies of the growth response of the Krebs ascites
tumor. Cancer Res. 14(5), 391–396 (1954)

18. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional
differentiation. Fract. Calculus Appl. Analy. 5(4), 367–386 (2002)

19. Scher, I., et al.: Randomized, open-label phase III trial of docetaxel plus high-dose calcitiol
versus docetaxel plus prednisone for patients with castration-resistant prostate cancer. J. Clin.
Oncol. 29(16), 2191–2198 (2011)

20. Vaidya, V.G., Alexandro, F.J.: Evaluation of some mathematical models for tumor growth. Int.
J. Biomed. Comput. 13(1), 19–35 (1982)

21. Verhulst, P.F.: Notice sur la loi que la population poursuit dans son accroissement. Corresp.
Mathématique et physique 10, 113–121 (1838)

22. Zeidler, E.: Applied Functional Analysis: Applications to Mathematical Physics. Springer-
Verlag, New York (1995)



Numerical Modelling of Drug Delivery
in an Isolated Solid Tumor Under
the Influence of Vascular Normalization

Mahya Mohammadi, Cyrus Aghanajafi, and Madjid Soltani

Abstract Mathematical models and numerical methods are used in predicting the
various approaches of the cancer treatment process. In the present study, the drug
delivery is investigated in three different biological tissues, i.e., tumor, normal, and
normalized ones with different transport properties to study the effect of the intensity
of vascular normalization on the behavior of interstitial fluid flow and drug distribu-
tion. The continuity, momentum (Darcy’s law), and convection–diffusion equations
in the porousmedia are solved numerically. Results show that vascular normalization
reduces the interstitial fluid pressure and sets up the pressure gradient, which can
cause fluid flow throughout the tumor. The drug delivery improvement is shown by
solute transport analysis, also. It is concluded that the amount of themaximum rate of
drug concentration increases in time by vascular normalization. Moreover, normal-
ization can establish the concentration gradient, which consequently improves the
penetration of the drug into the inner parts of the tumor.
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1 Introduction

The focus on cancer treatment has changed in recent years. For the past 10 to 20 years,
the main effort was to eliminate cancer cells. By recognizing the vital role of angio-
genesis in tumor growth, much effort has been made to improve the antiangiogenic
drugs [1]. Disrupting the balance of the angiogenesis and anti-angiogenesis factors
is responsible for the migration and proliferation of endothelial cells. The exces-
sive endothelial cells and abnormal cells around the vessels cause the formation of
the complicated capillary network with high permeability [2, 3]. The result will be a
network that is non-homogeneous and abnormal. This abnormal structure, combined
with high density, increases the resistance to flow,whichmakes blood supply difficult.
The high permeability of vessels in lack of effective lymphatic system leads to failure
of the pressure gradient between the microvascular and interstitium, and there-fore
the interstitial pressure goes up dramatically [4–6]. This lack of pressure gradient and
consequently high interstitial fluid pressure (IFP) causes the drug delivery disrupted.
Antiangiogenic drugs normalize themicrovascular network by pruning the immature
and inefficient vessels and accordingly improve the drug delivery [7].

Jain et al. [8–10] have conducted extensive and fundamental studies in various
cancer-related areas. They considered the interstitium as a porousmedia and capillary
network with simple assumptions. They introduced the IFP as an effective factor,
which is studied by the assumption of uniform sources and sinks. Soltani and Chen
[11], using the macroscopic view, introduced the critical radius of the tumor and
the critical radius of the necrotic region as influential parameters. In another study
[12], they investigated the effects of tumor shape and size on drug delivery. Further,
on this investigation, Sefidgar et al. [13] studied the effect of shape and size of
the tumor on drug delivery for improving the assumption of flowing the drug with
fluid. They concluded that drug delivery improves in prolate shape in comparison
to other tumor shapes, due to the non-uniformity of IFP. Jain et al. [14] studied the
vascular normalization by anti-angiogenesis treatment in an avascular tumor with
the governing equations of interstitial flow.

Oztork et al. [15] studied the effect of normalization on the delivery of 100 nm
liposomes into an avascular tumor. They found normalization effective at a specific
size of the tumor. Steuperaert et al. [16] investigated the intraperitoneal chemotherapy
by solving interstitial flow and solute transport equations for various shapes of the
tumor. They found that the drug penetrates deeper into the small tumors. Moradi
Kashkooli et al. [17] have conducted an image-based mathematical study on the
treatment effect of chemotherapy in a solid tumor with heterogeneous microvascula-
ture. In another study byMoradi Kashkooli et al. [18], they investigated the effects of
different properties of the drug and some characteristics of tumor microenvironment
on the quality of drug delivery by analyzing the treatment efficacy and side effects
of chemotherapy.

By the above-mentioned literature review, it is found that the fluid flow analysis
has been used in the investigation of the transport phenomenon of biological tissue.
However, the drug delivery has spatiotemporal behaviors, so, for finding out the
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distribution of the drug over both the time and space, the solute transport equation is
added to the fluid flow equation in the current study. In addition, the effect of vascular
normalization by the anti-angiogenic factor on drug delivery is examined in more
realistic detail by introducing the transport parameters of both fluid flow and solute
transport systems to the mathematical model.

2 Materials and Methods

2.1 Governing Equations

2.1.1 Interstitial Fluid Flow

Since the timescale of the transport phenomena is much less than the time of growth
of the tumor, physiological parameters can be viewed independently of time. Normal
tissue or tumor tissue can be considered as a porousmedium. The steady-state incom-
pressible form of continuity equation in the porous media with source and sink of
mass is [11];

∇.
−→
V = ∅B − ∅L (1)

where
−→
V shows the interstitial fluid velocity (IFV). ∅B indicates the source term

and is equal to the flow rate of fluid per unit volume from the blood vessels to the
interstitium and vice versa. ∅L is the sink term in the normal tissue and is equal to
the flow rate of fluid per unit volume from the tissue to the lymph vessels. The source
and sink terms are evaluated through Starling’s law as follows [11];

∅B = L pS

V
(PB − Pi − σs(πB − πi )) (2)

∅L = L pL SL
V

(Pi − PL) (3)

where S
V , L p,PB , σs , πB, πi , L pL , and PL show the surface area per unit volume,

hydraulic conductivity of the microvascular wall, vascular pressure, average osmotic
reflection coefficient for plasma proteins, osmotic pressure of the plasma, osmotic
pressure of the interstitial fluid, hydraulic conductivity of the lymphatic wall, and
hydrostatic pressure of the lymphatics, respectively [19].

The simplified momentum equation (Darcy’ law) can be used to describe the fluid
flow of the interstitium as follows [13];

−→
V = −k∇Pi (4)
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Fig. 1 Schematic view of
different types of pressure

Where k and Pi are the hydraulic conductivity of the interstitium and the IFP,
respectively.

Combining Darcy’s law and the continuity equation when k is constant, results
in;

−k∇2Pi = L pS

V
(PB − Pi − σs(πB − πi )) − L pL SL

V
(Pi − PL) (5)

Different types of pressure used in the above equations are shown in Fig. 1.

2.1.2 Solute Transport

The governing equation of the solute transport in biological tissues with a constant
diffusion coefficient is as follows [13];

∂C

∂t
= Def f ∇2C − ∇.

(−→
V C

)
+ �b − �L (6)

where C , Def f , �b, and �L represent the concentration, effective diffusion coeffi-
cient, the rate of solute transport per unit volume from vessels into the interstitium,
and the rate of solute transport per unit volume from the interstitium into lymphatic
vessels in normal tissue, respectively. �b, and �L can be considered as follows [13];

�b = ∅B
(
1 − σ f

)
Cp + PS

V
(Cp − C)

Pe

ePe − 1
(7)

�L = ∅LC (8)
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∅B ,∅L , σ f ,Cp, and P show the fluid flow source, the fluid flow sink, the filtration
reflection coefficient, solute concentration in the plasma, and the microvessel perme-
ability coefficient, respectively. Pe is the Peclet number and the related equation is

Pe = ∅B(1−σ f )V
PS .

According to the Eqs. (6) and (7), the solute transport equation is one-sided
coupled to the flow field equation.

2.2 Model Geometry and Boundary Conditions

Ahomogeneous isolated solid tumor with a specific size was considered in numerical
modelling. A schematic view of the computational domain and boundary conditions
(BCs) is shown in Fig. 2.

As it is shown in Fig. 2, the no flux boundary condition is applied at the center of
the tumor (for r = 0) [13]; i.e.,

{
∇Pi = 0

Def f ∇C + −→
V C = 0

(9)

At the edge of the domain (for r = R), the IFP is the same as the surrounding
pressure, Psur ;

Pi = Psur (10)

The open boundary condition is used for solute transport analysis at the outer
edge of the domain (for r = R) [20];

−n.∇C = 0 (11)

Fig. 2 Schematic view of
the isolated tumor and
boundary conditions
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Fig. 3 The simulation flowchart

where n is the normal vector. This boundary condition applies for modeling mass
transfer across the boundary where both convective inflow and outflow can occur.

2.3 Solution Procedure

The finite element method (FEM) was used to solve the governing equations, numer-
ically. Quadratic and linear discretization was applied in fluid flow and concentra-
tion analyzes, respectively. Newton’s method was set up to solve the equations. The
convergence criterionwas set to drop the residuals by 6 orders of magnitude. Figure 3
shows the numerical modelling flowchart.

2.4 The Value of Transport Parameters

Parameters of interstitial fluid flow and solute transport properties are listed in Table
1 in different values of α based on the previous studies [8, 14]. Def f was assumed
to be 0.75 × 10−8 for normalized tissue. Vascular permeability was considered to
decrease in normalized tissue in comparison to the tumor one [15]. α is defined as

α = R
√

L p S
kV and shows the rate of transport across the vessel wall to the rate through

interstitium [14]. R is the tumor radius and is equal to 4mm in this study.
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Table 1 The value of the parameters of governing equations

Parameter Description 1.07 ≤ α ≤ 2.4
(normal tissue)

3.5 ≤ α ≤ 8
(normalized tissue)

7.2 ≤ α ≤ 17
(tumor tissue)

L p[ cm
smmHg ] Hydraulic conductivity

of the microvascular
wall

3.6 × 10−8 3.7 × 10−7 1.86 × 10−6

k[ cm2

smmHg ] Hydraulic conductivity
of the interstitium

2.5 × 10−7 2.5 × 10−7 2.5 × 10−7

S
V [ cm2

cm3 ] Surface area of vessel
wall per unit volume of
tissue

50 − 250 50 − 250 50 − 250

PB [mmHg] Vascular pressure 15 − 25 ≥ 5.3 5.5 − 34

πB [mmHg] Osmotic pressure of the
plasma

20 19.2 19.8

πi [mmHg] Osmotic pressure of the
interstitial fluid

10 15.1 17.3

σs Average osmotic
reflection coefficient for
plasma proteins

0.91 2.1 × 10−3 8.7 × 10−5

Def f [ cm2

s ] 1 Effective diffusion
coefficient

0.16 × 10−8 0.75 × 10−8 2 × 10−8

σ f Filtration reflection
coefficient

0.9 0.9 0.9

P[ cms ] Microvessel
permeability coefficient

2.2 × 10−8 10.38 × 10−8 17.3 × 10−8

1The solute transport values were reported for F(ab
′
)2

3 Results and Discussion

The behavior of interstitial flow and solute transport is studied with respect to the
different values of α, numerically. In other words, the present work investigates the
effect of different transport properties of the vessel wall and the interstitium on IFP,
IFV, and drug concentration. Figures 4 and 5 show the IFP and IFV in different values
of α. Pef f is defined as PB −σs(πB − πi ) and Vef f is the bulk velocity at the margin
of the tumor [14].

As it is seen in Fig. 4, in high values of α (tumor tissue), IFP is distributed
uniformly in tumor and pressure gradient exists only in a small region in tumor
margin. The pressure gradient is established by normalization, which can cause the
fluid flow within the interstitium. α = 5 is in the normalized region [14]. As it is
seen in Fig. 5, the amount of IFV is decreased in tumor margin by normalization.
This would result in decreased convection of drugs, and metastatic cancer cells from
the tumor margin into the peritumor tissue [14].
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Fig. 4 Interstitial fluid
pressure in different values
of α

Fig. 5 Interstitial fluid
velocity in different values of
α

Figures 6–10 show the distribution of drug concentration at different times and
different values of α. The continuous injection, which leads to constant plasma
concentration, is considered. Cp is considered to be 1mol/m3. According to Figs. 6,
7, 8, 9, 10, due to the high permeability of the tumor, the concentration of the drug
reaches its maximum value at the initial time after injection, while normalization
can change this behavior. The concentration of drug increases in time by vascular
normalization.
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Fig. 6 Distribution of drug
concentration in 1 h
post-injection

Fig. 7 Distribution of drug
concentration in 5 h
post-injection

In a high value of α(α = 20), the drug has a uniform distributionwithin the tumor,
and only in the region around the tumor, there is a concentration gradient. The concen-
tration gradient is established by normalization that facilitates drug penetration into
the inner parts of the tumor. The concentration gradient exists in low values of α

throughout the interstitium, but due to the difference of scale, it is hard to show in
the figures.

Figure 11 shows the average non-dimensionalized concentration for different
values of α over time. It is obvious that the concentration reaches its maximum value
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Fig. 8 Distribution of drug
concentration in 10 h
post-injection

Fig. 9 Distribution of drug
concentration in 40 h
post-injection

in tumor tissue at the initial time. Normalizing the tumor corrects this behavior.
Moreover, the maximum rate of drug concentration increases by normalization.

The drug concentration increases in normal tissue by continuing the injection.
The maximum concentration in normal tissue is highest.
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Fig. 10 Distribution of drug concentration in 60 h post-injection

Fig. 11 The average non-dimensionalized concentration over time

4 Conclusion

In this research, the effect of a few improvements in the transport properties of the
vessel wall and interstitium on drug delivery is addressed by simulating the intersti-
tial fluid flow and drug concentration. It is found that the interstitial fluid pressure
decreases by normalizing the tumor microvessel network. Moreover, normalization
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reduces the interstitial fluid velocity at the tumor boundary, which can lower the prob-
ability of the occurrence of the metastases. It is realized that the drug can penetrate
the tumor by establishing the concentration gradient induced by vascular normaliza-
tion. The increase of drug concentration through time after normalization is another
improvement in delivering the therapeutic agents into the solid tumor.
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Quantitative Study of the Coupling
Among Cardiovascular System,
Lymphatic System and Interstitial Space

Nicholas Mattia Marazzi, Virginia H. Huxley, Riccardo Sacco,
and Giovanna Guidoboni

Abstract Tissue interstitial pressure plays a crucial role in maintaining fluid bal-
ance in the body. Despite solid experimental evidence of subatmospheric interstitial
pressures, the mechanisms leading to the observed negative pressure values have yet
to be elucidated fully. The present work addresses this issue theoretically by cou-
pling, for the first time, the cardiovascular and lymphatic circulations within a single
closed-loop model. Two model versions are compared, in which lymph formation
results solely from a difference in hydrostatic pressure (Model 1), or is the result of
the combined action of hydrostatic pressure differences and other mechanisms, such
as oncotic pressure gradients and muscle motion (Model 2). Simulations indicate
that hydrostatic mechanisms fail to yield negative interstitial pressures, and that suc-
tion effects due to lymphatic pumping promote lymph formation without yielding
negative interstitial pressures.
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1 Introduction

Interstitial spaces within tissues play a crucial role in maintaining fluid balance in
the human body [14]. Several experimental measurements have led to the widely
accepted concept of subatmospheric pressure in the interstitial space and its crucial
role in fluid homeostasis [16]. Alterations in the interstitial pressure are associated
with many pathological conditions, including heart disease and lymphedema [34].

A force withdrawing fluid from the interstitium has been hypothesized as a major
cause for the negative values of interstitial pressures [15]. Recently, Jamalian et al.
provided a first demonstration of a suction effect by combining ex-vivo experiments
with mathematical modeling [16]. However, these experiments were performed on
the collecting lymphatics and did not focus on whether and to what extent the suc-
tion effect contributed to the establishment of subatmospheric pressure levels in the
interstitial space. The present work constitutes a first step towards addressing this
issue from the theoretical viewpoint by means of a computational model.

To study how interstitial pressure is established, it is necessary to connect the
cardiovascular system, the lymphatic system and the interstitial space within the
samemodel. Severalmathematicalmodels have been proposed for the cardiovascular
function, see [32] for a review. To date, however, mathematical modeling of the
lymphatic system remains at its early stages. Most of the available models focus on
the contracting element of the lymphatic system, called lymphangion [12, 16, 25,
27], while few works have targeted the initial lymphatics [10, 11, 26]. Interstitial-
fluid volume regulation has been studied by means of a closed loop feedback system
[9]. Continuum models have been proposed to study the coupling between capillary
filtration and interstitial fluid [6] and interstitial fluid and initial lymphatics [28].
Most notably, all the aforementioned studies share the common feature of focusing
on single components involved in the maintenance of the fluid balance. To the best
of our knowledge, a modeling effort aimed at connecting the multiple components
has yet to be attempted. A first step in this direction is presented in this paper.

2 Methods

The electric analogy to fluid flow is used to model the circulation in the cardiovas-
cular and lymphatic systems. In this framework, electric charges represent blood
volumes, electric currents represent volumetric flow rates and electric potentials rep-
resent fluid pressures. In the present work, two versions of closed-loop models are
proposed and compared, each version consisting of a network of electrical elements
arranged in three interconnected compartments representing the heart, the systemic
circulation and the extravascular circulation, as depicted in Fig. 1. The two models,
denoted by Model 1 and Model 2, while are based on the same description for the
cardiovascular system and lymphatic return, differ with respect to the connections
between interstitial space and lymphatic system.
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Cardiovascular system. This block comprises heart and systemic and pulmonary
circulations. The pumping action of the heart is modeled via a voltage source and
a variable capacitor connected in series reproducing the chemical activation and
the time-varying elastance of the ventricles [13, 17]. The heart valves are modeled
as ideal switches [13, 17]. The systemic circulation includes arteries, arterioles,
capillaries, venules and veins. A combination of resistors, inductors and capacitors
(RLC) describes the flow through arteries and arterioles [18, 22], whereas a linear
resistor is introduced to model viscous pressure losses due to fluid movement in
the capillary beds [18, 19]. Both venules and systemic veins are modeled with a
resistor and a capacitor accounting for their elastic behavior [19, 22]. The pulmonary
circulation is described as a RLC combination as proposed by Avanzolini et al. [17].

Filtration and interstitial space. The fluid filtration process is modeled through
a parallel configuration of a resistor and a constant current source, denoted by R11

and I1 in Fig.1. The resistor describes the contribution due to hydrostatic pressure,
while the current source represents the oncotic pressure inward flux due to gradients
in protein concentration. The compliant behavior of the interstitial space is modeled
via the linear capacitor C12. Within physiological ranges of volumes and pressures,
the interstitial compliance is expected to behave linearly, as shown by the volume-
pressure relationship reported in Aukland and Reed [20] and Wigg and Swartz [21].

Lymphatic pumping and return. The lumped modeling of lymphangions is based
on the analogy of behavior with the heart [8, 23, 24], where the contractile function
is described via an electrochemical activation function and a time-varying elastance
[22]. Specifically, the voltage source ULY accounts for spontaneous contractility
and the capacitor ELY describes compliant behaviors. The unidirectional flow is
guaranteed by the presence of ideal switches that represent secondary valves.

Connection between interstitial space and lymphatic system. The description of
this block differs between models 1 and 2 in terms of the assumptions regarding
the mechanisms that govern the passage of fluid from the interstitial space to the
lymphatic system (lymph formation). Specifically:

• Model 1: lymph formation is assumed to be solely due to a difference in hydrostatic
pressure. As a consequence, this block is modeled via a linear resistor, whose
resistance is denoted by R13 in Fig. 1;

• Model 2: lymph formation is assumed to result from the combined action of (i)
hydrostatic pressure gradients, which are modeled by a linear resistor R13; and
(ii) other mechanisms that are independent of hydrostatic pressure differences,
such as oncotic pressure differences and muscle motion, which are modeled by a
current source denoted by I2.

Model parameter values are summarized in Table 1. Whenever possible, we have
selected values within intervals reported in the physiological and computational
literature. However, due to both the novelty of the present work and the uncertainty
in the mechanisms governing the interstitial and lymphatic interaction, some model
parameters have required special attention, as discussed below.

Pressure in the lymphatic vessels. A reference value for the lymphatic pressure
is needed to calibrate the lumped parameters pertaining to the lymphatic system.
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Fig. 1 Closed-loop model including the cardiovascular system, the lymphatic system and the
interstitial space. The formulation comprises four different anatomical compartments, whose nodes
have been marked with different notations: (i) heart (yellow squares); (ii) the systemic circulation
(orange squares); (iii) the pulmonary circulation (blue circles); (iii) the lymphatic circulation (green
circles). Model 1 and Model 2 represent two different configurations for the connection between
interstitial space and lymphatic system that have been considered and compared in this work

To this end, we considered the measurements in the subcutaneous lymph vessel
conducted by Olszweski and Engeset [5], where a mean value of 14.35± 9.5 mmHg
was reported, and the study performed in human lymphatic leg by Unno et al. [4],
where a mean peak pressure value of 25 ± 16.7 mmHg was reported.

Interstitial conductance and compliance. Experimental data for the characteri-
zation of interstitial conductance and compliance are currently lacking. Hence, in
the present work we have explored how different choices in the effective hydraulic
resistance R12 and the effective complianceC12 would affect the interstitial pressure.

Lymphatic resistance. The measurements of the lymphatic resistance reported in
the literature vary in a range of several orders of magnitude. For instance, Papp et
al. provided an estimate of the lymphatic resistance measuring flow and pressure in
different anatomical locations in dogs [2]. The lymphatic resistance was computed as
10.67 mmHg s cm−3 in the lymph trunk, whereas a value of 3240 mmHg s cm−3 was



Quantitative Study of the Coupling Among Cardiovascular System … 583

Table 1 Summary of model parameters. The parameters indicated with * have been calibrated in
this work

Heart Cardiovascular circulation

Parameter Ref Parameter Ref

ULO = 50 mmHg [22] R1 = 0.003751 mmHg s cm−3 [22]

ELD = 0.1 mmHg cm−3 [22] R2 = 0.0675 mmHg s cm−3 [22]

ELS = 1.375 mmHg cm−3 s−1 [22] R3 = 0.75 mmHg s cm−3 [22]

RL = 0.08 mmHg s cm−3 [22] R4a = 0.155 mmHg s cm−3 [22]

Tc,L = 0.8 s [22] R4b = 0.155 mmHg s cm−3 [22]

Ts,L = 0.4 s [22] R5 = 0.125 mmHg s cm−3 [22]

URO = 24 mmHg [22] R6 = 0.003751 mmHg s cm−3 [22]

ERD = 0.03 mmHg cm−3 s−1 [22] C2 = 0.21968142 cm3 mmHg−1 [22]

ERS = 0.328 mmHg cm−3 s−1 [22] C3 = 1.46 cm3 mmHg−1 [22]

RR = 0.0175 mmHg s cm−3 [22] C5 = 3.2 cm3 mmHg−1 [22]

Tc,R = 0.8 s [22] C6 = 8 cm3 mmHg−1 [22]

Ts,R = 0.4 s [22] L2 = 0.000825 mmHg s2 cm−3 [22]

L3 = 0.0036 mmHg s2 cm−3 [22]

Pulmonary circulation Lymphatic system and interstitial space

Parameter Ref Parameter Ref

R7 = 0.003751 mmHg s cm−3 [22] R11 = 3.03 mmHg s cm−3 [33]

R8 = 0.03376 mmHg s cm−3 [22] R12 = 500 mmHg s cm−3 *

R9 = 0.1013 mmHg s cm−3 [22] R13 = 12.5 mmHg s cm−3 *

R10 = 0.003751 mmHg s cm−3 [22] R14 = 180 mmHg s cm−3 *

C9 = 2.67 cm3 mmHg−1 [22] C12 = 10 cm3 mmHg−1 *

C10 = 46.7 cm3 mmHg−1 [22] I1 = 6.5 cm3 mmHg−1 [33]

L8 = 0.00075 mmHg s2 cm−3 [22] I2 = 0.3 cm3s−1 *

L9 = 0.00308 mmHg s2 cm−3 [22] ELYD = 0.0084 mmHg cm−3 *

ELYS = 0.42 mmHg cm−3 *

ULYO = 2 mmHg *

Tc,LY = 10 s [1]

Ts,LY = 0.5 s *

calculated in the submandibular lymph node. The resistance of the extrapulmonary
lymph vessel was computed as 1839 mmHg s cm−3 by Drake et al. [3]. We have
adopted a value of 12mmHg s cm−3 for R13, since the initial lymphatics are expected
to provide the smaller resistance to lymph flow [31]. For the resistance R14 of the
collecting lymphatics, a value of 180 mmHg s cm−3 has been adopted.
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3 Results

Models 1 and 2 have been implemented and solved in OpenModelica [30].Then, the
simulations results were post-processed using Matlab [29]. The results reported in
this section correspond to the last of 16 simulated lymphatic contraction cycles.

Pressures in the cardiovascular system. Figure 2a–c reports the pressure wave-
forms in arteries, arterioles and veins, corresponding to nodes 2, 3 and 6 in Fig. 1.
The pressure values computed via models 1 and 2 are compared with the expected
physiological band reported by Guyton [33]. Figure 2d, e reports the pressure wave-
form in capillaries and venules, corresponding to nodes 4 and 5 in Fig. 1. In both
compartments, which are central for our investigation, the simulated values are com-
pared with (i) the theoretical results obtained by Mueller and Del Toro [19] via a
multiscale cardiovascular model and (ii) the physiological ranges reported by Guy-
ton [33]. Overall, the predictions of models 1 and 2 regarding blood pressures are
consistent with physiological expectations in a healthy human.

Lymphatic function and interstitial pressure. Figure 3 reports the time profile
of interstitial pressure P12, which corresponds to node 12 in Fig. 1, as the effective
interstitial hydraulic resistance R12 is varied inModel 1. The results show that higher
values of R12 result in lower mean values of P12, see Fig. 3b and Table 2, and smaller

Fig. 2 Pressure waveforms simulated in (A) arteries (P2), (B) arterioles (P3) and (C) veins (P6)
are plotted over the period of one cardiac cycle (0.8s). The pressures simulated with Model 1 (blue
curve) andModel 2 (red curve) are shown to bewithin the same order ofmagnitude as those reported
in the by Guyton [33] (green band). Pressure waveforms simulated in (D) capillaries (P4) and (E)
venules (P5) obtained via Model 1 (blue curve) and Model 2 (red curve) are compared with the
theoretical results obtained by Mueller and Del Toro [19] (red curve). The simulated pressure are
in good agreement with those obtained by Mueller and Del Toro and fall within the physiological
range (green band) reported by Guyton [33]
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Fig. 3 Filtration process from the capillaries and extravascular resistance do not result in a negative
tissue pressure in the interstitial space. (A) Interstitial pressure (P12) is plotted over a duration of
20s for five different values of the resistance R12 of the interstitial space, namely 5, 25, 100, 250 ,
500 mmHg s cm−3. (B) The average pressures in the interstitial space are plotted for the different
values of R12. An asymptotic trend towards a positive plateau can be recognized, which leads to the
conclusion that the filtration process from the capillaries and the subsequent pressure drop in the
interstitium will not result in a subatmospheric pressure values in the interstitial space. (C) Time
profile of the interstitial pressure for three different values of the interstitial compliance C12. Also
in this case the mean value of the interstitial pressure remains positive

Table 2 Average values (P12) and amplitudes (AP12 ) of the interstitial pressure for the different
values of R12 and C12

R12 [mmHg s
cm−3]

P12 [mmHg] AP12 [mmHg] C12 [mmHg
cm−3]

P12 [mmHg] AP12 [mmHg]

R12 = 500 2.08 2.80 C12 = 10 1.7612 0.017

R12 = 100 2.09 2.88 C12 = 1 1.7719 0.1673

R12 = 50 2.10 2.96 C12 = 0.1 1.7695 1.2305

R12 = 25 2.12 3.10 C12 = 0.042 1.7685 2.0655

R12 = 5 2.19 3.64

time oscillations in P12, see Fig. 3a. In particular, when R12 = 500 mmHg s cm−3,
the pressure oscillations associated with the cardiac frequency are not observable
and the overall waveform amplitude is reduced by 30% compared to the case where
R12 = 5mmHg s cm−3 (see Table 2). Although a finite number of effective interstitial
resistances have been simulated, the trend in the simulation results observed in Fig.
3b suggests that the mean interstitial pressure will remain positive regardless of the
value of the interstitial resistance. Fig. 3c illustrates the time profile of the interstitial
pressure for different values of the compliance C12. Variations in the interstitial
compliance impact the amplitude of the pressure waveform in the interstitial space
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but have a minimal influence on the average pressure value, which remains positive
in all the simulated scenarios, presenting a maximum variation of less than 1% (see
Table 2). However, it is worth noting that short negative pressure peaks are attained
when C12 is very small, even though the average value of the pressure remains
positive. Furthermore, increasing C12 leads to a marked dampening of the pressure
oscillation associated with the lymphangion contractions.

These results infer that the interplay between the pumping action of the lym-
phangions and the gradients in hydrostatic pressure between the vascular and inter-
stitial spaces promote lymph formation. Of particular importance, lymph formation
occurs in the absence of subatmospheric pressure. Thus, we hypothesize that another
mechanism is necessary to obtain subatmospheric interstitial pressures. To test this
hypothesis, we consider Model 2, where the additional mechanism is represented
by a current source. Two simulation scenarios have been considered by varying the
diastolic time of the lymphangion contraction.

Notably, Model 2 yields results that are consistent with the physiological expecta-
tions. Figure 4a reports the average pressures in the capillaries (P4), interstitial space
(P12), lymphangions (P14) and veins (P6) simulated via Model 2. Now, the average
pressure in the interstitial space is slightly subatmospheric. Figure 4b also confirms
that the time profile of the interstitial pressure is influenced by the timing and ampli-
tude of the lymphangion relaxation. Specifically, a smaller subatmospheric value of
the interstitial pressure is observed for a longer relaxation time in the lymphangions.

Fig. 4 (A) Average pressures in the capillaries (P4), interstitial space (P12), lymphangions (P14)
and veins (P6) simulated via Model 2 for two different lymphangion diastolic times, specifically
Td = 1s (red curve) and Td = 5.5s (black curve). In both configurations, the pressure decays from
the value of approximately 20 mmHg in the capillaries towards a slightly negative value in the
interstitial space (0.42 mmHg and 0.21 mmHg, respectively), as physiologically expected. Then,
the mean pressure rises up as a result of the lymphangion pumping, leading to a value of 5.01 and
4.85 mmHg respectively. Pressure then falls towards the pressure value observed in the venous
compartment of the cardiovascular circulation (approximately 3 mmHg in both configuration). (B)
Pressure waveform in the lymphangions (P14) (top) and in the interstitial space (P12) (bottom)
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4 Conclusions

Themechanisms establishing subatmospheric pressure values in the interstitial space
have been debated since the publication of the work by Guyton et al. in 1963. Despite
the conjectures of the existence of a force withdrawing fluid [15], also defined as
a ‘lymphatic pump’ in the review by Taylor et al. [7], a quantitative demonstration
of this conjecture has not been provided. In addition, the majority of the compu-
tational literature has focused on the cardiovascular system, leaving the lymphatic
system and its connection with the interstitial space widely understudied, despite
playing a fundamental role in maintaining fluid homeostasis in health and disease.
To address these issues, this work presents a closed-loop lumped parameter model
that comprises four interconnected human compartments: heart, systemic circula-
tion, lymphatic system, and pulmonary circulation. Two versions of the model are
compared. They are based on the same description for the cardiovascular system
and lymphatic return but differ in the description of the passage of fluid from the
interstitial space to the lymphatic system (lymph formation). The proposed formu-
lation has the novelty of embedding both major routes of circulation, cardiovascular
and lymphatic, as well as the interstitial spaces within an integrated and systemic
computational environment. Model simulations suggest that filtration and pumping
processes may not be the sole mechanism responsible for subatmospheric interstitial
pressures. Additionally, the subatmospheric pressure in the interstitiumwas observed
to be an intrinsic component of lymphatic function and should not be regarded as an
obstacle that the lymphatic system must overcome. Because interstitial pressure and
volume have crucial roles inmaintaining fluid homeostasis in the human body, results
from the present study suggest that the functional relationship between interstitial
spaces and the lymphatic system is a necessary factor that should be considered in
pathologies associated with impaired lymphatic activity, such as lymphedema and
cancer metastasis. This preliminary study also emphasized the paucity of experi-
mental studies on the coupling between cardiovascular and lymphatic functions. As
new data will become available, it will be possible to reassess hypotheses and con-
clusions presented in this study and deepen our understanding of these complex,
coupled systems.
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Age-Structured Epidemic with Adaptive
Vaccination Strategy: Scalar-Renewal
Equation Approach

Aubain Nzokem and Neal Madras

Abstract We use analytical and numerical methods to investigate an adaptive vac-
cination strategy’s effects on the infectious disease dynamics in a demographically
open population. The methodology and key assumptions are based on Breda et al.
(2012). We show that the endemic force of infection in the demographically open
population can be reduced significantly by two factors: the vaccine effectiveness and
the vaccination rate. The impact of these factors can transform an endemic steady
state into a disease free state.

Keywords Force of infection · Scalar-renewal equation · Per capita death rate ·
Adaptive vaccination strategy

1 Introduction

The 1927 paper of Kermack and McKendrick [5] is one of the fundamental contri-
butions to the mathematical theory of epidemic modelling. The paper provides the
condition of outbreak and the final size equation in a closed population setting. One
of the key features of [5] was to introduce an age of infection model. In such a model,
the general infectivity function (A(τ )) of an individual is considered and depends
on the time (τ ) elapsed since the infection took place. Kermack and McKendrick’s
framework encompasses a wide family of epidemic models; Breda et al. [2] have
illustrated the generalisation by providing the following age infectivity function for
SIR and SEIR models.
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Fig. 1 The transfer diagram
of the model: the force of
infection function t �→ F(t);
the rate of vaccination
function t �→ φ(t); θ
(vaccine parameter
(0 < θ < 1)); I (infected
population); B (constant
birth rate); μ (constant per
capita death rate)

A(τ ) = βe−ατ ⇐⇒ SI R

A(τ ) = β
γ

γ − α
(e−ατ − e−γ τ ) ⇐⇒ SE I R (1)

The 2012 paper of Breda et al. On the formulation of epidemic models (an
appraisal of Kermack and McKendrick) [2], revised the original Kermack and McK-
endrick paper [5] and produced the same results, but the method used was different.
In fact, Breda et al. [2] considered the unknown force of infection as a result of
the nonlinear scalar-renewal equation; and they analyzed the force of infection at
endemic equilibrium. For related work of interest, see [1, 3, 4, 6, 7].

In the current paper, we investigate the effects of an adaptive vaccination strategy
on the dynamics of infectious diseases in a demographically open population. In
contrast to standardized childhood vaccinations, we consider a situation in which
an individual may get vaccinated at any age in response to rising prevalence. The
decision for an individual to get vaccinated could be a response to the increasing
perceived threat of infection, or perhaps due to the greater availability of the vaccine
as production is ramped up in response to the epidemic. Our model, while fairly
general, makes two restrictive assumptions: first, that the disease does not affect
death rates; and second, that at any time the rate of vaccination depends on the
current force of infection (i.e., the time lag is negligible).

The methodology and key assumptions are based on [2]. Individuals’ lifetimes
have an arbitrary probability distribution. The epidemic model and the vaccination
process is illustrated by Fig. 1 below. The susceptible population is divided into non-
vaccinated susceptible population (S) and vaccinated susceptible population (V ).
The infection leads to permanent immunity (no re-infection), although infectivity
varies according to the function A(τ ) mentioned earlier. Infection status does not
affect the time of death of an individual.

Our main assumptions are that the force of infection among the vaccinated sus-
ceptibles varies proportionally with the force of infection among the unvaccinated
susceptibles; and the rate of vaccination is proportional to the force of infection in
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the unvaccinated susceptibles. The natural feature of an adaptive vaccination policy
is that the rate of vaccination should increase when the force of infection increases
and decrease when the force of infection decreases. Direct proportionality represents
a simple case with the advantage of being nicely tractable.

The rest of this paper will analyse an age-structured epidemicmodel with adaptive
vaccination. A complete analysis, including a study of an analogous model without
age structure, appears in [8, 9].

2 Age-Structured Epidemic Model

We consider the situation where, at the population level, new susceptibles are born at
a constant rate B.We also consider a general survival functionF (a), which describes
the probability that a newborn individual lives at least until age a. As is well known,∫ ∞
0 F (a) da equals the average lifetime, which is the reciprocal of the effective per
capita death rate μ when F (a) = e−μa .

If at time t a susceptible has age a, then at time t − a + σ the suceptible had age
σ (0 < σ ≤ a). For a small value h, taking the survival functionF (a) into account,
the time evolution of the unvaccinated susceptibles S(t, a) at time t and at age a
satisfies the following equation:

S(t − a + σ + h, σ + h)

F (σ + h)
= S(t − a + σ, σ )

F (σ )
(1 − F(t − a + σ)h − φ(t − a + σ)h + o(h2))

(2)
By re-arranging and using the limit as h converges to 0, we will have the following
derivative:

d( S(t−a+σ,σ )

F (σ )
)

dσ
= −F(t − a + σ)

S(t − a + σ, σ )

F (σ )
− φ(t − a + σ)

S(t − a + σ, σ )

F (σ )
(3)

A similar approach can be used to derive the differential equation for vaccinated sus-
ceptibles V (t, a) at time t and at age a. The dynamics of both classes of susceptibles
can be described by the system of differential Eq. (4).

d(
S(t−a+σ,σ )

F (σ )
)

dσ
= −F(t − a + σ)

S(t − a + σ, σ )

F (σ )
− φ(t − a + σ)

S(t − a + σ, σ )

F (σ )

d(
V (t−a+σ,σ )

F (σ )
)

dσ
= −θF(t − a + σ)

V (t − a + σ, σ )

F (σ )
+ φ(t − a + σ)

S(t − a + σ, σ )

F (σ )
(4)

The force of infection, of course, depends heavily on the size of the infectious pop-
ulation. At time t , considering individuals who were infected at time t − τ at age a,
the contribution to the force of infection is the product of (F(t − τ)S(t − τ, a) +
θF(t − τ)V (t − τ, a))A(τ ) infectious individuals and a demographic factor F (a+τ)

F (a)
,

which is the proportion of infectious individuals of age a who survive to age a + τ .



594 A. Nzokem and N. Madras

By summing all the contributions with respect to to the elapsed time τ and with
respect to the age a, we get the following scalar-renewal equation.

F(t) =
∫ ∞
0

∫ ∞
0

(F(t − τ)S(t − τ, a) + θF(t − τ)V (t − τ, a))A(τ )
F (a + τ)

F (a)
dτ da

=
∫ ∞
0

F(t − τ)

∫ ∞
0

(S(t − τ, a) + θV (t − τ, a))
F (a + τ)

F (a)
A(τ ) dτ da (5)

Generally, the integral
∫ a
0 φ(t − a + σ)e− ∫ σ

0 ((1−θ)F+φ)(t−a+τ)dτdσ is difficult to eval-
uate because the rate of vaccination function (φ(t)) is unknown. As we previously
assumed, there is a linear relationship between the vaccination rate and the force of
infection. We have φ(t − a + σ) = pF(t − a + σ) where p is the vaccination rate
parameter. The solution of the system of differential Eq. (4) becomes:

S(t, a) = BF (a)e−(1+p)
∫ a
0 F(t−a+σ)dσ

V (t, a) = BF (a)
p

1 + p − θ

{
e−θ

∫ a
0 F(t−a+σ)dσ − e−(1+p)

∫ a
0 F(t−a+σ)dσ

}
(6)

2.1 Equilibrium Equation of the Endemic Steady State

The solution (6) can be substituted in the renewal Eq. (5). When the parameters
permit an endemic steady state, the force of infection (F(t)) converges to a positive
constant F . When t goes to +∞, the renewal equation can be rearranged, leading to
the following equilibrium equation of the endemic steady state.

1 = B

1 + p − θ

∫ ∞
0

∫ ∞
0

(pθe−θaF + (1 + p)(1 − θ)e−(1+p)aF )F (a + τ)A(τ ) dτ da

(7)

In order to study the properties of the equilibrium equation, we consider the following
function.

f (x) = B

1 + p − θ

∫ ∞
0

∫ ∞
0

(pθe−θax + (1 + p)(1 − θ)e−(1+p)ax )F (a + τ)A(τ ) dτ da

(8)
It is obvious that f (x) is a decreasing function and f (0) = B

∫ ∞
0

∫ ∞
0 F (a +

τ)A(τ ) dτ da. The condition f (0) > 1 is sufficient to guarantee the existence of
F with F > 0. Furthermore, f (0) depends only on the constant birth rate B, the
survival function F (·) and the expected contribution to the force of infection A(·).
The vaccination parameters θ and p cancel out in f (0). The quantity f (0) is the
basic reproduction number:

R0 = f (0) = B
∫ ∞

0

∫ ∞

0
F (a + τ)A(τ )dτda (9)
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2.2 General Case

We shall treat the quantity F in Eq. (7) as an implicit function of two variables (θ, p).
Writing this explicitly in the equation, we have

1 = B

1 + p − θ

∫ ∞

0

∫ ∞

0

(
pθe−θaF(θ,p) + (1 + p)(1 − θ)e−(1+p)aF(θ,p)

)

× F (a + τ)A(τ ) dτ da . (10)

Case 1: ineffective vaccine (θ = 1)
The Eq. (10) becomes:

1 = B
∫ ∞

0

∫ ∞

0
e−aF(1,p)F (a + τ)A(τ ) dτ da (11)

We have F(1, p) = F∗, where F∗ comes from the unvaccinated case studied by
[2]. Therefore, the endemic force of infection is the same as the endemic force of
infection without vaccination.

Case 2: 100% effective vaccine (θ = 0)
The Eq. (10) becomes:

1 = B
∫ ∞

0

∫ ∞

0
e−(1+p)aF(0,p)F (a + τ)A(τ ) dτ da (12)

As previously, we have (1 + p)F(0, p) = F∗ for p > 0. we can deduce that
F(0, p) = F∗

p+1 , which depends on the factor 1
p+1 . lim p→∞ F(0, p) = 0, which

corresponds to the disease free steady state.

Case 3: p → ∞ and θ 	= 0
The Eq. (10) becomes:

1 = Bθ

∫ ∞

0

∫ ∞

0
e−θaF(θ,+∞)F (a + τ)A(τ ) dτ da (13)

The solution of the Eq. (13) is

F(θ,+∞) =

⎧
⎪⎨

⎪⎩

0 if θ ≤ 1
f (0)

x(θ) if 1
f (0) < θ < 1

F∗ if θ = 1

where x(θ) is an increasing function with 0 < x(θ) < F∗.
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2.3 Special Case of Natural Constant Per-Capita Mortality
Rate

It is of interest to examine the results of the previous subsection in a case where
F(θ, p) can be solved exactly. Accordingly, we shall assume in this subsection that
all individuals have a survival function F (a) = e−μa , which describes a constant
per-capita mortality rate μ. By applying the survival function, the following basic
reproduction number is derived from Eq. (9):

f (0) = R0 = B
∫ ∞

0

∫ ∞

0
e−μ(a+τ)A(τ ) dτ da

= 1

μ
B

∫ ∞

0
e−zτ A(τ )dτ

(14)

The reproduction number is the same as that found by [2] for a constant per-capita
mortality rate μ. The equilibrium Eq. (10) for endemic steady state becomes the
second degree equation

θ(1 + p)

μ f (0)
F(θ, p)2 +

(
1 + p + θ

f (0)
− θ(1 + p)

)

F(θ, p) + μ

f (0)
(1 − f (0)) = 0.

(15)
We define

a = θ(1 + p)

μ f (0)
, b = 1 + p + θ

f (0)
− θ(1 + p) , c = μ

f (0)
(1 − f (0)) .

In endemic steady state, f (0) > 1.Wehave c = μ

f (0) (1 − f (0)) < 0 and b2 − 4ac >

0. The solution of the Eq. (15) becomes

F(θ, p) = −b + √
b2 − 4ac

2a

= μ

2

⎧
⎨

⎩
f (0) − 1 + p + θ

θ(1 + p)
+

√(
1 + p + θ

θ(1 + p)
− f (0)

)2

+ 4
f (0) − 1

θ(1 + p)

⎫
⎬

⎭
(16)

With our vaccination parameters, the expression for the endemic force of infection
becomes more complex. By comparison, in [2], with a constant per-capita mortality
rate μ and no vaccination, the authors find the endemic force of infection F∗ =
μ( f (0) − 1).
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Case 1: Ineffective vaccine (θ = 1)
The endemic force of infection becomes

F(1, p) = lim
θ→1

F(θ, p)

= μ

2

⎧
⎨

⎩
f (0) − 2 + p

1 + p
+

√(
2 + p

1 + p
− f (0)

)2

+ 4
f (0) − 1

1 + p

⎫
⎬

⎭

= μ( f (0) − 1)

= F∗ .

In the case of 100% ineffective vaccine, the endemic force of infection is the same
as the endemic force of infection without vaccination [2].

Case 2: 100% effective vaccine (θ = 0)
The endemic force of infection becomes

lim
θ→0

F(θ, p) = lim
θ→0

μ

2

⎡

⎣ f (0) − 1 + p + θ

θ(1 + p)
+

√(
1 + p + θ

θ(1 + p)
− f (0)

)2
+ 4

f (0) − 1

θ(1 + p)

⎤

⎦

= μ
( f (0) − 1)

1 + p

= F∗
1 + p

.

Thequantity F∗ = μ( f (0) − 1) is the endemic force of infectionwithout vaccination
from [2]. Taking into account the vaccination process, we have limθ→0 F(θ, p) =
F∗
p+1 , which depends on the factor 1

p+1 with the vaccination rate parameter p. We
have lim p→∞ {limθ→0 F(θ, p)} = 0, which corresponds to the disease free steady
state.

Case 3: p → ∞ and θ 	= 0
Here the vaccine is not 100% effective. By increasing the vaccination rate parameter
(p), the expression in (16) becomes

lim
p→∞ F(θ, p) =

{
0 if θ ≤ 1

f (0) ,

μ( f (0) − 1
θ
) if 1

f (0) < θ ≤ 1 .

With a sufficiently high vaccination rate parameter (p), the disease free steady state
can still be reached if the vaccine parameter (θ ) is below a threshold (θ ≤ 1

f (0) ).

Case 4: 0 < θ < 1 and p > 0
The endemic force of infection in the expression (16) was simulated as a function of
vaccination rate parameter (p) and vaccine parameter (θ ). Figure 2 provides a sum-
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(A) Endemic force of infection as a function of  and p (B) Endemic force of infection as a function of  and p

(C) Endemic force of infection in percentage (vaccination versus non-vaccination scenario)

Fig. 2 Impact of adaptive vaccination strategy on the endemic force of infection (R0 = f (0) = 2)

mary of the findings. We supposed the reproduction number is R0 = 2. As illustrated
by the yellow area in Fig. 2, the scaled endemic infection force ( F

∗
μ
) remains almost

constant; whereas in the blue area, the reduction of the endemic force of infection is
significant. Compare to the unvaccinated scenario, the endemic force of infection is
almost 0.

3 Conclusion

The relation between the force of infection of the disease spreading, the vaccine
effectiveness, and the vaccination rate is at the center of the article. The investigation
focuses on a demographically open population using the renewal equation on the
force of infection. The findings show that the endemic force of infection in a demo-
graphically open population can be reduced significantly by a good combination of
the vaccine effectiveness and the vaccination rate. In fact, for a given vaccination rate



Age-Structured Epidemic with Adaptive Vaccination Strategy … 599

parameter (p), it is shown that the endemic force of infection can remain unchanged
if the vaccine is ineffective; whereas the endemic force of infection converges to a
disease free steady state when the vaccine is 100% effective. It is also shown that a
sufficiently high vaccination rate parameter can transform an endemic steady state
into a disease free state when the vaccine is adequately effective in the sense that
θ ≤ 1

f (0) . One of the limitations of the study is the linearity assumptions on the rate
of vaccination function and the force of infection within the vaccinated susceptibles.
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On the Modeling of Drug Delivery
to Solid Tumors; Computational
Viewpoint

Mohsen Rezaeian , Madjid Soltani , and Farshad Moradi Kashkooli

Abstract Drug distribution in a solid tumor is important in the evaluation of cancer
treatment efficacy. In the present study, a comprehensive multi-scale mathematical
model employed to calculate the interstitial fluid pressure (IFP) and drug distribution
in interstitial space. Two different zones including necrotic core and semi-necrotic
zone are considered for a tumor surrounded by normal tissue. The results indicate
that drug concentration has its maximum value in the semi-necrotic region and it
starts declining steeply in the necrotic area. Different sizes of the necrotic core
are considered by introducing the ratio Rn = rn/rt , where rt and rn are tumor and
necrotic core radius, respectively. Generally, increasing Rn leads to a decrease in IFP.
The decrease in IFP is more significant at larger Rn values. In addition, IFP is more
sensitive toRn values in smaller tumors.While it is expected thatwith a decreased IFP,
drug transport to the tumor will be facilitated due to the reduced outward convection
flow in the tumor interstitium, the mean drug concentration in tumor decreases with
increasing Rn. These findings show that such a mathematical model is a powerful
tool and provides more insight into the drug’s transport and delivery to solid tumors.
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1 Introduction

Although many anticancer drugs have been developed in recent years, they are often
ineffective. The ineffectiveness of cancer drugs is related to the complex microenvi-
ronment of solid tumors and drug properties. Therefore, better understanding of the
complex tumor microenvironment and mechanisms of drug delivery to solid tumors
is crucial in designing an effective treatment strategy. Sincemany factors are involved
in drug delivery, it is almost impossible to experimentally and economically inves-
tigate all factors thorough clinical and preclinical studies. In contrast, mathematical
modeling can play an effective role. The aim of mathematical modeling and simula-
tion is to better understand the behaviors of the tumor for ultimately improving the
treatment outcome. Thus using mathematical modeling, the aim of this work is to
comprehensively investigate variables that affect drug delivery to solid tumors.

In solid tumors, physiological barriers are the major cause of decreasing the effi-
cacy of drug delivery [1]. These barriers have a contribution in high values of Inter-
stitial fluid pressure (IFP) in solid tumors. High IFP value prevents the systematic
drug delivery by causing an outward convection against inward drug diffusion [2,
3]. Elevated IFP produces interstitial fluid flow (IFF) outward from the tumor center
and conveys tumor-produced macromolecules such as Vascular Endothelial Growth
Factors (VEGFs) toward the normal tissue and also hinders drugs reaching most of
the cancerous cells [4]. According to the imbalance between supply and demand of
nutrients and oxygen in the fast growing tumor, most tumor nodules have a necrotic
core in which there are no living cells or vascular system, therefore, there is no blood
flow or cellular uptake [2]. The presence of a necrotic area in the tumor is one of
the main reasons for the heterogeneous distribution of the drug in the tumor, and
therefore the size of this area may be an influencing factor in the process of drug
delivery to the tumor.

A number of studies have been conducted on the transport of drug molecules into
solid tumors. The first formulation to calculate the concentration distribution in solid
tumors is presented by Baxter et al. [5]. They employed a continuous porous media
model to study the impact of various parameters such as interstitial pressure and
convection, heterogeneous perfusion and lymphatics, and binding and metabolism
on the drug concentration in the ECM. Also, they have studied the concentration
distribution of two drugs (Fab and IgG) in an isolated circular tumor. Soltani and
Chen [6–8] developed thefluidflowmathematicalmodel and employed it to study two
new parameters of critical radius of the tumor and critical radius of the necrotic zone
on IFP distribution in solid tumors. Also, they used developed model for different
geometries to investigate the impacts of tumor shape and size on drug delivery[9,
10]. To investigate the influences of different parameters including IFP, interstitial
fluid velocity (IFV), and concentration, there exist many new efforts in the field of
mathematicalmodeling and simulation of drug delivery to solid tumor in the literature
[2, 3, 11–14]. Among these, a recent study by Steuperaert et al. [14] showed that
consideration of a necrotic area in the tumor had no effect on drug distribution for
intraperitoneal chemotherapy, whilst the results of Soltani and Chen [6] suggest that
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the size of the necrotic area could potentially change the process of drug delivery by
changing the IFP value. However, among studies to date, the effect of necrotic area
on the drug distribution in solid tumors has not been fully investigated and remains
unknown.

A solid tumor model can be employed to evaluate and optimize the strategies of
treatment for the aim of personalizedmedicine. In the current study, a comprehensive
approach is applied to evaluate the drug delivery to a solid tumor by considering
necrotic core with variable radius within the tumor. This study proposes a modeling
framework to calculate IFV, IFP, as well as the transport of drug molecules and drug
concentration distribution.

2 Material and Methods

This section covers mathematical modeling approach, model geometry, boundary
conditions, model parameters, and verification of the results. First, a physically rele-
vant tumor microenvironment is modeled. Then, the continuity equation, Darcy’s
law, and Starling’s equation with appropriate boundary conditions for normal and
tumor tissues are developed to calculate the IFP and IFF. To solve these equations
accurately in this complex microenvironment, the finite element method is employed
with an adaptive grid generation which combines high accuracy with a high calcu-
lation speed. Moreover, by using advection–diffusion equation in tumor and normal
tissue, dynamic concentration profile of drug molecules in the tumor is calculated.

2.1 Mathematical Modeling Approach

Interstitial fluid flow. Here, the tissue is considered as a porous medium. For fluid
transport in tissue, Darcy’s law as one of the first formulations for flow transport
in a porous medium is used. In the current study, the IFV is calculated by Darcy’s
equation, as following [2]:

vi = −κ∇Pi (1)

While the IFP is calculated as follows:

−κ∇2Pi = φV − φL (2)

where φV is the net fluid flow rate per unit volume from blood vessels into the
interstitium, and φL is the net flow rate per unit volume from interstitium into the
lymphatic vessels. φV and φL are obtained using the Starling’s law [2, 3, 6, 8]:



604 M. Rezaeian et al.

φV = LP S

V
(PB − Pi − σs(πB − πi )) (3)

φL = LPL SL
V

(Pi − PL) (4)

where LP is the hydraulic conductivity of the microvascular wall, S
V is the vascular

surface area per unit volume, PB and Pi , respectively, are the intravascular blood
pressure and interstitial fluid pressure, σs is the average osmotic reflection coefficient
for plasma proteins, πB is the plasma osmotic pressure, and πi is the interstitial fluid
osmotic pressure. Also LPL is the hydraulic conductivity of the lymphatic wall, SL

V is
the ratio of the surface area of lymphatic vessels to the tumor tissue volume, and PL

is the hydrostatic pressure of the lymphatic. Due to the lack of an effective lymphatic
system in the tumor tissue, the term φL is considered to be zero.

Solute transport. Based on the conservation laws of mass and momentum; by
considering a convection–diffusion mechanism, the equation for the drug transport
in ECM can be written as [2, 3, 11]:

∂C

∂t
= −v∇C + D∇2C + (�V − �L) (5)

where C is the drug concentration, v is the IFV obtained from Darcy’s law, D is the
coefficient of diffusion, �V and �L are respectively the solute transport rates per
unit volume from blood vessels into the interstitium, and from the interstitium into
the lymphatic vessels. These two parameters are obtained by the Kedem-Katchalsky
equation [15]:

�B =
(

φB
(
1 − σ f

)
CP + PS

V
(CP − C)

Pe

ePe − 1

)
(6)

�L = φLC (7)

where CP is drug concentration in the plasma, σ f the filtration reflection coefficient,
andP is themicrovessel permeability coefficient for free drug. Pe is thePeclet number
that determines the convection/diffusion ratio through the capillary wall defined as:

Pe = φB(1 − σ f )

P S
V

(8)

It isworth-mentioning that themodel parameters of interstitial transport and solute
transport for normal and tumor tissue are the same as our group’s previous work [9].



On the Modeling of Drug Delivery to Solid Tumors … 605

2.2 Model Geometry, Computational Domain, and Boundary
Conditions

The computational domain is considered as a spherical tumor with a radius rt and
its surrounding normal tissue with a radius three times larger than the radius of the
tumor. The tumor also has a necrotic core with a radius rn. (Fig. 1). Different sizes
of the necrotic core is considered in this study by introducing the ratio Rn = rn/rt .
The baseline values of rt and Rn are 1 cm and 0.5, respectively.

In the current study, a bolus injection of a chemotherapy drug is considered so
that the plasma concentration decreases exponentially, as following [9]:

Cp = C0 exp (−ln(0.5)t/τ) (9)

C0 is the initial concentration and τ is the drug half-time in plasma. Concentration
is then non-dimensionalized by C0. For the boundary between the tumor and normal
tissue (inner boundary 1) and the boundary between the viable tissue andnecrotic core
of the tumor (inner boundary 2), continuity of the IFV, IFP, and also concentration
and its flux are considered as appropriate boundary conditions; where 	 − and 	 +
demonstrate the tumorous and normal tissue at the boundary. Boundary conditions
of the presented investigations are outlined in Table 1. For outer boundary that the
interstitial pressure is constant, the boundary condition of Dirichlet-type must be
applied, and for concentration, the open boundary condition is used [3].

Fig. 1 Computational domain of the current study which includes tumor necrotic core, tumor
semi-necrotic region, and normal tissue
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Table 1 Boundary conditions employed for the present study

Region Boundary conditions

Fluid flow Concentration

Center of the tumor ∇Pi = 0 Def f ∇C + υiC = 0

Inner boundaries

Outer boundary Pi = Constant −n • ∇C = 0

Radius (m) Radius (m)

Fig. 2 Comparison of the results of the present study with the results of Sefidgar et al. [9], a IFP
distribution, and b Non-dimensional concentration distribution over the non-dimensional radius

2.3 Validation

In order to verify the results of the present study, the problem addressed by Sefidgar
et al. [9] has been investigated for a tumor embedded in normal tissue. As is clear
in Fig. 2, the results of this study are well in correspondence with the literature [9].
In the present work, using a specific drug and parameters, we also obtain similar
profiles for IFP and non-dimensional concentration with Sefidgar et al. [9]. Also, it
is showing that the current models and methods are enough reliable to predict the
IFP and non-dimensional concentration.

3 Results and Discussion

In the present study, a comprehensive approach formodeling the drug delivery to solid
tumors considering necrotic core is employed. Convection and diffusionmechanisms
of drug transport are considered in interstitial space. First, IFP and IFV are obtained
based on fluid flow equations in porous media and then, drug concentrations are
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Fig. 3 The spatial distribution of a non-dimensional IFP, b IFV, and c non-dimensional concen-
tration over the non-dimensional radius. d Average non-dimensional concentration of drug versus
time for bolus injection

calculated. Tumor with necrotic core of 50% is considered as baseline model (Rn

= 0.5). Figure 3a–c illustrate the spatial distribution of non-dimensional IFP, IFV,
and non-dimensional concentration over the non-dimensional radius, respectively.
The maximum value of IFP is obtained at the tumor center and is significantly
maintained at the major part of the tumor radius until it begins to decrease sharply at
approximately one-tenth of the outer edge of the tumor. Here, the maximum value of
IFP is 1,530 Pa. This value is matched to the values reported by Boucher et al. [16],
Soltani et al. [17], and experimental results of Huber et al. [18]. The interstitial fluid
value is straightly proportional to the local pressure gradient, based on the Darcy
equation. Therefore, the IFV magnitude is negligible for 0 < r < 0.9rt (Fig. 3b).
However, the IFV sharply increased as a result of steep pressure gradient in the
vicinity of the tumor boundary. Thus, the maximum amount of IFV (0.03 μm/s)
occurs on the tumor surface (r = rt) where radially extends outwards and opposes
the drug penetration into the tumor during the chemotherapy. Therefore, drug agents
are expected to be significantly hindered at the tumor periphery. After that, IFV
decreased to a zero value in normal tissue because of the lack of pressure gradient
in this.
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Two bumps are observed in non-dimensional concentration distribution at inner
boundary 1 and 2. Normal tissue has uniform distribution except near the inner
boundary 1 and outer boundary. Non-dimensional concentration value in major part
of necrotic core is negligible (0 < r < 0.45 rt) and then it increases. Generally,
non-dimensional concentration in the inner boundary 1 has its maximum value.

Figure 3d shows the average non-dimensional concentration of drug versus time
for bolus injection. Concentration of drug agents increases rapidly to maximum
values about 7 h post injection and decreases thereupon until it approaches zero after
72 h.

The effect of necrotic core size on drug delivery into the tumor has been investi-
gated for three tumors with different sizes, 1, 5, and 10 mm in radius. Figure 4a–c
shows the effect of necrosis size on IFP. As can be seen from these figures, for each
tumor size, IFP in tumor decreases with increasing Rn. This decrease in IFP becomes
more significant at larger Rn values. Another point to be drawn when comparing the
results is that IFP in larger tumors has less dependency on necrotic core size. For
example, in the 10 mm tumor, no significant change in IFP was observed for Rn

values less than 0.9, whereas in the 1 mm tumor at Rn = 0.9, IFP changed drastically
and reached a value of 0.6 of maximum IFP in tumor.

Figure 4d–f shows the effect of necrotic core size on average non-dimensional
concentration distribution of drug for different size of tumors. It is expected that with
the increase in Rn which leads to a decrease in the IFP in tumor drug delivery to the
tumor will improve. However, as shown in the Figs. 8d–f, with increasingRn, average
non-dimensional concentration of drug in the tumor decreased for all tumors. In fact,
tumors with larger values of Rn, have a smaller vascularized area and less effective
vessels. For this reason, these tumors potentially have lower chance for drug supply
than those with bigger vascularized area. Although a reduction in IFP is considered
as a positive factor in improving drug delivery, it should be noted that there is a better
drug supply for tumors with smaller necrotic zone which improves drug delivery for
this tumors. In summary, tumors with a smaller necrotic core receive a higher level
of drug concentration in chemotherapy, although they have higher IFP values.

4 Conclusions

The specific pathophysiology of the tumor results in an elevation in IFP in the tumor,
which leads to an outward convection flow that hinders both the convective and
diffusive mechanisms of drug delivery. In the present study, a computational model
is employed in a solid tumor to calculate the IFV, IFP, and solute transport. The
computational approach considered the mechanisms of convection and diffusion of
drug in interstitium and drug extravasation frommicrovessels or to lymphatic vessels.
The transient distribution of drug concentration is calculated based on the IFV and
IFP distribution. The results show that the semi-necrotic region of the tumor has the
maximum value of concentration while the concentration in the necrotic core steeply
approaches zero. Increasing Rn values lead to a decrease in IFP in the tumor, which
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Fig. 4 The effect of necrotic core size on drug delivery. a–c Non-dimensional IFP distribution, and
d–f average non-dimensional concentration distribution of drug for three different sizes of tumors

is more significant at larger Rn values. IFP in smaller tumors are more sensitive to
Rn, and even for small values of Rn, a notable decrease in IFP is observed. Although
a decrease in IFP makes the drug delivery to the tumor easier, the delivery of drugs to
solid tumorswith larger necrotic core is decreased due to the reduction of drug supply
through the capillary network by the expansion of the necotic area. Results show that
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tumors with a smaller necrotic core receive a higher level of drug concentration,
while they have higher IFP values.
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Evaluating a Logistic K-mer Based
Model for Classifying CO1 Sequences
of C. Clupeaformis

D. St Jean, Herb Kunze, and D. Gillis

Abstract Lake whitefish (Coregonus clupeaformis) are a primary support for sub-
sistence and commercial fishing in Canada. In the 20th century, lake whitefish pop-
ulations experienced a dramatic decline as a result of overfishing, environmental
degradation, and predation. With proper environmental management and fishery
management, populations have recovered, however certain local populations are still
at risk. To properly manage these fisheries for sustainable yield, it is important that
the genetic diversity of the population is maintained to ensure evolutionary potential
of the species. The expensive technique of physically sampling populations is being
replaced by sampling environmental DNA (eDNA) from the physical environment.
However, the process of labelling eDNA sequences on a species level is still being
developed. We found that techniques and theories from the well-established field
of natural language processing, combined with machine learning algorithms, were
extremely well-suited to labelling eDNA sequences. We built a logistic k-mer based
learning model, inspired from natural language processing, which had high levels of
classification accuracy. We anticipate this model is a starting point for more sophis-
ticated machine learning models, and we have demonstrated how processes from the
field of natural language processing are analogous to our eDNA process.
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1 Introduction

Recent advancements in DNA based sequencing techniques have led to the ability
to rapidly and relatively inexpensively sequence genetic genomes [1]. DNA identi-
fication techniques based on genome sequencing can be used to authenticate food
that has lost phenotypic characteristics, such as in fillets or other uncooked seafood
products. Deliberate or unintentional, seafood fraud is a current issue in Canada,
with a recent study showing that over 44% of samples collected from retailers and
restaurants were mislabelled [2]. Beyond economic concerns, seafood fraud creates
food safety and health risks, threatens oceans, cheats honest fishers and vendors, and
creates a market for illegally caught fish, which canmask global human rights abuses
[2–4]. As DNA sequencing has advanced, a larger number of samples are able to
be processed, leading to a large output of sequenced samples. The Canadian Food
Inspection Agency (CFIA) is currently committed to improving how these sequence
samples are classified according to genus and species level classifiers [5].

The Coregonus genus, belonging to the salmon family, contains at least 68
described species [6]. These species are typically genetically similar, which leads
to issues when attempting to classify them into species groups. Within the Core-
gonus genus, the species C. clupeaformis, holds value commercially, socially, and
ecologically to Indigenous and non-Indigenous peoples [7].

Major techniques used to classify species include phenotype-based classifying,
standard genetic techniques, and computer science based approaches [8]. Since phe-
notypes are lost when seafood is processed, and standard genetic techniques are often
time consuming, the development of computer techniques to classify genetic samples
is highly valuable [9]. The use of machine learning techniques as an alternative to
traditional genetic classification techniques has recently been proposed [10, 11].

This paper will explore the use of a natural language processing (NLP) based
machine learning model to classify data from the Barcode of Life (BOL) dataset,
and determine the model’s effectiveness in classifying samples.

In Sect. 2, we will explore the inspiration for the model, along with details of the
important features of this model. Following that, we will outline the methods and
implementation details in Sect. 3, and provide results and discussion in Sects. 4 and 5
respectively.

2 Model Inspiration and Background Information

2.1 Inspiration from Natural Language Processing

DNA sequences are a meaningful genetic language [12] that convey important infor-
mation about how life functions. This genetic language is analogous to natural lan-
guage, which humans developed naturally through use [12]. The field of natural
language processing (NLP) is concerned with interactions between computer and
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Fig. 1 Typical process for a document classification problem in NLP

human (natural) languages. One classic NLP problem is of document classification;
a specific example would be classifying new library books into genres.

In a traditional document classification problem, as shown in Fig. 1, the set of
documents to be classified is first pre-processed. Documents are split up into words,
sometimes referred to as “tokens”. Unimportant words are then filtered out, this
normally is the “stop” words (and, the, or, etc) and extremely rare words that occur
in very few documents. In the pre-processing step, other processes such as stemming
(reducing words to their base meaning) and sentence boundary detection also take
place. In the second step, training and test sets are defined, both of which often come
from a pre-existing corpus: a large and structured set of texts that are pre-labelled.
Once the documents have been pre-processed and divided, it can be used to train a
classification algorithm, of which there are a large variety. Model validation is used
to ensure the results from the chosen algorithm perform as expected, and this step
may also involve quantifying the robustness and quality of the model. Finally, this
model can be used to classify new documents.

What is extremely exciting is that this process of classifying documents from the
well-established field of NLP is extremely analogous to the classification of genetic
sequences. In this work, we build a prototype model, using the identical process
from NLP. Each genetic sequence (“document”) contains 650 base pairs (“letters
in a word”). Genetic sequences can have many similar patterns contained within
them, similar to how books in related genres contain similar words. In this model,
the genetic sequence is split up into words using a technique known as a k-mers-
based approach, and word frequency per document (species instance) is then used to
train a logistic model. By taking an NLP-based approach to understanding genetic
language, many of the well-established techniques from the field of NLP can be
applied to genetic sequences.

2.2 K-mers Based Model

An important distinction between natural language and genetic language is that a
genetic language does not contain a standard vocabulary: each genetic sequence is
completely unique. This means that the processing relies heavily on pattern recog-
nition and pattern matching. In computational genetics, k-mers refers to all possible
subsequences (of length k) from a genetic sequence [13]. For example, the genetic
sequence TCGATT has four unique 3-mers: TCG, CGA, GAT and ATT.
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This implementation of the model looked exclusively at 30-mers, as very low
level mers are extremely common within all sequences [14], and higher count mers
are too rare to occur in multiple sequences, similar to how word frequency varies
according to Zipfs law [15].

The advantage to using a k-mer based segmentation of genetic sequences com-
pared to traditional comparisons of genetic sequences is that it eliminates the need for
alignment. Traditionally, to compare two genetic sequences, the sequences would be
aligned at a spot thatwas assumed to be similar (for example: an important nucleotide)
and then the remaining base pairs in the genetic sequencewould be directly compared
for similarity. By using a k-mer approach, the alignment component is eliminated,
and the problem becomes one of pattern recognition. This can be considered equiva-
lent to classifying similar documents that contain certain words or certain substrings
of words.

One disadvantage to using a k-mers based approach is that genetic sequences
are often very similar, which may lead to a high overlap in subsequences; this is
comparable to the high frequency of common words in natural language. This can be
overcome by filtering out subsequences that are very common, or by only considering
longer k-mers.

3 Methods and Implementation Details

3.1 Logistic Regression

Once all of the genetic sequences were segmented into words, a logistic regression
model was trained. Logistic regression was chosen for this problem because the
dependent variable was binary: the instances either belonged to C. clupeaformis, or
they did not. The independent variables are each unique 30-mers, and each species
instance either tests positive (1) or negative (0) for that specific k-mer. The total
number of unique 30-mers from all sequences was 235,279 with each sequence
containing an average of approximately 626 unique 30-mers.

Logistic regression takes the unique 30-mers and weights them based on how
well they predict that a genetic sequence belongs to C. clupeaformis. The logistic
regressionmodels the probability that the observed data belong toC. clupeaformis, or
not, based onwhich of the independent variables (unique 30-mers) are present/absent
in each genetic sequence. The logistic regression model implemented came from
scikit-learn (sklearn) a free library [19] for Python [21].

To determine y, the probability of success (that is, that an observation belongs to
C. clupeaformis), we use the following equation,

y = eβ0+βx

1+ eβ0+βx
(1)



Evaluating a Logistic K-mer Based Model for Classifying … 615

Here, x is a vector of 1s and 0s indicating which of the unique 30-mers belong to
each observation, and β their corresponding weights.

In this model, each unique 30-mer has an associated β coefficient that is deter-
mined from the training data, using maximum-likelihood estimation. The output
of the model is the probability that an input sequence belongs to the class C. clu-
peaformis, given whether or not the input sequence contains or does not contain each
unique 30-mer. More formally, this can be written as P( sequence = C. clupeaformis
| x ).

An advantage to using a logistic regression model is that the probability that
an instance belongs to a class is outputted, which provides information about how
confident the model is that a certain instance belongs to a class. However, since the
coefficients that determine the weight of each feature are estimate using maximum-
likelihood, an artifact of this method is that no one feature will be weighted to 100%
separate the two classes: this means that even if a certain feature has 100% prediction
power, the model will not fully utilize this.

3.2 K-Fold Cross-Validation

An important design consideration was taking into account the relatively small data
set: the BOL project contains only 328 Coregonus records from Canada. There
was also the fact that 68.6% of these records belonged to C. Clupeaformis, while
the remaining records came from nine other Coregonus species. This means that
the classes (species clusters) within the data set are not proportionate, which may
introduce bias when training the model.

To combat the size of the data set as well as the stratification of the data set, k-fold
cross validation was implemented. Cross-validation is a re-sampling procedure that
is used to estimate the proficiency of a machine learning model [16]. It is widely
used, because it is fairly easy to understand, and it generally results in a less biased
or less optimistic estimate of the model skill [17]. In a traditional train/test split, a
set amount of the data is sampled for training, and the rest is carried over to test the
trained model. With k-fold cross validation, different train/test splits are used to train
and test k models. K-fold cross validation follows a standard process [16, 17]:

1. Take one section of the data as a test data set
2. Dedicate the remaining data as the training data set
3. Fit a model on the training data and evaluate on the test data set
4. Retain the evaluation score and discard the model
5. Begin step 1 with a different section as a test data set

In this model, a value of k=10 folds was chosen. In general, the higher the k
value, the less bias there is in the model, but this comes at a cost computationally. An
extension to this technique would be to implement stratified k-fold cross validation,
to ensure that each fold has the same proportion of instances from C. clupeaformis
group and the other species.
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3.3 Implementation Details

This experiment relied heavily on the Python library pandas for data structuring.
The FASTA files from the BOL project were loaded into pandas DataFrames. A
DataFrame is a dict-like container for series objects, that is a two-dimensional data
structure with labeled axes [18]. Pythons pandas library is excellent for handling
data, and this project made use of built in functions such as copying, indexing, and
splitting to restructure the data into a format suitable for the model.

The 30-mers for each genetic sequence were read into a dictionary, and each of
these dictionaries was merged in a new DataFrame. To generate a target DataFrame,
a direct string match for Coregonus clupeaformis was marked as True (1), otherwise
False (0).

The skikit-learn (import as sklearn)was used to train and test the logistic regression
model [19]. The scikit-learn library features various classification, regression, and
clustering algorithms, as well as supporting k-fold cross validation. The metrics
(scoring) of the model was also implemented using the scikit-learn library.

The data set used for this project was obtained from the Barcode of Life project
[20]. The Barcode of Life Database (BOLD) is a cloud-based data storage and analy-
sis platform developed at the Centre for Biodiversity Genomics in Canada [20]. One
component of the platform is the registry of BINs (putative species): currently there
are over 578,000 BINs [20].

While this model accuracy is important, we must also examine how robust the
model performs. We examine metrics other than just accuracy, to have a better sense
of how reliable the model is. When evaluating the model, we are concerned with four
types of outputs: true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN). The accuracy, precision, and recall metrics combine these output
types. Accuracy is often described as how well the model classifies on average. Pre-
cision and recall, however, indicate how often our model falsely classifies inputs. For
example, a model that classifies all sequences as whitefish would be 100% accurate
at classifying whitefish, since all whitefish are captured as whitefish. However, this
model would have low precision and recall, since there are likely many fish that do
not belong to this class, but they are being incorrectly labelled as whitefish.

Accuracy = T P + T N

total
(2)

Precision = T P

T P + FP
(3)

Recall = T P

T P + FN
(4)
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Table 1 Logistic 30-mers model metrics with 10 cross-fold validations

Metric Value (95% CI)

Accuracy 99.5 (97.9, 100.0)%

Precision 99.2 (96.9, 100.0)%

Recall 100.0 (100.0, 100.0)%

R2 Value 97.7 (90.9, 100.0)%

4 Results

The outcome of this model was the ability to classify C. clupeaformis at a 99.5 %
level of accuracy with a 95% confidence interval of (97.9, 100.0)%. A summary of
the model results and metrics is shown in Table 1.

5 Discussion

In this model, the high precision value indicates that the majority of positives gen-
erated belong to the class of true positives, which means that our model rarely clas-
sifies a non-C. clupeaformis as C. clupeaformis. The perfect recall indicates that
there were no false negatives: every C. clupeaformis was correctly indentified as C.
clupeaformis. Furthermore, the R-squared value of 97.7 (90.9, 100.0)% means that
almost all changes of the dependent variable are completely explained by changes
in the independent variables. Specifically, this means that the presence or absence
of the 30-mers can very accurately explain whether or not an instance belongs to C.
clupeaformis or not.

While all these metrics depict a model which is accurate, precise, and has high
recall, this may be due to over fitting of the model, which means that lower metrics
may occur with further testing. Future work will involve using more data (real and
simulated) to investigate further the robustness of this model. Next steps will include
reducing the dimensionality of the problem, as well as investigating how possible
parameter estimation.

6 Conclusion

In this work, the problem of classifying C. clupeaformiswas successfully addressed,
using a natural language inspired, k-mers based logistic regression model. One of the
main contributions of this project is demonstrating that this technique is not limited
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to natural language classification problems and lays the foundation for using more
complicated NLP-inspired techniques in the future.

A discussion on the specific techniques implemented was provided, as well as a
detailed discussion regarding the metrics of the model that was developed. This was
important to ensure that there was adequate confidence in the classification accuracy
of the model.

Further extension of this approachmay allow for classification ofmultiple species,
through an implementation of a multinomial regressionmodel. This describedmodel
will hopefully serve as a prototype for futureNLP-based species classification. Future
work will include increasing the amount of sequences used for training this model,
which will likely give a more complete perspective on the robustness of this model.
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Mathematical Modeling of Coupled
Electro-thermal Response of Nerve
Tissues Subjected to Radiofrequency
Fields

Sundeep Singh and Roderick Melnik

Abstract This study aims at developing a mathematical model taking into account
the effects of thermal pain sensation induced during the radiofrequency heating of
neural tissues. A three-dimensional heterogeneous computational domain compris-
ing of muscle, bone and target nerve has been considered. Importantly, the main
governing equations of the multi-scale and multi-physics model are: (a) a simplified
version of Maxwell’s equation utilizing a quasi-static approximation for estimating
the electric field distribution, (b) the Pennes bioheat transfer equation for estimating
the temperature distribution and (c) a modified Hodgkin-Huxley model for predic-
tion of nociceptor electrophysiology. The temperature-controlled radiofrequency has
been modeled on the neural tissue by utilizing the protocols applied in actual clin-
ical practices along with taking into account the temperature-dependent electrical
conductivity and blood perfusion rate. The effects of different values of preset target
temperature on the treatment outcomes of nerve ablation have also been quantified.
The findings of the present study would provide a priori information to the clinicians
that will be beneficial during the treatment planning stage of the therapy.

Keywords Thermal therapies · Pain relief · Nerve ablation · Nociceptor ·
Thermal pain · Coupled electro-thermal model

1 Introduction

Chronic pain is one of the most common problems affecting millions of Canadians
each year and contributes to the significant burden on healthcare resources (≈$7.2
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billion annually) [1]. The management of chronic pain is largely based on the use of
opioids medication, misuse of which could lead to negative effects such as physical
dependence and addiction [1, 2]. There has been a continuous quest for exploring
treatment options that are cheap and effective for long durations, and could minimize
the need for opioids. Radiofrequency ablation is one such treatment options that has
been frequently applied in the last decade for the management of different types of
chronic pain [3, 4]. The setup of the minimally invasive radiofrequency (RF) proce-
dure comprises of the RF generator, the dispersive ground pad and an electrode with
a small portion of the active length. Once the electrode is placed at the target site,
alternating current within the kHz range is delivered from the RF generator to the
target nerve via the active part of the electrode that is further captured and returned
back to the generator by the ground pad, forming a closed electric circuit. As the
RF current interacts with the biological tissue, frictional heating is induced due to
the agitation of ions present within the tissue electrolytes [2, 4]. By virtue of this,
temperatures above 50 ◦C are achieved close to the active site of the electrode leading
to biological changes such as protein and collagen denaturation and ultimately coag-
ulative necrosis. The attainment of high temperature (close to 100 ◦C) during the RF
procedure could further lead to side effects such as tissue charring and vaporization,
and is often an indication to stop the RF procedure as it results in a drastic decline in
electrical and thermal conductivities of the tissue, thereby acting as a barrier to the
efficient conduction of thermal energy [3]. In general, the RF power is delivered to the
neural tissue using different modes, viz., continuous and pulsed. In the conventional
continuousmode, the RF power is delivered to the target neural tissue in a continuous
manner, leading to the destruction of the axons and limiting the transmission of pain
signals. While, in the pulsed RF mode, short pulses of RF currents are applied to
the target nerve that allows heat to dissipate and restricts the attainment of tempera-
tures above 42 ◦C during the entire procedure, thereby avoiding any thermal damage
[2, 4].

Although the usage of RF procedure for mitigating chronic pain has been increas-
ing tremendously during the past decades, several questions and controversies still
prevail regarding the underlying mechanism, efficacy and benefits of RF [1, 2, 4].
Computational modeling can provide a cheap and viable alternative for quantifying
the underlying physics and providing a priori estimate of the treatment outcomes
that could assist the clinicians in optimizing and standardizing the treatment proto-
cols specific to particular target sites of neural tissues. In what follows, the present
study focuses on developing more realistic three-dimensional heterogeneous mod-
els of continuous RF for treating chronic pain. A temperature-controlled algorithm
has been used whereby the maximum temperature during the RF procedure won’t
be allowed to reach 100 ◦C to mitigate any chances of occurrence of undesirable
phenomena of charring and water vaporization. The effect of preset target tempera-
ture on the applied voltage, temperature distribution and ablation volume has been
quantified by conducting a coupled thermo-electric analysis. Furthermore, the rise in
tissue temperature during RF procedure could also lead to the induction of nocicep-
tive pain other than the target site and mainly close to the skin tissue. Importantly,
the transduction of nociceptive pain occurs through the nociceptors that reside at the
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ends of the long axons of neurons and mediate the selective passage of specific ions
or molecules across cell membranes at noxious temperature levels. The nociceptors
are one of the three kinds of peripheral nerves: myelinated afferent Aδ and Aα fibers,
and unmyelinated C afferent fibers. Thermal pain sensations are mainly mediated
by both myelinated Aδ and unmyelinated C fibers [5, 6]. Thus, the effect of such
nociception has also been taken into consideration within the computational model
of the temperature-controlled RF procedure.

2 Computational Modeling Details

The schematic of a three-dimensional heterogeneous computational domain com-
prising of muscle, bone and nerve tissue [7] considered in the present numerical
study has been presented in Fig. 1. A 22-gauge (5 mm active length) monopolar RF
electrode [8] has been inserted parallel to the target nerve, as shown in Fig. 1. The
temperature-controlled RF procedure has been performed by utilizing a closed-loop
feedback proportional-derivative-integral (PID) controller that continuously mod-
ulates the applied voltage at the active length of the electrode on the basis of the
difference between the preset target temperature and the predicted temperature at the
tip of the RF electrode [9, 10]. Three different values of preset target tip temperatures,
viz., 65, 75 and 85 ◦C have been considered. The dispersive ground electrode has
been modeled by applying zero voltage boundary conditions at the outer boundaries
of the computational domain. The initial voltage of the computational domain has

Fig. 1 (Color online)
Schematic of a
three-dimensional
heterogeneous computational
domain comprising of nerve,
bone and muscle tissue along
with monopolar RF electrode



624 S. Singh and R. Melnik

Table 1 Electric, thermal and biophysical properties of different materials considered in this study

Material σ (S/m) c (J/kg/K) k (W/m/K) ρ (kg/m3) ωb (s−1)

Muscle 0.446 3421 0.49 1090 6.35 × 10−4

Bone 0.0222 1313 0.32 1908 4.67 × 10−4

Nerve 0.111 3613 0.49 1075 3.38 × 10−3

Plastic 10−5 1045 0.026 70 –

Electrode 7.4 × 106 480 15 8000 –

been considered to be 0 V and the initial temperature has been considered similar to
the core body temperature of 37 ◦C. Thematerial properties considered in the present
study are provided in Table 1 [3, 7, 8, 11, 12].

The computational model considered in this study is based on the coupled thermo-
electric problemwhere electromagnetic energy is used to heat the neural tissue during
continuous RF procedure for treating chronic pain. Due to the lower frequency range
of 450-550kHzusedduring theRFprocedures, thewavelength of the electromagnetic
field is several orders of magnitude larger than the size of the active electrode. Thus, a
simplified version of Maxwell’s equations, known as the quasi-static approximation,
can be used to solve the electromagnetic problem without compromising accuracy
[3, 7–12]. The governing equation for the electrical problem is given by:

∇ · (σ (T )∇V ) = 0, (1)

where σ (+2 % per ◦C) is the temperature-dependent electrical conductivity (S/m)
[9] and V is the applied voltage (V). Further, the volumetric heat source, Qp (W/m3),
generated by RF currents within the biological tissue is given by:

Qp = J · E, (2)

where E = −∇V (in V/m) is the electric field and J = σ(T )E (in A/m2) is the current
density.

The governing equation for the thermal problem is the Fourier-conduction-based
Pennes bioheat transfer equation and is given by:

ρc
∂T

∂t
= ∇ · (k∇T ) − ρb cbωb (T − Tb) + Qm + Qp, (3)

where ρ is the density (kg/m3), c is the specific heat capacity (J/kg/K), k is the
thermal conductivity (W/m/K), ρb is the density of blood (3617 kg/m3), cb is the
specific heat capacity of blood (1050 J/kg/K), ωb is the blood perfusion rate (1/s)
i.e. volume blood per unit mass of tissue per unit time, Tb is the blood temperature
(37 ◦C), T is the unknown temperature of the tissue to be computed from Equation 3,
Qp is the volumetric heat source (W/m3) computed using Eq. 2, Qm is the metabolic
heat generation (W/m3) that has been neglected in the present study [8] due to its
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insignificant contribution as compared to Qp and t is the duration of the temperature-
controlled RF procedure (s).

In the present computational study, a temperature-dependent piecewise model of
blood perfusion rate has been considered. Accordingly, a constant predefined value
of blood perfusion rate has been assumed below the tissue temperature of 50 ◦C and
beyond that, the value of blood perfusion rate has been considered to be zero owing to
the complete cessation of blood perfusion rate due to the collapse ofmicrovasculature
within the tissue [13] and is given by:

ωb(T ) =
{

ωb,0 for T < 50 ◦C
0 for T ≥ 50 ◦C

}
, (4)

where ωb,0 is the constant blood perfusion rate of tissue provided in Table 1.
The ablation volume (V̇ ) induced during the temperature-controlledRF procedure

for chronic pain relief has been quantified using the isotherm of 50 ◦C (i.e. the volume
of tissue within the computational domain having temperature ≥ 50 ◦C after the RF
procedure) [13] and is given by:

V̇ =
∫∫∫

�

dV (mm3) (where � ≥ 50 ◦C). (5)

AmodifiedHodgkin-Huxleymodel has been used formodeling the nociceptor signal
transduction induced due to the high temperature attained during the RF procedure
close to the skin surface. It is given by [5, 6]:

Cmem
dVmem

dt
= Ist + INa + IK + IK2 + IL , (6)

where Vmem is the membrane potential (mV) that is positive for depolarized mem-
brane and negative for hyperpolarized membrane, t is the neuronal discharge time
(ms), Cmem is the membrane capacitance per unit area (μA/cm2). INa , IK and IL
are the sodium, potassium and transmembrane leakage currents (all in μA/cm2),
respectively, while IK2 is the fast transient potassium current. They are computed as
follows:

INa = gNam3h (VNa − Vmem) ; IK = gKn4 (VK − Vmem) , (7)

IL = gL (VL − Vmem) ; IK2 = gA A3B (VK2 − Vmem) , (8)

where VNa , VK , VL and VK2 are the corresponding reversal potentials (in mV) for the
sodium, potassium, leakage and fast transient sodium currents, respectively, gNa , gK ,
gL and gK2 (in mS/cm2) are the maximum ionic conductances per unit area through
the sodium, potassium, leakage and fast transient sodiumcurrent components, respec-
tively; m, n and h are the gating variables, and A and B are factors having the same
functional significance as factors m and h. Ist = Imechanical + Iheat + Ichemical is the
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total stimulation induced current (inμA/cm2) that can be computed as the sum of the
currents generated due to the opening of mechanically-, thermally- and chemically-
gated ion channels, respectively. Since in this study only the thermal stimulation was
applied on the axons, thus only thermally-gated ion channels were considered for
the generation of stimulation current [6] and is given by:

Ist = Iheat =
([

Ch1 exp

(
(T − Tthr )/Tthr

Ch2

)
+ Ch3

]
+ Ishi f t

)
· H(T − Tthr ),

(9)
where T is the temperature experienced by nociceptors, Tthr is the thermal pain
threshold temperature, Ch1, Ch2 and Ch3 are constants and Ishi f t is the shift current
that ensures that the action potential is generated when T ≥ Tthr while none is
generated if T < Tthr . H is the Heaviside function accounting for the threshold
process. The gating variables: m, n and h can be computed from the following
equations [6]:

dx
dt = αx (1 − x) − βx x, (10)

αn = −0.01 (Vmem + 50)/(exp [− (Vmem + 50)/10 ] − 1), (11)

αm = −0.1 (Vmem + 35)/(exp [− (Vmem + 35)/10 ] − 1), (12)

βn = 0.125 exp [− (Vmem + 60)/80 ] ; βm = 4 exp [− (Vmem + 60)/18 ] , (13)

αh = 0.07 exp [− (Vmem + 60)/20 ] ; βh = 1/(exp [− (Vmem + 30)/10 ] + 1), (14)

where x is one of the three gating variables (m, n or h),αx andβx are the rate constants
(s−1) determined from the voltage clamp experiments [6]. Further, the factors A and
B are determined from the following sets of equations [6]:

τA
dA
dt + A = A∞, (15)

A∞ =
(
0.0761 exp[(Vmem+94.22)/31.84 ]

1+exp[(Vmem+1.17)/28.93 ]

)1/3
, (16)

τA = A f ac

(
0.3632 + 1.158

1+exp[(Vmem+55.96)/20.12 ]

)
, (17)

τB
dB
dt + B = B∞, (18)

B∞ =
(

1
1+exp[(Vmem+53.3)/14.54 ]

)4
, (19)

τB = B f ac

(
1.24 + 2.678

1+exp[(Vmem+50)/16.03]

)
. (20)

Motivated by [6], the values of different parameters used in the nociception model
are: Cmem = 2.8 μF/cm2, gK2 = 47.7 mS/cm2, gNa = 120 mS/cm2, gK = 36 mS/cm2,
gL = 0.3 mS/cm2, A f ac = B f ac = 7.0, VNa = 57.19 mV, VK = -78.78 mV, VL = -63.79
mV, Ch1 = Ch2 = 2, Ch3 = -1 μA/cm2, Tthr = 43 ◦C and Vrest = -70 mV.

The coupled thermo-electric models of temperature-controlled RF procedure
for treating chronic pain have been solved by the Finite Element Method (FEM)
using COMSOL Multiphysics 5.2 software [14] utilizing an adaptive time-stepping
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scheme. The computational domain has been discretized using heterogeneous tetra-
hedral mesh, comprising of 174486 elements and 476384 degrees of freedom, con-
structed with COMSOL’s built-in mesh generator. A further refinement in the area
surrounding the active tip of the electrode has been applied, where the highest elec-
trical and thermal gradients are expected. A mesh convergence analysis has been
carried out to determine the optimal number of mesh elements that would result in a
mesh-independent solution. The temperature distribution computed from the coupled
thermo-electric model was fed in the MATLAB code of the modified Hodgkin Hux-
ley model for predicting the nociceptor response to these predicted temperatures. All
simulations were run on a Dell T7400 workstation with Quad-core 2.0 GHz Intel®

Xeon® processors.

3 Results and Discussion

The effect of different values of preset target temperature, viz., 65, 75 and 85 ◦C,
on the tip temperature and the applied voltage during the temperature-controlled
RF procedure has been presented in Fig. 2. As it is evident from Fig. 2, initially,
the applied voltage value increases monotonically till the preset target temperature

Fig. 2 (Color online) Variation of the applied voltage (red) and tip temperature (black) with respect
to time for different values of preset target temperature: a 65 ◦C, b 75 ◦C and c 85 ◦C
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has been attained and afterward it declines to maintain the preset value of target
temperature. This is true for all values of preset target temperature considered in this
numerical study, although the rise in the values of preset target temperature results
in the corresponding rise in the applied voltage profile. This can be attributed to
the requirement of more energy for attaining the higher target temperature value
in comparison to attaining the lower value of target temperature. The maximum
values of applied voltages for the preset target temperature of 65, 75 and 85 ◦C have
been found to be 10.66 V, 12.54 V and 14.19 V, respectively. Furthermore, the time
required to attain the preset temperature of 65, 75 and 85 ◦C has been found to be 66
s, 57 s and 51 s, respectively. The variation of target tip temperature follows a similar
trends to that of applied voltage, whereby the temperature rises from the core body
temperature of 37 ◦C, i.e. the initial temperature within the computational domain,
to the preset value of target tip temperature with an overshoot of ±5 % which is
common in clinical procedures.

Figure 3 presents the comparative analysis of the total ablation volume (within
the entire computational domain) and nerve ablation volume corresponding to the
isotherm of 50 ◦C for different values of the target temperature. The total ablation
volume after 120 s of the temperature-controlled RF procedure has been found to be
110.86, 222.79 and 357.50 mm3 for the target temperature values of 65 ◦C, 75 ◦C and
85 ◦C, respectively. Similarly, the damage that occurred to the target nerve tissue alone
has been found to be 24.16, 48.91 and 75.48 mm3 for the above target temperature
values, respectively, after 120 s of the temperature-controlled RF procedure. Not only
this, the variations have also been found in the time at which the initiation of damage
occurs for different values of target temperature that basically decreases with the
increase of the target tip temperature. Thus, the efficacy of temperature-controlled
RF procedure for treating chronic neural pain is significantly dependent on the preset
target temperature.

Figure 4 presents the variation of temperature distribution for different preset
values of target tip temperature within the computational domain after 120 s of
temperature-controlled RF procedure. As depicted in Fig. 4, the attainment of critical
temperatures above 50 ◦C is not only confined to the target nerve, but also to a
considerable portion of the healthymuscular tissue on the opposite side of target nerve
and bone. The exposure of the muscular tissue just beneath the skin tissue to such
higher temperatures could lead to the transduction of nociceptive pain signals through
the nociceptors of peripheral nerves (viz., myelinated afferent Aδ and Aα fibers; and
unmyelinated C afferent fibers) residing at the ends of the long axons of neurons.
Thus, the present study also models the effects of such high temperature attained
on the healthy muscular tissue during the temperature-controlled RF procedure for
chronic pain relief. Figure 5presents themembranepotential and frequency responses
under different values of stimulus temperature, viz., 43, 45 and 50 ◦C. It can be clearly
observed from Fig. 5 that the frequency of action potential spikes increases as the
nociceptor temperature increases from 43 and 50 ◦C. The pain level induced due
to nociceptor temperature is decided by this signal frequency (i.e. action potential
spikes), and thus, the thermal pain level increases as the temperature increases. Such
a priori estimates about the transduction of nociceptive pain induced due to thermal
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Fig. 3 (Color online) Variation of a total damage volume, and b nerve damage volume, with
respect to time for different values of preset target temperature during the temperature-controlled
RF procedure for chronic pain relief (on the insert, black: 65 ◦C, red: 75 ◦C, blue: 85 ◦C)
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Fig. 4 (Color online) Temperature distribution (in ◦C) obtained after 120 s of temperature-
controlled RF procedure for different values of preset target temperature: a 65 ◦C, b 75 ◦C and
c 85 ◦C

Fig. 5 Predictions of the thermo-neural response of nociceptors at different values of stimulus
temperature, viz., a 43 ◦C, b 45 ◦C and c 50 ◦C
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stimuliwould assist themedical practitioners in designing the anesthesia-free thermal
ablation procedures for chronic pain relief.

Future studies will be focused on developing fully coupled thermo-electro-
neuronal models by taking into consideration the effect of temperature on the mem-
brane conductance in the Hodgkin-Huxley model and non-Fourier heat transfer,
along with the incorporation of actual nerve damage models accounting for decre-
ment of the pain signals when exposed to RF procedures [15, 16]. This will enhance
the accuracy of the predictive outcomes from the current model that can be readily
integrated into the hospital workflow during the real-time treatment of chronic pain
among actual patients in clinical settings. Moreover, image-based patient-specific
models derived from actual patient data could significantly assist in bridging the gap
between computational and experimental findings.

4 Conclusion

A coupled thermo-electric analysis has been performed for quantifying the effect of
preset target temperature on the treatment outcomes of the temperature-controlledRF
procedure for chronic pain relief. The study reported a strongdependence of the preset
target temperature on the efficacy of RF procedure during neural ablation. It has been
found that the ablation volume increaseswith an increase in target tip temperature and
vice-versa. Further, a thermo-neuronal model has also been developed to quantify
the induction of pain sensation in the nociceptors during such procedures. These
predictions could be quite useful in designing the anesthesia-free RF procedure for
chronic pain relief. We expect that the advancement and extension of the developed
model can significantly assist the clinicians in better optimizing and standardizing the
thermal dosages required for enabling safe and reliableRF applications formitigating
chronic pain.
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Abstract Association rule mining can be a powerful computational tool for explor-
ing complex interactions between high-dimensional exposures and health outcomes.
Given the high-dimensional nature of the data, many complex association rules may
be identified. To narrow down on the most important rules for hypothesis-generating
and future investigation in the context of health research, we need an objective
approach to reduce the ruleset. The ranking is often based on the lift, a widely used
measure of association strength in data mining. In this paper, we show why the lift-
based ranking is undesirable from a population health perspective.We propose a new
approach to select rules obtained from association rule mining. This new approach
considers both association strengthmeasured by relative risk and the excessive health
burden in the target population. We use a case study of rules mined from industrial
airborne pollutant mixtures and birth outcomes, comparing rules selected using our
proposed approach to those selected using lift.
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1 Background

The motivation data set for this work comes from the Data Mining & Neonatal Out-
comes (DoMiNO) study, which aims to advance the knowledge on how exposure to
low-dose airborne chemical mixtures during pregnancy affects birth outcomes [4].
Exposure to certain chemicals in the air from industrial pollution has been shown
to increase the risk of diseases, including adverse birth outcomes (ABO), which is
a significant concern for health scientists and medical practitioners [7]. However,
the effects of industrial air pollution on ABOs are still inadequately understood
with inconsistent findings [7]. Over one hundred distinct industrial chemicals often
co-emit into the air, possibly having interactive effects on pregnancy. Classic epi-
demiological approaches for association analysis are not fully equipped to handle
the complexity of high-dimensional and high-order interactions. Spatial association
rule mining offers an attractive alternative to explore the complex relationship in
this type of investigation [15], e.g. associations between chemical mixtures and birth
outcomes.

Association rule mining is a method for discovering interesting relations between
variables in high-dimension datasets by analyzing patterns of if-then co-occurrence
of antecedent(s) (the “if” part) and a consequent (the “then” part). The if-then asso-
ciations are called association rules. Association rule mining algorithms use indices
of so-called “interestingness” to generate and select association rules from complex
high dimensional datasets [13]. In association rule mining, one widely used index is
“lift” [17], defined as the ratio of the joint occurrence of an antecedent (A) and con-
sequent (C) to the product of marginal occurrences of A and C, adjusting for the total
number of records, i.e. P(AC)

P(A)P(C)
[3]. However, ranking association rules by lift have

critical drawbacks. A specific concern for health researchers is that lift-based rule
ranking may overlook association rules with high prevalence of antecedents (e.g. a
mixture of chemicals) that are strongly associated with the consequents (e.g. adverse
birth outcomes) [18]. This is undesirable and should be avoided from a population
health perspective because rules poorly ranked by lift could be of significant interest
in health studies.

In this paper, we propose a new approach for ranking rules obtained from asso-
ciation rule mining in the context of population health. It overcomes the limitations
of the lift-based ranking and identifies rules that are most likely consequential for
the target population. We illustrate both approaches using the DoMiNO spatial data
mining example where the association of mixtures of airborne chemicals and birth
outcomes is of interest.

2 Methods

2.1 Definitions and Notations

Key concepts and definitions are introduced below using a two by two contingency
table (Table 1). In the remainder of the paper, we will use A for antecedents and
C for consequents, which is equivalent to the epidemiology terms of exposure and
outcome, respectively.
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Table 1 Contingency table based on counts

Consequent (Yes) Consequent (No) Total

Antecedent (Yes) a b a + b

Antecedent (No) c d c + d

Total a + c b + d N = a + b + c + d

In data mining, the association strength is measured with lift, defined as

li f t(C |A)
def== P(C |A)

P(C)

def== P(CA)

P(C)P(A)
= aN

(a + c)(a + b)
. (1)

In epidemiology, the association strength is typically measured with the concept
of relative risk (RR) [5]. RR is defined as the ratio of the occurrence of C in subjects
who are exposed to A and the occurrence of C in subjects not exposed to A, adjusting
for the total number of exposed and non-exposed subjects. It can be expressed as

RR
def== P(C |A)

P(C | Ā) =
a

a + b
c

c + d

. (2)

RR measures the “effect” of A on a relative scale. We have previously shown that
RR and lift are closely related in [18], i.e.

RR =
(
1 − P(A)

)
li f t

1 − P(A)li f t
. (3)

Compared to lift, RR is always numerically further from the null value of 1 in
both directions when an association exists between C and A. Figure 1 (reproduced
from [18]) visualizes the RR-lift relationship for various level of P(A).

While RR is a relative measure, another important measure in health studies for
the “effect” of A uses an absolute scale. The excessive number of C (e.g. ABOs)
attributed to A measures the population health burden of C due to exposure to A [5].
This excessive number is proportional to a concept “attributable excessive burden”
(AEB), which is the difference in consequent probability between the presence and
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Fig. 1 Relationship between relative risk and lift

absence of antecedent multiplied by antecedent prevalence.

AEB
def==P(A)(RR − 1)P(C | Ā) = P(C) − P(C | Ā) = a + c

N
− c

c + d
. (4)

High AEB indicates a high burden that could be attributed to A [5]. Thus, in theory,
exposures that have higher AEBs should be targeted to reduce the burden of C more
effectively.

2.2 Ranking Association Rules

It is benefical to use a case study to discuss ranking of association rules in a concrete
way.

A Case Study
The DoMiNO study used spatial association rule mining to identify mixtures of
industrial airborne chemicals associated with ABO, including small for gestational
age (SGA), preterm birth (PT), and low birth weight at term (LBWT) [4]. A detailed
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description of the data sources and inclusion/exclusion criteria is provided elsewhere
[16]. Briefly, population based birth outcomes were obtained from the Alberta Peri-
natal Health Program (APHP) in the Canadian province of Alberta [2] and included
333,250 singleton live births from 2006 to 2012, of which 29,679 were SGA, 22,733
were PT, and 5,485 were LBWT. The exposure of pregnant women to all registered
industrial airborne chemicals (m = 136) during the same period was ascertained from
industrial emissions data collected by National Pollutant Release Inventory [6] and
wind pattern data from 182 stations in Alberta Agriculture’s AgroClimatic Infor-
mation System 2010 [1]. The location of the emission sites, the average emission
amount, and the predominant wind (direction and speed) at each site were used to
create a dispersion region for each chemical [14]. A pregnant woman was consid-
ered exposed to a chemical if her activity area (a 5 km radius from the center of the
postal code of her residence) overlapped with the dispersion region of the chemical,
as illustrated in Fig. 2 (reproduced from [18]). Each birth and exposure to the chem-
ical(s) form a {chemical(s), birth outcome} transaction for the spatial association
rule mining.

The Kingfisher algorithm [8, 9] uses Fisher’s exact test to identify significant non-
redundant rules for positive associations among all “transactions” using an uncor-
rected p-value threshold of 0.05. Of the 10,788 rules identified, 2,238, 5,497 and
3,053 were associated with SGA, PT, and LBWT, respectively. The combinations
of antecedents included up to 8 chemicals, with lift values ranging from 1.00 to
1.53, corresponding RRs from 1.02 to 1.61, and an extensive range of antecedent
prevalence from 0.08 to 98.73%.

As the study aims to explore the relationship between chemical mixtures and birth
outcomes, we face the question of how to reduce this large set of more than 10,000
positive rules to a more manageable number.

Problem with lift-based ranking
The conventional data mining approach ranks these rules by lift [17]. However,
equation (1) and Fig. 1 demonstrate that the value of lift depends on the prevalence
of A (P(A)) for a fixed outcome. Consider a hypothetical case where RR = 4 (very
strong association) and prevalence = 0.95 (extremely high prevalence). In this case,
the rule has a corresponding lift of 1.04, which is very close to the null value 1.00,
indicating no association. Therefore, ranking by the size of lift would give a low rank
to rules that are most consequential to population health and thus the most important
to identify.

A new rule selecting method for health outcomes
To select relevant rules using an epidemiological and population health lens, we
consider two aspects. First, under the causal framework in health research, the ability
to isolate the effect of individual exposures is critical. Relative risk aligns well with
the causal framework based on the counterfactual theory [10, 12]. The counterfactual
theory states that A causes B if A leads to B, and the difference in the presence of B
by the presence versus absence of A is the causal effect. At an individual level, it is
impossible tomeasure this counterfactual effect aswe can observe either the presence
or absence of A and the corresponding outcome, not both simultaneously. However,
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Fig. 2 Illustration of spatial datamining algorithm assigning airborne chemicals exposure to births,
which is based on maternal residences, chemical emission sources, and wind information. In this
illustration, subject A is exposed to both C1 and C2. Subject B is exposed to C1

the counterfactual effect can be estimated at a population level using comparable
groups where the only difference is the presence versus absence of A, such as in a
randomized control trial. RR fits this philosophy well, comparing the probability of
consequent under the presence versus absence of the antecedent, which differs from
lift where the presence of an antecedent is compared to themixture of its presence and
absence [10, 12]. As association strengthmeasured by RR is an essential criterion for
causation, a rule with high association strength is more likely a causal relationship,
widely accepted in health sciences with work from the well known Bradford Hill
[11]. Thus, we suggest converting lift to RR using equation (1) and ranking the rules
according to RR and a meaningful association strength threshold, e.g. 1.3, to focus
on rules that are more likely causative.

Second, we also consider the absolute “effect” of the antecedents. As the defini-
tion for AEB suggests, excessive burden attributable to an antecedent is positively
associated with the prevalence of the antecedent P(A). Therefore, to focus on the
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rules with a high excessive burden, we suggest imposing a threshold by P(A), e.g.
0.3.

The association rule mining using the Kingfisher algorithm was conducted in
Python [8]. The association rulemining results, including lift, support and confidence,
were then converted to RR using an R function/SAS macro [18]. which is available
on our website, https://sites.ualberta.ca/~yyuan/software.html.

3 Results

We used the rules identified from the DoMiNO study to illustrate the disadvantage
of ranking by lift and to compare our proposed approach with the lift-based ranking
approach. We focused on the 3,053 rules for LBWT, one of the three adverse birth
outcomes, as the results from the other two outcomes are similar. In those 3,053
rules, the range of RR went from 1.07 to 1.61, the range of lift from 1.00 to 1.53,
and the P(A) varied from 0.4 to 99%.

Table 2 shows the correlation between antecedent prevalence, lift, RR, and AEB
of those 3,053 rules. The lift was negatively correlated with AEB, i.e. rules with
higher lifts were more likely to have lower AEB (r = –0.11). Lift was also negatively
correlated with antecedent prevalence (r = –0.35).

RRwas positively correlated with AEB (r = 0.43). Table 2 also shows that RRwas
weakly correlatedwith P(A) (r = 0.19).We also calculated the lift-RR rank difference.
A positive lift-RR rank difference means that a rule was considered more important
by RR-based rank than lift-based rank. P(A) was strongly correlated with the lift-RR
rank difference (r = 0.88), which means that the discrepancy between lift-based rank
and RR-based rank became larger with increasing P(A). This illustrates that for rules
with a higher antecedent prevalence value (i.e. likely resulting in a higher burden),
the lift-based ranking becomes increasingly distant from the RR-based ranking.

As expected, the antecedent prevalence and AEB are highly correlated (r = 0.96).
This strongly supports the inclusion of P(A) in shortlisting rules for further investi-
gation.

Table 2 Correlations matrix for 3053 rules for low birth weight at term (LBWT)

P(A) lift RR Lift-RR rank
differencea

AEB

P(A) 1

lift –0.35 1

RR 0.19 0.85 1

lift-RR rank
differencea

0.88 –0.16 0.34 1

AEB 0.96 –0.11 0.43 0.90 1
a lift-RR rank difference = lift-based rank − RR-based rank

https://sites.ualberta.ca/~yyuan/software.html
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We applied the proposed rule selection method to the rules associated with the
LBWT consequent. As an association is considered to exist if RR ≥ 1.2 [19] and the
largest RR for LBWT in the DoMiNO study data was 1.6, we examined the selection
method with combinations of RRs (≥ 1.20, ≥ 1.30, ≥ 1.35) and P(A) (≥ 0.2, ≥ 0.3,
≥ 0.5, ≥ 0.7). We present the results with RR ≥ 1.3 and P(A) ≥ 0.3 in Table 3 as the
results from different combinations of RRs and P(A) were consistent.

A total of 358 rules met this criterion. The number of antecedents in the 358 rules
ranges from 1 to 7 chemicals. The lift values of the selected rules range from 1.01 to
1.21, leaving out lift values greater than 1.21 (up to 1.53). Table 3 shows that the top
rule from this list only ranked 800th according to lift. Lift-RR rank differences ranged
from –76 to 2,352, with only eight rules receiving better rank using lift than using
RR. As discussed above, one crucial step towards establishing a causal relationship
between a specific chemical mixture of interest and LBWT is the strength of the
chemical-LBWT association as measured by the relative risk. Exposure to any of
the 358 chemical mixtures was associated with a 30 to 35% increase in the risk of
LBWT. These relative risk estimates would be the causal effect sizes defined by the
counterfactual framework if the causation conditions were met.

On the other hand, it is not straightforward to interpret the lift values of 1.01–1.21
[18].Whilewe can see associations between exposure to some chemicals and LBWT,
due to their corresponding lift values being greater than 1.00, it is not possible to
describe the strength of the associations. Notably, some of the lift values associated
with the 358 rules were very close to the null value 1.00 (i.e. no association).

These shortlisted rules correspond to AEB values of 0.15 to 0.42% of all 333,250
births, equivalent to 500–1,384 exceeding cases of LBWT, implying that these rules
could be “responsible” for 500–1,384 cases in a total of 5,485 LBWT cases. If we
rank the 358 rules according to AEB, they occupy the 1st to 1,114th position; Four
of these rules are in the top 10, and 10 are in the top 50 AEB-based rules. The
eight rules receiving better rank positions with lift than with RR were among the
least important rules according to their AEB values. As mentioned, the analyses of
different thresholds of RR (1.20, 1.30 and 1.35) and P(A) (0.2, 0.3, 0.5 and 0.7)
produced similar results; the rules being removed are those with the highest values
of lift. Besides, few or no rules are ranked higher by lift compared to their ranks by
RR. This pattern is increasingly more evident as P(A) increases.

The top 100 AEB-based rules for LBWT have high P(A) levels, ranging from
0.57 to 0.99, as expected by the existing high correlation of AEB with P(A). Among
these top 100 rules, some correspond to a slightly lower association strength (RR
between 1.2–1.3).

4 Discussion

Data mining tools have been increasingly used in health research utilizing linkable
massive administrative databases to explore and discover potential associations in a
high dimensional setting. It often results in a large number of rules that need to be
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Table 3 A summary of rules for LBWT with RR ≥ 1.3 & P(A) ≥ 0.3

Rules (n = 358) Minimum Maximum

No.chemicals 1 7

P(A) 0.30 0.97

RR 1.30 1.35

RR-based rank 695 1,092

lift 1.01 1.21

lift-based rank 800 3,049

lift-RR rank differencea –76 2,352

AEB (N)b 500 1,384

AEB (%) 0.15 0.42

AEB-based rank 1 1,114
a lift-RR rank difference = lift-based rank − RR-based rank
bNumber of excessive LBWT cases attributable to the effect of antecedent = N × AEB(%)

reduced to a manageable subset for further investigation.We propose a new selection
method designed for rules generated from data mining for health outcomes.

The conventional lift-based rule ranking approach may be problematic when
studying health outcomes. A foundation of health research is the causal framework.A
measure of association strength, such as lift, is highly undesirable when it negatively
correlates with P(A) and the attributable excessive burden.

Our proposed rule selectionmethod rests onRRand the prevalence of antecedents.
RR can be readily calculated from lift [18]. RR is awell-established standardmeasure
of association strength that aligns with the causal framework. High RR values are
indicative of a real association, making rules with high RR values attractive for
further investigation. P(A) is highly correlatedwith the attributable excessive burden.
Thresholding bothRRandP(A) to reduce the number of rules for further investigation
is consistent with the guiding principles in population health research.

It should be cautioned that the reduced rules obtained from the proposed process
are exploratory and should be investigated carefully using a standard epidemiolog-
ical framework such as multivariable analyses to control for potential confounding
effects. For example, in the study of the adverse birth outcome, maternal risk fac-
tors should be adjusted. Multiple testing of a large number of hypotheses simultane-
ously in the datamining process can generate false-positive associations. Approaches
such as permutation to correct for p-values and control false discovery should be
considered.
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About the Algorithms of Strategic
Management

Manana Chumburidze, Mzia Kiknadze, Nino Topuria, and Elza Bitsadze

Abstract This article is devoted to the development of generalized dynamical pro-
gramming methods of mathematical and computational approaches for solving opti-
mization problems in modern business. The risk mitigation strategies of projects
selection in corporate network of company have been discussed. The multistage
graph-model of iterative planning projects has been constructed. The algorithm to
solve optimization problem of project management with a minimized risk criteria
has been delivered. The tools applied in this development based on the graph theory
applications and queuing implementations.

Keywords Optimization problems · Graph theory · Dynamical programming

1 Introduction

Optimalmanagement strategies inmodern business is a base source on the latest inno-
vations in enhancing main management functions, such as projects development in
corporate network of company. Project management plays a crucial role in enabling
companies to transform business and execute strategy effectively. Strategic project
management that same level of structure and consideration can also be applied to
selecting projects for organizations. Not every project is a good idea. Project selec-
tion methods [3, 7, 8] essential for an effective business plan. There are variety
of documented methods for selecting project. There are a number of approaches
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to organizing and completing success of any project.Regardless of the methodol-
ogy employed, careful consideration must be given to the overall project objectives,
timeliness, risks and cost. There are several project management techniques through
a focus on outcomes (benefits) of a project. This can help to reduce the risk of a
completed project being a failure.

This paper describes a new technique forward and backward approaches of
dynamical programming method (DP) [4, 5] which modifies the usual backtracking
procedures of optimal policies. In our investigation this problem with generalized
DP approaches as a powerful algorithms has been solved. In this paper optimization
problem of projectsmanagement divides into the simple sequences of optimal project
selection problems inwhich they are interrelated leading to decisions. Several classes
of graph optimization problems, which can be solved using DP, are known to have
more efficient tailor-made algorithms. In the DP, there is no standard formula that
can be used to make a certain formulation. The success of DP lies in the fact that
an optimum solution to a sub problem usually depends only on the optimum values
of adjacent sub problems and not on the structure of these adjacent sub problems.
In this paper we are using the multistage graph modeling method [1, 2, 11] because
graph is a particular way for visualization of the storing and organizing dates of
the investments and corresponding profits. In graph terminology, we may consider
an elementary sub problem as a node and the computational effort to solve the sub
problem as weight. The interrelationship between the sub problems is the underlying
constraint graph showing which sub problems (nodes) can be combined. The final
goal is to successively cluster all the nodes of the underlying constraint graph into
one node.

2 Notations and Definitive Concepts

This paper discusses forward approaches (from start stage to end stage) to con-
struct multistage graph for modeling of selected project investment and backward
approaches(from end stage to start stage) to find path with minimal risk value and
to know whether they make the same final decision [5]. The project under consider-
ation is assumed to involve invest incurred over a period with a risk value. One of
project management’s primary functions is tomapping out a clear plan of the projects
selection from the beginning to the end period of consideration [6, 10].

There are the following sub-problems discussed:
• Investigation dynamic model of multistage plan of project selection in corporate
network company;
• Investigation method of generalized DP approaches;
• Justify an algorithms of solution;
• Create a pseudo code for software implementation;
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Decision problem include the following stages:
•Construct the graph-model into several sequential stages of projects selection start-
ing on from the stage start to the end stage. Where stages designates of current
project selection. The vertex of graph are used for storing the sum invests and edges
of graphs are labeled by the probability-risk of the corresponding project selection
stage. The results obtained at each stage are used for the states in the next stage so
that at the forward stage is obtained and used as a consideration of the decision in
the next stage.
• Find out solution of optimization problem into several successive sequential stages
starting from the stage-end by backward DP and interconnected with a decision rule
in each stage.

Find the optimal solution with cost at next stage based on the characteristics of
the DP, the case is divided into several stages and the decision has to be made at
each stage. In the backward, used firstly stage is obtained and used as a consideration
of the decision in the next stage. Cost backward always increase steadily, because
the cost in the next stage depends on the cost in the previous stage and formed the
decision of each stage by taking the smallest value previous sub-problem. Therefore
backward approaches have the optimal result.

2.1 Statement Problem

In this section dynamic model of multistage plan of project selection in corporate
network company has been investigated by DP approaches. Let us m is number
of given application of projects in the same company. Two different projects cannot
be overlapped in time. In every application. The start and finish time of project is
indicated. Different applications can to be but only one of them will be.

Introduce the followingnotations:C = (Ci j )nxm-matrix of initial values of projects
investment in company, R = (Ri j )nxm–matrix of values of corresponding risks,
P = (Pi j )nxm-matrix of projects, i-number of stage (period project selection); j-
number of project in current stage(i=1,..,n;- j=1,..,m),S- total sumof projects invests,
n-number of selection period of project, m-total number of projects within consid-
eration, X = (Xi j )nxm-Boolean matrix [9] described of selection projects.

Let us consider mathematical formulation of weighted project scheduling prob-
lem(WPS):

WPS problem. It is required to find the minimum risk subset of projects such that
no two projects in the subset overlap under the following conditions:

Constraint condition:∑n
i=1

∑m
j=1(Ci j [data]X ji ) ≤ S

Criteria of optimization:∑n
i=1

∑m
j=1(Ri j [data]X ji )− > min

where data is variable of invest
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WPS a special case of single-source shortest paths problems in graphs theory and it
has the optimal substructure, so it can be solved by DP method.

2.2 Solution Problem

Let us G = (V,E)-graph, where V is set of vertices, E is set of edges.

Definition.Gπ = (Vπ , Eπ ) is a predecessor sub graph to G=(V,E)with a source
vertex-A, where

Vπ = {u ∈ V : π [u] ‡ N I LL} ∪ {A}; Eπ = {(π [u], u) : u ∈ Vπ − {A}}
where π [u]-parent of u-node

Graph-modeling algorithm (GMA)from the start point to the end point is in a
breadth ward motion and uses a data structure queue to remember to get the next
vertex as start a new stage of invest.GMA used to model relations between of stages
periods of selection projects to find the minimum risk spanning tree by dynamic
programming approach. In particularly graph-creating algorithm include following
sub stages:
• In first stage create a set of edges of adjacent vertices of start vertex and arrange
them in order of invest and weight-age by correspond risk. we shall keep sum of
invests from beginning to current stage in vertices:
u[i][ j].data = currentv.data + c[i][ j] where v is vertex.
• Next we start adding edges of adjacent vertices to the graph beginning throughout
from each one vertex. Correspond set of selection projects for last period satisfy
following condition:
S − v[i][ j] ≥ 0
and continue until end (end vertex)stage. We will get to graph-data model of WPS
problem (see Fig:1).
Let us consider pseudocode [4] of corresponding algorithm:

GMA(G,startv)
{
for ∀u ∈ V [G] \ {startv, endv}
{u.data = 0;π [u]= N I LL;}
Startv.data = 0;π [Startv]= N I LL;Q =∅;
ENQUEUE(Q, startv) ;
while (!Q.empty())
{
currentv =
DEQUEUE(Q) f or(i = 0; i < project.vertexs.count − 1; i + +)

{u[i].data = currentv.data + c[i];
if (S-u[i].data ≥0)
{
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(currentvertex, u[i]) .label = r [i];
add u[i] in adj.set[current-vertex];
if u[i] en-visited
ENQUEUE (Q,u[i]); }; };
};
}

After completing graph-modeling algorithm we use backward DPapproaches
from end stage to start stage to find path with minimal-risk and to get the final
result. The algorithm treats the end vertex as a single source and apply the edge
relaxation to the graph to obtain the minimal paths (minimal value of risk) to the
adjacent vertices. It is possible to reconstruct the paths by repeatedly using the edge
of relaxation. In this algorithm the risk-probability of the shortest path with the
shortest-length route will calculated by save the predecessors for each vertex.
See pseudo code of relaxation algorithm:

Relax(u, ν, r )
{
if (d [ν] > d[u] + r(u, ν))

{d [ν] = d[u] + r(u, ν);
π [ν] = u; }
}
where d[ν] is label of vertex- ν.

A given problems has an optimal substructure property and DP algorithm is useful-
ness to solve it [10].

Lemma. Let us G = (V, E) is weighted graph with weigh function w : E → R,
then after relaxation of edge (u, v) ∈ E following inequality will be satisfied:
d[v] ≤ d[u] + w(u, v)

Proof. In case of a condition:d[v] > d[u] + w(u, v), after relaxationof edge (u,v)we
will get:d[v] = d[u] + w(u, v), else if d[v] < d[u] + w(u, v) then after relaxation
of edge (u,v) the values of d[v] and d[u] do not changed, so after relaxation of edge
(u,v) will be satisfied the following inequality: d[v] ≤ d[u] + w(u, v)

Lemma. Let us G = (V, E) is weighted graph with weigh function w : E → R ,if
p =< ν1, ν2, ..νk > is shortest path from ν1 to νk and 1 ≤ i ≤ j ≤ k
thenpi j =< νi , νi+1, ..ν j > is a shortest path from νi toν j

Proof. If we break p-path up into parts: ν1 p1i︸︷︷︸
νi pi j

︸︷︷︸
ν j p jk

︸︷︷︸
νk then it will be

satisfied:
w(p) = w(p1i ) + w(pi j ) + w(p jk).
Let us exist a path from νi to ν j , with a condition:
w(p′

i j ≤ w(pi j )
then ν1 p1i︸︷︷︸

νi p′
i j

︸︷︷︸
ν j p jk

︸︷︷︸
νk is a path from ν1 to νk with a weight:

w(p′) = w(p1i ) + w(p′
i j ) + w(p jk) less than w(p) but it is impossible because p
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is shortest path from ν1 to νk
See pseudo code of backward DP algorithm:

Initialize-Single-Source(G, endv)
{
f or(i = 1; i ≤ V [G] − 1; i + +)

{ f or∀(u, ν) ∈ E[G]
Relax(u, ν, w) ; }
};
After completing solution project selection’ plan we should to print optimal plan of
selection projects.
See forward approach algorithm to print a shortest path in graph described projects
selection plan with minimization of risk:

PRI NT − PAT H(G, Startv, ν) {
print s;
if (π [ν] = N I L)

print "path not found";
else
PRI NT − PAT H(G, Startv, π [ν]);
printν; }
For simplest case, we have considered the particular example, when n=3, m=9 and
S=10.
Initial data value of projects costs with corresponding risk are presented in Table 1.
Let us consider one of them stages of forward approaches to create graph-model (see
Fig. 1):
• We start from visiting start vertex and mark it as 0.
• In the next we create adjacent-list of start vertex and save the initial dates of project
cost and label of edges by the corresponding risks. AccordinglyTable 1.With respect
to start vertex 0 we have three adjacent node (three alternative projects).
• In order to invest we choose first and mark it as 1 and create label of edge by 0,6,
then put it in queue (Q).
• In the next, we choose second and mark it as 2 and create label of edge
• In the next, we choose third and mark it as 3 and create label of edge by 0,9.
• In the next, put it in Q.
• Now, 0 is left with no en-visited adjacent nodes. So, we remove from Qand find 1.
After repetitively perform of similarly stages we will get the graph data model of
WPS.
allow us consider the stages of backward approaches to get minimal risk value:
• We are starting from visiting 10 (end vertex) and perform relaxation of adjacent
vertices in order 5, 6, 8 creating corresponding minimal risks labels: 0,9; 0,7; 0,5.
• In the next starting from visiting 5 to perform relaxation of adjacent vertex 2 by
creating corresponding minimal risk’s label 1,6.
• In the next starting from visiting 6 to perform relaxation of adjacent vertices in
order 1,3 by creating corresponding minimal risks labels 1,5; 1,4.
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Table 1 Initial dates of WPS

Project[i][j] First company Second company Third company

Select period C[i][j] R[i][j] C[i][j] R[i][j] C[i][j] R[i][j]

First period 1 0,6 3 0,7 2 0,5

Second period 2 0,8 5 0,8 4 0,7

Third period 3 0,9 6 0,9 5 0,9

0

2,1(1)

1

1,5(6)

0,6

2

1,4(8)

0,8

3

1,3(8)
0,9

6

0,7(10)

0,7

0,8

10

0

5

0,9(10)

8

0,5(10)

0,7

0,9

0,9

0,8

0,5

0,7

Fig. 1 Graph of projects selection

• In the next starting from visiting 8 to perform relaxation of adjacent vertices in
order 2,3 by creating corresponding minimal risks labels 1,4; 1,3.
• In the next startingt from visiting 1 to perform relaxation of adjacent vertex 0 by
creating corresponding minimal risk’s label 2,1;
• In the next starting from visiting 2 to perform relaxation of adjacent vertex 0 by
creating corresponding minimal risk’s label 2,1;
• In the next starting from visiting 3 to perform relaxation of adjacent vertex 0
by creating corresponding minimal risk’s labels 2,1. After completing minimal risk
finding algorithm, we will get the project selection plan and we perform of algorithm
to print up of path selection plan.
Best plan of project scheduling problem has a following result: For first company
will be selected project of first period with risk 0,6; For second company will be
selected project of second period with risk 0,8; For third company will be selected
project of second period with risk 0,7. Selection projects will get the minimal risk
value 2,1. The result of selection projects in the red line is exposed (see Fig. 1).
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3 Result and Discussion

In this work optimization problem of project management by the generalized DP
approaches to minimized projects risk has been solved. The particular example of
project selection problem within corporate network of company has been discussed.
Multistage graph-model to describe of projects invest with a corresponding risk-
probability has been constructed. The algorithms to build risk mitigation plan related
to minimal path in graph have been delivered. The planning results to all selected
project for implementation have been considered.
This investigation has a many advantages: forecasting and analyzing of projects risk
in any time; fluently make decision in the planning stage to select of candidates;
monitoring and managing projects flows; optimize projects flow; efficient in terms
of time complexity; the results enable to be applied in decision making problems to
optimize solution.
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Using Cognitive Fit Theory to Evaluate
the Effectiveness of Financial
Information Visualization: An Example
Using Data to Detect Fraudulent
Transactions

A. Czegledi, L. Scott Campbell, and D. Smiderle

Abstract The objective of this research was to investigate the impact that financial
data visualization (DV) has on decision making in detecting fraudulent transactions.
This study was focused on the effects of financial DV formats on accuracy and
speed. According to the Cognitive FitModel (CFM) the effectiveness of the problem-
solving process is a function of the relation between the problem-solving task and
problem representation. Participants of research study (95 accounting undergraduate
students) were assigned to different groups, each group was presented with the same
financial information in different formats: text, table and DV; and asked to identify
potentially fraudulent transactions. The study results suggested a strong relation
between presentation format and speed for decision making. This result could have
practical application: in order to enhance the decision making, organizations could
consider the presentation format of their financial data if decision is time sensitive.

Keywords Business information visualization · Information visualization ·
Cognitive fit · Fraud detection

1 Introduction

The main objective of this research was investigation of impact of data visualization
(DV) of financial information on decision making for business related scenarios.
Accountants are required to analyze data, use professional judgment and to see “the
big picture” in order to provide the right information at the right time for making
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financial decisions [12, 14]. Accountants add greater value to their organizations by
spending more time analyzing, interpreting, and providing information for decision
making rather than time spent preparing standardized reports [6, 15, 25].

In the current business environment professional accountants are required to
provide effective and accurate decision support based on large, complex data sets. It
takes significant time, effort and cost to understand and analyze information; and it
is even more challenging to present financial information in a concise and effective
format understandable by different levels of stakeholders. Accountants are looking
for techniques to interact with complex financial data and thoughtfully crafted visual-
ization can increase our understanding of data, it could help to see a big picture: reveal
patterns, quantities, changes over time, or recurring themes at a glance [26]. Engin
and Vetschera [10] emphasized importance of appropriate information presentation
form. Inappropriate presentation form may lead to weaker performance in decision
making for current and subsequent tasks.

Professional accountants are required to use effective and efficient methods
to communicate complex financial information in a timely manner. One possible
approach to achieve this task is to adopt DV. DV could help accountants with
analyzing financial data and deal with large data volume, diversity and complexity
of information [14, 16]. Today evolving technologies and increasing streams of data
create the need for visualizing effects, possibilities, and consequences. DV could
help to reduce the information volume to a manageable size, could help to focus on
crucial data points, to gain insights, draw conclusions by formulating theories on
the basis of patterns, themes and calculations, and present and convey an effective
message to the stakeholders [2, 14, 26].

DV converts data to a visual, user friendly format by creating a story [14, 26]
about business performance with visual impact that demonstrates interconnections
between various elements of operations and results. The messages in these stories
could leave a longer lasting impression on users of financial information compared
to standardized reports. DV has been already successfully utilized in many fields,
for example, in medicine, genetics, biology, forest planning, engineering, insurance
to name a few, and it is safe to predict that additional applications of DV will be
discovered in the future. Themain goals of DV are to explore and explain the data and
present information in a format that engages the human’s cognitive and visual abilities
[2]. DV helps to understand complex information by accumulating, grouping, and
displaying information in a more effective way [9].

Dilla, Janvrin, and Raschke [7, p. 1] defined DV as “computer-supported visual
representation of data that allows users to select the information they wish to view
and its format”. Data visualization enables easy communication and understanding
of large and complicated data sets. It enables the users to get a better appreciation and
comparison of the effects of the data [13]. Themain purpose of data visualization is to
visually illustrate or communicate data and or information in amanner where readers
could easily comprehend the informationwithout much need for quantitative or qual-
itative support and see into clear patterns and view the complex patterns or relation-
ships uncovered in the data mining process [28, 31]. Data visualization assists with
identifying trends, patterns, outliers, and or correlations between variables. It also
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enables the exploration of relationship that could be embedded in statistical models
and is fundamental to readers’ comprehension, interpretation, and understanding of
the information presented [4]. Rodriguez and Kaczmarek [26] highlighted few func-
tions of DV: making comparison (could save time for analysis), establishing connec-
tions (could help to understand interconnection among data), drawing conclusions
and help to solve complex questions.

There are two elements of DV that could impact the decision-making process in
an accounting environment. The first one is interactivity, or ability of user to manip-
ulate information views during the decision-making process. The second element
of DV is visualization or “the manner in which data are depicted or portrayed”
[1, 7, 19]. Characteristics of DV could impact the decision-making processes and
outcomes by changing the decision-making frame of reference, which information
to use and how. DV could improve the decision-making process by providing ability
to select, navigate, and restructure complex data [19], although DV may also lead
to overconfidence and biases in decision-making. Dull and Tegarden [9] explained
that from a cognitive science perspective, DV can improve problem solving capa-
bilities, as described by Miller [20] that a human‘s input channel capacity can be
increased by using visual abilities and reduce information overload. Schkade and
Kleinmuntz [27] noted significant impact of information presentation format on the
decision process. Effective DV should include the following characteristics [26]:
to be universal, immediate, concise, inviting, memorable, revealing, reusable and
versatile.

In business environment multiple types of DV are currently in use: statistical
software packages, technical computing languages, visualization software pack-
ages, open source programing languages, close-ended web-based libraries, open
web-based libraries, and custom code in proprietary programming language [4, 11,
26]. These solutions range in programming skills required, design flexibility, and
interoperability.

Type of DV tools for decision making depends on application, and rather than
recommending the use of specific DV. Rodriguez and Kaczmarek [26] suggested
getting familiar with framework in order to select appropriate type of DV tools in
each situation. Several metrics should be considered, such as size of project, type of
users (internal or external), available resources and capabilities.

This study focused on information presentation effects on a specific type of
management judgment or decision making—identification of potentially fraudulent
transactions. Fraud identification was selected due to critical importance of this issue
[8]. Organizations are looking for ways to combat fraud; an estimated $3.5 trillion in
revenue annually is lost due to fraud and it is recommended that DV could be applied
to complex fraud challenges [2, 14].
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2 Research Question

The Cognitive Fit Model has been used in developing research question and the
hypothesis for this study. According to the Cognitive Fit Model (CFM) the effective-
ness of the problem-solving process is a function of the relation between the problem-
solving task and problem representation [32, 33]. Vessey [32, p. 223] concluded that
“matching the problem representation to the type of task to be solved results in
improved decision-making performance“. Dull and Tegarden [9] emphasized that a
mismatch between the problem representation and the problem-solving task could
lead to a reduction in speed and accuracy in the decision-making process. Vessey
and Galletta [33] noted that based on information processing theory, human problem
solvers will seek ways to reduce their problem-solving effort, since they are limited
information processors [22]. Reduction in problem solving effort could be achieved
by matching the problem representation to the task, an approach that is known as
Cognitive Fit [32]. CFM is a cost–benefit characteristic that suggests that for the
most effective and efficient problem solving to occur, the problem representation and
any tools or aids employed should all support the strategies (methods or processes)
required to perform that task [32]. This means that the problem representation a
problem solver uses must be considered in the context of the task to be solved.
Based on CFM, it could be expected that there should be a difference in decision
making performance based on the DV format used for experiment. Similar to Dull
and Tegarden [9] approach it could be expected that the better “fit“ of DV the more
accurate the prediction of participants. When assessing decision making process, we
should also consider the time spent to make a decision. Vessey [32] believes there are
only two objective performance variables for decisions: decision time and accuracy.
As such, our research question and hypothesises are as follow:

RQ: This study investigated the possible impact of the data visualization formats
on two variables speed and accuracy in business scenarios decision making process,
specifically related to the potentially fraudulent transactions. Therefore, our H0
hypotheses are as following:

H0.1: Employing data visualization has no impact on the speed of the task in
business scenarios decision making process.

H0.2: Employing data visualization has no impact on the accuracy in business
scenarios decision making process.

Our H1 hypotheses are as following:
H1.1:Employing data visualization has impact on the speed of the task in business

scenarios decision making process.
For first hypothesis our goal was to investigate if participants presented with data

visualization presentation format will able to complete task with higher speed (less
time) compared to control group with text format (we also included group with table
format presentation in our experiment).

H1.2: Employing data visualization has impact on the accuracy in business
scenarios decision making process.
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For second hypothesis our goal was to investigate if participants presented with
data visualization presentation formatwill able to complete taskwith higher accuracy
(less errors) compared to control groupwith text format (we also included groupwith
table format presentation in our experiment).

The Independent Variables of this research project are same financial informa-
tion presented to participants in three different formats: text format as a text document
(neutral “control”), tables format, and in DV info graphic format (easily visualized).
Currently the most common technique for visualizing financial data remains the
standard charts (e.g., line, bar, pie charts, and their variations [16, 21]. DV can facil-
itate the analysis of data by improving business dimension of information, and help
decision makers in finding trends and key events [30].

The Dependent Variables. This research experiment included two dependent
variables: accuracy and speed. Accuracy and speed were selected as Bačić and
Fadlalla [3] had considered speed of task, accuracy and recall metrics as fundamental
metrics for decision making in business contexts.

3 Research Approach

The experiment was designed to investigate the impact of DV on the outcome
measures mentioned above. An experiment was conducted to investigate the hypoth-
esis and research question. Below we described methods to develop the experiment
and business scenarios. Research data was collected from experiments completed for
this study. This experiment utilized a Qualtrics application for data collection and
allowed the researchers to obtain all required information, including measurement
of time to assess all business scenarios by participants. Pre-testing was completed
prior to completing experiment on a larger population.

3.1 Participants

Participants for this research were accounting students from same undergraduate
program, which allowed for control of financial knowledge capabilities levels of
the participants, in addition to pre-experimental training provided to all participants.
Although accounting students are not currently business decision makers, they are
future managers and similar to actual managers in terms of decision biases [9, 10].
Participants were contacted in their classes, where faculty agreed to conduct this
experiment. All experiments were conducted at the lab under control environment.
A reward system was developed to attract and compensate the participants (1% extra
credit in their courses for participation in this study).

Participants were randomly assigned to different groups and depending on group
assigned asked to analyze financial information in a specific format. Three groups
were utilized with each group presented with the same financial information in
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different formats: text format, table format and DV format. Each group was asked to
review five business scenarios to assess their speed of task and accuracy.

3.2 Measures

Dull and Tegarden [9] in their study of comparison of three visual representations
had focused on prediction on wealth based on different presentation formats (two-
dimensional line graph, modified trajectory line graph, modified trajectory line graph
with ability to rotate image). They used overall wealth prediction (accuracy) and time
as dependent variables. We utilized their approach in measuring our dependent vari-
ables. The data collected from participants included serial numbers of transaction
which possibly include fraudulent transaction and require future investigation. For
each set of business scenario participants found possible fraudulent transactions.
The dependent variable is accuracy or number of correct potentially fraudulent items
identified by participants (fraudulent items accuracy—FIA) based on presented infor-
mation, measured for each participant, for all business scenarios, by subtracting the
participant’s unidentified potentially fraudulent items (PFUI) from total number of
fraudulent items in each business scenario/model (MFI).

FIA = MFI− PFUI (1)

Potentially fraudulent items for business scenarios were created by researchers
based on their professional experience in fraudulent transaction detection in industry
and were reviewed by other professionals from industry.

A second dependent variable was speed or the time it takes participant to assess
all business scenarios and make decision about potentially fraudulent item. It was
measured as the number of seconds to assess all business scenarios. There was no
fixed time limit, although participants encouraged to complete experiment in 30 min.

3.3 Procedure

Experiment for this study included two steps: first participants were provided an
overviewof possible signs of fraudulent activities, second—participants assessedfive
business scenarios to identify potentially fraudulent activities based on three types
of financial data presentation format (one type per group) groups were randomly
selected (see Fig. 1). Our experiment design was based on modification of the
Solomon four-group design [29]. Participants were randomly assigned to groups
and completed training in order to get understanding how to identify potentially
fraudulent transactions same as presented in all five business scenarios. Each busi-
ness scenario included 30 items/transactions for each format of financial information
presentation—text, table and DV.
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Fig. 1 Experiment design

The data collected from participants included serial numbers of transaction which
include possibly fraudulent items and require future investigation. Based on nature
of data for our experiment (fraud investigation, not complex data), potential users
of DV (accounting students), and available resources we had selected the following
DV format: prebuilt solutions that required no programming (visualization software
packages).

3.4 Business Scenarios Design

There are two elements of DV that could impact the decision-making process in an
accounting environment: interactivity and visualization, our research focused on the
second, the “presentation of data” [1, 7, 19]. Data to create a business scenario was
based on analysis of a data set using ACL Analytics (formerly known as Audit
Command Language) software. The participants reviewed information to detect
transaction anomalies, which is an important fraud detection procedure. Effective
data visualization has the potential for making the detection of fraudulent transac-
tions more efficient and effective. Currently research of effectiveness of data visu-
alization for fraud detection is limited [8]. DV could help to convert information
to a manageable scope, identify and prioritize threats, develop critical intelligence
and make effective decisions. DV can create the story behind the data, and in cases
of potential fraud, can demonstrate linkages that are not obvious between people,
places and financial and non-financial potentially fraudulent information [2, 14].

According to PWC 2018 Global Economic Crime and Fraud Survey [24], an
asset misappropriation, consumer fraud and cybercrime were the most frequently
reported frauds across industries. For financial services an assetmisappropriation and
consumer fraud are the most common fraud organizations had experienced recently.
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Based on this information we had focused on consumer and asset misappropria-
tion types of fraud in designing our business scenarios. Application of visualization
techniques for fraud detection could help to recognize and present data anomalies,
which could make the identification and quantification of fraud schemes much easier
[23]. Engin and Vetschera [10] recommended to use different types of problems to
enhance information representation in a decision-making experiment. Scenarioswere
selected that closely reflect conditions, which decision makers are facing in practice
as recommended by Bačić and Fadlalla [3]. They had noted that in past research task
types are too abstract or do not effectively reflect decision making tasks in practice.
Benford’s law was used in designing one of our business scenarios, as application of
this law to a population of transactions is common practice in fraud detection inves-
tigations. [17]. Benford’s law states that in many naturally occurring collections of
numbers, the leading significant digit is likely to be small [5]. Participants reviewed
data for adherence with Benford’s law, enabling the fraud detection, as fraudsters are
usually not familiar with this digital law and tend to invent numbers with approxi-
mately equal digital frequencies [17]. Participants, as part of each business scenario,
required to assess the following:

• Business scenario 1—Identify annuity payments paid to the annuitants over certain
age, for example 90 years old, where there has been no prior confirmation that
annuitant is still alive (type of fraud—consumer fraud, payments to the annuitants
who are not alive).

• Business scenario 2—Identify monthly payments over certain dollar limit, for
example over $10,000, where there has not been approval by two managers (type
of fraud—assets misappropriation (AM), payments made without appropriate
approval).

• Business scenario 3—Identify annuity contracts where interest rates at the time
of issue were higher than certain amount, for example 2% (type of fraud—AM,
incorrect interest rate).

• Business scenario 4—Identify annuity contracts that warrant further investigation
based on Benford’s analysis of annuity payment amounts and contract principal
balances (type of fraud—AM, fictitious contract for nonexistent customer).

• Business scenario 5—Identify annuity contracts where no agent’s information
attached or inactive agent (type of fraud—AM, fictitious contract for nonexistent
customer).

Each business scenario included 30 items/transactions, table 1 includes short
extract of business scenario 1 (only five transactions/items were included for each
presentation type consider size limitation for this publication).
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Table 1 Example of business scenario

Group Business Scenario 1—Your supervisor has requested your assistance in a review
currently under way. Your team is reviewing 5000 active annuity contracts for potential
fraudulent transactions related to monthly annuity payments. Monthly annuity
payments should be discontinued for annuitants older than age 90 unless a confirmation
letter has been received from the annuitant. She has asked you to review a batch of 30
records. She would like you to identify accounts that might require further investigation

Group
1-Text

1. Annuity contract 6,340,477 provides monthly annuity payments for an individual
who is currently 71 years old. A confirmation letter is not on file for this annuitant

2. Annuity contract 7,307,734 provides monthly annuity payments for an individual
who is currently 98 years old. A confirmation letter is not on file for this annuitant

3. Annuity contract 2,923,019 provides monthly annuity payments for an individual
who is currently 70 years old. A confirmation letter is not on file for this annuitant

4. Annuity contract 9,409,896 provides monthly annuity payments for an individual
who is currently 69 years old. A confirmation letter is not on file for this annuitant

5. Annuity contract 6,995,474 provides monthly annuity payments for an individual
who is currently 67 years old. A confirmation letter is not on file for this annuitant

Group
2-Table

Group
3-DV

4 Results and Discussion

4.1 Data Reduction and Analysis Plan

102 Accounting students participated in the study. Using z score transformation
to detect outliers the final sample size was reduced to 95 participants. Each group
included about 32 participants.

With 2 dependent measures (Speed and Accuracy) and 1 independent measure
(Presentation Format) MANOVA was used to analyze the data. Table 2 below
provides the summary descriptive statistics for each group.
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Table 2 Descriptive Statistics for all five business scenarios

1 = text, 2 = table, 3 = DV Mean Std. Deviation N

Speed (in total seconds) 1.00 346.2109 111.4044 32

2.00 289.0003 144.7628 32

3.00 239.4119 136.0330 31

Total 292.0898 137.2059 95

Accuracy (total number correct) 1.00 23.0000 2.0161 32

2.00 22.2188 4.0140 32

3.00 22.3548 3.7198 31

Total 22.5263 3.3449 95

Table 3 Multivariate tests for five business scenarios

Effect Value F Hypothesis df Error df Sig.

Presentation Format Pillai’s Trace 0.106 2.575 4.000 184.000 0.039

Table 4 Tests of between participants effects for all five business scenarios

Source Type III Sum of Squares df Mean Square F Sig.

Corrected Model Speed 180,060.238 2 90,030.119 5.211 0.007

Accuracy 11.119 2 5.559 0.492 0.613

4.2 Speed and Accuracy

Did varying the presentation format (text, table or data visualization) of the data have
an impact on the speed or accuracy of our participants? The results of our study show
a significant main effect of the Presentation Format on the dependent measures with
a F value of 2.575, with a significant value of 0.039 (Table 3).

Further analysis as provided in Table 4 demonstrates that the Presentation Format
had a significant impact on the Speed of the participants, with those who were given
the Data Visualization format showing the quickest time (p = 0.007). There was no
significant impact of Presentation Format on Accuracy (p= 0.613). All three groups
show similar scores in regard to their ability to identify the correct answer to the
business scenarios presented.

4.3 Discussion

Speed and accuracy are two critical elements in decisionmaking [3]. The objective of
this researchwas to investigate the impact that financial data visualization (DV)has on
decision making in detecting fraudulent transactions. This study was focused on the
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effects of financial DV formats on accuracy and speed. Participants of research study
were assigned to different groups, each group was presented with the same financial
information in different formats: text, table and DV; and asked to identify potentially
fraudulent transactions infivebusiness scenarios. The study results suggested a strong
relation between presentation format and speed for decisionmaking, decisionmakers
presented with DV format had made decisions faster, with equivalent accuracy. This
finding is consistent with Cognitive Fit theory [32, 33], that presentation format
should be based on task.

The results of this study should be considered when reflecting on how to improve
the efficiency of anAccountant’s role in Industry. The study results suggested a strong
relation betweenpresentation format and speed for decisionmaking.Decisionmakers
presented with DV format had made decisions faster. This result is useful in those
organizations whereby decisions around this type of data is time sensitive in some
way. In addition, it could help business educators to focus on effective teaching
formats. Further research is recommended on exploring exactly which conditions
presenting information in a DV format would be beneficial.

Possible limitations of our study are: sample size, simplify problems for the exper-
iment, student participants (convenience sampling) [18] and the possibility that prior
knowledge of accounting principles may have negated the impact of presentation
format. Future study could include additional variables such as memory retention
(recall) and confidence [3] in decision making process.
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Abstract Agood access to information and intellectual resources and, consequently,
their efficient management is important to operate an organizational system success-
fully. In any case, only based on the information processes can the entity make the
decision. Based on the example of sustainable development of the region, the paper
deals with the management of complex organizational systems and decision-making.
To study the problems of regional development management, it is necessary to inves-
tigate the degree of influence that regional development factors (indicators) have on
the criteria characterizing the regional development. The paper refers to the issue of
selection of a subspace of basic factors of high importance (having a high degree of
influence) from the space of factors of regional development. The study was carried
out by the methods of perceptive-cognitive modeling, statistical analysis, fuzzy sets
and graph theory.
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1 Introduction

A good access to information and intellectual resources and, consequently, their
efficient management is important to operate an organizational system successfully.
In any case, only based on the information processes can the entity make the decision
[1, 2].

During analyzing the complex organization systems, it is possible to identify a
multitude of goals and factors that the system faces. Commonly, these goals are
structured, so, they consist of sub-goals, each sub-goal may consist its own sub-
goals, an so on. At the last stage, the list of atomic goals will be obtained. The
number of sub-goals quantity may be very large. It should also be borne in mind that
the individual elements of these atomic goals do not have the same primary purpose.

The problem of analyzing complex organizational systems is discussed on the
example of sustainable development of the region. The factors affecting sustainable
development are taken from the materials of the World Conference on Environment
andDevelopment of theUnitedNations. A huge number of factors include the criteria
and indicators by which it is possible to evaluate the level of development of a
particular geographical region, to make a forecast of its future condition, and to
draw a conclusion about the sustainability of this condition. To solve the problem
of selecting, out of the variety of factors, the most important (influential) factors
affecting the main goal, the following methods are proposed: perceptive-cognitive
modeling, statistical analysis, fuzzy sets and graph theory.

2 Structuring the Goal of the System

The goals and factors affecting the complex system are structured, which means that
they comprise sub-goals, each of which can have its own sub-goals, and so on. As
a result, at the end we will have the list of atomic goals. The number of sub-goals
might be too many. We should also take into consideration that particular elements
of the atomic goals do not affect the main goal in the same way.

Selection of optimal set of the system goals, as well as the information technology
for achieving the system functioning comprises several stages:

Structuring the goal of the systemmeans that themain or global goal of the system
functioning is identified, which is assigned a zero level, then it is decomposed into
sub-goals.

In order to structure the goal, that is, to create a structured information model, we
will identify the main goal (which is a global goal)—sustainable development of the
region,which is expressed as—C0 and towhichwe assign a zero level. Then, i.e. at the
first level, it is decomposed into sub-goalsC1,C2C3andC4, and the second level sub-
goals are divided into further sub-goals (C11,C12, ...,C21, ...C31...). Table 1 shows
the values and sub-goals of the factors contributing to the sustainable development
of the region.
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Table 1 The values and sub-goals of the factors

N Symbol Value

1 C0 Sustainable development of the region

2 C1 Social factor

3 C2 Economic indicator

4 C3 Ecological indicator

5 C4 Organizational factor

6 C11 Fighting against poverty (%)

7 C12 Demographic dynamics (%)

8 C13 Promotion of education, staff training and public information
(%)

9 C14 Protection of population health (%)

10 C15 Supporting sustainable development of the population (%)

11 C111 Population employment growth rate (%)

12 C112 Average salary ratio for women and men (%)

13 C113 Populations below the poverty line (%)

14 C114 The ratio between the income of the rich and the poor people
.
.
.

185 C411 Ratification of international agreements on sustainable
development

Fig. 1 The goal tree of interdependence of goals and sub-goals

According to these goals and sub-goals, let’s build a goal tree that will look as
given in Fig. 1.
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Fig. 2 Zero and first rank (fragment)

Let’s divide two-level fragments from the above, that consist of root tip and incipi-
ent tip.Wewill assign a zero rank to the fragment that contains the root tip of the tree.
Lower-level tips of this fragment represent root tips for the first-rank tips. Zero rank
is assigned to the fragment from the goal tree (C0,C1,C2,C3,C4). The fragments
from the goal tree have the first rank: (C1,C12,C13,C14,C15), (C2,C21,C22,C23),
(C3,C31,C32,C33,C34,C35), etc. (Fig. 2).

3 Assigning Weight to the Goal of the System

Suppose the multitude of local goals defined at the first stage equals to N , the number
of achievement levels of each goal—k, hence, the number of possible solutions, called
multipurpose alternative, equals to Nk .

From such amultitude of goals, it is almost impossible to make an optimal choice.
Therefore, in order to calculate the effectiveness of achieving the goal (i.e. how
effectively the main goal is achieved), we are ranking local goals and select the most
important goal from the obtained subgoals; this way we also reduce the number of
goal levels.

For rankinggoals, eachgoal is evaluatedbynumeric value—i.e. by their “weights”,
which are assigned by an expert or a group of experts. Such assessment is subjec-
tive. The goal is described verbally, which can also include a numeric indicator. This
method is called the hierarchy analysis method.

For evaluating the interaction of goals (to introduce weights of tips on the tree),
in order to determine how important the goal is, together with the expert we will
introduce evaluation scores [1–3]. The interaction power of Ci and C j goals shall be
evaluated verbally (linguistically) and expressed quantitatively in the interval [1–10]
(Table 2).
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Table 2 The interaction power of Ci and C j goals

Linguistic meaning Numeric (points)
meaning

Ci and C j purposes in the same meaning 1

When Ci is weakly dependent on the value of C j 3

When Ci is strongly dependent on the value of C j 5

When Ci is very strongly dependent on the value of C j 7

Absolutely dependent on the value of Ci to C j 9

Assessment is situated between two linguistic assessments 2, 4, 6, 8

For each fragment of the goal tree (Table 3), we will create a square matrix zero
R = ||ri j ||. The columns of the matrix correspond to the tree tips. In the box of
the upper left column, the total weight of the root tip is given (C0 for global goals
weight W0 = 1). At the intersection of Ci line and C j intersection column ri j value
is indicated, this value is equal to 1 if Ci = C j . If Ci is more important than C j then
bi j is indicated, otherwise, if Ci is less important than C j and 1/bi j is indicated.
Table 3, the degree of interaction of goals is filled in based on the expert evaluation
by using Table 2. The square matrix for the tree fragment is shown in Table 3.

If the rows (columns) of the matrix correspond to the target C1, ...,Cp, rated by
weights W1, ...,Wp. The root tip has a weight W0, . then the condition is true [1]:

Wq =
p∑

i=1

Wi (1)

W1 weights represent the solutions to the following equation systems [1]:

wI = 1/PI

P∑

J=1

rI jW j

... (2)

wp−1 = 1/p
P∑

J=1

rp−1, jW j

wp−1 = 1/p
P∑

J=1

rp−1, jW j .

In the discussed example, the systems of equations of the corresponding 0 frag-
ment are expressed in the following way (3):



674 Z. Gasitashvili et al.

Table 3 The square matrix for the tree fragment

w0 = 1 c1 c2 c3 c4 c11 c13 c14 c15 c21 c22 c23
c1 1 3 3 3 5 5 5 3 3 3 3

c2 1/3 1 3 3 3 3 3 3 3 7 7 7

c3 1/3 3 1 3 3 3 3 3 3 3 3 3

c4 1/3 1/3 1/3 1 1/3 1/3 1/3 1/3 1/3 3 3 3

c11 1/5 1/5 1/5 1/5 1 3 3 3 3 3 3 3

c12 5 3 3 1/3 1/3 1 1 3 3 3 3 3

c13 1/5 1/3 1/3 1/3 1/3 1/3 1 3 3 3 3 3

c14 1/5 1/3 1/3 1/3 1/5 1/3 1/3 1 3 3 3 3

c15 1/3 1/5 1/3 1/3 1/3 1/3 1/3 1/3 1 3 3 3

c21 1/3 1/7 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1 3 3

c22 3 1/7 3 3 3 3 3 3 3 3 1 3

c23 3 1/7 3 3 3 3 3 3 3 3 3 1

c31 3 3 3 3 3 3 1/7 1/7 1/7 3 3

c32 3 3 3 3 3 3 3 3 3 3 3 1/3

c33 3 3 3 3 3 3 3 3 3 3 3 3

c34 1 3 1/3 3 3 3 3 3 3 3 3 3

c35 3 3 1/3 3 3 3 3 3 3 3 3 3

w0=1 c31 c32 c33 c34 c35 c41 c42 c43 c44 c45 c46 wg.ofg.

c1 3 3 3 3 3 3 3 3 3 3 3 0.5000

c2 3 3 3 3 3 3 3 3 3 3 3 3 0.2778

c3 7 7 7 7 7 3 3 3 3 3 3 3 0.1543

c4 3 3 3 3 33 7 7 7 7 7 7 7 0.0679

c11 3 3 3 3 3 3 3 3 3 3 3 3 0.02143

c12 3 3 3 3 3 3 3 3 3 3 3 3 0.01327

c13 3 3 3 3 3 3 3 3 3 3 3 3 0.0821

c14 3 3 3 3 3 3 3 3 3 3 3 3 0.0508

c15 3 3 3 3 3 3 3 3 3 3 3 3 0.00201

c21 3 3 3 3 3 3 3 3 3 3 3 3 0.01667

c22 3 3 3 3 3 3 3 3 3 3 3 3 0.0778

c23 3 3 3 3 3 3 3 3 3 3 3 3 0.0333

c31 3 3 3 3 3 3 3 3 3 3 3 3 0.00661

c32 1/3 1 3 3 3 3 3 3 3 3 3 3 0.00409

c33 3 3 1 3 3 3 3 3 3 3 3 3 0.00213

c34 3 3 3 1 3 3 3 3 3 3 3 3 0.00111

c35 3 3 3 3 1 3 3 3 3 3 3 3 0.002001
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w1 = 1/4(w1 + 3w2 + 3w3 + 3w4)

w2 = 1/4(1/3w1 + w2 + 3w3 + 3w4),

w3 = 1/4(3w1 + 1/3w2 + 3w3 + 3w4)

w4 = 1 − (w1 + w2 + w3 + w4)

(3)

From the solution of the system of these equations it will obtain C1, C2, C3, C4

target weights for goals.
Systems of such equations are drawn for other ranks too. The solution of the

system of equations will be obtained C11, C12, C13, C14, C15... Target weights for
goals.

4 Minimization of the Local Goals of the System

At the next step it is necessary to carry out numeric evaluations and ranking of the
most important goals and factors to select the most effective goal and factor. The
most important goals are selected from the goals that have been selected at the first
stage by deleting relatively insignificant goals [2].

Whileminimizing local goals, several conditions shall be simultaneously fulfilled.
The following should be taken into consideration:

• Interaction of local goals reflected through the Matrix—Cognitive Map.
• Overall degree of deleted goals having a numeric value and defined by a cognitive
map shall not exceed marginal value.

• The number of deleted goals shall be maximum.

To draw a cognitivemap of the interdependence of local goals of the factors affect-
ing the sustainable development, it should be taken into account that the columns
and rows in the table correspond to local goals, on the right side of the TableCi goals
are included, to the right—Wi weights. At the intersection of columns and rows, an
expert evaluation +αi j is written if Ci reinforces achievement of the goal C j , and
−αi j if Ci weakens achievement of the goal C j , where, 0 ≤ αi j ≤ 1.

αi j evaluation may not match the values on the scale and may be in the interval
between the values. If the goal does not affect another goal, then αi j = 0 and if
there is no connection between goals or if the connection is unclear then (Ci ,C j )

intersection remains empty.
The numeric values of the interdependence of the goals affecting the factors for

sustainable development are given in Table 4.
Given this, the cognitivemapwill look as it is in Table 5. Fragment of theCognitive

Map
Fragment of Cognitive Map

In order to determine the interdependence of the goals on the cognitive map, we
introduce numeric indicators—the degree of achievement of global (C0) and local
goals (C j ), they are calculated by formulas [1]:
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Table 4 The numeric values of the interdependence of the goals affecting the factors for sustainable
development

Linguistic meaning Numeric values of goals interdependence

No influence 0

Very weak influence 0.1

Moderate influence 0.5

Strong influence 0.7

Influence 1

Table 5 Fragment of the Cognitive Map

Goals c1 c2 c3 c4 c11 c12 c13 c14 c15 c21 c22
c1 +1, +0, -0.7, +0, +0,

c2 +1, +0, 0

c3 +1,

c4 +1, 0 0 0 0 0

c11 +0.5 0 0 0 +1 0 0 0 0

c12 +0, 0 0 0 +1,

c13 +0, 0 0 0 0 +1,

c14 +0, 0 0 0 0 +1,

c15 +0.5 0 0 0 0 0 0 0 +1, 0

c21 +0.5 0 0 0 0 0 0 0 0 +1,

goals c23 c31 c32 c33 c41 c42 c43 c44 c1 c1 weights

c1 05000

c2 0 0 0 0 0 0 0 0 0 0 0.2778

c3 0 0 0 0 0 0 0 0 0 0 0.1543

c4 0 0 0 0 0 0 0 0 0 0 0.0679

c11 0 0 0 0 0 0 0 0 0 0 0.2143

c12 0 0 0 0 0 0 0 0 0 0 0.1327

c13 0 0 0 0 0 0 0 0 0 0 0.0821

c14 0 0 0 0 0 0 0 0 0 0 0.0508

c15 0 0 0 0 0 0 0 0 0 0 0.0201

c21 0 0 0 0 0 0 0 0 0 0 0.1667

c22 0 0 0 0 0 0 0 0 0 0 0.0778
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Table 6 Table of interactions between goals (fragment)

c j c1 c2 c3 c4 c11 c12 c13 c14 c15
J (C j ) 0.0226 0.0201 0.02208 0.011 0.022 0.029 0.0017 0.002 0.005

- - - - - - - - -

.

.

.

c j c42 c43 c44 c45 c46 c47 c48 c49 c410 c411
J (C j ) 0.06 0.0201 0.018 0.0031 0.0142 0.0129 0.1117 0.0242 0.025 0.123

- - b1 - - - - - - b2

J (C0) =
N∑

j=1

N∑

i=1

αi j · Wi

J (C j ) =
∑N

j=1 αi j ·Wi

J (C0)
=

∑N
i=1 αi j Wi∑N

j=1

∑N
i=1 αi j ·Wi

(4)

Which, for the zero-ranking goal of the tree fragment that we have discussed, will
look as follows:

(C0) =
N∑

j=1

(α11 + α12 + α13 + α14) · Wi

= (α11 + α12 + α13 + α14) · W1 + (α11 + α12 + α13 + α14) · W2

+(α11 + α12 + α13 + α14) · W3 + (α11 + α12 + α13 + α14) · W4 = 3, 5101

(5)

After performing the above calculations J (C0) = 3, 501, and other values of
J (C j ) will obtain the value (Table 6).

We will denote multitude of all local goals asC , multitude of deleted sub-goals—
C∗, and their power—|C∗|.

The extent of achieved sub-multitude of goals, depending on their interaction is
expressed by the formula [1]; J (C∗) = J (c ji + . . . + J (c j k) (6) J (C∗) the maxi-
mum permissible value shall be denoted as �. And in this case it is equal to 0.2101

Let’s formulate theminimization task: we have to findC∗C , so that to accomplish
the following conditions simultaneously

J (C∗) ≤ �

|C∗| = max
(6)
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Given the above, the task of minimizing local goals can be calculated by the
following algorithm:

J (C∗) the maximum permissible value shall mark �. And it is equal to the dis-
cussed case 0.2101

To formulate the minimization task we have to find the following C∗C , So that
the following conditions are fulfilled simultaneously

1 In C multitude we will choose such goal Ci j that has a minimum degree of
achievement (J (ci j = min). If such goals are more than one, we have to choose any
of them. We shall include the selected goal in C∗ multitude and increase its degree
of achievement.

J (C∗) = J (C∗) + J (c j1)

2We shall check J (C∗) ≤ � condition, if it is accomplished, then we shall delete
C j1 from C and go back to the first step. If the above condition is not accomplished
for any of the goals, i.e. C∗ goal cannot be joined to any other goal, it means that the
algorithm works.

If for the example we discussed � = 0, 29., then the outcome of minimization of
local goals is the multitude E = b1, b2, b3, b4, b5, b6, b7, b8, where

b1—denotes presenceof thenational strategy for sustainable development (Yes/No)
b2—is international agreements for sustainable development.
b3—Share of per capita on the national income (%).
b4—Population density (%).
b5—Increasing the birth rate (%).
b6—Entrepreneurial activity (%).
b7—Changing the nature of the request.
b8—updated share of national product per capita (%)

b9—Export share of national GDP (%).
b10—Share of investment(%).
b11—Populations below the poverty line in drought-prone areas (%)

b12—management of eco-systems, combating desertification and drought.
b13—Population growth rate.
b14—Costs to rebuild the ecosystem (%).
Using the methodological basis we have discussed below, we have selected rela-

tively high-level factors of sustainable development whose degree (contribution) to
sustainable development will be significant.

5 Conclusion

The given paper deals with the methods of perceptive-cognitive modeling, statistical
analysis, fuzzy set theory and graph theory to manage complex organizational sys-
tems and make decisions, on the example of managing the sustainable development
of the region. To solve the given problem, the main goal was identified, a tree of goals
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and sub-goals was built; a structured information model was created. To make the
optimal choice, a mathematical model was developed and the weight of each goal
was determined; the goals of the system were minimized and from the multitude
of goals, only those goals were selected whose impact on the main goal is more
important. This, in turn, is crucial to ensure sustainable development of the region,
to manage the process and make decisions.
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On a Generalized Integro-Differential
Spatial Model of Economic Growth

Herb Kunze, Davide La Torre, and Simone Marsiglio

Abstract We analyze a spatial economic growth model in which production in
each location is determined by the amount of output produced in other locations
within an industrial cluster as well. Therefore, the evolution of capital gives rise
to an integro-differential extension of the basic spatial economic growth model.
We analyze the model both in a purely dynamic setting and in an optimal control
framework, proposing a numerical algorithm to solve the model under the latter
scenario. Different from previous studies, our algorithm allows to solve the model
even in a setting in which the objective function is nonlinear, permitting thus to
analyze the spatial features of the model even in its traditional formulation from
economic growth theory.

Keywords Economic growth · Spatial Solow’s model · Ramsey model ·
Cobb-Douglas production function

1 Introduction

Economic growth models have been recently extended to a spatial dimension in
order to characterize how different locations within the whole economy interact with
one another through the trade channel [1, 4–6, 9]. Most of the papers focus on a
Solow-type [14] purely dynamic setting in which agents’ behavior is exogenously
given, while more limited in number are those analyzing a Ramsey-type [13] setting
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in which agents optimally determine their actions. In particular, the presence of
agents’ optimization precludes to derive analytical results unless in specific model’s
formulation in which either the objective function or the dynamic constraint is linear
[3], and even the numerical analysis is not simple to manage since the problem
turns out to be ill-posed unless specific restrictive assumptions are made [2]. Our
contribution to this literature is twofold: we present an extended spatial economic
growthmodel to describe the production process within an industrial cluster in which
the output produced in a given location strictly depends on the output produced in
other locations as well; we present a numerical algorithm which is general enough to
determine the spatio-temporal evolution of the the main variables without imposing
specific restrictions on the shape of the objective function and the dynamic constraint.

The paper proceeds as follows. Section 2 discusses the model in a purely dynamic
setting characterizing both analytically and numerically some interesting results.
Section 3 introduces agents’ optimization in the model analyzing numerically the
spatio-temporal behavior of the control and state variables. Section 6 as usual
concludes.

2 The Solow-Type Model

Given a compact set Ω ⊂ Rn , consider the following integro-differential extension
of the spatial Solow model with Neumann boundary conditions on Ω:

⎧
⎪⎪⎨

⎪⎪⎩

∂K (x,t)
∂t = ∇ (dk(x)∇K (x, t)) + ∫

Ω
φ(x, y)K (y, t)αdy − δK K (x, t), (x, t) ∈ Ω × (0,+∞)

dk(x)
∂K
∂n (x) = 0, x ∈ ∂Ω

K (x, 0) = K0(x). x ∈ Ω

where K (x, t) is the capital stock at time t in location x , K0(x) is the initial distribu-
tion of capital, α ∈ (0, 1] is the capital share, and φ(x, y) is a positive kernel. This
model represents an extension of the following spatial Solow model:

⎧
⎪⎪⎨

⎪⎪⎩

∂K (x,t)
∂t = ∇ (dk(x)∇K (x, t)) + A(x)K (x, t)α − δK K (x, t), (x, t) ∈ Ω × (0, +∞)

dk(x)
∂K
∂n (x) = 0, x ∈ ∂Ω

K (x, 0) = K0(x). x ∈ Ω

which has been studied, for instance, in [2] and that can be obtained as a particular
case of our formulation by taking φ(x, y) equal to the modified Dirac A(y)δx (y). For
the sake of simplicity the population size and the saving rate have been normalized
to unity. In such a spatial formulation, following [9] and [11], we interpret any
location x as a single local entity within the entire economy, in order to allow for the
existence of heterogeneities between different local entities. More specifically, the
entire economy may represent an industrial clusters in which different local entities
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are all related from buyer-supplier relationships ([15]), meaning that the amount
of output produced in a given location strictly depends on the amount of output
produced in other locations as well. The importance of agglomeration and industrial
clusters for economic activities in general and economic growth in particular have
been extensively discussed, both from theoretical and empirical points of view ([8];
[12]). However, to the best of our knowledge, the peculiarities of industrial clusters
have never been specifically accounted for in spatial growth models, which give
rise to the natural framework to discuss them. Our goal in this paper is therefore
to move a first step in this direction by allowing the spatial domain to represent
an industrial cluster in which all cluster agents interact. In order to do so, we need
to distinguish the output produced at given location and the total output available
for sale and consumption at that same location, which results from the aggregation
of the output produced within the entire cluster. The output produced at location x
is determined by a Cobb-Douglas production function, Q(x, t) = K (x, t)α , while
the total output at location x is obtained by averaging the output produced at each
y ∈ Ω through a weight φ(x, y) as follows: Y (x, t) = ∫

Ω
φ(x, y)Q(x, t)dy, where

the kernel φ(x, y) measures the degree of interrelations between different localities
within the cluster. In our spatial setting, the peculiarities of the cluster are captured
by spatial diffusion, which accounts for the trade relations between localities, and the
integral term, which accounts for the production relations between localities. These
two elements play a diametrically different role in determining the spatio-temporal
dynamics: while spatial diffusion acts as a convergence mechanism which tends to
smooth out all spatial heterogeneities over time, the integral term acts as a divergence
mechanism which tends to reinforce the presence of spatial heterogeneities ([9]).

In this well known that a closed-form solution to this model exists in 1-d when
dk(x) = dk , φ is the Dirac concentrated at x , and α = 1.

Definition 1 An equilibrium of the above system is a function K̄ (x) that is a solution
to the following system:

{∇ (dk(x)∇K (x)) + ∫

Ω
φ(x, y)K (y)αdy − δK K (x) = 0, x ∈ Ω

dk(x)
∂K
∂n (x) = 0. x ∈ ∂Ω

Before proceeding, let us notice that there are cases in which it can happen that∫

Ω
φ(x, y)dy is a positive constant, not depending on x . This is the case, for instance,

when φ(x, y) = δx (y) or φ(x, y) = 1
μ(Ω)

. The following result states the existence
of two equilibria (homogeneous) for the above system.

Proposition 1 Let α ∈ (0, 1) and suppose that
∫

Ω
φ(x, y)dy = 1 for any x ∈ Ω .

Then K1(x) = 0 and K2(x) = δ
− 1

1−α

K are the only two homogeneous equilibria of the
above PDE. If α = 1 then the above equation has only the equilibrium K1(x) = 0.

Proof It is easy to show that K1 and K2 are two homogeneous solutions to the above
equation. It is also trivial to prove that there are no other homogeneous equilibria of
the above system.
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In a more general context, we can provide the following upper bound of the
solution. Let us introduce the total amount of capital over Ω as follows:

ξ(t) =
∫

Ω

K (x, t)dx (1)

The following result provides an upper bound for ξ , suggesting that the total
amount of capital within the whole economy cannot grow indefinitely and its upper
bound depends on the main model’s parameters.

Proposition 2 Suppose that φ is bounded overΩ by a constant θ > 0 and letμ(Ω)

be the measure of the compact set Ω . Then we have the following upper bound
estimate of ξ :

ξ(t) ≤
[

θμ(Ω)2−α
(
e(1−α)δK t − 1

) + δKφ(0)1−α

δK e(1−α)δK t

] 1
1−α

Proof Computing we have

ξ ′(t) =
∫

Ω

∂K (x, t)

∂t
dx

=
∫

Ω
∇ (dk(x)∇K (x, t)) +

∫

Ω

∫

Ω
φ(x, y)K (y, t)αdydx − δK K (x, t)dx

=
∫

Ω
∇ (dk(x)∇K (x, t)) +

∫

Ω
K (y, t)α

(∫

Ω
φ(x, y)dx

)

dy −
∫

Ω
δK K (x, t)dx

and by using Jensen’s inequality we get:

ξ ′(t) = μ(Ω)2θ

[
1

μ(Ω)

∫

Ω

K (y, t)αdy

]

− δK K (x, t)dx

≤ μ(Ω)θ

(
1

μ(Ω)

∫

Ω

K (y, t)dy

)α

− δK

∫

Ω

K (x, t)dx

= θμ(Ω)2−αξ(t)α − δK ξ(t)

which implies that φ satisfies the following inequality

ξ ′(t) + δK ξ(t) ≤ θμ(Ω)2−αξ(t)α (2)

that is

ξ(t) ≤
[

θμ(Ω)2−α

δK

(
e(1−α)δK t − 1

) + φ(0)1−α

e(1−α)δK t

] 1
1−α
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Fig. 1 Evolution of physical
capital

We now present some simple numerical simulations to exemplify the spatio-
temporal evolution of capital. We consider two different model’s parametrizations
in which the initial distribution of capital is heterogenous over space.

Example 1 We choose φ(x, y) = 1, dk(x) = x , K0(x) = 30x2, δK = 0.1, α = 1
3 .

The following Fig. 1 shows the evolution of physical capital over space and time.

Example 2 We choose φ(x) equal to the Dirac at x , dk(x) = x , K0(x) = 30x2,
δK = 0.1, α = 1

3 . The following Fig. 2 shows the evolution of physical capital over
space and time.

In both cases, despite the heterogenous initial distribution of capital, the long-run
evolution of the capital shows the convergence to a non-trivial and homogeneous
equilibrium, suggesting that the convergence effects associated with diffusion more
than offset the divergence effects associated with the integral term ([9]). The follow-
ing example shows that non-homogeneous equilibria can exist.

Example 3 Let Ω = [−π
2 , π

2

]
, dk(x) = 1, δK = 1, and α = 1. Let

φ(x, y) = 1

π

[
2 + 2 sin x

2 + sin y

]

≥ 0

It is easy to prove that the function K̄ (x) = 2 + sin x is a steady-state solution (see
Fig. 3).



686 H. Kunze et al.

Fig. 2 Evolution of physical
capital

Fig. 3 Evolution of physical
capital

3 The Ramsey-Type Model

We now introduce agents optimization by assuming that the whole economy is ruled
by a social planner which determines the level of consumption C(x, t) in each loca-
tion in order to maximize social welfare (defined as the discounted sum of utilities)
adjusted for sustainability considerations. The model can thus be written as the fol-
lowing optimal control problem:
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max J (C, K ) =
∫ T

0

∫

Ω

U (C(x, t))e−ρt dxdt + Θ

∫

Ω

K (x, T )dx

Subject to

⎧
⎪⎪⎨

⎪⎪⎩

∂K (x,t)
∂t = ∇ (dk(x)∇K (x, t)) + ∫

Ω
φ(x, y)K (y, t)αdy − C(x, t) − δK K (x, t), (x, t) ∈ Ω × (0, +∞)

d(x) ∂K
∂n (x) = d(x) ∂K

∂n (x) = 0, x ∈ ∂Ω

K (x, 0) = K0(x). x ∈ Ω

whereU is the utility function. As usual,U is supposed to be increasing and concave.
The objective function J (C, K ) is the sum of two terms with Θ > 0 measuring the
importance of the second term relative to the first. While the first term describes
the level of welfare in the whole economy, the second accounts for the sustainability
concerns associatedwith the capital level remaining at the end of the planning horizon
T for later generations [7, 10]. To determine an optimal policy result, let us define
the current Hamiltonian function as

H(C, K , λ) = U (C) + λK (∇(dk(x)∇K (x, t) + ∇(dk(x)∇K (x, t))

+
∫

Ω

φ(x, y)K (y, t)αdy − δK K (x, t) − C(x, t)

The following proposition provides the optimality conditions for an optimal solution
of the problem above.

Proposition 3 A pair (C̃, K̃ ) solves the above optimal control model if and only if
it is solution to the following Hamiltonian system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂K (x,t)
∂t = ∇ (dk(x)∇K (x, t)) + ∫

Ω
φ(x, y)K (y, t)αdy − δK K (x, t) − C(x, t), (x, t) ∈ Ω × (0, T )

∂λ(x,t)
∂t = ρλ − ∇ (dk(x)∇λ(x, t)) − λα

∫

Ω
φ(x, x ′)K α−1(x ′, t) − δK λ, (x, t) ∈ Ω × (0, T )

C(x, t) = λ(x, t)− 1
θ (x, t) ∈ Ω × (0, T )

d(x) ∂K
∂n (x) = 0, x ∈ ∂Ω

d(x) ∂λ
∂n (x) = 0, x ∈ ∂Ω

λ(x, T ) =  x ∈ Ω

K (x, 0) = K0(x) x ∈ Ω

4 The Maximization Algorithm

Since analyzing explicitly the Hamiltonian system above is generally not possible
(unless we introduce restrictive assumptions), we now proceed with numerical sim-
ulations to illustrate the optimal behavior of capital and consumption.
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If we use the dynamic constraint and plug it into the objective function we obtain:

J (K ) =
∫ T

0

∫

Ω

U

(

− ∂K (x, t)

∂t
+ ∇ (dk(x)∇K (x, t)) +

∫

Ω

φ(x, y)K (y, t)αdy − δK K (x, t)

)

e−ρt dxdt+

Θ

∫

Ω

K (x, T )dx

Subject to

⎧
⎪⎪⎨

⎪⎪⎩

− ∂K (x,t)
∂t + ∇ (dk (x)∇K (x, t)) + ∫

Ω φ(x, y)K (y, t)αdy − δK K (x, t) ≥ 0, (x, t) ∈ Ω × (0, T )

d(x) ∂K
∂n (x) = 0, x ∈ ∂Ω

K (x, 0) = K0(x). x ∈ Ω

The direction derivative of J along any feasible feasible h is given by

J ′(K ; h) = lim
δ→0

J (K + δh) − J (K )

δ

=
∫ T

0

∫

Ω

U ′(− ∂K (x, t)

∂t
+ ∇ (dk(x)∇K (x, t)) +

∫

Ω

φ(x, x ′)K α(x ′, t)dx ′ − δK K (x, t))

∗
(

− ∂h(x, t)

∂t
+ ∇ (dk(x)∇h(x, t)) +

∫

Ω

φ(x, x ′)hα(x ′, t)dx ′ − δK h(x, t)

)

e−ρt dxdt

+ Θ

∫ xb

xa
h(x, T )dx

We propose an algorithm to determine an approximation of the optimal solution.
At each step this algorithm determines the direction of growth h using the above
calculated directional derivative J (K ; h).

(1) Given the value of the state variable Kn(x, t), solve the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂h(x,t)
∂t + ∇ (dk (x)∇h(x, t)) + ∫

Ω
φ(x, x ′)hα(x ′, t)dx ′ − δK h(x, t) =

[
U ′

(
− ∂Kn (x,t)

∂t + ∇ (dk (x)∇Kn(x, t)) + ∫

Ω
φ(x, x ′)K α

n (x ′, t)dx ′ − δK Kn(x, t)
)]−1

× (−Θ ∂h
∂t + 1

)
eρt , (x, t) ∈ Ω × (0, T )

d(x) ∂K
∂n (x) = 0, x ∈ ∂Ω

h(x, 0) = 0. x ∈ Ω

(2) Determine δ > 0 that corresponds to the maximum increment of J along the
direction h

(3) Update Kn+1 = Kn + δh
(4) If |J (Kn+1) − J (Kn)| < ε then stop otherwise go to point (1).

The following result shows that J is increasing along the sequence generated
by the above algorithm. The implementation of the above algorithm generates a
sequence of functions Kn along which the objective function is increasing.
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Proposition 4 If δ is small then J (Kn+1) ≥ J (Kn), ∀n ≥ 0.

Proof Computing we have:

J (Kn+1) − J (Kn) = δ J ′(Kn; h) + o(δ)

= δ

(∫ T

0

∫

Ω

(

−Θ
∂h

∂t
+ 1

)

dxdt + Θ

∫

Ω
h(x, T )dx

)

+ o(δ)

= δ

(

−Θ

∫

Ω
h(x, T ) − h(x, 0)dx + Tμ(Ω) + Θ

∫

Ω
h(x, T )dx

)

+ o(δ)

= δ

(

Tμ(Ω) + o(δ)

δ

)

≥ 0

and this last passage relies on the boundary condition h(x, 0) = 0.

5 Numerical Examples

We now run a numerical simulation by relying of the above described algorithm
assuming that U takes the form:

U (C) = (1 + C)θ − 1.

This function satisfies the classical hypotheses which define an utility function (i.e.
is increasing and concave).

Example 4 In this example we suppose K0(x) = 1 + x , dK = 1 − 0.5x2, Θ = 0,
α = 1, θ = 2

3 , and φ(x, y) = δx (y). The following Fig. 4 shows the long-run behav-
ior of K . The values of the objective function after three iterations are: J0 =
0.579453721074241, J1 = 0.6059822543917376, J2 = 0.6287663921318654,
J3 = 0.6534865860743782.

Example 5 In this example we suppose K0(x) = 1 + x , dK = 1 − 0.5x2,Θ = 0.1,
α = 1, θ = 2

3 , and φ(x, y) = δx (y). The following Fig. 5 shows the long-run behav-
ior of K . The values of the objective functions after three iterations are given by: J0 =
0.5944537210742411, J1 = 0.6200510708312351, J2 = 0.6404132122774402, and
J3 = 0.6570096551286734.

Example 6 In this example we suppose K0(x) = 1 + x , dK = 1 − 0.5x2,Θ = 0.1,
α = θ = 2

3 , and φ(x, y) = 2δx (y). The following Fig. 6 shows the long-run behavior
of K . The values of the objective functions after three iterations are given by: J0 =
1.3119041162656826, J1 = 1.3265311280015393.
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Fig. 4 Evolution of physical
capital

Fig. 5 Evolution of physical
capital

The above figures illustrate that our simple algorithm is capable to handle an
optimal control problem on partial differential equations without requiring specific
restrictive assumptions on the functional formsof the utility andproduction functions.
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Fig. 6 Evolution of physical
capital

6 Conclusion

The importance of agglomeration and industrial clusters for economic growth has
been extensively documented. However, the peculiarities of clusters have never been
specifically accounted for in spatial growthmodels, despite they represent the natural
framework to discuss them. In order to move a first step in this direction, in this paper
we analyze a spatial economic growth model within an industrial cluster. The total
output in each location is determined by the amount of output produced in other
locations within the cluster, and so production activities within the cluster are all
interrelated. This implies that the evolution of capital gives rise to a spatial integro-
differential equation, which represents a generalization of the basic spatial economic
growth model. We analyze the model both in a purely dynamic setting and in an
optimal control framework, proposing a numerical algorithm to solve the model
under the latter scenario. Different from previous studies, our algorithm allows us
to solve the model even in a setting in which the objective function is nonlinear,
permitting thus to analyze the spatial features of the model even in its traditional
formulation from economic growth theory.
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Utilizing Bidirectional Encoder
Representations from Transformers
for Answer Selection

Md Tahmid Rahman Laskar, Enamul Hoque, and Jimmy Xiangji Huang

Abstract Pre-training a transformer-based model for the language modeling task
in a large dataset and then fine-tuning it for downstream tasks has been found very
useful in recent years. One major advantage of such pre-trained language models is
that they can effectively absorb the context of each word in a sentence. However, for
tasks such as the answer selection task, the pre-trained languagemodels have not been
extensively used yet. To investigate their effectiveness in such tasks, in this paper,
we adopt the pre-trained Bidirectional Encoder Representations from Transformer
(BERT) language model and fine-tune it on two Question Answering (QA) datasets
and three Community Question Answering (CQA) datasets for the answer selection
task. We find that fine-tuning the BERT model for the answer selection task is very
effective and observe a maximum improvement of 13.1% in the QA datasets and
18.7% in the CQA datasets compared to the previous state-of-the-art.

Keywords Answer selection · BERT · Transformer · Question answering · Deep
learning · Machine learning

1 Introduction

Answer Selection is a fundamental problem in the areas of Information Retrieval and
Natural Language Processing (NLP) [32]. In the answer selection task, a question
along with a list of candidate answers are given and the objective is to rank these
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Table 1 An example of theAnswer Selection task. A question alongwith a list of candidate answers
are given. The sentence in bold font is the correct answer

Question:
• Who is the winner of the US Open 2019?

List of Candidate Answers:
• Rafael Nadal has won the French Open 2019.

• Rafael Nadal has won the US Open 2019.
• Roger Federer has won the Australian Open 2018.

Potential Ranking:
• Rafael Nadal has won the US Open 2019.
• Rafael Nadal has won the French Open 2019.

• Roger Federer has won the Australian Open 2018.

candidate answers based on their relevancewith the given question [11] (see Table 1).
In such tasks, the relevance between a question and a candidate answer is measured
by various sentence similarity modeling techniques [32].

In recent years, various sentence similarity models based on the neural network
architecture have been utilized to measure the similarity between the question and
the candidate answer [2, 3, 23]. In such neural models, first, the word embedding
(GloVe [21] or Word2Vec [19]) representations of the question and the candidate
answer are used as input to the model. Then the vector representations of these
sentences produced by the neural model are utilized for the similarity calculation [2,
3]. However, such word embeddings can only provide a fixed representation of a
word and fail to capture its context. Very recently, pre-trained language models have
received a lot of attention as they can provide contextual representations of each
word in different sentences [5, 22]. Among the pre-trained language models, fine-
tuning the transformer-based [28] BERT model yields state-of-the-art performance
across different NLP tasks [5]. However, the fine-tuned BERT model is not deeply
investigated for the answer selection task yet [11].

To be noted that, there are some issues to address regarding fine-tuning a pre-
trained model in a new dataset. For instance, the BERT model has been pre-trained
in two scenarios: a) when casing information was present, and b) when casing infor-
mation was absent. Since it is not guaranteed that all datasets will have conventional
casing information, it is important to build models that are robust in scenarios when
casing information is missing [18]. In addition, it has been observed that neural mod-
els which are trained in datasets having conventional casing perform very poorly in
the test data for tasks such as named entity recognition [1] when the conventional
casing is absent [18]. Thus, to address the above issues, in this paper, we fine-tune
both the cased and uncased versions of the BERT model for the answer selection
task. More concretely, our contributions presented in this paper are the following:
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• First, we conduct extensive experiments in five datasets by fine-tuning the BERT
model for the answer selection task and observe that the fine-tuned BERT model
outperforms all prior work where pre-trained language models were not utilized.

• Second, we show that the cased model of BERT for answer selection is as effective
as its uncased counterpart in scenarios when casing information is absent.

• Finally, we conduct ablation study to further investigate the effectiveness of fine-
tuning BERT for answer selection. As a secondary contribution, we have made
our source codes publicly available here: https://github.com/tahmedge/BERT-for-
Answer-Selection.

2 Related Work

Earlier, various feature engineering-based approaches have been utilized for the
answer selection task [24, 32]. However, the feature engineering-based approaches
require lots of handcrafted rules and are often error-prone [3]. Also, the features
which are used in one dataset are not robust in other datasets [3].

In recent years, severalmodels based on deep neural network have been applied for
the answer selection task and they showed impressive performance without requiring
any handcrafted features [2–4, 9, 23, 26]. To be noted that, these deep neural network
models for answer selection mostly utilized the Recurrent Neural Network (RNN)
architecture. However, very recently, models based on the transformer architecture
[28] have outperformed the previously proposed RNN-based models in several NLP
tasks [5, 17]. Though these transformer-based models utilized the pre-trained BERT
architecture [5], models based on BERT have not been deeply investigated for the
answer selection task yet. Moreover, it was found that neural models trained on
case sensitive texts performed poorly in scenarios when the conventional casing
was missing in the test data [18]. Therefore, to address these issues, we utilize
both the cased and uncased versions of the pre-trained BERT model and investigate
its generalized effectiveness by conducting extensive experiments in five answer
selection datasets.

3 Utilizing BERT for Answer Selection

In this section, we first discuss the transformer encoder [28] which was utilized in
BERT [5]. Then we briefly describe how the BERT model was pre-trained, followed
by demonstrating our approach of fine-tuning the pre-trained BERT model for the
answer selection task.

https://github.com/tahmedge/BERT-for-Answer-Selection
https://github.com/tahmedge/BERT-for-Answer-Selection
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3.1 Transformer Encoder

The transformermodel has an encoderwhich reads the text input and a decoderwhich
produces the predicted output of the input text [28]. The BERT model only utilizes
the encoder of transformer [5]. The transformer encoder uses the self-attentionmech-
anism to represent each token in a sentence based on other tokens. This self-attention
mechanism works by creating three vectors for each token, which are: a query vector
Q, a key vector K, and a value vector V. These three vectors are created by multiply-
ing the embedding vector xi with three weight matrices (WQ,WK,WV) respectively.
If dk is the dimension of the key and query vectors, then the output Z of self-attention
for each word is calculated based on the following:

Z = so f tmax

(
Q × KT

√
dk

)
V (1)

Since the transformer encoder uses multi-head attention mechanism to give atten-
tion on different positions, the self attention is computed eight times with eight
different weight matrices which provide eight Z matrices. Then the eight Z matrices
are concatenated into a single matrix which is later multiplied with an additional
weight matrix in order to send the resulting matrix to a feed-forward layer [28].

3.2 Pre-training the BERT Model

The BERT model adopts the encoder of the transformer architecture [28]. The
encoder of BERT was pre-trained for masked language modeling and the next sen-
tence prediction task on the BooksCorpus (800M words) [35] dataset al.ong with
the English Wikipedia (2,500M words) [5]. For the masked language modeling task,
15% tokens in each input sequence are replaced with the special [MASK] token.
The model then learns to predict the original value of the masked words based on
the context provided by the non-masked words in the input sequence. In the next
sentence prediction task, the model receives a pair of sentences as input and attempts
to predict if the second sentence in the input pair is a subsequent sentence in the
original document.

3.3 Fine-Tuning BERT for Answer Selection

Let’s assume that we have two sentences X = x1, x2, ..., xm and Y = y1, y2, ..., yn .
To input them into theBERTmodel, they are combined together into a single sequence
where a special token [SE P] is added at the end of each sentence. Another special
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Fig. 1 BERT Fine Tuning: The question X and the candidate answer Y are combined together as
input to the pre-trained BERT model for fine-tuning

token [CLS] is added at the beginning of the sequence. The fine-tuning process of
the BERT model for the answer selection task is shown in Fig. 1.

In the fine-tuned BERT model, the representation of the first token ([CLS]),
which is regarded as the aggregate representation of the sequence, is considered as
the output of the classification layer. For fine-tuning, parameters are added to the
pre-trained BERTmodel for the additional classification layerW . All the parameters
of the pre-trained BERTmodel along with the additional parameters for the classifier
W are fine-tuned jointly to maximize the log-probability of the correct label. The
probability of each label P ∈ R

K (where K is the total number of classifier labels)
is calculated as follows:

P = so f tmax(CWT ) (2)

In the answer selection task, there are two classifier labels (where 1 indicates that
the candidate answer is relevant to the question, and 0 indicates the opposite). In the
original BERT model [5], sentence pair classification task was done by determining
the correct label. But in this paper,wemodify thefinal layer by following the approach
of [11] and only consider the predicted score Ptr for the similarity label to rank the
answers based on their similarities with the question.

Ptr = P(C = 1|X,Y ) (3)

4 Experimental Setup

In this section, we present the datasets, the training parameters, and the evaluation
metrics used in our experiments. To note that all experiments were run using Nvidia
V100 with 4 GPUs.

4.1 Datasets

In our experiments, we used five datasets: two of them were Question Answering
(QA) datasets whereas rest were Community Question Answering (CQA) datasets.
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Table 2 An overview of the datasets used in our experiments. Here, “#” denotes “number of”

Dataset # Questions # Candidate answers

Train Valid Test Train Valid Test

TREC-QA 1229 82 100 53417 1148 1517

WikiQA 873 126 243 8672 1130 2351

YahooCQA 50112 6289 6283 253440 31680 31680

SemEval-
2016CQA

4879 244 327 36198 2440 3270

SemEval-
2017CQA

4879 244 293 36198 2440 2930

The overall statistics of the datasets are shown in Table 2. In the following, we give
a brief description of each dataset.

TREC-QA: The TREC-QA dataset is created from the QA track (8–13) of Text
REtrieval Conference [29].

WikiQA: The WikiQA is an open domain QA dataset [31] in which the answers
were collected from the Wikipedia.

YahooCQA: The YahooCQA1 dataset is a community-based question answering
dataset. In this CQA dataset, each question is associated with at most one correct
answer and four negative answers [26].

SemEval-2016CQA: This is also a CQA dataset which is created from the Qatar
Living Forums.2 Each candidate answer is taggedwith “Good”, “Bad”or “Potentially
Useful”. We consider “Good” as positive and other tags as negative [13, 25].

SemEval-2017CQA: The training and validation dsata in this CQA dataset is
same as SemEval-2016CQA. However, the test sets are different [20].

4.2 Training Parameters and Evaluation Metrics

We used both the cased and uncased models3 of BERTLarge and fine-tuned them for
the pairwise sentence classification task [5]. The parameters of the BERTLarge model
were: number of layers L = 24, hidden size H = 1024, number of self-attention
heads A = 16, feed-forward layer size dff = 4096. For implementation, we used the
Transformer library of Huggingface4 [30]. For training, we used cross entropy loss
function to calculate the loss and utilized Adam as the optimizer. We set the batch
size to 16 and ran 2 epochs with learning rate being set to 2 × 10−5. We selected

1 https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=10.
2 https://www.qatarliving.com/forum.
3 https://huggingface.co/transformers/pretrained_models.html.
4 https://github.com/huggingface/transformers.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=10
https://www.qatarliving.com/forum
https://huggingface.co/transformers/pretrained_models.html
https://github.com/huggingface/transformers
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Table 3 Performance comparisons with the recent progress. Here, ‘FT’ denotes ‘Fine Tuning’

QA datasets CQA datasets

Model TREC-QA WikiQA YahooCQA SemEval’16 SemEval’17

MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

Kamath et al. [9] 0.852 0.891 – – – – – – – –

Sha et al. [25] – – 0.746 0.758 – – 0.801 0.872 – –

Tay et al. [27] – – – – – 0.801 - – – –

Nakov et al. [20] – – – – – – – – 0.884 0.928

BERT Large(Cased)
FT

0.934 0.966 0.842 0.856 0.946 0.946 0.841 0.894 0.908 0.934

BERT Large(Uncased)
FT

0.917 0.947 0.843 0.857 0.951 0.951 0.866 0.927 0.921 0.963

the model for evaluation which performed the best in the validation set. To evaluate
our models, we used the Mean Average Precision (MAP) and the Mean Reciprocal
Rank (MRR) as the evaluation metrics.

5 Results and Analyses

To evaluate the performance of fine-tuning the BERT model in the answer selection
datasets, we compare its performance with various state-of-the-art models [9, 20,
25, 27]. We also conduct ablation studies to further investigate the effectiveness of
fine-tuning. To note that, we pre-processed all datasets into the lower-cased format
and evaluated with both the cased and uncased versions of the BERT model.

5.1 Performance Comparisons

We show the results of our models in Table 3. We find that in comparison to the
prior work in the TREC-QA dataset, the fine-tuned BERTLarge (Cased) model performs
the best and outperforms the previous state-of-the-art [9] with an improvement of
9.6% in terms of MAP and an improvement of 8.4% in terms of MRR. However, in
the WikiQA dataset, the uncased version performs the best in terms of both MAP
and MRR. More specifically, BERTLarge (Uncased) model improves the performance
by 13% in terms of MAP and 13.1% in terms of MRR compared to the previous
state-of-the-art [25] in the WikiQA dataset.

In the CQA datasets, we again observe that both models outperform the prior
work. In terms of MRR, we find that the BERTLarge (Uncased) model outperforms [27],
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Table 4 Performance comparisons based on the Ablation Test. Here, ‘FT’ denotes ‘Fine Tuning’

QA datasets CQA datasets

Model TREC-QA WikiQA YahooCQA SemEval’16 SemEval’17

MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

BERT Large(Uncased)
FT

0.917 0.947 0.843 0.857 0.951 0.951 0.866 0.927 0.921 0.963

Without FT 0.405 0.476 0.566 0.571 0.436 0.436 0.604 0.670 0.698 0.757

[25], and [20] with an improvement of 18.7%, 6.3%, and 3.8% in the YahooCQA,
SemEval-2016CQA, and SemEval-2017CQA datasets respectively.

While comparing between the cased model and the uncased model, we find that
even though the cased model outperforms the uncased model in the TREC-QA
dataset, it fails to outperform the uncased model in other datasets. To be noted
that, the cased model still provides competitive performance in comparison to the
uncased model in all five datasets. In order to better analyze the performance of these
two models, we conduct significant tests. Based on the paired t-test, we find that the
performance difference between the two models is not statistically significant (p ≤
0.05). This indicates that the cased version of the fine-tuned BERT model is robust
in scenarios when the datasets do not contain any casing information.

5.2 Ablation Studies

We perform ablation test to investigate the effectiveness of our approach of fine-
tuning the BERT model. For the ablation test, we excluded fine-tuning and only
used the feature-based embeddings generated from the pre-trained BERTLarge (Uncased)

model. In our ablation study, we used all five datasets to compare the performance.
From the ablation test (see Table 4), we find that removing fine tuning from BERT
decreases the performance by 55.8, 32.9, 54.2, 30.3, and 24.2% in terms of MAP in
the TREC-QA,WikiQA, YahooCQA, SemEval-2016CQA, and SemEval-2017CQA
datasets respectively. The deterioration here without fine-tuning is statistically sig-
nificant based on paired t-test (p ≤ 0.05).

6 Conclusions and Future Work

In this paper, we adopt the pre-trained BERT model and fine-tune it for the answer
selection task in five answer selection datasets.We observe that fine-tuning the BERT
model for answer selection is very effective and find that it outperforms all the
RNN-based models used previously for such tasks. In addition, we evaluate the
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effectiveness of the cased version of the BERT model in scenarios when the casing
information is not present in the target dataset and demonstrate that the cased model
provides almost similar performance compare to the uncased model. We further
investigate the effectiveness of fine-tuning the BERT model by conducting ablation
studies and observe that fine-tuning significantly improves the performance for the
answer selection task.

In the future, we will investigate the performance of different transformer-based
models [13] on other tasks, such as information retrieval applications [6–8, 33],
sentiment analysis [15, 16, 34], learning from imbalanced datasets [14], query-
focused abstractive text summarization [12], and automatic chart question answering
[10].
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Calibration and Analysis of Structural
Credit Risk Models with Occupation
Time

Malhar M. Mukhopadhyay and Roman N. Makarov

Abstract Credit risk is concerned with analyzing financial losses occurring due
to changes in the credit quality of a firm. A rare occurrence of such sort is the
default event that often leads to bankruptcy or liquidation, resulting in large financial
losses to investors. In structural credit risk models, the asset value is compared to
firm’s liabilities at any time, and the default event occurs when the asset value falls
dangerously low. In this paper, we consider a structural credit risk model based on
occupation time, which is defined as the time the firm asset value V spends below
a default barrier. Here, we assume the geometric Brownian motion dynamics for V .
Liquidation is declared if the firm value drops below a liquidation barrier or if it
spends too much time below the default barrier. The main purpose of this paper is to
calibrate the occupation-time model parameters using default probabilities derived
from Credit Default Swaps (CDS) spreads available through Bloomberg Finance
L.P.. This is done by applying the non-linear least-squares method. We also compare
the occupation-time model with another well-known structural model of credit risk,
namely, the Black–Cox model (1976).

Keywords Credit risk · Structural model · Liquidation · Default probability ·
Occupation time · Black—Cox model · Credit default swap

1 Introduction

Credit events are constantly present in the lives of people, financial institutions, and
even countries. In short, credit risk is the uncertainty arising from potential default of
an economic agent to another economic agent. Amore formal definition of credit risk
is as follows [1, 5]. Credit Risk (Default Risk) is the potential loss arising from the

M. M. Mukhopadhyay (B) · R. N. Makarov
Wilfrid Laurier University, Waterloo, ON, Canada
e-mail: mukh3990@mylaurier.ca

R. N. Makarov
e-mail: rmakarov@wlu.ca

© Springer Nature Switzerland AG 2021
D. M. Kilgour et al. (eds.), Recent Developments in Mathematical, Statistical
and Computational Sciences, Springer Proceedings in Mathematics & Statistics 343,
https://doi.org/10.1007/978-3-030-63591-6_64

705

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63591-6_64&domain=pdf
mailto:mukh3990@mylaurier.ca
mailto:rmakarov@wlu.ca
https://doi.org/10.1007/978-3-030-63591-6_64


706 M. M. Mukhopadhyay and R. N. Makarov

default of an economic agent to meet its contractual obligations in a pre-established
period of time.

Under structural models of credit risk, a default event is deemed to occur for a
firm when its assets reach a sufficiently low level compared to its liabilities. These
models require strong assumptions on the dynamics of the firm’s asset, its debt and
how its capital is structured. In particular, we have

Assets = Equity + Liabilities

where Assets (Vt ), Liabilities (Bt ) and Equity (Et ) are considered time-dependent
processes. Merton [9] modelled firm’s assets through dynamics applied earlier by
Black and Scholes. In theMertonmodel, the defaultmay only be declared atmaturity.
The Black–Cox model [2] states that a default occurs if the company’s assets have
fallen below some predetermined default barrier after a certain period of time has
passed. Both these models assume that there is no temporal separation between
liquidation and default. The occupation time model [7] aims to provide a solution to
this issue.

Assume that the firm’s value follows a geometric Brownian motion motion under
the risk-neutral measure Q as given by the following SDE:

dVt = rVtdt + σVtdWt . (1)

In the Black–Cox model, default occurs at the first time the firm’s value drops
below a certain time-dependent barrier,

B(t) := Be−γ (T−t) = B0e
γ t , 0 < t ≤ T, (2)

where γ is the exponential coefficient, which is comparable to the yield of a zero-
coupon bond with face value B, and B0 = e−γ T . The default time in the Black–Cox
model is then given by a solution to the following first-passage time problem:

τB(V ) = inf{t > 0 : Vt ≤ B(t)},

where B0 < V0.

2 Occupation-Time Structural Model

The occupation time is defined as the cumulative time spent by a process under a
specific barrier. In our model, the cumulative time spent by the asset value process
V under the default barrier B is

At ≡ At (V, B) =
∫ t

0
I{V (u)≤B(u)}du. (3)
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We also introduce a predetermined threshold parameter ν > 0. If the occupation
time At exceeds the threshold parameter, then the firm defaults at time

τν = inf{t ≥ 0 : At ≥ ν}. (4)

We can also think of ν as the grace period granted by the bankruptcy court.
Let us also introduce another barrier given by L(t) = L0eγ t , where 0 < L0 <

B0 < V0. We call this barrier the liquidation barrier. If the firm’s value drops below
the liquidation barrier, the firm defaults even if the occupation time has exceeded the
threshold parameter. That is, it is the first-hitting time for the process V with respect
to the barrier L:

τL ≡ τL(V ) = inf{t ≥ 0 : Vt ≤ L(t)}. (5)

In this model there are now two default times: τν , which is due to the occupation
time, and τl , which is due to the liquidation barrier. The liquidation time TLiq is given
by

TLiq = min{τν, τL}. (6)

For any t ≥ 0, we have {τν ≥ t} = {At ≤ ν}. Therefore, the risk-neutral proba-
bility of liquidation by time T is

Q(TLiq ≤ T ) = Q(min{τν, τL} ≤ T ) = 1 − Q(min{τν, τL} > T )

= 1 − Q(τν > T, τL > T ) = 1 − Q(AT < ν, τL > T ). (7)

Applying a change of variables and using the fact that both default and liquidation
barriers are exponential functions of time with the same exponent, we can write

{Vt ≤ B(t)} = {Zt ≤ b} and {Vt ≤ L(t)} = {Zt ≤ l},

where Zt = x + μt + Wt is Brownian motion with drift, and the parameters are:

x = ln V0

σ
, μ = r − γ − σ 2

2

σ
, b = ln B0

σ
, l = ln L0

σ
.

Clearly, x > b > l holds.
The occupation time AT (V, B) and the first-passage time τL(V ) have the same

law as AT (Z , b) and τl(Z), respectively:

{AT (V, B) ≤ t} = {AT (Z , b) ≤ t} and {τL(V ) > T } = {τl(Z) > T }.

Thus, the joint probability distribution from (7) can now be written as

Q(AT (V, B) < ν; τL > T ) = Q(AT (Z , b) < ν; τl > T ). (8)
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The probability density function of the occupation time A with the condition
min0≤t≤T {Zt } > l can be obtained by the Laplace transform method. We use the
following result from Makarov (2016) [8].

Theorem 1 The probability of liquidation before maturity T is given by

Q(TLiq ≤ T ) = e−μ2T/2

[
L −1

γ [G1(γ ); ν] +
∫ ν

0
L −1

γ [g2(γ ); s]ds
]

= e−μ2T/2

2π i

[ ∫ C+i∞

C−i∞
G1(γ ; T − ν)eγ νdγ +

∫ ν

0

∫ C+i∞

C−i∞
g2(γ ; T − t)eγ t dγ dt

]
,

(9)

where the functions G1 and g2 are given by

G1(γ ; τ) = μ − c
√
2γ

(γ − μ2/2)
√
2
e−μ(x−b)

3∑
j=1

A jc j e
ac j+c2j τErfc

(
a

2
√

τ
+ c j

√
τ

)
,

g2(γ ; τ) =
√

γ e−μ(x−l)

(γ − μ2/2) sinh (
√
2γ (b − l))

(
1√
πτ

e− (x−b)2

2 τ − √
γ ce

√
2γ (x−b)c+γ 2c2τ

× Erfc

(
x − b√

2τ
+ √

γ cτ

))
.

and a = √
2(x − b), c = coth (

√
2γ (b − l)), c1 = − μ√

2
, c2 = μ√

2
, c3 = √

γ c. Also,

A1 = 1

μ(μ + √
2γ c)

, A2 = 1

μ(μ − √
2γ c)

, A3 = 1

γ c2 − μ2/2
.

Here, Erfc denotes the complementary error function.

The derivation of Eq. (9) follows the general derivation as also provided by Hug-
gonier [4] for a standard Brownian motion (see also [10]).

3 Numerical Results

3.1 Calibration Process

In the Black–Cox model, we calibrate the parameters γ , B0 and σ , whereas in the
occupation-time model with a liquidation barrier, we calibrate the parameters γ ,
B0, L0, σ and ν. Let PMkt

0,t denote the market implied probability of default from
0 to t as obtained from CDS prices available through Bloomberg Finance L.P., and
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PMdl
0,t denote the estimated probability of default obtained through the model. The

calibration process can be represented by the following diagrams:

PMkt
0,0.5

PMkt
0,1

...

PMkt
0,10

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

→

⎧⎪⎨
⎪⎩
dVt = rVtdt + σVtdWt

B(t) = B0eγ t

model parameters: σV , B0, γ,

(10)

for the Black–Cox model, and

PMkt
0,0.5

PMkt
0,1

...

PMkt
0,10

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dVt = rVtdt + σVtdWt

B(t) = B0eγ t

L(t) = L0eγ t

model parameters: σV , B0, γ, L0, ν,

(11)

for the occupation-time model.
We attempt to solve the following minimization problem:

Θ := argmin
T∑

t=0.5

wt

(
PMdl
0,t − PMkt

0,t

)2

(12)

where Θ := {σV , B0, γ, L0, ν} for the occupation-time model with a liquidation
barrier.

The weights {wt } are selected to achieve good curve fitting results. We keep the
weights consistent with regards to the following.

• Companies within the same Moody’s rating tier have the same weights. If during
the calibration process weights are changed for a certain firm, they are changed
for all firms within the same Moody’s tier.

• We calculate parameters for the Black–Cox and the occupation-time models using
the same weights for consistency.

The market implied probability of default can be estimated using CDS spreads
that are obtained through Bloomberg Finance L.P.. We use the following relation
[3, 5, 6]:

PMkt
0,T = Q(τ ≤ T ) = 1 − exp

(−s(T )T

LGD

)
, (13)

where T is the tenor, s(T ) is the corresponding CDS spread, and LGD is the loss
given default. For simplicity we set the LGD = 0.6.
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Using the expressions in (12) and (13), the calibration process is then carried out
as follows.

• The initial values of V0 = 100, B0 = 90, L0 = 80, σ = 0.2, r = 0.05, γ = r are
chosen for calibrating the Black–Cox model parameters.

• Using the parameters obtained for the Black–Cox models for γ = γBC , σ = σBC ,

B0 = BBC
0 , we calibrate the model parameters for the occupation-time model.

• If the occupation-time model fits the curve well, the process is ended and the
weights are then used for another firm within the same Moody’s rating tier. Oth-
erwise, the calibration process is run again with changed weights depending on
how well the curve was fitted for different tenors.

• The calibration process was done sequentially for tenors 0.5 ≤ t ≤ T where the
maturity T → 10. The parameters obtained from one calibration cycle were used
as starting values for the next cycle with a larger maturity.

3.2 Case Studies

3.2.1 Corporate CDS Prices

For the purpose of this paper we present the results for companies in different
Moody’s Ratings Tier, namely, Johnson & Johnson [JNJ], J.P. Morgan Chase &
Co. [JPMCC], Kraft–Heinz Co. [KHC] and Ford Motor Co. [F] (Fig. 1, Tables 1
and 2).

3.2.2 Turkish Sovereign CDS

On August 15, 2018, the Turkish Sovereign CDS curve inverted, indicating that the
short term insurance against default is more than the long term protection. CDS
inversions occur when investors are worried about collapse in the short term and are
inclinedmore towards purchasing long term security. In the case of Turkish Sovereign
CDS inversion, it was deemed that investors were worried about the collapse of
the relevant Turkish USD Sovereign bonds with short term maturities. Figure 2a
compares the calibrated implied probability with the market data. As seen from
Table 3, the value of γ is negative. Figure 2b shows the inverted curve.
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(a) Johnson & Johnson
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(b) J.P. Morgan Chase & Co.
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(c) Kraft–Heinz
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(d) Ford

Fig. 1 Implied risk-neutral probabilities of default for four companies

Table 1 Parameters for the Black–Cox Model: four companies

CDS B0 σ γ

JNJ 2.1110 0.9956 −0.0044

JPMCC 64.1751 0.2329 0.123

KHC 74.8282 0.1047 0.1587

F 76.3494 0.925 0.1672

Table 2 Parameters for the occupation-time model: four companies

CDS ν B0 L0 σ γ

JNJ 0.2324 55.3446 36.3215 0.4502 0.0012

JPMCC 0.1593 72.9971 49.2994 0.2281 0.1052

KHC 0.1362 73.072 39.5663 0.1307 0.1993

F 0.1445 72.3683 42.2334 0.1239 0.1728
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(a) Implied risk-neutral probability of default.
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(b) Real-world data vs. model curve.

Fig. 2 Turkey Sovereign CDS Curve: calibration of the occupation-time model with a liquidation
barrier

Table 3 Parameters for the occupation-time model: Turkish Sovereign CDS

ν B0 L0 σ γ

0.0002 9.4601 0.2063 6.2601 −2.5724

4 Conclusion

The main objective of this paper was to calibrate the parameters for the occupation
time model with default and liquidation barriers. We looked at firms in different tiers
of Moody’s ratings and observed that across various tiers the calibrated parameters
had similar properties. None of the parameters single-handedly got affected by CDS
prices, and, in fact, all parameters changed in the implied direction as we went up
or down the Moody’s ratings tiers. The occupation-time model replicated the CDS
implied default probability better than the Black–Cox model, which confirmed the
flexibility due to more parameters available for calibration. In the case of the Turkish
CDS’s, the implied CDS spread obtained from model parameters matched perfectly
with the CDS curve obtained from the market, even though there was a CDS spread
inversion. The occupation-time model also allows for the temporal separation of
default and liquidation and can be used in pricing market derivatives that consider
liquidation.

Acknowledgements R. Makarov wishes to acknowledge the support of the NSERC Discovery
Grant program.
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Prediction Intervals of Machine Learning
Models for Taxi Trip Length

Ella Morgan, Ryan Zhou, and Wenying Feng

Abstract Errors are always present in predictions produced by machine learning
models. Producing a quantitative estimate of the uncertainty in a model’s output
is crucial for many fields, especially those where predictive models drive important
decisions. In this paper we discuss twomethods for producing prediction intervals for
neural network, random forest, and gradient boosted tree models. We then evaluate
the prediction intervals produced by each algorithm by predicting the expected ride
length for a NYC taxi trip dataset. We show that inductive conformal prediction
produces the most reliable intervals for all machine learning models investigated.

Keywords Machine learning · Neural network · Gradient boosted tree · Random
forest · Prediction interval

1 Introduction

Nomodel is correct all the time. This is a reality for all machine learning algorithms,
from simple linear regressions to deep neural networks. Recognizing when a model
may produce inaccurate predictions is of increasing importance, especially with the
growing usage of predictive models in the real world. As such it is helpful to obtain,
along with the point estimate produced by the model, a quantitative measurement of
a model’s uncertainty in the form of a variance or a prediction interval.

Methods for producing prediction intervals for a learning algorithm such as lin-
ear regression have been well studied. However, these methods are not easily gen-
eralizable to more complex models such as those used in machine learning. We
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will present two distinct approaches-decomposition into model variance and inher-
ent noise, and inductive conformal prediction-for producing prediction intervals in
common machine learning applications. To our knowledge, these methods have not
been directly compared in the literature. Our primary contribution with this paper
is an empirical comparison of these methods applied to multiple machine learning
algorithms. To this end, we develop a method of estimating model uncertainty on
tree-based algorithms as well as an improvement on the inherent noise calculation
by dividing the calibration set into subsets based on target values.

We evaluate these methods on a dataset consisting of taxi trips in New York City,
using machine learning algorithms to predict the duration of a trip. This problem
is ideal for showcasing the techniques for a few reasons. Taxi trip duration can be
extremely difficult to predict as it relies on unpredictable external factors which are
difficult to quantify. Traffic, weather, and road conditions can change rapidly and
unpredictably, varying the actual duration of a trip by a large amount and ensuring
that errors will be inevitable to some degree. In addition, measurable factors such as
the starting and ending locations and the time of day do not have simple relationships
with the trip duration, making this a complex problem ideal for learning efficiency
evaluation.

The algorithms we use to generate predictions are random forest, gradient boost-
ing, and neural networks. Random forest [4] is an ensemble method that aggregates
the predictions of multiple decision trees to produce a single final prediction. Each
tree is trained on a subset of the training data produced by drawing with replacement
and choosing a random subset of features for each split in the tree. The prediction is
then the average prediction between all trees.

Gradient boosting [6] is a tree-based ensemble method closely related to random
forest. However, rather than training all trees independently, it creates the trees iter-
atively and attempts to improve on the ensemble of existing trees by using gradient
descent over the loss function. Each individual tree can be used as a weak estimator
as well, a trait which we use for uncertainty estimation.

Neural networks consist of many nodes or neurons, each of which produces an
output that is a linear combination of its inputs modified by a nonlinear activation
function. Neural network models link together many neurons in multiple layers in
order to learn complex relationships between input and output. Regularization is often
used on neural networks to alleviate overfitting; one such regularization technique
is dropout, which randomly mutes the outputs from a certain fraction of neurons.
This approximates the training of a large number of similar neural networks with
shared weights [12], forcing the network to generalize better by relying less on
specific weights. As we describe in the next section, this approximation to ensemble
behaviour can also be used for uncertainty estimation.
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2 Prediction Interval Algorithms

We provide two techniques for constructing a prediction interval. The first involves
decomposing the total uncertainty into two components, one captures uncertainty
within the model and the other describes the uncertainty in the input data. The second
technique, conformal prediction, approaches the problem from a different angle with
attempting to evaluate the difficulty of each input data point by comparing it to other
known points.

2.1 Decomposition into Model Variance and Inherent Noise

Total prediction uncertainty is a combination of model uncertainty, denoted by η2
1,

and inherent noise in the data, denoted by η2
2 [13]. Model uncertainty is specific to

the underlying trained model, and results from uncertainty in the model parameter
estimates. We will first discuss inherent noise, and then discuss different methods
for evaluating model uncertainty.

The inherent noise η2
2 is calculated by finding themean squared error on a separate

validation set as follows:

η2
2 = 1

N

N∑

i=1

(yi − ŷi )
2, (1)

where yi represents the target value and ŷi is its corresponding prediction. This
method produces one η2

2 for the full validation set and this single value is used for
all prediction intervals. We propose a modification to this method, where instead the
validation set are sorted based on the predicted outputs ŷi and split into n separate
quantiles. The inherent noise is then evaluated separately for each quantile, so that
each η2

2 corresponds to a different range of prediction outputs. At inference time, we
use η2

2 of the quantile which contains the test prediction.
The two variances, η2

1 and η2
2, are then combined into a total uncertainty measure

in the following manner:

η =
√

η2
1 + η2

2. (2)

We now describe some methods for calculating η2
1, the model uncertainty. These

methods are specific to the model used, whereas inherent noise is independent of the
model and depends only on the data.

Variance Estimation Through Monte Carlo Dropout
As outlined earlier, dropout is a regularization technique used on neural networks to
prevent overfitting. This is done by muting a certain fraction of neurons at random at
each training epoch, effectively changing the structure of the neural network slightly
each time [12]. While this prevents the network from being overly reliant on specific
nodes by forcing it to make predictions when the nodes in question are dropped out,



718 E. Morgan et al.

it can also be seen as performing an averaging of the weights over the ensemble of
possible subnetworks. As such, the final dropout-trained network can be viewed as
an approximation of an ensemble prediction.

Following the method described by Gal in [7], dropout can also be used during
inference time to effectively reconstruct the ensemble and gather predictions from
random subnetworks, a technique known asMonte Carlo dropout. Bymaking a large
number of predictions with dropout, we are able to sample from the distribution of
the ensemble predictions and estimate their variance as follows:

ŷ = 1

B

B∑

b=1

ŷb, (3)

η2
1 = 1

B

B∑

b=1

(ŷb − ŷ)2, (4)

where ŷb represents a single prediction made with dropout and B is the duplication
of the experiments, or the number of times the prediction procedure was repeated.
The average of all predictions is returned as the point prediction ŷ, and the variance
is found by Eq. (4). This variance is the model uncertainty, representing the disagree-
ment in the predictions of subnetworks produced by dropout, despite having all been
trained on the same dataset.

Variance Estimation for Tree Based Estimators
Although dropout regularization is a neural network technique and not used with
tree based models, random forest and gradient boosted trees are innately ensemble
methods. Therefore, we propose to calculate the model uncertainty using the same
method as the one described above, by finding the variance of the predictions pro-
duced by submodels in the ensemble. With ŷb in Eq. (3) now being the predictions
from individual trees, we similarly calculate the model uncertainty for the tree based
prediction with Eq. (4). This method can also be usedwith other ensemble algorithms
beyond those described in this paper.

Variance Estimation Through Proper Scoring
It is possible to take a different approach, by training a neural network to predict
its own variance. We modify the neural network to output a probability distribution
instead of a single value; as described in [9], this amounts to outputting the mean
and variance for a Gaussian distribution. The loss function to be minimized then is
the negative log-likelihood criterion:

− log pθ (yn|xn) = log σ 2
θ (xn)

2
+ (y − μθ(xn))2

2σ 2
θ (xn)

, (5)

where μθ and σ 2
θ are the outputted mean and variance respectively. By modifying

the neural network in this manner, the mean and variance can be estimated without
producingmultiple predictions as withMonte Carlo dropout, at the cost of increasing
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the number of parameters in the neural network. The model uncertainty produced by
this method η2

1 is then the value σ 2
θ predicted by the network: η2

1 = σ 2
θ (x).

2.2 K Nearest Neighbors Inductive Conformal Prediction

Conformal prediction classifies data points based on a nonconformity measure—or
intuitively, how “strange” each data point is for the underlying model—based on the
error the model produces when labeling that point. This is measured using a reserved
validation set, as shown in Algorithm 1. A calibration score is chosen by ordering
the nonconformity measures and finding the value which captures all scores up to
a given significance level. As each score is an explicit function of error, this can be
directly translated into a prediction interval.

Newer formulations [10] of conformal prediction also employ normalization using
a difficultymeasure,which is used to adjust the sizes of the uncertainty intervals based
on the estimated difficulty of the data point. For this study we use the average error,
weighted by distance, of the K nearest neighbours as the difficulty estimate. This
version of the metric is described in further detail in [3].

Algorithm 1 kNN ICP
Input: Data x∗, validation set x ′, prediction algorithm h(·), kNN algorithm g(·), number of nearest
neighbors k, significance level δ, sensitivity parameter β

Output: Prediction interval Ŷ δ
i

// prediction
ŷ ← h(x∗)
ŷ′ ← h(x ′)
for x ′

i in validation set x
′ do

// find K nearest neighbors
{x ′

1, ..., x ′
k} = g(x ′

i , x ′, k)
for x ′

j in {x ′
1, ..., x ′

k} do
// euclidean distance
d j = d(x ′

i , x ′
j )

o j = |ŷ′
j − y′

j |
end for
// difficulty measurement, ε is a small value that prevents division by zero

μi =
∑k

j=1 o j / (d j+ε)
∑k

j=1 1 / (d j+ε)

// nonconformity measure
αi = oi

μi+β

end for
sort {α1, ..., αm} incrementally
αδ = α�δ(m+1)�
Ŷ δ
i = ŷi ± αδ(μi + β)

return Ŷ δ
i
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3 Computational Models for Empirical Evaluation

In this section we describe the setup for an empirical evaluation of the different
algorithms. We report the results from the tests in the following section.

The dataset used for the experiments was obtained from theNewYorkCity (NYC)
Taxi and Limousine Commission website https://www1.nyc.gov/site/tlc/about/tlc-
trip-record-data.page, for themonthofAugust, 2016. In order to prevent data leakage,
we used only features which would be known before a taxi trip, including pickup
latitude and longitude, drop off latitude and longitude, distance travelled (which
could be estimated with the routing software used by taxi drivers), and the day and
hour of pickup.

The dataset was augmented with features such as the average taxi speed that hour,
the pickup and drop off neighborhood (by grouping locations based on density),
the number of taxi rides that hour, the direction of travel, and whether the taxi ride
started or ended at an airport. Records were removed if they failed to meet any of
the following criteria: a trip time between 10s and 20h, a trip distance greater than
0, an origin and destination within NYC and with valid coordinates, and an average
trip speed (time/distance) under 100km/h.

The models in our study include (1) random forest; (2) gradient boosting; (3) a
neural network with a dropout layer; and (4) a neural network using a proper scoring
method. The variance and inherent noise methods were used to construct intervals
for predictions for all four models. The K nearest neighbours inductive conformal
prediction method (Algorithm 1) was used to construct intervals for predictions
made by models (1), (2) and a standard neural network. For these models we set
ε = 0.001 and β = 0.01. In total 7 computational models were evaluated based on
their prediction intervals.

Random forest and gradient boosting were implemented using the package scikit-
learn [11] in Python. For both models 1000 trees were built, and all other parameters
were the defaults in scikit-learn. For both random forest and gradient boosting a
single model was trained and there were one set of predictions for each, and then
confidence intervals were found using two different methods described in Sect. 2.

All neural networks were implemented in Python using Keras [5] and Tensorflow
[1]. Three different models were built, all consisting of a dense layer of 1000 neurons
using a tanh activation. The first neural network implemented variance estimation
through Monte Carlo dropout and incorporated a dropout layer active during both
training and testing time. The second network used the proper scoring method to
output the mean and variance of a Gaussian distribution. This network was trained
using log-likelihood loss implemented as a custom loss function in Keras. The mean
of the distribution was taken to be the model’s prediction, and the variance was used
as model uncertainty. The final neural network was a standard neural network used
as the underlying model for kNN inductive conformal prediction.

To compare the accuracy of predictions for the learning models, the mean abso-
lute error (MAE), root mean square error (RMSE), and symmetric mean absolute
percentage error (SMAPE) scoring metrics are applied. One benefit for the RMSE is

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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that larger errors get penalized more and have a larger impact on the results, which
helps to evaluate the quantity of outliers in the predictions. The SMAPE defined by
(6) was used due to its popularity in the literature and ability to handle small values
well [2, 8]:

SMAPE = 100

N

N∑

i=1

|yi − ŷi |
(|yi | + |ŷi |)/2 . (6)

In addition to these commonly applied metrics for comparisons within the same
dataset, we compare the prediction intervals between datasets using two main crite-
ria. First, we investigate whether the intervals capture the desired confidence level
by finding the fraction of target values y in the testing set which fall inside the calcu-
lated prediction interval [ŷlower , ŷupper ], where ŷupper and ŷlower are the upper and
lower limits of the interval, respectively. The percentage of records found within the
interval, referred to as capture percentage (CP), is calculated as follows and should
be close to the target confidence level as desired:

CP = 100 × 1

N

N∑

n=1

cn, (7)

cn =
{
1 ŷupper ≥ y ≥ ŷlower ,

0 otherwise.
(8)

Next the relative sizes of the prediction intervals are compared. Given that the accu-
racy of the intervals remains around the intended percentage, we prefer methods
which produce smaller intervals on average. To this end, we find the mean and
median interval size. Using both the mean and median allows us an overview of the
comparative sizes of the intervals while remaining robust to outliers.

4 Experimental Results

Table 1 compares the performance of the models based on their point predictions.
The random forest model achieved the highest accuracy by all listed metrics while
the gradient boosting model proved the least accurate. Of the neural networks, the
standard neural network performed slightly better than other neural network models,
indicating that dropout and the proper scoring methods affect accuracy by a small
degree. However, the overall difference in performance between models was small
and all models obtained comparable accuracy on this dataset.

Table 2 evaluates the performance for different methods of computing predictive
regions. The results show that K nearest neighbours inductive conformal predic-
tion (models 5–7) consistently outperformed variance and inherent noise methods
(models 1–4) in both accuracy of coverage by Eq. (7) and interval size. The intervals
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Table 1 Point prediction results

Model MAE RMSE SMAPE

Random forest 143.14 218.24 18.89

Gradient boosting 153.24 230.55 20.39

Standard neural network 146.12 226.29 19.58

Neural network with dropout 148.47 232.53 19.40

Neural network with proper scoring 150.60 231.10 19.82

Table 2 Prediction interval results

90% Interval 95% Interval 99% Interval

Model CP (%) Mean Median CP (%) Mean Median CP (%) Mean Median

1 98.0 459.5 414.4 98.9 547.5 493.8 99.6 719.6 649.0

2 94.7 390.1 315.4 97.1 464.9 375.8 98.9 611.0 494.0

3 95.5 388.0 366.9 97.6 462.3 437.1 99.0 607.6 574.5

4 94.3 371.3 338.5 96.8 442.4 403.4 98.7 581.4 530.1

5 89.8 327.2 313.9 94.8 443.1 425.0 98.9 766.2 735.1

6 89.6 346.8 333.7 94.8 466.6 449.0 98.8 785.1 755.4

7 89.5 301.1 264.8 94.8 385.0 338.6 98.9 616.2 541.8

The capture percentage (CP) column shows the percentage of intervals that contain the true value
obtained by (7). The mean and median columns show the average sizes of the prediction intervals.
Model 1: Random forest with variance and inherent noise method for tree based estimators.
Model 2: Gradient boosting with variance and inherent noise method for tree based estimators.
Model 3: Neural network with variance and inherent noise method with Monte Carlo dropout
variance.
Model 4: Neural network with variance and inherent noise method using a proper scoring method.
Model 5: Random forest with K nearest neighbours inductive conformal prediction.
Model 6: Gradient boosting with K nearest neighbours inductive conformal prediction.
Model 7: Neural network with K nearest neighbours inductive conformal prediction

obtained from conformal prediction better captured the target confidence level and
as a result, prediction intervals produced by conformal prediction were also smaller
due to the variance and inherent noise method consistently producing larger intervals
than necessary. The variance and inherent noise method produced more conservative
estimates which may be desirable if avoiding underestimates is critical, but the sig-
nificantly larger intervals do not as accurately convey the model’s confidence in its
prediction. For instance, at the 90% prediction interval level, the capture percentage
(CP) formodels 5–7 are all within 1%of the target CP, wheremodels 1–4 are between
4 and 8% more than the desired CP. Similar results are observed for the 95 and 99%
prediction intervals. When the interval size is also considered, model 7 produced the
best result with the smallest mean and median interval width among all the models.

With the variance and inherent noise method, the gradient boosting and neural
network models produced comparable intervals. Between the proper scoring and
dropout neural networks, proper scoringwas consistently better and produced smaller
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intervals while still meeting the target capture percentage. The neural network with
proper scoring was also significantly faster at generating intervals and predictions
compared to the dropout method, as sampling a large number of predictions for the
dropout network added considerable overhead.

Overall, the inductive conformal prediction was consistently able to achieve the
target confidence level, independent of the underlying algorithm. This illustrates
a key advantage of conformal prediction in that the algorithm can be treated as a
black box, unlike variance decomposition which requires model-specific methods
of estimating the model uncertainty. In addition, the inductive version of conformal
prediction used in this paper only requires a relatively straightforward calculation
of difficulty at inference time, unlike some implementations of variance estimation
which may require a computationally expensive ensemble prediction.

5 Conclusion

In this paper,methods to produce prediction intervals formachine learning algorithms
were evaluated. We compared two approaches to finding such intervals: a decompo-
sition into model variance and inherent noise method, and an inductive conformal
prediction method utilizing K nearest neighbours. These techniques were evaluated
on three basemodels trained to predict taxi trip length. In terms of prediction accuracy
we achieved comparable results on all models, with random forest having marginally
better results. For prediction intervals we found that K nearest neighbors inductive
conformal prediction outperforms the variance with inherent noise methods for all
cases. It also has the significant advantage of being independent from the underlying
algorithm, so it is compatible with and can be implemented alongside any prediction
model.

As future work, theoretical analysis would provide better explanations to the
experimental results. Testing with bigger datasets from other application areas will
also enhance the conclusions.
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The Cobb-Douglas Production Function
Revisited

Roman G. Smirnov and Kunpeng Wang

Abstract Charles Cobb and Paul Douglas in 1928 used data from the US manufac-
turing sector for 1899–1922 to introduce what is known today the Cobb-Douglas
production function that has been widely used in economic theory. We employ
the R programming language to fit the formulas for the parameters of the Cobb-
Douglas production function generated by the authors recently via the bi-Hamiltonian
approach to the same data set utilized by Cobb and Douglas. We conclude that the
formulas for the output elasticities and total factor productivitiy fit to the data quite
well.

Keywords Data fitting · Cobb-Douglas production function · Bi-Hamiltonian
approach · Dynamical systems and statistical methods · R Programming

1 Introduction

The study and applications of the Cobb-Douglas production function in the field
of economic science have a long history. Recall that in 1928 Charles Cobb and
Paul Douglas published their seminal paper [1] in which the authors established a
relationship between the volume of physical production in American manufactur-
ing from 1899 to 1922 and the corresponding changes in the amount of labor and
capital that had been employed during the time period to turn out the said physical
production. More specifically, the authors computed and expressed in logarithmic
terms the index numbers of the fixed capital, total number of production workers
employed in American manufacturing, and physical production in manufacturing.
It was established that the curve for production lied approximately one-quarter of
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the distance between the curves representing the corresponding changes in labor and
capital. Accordingly, Cobb and Douglas adopted the following function (previously
also used by Wicksteed and Wicksell) given by

Y = f (L , K ) = ALkK 1−k, (1)

where Y , L , and K represent production, labor, and capital respectively, while A is
total factor productivity. The authors used the method of least squares to find that for
the value of k = 3/4 the estimated values of Y fairly well approximated the actual
values for the actual production in American manufacturing from 1899 to 1922.

It took 20 more years of careful research and scrupulous study of different data
before the economic community accepted the formula (1), although the research con-
tinued past the 1947 Douglas’ presidential address given to the American Economics
Association in Chicago that marked the overall acceptance of the results of the origi-
nal research conducted in 1928 by Cobb and Douglas (see [3] for a historical review
and more details) and is still being done [2]. Notably, the Cobb-Douglas aggregate
production function is still being used to fit to data coming from different fields of
study driven by growth in production (see, for example, Prajneshu [4]).

The nextmilestone in the development of the theory behind theCobb-Douglas pro-
duction function (1) that we wish to highlight in this paper is the research conducted
by Ruzyo Sato [5] (see also Sato and Ramachandran [6] for more references and
details) in which the author derived the Cobb-Douglas production function under the
assumption of exponential growth in production, labor and capital, using some stan-
dard techniques from the Lie group and dynamical systems theories. Sato’s results
were further developed and extended recently by the authors in [7] under the assump-
tion of logistic rather than exponential growth in production and factors (labor and
capital). Under the assumptions specified the author derived in a straightforwardmat-
ter the general form of the Cobb-Douglas function. More specifically, the function
derived by Sato is of the following form:

Y = f (L , K ) = ALαK β, (2)

where Y , L and K are as before, while α and β denote the corresponding elasticities
of substitution. However, in order to assure that the elasticities of substitution α and
β admitted economically accepted values for α, β > 0, α + β = 1 as in (1), Sato had
to assume that the function in question was holothetic under two types of technical
change simultaneously that assured the same form for the production function (2) as
in the original paper by Cobb and Douglas [1].

Recently the authors have improved the result by Sato by employing the bi-
Hamiltonian approach [8]. More specifically, it was shown that the exponential
growth in the factors of production and production under some mild assumption
leads to the same form of the Cobb-Douglas production function (2) without Sato’s
assumption of simultaneous holotheticity [5].
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The main goal of this paper is to establish a link between the analytic approach
to the problem of the derivation of the Cobb-Douglas production function presented
in [8] and the original data studied by Cobb and Douglas in [1] by employing R
Programming.

2 Theoretical Framework

In this section we briefly review the three approaches to the problem of the derivation
of the Cobb-Douglas function outlined in the introduction.

First, Cobb and Douglas in [1] presented a comprehensive study of the elastisity
of labor and capital and how their variations affected corresponding volume of pro-
duction in Americanmanufacturing from 1899 to 1922. In particular, they plotted the
corresponding time series of production output (Day index of physical production),
labor and capital on a logarithmic scale (see Chart I in [1]). Since we will use this
data in what follows, let us first tabulate the index numbers of the industrial output
in Amarican manufacturing Y , fixed capital K , and total number of manual workers
L on a logarithmic scale in the following table.

The authors demonstrated with the aid of the method of least squares that the
above data presented in Table 1 is subject to the following formula:

Y = f (L , K ) = 1.01L3/4K 1/4, (3)

which is a special case of the formula (2).
Next, recall Sato employed in [5] an analytic approach to derive theCobb-Douglas

function (2). Summed up briefly, his approach was based on the assumption that the
production and the corresponding input factors (labor and capital) grew exponen-
tially. Under this assumption the problem of the derivation of the Cobb-Douglas
function comes down to solving the following partial differential equation:

Xϕ = aK
∂ϕ

∂K
+ bL

∂ϕ

∂L
+ c f

∂ϕ

∂ f
= 0, (4)

where ϕ(K , L , f ) = 0, ∂ϕ/∂ f �≡ 0 is a solution to (4). Solving the corresponding
sysetm of ordinary differential equations

dK

aK
= dL

bL
= d f

c f
, (5)

using themethodof characteristics, yields the function (2),whereα = α(a, b, c), β =
β(a, b, c). Unfortunately, the elasticity elements in this case do not attain econom-
ically meaningful values as in (1), because of the condition αβ < 0. To mitigate
this problem Sato in [5] introduced the notion of the simultaneous holothenticity,
which implied that a production function in question was holothetic under more than
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Table 1 The time series data used by Charles Cobb and Paul Douglas in [1]

Year Output Y Capital K Labour L

1899 4.605170 4.605170 4.605170

1900 4.615121 4.672829 4.653960

1901 4.718499 4.736198 4.700480

1902 4.804021 4.804021 4.770685

1903 4.820282 4.875197 4.812184

1904 4.804021 4.927254 4.753590

1905 4.962845 5.003946 4.828314

1906 5.023881 5.093750 4.890349

1907 5.017280 5.170484 4.927254

1908 4.836282 5.220356 4.795791

1909 5.043425 5.288267 4.941642

1910 5.068904 5.337538 4.969813

1911 5.030438 5.375278 4.976734

1912 5.176150 5.420535 5.023881

1913 5.214936 5.463832 5.036953

1914 5.129899 5.497168 5.003946

1915 5.241747 5.583469 5.036953

1916 5.416100 5.697093 5.204007

1917 5.424950 5.814131 5.278115

1918 5.407172 5.902633 5.298317

1919 5.384495 5.958425 5.262690

1920 5.442418 6.008813 5.262690

1921 5.187386 6.033086 4.990433

1922 5.480639 6.066108 5.081404

one type of technical change simultaneously. Economically, this assumption leads
to a model with the aggregate production function described by exponential, say,
growth in two different sectors of economy (or, two countries) rather than one. From
the mathematical perespective, this model yields a production function which is an
invariant of an integrable distribution of vector fields � on R

2+, each representing a
technical change determined by the formula (4) if both of them are determined by
exponential growth. Indeed, consider the following two vector fields, for which a
function ϕ(K , L , f ) is an invariant:

X1ϕ = K
∂ϕ

∂K
+ L

∂ϕ

∂L
+ f

∂ϕ

∂ f
= 0, X2ϕ = aK

∂ϕ

∂K
+ bL

∂ϕ

∂L
+ f

∂ϕ

∂ f
= 0. (6)
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Clearly, the vector fields X1, X2 form a two-dimensional integrable distribution on
R

2+: [X1, X2] = ρ1X1 + ρ2X2, where ρ1 = ρ2 = 0. The corresponding total differ-
ential equation is given by (see Chapter VII, Sato [5] for more details)

( f L − b f L)dK + (a f K − f K )dL + (bK L − aK L)d f = 0,

or,

(1 − b)
dK

K
+ (a − 1)

dL

L
+ (b − a)

d f

f
= 0. (7)

Integrating (7), we arrive at a Cobb-Douglas function of the form (2), where the
elasticity coefficients

α = 1 − b

a − b
, β = a − 1

a − b

satisfy the condition of constant returns to scale α + β = 1. Of course, one has to
also assume that the parameters of the exponential growth a and b are such that the
coefficients of elastisity α, β > 0.

Unfortunately, in spite of much ingenuity employed and a positive result, Sato’s
approach based on analytical methods cannot be merged with the approach by Cobb
and Douglas based on a data analysis method. Indeed, the data presented in Table
1 represents growth only in one sector of an economy and as such is incompatible
with any approach based on the notion of the simultaneous holothenticity. At the
same time, it is obvious that an additional equation must be employed to derive
the Cobb-Douglas aggregate production function with economically meaningful
elastisity coefficients α and β in (2). To resolve this contradiction, the authors of
this article employed the bi-Hamiltonian approach in [8] to build on the approach
introduced by Sato to derive theCobb-Douglas production function by analyticmeth-
ods.

The following is a brief review of the derivation of the Cobb-Douglas produc-
tion function performed in [8]. Indeed, let us begin with Sato’s assumption about
exponential growth in production, labor and capital and rewrite the PDE (4) as the
following system of ODEs:

ẋi = bi xi , i = 1, 2, 3, (8)

where x1 = L (labor), x2 = K (capital), x3 = f (production), b1 = b, b2 = a and
b3 = 1 in Sato’s notations (see (4)). Next, we rewrite (8) as the followingHamiltonian
system:

ẋi = Xi
H = π i	

1
∂H

∂x	

, i = 1, 2, 3. (9)

Here

π = −xi x j
∂

∂xi
∧ ∂

∂x j
, i, j = 1, 2, 3 (10)
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is the quadratic (degenerate) Poisson bi-vector that defines the Hamiltonian function

H =
3∑

k=1

ck ln xk (11)

via XH = [π, H ], in which the parameters ck are solutions to the rank 2 algebraic
system Ac = b determined by the skew-symmetric 3 × 3 matrix A

A =
⎡

⎣
0 −1 −1
1 0 −1
1 1 0

⎤

⎦ ,

c = [c1, c2, c3]T with all ck > 0, and b = [b1, b2, b3]T , satisfying the condition

b1 + b3 = b2. (12)

Alternatively, we can introduce the following new variables

vi = ln xi , i = 1, 2, 3, (13)

which lead to an even simpler form of the system (8), namely

v̇i = bi , i = 1, 2, 3. (14)

Interestingly, the substitution (13) is exactly the one used by Cobb and Douglas in
[1]. Note that (14) is also a Hamiltonian system, provided b1 + b3 = b2, defined by
the corresponding (degenerate) Poission bi-vector π̃ with components

π̃ i j = − ∂

∂vi
∧ ∂

∂v j

and the corresponding Hamiltonian

H̃ =
3∑

k=1

ckvk .

Observing that the function H given by (11) is a constant of the motion of the
Hamiltonian system (9), and then solving the equation

∑3
k=1 ck ln xk = H = const

for x3, we arrive at the Cobb-Douglas production function (2) after the identification

x1 = L , x2 = K , x3 = f , A = exp
(

H1
c3

)
, α = − c1

c3
, β = − c2

c3
. Next, introduce the

following bi-Hamiltonian structure for the dynamical system (8):

ẋi = XH1,H2 = [π1, H1] = [π2, H2], i = 1, 2, 3, (15)
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where the Hamiltonian functions H1 and H2 given by

H1 = b ln x1 + ln x2 + a ln x3, H2 = ln x1 + a ln x2 + b ln x3. (16)

correspond to the Poisson bi-vectors π1 and π2

π1 = ai j xi x j
∂

∂xi
∧ ∂

∂x j
, π2 = bi j xi x j

∂

∂xi
∧ ∂

∂x j
, i, j = 1, 2, 3 (17)

respectively under the conditions

{
bb1 + b2 + ab3 = 0,
b1 + ab2 + b3b = 0.

(18)

Note the conditions (18) (compare them to (12)) assure that π1 and π2 are indeed
Poisson bi-vectors compatible with the dynamics of (8) and corresponding to the
Hamiltonians H1 and H2 given by (16) respectively. Solving the linear system (18)
for a and b under the additional condition b1b2 − b23 �= 0, we arrive at

a = b2b3 − b21
b1b2 − b23

, b = b1b3 − b22
b1b2 − b23

. (19)

Consider now the first integral H3 given by

H3 = H1 − H2 = (b − 1) ln x1 + (1 − a) ln x2 + (a − b) ln x3. (20)

Solving the equation H3 = const determined by (20) for x3, we arrive at the Cobb-
Douglas function (2) with the elasticities of substitution α and β given by

α = a − 1

a − b
, β = 1 − b

a − b
, (21)

where a and b are given by (19). Note α + β = 1, as expected. Also, α, β > 0 under
the additonal condition b2 > b3 > b1, which implies by (8) that capital (x2 = K )
grows faster than production (x3 = f ), which, in turn, grows faster than labor (x1 =
L). We have also determined the corresponding formula for total factor productivity
A (27) - see below for the numerical value of A.

In what follows we will show that the formulas obtained above via the bi-
Hamiltonian approach can in fact be matched with the data employed by Cobb and
Douglas in [1].
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3 Main Result

Solving the separable dynamical system (8), we obtain

xi = ci exp(bi t), i = 1, 2, 3, (22)

where ci ∈ R+ and bi we will determine from the data presented in Table 1.
Taking the logarithm (actually, much like Cobb and Douglas treated their data in

[1]!) of both sides in each equations, we linearize them as follows:

ln xi = Ci + bi t, i = 1, 2, 3, (23)

where Ci = ln ci .
Our next goal is to recover the corresponding values of the coefficients Ci , bi ,

i = 1, 2, 3 from the data presented in Table 1. Employing R (see Appendix for more
details) and the method of least squares, we arrive at the following values:

b1 = 0.025496, C1 = 4.669533 (labor),
b2 = 0.064725, C2 = 4.612136 (capital),
b3 = 0.035926, C3 = 4.664153 (production).

(24)

We see that the errors, represented by the $values in Figs. 1a, 1b and 2a, are
all less than 1, which suggests that the formulas (23) fit quite well to the data in
Table 1. To measure the goodness of fit, consider, for example, the data presented in
the second column of Table 1 (capital). The graph relating observed capital versus
estimated capital is the subject of Fig. 3a. Employing R, we have verified that the
linear regression shows the adjusted R-squared value of the model is 0.9934, which
is very close to 1 (see Fig. 3b).

We also note the values of the estimated coefficients satisfy the inequality b2 >

b3 > b1, which is in agreement with our algorithm based on the bi-Hamiltonian
approach. Identifying x1 = L and x2 = K from the data and substituting the values
of parameters bi into the Eq. (19), we obtain

a = 4.659322, b = −9.104008, (25)

which in turn determine the values of α and β via (21) to be

α = 0.265875, β = 0.734125. (26)

Nowwe can determine the corresponding value of total factor productivity A from
the following formula, obtained by solving the equation H3 = const determined by
(20),

A = exp

(
H3

a − b

)
, (27)
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where H3 is a constant along the flow (22) as a linear combination of the two Hamil-
tonians H1 and H2 given by (16).

Next, using the data from Table 1 and formula (20), we employ R to evaluate
H3, arriving at the following results: the variance of the resulting distribution of
values of H3 is 0.592229 and the mean of the distribution is 0.136555. By letting
H3 = 0.136555 and using (27), the value of A is found to be A = 1.009971 ≈ 1.01
(compare with (3)).

Therefore, we conclude that using statistical methods we have fitted the differ-
ential equations (22) to the values of the elasticities of substitution and total factor
productivity obtained via the bi-Hamiltonian approach and the data originally stud-
ied by Cobb and Douglas in 1928. In addition, we have demonstrated that Sato’s
assumption about exponential growth in production and factors of production [5] is
compatible with the results by Cobb and Douglas based on the statistical analysis of
the data from the US manufacturing.
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Appendix

See Figs. 1, 2a, and 3.

(a) Labor fitting. (b) Capital fitting.

Fig. 1 Labor and capital
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(a) Production fitting. (b) Total factor productivity fitting.

Fig. 2 Production and total factor productivity

(a) Observed capital versus estimated capital. (b) The linear regression of the observed and es-
timated capital from 1899 to 1922.

Fig. 3 Linear regression
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Inferring Rankings from First Order
Marginals

Sarah Wolff

Abstract Motivated by applications in ranked-choice voting, we consider the prob-
lem of recovery of an election profile—encoded by a function f on the symmetric
group—given only partial data. In particular, we investigate the combinatorial struc-
ture of the matrix of first order marginals, which gives the number of votes cast
that ranked each alternative in each position. We investigate conditions on f that
allow us to exploit this combinatorial structure to recover the original function f .
As the matrix of first order marginals is the Fourier coefficient of the permutation
representation of the symmetric group, this work sits within the context of algebraic
compressed sensing, which tackles the question of how to recover a sparse function
f on a finite group given only a subset of the Fourier coefficients of f .

Keywords Ranked data · Discrete fourier transform · Symmetric group

1 Introduction

Consider an election procedure in which k members of a society select a ranking
amongst n alternatives. Let Sn denote the set of all possible rankings of the n alterna-
tives. The set of rankings given by the individual members is called a profile and can
be encoded by a function f : Sn → Z

+, giving the number, f (σ ), of votes cast for
each ranking σ . Suppose, however, that the only information known is the number of
votes cast that ranked each alternative in each position. Can one uniquely recover the
original profile f ? Thinking of f as a probability distribution on Sn (with appropriate
normalizing), this becomes the question of recovery of f given its matrix Q1 of first
order marginals, where Q1i j gives the number of members who ranked alternative
j in position i .

Taking an algebraic point of view,we recognize the set Sn , alongwith the operation
of composition, as the symmetric group. The representation theory of the symmetric
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group is well-understood and has been applied fruitfully in social choice theory
over the years. For example, Kelly [12] rephrases the arrovian framework using the
symmetric group; more recently, Bubboloni and Gori [2, 3] have used subgroup
actions to determine when election procedures satisfy such properties as reversal-
symmetry, anonymity, and neutrality.

A line of work taken up independently by Diaconis, Orrison, and Saari
[6, 7, 14], among others, considers the Fourier analysis of functions corresponding
to election profiles. Analyzing a function on Sn by consdering itsFourier coefficients,
i.e. its projection into submodules determined by the irreducible representations of
Sn , yields new information about the function. For example, in [7] Diaconis uses
Fourier analysis on the 1980 American Psychological Association (APA) presiden-
tial election data, finding a large effect coming from two pairs of alternatives. The
APA at the time was divided primarly among academicians and clinicians; Diaco-
nis’s results show that voters primarily lined up behind either the academician pair
or the clinician pair.

In some sense, our work takes the opposite perspective: in Sect. 2 we see that the
matrix Q1 is exactly the Fourier coefficient f̂ (ρ) for ρ the permutation represen-
tation of Sn . The motivating question then becomes: given only a subset of Fourier
coefficients of f , can one uniquely recover f ?

The same question, in the context of the cyclic groupCN rather than the symmetric
group Sn , forms the heart of compressed sensing, which originated from the question
of reconstructing a discrete time signal from a small number of frequencies, i.e., a
subset of its Fourier coefficients. Introduced by Donoho [8] and in a series of papers
by Candés, Romberg, and Tao (including [4, 5]), the central methods of compressed
sensing are not only of theoretical interest but have also been used in applied settings
such as signal processing, acoustic imaging, and medical imaging, among others [1].

Given only a subset of Fourier coefficients there are often infinitelymany functions
that share these Fourier coefficients. Candés, Romberg, and Tao proposed seeking
the solution with “minimum complexity” whose partial Fourier coefficients match
those of f . They show that the function with minimum �1 norm exactly recovers f
with overwhelming probability when | supp( f )| ≤ |S′|/ log N 6, for |S′| the number
of Fourier coefficients (see p. 1441 of [4] and [5]).

In the social choice context of a function f on the symmetric group Sn , Jagabathula
and Shah [9] connect to the area of compressed sensing by focusing on finding the
sparsest solution consistent with the given Fourier coefficients. They derive two con-
ditions, linear independence and unique witness, which are sufficient for functions
to be recovered exactly from the matrix Q1 and they provide an algorithm to recover
such functions. Jagabathula and Shah show that functions with sparsity K are recov-
erable with high probability for K ≤ (1 − ε)n log n. This result indicates that the
conditions are indeed not very restrictive for functions with sparsity K , paralleling
similar results in the classical (CN ) case.

While these results parallel those in the classical compressed sensing literature, in
social choice applications it is unlikely for a function f corresponding to a profile to
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satisfy these sparsity bounds, as this implies that the votes are concentrated at fewer
than (1 − ε)n log n rankings. Especially in the case when f has nonnegative integer
outputs and bounded domain (as in the context of elections), the likelihood that f
satisfies the linear independence property decreases significantly as the size of the
support increases.

We remove the linear independence property of [9] as a starting point to consider
the recovery of more general functions on Sn given a subset of Fourier coefficients,
focusing here on the matrix Q1 described above. The techniques of [9] no longer
apply in this setting as their algorithm leans heavily on the linear independence
property (see Sect. 3.1). We instead find and characterize combinatorial structure
within thematrices, allowing for the recovery of the original function f by classifying
patterns within the matrix. We also use the combinatorial structure of the matrices to
show that when unique recovery of f is impossible, the class of functions sharing the
Fourier coefficient Q1 still share properties that inform the outcome of the associated
election. In Sect. 2 we introduce the necessary definitions and background material.
In Sect. 3.1 we describe the conditions on our functions and derive the combinatorial
structure of thematrices. InSect. 3.2we investigate the question of uniqueness, asking
if and when functions satisfying the conditions of Sect. 3.1 share a Q1 matrix. While
we restrict ourselves to work in a specialized setting due to space considerations, the
combinatorial results and structure we derive extend to the more general setting. We
describe the connection in Sect. 4 and conclude with further directions and questions.
While we give sketc.hes of most proofs, for brevity’s sake we omit the full details.

2 Background and the Fourier Transform

Consider an election procedure in which members of a society select a ranking
amongst n alternatives. Let Sn denote the set of all possible rankings of the n alter-
natives. The set of rankings given by the individual members is called a profile and
can be encoded by a function f : Sn → Z

+, giving the number, f (σ ), of votes cast
for each ranking σ .

Inwhat follows,wewill use one-line notation todenote a ranking; e.g.., f (1324) =
7 indicates that 7 people ranked alternative 1 first, alternative 2 third, alternative 3 s,
and alternative 4 fourth.

Definition 1 Let f : Sn → Z
+. The Q1 matrix of f , denoted Q f , is the matrix

whose (i, j)th entry is given by Q f
i j =

∑

σ :σ( j)=i

f (σ ).

In other words, the i j th entry of Q f gives the number of members who ranked
alternative j in position i .
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Example 1 Let f : S5 → Z
+ with nonzero function values given below.

12435 25431 52431 31425 43125 34125 45231 45321 42531 32415 32145 32451 45132 45123 35124
1 9 10 2 3 7 8 4 11 15 19 5 13 41 47

Then Q f =

⎛

⎜⎜⎜⎜⎝

1 2 130 15 47
9 61 8 104 13
95 3 4 52 41
80 7 42 19 47
10 122 11 5 47

⎞

⎟⎟⎟⎟⎠
.

We will use the function of Example 1 as our running example.
While it is natural to think about f as taking positive integer values, realizing that

Sn forms a mathematical group, the symmetric group, and that f is an element of the
group algebraC[Sn] of complex-valued functions on Sn gives the important connec-
tion to Fourier analysis on finite groups. While we make the following definitions
for arbitrary finite groups, Sn will be the group of focus in this paper.

Definition 2 Let G be a finite group. A matrix representation ρ of G is a function
from G to the set of n × n invertible matrices such that ρ(ab) = ρ(a)ρ(b) for all
elements a, b of G. We say that n is the dimension of ρ.

Definition 3 LetG be a finite group and f ∈ C[G]. Let ρ be a matrix representation
of G. The Fourier transform of f at ρ, denoted f̂ (ρ), is the matrix sum

f̂ (ρ) =
∑

s∈G
f (s)ρ(s).

For G = CN the cyclic group of order N , all irreducible representations are 1-
dimensional and the set of Fourier transforms corresponding to a complete set of
inequivalent irreducible representations of CN is the usual discrete Fourier trans-
form. For G = {0, 1}n the Boolean Cube, Fourier analysis of functions on G has had
many interesting applications to social choice theory (see, for example [10, 11, 13].

Let G = Sn and define the representation ρ as follows: for σ ∈ Sn , ρ(σ)i j = 1
if σ( j) = i , and 0 otherwise. This is the permutation representation of Sn . While
not irreducible, ρ decomposes into the 1-dimensional trivial representation and the
(n − 1)-dimensional standard representation: ρ = τ(n) ⊕ τ(n−1,1).

Note that for ρ the permutation representation of Sn and f a function on Sn , the
Q1 matrix of f is given by

∑
σ∈Sn f (σ )ρ(σ ). In other words, the Q1 matrix of f is

the Fourier coefficient f̂ (ρ) of f at the representation ρ. The central question of this
work is then how to recover f given the Fourier coefficient of f at the permutation
representation.
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3 Main Results

3.1 Structure of the Matrices

Given a function f : Sn → C, the support of f , denoted supp( f ), is the set of inputs
σ such that f (σ ) �= 0, i.e., the set of rankings chosen by at least one member. We
impose the following conditions on f :

1. f (σ ) �= f (τ ) for any σ �= τ ∈ supp( f ).
2. For each σ ∈ supp( f ), there exists i, j ∈ {1, . . . , n} such that σ(i) = j while

τ(i) �= j for all τ ∈ supp( f ), τ �= σ . We will call such a pair (i, j) a unique
witness for σ .

Condition 2 is the unique witness property of [9] while Condition 1 is weaker
than, but implied by, the linear independence property of [9]. Note that a permutation
σ ∈ supp( f ) could have multiple unique witnesses.

Definition 4 Let f : Sn → C and let Q f be the Q1 matrix of f . Let σ ∈ supp( f ).
An entry Q f

i j of Q
f is a uniquewitness function value of Q f (corresponding to σ ) if

Q f
i j = f (σ ) and σ( j) = i . All other nonzero entries of Q f are nonfunction values.

A collection of unique witness function values {Q f
i1 j1

, . . . , Q f
ik jk

} corresponding to
distinct σ1, . . . , σk ∈ supp( f ) is a set of distinct unique witness function values
of Q f .

Weakening the linear independence property to Condition 1 removes two proper-
ties of Q f that are crucial to the algorithm of [9]. First, if Q f

i j = f (σ ) for some
σ ∈ supp( f ), this does not necessarily imply σ( j) = i . Moreover, if for some
I ⊂ [n], Q f

i j = ∑
k∈I f (σk), then σk( j) = i is not guaranteed for all k ∈ I .

Example 2 Given the matrix Q f of Example 1, the knowledge that Q f
45 is a unique

witness function value for Q f immediately implies that there exists σ ∈ supp( f )
with σ(5) = 4 and f (σ ) = 47. However, each entry of 47 in Q f does not necessarily
correspond to an edge of σ ; indeed, Q f

15 = Q f
55 = 47 but this cannot imply σ(5) = 1

or that σ(5) = 5. Moreover, for σ1 = 31425, σ2 = 42531, σ3 = 32415, and σ4 =
32145, Q15 = ∑4

i=1 f (σi ), but this does not imply σi (5) = 1 for 1 ≤ i ≤ 4.

We restrict our attention to functions that have maximum support, as this setting
informs the less restrictive scenarios. In Sect. 4 we describe how to extend these
results to the general setting. We also focus on nonnegative outputs as in [9].

Lemma 1 Let n > 3 and let kn = max f | supp( f )| over all f : Sn → R≥0 satisfying
Conditions 1 and 2. Then kn = n(n − 2).

Proof (Sketc.h of proof). Let f : Sn → R≥0 satisfy Conditions 1 and 2 and let Q f

be the Q1 matrix of f . If Q f has n distinct unique witness function values in a single
column, this immediately implies | supp( f )| = n. If Q f has (n − 1) distinct unique
witness function values in at least one column, this forces | supp( f )| < n(n − 2) for
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n > 3. If Q f has fewer than (n − 2) distinct unique witness function values in a
column, f cannot have maximum support because | supp( f )| ≥ n(n − 2) only if a
column of Q f has greater than (n − 2) distinct witness function values, placing it
in the first two scenarios. Thus, if Q f has exactly (n − 2) distinct unique witness
function values in each column, | supp( f )| is maximized (see Example 3).

Example 3 Aswe describe below, the support of f : Sn → R≥0 is completely deter-
mined by the placement of circles that represent a distinct unique witness function
value of Q f . Any choice of a distinct positive real number for each σ ∈ supp( f )
gives a function that satisfies Conditions 1, 2 and has support n(n − 2).

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� © © © · · · © �
� � © © · · · © ©
© � � © · · · © ©
© © � � · · · © ©

...

© © © © · · · � ©
© © © © · · · � �

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Suppose Q f
i j is circled. Then Q f

i j = f (σ ) for σ ∈ supp( f ) with σ( j) = i . As Q j j

is a nonfunction value and σ( j) �= j , this implies σ( j − 1) = j because the only
other nonfunction value in row j is in column j − 1. Continuing in this manner, if
i > j , σ(k) = (k + 1) mod n for 1 ≤ k ≤ j − 1 and for i ≤ k ≤ n. Else, σ(k) = k.
If i < j , σ(k) = k for 1 ≤ k ≤ i − 1 and for j + 1 ≤ k ≤ n. Else, σ(k) = k + 1.

For n > 3 let f : Sn → R≥0 satisfy Conditions 1 and 2 with maximum support. By
Lemma 1, there exists a set of exactly n(n − 2) distinct unique witness function
values of Q f , and the proof shows each column (respectively, row) of Q f contains
exactly (n − 2) of them, while the rest are nonfunction values. We show that each
nonfunction value Q f

i j can be written as Q
f
i j = ∑

k∈I f (σk), for I the (n-2)-triangle

of distinct unique witness function values corresponding to Q f
i j .

Definition 5 Let Q be an n × n matrix. An (n-2)-triangle of Q is a choice of two
rows and two columns, along with a numbering of the remaining rows R1, . . . Rn−2,
and columns C1, . . .Cn−2 and a set of matrix values T in these numbered rows and
columns, such that each column Ci and row Ri contains exactly i of the entries of T .

Example 4 For our running example, choose row 1, row 2, column 1, column 3,
number the remaining rows and columns as follows, and let T = {2, 5, 7, 15, 19, 47}.

⎛

⎜⎜⎜⎜⎝

C2 C3 C1

R2 1 2© 130 15© 47
9 61 8 104 13
95 3 4 52 41

R3 80 7© 42 19© 47©
R1 10 122 11 5© 47

⎞

⎟⎟⎟⎟⎠
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Note 1 The subset T of matrix entries completely determines the omitted rows and
columns along with the numbering of the remaining rows and columns. For this
reason we will often refer to a (n − 2)-triangle by simply identifying T .

For Q an n × n matrix let [Q]i, j denote the submatrix of Q obtained by deleting
the i th row and j th column of Q. We will use bold font to represent the new index
of a row or column of Q in [Q]i, j . In other words, column k (respectively, row k)
of Q f becomes column k (respectively, row k) of [Q]i, j , where k = k − 1 if k > j
(respectively, k > i), and otherwise k = k.

Theorem 1 Let n > 3 and let f : Sn → R≥0 be a function satisfying Conditions 1
and 2 with maximum support. Let Q f

i j be a nonfunction value of Q f . Then there
is exactly one (n − 2)-triangle of Q f whose corresponding set T is comprised of
distinct unique witness function values of Q f that occur in the submatrix [Q f ]i, j .
Moreover σ ∈ supp( f ) has σ( j) = i if and only if f (σ ) ∈ T .

Example 5 Before sketc.hing the proof of Theorem 1 we provide an example. Con-
sider the function of Example 1 and consider the nonfunction value Q f

31 = 95. Note
that 6 permutations σ ∈ supp( f ) have σ(1) = 3, and that the function values f (σ )

for these permutations are 2, 5, 7, 15, 19, 47. We see immediately that these are the
distinct unique witness function values circled in Example 4 and that Q f

31 is the sum
of these values.

Proof (Sketc.h of proof). The proof proceeds by induction. We will focus on the
induction step in this sketc.h. Let f : Sn → R≥0 be a function satisfying the condi-
tions of Theorem 1. Let Q f be the Q1 matrix of f and let Q f

i j be a nonfunction value

of Q f . Let Q f
ik be the additional nonfunction value of Q f in row i , let Q f

�k be the
additional nonfunction value in column k, and let Q f

mj be the additional nonfunction

value in column j (see Example 6). It can be shown that Q f
�j is a distinct unique

witness function value of Q f ; essentially, no two rows or columns can share the
same nonfunction values.

Consider the submatrix [Q f ]i,k . This is an (n − 1) × (n − 1) matrix with exactly
two nonfunction values in each row except for row � and in each column except
column j. We define a function g : Sn−1 → R≥0 whose Q1 matrix has nonfunction
values in the same locations as those of f in [Q f ]i,k , along with one additional
nonfunction value in row �, column j.

In essence, we restrict each σ ∈ supp( f ) with unique witness not (·, i), (k, ·), or
( j, �) to σ |n−1 ∈ Sn−1 by restricting σ to the submatrix [Q f ]i,k : removing column
k requires some inputs to be shifted, while removing row i requires some outputs to
be shifted and also requires us to send σ−1(i) elsewhere (to �).

We then define g : Sn−1 → R≥0 so that ρ ∈ supp(g) only if ρ = σ |n−1 for σ ∈
supp( f )with unique witness not (·, i), (k, ·), or ( j, �), and in this case we let g(ρ) =
f (σ ). See Example 6 for an example of g.
We show that g is well-defined, satisfies Conditions 1 and 2, and | supp(g)| =

(n − 1)(n − 3), so by induction the statement of Theorem 1 holds for g. Then for the
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nonfunction valueQg
�j in theQ1matrix for g, there exists exactly one occurrence of an

(n − 3)-triangle in [Qg]�,j whose corresponding set T1 contains only distinct unique
witness function values of Qg (in Example 6, T1 = {2, 7, 47}). In other words, T1
contains all function values g(σ |n−1) such that σ |n−1(j) = �. By definition of σ |n−1,
this implies that for each σ ∈ supp( f ) with unique witness not ( j, �), (·, i), or (k, ·),
f (σ ) ∈ T1 if and only if σ( j) = i .
Letting T2 be the set of distinct unique witness function values in column k of

Q f , (in Example 6, T2 = {5, 15, 19}), we then show that T = T1 ∪ T2 forms an
(n − 2)-triangle of Q f .

Example 6 Consider the function ofExample 1 and let i = 3, j = 1,with Q f
31 = 95.

Then k = 4, � = 2,m = 4,Q f
ik = 52,Q f

�k = 104,Q f
mj = 80, and [Q f ]i,k = is below.

Note that Q f
l j = 9 and � = 2, j = 1, so the distinct unique witness function value in

the second row and first column of [Q f ]i,k is 9.
Forσ = 12435,σ |4 = 1234. Since f (σ ) = 1, g(1234) = 1. Similarly, g(2134) =

2, g(3421) = 8, g(3412) = 13, g(2314) = 7, g(2413) = 47, g(4231) = 10,
g(3241) = 11. The Q1 matrix for g is below, with nonfunction values in the same
location as [Q f ]i,k along with additional nonfunction value Qg

�j. The (n − 3) triangle
for Qlj = 56 (T1) is in red.

[Q f ]i,k =

⎡

⎢⎢⎣

1© 2© 130 47
9© 61 8© 13©
80 7© 42 47©
10© 122 11© 47

⎤

⎥⎥⎦ Qg =

⎡

⎢⎢⎣

1© 2© 67 29
56 22 8© 13©
32 7© 13 47©
10© 68 11© 10

⎤

⎥⎥⎦

Corollary 1 Let n > 3 and let f : Sn → R≥0 be a function satisfying Conditions
1 and 2 with maximum support. Given Q f and the locations of the distinct unique
witness function values of Q f , f is completely recoverable.

Example 7 For f the function of Example 1, let σ ∈ supp( f ) with f (σ ) = 2. In
Example 6 and the proof sketc.h of Theorem 1 we saw that nonfunction value Q f

31 =
95 has 3-triangle T = {2, 5, 7, 15, 19, 47}. We could similarly find that the non-
function values Q f

43 = 42 and Q f
55 = 47 have 3-triangles T ′ = {1, 2, 5, 9, 10, 15}

and T ′′ = {1, 2, 3, 7, 15, 19}, respectively. These 3-triangles give 3 edges for the
permutations of their shared function values; in particular, since 2 ∈ T ∩ T ′ ∩ T ′′,
σ(1) = 3, σ(3) = 4, and σ(5) = 5. The distinct unique witness function value of
σ (Q f

12) is then enough to completely determine σ = 31425, which matches the
original function f of Example 1. Continuing this process recovers the remaining
permutations.
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3.2 ‘Uniqueness’

One might ask how many functions satisfying Conditions 1 and 2 with maximum
support can have the same Q1 matrix. Somewhat surprisingly, a maximum of two
such functions can share a Q1matrix; additionally, the two functions share properties
of interest in social choice theory (see Sect. 4).

Definition 6 A circling of an n × n matrix Q is a choice of n(n − 2) matrix entries
so that there exists a function f : Sn → R≥0 satisfying Properties 1 and 2 with
Q f = Q and a complete set of distinct unique witness function values of Q f is
chosen.

Note that by Corollary 1 a circling of an n × n Q1 matrix completely determines the
corresponding function f .

Example 8 The following two circlings of Q yield distinct functions f and g with
Q f = Q = Qg . We use Corollary 1 to recover f and g, given below.

⎛

⎜⎜⎜⎝

5© 6© 18 19
23 3© 21 1©
10 22 2© 14©
10© 17 7© 14

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

5© 6© 18 19
23 3© 21 1©
10© 22 2© 14
10 17 7© 14©

⎞

⎟⎟⎟⎠

Q f Qg

σ 3412 2431 3214 1324 3124 2341 4321 2413
f (σ ) 1 2 3 5 6 7 10 14

σ 4312 2431 4213 1423 4123 2341 3421 2314
g(σ ) 1 2 3 5 6 7 10 14

Note 2 A choice of n(n − 2) entries of an n × n matrix Q so that each row and each
column of Q has n − 2 circled entries is not necessarily a circling. For example, the
proof of Theorem 1 showed that no two columns of Q can be circled identically.

Theorem 2 Let n > 3 and let Q be the Q1matrix of a function f1 : Sn → R≥0 satis-
fying Properties 1 and 2 with maximum support. Then there is at most one additional
function f2 : Sn → R≥0 satisfying Properties 1 and 2 with maximum support and
Q1 matrix Q.

Proof (Sketc.h of proof). We prove this theorem through a series of lemmas that
show an n × n matrix Q cannot have three distinct circlings, each proof using a
similar induction step as in the proof of Theorem 1. The first lemma shows that if an
n × n matrix Q had three distinct circlings, then at least two of the three circlings
would differ in more than two columns or more than two rows. The next two lemmas
show that this is impossible: two circlings cannot differ in 3 or more columns or 3
or more rows.
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4 Generalizations and Further Directions

While we focused here on the case of recovery of a function f : Sn → R≥0 that
satisfies Conditions 1 and 2 with maximum support, the combinatorial structure of
the matrices in this setting helps inform the less restrictive settings. We discuss some
of our results in these settings below.

For functionswith support smaller than n(n − 2), a complete set of distinct unique
witness function values has fewer entries in each row and column, so a nonfunction
value is no longer guaranteed to come from an (n − 2)-triangle of distinct function
values. However, if we consider all unique witness function values, rather than just
the distinct ones, we recover results similar to the ones described above. The key
difference is we must discard all function values in the same row or column as the
nonfunction value. Doing so allows for the identification of function values that
contribute to each nonfunction value, again allowing for the recovery of a function
with the given Q1 matrix.

On the uniqueness side, in the maximum support case, Theorem 2 shows there are
at most exactly two functionswith the same Q1matrix. Indeed, these functions f and
g share some interesting voting theoretic properties. For instance, we show that for
any n, for all but three alternatives, a alternative is aCondorcet winner in f if and only
if she is a Condorcet winner in g. For example, for the functions in Example 8 above,
alternative C is a Condorcet winner in both elections. Indeed, choosing any distinct
real numbers for the circled entries in this example gives functions f and g where
alternative C is either a Condorcet winner in both or in neither. Extending to functions
with support smaller than n(n − 2), we have identified families of functions that share
a fixed Q1 matrix. We are still investigating whether these families similarly share
interesting properties such as the Condorcet statement above.
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High-Frequency Statistical Modelling
for Jump-Diffusion Multi-asset Price
Processes with a Systemic Component

Rulin Xu and Roman N. Makarov

Abstract This paper is concerned with the statistical modelling of the high-
frequency dynamics of financial markets.We studywhether a systemic component in
amulti-asset pricemodel can explain all jumps in themarket’s dynamics. By perform-
ing statistical analysis of high-frequency data fromWharton Research Data Services
(WRDS),we detect disjoint and common jumps in intraday time series of asset prices.
We calibrate and compare two multi-asset models with a systemic component: the
model with co-jumps only and the model with both common and asset-specific jump
components. We assume that jumps follow a compound Poisson process, and the
jump sizes have a normal probability distribution. The Kullback–Leibler divergence
and theKolmogorov–Smirnov tests are used to compare themodels and show that the
model with common and asset-specific jumps provides a better fit to high-frequency
data.

Keywords Jump-diffusion process · Multi-asset pricing model · High-frequency
trading · Jump and co-jump tests

1 Introduction

With the rapid development of digital technologies, high-frequency data can be accu-
rately collected and analyzed in an efficient manner (see [2, 3, 5]). In [4], a multivari-
ate jump-diffusion was proposed for modelling financial securities with missing or
asynchronous data in time series of historical prices. The model was constructed in
such a way that low-activity assets correlate with each other only implicitly through
the high-activity asset.
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In this paper, we propose a newmulti-asset jump-diffusion model with a systemic
component, where each asset has an individual jump component. We apply this
multivariate process to model the dynamics of several high-frequently trading assets.
The S&P500 stock index can be used to describe the systemic behaviour of the whole
financial market. Walmart Inc. (WMT) and Apple Inc. (AAPL) stocks are chosen for
our analysis as companies representing different industries.

The Aït-Sahalia and Jacod’s jump test [1] is used to find dates for which the
intraday price data contain jumps (see also [8, 9]). After that, we employ the Jacod
and Todorov’s co-jump test [7] to detect common and disjoint jumps when both the
asset and the market index have jumps on the same day. After that, we construct
the model and compare it with the one from [4]. The performance of each model is
analyzed using the Kullback–Leibler divergence and the Kolmogorov–Smirnov test.

2 High-Frequency Data Processing

TheS&P500 stock index is commonly considered as an indicator of theU.S. economy
as a whole. Two representative high-frequently trading assets with tickets AAPL
and WMT are selected for our analysis. The high-frequency intraday price data
(at the millisecond level) are obtained from Wharton Research Data Services. All
transactions for each tradingday from9:30 am to4:00pm inyear 2018were collected.

High-frequency data are irregularly spaced over time and contain market
microstructure noise, when the asset price is abnormally rising up and then dropping
down (or vice versa). The deviation from fundamental value is a typical character-
istic of the high-frequency trading in modern financial markets, which would cause
unstable estimates of some parameters. Therefore, we constructed the following pro-
cedure to eliminate the microstructure noise. Our approach is similar to the noise
mitigating strategy described in [2].

Step 1: Let S(t) denote the asset price at time t ∈ {t0, t1, . . .}. Let ΔX j =
ln S(t j ) − ln S(t j−1) represent the log-return over [t j−1, t j ]. Additionally,we stan-
dardize the log-returns by subtracting the sample mean ΔX and dividing by the

sample standard deviation sΔX to obtain ΔX∗
j = ΔX j−ΔX

sΔX
.

Step 2: Choosing 10 as the critical value, we find all indices j∗k with k ≥ 1 such
that |ΔX∗

j∗k
| > 10. Let K denote the number of such indices.

Step 3: If K ≥ 2, we start with k = 1. If j∗k and j∗k+1 satisfy j∗k+1 − j∗k ≤ 20 and
the signs ofΔX j∗k andΔX j∗k+1

are opposite, then we set all the asset prices from t j∗k
to t j∗k+1−1 equal to S(t j∗k −1). After that, increase k by 2 and repeat Step 3. Otherwise,
increase k by 1 and repeat Step 3. We stop the procedure as soon as the value of
k becomes equal to K .
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3 Detecting Common and Disjoint Jumps

We collected, cleaned, and sampled intraday data with a time interval of 1 sec for 251
trading days in 2018. The Aït-Sahalia and Jacod’s jump test [1] was implemented to
detect jumps for each day. We considered two null hypotheses: (1) there is no jump;
(2) there is at least one jump. If an intraday time series rejects the first null hypothesis
and does not reject the second null hypothesis, the time series is considered to have
jumps. For those dates when both the market index and an individual asset had jumps
on the same day, the Jacod and Todorov’s common jump test [7] is used to verify the
existence of common and disjoint jumps. Again, we consider two null hypotheses:
(1) common jumps exit; (2) disjoint jumps exist. As a result, at the 95% confidence
level, we have detected 14 days when both S&P500 and AAPL have jumps on the
same day: 11days with both common and disjoint types of jumps, 2 days with only
common jumps, and 1day with only disjoint jumps. Additionally, we found 18 days
when both S&P500 andWMThave jumps on the same day: 11dayswith both disjoint
and common jumps, 6 days with disjoint jumps only, and 1day with common jumps
only. The corresponding p-values and acceptance results are presented in Table 1.
This statistical analysis provides empirical evidence of the presence of disjoint and
common jumps, implying that using jumps in a systemic component only is not
sufficient to explain all jumps in the market dynamics for high-frequency data. Thus,
it is reasonable to consider a multi-asset price model with common and asset-specific
jumps.

4 Multi-Asset Price Model

Let S0 denote a market index, which is considered as a systemic security affecting the
dynamics of all other assets. Assume themarket index value follows a jump-diffusion
process with the following stochastic differential equation (SDE):

dS0(t)

S0(t−)
= μ0dt + σ0dW0(t) + d

( Nλ0 (t)∑
�=1

(
eσ0Q� − 1

))
, t ≥ 0. (1)

Here, the constants μ0 and σ0 > 0 represent the drift rate and volatility of return of
the market index, respectively; {W0(t)}t≥0 is a standard Brownian Motion; {Q�} is
a sequence of iid normal random jump sizes with mean μJ0 and variance σ 2

J0
; and

{Nλ0(t)}t≥0 is a standardPoisson processwith intensityλ0 > 0. The usual assumption
is that {Q�}, {Nλ0(t)} and {W0(t)} are jointly independent. Obviously, if there are no
jumps (e.g.., λ = 0 or σJ0 = 0), the solution to (1) is a Geometric Brownian Motion
(GBM). We refer to it as the GBM case.

For the asset price model with common jumps only, we assume that the strong
solution and the SDE are the same as those proposed in [4]:
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Table 1 Jump test (JT) results for the index and one stock: p-values and acceptances

SPY and WMT SPY and AAPL

Date Disjoint JT Common JT Date Disjoint JT Common JT

2018.02.26 0.849 � 0.000 × 2018.01.23 0.562 � 0.146 �
2018.03.15 0.781 � 0.102 � 2018.02.15 0.565 � 0.083 �
2018.04.20 0.659 � 0.219 � 2018.03.15 0.172 � 0.267 �
2018.05.01 0.638 � 0.128 � 2018.05.01 0.139 � 0.406 �
2018.05.24 0.634 � 0.121 � 2018.05.25 0.010 × 0.684 �
2018.06.12 0.725 � 0.371 � 2018.06.12 0.010 × 0.727 �
2018.06.27 0.708 � 0.001 × 2018.07.26 0.330 � 0.916 �
2018.07.26 0.404 � 0.797 � 2018.08.22 0.250 � 0.481 �
2018.08.28 0.768 � 0.000 × 2018.08.23 0.210 � 0.560 �
2018.08.24 0.709 � 0.263 � 2018.08.29 0.471 � 0.689 �
2018.08.31 0.700 � 0.140 � 2018.09.21 0.121 � 0.799 �
2018.09.04 0.539 � 0.094 � 2018.09.14 0.369 � 0.390 �
2018.09.21 0.647 � 0.006 × 2018.09.25 0.424 � 0.208 �
2018.10.02 0.838 � 0.002 × 2018.11.16 0.165 � 0.030 ×
2018.11.01 0.630 � 0.650 �
2018.11.30 0.028 × 0.827 �
2018.12.03 0.820 � 0.000 ×
2018.12.21 0.457 � 0.066 �

dSi (t)

Si (t−)
= μi dt + σi

(
ρi dW0(t) +

√
1 − ρ2

i dWi (t)
)

+ d

( Nλ0 (t)∑
�=1

(
eσiρi Q� − 1

))
,

(2)
for t ≥ 0. Hereμi and σi > 0 are, respectively, the drift rate and volatility for asset Si ,
i ≥ 1. The coefficient ρi ∈ (−1, 1) represents the correlation between the systemic
process S0 and asset Si . TheBrownianmotion {Wi (t)}t≥0 is independent of {S0(t)}t≥0.
Under the assumption that the market index has no jumps, the above SDE reduces
to the GBM case.

Next, we propose a new multivariate jump-diffusion model, where the individual
assets have not only jumps from the market index but also additional, asset-specific
jumps independent from those of S0. The respective SDE is as follows:

dSi (t)

Si (t−)
= μi dt + σi

(
ρi dW0(t) +

√
1 − ρ2

i dWi (t)
)

+ d

⎛
⎝

Nλ0 (t)∑
�=1

(eσiρi Q� − 1) +
Nλi (t)∑
k=1

(eσi

√
1−ρ2

i Q
(i)
k − 1)

⎞
⎠ , t ≥ 0. (3)
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For each asset Si with i ≥ 1, the jump sizes {Q(i)
k } are iid random variables with

mean μJi and variance σ 2
Ji
. Here, {Nλi (t)}t≥0 is a Poisson process for jumps that

are specific for asset Si . All of {Q(i)
k }, {Nλi (t)} and {Wi (t)} are independent from

each other, as well as from the process {S0(t)}. Additionally, conditional on {S0(t)},
the price processes {Si (t)}, i ≥ 1 are jointly independent. Here, all jump sizes are
normally distributed.

5 Estimation of Parameters for the Systemic Component

As described in [6], the multinomial maximum likelihood estimation (MMLE)
method can be employed to speed up the calibration of the market index model.
The MMLE method consists of the following two steps.

Step 1: Sort m historical log-returns into nbin bins and find the sample frequency
f (s)
k for each bin k = 1, 2, . . . , nbin .

Step 2: Maximize the objective function: l(v) =
nbin∑
k=1

[ f (s)
k ln( fk(v))] → max

v
.

The theoretical frequency fk(v) for the model distribution with probability density
φ, cumulative distribution function Φ, and parameter vector v is given by

fk(v) = m
∫
Bk

φ(x; v)dx = m(Φ(bk; v) − Φ(bk−1; v)),

where Bk = [bk−1, bk] is the kth bin.
Similarly to [4], a first-order approximation is used to calculate the theoretical

frequencies. The probability of having k jumps during a time interval of length h is
pk = e−λh(λh)k/k!. The distribution of the log-return Z̃ = ln(S0(t + h)/S(t)) from

t to t + h given that k jumps occur is normal with mean (μ0 − σ 2
0
2 )h + kμJ0 and

variance σ 2
0 h + kσ 2

J0
. Let Nk(x) denote the cumulative distribution function (CDF)

for this distribution. For small h, it is unlikely to have more than one jump per time
period, and hence the CDF Φ of the log-return Z̃ can be approximated as:

Φ(x) ≈ p0
p0 + p1

N0(x) + p1
p0 + p1

N1(x).

6 Estimation of Model Parameters

Our next step is to estimate the model parameters for each asset Si with i ≥ 1 by con-
ditioning on the market index values. As demonstrated in [4], the model parameters
can be individually estimated for each asset. Themaximum likelihoodmethod (MLE)
is used for each of the two jump-diffusion asset price models described in Sect. 4.
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Introduce the log-values Z(t) = ln S0(t) and Xi (t) = ln Si (t) for i = 1, 2, . . . , n and
t ≥ 0. Fix the index i ≥ 1 and use the following notations:

Z j = ln S0(t j ), X j = ln Si (t j ), Mj = W0(t j ) +
Nλ0 (t j )∑
k=1

Qk,

where j = 0, 1, . . . ,m, andm is the number of observations available. Additionally,
we use lowercase letters z j and x j for historical values of log-prices.

6.1 Assets Model with only Common Jump

Consider the asset price model with only co-jumps. Find and reorganize the strong
solutions to (1) and (2) to obtain:

X j = X j−1 +
(
μi − σi

2

)
h j + σiρi

(
Z̃ j−(μ0− σ20

2 )h j
σ0

)
+ σi

√
1 − ρ2

i

(
Wi (t j ) − Wi (t j−1)

)
,

where h j = t j − t j−1, and Z̃ j = Z j − Z j−1 is the log-return ln(S0(t j )/S0(t j−1)) for
j = 0, 1, 2, . . . ,m. The joint transitional PDF of X j and Z j is:

pX j ,Z j |X j−1,Z j−1 (x j , z j | x j−1, z j−1) =pZ j |Z j−1 (z j | z j−1) × pX j |X j−1,Z̃ j
(x j | x j−1, z̃ j ) ,

where z̃ j = z j − z j−1.
We can construct a likelihood function conditional on values of S0 (or its log-

values Z ). The transitional PDF pZ j |Z j−1(z j | z j−1) can be omitted in the likelihood
function. As a result, we have the following conditional log-likelihood function for
asset Si :

Li (X | Z) =
m∏
j=1

pX j |X j−1,Z̃ j
(x j | x j−1, z̃ j ) . (4)

Clearly, it is a product of normal densities.
To maximize the log-likelihood function in (4), we first find zeros of the partial

deriatives w.r.t. the parameters μi , σi , and ρi . From [4], we have the following
solution: σi = √

u2 + v2, μi = w + u2+v2

2 , and ρi = v√
u2+v2

where

u2 =
∑m

j=1

(
x̃ j − h jw − z̃ j

σ0
v + d0vh j

)2
/h j

m
,

v = (c − (ΔxΔz/Δt)) σ0

b2 − (Δz)2 /Δt
, w = Δxb2 − Δzc + μ̃0Δtc − μ̃0ΔxΔz

Δt
(
b2 − Δz/Δt

) ,
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d0 = μ0− σ20
2

σ0
, x̃ j = x j − x j−1,Δt = ∑m

j=1 h j = tm − t0,Δx = ∑m
j=1 x̃ j = xm − x0,

Δz = ∑m
j=1 z̃ j = zm − z0, and μ̃0 = μ0 − σ 2

0
2 . The parameters b2 and c are as fol-

lows:

b2 =
m∑
j=1

z̃ 2j
h j

and c =
m∑
j=1

z̃ j x̃ j

h j
.

6.2 Assets Model with an Additional Jump Component

Now, we consider the case with asset-specific jumps. Find and reorganize the strong
solutions to (1) and (3) to obtain:

X j = X j−1 +
(
μi − σi

2

)
h j + σiρi

(
Z̃ j − (μ0 − σ 2

0
2 )h j

σ0

)

+ σi

√
1 − ρ2

i

(
Wi (t j ) − Wi (t j−1) +

Nλi (t j )∑
k=Nλi (t j−1)+1

Q(i)
k

)
. (5)

There is an additional jump part in the equation, and the jump sizes for assets
are normally-distributed. Assume there is at most one jump in each time inter-
val [t j−1, t j ]. In this case, the conditional distribution of X j given X j−1 and
Z̃ j = Z j − Z j−1 is a mixture of two normal distributions. The joint probability
function of X j and Z j conditional on X j−1 and Z j−1 is as follows:

pX j ,Z j |X j−1,Z j−1 (x j , z j | x j−1, z j−1) = pZ j |Z j−1 (z j | z j−1) × pX j |X j−1,Z̃ j
(x j | x j−1, z̃ j ),

pX j |X j−1,Z̃ j
(x j | x j−1, z̃ j ) ≈ p0

p0 + p1

1√
2πσ 2

i h j (1 − ρ2
i )

× exp

⎧⎪⎨
⎪⎩−

[
x j−x j−1−(μi− σ2i

2 )h j− σi ρi
σ0

(
z̃ j−(μ0− σ20

2 )h j

)]2

2σ 2
i (1−ρ2

i )h j

⎫⎪⎬
⎪⎭

+ p1
p0 + p1

1√
2πσ 2

i (h j + σ 2
Ji
)(1 − ρ2

i )

× exp

⎧⎪⎨
⎪⎩−

[
x j−x j−1−(μi− σ2i

2 )h j− σi ρi
σ0

(
z̃ j−(μ0− σ20

2 )h j

)
−σi

√
1−ρ2

i μJi

]2

2σ 2
i (1−ρ2

i )(h j+σ 2
Ji

)

⎫⎪⎬
⎪⎭ .

Again, when we construct the conditional log-likelihood function Li (X | Z), we
omit the density function pZ j |Z j−1(z j | z j−1). It is too complicated to find zeros of
derivatives of the likelihood function in closed-form due to the inclusion of additional
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jumps. Instead,we canuse anumerical optimizationmethod such as theNelder–Mead
simplex method available in MATLAB under the function fminsearch.

We assume that the systemic component models the market index and that other
assets depend on it. The same idea is used in the Capital Asset Price Model (CAPM).
This approach simplifies the calibration procedure: estimate the parameters of the
systemic component first and then find the parameters of every other asset price
process. The other possible approach is to treat the systemic asset as an unobservable,
hidden process like in the HiddenMarkovModel (HMM). Themarket index can then
be regarded as one of the assets available on the market. However, the calibration of
such a multi-asset model is not a straightforward task.

7 Numerical Results

In this paper, we calibrated all models using: (1) the intraday data with the time inter-
val equal to 1 s and (2) the intraweek data with the time interval equal to 5 minutes.
The parameters for the GBMmarket indexmodel (without jumps) are used as the ini-
tial guess for theMMLEmethod when we estimate parameters of the jump-diffusion
market index model. For individual assets, we first estimate the parameters for the
model without asset-specific jumps using analytical formulae from Sect. 6.1. The
estimation process is conditional on the market index values. Secondly, to estimate
parameters for the asset price model with asset-specific jumps, we use the results
for the model with common jumps only as an initial approximation. Table 2 shows
calibration results for the intraday data on 15 March 2018 with time intervals equal
to 1 s. The jump detection tests indicate that the last week in August 2018 appears to
have more jumps. We re-sampled intraday data from 27 August to 31 August 2018
with a 5-minute time step and merged daily data with log-returns. The intraweek
parameter estimation results are presented in Table 3.

We employed the Kullback–Leibler (KL) divergence to measure how close the
probability distribution for each model to the historical distribution. We measure the
empirical CDF, denoted by F , using the function ecdf in MATLAB. Meanwhile,
Q denotes the CDF for one of the asset price models considered in this paper. For
discrete probability distributions F and Q, the KL divergence from F to Q denoted
as DKL(Q‖F) and from Q to F denoted as DKL(F‖Q). As the KL divergence
measure is not symmetric, we compute both DKL(Q‖F) and DKL(F‖Q), then sum
them together, where

DKL(Q‖F) =
∑
x∈X

Q(x) ln
(Q(x)

F(x)

)
and DKL(F‖Q) =

∑
x∈X

F(x) ln
( F(x)

Q(x)

)
.

The Kolmogorov–Smirnov( KS) test is used to measure the goodness of fit of
the models. The null hypothesis of the KS test is that the sample is drawn from the
reference distribution. The KS statistic quantifies a distance between the empirical



High-Frequency Statistical Modelling for Jump-Diffusion … 755

Table 2 Daily parameters for Δt = 1 sec

Market index μ0 σ0 μJ0 σJ0 λ0

SPY GBM −0.0029 0.0067

Jump-
diffusion

−0.0022 0.0061 0.0025 0.0451 1.0165

Assets μi σi ρi μJi σJi λi

WMT GBM −0.0004 0.0187 0.1372

i = 1 With
co-jumps
only

−0.0001 0.0187 0.1251

With
disjoint
jumps

0.00001 0.0129 0.1516 −0.00002 0.0007 1.0027

AAPL GBM 0.0007 0.0101 0.3801

i = 2 With
co-jumps
only

0.0011 0.0099 0.3492

With
disjoint
jumps

0.0006 0.0093 0.3593 −0.000004 0.0004 1.0082

Table 3 Weekly parameters for Δt = 5 min

Market Index μ0 σ0 μJ0 σJ0 λ0

SPY GBM 0.0051 0.0078

Jump-
diffusion

0.0078 0.0070 −0.1525 0.00004 0.9984

Assets μi σi ρi μJi σJi λi

WMT GBM 0.0026 0.0174 0.3357

i = 1 With
co-jumps

0.0047 0.0172 0.3053

With
disjoint
jumps

−0.0037 0.0161 0.3192 0.0040 0.0012 0.9916

AAPL GBM 0.0304 0.0230 0.5426

i = 2 With
co-jumps

0.0347 0.0223 0.5024

With
disjoint
jumps

0.0396 0.0202 0.533 −0.0010 0.00383 1.004
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Table 4 KL divergence & KS statistic values for intraday data with Δt = 1 sec

Market index SPY Assets WMT AAPL

KL GBM 157.4857 GBM 480 220.4032

Divergence Jump-
diffusion

131.0703 With co-jumps 477.8103 209.8041

With disjoint
jumps

280.644 184.7301

KS GBM 0.0544 GBM 0.047 0.0387

Statistics Jump-
diffusion

0.0696 With co-jumps 0.047 0.0419

With disjoint
jumps

0.1004 0.0516

Table 5 KL divergence & KS statistic values for intraweek data with Δt = 5 min

Market index SPY Assets WMT AAPL

KL GBM 1.6253 GBM 1.1225 2.1719

Divergence Jump-
diffusion

0.786 With co-jumps 1.0093 1.6165

With disjoint
jumps

0.5462 0.79

KS GBM 0.0703 GBM 0.0596 0.0695

Statistics Jump-
diffusion

0.0449 With co-jumps 0.0595 0.0676

With disjoint
jumps

0.0424 0.0563

distribution function of the sample and the CDF of the reference distribution. Let
the empirical distribution function be denoted by F . The KS statistic for a given
reference CDF Q is DKS = supx |F(x) − Q(x)|.

The CDF of the market index model can be derived directly. The unconditional
CDF for each asset price models can be obtained using properties of the normal
distribution. As a result, we have derived the unconditional CDF of the i th asset’s
log-return over a time interval of length h for the model with common and asset-
specific jumps as a linear combination of normal CDFs.

We compared two distributions of the market index log-returns: the GBM and
jump-diffusion models, and three distributions of the asset log-returns: the GBM,
jump-diffusion with commons jumps only, and jump-diffusion with additional asset-
specific jumps. The KL divergence values and KS test statistic results are reported
in Tables 4 and 5.

Firstly, we calculated theKLdivergence for themarket index and assets. A smaller
KL divergence indicates a better model that fits the data. The results reported in two
tables support that the jump-diffusion model for the market index outperforms the
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GBM process without jumps. Secondly, we compared models by KS statistics. A
smaller KS statistic value indicates better goodness of fit of the model. The results
reported in Table 4 show that the GBM model without jumps is the best fit for the
observations for bothmarket index and assets when time interval equals to 1 s. Table 5
shows theKS statistic values at the 5-minute time level. The presented results support
that the jump-diffusion model for the market index fits the empirical data better than
the GBM model without jumps. In summary, the jump-diffusion asset price model
with both common and asset-specific types of jumps is the best fit among the three
asset price models considered in this paper.
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